Applied
Combinatorics

2017 Edition

Mitchel T. Keller Willlam T. Trotter

Applied Combinatorics

Applied Combinatorics

Mitchel T. Keller

Washington and Lee University
Lexington, Virginia

William T. Trotter

Georgia Institute of Technology
Atlanta, Georgia

2017 Edition

Edition: 2017 Edition
Website: http:/ /rellek.net/appcomb/
© 2006-2017 Mitchel T. Keller, William T. Trotter

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License. To view a copy of this license, visit http: //creativecommons.org/licenses/
by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA
94042, USA.

http://rellek.net/appcomb/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Summary of Contents

About the Authors

Acknowledgements

Preface

Preface to 2017 Edition

Preface to 2016 Edition

Prologue

1

2

9

An Introduction to Combinatorics
Strings, Sets, and Binomial Coefficients
Induction

Combinatorial Basics

Graph Theory

Partially Ordered Sets
Inclusion-Exclusion

Generating Functions

Recurrence Equations

10 Probability

11 Applying Probability to Combinatorics

12 Graph Algorithms

xi

xiii

XV

XVii

17

39

59

69

113

141

157

183

213

229

239

vii

SUMMARY OF CONTENTS

13 Network Flows
14 Combinatorial Applications of Network Flows
15 Pélya’s Enumeration Theorem

16 The Many Faces of Combinatorics

A Epilogue
B Background Material for Combinatorics
C List of Notation

Index

viii

259
279
201

315

331
333
361
363

About the Authors

About William T. Trotter

William T. Trotter is a Professor in the School of Mathematics at Georgia Tech. He
was first exposed to combinatorial mathematics through the 1971 Bowdoin Combi-
natorics Conference which featured an array of superstars of that era, including Gian
Carlo Rota, Paul Erdds, Marshall Hall, Herb Ryzer, Herb Wilf, William Tutte, Ron Gra-
ham, Daniel Kleitman and Ray Fulkerson. Since that time, he has published more
than 120 research papers on graph theory, discrete geometry, Ramsey theory, and ex-
tremal combinatorics. Perhaps his best known work is in the area of combinatorics
and partially ordered sets, and his 1992 research monograph on this topic has been
very influential. (He takes some pride in the fact that this monograph is still in print
and copies are being sold in 2016.) He has more than 70 co-authors, but considers his
extensive joint work with Graham Brightwell, Stefan Felsner, Peter Fishburn, Hal Kier-
stead and Endre Szemeredi as representing his best work. His career includes invited
presentations at more than 50 international conferences and more than 30 meetings of
professional societies. He was the founding editor of the SIAM Journal on Discrete Math-
ematics and has served on the Editorial Board of Order since the journal was launched
in 1984, and his service includes an eight year stint as Editor-in-Chief. Currently, he
serves on the editorial boards of three other journals in combinatorial mathematics.

Still he has his quirks. First, he insists on being called “Tom”, as Thomas is his middle
name, while continuing to sign as William T. Trotter. Second, he has invested time
and energy serving five terms as department/school chair, one at Georgia Tech, two
at Arizona State University and two at the University of South Carolina. In addition,
he has served as a Vice Provost and as an Assistant Dean. Third, he is fascinated by
computer operating systems and is always installing new ones. In one particular week,
he put eleven different flavors of Linux on the same machine, interspersed with four
complete installs of Windows 7. Incidentally, the entire process started and ended with
Windows 7. Fourth, he likes to hit golf balls, not play golf, just hit balls. Without these
diversions, he might even have had enough time to settle the Riemann hypothesis.

He has had eleven Ph.D. students, one of which is now his co-author on this text.

ix

About the Authors

About Mitchel T. Keller

Mitchel T. Keller is a super-achiever (this description is written by WTT) extraordi-
naire from North Dakota. As a graduate student at Georgia Tech, he won a lengthy list
of honors and awards, including a VIGRE Graduate Fellowship, an IMPACT Scholar-
ship, a John R. Festa Fellowship and the 2009 Price Research Award. Mitch is a natural
leader and was elected President (and Vice President) of the Georgia Tech Graduate
Student Government Association, roles in which he served with distinction. Indeed,
after completing his terms, his student colleagues voted to establish a continuing award
for distinguished leadership, to be named the Mitchel T. Keller award, with Mitch as
the first recipient. Very few graduate students win awards in the first place, but Mitch
is the only one I know who has an award named after them.

Mitch is also a gifted teacher of mathematics, receiving the prestigious Georgia Tech
2008 Outstanding Teacher Award, a campus-wide competition. He is quick to exper-
iment with the latest approaches to teaching mathematics, adopting what works for
him while refining and polishing things along the way. He really understands the lit-
erature behind active learning and the principles of engaging students in the learning
process. Mitch has even taught his more senior (some say ancient) co-author a thing
or two and got him to try personal response systems in a large calculus section.

Mitch is off to a fast start in his own research career, and is already an expert in the
subject of linear discrepancy. Mitch has also made substantive contributions to a topic
known as Stanley depth, which is right at the boundary of combinatorial mathematics
and algebraic combinatorics.

After finishing his Ph.D., Mitch received another signal honor, a Marshall Sherfield
Postdoctoral Fellowship and spent two years at the London School of Economics. He
is presently an Assistant Professor of Mathematics at Washington and Lee University,
and a few years down the road, he’ll probably be president of something.

On the personal side, Mitch is the keeper of the Mathematics Genealogy Project, and
he is a great cook. His desserts are to die for.

Acknowledgements

We are grateful to our colleagues Alan Diaz, Thang Le, Noah Streib, Prasad Tetali and
Carl Yerger, who have taught Applied Combinatorics from preliminary versions and
have given valuable feedback. As this text is freely available on the internet, we wel-
come comments, criticisms, suggestions and corrections from anyone who takes a look
at our work.

For the 2016 and subsequent editions, we are grateful to Robert A. Beezer, David
Farmer, and Kent Morrison for organizing the American Institute of Mathematics work-
shop on MathBook xmL (now PreTeXt) that enabled the new formats to be released.
David Farmer’s work on the initial conversion from KIEX to PreTeXt. The PreTeXt
Google Group was an important resource in resolving challenges along the way, and
Rob Beezer is a wonderfully-responsive developer who gladly put up with any num-
ber of feature requests in order to make everything we wanted possible in the PreTeXt
edition

Xi

Preface

At Georgia Tech, MATH 3012: Applied Combinatorics, is a junior-level course tar-
geted primarily at students pursuing the B.S. in Computer Science. The purpose of
the course is to give students a broad exposure to combinatorial mathematics, using
applications to emphasize fundamental concepts and techniques. Applied Combina-
torics is also required of students seeking the B.S. in Mathematics, and it is one of two
discrete mathematics courses that computer engineering students may select to fulfill
a breadth requirement. The course will also often contain a selection of other engi-
neering and science majors who are interested in learning more mathematics. As a
consequence, in a typical semester, some 250 Georgia Tech students are enrolled in
Applied Combinatorics. Students enrolled in Applied Combinatorics at Georgia Tech
have already completed the three semester calculus sequence—with many students
bypassing one or more of the these courses on the basis of advanced placement scores.
Also, the students will know some linear algebra and can at least have a reasonable
discussion about vector spaces, bases and dimension.

Our approach to the course is to show students the beauty of combinatorics and
how combinatorial problems naturally arise in many settings, particularly in computer
science. While proofs are periodically presented in class, the course is not intended to
teach students how to write proofs; there are other required courses in our curriculum
that meet this need. Students may occasionally be asked to prove small facts, but these
arguments are closer to the kind we expect from students in second or third semester
calculus as contrasted with proofs we expect from a mathematics major in an upper-
division course. Regardless, we cut very few corners, and our text can readily be used
by instructors who elect to be even more rigorous in their approach.

This book arose from our feeling that a text that met our approach to Applied Com-
binatorics was not available. Because of the diverse set of instructors assigned to the
course, the standard text was one that covered every topic imaginable (and then some),
but provided little depth. We’ve taken a different approach, attacking the central sub-
jects of the course description to provide exposure, but taking the time to go into
greater depth in select areas to give the students a better feel for how combinatorics
works. We have also included some results and topics that are not found in other texts
at this level but help reveal the nature of combinatorics to students. We want students
to understand that combinatorics is a subject that you must feel “in the gut”, and we
hope that our presentation achieves this goal. The emphasis throughout remains on

xiii

Preface

applications, including algorithms. We do not get deeply into the details of what it
means for an algorithm to be “efficient”, but we do include an informal discussion of
the basic principles of complexity, intended to prepare students in computer science,
engineering and applied mathematics for subsequent coursework.

The materials included in this book have evolved over time. Early versions of a few
chapters date from 2004, but the pace quickened in 2006 when the authors team taught
a large section of Applied Combinatorics. In the last five years, existing chapters have
been updated and expanded, while new chapters have been added. As matters now
stand, our book includes more material than we can cover in a single semester. We
feel that the topics of Chapters 1-9 plus Chapters 12, 13 and 14 are the core of a one
semester course in Applied Combinatorics. Additional topics can then be selected from
the remaining chapters based on the interests of the instructor and students.

Mitchel T. Keller and William T. Trotter

Lexington, Virginia, and Atlanta, Georgia

Xiv

Preface to 2017 Edition

Because I (M1K) didn’t have the chance to teach from this book during the 2016-2017
academic year, there were few opportunities to examine some of the areas where im-
provements are due in the text. That said, some changes suggested in the Preface to
2016 Edition did come to fruition in this edition. In particular, the numbering of many
things in Chapter 8 will not match the 2016 Edition in a number of places because
of the addition of Example 8.7 to address the coefficients on 1/(1 — x)" in a way that
doesn’t require calculus. There is also one new exercise in Chapter 8, which has been
placed at the end to retain consistency of numbering. Other than correcting errors,
there have been no changes to the exercises, so faculty members teaching from the text
may continue to assign the same exercise numbers with confidence that they are the
same exercises they have been in the past.

The other notable update in this edition is the addition of a number of SageMathCells
to Chapter 8 (including in the exercises), Section 9.6, and the Discussion that ends
Chapter 9. The practice of vaguely referring readers to a generic computer algebra
system but not providing any advice on how to use it had always been unsatisfying.
I know there are places where further refinement is in order, but this edition starts a
more coherent approach toward using technology for some of the unpleasant algebraic
aspects of the text. Readers can edit the content of the SageMathCells in the body of
the text in order to use them to tackle other problems, and those in the exercises are
there for convenience more than anything and include only a bare skeleton of what
might be useful for the exercise. Since SageMath is open source and can be run for free
on CoCalc, this approach seems greatly preferable to targeting a commercial CAS. For
those, like me, who are coming to SageMath with experience using a commercial CAS,
SageMath does not do implied multiplication in input very well. When a result comes
up that seems strange, my first step is always to make sure that I'm not missing a *
in my code.

Of course, even in a text that’s been in use for over a decade, there are typos. A num-
ber of small issues were resolved in this edition. The errata page http://www.rellek.net/
appcomb/errata/ lists the dozen mistakes corrected in this edition. Undoubtedly, there
are other mistakes waiting to be found, and we welcome reports from readers. (Pull
requests on GitHub are also welcome!)

What'’s next? We’d love to hear from readers with suggestions, but I anticipate that
expanding Chapter 4 will be high on the list. If you're using SageMath (or Python)

XV

http://www.rellek.net/appcomb/errata/
http://www.rellek.net/appcomb/errata/

Preface to 2017 Edition

alongside our text, contributions of code snippets that would be worth including are

also welcomed.
Mitchel T. Keller

Lexington, Virginia

XVi

Preface to 2016 Edition

In April 2016, the American Institute of Mathematics hosted a weeklong workshop in
San Jose to introduce authors of open textbooks to git and Robert A. Beezer’s Math-
Book xML authoring language designed to seamlessly produce urmr, IXTEX, and other
formats from a common xmL source file. I (MTK) attended and eagerly began the con-
version of existing I&IEX source for this now decade-old project into MathBook xmr.
David Farmer deserves an enormous amount of credit for automating much of the
process through a finely-tuned script, but the code produced still required a good deal
of cleanup. This edition, the first not labeled “preliminary”, will hopefully become the
first of many annual editions of Applied Combinatorics released under an open source
license.

The main effort in producing this 2016 edition was to successfully convert to Math-
Book xmL. Along the way, I attempted to correct all typographical errors we had noted
in the past. There are undoubtedly more errors (typographical or otherwise) that will
be corrected in future years, so please contact us via email if you spot any. The text now
has an index, which may prove more helpful than searching PDF files when looking
for the most essential locations of some common terms. Since MathBook xmL makes it
easy, we now also have a list of notation. Instructors will likely be glad to know that
there were no changes to the exercises, so lists of assigned exercises from past years
remain completely valid.! The only significant changes to the body of the text was to
convert wrt’s code snippets from C to Python/SageMath. This has allowed us to em-
bed interactive SageMath cells that readers who use the HT™ML version of the text can
run and edit. We’ve only scratched the surface with this powerful feature of MathBook
xML, so look for more SageMath additions in future years.

The conversion to MathBook xmL allows us to make a wider variety of formats avail-
able:

¢ utML: With responsive design using css, we feel that the text now looks beautiful
on personal computers, tablets, and even mobile phones. No longer will students
be frantically resizing a PDF on their phone in order to try to read a passage from
the text. The “knowls” offered in HT™ML also allow references to images, tables, and

There are two exceptions to this. The first is that Exercise 8.8.7 has been modified to make the computations
involved cleaner. We have preserved the exercise that was previously in this position as Exercise 8.8.27
and added a hint. The second is that a coefficient was changed in Exercise 9.9.15 to make the exercise
feasible.

XVii

Preface to 2016 Edition

even theorems from other pages (or even a distance away on the same page) to
provide a copy of the image/table/theorem right there, and another click/tap
makes it disappear.

ppr: Not much is changed here from previous years, other than the por is pro-
duced from the IATEX that MathBook xMmL generates, and so numbering and order
is consistent with the HT™mL version.

Print: Campus bookstores have frequently produced printed versions of the text
from the por provided online, but we have not previously been able to provide
a printed, bound version for purchase. With the 2016 edition, we are pleased to
launch a print version available through a number of online purchase channels.
Campus bookstores may also acquire the book through wholesale channels for
sale directly to students. Because of the CreativeCommons license under which
the text is released, campuses retain the option of selling their own printed ver-
sion of the text for students, although this is likely only financially advantageous
to students if only a few chapters of the text are being used.

We have some ideas for what might be updated for the 2017 Edition (e.g., Chapter 4
needs to be expanded both in the body and the exercises, Chapter 8 would benefit from
integration of SageMath to assist with generating function computations, and Chap-
ter 16 is still not really finished). However, we would love to hear from those of you
who are using the text, too. Are there additional topics you'd like to see added? Chap-
ters in need of more exercises? Topics whose exposition could be improved? Please
reach out to us via email, and we’ll consider your suggestions.

XViii

Mitchel T. Keller
Lexington, Virginia

Contents

About the Authors ix
Acknowledgements xi
Preface Xiii
Preface to 2017 Edition XV
Preface to 2016 Edition Xvii
Prologue 1
An Introduction to Combinatorics 3
1.1 Introduction 3
1.2 Enumeration e e e e e e 4
1.3 Combinatorics and Graph Theory 5
14 Combinatorics and Number Theory 8
1.5 Combinatorics and Geometry 11
1.6 Combinatorics and Optimization 13
1.7 SudokuPuzzles 15
1.8 Discussion e e e 16
Strings, Sets, and Binomial Coefficients 17
21 Strings: AFirstLook o o L 17
22 Permutations. e e 19
2.3 Combinations e 21
24 Combinatorial Proofs 22
2.5 The Ubiquitous Nature of Binomial Coefficients 25
2.6 The Binomial Theorem 29
2.7 Multinomial Coefficients e 29
2.8 DiScuSSion e e e e e 31
2.9 EXercises e e e 32
Induction 39
3.1 Introduction 39

Xix

Contents

XX

3.2 The Positive Integers are Well Ordered
3.3 The Meaning of Statements
3.4 Binomial Coefficients Revisited
3.5 Solving Combinatorial Problems Recursively
3.6 Mathematical Induction
3.7 Inductive Definitions Lo L L
3.8 ProofsbyInduction L.
39 StrongInduction o L oo
3.10 Discussion
311 EXErcises o
Combinatorial Basics

41 The Pigeon Hole Principle
42 AnIntroduction to Complexity Theory
43 The Big “Oh” and Little “Oh” Notations
4.4 ExactVersus Approximate
45 Discussion L e
46 Exercises
Graph Theory

5.1 Basic Notation and Terminology for Graphs
52 Multigraphs: Loops and Multiple Edges
5.3 Eulerian and Hamiltonian Graphs
54 GraphColoring
55 PlanarGraphs
56 Counting Labeled Trees
5.7 A Digression into Complexity Theory
58 Discussion
59 Exercises
Partially Ordered Sets

6.1 Basic Notation and Terminology
6.2 Additional Concepts for Posets
6.3 Dilworth’s Chain Covering Theorem and its Dual
6.4 Linear Extensions of Partially Ordered Sets
6.5 TheSubset Lattice
6.6 IntervalOrders
6.7 Finding a Representation of an Interval Order
6.8 Dilworth’s Theorem for Interval Orders
6.9 Discussion

10

Contents

6.10 Exercises e 134
Inclusion-Exclusion 141
71 Introduction 141
7.2 The Inclusion-Exclusion Formula 144
7.3 Enumerating Surjections L Lo L o L 145
74 Derangements o e 147
75 TheEuler ¢ Function 149
76 Discussion e 151
77 Exercises e 151
Generating Functions 157
8.1 Basic Notation and Terminology 157
8.2 Another look at distributing applesor folders 160
8.3 Newton’s Binomial Theorem 165
8.4 An Application of the Binomial Theorem 166
8.5 DartitionsofanInteger L 168
8.6 Exponential generating functions L. 170
8.7 Discussion e 173
8.8 Exercises e 174
Recurrence Equations 183
9.1 Introduction 183
9.2 Linear Recurrence Equations 186
9.3 AdvancementOperators 187
9.4 Solving advancement operator equations 190
9.5 Formalizing our approach to recurrence equations 198
9.6 Using generating functions to solve recurrences 202
9.7 Solving a nonlinear recurrence 205
9.8 Discussion e 207
9.9 EXercises 210
Probability 213
10.1 An Introduction to Probability 214
10.2 Conditional Probability and Independent Events 216
10.3 BernoulliTrials 217
10.4 Discrete Random Variables 218
105 Central Tendency 220
10.6 Probability Spaces with Infinitely Many Outcomes 224
10.7 Discussion e 225

xxi

Contents

10.8 Exerciseso e e

11 Applying Probability to Combinatorics
11.1 A First Taste of Ramsey Theory
11.2 Small Ramsey Numbers
11.3 Estimating Ramsey Numbers
11.4 Applying Probability to Ramsey Theory
11.5 Ramsey’s Theorem
11.6 The ProbabilisticMethod
11.7 Discussion e e e e e e
11.8 Exercises e e e e e

12 Graph Algorithms
12.1 Minimum Weight Spanning Trees.
12.2 Digraphs
12.3 Dijkstra’s Algorithm for Shortest Paths
12.4 Historical Notes
125 Exercises

13 Network Flows
13.1 Basic Notation and Terminology
132 Flowsand Cuts
13.3 AugmentingPaths L L Lo oL
13.4 The Ford-Fulkerson Labeling Algorithm
13.5 AConcrete Example
13.6 Integer Solutions of Linear Programming Problems
13.7 Exercises

14 Combinatorial Applications of Network Flows
14.1 Introduction e
14.2 Matchings in Bipartite Graphs
14.3 Chain partitioning oL oo
14.4 EXErcises v i v i e e e e e

15 Pélya’s Enumeration Theorem
15.1 Coloring the VerticesofaSquare
15.2 Permutation Groups L
153 Burnside’sLemma,
154 Pélya’sTheorem
15.5 Applications of Pélya’s Enumeration Formula.
15.6 Exercises

XXii

Contents

16 The Many Faces of Combinatorics
16.1 On-linealgorithms
16.2 Extremal Set Theory
16.3 Markov Chains e
16.4 The Stable Matching Theorem
16.5 Zero-One Matrices L
16.6 Arithmetic Combinatorics
16.7 The Lovasz Local Lemma
16.8 Applying the LocalLemma

A Epilogue

B Background Material for Combinatorics
B.1 Introduction
B.2 Intersectionsand Unions
B.3 CartesianProducts
B.4 Binary Relations and Functions
B5 FHiniteSets
B.6 Notation from Set Theory and Logic
B.7 Formal Development of Number Systems
B.8 Multiplication as a Binary Operation
B.9 Exponentiation 0 L0 L
B.10 Partial Orders and Total Orders
B.11 A Total Order on Natural Numbers
B.12 Notation for Natural Numbers
B.13 Equivalence Relations
B.14 The Integers as Equivalence Classes of Ordered Pairs
B.15 Propertiesof theIntegers
B.16 Obtaining the Rationals from the Integers
B.17 Obtaining the Reals from the Rationals
B.18 Obtaining the Complex Numbers from theReals
B.19 The Zermelo-Fraenkel Axioms of Set Theory

C List of Notation

Index

315
315
318
320
322
323
325
326
328

331

333
333
334
337
337
339
340
341
344
345
346
347
348
350
350
351
353
355
356
358

361
363

Xxiii

Prologue

A unique feature of this book is a recurring cast of characters: Alice, Bob, Carlos, Dave,
Xing, Yolanda and Zori. They are undergraduate students at Georgia Tech, they're
taking an 8:05am section of Math 3012: Applied Combinatorics, and they frequently
go for coffee at the Clough Undergraduate Learning Center immediately after the class
is over. They’ve become friends of sorts and you may find their conversations about
Applied Combinatorics of interest, as they will may reveal subtleties behind topics
currently being studied, reinforce connections with previously studied material or set
the table for topics which will come later. Sometimes, these conversations will set aside
in a clearly marked Discussion section, but they will also be sprinkled as brief remarks
throughout the text.

In time, you will get to know these characters and will sense that, for example, when
Dave comments on a topic, it will represent a perspective that Zori is unlikely to share.
Some comments are right on target while others are “out in left field.” Some may even
be humorous, at least we hope this is the case. Regardless, our goal is not to entertain—
although that is not all that bad a side benefit. Instead, we intend that our informal
approach adds to the instructional value of our text.

Now it is time to meet our characters:

Alice is a computer engineering major from Philadelphia. She is ambitious, smart
and intense. Alice is quick to come to conclusions, most of which are right. On occa-
sion, Alice is not kind to Bob.

Bob is a management major from Omaha. He is a hard working and conscientious.
Bob doesn’t always keep pace with his friends, but anything he understands, he owns,
and in the end, he gets almost everything. On the other hand, Bob has never quite
understood why Alice is short with him at times.

Carlos is a really, really smart physics major from San Antonio. He has three older
brothers and two sisters, one older, one younger. His high school background wasn’t
all that great, but Carlos is clearly a special student at Georgia Tech. He absorbs new
concepts at lightning speed and sees through to the heart of almost every topic. He
thinks carefully before he says something and is admirably polite.

Dave is a discrete math major from Los Angeles. Dave is a flake. He’s plenty smart
enough but not all that diligent. Still, he has unique insights into things and from time
to time says something worth hearing—not always but sometimes. His friends say that
Dave suffers from occasional brain-mouth disconnects.

Prologue

Xing is a computer science major from New York. Xing’s parents immigrated from
Beijing, and he was strongly supported and encouraged in his high school studies.
Xing is detail oriented and not afraid to work hard.

Yolanda is a double major (computer science and chemistry) from Cumming, a small
town just north of Atlanta. Yolanda is the first in her extended family to go to a college
or university. She is smart and absorbs knowledge like a sponge. It’s all new to her
and her horizons are raised day by day.

Zoriis an applied math major from Detroit. She is bottom-line focused, has little time
for puzzles and always wants to see applications to justify why something is included
in the course. Zori is determined, driven and impatient at times.

CHAPTER

An Introduction to Combinatorics

As we hope you will sense right from the beginning, we believe that combinatorial
mathematics is one of the most fascinating and captivating subjects on the planet.
Combinatorics is very concrete and has a wide range of applications, but it also has
an intellectually appealing theoretical side. Our goal is to give you a taste of both. In
order to begin, we want to develop, through a series of examples, a feeling for what
types of problems combinatorics addresses.

1.1 Introduction

There are three principal themes to our course:

Discrete Structures Graphs, digraphs, networks, designs, posets, strings, patterns,
distributions, coverings, and partitions.

Enumeration Permutations, combinations, inclusion/exclusion, generating functions,
recurrence relations, and Pélya counting.

Algorithms and Optimization Sorting, eulerian circuits, hamiltonian cycles, planarity
testing, graph coloring, spanning trees, shortest paths, network flows, bipartite
matchings, and chain partitions.

To illustrate the accessible, concrete nature of combinatorics and to motivate top-
ics that we will study, this preliminary chapter provides a first look at combinatorial
problems, choosing examples from enumeration, graph theory, number theory, and
optimization. The discussion is very informal—but this should serve to explain why
we have to be more precise at later stages. We ask lots of questions, but at this stage,
you’ll only be able to answer a few. Later, you’ll be able to answer many more ... but
as promised earlier, most likely you'll never be able to answer them all. And if we're
wrong in making that statement, then you're certain to become very famous. Also,
you'll get an A++ in the course and maybe even a Ph.D. too.

Chapter 1 An Introduction to Combinatorics

1.2 Enumeration

Many basic problems in combinatorics involve counting the number of distributions
of objects into cells—where we may or may not be able to distinguish between the
objects and the same for the cells. Also, the cells may be arranged in patterns. Here
are concrete examples.

Amanda has three children: Dawn, Keesha and Seth.

1.

Amanda has ten one dollar bills and decides to give the full amount to her chil-
dren. How many ways can she do this? For example, one way she might dis-
tribute the funds is to give Dawn and Keesha four dollars each with Seth receiv-
ing the balance—two dollars. Another way is to give the entire amount to Keesha,
an option that probably won't make Dawn and Seth very happy. Note that hid-
den within this question is the assumption that Amanda does not distinguish the
individual dollar bills, say by carefully examining their serial numbers. Instead,
we intend that she need only decide the amount each of the three children is to
receive.

. The amounts of money distributed to the three children form a sequence which

if written in non-increasing order has the form: ay, as, a3 with a; > a2 > a3 and
aj + ap + a3 = 10. How many such sequences are there?

Suppose Amanda decides to give each child at least one dollar. How does this
change the answers to the first two questions?

Now suppose that Amanda has ten books, in fact the top 10 books from the New
York Times best-seller list, and decides to give them to her children. How many
ways can she do this? Again, we note that there is a hidden assumption—the ten
books are all different.

Suppose the ten books are labeled By, By, . . ., B1g. The sets of books given to the
three children are pairwise disjoint and their union is {B1, B», ..., Bio}. How
many different sets of the form {51, Sz, S3} where S1, S; and S3 are pairwise dis-
joint and S1 US,US3={By,By,...,Bypg}?

Suppose Amanda decides to give each child at least one book. How does this
change the answers to the preceding two questions?

How would we possibly answer these kinds of questions if ten was really ten
thousand (OK, we're not talking about children any more!) and three was three
thousand? Could you write the answer on a single page in a book?

1.3 Combinatorics and Graph Theory

A circular necklace with a total of six beads will be assembled using beads of three
different colors. In Figure 1.1, we show four such necklaces—however, note that the
first three are actually the same necklace. Each has three red beads, two blues and one
green. On the other hand, the fourth necklace has the same number of beads of each
color but it is a different necklace.

SESNER I

FiGURE 1.1: NECKLACES MADE WITH THREE COLORS

1. How many different necklaces of six beads can be formed using three reds, two
blues and one green?

2. How many different necklaces of six beads can be formed using red, blue and
green beads (not all colors have to be used)?

3. How many different necklaces of six beads can be formed using red, blue and
green beads if all three colors have to be used?

4. How would we possibly answer these questions for necklaces of six thousand
beads made with beads from three thousand different colors? What special soft-
ware would be required to find the exact answer and how long would the com-
putation take?

1.3 Combinatorics and Graph Theory

A graph G consists of a vertex set V and a collection E of 2-element subsets of V. Ele-
ments of E are called edges. In our course, we will (almost always) use the convention
that V = {1,2,3,...,n} for some positive integer n. With this convention, graphs can
be described precisely with a text file:

1. The first line of the file contains a single integer n, the number of vertices in the
graph.

2. Each of the remaining lines of the file contains a pair of distinct integers and
specifies an edge of the graph.

Chapter 1 An Introduction to Combinatorics

We illustrate this convention in Figure 1.2 with a text file and the diagram for the
graph G it defines.

graphil.txt

N Ol — 01 OO0 = = O
O O W N W =0 NN

F1GURE 1.2: A GRAPH DEFINED BY DATA

Much of the notation and terminology for graphs is quite natural. See if you can
make sense out of the following statements which apply to the graph G defined above:

1.
2.

3.

o1

10.

11.

G has 9 vertices and 10 edges.
{2,6} is an edge.

Vertices 5 and 9 are adjacent.
{5,4} is not an edge.

Vertices 3 and 7 are not adjacent.

P=(4,3,1,7,9,5) is a path of length 5 from vertex 4 to vertex 5.

. C=(5,9,7,1) is cycle of length 4.

. G is disconnected and has two components. One of the components has vertex

set {2, 6, 8}.

. {1,5,7} is a triangle.

{1,7,5,9} is a clique of size 4.

{4,2,8,5} is an independent set of size 4.

1.3 Combinatorics and Graph Theory

Equipped only with this little bit of background material, we are already able to pose
a number of interesting and challenging problems.

Example 1.3. Consider the graph G shown in Figure 1.4.

4.

5.

FIGURE 1.4: A CONNECTED GRAPH

What is the largest k for which G has a path of length k?

What is the largest k for which G has a cycle of length k?

What is the largest k for which G has a clique of size k?

What is the largest k for which G has an independent set of size k?

What is the shortest path from vertex 7 to vertex 6?

Suppose we gave the class a text data file for a graph on 1500 vertices and asked
whether the graph contains a cycle of length at least 500. Raoul says yes and Carla says
no. How do we decide who is right?

Suppose instead we asked whether the graph has a clique of size 500. Helene says
that she doesn’t think so, but isn’t certain. Is it reasonable that her classmates insist
that she make up her mind, one way or the other? Is determining whether this graph
has a clique of size 500 harder, easier or more or less the same as determining whether
it has a cycle of size 500.

We will frequently study problems in which graphs arise in a very natural manner.
Here’s an example.

Chapter 1 An Introduction to Combinatorics

Example 1.5. In Figure 1.6, we show the location of some radio stations in the plane,
together with a scale indicating a distance of 200 miles. Radio stations that are closer
than 200 miles apart must broadcast on different frequencies to avoid interference.

s , :
o o o, o
(@)
5 (4) 60 5 3 o
30 O O 6
O4 O1
60 ® 0, O 5
@) o1 @)
40 ° 0O 3 o,
200 miles

FiGure 1.6: Rapio StaTioNs

We’ve shown that 6 different frequencies are enough. Can you do better?

Can you find 4 stations each of which is within 200 miles of the other 3? Can you
find 8 stations each of is more than 200 miles away from the other 7? Is there a natural
way to define a graph associated with this problem?

Example 1.7. How big must an applied combinatorics class be so that there are either
(a) six students with each pair having taken at least one other class together, or (b) six
students with each pair together in a class for the first time. Is this really a hard problem
or can we figure it out in just a few minutes, scribbling on a napkin?

1.4 Combinatorics and Number Theory

Broadly, number theory concerns itself with the properties of the positive integers.
G.H. Hardy was a brilliant British mathematician who lived through both World Wars
and conducted a large deal of number-theoretic research. He was also a pacifist who
was happy that, from his perspective, his research was not “useful”. He wrote in his
1940 essay A Mathematician’s Apology “[n]o one has yet discovered any warlike purpose
to be served by the theory of numbers or relativity, and it seems very unlikely that
anyone will do so for many years.”" Little did he know, the purest mathematical ideas

1G.H. Hardy, A Mathematician’s Apology, Cambridge University Press, p. 140. (1993 printing)

1.4 Combinatorics and Number Theory

of number theory would soon become indispensable for the cryptographic techniques
that kept communications secure. Our subject here is not number theory, but we will
see a few times where combinatorial techniques are of use in number theory.

Example 1.8. Form a sequence of positive integers using the following rules. Start with
a positive integer n > 1. If n is odd, then the next number is 3n + 1. If n is even, then
the next number is n/2. Halt if you ever reach 1. For example, if we start with 28, the
sequence is

28,14,7,22,11,34,17,52, 26,13, 40, 20,10, 5,16,8,4,2,1.
Now suppose you start with 19. Then the first few terms are
19, 58,29, 88,44, 22.

But now we note that the integer 22 appears in the first sequence, so the two sequences
will agree from this point on. Sequences formed by this rule are called Collatz se-
quences.

Pick a number somewhere between 100 and 200 and write down the sequence you
get. Regardless of your choice, you will eventually halt with a 1. However, is there
some positive integer 1 (possibly quite large) so that if you start from #, you will never
reach 1?

Example 1.9. Students in middle school are taught to add fractions by finding least
common multiples. For example, the least common multiple of 15 and 12 is 60, so:

2 7 8 35 43
571260 60 60
How hard is it to find the least common multiple of two integers?
It’s really easy if you can factor them into primes. For example, consider the problem
of finding the least common multiple of 351785000 and 316752027900 if you just happen
to know that

351785000 = 23 x 5* x 7x 19 x 232 and
316752027900 = 22 x 3 x 52 x 7% x 11 x 23%.
Then the least common multiple is
300914426505000 = 2% x 3 x 5% x 72 x 11 x 19 x 23%,

So to find the least common multiple of two numbers, we just have to factor them
into primes. That doesn’t sound too hard. For starters, can you factor 1961? OK, how
about 13484337 Now for a real challenge. Suppose you are told that the integer

c = 5568490117077035708244283173335040521716369235589951150965

Chapter 1 An Introduction to Combinatorics

2043138898236817075547572153799

is the product of two primes a and b. Can you find them?

What if factoring is hard? Can you find the least common multiple of two relatively
large integers, say each with about 500 digits, by another method? How should middle
school students be taught to add fractions?

As an aside, we note that most calculators can’t add or multiply two 20 digits num-
bers, much less two numbers with more than 500 digits. But it is relatively straight-
forward to write a computer program that will do the job for us. Also, there are some
powerful mathematical software tools available. Two very well known commercial ex-
amples are Maple® and Mathematica®. In this text, we will from time to time, make
use of the open source computer algebra system SageMath. We will sometimes embed
interactive SageMath cells in the text, but you can also use SageMath for free online
via the SageMath Cloud. For example, the SageMath cell below will produce the fac-
torization shown above.

factor (300914426505000)

2*3 % 3 % 5%4 % 773 % 11 % 19 % 23"4

If you're reading this text in a web browser, go ahead and change the integer in the
SageMath cell above to some other, perhaps larger, integer and click the button again
to get the prime factorization of your new integer.

Now here’s how we made up the challenge problem. First, we found a site on the
web that lists large primes and found these two values:

a = 2425967623052370772757633156976982469681 and
b = 22953686867719691230002707821868552601124472329079.

The SageMath code below calculates a X b, and returns the result instantly.

a = 2425967623052370772757633156976982469681
b = 22953686867719691230002707821868552601124472329079
a*b

On the other hand, if you ask SageMath to factor c, as in the cell below, you'll likely
be waiting a long time. If you get a response in more than a couple of minutes, please
email us so that we can update the text with larger primes 2 and b!

factor (55684901170770357082442831733350405217163692\
355899511509652043138898236817075547572153799)

10

http://www.sagemath.org
http://cloud.sagemath.com/

1.5 Combinatorics and Geometry

Questions arising in number theory can also have an enumerative flair, as the fol-
lowing example shows.

Example 1.10. In Figure 1.11, we show the integer partitions of 8.

8 distinct parts 4+1+1+1+1

7+1 distinct parts, odd parts 3+3+2

6+2 distinct parts 3+3+1+1 odd parts
6+1+1 3+2+2+1

5+3 distinct parts, odd parts 3+2+1+1+1

5+2+1 distinct parts 3+1+1+1+1+1 odd parts
5+1+1+1 odd parts 2+2+2+42

4+4 242424141

4+3+1 distinct parts 242+1+1+1+1

4+242 2414141414141
4+2+1+1 1+1+1+1+1+1+1+1 odd parts

FiGuRE 1.11: THE PARTITIONS OF 8, NOTING THOSE INTO DISTINCT PARTS AND THOSE INTO ODD
PARTS.

There are 22 partitions altogether, and as noted, exactly 6 of them are partitions of 8
into odd parts. Also, exactly 6 of them are partitions of 8 into distinct parts.

What would be your reaction if we asked you to find the number of integer partitions
of 258927 Do you think that the number of partitions of 25892 into odd parts equals the
number of partitions of 25892 into distinct parts? Is there a way to answer this question
without actually calculating the number of partitions of each type?

1.5 Combinatorics and Geometry

There are many problems in geometry that are innately combinatorial or for which
combinatorial techniques shed light on the problem.

11

Chapter 1 An Introduction to Combinatorics

Example 1.12. In Figure 1.13, we show a family of 4 lines in the plane. Each pair of
lines intersects and no point in the plane belongs to more than two lines. These lines
determine 11 regions.

3
2
\ 4 4
6
8
o 9
10

11

FiGure 1.13: LINES AND REGIONS

Under these same restrictions, how many regions would a family of 8947 lines de-
termine? Can different arrangements of lines determine different numbers of regions?

Example 1.14. Mandy says she has found a set of 882 points in the plane that determine
exactly 752 lines. Tobias disputes her claim. Who is right?

Example 1.15. There are many different ways to draw a graph in the plane. Some
drawings may have crossing edges while others don’t. But sometimes, crossing edges
must appear in any drawing. Consider the graph G shown in Figure 1.16.

5

F1GURE 1.16: A GRAPH WITH CROSSING EDGES

12

1.6 Combinatorics and Optimization

Can you redraw G without crossing edges?

Suppose Sam and Deborah were given a homework problem asking whether a par-
ticular graph on 2843952 vertices and 9748032 edges could be drawn without edge
crossings. Deborah just looked at the number of vertices and the number of edges and
said that the answer is “no.” Sam questions how she can be so certain—without look-
ing more closely at the structure of the graph. Is there a way for Deborah to justify her
definitive response?

1.6 Combinatorics and Optimization

You likely have already been introduced to optimization problems, as calculus students
around the world are familiar with the plight of farmers trying to fence the largest
area of land given a certain amount of fence or people needing to cross rivers down-
stream from their current location who must decide where they should cross based
on the speed at which they can run and swim. However, these problems are inher-
ently continuous. In theory, you can cross the river at any point you want, even if it
were irrational. (OK, so not exactly irrational, but a good decimal approximation.) In
this course, we will examine a few optimization problems that are not continuous, as
only integer values for the variables will make sense. It turns out that many of these
problems are very hard to solve in general.

Example 1.17. In Figure 1.18, we use letters for the labels on the vertices to help dis-
tinguish visually from the integer weights on the edges.

FiGURE 1.18: A LABELED GRAPH WITH WEIGHTED EDGES

13

Chapter 1 An Introduction to Combinatorics

Suppose the vertices are cities, the edges are highways and the weights on the edges
represent distance.

1. What is the shortest path from vertex E to vertex B?

2. Suppose Ariel is a salesperson whose home base is city A. In what order should
Ariel visit the other cities so that she goes through each of them at least once
and returns home at the end—while keeping the total distance traveled to a min-
imum? Can Ariel accomplish such a tour visiting each city exactly once?

3. Sanjay is a highway inspection engineer and must traverse every highway each
month. Sanjay’s homebase is City E. In what order should Sanjay traverse the
highways to minimize the total distance traveled? Can Sanjay make such a tour
traveling along each highway exactly once?

Example 1.19. Now suppose that the vertices are locations of branch banks in Atlanta
and that the weights on an edge represents the cost, in millions of dollars, of building
a high capacity data link between the branch banks at it two end points. In this model,
if there is no edge between two branch banks, it means that the cost of building a data
link between this particular pair is prohibitively high (here we might be tempted to say
the cost is infinite, but the authors don’t admit to knowing the meaning of this word).

Our challenge is to decide which data links should be constructed to form a network
in which any branch bank can communicate with any other branch. We assume that
data can flow in either direction on a link, should it be built, and that data can be
relayed through any number of data links. So to allow full communication, we should
construct a spanning tree in this network. In Figure 1.20, we show a graph G on the
left and one of its many spanning trees on the right. The weight of the spanning tree is
the sum of the weights on the edges. In our model, this represents the costs, again in
millions of dollars, of building the data links associated with the edges in the spanning
tree. For the spanning tree shown in Figure 1.20, this total is

12+25+19+18 +23 +19 =116.

Of all spanning trees, the bank would naturally like to find one having minimum
weight.

How many spanning trees does this graph have? For a large graph, say one with
2875 vertices, does it make sense to find all spanning trees and simply take the one
with minimum cost? In particular, for a positive integer 7, how many trees have vertex
set{1,2,3,...,n}?

14

1.7 Sudoku Puzzles

B
E 25

D

FIGURE 1.20: A WEIGHTED GRAPH AND SPANNING TREE

1.7 Sudoku Puzzles

Here’s an example which has more substance than you might think at first glance. It
involves Sudoku puzzles, which have become immensely popular in recent years.

Example 1.21. A Sudoku puzzle is a 9 X 9 array of cells that when completed have
theintegers 1,2,...,9 appearing exactly once in each row and each column. Also (and
this is what makes the puzzles so fascinating), the numbers 1, 2, 3, ..., 9 appear once in
each of the nine 3 X 3 subsquares identified by the darkened borders. To be considered
a legitimate Sudoku puzzle, there should be a unigue solution. In Figure 1.22, we show
two Sudoku puzzles. The one on the right is fairly easy, and the one on the left is
far more challenging. There are many sources of Sudoku puzzles, and software that
generates Sudoku puzzles and then allows you to play them with an attractive GUI is
available for all operating systems we know anything about (although not recommend
to play them during class!). Also, you can find Sudoku puzzles on the web at: http:
/ /www . websudoku. com. On this site, the “Evil” ones are just that.

How does Rory make up good Sudoku puzzles, ones that are difficult for Mandy to
solve? How could Mandy use a computer to solve puzzles that Rory has constructed?
What makes some Sudoku puzzles easy and some of them hard?

The size of a Sudoku puzzle can be expanded in an obvious way, and many newspa-
pers include a 16 x 16 Sudoku puzzle in their Sunday edition (just next to a challenging
crosswords puzzle). How difficult would it be to solve a 1024 x 1024 Sudoku puzzle,
even if you had access to a powerful computer?

15

http://www.websudoku.com
http://www.websudoku.com

Chapter 1 An Introduction to Combinatorics

7 8|2 8113 2|6
9 1 6| [9]5 1 2
4 9|7 3
514 6 2 3 7189
3 7
5 617 416 |3 8| |2
8|4 |5 6
6 1 2 7 9|5 3
24 6 618 3194

FiGure 1.22: SUDOKU PUZZLES

1.8 Discussion

Over coffee after their first combinatorics class, Xing remarked “This doesn’t seem to
be going like calculus. I'm expecting the professor to teach us how to solve problems—
at least some kinds of problems. Instead, a whole bunch of problems were posed and
we were asked whether we could solve them.”

Yolanda jumped in, saying “You may be judging things too quickly. I'm fascinated
by these kinds of questions. They’re different.”

Zori grumpily laid bare her concerns: “After getting out of Georgia Tech, who's go-
ing to pay me to count necklaces, distribute library books or solve Sudoku puzzles?”

Bob politely countered, “But the problems on networks and graphs seemed to have
practical applications. I heard my uncle, a very successful business guy, talk about
franchising problems that sound just like those.”

Alice speculated, “All those network problems sound the same to me. A fair to mid-
dling computer science major could probably write programs to solve any of them.”

Dave mumbled, “Maybe not. Similar sounding problems might actually be quite
different in the end. Maybe we’ll learn to tell the difference.”

After a bit of quiet time interrupted only by lattes disappearing, Carlos said softly,
“It might not be so easy to distinguish hard problems from easy ones.”

Alice followed, “Regardless, what strikes me is that we all, well almost all of us,”
she said, rolling her eyes at Bob, “seem to understand everything talked about in class
today. It was so very concrete. I liked that.”

16

Strings, Sets, and Binomial
Coefficients

Much of combinatorial mathematics can be reduced to the study of strings, as they
form the basis of all written human communications. Also, strings are the way humans
communicate with computers, as well as the way one computer communicates with
another. As we shall see, sets and binomial coefficients are topics that fall under the
string umbrella. So it makes sense to begin our in-depth study of combinatorics with
strings.

2.1 Strings: A First Look

Let 1 be a positive integer. Throughout this text, we will use the shorthand notation [#]
to denote the n-element set {1,2,...,n}. Now let X be a set. Then a function s: [n] —
X is also called an X-string of length 7. In discussions of X-strings, it is customary to
refer to the elements of X as characters, while the element s(i) is the i" character of s.
Whenever practical, we prefer to denote a string s by writing s ="x1x2x3 ... x,”, rather
than the more cumbersome notation s(1) = x1, s(2) = x, ..., s(n) = x,,.

There are a number of alternatives for the notation and terminology associated with
strings. First, the characters in a string s are frequently written using subscripts as
S$1,82,...,5n, so the i"-term of s can be denoted s; rather than s(i). Strings are also
called sequences, especially when X is a set of numbers and the function s is defined
by an algebraic rule. For example, the sequence of odd integers is defined by s; = 2i—1.

Alternatively, strings are called words, the set X is called the alphabet and the ele-
ments of X are called letters. For example, aababbccabcbb is a 13-letter word on the
3-letter alphabet {a, b, c}.

In many computing languages, strings are called arrays. Also, when the character
s(7) is constrained to belong to a subset X; C X, a string can be considered as an element
of the cartesian product X; X X» X --- X X;;, which is normally viewed as n-tuples of

17

Chapter 2 Strings, Sets, and Binomial Coefficients

the form (x1, x2,...,x,) such that x; € X; forall i € [n].

Example 2.1. In the state of Georgia, license plates consist of four digits followed by a
space followed by three capital letters. The first digit cannot be a 0. How many license
plates are possible?

Solution. Let X consist of the digits {0,1,2,...,9}, let Y be the singleton set whose
only element is a space, and let Z denote the set of capital letters. A valid license plate
is just a string from

X-{0)XXXXXXXYXZXZXZ

so the number of different license plates is 9 X 10° x 1 X 26> = 158184000, since the
size of a product of sets is the product of the sets’ sizes. We can get a feel for why this
is the case by focusing just on the digit part of the string here. We can think about the
digits portion as being four blanks that need to be filled. The first blank has 9 options
(the digits 1 through 9). If we focus on just the digit strings beginning with 1, one
perspective is that they range from 1000 to 1999, so there are 1000 of them. However,
we could also think about there being 10 options for the second spot, 10 options for the
third spot, and 10 options for the fourth. Multiplying 10x 10 X 10 gives 1000. Since our
analysis of filling the remaining digit blanks didn’t depend on our choice of a 1 for the
first position, we see that each of the 9 choices of initial digit gives 1000 strings, for a
total of 9000 = 9 x 10°.

In the case that X = {0, 1}, an X-string is called a 0-1 string (also a binary string or
bit string.). When X = {0, 1, 2}, an X-string is also called a ternary string.

Example 2.2. A machine instruction in a 32-bit operating system is just a bit string of
length 32. Thus, there are 2 options for each of 32 positions to fill, making the number
of such strings 232 = 4294967 296. In general, the number of bit strings of length 7 is
2",

Example 2.3. Suppose that a website allows its users to pick their own usernames for
accounts, but imposes some restrictions. The first character must be an upper-case
letter in the English alphabet. The second through sixth characters can be letters (both
upper-case and lower-case allowed) in the English alphabet or decimal digits (0-9). The
seventh position must be ‘@’ or ‘.. The eighth through twelfth positions allow lower-
case English letters, **’, “%’, and ‘#". The thirteenth position must be a digit. How many
users can the website accept registrations from?

Solution. We can visualize the options by thinking of the 13 positions in the string as
blanks that need to be filled in and putting the options for that blank above. In Table 2.4,
we’ve used U to denote the set of upper-case letters, L for the set of lower-case letters,
and D for the set of digits.

18

2.2 Permutations

YD Y% % % %

=
=
=
=
c g
*
*
*
x
*

Uu U U U U @ L L L L L D

26 62 62 62 62 62 2 29 29 29 29 29 10

TABLE 2.4: STRING TEMPLATE

Below each position in the string, we’ve written the number of options for that po-
sition. (For example, there are 62 options for the second position, since there are 52
letters once both cases are accounted for and 10 digits. We then multiply these possi-
bilities together, since each choice is independent of the others. Therefore, we have

26 X 62° x 2 X 29° x 10 = 9771 287 250 890 863 360

total possible usernames.

2.2 Permutations

In the previous section, we considered strings in which repetition of symbols is al-
lowed. For instance, “01110000” is a perfectly good bit string of length eight. How-
ever, in many applied settings where a string is an appropriate model, a symbol may
be used in at most one position.

Example 2.5. Imagine placing the 26 letters of the English alphabet in a bag and draw-
ing them out one at a time (without returning a letter once it’s been drawn) to form
a six-character string. We know there are 26° strings of length six that can be formed
from the English alphabet. However, if we restrict the manner of string formation, not
all strings are possible. The string “yellow” has six characters, but it uses the letter “1”
twice and thus cannot be formed by drawing letters from a bag. However, “jacket”
can be formed in this manner. Starting from a full bag, we note there are 26 choices
for the first letter. Once it has been removed, there are 25 letters remaining in the bag.
After drawing the second letter, there are 24 letters remaining. Continuing, we note
that immediately before the sixth letter is drawn from the bag, there are 21 letters in
the bag. Thus, we can form 26 -25-24-23-22 - 21 six-character strings of English letters
by drawing letters from a bag, a little more than half the total number of six-character
strings on this alphabet.

To generalize the preceding example, we now introduce permutations. To do so, let
X be a finite set and let n be a positive integer. An X-string s = x1x2...x, is called

19

Chapter 2 Strings, Sets, and Binomial Coefficients

a permutation if all n characters used in s are distinct. Clearly, the existence of an
X-permutation of length n requires that |X| > n.
When 7 is a positive integer, we define n! (read “n factorial”) by

nl=n-n-1)-n-2)----- 3-2-1.
By convention, we set 0! = 1. As an example, 7! =7-6-5-4-3-2-1 = 5040. Now for
integers m, n with m > n > 0 define P(m, n) by

P(m,n) = ‘=m(m—1)-~-(m—n+1).

m!
(m —n)!
For example, P(9,3) =9-8-7 =504 and P(8,4) =8-7-6 -5 = 1680. Also, a computer
algebra system will quickly report that

P(68,23) = 20732231223375515741894286164203929600000.

Proposition 2.6. If X is an m-element set and n is a positive integer with m > n, then the
number of X-strings of length n that are permutations is P(m, n).

Proof. The proposition is true since when constructing a permutation s = x1x2, ... X,
from an m-element set, we see that there are m choices for x;. After fixing x1, we have
that for x,, there are m — 1 choices, as we can use any element of X — {x1}. For x3,
there are m — 2 choices, since we can use any element in X — {x1, x2}. For x,, there are
m —n + 1 choices, because we can use any element of X except x1, x2, ... x,—1. Noting
that

P(m,n) = =mm-1)(m-2)...(m—-—n+1),

m!
(m —n)!
our proof is complete.]

Note that the answer we arrived at in Example 2.5 is simply P(26, 6) as we would
expect in light of Proposition 2.6.

Example 2.7. It’s time to elect a slate of four class officers (President, Vice President,
Secretary and Treasurer) from the pool of 80 students enrolled in Applied Combina-
torics. If any interested student could be elected to any position (Alice contends this is
a big “if” since Bob is running), how many different slates of officers can be elected?

Solution. To count possible officer slates, work from a set X containing the names of
the 80 interested students (yes, even poor Bob). A permutation of length four chosen
from X is then a slate of officers by considering the first name in the permutation as the
President, the second as the Vice President, the third as the Secretary, and the fourth
as the Treasurer. Thus, the number of officer slates is P(80,4) = 37957920.

20

2.3 Combinations

Example 2.8. Let’s return to the license plate question of Example 2.1. Suppose that
Georgia required that the three letters be distinct from each other. Then, instead of
having 263 = 17 576 ways to fill the last three positions on the license plate, we’d have
P(26,3) = 26 x 25 x 24 = 15600 options, giving a total of 140400 000 license plates.

As another example, suppose that repetition of letters were allowed but the three
digits in positions two through four must all be distinct from each other (but could
repeat the first digit, which must still be nonzero). Then there are still 9 options for
the first position and 26> options for the letters, but the three remaining digits can
be completed in P(10, 3) ways. The total number of license plates would then be 9 x
P(10,3) x 26%. If we want to prohibit repetition of the digit in the first position as
well, we need a bit more thought. We first have 9 choices for that initial digit. Then,
when filling in the next three positions with digits, we need a permutation of length
3 chosen from the remaining 9 digits. Thus, there are 9 x P(9, 3) ways to complete the
digits portion, giving a total of 9 x P(9, 3) X 26° license plates.

2.3 Combinations

To motivate the topic of this section, we consider another variant on the officer elec-
tion problem from Example 2.7. Suppose that instead of electing students to specific
offices, the class is to elect an executive council of four students from the pool of 80
students. Each position on the executive council is equal, so there would be no differ-
ence between Alice winning the “first” seat on the executive council and her winning
the “fourth” seat. In other words, we just want to pick four of the 80 students without
any regard to order. We'll return to this question after introducing our next concept.

Let X be a finite set and let k be an integer with 0 < k < |X|. Then a k-element subset
of X is also called a combination of size k. When |X| = n, the number of k-element
subsets of X is denoted (}). Numbers of the form (}) are called binomial coefficients,
and many combinatorists read (};) as “n choose k.” When we need an in-line version,
the preferred notation is C(n, k) . Also, the quantity C(#, k) is referred to as the number
of combinations of n things, taken k at a time.

Bob notes that with this notation, the number of ways a four-member executive coun-
cil can be elected from the 80 interested students is C(80,4). However, he’s puzzled
about how to compute the value of C(80, 4). Alice points out that it must be less than
P(80, 4), since each executive council could be turned into 4! different slates of officers.
Carlos agrees and says that Alice has really hit upon the key idea in finding a formula
to compute C(n, k) in general.

Proposition 2.9. If n and k are integers with 0 < k < n, then

(n)=C(n k):P(n,k)_ n!

k k' kl(n—=k)!

21

Chapter 2 Strings, Sets, and Binomial Coefficients

Proof. If X is an n-element set, then P(n, k) counts the number of X-permutations of
length k. Each of the C(n, k) k-element subsets of X can be turned into k! permutations,
and this accounts for each permutation exactly once. Therefore, k!C(n, k) = P(n, k) and
dividing by k! gives the formula for the number of k-element subsets.]

Using Proposition 2.9, we can now determine that C(80,4) = 1581580 is the num-
ber of ways a four-member executive council could be elected from the 80 interested
students.

Our argument above illustrates a common combinatorial counting strategy. We
counted one thing and determined that the objects we wanted to count were over-
counted the same number of times each, so we divided by that number (k! in this case).

The following result is tantamount to saying that choosing elements to belong to
a set (the executive council election winners) is the same as choosing those elements
which are to be denied membership (the election losers).

Proposition 2.10. For all integers n and k with0 < k < n,

)=o)

Example 2.11. A Southern restaurant lists 21 items in the “vegetable” category of its
menu. (Like any good Southern restaurant, macaroni and cheese is one of the vegetable
options.) They sell a vegetable plate which gives the customer four different vegetables
from the menu. Since there is no importance to the order the vegetables are placed on
the plate, there are C(21,4) = 5985 different ways for a customer to order a vegetable
plate at the restaurant.

Our next example introduces an important correspondence between sets and bit
strings that we will repeatedly exploit in this text.

Example 2.12. Let n be a positive integer and let X be an n-element set. Then there is
a natural one-to-one correspondence between subsets of X and bit strings of length #.
To be precise, let X = {x1,x,...,x,}. Then a subset A C X corresponds to the string
s where s(i) = 1if and only if i € A. For example, if X = {a,b,c,d,e, f, g, h}, then
the subset {b, c, g} corresponds to the bit string 01100010. There are C(8,3) = 56 bit
strings of length eight with precisely three 1’s. Thinking about this correspondence,
what is the total number of subsets of an n-element set?

2.4 Combinatorial Proofs

Combinatorial arguments are among the most beautiful in all of mathematics. Often-
times, statements that can be proved by other, more complicated methods (usually

22

2.4 Combinatorial Proofs

involving large amounts of tedious algebraic manipulations) have very short proofs
once you can make a connection to counting. In this section, we introduce a new way
of thinking about combinatorial problems with several examples. Our goal is to help
you develop a “gut feeling” for combinatorial problems.

Example 2.13. Let 1 be a positive integer. Use Figure 2.14 to explain why

nn+1)
—

1424+34+---+n=

FIGURE 2.14: THE SUM OF THE FIRST /I INTEGERS

Solution. Consider an (n+1)x(n+1) array of dots as depicted in Figure 2.14. There are
(n+1)? dots altogether, with exactly 7+1 on the main diagonal. The off-diagonal entries
split naturally into two equal size parts, those above and those below the diagonal.
Furthermore, each of those two parts has S(n) =1+2+ 3+ --- + n dots. It follows
that
(n+1?-(n+1)
2

and this is obvious! Now a little algebra on the right hand side of this expression
produces the formula given earlier.

S(n) =

Example 2.15. Let 1 be a positive integer. Explain why

143+5+---+2n—1=n?

23

Chapter 2 Strings, Sets, and Binomial Coefficients

|o o o o o o o

@ o o o o o o

F1GURE 2.16: THE SUM OF THE FIRST /1 ODD INTEGERS

Solution. The left hand side is just the sum of the first n odd integers. But as sug-
gested in Figure 2.16, this is clearly equal to n.

Example 2.17. Let n be a positive integer. Explain why

)t

Solution. Both sides count the number of bit strings of length 7, with the left side
first grouping them according to the number of 0’s.

Example 2.18. Let # and k be integers with 0 < k < n. Explain why

n o\ _(k k+1 k+2 n-1
[ha =G (208 ()
Solution. To prove this formula, we simply observe that both sides count the number
of bit strings of length n that contain k +1 1’s with the right hand side first partitioning
them according to the last occurence of a 1. (For example, if the last 1 occurs in position
k + 5, then the remaining k 1’s must appear in the preceding k + 4 positions, giving

C(k + 4, k) strings of this type.) Note that when k = 1 (so k + 1 = 2), we have the same
formula as developed eatlier for the sum of the first n positive integers.

Example 2.19. Explain the identity
n_ (M)e0 L ()91 L (P92, .. L [P]Hn
3 _(0)2 +(1)2 +(2)2+ +(n)2'

24

2.5 The Ubiquitous Nature of Binomial Coefficients

Solution. Both sides count the number of {0, 1, 2}-strings of length 1, the right hand
side first partitioning them according to positions in the string which are not 2. (For
instance, if 6 of the positions are not 2, we must first choose those 6 positions in C(n, 6)
ways and then there are 2° ways to fill in those six positions by choosing either a 0 or
a 1 for each position.)

Example 2.20. Explain why, for each non-negative integer #,

2 2 2 2
2n _ (" N n N n . n
n 0 1 2 n)’
Solution. Both sides count the number of bit strings of length 2n with half the bits

being 0’s, with the right side first partitioning them according to the number of 1’s
occurring in the first n positions of the string. Note that we are also using the trivial

identity (i) = (,%)-

2.5 The Ubiquitous Nature of Binomial Coefficients

In this section, we present several combinatorial problems that can be solved by ap-
peal to binomial coefficients, even though at first glance, they do not appear to have
anything to do with sets.

Example 2.21. The office assistant is distributing supplies. In how many ways can he
distribute 18 identical folders among four office employees: Audrey, Bart, Cecilia and
Darren, with the additional restriction that each will receive at least one folder?

Imagine the folders placed in a row. Then there are 17 gaps between them. Of these
gaps, choose three and place a divider in each. Then this choice divides the folders
into four non-empty sets. The first goes to Audrey, the second to Bart, etc. Thus the
answer is C(17,3). In Figure 2.22, we illustrate this scheme with Audrey receiving 6
folders, Bart getting 1, Cecilia 4 and Darren 7.

ﬁﬁ@ﬁ@flﬁlfﬁﬁ@lﬁﬁifﬁﬁﬁ

FiGuRrE 2.22: DistrIBUTING IDENTICAL OBJjECTS INTO DistiNeT CELLS

Example 2.23. Suppose we redo the preceding problem but drop the restriction that
each of the four employees gets at least one folder. Now how many ways can the dis-
tribution be made?

25

Chapter 2 Strings, Sets, and Binomial Coefficients

Solution. The solution involves a “trick” of sorts. First, we convert the problem to
one that we already know how to solve. This is accomplished by artificially inflating
everyone’s allocation by one. In other words, if Bart will get 7 folders, we say that he
will get 8. Also, artificially inflate the number of folders by 4, one for each of the four
persons. So now imagine a row of 22 = 18 + 4 folders. Again, choose 3 gaps. This
determines a non-zero allocation for each person. The actual allocation is one less—
and may be zero. So the answer is C(21, 3).

Example 2.24. Again we have the same problem as before, but now we want to count
the number of distributions where only Audrey and Cecilia are guaranteed to get a
folder. Bart and Darren are allowed to get zero folders. Now the trick is to artificially
inflate Bart and Darren’s allocation, but leave the numbers for Audrey and Cecilia as
is. So the answer is C(19, 3).

Example 2.25. Here is a reformulation of the preceding discussion expressed in terms
of integer solutions of inequalities.
We count the number of integer solutions to the inequality

X1+ X2+ X3+ X4+ X5+ xg < 538

subject to various sets of restrictions on the values of x1,x2,...,x¢. Some of these
restrictions will require that the inequality actually be an equation.
The number of integer solutions is:

1. C(537,5), when all x; > 0 and equality holds;

2. C(543,5), when all x; > 0 and equality holds;

3. C(291, 3), when x1, x2, x4, X6 > 0, x3 = 52, x5 = 194, and equality holds;
4

. C(537,6), when all x; > 0 and the inequality is strict (Imagine a new variable xy
which is the balance. Note that x7; must be positive.);

5. C(543,6), when all x; > 0 and the inequality is strict (Add a new variable x7 as
above. Now it is the only one which is required to be positive.); and

6. C(544,6), when all x; > 0.

A classical enumeration problem (with connections to several problems) involves
counting lattice paths. A lattice path in the plane is a sequence of ordered pairs of
integers:

(m1,n1),(ma, n2),(m3, n3), ..., (ms, ng)

sothatforalli=1,2,...,t —1, either

26

2.5 The Ubiquitous Nature of Binomial Coefficients

1. mizg =m; +1 and niy1 = nj, or
2. miy1 = m;and njpp = n; + 1.

In Figure 2.26, we show a lattice path from (0, 0) to (13, 8).

(13,8)

0 o0 © o o o o o
© o0 © 0o o o o o

FiGure 2.26: A LAtTiCE PATH

Example 2.27. The number of lattice paths from (m, n) to (p, q) is C((p —m)+(q—n), p—
m).

To see why this formula is valid, note that a lattice path is just an X-string with
X = {H, V}, where H stands for horizontal and V stands for vertical. In this case, there
are exactly (p — m) + (g — n) moves, of which p — m are horizontal.

Example 2.28. Let 1 be a non-negative integer. Then the number of lattice paths from
(0,0) to (n, n) which never go above the diagonal line y = x is the Catalan number

Cln) = — (2:)

n+1

To see that this formula holds, consider the family # of all lattice paths from (0, 0)
to (n,n). A lattice path from (0,0) to (n, n) is just a {H, V' }-string of length 2n with
exactly n H’s. So |P| = (2n”). We classify the paths in P as good if they never go over
the diagonal; otherwise, they are bad. A string s € P is good if the number of V’s
in an initial segment of s never exceeds the number of H’s. For example, the string
“HHVHVVHHHVHVVV” is a good lattice path from (0, 0) to (7, 7), while the path
“HVHVHHVVVHVHHV” is bad. In the second case, note that after 9 moves, we
have 5 V’sand 4 H’s.

Let G and B denote the family of all good and bad paths, respectively. Of course,
our goal is to determine |G|.

27

Chapter 2 Strings, Sets, and Binomial Coefficients

Consider a path s € B. Then there is a least integer i so that s has more V’s than
H’s in the first i positions. By the minimality of i, it is easy to see that i must be odd
(otherwise, we can back up a step), and if we set i = 2j + 1, then in the first 2j + 1
positions of s, there are exactly j H’s and j +1 V’s. The remaining 2n —2j — 1 positions
(the “tail of s”) have n — j H’'s and n — j — 1 V’s. We now transform s to a new string
s’ by replacing the H’s in the tail of s by V’s and the V’s in the tail of s by H’s and
leaving the initial 2j + 1 positions unchanged. For example, see Figure 2.29, where the
path s is shown solid and s’ agrees with s until it crosses the line y = x and then is the
dashed path. Then s’ is a string of length 2n having (n — j) + (j +1) = n +1 V’s and
(n—j—-1)+j=mn-1H’s,so s’ is a lattice path from (0,0) to (n — 1, n + 1). Note that
there are (2",) such lattice paths.

(0,0)

FiGURE 2.29: TRANSFORMING A LATTICE PATH

We can also observe that the transformation we’ve described is in fact a bijection
between B and #’, the set of lattice paths from (0,0) to (n — 1, n + 1). To see that this
is true, note that every path s’ in £’ must cross the line v = x, so there is a first time it
crosses it, say in position i. Again, i must be odd, so i = 2j + 1 and there are j H’s and
j+1V’sin the first i positions of s’. Therefore the tail of s contains n+1—-(j+1) = n—j
V’sand (n—1)—j H'’s, so interchanging H’s and V’s in the tail of s’ creates a new string
s that has n H’s and n V’s and thus represents a lattice path from (0, 0) to (1, n), but
it’s still a bad lattice path, as we did not adjust the first part of the path, which results

28

2.6 The Binomial Theorem

in crossing the line y = x in position i. Therefore, |B| = |#’| and thus

con =g =11-181=1e1- 1= () - 2) = 5 ()

n—1 n+1\n
after a bit of algebra.

It is worth observing that in Example 2.28, we made use of two common enumerative
techniques: giving a bijection between two classes of objects, one of which is “easier”
to count than the other, and counting the objects we do not wish to enumerate and
deducting their number from the total.

2.6 The Binomial Theorem

Here is a truly basic result from combinatorics kindergarten.

Theorem 2.30 (Binomial Theorem). Let x and y be real numbers with x, y and x + y non-
zero. Then for every non-negative integer n,

n _ En Y\ n—i i
Proof. View (x + y)" as a product

x+y)"=x+y)x+yx+y)x+y)...x+y)(x+y).

n factors

Each term of the expansion of the product results from choosing either x or y from one
of these factors. If x is chosen n — i times and y is chosen i times, then the resulting
product is X" yi. Clearly, the number of such terms is C(#, i), i.e., out of the n factors,
we choose the element y from i of them, while we take x in the remainingn —i. O

Example 2.31. There are times when we are interested not in the full expansion of a
power of abinomial, but just the coefficient on one of the terms. The Binomial Theorem
gives that the coefficient of x°y® in (2x — 3y)'3 is (153)25 (=3)8.

2.7 Multinomial Coefficients

Let X be a set of n elements. Suppose that we have two colors of paint, say red and
blue, and we are going to choose a subset of k elements to be painted red with the rest

29

Chapter 2 Strings, Sets, and Binomial Coefficients

painted blue. Then the number of different ways this can be done is just the binomial
coefficient (Z) Now suppose that we have three different colors, say red, blue, and
green. We will choose kj to be colored red, k; to be colored blue, and the remaining
ks = n — (k1 + kz) are to be colored green. We may compute the number of ways to
do this by first choosing k; of the n elements to paint red, then from the remaining
n — ki elements choosing k» to paint blue, and then painting the remaining k3 elements
green. It is easy to see that the number of ways to do this is

n\(n-ki) n! (n —k)! !
k1 kz B k1!(Tl - kl)! kz!(n = (k1 + kz))! B k1!k2!k3!

Numbers of this form are called multinomial coefficients; they are an obvious gener-
alization of the binomial coefficients. The general notation is:

n _ n!
ki, ko, ks, ... ke | kilkolks!. .. k!

For example,

= 1680.

8 840320
(3,2,1,2) S 3Rl 6-2-1-2
Note that there is some “overkill” in this notation, since the value of k, is determined
by #n and the values for k1, k, . . ., k1. For example, with the ordinary binomial coef-
ficients, we just write ($) and not (3%).

Example 2.32. How many different rearrangements of the string:

MITCHELTKELLERANDWILLIAMTTROTTERAREGENIUSES!!

are possible if all letters and characters must be used?
Solution. To answer this question, we note that there are a total of 45 characters dis-
tributed as follows: 3 A’s,1C,1D,7FE’s,1G,1H,41s,1K,5Ls,2M’s,2N’s, 10,
4R’s,2S5s,6T’s,1U,1 W, and 2 !"s. So the number of rearrangements is
45!
3111117111114!1115121211141216!11112!

Just as with binomial coefficients and the Binomial Theorem, the multinomial coef-

ficients arise in the expansion of powers of a multinomial:

Theorem 2.33 (Multinomial Theorem). Let x1, x5, ..., X, be nonzero real numbers with
iy xi # 0. Then for every n € Ny,

§ n k1 k k

n

(xl +xp+ -0+ xr) (k1 k2 kr)’711’722 e xrr~
K2, 0.,

ki+ko+--+k,=n

30

2.8 Discussion

Example 2.34. What is the coefficient of x*y®z!* in (2x® + y — 2%)!19? What about
29 y612137

Solution. By the Multinomial Theorem, the expansion of (2x* + y — z2)1% has terms
of the form

100

100
ki, ko, k3

kl k2 k3)(2x3)k1 ykz(_ZZ)k3 — ()2k1 x?)kl ykz(_l)k322k3 .

The x*y%0z14 arises when ki = 33, k, = 60, and k3 = 7, so it must have coefficient

[100 s
33,60,7)

, the exponent on z is odd, which cannot arise in the expansion of (2x> +
, so the coefficient is 0.

For x%%1/61213
2y100
y=2°)

2.8 Discussion

Over coffee, Xing said that he had been experimenting with the SageMath software
discussed in Chapter 1. He understood that SageMath was treating a big integer as
a string. Xing enthusiastically reported that he had asked SageMath to find the sum
a + b of two large integers a and b, each having more than 800 digits. The software
found the answer about as fast as he could hit the enter key on his netbook. “That’s
not so impressive,” Alice interjected. “A human, even Bob, could do this in a couple of
minutes using pencil and paper.”

“Thanks for your kind remarks,” replied Bob, with the rest of the group noting that
that Alice was being pretty harsh on Bob and not for any good reason.

Dave took up Bob’s case by remarking, “Very few humans, not even you Alice, would
want to tackle finding the product of 2 and b by hand.” Xing jumped back in with,
“That’s the point. Even a tiny netbook can find the product very, very quickly. In fact,
I tried it out with two integers, each having more than one thousand digits. It found
the product in about one second.” Ever the skeptic, Zori said, “You mean you carefully
typed in two integers of that size?” Xing quickly replied “Of course not. I just copied
and pasted the data from one source to another.” Yolanda said, “What a neat trick that
is. Really cuts down the chance of an error.”

Dave said “What about factoring? Can your netbook with its fancy software for
strings factor big integers?” Xing said that he would try some sample problems and
report back. Carlos said “Factoring an integer with several hundred digits is likely
to be very challenging, not only for a netbook, but also for a super computer. For

31

Chapter 2 Strings, Sets, and Binomial Coefficients

example, suppose the given integer was either a prime or the product of two large
primes. Detecting which of these two statements holds could be very difficult.”

Undeterred, Dave continued, “What about exponentiation? Can your software cal-
culate a” when a and b are large integers?” Xing said “That shouldn’t be a problem.
After all, a’ is just multiplying a times itself a total of b times, and if you can do mul-
tiplication quickly, that’s just a loop.” Yolanda said that the way Xing was describing
things, he was actually talking about a program with nested loops so it might take a
long time for such a program to halt. Carlos was quiet but he thought there might be
ways to speed up such computations.

By this time, Alice reinserted herself into the conversation: “Hey guys. While you
were talking, I was looking for big integer topics on the web and found this problem.
‘Is 838200020310007224300 a Catalan number?” How would you answer this? Do you
have to use special software?”

Zori was not happy. She gloomily envisioned a future job hunt in which she was
compelled to use big integer arithmetic as a job skill. Arrgghh.

2.9 Exercises

1. The Hawaiian alphabet consists of 12 letters. How many six-character strings can
be made using the Hawaiian alphabet?

2. How many 2n-digit positive integers can be formed if the digits in odd positions
(counting the rightmost digit as position 1) must be odd and the digits in even positions
must be even and positive?

3. Matt is designing a website authentication system. He knows passwords are most
secure if they contain letters, numbers, and symbols. However, he doesn’t quite un-
derstand that this additional security is defeated if he specifies in which positions each
character type appears. He decides that valid passwords for his system will begin with
three letters (uppercase and lowercase both allowed), followed by two digits, followed
by one of 10 symbols, followed by two uppercase letters, followed by a digit, followed
by one of 10 symbols. How many different passwords are there for his website system?
How does this compare to the total number of strings of length 10 made from the al-
phabet of all uppercase and lowercase English letters, decimal digits, and 10 symbols?

4. How many ternary strings of length 2n are there in which the zeroes appear only
in odd-numbered positions?

5. Suppose we are making license plates of the form [1/513 — d1d,d3 where [1, 2, I3 are
capital letters in the English alphabet and d1, d>, d3 are decimal digits (i.e., elements

32

2.9 Exercises

of the set {0,1,2,3,4,5,6,7,8,9}) subject to the restriction that at least one digit is
nonzero and at least one letter is K. How many license plates can we make?

6. Mrs. Steffen’s third grade class has 30 students in it. The students are divided into
three groups (numbered 1, 2, and 3), each having 10 students.

(a) The students in group 1 earned 10 extra minutes of recess by winning a class
competition. Before going out for their extra recess time, they form a single file
line. In how many ways can they line up?

(b) When all 30 students come in from recess together, they again form a single file
line. However, this time the students are arranged so that the first student is from
group 1, the second from group 2, the third from group 3, and from there on, the
students continue to alternate by group in this order. In how many ways can they
line up to come in from recess?

7. How many strings of the form [1/,d1d>d31314d4l516 are there where
e for1 <i < 6,1;is an uppercase letter in the English alphabet;
e for1l <i <4,d;isadecimal digit;
e [isnota vowel (i.e., [¢ {AE]ILO,U}); and

the digits d1, d, and d3 are distinct (i.e., di # d # d3 # d1).

8. In this exercise, we consider strings made from uppercase letters in the English
alphabet and decimal digits. How many strings of length 10 can be constructed in
each of the following scenarios?

(a) The first and last characters of the string are letters.

(b) The first character is a vowel, the second character is a consonant, and the last
character is a digit.

(c) Vowels (not necessarily distinct) appear in the third, sixth, and eighth positions
and no other positions.

(d) Vowels (not necessarily distinct) appear in exactly two positions.

(e) Precisely four characters in the string are digits and no digit appears more than
one time.

9. A database uses 20-character strings as record identifiers. The valid characters in
these strings are upper-case letters in the English alphabet and decimal digits. (Recall
there are 26 letters in the English alphabet and 10 decimal digits.) How many valid
record identifiers are possible if a valid record identifier must meet all of the following
criteria:

33

Chapter 2 Strings, Sets, and Binomial Coefficients

e Letter(s) from the set {A, E, I, O, U} occur in exactly three positions of the string.

¢ The last three characters in the string are distinct decimal digits that do not appear
elsewhere in the string.

¢ The remaining characters of the string may be filled with any of the remaining
letters or decimal digits.

10. Let X be the set of the 26 lowercase English letters and 10 decimal digits. How
many X-strings of length 15 satisfy all of the following properties (at the same time)?

¢ The first and last symbols of the string are distinct digits (which may appear else-
where in the string).

¢ Precisely four of the symbols in the string are the letter "¢".

¢ Precisely three characters in the string are elements of the set V = {a,e,i,0, u}
and these characters are all distinct.

11. A donut shop sells 12 types of donuts. A manager wants to buy six donuts, one
each for himself and his five employees.

(a) Suppose that he does this by selecting a specific type of donut for each person.
(He can select the same type of donut for more than one person.) In how many
ways can he do this?

(b) How many ways could he select the donuts if he wants to ensure that he chooses
a different type of donut for each person?

(c) Suppose instead that he wishes to select one donut of each of six different types
and place them in the breakroom. In how many ways can he do this? (The order
of the donuts in the box is irrelevant.)

12. The sport of korfball is played by teams of eight players. Each team has four men
and four women on it. Halliday High School has seven men and 11 women interested
in playing korfball. In how many ways can they form a korfball team from their 18
interested students?

13. Twenty students compete in a programming competition in which the top four
students are recognized with trophies for first, second, third, and fourth places.

(a) How many different outcomes are there for the top four places?

(b) At the last minute, the judges decide that they will award honorable mention
certificates to four individuals who did not receive trophies. In how many ways
can the honorable mention recipients be selected (after the top four places have
been determined)? How many total outcomes (trophies plus certificates) are there
then?

34

2.9 Exercises

14. Anice cream shop has a special on banana splits, and Xing is taking advantage of
it. He’s astounded at all the options he has in constructing his banana split:

¢ He must choose three different flavors of ice cream to place in the asymmetric
bowl the banana split is served in. The shop has 20 flavors of ice cream available.

e Each scoop of ice cream must be topped by a sauce, chosen from six different
options. Xing is free to put the same type of sauce on more than one scoop of ice
cream.

¢ There are 10 sprinkled toppings available, and he must choose three of them to
have sprinkled over the entire banana split.
(a) How many different ways are there for Xing to construct a banana split at this ice
cream shop?

(b) Suppose that instead of requiring that Xing choose exactly three sprinkled top-
pings, he is allowed to choose between zero and three sprinkled toppings. In this
scenario, how many different ways are there for him to construct a banana split?

15. Suppose that a teacher wishes to distribute 25 identical pencils to Ahmed, Barbara,
Casper, and Dieter such that Ahmed and Dieter receive at least one pencil each, Casper
receives no more than five pencils, and Barbara receives at least four pencils. In how
many ways can such a distribution be made?

16. How many integer-valued solutions are there to each of the following equations
and inequalities?

(@) x1+x2+x3+x3+x5=63,allx; >0

(b) x1+x3+x3+x4+x5=63,allx; >0

() x1+x2+x3+x1+x5 <63,allx; >0

(d) x9+x2+x3+x4+x5=63,allx; >0,x, >10

(e) x1+x2+x3+x4+x5=63,allx; >0,x, <9

17. How many integer solutions are there to the equation

X1+ Xy 4+ x3+x4 =132
provided that x; > 0, and x2, x3, x4 > 0? What if we add the restriction that x4 < 17?
18. How many integer solutions are there to the inequality
X1+ X2+ X3+ X4+ x5 <782

provided that x1,x > 0, x3 > 0, and x4, x5 > 10?

35

Chapter 2 Strings, Sets, and Binomial Coefficients

19. A teacher has 450 identical pieces of candy. He wants to distribute them to his class
of 65 students, although he is willing to take some leftover candy home. (He does not
insist on taking any candy home, however.) The student who won a contest in the last
class is to receive at least 10 pieces of candy as a reward. Of the remaining students, 34
of them insist on receiving at least one piece of candy, while the remaining 30 students
are willing to receive no candy.

(@) In how many ways can he distribute the candy?

(b) In how many ways can he distribute the candy if, in addition to the conditions
above, one of his students is diabetic and can receive at most 7 pieces of candy?
(This student is one of the 34 who insist on receiving at least one piece of candy.)

20. Give a combinatorial argument to prove the identity

n n-1
i) =)
Hint. Think of choosing a team with a captain.

21. Let m and w be positive integers. Give a combinatorial argument to prove that for

22. How many lattice paths are there from (0, 0) to (10, 12)?
23. How many lattice paths are there from (3, 5) to (10, 12)?
24. How many lattice paths are there from (0, 0) to (10, 12) that pass through (3, 5)?

25. How many lattice paths from (0, 0) to (17, 12) are there that pass through (7, 6) and
(12,9)?

26. How many lattice paths from (0, 0) to (14,73) are there that do not pass through
(6,37)?

27. A small-town bank robber is driving his getaway car from the bank he just robbed
to his hideout. The bank is at the intersection of 1% Street and 1% Avenue. He needs
to return to his hideout at the intersection of 7t Street and 5™ Avenue. However, one
of his lookouts has reported that the town’s one police officer is parked at the inter-
section of 4™ Street and 4™ Avenue. Assuming that the bank robber does not want to
get arrested and drives only on streets and avenues, in how many ways can he safely

36

2.9 Exercises

return to his hideout? (Streets and avenues are uniformly spaced and numbered con-
secutively in this small town.)

28. The setting for this problem is the fictional town of Mascotville, which is laid out
as a grid. Mascots are allowed to travel only on the streets, and not “as the yellow jacket
flies.” Buzz, the Georgia Tech mascot, wants to go visit his friend Thundar, the North
Dakota State University mascot, who lives 6 blocks east and 7 blocks north of Buzz’s
hive. However, Uga VIII has recently moved into the doghouse 2 blocks east and 3
blocks north of Buzz'’s hive and already has a restraining order against Buzz. There’s
also a pair of tigers (mother and cub) from Clemson who live 1 block east and 2 blocks
north of Uga VIII, and theyre known for setting traps for Buzz. Buzz wants to travel
from his hive to Thundar’s pen every day without encountering Uga VIII or The Tiger
and The Tiger Cub. However, he wants to avoid the boredom caused by using a route
he’s used in the past. What is the largest number of consecutive days on which Buzz
can make the trip to visit Thundar without reusing a route (you may assume the routes
taken by Buzz only go east and north)?

29. Determine the coefficient on x°y1202% in (2x + 3y? + z)1%0.

30. Determine the coefficient on x'2y?* in (x> + 2xy? + y + 3)!8. (Be careful, as x and

y now appear in multiple terms!)

31. For each word below, determine the number of rearrangements of the word in
which all letters must be used.

(a) OVERNUMEROUSNESSES
(b) OPHTHALMOOTORHINOLARYNGOLOGY

(c) HONORIFICABILITUDINITATIBUS (the longest word in the English language
consisting strictly of alternating consonants and vowels')

32. How many ways are there to paint a set of 27 elements such that 7 are painted
white, 6 are painted old gold, 2 are painted blue, 7 are painted yellow, 5 are painted
green, and 0 of are painted red?

33. There are many useful sets that are enumerated by the Catalan numbers. (Vol-
ume two of R.P. Stanley’s Enumerative Combinatorics contains a famous (or perhaps in-
famous) exercise in 66 parts asking readers to find bijections that will show that the
number of various combinatorial structures is C(n), and his web page boasts an ad-
ditional list of at least 100 parts.) Give bijective arguments to show that each class of
objects below is enumerated by C(n). (All three were selected from the list in Stanley’s
book.)

thttp://www.rinkworks.com/words/oddities.shtml

37

http://www-math.mit.edu/~rstan/ec/catadd.pdf
http://www.rinkworks.com/words/oddities.shtml

Chapter 2 Strings, Sets, and Binomial Coefficients

(a) The number of ways to fully-parenthesize a product of n +1 factors as if the “mul-
tiplication” operation in question were not necessarily associative. For example,
there is one way to parenthesize a product of two factors (a14,), there are two ways
to parenthesize a product of three factors ((a1(a243)) and ((a142)as)), and there are
five ways to parenthesize a product of four factors:

(a1(az(a3a4))), (a1((a2a3)as)), ((a1a2)(a3a4)), ((a1(a2a3))as), (((a1a2)az)as).

(b) Sequences of nn 1’s and n —1’s in which the sum of the first i terms is nonnegative
for all i.

(c) Sequences 1 < a; < --- < a, of integers with a; < i. For example, for n = 3, the
sequences are
111 112 113 122 123.

Hint. For part2.9.33.c, think about drawing lattice paths on paper with grid lines and
(basically) the number of boxes below a lattice path in a particular column.

38

CHAPTER

Induction

The twin concepts of recursion and induction are fundamentally important in com-
binatorial mathematics and computer science. In this chapter, we give a number of
examples of how recursive formulas arise naturally in combinatorial problems, and
we explain how they can be used to make computations. We also introduce the Princi-
ple of Mathematical Induction and give several examples of how it is applied to prove
combinatorial statements. Our treatment will also include some code snippets that
illustrate how functions are defined recursively in computer programs.

3.1 Introduction

A professor decides to liven up the next combinatorics class by giving a door prize.
As students enter class (on time, because to be late is a bit insensitive to the rest of
the class), they draw a ticket from a box. On each ticket, a positive integer has been
printed. No information about the range of ticket numbers is given, although they are
guaranteed to be distinct. The box of tickets was shaken robustly before the drawing,
so the contents are thoroughly mixed, and the selection is done without looking inside
the box.

After each student has selected a ticket, the professor announces that a cash prize of
one dollar (this is a university, you know) will be awarded to the student holding the
lowest numbered ticket—from among those drawn.

Must the prize be awarded? In other words, given a set of positive integers, in this
case the set of ticket numbers chosen by the students, must there be a least one? More
generally, is it true that in any set of positive integers, there is always a least one? What
happens if there is an enrollment surge and there are infinitely many students in the
class and each has a ticket?

39

Chapter 3 Induction

3.2 The Positive Integers are Well Ordered

Most likely, you answered the questions posed in Section 3.1 with an enthusiastic “yes”,
in part because you wanted the shot at the money, but more concretely because it seems
so natural. But you may be surprised to learn that this is really a much more complex
subject than you might think at first. In Appendix B, we discuss the development of the
number systems starting from the Peano Postulates. Although we will not devote much
space in this chapter to this topic, it is important to know that the positive integers
come with “some assembly required.” In particular, the basic operations of addition
and multiplication don’t come for free; instead they have to be defined.

As a by-product of this development, we get the following fundamentally important
property of the set N of positive integers:

Principle 3.1 (Well Ordered Property of the Positive Integers). Every non-empty set of
positive integers has a least element.

An immediate consequence of the well ordered property is that the professor will
indeed have to pay someone a dollar—even if there are infinitely many students in the
class.

3.3 The Meaning of Statements

Have you ever taken standardized tests where they give you the first few terms of a
sequence and then ask you for the next one? Here are some sample questions. In each
case, see if you can determine a reasonable answer for the next term.

1. 2,5,8,11,14,17,20,23, 26, ...
2.1,1,2,3,5,8,13,21,34, 55,89, 144, 233,377, . ..
3.1,2,5,14,42,132,429,1430,4862, . ..

4. 2,6,12,20,30,42,56,72,90,110, ...
5.2,3,6,11,18,27,38,51, ...

Pretty easy stuff! OK, now try the following somewhat more challenging sequence.
Here, we'll give you a lot more terms and challenge you to find the next one.

1,2,3,4,1,2,3,4,5,1,2,3,4,5,2,3,4,5,6,2,3,4,5,6,1,2,3,4,5,2,3,4,5,6, ...

Trust us when we say that we really have in mind something very concrete, and once
it's explained, you’'ll agree that it’s “obvious.” But for now, it’s far from it.

40

3.3 The Meaning of Statements

Here’s another danger lurking around the corner when we encounter formulas like

n(n+1)

1424+3+---+n=
3 n >

What do the dots in this statement mean? In fact, let’s consider a much simpler ques-
tion. What is meant by the following expression:

1+2+3+---+6

Are we talking about the sum of the first six positive integers, or are we talking about
the sum of the first 19 terms from the more complicated challenge sequence given
above? You are supposed to answer that you don’t know, and that’s the correct answer.
The point here is that without a clarifying comment or two, the notation 1 +2 + 3 +
.-+ + 6 isn't precisely defined. Let’s see how to make things right.
First, let f : N — N be a function. Set

1
> f) = £)
i=1

and if n > 1, define
n n-1
> f) = fm)+ Y £)
i=1 i=1

To see that these two statements imply that the expression Y.\, f(i) is defined for all
positive integers, apply the Well Ordered Property to the set of all positive integers for
which the expression is not defined and use the recursive definition to define it for the
least element.

So if we want to talk about the sum of the first six positive integers, then we should

write:
6
2
i=1

Now it is clear that we are talking about a computation that yields 21 as an answer.
A second example: previously, we defined n! by writing

nl=nxm-1)xn-2)x---x3x2x1

By this point, you should realize that there’s a problem here. Multiplication, like ad-
dition, is a binary operation. And what do those dots mean? Here’s a way to do the
job more precisely. Define n! tobe 1if n = 1. And when n > 1, set n! = n(n — 1)!.

41

Chapter 3 Induction

Definitions like these are called recursive definitions. They can be made with dif-
ferent starting points. For example, we could have set n! = 1 when n = 0, and when
n>0,setn!=n(n-1).

Here’s a code snippet in SageMath, which is based on Python, so this also works as
Python code.

def sumrecursive(n):
if n == 1:
return 2;
else:
return sumrecursive(n-1) + (n*n - 2*n + 3)
sumrecursive (3)

11

What is the value of sumrecursive(4)? (In order to make sure you understand how
this recursive function works, calculate out sumrecursive(4) should be by hand before
modifying the SageMath cell above.) Does it make sense to say that sumrecursive(n)
is defined for all positive integers n? Did you recognize that this program provides a
precise meaning to the expression:

243+6+11+18+27+38+51+---+(n>-2n+3)

3.4 Binomial Coefficients Revisited

The binomial coefficient (}) was originally defined in terms of the factorial notation,
and with our recursive definitions of the factorial notation, we also have a complete
and legally-correct definition of binomial coefficients. The following recursive formula
provides an efficient computational scheme.

Let n and k be integers with0 < k <n.Ifk =0ork = n,set (}) = 1. If 0 < k < n, set

ny (n-1 n—1
()=o))
This recursion has a natural combinatorial interpretation. Both sides count the number
of k-element subsets of {1,2, ..., n}, with the right-hand side first grouping them into
those which contain the element # and then those which don't. The traditional form of
displaying this recursion is shown in Table 3.2. This pattern is called “Pascal’s triangle.”

Other than the 1s at the ends of each row, an entry of the triangle is determined by
adding the entry to the left and the entry to the right in the row above.

42

3.5 Solving Combinatorial Problems Recursively

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

TaBLE 3.2: Pascar’'s TRIANGLE

Xing was intrigued by the fact that he now had two fundamentally different ways
to calculate binomial coefficients. One way is to write (.) =P(n,m)/(n —m)! and just
carry out the specified arithmetic. The second way is to use the recursion of Pascal’s
triangle, so that you are just performing additions. So he experimented by writing
a computer program to calculate binomial coefficients, using a library that treats big
integers as strings. Which of the two ways do you think proved to be faster when n say
was between 1800 and 2000 and m was around 8007

3.5 Solving Combinatorial Problems Recursively

In this section, we present examples of combinatorial problems for which solutions
can be computed recursively. In Chapter 9, we return to these problems and obtain
even more compact solutions. Our first problem is one discussed in our introductory
chapter.

Example 3.3. A family of n lines is drawn in the plane with (1) each pair of lines cross-
ing and (2) no three lines crossing in the same point. Let (1) denote the number of
regions into which the plane is partitioned by these lines. Evidently, r(1) = 2, r(2) = 4,
r(3) = 7 and r(4) = 11. To determine r(n) for all positive integers, it is enough to note
that (1) = 1, and when n > 1, r(n) = n + r(n — 1). This formula follows from the
observation that if we label the lines as L1, Lo, ..., L,, then the n — 1 points on line L,
where it crosses the other lines in the family divide L, into n segments, two of which
are infinite. Each of these segments is associated with a region determined by the first
n —1 lines that has now been subdivided into two, giving us n more regions than were
determined by n —1 lines. This situation is illustrated in Figure 3.4, where the line con-
taining the three dots is Ls. The other lines divide it into four segments, which then
divide larger regions to create regions 1 and 5,2 and 6, 7 and 8, and 4 and 9.

43

Chapter 3 Induction

FIGURE 3.4: LINES AND REGIONS IN THE PLANE

With the recursive formula, we thus have 7(5) = 5+ 11 = 16, r(6) = 6 + 16 = 22
and r(7) = 7 + 22 = 29. Even by hand, it wouldn’t be all that much trouble to calculate
7(100). We could do it before lunch.

Example 3.5. A 2 x n checkerboard will be tiled with rectangles of size2x 1 and 1 X 2.
Find a recursive formula for the number t(n) of tilings. Clearly, #(1) = 1 and ¢(2) = 2.
When n > 2, consider the rectangle that covers the square in the upper right corner.
If it is vertical, then preceding it, we have a tiling of the first n — 1 columns. If it is
horizontal, then so is the rectangle immediately underneath it, and proceeding them
is a tiling of the first n — 2 columns. This shows that t(n) = t(n — 1) + t(n — 2). In
particular, t(3) =1+2=3,#(4)=2+3=5and t¢(5) =3+5=8.

Again, if compelled, we could get #(100) by hand, and a computer algebra system
could get £(1000).

Example 3.6. Call a ternary string good if it never contains a 2 followed immediately by
a 0; otherwise, call it bad. Let g(n) be the number of good strings of length n. Obviously
g(1) = 3, since all strings of length 1 are good. Also, g(2) = 8 since the only bad string
of length 2 is (2, 0). Now consider a value of # larger than 2.

Partition the set of good strings of length #n into three parts, according to the last
character. Good strings ending in 1 can be preceded by any good string of length n -1,
so there are g(n — 1) such strings. The same applies for good strings ending in 2. For
good strings ending in 0, however, we have to be more careful. We can precede the 0 by
a good string of length n—1 provided that the string does not end in 2. There are g(n—1)
good strings of length n — 1 and of these, exactly g(n — 2) end in a 2. Therefore there
are g(n — 1) — g(n —2) good strings of length n that end in a 0. Hence the total number
of good strings of length n satisfies the recursive formula g(n) = 3g(n — 1) — g(n - 2).
Thus g(3) =3-8-3=21and g(4) =3-21 -8 =55.

44

3.5 Solving Combinatorial Problems Recursively

Once more, g(100) is doable by hand, while even a modest computer can be coaxed
into giving us ¢(5000).

3.5.1 Finding Greatest Common Divisors

There is more meat than you might think to the following elementary theorem, which
seems to simply state a fact that you've known since second grade.

Theorem 3.7 (Division Theorem). Let m and n be positive integers. Then there exist unique
integers q and v so that
m=q-n+r and 0<r<n.

We call q the quotient and r the remainder.

Proof. We settle the claim for existence. The uniqueness part is just high-school algebra.
If the theorem fails to hold, then let ¢ be the least positive integer for which there are
integers m and n with m +n = t, but there do not exist integers g and r withm = gn+r
and0 <r <n.

First, we note that n # 1, for if n = 1, then we could take g = m and = 0. Also, we
cannot have m =1, for if m = 1, then we can take ¢ = 0 and r = 1. Now the statement
holds for the pair m — 1, n so there are integers g and r so that

m—-1=qg-n+r and 0<r<n.
Since r < n,weknow thatr +1 < n.If r +1 < n, then
m=qg-n+(r+1) and 0<r+1<n.
On the other hand, if » + 1 = n, then
m=qg-n+(r+l)=ng+n=0@+n=(g+1n+0.
The contradiction completes the proof.]

Recall that an integer 7 is a divisor of an integer m if there is an integer g such that
m = qn. (We write n | m and read “n divides m”.) An integer d is a common divisor
of integers m and n if d is a divisor of both m and n. The greatest common divisor of
m and n, written ged(m, n), is the largest of all the common divisors of m and #.

Here’s a particularly elegant application of the preceding basic theorem:

Theorem 3.8 (Euclidean Algorithm). Let m, n be positive integers with m > n and let q
and v be the unique integers for which

m=q-n+r and 0<r<n.

Ifr > 0, then ged(m, n) = ged(n, r). If r = 0, then n divides m, and ged(m, n) = n.

45

Chapter 3 Induction

Proof. Consider the expression m = q - n + v, which is equivalenttom —g-n =r. If a
number 4 is a divisor of m and n, then d must also divide r. Similarly, if 4 is a divisor
of n and r, then d must also divide m. O

Here is a code snippet that computes the greatest common divisor of m and n when
m and n are positive integers with m > n. We use the familiar notation m%n to denote
the remainder r in the expressionm =g -n +r, with0 < r < n.

def gcd(m,n):
if m % n ==
return n
else:
return gcd(n,m%n)
gcd(12,5)

1

Feel free to change the values 12 and 5 above in the SageMath cell in the HTML ver-
sion of the text to calculate the greatest common divisor of some other integers. Just
remember that the code assumes m > n when you do so!

The disadvantage of this approach is the somewhat wasteful use of memory due to
recursive function calls. It is not difficult to develop code for computing the greatest
common divisor of m and n using only a loop, i.e., there are no recursive calls. With
minimal extra work, such code can also be designed to solve the following diophantine
equation problem:

Theorem 3.9. Let m, n, and c be positive integers. Then there exist integers a and b, not
necessarily non-negative, solving the linear diophantine equation am + bn = c if and only if ¢
is a multiple of the greatest common divisor of m and n.

Let’s see how the Euclidean algorithm can be used to write gcd(m, n) in the form
am + bn with a, b € Z with the following example.

Example 3.10. Find the greatest common divisor d of 3920 and 252 and find integers
a and b such that d = 3920a + 252b.

Solution. In solving the problem, we demonstrate how to perform the Euclidean al-
gorithm so that we can find a and b by working backward. First, we note that

3920 = 15 - 252 + 140.
Now the Euclidean algorithm tells us that gcd(3920, 252) = ged(252, 140), so we write

252 =1-140 + 112.

46

3.5 Solving Combinatorial Problems Recursively

Continuing, we have 140 =1-112 + 28 and 112 =4-28 + 0,50 d = 28.
To find a and b, we now work backward through the equations we found earlier,
“solving” them for the remainder term and then substituting. We begin with

28 =140-1-112.
But we know that 112 = 252 — 1 - 140, so
28 =140-1(252-1-140) =2-140 -1 - 252.
Finally, 140 = 3920 — 15 - 252, so now we have
28 =2(3920 — 15-252) —1-252 =2- 3920 — 31 - 252.

Therefore a =2 and b = -31.

3.5.2 Sorting

One of the most common and most basic computing problems is sorting: Given a se-
quenceai, dy, ..., 4, of n distinct integers, rearrange them so that they are in increasing
order. We describe here an easy recursive strategy for accomplishing this task. This
strategy is known as Merge Sort, and it is one of several optimal algorithms for sorting.
Introductory computer science courses treat this topic in greater depth. In our course,
we simply need some good strategy and merge sort works fine for our purposes.

To present merge sort, must first develop a strategy for solving a special case of the
sorting problem. Suppose we have s + ¢ distinct integers

{uOI ui,...,Us-1,90,01,... rvt—l}

arranged as two lists with up < 1 < ... < us_1and v9 < v1 < ... < v;_1. How do we
merge these two sequences into a single increasing sequence of length s +¢. Imagine the
two sequences placed on two horizontal lines, one immediately under the other. Then
let u be the least integer in the first sequence and v the least integer in the second. At
the moment, this implies that u = ug and v = vy, but integers will be deleted from the
two sequences as the process is carried out. Regardless, the meaning of u and v will
be preserved. Also, set i = 0. Then take a; as the minimum of # and v and delete a;
from the sequence in which it occurs. Then increase i by 1 and repeat. Here is a code
snippet for accomplishing a merge operation, with u, now written as ulp] and v; now
written as v[ql.

u
\%
a

[1,2,7,9,11,15]
[3,5,8,100,130,275]
[]

47

Chapter 3 Induction

p Q
q =20
for i in range(len(u) + len(v)):
if (p < len(u) and g < len(v)):
a.append(min(ulpl, v[ql))
if (min(ulpl, vI[ql)==ulpl):
p = ptl
else:
qg = g+l
elif (p >= len(u)):
a.append(vlqgl)

q = g+l

else:
a.append(ulpl)
p = ptl

a

1, 2, 3, 5, 7, 8, 9, 11, 15, 100, 130, 275]

Now that we have a good strategy for merging, it is easy to develop a recursive strategy
for sorting. Given a sequence a1, 4y, . .., 4, of n distinct integers, we set s = [1/2] and
t = |n/2]. Thenletu; = a;fori =1,2,...,sand v; = as4j, for j =1,2,...,t. Sort the
two subsequences and then merge them. For a concrete example, given the sequence
(2,8,5,9,3,7,4,1,6), we splitinto (2,8,5,9,3) and (7,4, 1, 6). These subsequences are
sorted (by a recursive call) into (2,3,5,8,9) and (1,4, 6,7), and then these two sorted
sequences are merged.

For running time, if S(n) is the number of operations it takes to sort a sequence of n
distinct integers, then S(2n) < 25(n) + 2n, since it clearly takes 2n steps to merge two
sorted sequences of length 1. This leads to the bound S(1) < Cn log n for some positive
constant C, and in computer science courses, you will learn (here it is an exercise) that
this is optimal.

3.6 Mathematical Induction

Now we move on to induction, the powerful twin of recursion.
Let 1 be a positive integer. Consider the following mathematical statements, each of
which involve n:

1. 2n+7 =13.
2. 3n—-5=09.
3. n2-5n+9=3.

48

3.7 Inductive Definitions

4. 8n — 3 < 48.

5.8n-3>0.

6. (n+3)(n+2)=n>+5n+6.
7. n>—6n+13>0.

Such statements are called open statements. Open statements can be considered as
equations, i.e., statements that are valid for certain values of n. Statement 1 is valid
only when n = 3. Statement 2 is never valid, i.e., it has no solutions among the positive
integers. Statement 3 has exactly two solutions, and Statement 4 has six solutions. On
the other hand, Statements 5, 6 and 7 are valid for all positive integers.

At this point, you are probably scratching your head, thinking that this discussion
is trivial. But let’s consider some statements that are a bit more complex.

1. The sum of the first n positive integers is n(n + 1)/2.

2. The sum of the first n odd positive integers is n2.

3. n"™ > n!+4,000,000,000n2" when n > 14.

How can we establish the validity of such statements, provided of course that they
are actually true? The starting point for providing an answer is the following property:

Principle 3.11 (Principle of Mathematical Induction). Let S, be an open statement in-
volving a positive integer n. If Sy is true, and if for each positive integer k, assuming that the
statement Sy is true implies that the statement Sy is true, then S, is true for every positive
integer n.

With a little thought, you should see that the Principle of Mathematical Induction is
logically equivalent to the Well Ordered Property of the Positive Integers. If you haven’t
already done so, now might be a good time to look over Appendix B on background
material.

3.7 Inductive Definitions

Although it is primarily a matter of taste, recursive definitions can also be recast in an
inductive setting. As a first example, set 1! = 1 and whenever k! has been defined, set
(k+1)! = (k+1)k!.

As a second example, set

k+1 k

1
D f@O=f1) and D f@)=) fi)+flk+1)
i=1 i=1 i=1

49

Chapter 3 Induction

In this second example, we are already using an abbreviated form, as we have omitted
some English phrases. But the meaning should be clear.

Now let’s back up and give an example which would really be part of the develop-
ment of number systems. Suppose you knew everything there was to know about the
addition of positive integers but had never heard anything about multiplication. Here’s
how this operation can be defined.

Let m be a positive integer. Then set

m-1=m and m-(k+1)=m-k+m

You should see that this defines multiplication but doesn’t do anything in terms of estab-
lishing such familiar properties as the commutative and associative properties. Check
out some of the details in Appendix B.

3.8 Proofs by Induction

No discussion of recursion and induction would be complete without some obligatory
examples of proofs using induction. We start with the “Hello World” example.

Proposition 3.12. For every positive integer n, the sum of the first n positive integers is n(n +

1)/2,1ie.,
an . n(n+1)
i=1 2
For our first version of a proof of Proposition 3.12, we clearly identify the open state-
ment S, and describe the proof carefully in terms of S,,. As you develop more experi-

ence with writing proofs by induction, this will become less essential, as you'll see in
the second version of the proof.

Proof. Let n be a positive integer, and let S,, be the open statement
Zn:i _n(n+1)
2
i=1

We will prove that S, is true for all positive integers by induction. For the basis step,
we must prove that S is true. When n = 1, the left-hand side of S, is just 1, while the
right-hand side evaluates to 1(1 + 1)/2 = 1. Therefore, S; is true.

Next we assume that for some positive integer k, Sk is true. That is, we assume

k

Zi: k(k2+1).

i=1

50

3.8 Proofs by Induction

We now seek to prove that Sg.1 is true, and begin by considering the left-hand side of
Si+1. We notice that

k+1 k
Ziz(Zi)+(k+1)=k(k2+1)+(k+1),

i=1 i=1

since our inductive hypothesis that S is true gives us the simpler formula for the sum-
mation. Now continuing with a bit of algebra, we find

k(k +1) K2+3k+2 (k+1)(k+2)
— =)

+(k+1)= > >

Therefore, Sk, is true. Since we have shown that S; is true and that for every positive
integer k, if Sy is true, then Sg,1 is true, we conclude that S, is true for all positive
integers n by the Principle of Mathematical Induction. O

Before looking at a refined version of this proof, let’s take a moment to discuss the
key steps in every proof by induction. The first step is the basis step, in which the open
statement S; is shown to be true. (It's worth noting that there’s nothing special about
1 here. If we want to prove only that S, is true for all integers n > 5, then proving that
Ss is true is our basis step.) When proving the basis step, if S, is an equation, we do
not just write down S; and move on. We need to prove that S; is true. Notice how in
the proof above, we discussed the left-hand side of S; and the right-hand side of S;
and concluded that they were equal.

After the basis step comes the inductive step, in which we assume that Sj is true
for some positive integer k and prove that S, is true. When doing this, we call Sk
our inductive hypothesis. In the inductive step, the most common mistake students
make is starting with the entirety of Si.; and manipulating it until they obtain a true
statement. This is dangerous, as it is possible to start with something false and through
valid algebraic steps, obtain a true statement. Instead, the best option is to work as with
the basis step: if Si41 is an equation or inequality, work on one side until you find a
place to apply the inductive hypothesis and then continue until you obtain the other
side. If the algebra gets tricky along the way, you can also work with the left-hand
side of Sk4+1 and separately work with the right-hand side of Si41. If you're able to
manipulate both sides to be in the same form, then you have shown they are equal and
Sk41 is true.

Now let’s take a look at a more refined proof of Proposition 3.12. From here on,
when we give a proof by induction, we’ll use this style. As you're getting started with
induction proofs, you may find it useful to be more explicit about the steps as we did
in the first proof above.

51

Chapter 3 Induction

Proof. We first prove the assertion when n = 1. For this value of 1, the left-hand side
is just 1, while the right-hand side evaluates to 1(1 +1)/2 = 1.
Now assume that for some positive integer k, the formula holds when n = k, i.e,,

assume that
ii k(k+1)
= R

i=1

Then it follows that
Sy e KkED o B3k (k+ Dk +2)
;z— ;z +(k+1)= 5 +k+1)= > = > .

Thus the formula also holds when n = k + 1. By the Principle of Mathematical Induc-
tion, it holds for all positive integers n. m]

The preceding arguments are 100% correct... but some combinatorial mathemati-
cians would argue that they may actually hide what is really going on. These folks
would much prefer a combinatorial proof, as was provided in Section 2.4. Our per-
spective is that you should prefer to give a combinatorial proof—when you can find
one. But if pressed, you should be able to give a formal proof by mathematical induc-
tion.

Here’s a second example, also quite a classic. Again, recall that we gave a combina-
torial proof in the last chapter. As you read the proof, make sure you can identify the
open statement S, the basis step, and the inductive step.

Proposition 3.13. For each positive integer n, the sum of the first n odd positive integers is

n?, ie.,
n
Z(Zi ~1)=n
i=1

Proof. We will prove this by induction. First, note that the formula holds when n = 1.
Now suppose that k is a positive integer and that the formula holds when n =k, i.e,,

assume ;
Dei-1=k.
i=1
Then
k+1 k
Z(Zi—l): (ZZi—l)+2k+1=k2+(2k+1):(k+1)2.
i=1 i=1
Therefore, the proposition follows by the Principle of Mathematical Induction. m|

52

3.9 Strong Induction
Here’s a more general version of the first result in this section, and again we note
that we gave a combinatorial proof in Section 2.4.
Proposition 3.14. Let n and k be non-negative integers with n > k. Then
i i\ [(n+1
Li\k) \k+1)
i=k

Proof. Fix a non-negative integer k. We then prove the formula by induction on n. If
n = k, note that the left hand side is just () = 1, while the right hand side is (*])
which is also 1. Now assume that m is a non-negative integer, with m > k, and that

the formula holds when n = m, i.e., assume that

S()-(5)

i=

Then
mz*:l i\ S0 (i), (m+1
Li\k) Lk k
i=k i=k
_[(m+1 L™ +1
k1 k
_(m+2
S Ak+1)
Therefore, the proposition follows by the Principle of Mathematical Induction. O

3.9 Strong Induction

There are occasions where the Principle of Mathematical Induction, at least as we have
studied it up to this point, does not seem sufficient. Here is a concrete example. The
professor asked Bob to study a function f(n) defined recursively by f(n) = 2f(n—1)—
f(n —2)with f(1) =3 and f(2) = 5. Specifically, the professor asked Bob to compute
£(101), which seems like a daunting task. Over coffee, Bob scribbled on a napkin and
determined that f(3) = 7 and f(4) = 9, and on the basis of these calculations alone, he
thought that it might just be possible that f(n) = 2n + 1 for all n > 1. If this were true,
he could simply report that £(10'°) = 2-10!° + 1 = 20000000001.

Bob was beginning to understand proofs by induction, so he tried to prove that
f(n) =2n +1forall n > 1 by induction. For the base step, he noted that f(1) = 3 =

53

Chapter 3 Induction

2-1+1,soallis ok to this point. For the inductive step, he assumed that f(k) = 2k +1
for some k > 1 and then tried to prove that f(k + 1) = 2(k + 1) + 1. If this step could be
completed, then the proof by induction would be done.

But at this point, Bob seemed to hit a barrier, because

flk+1) =2f(k)~ f(k—1) =22k +1) - f(k ~ 1),

using the inductive hypothesis to replace f(k) by 2k + 1. However, he’s was totally
perplexed about what to do with the f(k — 1). If he knew that f(k—-1) =2(k-1)+1,
then the right hand side would result in 22k + 1) - 2k - 1) =2k +3 =2(k + 1) + 1,
which is exactly what he wants. Bob always plays by the rules, and he has to admit
that he doesn’t know that f(k — 1) = 2(k — 1) + 1. He only knows that f(k) = 2k + 1.

Bob was about to throw in the towel and ask his computer to start making the cal-
culations recursively, when Carlos comes along and asks what he’s doing. Carlos sees
right away that the approach Bob was taking to prove that f(n) = 2n + 1 by induction
won't work—but after a moment’s reflection, Carlos says that there’s a stronger form
of an inductive proof that will do the trick. Carlos patiently explained to Bob a propo-
sition which is called the Strong Principle of Mathematical Induction. To prove that
an open statement S, is valid for all n > 1, it is enough to

a Show that S; is valid, and
b Show that Sy is valid whenever S,, is valid for all integers m with 1 < m < k.

The validity of this proposition is trivial since it is stronger than the principle of in-
duction. What is novel here is that in order to prove a statement, it is sometimes to
your advantage to prove something even stronger. Combinatorial mathematicians call
this the “bootstrap” phenomenon.

Equipped with this observation, Bob saw clearly that the strong principle of induc-
tion was enough to prove that f(n) =2n +1 for all n > 1. So he could power down his
computer and enjoy his coffee.

3.10 Discussion

The group was debating the value of combinatorial proofs versus formal proofs by in-
duction. Xing said that he actually preferred to do a proof by induction, as a combina-
torial proof, it could be argued, wasn’t really a proof. Dave mumbled “Combinatorial
proofs can always be made rigorous.” They went back and forth for a while and then
Alice said “But the professor never explained that weird sequence

1,2,3,4,1,2,3,4,5,1,2,3,4,5,2,3,4,5,6,2,3,4,5,6,1,2,3,4,5,2,3,4,5,6, ...,

54

3.11 Exercises

did he?”

Dave was on a roll. He asked, “Who has change for a dollar?” but nobody under-
stood why he would derail an argument over proofs when everybody had already paid
for the coffee. Alice was more to the point “You know Dave, sometimes I just don’t un-
derstand why you say the things you do.” Dave smiled (maybe it was more of a smirk)
“It’s about making change. The terms in this sequence are the fewest number of coins
required to make change.” Bob said “I don’t get it.” Dave continued “The term a,, is
the fewest number of U.S. coins required to total to 11 cents.” Now everyone groaned,
everyone except Carlos, who thought that at least this time, Dave was really clever.

“Well”, said Bob, “that takes care of the strange sequence, but I still don't see any
difference between induction and recursion.” Dave couldn’t keep quiet “No one does.”
Xing thought differently and said “In many programming languages, you try to avoid
recursion, preferring to use loops instead. Otherwise, you wind up overloading the
stack. As just one example, you can compute the greatest common divisor 4 of m and
n,as well as find a and b so that d = am +bn using a loop—with very little storage. The
recursive approach discussed previously, with the inherent back tracking at the end,
isn’t really necessary.” Yolanda was impressed with Xing’s extensive programming
experience and knowledge, but Alice was less so.

Zori was losing her patience and was especially grumpy today “I don’t see any value
to any of this stuff. Who's going to pay me to find greatest common divisors?” Dave
said “Nobody.” Alice said, “But maybe there are some principles here that have prac-
tical application.” Carlos joined in, saying “I think the basic principles behind estab-
lishing that a computer program does what you intend have a lot to do with induction
and recursion.” Bob said “I don’t understand. When I write a program, I just pay at-
tention to details and after just a few corrections, they always work.” Alice was brutal
“Maybe that’s because you don't do anything complicated.” Carlos was more gentle
“Big software projects might have hundreds of thousands of lines of code, and pieces
of the final product might be written by different groups of programmers at different
moments in time. Establishing correctness can be a very difficult task.” Zori’s ears
perked up as she thought she saw something in this last bit of conversation that might
be a way to earn a salary.

3.11 Exercises

1. A database uses record identifiers that are alphanumeric strings in which the 10
decimal digits and 26 upper-case letters are valid symbols. The criteria that define a
valid record identifier are recursive. A valid record identifier of length n > 2 can be
constructed in the following ways:

* beginning with any upper-case letter other than D and followed by any valid

55

Chapter 3 Induction

record identifier of length n — 1;
* beginning with 1C, 2K, or 7] and followed by any valid record identifier of length
n—2;or
* beginning with D and followed by any string of n — 1 decimal digits.
Let r(n) denote the number of valid record identifiers of length n. We take r(0) = 1

and note that r(1) = 26. Find a recursion for r(n) when n > 2 and use it to compute
r(5).

2. Consider a 1 X n checkerboard. The squares of the checkerboard are to be painted
white and gold, but no two consecutive squares may both be painted white. Let p(n)
denote the number of ways to paint the checkerboard subject to this rule. Find a recur-
sive formula for p(n) valid for n > 3.

3. Give a recursion for the number g(n) of ternary strings of length n that do not con-
tain 102 as a substring.

4. A 2 x n checkerboard is to be tiled using two types of tiles. The first tileisa 1 x 1
square tile. The second tile is called an L-tile and is formed by removing the upper-
right 1 X 1 square from a 2 X 2 tile. The L-tiles can be used in any of the four ways they
can be rotated. (That is, the “missing square” can be in any of four positions.) Let f(n)
denote the number of tilings of the 2 xn checkerboard using 1 x1 tiles and L-tiles. Find
a recursive formula for t(n) and use it to determine (7).

5. Let S be the set of strings on the alphabet {0, 1,2, 3} that do not contain 12 or 20 as
a substring. Give a recursion for the number /(1) of strings in S of length 7.

Hint. Check your recursion by manually computing h(1), h(2), h(3), and h(4).
6. Find d = gcd(5544, 910) as well as integers a and b such that 55444 + 9100 = 4.
7. Find gcd(827,249) as well as integers a and b such that 8274 + 2490 = 6.

8. Leta, b, m, and n be integers and suppose that am + bn = 36. What can you say
about ged(m, n)?

9. (A challenging problem) For each formula, give both a proof using the Principle of
Mathematical Induction and a combinatorial proof. One of the two will be easier while
the other will be more challenging.
nn+1)2n +1)

6

n n n M\an
(b) (0)20+(1)21+(2)22+--.+(n)2 =3

56

(@) 1>+22+3%+...+n?=

3.11 Exercises

10. Show that for all integers n > 4, 2" < n!.

11. Show that for all positive integers #,
n
Dlal=omog,
i=0

12. Show that for all positive integers n, 7" — 4" is divisible by 3.
13. Show that for all positive integers n, 9" — 5" is divisible by 4.

14. It turns out that if 2 and b are positive integers with a > b + 1, then there is a
positive integer M > 1 such that a” — b" is divisible by M for all positive integers #.
Determine M in terms of a and b and prove that it is a divisor of a” — b" for all positive
integers n.

15. Use mathematical induction to prove that for all integers n > 1,
W+ (n+1)°+(n+2)>°
is divisible by 9.

16. Give a proof by induction of the Binomial Theorem (Theorem 2.30). How do you
think it compares to the combinatorial argument given in Chapter 2?

17. Consider the recursion given by f(n) = 2f(n —1) — f(n —2) + 6 for n > 2 with
£(0) =2and f(1) = 4. Use mathematical induction to prove that f(n) = 3n2 —n +2 for
all integers n > 0.

18. Consider the recursion given by f(n) = f(n —1) + f(n —2) for n > 3 with f(1) =
f(2) = 1. Show that f(n) is divisible by 3 if and only if # is divisible by 4.

19. Suppose that x € Rand x > —1. Prove that for all integers n > 0, (1+x)" > 1+ nx.

20. Show that there is a positive constant ¢ so that any algorithm that sorts a sequence
of n positive integers must, in worst case, take cn log n steps.

Hint. Hint: There are n! permutations of a set of n distinct integers. Each operation
reduces the number of possibilities by a multiplicative fraction which is at most 1/2.
So if there are t operations, then 2! > n!. Now look up Stirling’s approximation for #!
and continue from there.

57

cunrree 4 N

Combinatorial Basics

Dave hates doing the same thing twice. He sees himself as a free spirit and never wants
to fall into a rut. Alice says that this approach to life requires one to have lots and lots
of options, for if you have to do a lot of something, like get up in the morning and get
dressed, then you may not be able to avoid mindless repetition, dull and boring as it
may seem.

4.1 The Pigeon Hole Principle

A function f : X — Y is said to be 1-1 (read one-to-one) when f(x) # f(x’) for
all x,x” € X with x # x’. A 1-1 function is also called an injection or we say that
f is injective. When f : X — Y is 1-1, we note that |X| < |Y|. Conversely, we
have the following self-evident statement, which is popularly called the “Pigeon Hole”
principle.

Proposition 4.1 (Pigeon Hole Principle). If f : X — Y is a function and |X| > |Y/|, then
there exists an element y € Y and distinct elements x, x’ € X so that f(x) = f(x') = y.

In more casual language, if you must put n + 1 pigeons into # holes, then you must
put two pigeons into the same hole.

Here is a classic result, whose proof follows immediately from the Pigeon Hole Prin-
ciple.

Theorem 4.2 (ErdSs/Szekeres). If m and n are non-negative integers, then any sequence of
mn + 1 distinct real numbers either has an increasing subsequence of m + 1 terms, or it has a
decreasing subsequence of n + 1 terms.

Proof. Let 0 = (x1,%2,X3,...,Xmn+1) be a sequence of mn + 1 distinct real numbers.
Foreachi =1,2,...,mn + 1, let a; be the maximum number of terms in a increasing
subsequence of o with x; the first term. Also, let b; be the maximum number of terms
in a decreasing subsequence of o with x; the last term. If there is some i for which
a; > m + 1, then ¢ has an increasing subsequence of m + 1 terms. Conversely, if for

59

Chapter 4 Combinatorial Basics

some i, we have b; > n + 1, then we conclude that ¢ has a decreasing subsequence of
n + 1 terms.

It remains to consider the case whereq; < mand b; < nforalli=1,2,...,mn +1.
Since there are mn ordered pairs of the form (a,b) where1 <a < mand1 < b < n,
we conclude from the Pigeon Hole principle that there must be integers i and i» with
1 <4y < ip < mn + 1 for which (a;,, bi,) = (ai,, bi,). Since x;, and x;, are distinct, we
either have x;, < xj, or x;; > x;,. In the first case, any increasing subsequence with
Xi, as its first term can be extended by prepending x;, at the start. This shows that
a;, > a;,. In the second case, any decreasing sequence of with x;, as its last element can

be extended by adding x;, at the very end. This shows b;, > b;,. m]

In Chapter 11, we will explore some powerful generalizations of the Pigeon Hole
Principle. All these results have the flavor of the general assertion that total disarray is
impossible.

4.2 An Introduction to Complexity Theory

Discussion 4.3. Bob says that he’s really getting to like this combinatorial mathemat-
ics stuff. The concrete nature of the subject is appealing. But he’s not sure that he
understands the algorithmic component. Sometimes he sees how one might actually
compute the answer to a problem—provided he had access to a powerful computer. At
other times, it seems that a computational approach might be out of reach, even with
the world’s best and fastest computers at ready access. Carlos says it can be much
worse than that. There are easily stateable problems that no one knows how to attack
even if all the world’s computational power is used in concert. And there’s nothing on
the horizon that will change that. In fact, build faster computers and you just change
the threshold for what is computable. There will still be easily understood problems
that will remain unresolved.

4.2.1 Three Questions

We consider three problems with a common starting point. You are given' a set S of
10, 000 distinct positive integers, each at most 100, 000, and then asked the following
questions.

1. Is 83,172 one of the integers in the set S?

2. Are there three integers in S whose sum is 143,297?

The particulars of how the set is given to you aren’t important to the discussion. For example, the data
could be given as a text file, with one number on each line.

60

4.2 An Introduction to Complexity Theory

3. Can the set S be partitionedas S = AUBwith ANB = 0,sothat), ,c4a = Xep b.

The first of the three problems sounds easy, and it is. You just consider the numbers
in the set one by one and test to see if any of them is 83, 172. You can stop if you ever
find this number and report that the answer is yes. If you return a no answer, then
you will have to have read every number in the list. Either way, you halt with a correct
answer to the question having done at most 10,000 tests, and even the most modest
netbook can do this in a heartbeat. And if the list is expanded to 1, 000, 000 integers,
all at most a billion, you can still do it easily. More generally, if you're given a set S of
n numbers and an integer x with the question “Is x a member of 5?”, you can answer
this question in n steps, with each step an operation of testing a number in S to see if
it is exactly equal to n. So the running time of this algorithm is proportional to n, with
the constant depending on the amount of time it takes a computer to perform the basic
operation of asking whether a particular integer is equal to the target value.

The second of the three problems is a bit more challenging. Now it seems that we
must consider the 3-element subsets of a set of size 10, 000. There are C(10, 000, 3) such
sets. On the one hand, testing three numbers to see if their sum is 143,297 is very easy,
but there are lots and lots of sets to test. Note that C(10,000,3) = 166, 616,670, 000,
and not too many computers will handle this many operations. Moreover, if the list is
expanded to a million numbers, then we have more than 1017 triples to test, and that’s
off the table with today’s hardware.

Nevertheless, we can consider the general case. We are given a set S of n integers
and a number x. Then we are asked whether there are three integers in S whose sum
is x. The algorithm we have described would have running time proportional to n°,
where the constant of proportionality depends on the time it takes to test a triple of
numbers to see if there sum is x. Of course, this depends in turn on just how large the
integer x and the integers in S can be.

The third of the three problems is different. First, it seems to be much harder. There
are 2"~ complementary pairs of subsets of a set of size n, and one of these involves
the empty set and the entire set. But that leaves 2"~! — 1 pairs to test. Each of these
tests is not all that tough. A netbook can easily report whether a two subsets have the
same sum, even when the two sets form a partition of a set of size 10,000, but there
are approximately 103°% partitions to test and no piece of hardware on the planet will
touch that assignment. And if we go up to a set of size 1,000, 000, then the combined
computing power of all the machines on earth won’t get the job done.

In this setting, we have an algorithm, namely testing all partitions, but it is totally
unworkable for n element sets when # is large since it has running time proportional
to 2".

61

Chapter 4 Combinatorial Basics

4.2.2 Certificates

Each of the three problems we have posed is in the form of a “yes/no” question. A
“yes” answer to any of the three can be justified by providing a certificate that can be
checked efficiently. For example, if you answer the first question with a yes, then you
might provide the additional information that you will find 83, 172 as the integer on
line 584 in the input file. Of course, you could also provide the source code for the
computer program, and let a referee run the entire procedure.

Similarly, if you answer the second question with a yes, then you could specify the
three numbers and specify where in the input file they are located. An impartial referee
could then verify, if it mattered, that the sum of the three integers was really 143,297
and that they were located at the specified places in the input file. Alternatively, you
could again provide the source code which would require the referee to test all triples
and verify that there is one that works.

Likewise, a yes for the third question admits a modest size certificate. You need only
specify the elements of the subset A. The referee, who is equipped with a computer,
can (a) check to see that all numbers in A belong to S; (b) form a list of the subset B
consisting of those integers in S that do not belong to A; and (c) compute the sums
of the integers in A and the integers in B and verify that the two sums are equal. But
in this case, you would not provide source code for the algorithm, as there does not
appear (at least nothing in our discussion thus far provides one) to be a reasonable
strategy for deciding this problem when the problem size is large.

Now let’s consider the situation with a “no” answer. When the answer to the first
question is no, the certificate can again be a computer program that will enable the
referee to consider all the elements of S and be satisfied that the number in question
is not present. A similar remark holds for the second question, i.e., the program is the
certificate.

But the situation with the third question is again very different. Now we can’t say to
the referee “We checked all the possibilities and none of them worked.” This could not
possibly be a true statement. And we have no computer program that can be run by
us or by the referee. The best we could say is that we tried to find a suitable partition
and were unable to do so. As a result, we don’t know what the correct answer to the
question actually is.

4.2.3 Operations

Many of the algorithms we develop in this book, as well as many of the computer pro-
grams that result from these algorithms involve basic steps that are called operations.
The meaning of the word operation is intentionally left as an imprecise notion. An
operation might be just comparing two integers to see if they are equal; it might be up-

62

4.3 The Big “Oh” and Little “Oh” Notations

dating the value of a variable x and replacing it by x2 —3x +7; and it might be checking
whether two set sums are equal. In the third instance, we would typically limit the size
of the two subsets as well as the integers in them. As a consequence, we want to be
able to say that there is some constant ¢ so that an operation can be carried out in time
at most ¢ on a computer. Different computers yield different values of ¢, but that is a
discrepancy which we can safely ignore.

4.2.4 Input Size

Problems come in various sizes. The three problems we have discussed in this chapter
have the same input size. Roughly speaking this size is 10, 000 blocks, with each block
able to hold an integer of size at most 100, 000. In this text, we will say that the input
size of this problem is n = 10, 000, and in some sense ignoring the question of the size
of the integers in the set. There are obvious limitations to this approach. We could be
given a set S of size 1 and a candidate element x and be asked whether x belongs to
S. Now suppose that x is a bit string the size of a typical compact disk, i.e., some 700
megabytes in length. Just reading the single entry in S to see if it’s exactly x will take
some time.

In a similar vein, consider the problem of determining whether a file x is located
anywhere in the directory structure under y in a unix file system. If you go on the
basis of name only, then this may be relatively easy. But what if you want to be sure
that an exact copy of x is present? Now it is much more challenging.

4.3 The Big “Oh” and Little “Oh” Notations

Let f : N — Rand g : N — R be functions. We write f = O(g), and say f
is “Big Oh” of g, when there is a constant ¢ and an integer 1 so that f(n) < cg(n)
whenever n > ng. Although this notation has a long history, we can provide a quite
modern justification. If f and g both describe the number of operations required for
two algorithms given input size 1, then the meaning of f = O(yg) is that f is no harder
than g when the problem size is large.

We are particularly interested in comparing functions against certain natural bench-
marks, e.g., loglogn, logn, \n, n® where & < 1, n, n%, n®, n® where ¢ > 1is a constant,
nlogn 2n i 2”2, etc.

For example, in Subsection 3.5.2 we learned that there are sorting algorithms with
running time O(n log n) where n is the number of integers to be sorted. As a second
example, we will learn that we can find all shortest paths in an oriented graph on n
vertices with non-negative weights on edges with an algorithm having running time
O(n?). At the other extreme, no one knows whether there is a constant ¢ and an algo-

63

Chapter 4 Combinatorial Basics

rithm for determining whether the chromatic number of a graph is at most three which
has running time O(n°).

It is important to remember that when we write f = O(g), we are implying in some
sense that f is no bigger than g, but it may in fact be much smaller. By contrast, there
will be times when we really know that one function dominates another. And we have
a second kind of notation to capture this relationship.

Let f : N — Rand g : N — R be functions with f(n) > 0 and g(n) > 0 for all
n. We write f = o(g), and say that f is “Little oh” of g, when lim, . f(n)/g(n) = 0.
For example Inn = o(n2); n* = o(nf) whenever 0 < @ < g; and n'% = o(c") for every
¢ > 1. In particular, we write f(n) = 0(1) when lim, . f(1n) = 0.

4.4 Exact Versus Approximate

Many combinatorial problems admit “exact” solutions, and in these cases, we will usu-
ally try hard to find them. The Erd@s/Szekeres Theorem from earlier in this chapter is
a good example of an “exact” result'. By this statement, we mean that for each pair m
and n of positive integers, there is a sequence of mn distinct real numbers that has nei-
ther an increasing subsequence of size m +1 nor a decreasing subsequence of size n +1.
To see this, consider the sequence o defined as follows: For eachi = 1,2,...,m, let
Bi={j+(m—-1)i:1<j<n} Notethateach B; is a block of n consecutive integers.
Then define a permutation ¢ of the first mn integers by setting @ < p if there exist
distinct integers i1 and i so that @ € B;, and § € B;,. Also, foreachi=1,2,...,m, set
a < finowhen1+(m-1)i < g < a < n+(m—1)i. Clearly, any increasing subsequence
of o contains at most one member from each block, so ¢ has no increasing sequence of
size m = 1. On the other hand, any decreasing sequence in ¢ is contained in a single
block, so ¢ has no decreasing sequence of size n + 1.

As another example of an exact solution, the number of integer solutions to x1 +
X2+ ...x, = nwithx; >0fori—1,2,...,ris exactly C(n — 1, — 1). On the other
hand, nothing we have discussed thus far allows us to provide an exact solution for
the number of partitions of an integer n.

4.4.1 Approximate and Asymptotic Solutions

Here’s an example of a famous problem that we can only discuss in terms of approx-
imate solutions, at least when the input size is suitably large. For an integer n, let
1i(n) denote the number of primes among the first n positive integers. For example,
n(12) = 5since 2, 3, 5, 7 and 11 are primes. The exact value of (1) is known when

Exact results are also called “best possible”, “sharp” or “tight.”

64

4.4 Exact Versus Approximate

n <10%, and in fact:
n(10%) = 1,925, 320,391, 606, 803, 968, 923

On the other hand, you might ask whether () tends to infinity as n grows larger
and larger. The answer is yes, and here’s a simple and quite classic argument. Suppose
to the contrary that there were only k primes, where k is a positive integer. Suppose
these k primes are listed in increasing order as p1 < p» < ... < pk, and consider the
number n = 1+ p1p2---px. Then n is not divisible by any of these primes, and it is
larger than pj, which implies that n is either a prime number larger than pj or divisible
by a prime number larger than py.

So we know that lim,_,. 71(11) = co. In a situation like this, mathematicians typically
want to know more about how fast 7(1) goes to infinity. Some functions go to infinity
“slowly”, such as log 1 or log log 1. Some go to infinity quickly, like 2", n! or 22". Since
n(n) < n, it can’t go to infinity as fast as these last three functions, but it might go
infinity like log n or maybe Vn.

On the basis of computational results (done by hand, long before there were com-
puters), Legendre conjectured in 1796 that 7(n) goes to infinity like n/In n. To be more
precise, he conjectured that

. m(n)lnn
lim ———

n—oo n

=1.

In 1896, exactly one hundred years after Legendre’s conjecture, Hadamard and de
la Vallée-Poussin independently published proofs of the conjecture, using techniques
whose roots are in the Riemann’s pioneering work in complex analysis. This result,
now known simply as the Prime Number Theorem, continues to this day to be much
studied topic at the boundary of analysis and number theory.

4.4.2 Polynomial Time Algorithms

Throughout this text, we will place considerable emphasis on problems for which a
certificate can be found in polynomial time. This refers to problems for which there is
some constant ¢ > 0 so that there is an algorithm A for solving the problem which has
running time O(n°) where n is the input size. The symbol # is suggestive of polyno-
mial.

4.43 P = NP?

Perhaps the most famous question at the boundary of combinatorial mathematics, the-
oretical computer science and mathematical logic is the notoriously challenging ques-
tion of deciding whether # is the same as N¥. This problem has the shorthand form:
P = NP? Here, we present a brief informal discussion of this problem.

65

Chapter 4 Combinatorial Basics

First, we have already introduced the class P consisting of all yes-no combinatorial
problems which admit polynomial time algorithms. The first two problems discussed
in this chapter belong to # since they can be solved with algorithms that have running
time O(n) and O(n%), respectively. Also, determining whether a graph is 2-colorable
and whether it is connected both admit polynomial time algorithms.

We should emphasize that it may be very difficult to determine whether a problem
belongs to class # or not. For example, we don’t see how to give a fast algorithm for
solving the third problem (subset sum), but that doesn’t mean that there isn’t one.
Maybe we all need to study harder!

Setting that issue aside for the moment, the class NP consists of yes—no problems for
which there is a certificate for a yes answer whose correctness can be verified in poly-
nomial time. More formally, this is called the class of nondeterministic polynomial
time problems. Our third problem definitely belongs to this class.

The famous question is to determine whether the two classes are the same. Evi-
dently, any problem belonging to # also belongs to NP, i.e, # € NP, but are they
equal? It seems difficult to believe that there is a polynomial time algorithm for set-
tling the third problem (the subset sum problem), and no one has come close to settling
this issue. But if you get a good idea, be sure to discuss it with one or both authors of
this text before you go public with your news. If it turns out that you are right, you are
certain to treasure a photo opportunity with yours truly.

4.5 Discussion

Carlos, Dave and Yolanda were fascinated by the discussion on complexity. Zori was
less enthusiastic but even she sensed that the question of which problems could be
solved quickly had practical implications. She could even predict that people could
earn a nice income solving problems faster and more accurately than their competition.

Bob remarked, “I'm not sure l understand what’s being talked about here. I don't see
why it can’t be the case that all problems can be solved. Maybe we just don’t know how
to do it.” Xing said, “Any finite problem can be solved. There is always a way to list all
the possibilities, compare them one by one and take the best one as the answer.” Alice
joined in, “Well, a problem might take a long time just because it is big. For example,
suppose you are given two pvp’s, each completely full with the data for a large integer.
How are you possibly going to multiply them together, even with a large computer
and fancy software.” Carlos then offered, “But I think there are really hard problems
that any algorithm will take a long time to solve and not just because the input size is
large. At this point, I don’t know how to formulate such a problem but I suspect that
they exist.”

66

4.6 Exercises

4.6 Exercises

1. Suppose you are given a list of n integers, each of size at most 100n. How many
operations would it take you to do the following tasks (in answering these questions,
we are interested primarily in whether it will take log n, \Vn, n, n?,n3,2", ... steps. In
other words, ignore multiplicative constants.):

(a) Determine if the number 21 + 7 is in the list.
(b) Determine if there are two numbers in the list whose sum is 21 + 7.

(c) Determine if there are two numbers in the list whose product is 2n +7 (This one is
more subtle than it might appear! It may be to your advantage to sort the integers
in the list).

(d) Determine if there is a number i for which all the numbers in the list are between
iandi+2n+7.

(e) Determine the longest sequence of consecutive integers belonging to the list.

(f) Determine the number of primes in the list.

(g) Determine whether there are three integers x, y and z from the list so that x + y
z.

(h) Determine whether there are three integers x, y and z from the list so that x*+ 1>
22,

(i) Determine whether there are three integers x, y and z from the list so that xy = z.

(j) Determine whether there are three integers x, y and z from the list so that x¥ = z.

(k) Determine whether there are two integers x and y from the list so that x¥ is a
prime.

(1) Determine the longest arithmetic progression in the list (a sequence (a1, a2, . . ., a;)
is an arithmetic progression when there is a constant d # 0 so that a;41 = a; + 4,
foreachi=1,2,...,t-1).

(m) Determine the number of distinct sums that can be formed from members of the
list (arbitrarily many integers from the list are allowed to be terms in the sum).

(n) Determine the number of distinct products that can be formed from members
of the list (arbitrarily many integers from the list are allowed to be factors in the
product).

(0) Determine for which integers m, the list contains at least 10% of the integers from
{1,2,...,m}.

2. If you have to put nn + 1 pigeons into n holes, you have to put two pigeons into the
same hole. What happens if you have to put mn + 1 pigeons into n holes?

67

Chapter 4 Combinatorial Basics

3. Consider the set X = {1, 2,3,4,5} and suppose you have two holes. Also suppose
that you have 10 pigeons: the 2-element subsets of X. Can you put these 10 pigeons
into the two holes in a way that there is no 3-element subset S = {a,b,c} c X for
which all pigeons from S go in the same hole? Then answer the same question if X =
{1,2,3,4,5, 6} with 15 = C(6, 2) pigeons.

4. Let n = 10,000. Suppose a friend tells you that he has a secret family of subsets
of {1,2,...,n}, and if you guess it correctly, he will give you one million dollars. You
think you know the family of subsets he has in mind and it contains exactly half the
subsets, i.e., the family has 271 gubsets. Discuss how you can share your hunch with
your friend in an effort to win the prize.

5. Let N denote the set of positive integers. When f : N — N is a function, let E(f)
be the function defined by E(f)(n) = 2/". What is E>(n?)?

68

CHAPTER 5 -

Graph Theory

In Example 1.5, we discussed the problem of assigning frequencies to radio stations in
the situation where stations within 200 miles of each other must broadcast on distinct
frequencies. Clearly we would like to use the smallest number of frequencies possible
for a given layouts of transmitters, but how can we determine what that number is?

Suppose three new homes are being built and each of them must be provided with
utility connections. The utilities in question are water, electricity, and natural gas. Each
provider needs a direct line from their terminal to each house (the line can zig-zag all it
wants, but it must go from the terminal to the house without passing through another
provider’s terminal or another house en route), and the three providers all wish to
bury their lines exactly four feet below ground. Can they do this successfully without
the lines crossing?

These are just two of many, many examples where the discrete structure known as a
graph can serve as an enlightening mathematical model. Graphs are perhaps the most
basic and widely studied combinatorial structure, and they are prominently featured
in this text. Many of the concepts we will study, while presented in a more abstract
mathematical sense, have their origins in applications of graphs as models for real-
world problems.

5.1 Basic Notation and Terminology for Graphs

A graph G is a pair (V, E) where V is a set (almost always finite) and E is a set of 2-
element subsets of V. Elements of V are called vertices and elements of E are called
edges. We call V the vertex set of G and E is the edge set. For convenience, it is
customary to abbreviate the edge {x, y} as just xy. Remember though that xy € E
means exactly the same as yx € E. If x and y are distinct vertices from V, x and y are
adjacent when xy € E; otherwise, we say they are non-adjacent. We say the edge xy
is incident to the vertices x and y.

For example, we could define a graph G = (V, E) with vertex set V = {a,b,c,d, e}
and edge set E = {{a, b}, {c,d}, {a,d}}. Notice that no edge is incident to e, which is

69

Chapter 5 Graph Theory

perfectly permissible based on our definition. It is quite common to identify a graph
with a visualization in which we draw a point for each vertex and a line connecting two
vertices if they are adjacent. The graph G we’ve just defined is shown in Figure 5.1. It’s
important to remember that while a drawing of a graph is a helpful tool, it is not the
same as the graph. We could draw G in any of several different ways without changing
what it is as a graph.

F1GURE 5.1: A GRAPH ON 5 VERTICES

As is often the case in science and mathematics, different authors use slightly dif-
ferent notation and terminology for graphs. As an example, some use nodes and arcs
rather than vertices and edges. Others refer to vertices as points and in this case, they
often refer to lines rather than edges. We will try to stick to vertices and edges but con-
fess that we may occasionally lapse into referring to vertices as points. Also, following
the patterns of many others, we will also say that adjacent vertices are neighbors. And
we will use the more or less standard terminology that the neighborhood of a vertex
x is the set of vertices adjacent to x. Thus, using the graph G we have depicted in
Figure 5.1, vertices d and a are neighbors, and the neighborhood of d is {a, c} while
the neighborhood of e is the empty set. Also, the degree of a vertex v in a graph G,
denoted deg(v), is then the number of vertices in its neighborhood, or equivalently,
the number of edges incident to it. For example, we have deg(d) = deg(a) = 2,
deg.(c) = degg(b) = 1, and degg(e) = 0. If the graph being discussed is clear from
context, it is not uncommon to omit the subscript and simply write deg(v) for the de-
gree of v.

When G = (V, E) and H = (W, F) are graphs, we say His a subgraph of G when W C
Vand F C E. Wesay His an induced subgraph when W C VandF={xy € E:x,y €
W}. In other words, an induced subgraph is defined completely by its vertex set and
the original graph G. We say H is a spanning subgraph when W = V. In Figure 5.2,
we show a graph, a subgraph and an induced subgraph. Neither of these subgraphs
is a spanning subgraph. A graph G = (V, E) is called a complete graph when xy is an
edge in G for every distinct pair x, y € V. Conversely, G is an independent graph if
xy ¢ E, for every distinct pair x, y € V. It is customary to denote a complete graph on
n vertices by K;; and an independent graph on n vertices by I, . In Figure 5.3, we show

70

5.1 Basic Notation and Terminology for Graphs

FiGURE 5.2: A GRAPH, A SUBGRAPH AND AN INDUCED SUBGRAPH

- TAR®

F1GURE 5.3: SMALL COMPLETE GRAPHS

the complete graphs with at most 5 vertices. A sequence (x1, X2, ..., X,) of vertices in
a graph G = (V,E) is called a walk when x;x;,; is an edge for eachi =1,2,...,n — 1.
Note that the vertices in a walk need not be distinct. On the other hand, if the vertices
are distinct, then the sequence is called a path, and often to emphasize where a path
starts and ends, we will say that a sequence (x1, x2, . . ., x,;) of distinct vertices is a path
from x1 to x, in G. Similarly, when n > 3, a path (x1, x2, ..., x,) of n distinct vertices
is called a cycle when x;x, is also an edge in G. It is customary to denote a path on n
vertices by P, , while C,, denotes a cycle on n vertices. The length of a path or a cycle
is the number of edges it contains. Therefore, the length of P,, is n — 1 and the length
of C, is n. In Figure 5.4, we show the paths of length at most 4, and in Figure 5.5, we
show the cycles of length at most 5.

71

Chapter 5 Graph Theory

RERARS

Py P, P3
F1GURE 5.4: SHORT PATHS

AT

F1GURE 5.5: SMALL CYCLES

If G = (V,E) and H = (W, F) are graphs, we say G is isomorphic to H and write

1-1
G = H when there exists a bijection f : V — W so that x is adjacent to y in G if
onto

and only if f(x) is adjacent to f(y) in H. Often writers will say that G “contains” H
when there is a subgraph of G which is isomorphic to H. In particular, it is customary
to say that G contains the cycle C, (same for P, and K,;) when G contains a subgraph
isomorphic to C,,. The graphs in Figure 5.6 are isomorphic. An isomorphism between
these graphs is given by

fla)=5, f(b)=3, fle)=1, fld)=6, fle)=2, f(h)=4

d 4

F1GURE 5.6: A PAIR OF ISOMORPHIC GRAPHS

On the other hand, the graphs shown in Figure 5.7 are not isomorphic, even though
they have the same number of vertices and the same number of edges. Can you tell
why?

72

5.1 Basic Notation and Terminology for Graphs

F1GURE 5.7: A PAIR OF NONISOMORPHIC GRAPHS

A graph G is connected when there is a path from x to y in G, for every x,y € V;
otherwise, we say G is disconnected. The graph of Figure 5.1 is disconnected (a suffi-
cient justification for this is that there is no path from e to c), while those in Figure 5.6
are connected. If G is disconnected, we call a maximal connected subgraph of G a
component. By this we mean that a subgraph H of G is a component of G provided
that there does not exist a connected subgraph H’ of G such that H is a subgraph of
H'.

A graph is acyclic when it does not contain any cycle on three or more vertices.
Acyclic graphs are also called forests. A connected acyclic graph is called a tree. When
G = (V, E) is a connected graph, a subgraph H = (W, F) of G is called a spanning tree
if H is both a spanning subgraph of G and a tree. In Figure 5.8, we show a graph and
one of its spanning trees. We will return to the subject of spanning trees in Chapter 12.

G T

F1GURE 5.8: A GRAPH AND A SPANNING TREE

The following theorem is very elementary, and some authors refer to it as the “first
theorem of graph theory”. However, this basic result can be surprisingly useful.

73

Chapter 5 Graph Theory

Theorem 5.9. Let deg(v) denote the degree of vertex v in graph G = (V, E). Then

Z degg(v) = 2|E. (5.1.1)
veV

Proof. We consider how many times an edge e = vw € E contributes to each side of
(5.1.1). The degg(x) and degg(y) terms on the left hand side each count e once, so
e is counted twice on that side. On the right hand side, e is clearly counted twice.
Therefore, we have the equality claimed. m]

Corollary 5.10. For any graph, the number of vertices of odd degree is even.

We will return to the topic of trees later, but before moving on, let us prove one
elementary proposition about trees. First, a leaf in a tree T is a vertex v with deg(v) =
1.

Proposition 5.11. Every tree on n > 2 vertices has at least two leaves.

Proof. Our proof is by induction on n. For n = 2, there is precisely one tree, which is
isomorphic to K;. Both vertices in this graph are leaves, so the proposition holds for
n = 2. Now suppose that for some integer m > 2, every tree on at most m vertices has
at least two leaves and let T = (V, E) be a tree on m + 1 vertices. Pick an edge e € E and
form a new graph T” = (V’, E’) by deleting e from T. Thatis, V' = V and E’ = E — {e}.
Now since T’ does not contain a path from one endpoint of e to its other endpoint,
T’ is not connected. However, deleting an edge cannot create a cycle, so T’ is a forest.
Furthermore, it has precisely two components, each of which is a tree with at most m
vertices. If each component has at least two vertices, then by induction, each has at
least two leaves. In the worst case scenario, two of these leaves are the endpoints of e,
so at least two of the vertices are leaves in T, too. If each component of T’ has only one
vertex, then T = K3, which has two leaves. If exactly one of the components has only
one vertex, then it must be a leaf in T. Thus, applying the inductive hypothesis to the
other component ensures that there is a second leaf in T. m]

5.2 Multigraphs: Loops and Multiple Edges

Consider a graph in which the vertices represent cities and the edges represent high-
ways. Certain pairs of cities are joined by an edge while other pairs are not. The graph
may or may not be connected (although a disconnected graph is likely to result in dis-
gruntled commuters). However, certain aspects of real highway networks are not cap-
tured by this model. First, between two nearby cities, there can actually be several
interconnecting highways, and traveling on one of them is fundamentally different

74

5.3 Eulerian and Hamiltonian Graphs

from traveling on another. This leads to the concept of multiple edges, i.e., allowing
for more than one edge between two adjacent vertices. Also, we could have a highway
which leaves a city, goes through the nearby countryside and the returns to the same
city where it originated. This leads to the concept of a loop, i.e., an edge with both
end points being the same vertex. Also, we can allow for more than one loop with the
same end point.

Accordingly, authors frequently lead off a discussion on a graph theory topic with a
sentence or two like:

1. In this paper, all graphs will be simple, i.e., we will not allow loops or multiple
edges.

2. In this paper, graphs can have loops and multiple edges.

The terminology is far from standard, butin this text, a graph will always be a simple
graph, i.e., no loops or multiple edges. When we want to allow for loops and multiple
edges, we will use the term multigraph. This suggests the question of what we would
call a graph if it is allowed to have loops but not multiple edges, or if multiple edges are
allowed but not loops. If we really needed to talk about such graphs, then the English
language comes to our rescue, and we just state the restriction explicitly!

5.3 Eulerian and Hamiltonian Graphs

Graph theory is an area of mathematics that has found many applications in a variety
of disciplines. Throughout this text, we will encounter a number of them. However,
graph theory traces its origins to a problem in Kénigsberg, Prussia (now Kaliningrad,
Russia) nearly three centuries ago. The river Pregel passes through the city, and there
are two large islands in the middle of the channel. These islands were connected to
the mainland by seven bridges as indicated in Figure 5.12. It is said that the citizens of
Konigsberg often wondered if it was possible for one to leave his home, walk through
the city in such a way that he crossed each bridge precisely one time, and end up at
home again. Leonhard Euler settled this problem in 1736 by using graph theory in the
form of Theorem 5.13. Let G be a graph without isolated vertices. We say that G is
eulerian provided that there is a sequence (xg, X1, X2, . .., x;) of vertices from G, with
repetition allowed, so that

1. x0 = x4;
2. foreveryi=0,1,...t =1, x;x;41 is an edge of G;

3. for every edge e € E, there is a unique integer i with 0 < i < t for which e =
XiXit1-

75

Chapter 5 Graph Theory

74 A\ /(

F1GURE 5.12: THE BRIDGES OF KONIGSBERG

When G is eulerian, a sequence satisfying these three conditions is called an eulerian
circuit. A sequence of vertices (xo, X1, ..., x;) is called a circuit when it satisfies only
the first two of these conditions. Note that a sequence consisting of a single vertex is a
circuit. Before proceeding to Euler’s elegant characterization of eulerian graphs, let’s
use SageMath to generate some graphs that are and are not eulerian.

Run the code below. It will execute until it finds a graph G that is eulerian. The
output that will be produced is a list of the degrees of the vertices of the graph G
followed by a drawing of G.

vertices = 13

edges = 28

g = graphs.RandomGNM(vertices,h edges)

while (not g.is_eulerian() or not g.is_connected()):
g = graphs.RandomGNM(vertices,h edges)

print g.degree_sequence ()

g.show()

We encourage you to evaluate the run the code above multiple times, even changing
the number of vertices and edges. If it seems to be running a log time, it may be that
you have made the number of edges too small, so try increasing it a bit. Do you notice
anything about the degrees of the vertices in the graphs produced?

Now let’s try to find a graph H that is not eulerian. Again, the output is the list of
degrees of H followed by a drawing of H.

vertices = 15

edges = 25

g = graphs.RandomGNM(vertices,h edges)

while (g.is_eulerian() or not g.is_connected()):
g = graphs.RandomGNM(vertices, edges)

print g.degree_sequence ()

76

5.3 Eulerian and Hamiltonian Graphs

g.show()

One thing you probably noticed in running this second block of code is that it tended to
come back much faster than the first. That would suggest that the non-eulerian graphs
outnumber the eulerian graphs. Did you notice anything different about the degrees
of the vertices in these graphs compared to the ones that were eulerian?

The following elementary theorem completely characterizes eulerian graphs. Its
proof gives an algorithm that is easily implemented.

Theorem 5.13. A graph G is eulerian if and only if it is connected and every vertex has even
degree.

Proof. Clearly, an eulerian graph must be connected. Also, if (xo, x1, ..., x;) is an eule-
rian circuit in G, then foreachi =0,1,...,t -1, we can view the edge x;x;;1 as exiting
x; and entering x;,1. The degree of every vertex must be even, since for each vertex x,
the number of edges exiting x equals the number of edges entering x. Furthermore,
each edge incident with x either exits from x or enters x.

We now describe a deterministic process that will either (a) find an eulerian circuit,
(b) show that the graph is disconnected, or (c) find a vertex of odd degree. The de-
scription is simplified by assuming that the vertices in G have been labelled with the
positive integers 1,2, ..., n, where n is the number of vertices in G. Furthermore, we
take xo = 1.

We launch our algorithm with a trivial circuit C consisting of the vertex xo = (1).
Thereafter suppose that we have a partial circuit C defined by (xo, x1, ..., x;) with xog =
x¢ = 1. The edges of the form x;x;.1 have been traversed, while the remaining edges in
G (if any) have not. If the third condition for an euler circuit is satisfied, we are done,
so we assume it does not hold.

We then choose the least integer i for which there is an edge incident with x; that has
not already been traversed. If there is no such integer, since there are edges that have
not yet been traversed, then we have discovered that the graph is disconnected. So we
may assume that the integer i exists. Set 1y = x;. We define a sequence (1, u1, ..., us)
recursively. If j > 0, set

N; ={y: ujyisanedge in G and has not yet been traversed.}

If N; # 0, we take 11 as the least positive integer in N;. If N; = (), then j > 1 and we
take s = j and halt this subroutine.

When the subroutine halts, we consider two cases. If uy # us, then uy and u; are
vertices of odd degree in G. So we are left to consider the case where 1y = u; = x;.
In this case, we simply expand our original sequence (xg, x1, ..., x¢) by replacing the
integer x; by the sequence (ug, 11, ..., Us). m]

77

Chapter 5 Graph Theory

As an example, consider the graph G shown in Figure 5.14. Evidently, this graph is
connected and all vertices have even degree. Here is the sequence of circuits starting
with the trivial circuit C consisting only of the vertex 1.

C=()
=(1,2,4,3,1) start next from 2
=(1,2,5,8,2,4,3,1) start next from 4
=(1,2,5,8,2,4,6,7,4,9,6,10,4,3,1) start next from 7
=(1,2,5,8,2,4,6,7,9,11,7,4,9,6,10,4,3,1) Done!!

10

11

FiGure 5.14: AN EuLERIAN GRAPH

You should note that Theorem 5.13 holds for loopless graphs in which multiple edges
are allowed. Euler used his theorem to show that the multigraph of Kénigsberg shown
in Figure 5.15, in which each land mass is a vertex and each bridge is an edge, is not
eulerian, and thus the citizens could not find the route they desired. (Note that in
Figure 5.15 there are multiple edges between the same pair of vertices.)

FiGURE 5.15: THE MULTIGRAPH OF KONIGSBERG'S BRIDGES

78

5.3 Eulerian and Hamiltonian Graphs

A graph G = (V, E) is said to be hamiltonian if there exists a sequence (x1, x2, ..., X;,)
so that

1. every vertex of G appears exactly once in the sequence;

2. x1xy is an edge of G; and

3. foreachi=1,2,...,n -1, x;xi4 isan edge in G.

Such a sequence of vertices is called a hamiltonian cycle.

The first graph shown in Figure 5.16 both eulerian and hamiltonian. The second is
hamiltonian but not eulerian.

G H

FiGURE 5.16: EULERIAN AND HAMILTONIAN GRAPHS

In Figure 5.17, we show a famous graph known as the Petersen graph. It is not hamil-
tonian.

79

Chapter 5 Graph Theory

FiGURE 5.17: THE PETERSEN GRAPH

Unlike the situation with eulerian circuits, there is no known method for quickly de-
termining whether a graph is hamiltonian. However, there are a number of interesting
conditions which are sufficient. Here is one quite well known example, due to Dirac.

Theorem 5.18. If G is a graph on n vertices and each vertex in G has at least [5 neighbors,
then G is hamiltonian.

Proof. Suppose the theorem fails and let 7 be the least positive integer for which there
exists a graph G on n vertices so that each vertex in G has at least [1 /2] neighbors, yet
there is no hamiltonian cycle in G. Clearly, n > 4.

Now let ¢ be the largest integer for which G has a path P = (x1,x2,...,x¢) on ¢
vertices. Clearly all neighbors of both x1 and x; appear on this path. By the pigeon
hole principle, there is some integer i with 1 < i < t so that x1x;4+1 and x;x; are edges
in G. However, this implies that

C = (xll X2, X3, o, Xi, Xt, X—1,Xt-2,--- /xi+1)

is a cycle of length ¢ in G. In turn, this requires [n/2] < t < n. But if y is any vertex
not on the cycle, then ¥ must have a neighbor on C, which implies that G has a path
on t + 1 vertices. The contradiction completes the proof. m]

5.4 Graph Coloring

Let’s return now to the subject of Example 1.5, assigning frequencies to radio stations
so that they don't interfere. The first thing that we will need to do is to turn the map

80

5.4 Graph Coloring

of radio stations into a suitable graph, which should be pretty natural at this juncture.
We define a graph G = (V,E) in which V is the set of radio stations and xy € E if
and only if radio station x and radio station y are within 200 miles of each other. With
this as our model, then we need to assign different frequencies to two stations if their
corresponding vertices are joined by an edge. This leads us to our next topic, coloring
graphs.

When G = (V, E) isa graph and C is a set of elements called colors, a proper coloring
of Gisafunction ¢ : V — Csuch thatif ¢(x) # ¢(y) whenever xy is an edge in G. The
least t for which G has a proper coloring using a set C of t colors is called the chromatic
number of G and is denoted x(G) . In Figure 5.19, we show a proper coloring of a graph
using 5 colors. Now we can see that our radio frequency assignment problem is the
much-studied question of finding the chromatic number of an appropriate graph.

FIGURE 5.19: A PROPER COLORING USING 5 COLORS

Discussion 5.20. Everyone agrees that the graph G in Figure 5.19 has chromatic num-
ber at most 5. However, there’s a bit of debate going on about if x(G) = 5. Bob figures
the authors would not have used five colors if they didn’t need to. Carlos says he’s
glad they’re having the discussion, since all having a proper coloring does is provide
them with an upper bound on x(G). Bob sees that the graph has a vertex of degree 5
and claims that must mean x(G) = 5. Alice groans and draws a graph with 101 ver-
tices, one of which has degree 100, but with chromatic number 2. Bob is shocked, but
agrees with her. Xing wonders if the fact that the graph does not contain a K3 has any

81

Chapter 5 Graph Theory

bearing on the chromatic number. Dave’s in a hurry to get to the gym, but on his way
out the door he says they can get a proper 4-coloring pretty easily, so x(G) < 4. The
rest decide it’s time to keep reading.

* What graph did Alice draw that shocked Bob?

* What changes did Dave make to the coloring in Figure 5.19 to get a proper col-
oring using four colors?

5.4.1 Bipartite Graphs

A graph G = (V,E) with x(G) < 2is called a 2-colorable graph. A couple of minutes
of reflection should convince you that for n > 2, the cycle Cy, with 2n vertices is 2-
colorable. On the other hand, C3 = K3 is clearly not 2-colorable. Furthermore, no odd
cycle Cp;41 for n > 1 is 2-colorable. It turns out that the property of containing an
odd cycle is the only impediment to being 2-colorable, which means that recognizing
2-colorable graphs is easy, as the following theorem shows.

Theorem 5.21. A graph is 2-colorable if and only if it does not contain an odd cycle.

Proof. Let G = (V,E) be a 2-colorable graph whose coloring function partitions V as
A U B. Since there are no edges between vertices on the same side of the partition, any
cycle in G must alternate vertices between A and B. In order to complete the cycle,
therefore, the number of vertices in the cycle from A must be the same as the number
from B, implying that the cycle has even length.

Now suppose that G does not contain an odd cycle. Note that we may assume that
G is connected, as each component may be colored individually. The distance d(u, v)
between vertices u, v € V is the length of a shortest path from u to v, and of course
d(u,u) = 0. Fix a vertex vg € V and define

A ={v € V:d(ug,v)is even} and B={veV:d(vy,v)isodd}.

We claim that coloring the vertices of A with color 1 and the vertices of B with color
2 is a proper coloring. suppose not. Then without loss of generality, there are vertices
x,y € Asuchthat xy € E. Since x, y € A, d(vg, x) and d(vg, y) are both even. Let

00,X1,X2,-+.,Xp =X

and

UOrylryL---/ym = y
be shortest paths from vy to x and y, respectively. If x; # y; forall1 < i < n and
1 < j < m, then since m and n are both even,

Z)Oix‘l/xZ/-"/x}’l = x/]/ =]/m/]/m—ll---/]/ZI]/l/UO

82

5.4 Graph Coloring

is an odd cycle in G, which is a contradiction. Thus, there mustbe i, j such that x; = y;,
and we may take i, j as large as possible. (That is, after x; = y is the two paths do not
intersect again.) Thus,

xi/xi+l/--~/xn :x/]/:]/m,]/m—lln-/]/j :xi

is a cycle in G. How many vertices are there in this cycle? A quick count shows that it
has

n-—@(-1D+m-(G-1)-1=n+m-(i+j)+1

vertices. We know that n and m are even, and notice that i and j are either both even
or both odd, since x; = y; and the odd-subscripted vertices of our path belong to B
while those with even subscripts belong to A. Thus, i + jiseven,son +m — (i +j) +1
is odd, giving a contradiction. |

A graph G is called a bipartite graph when there is a partition of the vertex V into
two sets A and B so that the subgraphs induced by A and B are independent graphs,
i.e.,, no edge of G has both of its endpoints in A or in B. Evidently, bipartite graphs
are 2-colorable. On the other hand, when a 2-colorable graph is disconnected, there is
more than one way to define a suitable partition of the vertex set into two independent
sets.

Bipartite graphs are commonly used as models when there are two distinct types
of objects being modeled and connections are only allowed between two objects of
different types. For example, on one side, list candidates who attend a career fair and
on the other side list the available positions. The edges might naturally correspond to
candidate/position pairs which link a person to a responsibility they are capable of
handling.

As a second example, a bipartite graph could be used to visualize the languages spo-
ken by a group of students. The vertices on one side would be the students with the
languages listed on the other side. We would then have an edge xy when student x
spoke language y. A concrete example of this graph for our favorite group of students
is shown in Figure 5.22, although Alice isn’t so certain there should be an edge con-
necting Dave and English. One special class of bipartite graphs that bears mention is
the class of complete bipartite graphs. The complete bipartite graph K, , has vertex
set V = V1 UV, with |V| = m and |V>| = n. It has an edge xy if and only if x € V; and
y € V5. The complete bipartite graph K3 3 is shown in Figure 5.23.

83

Chapter 5 Graph Theory

Alice Bob Carlos Dave Xing Yolanda Zori

FIGURE 5.22: A BIPARTITE GRAPH

F1GURE 5.23: THE COMPLETE BIPARTITE GRAPH K33

5.4.2 Cliques and Chromatic Number

A clique in a graph G = (V,E) is a set K C V such that the subgraph induced by K
is isomorphic to the complete graph K|k|. Equivalently, we can say that every pair of
vertices in K are adjacent. The maximum clique size or clique number of a graph
G, denoted w(G), is the largest ¢ for which there exists a clique K with |K| = ¢. For
example, the graph in Figure 5.14 has clique number 4 while the graph in Figure 5.19
has maximum clique size 2.

For every graph G, it is obvious that x(G) > w(G). On the other hand, the inequality
may be far from tight. Before proving showing how bad it can be, we need to introduce
a more general version of the Pigeon Hole Principle. Consider a function f: X — Y
with |X| = 2|Y| + 1. Since |X| > |Y]|, the Pigeon Hole Principle as stated in Propo-
sition 4.1 only tells us that there are distinct x,x” € X with f(x) = f(x’). However,
we can say more here. Suppose that each element of Y has at most two elements of
X mapped to it. Then adding up the number of elements of X based on how many
are mapped to each element of Y would only allow X to have (at most) 2|Y| elements.
Thus, there must be y € Y so that there are three distinct elements x, x’, x” € X with
f(x) = f(x') = f(x”) = y. This argument generalizes to give the following version of

84

5.4 Graph Coloring

the Pigeon Hole Principle:

Proposition 5.24 (Generalized Pigeon Hole Principle). If f: X — Y is a function and
|X| = (m—1)|Y|+1, then there exists an element y € Y and distinct elements x1, ..., xy € X
sothat f(x;)=yfori=1,...,m.

We are now prepared to present the following proposition showing that clique num-
ber and chromatic number need not be close at all. We give two proofs. The first is the
work of J. Kelly and L. Kelly, while the second is due to]. Mycielski.

Proposition 5.25. For every t > 3, there exists a graph Gy so that x(G¢) = t and w(Gy) = 2.

Proof. We proceed by induction on t. For t = 3, we take G3 to be the cycle Cs on five
vertices. Now assume that for some ¢t > 3, we have determined the graph G;. Suppose
that G; has n; vertices. Label the vertices of G; as x1,x3, ..., x,,. Construct G4 as
follows. Begin with an independent set I of cardinality ¢(n; — 1) + 1. For every subset
S of I with |S| = ny, label the elements of S as y1, Y2, ..., Yn,. For this particular n;-
element subset attach a copy of G; with y; adjacent to x; fori = 1,2, ..., n;. Vertices in
copies of Gy for distinct n;-element subsets of I are nonadjacent, and a vertex in I has
at most one neighbor in a particular copy of G;.

To see that w(Gy41) = 2, it will suffice to argue that G;41 contains no triangle (K3).
Since Gy is triangle-free, any triangle in G;;+1 must contain a vertex of I. Since none of
the vertices of I are adjacent, any triangle in G4+ contains only one point of I. Since
each vertex of I is adjacent to at most one vertex of any fixed copy of G, if y € I is part
of a triangle, the other two vertices must come from distinct copies of G;. However,
vertices in different copies of G; are not adjacent, so w(Gy+1) = 2. Notice that x(G;4+1) =
t since Gy41 contains G;. On the other hand, x(G+1) < t + 1 since we may use ¢ colors
on the copies of G; and a new color on the independent set I. To see that x(G¢4+1) = t+1,
observe that if we use only t colors, then by the generalized Pigeon Hole Principle,
there is an n;-element subset of I in which all vertices have the same color. Then this
color cannot be used in the copy of G; which is attached to that n;-element subset. O

Proof. We again start with G3 as the cycle Cs. As before we assume that we have con-
structed for some ¢ > 3 a graph G; with w(G;) = 2 and x(G;) = t. Again, label the
vertices of Gy as x1, X2, ..., Xy,. To construct G¢,1, we now start with an independent
set I, but now I has only n; points, which we label as y1, 2, ..., yn,. We then add a
copy of G; with y; adjacent to x; if and only if x; is adjacent to x;. Finally, attach a new
vertex z adjacent to all vertices in I.

Clearly, w(G¢41) = 2. Also, x(Gt4+1) = £, since it contains Gy as a subgraph. Further-
more, x(G+1) < t+1, since we can color G; with colors from {1, 2, ..., t}, use color t+1
on the independent set I, and then assign color 1 to the new vertex z. We claim that in
fact x(G¢41) = t + 1. Suppose not. Then we must have x(Gy41) = t. Let ¢ be a proper

85

Chapter 5 Graph Theory

coloring of G¢41. Without loss of generality, ¢ uses the colors in {1,2,...,t} and ¢
assigns color t to z. Then consider the nonempty set S of vertices in the copy of G; to
which ¢ assigns color t. For each x; in S, change the color on x; so that it matches the
color assigned to y; by ¢, which cannot be ¢, as z is colored t. What results is a proper
coloring of the copy of G; with only t —1 colors since x; and y; are adjacent to the same
vertices of the copy of G;. The contradiction shows that x(G¢+1) = t+1, as claimed. O

Since a 3-clique looks like a triangle, Proposition 5.25 is often stated as “There exist
triangle-free graphs with large chromatic number.” As an illustration of the construc-
tion in the proof of Mycielski, we again refer to Figure 5.19. The graph shown is G4. We
will return to the topic of graphs with large chromatic number in Section 11.6 where we
show that are there graphs with large chromatic number which lack not only cliques
of more than two vertices but also cycles of fewer than g vertices for any value of g.
In other words, there is a graph G with x(G) = 10° but no cycle with fewer than 10'°
vertices!

5.4.3 Can We Determine Chromatic Number?

Suppose you are given a graph G. It’s starting to look like it is not easy to find an
algorithm that answers the question “Is x(G) < #?” It’s easy to verify a certificate (a
proper coloring using at most t colors), but how could you even find a proper color-
ing, not to mention one with the fewest number of colors? Similarly for the question
“Is w(G) > k?”, it is easy to verify a certificate. However, finding a maximum clique
appears to be a very hard problem. Of course, since the gap between x(G) and w(G)
can be arbitrarily large, being able to find one value would not (generally) help in find-
ing the value of the other. No polynomial-time algorithm is known for either of these
problems, and many believe that no such algorithm exists. In this subsection, we look
at one approach to finding chromatic number and see a case where it does work effi-
ciently.

A very naive algorithmic way to approach graph coloring is the First Fit, or “greedy”,
algorithm. For this algorithm, fix an ordering of the vertex set V = {v1,vy,...v,}. We
define the coloring function ¢ one vertex at a time in increasing order of subscript. We
begin with ¢(v1) = 1 and then we define ¢(v;11) (assuming vertices v1, v, . .., v; have
been colored) to be the least positive integer color that has not already been used on any
of its neighbors in the set {v1, ... v;}. Figure 5.26 shows two different orderings of the
same graph. Exercise 5.9.24 demonstrates that the ordering of V is vital to the ability
of the First Fit algorithm to color G using x(G) colors. In general, finding an optimal
ordering is just as difficult as coloring G. Thus, this very simple algorithm does not
work well in general. However, for some classes of graphs, there is a “natural” ordering
that leads to optimal performance of First Fit. Here is one such example—one that we

86

5.4 Graph Coloring

U1 (%) U1 Us
U3 U4 (%) Vg
U5 45 U3 v7
Uy Ug U4 (4]

F1GURE 5.26: TWO ORDERINGS OF THE VERTICES OF A BIPARTITE GRAPH.

will study again in the next chapter in a different context.

Given an indexed family of sets ¥ = {S, : @ € V}, we associate with ¥ a graph
G defined as follows. The vertex set of G is the set V' and vertices x and y in V are
adjacent in G if and only if Sy NS, # . We call G an intersection graph. It is easy to
see that every graph is an intersection graph (Why?), so it makes sense to restrict the
sets which belong to . For example, we call G an interval graph if it is the intersection
graph of a family of closed intervals of the real line R. For example, in Figure 5.27, we
show a collection of six intervals of the real line on the left. On the right, we show the
corresponding interval graph having an edge between vertices x and y if and only if
intervals x and y overlap.

FIGURE 5.27: A COLLECTION OF INTERVALS AND ITS INTERVAL GRAPH

Theorem 5.28. If G = (V, E) is an interval graph, then x(G) = w(G).

Proof. For each v € V, let I(v) = [ay, b,] be a closed interval of the real line so that uv
is an edge in G if and only if I(#) N I(v) # 0. Order the vertex set V as {v1, v2,... 0, }
such that a1 < a, < --- < a,. (Ties may be broken arbitrarily.) Apply the First Fit
coloring algorithm to G with this ordering on V. Now when the First Fit coloring
algorithm colors v;, all of its neighbors have left end point at most a;. Since they are
neighbors of v;, however, we know that their right endpoints are all at least 4;. Thus,

87

Chapter 5 Graph Theory

v; and its previously-colored neighbors form a clique. Hence, v; is adjacent to at most
@(G) — 1 other vertices that have already been colored, so when the algorithm colors
v;, there will be a color from {1, 2, ..., w(G)} not already in use on its neighbors. The
algorithm will assign v; the smallest such color. Thus, we never need to use more than
w(G) colors, so x(G) = w(G). O

A graph G is said to be perfect if y(H) = w(H) for every induced subgraph H. Since
an induced subgraph of an interval graph is an interval graph, Theorem 5.28 shows
interval graphs are perfect. The study of perfect graphs originated in connection with
the theory of communications networks and has proved to be a major area of research
in graph theory for many years now.

5.5 Planar Graphs

Let’s return to the problem of providing lines for water, electricity, and natural gas
to three homes which we discussed in the introduction to this chapter. How can we
model this problem using a graph? The best way is to have a vertex for each utility
and a vertex for each of the three homes. Then what we’re asking is if we can draw the
graph that has an edge from each utility to each home so that none of the edges cross.
This graph is shown in Figure 5.29. You should recognize it as the complete bipartite
graph K33 we introduced earlier in the chapter.

Water Home 1
Electricity Home 2
Natural gas Home 3

F1GURE 5.29: A GRAPH OF CONNECTING HOMES TO UTILITIES

While this example of utility lines might seem a bit contrived, since there’s really no
good reason that the providers can’t bury their lines at different depths, the question
of whether a graph can be drawn in the plane such that edges intersect only at vertices
is a long-studied question in mathematics that does have useful applications. One area
where it arises is in the design of microchips and circuit boards. In those contexts, the
material is so thin that the option of placing connections at different depths either does
not exist or is severely restricted. There is much deep mathematics that underlies this
area, and this section is intended to introduce a few of the key concepts.

88

5.5 Planar Graphs

By a drawing of a graph, we mean a way of associating its vertices with points in
the Cartesian plane IR? and its edges with simple polygonal arcs whose endpoints are
the points associated to the vertices that are the endpoints of the edge. You can think
of a polygonal arc as just a finite sequence of line segments such that the endpoint of
one line segment is the starting point of the next line segment, and a simple polygonal
arc is one that does not cross itself. (Our choice of polygonal arcs rather than arbitrary
curves actually doesn’t cause an impediment, since by taking very, very, very short line
segments we can approximate any curve.) A planar drawing of a graph is one in which
the polygonal arcs corresponding to two edges intersect only at a point corresponding
to a vertex to which they are both incident. A graph is planar if it has a planar drawing.
A face of a planar drawing of a graph is a region bounded by edges and vertices and
not containing any other vertices or edges.

Figure 5.30 shows a planar drawing of a graph with 6 vertices and 9 edges. Notice
how one of the edges is drawn as a true polygonal arc rather than a straight line seg-
ment. This drawing determines 5 regions, since we also count the unbounded region
that surrounds the drawing.

F1GURE 5.30: A PLANAR DRAWING OF A GRAPH

Figure 5.31 shows a planar drawing of the complete graph K. There are 4 vertices,
6 edges, and 4 faces in the drawing.

89

Chapter 5 Graph Theory

F1GURE 5.31: A PLANAR DRAWING OF Ky

What happens if we compute the number of vertices minus the number of edges
plus the number of faces for these drawings? We have

6-9+5=2
4-6+4=2

While it might seem like a coincidence that this computation results in 2 for these
planar drawings, there’s a more general principle at work here, and in fact it holds for
any planar drawing of any planar graph.

In fact, the number 2 here actually results from a fundamental property of the plane,
and there are a corresponding theorems for other surfaces. However, we only need the
result as stated above.

Theorem 5.32 (Euler’s Formula). Let G be a connected planar graph with n vertices and m
edges. Every planar drawing of G has f faces, where f satisfies

n—m+f=2.

Proof. Our proof is by induction on the number m of edges. If m = 0, then since G is
connected, our graph has a single vertex, and so there is one face. Thus n —m + f =
1-0+1 = 2 as needed. Now suppose that we have proven Euler’s formula for all
graphs with less than m edges and let G have m edges. Pick an edge ¢ of G. What
happens if we form a new graph G’ by deleting e from G? If G’ is connected, our
inductive hypothesis applies. Say that G’ has n’ vertices, m’ edges, and f’ faces. Then
by induction, these numbers satisfy

n' —m'+ f =2,

90

5.5 Planar Graphs

Since we only deleted one edge, n’ = n and m’ = m — 1. What did the removal of e do
to the number of faces? In G’ there’s a new face that was formerly two faces divided
by e in G. Thus, f’ = f — 1. Substituting these into n’ — m’ + f’ = 2, we have

n-m-1)+(f-1)=2 = n-m+f=2.

Thus, if G’ is connected, we are done. If G’ is disconnected, however, we cannot apply
the inductive assumption to G’ directly. Fortunately, since we removed only one edge,
G’ has two components, which we can view as two connected graphs G} and G/,. Each
of these has fewer than m edges, so we may apply the inductive hypothesis to them.
Fori =1,2, let n; be the number of vertices of G;, m; the number of edges of G;, and
f{ the number of faces of G. Then by induction we have

nj—mj+f{=2 and n)—my+ f;=2.
Adding these together, we have
(n] +ny)—(my+m)) +(ff + f) =4
But now n = n} + nj, and m] + m; = m — 1, so the equality becomes
n—m-1)+(f{+f)=4 = n-—m+(f{+f;) =3.

The only thing we have yet to figure out is how f] + f] relates to f, and we have to
hope that it will allow us to knock the 3 down to a 2. Every face of G| and GJ is a
face of G, since the fact that removing e disconnects G means that ¢ must be part of
the boundary of the unbounded face. Further, the unbounded face is counted twice in
the sum f + f;, s0 f = f{ + f; — 1. This gives exactly what we need to complete the
proof. O

Taken by itself, Euler’s formula doesn’t seem that useful, since it requires counting
the number of faces in a planar embedding. However, we can use this formula to get a
quick way to determine that a graph is not planar. Consider a drawing without edge
crossings of a graph on n vertices and m edges, with n > 3. We consider pairs (e, F)
where e is an edge of G and F is a face that has ¢ as part of its boundary. How many
such pairs are there? Let’s call the number of pairs p. Each edge can bound either one
or two faces, so we have that p < 2m. We can also bound p by counting the number of
pairs in which a face F appears. Each face is bounded by at least 3 edges, so it appears
in at least 3 pairs, and so p > 3f. Thus 3f < 2m or f < 2m/3. Now, utilizing Euler’s
formula, we have

m=n+f—2§n+2?m—2 = %Sn—z.

Thus, we’ve proven the following theorem.

91

Chapter 5 Graph Theory

Theorem 5.33. A planar graph on n vertices has at most 3n — 6 edges when n > 3.

The contrapositive of this theorem, namely that an n-vertex graph with more than
3n — 6 edges is not planar, is usually the most useful formulation of this result. For
instance, we've seen (Figure 5.31) that K4 is planar. What about Ks? It has 5 vertices
and C(5,2) =10 > 9 = 3 -5 — 6 edges, so it is not planar, and thus for n > 5, K, is not
planar, since it contains Ks. It’s important to note that Theorem 5.33 is not the be-all,
end-all of determining if a graph is planar. To see this, let’s return to the subject of
drawing K3 3 in the plane. This graph has 6 vertices and 9 edges, so it passes the test
of Theorem 5.33. However, if you spend a couple minutes trying to find a way to draw
K33 in the plane without any crossing edges, you'll pretty quickly begin to believe that
it can’t be done—and you’d be right!

To see why K33 is not planar, we’ll have to return to Euler’s formula, and we again
work with edge-face pairs. For K3 3, we see that every edge would have to be part of
the boundary of two faces, and faces are bounded by cycles. Also, since the graph
is bipartite, there are no odd cycles. Thus, counting edge-face pairs from the edge
perspective, we see that there are 2m = 18 pairs. If we let f; be the number of faces
bounded by a cycle of length k, then f = f4 + f¢. Thus, counting edge-face pairs from
the face perspective, there are 4f; + 6 f pairs. From Euler’s formula, we see that the
number of faces f must be 5, so then 4f; + 6 f, > 20. But from our count of edge-face
pairs, we have 2m = 4f; + 6f¢, giving 18 > 20, which is clearly absurd. Thus, K33 is
not planar.

At this point, you're probably asking yourself “So what?” We’ve invested a fair
amount of effort to establish that K5 and K33 are nonplanar. Clearly any graph that
contains them is also nonplanar, but there are a lot of graphs, so you might think that
we could be at this forever. Fortunately, we won’t be, since at its core, planarity really
comes down to just these two graphs, as we shall soon see.

If G = (V,E) is a graph and uv € E, then we may form a new graph G’ called
an elementary subdivision of G by adding a new vertex v’ and replacing the edge
uv by edges uv’ and v’v. In other words, G’ has vertex set V' = V U {v’} and edge
set E/ = (E — {uv}) U {uv’,v'v}. Two graphs G; and G, are homeomorphic if they
can be obtained from the same graph by a (potentially trivial) sequence of elementary
subdivisions.

The purpose of discussing homeomorphic graphs is that two homeomorphic graphs
have the same properties when it comes to being drawn in the plane. To see this, think
about what happens to Ks if we form an elementary subdivision of it via any one of its
edges. Clearly it remains nonplanar. In fact, if you take any nonplanar graph and form
the elementary subdivision using any one of its edges, the resulting graph is nonplanar.
The following very deep theorem was proved by the Polish mathematician Kazimierz
Kuratowski in 1930. Its proof is beyond the scope of this text.

92

5.5 Planar Graphs

Theorem 5.34 (Kuratowski’s Theorem). A graph is planar if and only if it does not contain
a subgraph homeomorphic to either Ks or K3 3.

Kuratowski’s Theorem gives a useful way for checking if a graph is planar. Although
it’s not always easy to find a subgraph homeomorphic to Ks or K3 3 by hand, there are
efficient algorithms for planarity testing that make use of this characterization. To see
this theorem at work, let’s consider the Petersen graph shown in Figure 5.17. The Pe-
tersen graph has 10 vertices and 15 edges, so it passes the test of Theorem 5.33, and our
argument using Euler’s formula to prove that K3 3 is nonplanar was complex enough,
we probably don’t want to try it for the Petersen graph. To use Kuratowski’s Theorem
here, we need to decide if we would rather find a subgraph homeomorphic to K5 or
to K3 3. Although the Petersen graph looks very similar to Ks, it’s actually simultane-
ously too similar and too different for us to be able to find a subgraph homeomorphic
to Ks, since each vertex has degree 3. Thus, we set out to find a subgraph of the Pe-
tersen graph homeomorphic to K3 3. To do so, note that K3 3 contains a cycle of length
6 and three edges that are in place between vertices opposite each other on the cy-
cle. We identify a six-cycle in the Petersen graph and draw it as a hexagon and place
the remaining four vertices inside the cycle. Such a drawing is shown in Figure 5.35.
The subgraph homeomorphic to K3 3 is found by deleting the black vertex, as then the
white vertices have degree two, and we can replace each of them and their two incident
edges (shown in bold) by a single edge.

FIGURE 5.35: A MORE ILLUSTRATIVE DRAWING OF THE PETERSEN GRAPH

We close this section with a problem that brings the current section together with
the topic of graph coloring. In 1852 Francis Guthrie, an Englishman who was at the

93

Chapter 5 Graph Theory

time studying to be lawyer but subsequently became a professor of mathematics in
South Africa, was trying to color a map of the counties of England so that any two
counties that shared a boundary segment (meaning they touched in more than a single
point) were colored with different colors. He noticed that he only needed four colors
to do this, and was unable to draw any sort of map that would require five colors. (He
was able to find a map that required four colors, an example of which is shown in
Figure 5.36.)

FIGURE 5.36: A MAP THAT REQUIRES FOUR COLORS

Could it possibly be true that every map could be colored with only four colors?
He asked his brother Frederick Guthrie, who was a mathematics student at Univer-
sity College, London, about the problem, and Frederick eventually communicated the
problem to Augustus de Morgan (of de Morgan’s laws fame), one of his teachers. It
was in this way that one of the most famous (or infamous) problems, known for a cen-
tury as the Four Color Problem and now the Four Color Theorem, in graph theory was
born. De Morgan was very interested in the Four Color Problem, and communicated
it to Sir William Rowan Hamilton, a prominent Irish mathematician and the one for
whom hamiltonian cycles are named, but Hamilton did not find the problem interest-
ing. Hamilton is one of the few people who considered the Four Color Problem but
did not become captivated by it.

We'll continue our discussion of the history of the Four Color Theorem in a moment,
but first, we must consider how we can turn the problem of coloring a map into a
graph theory question. Well, it seems natural that each region should be assigned a
corresponding vertex. We want to force regions that share a boundary to have different
colors, so this suggests that we should place an edge between two vertices if and only
if their corresponding regions have a common boundary. (As an example, the map in
Figure 5.36 corresponds to the graph Kj.) It is not difficult to see that this produces a
planar graph, since we may draw the edges through the common boundary segment.
Furthermore, with a little bit of thought, you should see that given a planar drawing of

94

5.5 Planar Graphs

a graph, you can create a map in which each vertex leads to a region and edges lead to
common boundary segments. Thus, the Four Color Problem could be stated as “Does
every planar graph have chromatic number at most four?”

Interest in the Four Color Problem languished until 1877, when the British mathe-
matician Arthur Cayley wrote a letter to the Royal Society asking if the problem had
been resolved. This brought the problem to the attention of many more people, and
the first “proof” of the Four Color Theorem, due to Alfred Bray Kempe, was completed
in 1878 and published a year later. It took 11 years before Percy John Heawood found
a flaw in the proof but was able to salvage enough of it to show that every planar
graph has chromatic number at most five. In 1880, Peter Guthrie Tait, a British physi-
cist best known for his book Treatise on Natural Philosophy with Sir William Thomson
(Lord Kelvin), made an announcement that suggested he had a proof of the Four Color
Theorem utilizing hamiltonian cycles in certain planar graphs. However, consistent
with the way Tait approached some conjectures in the mathematical theory of knots,
it appears that he subsequently realized around 1883 that he could not prove that the
hamiltonian cycles he was using actually existed and so Tait likely only believed he
had a proof of the Four Color Theorem for a short time, if at all. However, it would
take until 1946 to find a counterexample to the conjecture Tait had used in his attempt
to prove the Four Color Theorem.

In the first half of the twentieth century, some incremental progress toward resolving
the Four Color Problem was made, but few prominent mathematicians took a serious
interest in it. The final push to prove the Four Color Theorem came with about at
the same time that the first electronic computers were coming into widespread use
in industry and research. In 1976, two mathematicians at the University of Illinois
announced their computer-assisted proof of the Four Color Theorem. The proof by
Kenneth Appel and Wolfgang Haken led the University of Illinois to add the phrase
“FOUR COLORS SUFFICE” to its postage meter’s imprint.!

Theorem 5.37 (Four Color Theorem). Every planar graph has chromatic number at most
four.

Appel and Haken’s proof of the Four Color Theorem was at a minimum unsatisfac-
tory for many mathematicians, and to some it simply wasn’t a proof. These mathemati-
cians felt that the using a computer to check various cases was simply too uncertain;
how could you be certain that the code that checked the 1,482 “unavoidable configu-
rations” didn’t contain any logic errors? In fact, there were several mistakes found in
the cases analyzed, but none were found to be fatal flaws. In 1989, Appel and Haken
published a 741-page tome entitled Every Planar Map is Four Colorable which provided
corrections to all known flaws in their original argument. This still didn’t satisfy many,

A photograph of an envelope with such a meter mark on it can be found in the book The Four-Color Theorem:
History, Topological Foundations, and Idea of Proof by Rudolf and Gerda Fritsch. (Springer, 1998)

95

Chapter 5 Graph Theory

and in the early 1990’s a team consisting of Neil Robertson from The Ohio State Uni-
versity; Daniel P. Sanders, a graduate student at the Georgia Institute of Technology;
Paul Seymour of Bellcore; and Robin Thomas from Georgia Tech announced a new
proof of the Four Color Theorem. However, it still required the use of computers. The
proof did gain more widespread acceptance than that of Appel and Haken, in part
because the new proof used fewer than half (633) of the number of configurations the
Appel-Haken proof used and the computer code was provided online for anyone to
verify. While still unsatisfactory to many, the proof by Robertson, et al. was generally
accepted, and today the issue of the Four Color Theorem has largely been put to rest.
However, many still wonder if anyone will ever find a proof of this simple statement
that does not require the assistance of a computer.

5.6 Counting Labeled Trees

How many trees are there with vertex set [n] = {1,2,...,n}? Let T,, be this number.
For n = 1, there is clearly only one tree. Also, for n = 2, there is only one tree, which
is isomorphic to K. In determining T3, we finally have some work to do; however,
there’s not much, since all trees on 3 vertices are isomorphic to P3. Thus, there are
T3 = 3 labeled trees on 3 vertices, corresponding to which vertex is the one of degree
2. When n = 4, we can begin by counting the number of nonisomorphic trees and
consider two cases depending on whether the tree has a vertex of degree 3. If there is
a vertex of degree 3, the tree is isomorphic to Kj 3 or it does not have a vertex of degree
three, in which case it is isomorphic to Py, since there must be precisely two vertices
of degree 2 in such a graph. There are four labelings by [4] for K; 3 (choose the vertex
of degree three). How many labelings by [4] are there for P4? There are C(4,2) ways
to choose the labels i, j given to the vertices of degree 2 and two ways to select one of
the remaining labels to be made adjacent to i. Thus, there are 12 ways to label P4 by
[4] and so T4 = 16.

To this point, it looks like maybe there’s a pattern forming. Perhaps it is the case
that forall n > 1, T, = n" 2. This is in fact the case, but let’s see how it works out
for n = 5 before proving the result in general. What are the nonisomorphic trees on
five vertices? Well, there’s K; 4 and Ps for sure, and there’s also the third tree shown in
Figure 5.38. After thinking for a minute or two, you should be able to convince yourself
that this is all of the possibilities. How many labelings by [5] does each of these have?
There are 5 for K 4 since there are 5 ways to choose the vertex of degree 4. For Ps, there
are 5 ways to choose the middle vertex of the path, C(4,2) = 6 ways to label the two
remaining vertices of degree 2 once the middle vertex is labeled, and then 2 ways to
label the vertices of degree 1. This gives 60 labelings. For the last tree, there are 5 ways
to label the vertex of degree 3, C(4,2) = 6 ways to label the two leaves adjacent to the

96

5.6 Counting Labeled Trees

vertex of degree 3, and 2 ways to label the remaining two vertices, giving 60 labelings.
Therefore, Ts = 125 = 5% = 5772,

PN

F1GURE 5.38: THE NONISOMORPHIC TREES ON 1 = 5 VERTICES

It turns out that we are in fact on the right track, and we will now set out to prove
the following:

Theorem 5.39 (Cayley’s Formula). The number T, of labeled trees on n vertices is n"~2.

This result is usually referred to as Cayley’s Formula, although equivalent results
were proven earlier by James J. Sylvester (1857) and Carl W. Borchardt (1860). The rea-
son that Cayley’s name is most often affixed to this result is that he was the first to state
and prove it in graph theoretic terminology (in 1889). (Although one could argue that
Cayley really only proved it for n = 6 and then claimed that it could easily be extended
for all other values of 1, and whether such an extension can actually happen is open to
some debate.) Cayley’s Formula has many different proofs, most of which are quite el-
egant. If you're interested in presentations of several proofs, we encourage you to read
the chapter on Cayley’s Formula in Proofs from THE BOOK by Aigner, Ziegler, and Hof-
mann, which contains four different proofs, all using different proof techniques. Here
we give a fifth proof, due to Priifer and published in 1918. Interestingly, even though
Priifer’s proof came after much of the terminology of graph theory was established, he
seemed unaware of it and worked in the context of permutations and his own termi-
nology, even though his approach clearly includes the ideas of graph theory. We will
use a recursive technique in order to find a bijection between the set of labeled trees
on n vertices and a natural set of size n""~2, the set of strings of length 1 — 2 where the
symbols in the string come from [n].

We define a recursive algorithm that takes a tree T on k > 2 vertices labeled by
elements of a set S of positive integers of size k and returns a string of length k — 2
whose symbols are elements of S. (The set S will usually be [k], but in order to define a
recursive procedure, we need to allow that it be an arbitrary set of k positive integers.)
This string is called the Priifer code of the tree T. Let priifer(T) denote the Priifer code
of the tree T, and if v is a leaf of T, let T—v denote the tree obtained from T by removing
v (i.e., the subgraph induced by all the other vertices). We can then define priifer(T)
recursively by the following procedure.

97

Chapter 5 Graph Theory

1. If T = Ky, return the empty string.

2. Else, let v be the leaf of T with the smallest label and let u be its unique neighbor.
Let i be the label of 1. Return (i, priifer(T — v)).

Example 5.40. Before using Priifer codes to prove Cayley’s Formula, let’s take a mo-
ment to make sure we understand how they are computed given a tree. Consider the
9-vertex tree T in Figure 5.41.

2 9
4 /
6 Q O o Y4
/f o\,
5 1

F1GURE 5.41: A LABELED 9-VERTEX TREE

How do we compute priifer(T)? Since T has more than two vertices, we use the
second step and find that v is the vertex with label 2 and u is the vertex with label 6,
so priifer(T) = (6, priifer(T — v)). The graph T — v is shown in Figure 5.42.

) /9
6 07
f SOA)
5 1

FIGURE 5.42: THETREE T — v

The recursive call priifer(T — v) returns (6, priifer(T — v — v’)), where v’ is the vertex
labeled 5. Continuing recursively, the next vertex deleted is 6, which appends a 4 to
the string. Then 7 is deleted, appending 3. Next 8 is deleted, appending 1. This is
followed by the deletion of 1, appending 4. Finally 4 is deleted, appending 3, and the
final recursive call has the subtree isomorphic to K, with vertices labeled 3 and 9, and
an empty string is returned. Thus, priifer(T) = 6643143.

We're now prepared to give a proof of Cayley’s Formula.

Proof. Tt is clear that priifer(T) takes an n-vertex labeled tree with labels from [n] and
returns a string of length n — 2 whose symbols are elements of [1]. What we have yet

98

5.6 Counting Labeled Trees

to do is determine a way to take such a string and construct an n-vertex labeled tree
from it. If we can find such a construction, we will have a bijection between the set 7,
of labeled trees on n vertices and the set of strings of length n —2 whose symbols come
from [n], which will imply that T,, = n" 2.

First, let’s look at how priifer(T) behaves. What numbers actually appear in the
Priifer code? The numbers that appear in the Priifer code are the labels of the non-
leaf vertices of T. The label of a leaf simply cannot appear, since we always record the
label of the neighbor of the leaf we are deleting, and the only way we would delete the
neighbor of a leaf is if that neighbor were also a leaf, which can only happen T = Ko, in
which case priifer(T) simply returns the empty string. Thus if I C [n] is the set of sym-
bols that appear in priifer(T), the labels of the leaves of T are precisely the elements of
[n] - L

With the knowledge of which labels belong to the leaves of T in hand, we are ready
to use induction to complete the proof. Our goal is to show that if given a string s =
5152 - - - Sp—2 Whose symbols come from a set S of n elements, there is a unique tree T
with priifer(T) = s. If n = 2, the only such string is the empty string, so 1 and 2 both
label leaves and we can construct only K>. Now suppose we have the result for some
m > 2, and we try to prove it for m + 1. We have a string s = 5153 - - - 5,,—1 with symbols
from [m + 1]. Let I be the set of symbols appearing in s and let k be the least element
of [m + 1] — I. By the previous paragraph, we know that k is the label of a leaf of T
and that its unique neighbor is the vertex labeled s1. The string s’ = s553---5,,—1 has
length m —2 and since k does not appear in s, its symbols come from S = [m +1] - {k},
which has size m. Thus, by induction, there is a unique tree T whose Priifer code is
s’. We form T from T’ by attaching a leaf with label k to the vertex of T” with label s;
and have a tree of the desired type.]

Example 5.43. We close this section with an example of how to take a Priifer code and
use it to construct a labeled tree. Consider the string s = 75531 as a Priifer code. Then
the tree T corresponding to s has 7 vertices, and its leaves are labeled 2, 4, and 6. The
inductive step in our proof attaches the vertex labeled 2 to the vertex labeled 7 in the
tree T” with Priifer code 5531 and vertex labels {1, 3,4, 5, 6,7}, since 2 is used to label
the last vertex added. What are the leaves of T’? The symbols in {4, 6,7} do not appear
in 5531, so they must be the labels of leaves, and the construction says that we would
attach the vertex labeled 4 to the vertex labeled 5 in the tree we get by induction. In
Table 5.44, we show how this recursive process continues.

99

Chapter 5 Graph Theory

Priifer code Label set Edge added
75531 {1,2,3,4,5,6,7} 2-7
5531 {1,3,4,5,6,7} 4-5
531 {1,3,5,6,7} 6-5
31 {1,3,5,7} 5-3
1 {1,3,7} 3-1
(empty string) {1,7} 1-7

TABLE 5.44: TURNING THE PRUFER CODE 75531 INTO A LABELED TREE

We form each row from the row above it by removing the first label used on the edge
added from the label set and removing the first symbol from the Priifer code. Once the
Priifer code becomes the empty string, we know that the two remaining labels must
be the labels we place on the ends of K; to start building T. We then work back up
the edge added column, adding a new vertex and the edge indicated. The tree we
construct in this manner is shown in Figure 5.45.

3 1
5 o O 7

FI1GURE 5.45: THE LABELED TREE WITH PRUFER CODE 75531

5.7 A Digression into Complexity Theory

We have already introduced in Chapter 4 a few notions about efficient algorithms. We
also discussed the difficulty of determining a graph’s chromatic number and clique
number earlier in this chapter. We conclude with a brief discussion of some issues
involving computational complexity for other problems discussed in this chapter.
Let’s begin with some problems for which there are polynomial-time algorithms.
Suppose you are given a graph on n vertices and asked whether or not the graph is
connected. Here a positive answer can be justified by providing a spanning tree. On
the other hand, a negative answer can be justified by providing a partition of the vertex
sets V = V1 UV, with V7 and V, non-empty subsets and having no edges with one end-
point in V7 and the other in V5. In Chapter 12 we will discuss two efficient algorithms

100

5.8 Discussion

that find spanning trees in connected graphs. They can easily be modified to produce
a partition showing the graph is disconnected.

If you are asked whether a connected graph is eulerian, then a positive answer can
be justified by producing the appropriate sequence. We gave an algorithm to do this
earlier in the chapter. A negative answer can be justified by producing a vertex of odd
degree, and our algorithm will identify such a vertex if it exists. (Depending on the
data structures used to represent the graph, it may be most efficient to simply look for
vertices of odd degree without using the algorithm to find an eulerian circuit.)

On the surface, the problem of determining if a graph is hamiltonian looks similar to
that of determining if the graph is eulerian. Both call for a sequence of vertices in which
each pair of consecutive vertices is joined by an edge. Of course, each problem has an
additional requirement on yes certificates. However, justifying a negative answer to the
question of whether a graph is hamiltonian is not straightforward. Theorem 5.18 only
gives a way to confirm that a graph is hamiltonian; there are many nonhamiltonian
graphs that do not satisfy its hypothesis. At this time, no one knows how to efficiently
justify a negative answer—at least not in the general case.

5.8 Discussion

Over coffee, today’s conversation was enthusiastic and heated at times. Zori got things
off with a blast “I don’t think graphs are of any use at all...” but she wasn't even able
to finish the sentence before Yolanda uncharacteristically interrupted her with “You're
off base on this one. I see lots of ways graphs can be used to model real world prob-
lems. The professor actually showed us examples back in our first class. But now that
we're talking in more depth about graphs, things are even clearer.” Bob added, “These
eulerian and hamiltonian cycle problems are certain to have applications in network
routing problems.” Xing reinforced Bob with “Absolutely. There are important ques-
tions in network integrity and information exchange that are very much the same as
these basic problems.” Alice piled on “Even the notion of chromatic number clearly
has practical applications.” By this time, Zori realized her position was indefensible
but she was reluctant to admit it. She offered only a “Whatever.”

Things quieted down a bit and Dave said “Finding a hamiltonian cycle can't be all
that hard, if someone guarantees that there is one. This extra information must be of
value in the search.” Xing added “Maybe so. It seems natural that it should be easier
to find something if you know it’s there.” Alice asked “Does the same thing hold for
chromatic number?” Bob didn’t understand her question “Huh?” Alice continued,
this time being careful not to even look Bob’s way “I mean if someone tells you that
a graph is 3-colorable, does that help you to find a coloring using only three colors?”
Dave said “Seems reasonable to me.”

101

Chapter 5 Graph Theory

After a brief pause, Carlos offered “I don't think this extra knowledge is of any help.
I think these problems are pretty hard, regardless.” They went back and forth for a
while, but in the end, the only thing that was completely clear is that graphs and their
properties had captured their attention, at least for now.

5.9 Exercises

1. The questions in this exercise pertain to the graph G shown in Figure 5.46.

(a) What is the degree of vertex 8?
(b) What is the degree of vertex 10?

(c) How many vertices of degree 2 are there in G?
List them.

(d) Find a cycle of length 8 in G.

(e) What is the length of a shortest path from 3 to
4?

(f) What is the length of a shortest path from 8 to
7?

(g) Find a path of length 5 from vertex 4 to vertex
6. G

FIGURE 5.46: A GRAPH

2. Draw a graph with 8 vertices, all of odd degree, that does not contain a path of
length 3 or explain why such a graph does not exist.

3. Draw a graph with 6 vertices having degrees 5, 4, 4, 2, 1, and 1 or explain why such
a graph does not exist.

4. For the next Olympic Winter Games, the organizers wish to expand the number of
teams competing in curling. They wish to have 14 teams enter, divided into two pools
of seven teams each. Right now, they’re thinking of requiring that in preliminary play
each team will play seven games against distinct opponents. Five of the opponents will
come from their own pool and two of the opponents will come from the other pool.
They're having trouble setting up such a schedule, so they’ve come to you. By using
an appropriate graph-theoretic model, either argue that they cannot use their current
plan or devise a way for them to do so.

102

5.9 Exercises

5. For this exercise, consider the graph G in Figure 5.47.
(@) Let Vi ={g,j,c,h,e, f} and E1 = {ge, jg,ch,ef}. Is (V1, E1) a subgraph of G?
(b) Let Vo ={g,j,c,h,e, f} and E; = {ge, jg,ch,ef,cj}. Is (V2, E3) a subgraph of G?

(c) Let V3 ={a,d,c,h,b} and E3 = {ch,ac,ad, bc}. Is (V3, E3) an induced subgraph
of G?

(d) Draw the subgraph of G induced by {g, j,d,4,c,i}.
(e) Draw the subgraph of G induced by {c, 4, f, i, j}.

(f) Draw a subgraph of G having vertex set {e, f,b,c,h, j} that is not an induced
subgraph.

(g) Draw a spanning subgraph of G with exactly 10 edges.

FiGURE 5.47: A craPH G

6. Prove that every tree on n vertices has exactly n — 1 edges.
7. Figure 5.48 contains four graphs on six vertices. Determine which (if any) pairs of

graphs are isomorphic. For pairs that are isomorphic, give an isomorphism between
the two graphs. For pairs that are not isomorphic, explain why.

103

Chapter 5 Graph Theory

Ui uz
U1 (%] U3
Ug us

[U5 Og U5 Uy

Gy Gy

o A2 X1 X X3
We w3

ws Wy X4 X5 X6

G3 Gy

F1GURE 5.48: ARE THESE GRAPHS ISOMORPHIC?

8. Find an eulerian circuit in the graph G in Figure 5.49 or explain why one does not
exist.

FiGure 5.49: A GrarH G

9. Consider the graph G in Figure 5.50. Determine if the graph is eulerian. If it is,
find an eulerian circuit. If it is not, explain why it is not. Determine if the graph is
hamiltonian. If it is, find a hamiltonian cycle. If it is not, explain why it is not.

104

5.9 Exercises

FiGure 5.50: A grarH G

10. Explain why the graph G in Figure 5.51 does not have an eulerian circuit, but show
that by adding a single edge, you can make it eulerian.

FiGuRE 5.51: A GraPH G

11. An eulerian trail is defined in the same manner as an eulerian circuit (see Sec-
tion 5.3) except that we drop the condition that xg = x;. Prove that a graph has an
eulerian trail if and only if it is connected and has at most two vertices of odd degree.

12. Alice and Bob are discussing a graph that has 17 vertices and 129 edges. Bob argues
that the graph is hamiltonian, while Alice says that he’s wrong. Without knowing

105

Chapter 5 Graph Theory
anything more about the graph, must one of them be right? If so, who and why, and if
not, why not?

13. Find the chromatic number of the graph G in Figure 5.52 and a coloring using
X(G) colors.

FIGURE 5.52: A GrRAPH G TO COLOR

14. Find the chromatic number of the graph G in Figure 5.53 and a coloring using
Xx(G) colors.

F1GURE 5.53: A GrRAPH G TO COLOR

15. A pharmaceutical manufacturer is building a new warehouse to store its supply of

106

5.9 Exercises

10 chemicals it uses in production. However, some of the chemicals cannot be stored in
the same room due to undesirable reactions that will occur. The matrix below hasa1in
position (i, j) if and only if chemical i and chemical j cannot be stored in the same room.
Develop an appropriate graph theoretic model and determine the smallest number of
rooms into which they can divide their warehouse so that they can safely store all 10
chemicals in the warehouse.

0101101000
1001100001
0000010110
11 00100O0O00O0
11 01000O010
001 00 01O0O0T1
1000010100
001 0001000
001 01O0O0O0O0T0O0
01 0001O0O0O0O0

16. A school is preparing the schedule of classes for the next academic year. They are
concerned about scheduling calculus, physics, English, statistics, economics, chem-
istry, and German classes, planning to offer a single section of each one. Below are
the lists of courses that each of six students must take in order to successfully gradu-
ate. Determine the smallest number of class periods that can be used to schedule these
courses if each student can take at most one course per class period. Explain why fewer
class periods cannot be used.

Student Courses
1 Chemistry, Physics, Economics

2 English, German, Statistics
3 Statistics, Calculus, German
4 Chemistry, Physics

5 English, Chemistry

6

Chemistry, Economics

17. All trees with more than one vertex have the same chromatic number. What is it,
and why?

18. Find a proper (t + 1)-coloring of the graph G;.,1 in Mycielski’s proof of Proposi-
tion 5.25. This establishes that y(G;1) < t + 1.

107

Chapter 5 Graph Theory

19. How many vertices does the graph G4 from the Kelly and Kelly proof of Proposi-
tion 5.25 have?

20. Construct and draw the graph Gs from Mycielski’s proof of Proposition 5.25.

21. Find a recursive formula for the number of vertices 7; in the graph G; from the
Kelly and Kelly proof of Proposition 5.25.

22. Let b; be the number of vertices in the graph G; from the Mycielski’s proof of
Proposition 5.25. Find a recursive formula for b;.

23. The girth of a graph G is the number of vertices in a shortest cycle of G. Find the
girth of the graph G; in the Kelly and Kelly proof of Proposition 5.25 and prove that
your answer is correct. As a challenge, see if you can modify the construction of G; to
increase the girth. If so, how far are you able to increase it?

24. Use the First Fit algorithm to color the graph in Figure 5.26 using the two different
orderings of the vertex set shown there.

25. Draw the interval graph corresponding to the intervals in Figure 5.54.

|—|’} | d ! m|—|g

—L — | |
L =] | — |
—L— £ |

F1GURE 5.54: A COLLECTION OF INTERVALS

26. Use the First Fit coloring algorithm to find the chromatic number of the interval
graph whose interval representation is shown in Figure 5.54 as well as a proper color-
ing using as few colors as possible.

27.

(a) From Exercise 5.9.24 you know that choosing a bad ordering of the vertices of
a graph can lead to the First Fit coloring algorithm producing a coloring that is
far from optimal. However, you can use this algorithm to prove a bound on the
chromatic number. Show that if every vertex of G has degree at most D, then
x(G)<D+1

(b) Give an example of a bipartite graph with D = 1000 to show that this bound need
not be tight.

108

5.9 Exercises
28. Is the graph in Figure 5.53 planar? If it is, find a drawing without edges crossings.
If it is not give a reason why it is not.

29. Is the graph in Figure 5.55 planar? If it is, find a drawing without edge crossings.
If it is not give a reason why it is not.

FiGURE 5.55: Is THIS GRAPH PLANAR?

30. Find a planar drawing of the graph Ks — e, by which we mean the graph formed
from the complete graph on 5 vertices by deleting any edge.

31. Exhibita planar drawing of an eulerian planar graph with 10 vertices and 21 edges.
32. Show that every planar graph has a vertex that is incident to at most five edges.

33. Let G = (V,E) be a graph with V = {v1,v,...,v,}. Its degree sequence is the
list of the degrees of its vertices, arranged in nonincreasing order. That is, the degree
sequence of G is (deg;(v1), degs(v2), ..., degs(v,)) with the vertices arranged such
that deg(v1) > degg(v2) > -+ > deg,(v,). Below are five sequences of integers
(along with n, the number of integers in the sequence). Identify

¢ the one sequence that cannot be the degree sequence of any graph;

e the two sequences that could be the degree sequence of a planar graph;

¢ the one sequence that could be the degree sequence of a tree;

¢ the one sequence that is the degree sequence of an eulerian graph; and

¢ the one sequence that is the degree sequence of a graph that must be hamiltonian.

Explain your answers. (Note that one sequence will get two labels from above.)

109

Chapter 5 Graph Theory

@) n=10: (4,4,2,2,1,1,1,1,1,1)
(b) n=9:(8,8,8,6,4,4,4,4,4)

() n=7:(5443,21,0)

d) n=10:(7,7,6,6,6,6,5,5,5,5)
) n=6:(54,3,2272)

34. Below are three sequences of length 10. One of the sequences cannot be the degree
sequence (see Exercise 5.9.33) of any graph. Identify it and say why. For each of the
other two, say why (if you have enough information) a connected graph with that degree
sequence

¢ is definitely hamiltonian/cannot be hamiltonian;
¢ is definitely eulerian/cannot be eulerian;

¢ is definitely a tree/cannot be a tree; and

¢ is definitely planar/cannot be planar.

(If you do not have enough information to make a determination for a sequence with-
out having specific graph(s) with that degree sequence, write “not enough informa-
tion” for that property.)

(@) (6,6,4,4,4,4,2,2,2,2)
(b) (7,7,7,7,6,6,6,2,1,1)
(c) (8,6,4,4,43,2,2,1,1)

35. For the two degree sequences in Exercise 5.9.34 that correspond to graphs, there
were some properties for which the degree sequence was not sufficient information to
determine if the graph had that property. For each of those situations, see if you can
draw both a graph that has the property and a graph that does not have the property.

36. Draw the 16 labeled trees on 4 vertices.

37. Determine priifer(T) for the tree T in Figure 5.56.

F1GURE 5.56: A 10-VERTEX TREE

110

5.9 Exercises

38. Determine priifer(T) for the tree T in Figure 5.57.

FiGURE 5.57: A 10-VERTEX TREE

39. Determine priifer(T) for the tree T Figure 5.58.

F1GURE 5.58: A 14-VERTEX TREE

40. Construct the labeled tree T with Priifer code 96113473.
41. Construct the labeled tree T with Priifer code 23134.

42. Construct the labeled tree T with Priifer code (using commas to separate symbols
in the string, since we have labels greater than 9) 10,1, 7,4, 3,4, 10, 2,2, 8.

43. (Challenge problem) When G = (V, E) is a graph, let A(G) denote the maximum
degree in G. Prove Brooks” Theorem: If G is connected and A(G) = k, then x(G) < k+1.

111

Chapter 5 Graph Theory

Furthermore, equality holds if and only if (a) k = 2 and G is an odd cycle, or (b) k # 2
and G = Ky41.

Hint. Hint: It’s clear that x(G) < k + 1 (in fact, this was already assigned as an ex-
ercise). Assume that y(G) = k + 1 but that neither conclusion (a) or (b) holds. Take
a spanning tree of G and an appropriate ordering of the vertices, with two leaves of
the tree coming first. Then show that a First Fit coloring of the graph will only use k
colors.

112

CHAPTER 6 -

Partially Ordered Sets

Discussion 6.1. Alice was surfing the web and found a site listing top movies, grouped
by categories (comedy, drama, family, etc) as well as by the decade in which they were
released. Alice was intrigued by the critic’s choices and his rankings, especially for the
top seven dramas from the 1990’s. Alice agreed with the critic’s choices as a group but
not the specific rankings. She wrote the critic’s rankings on the board and just to the
right, she gave her own rankings, all the time insisting that she was certainly correct in
her opinions.

Movie Critic’s Ranking Alice’s Ranking

1 Saving Private Ryan Life is Beautiful

2 Lifeis Beautiful Saving Private Ryan
3 Forrest Gump Good Will Hunting
4 Braveheart Titanic

5 Good Will Hunting Braveheart

6 Titanic Forrest Gump

7 Jurassic Park Jurassic Park

Dave studied the two rankings and listened carefully to Alice’s rationale (which he
felt was a bit over the top), but eventually, he held up the following diagram and offered
it as a statement of those comparisons on which both Alice and the movie critic were in
agreement. Do you see how Dave made up this diagram? Add your own rankings of
these seven films and then draw the diagram that Dave would produce as a statement
about the comparisons on which you, Alice and the movie critic were in agreement.

More generally, when humans are asked to express preferences among a set of op-
tions, they often report that establishing a totally ranked list is difficult if not impos-
sible. Instead, they prefer to report a partial order—where comparisons are made be-
tween certain pairs of options but not between others. In this chapter, we make these
observations more concrete by introducing the concept of a partially ordered set. Ele-
mentary examples include (1) a family of sets which is partially ordered by inclusion

113

Chapter 6 Partially Ordered Sets

Saving Private Ryan Life is Beautiful

Hy Good Will Hunting

Forrest Gump
Q Braveheart

O Titanic

Jurassic Park

FiGcure 6.2: Tor Movies FRoM THE 90’s

and (2) a set of positive integers which is partially ordered by division. From an ap-
plications standpoint, a complex construction job typically involves a large number
of projects for which there is a notion of precedence between some but not all pairs.
Also, computer file systems are modeled by trees which become partially ordered sets
whenever links are added.

6.1 Basic Notation and Terminology

A partially ordered set or poset P is a pair (X, P) where X is a set and P is a reflexive,
antisymmetric, and transitive binary relation on X. (Refer to Section B.10 for a refresher
of what these properties are if you need to.) We call X the ground set while P is a
partial order on X. Elements of the ground set X are also called points, and the poset
P is finite if its ground set X is a finite set.

Example 6.3. Let X = {a,b,c,d, e, f}. Consider the following binary relations on X.

Ry = {(a,a),(b,b),(c,c),(d,d), (e, e),(f, f) (a,b),(a,c) (e f)}

Rz = {(a,a),(b,b),(c,c),(d,d),(e,e),(f, f),(d,b),(d,e),(b,a),le,a),
(d,a),(c, f)}

R3 ={(a,a),(b,b),(c,c),(d,d),(e,e),(f, f) (a,c) (ae)(a,f)b,c),
(b,d),(b,e),(b, f),(d,e),(d,f) (e f)}

Ry ={(a,a),(b,b),(c,c),(d,d), (e, e),(f,) (d,D),(b,a) e a)lc f)}

Rs = {(a,a),(c,c),(d,d),(e,e),(a,e),(c,a),(c,e),(d,e)}

Re ={(a,a),(b,b),(c,c),(d,d),(e,e),(f,) (d,), (be)(c,a)leb)}

114

6.1 Basic Notation and Terminology

Which of the binary relations are partial orders on X? For those that are not partial
orders on X, which property or properties are violated?

Solution. A bit of checking confirms that R;, Ry and Rj3 are partial orders on X, so
P; = (X, R1), P2 = (X, Ry) and P3 = (X, R3) are posets. Several of the other examples
we will discuss in this chapter will use the poset P3 = (X, R3).

On the other hand, R4, R5 and Rg are not partial orders on X. Note that Ry4 is not
transitive, as it contains (d, b) and (b, a) but not (d, a). The relation Rj5 is not reflexive,
since it doesn’t contain (b, b). (Also, it also doesn’t contain (f, f), but one shortcom-
ing is enough.) Note that Rs is a partial order on {a,b,d,e}. The relation Re is not
antisymmetric, as it contains both (b, e) and (e, b).

When P = (X, P) is a poset, it is common to write x < yin Por y > x in P as
substitutes for (x, y) € P. Of course, the notations x < y in P and y > x in P mean
x < yinP and x # y. When the poset P remains fixed throughout a discussion, we will
sometimes abbreviate x < y in P by just writing x < y, etc. When x and y are distinct
points from X, we say x is covered by y in P! when x < y in P, and there is no point
z € X for which x < z and z < y in P. For example, in the poset P3 = (X, R3) from
Example 6.3, d is covered by e and ¢ covers b. However, a is not covered by f, since
a < e < fin R3. We can then associate with the poset P a cover graph G whose vertex
set is the ground set X of P with xy an edge in G if and only if one of x and y covers the
other in P. Again, for the poset P3 from Example 6.3, we show the cover graph on the
left side of Figure 6.4. Actually, on the right side of this figure is just another drawing
of this same graph.

e
e
a d
c d
c b
a b

FiGuRre 6.4: Cover GRAPH

Reflecting the vagaries of the English language, mathematicians use the phrases: (1) x is covered by y in
P; (2) y covers x in P; and (3) (x, y) is a cover in P interchangeably.

115

Chapter 6 Partially Ordered Sets

F1GURE 6.5: A PoseT oN 17 PoiNTs

It is convenient to illustrate a poset with a suitably drawn diagram of the cover graph
in the Euclidean plane. We choose a standard horizontal /vertical coordinate system
in the plane and require that the vertical coordinate of the point corresponding to y be
larger than the vertical coordinate of the point corresponding to x whenever y covers x
in P. Each edge in the cover graph is represented by a straight line segment which con-
tains no point corresponding to any element in the poset other than those associated
with its two end points. Such diagrams are called Hasse diagrams (poset diagrams,
order diagrams, or just diagrams). Now it should be clear that the drawing on the right
side of Figure 6.4 is a diagram of the poset P3 from Example 6.3, while the diagram on
the left is not.

For posets of moderate size, diagrams are frequently used to define a poset—rather
than the explicit binary relation notation illustrated in Example 6.3. In Figure 6.5, we
illustrate a poset P = (X, P) with ground set X = [17] = {1,2,...,17}. It would take
several lines of text to write out the binary relation P, and somehow the diagram serves
to give us a more tactile sense of the properties of the poset.

Discussion 6.6. Alice and Bob are talking about how you communicate with a com-
puter in working with posets. Bob says that computers have incredible graphics capa-
bilities these days and that you just give the computer a pdf scan of a diagram. Alice
says that she doubts that anybody really does that. Carlos says that there are several
effective strategies. One way is to label the points with positive integers from [] where
n is the number of points in the ground set and then define a 0-1 n X n matrix A with
entry a(i, j) = 1 wheni < jin P and a(i, j) = 0 otherwise. Alternatively, you can just
provide for each element i in the ground set a vector U(x) listing all elements which
are greater than x in P. This vector can be what computer scientists call a linked list.

A partial order P is called a total order (also, a linear order) if for all x, y € X, either
x £ yinPory < x in P. For small finite sets, we can specify a linear order by listing
the elements from least to greatest. For example, L = [b,c,d,a, f, g, €] is the linear

116

6.1 Basic Notation and Terminology

order on the ground set {a,b,c,d,e, f,g} withb <c<d<a< f<g<einL.

The set of real numbers comes equipped with a natural total order. For example,
1 < 7/5 < V2 < min this order. But in this chapter, we will be interested primarily with
partial orders that are not linear orders. Also, we note that special care must be taken
when discussing partial orders on ground sets whose elements are real numbers. For
the poset shown in Figure 6.5, note that 14 is less than 8, while 3 and 6 are incomparable.
Best not to tell your parents that you've learned that under certain circumstances, 14
can be less than 8 and that you may be able to say which of 3 and 6 is larger than the
other. The subtlety may be lost in the heated discussion certain to follow.

Example 6.7. There are several quite natural ways to construct posets.

1. A family ¥ of sets is partially ordered by inclusion, i.e., set A < B if and only if
A is a subset of B.

2. Aset X of positive integers is partially ordered by division—without remainder,
ie,setm <nifand onlyif n =0 (mod m).

3. A set X of t-tuples of real numbers is partially ordered by the rule
(a1,a2,...,a1) < (b1, b2, ..., by)
if and only if a; < b; in the natural orderon Rfori =1,2,...,¢.

4. When Ly, Ly, ..., L are linear orders on the same set X, we can define a partial
order P on X by setting x < yin Pifand onlyif x < yinL; foralli=1,2,...,k.

We illustrate the first three constructions with the posets shown in Figure 6.8. As is
now clear, in the discussion at the very beginning of this chapter, Dave drew a diagram
for the poset determined by the intersection of the linear orders given by Alice and the
movie critic.

{2357 {2525} (7,67)

3,7} 2,5) {2,3,11}

{3} {2}

(1,2,1)

F1GURE 6.8: CoNSTRUCTING POSETS

117

Chapter 6 Partially Ordered Sets

Distinct points x and y in a poset P = (X, P) are comparable if either x < y in P or
x > y in P; otherwise x and y are incomparable. If x and y are incomparable in P, we
sometimes write x||y in P. With a poset P = (X, P), we associate a comparability graph
G1 = (X, E1) and an incomparability graph G, = (X, E;). The edges in the compara-
bility graph G; consist of the comparable pairs and the edges in the incomparability
graph are the incomparable pairs. We illustrate these definitions in Figure 6.9 where
we show the comparability graph and the incomparability graph of the poset P3.

?f
X

\d

a b

FIGURE 6.9: COMPARABILITY AND INCOMPARABILITY GRAPHS

When P = (X, P)isaposetand Y C X, the binary relation Q = PN (Y X Y)is a partial
order on Y, and we call the poset (Y, Q) a subposet of P. In Figure 6.10, we show a
subposet of the poset first presented in Figure 6.5.

8 15 1m 17

14

F1GURE 6.10: A SUBPOSET

When P = (X, P) is a poset and C is a subset of X, we say that C is a chain if every
distinct pair of points from C is comparable in P. When P is a linear order, the entire
ground set X is a chain. Dually, if A is a subset of X, we say that A is an antichain
if every distinct pair of points from A is incomparable in P. Note that a one-element
subset is both a chain and an antichain. Also, we consider the empty set as both a chain
and an antichain.

118

6.2 Additional Concepts for Posets

The height of a poset P = (X, P), denoted height(P) , is the largest & for which there
exists a chain of /1 points in P. Dually, the width of a poset P = (X, P), denoted width(P)
, is the largest w for which there exists an antichain of w points in P.

Discussion 6.11. Given a poset P = (X, P), how hard is to determine its height and
width? Bob says that it is very easy. For example, to find the width of a poset, just list
all the subsets of X. Delete those which are not antichains. The answer is the size of the
largest subset that remains. He is quick to assert that the same approach will work to
find the height. Alice groans at Bob’s naivety and suggests that he should read further
in this chapter.

6.2 Additional Concepts for Posets

We say (X, P) and (Y, Q) are isomorphic, and write (X, P) = (Y, Q) if there exists a
bijection (1-1 and onto map) f : X — Y so thatx; < xp in P ifand only if f(x1) < f(x2)
in Q. In this definition, the map f is called an isomorphism from P to Q. In Figure 6.8,
the first two posets are isomorphic.

Discussion 6.12. Bob sees a pattern linking the first two posets shown in Figure 6.8 and
asserts that any poset of one of these two types is isomorphic to a poset of the other
type. Alice admits that Bob is right—but even more is true. The four constructions
given in Example 6.7 are universal in the sense that every poset is isomorphic to a poset
of each of the four types. Do you see why? If you get stuck answering this, we will
revisit the question at the end of the chapter, and we will give you a hint.

An isomorphism from P to P is called an automorphism of P. An isomorphism
from P to a subposet of Q is called an embedding of P in Q. In most settings, we will
not distinguish between isomorphic posets, and we will say that a poset P = (X, P) is
contained in Q = (Y, Q) (also Q contains P) when there is an embedding of P in Q.
Also, we will say that P excludes Q when no subposet of P is isomorphic to Q, and we
will frequently say P = Q when P and Q are isomorphic.

With the notion of isomorphism, we are lead naturally to the notion of an “unla-
beled” posets, and in Figure 6.13, we show a diagram for such a poset.

119

Chapter 6 Partially Ordered Sets

F1GURE 6.13: AN UNLABELED PARTIALLY ORDERED SET

Discussion 6.14. How hard is it to tell whether two posets are isomorphic? Bob thinks
it’s not too difficult. Bob says that if you give him a bijection between the ground sets,
then he can quickly determine whether you have established that the two posets are
isomorphic. Alice senses that Bob is confusing the issue of testing whether two posets
are isomorphic with simply verifying that a particular bijection can be certified to be
an isomorphism. The first problem seems much harder to her. Carlos says that he
thinks it’s actually very hard and that in fact, no one knows whether there is a good
algorithm.

Note that the poset shown in Figure 6.13 has the property that there is only one
maximal point. Such a point is sometimes called a one, denoted not surprisingly as 1.
Also, there is only one minimal point, and it is called a zero, denoted 0.

The dual of a partial order P on a set X is denoted by P? and is defined by P? =
{(y, %) : (x, y) € P}. The dual of a poset P = (X, P) is denoted by P¥ and is defined by
P? = (X, P?). A poset P is self-dual if P = P%.

A poset P = (X, P) is connected if its comparability graph is connected, i.e., for every
x,y € X with x # y, there is a finite sequence x = xo, x1,...,x, = y of points from
X so that x; is comparable to x;41 in P fori = 0,1,2,...,n — 1. A subposet (Y, P(Y))
of (X, P) is called a component of P if (Y, P(Y)) is connected and there is no subset
Z < X containing Y as a proper subset for which (Z, P(Z)) is connected. A one-point
component is trivial (also, a loose point or isolated point); components of two or more
points are nontrivial. Note that a loose point is both a minimal element and a maximal
element. Returning to the poset shown in Figure 6.5, we see that it has two components.

It is natural to say that a graph G is a comparability graph when there is a poset
P = (X, P) whose comparability graph is isomorphic to G. For example, we show in
Figure 6.15 a graph on 6 vertices which is not a comparability graph. (We leave the
task of establishing this claim as an exercise.)

120

6.2 Additional Concepts for Posets

7

Ficure 6.15: A Grard WHicH 1s NoT A CoMPARABILITY GRAPH

Similarly, we say that a graph G is a cover graph when there exists a poset P = (X, P)
whose cover graph is isomorphic to G. Not every graph is a cover graph. In particular,
any graph which contains a triangle is not a cover graph. In the exercises at the end
of the chapter, you will be asked to construct triangle-free graphs which are not cover
graphs—with some hints given as to how to proceed.

Discussion 6.16. Bob is quite taken with graphs associated with posets. He makes the
following claims.

1. Only linear orders have paths as cover graphs.

2. A poset and its dual have the same cover graph and the same comparability
graph.

3. Any two posets with the same cover graph have the same height and the same
width.

4. Any two posets with the same comparability graph have the same height and the
same width.

Alice shrugs and says that Bob is right half the time. Which two assertions are cor-
rect?

Undeterred, Bob notes that the comparability graph shown in Figure 6.9 is also an
incomparability graph (for another poset). He goes on to posit that this is always true,
i.e., whenever G is the comparability graph of a poset P, there is another poset Q for
which G is the incomparability graph of Q. Alice says that Bob is right on the first
count but she is not so sure about the second. Dave mumbles that they should take a
look at the comparability graph of the third poset in Figure 6.8. This graph is not an
incomparability graph. But in his typical befuddled manner, Dave doesn’t offer any
justification for this statement. Can you help Alice and Bob to see why Dave is correct?

Bob is on a roll and he goes on to suggest that it is relatively easy to determine
whether a graph is a comparability graph (he read it on the web), but he has a sense

121

Chapter 6 Partially Ordered Sets

that determining whether a graph is a cover graph might be difficult. Do you think he
is right—on either count?

6.3 Dilworth’s Chain Covering Theorem and its Dual

In this section, we prove the following theorem of R.P. Dilworth, which is truly one of
the classic results of combinatorial mathematics.

Theorem 6.17 (Dilworth’s Theorem). If P = (X, P) is a poset and width(P) = w, then
there exists a partition X = C; U Cp U -+ U Cy, where C; is a chain for i = 1,2,...,w.
Furthermore, there is no chain partition into fewer chains.

Before proceeding with the proof of Dilworth’s theorem in Subsection 6.3.1, we
pause to discuss the dual version for partitions into antichains, as it is even easier to
prove.

Theorem 6.18 (Dual of Dilworth’s Theorem). If P = (X, P) is a poset and height(P) = h,
then there exists a partition X = AJUA U --UAy,, where A; is an antichainfori =1,2,..., h.
Furthermore, there is no partition using fewer antichains.

Proof. For each x € X, let height(x) be the largest integer ¢ for which there exists a
chain
X1 < Xp<...<UX

with x = x;. Evidently, height(x) < & for all x € X. Then for eachi = 1,2,...,h,
let A; = {x € X : height(x) = i}. Itis easy to see that each A; is an antichain, as if
x,y € Ajaresuch that x < y, then thereisachainx; < x; <--- <x; =x < Xj4; = ¥, SO
height(y) > i + 1. Since height(P) = h, there is a maximum chain C = {x1, x2, ..., x5, }.
If it were possible to partition Pinto f < h antichains, then by the Pigeon Hole Principle,
one of the antichains would contain two points from C, but this is not possible. m]

When P = (X, P) is a poset, a point x € X with height(x) = 1 is called a minimal
point of P. We denote the set of all minimal points of a poset P = (X, P) by min(X, P).!

The argument given for the proof of Theorem 6.18 yields an efficient algorithm, one
that is defined recursively. Set Py = P. If P; has been defined and P; # 0, let A; =
min(P;) and then let P;; denote the subposet remaining when A; is removed from P;.

In Figure 6.19, we illustrate the antichain partition provided by this algorithm for
the 17 point poset from Figure 6.5. The darkened points form a chain of size 5.

1Since we use the notation P = (X, P) for a poset, the set of minimal elements can be denoted by min(P) or
min(X, P). This convention will be used for all set valued and integer valued functions of posets.

122

6.3 Dilworth’s Chain Covering Theorem and its Dual

F1iGuURE 6.19: A Poser or HeiGHT 5

Discussion 6.20. Alice claims that it is very easy to find the set of minimal elements
of a poset. Do you agree?

Dually, we can speak of the set max(P) of maximal points of P. We can also partition
P into height(P) antichains by recursively removing the set of maximal points.

We pause to remark that when P = (X, P) is a poset, the set of all chains of P is itself
partially ordered by inclusion. So it is natural to say that a chain C is maximal when
there is no chain C’ containing C as a proper subset. Also, a chain C is maximum
when there is no chain C’ with |C| < |C’|. Of course, a maximum chain is maximal,
but maximal chains need not be maximum.

Maximal antichains and maximum antichains are defined analogously.

With this terminology, the thrust of Theorem 6.18 is that it is easy to find the height
h of a poset as well as a maximum chain C consisting of & points from P. Of course,
we also get a handy partition of the poset into / antichains.

6.3.1 Proof of Dilworth’s Theorem

The argument for Dilworth’s theorem is simplified by the following notation. When
P=(X,P)isaposetandx € X, welet D(x) ={y € X : y < xinP}; D[x] = {y €
X:y <xinPh Ux) ={y e X:y >xinP}, Ulx] ={y € X:y = x};, and
Ix)={ye X—{x}:x|lyinP}. When S C X, weletD(S) ={y € X:y <xinP, for
some x € S} and D[S] = S U D(S). The subsets U(S) and U[S] are defined dually. We
call D(x), D[x], D(s), and D[S] down sets, while U(x), U[x], U(s), and U[S] are up
sets. Note that when A is a maximal antichain in P, the ground set X can be partitioned
into pairwise disjoint sets as X = A U D(A) U U(A).

We are now ready for the proof. Let P = (X, P) be a poset and let w denote the
width of P. As in Theorem 6.18, the Pigeon Hole Principle implies that we require
at least w chains in any chain partition of P. To prove that w suffice, we proceed by

123

Chapter 6 Partially Ordered Sets

induction on |X|, the result being trivial if | X| = 1. Assume validity for all posets with
|X| < k and suppose that P = (X, P) is a poset with |X| = k + 1. Without loss of
generality, w > 1; otherwise, the trivial partition X = C; satisfies the conclusion of the
theorem. Furthermore, we observe that if C is a (nonempty) chain in (X, P), then we
may assume that the subposet (X — C, P(X — C)) also has width w. To see this, observe
that the theorem holds for the subposet, so that if width(X - C,P(X - C)) = w’ < w,
then we can partition X-Cas X-C = C1UCoU---UCy,s0that X = CUC1 U---UCy
is a partition into w’ + 1 chains. Since w’ < w, we know w’ + 1 < w, so we have a
partition of X into at most w chains. Since any partition of X into chains must use at
least w chains, this is exactly the partition we seek.

Choose a maximal point x and a minimal point y with y < x in P. Then let C be
the chain containing only the points x and y. Note that C contains either one or two
elements depending on whether x and y are distinct.

LetY = X — Cand Q = P(Y) and let A be a w-element antichain in the subposet
(Y, Q). In the partition X = A U D(A) U U(A), the fact that y is a minimal point while
A is a maximal antichain imply that y € D(A). Similarly, x € U(A). In particular, this
shows that x and y are distinct.

Label the elements of A as {a1, 4y, ..., ay}. Note that U[A] # X since y ¢ U[A], and
D[A] # X since x ¢ D[A]. Therefore, we may apply the inductive hypothesis to the
subposets of P determined by D[A] and U[A], respectively, and partition each of these
two subposets into w chains:

U[A]=C1UCU---UCy, and D[A]=D1UDyU---U Dy,.

Without loss of generality, we may assume these chains have been labeled so that a; €
C;ND,foreachi=1,2,..., w. However, this implies that

X =(C1UD)U(CoUDy)U---U(Cy UDy)

is the desired partition which in turn completes the proof.

In Figure 6.21, we illustrate Dilworth’s chain covering theorem for the poset first
introduced in Figure 6.5. The darkened points form a 7-element antichain, while the
labels provide a partition into 7 chains.

124

6.4 Linear Extensions of Partially Ordered Sets

Ficure 6.21: A Poser or WIDTH 7

Discussion 6.22. The ever alert Alice notes that the proof given above for Dilworth’s
theorem does not seem to provide an efficient algorithm for finding the width w of
a poset, much less a partition of the poset into w chains. Bob has yet to figure out
why listing all the subsets of X is a bad idea. Carlos is sitting quietly listening to their
bickering, but finally, he says that a skilled programmer can devise an algorithm from
the proof. Students are encouraged to discuss this dilemma—but rest assured that we
will return to this issue later in the text.

6.4 Linear Extensions of Partially Ordered Sets

Let P = (X, P) be a partially ordered set. A linear order L on X is called a linear
extension (also, a topological sort) of P, if x < y in L whenever x < y in P. For
example, the table displayed in Figure 6.23 shows that our familiar example P3 has 11
linear extensions.

od
Ly L L3 Ly Ls L¢ Ly Lg L9 Lip Ln
Y ¢ d d d b d d d4d b 4 d b
c ¢ b d ¢ ¢ b d ¢ b d
w b ¢ ¢ w b ¢ ¢ b c c
b ow b w w w b w w w z oz z
a a a a z zZ zZ zZ W w w
Zz z z z a4 a a a a a a
Z a

FIGURE 6.23: A POSET AND ITS LINEAR EXTENSIONS

125

Chapter 6 Partially Ordered Sets

Discussion 6.24. Bob says that he is not convinced that every finite poset has a linear
extension. Alice says that it is easy to show that they do. Is she right?

Carlos says that there are subtleties to this question when the ground set X is in-
finite. You might want to do a web search on the name Szpilrajn and read about his
contribution to this issue.

The classical sorting problem studied in all elementary computer science courses is
to determine an unknown linear order L of a set X by asking a series of questions of
the form: Is x < y in L? All the well known sorting algorithms (bubble sort, merge
sort, quick sort, etc.) proceed in this manner.

Here is an important special case: determine an unknown linear extension L of a
poset P by asking a series of questions of the form: Is x < y in L?

Discussion 6.25. Given the poset P = (X, P) shown in Figure 6.5 and the problem
of determining an unknown linear extension of P, how should Alice decide which
question (of the form: Is x < y in L?) to ask?

How would you like to be assigned to count the number of linear extensions of this
poset? In general, how hard is it to determine the number of linear extensions of a
poset? Could you (and your computer) do this count for a poset on 100, 000 points?

6.5 The Subset Lattice

When X is a finite set, the family of all subsets of X, partially ordered by inclusion,
forms a subset lattice’. We illustrate this in Figure 6.26 where we show the lattice of
all subsets of {1, 2, 3, 4}. In this figure, note that we are representing sets by bit strings,
and we have further abbreviated the notation by writing strings without commas and
parentheses. For a positive integer ¢, we let 2! denote the subset lattice consisting of all
subsets of {1,2, ..., t} ordered by inclusion. Some elementary properties of this poset
are:

1. The height is t + 1 and all maximal chains have exactly ¢ + 1 points.

2. The size of the poset 2 is 2! and the elements are partitioned into ranks (an-
tichains) Ag, A1, ..., A; with |A;| = (f) foreachi=0,1,...,¢.

3. The maximum size of a rank in the subset lattice occurs in the middle, i.e. if s =
|#/2], then the largest binomial coefficient in the sequence (§), (1), (5),---, (}) is
({). Note that when t is odd, there are two ranks of maximum size, but when ¢

is even, there is only one.

1A lattice is a special type of poset. You do not have to concern yourself with the definition and can safely
replace “lattice” with “poset” as you read this chapter.

126

6.5 The Subset Lattice

F1GURE 6.26: A SUBSET LATTICE

6.5.1 Sperner’s Theorem

For the width of the subset lattice, we have the following classic result of Sperner.

Theorem 6.27 (Sperner’s Theorem). For each t > 1, the width of the subset lattice 2t is the
maximum size of a rank, i.e.,
width(2!) = (')
4]
Proof. The width of the poset 2! is at least C(t, | §]) since the set of all | £ |-element
subsets of {1,2,...,t} is an antichain. We now show that the width of 2 is at most
c(t, L4,

Let w be the width of 2f and let {S1,S»,...,S,} be an antichain of size w in this
poset, i.e., each S; is a subset of {1,2,...,t}andif 1 <i < j < w, then S; £ S; and
S; € Si.

For each 7, consider the set S; of all maximal chains which pass through S;. It is easy
to see that if |S;| = k;, then |S;| = k;!(t — k;)!. This follows from the observation that
to form such a maximum chain beginning with S; as an intermediate point, you delete
the elements of S; one at a time to form the sets of the lower part of the chain. Also, to
form the upper part of the chain, you add the elements not in S; one at a time.

Note further thatif 1 < i < j < w, then §; N S; = 0, for if there was a maximum
chain belonging to both S; and §;, then it would imply that one of S; and S; is a subset
of the other.

127

Chapter 6 Partially Ordered Sets

Altogether, there are exactly ! maximum chains in 2/. This implies that

w
Zki!(t — k)l <t
i=1

This implies that
w w
kil(t = k;)! Z 1
POLULI o Y
t
i=1 t i=1 (k,-)
It follows that
P
i=1 ([%])
Thus
t
w < . O
)

6.6 Interval Orders

When we discussed Dilworth’s Theorem, we commented that the algorithmic aspects
would be deferred until later in the text. But there is one important class of orders for
which the full solution is easy to obtain.

A poset P = (X, P) is called an interval order if there exists a function I assigning to
each element x € X a closed interval I(x) = [ay, by] of the real line R so that for all x,
y € X,x <yinPifand onlyif b, < a,inR. We call I an interval representation of P, or
just a representation for short. For brevity, whenever we say that I is a representation
of an interval order P = (X, P), we will use the alternate notation [a,, b,] for the closed
interval I(x). Also, we let |I(x)| denote the length of the interval, i.e., [I[(x)| = by — ay.
Returning to the poset Pj3, the representation shown in Figure 6.28 shows that it is an
interval order. Note that end points of intervals used in a representation need not be
distinct. In fact, distinct points x and y from X may satisfy I(x) = I(y). We even allow
degenerate intervals, i.e., those of the form [a,a]. On the other hand, a representa-
tion is said to be distinguishing if all intervals are non-degenerate and all end points
are distinct. It is relatively easy to see that every interval order has a distinguishing
representation.

As we shall soon see, interval orders can be characterized succinctly in terms of for-
bidden subposets. Before stating this characterization, we need to introduce a bit more
notation. By n (for n > 1 an integer), we mean the chain with n points. More precisely,
we take the ground set to be {0,1,...,n —1} withi < jinnifand only if i < jin Z.
If P = (X,P)and Q = (Y, Q) are posets with X and Y disjoint, then P + Q is the poset

128

6.7 Finding a Representation of an Interval Order

) €
a C
C od b d e f
a b

F1GURE 6.28: AN INTERVAL ORDER AND ITS REPRESENTATION

R = (X UY, R) where the partial order is given by z < w in R if and only if (a) z, w € X
andz <winPor(b)z,w € Yand z < w in Q. Thus, n + m consists of a chain with »
points and a chain with m points and no comparabilities between them. In particular,
2 + 2 can be viewed as a four-point poset with ground set {a,b,c,d} and a < b and
¢ < d as the only relations (other than those required to make the relation reflexive).

Theorem 6.29 (Fishburn’s Theorem). Let P = (X, P) be a poset. Then P is an interval order
if and only if it excludes 2 + 2.

Proof. We show only that an interval order cannot contain a subposet isomorphic to
2 + 2, deferring the proof in the other direction to the next section. Now suppose that
P = (X, P)isaposet, {x,y,z, w} C X and the subposet determined by these four points
is isomorphic to 2 + 2. We show that P is not an interval order. Suppose to the contrary
that I is an interval representation of P. Without loss of generality, we may assume
that x < y and z < w in P. Thus x||w and z||y in P. Then b, < a, and b, < ay in R so
that a,, < by < ay, < b;, which is a contradiction. O

6.7 Finding a Representation of an Interval Order

In this section, we develop an algorithm for finding an interval representation of an
interval order. In fact, this algorithm can be applied to any poset. Either it will find an
interval representation or it will find a subposet isomorphic to 2+2. As a consequence,
we establish the other half of Fishburn’s Theorem.

When P = (X, P) is an interval order and # is a positive integer, there may be many
different ways to represent P using intervals with integer end points in [n]. But there
is certainly a least n for which a representation can be found, and here we see that

129

Chapter 6 Partially Ordered Sets

the representation is unique. The discussion will again make use of the notation for
down sets and up sets that we introduced prior to the proof of Dilworth’s Theorem.
As a reminder, we repeat it here. For a poset P = (X, P) and a subset S C X, let
D(S) = {y € X : there exists some x € S with y < x in P}. Also, let D[S] = D(S) U S.
When |S| = 1, say S = {x}, we write D(x) and D[x] rather than D({x}) and D[{x}].
Dually, for a subset S C X, we define U(S) = {y € X : there exists some x € X with
y > xin P}. Asbefore, set U[S] = U(S)US. And when S = {x}, we just write U(x) for
{yeX:x<yinP}.

Let P = (X, P) be a poset. We start our procedure by finding the following subsets
of the ground set: D = {D(x) : x € X}. We then distinguish two cases. In the first
case, there are distinct elements x and y for which D(x) € D(y) and D(y) € D(x). In
this case, we choose an element z € D(x) — D(y) and an element w € D(y) — D(x). It
follows that the four elements in {x, y, z, w} form a subposet of P which is isomorphic
to2+2.

Our second case is that either D(x) € D(y) or D(y) € D(x) for all x, y € X. In this
case, we will show that P is an interval order. Now find the family: U = {U(x) : x € X}.
In this case, it is easy to see that we will always have either U(x) € U(y) or U(y) € U(x)
forallx,y € X.

Letd = |D|. In the exercises, we will provide (actually in doing your homework, you
will provide) the details for backing up the following statement: |U| = |D)|, so for now
we assume that this statement is valid. Label the sets in D and U respectively as D,
Dy,...,Dgand Uy, Uy, ..., U, so that

0=D1CD2CD3C”'CDd and
UyoUy--->UgpD2>Uy1D---DU; =0.

We form an interval representation I of P by the following rule: For each x € X, set
I(x) = [i, j], where D(x) = D; and U(x) = Uj;. It is not immediately clear that this rule
is legal, i.e., it might happen that applying the rule results in values of i and j for which
j < i. But again, as a result of the exercises, we will see that this never happens. This
collection of exercises is summarized in the following theorem.

Theorem 6.30. If P is a poset excluding 2 + 2, then the following statements hold.
1. The number of down sets equals the number of up sets. That is, |D| = |U|.
2. Foreachx € X, ifI(x) =[i,], theni < jin R.

3. Foreach x,y € X, ifI(x) = [i, jland I(y) = [k, 1], then x < y in P ifand only if j < k
in R.

4. The integer d is the least positive integer for which P has an interval representation using
integer end points from [d]. This representation is unique.

130

6.8 Dilworth’s Theorem for Interval Orders

Consider the poset shown in Figure 6.31.

F1GURE 6.31: AN INTERVAL ORDER ON 10 PoinTs

Then d = 5with D; = 0, Dy = {c}, D3 = {c, f, g9}, Ds = {c, f,g,h}, and D5
{a,c, f,g9,h,j}. AlsoU; ={a,b,d,e, h,i,j}, U ={a,b,e h,ij}, Us={b,e, i}, Uy
{e}, and Us = 0. So

I(a)=[3,4] 1(b)=1[4,5] I(c)=[1,1] 1@d)=1[2,5] I(e)=][5,5]
I(f)=112] Ig)=0[,2] I(h)=[33] 16 =[45] 1(j)=1[34]

To illustrate the situation where this process can be used to determine when a poset
is not an interval order, consider again the poset shown in Figure 6.31. Erase the line
joining points ¢ and d. For the resulting poset, you will then find that D(j) = {f, g}
and D(d) = {c}. Therefore, the four points ¢, d, f and j form a copy of 2 + 2 in this
modified poset.

6.8 Dilworth’s Theorem for Interval Orders

As remarked previously, we do not yet have an efficient process for determining the
width of a poset and a minimum partition into chains. For interval orders, there is
indeed a simple way to find both. The explanation is just to establish a connection
with coloring of interval graphs as discussed in Chapter 5.

Let P = (X, P) be an interval order and let {[a,, b,] : x € X} be intervals of the real
line so that x < y in P if and only b, < a,. Then let G be the interval graph determined
by this family of intervals. Note that if x and y are distinct elements of X, then x and
y are incomparable in P if and only if xy is an edge in G. In other words, G is just the
incomparability graph of P.

Recall from Chapter 5 that interval graphs are perfect, i.e., x(G) = w(G) for every
interval graph G. Furthermore, you can find an optimal coloring of an interval graph
by applying first fit to the vertices in a linear order that respects left end points. Such
a coloring concurrently determines a partition of P into chains.

131

Chapter 6 Partially Ordered Sets

In fact, if you want to skip the part about interval representations, take any linear
ordering of the elements as x1, X2, ..., X, so thati < j whenever D(x) is a proper subset
of D(y). Then apply First Fit with respect to chains. For example, using the 10 point
interval order illustrated in Figure 6.31, here is such a labeling:

X1=9 x=f X3=c¢ x4 =d xs=h

Xe = a X7=j X3=b X9=i X10=¢€

Now apply the First Fit algorithm to the points of P, in this order, to assign them to
chains Cy, Cy, In other words, assign x1 to chain C;. Thereafter if you have assigned
points x1, X2, ..., X; to chains, then assign x;1 to chain C; where j is the least positive
integer for which x;,1 is comparable to x;y whenever 1 < k < i and x; has already been
assigned to C;. For example, this rule results in the following chains for the interval
order P shown in Figure 6.31.

Ci={g,h,b}
Co={f,a,e}
Cs ={c,d}
Cs={j}

Cs = {i}

In this case, it is easy to see that the chain partition is optimal since the width of P is 5
and A ={a,b,d, i, j} is a 5-element antichain.

However, you should be very careful in applying First Fit to find optimal chain par-
titions of posets—just as one must be leary of using First Fit to find optimal colorings
of graphs.

Example 6.32. The poset on the left side of Figure 6.33 is a height 2 poset on 10 points,
and if the poset is partitioned into antichains by applying First Fit and considering the
points in the order of their labels, then 5 antichains will be used. Do you see how to
extend this poset to force First Fit to use arbitrarily many antichains, while keeping the
height of the poset at 2?

On the right side, we show a poset of width 2. Now if this poset is partitioned into
chains by applying First Fit and considering the points in the order of their labels, then
4 chains will be used. Do you see how to extend this poset to force First Fit to use
arbitrarily many chains while keeping the width of the poset at 2?

Do you get a feeling for why the second problem is a bit harder than the first?

132

6.9 Discussion

11 12
10 8
9 7
5 6
4 3
1 2

FiGure 6.33: How First Fit CaN Go WRrONG

In general, there is always sorme linear order on the ground set of a poset for which
First Fit will find an optimal partition into antichains. Also, there is a linear order (in
general different from the first) on the ground set for which First Fit will find an optimal
partition into chains. However, there is no advantage in searching for such orders, as
the algorithms we develop for finding optimal antichain and chain partitions work
quite well.

6.9 Discussion

Over coffee, Bob said that he really liked this chapter. “This material was full of cases
of very concrete procedures for doing useful things. I like that.” Yolanda offered a
somewhat different perspective “On the other hand, this last procedure only seems to
work with interval orders and we still don't have a clue as to how to find the width of
a poset in the general case. This might be very difficult—like the graph coloring prob-
lems discussed in the last chapter.” Dave weighed in with “Somehow I think there’s
going to be a fairly efficient process that works for all posets. We may not have all the
tools yet, but let’s wait a bit.”

Not much was said for a while and after a pause, Carlos ventured that there were
probably a lot of combinatorial problems for posets that had analogous versions for
graphs and in those cases, the poset version would be a bit more complicated, some-
time a little bit and sometimes a very big bit. Zori was quiet but she was thinking.
These poset structures might even be useful, as she could imagine many settings in
which a linear order was impossible or impractical. Maybe there were ways here to
earn a few dollars.

133

Chapter 6 Partially Ordered Sets

6.10 Exercises

1. We say that a relation R on a set X is symmetric if (x, y) € R implies (y, x) € R for
allx,y € X. If X = {a,b,c,d, e, f}, how many symmetric relations are there on X?
How many of these are reflexive?

2. Arelation R on a set X is an equivalence relation if R is reflexive, symmetric, and
transitive. Fix an integer m > 2. Show that the relation defined on the set Z of integers
by aRb (a,b € Z) if and only if 2 = b (mod m) is an equivalence relation. (Recall
thata = b (mod m) means that when dividing a by m and b by m you get the same
remainder.)

3. Is the binary relation
P={(1,1),(2,2),3,3),4,4),(1,3),(2,4),2,5),4,5),3,5),(1,5)}

a partial order on the set X = {1,2, 3,4, 5}? If so, discuss what properties you verified
and how. If not, list the ordered pairs that must be added to P to make it a partial order
or say why it cannot be made a partial order by adding ordered pairs.

4. Draw the diagram of the poset P = (X, P) where X = {1,2,3,5,6,10,15,30} and
x < yin P if and only if x|y. (Recall that x|y means that x evenly divides y without
remainder. Equivalently x|y, if and only if y = 0 (mod x).)

5. Draw the diagram of the poset P = (X, P) where

X =1{{1,3,4,5,6},{1,2,4,5,6},1{1,2,3,6},{1,2,3},{1,5,6},
{1,3,6},{1,2},{1,6},{3,5}, {1}, {3}, {4}}

and P is the partial order on X given by the “is a subset of” relationship.

6. A linear extension of a poset P = (X, P) is a total order L on X such thatif x < y
in P, then x < y in L. Give linear extension of the three posets shown in Figure 6.8. If
you feel very ambitious, try to count the number of linear extensions of the poset on
the left side of the figure. Don’t list them. Just provide an integer as your answer.

7. Alice and Bob are considering posets P and Q. They soon realize that Q is isomor-
phic to P?. After 10 minutes of work, they figure out that P has height 5 and width 3.
Bob doesn’t want do find the height and width of Q, since he figures it will take (at
least) another 10 minutes to answer these questions for Q. Alice says Bob is crazy and
that she already knows the height and width of Q. Who's right and why?

8. For this exercise, consider the poset P in Figure 6.5.

134

6.10 Exercises

(a) List the maximal elements of P.
(b) List the minimal elements of P.
(c) Find a maximal chain with two points in P.

(d) Find a chain in P with three points that is nof maximal. Say why your chain is not
maximal.

(e) Find a maximal antichain with four points in P.

9. Find the height i of the poset P = (X, P) shown below as well as a maximum chain
and a partition of X into & antichains using the algorithm from this chapter.

10. For each of the two distinct (up to isomorphism) posets in Figure 6.8, find the
width w, an antichain of size w, and a partition of the ground set into w chains.

11. A restaurant chef has designed a new set of dishes for his menu. His set of dishes
contains 10 main courses, and he will select a subset of them to place on the menu
each night. To ensure variety of main courses for his patrons, he wants to guarantee
that a night’s menu is neither completely contained in nor completely contains another

135

Chapter 6 Partially Ordered Sets

night’s menu. What is the largest number of menus he can plan using his 10 main
courses subject to this requirement?

12. Draw the diagram of the interval order represented in Figure 6.34.

— |Lk| ——
e [L '] L

—

F1GURE 6.34: AN INTERVAL REPRESENTATION

13. Draw the diagram of the interval order represented in Figure 6.35.

== : ! o
— !
FH e — L
—L— : |

F1GURE 6.35: AN INTERVAL REPRESENTATION

14. Find an interval representation for the poset in Figure 6.36 or give a reason why
one does not exist.

FIGURE 6.36: Is THIS POSET AN INTERVAL ORDER?

136

6.10 Exercises

15. Find an interval representation for the poset in Figure 6.37 or give a reason why
one does not exist.

F1GURE 6.37: Is THIS POSET AN INTERVAL ORDER?

16. Find an interval representation for the poset in Figure 6.38 or give a reason why
one does not exist.

F1GURE 6.38: Is THIS POSET AN INTERVAL ORDER?

17. Find an interval representation for the poset in Figure 6.39 or give a reason why
one does not exist.

137

Chapter 6 Partially Ordered Sets

FIGURE 6.39: Is THIS POSET AN INTERVAL ORDER?

18. Use the First Fit algorithm (ordering by left endpoints) to find the width w of the
interval order shown in Figure 6.40 and a partition into w chains. Also give an antichain
with w points.

— : . i
—
— ——
If—bl : . A
— - —— A

F1GURE 6.40: AN INTERVAL REPRESENTATION

19. Complete the proof of Theorem 6.30.

Hint. Thekeyidea is to show thatif d is the least positive integer for which an interval
order P has a representation using end points from {1, 2, ..., n}, then every integer i
from this set must be both a left end point and a right end point of an interval.

20. Show that every poset is isomorphic to a poset of each of the four types illustrated
in Example 6.7.

Hint. For each element x, choose some unique identifying key which is an elemen-

138

6.10 Exercises

t/prime/coordinate/observer. Then associate with x a structure that identifies the
keys of elements from D[x].

21. The dimension of a poset P = (X, P), denoted dim(P), is the least ¢ for which P is
the intersection of ¢ linear orders on X.

(a) Show that the dimension of a poset P is the same as the dimension of its dual.
(b) Show that P is a subposet of Q, then dim(P) < dim(Q).

(c) Show that the removal of a point can reduce the dimension by at most 1.

(d) Find the dimension of the posets in Figure 6.8.

(e) Use Dilworth’s theorem to show that the dimension of a poset is at most its width.

(f) Use the example on the left side of Figure 6.33 to show that for every n > 2, there
exists a poset P, on 21 points having width and dimension equal to #.

139

CHAPTER

Inclusion-Exclusion

In this chapter, we study an enumeration technique known as Inclusion-Exclusion. In
its simplest case, it is absolutely intuitive. Its power rests in the fact that in many situa-
tions, we start with an exponentially large calculation and see it reduce to a manageable
size. We focus on three applications that every student of combinatorics should know:
(1) counting surjections, (2) derangements, and (3) the Euler ¢-function.

7.1 Introduction

We start this chapter with an elementary example.

Example 7.1. Let X be the set of 63 students in an applied combinatorics course at
a large technological university. Suppose there are 47 computer science majors and
51 male students. Also, we know there are 45 male students majoring in computer
science. How many students in the class are female students not majoring in computer
science?

Solution. Although the Venn diagrams that you've probably seen drawn many times
over the years aren’t always the best illustrations (especially if you try to think with
some sort of scale), let’s use one to get started. In Figure 7.2, we see how the groups in
the scenario might overlap. Now we can see that we're after the number of students
in the white rectangle but outside the two shaded ovals, which is the female students
not majoring in computer science. To compute this, we can start by subtracting the
number of male students (the blue region) from the total number of students in the
class and then subtracting the number of computer science majors (the yellow region).
However, we’ve now subtracted the overlapping region (the male computer science
majors) twice, so we must add that number back. Thus, the number of female students
in the class who are not majoring in computer science is

63 — 51 — 47 + 45 = 10.

141

Chapter 7 Inclusion-Exclusion

Non-CS major females

FIGURE 7.2: A VENN DIAGRAM FOR AN APPLIED COMBINATORICS CLASS

Example 7.3. Another type of problem where we can readily see how such a technique
is applicable is a generalization of the problem of enumerating integer solutions of
equations. In Chapter 2, we discussed how to count the number of solutions to an
equation such as

X1+ xp2 + x3 + x4 =100,

where x1 > 0, x5, x3 > 0and 2 < x4 < 10. However, we steered clear of the situation
where we add the further restriction that x3 < 7. The previous example suggests a way
of approaching this modified problem.

First, let’s set up the problem so that the lower bound on each variable is of the form
x; > 0. This leads us to the revised problem of enumerating the integer solutions to

X7+ x2+x3+x; =97

with x, x2,x3,x; > 0, x3 <7,and xj <8. (Well then have x; = x] +1and x4 = x +2
to get our desired solution.) To count the number of integer solutions to this equation
with x3 < 7 and x} < 8, we must exclude any solution in which x3 > 7 or x) > 8. There
are C(92,3) solutions with x3 > 7, and the number of solutions in which x; > 8is
C(91, 3). At this point, it might be tempting to just subtract C(92,3) and C(91, 3) from
C(100, 3), the total number of solutions with all variables nonnegative. However, care
is required. If we did that, we would eliminate the solutions with both x3 > 7 and
x; > 8 twice. To account for this, we notice that there are C(83, 3) solutions with both
x3 > 7 and x > 8. If we add this number back in after subtracting, we’ve ensured that
the solutions with both x3 > 7 and x; > 8 are not included in the total count and are

not excluded more than once. Thus, the total number of solutions is
100 92 91 83
(5] (5)-(3)(3) e

142

7.1 Introduction

From these examples, you should start to see a pattern emerging that leads to a
more general setting. In full generality, we will consider a set X and a family # =
{P1, P, ..., Py} of properties. We intend that for every x € Xand eachi =1,2,...,m,
either x satisfies P; or it does not. There is no ambiguity. Ultimately, we are interested
in determining the number of elements of X which satisfy none of the properties in $.
In Example 7.1, we could have made property P; “is a computer science major” and
property P, “is male”. Then the number of students satisfying neither P1 nor P, would
be the number of female students majoring in something other than computer science,
exactly the number we were asked to determine. What would the properties P; and P,
be for Example 7.3?

Let’s consider three examples of larger sets of properties. These properties will come
back up during the remainder of the chapter as we apply inclusion-exclusion to some
more involved situations. Recall that throughout this book, we use the notation [r] for
the set {1,2,...,n} when n is a positive integer.

Example 7.4. Let m and n be fixed positive integers and let X consist of all functions
from [n] to [m]. Then for each i = 1,2,...,m, and each function f € X, we say that
f satisfies P; if there is no j so that f(j) = i. In other words, i is not in the image or
output of the function f.
As a specific example, suppose that n = 5 and m = 3. Then the function given by
the table below satisfies P; but not P5 or Ps.
i 1 2 3 45
fG@ 2 3 2 2 3

Example 7.5. Let m be a fixed positive integer and let X consist of all bijections from
[m] to [m]. Elements of X are called permutations. Then foreachi =1,2,...,m, and
each permutation o € X, we say that o satisfies P; if o(i) = i.
For example, the permutation ¢ of [5] given in by the table below satisfies P3 and Ps
and no other P;.
i 1
o(i) 2

2 3 4 5
4 3 1 5

Note that in the previous example, we could have said that ¢ satisfies property P; if
o(i) # i. But remembering that our goal is to count the number of elements satisfying
none of the properties, we would then be counting the number of permutations sat-
isfying o(i) = i foreach i = 1,2,...,n, and perhaps we don’t need a lot of theory to
accomplish this task—the number is one, of course.

Example 7.6. Let m and n be fixed positive integers and let X = [n]. Then for each
i =1,2,...,m,and each j € X, we say that j satisfies P; if i is a divisor of j. Put

143

Chapter 7 Inclusion-Exclusion

another way, the positive integers that satisfy property P; are precisely those that are
multiples of i.

At first this may appear to be the most complicated of the sets of properties we've
discussed thus far. However, being concrete should help clear up any confusion. Sup-
pose that n = m = 15. Which properties does 12 satisfy? The divisors of 12 are 1, 2, 3,
4,6,and 12, so 12 satisfies P1, P>, P3, P4, Ps, and P1;. On the other end of the spectrum,
notice that 7 satisfies only properties P; and P7, since those are its only divisors.

7.2 The Inclusion-Exclusion Formula

Now that we have an understanding of what we mean by a property, let’s see how we
can use this concept to generalize the process we used in the first two examples of the
previous section.

Let X be asetand let # = {P1, P, ..., Py} be a family of properties. Then for each
subset S C [m], let N(S) denote the number of elements of X which satisfy property P;
foralli € S. Note that if S = 0, then N(S) = |X|, as every element of X satisfies every
property in S (which contains no actual properties).

Returning for a moment to Example 7.1 with P; being “is a computer science major”
and P, being “is male,” we note that N({1}) = 47, since there are 47 computer sci-
ence majors in the class. Also, N({2}) = 51 since 51 of the students are male. Finally,
N({1,2}) = 45 since there are 45 male computer science majors in the class.

In the examples of the previous section, we subtracted off N(S) for the sets S of size
1 and then added back N(S) for the set of properties of size 2, since we'd subtracted
the number of things with both properties (male computer science majors or solutions
with both x3 > 7 and xj > 8) twice. Symbolically, we determined that the number of
objects satisfying none of the properties was

N(@) - N({1}) - N({2}) + N({1,2}).

Suppose that we had three properties P;, P, and P3. How would we count the num-
ber of objects satisfying none of the properties? As before, we start by subtracting for
each of Pq, P>, and P;. Now we have removed the objects satisfying both P; and P,
twice, so we must add back N({1, 2}). similarly, we must do this for the objects satisfy-
ing both P, and P5; and both P; and P3. Now let’s think about the objects satisfying all
three properties. They're counted in N(0), eliminated three times by the N({i}) terms,
and added back three times by the N({i, j}) terms. Thus, theyre still being counted!
Thus, we must yet subtract N({1, 2, 3}) to get the desired number:

N(0) - N({1}) - N({2}) - N({3}) + N({1,2}) + N({2,3}) + N({1,3}) - N({1,2,3}).

We can generalize this as the following theorem:

144

7.3 Enumerating Surjections

Theorem 7.7 (Principle of Inclusion-Exclusion). The number of elements of X which satisfy
none of the properties in P is given by

D =DEING). (7.2.1)

SC[m]

Proof. We proceed by induction on the number m of properties. If m = 1, then the
formula reduces to N(0) — N({1}). This is correct since it says just that the number of
elements which do not satisfy property P; is the total number of elements minus the
number which do satisfy property P;.

Now assume validity when m < k for some k > 1 and consider the case where
m=k+1 Let X' = {x € X : x satisfies Px+1} and X” = X — X’ (i.e., X" is the set of
elements that do not satisfy Py.1). Also, let Q = {P1, Py, ..., P¢}. Then for each subset
S C [k], let N’(S) count the number of elements of X’ satisfying property P; for all
i € S. Also, let N”(S) count the number of elements of X” satisfying property P; for
each i € S. Note that N(S) = N’(S) + N”(S) for every S C [k].

Let X denote the set of elements in X" which satisfy none of the properties in Q (in
other words, those that satisfy only Py, from #), and let X[/ denote the set of elements
of X” which satisfy none of the properties in Q, and therefore none of the properties
in P.

Now by the inductive hypothesis, we know

Xpl= > (-DFIN(S) and IX{l=) (~DFIN(S).
Sc[k] sclk]
It follows that

IXgl= > CDEIN7S) = Y (-1 (N(S) - N(S))

Sclk] Sclk]

= > EDEINGE) + D EDEFING Uk + 1))

SClk] Sclk]

= Z ESENE] o

Sclk+1]

7.3 Enumerating Surjections
As our first example of the power of inclusion-exclusion, consider the following situ-

ation: A grandfather has 15 distinct lottery tickets and wants to distribute them to his
four grandchildren so that each child gets at least one ticket. In how many ways can he

145

Chapter 7 Inclusion-Exclusion

make such a distribution? At first, this looks a lot like the problem of enumerating in-
tegers solutions of equations, except here the lottery tickets are not identical! A ticket
bearing the numbers 1, 3, 10, 23, 47, and 50 will almost surely not pay out the same
amount as one with the numbers 2, 7, 10, 30, 31, and 48, so who gets which ticket re-
ally makes a difference. Hopefully, you have already recognized that the fact that we're
dealing with lottery tickets and grandchildren isn’t so important here. Rather, the im-
portant fact is that we want to distribute distinguishable objects to distinct entities,
which calls for counting functions from one set (lottery tickets) to another (grandchil-
dren). In our example, we don’t simply want the total number of functions, but instead
we want the number of surjections, so that we can ensure that every grandchild gets a
ticket.

For positive integers n and m, let S(n, m) denote the number of surjections from [#]
to [m]. Note that S(n,m) = 0 when n < m. In this section, we apply the Inclusion-
Exclusion formula to determine a formula for S(n, m). We start by setting X to be the
set of all functions from [#n] to [m]. Then for each f € X and eachi =1,2,...,m, we
say that f satisfies property P; if i is not in the range of f.

Lemma 7.8. For each subset S C [m], N(S) depends only on |S|. In fact, if |S| = k, then
N(S) = (m - k)".

Proof. Let |S| = k. Then a function f satisfying property P; for each i € § is a string of
length n from an alphabet consisting of m — k letters. This shows that

N(S) = (m - k)". m]

Now the following result follows immediately from this lemma by applying the Prin-
ciple of Inclusion-Exclusion, as there are C(m, k) k-element subsets of [m].

Theorem 7.9. The number S(n, m) of surjections from [n] to [m] is given by:
m
_ _1\k m ERAY/
S(n,m) = ,;(1) (k)(m k)"

For example,

S(5,3) = (‘3)(3 -0)° - (i)(s -1)°+ (i)@ -2) - (g)@ -3y

=243-96+3-0
= 150.

Returning to our lottery ticket distribution problem at the start of the section, we
see that there are S(15,4) = 1016542800 ways for the grandfather to distribute his 15
lottery tickets so that each of the 4 grandchildren receives at least one ticket.

146

7.4 Derangements

7.4 Derangements

Now let’s consider a situation where we can make use of the properties defined in
Example 7.5. Fix a positive integer n and let X denote the set of all permutations on
[1]. A permutation ¢ € X is called a derangement if (i) # i foralli =1,2,...,n. For
example, the permutation ¢ given below is a derangement, while 7 is not.

i 1 2 3 4 i 1 2 3 4
o) 2 4 1 3 @) 2 4 3 1

If we again let P; be the property that o(i) = 7, then the derangements are precisely
those permutations which do not satisfy P; forany i =1,2,...,n.

Lemma 7.10. For each subset S C [n], N(S) depends only on |S|. In fact, if |S| = k, then
N(S) = (n-k)!

Proof. Foreachi € S, the value o(i) = i is fixed. The other values of ¢ are a permutation
among the remaining n — k positions, and there are (1 — k)! of these. O

As before, the principal result of this section follows immediately from the lemma
and the Principle of Inclusion-Exclusion.

Theorem 7.11. For each positive integer n, the number d,, of derangements of [n] satisfies

d, = i(-nk(’;)(n — K.
k=0

o e BB -

=120-120+60-20+5-1
=44.

For example,

It has been traditional to cast the subject of derangements as a story, called the Hat
Check problem. The story belongs to the period of time when men wore top hats. For
a fancy ball, 100 men check their top hats with the Hat Check person before entering
the ballroom floor. Later in the evening, the mischievous hat check person decides to
return hats at random. What is the probability that all 100 men receive a hat other
than their own? It turns out that the answer is very close to 1/e, as the following result
shows.

147

Chapter 7 Inclusion-Exclusion

Theorem 7.12. For a positive integer n, let d,, denote the number of derangements of [n].
Then

Equivalently, the fraction of all permutations of [n] that are derangements approaches 1/e as n
increases.

Proof. It is easy to see that

dy _ ZiogD ()0 - k)

n! n!

N gk nl (=)
_kzzé(b kKl(n—k)! n!

X 1
_;(—1) o

Recall from Calculus that the Taylor series expansion of e¢* is given by

k

o0
X
x— —
€ _Zk!’
=0

and thus the result then follows by substituting x = —1. m]

Usually we're not as interested in d, itself as we are in enumerating permutations
with certain restrictions, as the following example illustrates.

Example 7.13. Consider the Hat Check problem, but suppose instead of wanting no
man to leave with his own hat, we are interested in the number of ways to distribute
the 100 hats so that precisely 40 of the men leave with their own hats.

If 40 men leave with their own hats, then there are 60 men who do not receive their
own hats. There are C(100, 60) ways to choose the 60 men who will not receive their
own hats and dgp ways to distribute those hats so that no man receives his own. There’s
only one way to distribute the 40 hats to the men who must receive their own hats,
meaning that there are

(100

60)d60 =420788734922281721283274628333913452107738151595140722182899444

67852500232068048628965153767728913178940196920

such ways to return the hats.

148

7.5 The Euler ¢ Function

7.5 The Euler ¢ Function

After reading the two previous sections, you're probably wondering why we stated
the Principle of Inclusion-Exclusion in such an abstract way, as in those examples N(S)
depended only on the size of S and not its contents. In this section, we produce an
important example where the value of N(S) does depend on S. Nevertheless, we are
able to make a reduction to obtain a useful end result. In what follows, let N denote
the set of positive integers.

For a positive integer n > 2, let

¢(n)=|{m eN:m < n,ged(m,n) =1}|.

This function is usually called the Euler ¢ function or the Euler totient function and
has many connections to number theory. We won’t focus on the number-theoretic as-
pects here, only being able to compute ¢(n) efficiently for any .

For example, ¢(12) = 4 since the only numbers from {1,2, ..., 12} that are relatively
prime to 12 are 1,5, 7 and 11. As a second example, ¢(9) = 6since 1,2, 4,5,7 and 8 are
relatively prime to 9. On the other hand, ¢(p) = p — 1 when p is a prime. Suppose you
were asked to compute ¢(321974). How would you proceed?

In Chapter 3 we discussed a recursive procedure for determining the greatest com-
mon divisor of two integers, and we wrote code for accomplishing this task. Let’s
assume that we have a function ged(m,n) that returns the greatest common divisor of
the integers mand n. (Conveniently enough, SageMath comes such a function built in.)
Then we can calculate ¢(n) with this code snippet:

def phi(n):
answer = 1
for m in range(2,n):
if (gcd(m,n) == 1):
answer += 1
return(answer)

phi(321974)

147744

Running the code above answers almost immediately that ¢(321974) = 147744. (As
usual, in the web version of the text, you can change the value 321974 to calculate the
value of ¢ for other integers. However, if you try to increase the value of n to be too
large, you may run into memory issues imposed by the Sage Cell Server used by the
text. For instance, attempting to calculate ¢(319572943) results in an error at the time
of writing. (You may have better luck running the code directly in the SageMath Cloud
or a local installation of SageMath.)

149

http://cloud.sagemath.com/

Chapter 7 Inclusion-Exclusion

Given these difficulties, how could we find ¢(1369122257328767073)?

Clearly, the program is useless to tackle this beast! It not only iterates n — 2 times but
also invokes a recursion during each iteration. Fortunately, Inclusion-Exclusion comes
to the rescue.

Theorem 7.14. Let n > 2 be a positive integer and suppose that n has m distinct prime factors:
P1, P2, -, Pm. Then

m -1
om=n| | pT’ (7.5.1)
i=1 !

Our proof of Theorem 7.14 requires the following elementary proposition whose
proof we leave as an exercise.

Proposition 7.15. Let n > 2, k > 1, and let p1,p2, ..., px be distinct primes each of which
divide n evenly (without remainder). Then the number of integers from {1,2, ..., n} which
are divisible by each of these k primes is

_n
pip2--- Pk

Proof. We present the argument when m = 3. The full result is an easy extension.
In light of Proposition 7.15, the Principle of Inclusion-Exclusion yields:

(n o n n) (n n n n
om)=n—|—+—+—|+ + + -
pP1 P2 p3 pip2 pip3 p2p3 pip2p3

_ Ppaps - (p2ps + p1ps + pip2) + (p3 + p2 + p1) — 1
p1p2p3
_ Pimlpa-ips -1
p1 p2 p3

Example 7.16. SageMath reports that
1369122257328767073 = (3)3(11)(19)*(31)%(6067)>

is the factorization of 1369122257328767073 into primes. It follows that

2 10 18 30 6066
¢(1369122257328767073) = 1369122257328767073 = — — —

Thus SageMath quickly reports that

¢(1369122257328767073) = 760615484618973600.

150

7.6 Discussion

Example 7.17. Amanda and Bruce receive the same challenge from their professor,
namely to find ¢(n) when

n =31484972786199768889479107860964368171543984609017931
39001922159851668531040708539722329324902813359241016
93211209710523.

However the Professor also tells Amanda that n = pip; is the product of two large
primes where

p1 = 470287785858076441566723507866751092927015824834881906763507
and
p2 = 669483106578092405936560831017556154622901950048903016651289.

Is this information of any special value to Amanda? Does it really make her job any
easier than Bruce’s? Would it level the playing field if the professor told Bruce that n
was the product of two primes?

7.6 Discussion

Yolanda said “This seemed like a very short chapter, at least it did to me.” Bob agreed
“Yes, but the professor indicated that the goal was just provide some key examples. I
think he was hinting at more general notions of inversion—although I haven't a clue
as to what they might be.”

Clearly aggravated, Zori said “I've had all I can stand of this big integer stuff. This
won't help me to earn a living.” Xing now was uncharacteristically firm in his reply
“Zori. You're off base on this issue. Large integers, and specifically integers which
are the product of large primes, are central to public key cryptography. If you, or any
other citizen, were highly skilled in large integer arithmetic and could quickly factor
integers with, say 150 digits, then you would be able to unravel many important secrets.
No doubt your life would be in danger.”

At first, the group thought that Xing was way out of bounds—but they quickly re-
alized that Xing felt absolutely certain of what he was saying. Zori was quiet for the
moment, just reflecting that maybe, just maybe, her skepticism over the relevance of
the material in applied combinatorics was unjustified.

7.7 Exercises

1. A school has 147 third graders. The third grade teachers have planned a special
treat for the last day of school and brought ice cream for their students. There are

151

Chapter 7 Inclusion-Exclusion

three flavors: mint chip, chocolate, and strawberry. Suppose that 60 students like (at
least) mint chip, 103 like chocolate, 50 like strawberry, 30 like mint chip and strawberry,
40 like mint chip and chocolate, 25 like chocolate and strawberry, and 18 like all three
flavors. How many students don't like any of the flavors available?

2. There are 1189 students majoring in computer science at a particular university.
They are surveyed about their knowledge of three programming languages: C++, Java,
and Python. The survey results reflect that 856 students know C++, 792 know Java, and
692 know Python. Additionally, 639 students know both C++ and Java, 519 know both
C++ and Python, and 632 know both Java and Python. There are 488 students who
report knowing all three languages. How many students reported that they did not
know any of the three programming languages?

3. How many positive integers less than or equal to 100 are divisible by 2? How many
positive integers less than or equal to 100 are divisible by 5? Use this information to
determine how many positive integers less than or equal to 100 are divisible by neither
2 nor 5.

4. How many positive integers less than or equal to 100 are divisible by none of 2, 3,
and 57

5. How many positive integers less than or equal to 1000 are divisible by none of 3, 8,
and 25?

6. The State of Georgia is distributing $173 million in funding to Fulton, Gwinnett,
DeKalb, Cobb, and Clayton counties (in millions of dollars). In how many ways can this
distribution be made, assuming that each county receives at least $1 million, Clayton
county receives at most $10 million, and Cobb county receives at most $30 million?
What if we add the restriction that Fulton county is to receive at least $5 million (instead
of at least $1 million)?

7. How many integer solutions are there to the equation x1 + x2 + x3 + x4 = 32 with
0<x;<10fori=1,2,3,4?

8. How many integer solutions are there to the inequality
y1+y2+y3+y4<184
with y1 >0,0<y><10,0<y3 <17,and 0 < y4 < 19?

9. A graduate student eats lunch in the campus food court every Tuesday over the
course of a 15-week semester. He is joined each week by some subset of a group of
six friends from across campus. Over the course of a semester, he ate lunch with each
friend 11 times, each pair 9 times, and each triple 6 times. He ate lunch with each

152

7.7 Exercises

group of four friends 4 times and each group of five friends 4 times. All seven of them
ate lunch together only once that semester. Did the graduate student ever eat lunch
alone? If so, how many times?

10. A group of 268 students are surveyed about their ability to speak Mandarin, Ko-
rean, and Japanese. There are 37 students who do not speak any of the three languages
surveyed. Mandarin is spoken by 174 of the students, Japanese is spoken by 139 of
the students, and Korean is spoken by 112 of the students. The survey results also
reflect that 102 students speak both Mandarin and Japanese, 81 students speak both
Mandarin and Korean, and 71 students speak both Japanese and Korean. How many
students speak all three languages?

11. Asin Example 7.4, let X be the set of functions from [#] to [m] and let a function
f € X satisfy property P; if there is no j such that f(j) = i.

(a) Let the function f: [8] — [7] be defined by Table 7.18. Does f satisfy property
P»? Why or why not? What about property P3? List all the properties P; (with
i <7)satisfied by f.

(b) Is it possible to define a function g: [8] — [7] that satisfies no property P;, i < 7?
If so, give an example. If not, explain why not.

(c) Is it possible to define a function /: [8] — [9] that satisfies no property P;, i < 9?
If so, give an example. If not, explain why not.

i1
f@i) 4

TABLE 7.18: A FUNCTION DEFINED BY A TABLE

2 3 4 5
2 6 1 6

6 7 8
2 4 2

12. As in Example 7.5, let X be the set of permutations of [n] and say that ¢ € X
satisfies property P; if 0(i) = i.

(a) Letthe permutation ¢: [8] — [8] be defined by Table 7.19. Does ¢ satisfy property
P>? Why or why not? What about property Ps? List all the properties P; (with
i < 8) satisfied by ¢.

(b) Give an example of a permutation 7: [8] — [8] that satisfies properties P71, Py,
and Pg and no other properties P; with1 <i < 8.

(c) Give an example of a permutation 7t: [8] — [8] that does not satisfy any property
P;with1<i<8.

153

Chapter 7 Inclusion-Exclusion

i 1 2
1

3 4 5 6 7 8
o(i) 3 8 4 7 6 5 2
TABLE 7.19: A PERMUTATION DEFINED BY A TABLE

13. As in Example 7.6, let m and n be positive integers and X = [n]. Say that j € X
satisfies property P; for an i with 1 < i < m if i is a divisor of j.

(@) Let m = n = 15. Does 12 satisfy property P3? Why or why not? What about
y property y y
property Ps? List the properties P; with 1 < i < 15 that 12 satisfies.

(b) Give an example of an integer j with 1 < j < 15 that satisfies exactly two proper-
ties P; with 1 < i < 15.

(c) Give an example of an integer j with 1 < j < 15 that satisfies exactly four proper-
ties P; with 1 < i < 15 or explain why such an integer does not exist.

(d) Give an example of an integer j with 1 < j < 15 that satisfies exactly three prop-
erties P; with 1 < i < 15 or explain why such an integer does not exist.

14. How many surjections are there from an eight-element set to a six-element set?

15. A teacher has 10 books (all different) that she wants to distribute to John, Paul,
Ringo, and George, ensuring that each of them gets at least one book. In how many
ways can she do this?

16. A supervisor has nine tasks that must be completed and five employees to whom
she may assign them. If she wishes to ensure that each employee is assigned at least
one task to perform, how many ways are there to assign the tasks to the employees?

17. A professor is working with six undergraduate research students. He has 12 topics
that he would like these students to begin investigating. Since he has been working
with Katie for several terms, he wants to ensure that she is given the most challenging
topic (and possibly others). Subject to this, in how many ways can he assign the topics
to his students if each student must be assigned at least one topic?

18. List all the derangements of [4]. (For brevity, you may write a permutation o as a
string 6(1)c(2)c(3)c(4).)

19. How many derangements of a nine-element set are there?

20. A soccer team’s equipment manager is in a hurry to distribute uniforms to the last
six players to show up before a match. Instead of ensuring that each player receives his
own uniform, he simply hands a uniform to each of the six players. In how many ways

154

7.7 Exercises

could he hand out the uniforms so that no player receives his own uniform? (Assume
that the six remaining uniforms belong to the last six players to arrive.)

21. A careless payroll clerk is placing employees’ paychecks into envelopes that have
been pre-labeled. The envelopes are sealed before the clerk realizes he didn’t match
the names on the paychecks with the names on the envelopes. If there are seven em-
ployees, in how many ways could he have placed the paychecks into the envelopes so
that exactly three employees receive the correct paycheck?

22. The principle of inclusion-exclusion is not the only approach available for counting
derangements. We know that d; = 0 and d> = 1. Using this initial information, it is
possible to give a recursive form for d,. In this exercise, we consider two recursions
ford,.
(a) Give a combinatorial argument to prove that the number of derangements satis-
fies the recursive formula d,, = (n — 1)(d,—1 + d,—») for n > 2.
(b) Prove that the number of derangements also satisfies the recursive formula d,, =
ndy—1+(-1)" forn > 2.

Hint.

(a) For a derangement ¢, consider the integer k with o(k) = 1. Argue based on the
number of choices for k and then whether (1) = k or not.

(b) You may find it easiest to prove this using the other recursive formula and math-
ematical induction.

23. Determine ¢(18) by listing the integers it counts as well as by using the formula of
Theorem 7.14.

24. Compute ¢(756).
25. Given that 1625190883965792 = (2)°(3)*(11)2(13)(23)3(181), compute
$(1625190883965792).

26. Prove Proposition 7.15.

27. Atavery small school, there is a class with nine students in it. The students, whom
we will denote as A, B, C, D, E, F, G, H, and I, walk from their classroom to the
lunchroom in the order ABCDEFGHI. (Let’s say that A is at the front of the line.) On
the way back to their classroom after lunch, they would like to walk in an order so
that no student walks immediately behind the same classmate he or she was behind
on the way to lunch. (For instance, ACBDIHGFE and I[HGFEDCBA would meet their
criteria. However, they would not be happy with CEFGBADHI since it contains FG
and HI, so G is following F again and I is following H again.)

155

Chapter 7 Inclusion-Exclusion

(@) One student ponders how many possible ways there would be for them to line
up meeting this criterion. Help him out by determining the exact value of this
number.

(b) Is this number bigger than, smaller than, or equal to the number of ways they
could return so that no student walks in the same position as before (i.e., A is not
first, B is not second, ..., and I is not last)?

(c) What fraction (give it as a decimal) of the total number of ways they could line up
meet their criterion of no student following immediately behind the same student
on the return trip?

156

CHAPTER

Generating Functions

A standard topic of study in first-year calculus is the representation of functions as in-
finite sums called power series; such a representation has the form F(x) = 37", a,x".
Perhaps surprisingly these power series can also serve as very powerful enumerative
tools. In a combinatorial setting, we consider such power series of this type as another
way of encoding the values of a sequence {a, : n > 0} indexed by the non-negative
integers. The strength of power series as an enumerative technique is that they can
be manipulated just like ordinary functions, i.e., they can be added, subtracted and
multiplied, and for our purposes, we generally will not care if the power series con-
verges, which anyone who might have found all of the convergence tests studied in
calculus daunting will likely find reassuring. However, when we find it convenient to
do so, we will use the familiar techniques from calculus and differentiate or integrate
them term by term, and for those familiar series that do converge, we will use their
representations as functions to facilitate manipulation of the series.

8.1 Basic Notation and Terminology

With a sequence ¢ = {4, : n > 0} of real numbers, we associate a “function” F(x)

defined by
F(x) = Z apx".
n=0

The word “function” is put in quotes as we do not necessarily care about substituting
a value of x and obtaining a specific value for F(x). In other words, we consider F(x)
as a formal power series and frequently ignore issues of convergence.

It is customary to refer to F(x) as the generating function of the sequence 0. As we
have already remarked, we are not necessarily interested in calculating F(x) for specific
values of x. However, by convention, we take F(0) = ap.

157

Chapter 8 Generating Functions

Example 8.1. Consider the constant sequence ¢ = {a, : n > 0} with a,, = 1 for every
n > 0. Then the generating function F(x) of ¢ is given by

Fx)=T1+x+x2+x3+xt+ 20+ 20+,

which is called the infinite geometric series.

You may remember that this last expression is the Maclaurin series for the function
F(x) =1/(1 — x) and that the series converges when |x| < 1. Since we want to think in
terms of formal power series, let’s see that we can justify the expression

[se]

1 2, .3 AL 5. .6
—— =l+x+x "+ +x"+ 7+ x4+ =) &
1—x Z
n=0
without any calculus techniques. Consider the product
A-0)T+x+x2+22+xt+ x5 +x0+..1)

and notice that, since we multiply formal power series just like we multiply polyno-
mials (power series are pretty much polynomials that go on forever), we have that this
product is

A+x+22+x3+xt 40+ 20+) —x@Q+x+ 2+ 8+t + %+ 4%+) = 1.
Now we have that

Q-0 +x+22+3+xt+ 2 +x0+..) =1,

or, more usefully, after dividing through by 1 — x,

1 (o]
1-x :an‘
n=0

The method of Example 8.1 can be adapted to address the finite geometric series
Z?:o x/. In that case, we look at

n n n
103 =$0- 3
j=0 j=0 j=0

n n+1

=(I4+x+-+x")—(x+x2+--x" +x

158

8.1 Basic Notation and Terminology

Looking carefully, we see that everying cancels in the final expression except 1 — x"*1.

Dividing both sides by 1 — x gives us
1-— xn+1

1+x+---+x":? (811)

as the formula for the sum of a finite geometric series.

Example 8.2. Just like you learned in calculus for Maclaurin series, formal power series
can be differentiated and integrated term by term. The rigorous mathematical frame-
work that underlies such operations is not our focus here, so take us at our word that
this can be done for formal power series without concern about issues of convergence.

To see this in action, consider differentiating the power series of the previous exam-
ple. This gives

1

—(1)2:l+2x+3x2+4x3+5x4+6x5+7x6+...:ann—l.
- X

3
1l
—_

Integration of the series represented by 1/(1 + x) = 1/(1 — (—x)) yields (after a bit of
algebraic manipulation)

Before you become convinced that we’re only going to concern ourselves with gener-
ating functions that actually converge, let’s see that we can talk about the formal power
series

F(x) = Z nlx",
n=0

even though it has radius of convergence 0, i.e., the series F(x) converges only for x = 0,
so that F(0) = 1. Nevertheless, it makes sense to speak of the formal power series F(x)
as the generating function for the sequence {a, : n > 0}, ap = 1 and a,, is the number
of permutations of {1,2,...,n} whenn > 1.

For reference, we state the following elementary result, which emphasizes the form
of a product of two power series.

Proposition 8.3. Let A(x) = Y, ayx" and B(x) = ;7 byx™ be generating functions.
Then A(x)B(x) is the generating function of the sequence whose n'" term is given by

n

aobn +a1b,1 + a0+ + llnbo = Z akbn,k.
k=0

159

Chapter 8 Generating Functions

8.2 Another look at distributing apples or folders

A recurring problem so far in this book has been to consider problems that ask about
distributing indistinguishable objects (say apples) to distinct entities (say children).
We started in Chapter 2 by asking how many ways there were to distribute 40 apples
to 5 children so that each child is guaranteed to get at least one apple and saw that
the answer was C(39,4). We even saw how to restrict the situation so that one of the
children was limited and could receive at most 10 apples. In Chapter 7, we learned how
to extend the restrictions so that more than one child had restrictions on the number
of apples allowed by taking advantage of the Principle of Inclusion-Exclusion. Before
moving on to see how generating functions can allow us to get even more creative with
our restrictions, let’s take a moment to see how generating functions would allow us
to solve the most basic problem at hand.

Example 8.4. We already know that the number of ways to distribute n apples to 5
children so that each child gets at least one apple is C(n —1, 4), but it will be instructive
to see how we can derive this result using generating functions. Let’s start with an even
simpler problem: how many ways are there to distribute 1 apples to one child so that
each child receives at least one apple? Well, this isn't too hard, there’s only one way
to do it—give all the apples to the lucky kid! Thus the sequence that enumerates the
number of ways to do thisis {a,: n > 1} witha, = 1forall n > 1. Then the generating
function for this sequence is

3 X

3 L) =)
o) 1-x

x+x2+ 8+ = x(1+x+x2+x
How can we get from this fact to the question of five children? Notice what happens
when we multiply

(x+x2+)X+ +-)+ D)) a2+).

To see what this product represents, first consider how many ways can we get an
x0? We could use the x? from the first factor and x from each of the other four, or
x2 from the second factor and x from each of the other four, etc., meaning that the
coefficient on x° is 5 = C(5,4). More generally, what’s the coefficient on x" in the
product? In the expansion, we get an x" for every product of the form x*1xk2xks xks xks
where k1 + ky + k3 + k4 + ks = n. Returning to the general question here, we're really
dealing with distributing n apples to 5 children, and since k; > Ofori =1,2,...,5, we
also have the guarantee that each child receives at least one apple, so the product of
the generating function for one child gives the generating function for five children.

Let’s pretend for a minute that we didn’t know that the coefficients must be C(n —
1,4). How could we figure out the coefficients just from the generating function? The

160

8.2 Another look at distributing apples or folders

generating function we're interested in is x> /(1—x)°, which you should be able to pretty
quickly see satisfies

m = I@ = IZn(n—l)(n—Z)(n—B)x”“‘

n=0

x° x> g4 1 PR
1-x

[se]

nn-1)n-2)n=-3) . <\ ns
:Z a1 leZ(Z)X 1.

n=0 n=0

The coefficient on x™ in this series C(n — 1, 4), just as we expected.

We could revisit an example from Chapter 7 to see that if we wanted to limit a child
to receive at most 4 apples, we would use (x + x + x> + x%) as its generating function
instead of x/(1 — x), but rather than belabor that here, let’s try something a bit more
exotic.

Example 8.5. A grocery store is preparing holiday fruit baskets for sale. Each fruit bas-
ket will have 20 pieces of fruit in it, chosen from apples, pears, oranges, and grapefruit.
How many different ways can such a basket be prepared if there must be at least one
apple in a basket, a basket cannot contain more than three pears, and the number of
oranges must be a multiple of four?

Solution. Inorder to get at the number of baskets consisting of 20 pieces of fruit, let’s
solve the more general problem where each basket has n pieces of fruit. Our method is
simple: find the generating function for how to do this with each type of fruit individ-
ually and then multiply them. As in the previous example, the product will contain
the term x" for every way of assembling a basket of n pieces of fruit subject to our
restrictions. The apple generating function is x/(1 — x), since we only want positive
powers of x (corresponding to ensuring at least one apple). The generating function
for pears is (1 + x + x2 + x3), since we can have only zero, one, two, or three pears in
basket. For oranges we have 1/(1—x%) = 1+x*+x8+. - and the unrestricted grapefruit
give us a factor of 1/(1 — x). Multiplying, we have

1 1
L(1+x+x2+x3) il

= T+x+x2+x3).
1-x 1-x%1-x (1—x)2(1—x4)(XX +x)

Now we want to make use of the fact that (1 + x + x% + x3) = (1 —x*)/(1 - x) (by (8.1.1))
to see that our generating function is

(o]

X X o e nmn-1) ,_
(1_x)3:§;”(”‘”x =

n=0

161

Chapter 8 Generating Functions

S-S

n=0

Thus, there are C(n + 1, 2) possible fruit baskets containing n pieces of fruit, meaning
that the answer to the question we originally asked is C(21, 2) = 210.

The compact form of the solution to Example 8.5 suggests that perhaps there is a way
to come up with this answer without the use of generating functions. Thinking about
such an approach would be a good way to solidify your understanding of a variety of
the enumerative topics we have already covered.

Example 8.6. Find the number of integer solutions to the equation
X1+Xp+Xx3=n

(n > 0 an integer) with x; > O even, x, > 0,and 0 < x3 < 2.

Solution. Again, we want to look at the generating function we would have if each
variable existed individually and take their product. For x1, we get a factor of 1/(1-x2);
for x», we have 1/(1 - x); and for x3 our factor is (1 + x + x?). Therefore, the generating
function for the number of solutions to the equation above is

T+x+x* l+x+x?
1-x)1-x2) (1+x)(1-x)?

In calculus, when we wanted to integrate a rational function of this form, we would
use the method of partial fractions to write it as a sum of “simpler” rational functions
whose antiderivatives we recognized. Here, our technique is the same, as we can read-
ily recognize the formal power series for many rational functions. Our goal is to write

1+ x+x2 A B C

A+0)0-x2 1+x 1-x (1=x

for appropriate constants, A, B, and C. To find the constants, we clear the denomina-
tors, giving
T+x+x2=A(1-x)>+B(1-x2)+C(1+x).

Equating coefficients on terms of equal degree, we have:

1=A+B+C
1=-2A+C
1=A-B

162

8.2 Another look at distributing apples or folders

Solving the system, we find A = 1/4, B = —3/4, and C = 3/2. Therefore, our generating
function is

1 1 __§ 1 *_é 1
41+x 41-x 2(1-x)
_1 N n.,n 3 N n 3 N n-1
_ZZ(_DX _sz +§an
n=0 n=0 n=0

The solution to our question is thus the coefficient on x” in the above generating
function, which is

(" 3 3(n+D)
4 4 2 !

a surprising answer that would not be too easy to come up with via other methods!

The invocation of partial fractions in Example 8.6 is powerful, but solving the nec-
essary system of equations and then hoping that the resulting formal power series
have expansions we immediately recognize can be a challenge. If Example 8.6 had not
asked about the general case with n on the right-hand side of the equation but instead
asked specifically about n = 30, you might be wondering if it would just be faster to
write some Python code to generate all the solutions or more interesting to huddle up
and devise some clever strategy to count them. Fortunately, technology can help us
out when working with generating functions. In SageMath, we can use the series()
method to get the power series expansion of a given function. The two arguments to
series are the variable and the degree of the terms you want to truncate. In the cell
below, we ask SageMath to expand the generating function from Example 8.6 by giv-
ing us all the terms of degree at most 30 and then collapsing the rest of the series into
its form of big-Oh notation, which we discard by storing the output from series() in a
polynomial f(x).

Note that SageMath doesn't do well with implied

multiplication, so use lots of *'s in addition to lots
of parentheses.

f(x)= ((1+x+x*2)/((1+x)*(1-x)*2)).series(x,31)

f(x)

46%xx"30 + 44xx"29 + 43%xx”"28 + 41*xx”"27 + 40*xx"26 + 38*xx"25 + 37*xx"24
+ 35%xx"23 + 34%x”"22 + 32%x7%21 + 31xx7%20 + 29*xx*19 + 28*x"18 +
26%x*17 + 25%x7*16 + 23*%x7*15 + 22*%x*14 + 20*x*13 + 19%x*12 +
T7xx*11 + 16*x*10 + 14*%x*9 + 13xx*8 + 11*x*7 + 10*x"6 + 8xx"5 +
7*xx"4 + 5%x"3 + 4%x"2 + 2*%x + 1

163

Chapter 8 Generating Functions

If all we really want is the coefficient on a specific term, we can use the list() method
to turn the polyomial into a list of its coefficients and then index into that list using
standard SageMath or Python syntax:

coeffs=f(x).list ()
coeffs[30]

46

Let’s see that the answer agrees with what our formula in the solution to Example 8.6
gives us for n = 30:

n=30
(-1)*n/4 - (3/4) + 3*x(n+1)/2

46

That’s a relief, and so long as we only need a single coefficient, we're now in good
shape. But what if we really need a formula for the coefficient on x" in general? Let’s
see how we can use SageMath to help us with some of the other steps in Example 8.6.
The first thing we’ll want is the partial_fraction() method:

((T+x+x22) /((1+x)*(1-x)*2)).partial_fraction()

1/74/(x + 1) + 3/4/(x - 1) + 3/2/(x - 1)*"2

If you don’t like the way that looks, the pretty_print() function can make it easier to
read:

pretty_print (((1+x+x*2)/((1+x)*(1-x)*2)).partial_fraction())

Up to the location of a minus sign, this is what we got by hand, but we get it much faster!
From this stage, it’s frequently possible to use our knowledge of certain fundamental
power series that appear when doing the partial fractions expansion to come up with
the general form for the coefficient on an arbitrary term of the power series. To facilitate
this, we close this section with an example that illustrates how we can use solutions to
counting problems we have already studied in order to figure out the coefficients on
generating functions.

Example 8.7. Let n be a positive integer. What is the coefficient on x* in the generating

function)

—— 2
(1-x)

Solution. We have already encountered the case n = 5 in the midst of working on
Example 8.4, but there we appealed to calculus. Let’s take a look at this from the per-
spective of just counting. The generating function 1/(1-x) = 1+x+x%+- - - encodes the

164

8.3 Newton's Binomial Theorem

sequence for the number of ways to distribute n apples to one child. There’s only one
way to do that task: give the lucky kid all the apples. Multiplying together a bunch of
copies of 1/(1 — x) then serves to increase the number of children to whom the apples
are being distributed, and since each power series being multiplied starts with 1, we
are in the situation where the number of apples each child receives must be nonnegative.
This is therefore a problem from Section 2.5. We have n children and the coefficient
on x* is the number of ways of distributing k apples to them. This requires n artificial
apples, so we distribute k + n apples, which determine k + n — 1 gaps and we must
choose k — 1 of them as the locations for dividers. Therefore, we can conclude that

1 i(k+n—1)k i(kﬂa—l)k
- = X = X .
(1-x) pard k-1 prd n
It’s possible to arrive at this conclusion using techniques from calculus, but there are

a lot of factorials and —1s to monitor, so this combinatorial approach may be less error
prone!

8.3 Newton’s Binomial Theorem

In Chapter 2, we discussed the binomial theorem and saw that the following formula

holds for all integers p > 1:
p
P }‘ P n
1+x) (n)x .

n=0

You should quickly realize that this formula implies that the generating function for
the number of n-element subsets of a p-element set is (1 + x)?. The topic of generating
functions is what leads us to consider what happens if we encounter (1+x)? as a gener-
ating function with p not a positive integer. It turns out that, by suitably extending the
definition of the binomial coefficients to real numbers, we can also extend the binomial
theorem in a manner originally discovered by Sir Isaac Newton.

We’ve seen several expressions that can be used to calculate the binomial coefficients,
but in order to extend C(p, k) to real values of p, we will utilize the form

p_ Pl k)
k] k7

recalling that we’ve defined P(p, k) recursively as P(p,0) = 1 for all integers p > 0 and
P(p,k) =pP(p—1,k—-1)whenp > k > 0 (k an integer). Notice here, however, that the
expression for P(p, k) makes sense for any real number p, so long as k is a non-negative
integer. We make this definition formal.

165

Chapter 8 Generating Functions
Definition 8.8. For all real numbers p and nonnegative integers k, the number P(p, k)
is defined by

1. P(p,0) =1 for all real numbers p and

2. P(p, k) =pP(p — 1,k —1) for all real numbers p and integers k > 0.

(Notice that this definition does not require p > k as we did with integers.)
We are now prepared to extend the definition of binomial coefficient so that C(p, k)
is defined for all real p and nonnegative integer values of k. We do this as follows.

Definition 8.9. For all real numbers p and nonnegative integers k,

p_Pp, k)
k] k!

Note that P(p, k) = C(p, k) = 0 when p and k are integers with 0 < p < k. On the
other hand, we have interesting new concepts such as P(-5,4) = (=5)(-6)(-7)(-8) and

(—7/2) _ (57/2)(=9/2)(-11/2)(-13/2)(-15/2)

5 5!

With this more general definition of binomial coefficients in hand, we’re ready to
state Newton’s Binomial Theorem for all non-zero real numbers. The proof of this
theorem can be found in most advanced calculus books.

Theorem 8.10 (Newton’s Binomial Theorem). For all real p with p # 0,
1+x)f = Plan,
1+ =3 (n)x

Note that the general form reduces to the original version of the binomial theorem
when p is a positive integer.
8.4 An Application of the Binomial Theorem

In this section, we see how Newton’s Binomial Theorem can be used to derive another
useful identity. We begin by establishing a different recursive formula for P(p, k) than
was used in our definition of it.

Lemma 8.11. Foreachk >0, P(p,k+1) = P(p, k)(p — k).

166

8.4 An Application of the Binomial Theorem

Proof. When k = 0, both sides evaluate to p. Now assume validity when k = m for
some non-negative integer m. Then
Plp,m+2)=pP(p-1,m+1)
=plP(p =1, m)(p —1-m)]
=[pP(p =1, m)](p -1 -m)
=P(p,m+1[p - (m+1)] m
Our goal in this section will be to invoke Newton’s Binomial Theorem with the ex-

ponent p = —1/2. To do so in a meaningful manner, we need a simplified expression
for C(-1/2, k), which the next lemma provides.

2%k
Lemma 8.12. Foreachk > 0, (_1k/2) _ (_1)k%'

Proof. We proceed by induction on k. Both sides reduce to 1 when k = 0. Now assume
validity when k = m for some non-negative integer m. Then

(—1/2) _P(=1/2,m+1) _ P(=1/2,m)(~1/2 - m)

m+1] (m+1)! (m + 1)m!

C12-m(-1/2) _ om+1 ., ()
T om+1 (m)_(_ v 2o
2m+2

1 1 @m+2)@2m+1) (2m) B (e)

= (-1)™* .
22m (2m +2)2(m + 1)\ m 22m+2

O

Theorem 8.13. The function f(x) = (1 — 4x)~Y/2 is the generating function of the sequence
{(®"):n >0}

Proof. By Newton’s Binomial Theorem and Lemma 8.12, we know that

(1 —4x)22 = i (—1/2)(_4x)n

n
n=0
N -1/2
= Z(—1)"22"(/)x”
n
n=0
O (2
= Z (")x”. o
n
n=0
We will return to this generating function in Section 9.7, where it will play a role in

a seemingly new counting problem that actually is a problem we’ve already studied in
disguise.

167

Chapter 8 Generating Functions

Now recalling Proposition 8.3 about the coefficients in the product of two generating
functions, we are able to deduce the following corollary of Theorem 8.13 by squaring
the function f(x) = (1 — 4x)~"/2.

Corollary 8.14. Foralln > 0,

=-5RI)

k=0

8.5 Partitions of an Integer

A recurring theme in this course has been to count the number of integer solutions
to an equation of the form x; + x2 + -+ + xx = n. What if we wanted to count the
number of such solutions but didn’t care what k was? How about if we took this new
question and required that the x; be distinct (i.e., x; # x; for i # j)? What about if we
required that each x; be odd? These certainly don’t seem like easy questions to answer
at first, but generating functions will allow us to say something very interesting about
the answers to the last two questions.

By a partition P of an integer, we mean a collection of (not necessarily distinct) posi-
tive integers such that }};cp i = n. (By convention, we will write the elements of P from
largest to smallest.) For example, 2 + 2 + 1 is a partition of 5. For each n > 0, let p,
denote the number of partitions of the integer n (with pg = 1 by convention). Note that
ps = 22 as evidenced by the list in Figure 8.15. Note that there are 6 partitions of 8 into
distinct parts. Also there are 6 partitions of 8 into odd parts. While it might seem that
this is a coincidence, it in fact is always the case as Theorem 8.16 states. Before looking
at that theorem and its proof, let’s think about what a generating function for p,,, the
number of partitions of 1, would look like. Given a partition of #, we can count how
many 1’s appear, how many 2’s appear, and so on. This suggests a similarity with our
fruit basket problems earlier in the chapter, leading to the generating function

o (5[5 (5] (] - e

m=0 m=0 m=0 m=0

Here the factor whose sum contains terms x*" is accounting for the number of k’s in

the partition. While P(x) has a quite elegant form, that doesn’t mean that it’s terri-
bly useful for computing p,. In fact, providing an asymptotic estimate for p, was a
notoriously difficult problem, finally addressed by Hardy and Ramanujan in 1918. A
popular account of this can be found in Robert Kanigel’s 1991 book The Man who Knew
Infinity or the 2016 film with the same title.

168

8 distinct parts

7+1 distinct parts, odd parts
6+2 distinct parts

6+1+1

5+3 distinct parts, odd parts
5+2+1 distinct parts
5+1+1+1 odd parts

4+4

4+3+1 distinct parts

4+2+2

4+2+1+1

8.5 Partitions of an Integer

4+1+1+1+41

3+3+2

3+3+1+1 odd parts
3+2+42+1

3+2+1+1+1
3+1+1+1+1+1 odd parts
2424242

242424141
2+2+1+14+1+1
2+1+1+14+1+1+1

1+1+1+1+1+1+1+1 odd parts

FiGuURE 8.15: THE PARTITIONS OF 8, NOTING THOSE INTO DISTINCT PARTS AND THOSE INTO ODD
PARTS.

Proving the relationship between the number of partitions into distinct parts and the
number of partitions into odd parts will involve restricted versions of the generating
function P(x) from above.

Theorem 8.16. For each n > 1, the number of partitions of n into distinct parts is equal to the
number of partitions of n into odd parts.

Proof. The generating function D(x) for the number of partitions of # into distinct parts
is

[se]

D(x) =]—[(1 +xM).

n=1

On the other hand, the generating function O(x) for the number of partitions of # into
odd parts is

(o]

1
O(X) = 1_[m

n=1

169

Chapter 8 Generating Functions

To see that D(x) = O(x), we note that 1—x?" = (1-x")(1+x") forall n > 1. Therefore,

T R = O O | TGl
b =| Ja+s =] | 7= = §5 0

n=1 n=1

_ [T, (1 - ") _ a 1
= H;ozl(l — x2n—1) HZO:1(1 _ x2n) - B 1= x2n-1
= O(x). a

8.6 Exponential generating functions

If we had wanted to be absolutely precise earlier in the chapter, we would have referred
to the generating functions we studied as ordinary generating functions or even or-
dinary power series generating functions. This is because there are other types of
generating functions, based on other types of power series. In this section, we briefly
introduce another type of generating function, the exponential generating function.
While an ordinary generating function has the form }}, a,x", an exponential gener-
ating function is based on the power series for the exponential function e*. Thus, the
exponential generating function for the sequence {a,: n > 0} is 3}, a,x"/n!. In this
section, we will see some ways we can use exponential generating functions to solve
problems that we could not tackle with ordinary generating functions. However, we
will only scratch the surface of the potential of this type of generating function. We be-
gin with the most fundamental exponential generating function, in analogy with the
ordinary generating function 1/(1 — x) of Example 8.1.

Example 8.17. Consider the constant sequence1,1,1,1,.... Then the exponential gen-
erating function for this sequence is

o0 xn
E(x) = Z -
n=0

From calculus, you probably recall that this is the power series for the exponential
function e*, which is why we call this type of generating function an exponential gen-
erating function. From this example, we can quickly recognize that the exponential
generating function for the number of binary strings of length n is ¢** since

(o]

2x _ N (zx)n _ nxn
e = Z il = ZZ F
n=0 n=0

170

8.6 Expomnential generating functions

In our study of ordinary generating functions earlier in this chapter, we considered
examples where quantity (number of apples, etc.) mattered but order did not. One of
the areas where exponential generating functions are preferable to ordinary generating
functions is in applications where order matters, such as counting strings. For instance,
although the bit strings 10001 and 011000 both contain three zeros and two ones, they
are not the same strings. On the other hand, two fruit baskets containing two apples
and three oranges would be considered equivalent, regardless of how you arranged
the fruit. We now consider a couple of examples to illustrate this technique.

Example 8.18. Suppose we wish to find the number of ternary strings in which the
number of Os is even. (There are no restrictions on the number of 1s and 2s.) As with
ordinary generating functions, we determine a generating function for each of the dig-
its and multiply them. For 1s and 2s, since we may have any number of each of them,
we introduce a factor of e¢* for each. For an even number of 0s, we need

X0 ks x2n
1+ —+—+—+---= .
20 4! el ;J(Zn)!

Unlike with ordinary generating functions, we cannot represent this series in a more
compact form by simply substituting a function of x into the series for e¥. However,
with a small amount of cleverness, we are able to achieve the desired result. To do this,

first notice that
2 3

EEPURNE. ST ST ol G 054
et =1 x+2! 3!+ —Z;) T
n=l

Thus, when we add the series for e~ to the series for e* all of the terms with odd
powers of x will cancel! We thus find

2 4
X pmx = L
et +e _2+22!+24!+ ,

which is exactly twice what we need. Therefore, the factor we introduce for Os is (e* +
e)/2.
Now we have an exponential generating function of

[e]

eXe™ . etet 1 31xT o x"
2 T ‘Ezn!JrZH‘

n=0 n=0

To find the number of ternary strings in which the number of Os is even, we thus need
to look at the coefficient on x" /n! in the series expansion. In doing this, we find that
the number of ternary strings with an even number of Os is (3" + 1)/2.

171

Chapter 8 Generating Functions
We can also use exponential generating functions when there are bounds on the
number of times a symbol appears, such as in the following example.

Example 8.19. How many ternary strings of length # have at least one 0 and at least
one 1?

Solution. To ensure that a symbol appears at least once, we need the following ex-
ponential generating function

You should notice that this is almost the series for e*, except it’s missing the first term.
Thus, },,_, x"/n! = e* — 1. Using this, we now have

(e¥ = 1)(e® —1)e™ = &3 — 202 + ¢~

as the exponential generating function for this problem. Finding the series expansion,

we have
o 3" x"
Z n!
n=0

Now we can answer the question by reading off the coefficient on x" /n!, which is 3" —
2-2"+1.

[ee]

o 2y x"
—22 +) =,
n! n!

n=0

n=0

Before proceeding to an additional example, let’s take a minute to look at another
way to answer the question from the previous example. To count the number of ternary
strings of length n with at least one 0 and at least one 1, we can count all ternary strings
of length n and use the principle of inclusion-exclusion to eliminate the undesirable
strings lacking a 0 and/or a 1. If a ternary string lacks a 0, we're counting all strings
made up of 1s and 2s, so there are 2" strings. Similarly for lacking a 1. However, if
we subtract 2 - 2", then we’ve subtracted the strings that lack both a 0 and a 1 twice.
A ternary string that has no Os and no 1s consists only of 2s. There is a single ternary
string of length n satisfying this criterion. Thus, we obtain 3" — 2 - 2" + 1 in another
way.

Example 8.20. Alice needs to set an eight-digit passcode for her mobile phone. The
restrictions on the passcode are a little peculiar. Specifically, it must contain an even
number of 0Os, at least one 1, and at most three 2s. Bob remarks that although the re-
strictions are unusual, they don’t do much to reduce the number of possible passcodes
from the total number of 108 eight-digit strings. Carlos isn’t convinced that’s the case,
so he works up an exponential generating function as follows. For the seven digits on

172

8.7 Discussion

which there are no restrictions, a factor of ¢7* is introduced. To account for an even
number of 0s, he uses (e* + ¢™*)/2. For at least one 1, a factor of e* — 1 is required.
Finally, 1 + x + x2/2! + x3 /3! accounts for the restriction of at most three 2s. The expo-
nential generating function for the number of n-digit passcodes is thus

x2 a8
x
((3 —1)(1+X+E+§).

et +e™
2

Dave sees this mess written on the whiteboard and groans. He figures they’ll be
there all day multiplying and making algebra mistakes in trying to find the desired
coefficient. Alice points out that they don’t really need to find the coefficient on x" /n!
for all n. Instead, she suggests they use SageMath to just find the coefficient on x®/8!.

F(x) = (exp(7xx)*((exp(x)+exp(-1*x))/(2))*(exp(x)-1)*\
(1+x+x*2/2+x*3/factorial(3))).series(x,9)
f(x).list()[8]

33847837/40320

Since 8! = 40320, this tells them that there are 33847837 valid passcodes for the mobile
phone. A quick calculation shows that Bob was totally off base in claiming that there
was no significant reduction in the number of possible strings to use as a passcode.
The total number of valid passcodes is only 33.85% of the total number of eight-digit
strings!

Exponential generating functions are useful in many other situations beyond enu-
merating strings. For instance, they can be used to count the number of n-vertex, con-
nected, labeled graphs. However, doing so is beyond the scope of this book. If you
are interested in learning much more about generating functions, the book generating-
functionology by Herbert S. Wilf is available online at http: //www.math.upenn.edu/~wilf/
DownldGF . html.

8.7 Discussion

After studying the proof that the number of partitions of an integer into odd parts is the
same as the number of partitions of that integer into distinct parts, Yolanda was beside
herself. “Do you guys realize what we just did? We showed that two quantities were
equal without saying anything about what those quantities actually were. That’s really
neat,” she said. Nobody said anything for a long time, but after some time Dave said
“There might be other instances where you would want to be able to communicate
fully, yet hold back on every last detail.” Bob said “I don't get it.” Alice interjected
a comment that was more of question than a statement “Do you mean that parties

173

http://www.math.upenn.edu/~wilf/DownldGF.html
http://www.math.upenn.edu/~wilf/DownldGF.html

Chapter 8 Generating Functions

may want to communicate, while maintaining that the conversation did not occur?”
Carlos added “Or maybe they just want to be able to detect whether anyone else was
listening.” Now Zori was nearly happy. Privacy and security were big ticket items.

8.8 Exercises

Computer algebra systems can be powerful tools for working with generating func-
tions. However, unless an exercise specifically suggests that you use a computer alge-
bra system, we strongly encourage you to solve the problem by hand. This will help
you develop a better understanding of how generating functions can be used. You
might consider editing the content of the SageMathCells in Section 8.2 to assist with
solving problems here where a computer algebra system is suggested, and in some
cases, we have included a SageMathCell within the exercise for you to use.

For all exercises in this section, “generating function” should be taken to mean “or-
dinary generating function.” Exponential generating functions are only required in
exercises specifically mentioning them.

1. For each finite sequence below, give its generating function.

@) 1,4,6,4,1 @ 1,1,1,1,1,1,1
() 1,1,1,1,1,0,0,1 (e) 3,0,0,1,-4,7
(©) 0,0,0,1,2,3,4,5 (f) 0,0,0,0,1,2,-3,0,1

2. For each infinite sequence suggested below, give its generating function in closed
form, i.e., not as an infinite sum. (Use the most obvious choice of form for the general
term of each sequence.)

@@ 0,1,1,1,1,1,... (g) 1,1,1,0,0,1,1,1,1,1,1,1,1,1,...
() 1,0,0,1,0,0,1,0,0,1,0,0,1,... (h) 0,0,0,1,2,3,4,5,6,...
(c) 1,2,4,8,16,32, ... @ 3,2,4,1,1,1,1,1,1,...
(d) 0,0,0,0,1,1,1,1,1,1,1,1,1,1,1, ... G) 0,2,0,0,2,0,0,2,0,0,2,0,0,2,...
e 1,-1,1,-1,1,-1,1,-1,1,-1,... k) 6,0,-6,0,6,0,-6,0,6, ...

8 8 8 n+2
() 28,27(1),26(2),...,(8),0,0,0,... 1)) 1,3,6,10,15,...,())

3. For each generating function below, give a closed form for the n'" term of its asso-
ciated sequence.

174

(@ (1+x)"

x3

1— x4
4

1-x
1-—x

1+x2—x

(e

(6

® 7o

h) —
2+x+1
1-x7

(i)

G) 3x4+7x3—x2+10+1

4. Find the coefficient on x19

@ P+ +x0)t+ 2+)1+ + x4 xB)

b)) A+ +xt+x0+)+ 2+ 20+ + 18+)

(0 1+x)"

X

1—3x5
1
(1-x)3

(d)
(e)

in each of the generating functions below.

8.8 Exercises

175

Chapter 8 Generating Functions

5. Find the generating function for the number of ways to create a bunch of n balloons
selected from white, gold, and blue balloons so that the bunch contains at least one
white balloon, at least one gold balloon, and at most two blue balloons. How many
ways are there to create a bunch of 10 balloons subject to these requirements?

6. A volunteer coordinator has 30 identical chocolate chip cookies to distribute to six
volunteers. Use a generating function (and computer algebra system) to determine the
number of ways she can distribute the cookies so that each volunteer receives at least
two cookies and no more than seven cookies.

f(x) = x # Generating function on right here
f(x).series(x,n) # Replace n with suitable value

7. Consider the inequality
X1+Xo+Xx3+x4<1n

where x1, x2, x3, x4, 1 > 0 are all integers. Suppose also that x> > 2, x3 is a multiple of
4,and 0 < x4 < 3. Let ¢, be the number of solutions of the inequality subject to these
restrictions. Find the generating function for the sequence {c,: n > 0} and use it to
find a closed formula for c¢,,.

8. Find the generating function for the number of ways to distribute blank scratch
paper to Alice, Bob, Carlos, and Dave so that Alice gets at least two sheets, Bob gets at
most three sheets, the number of sheets Carlos receives is a multiple of three, and Dave
gets at least one sheet but no more than six sheets of scratch paper. Without finding
the power series expansion for this generating function (or using a computer algebra
system!), determine the coefficients on x? and x? in this generating function.

9. What is the generating function for the number of ways to select a group of n stu-
dents from a class of p students?

10. Using generating functions, find a formula for the number of different types of
fruit baskets containing of n pieces of fruit chosen from pomegranates, bananas, ap-
ples, oranges, pears, and figs that can be made subject to the following restrictions:

¢ there are either 0 or 2 pomegranates,

¢ there is at least 1 banana,

¢ the number of figs is a multiple of 5,

¢ there are at most 4 pears, and

¢ there are no restrictions on the number of apples or oranges.

How many ways are there to form such a fruit basket with n = 25 pieces of fruit?

176

8.8 Exercises

11. Using generating functions, find the number of ways to make change for a 100
dollar bill using only dollar coins and $1, $2, and $5 bills.

f(x) = x # Generating function on right here
pretty_print ((f(x)).partial_fraction())

Hint. Find the partial fractions expansion for your generating function. Be careful
here, as you want a partial fraction expansion in which all coefficients for your denom-
inator polynomials have integer coefficients. The partial_fraction() method in Sage-
Math should be useful here, and pretty_print will make it easier to read. Once you
have the right partial fractions expansion, you may find the following identity helpful

p(x) _p)-x)
T+x+x2+-+xk 1 — xk+1

7

where p(x) will be a polynomial in this instance.

12. A businesswoman is traveling in Belgium and wants to buy chocolates for herself,
her husband, and their two daughters. A store has dark chocolate truffles (€ 10/box),
milk chocolate truffles (€ 8/box), nougat-filled chocolates (€ 5/box), milk chocolate
bars (€ 7/bar), and 75% cacao chocolate bars (€ 11/bar). Her purchase is to be subject
to the following:

¢ Only the daughters like dark chocolate truffles, and her purchase must ensure
that each daughter gets an equal number of boxes of them (if they get any).

At least two boxes of milk chocolate truffles must be purchased.

If she buys any boxes of nougat-filled chocolates, then she buys exactly enough
that each family member gets precisely one box of them.

At most three milk chocolate bars may be purchased.
e There are no restrictions on the number of 75% cacao chocolate bars.

Let s, be the number of ways the businesswoman can spend exactly € n (not buy n
items!) at this chocolate shop. Find the generating function for the sequence {s,: n >
0}. In how many ways can she spend exactly € 100 at the chocolate shop? (A computer
algebra system will be helpful for finding coefficients.)

f(x) = x # Generating function on right here
f(x).series(x,n) # Replace n with suitable value

13. Bags of candy are being prepared to distribute to the children at a school. The
types of candy available are chocolate bites, peanut butter cups, peppermint candies,
and fruit chews. Each bag must contain at least two chocolate bites, an even number of

177

Chapter 8 Generating Functions

peanut butter cups, and at most six peppermint candies. The fruit chews are available
in four different flavors—lemon, orange, strawberry, and cherry. A bag of candy may
contain at most two fruit chews, which may be of the same or different flavors. Beyond
the number of pieces of each type of candy included, bags of candy are distinguished
by using the flavors of the fruit chews included, not just the number. For example, a
bag containing two orange fruit chews is different from a bag containing a cherry fruit
chew and a strawberry fruit chew, even if the number of pieces of each other type of
candy is the same.

(a) Let b, be the number of different bags of candy with 1 pieces of candy that can be
formed subject to these restrictions. Find the generating function for the sequence
{by:n > 0}.

(b) Suppose the school has 400 students and the teachers would like to ensure that
each student gets a different bag of candy. However, they know there will be
tights if the bags do not all contain the same number of pieces of candy. What is
the smallest number of pieces of candy they can include in the bags that ensures
each student gets a different bag of candy containing the same number of pieces
of candy?

14. Make up a combinatorial problem (similar to those found in this chapter) that
leads to the generating function

(1 + x% + x*)x?
(1—x)3(1—x3)(1 —x10)°

15. Tollbooths in Illinois accept all U.S. coins, including pennies. Carlos has a very
large supply of pennies, nickels, dimes, and quarters in his car as he drives on a toll-
way. He encounters a toll for $ 0.95 and wonders how many different ways he could
use his supply of coins to pay the toll without getting change back. (A computer al-
gebra system is probably the best way to get the required coefficient once you have a
generating function, since you're not asked for the coefficient on x".)

(a) Use a generating function and computer algebra system to determine the number
of ways Carlos could pay his $ 0.95 toll by dropping the coins together into the
toll bin. (Assume coins of the same denomination cannot be distinguished from
each other.)

(b) Suppose that instead of having a bin into which motorists drop the coins to pay
their toll, the coins must be inserted one-by-one into a coin slot. In this scenario,
Carlos wonders how many ways he could pay the $ 0.95 toll when the order the
coins are inserted matters. For instance, in the previous part, the use of three quar-
ters and two dimes would be counted only one time. However, when the coins

178

8.8 Exercises

must be inserted individually into a slot, there are 10 = C(5, 2) ways to insert this
combination. Use a generating function and computer algebra system to deter-
mine the number of ways that Carlos could pay the $ 0.95 toll when considering
the order the coins are inserted.

f(x) = x # Generating function on right here
f(x).series(x,n) # Replace n with suitable value

Hint. For part b, you really want an ordinary generating function and not an expo-
nential generating function, despite the fact that order matters. Once you think you
have a generating function that works, you might check the coefficients on x5,..., x10

by hand to make sure that you're on the right track.
16. List the partitions of 9. Write a D next to each partition into distinct parts and an
O next to each partition into odd parts.

17. Use generating functions to find the number of ways to partition 10 into odd parts.

18. What is the smallest integer that can be partitioned in at least 1000 ways? How
many ways can it be partitioned? How many of them are into distinct parts? (A com-
puter algebra system will be helpful for this exercise.)

19. What is the generating function for the number of partitions of an integer into even
parts?

20. Find the exponential generating function (in closed form, not as an infinite sum)
for each infinite sequence {a,,: n > 0} whose general term is given below.

(@) a, =5" (d) a, =n!
(b) a, = (-1)"2" (e) ay=n
(c) an = 3n+2 (f) an=1/(n+1)

21. For each exponential generating function below, give a formula in closed form for
the sequence {a,: n > 0} it represents.

@ e (©) 11
X
(b) x2e3* @d) e*'

22. Find the coefficient on x!°/10! in each of the exponential generating functions be-
low.

179

Chapter 8 Generating Functions

(a) e (d) xe3 —x2
e¥ —e™ 1

® 2 © 1%

(©) % () e*

23. Find the exponential generating function for the number of strings of length n
formed from the set {a, b, ¢, d} if there must be at least one a and the number of ¢’s
must be even. Find a closed formula for the coefficients of this exponential generating
function.

24. Find the exponential generating function for the number of strings of length n
formed from the set {a, b, ¢, d} if there must be at least one a and the number of ¢’s
must be odd. Find a closed formula for the coefficients of this exponential generating
function.

25. Find the exponential generating function for the number of strings of length n
formed from the set {a, b, ¢, d} if there must be at least one a, the number of b’s must
be odd, and the number of d’s is either 1 or 2. Find a closed formula for the coefficients
of this exponential generating function.

26. Find the exponential generating function for the number of alphanumeric strings
of length n formed from the 26 uppercase letters of the English alphabet and 10 decimal
digits if

¢ each vowel must appear at least one time;

¢ the letter T must appear at least three times;

¢ the letter Z may appear at most three times;

¢ each even digit must appear an even number of times; and

¢ each odd digit must appear an odd number of times.
27. Consider the inequality
X1+x2+x3+x4<n

where x1, x2, X3, x4, 1 > 0 are all integers. Suppose also that xo > 2, x3 is a multiple of
4,and 1 < x4 < 3. Let ¢, be the number of solutions of the inequality subject to these
restrictions. Find the generating function for the sequence {c,: n > 0} and use it to
find a closed formula for ¢,,.

Hint. Yes, this is very close to Exercise 8.8.7. However, the bounds on x4 are different
here. You might try using a computer algebra system to expedite finding the partial

180

8.8 Exercises

fractions expansion, which will have several terms whose power series you can work
with quickly. For the term involving 1/(1 + x2), work out the series by hand. You may
find that your solution to this problem has two parts—one for when # is even and
another for when 7 is odd.

28. Prove Proposition 8.3 about the coefficients in the product of two ordinary gener-
ating functions.

181

CHAPTER

Recurrence Equations

We have already seen many examples of recurrence in the definitions of combinatorial
functions and expressions. The development of number systems in Appendix B lays
the groundwork for recurrence in mathematics. Other examples we have seen include
the Collatz sequence of Example 1.8 and the binomial coefficients. In Chapter 3, we also
saw how recurrences could arise when enumerating strings with certain restrictions,
but we didn’t discuss how we might get from a recursive definition of a function to an
explicit definition depending only on 7, rather than earlier values of the function. In
this chapter, we present a more systematic treatment of recurrence with the end goal of
finding closed form expressions for functions defined recursively—whenever possible.
We will focus on the case of linear recurrence equations. At the end of the chapter, we
will also revisit some of what we learned in Chapter 8 to see how generating functions
can also be used to solve recurrences.

9.1 Introduction

9.1.1 Fibonacci numbers

One of the most well-known recurrences arises from a simple story. Suppose that a
scientist introduces a pair of newborn rabbits to an isolated island. This species of
rabbits is unable to reproduce until their third month of life, but after that produces a
new pair of rabbits each month. Thus, in the first and second months, there is one pair
of rabbits on the island, but in the third month, there are two pairs of rabbits, as the
first pair has a pair of offspring. In the fourth month, the original pair of rabbits is still
there, as is their first pair of offspring, which are not yet mature enough to reproduce.
However, the original pair gives birth to another pair of rabbits, meaning that the island
now has three pairs of rabbits. Assuming that there are no rabbit-killing predators on
the island and the rabbits have an indefinite lifespan, how many pairs of rabbits are on
the island in the tenth month?

Let’s see how we can get a recurrence from this story. Let f, denote the number of

183

Chapter 9 Recurrence Equations

pairs rabbits on the island in month n. Thus, f1 =1, f =1, f3 = 2, and f; = 3 from
our account above. How can we compute f,? Well, in the nth month we have all the
pairs of rabbits that were there during the previous month, which is f,,_1; however,
some of those pairs of rabbits also reproduce during this month. Only the ones who
were born prior to the previous month are able to reproduce during month 7, so there
are f,_p pairs of rabbits who are able to reproduce, and each produces a new pair of
rabbits. Thus, we have that the number of rabbits in month n is f, = fy—1 + fu—2 for
n > 3 with fi = fo = 1. The sequence of numbers {f,: n > 0} (we take fy = 0, which
satisfies our recurrence) is known as the Fibonacci sequence after Leonardo of Pisa,
better known as Fibonacci, an Italian mathematician who lived from about 1170 until
about 1250. The terms fo, f1, ..., f20 of the Fibonacci sequence are

0,1,1,2,3,5,8,13,21,34,55, 89, 144,233, 377,610,987, 1597, 2584, 4181, 6765.

Thus, the answer to our question about the number of pairs of rabbits on the island
in the tenth month is 55. That’s really easy to compute, but what if we asked for the
value of figoo in the Fibonacci sequence? Could you even tell whether the following
inequality is true or false—without actually finding fi00?

f1o00 < 232748383849990383201823093383773932

Consider the sequence {f,+1/f: : n > 1} of ratios of consecutive terms of the Fi-
bonacci sequence. Figure 9.1 shows these ratios for n < 18.

1/1 = 1.0000000000 89/55 = 1.6181818182
2/1 = 2.0000000000 144/89 = 1.6179775281
3/2 = 1.5000000000 233/144 = 1.6180555556
5/3 = 1.6666666667 377/233 = 1.6180257511
8/5 = 1.6000000000 610/377 = 1.6180371353
13/8 = 1.6250000000 987/610 = 1.6180327869
21/13 = 1.6153846154 1597/987 = 1.6180344478
34/21 = 1.6190476190 2584/1597 = 1.6180338134
55/34 = 1.6176470588 4181/2584 = 1.6180340557

FiGURE 9.1: THE RATIOS fy,41/fn FOR 1 < 18

The ratios seem to be converging to a number. Can we determine this number? Does
this number have anything to do with an explicit formula for f, (if one even exists)?

184

9.1 Introduction

Example 9.2. The Fibonacci sequence would not be as well-studied as it is if it were only
good for counting pairs of rabbits on a hypothetical island. Here’s another instance
which again results in the Fibonacci sequence. Let ¢, count the number of waysa2xn
checkerboard can be covered by 2 x1 tiles. Then ¢; = 1 and ¢, = 2 while the recurrence
isjust c,4+2 = cp41 + Cp, since either the rightmost column of the checkerboard contains
a vertical tile (and thus the rest of it can be tiled in c¢,+1 ways) or the rightmost two
columns contain two horizontal tiles (and thus the rest of it can be tiled in ¢, ways).

9.1.2 Recurrences for strings

In Chapter 3, we saw several times how we could find recurrences that gave us the
number of binary or ternary strings of length n when we place a restriction on certain
patterns appearing in the string. Let’s recall a couple of those types of questions in
order to help generate more recurrences to work with.

Example 9.3. Let a, count the number of binary strings of length #n in which no two
consecutive characters are 1’s. Evidently, a1 = 2 since both binary strings of length 1
are “good.” Also, a; = 3 since only one of the four binary strings of length 2 is “bad,”,
namely (1,1). And a3 = 5, since of the 8 binary strings of length 3, the following three
strings are “bad”:

(1,1,0),(0,1,1),(1,1,1).

More generally, it is easy to see that the sequence satisfies the recurrence a,4» = a,41 +
a,, since we can partition the set of all “good” strings into two sets, those ending in 0
and those ending in 1. If the last bit is 0, then in the first n + 1 positions, we can have
any “good” string of length n + 1. However, if the last bit is 1, then the preceding bit
must be 0, and then in the first n positions we can have any “good” string of length 7.

As a result, this sequence is just the Fibonacci numbers, albeit offset by 1 position,
ie a, = fn+1-

Example 9.4. Let t,, count the number of ternary strings in which we never have (2, 0)
occurring as a substring in two consecutive positions. Now t; = 3 and ¢, = 8, as of the
9 ternary strings of length 2, exactly one of them is “bad.” Now consider the set of all
good strings grouped according to the last character. If this characterisa 2 or a 1, then
the preceding # + 1 characters can be any “good” string of length n + 1. However, if the
last character is a 0, then the first n + 1 characters form a good string of length n + 1
which does not end in a 2. The number of such strings is t,41 — t,. Accordingly, the
recurrence is ¢, = 3t,41 — t,. In particular, t3 = 21.

185

Chapter 9 Recurrence Equations

9.1.3 Lines and regions in the plane

Our next example takes us back to one of the motivating problems discussed in Chap-
ter 1. In Figure 9.5, we show a family of 4 lines in the plane. Each pair of lines intersects
and no point in the plane belongs to more than two lines. These lines determine 11 re-
gions.

3
2
6
8
J 9
10

11

FiGuRE 9.5: LINES AND REGIONS

We ask how many regions a family of 1000 lines would determine, given these same
restrictions on how the lines intersect. More generally, let 7, denote the number of
regions determined by 7 lines. Evidently, r; = 2, =4, r3 =7 and r4 = 11. Now it is
easy to see that we have the recurrence 7,41 = r, + 1 + 1. To see this, choose any one of
the nn + 1 lines and call it /. Line I intersects each of the other lines and since no point
in the plane belongs to three or more lines, the points where [intersects the other lines
are distinct. Label them consecutively as x1, xp, ..., x,. Then these points divide line
I into n + 1 segments, two of which (first and last) are infinite. Each of these segments
partitions one of the regions determined by the other 7 lines into two parts, meaning
we have the 7, regions determined by the other # lines and n + 1 new regions that /
creates.

9.2 Linear Recurrence Equations

What do all of the examples of the previous section have in common? The end result
that we were able to achieve is a linear recurrence, which tells us how we can com-
pute the n'! term of a sequence given some number of previous values (and perhaps
also depending nonrecursively on n as well, as in the last example). More precisely a

186

9.3 Advancement Operators

recurrence equation is said to be linear when it has the following form
Cofn+k + C1nsk-1 + C2Ansk—2 + -+ + Cky = g(n),

where k > 1is an integer, o, c1, . . ., ¢k are constants with cp, cx # 0,and g : Z — Risa
function. (What we have just defined may more properly be called a linear recurrence
equation with constant coefficients, since we require the c; to be constants and prohibit
them from depending on n. We will avoid this additional descriptor, instead choosing
to speak of linear recurrence equations with nonconstant coefficients in case we allow
the ¢; to be functions of n.) A linear equation is homogeneous if the function g(n) on
the right hand side is the zero function. For example, the Fibonacci sequence satisfies
the homogeneous linear recurrence equation

Apy2 — Apy1 —ay = 0.

Note that in this example, k =2, co =1 and ¢, = -1.
As a second example, the sequence in Example 9.4 satisfies the homogeneous linear
recurrence equation
thy2 =3ty + 1, =0.

Again, k =2 withcp = ¢, = 1.
On the other hand, the sequence r,, defined in Subsection 9.1.3 satisfies the nonho-
mogeneous linear recurrence equation

fne1—typ =n+1.

Inthiscase,k =1,co =1and ¢ = —1.

Our immediate goal is to develop techniques for solving linear recurrence equations
of both homogeneous and nonhomogeneous types. We will be able to fully resolve
the question of solving homogeneous linear recurrence equations and discuss a sort of
“guess-and-test” method that can be used to tackle the more tricky nonhomogeneous

type.

9.3 Advancement Operators

Much of our motivation for solving recurrence equations comes from an analogous
problem in continuous mathematics—differential equations. You don’t need to have
studied these beasts before in order to understand what we will do in the remainder
of this chapter, but if you have, the motivation for how we tackle the problems will be
clearer. As their name suggests, differential equations involve derivatives, which we
will denote using “operator” notation by D f instead of the Leibniz notation df /dx. In
our notation, the second derivative is D2 f, the third is D3 f, and so on. Consider the
following example.

187

Chapter 9 Recurrence Equations

Example 9.6. Solve the equation
Df=3f
if £(0) =2.

Solution. Evenif you've not studied differential equations, you should recognize that
this question is really just asking us to find a function f such that f(0) = 2 and its
derivative is three times itself. Let’s ignore the initial condition f(0) = 2 for the mo-
ment and focus on the meat of the problem. What function, when you take its deriva-
tive, changes only by being multiplied by 3? You should quickly think of the function
%, since D(e%*) = 3¢>*, which has exactly the property we desire. Of course, for any
constant ¢, the function ce®* also satisfies this property, and this gives us the hook we
need in order to satisfy our initial condition. We have f(x) = ce3* and want to find ¢
such that f(0) = 2. Now f(0) = ¢ - 1, so ¢ = 2 does the trick and the solution to this
very simple differential equation is f(x) = 2¢3.

With differential equations, we apply the differential operator D to differentiable
(usually infinitely differentiable) functions. For recurrence equations, we consider the
vector space V whose elements are functions from the set Z of integers to the set C of
complex numbers. We then consider a function A : V. — V, called the advancement
operator, and defined by A f(n) = f(n + 1). (By various tricks and sleight of hand, we
can extend a sequence {a,: n > np} to be a function whose domain is all of Z, so this
technique will apply to our problems.) More generally, A? f(n) = f(n +p) whenp isa
positive integer.

Example 9.7. Let f € V be defined by f(n) = 7n —9. Then we apply the advancement
operator polynomial 3A? — 5A + 4 to f with n = 0 as follows:

(3A2 —5A +4)f(0) = 3f(2) = 5£(1) + 4£(0) = 3(5) - 5(~2) + 4(-9) = ~11.

As an analogue of Example 9.6, consider the following simple example involving the
advancement operator.

Example 9.8. Suppose that the sequence {s,,: n > 0} satisfies so = 3 and s,,4+1 = 25, for
n > 1. Find an explicit formula for s,,.

Solution. First, let’s write the question in terms of the advancement operator. We can
define a function f(n) = s, for n > 0, and then the information given becomes that
f(0)=3and

Af(n)=2f(n), n > 0.

What function has the property that when we advance it, i.e., evaluate it at n + 1, it
gives twice the value that it takes at n? The first function that comes into your mind
should be 2". Of course, just like with our differential equation, for any constant c, c2"

188

9.3 Advancement Operators

also has this property. This suggests that if we take f(n) = 2", we're well on our way
to solving our problem. Since we know that f(0) = 3, we have f(0) = c2° = ¢, so ¢ = 3.
Therefore, s, = f(n) = 3-2" for n > 0. This clearly satisfies our initial condition, and
now we can check that it also satisfies our advancement operator equation:

Af(n):3.2n+1:3,2,2”:2.(3.2”):2.f(n)_

Before moving on to develop general methods for solving advancement operator
equations, let’s say a word about why we keep talking in terms of operators and men-
tioned that we can view any sequence as a function with domain Z. If you've stud-
ied any linear algebra, you probably remember learning that the set of all infinitely-
differentiable functions on the real line form a vector space and that differentiation is a
linear operator on those functions. Our analogy to differential equations holds up just
fine here, and functions from Z to C form a vector space and A is a linear operator on
that space. We won't dwell on the technical aspects of this, and no knowledge of linear
algebra is required to understand our development of techniques to solve recurrence
equations. However, if you're interested in more placing everything we do on rigorous
footing, we discuss this further in Section 9.5.

9.3.1 Constant Coefficient Equations

It is easy to see that a linear recurrence equation can be conveniently rewritten using a
polynomial p(A) of the advancement operator:

p(A)f = (coAF + AR 4 AR 2 4o) f = 4. (9.3.1)

In (9.3.1), we intend that k > 1 is an integer, g is a fixed vector (function) from V, and
co,C1,...,Ck are constants with cg, ¢, # 0. Note that since ¢y # 0, we can divide both
sides by co, i.e., we may in fact assume that ¢y = 1 whenever convenient to do so.

9.3.2 Roots and Factors

The polynomial p(A) can be analyzed like any other polynomial. It has roots and fac-
tors, and although these may be difficult to determine, we know they exist. In fact, if
the degree of p(A) is k, we know that over the field of complex numbers, p(A) has k
roots, counting multiplicities. Note that since we assume that ¢, # 0, all the roots of
the polynomial p are non-zero.

9.3.3 What'’s Special About Zero?

Why have we limited our attention to recurrence equations of the form p(A)f = g
where the constant term in p is non-zero? Let’s consider the alternative for a moment.

189

Chapter 9 Recurrence Equations

Suppose that the constant term of p is zero and that 0 is a root of p of multiplicity
m. Then p(A) = A™q(A) where the constant term of ¢ is non-zero. And the equation
p(A)f = g can then be written as A™g(A)f = g. To solve this equation, we consider
instead the simpler problem g(A)f = g. Then h is a solution of the original problem
if and only if the function i’ defined by h’(n) = h(n + m) is a solution to the simpler
problem. In other words, solutions to the original problem are just translations of solu-
tions to the smaller one, so we will for the most part continue to focus on advancement
operator equations where p(A) has nonzero constant term, since being able to solve
such problems is all we need in order to solve the larger class of problems.

As a special case, consider the equation A™ f = g. This requires f(n + m) = g(n),
i.e., f isjust a translation of g.

9.4 Solving advancement operator equations

In this section, we will explore some ways of solving advancement operator equations.
Some we will make up just for the sake of solving, while others will be drawn from
the examples we developed in Section 9.1. Again, readers familiar with differential
equations will notice many similarities between the techniques used here and those
used to solve linear differential equations with constant coefficients, but we will not
give any further examples to make those parallels explicit.

9.4.1 Homogeneous equations

Homogeneous equations, it will turn out, can be solved using very explicit method-
ology that will work any time we can find the roots of a polynomial. Let’s start with
another fairly straightforward example.

Example 9.9. Find all solutions to the advancement operator equation

(A2+A-6)f =0. (9.4.1)

Solution. Before focusing on finding all solutions as we’ve been asked to do, let’s just
try to find some solution. We start by noticing that here p(A) = A?+A—6 = (A+3)(A-2).
With p(A) factored like this, we realize that we’ve already solved part of this problem
in Example 9.8! In that example, the polynomial of A we encountered was (while not
explicitly stated as such there) A — 2. The solutions to (A —2)f; = 0 are of the form
fi(n) = c12". What happens if we try such a function here? We have

(A+3)A-2)fi(n)=(A+3)0=0,

190

9.4 Solving advancement operator equations

so that f; is a solution to our given advancement operator equation. Of course, it can’t
be all of them. However, it’s not hard to see now that (A + 3)f, = 0 has as a solution
fo(n) = c2(=3)" by the same reasoning that we used in Example 9.8. Since (A + 3)(A —
2) = (A - 2)(A + 3), we see right away that f; is also a solution of (9.4.1).

Now we’ve got two infinite families of solutions to (9.4.1). Do they give us all the
solutions? It turns out that by combining them, they do in fact give all of the solutions.
Consider what happens if we take f(n) = ¢12" 4+ c2(=3)" and apply p(A) to it. We have

(A+3)(A-2)f(n) = (A+3)(c12"™ + c2(=3)"1 = 2(c12" + c2(=3)"))
= (A +3)(=5¢c2(-3)")
= —5¢p(=3)"* — 15¢,(=3)"
=15¢05(=3)" — 15¢5(-3)"
=0.

It’s not all that hard to see that since f gives a two-parameter family of solutions to
(9.4.1), it gives us all the solutions, as we will show in detail in Section 9.5.

What happened in this example is far from a fluke. If you have an advancement
operator equation of the form p(A)f = 0 (the constant term of p nonzero) and p has
degree k, then the general solution of p(A) f = 0 will be a k-parameter family (in the
previous example, our parameters are the constants ¢ and cp) whose terms come from
solutions to simpler equations arising from the factors of p. We’ll return to this thought
in a little bit, but first let’s look at another example.

Example 9.10. Let’s revisit the problem of enumerating ternary strings of length n that
dohave (2, 0) occurring as a substring in two consecutive positions that we encountered
in Example 9.4. There we saw that this number satisfies the recurrence equation

theo =3ty — ty, nx>1

and t; = 3 and t, = 8. Before endeavoring to solve this, let’s rewrite our recurrence
equation as an advancement operator equation. This gives us

p(A)t = (A>=3A+ 1)t = 0. (9.4.2)

The roots of p(A) are (3 + V5)/2. Following the approach of the previous example,
our general solution is

3+2«/§)” ve (3—%)”'

t(n)=cy (5

191

Chapter 9 Recurrence Equations

This probably looks suspicious; we're counting strings here, so t(1n) needs to be a non-
negative integer, but the form we’ve given includes not just fractions but also square
roots! However, if you look carefully, you'll see that using the binomial theorem to
expand the terms in our expression for #(n) would get rid of all the square roots, so
everything is good. (A faster way to convince yourself that this really satisfies (9.4.2)
is to mimic the verification we used in the previous example.) Because we have initial
values for t(n), we are able to solve for c¢; and ¢, here. Evaluatingatn = 0and n =1
we get

3=c1+cy
8—03+\/§+c3_\/5
~T2 T2
A little bit of computation gives
7 7
c1:£+§ and ¢ = £+§

10 2 10 2

so that

-5 8

Example 9.11. Find the general solution to the advancement operator equation

(A+1)(A-6)(A+4)f =0.

Solution. By now, you shouldn’t be surprised that we immediately make use of the
roots of p(A) and have that the solution is

f(n) =c1(=1)" + 26" + c3(—4)".

By now, you should be able to see most of the pattern for solving homogeneous ad-
vancement operator equations. However, the examples we’ve considered thus far have
all had one thing in common: the roots of p(A) were all distinct. Solving advancement
operator equations in which this is not the case is not much harder than what we’ve
done so far, but we do need to treat it as a distinct case.

Example 9.12. Find the general solution of the advancement operator equation

(A-2)>2f=0.

Solution. Here we have the repeated root problem that we mentioned a moment ago.
We see immediately that fi(n) = ¢12" is a solution to this equation, but that can’t be all,

192

9.4 Solving advancement operator equations

as we mentioned earlier that we must have a 2-parameter family of solutions to such
an equation. You might be tempted to try fo(n) = 22" and f(n) = fi(n) + fo(n), but
then this is just (c1 + ¢2)2", which is really just a single parameter, ¢ = ¢ + c2.

What can we do to resolve this conundrum? What if we tried fo(n) = c,n2"? Again,
if you're familiar with differential equations, this would be the analogous thing to try,
so let’s give it a shot. Let’s apply (A — 2)? to this f>. We have

(A =27 fo(n) = (A = 2)(ca(n +1)2"*" = 2c,n2")
= (A -2)(c22")
— C22n+2 _ 2C22n+1
=0.
Since f, satisfies our advancement operator equation, we have that the general solution

is
f(n) =c12" + cpn2".

Example 9.13. Consider the recurrence equation

fn+4 = _zfn+3 + 12fn+2 + _14fn+1 +5fn

with initial conditions fy = 1, fi = 2, f» = 4, and f3 = 4. Find an explicit formula for
fu-

Solution. We again start by writing the given recurrence equation as an advancement
operator equation for a function f(n):

(A* +2A% — 12A% + 14A - 5)f = 0. (9.4.3)

Factoring p(A) = A* + 2A3 — 12A% + 14A - 5 gives p(A) = (A + 5)(A — 1)>. Right
away, we see that f1(n) = c¢1(—5)" is a solution. The previous example should have you
convinced that fo(n) = ¢z - 1" = ¢ and f3(n) = can - 1" = c3n are also solutions, and
it’s not likely to surprise you when we suggest trying fi(n) = c4n? as another solution.
To verify that it works, we see

(A +5)(A-1)%fa(n) = (A +5)(A - 1)*(ca(n +1)> = c4n?)
= (A +5)(A - 1)*(2can + c4)
=(A+5)(A—-1)2cs(n +1)+ cg —2cqn — cy4)
=(A+5)(A-1)(2cy)
= (A +5)(2cq —2¢4)
=0.

193

Chapter 9 Recurrence Equations

Thus, the general solution is

f(n)=c1(=5)" +cr+c3n + can?.

Since we have initial conditions, we see that

1=f(0)=C1+C2
2=f(1)=—5C1+C2+C3+C4

4= f(2) =25c1 4+ ¢y +2c3 +4cy

4 = f(3) =-125¢c1 + c2 +3c3 + 9cy

is a system of equations whose solution gives the values for the c;. Solving this system
gives that the desired solution is

1 . 71 5 1,
f(n)—72(5) +72+6n+4n.

9.4.2 Nonhomogeneous equations

As we mentioned earlier, nonhomogeneous equations are a bit trickier than solving
homogeneous equations, and sometimes our first attempt at a solution will not be suc-
cessful but will suggest a better function to try. Before we're done, we’ll revisit the
problem of lines in the plane that we've considered a couple of times, but let’s start
with a more illustrative example.

Example 9.14. Consider the advancement operator equation
(A+2)(A-6)f =3".

Let’s try to find the general solution to this, since once we have that, we could find the
specific solution corresponding to any given set of initial conditions.

When dealing with nonhomogeneous equations, we proceed in two steps. The rea-
son for this will be made clear in Lemma 9.20, but let’s focus on the method for the
moment. Our first step is to find the general solution of the homogeneous equation
corresponding to the given nonhomogeneous equation. In this case, the homogeneous
equation we want to solve is

(A+2)(A-6)f =0,
for which by now you should be quite comfortable in rattling off a general solution of

fl(Tl) = C1(—2)n + C26n.

194

9.4 Solving advancement operator equations

Now for the process of actually dealing with the nonhomogeneity of the advance-
ment operator equation. It actually suffices to find any solution of the nonhomoge-
neous equation, which we will call a particular solution. Once we have a particular
solution fy to the equation, the general solution is simply f = fy + fi, where fj is the
general solution to the homogeneous equation.

Finding a particular solution fy is a bit trickier than finding the general solution of
the homogeneous equation. It’s something for which you can develop an intuition by
solving lots of problems, but even with a good intuition for what to try, you'll still likely
find yourself having to try more than one thing on occasion in order to get a particular
solution. What's the best starting point for this intuition? It turns out that the best
thing to try is usually (and not terribly surprisingly) something that looks a lot like the
right hand side of the equation, but we will want to include one or more new constants
to help us actually get a solution. Thus, here we try fo(n) = d3". We have

(A +2)(A - 6)fo(n) = (A +2)(d3"" - 643")
= (A +2)(-d3"™)
— _d3n+2 _ 2d3n+1
= —5d3"*1,
We want f to be a solution to the nonhomogeneous equation, meaning that (A +2)(A—

6) fo = 3". This implies that we need to take d = —1/15. Now, as we mentioned earlier,
the general solution is

1
f(n) = fo(n) + fi(n) = _EBH +c1(=2)" + c26".
We leave it to you to verify that this does satisfy the given equation.

You hopefully noticed that in the previous example, we said that the first guess to
try for a particular solution looks a lot like right hand side of the equation, rather than
exactly like. Our next example will show why we can’t always take something that
matches exactly.

Example 9.15. Find the solution to the advancement operator equation
(A+2)(A-6)f =6"
if f(0)=1and f(1) =5.

Solution. The corresponding homogeneous equation here is the same as in the pre-
vious example, so its general solution is again fi(n) = c1(=2)" + c26". Thus, the real
work here is finding a particular solution fj to the given advancement operator equa-
tion. Let’s just try what our work on the previous example would suggest here, namely

195

Chapter 9 Recurrence Equations

fo(n) = d6"™. Applying the advancement operator polynomial (A +2)(A - 6) to fo then
gives, uh, well, zero, since (A — 6)(d6") = d6"*! — 646" = 0. Huh, that didn’t work
out so well. However, we can take a cue from how we tackled homogeneous advance-
ment operator equations with repeated roots and introduce a factor of n. Let’s try
fo(n) = dn6™. Now we have
(A+2)(A-6)(dn6") = (A+2)(d(n +1)6""" - 6dn6")

= (A +2)d6"™!

=d6"? +2d6"!

=6"(36d + 12d) = 48d6".

We want this to be equal to 6", so we have d = 1/48. Therefore, the general solution is
]' n n n
f(n) = @n6 + c1(=2)" + c6".

All that remains is to use our initial conditions to find the constants ¢; and c;. We
have that they satisfy the following pair of equations:

l=ci1+c

1
5==--2c1+6
) C1 2

Solving these, we arrive at the desired solution, which is
1,09 w95
f(n)—48n6 +64(2) +646 .

What's the lesson we should take away from this example? When making a guess at
a particular solution of a nonhomogeneous advancement operator equation, it does us
no good to use any terms that are also solutions of the corresponding homogeneous
equation, as they will be annihilated by the advancement operator polynomial. Let’s
see how this comes into play when finally resolving one of our longstanding examples.

Example 9.16. We're now ready to answer the question of how many regions are de-
termined by 7 lines in the plane in general position as we discussed in Subsection 9.1.3.
We have the recurrence equation

fne1=Trn+n+1,

which yields the nonhomogeneous advancement operator equation (A—-1)r = n+1. As
usual, we need to start with the general solution to the corresponding homogeneous

196

9.4 Solving advancement operator equations

equation. This solution is fi(n) = c1. Now our temptation is to try fo(n) = din +d>
as a particular solution. However since the constant term there is a solution to the
homogeneous equation, we need a bit more. Let’s try increasing the powers of n by 1,
giving fo(n) = din® + dyn. Now we have

(A - 1)(d1ﬂ2 + d2n) = d1(1’l + 1)2 + d2(n + 1) - d17’12 —dyn
=2din +di + d».

This tells us that we need dq = 1/2and d, = 1/2, giving fo(n) = n%/2+n/2. The general

solution is then ,
n-+n
f(n)=c1+ 5

What is our initial condition here? Well, one line divides the plane into two regions,
so f(1) = 2. On the other hand, f(1) = ¢; + 1, s0 ¢; = 1 and thus

2

n“+n n+1
f(n)y=1+ > :(”)+1

is the number of regions into which the plane is divided by 7 lines in general position.

We conclude this section with one more example showing how to deal with a nonho-
mogeneous advancement operator equation in which the right hand side is of “mixed

type”.

Example 9.17. Give the general solution of the advancement operator equation

(A-2)7f =3"+2n.

Solution. Finding the solution to the corresponding homogeneous equation is get-
ting pretty easy at this point, so just note that

fi(n) = 12" + cpn2".

What should we try as a particular solution? Fortunately, we have no interference
from p(A) = (A — 2)? here. Our first instinct is probably to try fo(n) = d13" + don.
However, this won't actually work. (Try it. You wind up with a leftover constant term
that you can't just make zero.) The key here is that if we use a term with a nonzero
power of n in it, we need to include the lower order powers as well (so long as they're
not superfluous because of p(A)). Thus, we try

f()(l’l) = d13n +don + ds.

197

Chapter 9 Recurrence Equations

This gives

(A —2)%(d13" + don + d3) = (A — 2)(d13" + do(n + 1) + d3 — 2d13" — 2don — 2d3)
= (A - 2)(d13n —don +dp — dg,)
= d13n+1 - dz(n + 1) + dz - d3 - 21113” + 2d27’l - 2d2 + 2d3
= d13n +don —2dy + d3.

We want this to be 3" + 21, so matching coefficients gives di = 1, d, = 2, and d3 = 4.
Thus, the general solution is

f(n)=3"+2n+4+ 12" + cpn2".

9.5 Formalizing our approach to recurrence equations

So far, our approach to solving recurrence equations has been based on intuition, and
we’ve not given a lot of explanation for why the solutions we’ve given have been the
general solution. In this section, we endeavor to remedy this. Some familiarity with
the language of linear algebra will be useful for the remainder of this section, but it is
not essential.

Our techniques for solving recurrence equations have their roots in a fundamentally
important concept in mathematics, the notion of a vector space. Recall that a vector
space! consists of a set V of elements called vectors; in addition, there is a binary op-
eration called addition with the sum of vectors x and y denoted by x + y; further-
more, there is an operation called scalar multiplication which combines a scalar (real
number) a and a vector x to form a product denoted ax. These operations satisfy the
following properties:

1. x+y=y+xforeveryx,y,eV.
2.x+(y+z)=(x+y)+z foreveryx,y,z € V.

3. There is a vector called zero and denoted 0 so that x +0 = x for every x € V. Note:
We are again overloading an operator and using the symbol 0 for something other
than a number.

4. For every element x € V, there is an element y € V, called the additive inverse
of x and denoted —x so that x + (—x) = 0. This property enables us to define
subtraction, i.e, x —y = x + (-y).

To be more complete, we should say that we are talking about a vector space over the field of real numbers,
but in our course, these are the only kind of vector spaces we will consider. For this reason, we just use
the short phrase “vector space”.

198

9.5 Formalizing our approach to recurrence equations

5. 1x = x for every x € X.

6. a(Bx) = (aB)x, for every a, f € Rand every x € V.

7. a(x+y)=ax+ay forevery « € Rand every x,y € V.
8. (a+p)x = ax + px, forevery o, f € Rand every x € V.

When V is a vector space, a function ¢: V — V is called an linear operator, or just
operator for short, when ¢(x + y) = ¢(x) + ¢(y) and ¢p(ax) = ap(x). When¢p: V — V
is an operator, it is customary to write ¢x rather than ¢(x), saving a set of parentheses.
The set of all operators over a vector space V is itself a vector space with addition
defined by (¢ + p)x = ¢x + px and scalar multiplication by (a¢d)x = a(Px).

In this chapter, we focus on the real vector space V consisting of all functions of the
form f:Z — R. Addition is defined by (f + g)(n) = f(n) + g(n) and scalar multipli-
cation is defined by (a f)(n) = a(f(n)).

9.5.1 The Principal Theorem

Here is the basic theorem about solving recurrence equations (stated in terms of ad-
vancement operator equations)—and while we won't prove the full result, we will pro-
vide enough of an outline where it shouldn’t be too difficult to fill in the missing details.

Theorem 9.18. Let k be a positive integer k, and let cq, c1, . . ., cx be constants with ¢, cx # 0.
Then the set W of all solutions to the homogeneous linear equation

(A" + 1 A + AR 2 4) f =0 (9.5.1)
is a k-dimensional subspace of V.
The conclusion that the set W of all solutions is a subspace of V is immediate, since
pANSf +9)=pA)f +p(A)g and pla)af) = ap(A)(f).
What takes a bit of work is to show that W is a k-dimensional subspace. But once
this is done, then to solve the advancement operator equation given in the form of
Theorem 9.18, it suffices to find a basis for the vector space W. Every solution is just

a linear combination of basis vectors. In the next several subsections, we outline how
this goal can be achieved.

199

Chapter 9 Recurrence Equations

9.5.2 The Starting Case

The development proceeds by induction (surprise!) with the case k = 1 being the base
case. In this case, we study a simple equation of the form (cpA + ¢1)f = 0. Dividing
by c¢¢ and rewriting using subtraction rather than addition, it is clear that we are just
talking about an equation of the form (A — r) f = 0 where r # 0.

Lemma 9.19. Let v # O, and let f be a solution to the operator equation (A —r)f = 0. If
¢ = f(0), then f(n) = cr" for every n € Z.

Proof. We first show that f(n) = cr" for every n > 0, by induction on n. The base case
is trivial since ¢ = f(0) = cr’. Now suppose that f(k) = cr¥ for some non-negative
integer k. Then (A — r)f = 0 implies that f(k+1) —rf(k) =0, i.e,

flk+1)=rf(k) = rer* = crFL.
A very similar argument shows that f(—n) = cr™" for every n < 0.]
Lemma 9.20. Consider a nonhomogeneous operator equation of the form
p(A)f = (coAF + 1AM + AR 2 4o 4 c)f =9, (9.5.2)

with co, cx # 0, and let W be the subspace of V consisting of all solutions to the corresponding
homogeneous equation

p(A)f = (coAF + 1 AL 4 AR 2 4o) f = 0. (9.5.3)

If fo is a solution to (9.5.2), then every solution f to (9.5.2) has the form f = fo + f1 where
f1 e W.

Proof. Let f be a solution of (9.5.2), and let f; = f — fo. Then
pAfL=pA)f - fo) =pA)f —pA)fo=g-9=0.

This implies that fj € W and that f = fp + f1 so that all solutions to (9.5.2) do in fact
have the desired form. m|

Using the preceding two results, we can now provide an outline of the inductive
step in the proof of Theorem 9.18, at least in the case where the polynomial in the
advancement operator has distinct roots.

Theorem 9.21. Consider the following advancement operator equation
plAf=A-1m)A-r)...(A-r)f =0. (9.5.4)
with 1,12, ..., 1y distinct non-zero constants. Then every solution to (9.5.4) has the form

f(n) =cir{ +cary +carg +---+cyry.

200

9.5 Formalizing our approach to recurrence equations

Proof. The case k = 1is Lemma 9.19. Now suppose we have established the theorem
for some positive integer m and consider the case k = m + 1. Rewrite (9.5.4) as

(A-r)A-r)...(A=ra)l(A-rn1)f]=0.

By the inductive hypothesis, it follows that if f is a solution to (9.5.4), then f is also a
solution to the nonhomogeneous equation

(A=rme)f =dir] +dor] +--- +dyry,. (9.5.5)
To find a particular solution fj to (9.5.5), we look for a solution having the form
fo(n) = cir] +cor) + -+ cpryy,. (9.5.6)
On the other hand, a simple calculation shows that for eachi =1,2,...,m, we have
(A = rp)eir! = cir!™ = ryacir? = ci(ri — rus)r),

so it suffices to choose ¢; so that ¢;(r; — rpy+1) = d;j, foreach i = 1,2, ..., m. This can be
done since r,,41 is distinct from r; fori =1,2,...m.

Now we have a particular solution fo(n) = X’ ¢;r!'. Next we consider the corre-
sponding homogeneous equation (A—r,,4+1) f = 0. The general solution to this equation
has the form fi(n) = cm+1rxl +1- 1t follows that every solution to the original equation
has the form

f(n) = foln) + fi(n) = cury + cory -t Cuty + €134,

which is exactly what we want!]

9.5.3 Repeated Roots

It is straightforward to modify the proof given in the preceding section to obtain the
following result. We leave the details as an exercise.

Lemma 9.22. Let k > 1 and consider the equation
(A-rkf=o. (9.5.7)
Then the general solution to (9.5.7) has the following form

f(n)=cir" + conr" + can®r™ + can®r" + -+ nTI, (9.5.8)

201

Chapter 9 Recurrence Equations

9.5.4 The General Case

Combining the results in the preceding sections, we can quickly write the general so-
lution of any homogeneous equation of the form p(A)f = 0 provided we can factor the
polynomial p(A). Note that in general, this solution takes us into the field of complex
numbers, since the roots of a polynomial with real coefficients are sometimes complex
numbers—with non-zero imaginary parts.

We close this section with one more example to illustrate how quickly we can read
off the general solution of a homogeneous advancement operator equation p(A)f =0,
provided that p(A) is factored.

Example 9.23. Consider the advancement operator equation
(A-1°(A+1P(A-3*(A+8)(A-9)*f =0.
Then every solution has the following form

f(n) =c1+con + can® + can® + csn*
+co(=1)" + cyn(=1)" + cgn?(=1)"
+ 93" + ¢19n3"
+c11(=8)"

+ 0129” + C131’l9n + C141’129n + C151/l39n.

9.6 Using generating functions to solve recurrences

The approach we have seen thus far in this chapter is not the only way to solve recur-
rence equations. Additionally, it really only applies to linear recurrence equations with
constant coefficients. In the remainder of the chapter, we will look at some examples
of how generating functions can be used as another tool for solving recurrence equa-
tions. In this section, our focus will be on linear recurrence equations. In Section 9.7,
we will see how generating functions can solve a nonlinear recurrence.

Our first example is the homogeneous recurrence that corresponds to the advance-
ment operator equation in Example 9.9.

Example 9.24. Consider the recurrence equation r,, + 1,1 — 67, = 0 for the sequence
{rn: n > 0} with rp = 1 and r; = 3. This sequence has generating function

[ee]

flx) = Z rax™ = 1o + 11X + r2x% + r3x
n=0

34

202

9.6 Using generating functions to solve recurrences

Now consider for a moment what the function x f(x) looks like. It has r,_; as the
coefficient on x,,. Similarly, in the function —6x2 f(x), the coefficient on x" is —6r,,_.

What is our point in all of this? Well, if we add them all up, notice what happens.
The coefficient on x,, becomes r,, + r,,_1 — 6r,_2, which is 0 because of the recurrence
equation! Now let’s see how this all lines up:

f(x):rO+rlx+1’2X2+1’3x3+---+rnx”+...
Xf(x) =0+ 70x +11x% +1X> + -1y x" + -
—6x2f(x) = 0+ 0 — 6192 — 6712% + -+ — 6ry_px" + -
When we add the left-hand side, we get f(x)(1 + x — 6x2). On the right-hand side, the

coefficient on x” for n > 2 is 0 because of the recurrence equation. However, we are left
with rg + (ro + 71)x = 1 + 4x, using the initial conditions. Thus, we have the equation

F)1+x —6x%) =1+4x,

or f(x) = (1+4x)/(1 + x — 6x2). This is a generating function that we can attack using
partial fractions in SageMath:

f(x) = (1+4xx)/(1+x-6%x"2)
pretty_print(f(x).partial_fraction())

This shows us that

6 1 1 1 6 1w
= — _ - - — 2" n _ _ _ nn_
o) =51 "5173x 5;) X 5;(3)'x

From here, we read off r,, as the coefficient on x" and have r,, = (6/5)2" — (1/5)(=3)".

Although there’s a bit more work involved, this method can be used to solve nonho-
mogeneous recurrence equations as well, as the next example illustrates.

Example 9.25. The recurrence equation r,, —r,,_1 —2r,—2 = 2" is nonhomogeneous. Let
ro = 2 and r; = 1. This time, to solve the recurrence, we start by multiplying both sides
by x". This gives the equation

X" — rpo1x™ = 2r,_ox™ = 2"x".

If we sum this over all values of n > 2, we have

(o) o0 (o) o0
Z rpx" — Z Fp_1x" =2 Z TnooXx" = Z 2 x™,
n=2 n=2 n=2 n=2

203

Chapter 9 Recurrence Equations

The right-hand side you should readily recognize as being almost equal to 1/(1 — 2x).
We are missing the 1 and 2x terms, however, so must subtract them from the rational
function form of the series. On the left-hand side, however, we need to do a bit more
work.

The first sum is just missing the first two terms of the series, so we can replace it
by R(x) — (2 + x), where R(x) = X", r,x". The second sum is almost xR(x), except
it’s missing the first term. Thus, it’s equal to xR(x) — 2x. The sum in the final term is
simply x?R(x). Thus, the equation can be rewritten as

1

R(x) = (2 + x) — (xR(x) — 2x) — 2x*R(x) = T~ 1-2x.

A little bit of algebra then gets us to the generating function

6x% —5x +2
(1-2x)(1—x—2x2)°

R(x) =

This generating function can be expanded using partial fractions in SageMath:

f(x) = (6xx"2-5%xx+2)/((1-2%x)*(1-x-2%x*2))
pretty_print(f(x).partial_fraction())

Therefore, using Example 8.7 for the second rational function, we have

1 N 2 N 13
9(1-2x) 3(1-2x)2 9(1+x)

1 — 2 — 2-1 13 —
R TS) (A PPy
n=0 n=0 n=0

From this generating function, we can read off that

R(x) = -

ZURRIPY ()" = z" ¥ 202+ 3(—1)".

Tn = ——2”
3

9 3
The recurrence equations of the two examples in this section can both be solved using
the techniques we studied earlier in the chapter. One potential benefit to the generating
function approach for nonhomogeneous equations is that it does not require determin-
ing an appropriate form for the particular solution. However, the method of generat-
ing functions often requires that the resulting generating function be expanded using
partial fractions. Both approaches have positives and negatives, so unless instructed
to use a specific method, you should choose whichever seems most appropriate for
a given situation. In the next section, we will see a recurrence equation that is most
easily solved using generating functions because it is nonlinear.

204

9.7 Solving a nonlinear recurrence

9.7 Solving a nonlinear recurrence

In this section, we will use generating functions to enumerate the a certain type of trees.
In doing this, we will see how generating functions can be used in solving a nonlinear
recurrence equation. We will also make a connection to a counting sequence we en-
countered back in Chapter 2. To do all of this, we must introduce a bit of terminology.
A tree is rooted if we have designated a special vertex called its root. We will always
draw our trees with the root at the top and all other vertices below it. An unlabeled
tree is one in which we do not make distinctions based upon names given to the ver-
tices. For our purposes, a binary tree is one in which each vertex has 0 or 2 children,
and an ordered tree is one in which the children of a vertex have some ordering (first,
second, third, etc.). Since we will be focusing on rooted, unlabeled, binary, ordered
trees (RUBOTSs for short), we will call the two children of vertices that have children
the left and right children.

In Figure 9.26, we show the rooted, unlabeled, binary, ordered trees with 7 leaves for
n < 4. Let C(x) = X, cux" be the generating function for the sequence {c,: n > 0}
where ¢, is the number of RUBOTs with n leaves. (We take ¢ = 0 for convenience.)
Then we can see from Figure 9.26 that C(x) = x + x2 +2x% + 5x* + - - -. But what are the
remaining coefficients? Let’s see how we can break a RUBOT with n leaves down into a
combination of two smaller RUBOTs to see if we can express ¢, in terms of some ¢y for
k < n. When we look ata RUBOT with n > 2 leaves, we notice that the root vertex must
have two children. Those children can be viewed as root nodes of smaller RUBOTs, say
the left child roots a RUBOT with k leaves, meaning that the right child roots a RUBOT
with n — k leaves. Since there are cx possible sub-RUBOTs for the left child and c,,—
sub-RUBOTs for the right child, there are a total of cxc,—x RUBOTSs in which the root’s
left child has k leaves on its sub-RUBOT. We can do this for any k = 1,2,...,n -1,

giving us that
n—1
Cyp = Z CkCp—k-.
k=1
(This is valid since n > 2.) Since ¢y = 0, we can actually write this as

n
Cp = Z CkCpk-
k=0

Let’s look at the square of the generating function C(x). By Proposition 8.3, we have

C%(x) = cg + (cocr + c1c0)x + (CoCa + €101 + C2C0) X% + - - -

=040+ (coca + c1c1 + €2c0)x? + (cocz + c1¢2 + Cac1 + c3¢0)x° + -+ .

205

Chapter 9 Recurrence Equations
VAN /G, {>\3

FiGure 9.26: THE RUBOTs WITH 7 LEAVES FOR 11 < 4

But now we see from our recursion above that the coefficient on x” in C?(x) is nothing
but ¢, for n > 2. All we're missing is the x term, so adding it in gives us that

C(x) = x + C%(x).
Now this is a quadratic equation in C(x), so we can solve for C(x) and have

1+V1-4x 1+(1-4x)'2
5 = .

C(x) = 5

Hence, we can use Newton’s Binomial Theorem to expand C(x). To do so, we use
the following lemma. Its proof is nearly identical to that of Lemma 8.12, and is thus
omitted.

206

9.8 Discussion

Lemma 9.27. Foreachk > 1,

Now we see that

00 00 2n-2
11 (1/2), . 11 D ES)
C(X)—EiE (1’[)(—4) X —Eiz(l-l-z 7 2271—_1(—4) X
n=0 n=1
co (2n-2
11 GE)
—§i§+; " X

Since we need ¢, > 0, we take the “minus” option from the “plus-or-minus” in the
quadratic formula and thus have the following theorem.

Theorem 9.28. The generating function for the number c,, of rooted, unlabeled, binary, ordered
trees with n leaves is

C(x) = 1-vi-dx i %(Zn _z)x”.

2

Notice that ¢, is a Catalan number, which we first encountered in Chapter 2, where
we were counting lattice paths that did not cross the diagonal line y = x. (The coeffi-
cient ¢, is the Catalan number we called C(n — 1) in Chapter 2.)

9.8 Discussion

Yolanda took a sip of coffee “I'm glad I paid attention when we were studying vector
spaces, bases, and dimension. All this stuff about solutions for recurrence equations
made complete sense. And I can really understand why the professor was making a
big deal out of factoring. We saw it our first semester when we were learning about
partial fractions in calculus. And we saw it again with the differential equations stuff.
Isn't it really neat to see how it all fits together?” All this enthusiasm was too much
for Alice who was not having a good day. Bob was more sympathetic, saying “Except
for the detail about zero as a root of an advancement operator polynomial, I was ok
with this chapter.” Xing said “Here we learned a precise approach that depended only
on factoring. I've been reading on the web and I see that there have been some recent
breakthroughs on factoring.” Bob jumped back in “But even if you can factor like crazy;,
if you have a large degree polynomial in the advancement operator equation, then
you will have lots of initial conditions. This might be a second major hurdle.” Dave

207

Chapter 9 Recurrence Equations

mumbled “Just do the factoring. The rest is easy.” Carlos again was quiet but he knew
that Dave was right. Solving big systems of linear equations is relatively easy. The
challenge is in the factoring stage.

Despite thinking the material of this chapter was interesting, Bob also wondered
if they really needed all of this machinery. “Defining a recursive function is easy in
almost all programming languages, so why not just use a computer to calculate the
values you need?”! Xing started to remark that the techniques of this chapter could
provide a good way to understand the growth rate of recursive functions in terms of
the big Oh notation of Chapter 4, but Alice interrupted to propose a programming
experiment as something that would raise her spirits. (The chance to prove Bob wrong
was probably more motivational than the chance to do some coding, but she didn’t
want to be foo mean.)

The group decided to take a look at the recurrence in Example 9.25, which they
immediately wrote as a recursive function defined on the nonnegative integers by

2"+ r(n—-1)+2r(n-2) ifn>2;
r(n) =11 ifn=1;
2 if n =0.

Alice grabbed her computer and implemented this in SageMath and computed a few
test values.

def r(n):
if n ==
return 2
elif n == 1.
return 1
elif n >=2:
return 2*n + r(n-1)+2*r(n-2)
print(r (1))
print(r(4))
print(r(10))

1
53
7397

She then defined a second function s that was the explicit (nonrecursive) solution from
Example 9.25 and checked that values matched.

The history of how recursion made its way into ALGOL (and therefore most modern programming lan-
guages) involved some intrigue. Maarten van Emden recounts this in a blog post entitled “How recursion
got into programming: a tale of intrigue, betrayal, and advanced programming-language semantics”.

208

https://vanemden.wordpress.com/2014/06/18/how-recursion-got-into-programming-a-comedy-of-errors-3/
https://vanemden.wordpress.com/2014/06/18/how-recursion-got-into-programming-a-comedy-of-errors-3/

9.8 Discussion

s(n)=(5/9)*2*n + (2/3)*n*2*n+(13/9)*(-1)"n
print(s(1))
print(s(4))
print(s(10))

1
53
7397

“Is this going somewhere?”, Bob asked impatiently. For these values, both r and s
seemed to be giving them answers equally quickly. Dave said he’d heard something
about a timeit command in SageMath that would allow them to compare run times
and comandeered Alice’s keyboard to type:

for n in range(31):
if n %5 ==
print(”For_n_=_{3}:”.format(n))
timeit (”r(n)”,number=5)
timeit(”s(n)”,number=5)

For n = 0:

5 loops, best of 3: 238 ns per loop
5 loops, best of 3: 44 us per loop
For n = 5:

5 loops, best of 3: 11.4 us per loop
5 loops, best of 3: 50.6 us per loop
For n = 10:

5 loops, best of 3: 127 us per loop
5 loops, best of 3: 47.6 us per loop
For n = 15:

5 loops, best of 3: 1.42 ms per loop
5 loops, best of 3: 50 us per loop
For n = 20:

5 loops, best of 3: 15.7 ms per loop
5 loops, best of 3: 49 us per loop
For n = 25:

5 loops, best of 3: 133 ms per loop
5 loops, best of 3: 50.4 us per loop
For n = 30:

5 loops, best of 3: 1.49 s per loop
5 loops, best of 3: 48.8 us per loop

This finally got Bob’s attention, since it s seems to be taking a relatively constant time
to run even as n increases, while r seems to be taking about 10 times as long to run

209

Chapter 9 Recurrence Equations

for each increase of 5 in the value of n. As a final test, they execute the SageMath code
below, which calculates s(100) almost instantly. On the other hand, it seems like getting
a refill on their coffee would be a good way to pass the time waiting on r(40).

print(s(100))
print (r(40))

85214290348675420878389493250277
29931149867237

0.9 Exercises

1. Write each of the following recurrence equations as advancement operator equa-
tions.

(@) Tusz = Tus + 2 (d) By = hyy = 2k + By
(b) Tuia = B7n43 = rnaz + 21y (€) rn =4ry_1+7u_3 =35+ (-1)"
() Jn+3 = D5Gns1 — Gu + 3" (f) by =by_1+3by0 + on+l _ 2

2. Solve the recurrence equation r,,42 = 141 + 21 if 79 = 1 and 1, = 3 (Yes, we specify
a value for r, but not for rq).

3. Find the general solution of the recurrence equation g,+2 = 3gu+1 — 24x.

4. Solve the recurrence equation hy43 = 6h,42 — 11hy,41 + 6hy, if ho = 3, by = 2, and
hy = 4.

5. Find an explicit formula for the n'" Fibonacci number f,. (See Subsection 9.1.1.)

6. For each advancement operator equation below, give its general solution.

(@) (A-2)(A+10)f =0 (d) (A®-4A%-20A+48)f =0
(b) (A2-36)f =0 (e) (A3 +A2-5A+3)f=0
(c) (A2-2A-5)f=0 (f) (A3+3A%2+3A+1)f =0

7. Solve the advancement operator equation (A? + 3A — 10)f = 0 if f(0) = 2 and
f(1) =10.

8. Give the general solution to each advancement operator equation below.

210

9.9 Exercises

@ (A-4PA+DA-7HA-17f=0
(b) (A+2)*(A-3)*(A-4)(A+7)(A-5)3g=0
() (A=52A+3P2A-13A*-1)A-4Ph=0

9. For each nonhomogeneous advancement operator equation, find its general solu-
tion.

(@ (A-5)(A+2)f =3") (A+2)(A-5)(A-1)f =5"
(b) (A%2+3A—1)g =2"+(-1)" (8) (A-3)*(A+1)g=2-3"

(©) (A-3%f=3n+1 (h) (A-2)(A +3)f =5n2"

(d) (A2+3A-1)9 =2n (i) (A—=2)%(A—-1)g =3n22" +2"
(e) (A-2)(A—4)f =3n%+9" () (A+1)%2(A=3)f =3"+2n?

10. Find and solve a recurrence equation for the number g, of ternary strings of length
n that do not contain 102 as a substring.

11. There is a famous puzzle called the Towers of Hanoi that consists of three pegs
and n circular discs, all of different sizes. The discs start on the leftmost peg, with the
largest disc on the bottom, the second largest on top of it, and so on, up to the smallest
disc on top. The goal is to move the discs so that they are stacked in this same order on
the rightmost peg. However, you are allowed to move only one disc at a time, and you
are never able to place a larger disc on top of a smaller disc. Let t,, denote the fewest
moves (a move being taking a disc from one peg and placing it onto another) in which
you can accomplish the goal. Determine an explicit formula for t,,.

12. A valid database identifier of length # can be constructed in three ways:

¢ Starting with A and followed by any valid identifier of length n — 1.

e Starting with one of the two-character strings 14, 1B, 1C, 1D, 1E, or 1F and fol-
lowed by any valid identifier of length n — 2.

e Starting with 0 and followed by any ternary ({0, 1, 2}) string of length n — 1.

Find a recurrence for the number g(n) of database identifiers of length # and then solve
your recurrence to obtain an explicit formula for g(n). (You may consider the empty
string of length 0 a valid database identifier, making g(0) = 1. This will simplify the
arithmetic.)

13. Let t, be the number of ways to tile a 2 xn rectangle using 1x1 tiles and L-tiles. An
L-tile is a 2 X 2 tile with the upper-right 1 x 1 square deleted. (An L tile may be rotated
so that the “missing” square appears in any of the four positions.) Find a recursive

211

Chapter 9 Recurrence Equations

formula for ¢, along with enough initial conditions to get the recursion started. Use
this recursive formula to find a closed formula for £,,.

14. Prove Lemma 9.22 about advancement operator equations with repeated roots.

15. Use generating functions to solve the recurrence equation r, = r,_1 + 61,2 for
n >2withrg=1and r; =3.

16. Letap = 0,41 = 2, and a4, = 5. Use generating functions to solve the recurrence
equation a,43 = 54,42 — 74,41 + 3a, + 2" forn > 0.

17. Let bp = 1, bp = 1, and b3 = 4. Use generating functions to solve the recurrence
equation by,43 = 4b,42 — b1 — 6b, + 3" forn > 0.

18. Use generating functions to find a closed formula for the Fibonacci numbers f,.

19. How many rooted, unlabeled, binary, ordered, trees (RUBOTs) with 6 leaves are
there? Draw 6 distinct RUBOTs with 6 leaves.

20. In this chapter, we developed a generating function for the Catalan numbers. We
first encountered the Catalan numbers in Chapter 2, where we learned they count cer-
tain lattice paths. Develop a recurrence for the number /,, of lattice paths similar to the
recurrence

n
Cp = Z CrkCr—k forn >2
k=0

for RUBOTSs by thinking of ways to break up a lattice path from (0, 0) to (1,) that does
not cross the diagonal y = x into two smaller lattice paths of this type.

212

CHAPTER 1 O -

Probability

It was a slow day and Dave said he was bored. It was just after lunch, and he com-
plained that there was nothing to do. Nobody really seemed to be listening, although
Alice said that Dave might consider studying, even reading ahead in the chapter. Un-
deterred, Dave said “Hey Alice, how about we play a game. We could take turns toss-
ing a coin, with the other person calling heads or tails. We could keep score with the
first one to a hundred being the winner.” Alice rolled her eyes at such a lame idea.
Sensing Alice’s lack of interest, Dave countered “OK, how about a hundred games of
Rock, Paper or Scissors?” Zori said “Why play a hundred times? If that’s what you're
going to do, just play a single game.”

Now it was Alice’s turn. “If you want to play a game, I've got a good one for you.
Just as you wanted, first one to score a hundred wins. You roll a pair of dice. If you
roll doubles, I win 2 points. If the two dice have a difference of one, I win 1 point.
If the difference is 2, then it’s a tie. If the difference is 3, you win one point; if the
difference is 4, you win two points; and if the difference is 5, you win three points.”
Xing interrupted to say “In other words, if the difference is d, then Dave wins d — 2
points.” Alice continues “Right! And there are three ways Dave can win, with one of
them being the biggest prize of all. Also, rolling doubles is rare, so this has to be a
good game for Dave.”

Zori’s ears perked up with Alice’s description. She had a gut feeling that this game
wasn't really in Dave’s favor and that Alice knew what the real situation was. The idea
of a payoff with some uncertainty involved seemed very relevant. Carlos was scribbling
on a piece of paper, then said politely “Dave, you really should be reading ahead in the
chapter”.

So what do you think? Is this a fair game? What does it mean for a game to be fair?
Should Dave play—independent of the question of whether such silly stuff should oc-
cupy one’s time? And what does any of this conversation have to do with combina-
torics?

213

Chapter 10 Probability

10.1 An Introduction to Probability

We continue with an informal discussion intended to motivate the more structured
development that will follow. Consider the “spinner” shown in Figure 10.1. Suppose
we give it a good thwack so that the arrow goes round and round. We then record
the number of the region in which the pointer comes to rest. Then observers, none of
whom have studied combinatorics, might make the following comments:

Ficure 10.1: A SPINNER FOR GAMES OF CHANCE

1. The odds of landing in region 1 are the same as those for landing in region 3.
2. You are twice as likely to land in region 2 as in region 4.

3. When you land in an odd numbered region, then 60% of the time, it will be in
region 5.

We will now develop a more formal framework that will enable us to make such
discussions far more precise. We will also see whether Alice is being entirely fair to
Bob in her proposed game to one hundred.

We begin by defining a probability space as a pair (S, P) where S is a finite set and
P is a function that whose domain is the family of all subsets of S and whose range is
the set [0, 1] of all real numbers which are non-negative and at most one. Furthermore,
the following two key properties must be satisfied:

1. P(@) =0and P(S) = 1.

2. If A and B are subsets of S, and A N B = @, then P(A U B) = P(A) + P(B).

214

10.1 An Introduction to Probability

When (S, P) is a probability space, the function P is called a probability measure,
the subsets of S are called events, and when E C S, the quantity P(E) is referred to as
the probability of the event E.

Note that we can consider P to be extended to a mapping from S to [0, 1] by setting
P(x) = P({x}) for each element x € S. We call the elements of S outcomes (some
people prefer to say the elements are elementary outcomes) and the quantity P(x) is
called the probability of x. It is important to realize that if you know P(x) for each
x € S, then you can calculate P(E) for any event E, since (by the second property),
P(E) = Xxex P(x).

Example 10.2. For the spinner, we can take S = {1,2,3,4,5}, with P(1) = P(3) = P(4) =
1/8,P(2) =2/8 = 1/4 and P(5) = 3/8. So P({2,3}) = 1/8 + 2/8 = 3/8.

Example 10.3. Let S be a finite, nonempty set and let n = |S|. For each E C S, set
P(E) = |E|/n. In particular, P(x) = 1/n for each element x € S. In this trivial example,
all outcomes are equally likely.

Example 10.4. If a single six sided die is rolled and the number of dots on the top face
is recorded, then the ground setis S = {1,2,3,4,5,6} and P(i) = 1/6 foreachi € S. On
the other hand, if a pair of dice are rolled and the sum of the dots on the two top faces is
recorded, then S = {2,3,4,...,11,12} with P(2) = P(12) = 1/36, P(3) = P(11) = 2/36,
P(4) = P(10) = 3/36, P(5) = P(9) = 4/36, P(6) = P(8) = 5/36 and P(7) = 6/36. To see
this, consider the two die as distinguished, one die red and the other one blue. Then
each of the pairs (i, j) with 1 < i,j < 6, the red die showing i spots and the blue die
showing j spots is equally likely. So each has probability 1/36. Then, for example,
there are three pairs that yield a total of four, namely (3,1), (2,2) and (1,3). So the
probability of rolling a four is 3/36 = 1/12.

Example 10.5. In Alice’s game as described above, the set S can be {0, 1, 2, 3,4, 5}, the
set of possible differences when a pair of dice are rolled. In this game, we will see that
the correct definition of the function P will set P(0) = 6/36; P(1) = 10/36; P(2) = 8/36;
P(3) = 6/36; P(4) = 4/36; and P(5) = 2/36. Using Xing’s more compact notation, we
could say that P(0) = 1/6 and P(d) = 2(6 — d)/36 when d > 0.

Example 10.6. A jar contains twenty marbles, of which six are red, nine are blue and
the remaining five are green. Three of the twenty marbles are selected at random.! Let
X =1{0,1,2,3,4,5}, and for each x € X, let P(x) denote the probability that the number
of blue marbles among the three marbles selected is x. Then P(i) = C(9,i)C(11,3 —
i)/C(20,3) fori = 0,1,2,3, while P(4) = P(5) = 0. Bob says that it doesn’t make sense
to have outcomes with probability zero, but Carlos says that it does.

1This is sometimes called sampling without replacement. You should imagine a jar with opaque sides—so
you can’t see through them. The marbles are stirred /shaken, and you reach into the jar blind folded and
draw out three marbles.

215

Chapter 10 Probability

Example 10.7. In some cards games, each player receives five cards from a standard
deck of 52 cards—four suits (spades, hearts, diamonds and clubs) with 13 cards, ace
though king in each suit. A player has a full house if there are two values x and y
for which he has three of the four x’s and two of the four y’s, e.g. three kings and two
eights. If five cards are drawn at random from a standard deck, the probability of a full

house is 13)(12) (3 (2
GDEEIG) o oo1s.

10.2 Conditional Probability and Independent Events

A jar contains twenty marbles of which six are red, nine are blue and the remaining five
are green. While blindfolded, Xing selects two of the twenty marbles random (without
replacement) and puts one in his left pocket and one in his right pocket. He then takes
off the blindfold.

The probability that the marble in his left pocket is red is 6/20. But Xing first reaches
into his right pocket, takes this marble out and discovers that it is blue. Is the proba-
bility that the marble in his left pocket is red still 6/20? Intuition says that it’s slightly
higher than that. Here’s a more formal framework for answering such questions.

Let (S, P) be a probability space and let B be an event for which P(B) > 0. Then for
every event A C S, we define the probability of A, given B, denoted P(A|B), by setting
P(A|B) = P(ANB)/P(B).

Discussion 10.8. Returning to the question raised at the beginning of the section, Bob
says that this is just conditional probability. He says let B be the event that the marble
in the right pocket is blue and let A be the event that the marble in the left pocket is red.
Then P(B) = 9/20, P(A) = 6/20and P(ANB) = (9-6)/380, so that P(A|B) = 252 = 6/19,
which is of course slightly larger than 6/20. Alice is impressed.

Example 10.9. Consider the jar of twenty marbles from the preceding example. A
second jar of marbles is introduced. This jar has eighteen marbles: nine red, five blue
and four green. A jar is selected at random and from this jar, two marbles are chosen at
random. What is the probability that both are green? Bob is on a roll. He says, “Let G
be the event that both marbles are green, and let J; and |, be the event that the marbles
come from the first jar and the second jar, respectively. Then G = (G N J1) U(G N Jp),
and (G N J1) + (G N J2) = 0. Furthermore, P(G|J1) = (3)/(¥) and P(G|]2) = (3)/(}),
while P(J;1) = P(J,) = 1/2. Also P(G N J;) = P(J;)P(G|]J;) for each i = 1, 2. Therefore,

16) 16) 1/ 12

2(2) 2(1) 21380 306)°

216

10.3 Bernoulli Trials

That’s about 4.6%.”
Now Alice is speechless.

10.2.1 Independent Events

Let A and B be events in a probability space (S, P). We say A and B are independent
if P(A N B) = P(A)P(B). Note that when P(B) # 0, A and B are independent if and
only if P(A) = P(A|B). Two events that are not independent are said to be dependent.
Returning to our earlier example, the two events (A: the marble in Xing’s left pocket is
red and B: the marble in his right pocket is blue) are dependent.

Example 10.10. Consider the two jars of marbles from Example 10.9. One of the two
jars is chosen at random and a single marble is drawn from that jar. Let A be the event
that the second jar is chosen, and let B be the event that the marble chosen turns out to
be green. Then P(A) =1/2 and P(B) = %25—0 + %%. On the other hand, P(A N B) = %%,
so P(A N B) # P(A)P(B), and the two events are not independent. Intuitively, this
should be clear, since once you know that the marble is green, it is more likely that you

actually chose the first jar.

Example 10.11. A pair of dice are rolled, one red and one blue. Let A be the event that
the red die shows either a 3 or a 5, and let B be the event that you get doubles, i.e., the
red die and the blue die show the same number. Then P(A) = 2/6, P(B) = 6/36, and
P(ANB)=2/36. So A and B are independent.

10.3 Bernoulli Trials

Suppose we have a jar with 7 marbles, four of which are red and three are blue. A
marble is drawn at random and we record whether it is red or blue. The probability p
of getting a red marble is 4/7; and the probability of getting a blueis 1 —p = 3/7.

Now suppose the marble is put back in the jar, the marbles in the jar are stirred,
and the experiment is repeated. Then the probability of getting a red marble on the
second trial is again 4/7, and this pattern holds regardless of the number of times the
experiment is repeated.

It is customary to call this situation a series of Bernoulli trials. More formally, we
have an experiment with only two outcomes: success and failure. The probability
of success is p and the probability of failure is 1 — p. Most importantly, when the
experiment is repeated, then the probability of success on any individual test is exactly
p.

We fix a positive integer n and consider the case that the experiment is repeated n
times. The outcomes are then the binary strings of length n from the two-letter alpha-
bet {S, F}, for success and failure, respectively. If x is a string with 7 successes and n —i

217

Chapter 10 Probability

failures, then P(x) = ()p'(1-p)"~'. Of course, in applications, success and failure may
be replaced by: head/tails, up/down, good/bad, forwards/backwards, red /blue, etc.

Example 10.12. When a die is rolled, let’s say that we have a success if the result is
a two or a five. Then the probability p of success is 2/6 = 1/3 and the probability of
failure is 2/3. If the die is rolled ten times in succession, then the probability that we
get exactly four successes is C(10,4)(1/3)*(2/3)°.

Example 10.13. A fair coin is tossed 100 times and the outcome (heads or tails) is
recorded. Then the probability of getting heads 40 times and tails the other 60 times is

100\ (1) (1* _ (W)
(o)) &) -5
Discussion 10.14. Bob says that if a fair coin is tossed 100 times, it is fairly likely that
you will get exactly 50 heads and 50 tails. Dave is not so certain this is right. Carlos fires
up his computer and in few second, he reports that the probability of getting exactly
50 heads when a fair coin is tossed 100 times is

12611418068195524166851562157
158456325028528675187087900672

which is .079589, to six decimal places. In other words, not very likely at all. Xing is
doing a modestly more complicated calculation, and he reports that you have a 99%
chance that the number of heads is at least 20 and at most 80. Carlos adds that when
n is very large, then it is increasingly certain that the number of heads in # tosses will
be close to 11/2. Dave asks what do you mean by close, and what do you mean by very
large?

10.4 Discrete Random Variables

Let (S, P) be a probability space and let X : S — R be any function that maps the
outcomes in S to real numbers (all values allowed, positive, negative and zero). We
call' X a random variable. The quantity s X(x)P(x), denoted E(X), is called the
expectation (also called the mean or expected value) of the random variable X. As the
suggestive name reflects, this is what one should expect to be the average behavior of
the result of repeated Bernoulli trials.

Note that since we are dealing only with probability spaces (S, P) where S is a finite
set, the range of the probability measure P is actually a finite set. Accordingly, we can
rewrite the formula for E(X) as 3, y - prob(X(x) = y), where the summation extends
over a finite range of values for y.

For historical reasons, capital letters, like X and Y are used to denote random variables. They are just
functions, so letters like f, g and h might more seem more natural—but maybe not.

218

10.4 Discrete Random Variables

Example 10.15. For the spinner shown in Figure 10.1, let X (i) = i> where i is the num-
ber of the region. Then

_ o 42l 22 51 51 53 109
E(X)_;zp(z)_l 8+2 8+3 8+4 8+5 ialarat

Note that 109/8 = 13.625. The significance of this quantity is captured in the fol-
lowing statement. If we record the result from the spinner n times in succession as
(i1,12,...,iy) and Xing receives a prize worth i}z foreach j = 1,2,...,n), then Xing
should “expect” to receive a total prize worth 1091/8 = 13.625n. Bob asks how this
statement can possibly be correct, since 13.625# may not even be an integer, and any
prize Xing receives will have integral value. Carlos goes on to explain that the concept
of expected value provides a formal definition for what is meant by a fair game. If Xing
pays 13.625 cents to play the game and is then paid i? pennies where i is the number
of the region where the spinner stops, then the game is fair. If he pays less, he has an
unfair advantage, and if he pays more, the game is biased against him. Bob says “How
can Xing pay 13.625 pennies?” Brushing aside Bob’s question, Carlos says that one can
prove that for every € > 0, there is some 1y (which depends on €) so that if n > n,,
then the probability that Xing’s total winnings minus 13.625#n, divided by 7 is within e
of 13.625 is at least 1 — . Carlos turns to Dave and explains politely that this statement
gives a precise meaning of what is meant by “close” and “large”.

Example 10.16. For Alice’s game from the start of the chapter, S = {0, 1,2, 3,4, 5}, we
could take X to be the function defined by X(d) = 2—d. Then X(d) records the amount
that Bob wins when the difference is d (a negative win for Bob is just a win for Alice in
the same amount). We calculate the expectation of X as follows:

5
1 10 8 6 _4)
EX) =S X(dp(d) = -22 — 1= + 0> +12 422 13036 = —=.
(X) ; (d)p(d) = —25 =T3¢ + 03¢ + 135 +235 +3236 = =2

Note that —2/36 = —.055555.. . .. So if points were dollars, each time the game is played,
Bob should expect to lose slightly more than a nickel. Needless to say, Alice likes to
play this game and the more times Bob can be tricked into playing, the more she likes
it. On the other hand, by this time in the chapter, Bob should be getting the message
and telling Alice to go suck a lemon.

10.4.1 The Linearity of Expectation

The following fundamental property of expectation is an immediate consequence of
the definition, but we state it formally because it is so important to discussions to follow.

219

Chapter 10 Probability

Proposition 10.17. Let (S, P) be a probability space and let X1, X», ..., X, be random vari-
ables. Then
EX1+Xp+---+X;) =E(X1)+E(Xp) +---+ E(X,).

10.4.2 Implications for Bernoulli Trials

Example 10.18. Consider a series of nn Bernoulli trials with p, the probability of success,
and let X count the number of successes. Then, we claim that

E(X) = i(’?) i(1—p)y"i=n

; i |P p P
To see this, consider the function f(x) = [px + (1 — p)]". Taking the derivative by the
chain rule, we find that f’(x) = np[px + (1 — p)]"~!. Now when x = 1, the derivative
has value np.

On the other hand, we can use the binomial theorem to expand the function f.

n

foy=> (?)xipi(l —p)"
i=0

It follows that

n
/ A i n—i
= 1-—-
f/(x) ;Z(i)x p'L-p)
And now the claim follows by again setting x = 1. Who says calculus isn’t useful!

Example 10.19. Many states have lotteries to finance college scholarships or other pub-
lic enterprises judged to have value to the public at large. Although far from a scientific
investigation, it seems on the basis of our investigation that many of the games have an
expected value of approximately fifty cents when one dollar is invested. So the games
are far from fair, and no one should play them unless they have an intrinsic desire to
support the various causes for which the lottery profits are targeted.

By contrast, various games of chance played in gambling centers have an expected
return of slightly less than ninety cents for every dollar wagered. In this setting, we
can only say that one has to place a dollar value on the enjoyment derived from the
casino environment. From a mathematical standpoint, you are going to lose. That’s
how they get the money to build those exotic buildings.

10.5 Central Tendency

Consider the following two situations:

220

10.5 Central Tendency

e Situation 1. A small town decides to hold a lottery to raise funds for charitable
purposes. A total of 10, 001 tickets are sold, and the tickets are labeled with num-
bers from the set {0, 1,2,...,10,000}. Ata public ceremony, duplicate tickets are
placed in a big box, and the mayor draws the winning ticket from out of the box.
Just to heighten the suspense as to who has actually won the prize, the mayor
reports that the winning number is at least 7, 500. The citizens ooh and aah and
they can’t wait to see who among them will be the final winner.

¢ Situation 2. Behind a curtain, a fair coin is tossed 10, 000 times, and the number
of heads is recorded by an observer, who is reputed to be honest and impartial.
Again, the outcome is an integer in the set {0,1,2,...,10,000}. The observer
then emerges from behind the curtain and announces that the number of heads
is at least than 7, 500. There is a pause and then someone says “What? Are you
out of your mind?”

So we have two probability spaces, both with sample space S = {0, 1,2, ...,10,000}.
For each, we have a random variable X, the winning ticket number in the first situation,
and the number of heads in the second. In each case, the expected value, E(X), of the
random variable X is 5, 000. In the first case, we are not all that surprised at an outcome
far from the expected value, while in the second, it seems intuitively clear that this is
an extraordinary occurrence. The mathematical concept here is referred to as central
tendency, and it helps us to understand just how likely a random variable is to stray
from its expected value.

For starters, we have the following elementary result.

Theorem 10.20 (Markov’s Inequality). Let X be a random variable in a probability space
(S, P). Then for every k > 0,
P(1X| = k) < E(|X|)/k.

Proof. Of course, the inequality holds trivially unless k > E(|X]). For k in this range,
we establish the equivalent inequality: kP(|X| > k) < E(|X]).

kP(|X| > k) = Z kP(|X| =)

r>k

< Y rP(X|=7)

r>k

< > rP(X|=7)

r>0

= E(IX)). o

To make Markov’s inequality more concrete, we see that on the basis of this trivial
result, the probability that either the winning lottery ticket or the number of heads

221

Chapter 10 Probability

is at least 7,500 is at most 5000/7500 = 2/3. So nothing alarming here in either case.
Since we still feel that the two cases are quite different, a more subtle measure will be
required.

10.5.1 Variance and Standard Deviation

Again, let (S, P) be a probability space and let X be a random variable. The quantity
E((X - E(X))?) is called the variance of X and is denoted var(X). Evidently, the vari-
ance of X is a non-negative number. The standard deviation of X, denoted ox is then

defined as the quantity /var(x), i.e., a§(= var(X).

Example 10.21. For the spinner shown at the beginning of the chapter, let X(i) = i
when the pointer stops in region i. Then we have already noted that the expectation
E(X) of the random variable X is 109/8. It follows that the variance var(X) is:

109 109 109 109
var(X) =(1% ~)2 +(2% -)2 + (3 -)2 + (4% -)2
109 3
52 _ 27y22
+(s)5
=(108 + 105% + 100> + 93% + 84%) /512
=48394/512

It follows that the standard deviation ox of X is then /48394/512 ~ 9.722.

Example 10.22. Suppose that 0 < p < 1 and consider a series of n Bernoulli trials with
the probability of success being p, and let X count the number of successes. We have
already noted that E(X) = np. Now we claim the variance of X is given by:

var(X) = Z(z - np)z()P (1-p)" =np(1-p)

There are several ways to establish this claim. One way is to proceed directly from the
definition, using the same method we used previously to obtain the expectation. But
now you need also to calculate the second derivative. Here is a second approach, one
that capitalizes on the fact that separate trials in a Bernoulli series are independent.

Let ¥ = {Xi,Xp,..., Xu} be a family of random variables in a probability space
(S,P). We say the family ¥ is independent if for each i and j with1 < i < j < #,
and for each pair a,b of real numbers with 0 < a4,b < 1, the following two events
are independent: {x € S : X;(x) < a} and {x € S : X;(x) < b}. When the family is
independent, it is straightforward to verify that

var(Xq + Xo + -+ + X)) = var(Xq) + var(Xp) + - - - + var(X,,).

222

10.5 Central Tendency

With the aid of this observation, the calculation of the variance of the random vari-
able X which counts the number of successes becomes a trivial calculation. But in fact,
the entire treatment we have outlined here is just a small part of a more complex subject
which can be treated more elegantly and ultimately much more compactly—provided
you first develop additional background material on families of random variables. For
this we will refer you to suitable probability and statistics texts, such as those given in
our references.

Proposition 10.23. Let X be a random variable in a probability space (S, P). Then var(X) =
E(X?) - E3(X).

Proof. Let E(X) = u. From its definition, we note that
var(X) = Z(r — u)*prob(X = r)
r
= zl(r2 —2ru + p?)prob(X =)

= Z r?prob(X =r) - 2u Z rprob(X = r) + u? Z prob(X =r)

= E(X?) —2u? + u?

= E(X?) - p?

= E(X?) - EX(X). O
Variance (and standard deviation) are quite useful tools in discussions of just how

likely a random variable is to be near its expected value. This is reflected in the follow-
ing theorem.

Theorem 10.24 (Chebyshev’s Inequality). Let X be a random variable in a probability space
(S, P), and let k > 0 be a positive real number. If the expectation E(X) of X is and the standard
deviation is ox, then

1
prob(|X —E(X)| < kox) =1 - P

Proof. Let A={reR:|r—u| > kox}.
Then we have:

var(X) = E(X - p)?)
= > (r =) prob(X = r)

reR

> Z(r — u)prob(X =)

reA

223

Chapter 10 Probability

> k20§(Zprob(X =7)

reA
> k2a§(prob(|X — u| > kox).

Since var(X) = 02, we may now deduce that 1/k? > prob(|X — u|) > kox). Therefore,
since prob(|X — | < kox) =1 — prob(|X — u| > kox), we conclude that

prob(|X — u| Skax)zl—%. m|
Example 10.25. Here’s an example of how Chebyshev’s Inequality can be applied.
Consider n tosses of a fair coin with X counting the number of heads. As noted before,
p = E(X) = n/2 and var(X) = n/4, so ox = Yn/2. When n = 10,000 and p = 5,000
and ox = 50. Setting k = 50 so that kox = 2500, we see that the probability that X is
within 2500 of the expected value of 5000 is at least 0.9996. So it seems very unlikely
indeed that the number of heads is at least 7, 500.
Going back to lottery tickets, if we make the rational assumption that all ticket num-
bers are equally likely, then the probability that the winning number is at least 7, 500
is exactly 2501/100001, which is very close to 1/4.

Example 10.26. In the case of Bernoulli trials, we can use basic properties of binomial
coefficients to make even more accurate estimates. Clearly, in the case of coin tossing,
the probability that the number of heads in 10, 000 tosses is at least 7, 500 is given by

10,000
(10, 000) /210,000

i=7,500

Now a computer algebra system can make this calculation exactly, and you are encour-
aged to check it out just to see how truly small this quantity actually is.

10.6 Probability Spaces with Infinitely Many Outcomes

To this point, we have focused entirely on probability spaces (S, P) with S a finite set.
More generally, probability spaces are defined where S is an infinite set. When S is
countably infinite, we can still define P on the members of S, and now },,.s P(x) is an
infinite sum which converges absolutely (since all terms are non-negative) to 1. When
S is uncountable, P is not defined on S. Instead, the probability function is defined on
a family of subsets of S. Given our emphasis on finite sets and combinatorics, we will
discuss the first case briefly and refer students to texts that focus on general concepts
from probability and statistics for the second.

224

10.7 Discussion

Example 10.27. Consider the following game. Nancy rolls a single die. She wins if
she rolls a six. If she rolls any other number, she then rolls again and again until the
first time that one of the following two situations occurs: (1) she rolls a six, which now
this results in a loss or (2) she rolls the same number as she got on her first roll, which
results in a win. As an example, here are some sequences of rolls that this game might
take:

1. 4,2,3,5,1,1,1,4). Nancy wins!
2. (6). Nancy wins!
3. (5,2,3,2,1,6). Nancy loses. Ouch.

So what is the probability that Nancy will win this game?

Nancy can win with a six on the first roll. That has probability 1/6. Then she might
win on round n where n > 2. To accomplish this, she has a 5/6 chance of rolling a
number other than six on the first roll; a 4/6 chance of rolling something that avoids a
win/loss decision on each of the rolls, 2 through 7 — 1 and then a 1/6 chance of rolling
the matching number on round 7. So the probability of a win is given by:

n-2
1 5(4 1 7
6+ZE(6) 6 12
n>2

Example 10.28. You might think that something slightly more general is lurking in the
background of the preceding example—and it is. Suppose we have two disjoint events
A and B in a probability space (S, P) and that P(A) + P(B) < 1. Then suppose we make
repeated samples from this space with each sample independent of all previous ones.
Call it a win if event A holds and a loss if event B holds. Otherwise, it’s a tie and we
sample again. Now the probability of a win is:

P(A)+P(A)Z(1—P(A)_P(B))n - %
nx1

10.7 Discussion

Bob was late for morning coffee and the group was well into dissecting today’s applied
combinatorics class. As he approached the table, he blurted out “Ok guys, here’s a
problem that doesn’t make any sense to me, except that Nadja, my friend from biology,
says that if I have a good feel for probability, then it is transparent.” Alice not very
softly interjected “Not much goes through six inches of iron.” Bob didn’t bite “A guy
eats lunch at the same diner every day. After lunch, the waiter asks if he wants dessert.

225

Chapter 10 Probability

He asks for the choices and the waiter replies “We have three kinds of pie: apple, cherry
and pecan.” Then the guy always says ‘I'll have pecan pie.” This goes on for six months.
Then one day, the waiter says ‘I have bad news. Today, we don’t have any apple pie, so
your only choices are cherry and pecan.” Now the guy says ‘In this case, I'll have the
cherry pie.” I have to tell you all that this doesn’t make any sense to me. Why would
the guy ask for cherry pie in preference to pecan pie when he consistently takes pecan
pie over both cherry pie and apple pie?”

Zori was the first to say something “Ok guys, I've finally willing to accept the premise
that big integer arithmetic, and things that reflect the same flavor, might and I empha-
size might, have some relevance in the real world, but this conversation about dessert
in some stupid diner is too much.” Xing was hesitant but still offered “There’s some-
thing here. That much I'm sure.” Dave said “Yeah, a great dessert. Especially the
pecan pie.” Alice was not amused. All the while Carlos was thinking. Finally, he said
“I think it has something to do with conditional probability. The patron’s preference
for pecan pie was conditioned on the fact that there were three choices. When there
were only two choices, his preferences changed.”

Now Yolanda saw more “Doesn’t this happen all the time in presidential politics?
People prefer candidate A when A, B and C are running, but when candidate C drops
out, they shift their preference to candidate B.” Alice said “You could say the same
thing about close personal relationships.” Although she didn’t say it, she was thinking
that it wouldn’t matter how many dropped out if Bob was one of the remaining.

10.8 Exercises

1. Our gang of seven (Alice, Bob, Carlos, Dave, Xing, Yolanda and Zori) are students
in a class with a total enrollment of 35. The professor chooses three students at random
to go to the board to work challenge problems.

(a) What is the probability that Yolanda is chosen?
(b) What is the probability that Yolanda is chosen and Zori is not?
(c) What is the probability that exactly two members of the club are chosen?

(d) What is the probability that none of the seven members of club are chosen?

2. Bob says to no one in particular, “Did you know that the probability that you will
get at least one ‘7’ in three rolls of a pair of dice is slightly less than 1/2. On the other
hand, the probability that you'll get at least one ‘5" in six rolls of the dice is just over
1/2.” Is Bob on target, or out to lunch?

3. Consider the spinner shown in Figure 10.1 at the beginning of the chapter.

226

10.8 Exercises

(a) What is the probability of getting at least one “5” in three spins?
(b) What is the probability of getting at least one “3” in three spins?

(c) If you keep spinning until you get either a “2” or a “5”, what is the probability
that you get a “2” first?

(d) If you receive i dollars when the spinner halts in region i, what is the expected
value? Since three is right in the middle of the possible outcomes, is it reasonable
to pay three dollars to play this game?

4. Alice proposes to Bob the following game. Bob pays one dollar to play. Fifty balls
marked 1,2,...,50 are placed in a big jar, stirred around, and then drawn out one by
one by Zori, who is wearing a blindfold. The result is a random permutation ¢ of
the integers 1, 2,...,50. Bob wins with a payout of two dollars and fifty cents if the
permutation ¢ is a derangement, i.e., 0(i) # i foralli = 1,2,...,n. Is this a fair game
for Bob? If not how should the payoff be adjusted to make it fair?

5. A random graph with vertex set {1,2,...,10} is constructed using the following
method. For each two element subset {i, j} from {1,2,...,10}, a fair coin is tossed
and the edge {i, j} then belongs to the graph when the result is “heads.” For each 3-
element subset S C {1,2,...,n}, let Eg be the event that S is a complete subgraph in
our random graph.

(a) Explain why P(Es) = 1/8 for each 3-element subset S.
(b) Explain why Es and Et are independent when |[SNT| < 1.
(c) LetS={1,2,3}, T ={2,3,4} and U = {3,4,5}. Show that

P(Es|Er) = P(Es|ETEu).

6. Ten marbles labeled 1,2,...,10 are placed in a big jar and then stirred up. Zori,
wearing a blindfold, pulls them out of the jar two at a time. Players are allowed to place
bets as to whether the sum of the two marbles in a pair is 11. There are C(10,2) = 45
different pairs and exactly 5 of these pairs sums to eleven.

Suppose Zori draws out a pair; the results are observed; then she returns the two balls
to the jar and all ten balls are stirred before the next sample is taken. Since the proba-
bility that the sum is an “11” is 5/45 = 1/9, then it would be fair to pay one dollar to
play the game if the payoff for an “11” is nine dollars. Similarly, the payoff for a wager
of one hundred dollars should be nine hundred dollars.

Now consider an alternative way to play the game. Now Zori draws out a pair; the
results are observed; and the marbles are set aside. Next, she draws another pair from
the remaining eight marbles, followed by a pair selected from the remaining six, etc.

227

Chapter 10 Probability

Finally, the fifth pair is just the pair that remains after the fourth pair has been selected.
Now players may be free to wager on the outcome of any or all or just some of the
five rounds. Explain why either everyone should or no one should wager on the fifth
round. Accordingly, the last round is skipped and all marbles are returned to the jar
and we start over again.

Also explain why an observant player can make lots of money with a payout ratio of
nine to one. Now for a more challenging problem, what is the minimum payout ratio
above which a player has a winning strategy?

228

CHAPTER 1 1 -

Applying Probability to
Combinatorics

11.1 A First Taste of Ramsey Theory

Bob likes to think of himself as a wild and crazy guy, totally unpredictable. Most
guys do. But Alice says that Bob can’t change his basic nature, which is excruciatingly
boring. Carlos remarks that perhaps we shouldn’t be so hard on Bob, because under
certain circumstances, we can all be forced to be dull and repetitive.

Recall that when 7 is a positive integer, we let [n] = {1,2,...,n}. In this chapter,
when X is a set and k is a non-negative integer with k < |X|, we borrow from our in-
line notation for binomial coefficients and let C(X, k) denote the family of all k-element
subsets of X. So |C([n], k)| = C(n, k) whenever 0 < k < n.

Recall that the Pigeon Hole Principle asserts that if n + 1 pigeons are placed in n
holes, then there must be some hole into which two or more pigeons have been placed.
More formally, if n and k are positive integers, t > n(k — 1) and f : [t] — [n] is
any function, then there is a k-element subset H C [¢] and an element j € [n] so that
f(i) = jforeveryi € H.

We now embark on a study of an elegant extension of this basic result, one that
continues to fascinate and challenge.

Returning to the discussion at the start of this section, you might say that an induced
subgraph H of a graph G is “boring” if it is either a complete subgraph or an indepen-
dent set. In either case, exactly every pair of vertices in H behaves in exactly the same
boring way. So is boredom inevitable? The answer is yes—at least in a relative sense.
As a starter, let’s show that any graph on six (or more) vertices has a boring subgraph
of size three.

Lemma 11.1. Let G be any graph with six of more vertices. Then either G contains a complete
subgraph of size 3 or an independent set of size 3.

Proof. Let x be any vertex in G. Then split the remaining vertices into two sets S; and

229

Chapter 11 Applying Probability to Combinatorics

S, with S1 being the neighbors of x and S, the non-neighbors. Since G has at least six
vertices, we know that either |S1| > 3 or |Sz| > 3. Suppose first that |S1| > 3 and let
y1, y2 and y3 be distinct vertices from S;. If y;y; is an edge in G for some distinct pair
i,j €{1,23}, then {x, y;, y;} is a complete subgraph of size 3 in G. On the other hand,
if there are no edges among the vertices in {y1, y2, y3}, then we have an independent
set of size 3.

The argument when |S,| > 3 is dual. m]

We note that the bound of six in the preceding lemma is sharp, as a cycle on five
vertices does not contain either a complete set of size 3 nor an independent set of size 3.
Next, here is the statement that generalizes this result.

Theorem 11.2 (Ramsey’s Theorem for Graphs). If m and n are positive integers, then there
exists a least positive integer R(m, n) so that if G is a graph and G has at least R(m, n) vertices,
then either G contains a complete subgraph on m vertices, or G contains an independent set of
size n.

Proof. We show that R(m, n) exists and is at most (m;fiz) This claim is trivial when

either m < 2 or n < 2, so we may assume that m, n > 3. From this point, we proceed
by induction on t = m + n assuming that the result holds when t < 5.

Now let x be any vertex in G. Then there are at least ("*";?) — 1 other vertices, which
we partition as S1 U Sy, where S are those vertices adjacent to x in G and S, are those
vertices which are not adjacent to s.

We recall that the binomial coefficients satisfy
m+n-2\ [(m+n-3 N m+n-3\ [(m+n-3 N m+mn—3
m-1) \ m-2 m-1) | m-2 n-—2

So either |S1| > (m;ff) or |S1] > (m;ff) If the first option holds, and S; does not
have an independent set of size n, then it contains a complete subgraph of size m — 1.
It follows that we may add x to this set to obtain a complete subgraph of size m in G.

Similarly, if the second option holds, and S, does not contain a complete subgraph
of size m, then S, contains an independent set of size n — 1, and we may add x to this

set to obtain an independent set of size n in G. m]

11.2 Small Ramsey Numbers

Actually determining the Ramsey numbers R(m, n) referenced in Theorem 11.2 seems
to be a notoriously difficult problem, and only a handful of these values are known
precisely. In particular, R(3,3) = 6 and R(4,4) = 18, while 43 < R(5,5) < 49. The
distinguished Hungarian mathematician Paul Erdds said on many occasions that it

230

11.3 Estimating Ramsey Numbers

might be possible to determine R(5,5) exactly, if all the world’s mathematical talent
were to be focused on the problem. But he also said that finding the exact value of
R(6, 6) might be beyond our collective abilities.

In the following table, we provide information about the Ramsey numbers R(m, 1)
when m and 7 are at least 3 and at most 9. When a cell contains a single number, that
is the precise answer. When there are two numbers, they represent lower and upper
bounds.

6 9 14 18 23 36 39
18 25 36,41 49, 61 58, 84 73,115
43,49 58,87 80,143 101,216 126,316
102,165 113,298 127,495 169,780
205,540 217,1031 241,1713
282,1870 317,3583
565, 6588

O © N Oy O i WF

TasLE 11.3: SMALL RAMSEY NUMBERs R(m, 11)

For additional (or more current) data, see Dynamic Survey #DS1: “Small Ramsey
Numbers” by Stanistaw Radziszowski in the Electronic Journal of Combinatorics. (Ta-
ble 11.3 was last updated using the 12 January 2014 version of that article.)

11.3 Estimating Ramsey Numbers

We will find it convenient to utilize the following approximation due to Stirling. You
can find a proof in almost any advanced calculus book.

" 11 139 1
' z — — —_— — .
nix Namn (e) (1 ¥ 120 288n2 ~ S1sa0ms T (n4))

Of course, we will normally be satisfied with the first term:
n
n!'~ V2nn (g)

Using Stirling’s approximation and the binomial coefficients from the proof of Ram-
sey’s Theorem for Graphs, we have the following upper bound:
2n—2 221
R(n,n) < =
(n,m) (n-1) 4+[rtn

231

http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1

Chapter 11 Applying Probability to Combinatorics

11.4 Applying Probability to Ramsey Theory

The following theorem, due to P. Erdds, is a true classic, and is presented here in a
manner that is faithful to how it was first published. As we shall see later, it was sub-
sequently recast—but that’s getting the cart ahead of the horse.

Theorem 11.4. Ifn is a positive integer. Then

n

R(n,n) > 21"

ev2

Proof. Let t be an integer with ¢ > n and consider the set ¥ of all labeled graphs with
vertex set {1,2,...,t}. Clearly, there are 2¢(*?) graphs in this family. Let 7; denote the
subfamily consisting of those graphs which contain a complete subgraph of size n. It
is easy to see that

1| < (:l)zn(t—n)ZC(t—nl)‘

Similarly, let #, denote the subfamily consisting of those graphs which contain an in-
dependent set of size n. It follows that

|7_-2| < (:1)2n(t—n)2C(t—n,2).

We want to take the integer t as large as we can while still guaranteeing that || +
|72 < |F|. This will imply that there is a graph G in ¥ which does not contain a
complete subgraph of size n or an independent set of size . So consider the following
inequality:

2(;)2n(t—n)2(f(t—n,2) < 2C(t,2)' (1141)

Now we ask how large can t be without violating inequality (11.4.1)? To answer this,
we use the trivial inequality (/) < #"/n! and the use the Stirling approximation for
n!. After some algebra and taking the n' root of both sides, we see that we need only
guarantee that

T_oin o

<
evn

Now let’s take a second look at the proof of Theorem 11.4. We consider a probability
space (S, P) where the outcomes are graphs with vertex set {1,2, ..., t}. For each i and

232

11.5 Ramsey’s Theorem

jwith1 <i < j <t edgeijis presentin the graph with probability 1/2. Furthermore,
the events for distinct pairs are independent.

Let X7 denote the random variable which counts the number of n-element subsets of
{1,2,...,t} for which all (}) pairs are edges in the graph. Similarly, X; is the random
variable which counts the number of n-element independent subsets of {1,2,...,}.
Then set X = X7 + Xo.

By linearity of expectation, E(X) = E(X1) + E(X2) while

ty 1
E(X1) = E(X2) = (n)m
If E(X) < 1, then there must exist a graph with vertex set {1,2,...,t} without a K,
or an I,. And the question of how large ¢ can be while maintaining E(X) < 1 leads to
exactly the same calculation we had before.

After more than fifty years and the efforts of many very bright researchers, only
marginal improvements have been made on the bounds on R(#, nn) from Theorem 11.2
and Theorem 11.4. In particular, no one can settle whether there is some constant c < 2
and an integer 7 so that R(1, n) < 2°* when n > n. Similarly, no one has been able to
answer whether there is some constant 4 > 1/2 and an integer 1, so that R(n, n) > 2dn
when n > n1. We would certainly give you an A for this course if you managed to do
either.

Discussion 11.5. Carlos said that he had been trying to prove a good lower bound
on R(n, n) using only constructive methods, i.e., no random techniques allowed. But
he was having problems. Anything he tried seemed only to show that R(n,n) > n®
where c is a constant. That seems so weak compared to the exponential bound which
the probabilistic method gives easily. Usually Alice was not very sympathetic to the
complaints of others and certainly not from Carlos, who seemed always to be out front.
But this time, Alice said to Carlos and in a manner that all could hear “Maybe you
shouldn’t be so hard on yourself. I read an article on the web that nobody has been
able to show that there is a constant ¢ > 1 and an integer ng so that R(n, n) > ¢”* when
n > ng, provided that only constructive methods are allowed. And maybe, just maybe,
saying that you are unable to do something that lots of other famous people seem also
unable to do is not so bad.” Bob saw a new side of Alice and this too wasn't all bad.

11.5 Ramsey’s Theorem

By this time, you are probably not surprised to see that there is a very general form of
Ramsey’s theorem. We have a bounded number of bins or colors and we are placing
the subsets of a fixed size into these categories. The conclusion is that there is a large
set which is treated uniformly.

233

Chapter 11 Applying Probability to Combinatorics

Here’s the formal statement.

Theorem 11.6. Let r and s be positive integers and let h = (hy, hy, ..., h,) be a string of
integers with h; > s foreach i = 1,2,...,s. Then there exists a least positive integer R(s :
hi,ha, ..., hy)sothat if n > ngand ¢ : C([n], s] — [r] is any function, then there exists
an integer o« € [r] and a subset H, C [n] with |Hy| = hy so that ¢(S) = « for every
S € C(Hy, s).

We don’t include the proof of this general statement here, but the more ambitious
students may attempt it on their own. Note that the case s = 1 is just the Pigeon Hole
Principle, while the case s = v = 2 is just Ramsey’s Theorem for Graphs. An argument
using double induction is required for the proof in the general case. The first induction
is on r and the second is on s.

11.6 The Probabilistic Method

At the outset of this chapter, we presented Erdés’ original proof for the lower bound for
the Ramsey number R(n, 1) using counting. Later, we recast the proof in a probabilistic
setting. History has shown that this second perspective is the right one. To illustrate
the power of this approach, we present a classic theorem, which is also due to Erdés,
showing that there are graphs with large girth and large chromatic number.

The girth g of a graph G is the smallest integer for which G contains a cycle on g
vertices. The girth of a forest is taken to be infinite, while the girth of a graph is three if
and only if it has a triangle. You can check the families of triangle-free, large chromatic
number, graphs constructed in Chapter 5 and see that each has girth four.

Theorem 11.7 (ErdGs). For every pair g, t of integers with g > 3, there exists a graph G with
X(G) > t and the girth of G greater than g.

Proof. Before proceeding with the details of the argument, let’s pause to get the general
idea behind the proof. We choose integers n and s with n > s, and it will eventually
be clear how large they need to be in terms of g and t. We will then consider a random
graph on vertex set {1,2, ..., n}, and just as before, for each i and j with1 <i < j < n,
the probability that the pair ij is an edge is p, but now p will depend on 7. Of course,
the probability that any given pair is an edge is completely independent of all other
pairs.

Our first goal is to choose the values of 1, s and p so that with high probability, a
random graph does not have an independent set of size s. You might think as a second
goal, we would try to get a random graph without small cycles. But this goal is too
restrictive. Instead, we just try to get a graph in which there are relatively few small
cycles. In fact, we want the number of small cycles to be less than 7/2. Then we will

234

11.7 Discussion

remove one vertex from each small cycles, resulting in a graph with atleast 1 /2 vertices,
having no small cycles and no independent set of size s. The chromatic number of this
graph is at least 11/2s, so we will want to have the inequality n > 2st.

Now for some details. Let X; be the random variable that counts the number of
s-element independent sets. Then

) = (- e

Now we want E(X1) < 1/4. Since C(n,s) < n® = e and (1 — p)<62) < ¢7Ps*/2 it
suffices to set s = 2Inn/p. By Markov’s Inequality, the probability that X; exceeds
1/2 > 2E(X3) is less than 1/2.

Now let X5 count the number of cycles in G of size at most g. Then

EXp) < Y n(n=1)(n-2)...(n—i+1)p' < g(pn).

9
i=3

Now, we want E(X7) < n/4, and an easy calculation shows that g(np)? < n/4 when
p = n'/971/10. Again by Markov’s Inequality, the probability that X, exceeds /2 >
2E(X3) is less than 1/2.

We conclude that there is a graph G for which X; = 0 and X, < n/2. Remove a
vertex from each of the small cycles in G and let H be the graph that remains. Clearly,
H has at least /2 vertices, no cycle of size at most g and no independent set of size s.

Finally, the inequality n > 2st requires n'/9/(401nn) > t.]

11.6.1 Gaining Intuition with the Probabilistic Method

Experienced researchers are able to simplify the calculations in an argument of this
type, as they know what can safely be discarded and what can not. Here’s a quick
tour of the essential steps. We want E(X;) to be small, so we set nsePs’ = 1 and get
s =Inn/p. We want the number of small cycles to be about n so we set (gp)? = n and
get p = n'/971. Finally, we want n = st which requires n'/9 = t. The rest is just paying
attention to details.

11.7 Discussion
Zori started the conversation with “Who in their right mind would trust their lives to an
algorithm that used random methods?” Xing quickly responded “Everyone. At least

everyone should. We routinely deal with probabilistic concepts, like getting run over
by a bus when crossing the street or having a piano fall on our head. The general public

235

Chapter 11 Applying Probability to Combinatorics

is much more comfortable with notions of probability, even though they may never
know the formal definition of a probability space. I for one am completely comfortable
taking an airline flight if I can be assured that the probability of a disaster is less than
107207

Dave wasn't biting on this topic. Instead he offered “You have to be struck by the
statements that it appears difficult to construct objects which you can prove exist in
abundance. I wonder why this is so.” Alice said “We all find your brain to be a totally
random thing, sometimes making sense but often not.” There was laughter or at least
some snickering. But after a bit, Carlos said “There’s something fundamental here.
Maybe one could prove that there are easily stated theorems which only have long
proofs.” Bob blurted “That doens’t make any sense.” Zori saw an opportunity where
a client would, at considerable expense, commission her to solve a problem (at least
better than the competition) that was readily understood but somehow difficult in the
end. She knew about the class NP but maybe there were even bigger challenges (and
bigger paychecks) out there.

11.8 Exercises

1. Consider a random graph with vertex set {1,2, ;n}. If the edge probability is p =
1/2, then let X denote the number of complete subgraphs of size t = 2logn and let Y
denote the number of independent sets of size t = 2log n.

(a) Show that E(X +Y) < 1, when # is sufficiently large.

(b) Use the result from part a to show that w(G) is less than 2log 1, while the chro-
matic number of G is at least /(2 log n) (both statements holding with high prob-
ability). As a result, the basic inequality x(G) > w(G) is far from being tight for a
random graph.

2. We form a random tournament as follows. Start with a complete graph with vertex
set {1,2,...,n}. For each distinct pair i, j with 1 < i < j < n, flip a fair coin. If the
result is heads, orient the edge from i to j, which we denote by (x,). If the toss is tails,
then the edge is oriented from j to i, denoted (y, x). Show that when # is large, with
high probability, the following statement is true: For every set S of size log 1/10, there
is a vertex x so that (x, y) in T for every y € S.

3. Let T be a random tournament on n vertices. Show that with high probability, the
following statement is true: For every pair x, y of distinct vertices, either (1) (x, y) in
T, or (2) there is a vertex z for which both (x, z) and (z, y) arein T.

4. Many statements for random graphs exhibit a threshold behavior. Show that a
random graph with edge probability p = 10logn/n almost certainly has no isolated

236

11.8 Exercises

vertices, while a random graph with edge probability p = log 1 /(10n) almost certainly
has at least one isolated vertices.

5. In the sense of the preceding problem, determine the threshold probability for a
graph to be connected.

237

cnrree 1 2 [

Graph Algorithms

In previous chapters, we have encountered a few algorithms for problems involving
discrete structures such as finding euler circuits (Chapter 5) or partitioning a poset into
antichains (Chapter 6). This chapter begins a sequence of three chapters that focus on
algorithms. In this chapter we explore two minimization problems for graphs in which
we assign a weight to each edge of the graph. The first problem studied is determining
a spanning tree of minimum weight. The second is of finding shortest paths from a
root vertex to each other vertex in a directed graph.

12.1 Minimum Weight Spanning Trees

In this section, we consider pairs (G, w) where G = (V,E) is a connected graph and
w: E — Npy. For each edge ¢ € E, the quantity w(e) is called the weight of e. Given a
set S of edges, we define the weight of S, denoted w(S), by setting w(S) = 3,5 w(e).
In particular, the weight of a spanning tree T is just the sum of the weights of the edges
inT.

Weighted graphs arise in many contexts. One of the most natural is when the weights
on the edges are distances or costs. For example, consider the weighted graph in Fig-
ure 12.1. Suppose the vertices represent nodes of a network and the edges represent
the ability to establish direct physical connections between those nodes. The weights
associated to the edges represent the cost (let’s say in thousands of dollars) of building
those connections. The company establishing the network among the nodes only cares
that there is a way to get data between each pair of nodes. Any additional links would
create redundancy in which they are not interested at this time. A spanning tree of
the graph ensures that each node can communicate with each of the others and has
no redundancy, since removing any edge disconnects it. Thus, to minimize the cost of
building the network, we want to find a minimum weight (or cost) spanning tree.

239

Chapter 12 Graph Algorithms

FiGURE 12.1: A WEIGHTED GRAPH

To do this, this section considers the following problem:
Problem 12.2. Find a minimum weight spanning tree T of G.

To solve this problem, we will develop two efficient graph algorithms, each hav-
ing certain computational advantages and disadvantages. Before developing the algo-
rithms, we need to establish some preliminaries about spanning trees and forests.

12.1.1 Preliminaries

The following proposition about the number of components in a spanning forest of a
graph G has an easy inductive proof. You are asked to provide it in the exercises.

Proposition 12.3. Let G = (V, E) be a graph on n vertices, and let H = (V, S) be a spanning
forest. Then 0 < |S| < n — 1. Furthermore, if |S| = n — k, then H has k components. In
particular, H is a spanning tree if and only if it contains n — 1 edges.

The following proposition establishes a way to take a spanning tree of a graph, re-
move an edge from it, and add an edge of the graph that is not in the spanning tree to

240

12.1 Minimum Weight Spanning Trees

create a new spanning tree. Effectively, the process exchanges two edges to form the
new spanning tree, so we call this the exchange principle.

Proposition 12.4 (Exchange Principle). Let T = (V, S) be spanning tree in a graph G, and
let e = xy be an edge of G which does not belong to T. Then

1. There is a unique path P = (xo,x1,X2,...,X) with (a) x = xo; (b) y = x4; and
(c) xijxit1 € Sforeachi =0,1,2,...,t -1

2. Foreachi=0,1,2,...,t =1, let f; = xix;41 and then set

Si={e}u{geS:g#fi},
i.e., we exchange edge f; for edge e. Then T; = (V, S;) is a spanning tree of G.

Proof. For the first fact, it suffices to note that if there were more than one distinct path
from x to y in T, we would be able to find a cycle in T. This is impossible since it is a
tree. For the second, we refer to Figure 12.5. The black and green edges in the graph
shown at the left represent the spanning tree T. Thus, f lies on the unique path from
xtoyinTand e = xy is an edge of G not in T. Adding e to T creates a graph with
a unique cycle, since T had a unique path from x to y. Removing f (which could be
any edge f; of the path, as stated in the proposition) destroys this cycle. Thus T; is a
connected acyclic subgraph of G withn —1+1 -1 =n — 1 edges, so it is a spanning
tree.

FIGURE 12.5: THE EXCHANGE PRINCIPLE

O

For both of the algorithms we develop, the argument to show that the algorithm is
optimal rests on the following technical lemma. To avoid trivialities, we assume n > 3.

241

Chapter 12 Graph Algorithms

Lemma 12.6. Let F be a spanning forest of G and let C be a component of F. Also, let e = xy
be an edge of minimum weight among all edges with one endpoint in C and the other not in C.
Then among all spanning trees of G that contain the forest F, there is one of minimum weight
that contains the edge e.

Proof. Let T = (V,S) be any spanning tree of minimum weight among all spanning
trees that contain the forest F, and suppose that e = xy is not an edge in T. (If it were
an edge in T, we would be done.) Then let P = (xo, x1, x2, ..., x¢) be the unique path
in T with (a) x = xp; (b) y = x¢; and (c) x;x;41 € Sforeachi =0,1,2,...,t—1. Without
loss of generality, we may assume that x = x(is a vertex in C while y = x; does not
belong to C. Then there is a least non-negative integer 7 for which x; is in C and x;47 is
not in C. It follows that x; is in C for all j with 0 < j <i.

Let f = x;x;41. The edge e has minimum weight among all edges with one endpoint
in C and the other not in C, so w(e) < w(f). Now let T; be the tree obtained by ex-
changing the edge f for edge e. It follows that w(T;) = w(T) — w(f) + w(e) < w(T).
Furthermore, T; contains the spanning forest F as well as the edge e. It is therefore the
minimum weight spanning tree we seek. m]

Discussion 12.7. Although Bob’s combinatorial intuition has improved over the course
he doesn’t quite understand why we need special algorithms to find minimum weight
spanning trees. He figures there can’t be that many spanning trees, so he wants to just
write them down. Alice groans as she senses that Bob must have been absent when
the material from Section 5.6 was discussed. In that section, we learned that a graph
on n vertices can have as many as n"-2 spanning trees (or horrors, the instructor may
have left it off the syllabus). Regardless, this exhaustive approach is already unus-
able when n = 20. Dave mumbles something about being greedy and just adding the
lightest edges one-by-one while never adding an edge that would make a cycle. Zori
remembers a strategy like this working for finding the height of a poset, but she’s wor-
ried about the nightmare situation that we learned about with using FirstFit to color
graphs. Alice agrees that greedy algorithms have an inconsistent track record but sug-
gests that Lemma 12.6 may be enough to get one to succeed here.

12.1.2 Kruskal’s Algorithm

In this section, we develop one of the best known algorithms for finding a minimum
weight spanning tree. It is known as Kruskal’s Algorithm, although some prefer the
descriptive label Avoid Cycles because of the way it builds the spanning tree.

To start Kruskal’s algorithm, we sort the edges according to weight. To be more
precise, let m denote the number of edges in G = (V,E). Then label the edges as
e1,62,€3,...,ey so that w(e;) < w(ey) < -+ < w(ey). Any of the many available
efficient sorting algorithms can be used to do this step.

242

12.1 Minimum Weight Spanning Trees

Once the edges are sorted, Kruskal’s algorithm proceeds to an initialization step and
then inductively builds the spanning tree T = (V, S):

Algorithm 12.8 (Kruskal’s Algorithm).
Initialization. Set S = @ and i = 0.

Inductive Step. While |S| < n —1, let j be the least non-negative integer so that j > i and
there are no cycles in S U {e;}. Then (using pseudo-code) set

i=j and S=SU({j}.

The correctness of Kruskal’s Algorithm follows from an inductive argument. First,
the set S is initialized as the empty set, so there is certainly a minimum weight spanning
tree containing all the edges in S. Now suppose that for some i with0 <i <, |S| =1
and there is a minimum weight spanning tree containing all the edges in S. Let F be the
spanning forest determined by the edgesin S, and let Cq, Co, .. ., C; be the components
of F. Foreachk =1,2,...,s, let fy be a minimum weight edge with one endpoint in
Cr and the other not in C. Then the edge e added to S by Kruskal’s Algorithm is
just the edge { f1, f2, - - ., fs} having minimum weight. Applying Lemma 12.6 and the
inductive hypothesis, we know that there will still be a minimum weight spanning tree
of G containing all the edges of S U {e}.

Example 12.9 (Kruskal’s Algorithm).

Let’s see what Kruskal’s algorithm does on the weighted graphin ¢ k 23
Figure 12.1. It first sorts all of the edges by weight. We won’t repro- a g 25
duce the list here, since we won't need all of it. The edge of least f g 26
weight is ck, which has weight 23. It continues adding the edge of f i 29
least weight, adding ag, fg, fi, fj, and bj. However, after doing f j 30
this, the edge of lowest weight is fb, which has weight 38. This b j 34
edge cannot be added, as doing so would make fjb a cycle. Thus, b ¢ 39
the algorithm bypasses it and adds bc. Edge ai is next inspected, e m 49
but it, too, would create a cycle and is eliminated from considera- d 1 55
tion. Then em is added, followed by dI. There are now fwo edges d j 56
of weight 56 to be considered: al and dj. Our sorting algorithm e k 59
has somehow decided one of them should appear first, so let’ssay ¢ h 79

it's dj. After adding dj, we cannot add al, as ag f jdl would form a
cycle. Edge dk is next considered, but it would also form a cycle.
However, ek can be added. Edges km and dm are then bypassed.
Finally, edge ch is added as the twelfth and final edge for this 13-
vertex spanning tree. The full list of edges added (in order) is shown
to the right. The total weight of this spanning tree is 504.

243

Chapter 12 Graph Algorithms

12.1.3 Prim’s Algorithm

We now develop Prim’s Algorithm for finding a minimum weight spanning tree. This
algorithm is also known by a more descriptive label: Build Tree. We begin by choosing
a root vertex r. Again, the algorithm proceeds with an initialization step followed by
a series of inductive steps.

Algorithm 12.10 (Prim’s Algorithm).
Initialization. Set W = {r}and S = 0.

Inductive Step. While |W| < n, let e be an edge of minimum weight among all edges with
one endpoint in W and the other not in W. If e = xy, x € Wand y ¢ W, update W
and S by setting (using pseudo-code)

W=WuU{y} and S=5U{e}.

The correctness of Prim’s algorithm follows immediately from Lemma 12.6.

Example 12.11 (Prim’s Algorithm).

Let’s see what Prim’s algorithm does on the weighted graph in Fig- a g 25
ure 12.1. We start with vertex a as the root vertex. The lightestedge f g 26
connecting a (the only vertex in the tree so far) to the rest of the f i 29
graph is ag. Next, fg is added. This is followed by fi, fj, bj,and f j 30
bc. Next, the algorithm identifies ck as the lightest edge connecting b j 34
{a,9,i,f,]j,b,c} to the remaining vertices. Notice that this is con- b ¢ 39
siderably later than Kruskal’s algorithm finds the same edge. The ¢ k 23
algorithm then determines that al and jd, both of weight 56 are the a U 56
lightest edges connecting vertices in the tree to the other vertices. It d U 55
picks arbitrarily, so let’s say it takes al. It next finds dI, then ek, and e k 59
then em. The final edge added is ch. The full list of edges added (in e m 49
order) is shown to the right. The total weight of this spanning tree ¢ h 79

is 504. This (not surprisingly) the same weight we obtained using
Kruskal’s algorithm. However, notice that the spanning tree found
is different, as this one contains a! instead of dj. This is not an issue,
of course, since in both cases an arbitrary choice between two edges
of equal weight was made.

12.1.4 Comments on Efficiency

An implementation of Kruskal’s algorithm seems to require that the edges be sorted.
If the graph has n vertices and m edges, this requires m log m operations just for the

244

12.2 Digraphs

sort. But once the sort is done, the process takes only 1 — 1 steps—provided you keep
track of the components as the spanning forest expands. Regardless, it is easy to see
that at most O(n? log n) operations are required.

On the other hand, an implementation of Prim’s algorithm requires the program to
conveniently keep track of the edges incident with each vertex and always be able to
identify the edge with least weight among subsets of these edges. In computer science,
the data structure that enables this task to be carried out is called a heap.

12.2 Digraphs

In this section, we introduce another useful variant of a graph. In a graph, the existence
of an edge xy can be used to model a connection between x and y that goes in both
ways. However, sometimes such a model is insufficient. For instance, perhaps it is
possible to fly from Atlanta directly to Fargo but not possible to fly from Fargo directly
to Atlanta. In a graph representing the airline network, an edge between Atlanta and
Fargo would lose the information that the flights only operate in one direction. To deal
with this problem, we introduce a new discrete structure. A digraph G is a pair (V, E)
where V is a vertex setand E € V x V with x # y for every (x, y) € E. We consider the
pair (x, y) as a directed edge from x to y. Note that for distinct vertices x and y from
V, the ordered pairs (x, y) and (y, x) are distinct, so the digraph may have one, both
or neither of the directed edges (x, y) and (y, x). This is in contrast to graphs, where
edges are sets, so {x, y} and {y, x} are the same.

Diagrams of digraphs use arrowheads on the edges to indicate direction. This is
illustrated in Figure 12.12. For example, the digraph illustrated there contains the edge
(a, f) but not the edge (f,a). It does contain both edges (c,d) and (d, ¢), however.
When G is a digraph, a sequence P = (r = ug,uy,...,u; = x) of distinct vertices
is called a directed path from r to x when (u;u;41) is a directed edge in G for every
i=0,1,...,t—1. Adirected path C = (r = ug, u1, ..., u; = x) is called a directed cycle
when (u;, u) is a directed edge of G.

12.3 Dijkstra’s Algorithm for Shortest Paths

Just as with graphs, it is useful to assign weights to the directed edges of a digraph.
Specifically, in this section we consider a pair (G, w) where G = (V, E) is a digraph and
w: E — Ny is a function assigning to each directed edge (x, y) a non-negative weight
w(x, y). However, in this section, we interpret weight as distance so that w(x, y) is
now called the length of the edge (x, y). If P = (r = ug, u1,...,u; = x) is a directed
path from r to x, then the length of the path P is just the sum of the lengths of the
edges in the path, Zf;& w(u;uir). The distance from r to x is then defined to be the

245

Chapter 12 Graph Algorithms

FiGure 12.12: A DiGrAPH

minimum length of a directed path from r to x. Our goal in this section is to solve the
following natural problem, which has many applications:

Problem 12.13. For each vertex x, find the distance from r to x. Also, find a shortest
path from r to x.

12.3.1 Description of the Algorithm

To describe Dijkstra’s algorithm in a compact manner, it is useful to extend the defi-
nition of the function w. We do this by setting w(x, y) = co when x # y and (x, y) is
not a directed edge of G. In this way, we will treat co as if it were a number (although
it is not!).!

We are now prepared to describe Dijkstra’s Algorithm.

Algorithm 12.14 (Dijkstra’s Algorithm). Let n = |V|. At Step i, where 1 < i < n, we will
have determined:

1. A sequence ¢ = (v1,v2,03,...,0;) of distinct vertices from G with v = v1. These
vertices are called permanent vertices, while the remaining vertices will be called tem-
porary vertices.

1This is not an issue for computer implementation of the algorithm, as instead of using oo, a value given by
the product of the number of vertices and the maximum edge weight may be used to simulate infinity.

246

12.3 Dijkstra’s Algorithm for Shortest Paths

2. For each vertex x € V, we will have determined a number 6(x) and a path P(x) from r
to x of length 6(x).

Initialization (Step 1) Set i = 1. Set 6(r) = 0 and let P(r) = (r) be the trivial one-point
path. Also, set ¢ = (r). For each x # r, set 6(x) = w(r, x) and P(x) = (r, x). Let x be
a temporary vertex for which 6(x) is minimum. Set v, = x, and update o by appending
vy to the end of it. Increment i.

Inductive Step (Step i, i > 1) If i < n, then for each temporary x, let
o(x) = min{6(x), 6(v;) + w(v;, x)}.
If this assignment results in a reduction in the value of 6(x), let P(x) be the path obtained
by adding x to the end of P(v;).

Let x be a temporary vertex for which 6(x) is minimum. Set vi11 = x, and update o by
appending vy to it. Increment i.

12.3.2 Example of Dijkstra’s Algorithm

Before establishing why Dijkstra’s algorithm works, it may be helpful to see an example
of how it works. To do this, consider the digraph G shown in Figure 12.15. For visual
clarity, we have chosen a digraph which is an oriented graph, i.e., for each distinct pair
x, y of vertices, the graph contains at most one of the two possible directed edges (x, y)
and (y, x). Suppose that the root vertex r is the vertex labeled a. The initialization step
of Dijkstra’s algorithm then results in the following values for 6 and P:

Step 1. Initialization

o =(a)

6(a) = 0; P(a) = (a)

0(b) = oo; P(b) = (a,b)
o(c) = 47; P(c)=(a,c)
0(d) = oo; P(d) = (a,d)
o(e) =70; P(e)=(a,e)
o(f) =24; P(f)=(a, f)
6(g9) = oo; P(g) = (a, 9)
0(h) = oo; P(h) =(a,h)

Before finishing Step 1, the algorithm identifies vertex f as closest to 2 and appends
it to 0, making a permanent. When entering Step 2, Dijkstra’s algorithm attempts to

247

Chapter 12 Graph Algorithms

N
7
e 42 8

FiGURE 12.15: A DIGRAPH WITH EDGE LENGTHS

find shorter paths from a to each of the temporary vertices by going through f. We
call this process “scanning from vertex f.” In this scan, the path to vertex d is updated,
since 6(f) + w(f,d) =24 + 120 = 144 < o0 = w(a, d).

Step 2. Scan from vertex f

o=(a,f)

5(a) = 0; P(a) = (a)

6(b) = oo; P(b) = (a,b)

6(c) = 47; P(c)=(a,c)

0(d) =144 =24 +120 = 6(f) + w(f, d); P(d)=(a, f,d) updated
o(e) =70; P(e)=(a,e)

o(f) =24; P(f)=(a, f)

6(g) = oo; P(g) =(a, f)

0(h) = oo; P(h) = (a, h)

Before proceeding to the next step, vertex ¢ is made permanent by making it v3.
In Step 3, therefore, the scan is from vertex c. Vertices b, d, and g have their paths
updated. However, although 6(c) + w(c, e) = 47 + 23 = 70 = 6(e), we do not change
P(e) since 0(e) is not decreased by routing P(e) through c.

248

12.3 Dijkstra’s Algorithm for Shortest Paths

Step 3. Scan from vertex ¢

o=(a,f,c)

6(a) = 0;

o(b) =102 =47 + 55 = 6(c) + w(c, b);
o(c) =47;

0(d) =135 =47 + 88 = 6(c) + w(c, d);
6(e) = 70;

o(f) =24

0(g) =113 =47+ 66 = 6(c) + w(c, 9);
5(h) = oo;

Now vertex e is made permanent.

Step 4. Scan from vertex e

oc=(a,f,c,e)
o(a) =0;
o(b) =101 =70+ 31 = 6(e) + w(e, b);
o(c) =47;
o(d) = 135;
o(e) =70;
o(f) =24
0(g) =112 =70+42 = 6(e) + w(e, g);
0(h) = oo;

Now vertex b is made permanent.

Step 5. Scan from vertex b

o=1(a,f,ceb)
o(a) =0;
5(b) = 101;
o(c) = 47;
6(d) =132 =101+ 31 = 5(b) + w(b, d);
o(e) = 70;

P(a) = (a)
P(b) = (a,c,b)
P(c) =(a,c)
P(d) = (a,c,d)
P(e) =(a,e)
P(f) =(a, f)
P(g) = (a,c,g)
P(h) = (a, h)

P(a) = (a)
P(b) = (a,e,b)
P(c) =(a,c)
P(d) = (a,c,d)
P(e) = (a,e)
P(f) =(a, f)
P(g) = (a,e, g)
P(h) = (a, h)

P(a) = (a)
P(b) = (a,e,b)
P(c) =(a,c)

P(d)=(a,e,b,d) updated

P(e) = (a,e)

updated

updated

updated

updated

updated

249

Chapter 12 Graph Algorithms

5(f) = 24; P(f) = (a, f)
6(g) = 112; P(g)=(a,e, g)
6(h) =180 = 101 + 79 = 6(b) + w(b, h); P(h)=(a,e,b,h) updated

Now vertex g is made permanent.

Step 6. Scan from vertex g

o=(a,f,ceb,g)

6(a) = 0; P(a) = (a)

6(b) = 101; P(b) = (a,e,b)
o(c) =47; P(c)=(a,c)
o(d) =132; P(d) = (a,e,b,d)
o(e) = 70; P(e)=(a,e)
o(f) =24 P(f) = (a, f)
o(g) = 112; P(g)=(a,e, g)

O0(h) =178 =112+ 66 = 6(g) + w(yg, h); P(h)=(a,e,g,h) updated

Now vertex d is made permanent.

Step 7. Scan from vertex d

o=(a,f,ceb,g,d)

6(a) = 0; P(a) = (a)

6(b) = 101; P(b)=(a,e,b)
6(c) = 47; P(c)=(a,c)
6(d) = 132; P(d)=(a,e,b,d)
o(e) =70; Pe)=(a,e)
o(f) =24; P(f)=(a, f)
o(g) = 112; P(g)=(a,e, g)

o(h) =161 =132+29 = 6(d) + w(d, h); P(h)=(a,e,b,d, h) updated

Now vertex h is made permanent. Since this is the last vertex, the algorithm halts
and returns the following:

250

12.3 Dijkstra’s Algorithm for Shortest Paths

Final Results of Dijkstra’s Algorithm

o = (u,f,C,e,b,g/d/h)

6(a) =0; P(a) = (a)

o(b) = 101; P(b)=(a,e,b)

0(c) = 47; P(c) = (a,c)

o(d) = 132; P(d)=(a,e,b,d)
o(e) =70; P(e)=(a,e)

o(f) =24; P(f)=(a, f)

o(g) =112; P(g) =(a,e,9)
o(h) = 161; P(h)=(a,e,b,d, h)

12.3.3 The Correctness of Dijkstra’s Algorithm

Now that we’ve illustrated Dijkstra’s algorithm, it’s time to prove that it actually does
what we claimed it does: find the distance from the root vertex to each of the other
vertices and a path of that length. To do this, we first state two elementary propositions.
The first is about shortest paths in general, while the second is specific to the sequence
of permanent vertices produced by Dijkstra’s algorithm.

Proposition 12.16. Let x be a vertex and let P = (r = ug, u1, ..., us = x) be a shortest path
from r to x. Then for every integer j with 0 < j < t, (uo, u1, ..., u;) is a shortest path from r
toujand (uj, ujs1,...,u;)is a shortest path from u;j to uy

Proposition 12.17. When the algorithm halts, let 6 = (v1,v2, 03, ..., vy). Then
O6(v1) € 6(vp) < -+ < 6(vy).

We are now ready to prove the correctness of the algorithm. The proof we give will
be inductive, but the induction will have nothing to do with the total number of vertices
in the digraph or the step number the algorithm is in.

Theorem 12.18. Dijkstra’s algorithm yields shortest paths for every vertex x in G. That is,
when Dijkstra’s algorithm terminates, for each x € V, the value 6(x) is the distance from r to
x and P(x) is a shortest path from r to x.

Proof. The theorem holds trivially when x = r. So we consider the case where x # r.
We argue that 6(x) is the distance from r to x and that P(x) is a shortest path from r
to x by induction on the minimum number k of edges in a shortest path from 7 to x.

251

Chapter 12 Graph Algorithms

When k = 1, the edge (7, x) is a shortest path from r to x. Since v; = r, we will set
o(x) = w(r,x) and P(x) = (r, x) at Step 1.

Now fix a positive integer k. Assume that if the minimum number of edges in a
shortest path from r to x is at most k, then 6(x) is the distance from r to x and P(x) is
a shortest path from r to x. Let x be a vertex for which the minimum number of edges
in a shortest path from r to x is k + 1. Fix a shortest path P = (ug, t1, ua, . .., tixs1) from
r = uptox = tryr. Then Q = (up, u1,...,ux) is a shortest path from r to uy. (See
Figure 12.19.)

P(ug)

F1GURE 12.19: SHORTEST PATHS

By the inductive hypothesis, 6(uy) is the distance from r to uy, and P(uy) is a shortest
path from r to u;. Note that P(ux) need not be the same as path Q, as we suggest in
Figure 12.19. However, if distinct, the two paths will have the same length, namely
O(ug). Also, the distance from r to x is O(ug) + w(ug, x) = O6(uy) since P is a shortest
path from r to x and w(uy, x) > 0.

Let i and j be the unique integers for which uy = v; and x = v;. If j < i, then

0(x) = 6(v;) < 0(v;) = O(ux) < 6(uk) + w(ug).

Therefore the algorithm has found a path P(x) from r to x having length 6(x) which is
at most the distance from r to x. Clearly, this implies that 6(x) is the distance from r to
x and that P(x) is a shortest path.

On the other hand, if j > i, then the inductive step at Step i results in

O(x) < 6(vi) + w(vi, y) = 0(uk) + w(ug, x).

As before, this implies that 6(x) is the distance from r to x and that P(x) is a shortest
path.]

12.4 Historical Notes

Kruskal’s algorithm was published in 1956 by Joseph B. Kruskal in a three-page paper
that appeared in Proceedings of the American Mathematical Society. Robert C. Prim pub-

252

12.5 Exercises

lished the algorithm that now bears his name the following year in The Bell System Tech-
nical Journal. Prim’s paper focuses on application of the minimum weight (or length or
cost) spanning tree problem to telephone networks. He was aware of Kruskal’s prior
work, as they were colleagues at Bell Laboratories at the time he published his paper.
It turns out that Prim had been beaten to the punch by Czech mathematician Vojtéch
Jarnik in 1929, so some refer to Prim’s algorithm as Jarnik’s algorithm. (It was later re-
discovered by Dijkstra, so some attach his name as well, referring to it as the Dijkstra-
Jarnik-Prim algorithm.) Edsger Dijkstra published his algorithm for finding shortest
paths in 1959 in a three-page paper! appearing in Numerische Mathematik. In fact, Di-
jkstra’s algorithm had been discovered (in an equivalent form) by Edward F. Moore
two years earlier. His result appeared in Proceedings of an International Symposium on
the Theory of Switching.

12.5 Exercises

1. For the graph in Figure 12.20, use Kruskal’s algorithm (“avoid cycles”) to find a
minimum weight spanning tree. Your answer should include a complete list of the
edges, indicating which edges you take for your tree and which (if any) you reject in
the course of running the algorithm.

FiGure 12.20: FIND A MINIMUM WEIGHT SPANNING TREE

IThis is also the paper in which Prim’s algorithm was published for the third time. Dijkstra was aware of
Kruskal’s prior work but argued that his algorithm was preferable because it required that less informa-
tion about the graph be stored in memory at each step of the algorithm.

253

Chapter 12 Graph Algorithms

2. For the graph in Figure 12.20, use Prim’s algorithm (“build tree”) to find a minimum
weight spanning tree. Your answer should list the edges selected by the algorithm in
the order they were selected.

3. For the graph in Figure 12.21, use Kruskal’s algorithm (“avoid cycles”) to find a
minimum weight spanning tree. Your answer should include a complete list of the
edges, indicating which edges you take for your tree and which (if any) you reject in
the course of running the algorithm.

FiGure 12.21: FIND A MINIMUM WEIGHT SPANNING TREE

4. For the graph in Figure 12.21, use Prim’s algorithm (“build tree”) to find a minimum
weight spanning tree. Your answer should list the edges selected by the algorithm in
the order they were selected.

5. For the graph in Figure 12.22, use Kruskal’s algorithm (“avoid cycles”) to find a
minimum weight spanning tree. Your answer should include a complete list of the
edges, indicating which edges you take for your tree and which (if any) you reject in
the course of running the algorithm.

254

12.5 Exercises

FiGure 12.22: FIND A MINIMUM WEIGHT SPANNING TREE

6. For the graph in Figure 12.22, use Prim’s algorithm (“build tree”) to find a minimum
weight spanning tree. Your answer should list the edges selected by the algorithm in
the order they were selected.

7. Anew local bank is being created and will establish a headquarters h, two branches
b1 and by, and four ATMs a3, a, a3, and a4. They need to build a computer network
such that the headquarters, branches, and ATMs can all intercommunicate. Further-
more, they will need to be networked with the Federal Reserve Bank of Atlanta, f. The
costs of the feasible network connections (in units of $10,000) are listed below:

hf 80 hby 10 hby 20 biby 8
fb1 12 fa1 20 b1{11 3 aian 13
haz 6 bzaz 9 b2113 40 ajaq 3

asay

The bank wishes to minimize the cost of building its network (which must allow for
connection, possibly routed through other nodes, from each node to each other node),
however due to the need for high-speed communication, they must pay to build the
connection from / to f as well as the connection from b, to a3. Give a list of the con-
nections the bank should establish in order to minimize their total cost, subject to this
constraint. Be sure to explain how you selected the connections and how you know
the total cost is minimized.

8. A disconnected weighted graph obviously has no spanning trees. However, it is
possible to find a spanning forest of minimum weight in such a graph. Explain how to
modify both Kruskal’s algorithm and Prim’s algorithm to do this.

255

Chapter 12 Graph Algorithms

9. Prove Proposition 12.3.

10. In the paper where Kruskal’s algorithm first appeared, he considered the algo-
rithm a route to a nicer proof that in a connected weighted graph with no two edges
having the same weight, there is a unigue minimum weight spanning tree. Prove this

fact using Kruskal’s algorithm.

11. Use Dijkstra’s algorithm to find the distance from a to each other vertex in the

digraph shown in Figure 12.23 and a directed path of that length.

FiGURE 12.23: A DIRECTED GRAPH

12. Table 12.24 contains the length of the directed edge (x,) in the intersection of row
x and column y in a digraph with vertex set {a, b, ¢, d, e, f}. For example, w(b, d) = 21.
(On the other hand, w(d, b) = 10.) Use this data and Dijkstra’s algorithm to find the
distance from a to each of the other vertices and a directed path of that length from a.

wla b ¢ d e f

a |0 12 8 43 79 35
b 193 0 18 21 60 33
c |17 3 0 37 50 30
d |8 10 91 0 17 7

e |28 47 39 14 0 108
f 13 7 29 73 20 0

TaBLE 12.24: A DIGRAPH REPRESENTED AS A TABLE OF DATA

256

12.5 Exercises

13. Use Dijkstra’s algorithm to find the distance from a to each other vertex in the

digraph shown in Figure 12.25 and a directed path of that length.

FiGuRrE 12.25: A DIRECTED GRAPH

14. Table 12.26 contains the length of the directed edge (x, y) in the intersection of row
x and column y in a digraph with vertex set {a, b, ¢, d, e, f}. For example, w(b, d) = 47.
(On the other hand, w(d,b) = 6.) Use this data and Dijkstra’s algorithm to find the
distance from a to each of the other vertices and a directed path of that length from a.

TABLE 12.26: A DIGRAPH REPRESENTED AS A TABLE OF DATA

wla b ¢ d e f

a |0 7 17 55 83 42
b |14 0 13 47 27 17
c |37 42 0 16 93 28
d |10 6 8 0 4 32
e |84 19 42 8 0 45
f 136 3 76 5 17 0

15. Give an example of a digraph having an undirected path between each pair of ver-
tices, but having a root vertex r so that Dijkstra’s algorithm cannot find a path of finite

length from r to some vertex x.

16. Notice that in our discussion of Dijkstra’s algorithm, we required that the edge
weights be nonnegative. If the edge weights are lengths and meant to model distance,

257

Chapter 12 Graph Algorithms

this makes perfect sense. However, in some cases, it might be reasonable to allow
negative edge weights. For example, suppose that a positive weight means there is
a cost to travel along the directed edge while a negative edge weight means that you
make money for traveling along the directed edge. In this case, a directed path with
positive total weight results in paying out to travel it, while one with negative total
weight results in a profit.

(a) Give an example to show that Dijkstra’s algorithm does not always find the path
of minimum total weight when negative edge weights are allowed.

(b) Bob and Xing are considering this situation, and Bob suggests that a little modi-
fication to the algorithm should solve the problem. He says that if there are neg-
ative weights, they just have to find the smallest (i.e., most negative weight) and
add the absolute value of that weight to every directed edge. For example, if
w(x,y) = =10 for every directed edge (x, y), Bob is suggesting that they add 10
to every edge weight. Xing is skeptical, and for good reason. Give an example to
show why Bob’s modification won’t work.

258

CHAPTER

Network Flows

This chapter continues our look at the topics of algorithms and optimization. On an
intuitive level, networks and network flows are fairly simple. We want to move some-
thing (merchandise, water, data) from an initial point to a destination. We have a set of
intermediate points (freight terminals, valves, routers) and connections between them
(roads, pipes, cables) with each connection able to carry a limited amount. The natu-
ral goal is to move as much as possible from the initial point to the destination while
respecting each connection’s limit. Rather than just guessing at how to perform this
maximization, we will develop an algorithm that does it. We'll also see how to easily
justify the optimality of our solution though the classic Max Flow-Min Cut Theorem.

13.1 Basic Notation and Terminology

A directed graph in which for each pair of vertices x, y at most one of the directed
edges (x, y) and (y, x) between them is present is called an oriented graph. The basic
setup for a network flow problem begins with an oriented graph G, called a network,
in which we have two special vertices called the source and the sink. We use the letter S
to denote the source, while the letter T is used to denote the sink (terminus). All edges
incident with the source are oriented away from the source, while all edges incident
with the sink are oriented with the sink. Furthermore, on each edge, we have a non-
negative capacity, which functions as a constraint on how much can be transmitted via
the edge. The capacity of the edge e = (x, y) is denoted c(e) or by ¢(x, y). Ina computer
program, the nodes of a network may be identified with integer keys, but in this text,
we will typically use letters in labeling the nodes of a network. This helps to distinguish
nodes from capacities in diagrams of networks. We illustrate a network in Figure 13.1.
The numbers associated with the edges are their capacities, so, for instance, ¢(E, B) =
24 and c(A, T) = 56. A flow ¢ in a network is a function which assigns to each directed
edge e = (x, y) a non-negative value ¢(e) = ¢(x,y) < c(x,y) so that the following
conservation laws hold:

259

Chapter 13 Network Flows

FiGure 13.1: A NETWORK

1. 2 ¢(S,x) = 2, ¢(x, T),i.e. theamountleaving the source is equal to the amount
arriving at the sink. This quantity is called the value of the flow ¢.

2. For every vertex y which is neither the source nor the sink the amount leaving y
is equal to the amount entering y. Thatis,), ¢(x, y) = X, P(y, x).

We illustrate a flow in a network in Figure 13.2. In this figure, the numbers associated
with each edge are its capacity and the amount of flow that ¢ places on that edge.
For example, the edge (E, D) has capacity 20 and currently carries a flow of 8. (Since
¢(x,y) < c(x,y), it is always easy to determine which number is the capacity and
which is the flow.) The value of this flow is 30 = ¢(S, F) + ¢(S, B) + ¢(S,E) = ¢(A, T) +
¢(C, T). To see that the second conservation law holds at, for example, vertex B, note
that the flow into B is ¢(S, B) + ¢(E, B)+ ¢(D, B) = 20 and the flow out of B is ¢(B, F) +
¢(B,A) + ¢(B,C) =20.

Given a network, it is very easy to find a flow. We simply assign ¢(e) = 0 for ev-
ery edge e. It is very easy to underestimate the importance of this observation, actu-
ally. Network flow problems are a special case of a more general class of optimization
problems known as linear programs, and in general, it may be very difficult to find
a feasible solution to a linear programming problem. In fact, conceptually, finding a
feasible solution—any solution—is just as hard as finding an optimal solution.

260

13.2 Flows and Cuts

Ficure 13.2: A Network FLow

13.2 Flows and Cuts

Considering the applications suggested at the beginning of the chapter, it is natural to
ask for the maximum value of a flow in a given network. Put another way, we want
to find the largest number vg so that there exists a flow ¢ of value vy in the network.
Of course, we not only want to find the maximum value vy, but we also want to find
a flow ¢ having this value. Although it may seem a bit surprising, we will develop an
efficient algorithm which both finds a flow of maximum value and finds a certificate
verifying the claim of optimality. This certificate makes use of the following important
concept.

A partition V = LUU of the vertex set V of anetwork with S € Land T € U is called
a cut.! The capacity of a cut V = L U U, denoted c¢(L, U), is defined by

c(L,U) = Z c(x, y).

x€L,yeU

Put another way, the capacity of the cut V. = L U U is the total capacity of all edges
from L to U. Note that in computing the capacity of the cut V = L U U, we only add the
capacities of the edges from L to U. We do not include the edges from U to L in this
sum.

1Qur choice of L and U for the names of the two parts of the partition will make more sense later in the
chapter.

261

Chapter 13 Network Flows

Example 13.3. Let’s again take a look at the network in Figure 13.2. Let’s first consider
the cut V = L1 U U7 with

L, ={S,FB,E,D} and U, ={A,C,T}.
Here we see that the capacity of the cut is
c(Li,Uy) =c(F,A)+c(B,A)+¢c(B,C)+¢(D,C) =24 +15+20+42 = 101.
We must be a bit more careful, however, when we look at the cut V = L, U U, with
L, ={S,F B,E} and U, ={A,D,C,T}.
Here the capacity of the cut is
c(Ly, Up) = c(F,A)+c(B,A)+¢c(B,C)+c(E,D) =24 +15+20 + 20 = 79.

Notice that we do not include ¢(D, B) in the calculation as the directed edge (D, B) is
from U, to Ly.

The relationship between flows and cuts rests on the following fundamentally im-
portant theorem.

Theorem 13.4. Let G = (V, E) be a network, let ¢ be a flow in G, and let V.= LU U be a cut.
The value of the flow is at most as large as the capacity of the cut.

Proof. In this proof (and throughout the chapter), we adopt the very reasonable con-
vention that ¢(x, y) = 0if (x, y) is not a directed edge of a network G.
Let ¢ be a flow of value vp and let V = L U U be a cut. First notice that

0= (5= 99,

yev zeV

since the second summation is 0. Also, by the second of our flow conservation laws,
we have for any vertex other than the source and the sink,

2,00y =) oz =0.

yev zeV

Now we have

%= 95y~ 9(9)

yev zeV

262

13.3 Augmenting Paths

=3 05 -) 0=+ Y [D o,y - Y o)

yev zeV xeL yev zeV
AP EAIEDICIERS
x€L |yeV zeV

At this point, we want to pause and look at the last line. Notice that if (a, b) is a directed
edge with both endpoints in L, then when the outer sum is conducted for x = a, we get
an overall contribution of ¢(a, b). On the other hand, when it is conducted for x = b,
we get a contribution of —¢(a, b). Thus, the terms cancel out and everything simplifies

to
Doy =D b0 <) o, y) <) elx,y) = oL, U).
x€L x€L x€L x€L
yel zel yel yel
Thus vy < c(L, U). O

Discussion 13.5. Bob’s getting a bit of a sense of déja vu after reading Theorem 13.4.
He remembers from Chapter 5 that the maximum size of a clique in a graph is always at
most the minimum number of colors required to properly color the graph. However, he
also remembers that there are graphs without cliques of size three but with arbitrarily
large chromatic number, so he’s not too hopeful that this theorem is going to help
out much here. Yolanda chimes in with a reminder of Chapter 6, where they learned
that the maximum size of an antichain in a poset is equal to the minimum number of
chains into which the ground set of the poset can be partitioned. Alice points out that
Yolanda’s statement is still true if the words “chain” and “antichain” are swapped.
This sparks some intense debate about whether the maximum value of a flow in a
network must always be equal to the minimum capacity of a cut in that network. After
a while, Carlos suggests that continuing to read might be the best idea for resolving
their debate.

13.3 Augmenting Paths

In this section, we develop the classic labeling algorithm of Ford and Fulkerson which
starts with any flow in a network and proceeds to modify the flow—always increasing
the value of the flow—until reaching a step where no further improvements are pos-
sible. The algorithm will also help resolve the debate Alice, Bob, Carlos, and Yolanda
were having in the previous section.

Our presentation of the labeling algorithm makes use of some natural and quite
descriptive terminology. Suppose we have a network G = (V, E) with a flow ¢ of value

263

Chapter 13 Network Flows

v. We call ¢ the current flow and look for ways to augment ¢ by making a relatively
small number of changes. An edge (x, y) with ¢(x, y) > 0is said to be used, and when
¢(x,y) = c(x,y) > 0, we say the edge is full. When ¢(x, y) < c(x, y), we say the edge
(x, y) has spare capacity, and when 0 = ¢(x, y) < c(x,y), we say the edge (x, y) is
empty. Note that we simply ignore edges with zero capacity.

The key tool in modifying a network flow is a special type of path, and these paths are
not necessarily directed paths. An augmenting path is a sequence P = (xg, x1,...,Xm)
of distinct vertices in the network such that xo = S, x,, = T, and foreachi =1,2,...,m,
either

a (xi_1, x;) has spare capacity or
b (x;, xj—1) is used.

When condition (Item a) holds, it is customary to refer to the edge (x;-1, x;) as a for-
ward edge of the augmenting path P. Similarly, if condition (Item b) holds, then the
(nondirected) edge (x;-1, x;) is called a backward edge since the path moves from x;_;
to x;, which is opposite the direction of the edge.

Example 13.6. Let’s look again at the network and flow in Figure 13.2. The sequence
of vertices (S, F, A, T) meets the criteria to be an augmenting path, and each edge in it
is a forward edge. Notice that increasing the flow on each of (S, F), (F, A), and (A, T)
by any positive amount 6 < 12 results in increasing the value of the flow and preserves
the conservation laws.

If our first example jumped out at you as an augmenting path, it’s probably less clear
at a quick glance that (S, E, D, C, B, A, T) is also an augmenting path. All of the edges
are forward edges except for (C, B), since it’s actually (B, C) that is a directed edge in
the network. Don’t worry if it’s not clear how this path can be used to increase the
value of the flow in the network, as that’s our next topic.

Ignoring, for the moment, the issue of finding augmenting paths, let’s see how they
can be used to modify the current flow in a way that increases its value by some 6 > 0.
Here’s how for an augmenting path P = (xo, x1,..., Xy). First, let 01 be the positive
number defined by:

01 = min{c(x;j—1, x;) — P(xi-1, x;) : (xi—1, x;) a forward edge of P.}
The quantity c(x;-1,x;) — ¢(xi-1, x;) is nothing but the spare capacity on the edge
(xi-1,x;), and thus 07 is the largest amount by which all of the forward edges of P.

Note that the edges (xo, x1) and (x,-1, x;,) are always forward edges, so the positive
quantity 01 is defined for every augmenting path.

264

13.3 Augmenting Paths

When the augmenting path P has no backward edges, we set 0 = 01. But when P
has one or more backward edges, we pause to set

07 = min{¢(x;, x;—1) : (xi-1, x;) a backward edge of P}.

Since every backward edge is used, 6, > 0 whenever we need to define it. We then set
6 = min{d1, 62}.

In either case, we now have a positive number 6 and we make the following elemen-
tary observation, for which you are asked to provide a proof in Exercise 13.7 4.

Proposition 13.7. Suppose we have an augmenting path P = (xg,x1,...,Xm) with 6 > 0
calculated as above. Modify the flow ¢ by changing the values along the edges of the path P by
an amount which is either +6 or —0 according to the following rules:

1. Increase the flow along the edges of P which are forwards.
2. Decrease the flow along the edges of P which are backwards.
Then the resulting function ¢ is a flow and it has value v + 6.

Example 13.8. The network flow shown in Figure 13.2 has many augmenting paths.
We already saw two of them in Example 13.6, which we call P; and P3 below. In the
list below, be sure you understand why each path is an augmenting path and how the
value of 0 is determined for each path.

1. Py =(S,F, A, T) with 6 = 12. All edges are forward.
2. P, =(S5,B,A,T)with 6 = 8. All edges are forward.

3. P3=(S,E,D,C,B,A, T)with 6 =9. All edges are forward, except (C, B) which
is backward.

4. Py = (S,B,E,D,C,A,T)with 6 = 2. All edges are forward, except (B, E) and
(C, A) which are backward.

In Exercise 13.7.7, you are asked to update the flow in Figure 13.2 for each of these
four paths individually.

13.3.1 Caution on Augmenting Paths

Bob’s gotten really good at using augmenting paths to increase the value of a network
flow. He’s not sure how to find them quite yet, but he knows a good thing when he sees
it. He’s inclined to think that any augmenting path will be a good deal in his quest for
a maximum-valued flow. Carlos is pleased about Bob’s enthusiasm for network flows

265

Chapter 13 Network Flows

but is beginning to think that he should warn Bob about the dangers in using just any
old augmenting path to update a network flow. They agree that the best situation is
when the number of updates that need to be made is small in terms of the number of
vertices in the network and that the size of the capacities on the edges and the value of
a maximum flow should not have a role in the number of updates.

Bob says he can’t see any way that the edge capacities could create a situation where
a network with only a few vertices requires many updates, Carlos is thinking that an
example is in order. He asks Bob to pick his favorite very large integer and to call
it M. He then draws the network on four vertices shown in Figure 13.9. Bob quickly
recognizes that the maximum value of a flow in this network is 2M. He does this using
the flow with ¢(S,A) =M, (A, T) =M, ¢(S5,B) =M, ¢(B,T) = M and ¢(A,B) = 0.
Carlos is pleased with Bob’s work.

FiGURE 13.9: A SMALL NETWORK

Since this network is really small, it was easy for Bob to find the maximum flow.
However, Bob and Carlos agree that “eyeballing” is not an approach that scales well
to larger networks, so they need to have an approach to finding that flow using aug-
menting paths. Bob tells Carlos to give him an augmenting path, and he’ll do the
updating. Carlos suggests the augmenting path (S, A, B, T), and Bob determines that
0 = 1 for this augmenting path. He updates the network (starting from the zero flow,
i.e.,, with ¢(e) = 0 for every edge ¢) and it now has value 1. Bob asks Carlos for another
augmenting path, so Carlos gives him (S, B, A, T). Now (B, A) is backward, but that
doesn’t phase Bob. He performs the update, obtaining a flow of value 2 with (A, B)
empty again.

Despite Carlos” hope that Bob could already see where this was heading, Bob ea-
gerly asks for another augmenting path. Carlos promptly gives him (S, A, B, T'), which
again has 6 = 1. Bob’s update gives them a flow of value 3. Before Carlos can sug-
gest another augmenting path, Bob realizes what the problem is. He points out that
Carlos can just give him (S, B, A, T) again, which will still have 6 = 1 and result in
the flow value increasing to 4. He says that they could keep alternating between those

266

13.4 The Ford-Fulkerson Labeling Algorithm

two augmenting paths, increasing the flow value by 1 each time, until they’d made 2M
updates to finally have a flow of value 2M. Since the network only has four vertices
and M is very large, he realizes that using any old augmenting path is definitely not a
good idea.

Carlos leaves Bob to try to figure out a better approach. He realizes that starting from
the zero flow, he’d only need the augmenting paths (S, A, T) and (S, B, T), each with 6 =
M to quickly get the maximum flow. However, he’s not sure why an algorithm should
find those augmenting paths to be preferable. About this time, Dave wanders by and
mumbles something about the better augmenting paths using only two edges, while
Carlos’ two evil augmenting paths each used three. Bob thinks that maybe Dave’s onto
something, so he decides to go back to reading his textbook.

13.4 The Ford-Fulkerson Labeling Algorithm

In this section, we outline the classic Ford-Fulkerson labeling algorithm for finding a
maximum flow in a network. The algorithm begins with a linear order on the vertex
set which establishes a notion of precedence. Typically, the first vertex in this lin-
ear order is the source while the second is the sink. After that, the vertices can be
listed in any order. In this book, we will use the following convention: the vertices
will be labeled with capital letters of the English alphabet and the linear order will be
(5, T,A,B,C,D,E,F,G,...), which we will refer to as the pseudo-alphabetic order.
Of course, this convention only makes sense for networks with at most 26 vertices, but
this limitation will not cramp our style. For real world problems, we take comfort in
the fact that computers can deal quite easily with integer keys of just about any size.

Before providing a precise description of the algorithm, let’s take a minute to con-
sider a general overview. In carrying out the labeling algorithm, vertices will be clas-
sified as either labeled or unlabeled. At first, we will start with only the source being
labeled while all other vertices will be unlabeled. By criteria yet to be spelled out,
we will systematically consider unlabeled vertices and determine which should be la-
beled. If we ever label the sink, then we will have discovered an augmenting path, and
the flow will be suitably updated. After updating the flow, we start over again with
just the source being labeled.

This process will be repeated until (and we will see that this always occurs) we reach
a point where the labeling halts with some vertices labeled (one of these is the source)
and some vertices unlabeled (one of these is the sink). We will then note that the par-
tition V = L U U into labeled and unlabeled vertices (hence our choice of L and U as
names) is a cut whose capacity is exactly equal to the value of the current flow. This
resolves the debate from earlier in the chapter and says that the maximum flow /min-
imum cut question is more like antichains and partitioning into chains than clique

267

Chapter 13 Network Flows

number and chromatic number. In particular, the labeling algorithm will provide a
proof of the following theorem:

Theorem 13.10 (The Max Flow-Min Cut Theorem). Let G = (V, E) be a network. If vy is
the maximum value of a flow and cg is the minimum capacity cg of a cut, then vy = co.

We’re now ready to describe the Ford-Fulkerson labeling algorithm in detail.
Algorithm 13.11 (Ford-Fulkerson Labeling Algorithm).

Labeling the Vertices Vertices will be labeled with ordered triples of symbols. Each time we
start the labeling process, we begin by labeling the source with the triple (+, +, c0). The
rules by which we label vertices will be explicit.

Potential on a Labeled Vertex Let u be a labeled vertex. The third coordinate of the label
given to u will be positive real number—although it may be infinite. We call this quantity
the potential on u and denote it by p(u). (The potential will serve as the amount that
the flow can be updated by.) Note that the potential on the source is infinite.

First Labeled, First Scanned The labeling algorithm involves a scan from a labeled vertex
u. As the vertices are labeled, they determine another linear order. The source will always
be the first vertex in this order. After that, the order in which vertices are labeled will
change with time. But the important rule is that we scan vertices in the order that they
are labeled—until we label the sink. If for example, the initial scan—always done from the
source—results in labels being applied to vertices D, G and M, then we next scan from
vertex D. If that scan results in vertices B, F, G and Q being labeled, then we next scan
from G, as it was labeled before B, even though B precedes G in the pseudo-alphabetic
order. This aspect of the algorithm results in a breadth-first search of the vertices looking
for ways to label previously unlabeled vertices.

Never Relabel a Vertex Once a vertex is labeled, we do not change its label. We are content
to label previously unlabeled vertices—up until the time where we label the sink. Then,
after updating the flow and increasing the value, all labels, except of course the special
label on the source, are discarded and we start all over again.

Labeling Vertices Using Forward Edges Suppose we are scanning from a labeled vertex u
with potential p(1) > 0. From u, we consider the unlabeled neighbors of u in pseudo-
alphabetic order. Now suppose that we are looking at a neighbor v of u with the edge
(u, v) belonging to the network. This means that the edge is directed from u to v. If
e = (u,v) is not full, then we label the vertex v with the triple (u, +, p(v)) where p(v) =
min{p(u), c(e) — Pp(e)}. We use this definition since the flow cannot be increased by
more than the prior potential or the spare capacity on e. Note that the potential p(v) is
positive since a is the minimum of two positive numbers.

268

13.5 A Concrete Example

Labeling Vertices Using Backward Edges Now suppose that we are looking at a neighbor
v of u with the edge (v, u) belonging to the network. This means that the edge is directed
from v tou. Ife = (v, u) is used, then we label the vertex v with the triple (u, —, p(v))
where p(v) = min{p(u), ¢p(e)}. Here p(v) is defined this way since the flow on e cannot
be decreased by more than ¢(e) or p(u). Again, note that the potential p(v) is positive
since a is the minimum of two positive numbers.

What Happens When the Sink is Labeled? The labeling algorithm halts if the sink is ever
labeled. Note that we are always trying our best to label the sink, since in each scan the
sink is the very first vertex to be considered. Now suppose that the sink is labeled with
the triple (u, +, a). Note that the second coordinate on the label must be + since all edges
incident with the sink are oriented towards the sink.

We claim that we can find an augmenting path P which results in an increased flow with
0 = a, the potential on the sink. To see this, we merely back-track. The sink T got its label
from u = uy, uy got its label from uy, and so forth. Eventually, we discover a vertex uy,
which got its label from the source. The augmenting path is then

P = (S/um/um—l/ . .,ul,T).

The value of 6 for this path is the potential p(T) on the sink since weve carefully ensured
that p(um) = p(tm-1) 2 -+ 2 p(u1) = p(T).

And if the Sink is Not Labeled? On the other hand, suppose we have scanned from every
labeled vertex and there are still unlabeled vertices remaining, one of which is the sink.
Now we claim victory. To see that we have won, we simply observe that if L is the set of
labeled vertices, and U is the set of unlabeled vertices, then every edge e = (x, y) with
x€Landy e Uis full, ie., ¢p(e) = c(e). If this were not the case, then y would qualify
for a label with x as the first coordinate. Also, note that ¢(y, x) = 0 for every edge e with
x € Land y € U. Regardless, we see that the capacity of the cut V.= L U U is exactly
equal to the value of the current flow, so we have both a maximum flow and minimum cut
providing a certificate of optimality.

13.5 A Concrete Example

Let’s apply the Labeling Algorithm to the network flow shown in Figure 13.2. Then we
start with the source:
St (x,+,00)

Since the source S is the first vertex labeled, it is also the first one scanned. So we look
at the neighbors of S using the pseudo-alphabetic order on the vertices. Thus, the first

269

Chapter 13 Network Flows

one to be considered is vertex B and since the edge (S, B) is not full, we label B as
B: (S,+,38).

We then consider vertex E and label it as
E: (S,+,628).

Next is vertex F, which is labeled as
F: (S,+,15).

At this point, the scan from S is complete.

The first vertex after S to be labeled was B, so we now scan from B. The (unlabeled)
neighbors of B to be considered, in order, are A, C, and D. This results in the following
labels:

A: (B,+,8)
C: (B,+8)
D: (B,—,6)

The next vertex to be scanned is E, but E has no unlabeled neighbors, so we then move
on to F, which again has no unlabeled neighbors. Finally, we scan from A, and using
the pseudo-alphabetic order, we first consider the sink T (which in this case is the only
remaining unlabeled vertex). This results in the following label for T.

T: (A,+,98)

Now that the sink is labeled, we know there is an augmenting path. We discover this
path by backtracking. The sink T got its label from A, A got its label from B, and B
got its label from S. Therefore, the augmenting pathis P = (S, B, A, T) with 6 = 8. All
edges on this path are forward. The flow is then updated by increasing the flow on the
edges of P by 8. This results in the flow shown in Figure 13.12. The value of this flow
is 38.

270

13.5 A Concrete Example

Ficure 13.12: AN UrpaTED NETWORK FLOW

Here is the sequence (reading down the columns) of labels that will be found when
the labeling algorithm is applied to this updated flow. (Note that in the scan from S,
the vertex B will not be labeled, since now the edge (S, B) is full.)

S: (x,+,00) D: (E,+,12)
E: (S,+,28) A: (F+,12)
F: (5,+,15) C: (B,+,10)
B: (E,+,19) T: (A +,12)

This labeling results in the augmenting path P = (S, F, A, T) with 6 = 12.

After this update, the value of the flow has been increased and is now 50 = 38 + 12.
We start the labeling process over again and repeat until we reach a stage where some
vertices (including the source) are labeled and some vertices (including the sink) are
unlabeled.

13.5.1 How the Labeling Algorithm Halts

Consider the network flow in Figure 13.13.

271

Chapter 13 Network Flows

Ficure 13.13: ANOTHER NETWORK FLOW

The value of the current flow is 172. Applying the labeling algorithm using the
pseudo-alphabetic order results in the following labels (reading down the columns):

S: (x+) E: (I,-,3)
C: (5+,8) G: (E,-,3)
F: (S,+,23) L: (E,+3)
H: (C+,7) B: (G,+,3)
I: (H+,7) T: (L,+3)

These labels result in the augmenting path P = (S,C,H,I,E,L,T) with 6 = 3. After
updating the flow and increasing its value to 175, the labeling algorithm halts with the
following labels:

S: (%4,) H: (C,+,4)
C: (5 +,5) I: (H, +,4)
F: (S,+,23)

272

13.6 Integer Solutions of Linear Programming Problems

Now we observe that the labeled and unlabeled vertices are L = {S,C,F,H,I} and
U=1{T,A, B,D,E,G,], K}. Furthermore, the capacity of the cut V = LU U is

41 +8+23+8+13+29+28+25=175.

This shows that we have found a cut whose capacity is exactly equal to the value of the
current flow. In turn, this shows that the flow is optimal.

13.6 Integer Solutions of Linear Programming Problems

A linear programming problem is an optimization problem that can be stated in the
following form: Find the maximum value of a linear function

C1X1 +Caxp +C3x3+ -+ CpXy

subject to m constraints Cy, Cp, ..., C;;, where each constraint C; is a linear equation
of the form:
Ci: apxi+apxs+ai3xz+---+ainXy, =b;

where all coefficients and constants are real numbers.
While the general subject of linear programming is far too broad for this course, we
would be remiss if we didn’t point out that:

1. Linear programming problems are a very important class of optimization prob-
lems and they have many applications in engineering, science, and industrial
settings.

2. There are relatively efficient algorithms for finding solutions to linear program-
ming problems.

3. A linear programming problem posed with rational coefficients and constants
has an optimal solution with rational values—if it has an optimal solution at all.

4. A linear programming problem posed with integer coefficients and constants
need not have an optimal solution with integer values—even when it has an op-
timal solution with rational values.

5. A very important theme in operations research is to determine when a linear
programming problem posed in integers has an optimal solution with integer
values. This is a subtle and often very difficult problem.

6. The problem of finding a maximum flow in a network is a special case of a linear
programming problem.

273

Chapter 13 Network Flows

7. A network flow problem in which all capacities are integers has a maximum flow
in which the flow on every edge is an integer. The Ford-Fulkerson labeling algo-
rithm guarantees this!

8. In general, linear programming algorithms are not used on networks. Instead,
special purpose algorithms, such as Ford-Fulkerson, have proven to be more ef-
ficient in practice.

13.7 Exercises

1. Consider the network diagram in Figure 13.14. For each directed edge, the first
number is the capacity and the second value is intended to give a flow ¢ in the network.
However, the flow suggested is not valid.

(a) Identify the reason(s) ¢ is not valid.

(b) Without changing any of the edge capacities, modify ¢ into a valid flow (E . Try to
use as few modifications as possible.

FIGURE 13.14: AN INVALID FLOW IN A NETWORK

2. Alice claims to have found a (valid) network flow of value 20 in the network shown
in Figure 13.15. Bob tells her that there’s no way she’s right, since no flow has value
greater than 18. Who's right and why?

274

13.7 Exercises

FiGure 13.15: A NETWORK

3. Find an augmenting path P with at least one backward edge for the flow ¢ in the
network shown in Figure 13.16. What is the value of 6 for P? Carry out an update of
¢ using P to obtain a new flow ¢. What is the value of ¢?

F_ 22 11,9
%)

o

FiGURE 13.16: A NETWORK WITH FLOW

4. Prove Proposition 13.7. You will need to verify that the flow conservation laws
hold at each vertex along an augmenting path (other than S and T). There are four
cases to consider depending on the forward /backward status of the two edges on the
augmenting path that are incident with the vertex.

275

Chapter 13 Network Flows

5. Find the capacity of the cut (L, U) with

L={S,FHCB,GI} and U={AD,E,T}
in the network shown in Figure 13.16.
6. Find the capacity of the cut (L, U) with

L={SFD,B,A} and u={HCIGE,T}
in the network shown in Figure 13.16.

7. For each of the augmenting paths P1, P, P3, and P4 in Example 13.8, update the flow
in Figure 13.2. (Note that your solution to this exercise should consist of four network
flows. Do not attempt to use the four paths in sequence to create one updated network
flow.)

8. Continue running the Ford-Fulkerson labeling algorithm on the network flow in
Figure 13.12 until the algorithm halts without labeling the sink. Find the value of the
maximum flow as well as a cut of minimum capacity.

9. Use the Ford-Fulkerson labeling algorithm to find a maximum flow and a minimum
cut in the network shown in Figure 13.17 by starting from the current flow shown there.

F1GURE 13.17: A NETWORK WITH FLOW

276

13.7 Exercises

10. Figure 13.18 shows a network. Starting from the zero flow, i.e., the flow with ¢(e) =
0 for every directed edge e in the network, use the Ford-Fulkerson labeling algorithm
to find a maximum flow and a minimum cut in this network.

FiGure 13.18: A NETWORK

11. Consider a network in which the source S has precisely three neighbors: B, E, and
F. Suppose also that c(S, B) = 30, ¢(S, E) = 20, and ¢(S, F) = 25. You know that there is
a flow ¢ on the network but you do not know how much flow is on any edge. You do
know, however, that when the Ford-Fulkerson labeling algorithm is run on the network
with current flow ¢, the first two vertices labeled are S with label (+, 4+, o) and F with
label (S, +,15). Use this information to determine the value of the flow ¢ and explain
how you do so.

277

CHAPTER 1 4 -

Combinatorial Applications of
Network Flows

Clearly finding the maximum flow in a network can have many direct applications
to problems in business, engineering, and computer science. However, you may be
surprised to learn that finding network flows can also provide reasonably efficient al-
gorithms for solving combinatorial problems. In this chapter, we consider a restricted
version of network flows in which each edge has capacity 1. Our goal is to establish
algorithms for two combinatorial problems: finding maximum matchings in bipartite
graphs and finding the width of a poset as well as a minimal chain partition.

14.1 Introduction

Before delving into the particular combinatorial problems we wish to consider in this
chapter, we will state a key theorem. When working with network flow problems, our
examples thus far have always had integer capacities and we always found a maxi-
mum flow in which every edge carried an integer amount of flow. It is not, however,
immediately obvious that this can always be done. Why, for example, could it not be
the case that the maximum flow in a particularly pathological network with integer
capacities is 23/3? Or how about something even worse, such as V217? We can rule
out the latter because network flow problems fall into a larger class of problems known
as linear programming problems, and a major theorem tells us that if a linear program
is posed with all integer constraints (capacities in our case), the solution must be a
rational number. However, in the case of network flows, something even stronger is
true.

Theorem 14.1. In a network flow problem in which every edge has integer capacity, there is a
maximum flow in which every edge carries an integer amount of flow.

Notice that the above theorem does not guarantee that every maximum flow has
integer flow on every edge, just that we are able to find one. With this theorem in

279

Chapter 14 Combinatorial Applications of Network Flows

hand, we now see that if we consider network flow problems in which the capacities
are all 1 we can find a maximum flow in which every edge carries a flow of either 0 or
1. This can give us a combinatorial interpretation of the flow, in a sense using the full
edges as edges that we “take” in some useful sense.

14.2 Matchings in Bipartite Graphs

Recall that a bipartite graph G = (V, E) is one in which the vertices can be properly
colored using only two colors. It is clear that such a coloring then partitions V' into
two independent sets V; and V>, and so all the edges are between V; and V,. Bipartite
graphs have many useful applications, particularly when we have two distinct types
of objects and a relationship that makes sense only between objects of distinct types.
For example, suppose that you have a set of workers and a set of jobs for the workers
to do. We can consider the workers as the set V; and the jobs as V, and add an edge
from worker w € Vj to job j € V; if and only if w is qualified to do j.

For example, the graph in Figure 14.2 is a bipartite graph in which we’ve drawn V;
on the bottom and V; on the top.

FIGURE 14.2: A BIPARTITE GRAPH

If G = (V,E)isagraph, aset M C E is a matching in G if no two edges of M share an
endpoint. If v is a vertex that is the endpoint of an edge in M, we say that M saturates
v or v is saturated by M. When G is bipartite with V = V; U V,, a matching is then a
way to pair vertices in V7 with vertices in V; so that no vertex is paired with more than
one other vertex. We're usually interested in finding a maximum matching, which is
a matching that contains the largest number of edges possible, and in bipartite graphs
we usually fix the sets V; and V; and seek a maximum matching from V; to V,. In
our workers and jobs example, the matching problem thus becomes trying to find an
assignment of workers to jobs such that

i each worker is assigned to a job for which he is qualified (meaning there’s an
edge),

ii each worker is assigned to at most one job, and

iii each job is assigned at most one worker.

280

14.2 Matchings in Bipartite Graphs

As an example, in Figure 14.3, the thick edges form a matching from V; to V5. Sup-
pose that you're the manager of these workers (on the bottom) and must assign them
to the jobs (on the top). Are you really making the best use of your resources by only
putting four of six workers to work? There are no trivial ways to improve the num-
ber of busy workers, as the two without responsibilities right now cannot do any of
the jobs that are unassigned. Perhaps there’s a more efficient assignment that can be
made by redoing some of the assignments, however. If there is, how should you go
about finding it? If there is not, how would you justify to your boss that there’s no
better assignment of workers to jobs?

FiGURE 14.3: A MATCHING IN A BIPARTITE GRAPH

At the end of the section, we’ll briefly look at a theorem on matchings in bipartite
graphs that tells us precisely when an assignment of workers to jobs exists that ensures
each worker has a job. First, however, we want to see how network flows can be used
to find maximum matchings in bipartite graphs. The algorithm we give, while decent,
is not the most efficient algorithm known for this problem. Therefore, it is not likely
to be the one used in practice. However, it is a nice example of how network flows can
be used to solve a combinatorial problem. The network that we use is formed from a
bipartite graph G by placing an edge from the source S to each vertex of V; and an
edge from each vertex of V5 to the sink T. The edges between V7 and V; are oriented
from V7 to V3, and every edge is given capacity 1. Figure 14.4 contains the network
corresponding to our graph from Figure 14.2. Edges in this network are all oriented
from bottom to top and all edges have capacity 1. The vertices in V; are x1, ..., x6 in
order from left to right, while the vertices in V; are 1, ..., y7 from left to right.

T
Y1 Y7

X1 X6

S

FIGURE 14.4: THE NETWORK CORRESPONDING TO A BIPARTITE GRAPH

281

Chapter 14 Combinatorial Applications of Network Flows

Now that we have translated a bipartite graph into a network, we need to address the
correspondence between matchings and network flows. To turn a matching M into a
network flow, we start by placing one unit of flow on the edges of the matching. To have
a valid flow, we must also place one unit of flow on the edges from S to the vertices of
V1 saturated by M. Since each of these vertices is incident with a single edge of M, the
flow out of each of them is 1, matching the flow in. Similarly, routing one unit of flow
to T from each of the vertices of V> saturated by M takes care of the conservation laws
for the remaining vertices. To go the other direction, simply note that the full edges
from V; to V5 in an integer-valued flow is a matching. Thus, we can find a maximum
matching from V; to V, by simply running the labeling algorithm on the associated
network in order to find a maximum flow.

In Figure 14.5, we show thick edges to show the edges with flow 1 in the flow corre-
sponding to our guess at a matching from Figure 14.3.

T
Y1 Y7

X1 X6

S

FiGURE 14.5: THE FLOW CORRESPONDING TO A MATCHING

With priority sequence S, T, x1, x2, ..., X6, Y1, Y2, - - . , Y7 replacing our usual pseudo-
alphabetic order, the labeling algorithm produces the labels shown below.

S: (x,+,00) Yo: (x6,+,1)
X3 : (S, +, 1) X1 (]/6/ -, l)
X5 : (S,+,1) Y1 (x1,+,1)
ya: (x3,+,1) y2: (x1,+,1)
ys: (x3,+,1) y3: (x1,+,1)
x6: (Ya,—, 1) x2: (y1,—,1)
x4: (ys,—, 1) T: (y2,+,1)

This leads us to the augmenting path S, x3, y4, X6, Y6, X1, y2, T, which gives us the flow
shown in Figure 14.6.

282

14.2 Matchings in Bipartite Graphs

Y1 Y7

X1 X6

S

FIGURE 14.6: THE AUGMENTED FLOW

Is this a maximum flow? Another run of the labeling algorithm produces

S : (*,+,00) X4t (]/5/ s l)
xs5: (S, +,1) ya: (x4,+,1)
Ys . (.XS, +, 1) X3 : (}/4; 7 1)

and then halts. Thus, the flow in Figure 14.6 is a maximum flow.

Now that we know we have a maximum flow, we’d like to be able to argue that the
matching we’ve found is also maximum. After all, the boss isn't going to be happy if
he later finds out that this fancy algorithm you claimed gave an optimal assignment of
jobs to workers left the fifth worker (x5) without a job when all six of them could have
been put to work. Let’s take a look at which vertices were labeled by the Ford-Fulkerson
labeling algorithm on the last run. There were three vertices (x3, x4, and x5) from V;
labeled, while there were only two vertices (y4 and y5) from V; labeled. Notice that y4
and ys are the only vertices that are neighbors of x3, x4, or x5 in G. Thus, no matter
how we choose the matching edges from {x3, x4, x5}, one of these vertices will be left
unsaturated. Therefore, one of the workers must go without a job assignment. (In our
example, it’s the fifth, but it’s possible to choose different edges for the matching so
another one of them is left without a task.)

The phenomenon we’ve just observed is not unique to our example. In fact, in every
bipartite graph G = (V, E) with V = V; U V; in which we cannot find a matching that
saturates all the vertices of V, we will find a similar configuration. This is a famous
theorem of Hall, which we state below.

Theorem 14.7 (Hall’s Theorem). Let G = (V, E) be a bipartite graph with V. = V1 U V,.
There is a matching which saturates all vertices of V1 if and only if for every subset A C V1,
the set N C 'V of neighbors of the vertices in A satisfies [N| > |A].

283

Chapter 14 Combinatorial Applications of Network Flows

14.3 Chain partitioning

In Chapter 6, we discussed Dilworth’s Theorem, which told us that for any poset P of
width w, there is a partition of P into w, but no fewer, chains. However, we were only
able to devise an algorithm to find this chain partition (and a maximum antichain) in
the special case where P was an interval order. Now, through the magic of network
flows, we will be able to devise an efficient algorithm that works in general for all
posets. However, to do so, we will require a slightly more complicated network than
we devised in the previous section.

Suppose that the points of our poset P are {x1, x2, ..., x,}. We construct a network
from P consisting of the source S, sink T, and two points x; and x;’ for each point x;
of P. All edges in our network will have capacity 1. We add edges from S to x/ for
1 <i < nand from xg’ toT for1 < i < n. Of course, this network wouldn’t be too
useful, as it has no edges from the single-prime nodes to the double-prime nodes. To
resolve this, we add an edge directed from x; to x;.’ if and only if x; < x; in P.

Our running example in this section will be the poset in Figure 14.8(a). We’ll discuss
the points of the poset as x; where i is the number printed next to the point in the
diagram.

T
()

(A) A SMALL POSET (B) THE ASSOCIATED NETWORK

FiGURE 14.8: A PARTIALLY ORDERED SET (A) AND THE ASSOCIATED NETWORK (B).

284

14.3 Chain partitioning

\\}//

O
N
AN
\\\‘\‘\\\\: »’-

QO O O 0O 0O

X10

FiGURE 14.9: AN INITIAL FLOW

The first step is to create the network, which we show in Figure 14.8(b). In this net-
work, all capacities are 1, edges are directed from bottom to top, the first row of ten
vertices is the x} arranged consecutively with x/ at the left and x at the right, and
the second row of ten vertices is the x/" in increasing order of index. To see how this
network is constructed, notice that x; < x3 in the poset, so we have the directed edge
(xi, xé’). Similarly, x4 is less than x3, x5, and x9 in the poset, leading to three directed
edges leaving x; in the network. As a third example, since x9 is maximal in the poset,
there are no directed edges leaving x;.

We have not yet seen how we might turn a maximum flow (or minimum cut) in
the network we’ve just constructed into a minimum chain partition or a maximum an-
tichain. It will be easier to see how this works once we have a confirmed maximum
flow. Rather than running the labeling algorithm starting from the zero flow, we eye-
ball a flow, such as the one shown in Figure 14.9. (Again, we use the convention that
thick edges are full, while thin edges are empty.) When we run the labeling algorithm

(using priority S, T, x1, ..., x4, X7, ..., X]), we obtain the following list of labels:
S: (x+,00) xg o (x5, +,1) x50 (S,+,1)
xy: (S,+,1) xg o (xg,+,1) x{ o (x5, +,1)
xg: (S,+,1) xg o (xg,+,1) xy o (x7,+,1)
xg: (S,+,1) xp: (xf,=,1) xy o (xg,+,1)
x5: (S,+,1) xg: (x,—,1) T: (x5,+,1)

285

Chapter 14 Combinatorial Applications of Network Flows

xy o (xf,+,1) xo:o (xy,—,1)

Thus, we find the augmenting path (S, x, x}/, x7, x7, T), and the updated flow can be
seen in Figure 14.10.

FiGure 14.10: A BETTER FLOW

If we run the labeling algorithm again, the algorithm assigns the labels below, leav-
ing the sink unlabeled.

S: (,+,00) x5 (S,+,1) xy o (xf,+,1) xp: (xf,—,1)
xy: (S,+,1) xg: (S,+,1) xg o (x5, +,1) xg: (xg,—,1)

In Figure 14.10, the black vertices are those the labeled in the final run, while the gold
vertices are the unlabeled vertices.

Now that we’ve gone over the part you already knew how to do, we need to discuss
how to translate this network flow and cut into a chain partition and an antichain. If
there is a unit of flow on an edge (x;, x;.’), then a good first instinct is to place x; and
x;j in the same chain of a chain partition. To be able to do this successfully, of course,
we need to ensure that this won't result in two incomparable points being placed in a
chain. A way to see that everything works as desired is to think of starting with (x’, x}’)
and then looking for flow leaving x;.. If there is, it goes to a vertex x;/, so we may add

xx to the chain since x; < x; < x¢. Continue in this manner until reaching a vertex in
the network that does not have any flow leaving it. Then see if x’ has flow coming into
it. If it does, it’s from a vertex x;, that can be added since x,, < x; < x;.

286

14.4 Exercises

Let’s see how following this process for the flow in Figure 14.10 leads to a chain
partition. If we start with x{, we see that (x, xé’) is full, so we place x1 and x3 in chain
C;. Since x} has no flow leaving it, there are no greater elements to add to the chain.
However, x| has flow in from x7, so we add x; to C1. We now see that x7 has flow in
from x7/, so now C; = {x1, x2, x3, x7}. Vertex x7 has no flow into it, so the building of
the first chain stops. The first vertex we haven't placed into a chain is x4, so we note
that (x:l, xg) is full, placing x4 and x5 in chain C,. We then look from xg and see no
flow leaving. However, there is flow into x} from x’6, S0 Xg is added to C,. There is no
flow out of x7, so Cp = {x4, x5, X6}. Now the first point not in a chain is xg, so we use
the flow from x{ to x§ to place xs and xy in chain C3. Again, no flow out of x{, so we
look to xg, which is receiving flow from x7;,. Adding x10 to C3 gives C3 = {xs, X9, X10},
and since every point is now in a chain, we may stop.

Even once we see that the above process does in fact generate a chain partition, it is
not immediately clear that it’s a minimum chain partition. For this, we need to find
an antichain of as many points as there are chains in our partition. (In the example
we’ve been using, we need to find a three-element antichain.) This is where tracking
the labeled vertices comes in handy. Suppose we have determined a chain C = {x; <
X2 < -+ < xx} using the network flow. Since x1 is the minimal element of this chain,
there is no flow into x”” and hence no flow out of x”’. Since T is unlabeled, this must

1 1

mean that x7’ is unlabeled. Similarly, xi is the maximal element of C, so there is no

flow out of x;. Thus, x; is labeled. Now considering the sequence of vertices
’ ” ’ ” ’ ” ’ ”
Xpr XY, Xp g XP gy e X5, X5, X7, XY,

there must be a place where the vertices switch from being labeled to unlabeled. This
must happen with x/ labeled and x?" unlabeled. To see why, suppose that x} and x?" are
both unlabeled while x; +1 and xl’.’Jr1 are both labeled. Because x; and x;,1 are consecu-
tive in C, there is flow on (x; , x;/ﬂ). Therefore, when scanning from x§’+1, the vertex x;
would be labeled. For each chain of the chain partition, we then take the first element
y for which y’ is labeled and y” is unlabeled to form an antichain A = {y1,..., Yw}.
To see that A is an antichain, notice that if y; < y;, then (v, y;’) is an edge in the net-
work. Therefore, the scan from y’ would label y}’. Using this process, we find that a

maximum antichain in our example is {x1, x5, xg}.

14.4 Exercises

1. Use the techniques of this chapter to find a maximum matching from V; to V5 in
the graph shown in Figure 14.11. The vertices on the bottom are the set Vi, while the

vertices on the top are the set V5. If you cannot find a matching that saturates all of the
vertices in V1, explain why.

287

Chapter 14 Combinatorial Applications of Network Flows

FIGURE 14.11: Is THERE A MATCHING SATURATING V71?

2. Use the techniques of this chapter to find a maximum matching from V; to V; in
the graph shown in Figure 14.12. The vertices on the bottom are the set V7, while the
vertices on the top are the set V5. If you cannot find a matching that saturates all of the
vertices in Vi, explain why.

F1GURE 14.12: Is THERE A MATCHING SATURATING V71?

3. Students are preparing to do final projects for an applied combinatorics course.
The five possible topics for their final projects are graph algorithms, posets, induction,
graph theory, and generating functions. There are five students in the class, and they
have each given their professor the list of topics on which they are willing to do their
project. Alice is interested in posets or graphs. Bob would be willing to do his project
on graph algorithms, posets, or induction. Carlos will only consider posets or graphs.
Dave likes generating functions and induction. Yolanda wants to do her project on ei-
ther graphs or posets. To prevent unauthorized collaboration, the professor does not
want to have two students work on the same topic. Is it possible to assign each stu-
dent a topic from the lists above so that no two students work on the same project? If
so, find such an assignment. If not, find an assignment that maximizes the number of
students who have assignments from their lists and explain why you cannot satisfy all
the students’ requests.

4. Seven colleges and universities are competing to recruit six high school football
players to play for their varsity teams. Each school is only allowed to sign one more
player, and each player is only allowed to commit to a single school. The table below
lists the seven institutions and the students they are trying to recruit, have been admit-
ted, and are also interested in playing for that school. (There’s no point in assigning
a school a player who cannot meet academic requirements or doesn’t want to be part

288

14.4 Exercises

of that team.) The players are identified by the integers 1 through 6. Find a way of
assigning the players to the schools that maximizes the number of schools who sign
one of the six players.

School Player numbers
Boston College 1,3, 4
Clemson University 1,3,4,6
Georgia Institute of Technology 2,6
University of Georgia None interested
University of Maryland 2,3,5
University of North Carolina 1,2,5
Virginia Polytechnic Institute and State University 1,2,5,6

5. The questions in this exercise refer to the network diagram in Figure 14.13. This
network corresponds to a poset P. As usual, all capacities are assumed to be 1, and all
edges are directed upward. Answer the following questions about P without drawing
the diagram of the poset.

(a) Which element(s) are greater than x; in P?

(b) Which element(s) are less than x5 in P?

(c) Which element(s) are comparable with x¢ in P?
(d) List the maximal elements of P.

(e) List the minimal elements of P.

F1GURE 14.13: THE NETWORK CORRESPONDING TO A POSET

6. Draw the diagram of the poset that corresponds to the network in Figure 14.13.

7. Use the methods developed in this chapter to find the width w of the poset corre-
sponding to the network in Figure 14.13. Also find an antichain of size w and a partition
into w chains.

289

Chapter 14 Combinatorial Applications of Network Flows

8. In Figure 14.14 we show a poset P and a network used to find a chain partition of
P. (All edges in the network have a capacity of 1 and are directed from bottom to top.
The bold edges currently carry a flow of 1.) Using the network, find the width w of P,
a partition of P into w chains, and an antichain with w elements.

T

X4

X1

X5 X,
6 S

FiGuRre 14.14: A POSET AND THE CORRESPONDING NETWORK DIAGRAM

9. Draw the network corresponding to the poset P shown in Figure 14.15. Use the
network to find the width w of P, a partition into w chains, and an antichain of size w.

FiGure 14.15: A POSET

290

CHAPTER

Pélya’s Enumeration Theorem

In this chapter, we introduce a powerful enumeration technique generally referred to
as Pélya’s enumeration theorem!. Pélya’s approach to counting allows us to use sym-
metries (such as those of geometric objects like polygons) to form generating functions.
These generating functions can then be used to answer combinatorial questions such
as

1. How many different necklaces of six beads can be formed using red, blue and
green beads? What about 500-bead necklaces?

2. How many musical scales consisting of 6 notes are there?

3. How many isomers of the compound xylenol, C¢H3(CHj3)>(OH), are there? What
about C,Hy,42? (In chemistry, isomers are chemical compounds with the same
number of molecules of each element but with different arrangements of those
molecules.)

4. How many nonisomorphic graphs are there on four vertices? How many of them
have three edges? What about on 1000 vertices with 257,000 edges? How many
r-regular graphs are there on 40 vertices? (A graph is r-regular if every vertex
has degree r.)

To use Pélya’s techniques, we will require the idea of a permutation group. How-
ever, our treatment will be self-contained and driven by examples. We begin with a
simplified version of the first question above.

Like so many results of mathematics, the crux of the result was originally discovered by someone other
than the mathematician whose name is associated with it.].H. Redfield published this result in 1927, 10
years prior to Pélya’s work. It would take until 1960 for Redfield’s work to be discovered, by which time
Pélya’s name was firmly attached to the technique.

291

Chapter 15 Pélya’s Enumeration Theorem

15.1 Coloring the Vertices of a Square

Let’s begin by coloring the vertices of a square using white and gold. If we fix the po-
sition of the square in the plane, there are 2* = 16 different colorings. These colorings
are shown in Figure 15.1.

FiGure 15.1: THE 16 COLORINGS OF THE VERTICES OF A SQUARE.

However, if we think of the square as a metal frame with a white bead or a gold bead
at each corner and allow the frame to be rotated and flipped over, we realize that many
of these colorings are equivalent. For instance, if we flip coloring C7 over about the
vertical line dividing the square in half, we obtain coloring Co. If we rotate coloring
C> clockwise by 90°, we obtain coloring C3. In many cases, we want to consider such
equivalent colorings as a single coloring. (Recall our motivating example of necklaces
made of colored beads. It makes little sense to differentiate between two necklaces if
one can be rotated and flipped to become the other.)

To systematically determine how many of the colorings shown in Figure 15.1 are not
equivalent, we must think about the transformations we can apply to the square and
what each does to the colorings. Before examining the transformations’ effects on the
colorings, let’s take a moment to see how they rearrange the vertices. To do this, we
consider the upper-left vertex to be 1, the upper-right vertex to be 2, the lower-right
vertex to be 3, and the lower-left vertex to be 4. We denote the clockwise rotation by
90° by r1 and see that 71 sends the vertex in position 1 to position 2, the vertex in po-
sition 2 to position 3, the vertex in position 3 to position 4, and the vertex in position
4 to position 1. For brevity, we will write r1(1) = 2, 71(2) = 3, etc. We can also rotate
the square clockwise by 180° and denote that rotation by r,. In this case, we find that
r2(1) =3, 1(2) =4, r2(3) = 1, and r,(4) = 2. Notice that we can achieve the transforma-
tion 1, by doing r; twice in succession. Furthermore, the clockwise rotation by 270°, r3,
can be achieved by doing r1 three times in succession. (Counterclockwise rotations can
be avoided by noting that they have the same effect as a clockwise rotation, although

292

15.1 Coloring the Vertices of a Square

by a different angle.)

When it comes to flipping the square, there are four axes about which we can flip it:
vertical, horizontal, positive-slope diagonal, and negative-slope diagonal. We denote
these flips by v, 11, p, and n, respectively. Now notice that v(1) =2, v(2) =1, v(3) = 4,
and v(4) = 3. For the flip about the horizontal axis, we have h(1) = 4, h(2) = 3, h(3) = 2,
and h(4) = 1. For p, we have p(1) = 3, p(2) = 2, p(3) = 1, and p(4) = 4. Finally, for n
we find n(1) = 1, n(2) = 4, n(3) = 3, and n(4) = 2. There is one more transformation
that we must mention; the transformation that does nothing to the square is called the
identity transformation, denoted ¢. Ithas (1) = 1, «(2) = 2, «(3) = 3, and «(4) = 4.

Now that we’ve identified the eight transformations of the square, let’s make a table
showing which colorings from Figure 15.1 are left unchanged by the application of
each transformation. Not surprisingly, the identity transformation leaves all of the
colorings unchanged. Because r1 moves the vertices cyclically, we see that only C; and
C16 remain unchanged when it is applied. Any coloring with more than one color
would have a vertex of one color moved to one of the other color. Let’s consider which
colorings are fixed by v, the flip about the vertical axis. For this to happen, the color at
position 1 must be the same as the color at position 2, and the color at position 3 must
be the same as the color at position 4. Thus, we would expect to find 2 -2 = 4 colorings
unchanged by v. Examining Figure 15.1, we see that these colorings are C1, Cs, Cs,
and Cy6. Performing a similar analysis for the remaining five transformations leads to
Table 15.2.

Transformation Fixed colorings

L All 16

1 C1,Cie

2 C1, C10, C11, C1s

r3 C1,Cie

v C1, Cs, Cs, C16

h C1,Cy,Cy, Cig

p C1, Cs, Cs, C1o, C11, C13, C15, C1s
n C1, C2, Cy4, Cro, C11, C12, C14, Ci6

TABLE 15.2: COLORINGS FIXED BY TRANSFORMATIONS OF THE SQUARE

At this point, it’s natural to ask where this is going. After all, we're trying to count
the number of nonequivalent colorings, and Table 15.2 makes no effort to group col-
orings based on how a transformation changes one coloring to another. It turns out
that there is a useful connection between counting the nonequivalent colorings and
determining the number of colorings fixed by each transformation. To develop this

293

Chapter 15 Pélya’s Enumeration Theorem

connection, we first need to discuss the equivalence relation created by the action of
the transformations of the square on the set C of all 2-colorings of the square. (Refer
to Section B.13 for a refresher on the definition of equivalence relation.) To do this, no-
tice that applying a transformation to a square with colored vertices results in another
square with colored vertices. For instance, applying the transformation rq to a square
colored as in Ci results in a square colored as in Cq3. We say that the transformations
of the square act on the set C of colorings. We denote this action by adding a star to
the transformation name. For instance, T’I(Clz) = Cyz and v*(Cq1o) = C11.

If 7 is a transformation of the square with 7°(C;) = C;, then we say colorings C; and
C; are equivalent and write C; ~ C;. Since (*(C) = C for all C € C, ~ is reflexive. If
71(C;) = Cj and 15(C;) = Ck, then 15(7](C;)) = Ck, so ~ is transitive. To complete our
verification that ~ is an equivalence relation, we must establish that it is symmetric.
For this, we require the notion of the inverse of a transformation 7, which is simply
the transformation 7! that undoes whatever t did. For instance, the inverse of rq is
the counterclockwise rotation by 90°, which has the same effect on the location of the
vertices as r3. If 7(C;) = Cj, then T‘l*(C]-) = Cj, s0 ~ is symmetric.

Before proceeding to establish the connection between the number of nonequiva-
lent colorings (equivalence classes under ~) and the number of colorings fixed by a
transformation in full generality, let’s see how it looks for our example. In looking at
Figure 15.1, you should notice that ~ partitions C into six equivalence classes. Two
contain one coloring each (the all white and all gold colorings). One contains two col-
orings (C19 and Cj;). Finally, three contain four colorings each (one gold vertex, one
white vertex, and the remaining four with two vertices of each color). Now look again
at Table 15.2 and add up the number of colorings fixed by each transformation. In do-
ing this, we obtain 48, and when 48 is divided by the number of transformations (8),
we get 6 (the number of equivalence classes)! It turns out that this is far from a fluke,
as we will soon see. First, however, we introduce the concept of a permutation group
to generalize our set of transformations of the square.

15.2 Permutation Groups

Entire books have been written on the theory of the mathematical structures known as
groups. However, our study of Pélya’s enumeration theorem requires only a few facts
about a particular class of groups that we introduce in this section. First, recall that a
bijection from a set X to itself is called a permutation. A permutation group is a set P
of permutations of a set X so that

1. the identity permutation ¢ is in P;

2. if 1,y € P, then 11 o 11 € P; and

294

15.2 Permutation Groups

3. if m; € P, then nl_l e P.

For our purposes, X will always be finite and we will usually take X = [n] for some
positive integer n. The symmetric group on n elements, denoted S, is the set of all
permutations of [n]. Every finite permutation group (and more generally every finite
group) is a subgroup of S, for some positive integer 7.

As our first example of a permutation group, consider the set of permutations we
discussed in Section 15.1, called the dihedral group of the square. We will denote
this group by Dg. We denote by D;, the similar group of transformations for a regular
n-gon, using 2n as the subscript because there are 2n permutations in this group.!
The first criterion to be a permutation group is clearly satisfied by Dg. Verifying the
other two is quite tedious, so we only present a couple of examples. First, notice that
rp or1 = r3. This can be determined by carrying out the composition of these functions
as permutations or by noting that rotating 90° clockwise and then 180° clockwise is the
same as rotating 270° clockwise. Forvor, wefindvor(l) =1,v0r(3) =3,vor(2) =4,
and v o r(4) = 2, s0 v o r = n. For inverses, we have already discussed that ry L= 4.

Also, v = v, and more generally, the inverse of any flip is that same flip.

15.2.1 Representing permutations

The way a permutation rearranges the elements of X is central to Pélya’s enumeration
theorem. A proper choice of representation for a permutation is very important here,
so let’s discuss how permutations can be represented. One way to represent a permu-
tation 7 of [#] is as a 2 X n matrix in which the first row represents the domain and the
second row represents 7 by putting 7(7) in position i. For example,

o (1 2 3 4 5)
2 43 51
is the permutation of [5] with 71(1) = 2, 7(2) = 4, n(3) = 3, 7(4) = 5, and 7(5) = 1. This
notation is rather awkward and provides only the most basic information about the
permutation. A more compact (and more useful for our purposes) notation is known
as cycle notation. One way to visualize how the cycle notation is constructed is by
constructing a digraph from a permutation 7 of [1]. The digraph has [n] as its vertex
set and a directed edge from i to j if and only if 7(i) = j. (Here we allow a directed

edge from a vertex to itself if 7(i) = i.) The digraph corresponding to the permutation
7t from above is shown in Figure 15.3.

1Some authors and computer algebra systems use D, as the notation for the dihedral group of the n-gon.

295

Chapter 15 Pélya’s Enumeration Theorem

2 4 3

F1GURE 15.3: THE DIGRAPH CORRESPONDING TO PERMUTATION 7T = (1245)(3)

Since 7 is a permutation, every component of such a digraph is a directed cycle.
We can then use these cycles to write down the permutation in a compact manner.
For each cycle, we start at the vertex with smallest label and go around the cycle in
the direction of the edges, writing down the vertices’ labels in order. We place this
sequence of integers in parentheses. For the 4-cycle in Figure 15.3, we thus obtain
(1245). (If n > 10, we place spaces or commas between the integers.) The component
with a single vertex is denoted simply as (3), and thus we may write = = (1245)(3). By
convention, the disjoint cycles of a permutation are listed so that their first entries are
in increasing order.

Example 15.4. The permutation © = (1483)(27)(56) has n(1) = 4, n(8) = 3, n(3) = 1,
and n(5) = 6. The permutation ' = (13)(2)(478)(56) has 7’(1) = 3, n’(2) = 2, and
1'(8) = 4. We say that 7 consists of two cycles of length 2 and one cycle of length 4.
For 7/, we have one cycle of length 1, two cycles of length 2, and one cycle of length 3.
A cycle of length k will also called a k-cycle in this chapter.

15.2.2 Multiplying permutations

Because the operation in an arbitrary group is frequently called multiplication, it is
common to refer to the composition of permutations as multiplication and write 7y
instead of pomy. The important thing to remember here, however, is that the operation
is simply function composition. Let’s see a couple of examples.

Example 15.5. Let 11 = (1234) and mp = (12)(34). (Notice that these are the permu-
tations r1 and v, respectively, from Dg.) Let m3 = mpm;. To determine 73, we start by
finding 73(1) = mpmi(1) = m2(2) = 1. We next find that 73(2) = mam1(2) = m2(3) = 4.
Similarly, 13(3) = 3 and 73(4) = 2. Thus, 73 = (1)(24)(3), which we called # earlier.
Now let 14 = mt17,. Then 714(1) = 3, 714(2) = 2, 714(3) = 1, and 714(4) = 4. Therefore,
my = (13)(2)(4), which we called p earlier. It's important to note that mimy # mamy,
which hopefully does not surprise you, since function composition is not in general
commutative. To further illustrate the lack of commutativity in permutation groups,

296

15.3 Burnside’s Lemma

pick up a book (Not this one! You need to keep reading directions here.) so that cover
is up and the spine is to the left. First, flip the book over from left to right. Then rotate
it 90° clockwise. Where is the spine? Now return the book to the cover-up, spine-left
position. Rotate the book 90° clockwise and then flip it over from left to right. Where
is the spine this time?

It quickly gets tedious to write down where the product of two (or more) permu-
tations sends each element. A more efficient approach would be to draw the digraph
and then write down the cycle structure. With some practice, however, you can build
the cycle notation as you go along, as we demonstrate in the following example.

Example 15.6. Let 711 = (123)(487)(5)(6) and 7 = (18765)(234). Let i3 = mp 7. To start
constructing the cycle notation for 73, we must determine where 713 sends 1. We find
that it sends it to 3, since 711 sends 1 to 2 and 2 sends 2 to 3. Thus, the first cycle begins
13. Now where is 3 sent? It’s sent to 8, which goes to 6, which goes to 5, which goes to
1, completing our first cycle as (13865). The first integer not in this cycle is 2, which we
use to start our next cycle. We find that 2 is sent to 4, which is set to 7, which is set to 2.
Thus, the second cycle is (247). Now all elements of 8 are represented in these cycles,
so we know that 73 = (13865)(247).

We conclude this section with one more example.

Example 15.7. Let’s find [(123456)][(165432)], where we’ve written the two permuta-
tions being multiplied inside brackets. Since we work from right to left, we find that
the first permutation applied sends 1 to 6, and the second sends 6 to 1, so our first cycle
is (1). Next, we find that the product sends 2 to 2. It also sends i to i for every other
i < 6. Thus, the product is (1)(2)(3)(4)(5)(6), which is better known as the identity
permutation. Thus, (123456) and (165432) are inverses.

In the next section, we will use standard counting techniques we’ve seen before in
this book to prove results about groups acting ons ets. We will state the results for
arbitrary groups, but you may safely replace “group” by “permutation group” without
losing any understanding required for the remainder of the chapter.

15.3 Burnside’s Lemma

Burnside’s lemma’ relates the number of equivalence classes of the action of a group
on a finite set to the number of elements of the set fixed by the elements of the group.
Before stating and proving it, we need some notation and a proposition. If a group

TAgain, not originally proved by Burnside. It was known to Frobenius and for the most part by Cauchy.
However, it was most easily found in Burnside’s book, and thus his name came to be attached.

297

Chapter 15 Pélya’s Enumeration Theorem

G acts on a finite set C, let ~ be the equivalence relation induced by this action. (As
before, the action of © € G on C will be denoted n*.) Denote the equivalence class
containing C € C by (C) . For = € G, let fixg(n) = {C € C: n*(C) = C}, the set of
colorings fixed by 7. For C € C, let stabg(C) = {m € G: ©(C) = C} be the stabilizer of
C in G, the permutations in G that fix C.

To illustrate these concepts before applying them, refer back to Table 15.2. Using
that information, we can determine that fixg(r2) = {C1, C19, C11, C16}. Determining
the stabilizer of a coloring requires finding the rows of the table in which it appears.
Thus, stabp,(C7) = {t, h} and stabp,(C11) = {1, 12, p, n}.

Proposition 15.8. Let a group G act on a finite set C. Then for all C € C,

> Istab(C)| = IGI.
C’e(C)
Proof. Let stabg(C) = {n1,...,nx} and T(C,C’) = {m € G: n*(C) = C’}. (Note that
T(C,C) = stabg(C).) Take 7t € T(C,C’). Then m o 1r; € T(C,C’) for 1 < i < k. Further-
more, if o m; = norc]-,thenn_1ononi = n‘lononj. Thus 7i; = jand i = j.
If i € T(C,C’), then ! o ' € T(C,C). Thus, 7! o ' = m; for some i, and hence

n’ = 7 o m;. Therefore T(C,C’) = {m o wty,..., 7 o mx}. Additionally, we observe that
T(C’,C)={rn"': m € T(C,C")}. Now for all C’ € {C),

| stabg(C')| = [T(C", C)| = |T(C", O)| = |T(C, C)| = |IT(C, C)| = | stabg(C)I.

Therefore,

D Istabg(C) =) IT(C,C).

C’e(C) C’e(C)

Now notice that each element of G appears in T(C, C’) for precisely one C’ € (C), and
the proposition follows. m|

With Proposition 15.8 established, we are now prepared for Burnside’s lemma.

Lemma 15.9 (Burnside’s Lemma). Let a group G act on a finite set C. If N is the number
of equivalence classes of C induced by this action, then

1 .
N=1 Z | fixe (17)].
neG

Before we proceed to the proof, note that the calculation in Burnside’s lemma for the
example of 2-coloring the vertices of a square is exactly the calculation we performed
at the end of Section 15.1.

298

15.4 Pélya’s Theorem

Proof. Let X = {(n,C) € G x C: n(C) = C}. Notice that > ¢ | fixc(n)| = |X|, since
each term in the sum counts how many ordered pairs of X have 7 in their first coor-
dinate. Similarly, }.ccc | stabg(C)| = |X|, with each term of this sum counting how
many ordered pairs of X have C as their second coordinate. Thus,) c¢ | fixc(7)| =
Y.cec | stabg(C)|. Now note that the latter sum may be rewritten as

Z Z | stabs(C)| |.

equivalence \ C’e(C)
classes (C)

By Proposition 15.8, the inner sum is |G|. Therefore, the total sum is N - |G|, so solving
for N gives the desired equation. |

Burnside’s lemma helpfully validates the computations we did in the previous sec-
tion. However, what if instead of a square we were working with a hexagon and in-
stead of two colors we allowed four? Then there would be 4° = 4096 different colorings
and the dihedral group of the hexagon has 12 elements. Assembling the analogue of
Table 15.2 in this situation would be a nightmare! This is where the genius of Pélya’s
approach comes into play, as we see in the next section.

15.4 Polya’s Theorem

Before getting to the full version of Pélya’s formula, we must develop a generating
function as promised at the beginning of the chapter. To do this, we will return to our
example of Section 15.1.

15.4.1 The cycle index

Unlike the generating functions we encountered in Chapter 8, the generating functions
we will develop in this chapter will have more than one variable. We begin by associ-
ating a monomial with each element of the permutation group involved. In this case,
it is Dg, the dihedral group of the square. To determine the monomial associated to a
permutation, we need to write the permutation in cycle notation and then determine
the monomial based on the number of cycles of each length. Specifically, if 7 is a per-
mutation of [n] with ji cycles of length k for 1 < k < 1, then the monomial associated
éz ---xl'. Note that j; +2j, + 3j3 + --- + nj, = n. For example, the per-
mutation r1 = (1234) is associated with the monomial xi since it consists of a single
cycle of length 4. The permutation r, = (13)(24) has two cycles of length 2, and thus its
monomial is x%. For p = (14)(2)(3), we have two 1-cycles and one 2-cycle, yielding the

to 7 is x{lx

299

Chapter 15 Pélya’s Enumeration Theorem

monomial x%x;. In Table 15.10, we show all eight permutations in Dg along with their
associated monomials.

Transformation Monomial Fixed colorings

1= (1)(2)(3)(4) xi 16
r1 = (1234) X, 2
o = (13)(24) x3 4
r3 = (1432) X3 2
v = (12)(34) X3 4
h = (14)(23) x3 4
p = (14)(2)(3) x2x] 8
n = (1)(24)(3) x2x) 8

TaBLE 15.10: MONOMIALS ARISING FROM THE DIHEDRAL GROUP OF THE SQUARE

Now let’s see how the number of 2-colorings of the square fixed by a permutation
can be determined from its cycle structure and associated monomial. If (i) = j, then
we know that for 7 to fix a coloring C, vertices i and j must be colored the same in C.
Thus, the second vertex in a cycle must have the same color as the first. But then the
third vertex must have the same color as the second, which is the same color as the first.
In fact, all vertices appearing in a cycle of m must have the same color in C if 7 fixes
C! Since we are coloring with the two colors white and gold, we can choose to color
the points of each cycle uniformly white or gold. For example, for the permutation
v = (12)(34) to fix a coloring of the square, vertices 1 and 2 must be colored the same
color (2 choices) and vertices 3 and 4 must be colored the same color (2 choices). Thus,
there are 2-2 = 4 colorings fixed by v. Since there are two choices for how to uniformly
color the elements of a cycle, letting x; = 2 for all i in the monomial associated with
gives the number of colorings fixed by . In Table 15.10, the “Fixed colorings” column
gives the number of 2-colorings of the square fixed by each permutation. Before, we
obtained this manually by considering the action of Dg on the set of all 16 colorings.
Now we only need the cycle notation and the monomials that result from it to derive
this!

Recall that Burnside’s Lemma states that the number of colorings fixed by the action
of a group can be obtained by adding up the number fixed by each permutation and
dividing by the number of permutations in the group. If we do that instead for the
monomials arising from the permutations in a permutation group G in which every
cycle of every permutation has at most # entries, we obtain a polynomial known as the

300

15.4 Pélya’s Theorem
cycle index Pg(x1, X2, . .., x,). For our running example, we find

Ppg(x1, X2, X3, X4) = % (x] +2x3x) +3x3 + 2x5) .
To find the number of distinct 2-colorings of the square, we thus let x; = 2 for all
i and obtain Pp,(2,2,2,2) = 6 as before. Notice, however, that we have something
more powerful than Burnside’s lemma here. We may substitute any positive integer m
for each x; to find out how many nonequivalent n-colorings of the square exist. We
no longer have to analyze how many colorings each permutation fixes. For instance,
Pp,(3,3,3,3) = 21, meaning that 21 of the 81 colorings of the vertices of the square
using three colors are distinct.

15.4.2 The full enumeration formula

Hopefully the power of the cycle index to count colorings that are distinct when sym-
metries are considered is becoming apparent. In the next section, we will provide ad-
ditional examples of how it can be used. However, we still haven't seen the full power
of Pélya’s technique. From the cycle index alone, we can determine how many color-
ings of the vertices of the square are distinct. However, what if we want to know how
many of them have two white vertices and two gold vertices? This is where Pdlya’s
enumeration formula truly plays the role of a generating function.
Let’s again consider the cycle index for the dihedral group Ds:

Ppy(x1, X2, X3, Xa) = é (x] +2x7x) +3x5 +2x}) .
Instead of substituting integers for the x;, let’s consider what happens if we substitute
something that allows us to track the colors used. Since x; represents a cycle of length
1 in a permutation, the choice of white or gold for the vertex in such a cycle amounts
to a single vertex receiving that color. What happens if we substitute w + g for x1? The
first term in Pp, corresponds to the identity permutation ¢, which fixes all colorings of
the square. Letting x1 = w + g in this term gives

(w + g)* = g* +4g°w + 6g%w? + 4w’ + w?,

which tells us that « fixes one coloring with four gold vertices, four colorings with three
gold vertices and one white vertex, six colorings with two gold vertices and two white
vertices, four colorings with one gold vertex and three white vertices, and one coloring
with four white vertices.

Let’s continue establishing a pattern here by considering the variable x,. It repre-
sents the cycles of length 2 in a permutation. Such a cycle must be colored uniformly

301

Chapter 15 Pélya’s Enumeration Theorem

white or gold to be fixed by the permutation. Thus, choosing white or gold for the
vertices in that cycle results in two white vertices or two gold vertices in the coloring.
Since this happens for every cycle of length 2, we want to substitute w? + g2 for x, in
the cycle index. The x%x% terms in Pp, are associated with the flips p and n. Letting
x1 = w + g and xp = w? + g2, we find

x%x% = g* + 25w + 29%w? + 29w + w?,

from which we are able to deduce that p and n each fix one coloring with four gold
vertices, two colorings with three gold vertices and one white vertex, and so on. Com-
paring this with Table 15.2 shows that the generating function is right on.

By now the pattern is becoming apparent. If we substitute w + g' for x; in the cycle
index for each i, we then keep track of how many vertices are colored white and how
many are colored gold. The simplification of the cycle index in this case is then a gen-
erating function in which the coefficient on g*w' is the number of distinct colorings
of the vertices of the square with s vertices colored gold and ¢ vertices colored white.
Doing this and simplifying gives

Ppg(w + g, w?* + g%, w® + ¢°, w* + g*) = ¢* + gPw + 29°w? + gw? + w'.

From this we find one coloring with all vertices gold, one coloring with all vertices
white, one coloring with three gold vertices and one white vertex, one coloring with
one gold vertex and three white vertices, and two colorings with two vertices of each
color.

As with the other results we’ve discovered in this chapter, this property of the cycle
index holds up beyond the case of coloring the vertices of the square with two colors.
The full version is Pélya’s enumeration theorem:

Theorem 15.11 (Pélya’s Enumeration Theorem). Let S be a set with |S| = r and C the set
of colorings of S using the colors c1, . .., cy. If a permutation group G acts on S to induce an
equivalence relation on C, then

is the generating function for the number of nonequivalent colorings of S in C.

If we return to coloring the vertices of the square but now allow the color blue as
well, we find

Ppg(w + g + b, w? + g° + b%, w® + g% + b3, w* + g* + b*) = b* + b3g + 2b%4?

302

15.5 Applications of Polya’s Enumeration Formula

+bg® + g* + bPw + 2b%gw + 2bg*w + gPw + 2b*w? + 2bgw? + 2% w?

+bw® + gw? + wh.

From this generating function, we can readily determine the number of nonequivalent
colorings with two blue vertices, one gold vertex, and one white vertex to be 2. Be-
cause the generating function of Pélya’s Enumeration Theorem records the number of
nonequivalent patterns, it is sometimes called the pattern inventory.

What if we were interested in making necklaces with 500 (very small) beads colored
white, gold, and blue? This would be equivalent to coloring the vertices of a regular
500-gon, and the dihedral group Digoo would give the appropriate transformations.
With a computer algebra system! such as Mathematica®, it is possible to quickly pro-
duce the pattern inventory for such a problem. In doing so, we find that there are

3636029179586993684238526707954331911802338502600162304034603583
2580600191583895484198508262979388783308179702534404046627287796
4304252714992703135653472347417085467453334179308247819807028526

92187253642441292279756575936040804567103229 ~ 3.6 x 10>
possible necklaces. Of them,

2529491842340460773490413186201010487791417294078808662803638965
6782447138833704326875393229442323085905838200071479575905731776
6605088026968640797415175535033372572682057214340157297357996
345021733060 ~ 2.5 x 102

have 225 white beads, 225 gold beads, and 50 blue beads.
The remainder of this chapter will focus on applications of P6lya’s Enumeration The-
orem and the pattern inventory in a variety of settings.

15.5 Applications of Pélya’s Enumeration Formula

This section explores a number of situations in which Pélya’s enumeration formula can
be used. The applications are from a variety of domains and are arranged in increasing
order of complexity, beginning with an example from music theory and concluding
with counting nonisomorphic graphs.

"With some more experience in group theory, it is possible to give a general formula for the cycle index of
the dihedral group D, so the computer algebra system is a nice tool, but not required.

303

Chapter 15 Pélya’s Enumeration Theorem

15.5.1 Counting musical scales

Western music is generally based on a system of 12 equally-spaced notes. Although
these notes are usually named by letters of the alphabet (with modifiers), for our pur-
poses it will suffice to number them as 0,1, ...,11. These notes are arranged into oc-
taves so that the next pitch after 11 is again named 0 and the pitch before 0 is named
11. For this reason, we may consider the system of notes to correspond to the integers
modulo 12. With these definitions, a scale is a subset of {0,1, ..., 11} arranged in in-
creasing order. A transposition of a scale is a uniform transformation that replaces
each note x of the scale by x +a (mod 12) for some constant 2. Musicians consider two
scales to be equivalent if one is a transposition of the other. Since a scale is a subset, no
regard is paid to which note starts the scale, either. The question we investigate in this
section is “How many nonequivalent scales are there consisting of precisely k notes?”

Because of the cyclic nature of the note names, we may consider arranging them in
order clockwise around a circle. Selecting the notes for a scale then becomes a coloring
problem if we say that selected notes are colored black and unselected notes are colored
white. In Figure 15.12, we show three 5-note scales using this convention. Notice that
since Sy can be obtained from S by rotating it forward seven positions, S; and S, are
equivalent by the transposition of adding 7. However, S3 is not equivalent to Sy or Sy,
as it cannot be obtained from them by rotation. (Note that Sz could be obtained from
S if we allowed flips in addition to rotations. Since the only operation allowed is the
transposition, which corresponds to rotation, they are inequivalent.)

FiGURE 15.12: THREE SCALES DEPICTED BY COLORING

We have now mathematically modeled musical scales as discrete structures in a way
that we can use Pélya’s Enumeration Theorem. What is the group acting on our black-
/white colorings of the vertices of a regular 12-gon? One permutation in the group is
T=(01234567891011), which corresponds to the transposition by one note. In
fact, every element of the group can be realized as some power of 7 since only rotations

304

15.5 Applications of Polya’s Enumeration Formula

are allowed and 7 is the smallest possible rotation. Thus, the group acting on the col-
orings is the cyclic group of order 12, denoted C1» = {1, 7, 72, ..., t!'}. Exercise 15.6.5
asks you to write all the elements of this group in cycle notation. The best way to do
this is by multiplying 7/~! by 7 (i.e., compute 77'~!) to find 7. Once you’ve done this,
you will be able to easily verify that the cycle index is

X126 w3 a2
Pclz(xl,...,Xu):ﬁ-i-é-i-zs-i-é f %

Since we’ve chosen colorings using black and white, it would make sense to substitute
xi = bl +w! foralliin Pc,, now to find the number of k-note scales. However, there is a
convenient shortcut we may take to make the resulting generating function look more
like those to which we grew accustomed in Chapter 8. The information about how
many notes are not included in our scale (the number colored white) can be deduced
from the number that are included. Thus, we may eliminate the use of the variable w,

replacing it by 1. We now find

Pc,(1+b,1+b%,...,1+b2) =02+ b +6b'° +190° + 43p%
+66b7 + 80b° + 66b° + 43b* + 19b° + 66> + b + 1.

From this, we are able to deduce that the number of scales with k notes is the coefficient
on bk, Therefore, the answer to our question at the beginning of the chapter about the
number of 6-note scales is 80.

15.5.2 Enumerating isomers

Benzene is a chemical compound with formula C¢Hg, meaning it consists of six carbon
atoms and six hydrogen atoms. These atoms are bonded in such a way that the six
carbon atoms form a hexagonal ring with alternating single and double bonds. A hy-
drogen atom is bonded to each carbon atom (on the outside of the ring). From benzene
it is possible to form other chemical compounds that are part of a family known as aro-
matic hydrocarbons. These compounds are formed by replacing one or more of the
hydrogen atoms by atoms of other elements or functional groups such as CHz (methyl
group) or OH (hydroxyl group). Because there are six choices for which hydrogen
atoms to replace, molecules with the same chemical formula but different structures
can be formed in this manner. Such molecules are called isomers. In this subsection,
we will see how Pélya’s Enumeration Theorem can be used to determine the number
of isomers of the aromatic hydrocarbon xylenol (also known as dimethylphenol).
Before we get into the molecular structure of xylenol, we need to discuss the permu-
tation group that will act on a benzene ring. Much like with our example of coloring
the vertices of the square, we find that there are rotations and flips at play here. In

305

Chapter 15 Pélya’s Enumeration Theorem

fact, the group we require is the dihedral group of the hexagon, D1,. If we number
the six carbon atoms in clockwise order as 1,2, ..., 6, then we find that the clockwise
rotation by 60° corresponds to the permutation r = (123456). The other rotations are
the higher powers of r, as shown in Table 15.13. The flip across the vertical axis is the
permutation f = (16)(25)(34). The remaining elements of Dj, (other than the identity
1) can all be realized as some rotation followed by this flip. The full list of permutations
is shown in Table 15.13, where each permutation is accompanied by the monomial it
contributes to the cycle index.

Permutation Monomial Permutation Monomial
t=(1)(2)(3)(4)(5)(6) X3 f =1(16)(25)(34) X

r = (123456) X fr = (15)(24)(3)(6) x2x3

r?2 = (135)(246) x3 fr? = (14)(23)(56) x

r3 = (14)(25)(36) x fr3 = (13)(2)(46)(5) x2x3

r* = (153)(264) x3 frt = (12)(36)(45) X

> = (165432) X fr® =(1)(26)(35)(4) x2x3

TABLE 15.13: CYCLE REPRESENTATION OF PERMUTATIONS IN D17

With the monomials associated to the permutations in D, identified, we are able to
write down the cycle index

1
Pp,(x1,...,%6) = ﬁ(x? + Zxé + 2x§ + 4x§ + 3x%x§).

With the cycle index determined, we now turn our attention to using it to find the num-
ber of isomers of xylenol. This aromatic hydrocarbon has three hydrogen molecules,
two methyl groups, and a hydroxyl group attached to the carbon atoms. Recalling that
hydrogen atoms are the default from benzene, we can more or less ignore them when
choosing the appropriate substitution for the x; in the cycle index. If we let m denote
methyl groups and & hydroxyl groups, we can then substitute x; = 1+ m' + i’ in Pp,,.
This substitution gives the generating function

1+ h+30% + 30 + 3h* + 1° + h® + m + 3hm + 6h*m + 6h°m
+3htm + BPm + 3m? + 6hm? + 11h°m? + 6h°m? + 3h*m? + 3m> + 6hm?>
+6h%m® + 313m> + 3m* + 3hm* + 3h%m* + m® + hm® + m®.
Since xylenol has one hydroxyl group and two methyl groups, we are looking for the

coefficient on hm? in this generating function. The coefficient is 6, so there are six
isomers of xylenol.

306

15.5 Applications of Polya’s Enumeration Formula

In his original paper, Pélya used his techniques to enumerate the number of isomers
of the alkanes C,Hy,4+2. When modeled as graphs, these chemical compounds are
special types of trees. Since that time, P6lya’s Enumeration Theorem has been used to
enumerate isomers for many different chemical compounds.

15.5.3 Counting nonisomorphic graphs

Counting the graphs with vertex set [n] is not difficult. There are C(n,2) possible
edges, each of which can be included or excluded. Thus, there are 2C€(.2) 1apeled
graphs on n vertices. It’s only a bit of extra thought to determine that if you only
want to count the labeled graphs on 1 vertices with k edges, you simply must choose
a k-element subset of the set of all C(n1, 2) possible edges. Thus, there are

)

graphs with vertex set [1] and exactly k edges.

A more difficult problem arises when we want to start counting nonisomorphic graphs
on n vertices. (One can think of these as unlabeled graphs as well.) For example, in
Figure 15.14, we show four different labeled graphs on four vertices. The first three
graphs shown there, however, are isomorphic to each other. Thus, only two noniso-
morphic graphs on four vertices are illustrated in the figure. To account for isomor-
phisms, we need to bring Pélya’s Enumeration Theorem into play.

FiGuRre 15.14: FOUR LABELED GRAPHS ON FOUR VERTICES

We begin by considering all 2€("?) graphs with vertex set [11] and choosing an ap-
propriate permutation group to act in the situation. Since any vertex can be mapped
to any other vertex, the symmetric group S4 acts on the vertices. However, we have
to be careful about how we find the cycle index here. When we were working with
colorings of the vertices of the square, we realized that all the vertices appearing in the
same cycle of a permutation 7 had to be colored the same color. Since we're concerned
with edges here and not vertex colorings, what we really need for a permutation to fix
a graph is that every edge be sent to an edge and every non-edge be sent to a non-edge.

307

Chapter 15 Pélya’s Enumeration Theorem

To be specific, if {1, 2} is an edge of some G and 7 € Sy fixes G, then {7(1), 7(2)} must
also be an edge of G. Similarly, if vertices 3 and 4 are not adjacent in G, then 71(3) and
71(4) must also be nonadjacent in G.

To account for edges, we move from the symmetric group Sy to its pair group Sf).

The objects that Sf) permutes are the 2-element subsets of {1, 2, 3,4}. For ease of no-
tation, we will denote the 2-element subset {i, j} by ¢;;. To find the permutations in

Sf), we consider the vertex permutations in S; and see how they permute the ¢;;. The
identity permutation : = (1)(2)(3)(4) of S4 corresponds to the identity permutation

t = (e12)(e13)(e14)(e23)(e24)(e34) Of Sf). Now let’s consider the permutation (12)(3)(4).
It fixes eqp since it sends 1 to 2 and 2 to 1. It also fixeds e34 by fixing 3 and 4. How-
ever, it interchanges e13 with ex3 (3 is fixed and 1 is swapped with 2) and eq4 with
e4 (1 is sent to 2 and 4 is fixed). Thus, the corresponding permutation of pairs is
(e12)(e13e23)(e14€24)(e34). For another example, consider the permutation (123)(4). It

corresponds to the permutation (e12e23€13)(e14€24€34) in Sf).

Since we're only after the cycle index of Sf), we don’t need to find all 24 permuta-
tions in the pair group. However, we do need to know the types of those permutations
in terms of cycle lengths so we can associate the appropriate monomials. For the three
examples we’ve considered, the cycle structure of the permutation in the pair group
doesn’t depend on the original permutation in S4 other than for its cycle structure. Any
permutation in S4 consisting of a 2-cycle and two 1-cycles will correspond to a permu-

tation with two 2-cycles and two 1-cycles in Sf). A permutation in 54 with one 3-cycle
and one 1-cycle will correspond to a permutation with two 3-cycles in the pair group.
By considering an example of a permutation in 54 consisting of a single 4-cycle, we
find that the corresponding permutation in the pair group has a 4-cycle and a 2-cycle.
Finally, a permutation of S4 consisting of two 2-cycles corresponds to a permutation

in Sf) having two 2-cycles and two 1-cycles. (Exercise 15.6.8 asks you to verify these
claims using specific permutations.)

Now that we know the cycle structure of the permutations in Siz), the only task re-
maining before we can find its cycle index of is to determine how many permutations
have each of the possible cycle structures. For this, we again refer back to permuta-
tions of the symmetric group S4. A permutation consisting of a single 4-cycle begins
with 1 and then has 2, 3, and 4 in any of the 3! = 6 possible orders, so there are 6 such
permutations. For permutations consisting of a 1-cycle and a 3-cycle, there are 4 ways
to choose the element for the 1-cycle and then 2 ways to arrange the other three as a
3-cycle. (Remember the smallest of them must be placed first, so there are then 2 ways
to arrange the remaining two.) Thus, there are 8 such permutations. For a permutation
consisting of two 1-cycles and a 2-cycle, there are C(4,2) = 6 ways to choose the two
elements for the 2-cycle. Thus, there are 6 such permutations. For a permutation to

308

15.5 Applications of Polya’s Enumeration Formula

consist of two 2-cycles, there are C(4,2) = 6 ways to choose two elements for the first
2-cycle. The other two are then put in the second 2-cycle. However, this counts each
permutation twice, once for when the first 2-cycle is the chosen pair and once for when
it is the “other two.” Thus, there are 3 permutations consisting of two 2-cycles. Finally,
only ¢ consists of four 1-cycles.

Now we're prepared to write down the cycle index of the pair group

1
Poo(x1,..., %) = Y (xé + 9x%x§ + 8x§ +6x2x4) .
4

To use this to enumerate graphs, we can now make the substitution x; = 1 + x' for
1 < i < 6. This allows us to account for the two options of an edge not being present
or being present. In doing so, we find

5 6

Pio(1+x,...,1+x%) =1+x+2x*+3x° +2x* +x° + x
4

is the generating function for the number of 4-vertex graphs with m edges, 0 < m < 6.
To find the total number of nonisomorphic graphs on four vertices, we substitute x = 1
into this polynomial. This allows us to conclude there are 11 nonisomorphic graphs
on four vertices, a marked reduction from the 64 labeled graphs.

The techniques of this subsection can be used, given enough computing power, to
find the number of nonisomorphic graphs on any number of vertices. For 30 vertices,
there are

334494316309257669249439569928080028956631479935393064329967834
887217734534880582749030521599504384 ~ 3.3 x 10%

nonisomorphic graphs, as compared to 24* ~ 8.9 x 10!* labeled graphs on 30 vertices.
The number of nonisomorphic graphs with precisely 200 edges is

313382480997072627625877247573364018544676703365501785583608267
7050799699893512219821910360979601 ~ 3.1 x 10%.

The last part of the question about graph enumeration at the beginning of the chapter
was about enumerating the graphs on some number of vertices in which every vertex
has degree r. While this might seem like it could be approached using the techniques
of this chapter, it turns out that it cannot because of the increased dependency between
where vertices are mapped.

309

Chapter 15 Pélya’s Enumeration Theorem

15.6 Exercises

1. Write the permutations shown below in cycle notation.

(123456 (123456
1"l 2 5 6 31 27561 3 4 2
123 456 7 8 123 456 7 8
7'(3: Ty =
(31582647) (37168425)

2. Compute 17y, T2, 1374, and 1y for the permutations 7; in Exercise 15.6.1.

3. Find stabp,(Cs) and stabp,(Cjs) for the colorings of the vertices of the square shown
in Figure 15.1 by referring to Table 15.2.

4. In Figure 15.15, we show a regular pentagon with its vertices labeled. Use this la-
beling to complete this exercise.
1

4 3

F1GURE 15.15: A PENTAGON WITH LABELED VERTICES

(a) The dihedral group of the pentagon, Dip, contains 10 permutations. Let r; =
(12345) be the clockwise rotation by 72° and fi1 = (1)(25)(34) be the flip about the
line passing through 1 and perpendicular to the opposite side. Let o, r3, and r4 be
the other rotations in D1g. Denote the flip about the line passing through vertex i
and perpendicular to the other side by f;, 1 < i < 5. Write all 10 elements of D1g
in cycle notation.

(b) Suppose we are coloring the vertices of the pentagon using black and white. Draw
the colorings fixed by 1. Draw the colorings fixed by fi.

(c) Find stabp,,(C) where C is the coloring of the vertices of the pentagon in which
vertices 1, 2, and 5 are colored black and vertices 3 and 4 are colored white.

(d) Find the cycle index of Djp.

(e) Use the cycle index to determine the number of nonequivalent colorings of ver-
tices of the pentagon using black and white.

310

15.6 Exercises

(f) Making an appropriate substitution for the x; in the cycle index, find the number
of nonequivalent colorings of the vertices of the pentagon in which two vertices
are colored black and three vertices are colored white. Draw these colorings.

5. Write all permutations in C1y, the cyclic group of order 12, in cycle notation.

6. The 12-note western scale is not the only system on which music is based. In clas-
sical Thai music, a scale with seven equally-spaced notes per octave is used. As in
western music, a scale is a subset of these seven notes, and two scales are equivalent
if they are transpositions of each other. Find the number of k-note scales in classical
Thai musicfor1 <k <7.

7. Xylene is an aromatic hydrocarbon having two methyl groups (and four hydrogen
atoms) attached to the hexagonal carbon ring. How many isomers are there of xylene?

8. Find the permutations in Sf) corresponding to the permutations (1234) and (12)(34)
in S4. Confirm that the first consists of a 4-cycle and a 2-cycle and the second consists
of two 2-cycles and two 1-cycles.

9. Draw the three nonisomorphic graphs on four vertices with 3 edges and the two
nonisomorphic graphs on four vertices with 4 edges.

10.

(a) Use the method of Subsection 15.5.3 to find the cycle index of the pair group Séz)
of the symmetric group on five elements.

(b) Use the cycle index from Item 15.6.10.a to determine the number of nonisomor-
phic graphs on five vertices. How many of them have 6 edges?

11. Tic-tac-toe is a two-player game played on a 9 X 9 grid. The players mark the
squares of the grid with the symbols X and O. This exercise uses Pélya’s enumeration
theorem to investigate the number of different tic-tac-toe boards. (The analysis of games
is more complex, since it requires attention to the order the squares are marked and
stopping when one player has won the game.)

311

Chapter 15 Pélya’s Enumeration Theorem

1 2 3
4 5 6
7 8 9

F1GURE 15.16: NUMBERED SQUARES OF A TIC-TAC-TOE BOARD

(a) Two tic-tac-toe boards are equivalent if one may be obtained from the other by

rotating the board or flipping it over. (Imagine that it is drawn on a clear piece of
plastic.) Since the 9 x 9 grid is a square, the group that acts on it in this manner
is the dihedral group Dg that we have studied in this chapter. However, as with
counting nonisomorphic graphs, we have to be careful to choose the way this
group is represented in terms of cycles. Here we are interested in how permu-
tations rearrange the nine squares of the tic-tac-toe board as numbered in Fig-
ure 15.16. For example, the effect of the transformation 71, which rotates the
board 90° clockwise, can be represented as a permutation of the nine squares as
(13971)(2684)(5).

Write each of the eight elements of Dg as permutations of the nine squares of a
tic-tac-toe board.

(b) Find the cycle index of Dg in terms of these permutations.

(c) Make an appropriate substitution for x; in the cycle index to find a generating

function t(X, O) in which the coefficient on X'O/ is the number of nonequiva-
lent tic-tac-toe boards having i squares filled by symbol X and j squares filled by
symbol O. (Notice that some squares might be blank!)

(d) How many nonequivalent tic-tac-toe boards are there?

(e) How many nonequivalent tic-tac-toe boards have three X’s and three O’s?

(f) When playing tic-tac-toe, the players alternate turns, each drawing their symbol

312

in a single unoccupied square during a turn. Assuming the first player marks her
squares with X and the second marks his with O, then at each stage of the game
there are either the same number of X’s and O’s or one more X than there are
O’s. Use this fact and #(X, O) to determine the number of nonequivalent tic-tac-
toe boards that can actually be obtained in playing a game, assuming the players
continue until the board is full, regardless of whether one of them has won the
game.

15.6 Exercises

12. Suppose you are painting the faces of a cube and you have white, gold, and blue
paint available. Two painted cubes are equivalent if you can rotate one of them so
that all corresponding faces are painted the same color. Determine the number of
nonequivalent ways you can paint the faces of the cube as well as the number having
two faces of each color.

Hint. It may be helpful to label the faces as U (“up”), D (“down”), F (“front”), B
(“back”), L (“left”), and R (“right”) instead of using integers. Working with a three-
dimensional model of a cube will also aid in identifying the permutations you require.

313

CHAPTER

The Many Faces of Combinatorics

16.1 On-line algorithms

Many applications of combinatorics occur in a dynamic, on-line manner. It is rare that
one has all the information about the challenges a problem presents before circum-
stances compel that decisions be made. As examples, a decision to proceed with a
major construction project must be made several years before ground is broken; in-
vestment decisions are made on the basis of today’s information and may look partic-
ularly unwise when tomorrow’s news is available; and deciding to exit a plane with a
parachute is rarely reversible.

In this section, we present two examples intended to illustrate on-line problems in
a combinatorial setting. Our first example involves graph coloring. As is customary
in discussions of on-line algorithms, we consider a two-person game with the players
called Assigner and Builder. The two players agree in advance on a class C of graphs,
and the game is played in a series of rounds. At round 1 Builder presents a single
vertex, and Assigner assigns it a color. At each subsequent rounds, Builder presents a
new vertex, and provides complete information at to which of the preceding vertices
are adjacent to it. In turn, Assigner must give the new vertex a color distinct from
colors she has assigned previously to its neighbors.

Example 16.1. Even if Builder is constrained to build a path on 4 vertices, then Assigner
can be forced to use three colors. At Round 1, Builder presents a vertex x and Assigner
colors it. At Round 2, Builder presents a vertex y and declares that x and y are not
adjacent.

Now Assigner has a choice. She may either give x and y the same color, or she may
elect to assign a new color to y. If Assigner gives x and y different colors, then in
Round 3, Builder presents a vertex z and declares that z is adjacent to both x and y.
Now Assigner will be forced to use a third color on z. In Round 4, Builder will add a
vertex w adjacent to y but to neither x nor z, but the damage has already been done.

On the other hand, if Assigner x and y the same color, then in Round 3, Builder
presents a vertex z, with z adjacent to x but not to y. Assigner must use a second color

315

Chapter 16 The Many Faces of Combinatorics

on z, distinct from the one she gave to x and y. In Round 4, Builder presents a vertex
w adjacent to z and y but not to x. Assigner must use a third color on w.

Note that a path is a tree and trees are forests. The next result shows that while
forests are trivial to color off-line, there is a genuine challenge ahead when you have to
work on-line. To assist us in keeping track of the colors used by Assigner, we will use
the notation from Chapter 5 and write ¢(x) for the color given by Assigner to vertex x.

Theorem 16.2. Let n be a positive integer. Then there is a strategy for Builder that will enable
Builder to construct a forest having at most 2"~ vertices while forcing Assigner to use n colors.

Proof. When n = 1, all Builder does is present a single vertex. When n = 2, two adjacent
vertices are enough. When n = 3, Builder constructs a path on 4 vertices as detailed in
Example 16.1. Now assume that for some k > 3, Builder has a strategy S; for forcing
Assigner to use i colors on a forest of at most 2i-1 vertices, for each i = 1,2,...,k.
Here’s how Builder proceeds to force k + 1 colors.

First, for each i = 1,2, ..., k, Builder follows strategy S; to build a forest F; having
at most 2/~! vertices on which assigner is forced to use i colors. Furthermore, when
1 <i < j <k, there are no edges between vertices in F; and vertices in F;.

Next, Builder chooses a vertex y; from Fj. Since Assigner uses two colors on F»,
there is a vertex y, from F; so that ¢(y2) # ¢(y1). Since Assigner uses three colors on
F3, there is a vertex y3 in F3 so that {¢(y1), $(y2), ¢(y3)} are all distinct. It follows that
Builder may identify vertices y1, 2, ..., yx with y; € F; so that the colors ¢(y;) satisfy
¢(yi) # ¢(y;) if i # j. Builder now presents a new vertex x and declares x adjacent to
all vertices in {y1, y2, - - ., yx} and to no other vertices. Clearly, the resulting graph is a
forest and Assigner is forced to use a color for x distinct from the k colors she assigned
previously to the vertices in {y1, y2, ..., yx}. Also, the total number of vertices is at
most1+[1+2+4+8+.--+2k1] =2k O

Discussion 16.3. Bob reads the proof and asks whether it was really necessary to treat
the cases k = 2 and k = 3 separately. Wasn't it enough just to note that the case k = 1
holds trivially. Carlos says yes.

16.1.1 Doing Relatively Well in an On-Line Setting

Theorem 16.2 should be viewed as a negative result. It is hard to imagine a family of
graphs easier to color than forests, yet in an on-line setting, graphs in this family are
difficult to color. On the other hand, in certain settings, one can do reasonably well
in an on-line setting, perhaps not as well as the true optimal off-line result but good
enough to be useful. Here we present a particularly elegant example involving partially
ordered sets.

316

16.1 On-line algorithms

Recall that a poset P of height i can be partitioned into h antichains—by recursively
removing the set of minimal elements. But how many antichains are required in an
on-line setting? Now Builder constructs a poset P one point at a time, while Assigner
constructs a partition of P into antichains. At each round, Builder will present a new
point x, and list those points presented earlier that are, respectively, less than x, greater
than x and incomparable with x. Subsequently, Assigner will assign x to an antichain.
This will be done either by adding x to an antichain already containing one or more of
the points presented previously, or by assigning x to a new antichain.

Theorem 16.4. For each h > 1, there is a on-line strategy for Assigner that will enable her to
partition a poset P into at most ("3') antichains, provided the height of P is at most h.

Proof. It is important to note that Assigner does not need to know the value & in ad-
vance. For example, Builder may have in mind that ultimately the value of k will be
300, but this information does not impact Assigner’s strategy.

When the new point x,, enters P, Assigner computes the values r and s, where r is
the largest integer for which there exists a chain C of r points in {x1, x2, . . ., ¥, } having
Xn as its least element. Also, s is the largest integer for which there exists a chain D of
s points in {x1, x2, ..., x,} having x, as its largest element. Assigner then places x in
a set A(r, s), claiming that any two points in this set are incomparable. To see that this
claim is valid, consider the first moment where Builder has presented a new point x,
Assigner places x in A(r, s) and there is already a point y in A(r, s) for which x and y
are comparable.

When y was presented, there was at that moment in time a chain C’ of r points
having y as its least element. Also, there was a chain D of s points having y as its
greatest element.

Now suppose that y > x in P. Then we can add x to C’ to form a chain of r + 1
points having x as its least element. This would imply that x is not assigned in A(r, s).
Similarly, if ¥ < x in P, then we may add x to D’ to form a chain of s + 1 points having
x as its greatest element. Again, this would imply that x is not assigned to A(r, s).

So Assigner has indeed devised a good strategy for partitioning P into antichains,
but how many antichains has she used? This is just asking how many ordered pairs
(i, j) of positive integers are there subject to the restriction thati + j —1 < h. And
we learned how to solve this kind of question in Chapter 2. The answer of course is
("31)- o

The strategy for Assigner is so simple and natural, it might be the case that a more
complex strategy would yield a more efficient partitioning. Not so.

Theorem 16.5 (Szemerédi). Forevery h > 1, there is a strategy Sy, for builder that will enable
him to build a poset P of height h so that assigner is forced to (1) use at least (hzl) antichains

in partitioning P, and (2) use at least h different antichains on the set of maximal elements.

317

Chapter 16 The Many Faces of Combinatorics

Proof. Strategy Sq is just to present a single point. Now suppose that the theorem holds
for some integer 1 > 1. We show how strategy Sj;.1 proceeds.

First Builder follows strategy Sy, to form a poset P1. Then he follows it a second time
for form a poset P», with all points of P; incomparable to all points in P,. Now we
consider two cases. Suppose first that Assigner has used / + 1 or more antichains on
the set of maximal elements of P; U P,. In this case, he follows strategy S, a third time
to build a poset P3 with all points of P3 less than all maximal elements of P; U P, and
incomparable with all other points.

Clearly, the height of the resulting poset is at most & + 1. Also, Assigner must use
h+1+ (") = ("1?) antichains in partitioning the poset and she has used 1 + 1 on the
set of maximal elements.

So it remains only to consider the case where Assigner has used a set W of I an-
tichains on the maximal elements of P;, and she has used exactly the same / antichains
for the maximal elements of P,. Then Builder presents a new point x and declares it to
be greater than all points of P; and incomparable with all points of P,. Assigner must
put x in some antichain which is not in W.

Builder then follows strategy Sj, a third time, but now all points of Pj are less than x

and the maximal elements of P,. Again, Assigner has been forced to use 1 +1 different

antichains on the maximal elements and (h ;’2) antichains altogether. m|

16.2 Extremal Set Theory

Let n be a positive integer and let [n] = 1,2, ..., n. In this section, we consider prob-
lems having the following general form: What is the maximum size of a family of
subsets of [#] when the family is required to satisfy certain properties.

Here is an elementary example.

Example 16.6. The maximum size of a family ¥ of subsets of [n], with AN B # 0 for
allA,B e F,is 2" 1.

For the lower bound, consider the family 7 of all subsets of [1] that contain 1. Clearly
this family has 2"~! elements and any two sets in the family have non-empty intersec-
tion.

For the upper bound, let ¥ be a family of subsets with each pair of sets in ¥ having
non-empty intersection. Then whenever a subset S is a member of ¥, the complement
S’ of S cannot belong to . Since the entire family of all 2" subsets of [#] can be con-
sidered as 2"~! complementary pairs, and at most one set from each pair can belong
to F, we conclude that |F| < 21

As a second example, we can revisit Sperner’s Theorem from Chapter 6 and restate
the result as follows.

318

16.2 Extremal Set Theory

Example 16.7. The maximum size of a family ¥ of subsets of [#] subject to the con-
straint that when A and B are distinct sets in F, then neither is a subset of the other, is
(Ln%])

It is worth noting that in Example 16.7, there is a very small number (one or two)
of extremal families, i.e.,, when ¥ is a family of subsets of [n], |F| = (Ln72 |), and no
set in ¥ is a proper subset of another, then either ¥ = {S C [n] : |S| = [n/2]} or
F ={S € [n]:|S| = [n/2]}. And of course, when 7 is even, these are exactly the same
family.

On the other hand, for Example 16.6, there are many extremal families, since for
every complementary pair of sets, either member can be selected.

We close this brief tasting of extremal set theory with a real classic.

Theorem 16.8 (Erdds, Ko, Rado). Let n and k be positive integers with n > 2k. Then the
maximum size of a family F of subsets of [n] subject to the restrictions that (1) AN B # 0 for
all A,B € F,and (2) |Al =k forall A € F,is (7).

Proof. For the lower bound, consider the family F of all k element subset of [n] that
contain 1.

For the upper bound, let ¥ be a family of subsets of [n] satisfying the two con-
straints. We show that |F| < (Zj) To accomplish this, we consider a circle in the
Euclidean plane with n points p1, p2, . .., pn equally spaced points around its circum-
ference. Then there are n! different ways (one for each permutation ¢ of [n]) to place
the integers in [n] at the points in {p1, p2, ..., p»} in one to one manner.

For each permutation o of 1], let ¥ (o) denote the subfamily of ¥ consisting of all
sets S from ¥ whose elements occur in a consecutive block around the circle. Then let
t =2 (0)l.

Our first claim is that t < kn!. To prove this, let 0 be a permutation and suppose
that |7 (0)| = s > 1. Then the union of the sets from ¥ (o) is a set of points that form
a consecutive block of points on the circle. Note that since n > 2k, this block does not
encompass the entire circle. Accordingly there is a set S whose elements are the first k
in a clockwise sense within this block. Since each other set in ¥ represents a clockwise
shift of one of more positions, it follows immediately that |7 | < k. Since there are n!
permutations, the claim follows.

We now claim that for each set S € F, there are exactly nk!(n — k)! permutations o
for which S € ¥ (o). Note that there are n positions around the circle and each can be
used as the first point in a block of k consecutive positions in which the elements of S
can be placed. Then there are k! ways to order the elements of S and (n — k)! ways to
order the remaining elements. This proves our claim.

To complete the proof of the theorem, we note that we have

|F|nk!(n —k)! <t <kn!,

319

Chapter 16 The Many Faces of Combinatorics

and this implies that | |le (Zj). o

16.3 Markov Chains

We begin this section with a motivational example. Consider the connected graph
on six vertices shown in ((fig-markovchain)). The first move is to choose a vertex at
random and move there. Afterwards, we follow the following recursive procedures. If
after i moves, you are at a vertex x and x has d neighbors, choose one of the neighbors at
random, with each having probability 1/d and move there. We then attempt to answer
questions of the following flavor:

1. For each vertex x, let py,,, denote the probability that you are at vertex x after m
moves. Does lim;,—,c px,m exist and if so, how fast does the sequence converge
to this limit?

2. How many moves must I make in order that the probability that I have walked
on every edge in the graph is at least 0.999?

This example illustrates the characteristics of an important class of computational
and combinatorial problems, which are collectively referred to as Markov Chains:

1. There is a finite set of states 51, So, ..., S,, and at time 7, you are in one of these
states.

2. If you are in state S; at time i, then foreach k = 1,2, ..., n, there is a fixed prob-
ability p(j, k) (which does not depend on i) that you will be in state Sy at time
i+ 1

The n x n matrix P whose j, k entry is the probability p(j, k) of moving from state
S;j to state S is called the transition matrix of the Markov chain. Note that P is a
stochastic matrix, i.e., all entries are non-negative and all row sums are 1. Conversely,
each square stochastic matrix can be considered as the transition matrix of a Markov
chain.

For example, here is the transition matrix for the graph in ((fig-markovchain)).

0 1/4 1/4 1/4 1/4
/2 0 0 1/2 0
1/3 0 0 1/3
1/3 1/3 1/3 0
1 0 0 0
0 0 1 0

0
0

p= 1/3 (16.3.1)
0
0
0

o O O O

320

16.3 Markov Chains

A transition matrix P is regular if there is some integer m for which the matrix P"
has only positive entries. Here is a fundamental result from this subject, one that is
easy to understand but a bit too complex to prove given our space constraints.

Theorem 16.9. Let P be a regular n X n transition matrix. Then there is a row vector W =
(w1, w2, ..., wy) of positive real numbers summing to 1 so that as m tends to infinity, each
row of P™ tends to W. Furthermore, WP = W, and for each i = 1,2, ..., n, the value w; is
the limiting probability of being in state S;.

Given the statement of Theorem 16.9, the computation of the row vector W can be
carried out by eigenvalue techniques that are part of a standard undergraduate lin-
ear algebra course. For example, the transition matrix P displayed in (16.3.1) is reg-
ular since all entries of P3 are positive. Furthermore, for this matrix, the row vector
W =(5/13,3/13,2/13,2/13,1/13,1/13). However, the question involving how fast the
convergence of P is to this limiting vector is more subtle, as is the question as to how
long it takes for us to be relatively certain we have made every possible transition.

16.3.1 Absorbing Markov Chains

A state S; in a Markov chain with transition matrix P is absorbingif p; ; = 1 and p;, i=0
for all j # i, i.e., like the infamous Hotel California, once you are in state S;, “you can
never leave.”

Example 16.10. We modify the transition matrix from (16.3.1) by making states 4 and
5 absorbing. The revised transition matrix is now:

0 1/4 1/4 1/4 1/4
/2 0 0 1/2 0
|13 0 0 13
“11/3 1/3 1/3 0
0 0 0 0
0 0 0 0

(16.3.2)

S = O O
—_

_ O O~ O O
@

Now we might consider the following game. Start at one of the four vertices in
{1,2,3,4} and proceed as before, making moves by choosing a neighbor at random.
Vertex 4 might be considered as an “escape” point, a safe harbor that once reached is
never left. On the other hand, vertex 5 might be somewhere one meets a hungry tiger
and be absorbed in a way not to be detailed here.

We say the Markov chain is absorbing if there is at least one absorbing state and for
each state S; that is not absorbing, it is possible to reach an absorbing state—although
it may take many steps to do so. Now the kinds of questions we would like to answer
are:

321

Chapter 16 The Many Faces of Combinatorics

1. If we start in non-absorbing state S;, what is the probability of reaching absorbing
state S; (and then being absorbed in that state, a question which takes on genuine
unpleasantness relative to tigers)?

2. If we are absorbed in state S;, what is the probability that we started in non-
absorbing state S;?

3. If we start in non-absorbing state S;, what is the expected length of time before
we will be absorbed?

16.4 The Stable Matching Theorem

Now we present a light hearted optimization problem with a quite clever solution,
called the Stable Matching Theorem. There are n eligible males by, by, . .., b, and n eligi-
ble females g1, g2, ..., gn. (The theorem dates back many years, hence the heteronor-
mative statement.) We will arrange n marriages, each involving one male and one
female. In the process, we will try to make everyone happy—or at least we will try to
keep things stable.

Each female linearly orders the males in the order of her preference, i.e., for each
i=1,2,...,n,there is a permutation o; of [1] so that if g; prefers b; to by, then o;(j) >
oi(k). Different females may have quite different preference orders. Also, each male
linearly orders the females in order of his preference, i.e., foreachi = 1,2, ..., n, there
is a permutation 7; of [1] so that if b; prefers g; to gy, then 7;(j) > (k).

A 1-1 matching of the n males to the n females is stable if there do not exist two
males b and b’ and two females g and g’ so that

1. b is matched to g;
2. b prefers g’ to g; and
3. g prefers b’ to b.

The idea is that given these preferences, b and g may be mutually inclined to dissolve
their relationship and initiate dalliances with other partners.

So the question is whether, regardless of their respective preferences, we can always
generate a stable matching. The answer is yes and there is a quite clever argument.
In fact, it is one that yields a quite efficient algorithm. At Stage 1, all males go knock
on the front door of the female which is tops on their list. It may happen that some
females have more than one caller while others have none. However, if a female has
one or more males at her door, she reaches out and grabs the one among the group
which she prefers most by the collar and tells the others, if there are any, to go away.
Any male rejected at this step proceeds to the front door of the female who is second

322

16.5 Zero—One Matrices

on their list. Again, a female with one or more suitors at her door chooses the best
among then and sends the others away. This process continues until eventually, each
female is holding onto exactly one male.

It is interesting to note that each female’s prospects improve over time, i.e., once she
has a suitor, things only get better. Conversely, each male’s prospects deteriorate over
time. Regardless, we assert that the resulting matching is stable. To see this, suppose
that it is unstable and choose males b and b’, females g and g’ so that b is matched to g,
but b prefers g’ to g while g prefers b’ to b. The algorithm requires that male b start at
the top of his list and work his way down. Since he eventually lands on g’s door step,
and he prefers g’ to g, it implies that once upon a time, he was actually at g”’s door,
and she sent him away. This means that at that exact moment, she had a male in hand
that she prefers to b. Since her holdings only improve with time, it means that when
the matching is finalized, female g has a mate b that she prefers to b’.

16.5 Zero—One Matrices

Matrices with all entries 0 and 1 arise in many combinatorial settings, and here we
present a classic result, called the Gale-Ryser theorem. It deals with zero—one matrices
with specified row and column sum strings. When M is an m X n zero-one matrix, the
string R = (r1,72,...,7w), where r; = Zlgjgn mi ;, is called the row sum string of M.
The column sum string C = (c1, ¢2, ..., ¢y) is defined analogously. Conversely, let m
and n be positive integers, and letR = (r1, 12, ..., ty) and C = (c1, ¢, . .., ¢;) be strings
of non-negative integers. The question is whether there exists an m X1 zero—one matrix
M with row sum string R and column sum string C.

To attack this problem, we pause briefly to develop some additional background
material. Note that we may assume without loss of generality that there is a positive
integer t so that X}72; r; = 2, ;1:1 cj = t, else there is certainly no zero—one matrix with
row sum string R and column sum string C. Furthermore, we may assume that both
R and C are non-increasing strings, i.e., 71 2 2 2 --- > ryandc1 2 ¢ > -+ > ¢y

To see this note that whenever we exchange two rows in a zero—one matrix, the col-
umn sum string is unchanged. Accordingly after a suitable permutation of the rows,
we may assume that R is non-increasing. Then the process is repeated for the columns.

Finally, it is easy to see that we may assume that all entries in R and C are positive
integers, since zeroes in these strings correspond to rows of zeroes or columns of zeroes
in the matrix. Accordingly, the row sum string R and the column sum string C can be
viewed as partitions of the integer ¢, a topic we first introduced in Chapter 8.

For the balance of this section, we let f be a positive integer and we let () denote
the family of all partitions of the integer t. There is a natural partial order on P(t)
defined by setting V = (v1,v2,...,0m) 2 W = (w1, w2,..., wy)ifand only if m < n

323

Chapter 16 The Many Faces of Combinatorics

and X1<i<j0j = Xi<i<jwjforeachj=1,2,...,m,ie., the sequence of partial sums for
V is always at least as large, term by term, as the sequence of partial sums of W. For
example, we show in ((fig-partitionlattice)) the partial order (7).

FIGURE HERE

In the proof of the Gale-Ryser theorem, it will be essential to fully understand when
one partition covers another. We state the following proposition for emphasis; the
proof consists of just considering the details of the definition of the partial order on
partitions.

Proposition 16.11. Let V = (v1,02,...,0y) and W = (w1, wa, . .., wy) be partitions of an
integer t. If V covers W in the poset P(t), then n < m + 1 and there exist integers i and j with
1 <i < j < n so that the following statements hold.

1. vy =Wy, whenl < a < i.
vg = wp, when j < < m.
vi =1+ w;.

Either (a) j < mand wj =1+vj,0or(b) j=n=m+1and w; = 1.

A

Ifj>i+1,thenw, =v, =v; —1wheni <y <j.

To illustrate this concept, note that (5,4, 3) covers (5,3,3,1) in £(12). Also, we see
(6,6,4,3,3,3,1,1,1,1,) covers (6,6,3,3,3,3,2,1,1,1) in P(29).

With a partition V = (v1, v2, ..., vy) from P(t), we associate a dual partition W =
(w1, wy, ..., w,) defined as follows: (1) n = v; and for each j = 1,...,n, w; is the
number of entries in V that are at least n + 1 — j. For example, the dual partition of
V =(8,6,6,6,55,3,1,1,1)is (8,7,7,6,6,4,1,1). Of course, they are both partitions
of 42, which is the secret of the universe! In what follows, we denote the dual of the
partition V by V. Note that if W = V¢, then V = WY, i.e,, the dual of the dual is the
original.

16.5.1 The Obvious Necessary Condition

Now let M be a m X n zero—one matrix with row sum string R = (r1,12,...,t, and
column sum string C = (¢, ¢2, . . ., ¢). As noted before, we will assume that all entries
in R and C are positive. Next, we modify M to form a new matrix M’ as follows: For
eachi =1,2,...,t,wepushther; onesinrow i as far to the left as possible, i.e., m;] =1
if and only if 1 < j < r;. Note that M and M’ both have R for their row sum strings.
However, if C’ denotes the column sum string for M’, then C’ is a non-decreasing string,
and the substring C” of C’ consisting of the positive entries is R?, the dual partition of

R. Furthermore, for each j = 1,2,...,r1, we have the inequality Zlgigj ¢’ < Zlggj i,

324

16.6 Arithmetic Combinatorics

since the operation of shift ones to the left can only increase the partial sums. It follows
that R? > C in the poset P(t).
So here is the Gale-Ryser theorem.

Theorem 16.12 (Gale-Ryser). Let R and C be partitions of a positive integer t. Then there
exists a zero—one matrix with row sum string R and column sum string C ifand only if R > C
in the poset P(t).

Proof. The necessity of the condition has been established. We prove sufficiency. The
proof is constructive. In the poset P(t, let Wy > Wy > .- > W; be a chain so that
(1) Wo = R4, (2) Wy = Cand (3)if 0 < p < s, then W, covers W,,1. We start with
a zero one matrix Mp having row sum string R and column sum string Wy, as sug-
gested in ((fig-dualpartition)) for the partition (8,4,3,1,1,1). If s = 0, we are done,
so we assume that for some p with 0 < p < s, we have a zero-one matrix M, with
row sum string R and column sum string W,. Then let i and j be the integers from
Proposition 16.11, which detail how W, covers W,1. Choose a row g so that the g, i
entry of M, is 1 while the g, j entry of M is 0. Exchange these two entries to form the
matrix M, 1. Note that the exchange may in fact require adding a new column to the
matrix. O

16.6 Arithmetic Combinatorics

In recent years, a great deal of attention has been focused on topics in arithmetic com-
binatorics, with a number of deep and exciting discoveries in the offing. In some sense,
this area is closely aligned with Ramsey theory and number theory, but recent work
shows connections with real and complex analysis, as well. Furthermore, the roots
of arithmetic combinatorics go back many years. In this section, we present a brief
overview of this rich and rapidly changing area.

Recall that an increasing sequence a1 < a4z < az < ... < a;) of integers is called an
arithmetic progression when there exists a positive integer d for which a;41 —a; = d,
foralli =1,2,...,t-1. Theinteger t is called the length of the arithmetic progression.

Theorem 16.13. For pair r, t of positive integers, there exists an integer ng, so that if n > ng
and ¢ : {1,2,...,n} — {1,2,...,r} is any function, then there exists a t-term arithmetic
progression 1 < ay; < ay < ... <a; < nandanelement @ € {1,2,...,r} so that ¢(a;) = a,

foreachi=1,2,...,t

Material will be added here.

325

Chapter 16 The Many Faces of Combinatorics

16.7 The Lovasz Local Lemma

Even though humans seem to have great difficulty in providing explicit constructions
for exponentially large graphs which do not have complete subgraphs or independent
sets of size 1, such graphs exist with great abundance. Just take one at random and
you are almost certain to get one. And as a general rule, probabilistic techniques often
provide a method for finding something that readily exists, but is hard to find.

Similarly, in the probabilistic proof that there exist graphs with large girth and large
chromatic number (Theorem 11.7), we actually showed that almost all graphs have
modest sized independence number and relatively few small cycles, provided that the
edge probability is chosen appropriately. The small cycles can be destroyed without
significantly changing the size of the graph.

By way of contrast, probabilistic techniques can, in certain circumstances, be used
to find something which is exceedingly rare. We next present an elegant but elemen-
tary result, known as the Lovasz Local Lemma, which has proved to be very, very
powerful. The treatment is simplified by the following natural notation. When E is
an event in a probability space, we let E denote the complement of E . Also, when
F ={E1,Ey,...,Ex} welet

k
HE:HEi:ElEzEg...Ek

EeF i=1

denote the event E;1 N E>; N --- N Ej, i.e., concatenation is short hand for intersection.
These notations can be mixed, so E 1?]53 represents E1 N E,N E_3 Now let ¥ be a finite
family of events, let E € # and let N be a subfamily of ¥ — {E}. In the statement of
the lemma below, we will say that E is independent of any event not in N when

P(E|[[F) = P(E)
FeGg
provided G NN = 0.
We first state and prove the lemma in asymmetric form. Later, we will give a simpler
version which is called the symmetric version.

Lemma 16.14 (Lovasz Local Lemma (Asymmetric)). Let ¥ be a finite family of events in a
probability space and for each event E € F, let N(E) denote a subfamily of events from & —{E}
so that E is independent of any event not in N(E). Suppose that for each event E € F, there is
a real number x(E) with 0 < x(E) < 1 such that

P(E) < x(E)]_[(1 - x(F)).

FeN(E)

326

16.7 The Lovisz Local Lemma

Then for every non-empty subfamily G C F,
P([[B) = [Ja-x®).
EeG EeG
In particular, the probability that all events in F fail is positive.

Proof. We proceed by inductionon G. If |G| = 1 and G = {E}, we are simply asserting
that P(E) > 1 — x(E), which is true since P(E) < x(E). Now suppose that |G| = k > 2
and that the lemma holds whenever 1 < |G| < k. Let G = {E1,E3,...,Er}. Then

k k k k
P(| |En=PEI] [E)PEI| |EPEsI| |ED...
i=2 i=3 i=4

i>1
Now each term in the product on the right has the following form:
PE[]F
FeFe
where |F¢| < k.
So, we done if we can show that
P(E|]_[F)>1-x(E)
Fe¥r
This is equivalent to showing that
P(E| 1_[T) < x(E)
FeFr
Suppose first that F N N(E) = 0. Then
P(E|]_[T) = P(E) < x(E).
FeFr

So we may assume that g N N(E) # 0. Let ¢ = {F1,F2, F;, Fri1,Fria, ..., Ft}, with
Fie Ngifandonlyif r +1 <i < t. Then

PE| 1—[F) = P(E Mfernne) Fl Tressace) F)
FeFr P(HFGTEON(E) P)

Consider first the numerator in this last expression. Note that

P(E ﬂ T| 1_[) < P(E| ﬂ T) < x(E)]_[(1 - x(F))

FeFENN(E) FeFe-N(E) FeFeNN(E) FeFENN(E)

327

Chapter 16 The Many Faces of Combinatorics

Next, consider the denominator. By the inductive hypothesis, we have

P(l_[€ F: N N(E)F >]_[(1 - x(F)).

F FEFENN(E)

Combining these last two inequalities, we have

PEI[]P=<x®) []| a-x(F)<xE),

FefE N(E)-FE
and the proof is complete.]
Now here is the symmetric version.

Lemma 16.15 (Lovasz Local Lemma (Symmetric)). Let p and d be numbers with0 < p <1
and d > 1. Also, let ¥ be a finite family of events in a probability space and for each event
E € F, let N(E) denote the subfamily of events from & — {E} so that E is independent of
any event not in N(E). Suppose that P(E) < p, IN(E)| < d for every event E € ¥ and that
ep(d +1) < 1, where e = 2.71828 . . . is the base for natural logarithms. Then

P([[B) =] [a-x®),

EeF EeG

i.e., the probability that all events in F is positive.
Proof. Set x(E) =1/(d + 1) for every event E € . Then

P(E)y<p < L e l_[(F e N(E)(1 - ﬁ). O

e(d+1) ~

A number of applications of the symmetric form of the Lovasz Local Lemma are
stated in terms of the condition that 4pd < 1. The proof of this alternate form is just a
trivial modification of the argument we have presented here.

16.8 Applying the Local Lemma

The list of applications of the Local Lemma has been growing steadily, as has the in-
terest in how the lemma can be applied algorithmically, i.e., in a constructive setting.
But here we present one of the early applications to Ramsey theory—estimating the
Ramsey number (R, 3, n). Recall that we have the basic inequality R(3,n) < (”;'1)
from Theorem 11.2, and it is natural to turn to the probabilistic method to look for
good lower bounds. But a few minutes thought shows that there are challenges to this

approach.

328

16.8 Applying the Local Lemma

First, let’s try a direct computation. Suppose we try a random graph on t vertices
with edge probability p. So we would want no triangles, and that would say we need
t3p® =1,i.e., p = 1/t. Then we would want no independent sets of size 1, which would
require nteP” =1,ie, tlnn = pn?, so we can’t even make f larger than 7. That’s not
helpful.

We can do a bit better by allowing some triangles and then removing one point from
each, as was done in the proof for Theorem 11.7. Along these lines, we would set
t3p3 = t,ie, p = t72/3. And the calculation now yields the lower bound R(3,n) >
n8/5/In"%° 1, s0 even the exponent of n is different from the upper bound.

So which one is right, or is the answer somewhere in between? In a classic 1961
paper, Erd@s used a very clever application of the probabilistic method to show the
existence of a graph from which a good lower bound could be extracted. His technique
yielded the lower bound R(3, 1) > n?/ In? 11, so the two on the exponent of 1 is correct.

Here we will use the Lovész Local Lemma to obtain this same lower bound in a much
more direct manner. We consider a random graph on ¢ vertices with edge probability
p. For each 3-element subset S, we have the event Es which is true when S forms a
triangle. For each n-element set T, we have the event Er which is true when T is an
independent set. In the discussion to follow, we abuse notation slightly and refer to
events Eg and Er as just S and T, respectively. Note that the probability of S is p3 for
each 3-element set S, while the probability of T is g = (1 — p)*2) ~ e P12 for each
n-element set T.

When we apply the Local Lemma, we will set x = x(S) to be e?p?, for each 3-element
set 5. And we will set y = Y(T) = g'/2 ~ e7P"*/4_ It will be clear in a moment where
we got those values.

Furthermore, the neighborhood of an event consists of all sets in the family which
have two or more elements in common. So the neighborhood of a 3-element set S
consists of 3(t —3) other 3-element sets and C(t —3, n —3) +3C(t — 3, n — 2) sets of size n.
Similarly, the neighborhood of an n-element set T consists of C(n,3) + (t — n)C(n, 2)
sets of size 3 and 2?2—21 C(n,i)C(t—n, n—i) other sets of size n. So the basic inequalities
we need to satisfy are:

p3 Sx(l _ x)3(t—3)(1 _ y)C(t—3,n—3)+3C(t—n,n—2)

q <y(1 _ x)C(n,3)+(t—n)C(n,2)(1 _ y)C(t—3,n—3)+3C(t—n,n—2)

Next, we assume that 7%/2 < t < n2 and then make the usual approximations, ignoring

smaller order terms and multiplicative constants, to see that these inequalities can be
considered in the following simplified form:

p® <x(1-x)'(1-y)"

329

Chapter 16 The Many Faces of Combinatorics

g <y(1-x)"1-y)"

A moments reflection makes it clear that we want to keep the terms involving (1 — y)
relatively large, i.e., at least 1/e. This will certainly be true if we keep t" < 1/y. This is
equivalenttonInt < pn? orInt < pn.

Similarly, we want to keep the term (1 — x) relatively large, so we keep t < 1/x,
ie., t <1/p® On the other hand, we want only to keep the term (1 — x)tn* ~ e gt
least as large as y. This is equivalent to keeping p < xt, and since x ~ p3, this can be
rewritten as p~! < t1/2.

Now we have our marching orders. We just set Int = pn and p~! = t1/2. After
substituting, we get t = n2/In*t and since Int = In# (at least within the kind of ap-
proximations we are using), we get the desired result t = n2/In® 1.

330

APPENDIX A -

Epilogue

Here is a progress report on our cast of characters, some five years after graduation®.

Alice and Bob got married, moved to Austin, Texas, and started a high tech firm using
venture capital provided by a successful Georgia Tech grad. Alice is CEO and the
pattern of making quick decisions, most of which are right, continues to this day. Bob
is CFO and the financial health of the firm is guaranteed. The first year though was
pretty tough, but after that, their reputation got established and contracts began to
walk through the door. There’s even talk about an IPO in the near future. Alice and
Bob don’t have much time to decide whether they are happy with the way their lives
are going—but we're pretty sure they are.

Carlos switched from Physics to math for graduate school and won an NSF gradu-
ate fellowship which he took at MIT. After receiving his Ph.D., he took a postdoctoral
position at the American Institute for the Mathematical Sciences (AIMS). He also won
an NSF Career grant. Carlos is a rapidly emerging star in the academic world. He
has universities lining up to offer him tenure-track positions and he had already been
invited to lecture in England, France, Germany, Hungary and Poland. He’ll make a
good living, not a huge salary, but the quality of life will rank with the best. He is very
happy.

Dave surprised a lot of people. Somewhere along the way, he got just a bit more
organized without losing that off-the-wall uniqueness that made him special. He took
ajob on Wall Street with a firm that just wanted really very smart people. He’s making
more money than any other member of the group, by far. But it comes at some cost.
Long hours and lots of stress. On the occasional free Sunday (there aren’t many), he
wonders how much longer he can keep this up.

Xing took a job with Macrofirm in Bluemon. His group is developing new operating
systems and attendant software that run on computing devices of all sizes, from smart
phones through super computers. Lots of interesting challenges, for example, just in
deciding how input should be done when there’s no keyboard and the device screen

1Georgia Tech students do not speak of graduating. Instead, using the same phrase applied to incarceration,
they talk about getting out.

331

Appendix A Epilogue

is very small. Xing is enjoying life and feels his Georgia Tech experiences were great
preparation.

Yolanda used her chemistry background to go to medical school at Emory University,
where she received both an M.D. and a Ph.D. Afterwards, she accepted a position at the
Center for Disease Control (CDC), which is also located here in Atlanta and has a bunch
of scientists with the same kind of background training. Yolanda quickly became the
go to person for analyzing strange viruses which no one else was able to identify. She
is part of a very important safety net which is essental to the nation’s security and
well-being. She is very happy with her life.

Zori didn't go down the pathway through life she once envisioned. Her first job
was with a family owned company making candy bars. In that position, she helped
them to make wise decisions on massive sugar purchases made on a world-wide basis.
She got bored with this job, and left to accept a position with a support group for an
airline company. Her group did optimization work, figuring out how best to position
aircraft and crews to handle scheduling irregularities. Two years later, she moved to a
position with a major chip maker where she helped optimize the movement of cutting
heads in the manufacturing process, where incremental improvements could mean
for hundreds of millions of dollars in savings. Zori has made lots of money, but she
remains vaguely dissatisfied with life and is still looking for the right environment.

332

APPENDIX B -

Background Material for
Combinatorics

This appendix treats background material essential to the study of combinatorial math-
ematics. Many students will find that most—and perhaps all—of this material has
been covered somewhere in their prior course work, and we expect that very few in-
structors will include this appendix in the syllabus. Nevertheless, students may find
it convenient to consult this appendix from time to time, and we suspect that many
instructors will encourage students to read this material to refresh their memories of
key concepts.

B.1 Introduction

Set theory is concerned with elements, certain collections of elements called sets and a
concept of membership. For each element x and each set X, exactly one of the following
two statements holds:

1. x is a member of X.
2. x is not a member of X.

It is important to note that membership cannot be ambiguous.

When x is an element and X is a set, we write x € X when x is a member of X.
Also, the statement x belongs to X means exactly the same thing as x is a member of
X. Similarly, when x is not a member of X, we write x ¢ X and say x does not belong
to X.

Certain sets will be defined explicitly by listing the elements. For example, let X =
{a,b,d,g,m}. Thenb € X and h ¢ X. The order of elements in such a listing is
irrelevant, so we could also write X = {g,d,b, m,a}. In other situations, sets will be
defined by giving a rule for membership. As examples, let N denote the set of positive
integers. Thenlet X = {n € N : 5 < n < 9}. Note that 6,8 € X while 4, 10,238 ¢ X.

333

Appendix B Background Material for Combinatorics

Given an element x and a set X, it may at times be tedious and perhaps very difficult
to determine which of the statements x € X and x ¢ X holds. But if we are discussing
sets, it must be the case that exactly one is true.

Example B.1. Let X be the set consisting of the following 12 positive integers:

13232112332

13332112332

13231112132

13331112132

13232112112

13231112212

13331112212

13232112331

13231112131

13331112131

13331112132

13332112111

13231112131
Note that one number is listed twice. Which one is it? Also, does 13232112132 belong
to X? Note that the apparent difficulty of answering these questions stems from (1)
the size of the set X and (2) the size of the integers that belong to X. Can you think of

circumstances in which it is difficult to answer whether x is a member of X even when
it is known that X contains exactly one element?

Example B.2. Let P denote the set of primes. Then 35 ¢ P since 35 = 5x7. Also, 19 € P.
Now consider the number

n = 77788467064627123923601532364763319082817131766346039653933
Does n belong to P? Alice says yes while Bob says no. How could Alice justify her
affirmative answer? How could Bob justify his negative stance? In this specific case, I
know that Alice is right. Can you explain why?
B.2 Intersections and Unions

When X and Y are sets, the intersection of X and Y, denoted X NY , is defined by
XNY={x:xeX,xeY}

334

B.2 Intersections and Unions

Note that this notation uses the convention followed by many programming languages.
Namely, the “comma” in the definition means that both requirements for membership
be satisfied. Forexample,if X = {b,c,e,g,m}andY = {a,c,d, h,m,n,p},then XNY =
{c, m}.

B.2.1 The Meaning of 2-Letter Words

In the not too distant past, there was considerable discussion in the popular press on
the meaning of the 2-letter word is. For mathematicians and computer scientists, it
would have been far more significant to have a discussion of the 2-letter word or. The
problem is that the English language uses or in two fundamentally different ways. Con-
sider the following sentences:

1. A nearby restaurant has a dinner special featuring two choices for dessert: flan
de casa or tirami-su.

2. A state university accepts all students who have graduated from in-state high
schools and have SAT scores above 1000 or have grade point averages above 3.0.

3. Alocal newspaper offers customers the option of paying their for their newspa-
per bills on a monthly or semi-annual basis.

In the first and third statement, it is clear that there are two options but that only
one of them is allowed. However, in the second statement, the interpretation is that
admission will be granted to students who satisfy at least one of the two requirements.
These interpretations are called respectively the exclusive and inclusive versions of
or. In this class, we will assume that whenever the word “or” is used, the inclusive
interpretation is intended—unless otherwise stated.

For example, when X and Y are sets, the union of X and Y, denoted X UY, is defined
by

XUY={x:xexorxeY}.

For example, if X = {b,c,e,g,m}and Y ={a,c,d, h,m,n,p}, then
XUY={a,b,cdegh,mn,p}

Note that N and U are commutative and associative binary operations, as is the case
with addition and multiplication for the set N of positive integers, i.e., if X, Y and Z
are sets, then

XNY=YNX and XUY=YUX

Also,
XNYNZ)y=(XnY)nZ and XUYUZ)=(XUY)UZ

335

Appendix B Background Material for Combinatorics

Also, note that each of N and U distributes over the other, i.e.,
XNYuzZ)=XNnY)u(XnZ) and XU(YNZ)=(XUY)N(XUZ)

On the other hand, in N, multiplication distributes over addition but not vice-versa.

B.2.2 The Empty Set: Much To Do About Nothing

The empty set, denoted 0 is the set for which x ¢ 0 for every element x. Note that
XNO=0and XU = X, for every set X.
The empty set is unique in the sense that if x ¢ X for every element x, then X = (.

B.2.3 The First So Many Positive Integers

In this text, we will use the symbols N, Z, Q and R to denote respectively the set of
positive integers, the set of all integers (positive, negative and zero), the set of rational
numbers (fractions) and the set of real numbers (rationals and irrationals). On occa-
sion, we will discuss the set Ny of non-negative integers. When is a positive integer,
we will use the abbreviation [#] for the set {1,2, ..., n} of the first n positive integers.
For example, [5] = {1,2,3,4,5}. For reasons that may not be clear at the moment but
hopefully will be transparent at the right moment, we use the notation n to denote the
n-element set {0,1,2,...,n — 1}. Of course, n is just the set of the first # non-negative
integers. For example, 5 = {0, 1,2, 3,4}.

B.2.4 Subsets, Proper Subsets and Equal Sets

When X and Y are sets, we say X is a subset of Y and write X C Y when x € Y for
every x € X. When X is a subset of Y and there exists at least one element y € Y with
y ¢ X, we say X is a proper subset of Y and write X C Y . For example, the P of primes
is a proper subset of the set IN of positive integers.

Surprisingly often, we will encounter a situation where sets X and Y have different
rules for membership yet both are in fact the same set. For example, let X = {0,2} and
Y={z€Z:z+2z=2zXz}. Then X = Y. For this reason, it is useful to have a test
when sets are equal. If X and Y are sets, then

X=Y ifandonlyif XCYandY CX.

336

B.3 Cartesian Products

B.3 Cartesian Products

When X and Y are sets, the cartesian product of X and Y, denoted X X Y , is defined
by
XXY={(x,y):xeXand y € Y}

For example, if X = {a,b} and Y = [3], then
XxY=A{(a,1),(®,1),(a,2),(®,2),(a,3),(®,3)}

Elements of X X Y are called ordered pairs. When p = (x, y) is an ordered pair, the
element x is referred to as the first coordinate of p while y is the second coordinate of
p- Note that if either X or Y is the empty set, then X x Y = 0.

Example B.3. Let X = {0, (1,0), {0}} and Y = {(0,0)}. Is ((1,0),) a member of X X Y?

Cartesian products can be defined for more than two factors. When n > 2 is a posi-
tive integer and Xj, X», ..., X, are non-empty sets, their cartesian product is defined

by
XX XoX XXy ={(x1,x2,...,xy):x;€ Xjfori=1,2,...,n}

B.4 Binary Relations and Functions

A subset R C X X Y is called a binary relation on X X Y, and a binary relation R on
X xY is called a function from X to Y when for every x € X, there is exactly one element
y € Y for which (x, y) € R.

Many authors prefer to write the condition for being a function in two parts:

1. For every x € X, there is some element y € Y for which (x, y) € R.
2. For every x € X, there is at most one element y € Y for which (x, y) € R.

The second condition is often stated in the following alternative form: If x € X,
y1,y2 € Y and (x, 1), (x, y2) € R, then y1 = y».

Example B.4. For example, let X = [4] and Y = [5]. Then let

Ry = {(2/ 1)/ (4/ 2)/ (1/ 1)/ (3/ 1)}
Ry = {(4/ 2)/ (1/ 5)/ (3/ 2)}
Rs3 = {(3/ 2)/ (1/ 4)/ (2/ 2)/ (1/ 1)/ (4/ 5)}

Of these relations, only R is a function from X to Y.

337

Appendix B Background Material for Combinatorics

In many settings (like calculus), it is customary to use letters like f, g and h to denote
functions. So let f be a function from a set X to a set Y. In view of the defining proper-
ties of functions, for each x € X, there is a unique element y € Y with (x,y) € f. And
in this case, the convention is to write y = f(x). For example, if f = R; is the function
in Example B.4, then 2 = f(4) and f(3) = 1.

The shorthand notation f : X — Y is used to indicate that f is a function from the
set X to the set Y.

In calculus, we study functions defined by algebraic rules. For example, consider
the function f whose rule is f(x) = 5x3 — 8x + 7. This short hand notation means that
X =Y = Rand that

f={(x,5x-8x+7):x € R}

In combinatorics, we sometimes study functions defined algebraically, just like in cal-
culus, but we will frequently describe functions by other kinds of rules. For example,
let f : N — N be defined by f(n) = |n/2| if n is even and f(n) = 3|n| + 1 when n is
odd.

A function f : X — Y is called an injection from X to Y when for every y € Y, there
is at most one element x € X with y = f(x).

When the meaning of X and Y is clear, we just say f is an injection. An injection is
also called a 1-1 function (read this as “one to one”) and this is sometimes denoted as
Fix Y.

A function f : X — Y is called a surjection from X to Y when for every y € Y, there
is at least one x € X with y = f(x).

Again, when the meaning of X and Y is clear, we just say f is a surjection. A surjec-

tion is also called an onto function and this is sometimes denoted as f : X — Y.
onto

A function f from X to Y which is both an injection and a surjection is called a
bijection. Alternatively, a bijection is referred to as a 1-1, onto function, and this is

sometimes denoted as f : X % Y . A bijection is also called a 1-1-correspondence.
Example B.5. Let X =Y = R. Then let f, g and & be the functions defined by

1. f(x)=3x-7.

2. g(x) =3(x =2)(x +5)(x = 7).

3. h(x) = 6x% - 5x + 13.

Then f is a bijection; g is a surjection but not an injection (Why?); and & is neither an
injection nor a surjection (Why?).

Proposition B.6. Let X and Y be sets. Then there is a bijection from X to Y if and only if there
is a bijection from Y to X.

338

B.5 Finite Sets

B.5 Finite Sets

A set X is said to be finite when either (1) X = 0; or (2) there exists positive integer n
1-1

and a bijection f : [n] — X. When X is not finite, it is called infinite. For example,
onto

{a,0,(3,2),N} is a finite set as is N X). On the other hand, N X {0} is infinite. Of
course, [n] and n are finite sets for every n € N.

Proposition B.7. If X be a non-empty finite set, then there is a unique positive integer n for

1-1
which there is a bijection f : [n] — X.
onto

In some cases, it may take some effort to determine whether a set is finite or infinite.
Here is a truly classic result.

Proposition B.8. The set P of primes is infinite.

Proof. Suppose that the set P of primes is finite. It is non-empty since 2 € P. Let n be
the unique positive integer for which there exists a bijection f : [n] — P. Then let

p=1+f1)Xxf(2)x f(3)x---x f(n)

Then p is not divisible by any of the primes in P but is larger than any element of P.
Thus, either p is prime or there is a prime that does not belong to P. The contradiction
completes the proof. o

Here’s a famous example of a set where no one knows if the set is finite or not.

Conjecture B.9. It is conjectured that the following set is infinite:
T ={n € N: nand n + 2 are both primes }.

This conjecture is known as the Twin Primes Conjecture. Guaranteed A + + for any
student who can settle it!

1-1
Proposition B.10. Let X and Y be finite sets. If there exists an injection f : X — Y and an

1-1 1-1
injection g : Y — X, then there exists a bijection h : X — Y.
onto

When X is a finite non-empty set, the cardinality of X, denoted |X]| is the unique
1-1
positive integer n for which there is a bijection f : [n] — X. Intuitively, |X] is the
onto
number of elements in X. For example,

1{(6,2),(8,(4,0)),{3, {5} }}| = 3.

By convention, the cardinality of the empty set is taken to be zero, and we write |@] = 0.

339

Appendix B Background Material for Combinatorics

Proposition B.11. If X and Y are finite non-empty sets, then |X X Y| = | X| x |Y]|.

We note that the statement in Proposition B.11 is an example of “operator overload-
ing”, a technique featured in several programming languages. Specifically, the times
sign X is used twice but has different meanings. As part of X X Y, it denotes the carte-
sian product, while as part of |X| x |Y], it means ordinary multiplication of positive
integers. Programming languages can keep track of the data types of variables and
apply the correct interpretation of an operator like X depending on the variables to
which it is applied.

We also have the following general form of Proposition B.11:

| X1 X Xo X -+ X X | = | Xq| X [Xa| X -+ X | X
Theorem B.12.
1. There is a bijection between any two of the following infinite sets N, Z. and Q.
2. There is an injection from Q to R.

3. There is no surjection from Q to R.

B.6 Notation from Set Theory and Logic

In set theory, it is common to deal with statements involving one or more elements
from the universe as variables. Here are some examples:

1. Forn e N, n2 —6n+8 =0.
. For A C [100], {2, 8,25,58,99} C A.

. Forn € Z, |n| is even.

. Form,n € N, m(m + 1) + 2n is even.

2
3
4. Forx e R, 1+1=2.
5
6. Forn € N, 2n + 1 is even.
7

. Forn e Nand x € R, n + x is irrational.

These statements may be true for some values of the variables and false for others.
The fourth and fifth statements are true for all values of the variables, while the sixth
is false for all values.

Implications are frequently abbreviated using with a double arrow =; the quan-
tifier V means “for all” (or “for every”); and the quantifier 3 means “there exists” (or

340

B.7 Formal Development of Number Systems

“there is”). Some writers use A and V for logical “and” and “or”, respectively. For
example,

VA,BC[4] ((1,2€ A)A|B|=23)) = ((ACB)V(3IneAUB,n*=16))

The double arrow = is used to denote logical equivalence of statements (also “if
and only if”). For example

VAC[7] AN{1,3,6}#0 — A¢{2,4,57}

We will use these notational shortcuts except for the use of A and V, as we will use these
two symbols in another context: binary operators in lattices.

B.7 Formal Development of Number Systems

Up to this point, we have been discussing number systems in an entirely informal man-
ner, assuming everyone knew all that needed to be known. Now let’s pause and put
things on a more firm foundation. So for the time being, do a memory dump and for-
get everything you have ever learned about numbers and arithmetic. The set of natural
numbers has just been delivered on our door step in a big box with a warning label say-
ing Assembly Required. We open the box and find a single piece of paper on which the
following “instructions” are printed. These defining properties of the natural numbers
are known as the Peano Postulates.

i There is a non-empty set of elements called natural numbers. There is natural
number called zero which is denoted 0. The set of all natural numbers is denoted
No

1-1
ii There is a one-to-one function s : Ng — INj called the successor function. For
each n € Ny, s(n) is called the successor of .

iii There is no natural number # for which 0 = s(n).

iv Let M C Np. Then M = Ny if and only if
a 0e€M;and
b VkeNy (keM)= (s(k) e M).
Property Item iv in the list of Peano Postulates is called the Principle of Mathemati-

cal Induction, or just the Principle of Induction. As a first application of the Principle
of Induction, we prove the following basic property of the natural numbers.

341

Appendix B Background Material for Combinatorics

Proposition B.13. Let n be a natural number with n # 0. Then there is a natural number m
so that n = s(m).

Proof. Let$ = {n € Ng : 3m € Ny, n = s(m)}. Thenset M = {0} US. We show that
M = Ny. First, note that 0 € M. Next, we will show that for all k € Ny, if k € M,
then s(k) € M. However, this is trivial since for all k € Ny, we have s(k) € § € M. We
conclude that M = INj. O

B.7.1 Addition as a Binary Operation

A binary operation * on set X is just a function * : X x X — X. So the image of
the ordered pair (x, y) would normally be denoted *((x, v)). However, this is usually
abbreviated as *(x, i) or even more compactly as x = y. With this convention, we now
define a binary operation + on the set Ny of natural numbers. This operation is defined
as follows for every natural number n € Ny:

in+0=mn.
ii Forall k € Ng, n +s(k) = s(n + k).

We pause to make it clear why the preceding two statements define +. Let # be an
arbitrary natural number. Then let M denote the set of all natural numbers m for which
n + m is defined. Note that 0 € M by part (i). Also note that for all k € Ny, s(k) € M
whenever k € M by part (ii). This shows that M = INp. Since n was arbitrary, this
allows us to conclude that n + m is defined for all n, m € INy.

We read n + m as n plus m. The operation + is also called addition.

Among the natural numbers, the successor of zero plays a very important role, so
important that it deserves its own special symbol. Here we follow tradition and call
the natural number 5(0) one and denote it by 1. Note that for every natural number 7,
wehave n +1=n+5(0) = s(n). In particular, 0 + 1 = 1.

With this notation, the Principle of Induction can be restated in the following form.

Principle B.14 (Principle of Induction). Let M € INy. Then M = N if and only if
a 0eM;and
bVkeNy (keM)= (k+1eM).

Theorem B.15 (Associative Property of Addition). m + (n + p) = (m + n) + p, for all
m,n,p € No.

Proof. Let m,n € INg. Then let M denote the set of all natural numbers p for which
m+(n+p)=(m+n)+p. We show that M = No.

342

B.7 Formal Development of Number Systems
Note that
m+mn+0)=m+n=m+n)+0

which shows that 0 € M.
Now assume that k € M, i.e.,, m + (n + k) = (m + n) + k. Then

m+[n+(k+D)]=m+[(n+k)+1] = [m+(n+k)]|+1 =[(m+n)+k]+1=(m+n)+(k+1).

Notice here that the first, second, and fourth equalities follow from the second part of
the definition of addition while the third uses our inductive assumption that m + (n +
k) = (m + n) + k). This shows that k + 1 € M. Therefore, M = INy. Since m and n were
arbitrary elements of Ny, the theorem follows. o

In proofs to follow, we will trim out some of the wording and leave only the essential
mathematical steps intact. In particular, we will (i) omit reference to the set M, and
(ii) drop the phrase “For all k € INy” For example, to define addition, we will just write
)n+0=n,and (i) n+(k+1)=mn+k)+1.

Lemma B.16. m + (n +1) = (m + 1) + n, for all m, n € Ny.
Proof. Fix m € Ny. Then
m+O0+1)=m+1=(m+0)+1.
Now assume that m + (k + 1) = (m + 1) + k. Then
m+[k+1D)+1]=m+k+D]+1=[(m+1)+k]+1=m+1)+(k+1). O

We next prove the commutative property, a task that takes two steps. First, we prove
the following special case.

Lemma B.17. n +0=0+n =n, forall n € Ny.

Proof. The statement is trivially true when n = 0. Now suppose thatk +0=0+k =k
for some k € Ny. Then

k+1)+0=k+1=0+k)+1=0+(k+1). O
Theorem B.18 (Commutative Law of Addition). m +n =n + m for all m,n € Ny.

Proof. Letm € Ny. Thenm+0 = 0+m from the preceding lemma. Assume m+k = k+m.
Then

m+k+)=(m+k)+1=(k+m)+1=k+(m+1)=(k+1)+m. |

343

Appendix B Background Material for Combinatorics

Lemma B.19. Ifm,n € Noandm +n =0, then m =n = 0.

Proof. Suppose that either of m and 7 is not zero. Since addition is commutative, we
may assume without loss of generality that nn # 0. Then there exists a natural number p
so that n = s(p). This implies that m +n = m +s(p) = s(m +p) = 0, which is impossible
since 0 is not the successor of any natural number.]

Theorem B.20 (Cancellation Law of Addition). If m,n,p € Noand m +p = n + p, then
m=n.

Proof. Let m,n € INg. Suppose that m + 0 = n + 0. Then m = n. Now suppose that
m=nwheneverm+k=n+k. lf m+(k+1)=n+(k+1),then

sm+k)=(m+k)+1=m+k+1D)=n+k+1)=n+k)+1=s(n+k).

Since s is an injection, this implies m + k = n + k. Thus m = n.]

B.8 Multiplication as a Binary Operation

We define a binary operation X, called multiplication, on the set of natural numbers.
When m and n are natural numbers, m X n is also called the product of m and n, and
it sometimes denoted m * n and even more compactly as mn. We will use this last
convention in the material to follow. Let n € INy. We define

i n0=0, and
ii n(k+1)=nk+n.

Note that 10 = 0and 01 =00+ 0 = 0. Also, notethat11 =10+1=0+1 = 1. More
generally, from (ii) and Lemma B.19, we conclude that if m, n # 0, then mn # 0.

Theorem B.21 (Left Distributive Law). m(n + p) = mn + mp, forall m,n,p € No.

Proof. Let m,n € Ng. Then
mn+0)=mn=mn+0=mn+ m0.
Now assume m(n + k) = mn + mk. Then

mn+k+1)]=m[n+k)+1]=mmn+k)+m
=(mn +mk)+m=mn+ (mk +m) =mn +m(k +1). O

Theorem B.22 (Right Distributive Law). (m +n)p = mp + np, forall m,n,p € No.

344

B.9 Exponentiation

Proof. Let m,n € Ny. Then
(m+n)0=0=0+0=m0+ n0.
Now assume (m + n)k = mk + nk. Then

(m+n)k+1)=(m+n)k+(m+n)=(mk+nk)+(m+n)
=(mk+m)+mk+n)=m(k+1)+nk+1). O

Theorem B.23 (Associative Law of Multiplication). m(np) = (mn)p, forallm,n,p € No.
Proof. Let m,n € Ny. Then
m(n0) =m0 =0 = (mn)0.
Now assume that m(nk) = (mn)k. Then
m[n(k +1)] = m(nk + n) = m(nk) + mn = (mn)k + mn = (mn)(k + 1). O
The commutative law requires some preliminary work.
Lemma B.24. n0 =0n =0, forall n € N,.
Proof. The lemma holds trivially when n = 0. Assume kO = 0k = 0. Then
(k+1)0=0=0+0=0k+0=0(k+1). O
Lemma B.25. nl = 1n = n, for every n € No.
Proof. 01 =00+ 0 =0 =10. Assume k1 = 1k = k. Then
k+D1=k1+11=1k+1=1(k +1). O
Theorem B.26 (Commutative Law of Multiplication). mn = nm, for all m,n € Ny.
Proof. Let m € Nyg. Then m0 = Om. Assume mk = km. Then

mk+1)=mk+m=km+m=km+1m = (k+1)m. O

B.9 Exponentiation

We now define a binary operation called exponentiation which is defined only on
those ordered pairs (m, n) of natural numbers where not both are zero. The notation
for exponentiation is non-standard. In books, itis written m" while the notations m++n,
m A n and exp(m, n) are used in-line. We will use the m™ notation for the most part.
When m = 0, we set 0" = 0 for all n € Ny with n # 0. Now let m # 0. We define m"

by (i) m° = 1 and (ii) m**! = mm*.

345

Appendix B Background Material for Combinatorics

Theorem B.27. Forall m,n,p € Ny with m # 0, m"*? = m" m?.

Proof. Let m,n € Ny with m # 0. Then m"™® = m" = m"1 = m" m°. Now suppose
that m"*f = m" m*. Then

mn+(k+1) — m(n+k)+1 =m mn+k — m(mn mk) — mn(m mk) =m" mk+1. O

Theorem B.28. Forall m,n,p € Ny withm # 0, (m")P = m"?.

Proof. Let m,n € Ny with m # 0. Then (m")° = 1 = m® = m"°. Now suppose that
(m™)* = m"*. Then

(mn)k+1 — mn(mn)k — mn(mnk) — mn+nk — mn(k+1). O

B.10 Partial Orders and Total Orders

A binary relation R on a set X is just a subset of the cartesian product X x X. In dis-
cussions of binary relations, the notation (x, y) € R is sometimes written as xRy.
A binary relation R is:

i reflexive if (x,x) € R forall x € X.
ii antisymmetricif x = y whenever (x,y) € Rand (y,x) € R, forall x, y € X.
iii transitive if (x, y) € Rand (y,z) € Rimply (x,z) € R, forallx, y,z € X.

A binary relation R on a set X is called a partial order on X when it is reflexive,
antisymmetric, and transitive. Traditionally, symbols like < and C are used to denote
partial orders. As an example, recall that if X is a family of sets, we write A C B when
A is a subset of B.

When using the ordered pair notation for binary relations, to indicate that a pair
(x, y) is not in the relation, we simply write (x,y) ¢ R. When using the alternate
notation, this is usually denoted by using the negation symbol from logic and writing
=(xRy). Most of the special symbols used to denote partial orders come with negative
versions, e.g., x £ y,x € y.

A partial order is called a total order on X when for all x,y € X, (x,y) € R or
(v, x) € R. For example, if

X =1{0,{0},{0,{0}}}

then C is a total order on X.
When < is a partial order on a set X, we write x < y whenx < yand x # y.

346

B.11 A Total Order on Natural Numbers

B.11 A Total Order on Natural Numbers

Let m,n € INg. Define a binary relation < on INg by setting m < n if and only if there
exists a natural number p so that m +p = n.

Proposition B.29. < is a total order on INy.

Proof. < is reflexive since n +0 = n and therefore n < n, for all n € Ny. Next, we show
that < is antisymmetric. Let m,n € INg and suppose that m < n and n < m. Then
there exist natural numbers p and g so that m + p = n and n + q = m. It follows that

m+(p+qg)=(m+p)+g=n+qg=m=m+0

Therefore p + q = 0, which implies thatp =q=0. Thusm +p=m+0=m = n.
Next, we show that < is transitive. Suppose that m,n,p € No,m < nandn < p.

Then there exist natural numbers g and r so that m + ¢ = n and n + r = p. Then
m+(@g+r)=(m+qg)+r=n+r=p.

Thus m < p, and we have now shown that < is a partial order on Ny.

Finally, we show that < is a total order. To accomplish this, we choose an arbitrary
element m € Ny and show that for every n € Ny, either m < n or n < m. We do this
by induction on n. Suppose first that n = 0. Since 0 + m = m, we conclude that 0 < m.
Now suppose that for some k € Ny, we have m < k. Then there is a natural number p
sothatm+p=k. Thenm+(p+1)=(m+p)+1=k+1,som <k+1.

On the other hand, suppose that for some k € Ny, we have k < m. If k = m, then
m < kand m < k+1 as above. Now suppose that k < m and k # m. Since k < m, there
exists a natural number p so that k + p = m. Since k # m, we know p # 0. Therefore,
there is a natural number g sothatp =g+ 1. Thenm =k+p=k+(g+1)=(k+1)+¢q
which shows that k +1 < m. o

Note that if m, n € Ny, then m < n if and only if there exists a natural number p # 0
sothatm +p = n.

Theorem B.30 (Monotonic Law for Addition). Let m,n,p € No. If m < n, then m +p <
n + p. Furthermore, if m < n, then m +p < n + p.

Proof. 1t suffices to prove that if m,n € No with m < n, thenm +p < n + p for every
p € Np. Let g4 # 0 be the natural number so that m + ¢ = n. Now let p € Ny. Then
(m+p)+q=(m+q)+p=n+p,som+p<n+p. |

Lemma B.31. Ifm,n € Nog, m # 0and n # 0, then mn # 0.

347

Appendix B Background Material for Combinatorics

Proof. Assume to the contrary, that m,n € Ny, m # 0, n # 0 and mn = 0. Let n = s(p).
Then 0 = mn = ms(p) + m which requires m = 0. This is a contradiction. O

Theorem B.32 (Monotonic Law for Multiplication). Let m,n,p € No. If m < n, then
mp < np. Furthermore, if m < n and p # 0, then mp < np.

Proof. Only the last statement requires proof. Let m,n € No withm < n. Thenm +q =
n for some g # 0. Then np = (m + q)p = mp + pq. Since pg # 0, we conclude
mp < np. m]

Corollary B.33 (Cancellation Law of Multiplication). If m,n,p € No, mp = np, and
p #0, then m = n.

Proof. If m < n, then mp < np, and if n < m, then np < mp. We conclude that
m=n. O

B.12 Notation for Natural Numbers

In some sense, we already have a workable notation for natural numbers. In fact, we
really didn’t need a special symbol for s(0). The natural number 0 and the sucessor
function s are enough. For example, the positive integer associated with the number
of fingers (including the thumb) on one hand is s(s(s(s(s(0))))), our net worth is 0, and
the age of Professor Trotter’s son in years when this section was first written was

s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))NMMMMM))-

Admittedly, this is not very practical, especially if some day we win the lottery or want
to discuss the federal deficit. So it is natural (ugh!) to consider alternative notations.

Here is one such scheme. First, let’s decide on a natural b > s(0) as base. We will
then develop a notation which is called the base b notation. We already have a special
symbol for zero, namely 0, but we need additional symbols for each natural number
n with 0 < n < b. These symbols are called digits. For example, the positive integer
b = s(s(s(s(s(s(s(s(0)))))))) is called eight, and it makes a popular choice as a base.
Here are the symbols (digits) customarily chosen for this base: 1 = s(0), 2 = s(1);
3 =5(2);4=5(3)5=5s(4);,6 =5(5);, and 7 = s5(6). Technically speaking, it is not
necessary to have a separate symbol for b, but it might be handy regardless. In this
case, most people prefer the symbol 8. We like this symbol, unless and until it gets
lazy and lays down sideways.

So the first 8 natural numbers are then 0, 1, 2, 3, 4, 5, 6 and 7. To continue with our
representation, we want to use the following basic theorem.

348

B.12 Notation for Natural Numbers

Theorem B.34. Let n,d € No with d > 0. Then there exist unique natural numbers q and r
sothatn =qd+rand 0 <r < d.

Proof. Letd € Ny with d > 0. We first show that for each n € Ny, there exists g, 7 € Ny
sothatn =qd +rand 0 < r <d. If n =0, we can take ¢ = 0 and r = 0. Now suppose
thatk = qd +r and 0 < r < m for some k € Np.

Note thatr < dimpliesr +1 <d.If r+1 < d, thenk +1 = gd + (r + 1). On the other
hand,ifr+1=4d,thenk+1=(g+1)d +0.

Now that existence has been settled, we note that the uniqueness of g and r follow
immediately from the cancellation properties. O

Now suppose that for some k € Ny, with k > 7, we have defined a base eight no-
tation for the representation of k, for all n with 0 < n < k, and that in each case,
this representation consists of a string of digits, written left to right, and selected from
{0,1,2,3,4,5,6,7}. Write k + 1 = qb + r where 0 < r < b. Note that g < k, so that
we already have a representation for q. To obtain a representation of k + 1, we simply
append r at the (right) end.

For example, consider the age of Professor Trotter’s son. It is then written as 22. And
to emphasize the base eight notation, most people would say 22, base 8 and write (22)s.

Among the more popular bases are base 2, where only the digits 0 and 1 are used,
and base sixteen, where sixteen is the popular word for (20)s. Here the digit symbols
are

0,1,2,3,4,56,7,8,9,A,B,C,D,E,F

Another popular choice, in fact the one in most widespread use in banks, shopping
centers and movie theatres, is base ten. Ten is the natural number A, base sixteen.
Also, ten is (12)g. Most folks use the digits 0,1,2,3,4,5,6,7,8,9 for base ten notation.
And when no other designation is made, then it is assumed that the natural number is
written base ten. So of course, Professor Trotter’s son is 18 and is a freshman at Georgia
Tech. Which explains why his hair is as white as it is.

For any base b > 1, caution must be exercised when discussing multiplication, since
writing the product m X n in the abbreviated form mn causes us some grief. For ex-
ample, if b = 8, then writing the product 372 x 4885 as 3724885 is ambiguous. For this
reason, when using base b notation, the product symbol X (or some variation of x) is
always used.

B.12.1 Alternate Versions of Induction

Many authors prefer to start the development of number systems with the set of pos-
itive integers and defer the introduction of the concept of zero. In this setting, you

1-1
have a non-empty set IN, a one-to-one successor function s : N — IN and a positive

349

Appendix B Background Material for Combinatorics

integer called one and denoted 1 that is not the successor of any positive integer. The
Principle of Induction then becomes: If M C N, then M = IN if and only if

aleM;and
b Vke Ny (k€M)= (s(k) € M).

More generally, to show that a set M contains all integers greater than or equal to
an integer n, it is sufficient to show that (i) n € M, and (ii) Forallk € Z, (k € M =
(k+1eM).

Here is another version of induction, one that is particularly useful in combinatorial
arguments.

Theorem B.35. Let M C N. If M # N, then there is a unique least positive integer n that
does not belong to M.

B.13 Equivalence Relations

A binary relation R is symmetric if (x, y) € R implies (y, x) € R forall x, y € X.

A binary relation R on a set X is called an equivalence relation when it is reflexive,
symmetric, and transitive. Typically, symbols like, =, =, = and ~ are used to denote
equivalence relations. An equivalence relation, say =, defines a partition on the set X
by setting

(xy={yeX:x =y}

Note that if x, y € X and (x) N (y) # 0, then (x) = (y). The sets in this partition are
called equivalence classes.

When using the ordered pair notation for binary relations, to indicate that a pair
(x, y) is not in the relation, we simply write (x,y) ¢ R. When using the alternate
notation, this is usually denoted by using the negation symbol from logic and writing
=(xRy). Many of the special symbols used to denote equivalence relations come with
negative versions: x # y, x # y, x + y, etc.

B.14 The Integers as Equivalence Classes of Ordered
Pairs

Define a binary relation = on the set Z = Ny X INg by
(a,b)=(c,d) iff a+d=b+c.

Lemma B.36. = is reflexive.

350

B.15 Properties of the Integers

Proof. Let(a,b) € Z. Thena+b=>b+a,so(a,b) = (b,a). O
Lemma B.37. = is symmetric.

Proof. Let (a,b),(c,d) € Z and suppose that (a,b) = (c,d). Thena +d = b + c, so that
c+b=d+a.Thus(c,d) = (a, b). O

Lemma B.38. = is transitive.
Proof. Let (a,b),(c,d), (e, f) € Z. Suppose that
(a,b) = (c,d) and (c,d) = (e, f).
Thena+d =0b+cand c+ f =d +e. Therefore,
@+d)+(c+f)=0B+c)+(d+e).

It follows that
@+ f)+(c+d)=0B+e)+(c+d).
Thus a + f = b + e so that (a,b) = (e, f). |
Now that we know that = is an equivalence relation on Z, we know that = partitions
Z into equivalence classes. For an element (4, b) € Z, we denote the equivalence class
of (a,b) by ((a,D)).

Let Z denote the set of all equivalence classes of Z determined by the equivalence
relation =. The elements of Z are called integers.

B.15 Properties of the Integers

For the remainder of this chapter, most statements will be given without proof. Stu-
dents are encouraged to fill in the details.
We define a binary operation + on Z by the following rule:

{(a,b)y +{(c,d)) ={(a+c,b+d)).

Note that the definition of addition is made in terms of representatives of the class, so
we must pause to make sure that + is well defined, i.e., independent of the particular
representatives.

Lemma B.39. If ((a,b)) = ((c,d)) and ((e, f)) = ((g,h)), then ((a,b)) + ((e, f)) =
((c,d)) + (g, h)).

351

Appendix B Background Material for Combinatorics

Proof. Since (a,b) = (c,d), we know a +d = b + c. Since (¢, f) = (g,h), we know
e+h=f+g. Itfollowsthat(a+d)+(e+h)=0b+c)+(f+g). Thus(@a+e)+(d+h) =
(b + f)+ (c + g), which implies that {(a, b)) + {(e, f)) = ((c, d)) + (g, h)). m]

In what follows, we use a single symbol, like x, y or z to denote an integer, but
remember that each integer is in fact an entire equivalence class whose elements are
ordered pairs of natural numbers.

Theorem B.40. Forallx,y,z €Z,
I. x+y=y+x;
2. x+(y+z)=x+y)+z and
3. x+y=x+zimpliesy = z.

Next, we define a second binary operation called multiplication, and denoted x X y,
x*y orjust xy. When x = ((a, b)) and y = {(c, d)), we define:

xy ={(a,b)){(c,d)) = {(ac + bd,ad + bc)).
Theorem B.41. Multiplication is well defined. Furthermore,
1. xy = yx, forevery x, y € Z.
2. x(yz) = (xy)z, forevery x, y,z € Z.
3. x(y+z)=xy +xz, forevery x,y,z € Z.

The integer ((0,0)) has a number of special properties. Note that for all x € Z,
x + ((0,0)) = x and x{(0,0)) = {(0,0)). So most folks call {(0,0)) zero and denote it
by 0. This is a terrible abuse of notation, since we have already used the word zero and
the symbol 0 to denote a particular natural number.

But mathematicians, computer scientists and even real people do this all the time.
We use the same word and even the same phrase in many different settings expecting
that the listener will make the correct interpretation. For example, how many different
meanings do you know for You're so bad?

If x = {(a,b)) is an integer and y = ((b,a)), then x + y = {((a + b,a + b)) = 0.
The integer y is then called the additive inverse of x and is denoted —x. The additive
inverse of x is also called minus x. The basic property is that x + (—x) = 0, for every
x €”Z.

We can now define a new binary operation, called subtraction and denoted —, on
Z by setting x —y = x + (—y). In general, subtraction is neither commutative nor
associative. However, we do have the following basic properties.

352

B.16 Obtaining the Rationals from the Integers

Theorem B.42. Forallx,y,z €Z,
1. x(-y) = —xy;
2. x(y—z)=xy —xz;and

3. —(x-y)=y-—-x

Next, we define a total order on Z by setting x < yinZwhenx = {((a, b)), y = {(c, d))
anda +d < b+ cin Ny.

Theorem B.43 (Monotonic Law for Addition). Letx,y,z € Z. Ifx < y, then x+z < y+z.
Furthermore, if x < y, then x +z < y + z.

For multiplication, the situation is more complicated.
Theorem B.44 (Monotonic Law for Multiplication). Let x,y,z € Z. If x < y, then
1. xz <yz,ifz >0,
2. xz=yz=0,ifz=0,and
3. xz>yz,ifz <0.

Now consider the function f : Ny — Z defined by f(n) = ((n,0)). It is easy to
show that f is an injection. Furthermore, it respects addition and multiplication, i.e.,
f(n+m)=f(n)+ f(m)and f(nm) = f(n)f(m). Also, note that if x € Z, then x > 0 if
and only if x = f(n) for some n € Np. So, it is customary to abuse notation slightly and
say that Ny is a “subset” of Z. Similarly, we can either consider the set N of positive
integers as the set of natural numbers that are successors, or as the set of integers that
are greater than 0.

When 7 is a positive integer and 0 is the zero in Z, we define 0" = 0. When x € Z,

x # 0and n € Ny, we define x" inductively by (i) x* = 1 and x**! = xxk.

Theorem B.45. Ifx € Z, x # 0, and m,n € Ny, then x™x™ = x™*" and (x™)" = x"".

B.16 Obtaining the Rationals from the Integers

We consider the set Q of all ordered pairs in Z X Z of the form (x, y) with y # 0. Ele-
ments of Q are called rational numbers, or fractions. Define an equivalence relation,
denoted =, on Q by setting (x, y) = (z, w) if and only if xw = yz. Here we should point
out that the symbol = can be used (and often is) to denote an equivalence relation. It
is not constrained to mean “identically the same.”

353

Appendix B Background Material for Combinatorics

When g = (x, y) is a fraction, x is called the numerator and y is called the denomi-
nator of 4. Remember that the denominator of a fraction is never zero.
Addition of fractions is defined by

(a,b)+(c,d) = (ad + bc, bd),
while multiplication is defined by
(a,b)(c,d) = (ac, bd).

As was the case with integers, it is important to pause and prove that both operations
are well defined.

Theorem B.46. Let x,y,z,w € Q. Ifx =yand z = w, then x + z = y + w and xz = yw.

Addition and multiplication are both associative and commutative. Also, we have
the distributive property.

Theorem B.47. Let x,y,z € Q. Then
1. x+y=y+xand xy = yx.
2. x+(y+z)=x+y)+zand x(yz) = (xy)z.
3. x(y+2z)=xy +xz.

The additive inverse of a fraction (a, b) is just (—a, b). Using this, we define subtrac-
tion for fractions: (a,b) — (c,d) = (a, b) + (-c, d).

When (a, b) is a fraction, and a # 0, the fraction (b, a) is the reciprocal of (a, b). The
reciprocal is also called the multiplicative inverse, and the reciprocal of x is denoted
x~1. When y # 0, we can then define division by setting x/y = xy,i.e., (a,b)/(c,d) =
(ad, bc). Of course, division by zero is not defined, a fact that you probably already
knew!

As was the case for both Ny and Z, when 7 is a positive integer, and 0 is the zero in
Q, we define 0" = 0. When x = (a, b) is a fraction with x # 0 and 7 is a non-negative
integer, we define x” inductively by (i) x° = 1 and (ii) x"*! = xx".

Theorem B.48. Ifx € Q, x # 0, and m, n € Z, then x"x™ = x"*" and (x™)" = x™".

Many folks prefer an alternate notation for fractions in which the numerator is writ-
ten directly over the denominator with a horizontal line between them, so (2, 5) can
also be written as 2.

Via the map g(x) = (x,1) = §, we again say that the integers are a “subset” of the
rationals. As before, note that g(x + y) = g(x) + g(y), g(x — y) = g(x) — g(y) and

g(xy) = g(x)g(y).

354

B.17 Obtaining the Reals from the Rationals

In the third grade, you were probably told that 5 = 2, but by now you are realizing
that this is not exactly true. Similarly, if you had told your teacher that 3 and § weren't
really the same and were only “equal” in the broader sense of an equivalence relation
defined on a subset of the cartesian product of the integers, you probably would have
been sent to the Principal’s office.

Try to imagine the trouble you would have gotten into had you insisted that the real
meaning of 3 was

% = (({(s(s(0)), 5(0))), ((s(s(0)), 0))))

We can also define a total order on Q. To do this, we assume that (a, b), (¢, d) € Q have
b,d > 0. (If b < 0, for example, we would replace it by (a’, b’) = (—a, —b), which is in
the same equivalence class as (4, b) and has b’ > 0.) Then we set (a,b) < (¢, d) in Q if
ad < bcinZ.

B.16.1 Integer Exponents

When # is a positive integer and 0 is the zero in Q, we define 0" = 0. When x € Q,
x # 0and n € Ny, we define x" inductively by (i) x* = 1 and x**! = xx*. Whenn € Z
andn <0, wesetx” =1/x7".

Theorem B.49. Ifx € Q, x #0,and m,n € Z, then x"x™ = x"*" and (x™)" = x™".

B.17 Obtaining the Reals from the Rationals

A full discussion of this would take us far away from a discrete math class, but let’s at
least provide the basic definitions. A subset S C Q of the rationals is called a cut (also,
a Dedekind cut), if it satisfies the following properties:

1. 0 # S # Q,ie, Sisaproper non-empty subset of Q.
2. x€Sand y < xin Qimpliesy € S, forall x, y € Q.
3. For every x € S, there exists y € S with x < y, i.e., S has no greatest element.

Cuts are also called real numbers, so a real number is a particular kind of set of
rational numbers. For every rational number g, theset § = {p € Q : p < g} is a cut.
Such cuts are called rational cuts. Inside the reals, the rational cuts behave just like the
rational numbers and via the map h(g) = §, we abuse notation again (we are getting
used to this) and say that the rational numbers are a subset of the real numbers.

But there are cuts which are not rational. Hereisone: {p €e Q:p <0} U{p € Q:
p? < 2}. The fact that this cut is not rational depends on the familiar proof that there
is no rational g for which g2 = 2.

355

Appendix B Background Material for Combinatorics

The operation of addition on cuts is defined in the natural way. If S and T are cuts,
set S+ T ={s+t:s5€S5,t e T} Orderon cuts is defined in terms of inclusion, i.e.,
S < Tifand only if S ¢ T. A cut is positive if it is greater than 0. When S and T are
positive cuts, the product ST is defined by

ST=0U{st:seS,teT,s>0,t>0}.

One can easily show that there is a real number r so that 72 = 2. You may be surprised,
but perhaps not, to learn that this real number is denoted V2.
There are many other wonders to this story, but enough for one day.

B.18 Obtaining the Complex Numbers from the Reals

By now, the following discussion should be transparent. The complex number system
C is just the cartesian product R x R with

1. (a,b) =(c,d)inCifand onlyifa =cand b =d in R,
2. (a,b)+(c,d)=(a+c,b+d).
3. (a,b)(c,d) = (ac —bd,ad + bc).

Now the complex numbers of the form (a, 0) behave just like real numbers, so is nat-
ural to say that the complex number system contains the real number system. Also,
note that (0,1)? = (0,1)(0,1) = (-1, 0), i.e., the complex number (0, 1) has the property
that its square is the complex number behaving like the real number —1. So it is con-
venient to use a special symbol like i for this very special complex number and note
that i? = —1.

With this beginning, it is straightforward to develop all the familiar properties of the
complex number system.

B.18.1 Decimal Representation of Real Numbers

Every real number has a decimal expansion—although the number of digits after the
decimal point may be infinite. A rational number g = m/m from Q has an expansion
in which a certain block of digits repeats indefinitely. For example,

_2329 = 81.6857142857142857142857142857142857142857142 . ..

In this case, the block 857142 of size 6 is repeated forever.

356

B.18 Obtaining the Complex Numbers from the Reals

Certain rational numbers have terminating decimal expansions. For example, we
know that 385/8 = 48.125. If we chose to do so, we could write this instead as an
infinite decimal by appending trailing 0’s, as a repeating block of size 1:

% = 48.1250000000000000000000000000000000.. . .

On the other hand, we can also write the decimal expansion of 385/8 as

% = 48.12499999999999999999999999999999999 . . .

Here, we intend that the digit 9, a block of size 1, be repeated forever. Apart from this
anomaly, the decimal expansion of real numbers is unique.

On the other hand, irrational numbers have non-repeating decimal expansions in
which there is no block of repeating digits that repeats forever.

You know that V2 is irrational. Here is the first part of its decimal expansion:

V2 = 1.41421356237309504880168872420969807856967187537694807317667973 . . .

An irrational number is said to be algebraic if it is the root of polynomial with integer
coefficients; else it is said to be transcendental. For example, V2 is algebraic since it is
the root of the polynomial x? — 2.

Two other famous examples of irrational numbers are 7 and e. Here are their deci-
mal expansions:

1t = 3.14159265358979323846264338327950288419716939937510582097494459 . . .
and

e = 2.7182818284590452353602874713526624977572470936999595749669676277 . . .
Both 7 and e are transcendental.

Example B.50. Amanda and Bilal, both students at a nearby university, have been
studying rational numbers that have large blocks of repeating digits in their decimal
expansions. Amanda reports that she has found two positive integers m and n with
n < 500 for which the decimal expansion of the rational number m/n has a block of
1961 digits which repeats indefinitely. Not to be outdone, Bilal brags that he has found
such a pair s and ¢ of positive integers with ¢ < 300 for which the decimal expansion of
s/t has a block of 7643 digits which repeats indefinitely. Bilal should be (politely) told
to do his arithmetic more carefully, as there is no such pair of positive integers (Why?).
On the other hand, Amanda may in fact be correct—although, if she has done her work
with more attention to detail, she would have reported that the decimal expansion of
m /n has a smaller block of repeating digits (Why?).

357

Appendix B Background Material for Combinatorics

Proposition B.51. There is no surjection from N to the set X = {x € R: 0 < x < 1}.

Proof. Let f be a function from N to X. For each n € N, consider the decimal expan-
sion(s) of the real number f(n). Then choose a positive integer a, so that (1) a, < 8§,
and (2) a, is not the n'" digit after the decimal point in any decimal expansion of f(1).
Then the real number x whose decimal expansionis x = .a142a43a445 . . . is an element of
X which is distinct from f(n), for every n € N. This shows that f isnota surjection. O

B.19 The Zermelo-Fraenkel Axioms of Set Theory

In the first part of this appendix, we put number systems on a firm foundation, but in
the process, we used an intuitive understanding of sets. Not surprisingly, this approach
is fraught with danger. Aswas first discovered more than 100 years ago, there are major
conceptual hurdles in formulating consistent systems of axioms for set theory. And it
is very easy to make statements that sound “obvious” but are not.

Here is one very famous example. Let X and Y be sets and consider the following
two statements:

1. There exists an injection f : X — Y.
2. There exists a surjection g : Y — X.

If X and Y are finite sets, these statements are equivalent, and it is perhaps natural
to surmise that the same is true when X and Y are infinite. But that is not the case.

Here is the system of axioms popularly known as ZFC, which is an abbreviation for
Zermelo-Fraenkel plus the Axiom of Choice. In this system, the notion of set and the
membership operator € are undefined. However, if A and B are sets, then exactly one
of the following statements is true: (i) A € B is true; (ii) A € B is false. When A € B is
false, we write A ¢ B. Also, there is an equivalence relation = defined on sets.

Axiom B.52 (Zermelo-Fraenkel Axioms with Axiom of Choice).
Axiom of extensionality Two sets are equal if and only if they have the same elements.
Axiom of empty set There is a set () with no elements.

Axiom of pairing If x and y are sets, then there exists a set containing x and y as its only
elements, which we denote by {x, y}. Note: If x = y, then we write only {x}.

Axiom of union For any set x, there is a set y such that the elements of y are precisely the
elements of the elements of x.

Axiom of infinity There exists a set x such that O € x and whenever y € x, sois {y, {y}}.

358

B.19 The Zermelo-Fraenkel Axioms of Set Theory
Axiom of power set Every set has a power set. That is, for any set x, there exists a set y,
such that the elements of y are precisely the subsets of x.

Axiom of regularity Every non-empty set x contains some element y such that x and y are
disjoint sets.

Axiom of separation (or subset axiom) Given any set and any proposition P(x), there is
a subset of the original set containing precisely those elements x for which P(x) holds.

Axiom of replacement Given any set and any mapping, formally defined as a proposition
P(x,y) where P(x, y1) and P(x, y) implies y1 = Yo, there is a set containing precisely
the images of the original set’s elements.

Axiom of choice Given any set of mutually exclusive non-empty sets, there exists at least one
set that contains exactly one element in common with each of the non-empty sets.

A good source of additional (free) information on set theory is the collection of
Wikipedia articles. Do a web search and look up the following topics and people:

1. Zermelo-Fraenkel set theory.
2. Axiom of Choice.
3. Peano postulates.

4. Georg Cantor, Augustus De Morgan, George Boole, Bertrand Russell and Kurt
Godel.

359

Symbol

n!

P(m,n)

()

C(n, k)
(kl,kz,l:ls,...,k,)

NP
degg(v)
Ky

I,

P,

Cu

x(G)
w(G)
x|ly
height(P)
width(P)

D(x), D(S), D[x], D[S]
U(x), U(S), U[x], U[S]

P+Q
P(n)
()
Af(n)

APPENDIX C -

List of Notation

Description

n factorial

number of permutations
binomial coefficient

binomial coefficient (inline)
multinomial coefficient
polynomial time problems
nondeterministic polynomial time problems
degree of vertex v in graph G
complete graph on n vertices
independent graph on n vertices
path with n vertices

path with n vertices

chromatic number of a graph G
clique number of G

x and y are incomparable
height of poset P

width of poset P

down set

up set

chain with #n points

disjoint sum of posets

Euler ¢ function

generalized binomial coefficient
advancement operator applied to f (1)

Page

20
20
21
21
30
65
66
70
70
70
71
71
81
84
118
119
119
123
123
128
128
149
166
188

(Continued on next page)

361

Appendix C List of Notation

Symbol

P(A|B)
C(X, k)
R(m,n)
(®
stabg(C)
E

xeX
x¢X
XNy
XUy

ZRONZS

=

Xcy
XgyYy
XxXY
f:X—>Y
f:X1—_1—>Y
f: X—Y
onto
Fix Ly

onto
X

362

Description

probability of A given B
family of all k-element subsets of X
Ramsey number

equivalence class of C
stabilizer of C under action of G
complement of event E

x is a member of the set X

x is not a member of the set X
intersection of X and Y

union of X and Y

empty set

set of positive integers

set of integers

set of rational numbers

set of real numbers

set of non-negative integers
{1,2,...,n}

X is a subset of Y

X is a proper subset of Y
cartesian product of X and Y
f is a function from X to Y

f is an injection from X to Y
f is a surjection from X to Y
f is a bijection from X to Y

cardinality of set X

Page

216
229
230
298
298
326
333
333
334
335
336
336
336
336
336
336
336
336
336
337
338

338
338
338
339

absorbing

Markov chain, 321

state of a Markov chain, 321
addition

formal definition of, 342
adjacent vertices, 69
algorithm

on-line, 315

polynomial time, 65
alphabet, 17
antichain, 118
antisymmetric, 346
arithmetic progression, 325
array, 17
automorphism

of poset, 119

basis step, 51

Bernoulli trials, 217

big Oh notation, 63

bijection, 338

binomial coefficient, 21, 25, 29
formula for, 21
generalized, 166
recursive formula for, 42

binomial theorem, 29
Newton'’s, 166

bit string, see string, binary

capacity

of a cut, 261

of an edge, 259
cardinality, 339

Index

cartesian product, 337
Catalan number, 27
Cayley’s formula, 97
certificate, 62
chain, 118
chain partition, 284
characters, 17
chromatic number, 81, 234
circuit, 76
clique, 84

maximum size, 84
clique number, 84
Collatz sequence, 9
coloring

proper, 81
combination, 21

number of

formula for, 21

comparable, 118
complex number

formal definition of, 356
component, 73

of poset, 120
connected

poset, 120
conservation law, 259, 260
cover, 115
cut, 261

Dedekind, 355
cycle, 71

directed, 245
cycle index, 301

363

INDEX

degree of a vertex, 70
denominator, 354
derangement, 147
digraph, 245
Dijkstra’s algorithm, 246
Dilworth’s theorem, 122
dual of, 122
dimension, 139
distance, 245
divides, 45
division theorem, 45
divisor, 45
common, 45
greatest common, 45
down set, 123
drawing of a graph, 89
planar, 89
dual, 120

edge, 69
directed, 245
multiple, 75
element, 333
embedding, 119
equivalence classes, 350
Erdds-Ko-Rado Theorem, 319
Euclidean algorithm, 45
Euler ¢ function, 149
Euler’s formula, 90
eulerian
circuit, 76
trail, 105
event, 215
dependent, 217
independent, 217
expectation, 218
expected value, see expectation

face, 89
factorial

364

definition, 20

recursive definition, 41
Fibonacci

numbers, 183

sequence, 184, 187
flow, 259

value of, 260
Ford-Fulkerson labeling algorithm,

268

forest, 73, 316
full house (poker hand), 216
function, 337

injective, 59

one-to-one, 59, 338

onto, 338

Gale-Ryser theorem, 325

generating function, 157
and solving recurrences, 202
exponential, 170
ordinary, 170

girth, 108, 234

graph, 69
2-colorable, 82
acyclic, 73
bipartite, 83

matching in, 280

comparability, 118, 120
complete, 70
connected, 73
cover, 115,121
directed, see digraph
disconnected, 73
eulerian, 75
hamiltonian, 79
incomparability, 118
independent, 70
intersection, 87
interval, 87
labeled, 307

oriented, 259

perfect, 88

planar, 89

regular, 291

shortest path in, 246

simple, 75

unlabeled, 307
greatest common divisor, see divisor,

greatest common

Euler ¢ function, 149
ground set, 114
group, 294

permutation, 294

symmetric, 295

hamiltonian

cycle, 79
Hasse diagrams, 116
hat check problem, 147
height, 119
homeomorphic, 92

incident to, 69
incomparable, 118
independent
event, 217
random variables, 222
induction
principle of mathematical, 49, 341
strong, 54
inductive hypothesis, 51
inductive step, 51
injection, 59, 338
input size, 63
integers
formal definition of, 351
positive, 349
intersection, 334
interval order, 128
interval representation, 128

INDEX

distinguishing, 128
inverse, 294
isomorphism

of graphs, 72

of posets, 119

Kruskal’s algorithm, 243

labeling algorithm, 268
lattice, 126
subset, 126
lattice path, 26
counting, 27
number not crossing v = x, 27
leaf, 74
length, 245
of arithmetic progression, 325
of path or cycle, 71
letter, 17
linear diophantine equation, 46
linear extension, 125, 134
little oh notation, 64
loop, 75
Lovész Local Lemma, 329
asymmetric, 326
symmetric, 328

Markov chain, 320
matching, 280
maximum, 280
stable, 322
matrix
stochastic, 320
transition, 320
zero—one, 323, 325
maximal
antichain, 123
chain, 123
points of a poset, 123
maximum
antichain, 123

365

INDEX

chain, 123
mean, see expectation
membership, 333
merge sort, 47
minimal
point of a poset, 122
minimum weight spanning tree
Kruskal’s algorithm for, 243
minimum weight spanning trees
Prim’s algorithm for, 244
multigraph, 75
multinomial coefficient, 30
multinomial theorem, 30
multiplicative inverse, 354

natural numbers, 341
neighbor, 70
neighborhood (of a vertex), 70
network, 259
network flow, 259
nondeterministic polynomial time, 66
notes
musical, 304
numerator, 354

octave, 304
operation
binary, 342
operations, 62
operator
advancement, 188
linear, 199
or
exclusive, 335
inclusive, 335
order
linear, 116
partial, 114, 346
total, 116, 346
on natural numbers, 347

366

ordered pairs, 337
outcomes, 215

partially ordered set, 114
partition
antichain, 317
dual, 324
of an integer, 168, 325
path, 71
augmenting, 264
directed, 245
pattern inventory, 303
Peano postulates, 341
permutation, 20, 294
cycle notation for, 295
function, 143
pigeon hole principle, 59
generalized, 85
planar drawing, see drawing of a
graph, planar
poset, 114
potential, 268
Prim’s algorithm, 244
principle of inclusion-exclusion, 145
probability, 215
conditional, 216
measure, 215
space, 214
proof
combinatorial, 22
Priifer code, 97
pseudo-alphabetic order, 267

Ramsey number, 230, 328
small, 231
symmetric, 232
Ramsey’s theorem, 230, 233, 234
random variable, 218
rational numbers, 353
real number

formal definition of, 355
reciprocal, 354
recurrence equation
constant coefficients, 187, 189
general solution, 191
homogeneous, 187
linear, 186
nonconstant coefficients, 187
nonlinear, 205
particular solution, 195
recurrence equations
nonhomogeneous, 194
recursive definition, 42
reflexive, 346
regular
transition matrix, 321
relation
binary, 337, 346
equivalence, 134, 350
symmetric, 134

sampling
without replacement, 215
scale, 304
sequence, 17
series
finite geometric, 158
sum of, 159
infinite geometric, 157
sum of, 157, 158
set, 333
empty, 336
finite, 339
infinite, 339
Zermelo-Fraenkel axioms, 358
Sigma-notation
definition of, 41
sink, 259
sorting, 47
source, 259

stabilizer, 298
standard deviation, 222
statement

open, 49
statements

meaning of, 40
string, 17

binary, 18, 22, 185

column sum, 323

row sum, 323

ternary, 18,171, 185, 191
subdivision

elementary, 92
subgraph, 70

induced, 70

spanning, 70
subposet, 118
subset, 336

proper, 336
successor, 341
Sudoku puzzle, 15
surjection, 338
symmetric, 350

threshold probability, 236, 237
transitive, 346
transposition
of a scale, 304
tree, 73
binary, 205
ordered, 205
rooted, 205
spanning, 73, 239
unlabeled, 205
trees
labeled, 96

union, 335
up set, 123

variance, 222

INDEX

367

INDEX

vertex, 69 weight, 239
well ordered property, 40
walk, 71 word, 17

368

This book was authored in PreTeXt. For the I£IEX version, TEX Gyre Pagella was used
as the body font with newpxmath used to select the font for mathematical symbols. The
IATEX document class is scrbook from the KOMA-Script package. The HTML version uses
the mathbook-4.css color scheme.

http://mathbook.pugetsound.edu

	Summary of Contents
	About the Authors
	Acknowledgements
	Preface
	Preface to 2017 Edition
	Preface to 2016 Edition
	Contents
	Prologue
	An Introduction to Combinatorics
	Introduction
	Enumeration
	Combinatorics and Graph Theory
	Combinatorics and Number Theory
	Combinatorics and Geometry
	Combinatorics and Optimization
	Sudoku Puzzles
	Discussion

	Strings, Sets, and Binomial Coefficients
	Strings: A First Look
	Permutations
	Combinations
	Combinatorial Proofs
	The Ubiquitous Nature of Binomial Coefficients
	The Binomial Theorem
	Multinomial Coefficients
	Discussion
	Exercises

	Induction
	Introduction
	The Positive Integers are Well Ordered
	The Meaning of Statements
	Binomial Coefficients Revisited
	Solving Combinatorial Problems Recursively
	Mathematical Induction
	Inductive Definitions
	Proofs by Induction
	Strong Induction
	Discussion
	Exercises

	Combinatorial Basics
	The Pigeon Hole Principle
	An Introduction to Complexity Theory
	The Big ``Oh'' and Little ``Oh'' Notations
	Exact Versus Approximate
	Discussion
	Exercises

	Graph Theory
	Basic Notation and Terminology for Graphs
	Multigraphs: Loops and Multiple Edges
	Eulerian and Hamiltonian Graphs
	Graph Coloring
	Planar Graphs
	Counting Labeled Trees
	A Digression into Complexity Theory
	Discussion
	Exercises

	Partially Ordered Sets
	Basic Notation and Terminology
	Additional Concepts for Posets
	Dilworth's Chain Covering Theorem and its Dual
	Linear Extensions of Partially Ordered Sets
	The Subset Lattice
	Interval Orders
	Finding a Representation of an Interval Order
	Dilworth's Theorem for Interval Orders
	Discussion
	Exercises

	Inclusion-Exclusion
	Introduction
	The Inclusion-Exclusion Formula
	Enumerating Surjections
	Derangements
	The Euler phi Function
	Discussion
	Exercises

	Generating Functions
	Basic Notation and Terminology
	Another look at distributing apples or folders
	Newton's Binomial Theorem
	An Application of the Binomial Theorem
	Partitions of an Integer
	Exponential generating functions
	Discussion
	Exercises

	Recurrence Equations
	Introduction
	Linear Recurrence Equations
	Advancement Operators
	Solving advancement operator equations
	Formalizing our approach to recurrence equations
	Using generating functions to solve recurrences
	Solving a nonlinear recurrence
	Discussion
	Exercises

	Probability
	An Introduction to Probability
	Conditional Probability and Independent Events
	Bernoulli Trials
	Discrete Random Variables
	Central Tendency
	Probability Spaces with Infinitely Many Outcomes
	Discussion
	Exercises

	Applying Probability to Combinatorics
	A First Taste of Ramsey Theory
	Small Ramsey Numbers
	Estimating Ramsey Numbers
	Applying Probability to Ramsey Theory
	Ramsey's Theorem
	The Probabilistic Method
	Discussion
	Exercises

	Graph Algorithms
	Minimum Weight Spanning Trees
	Digraphs
	Dijkstra's Algorithm for Shortest Paths
	Historical Notes
	Exercises

	Network Flows
	Basic Notation and Terminology
	Flows and Cuts
	Augmenting Paths
	The Ford-Fulkerson Labeling Algorithm
	A Concrete Example
	Integer Solutions of Linear Programming Problems
	Exercises

	Combinatorial Applications of Network Flows
	Introduction
	Matchings in Bipartite Graphs
	Chain partitioning
	Exercises

	Pólya's Enumeration Theorem
	Coloring the Vertices of a Square
	Permutation Groups
	Burnside's Lemma
	Pólya's Theorem
	Applications of Pólya's Enumeration Formula
	Exercises

	The Many Faces of Combinatorics
	On-line algorithms
	Extremal Set Theory
	Markov Chains
	The Stable Matching Theorem
	Zero–One Matrices
	Arithmetic Combinatorics
	The Lovász Local Lemma
	Applying the Local Lemma

	Epilogue
	Background Material for Combinatorics
	Introduction
	Intersections and Unions
	Cartesian Products
	Binary Relations and Functions
	Finite Sets
	Notation from Set Theory and Logic
	Formal Development of Number Systems
	Multiplication as a Binary Operation
	Exponentiation
	Partial Orders and Total Orders
	A Total Order on Natural Numbers
	Notation for Natural Numbers
	Equivalence Relations
	The Integers as Equivalence Classes of Ordered Pairs
	Properties of the Integers
	Obtaining the Rationals from the Integers
	Obtaining the Reals from the Rationals
	Obtaining the Complex Numbers from the Reals
	The Zermelo-Fraenkel Axioms of Set Theory

	List of Notation
	Index

