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Improved Thrust Performance Optimization Method for UAVs
Based on the Adaptive Margin Control Approach

Yeguang Wang 1,2, Honglin Liu 3,* and Kai Liu 3
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Abstract: This study proposes a strategy for improving the thrust performance of fixed-wing UAV
turbine engines from the perspective of aircraft/engine integration. In the UAV engine control
process, the inlet distortion caused by the angle of attack change is taken into account, the inlet
distortion index is calculated in real time by predicting the angle of attack, and the influence of the
inlet distortion on the engine model is analyzed mechanically. Then, the pressure ratio command is
adjusted according to the new compressor surge margin requirement caused by the inlet distortion
to finally improve the engine thrust performance. To verify the effectiveness of the algorithm, an
adaptive disturbance rejection controller is designed for the flight control of a fixed-wing UAV to
complete the simulation of horizontal acceleration. The simulation results show that, with this
strategy, the UAV turbofan engine can improve the turbofan engine thrust performance by more than
8% under the safety conditions.

Keywords: unmanned aerial vehicle; aircraft/engine integration; thrust optimization; adaptive
margin model; adaptive disturbance rejection control

MSC: 37M10

1. Introduction

The unmanned aerial vehicle (UAV), as a rapidly developing aircraft technology,
plays an important role in many fields [1–3], such as large-scale display activities, aerial
photography entertainment, mapping and geological exploration, agricultural spraying,
police patrol, electric power inspection, etc. [4]. UAV propulsion systems have a decisive
influence on the performance, cost, and reliability of UAVs. With the continuous enrichment
of application scenarios, different types of power units have been developed for different
requirements of UAVs in terms of flight speed, flight altitude, maneuvering overload,
landing and take-off methods, range, and economic indicators [5]. Most of the power
units currently installed on advanced UAVs are turbofan engines, and this status quo
will not change for a long time to come. Li conducted work related to the prediction
of future UAV power development trends [6], summarized the overloaded advanced
typical combat UAVs and the main parameters of power, and compared the payloads
of several types of UAVs under development with those of manned fighter aircraft in
service. The study shows that the development of large-thrust turbofan engines is one of
the future unmanned fighter power development trends. Hu analyzed the requirements of
various unmanned aircraft systems for propulsion systems and the impact of propulsion
system technology on the performance of UAVs [7,8]. Chen analyzed the development
requirements of different types of engines for UAVs and proposed the integrated design of
the full authority digital engine control (FADEC) system of a vehicle/engine/propeller for
optimal performance matching output [9]. In summary, the research on the improvement
of the thrust performance of future UAV turbine engines has considerable value, and this

Mathematics 2023, 11, 1176. https://doi.org/10.3390/math11051176 https://www.mdpi.com/journal/mathematics1
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part of the work is not abundant at present. Cheng [10] proposed a turbofan engine Turbine
Inter Burner (TIB) supplemental combustion and thrust augmentation thermodynamic
cycle scheme based on ultra-compact combustion UCC technology, increasing the engine
unit thrust significantly. Dong [11] analyzed the effect of jet pre-cooling on the high- and
low-pressure shaft torque, obtained the characteristics of the effect of jet pre-cooling on
the control scheme, and also designed the relevant control scheme to adjust the nozzle
and buck ratio limiting strategies, thus improving the engine speed performance. Sun [12]
established a piecewise linear model of the turbofan engine and used a weighted prediction
method to effectively estimate the thrust of the engine and track the set expected thrust to
achieve maximum compensation for the thrust loss, and the simulation results showed that
the whole thrust control system can ensure the safe operation of the engine and achieve
effective thrust boost.

The existing related work lacks the ability to improve powertrain performance from
an aircraft/engine integration perspective, and the integrated control of UAVs and engines
can seek the best match of their performance. In the aircraft/engine integration research,
the stability control technology of the turbo-fan engine is essential. The influence of inlet
distortion on the performance and stability of turbine engines is first considered, which is a
common phenomenon that occurs widely in turbo-fan engines; the geometric asymmetry
of the inlet airflow channel of the compressor, the obstruction of the local inlet airflow
by the leading edge of the compressor inlet when the aircraft is flying at a large angle
of attack, and the uneven distribution of the temperature and density of the compressor
inlet flow field by the missile trailing combustion airflow are the main reasons [13,14]. In
order to solve the problem of the unmeasurable engine surge margin in super maneuvering
flight, Wang [15] proposed a modeling method of the engine surge margin and verified
that the above scheme can accurately control the engine surge margin at 11~13% by the
numerical simulation of maneuvering flight with a large angle of attack, which ensures the
stability and high efficiency of engine operation. Liu [16] concluded that inlet distortion is
an important factor affecting engine stability. To meet the inlet distortion requirements, the
engine design needs to make large concessions; in other words, the inlet distortion required
for the surge margin greatly reduces the performance of the design point of the compression
system. This reduction in margin translates directly into improved system capabilities.

Indeed, the current strategy, which considering flight control and engine control
separately, is capable of achieving the optimal performance of each subsystem. However,
the overall performance cannot be optimized since the change in engine operation caused
by the angle of attack is not taken into account. A large margin of surge is usually given
in the control in order to ensure the safety of the compressor operation, which sacrifices a
certain engine performance. Inspired by the development of aero-engine stability control
technology, this paper proposes a method for improving the thrust performance of future
UAVs. This method incorporates engine stability assessment into the engine control process,
calculates the requirement of the compressor surge margin associated with the engine
stability influence factor in real time, and evaluates the compressor stability, allowing the
control system to minimize the surge margin to improve the engine performance and thus
enhance the engine thrust performance.

2. Dynamical Modeling and Problem Description

In order to evaluate the UAV thrust performance improvement, UAV flight simulation
under certain flight profiles is required, so the UAV dynamics model is first established.

2.1. UAV Dynamics Modeling
2.1.1. UAV Modeling Assumptions

Considering that the mass of the turbine engine-powered UAV is time-varying during
flight and its structure is strong and elastic, there are also centrifugal and Gauche accelera-
tions; thus, the aerodynamic forces acting on the UAV are affected by many variables such
as its aerodynamic layout, structural elasticity, and flight state, which sometimes cannot be

2
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modeled mathematically accurately. Therefore, the primary factors should be considered
when modeling the UAV, ignoring the secondary factors. Figure 1 shows a diagram of the
coordinate system of the UAV body. The following assumptions need to be considered in
the mathematical modeling of scaled-down UAVs.

Figure 1. Diagram of the UAV body coordinate system.

• The mass of the UAV does not change during flight for a short period of time.
• The UAV is an ideal rigid body, and the effects of aircraft elasticity are ignored.
• The UAV is affected only by the acceleration of gravity, and the curvature of the Earth

is neglected.
• Since the UAV is symmetric about the x − y plane, Ixz = 0 and Iyz = 0.
• The change in the aircraft center of mass with fuel is neglected during the UAV.

2.1.2. Dynamics Equations

The dynamics equations for the motion of the center of mass of the UAV are established
as follows.⎧⎪⎨⎪⎩

m
.

V = P cos α cos β − X − mg sin θ

mV
.
θ = P(sin α cos γV + cos α sin β sin γV) + Y cos γV − Z sin γV − mg cos θ

−mV
.
ψV cos θ = P(sin α sin γV − cos α sin β cos γV) + Y sin γV + Z cos γV

(1)

where m is the UAV mass, V is the UAV velocity, X,Y,Z are the drag lift and lateral force,
respectively, P is the UAV thrust, α, β are the angle of attack and sideslip angle, θ is the
flight path angle, γV is the speed tilt angle, and ψV is the trajectory deflection angle.

The dynamics equations of the UAV rotational motion are as follows

.
ωx =

(
− (Izz−Iyy)Iyy−I2

xy

Ixx Iyy−I2
xy

ωy − (Ixx−Izz+Iyy)Ixy

Ixx Iyy−I2
xy

ωx

)
+

Iyy

Ixx Iyy−I2
xy

Mx +
Ixy

Ixx Iyy−I2
xy

My

.
ωy =

(
(Ixx−Izz+Iyy)Ixy

Ixx Iyy−I2
xy

ωy − (Ixx−Izz)Ixx+I2
xy

Ixx Iyy−I2
xy

ωx

)
ωz +

Ixy

Ixx Iyy−I2
xy

Mx +
Ixx

Ixx Iyy−I2
xy

My

.
ωz = − Iyy−Ixx

Izz
ωxωy +

Ixy
Izz

(
ω2

x − ω2
y

)
+ Mz

Izz

(2)

where ωx, ωy, ωz are the angular velocities of rotation of the UAV relative to the ground coor-
dinate system, Mx, My, Mz are the components of the moments of all external forces acting
on the UAV on the center of mass in the UAV body coordinate system, and Ixz, Iyy, Izz, Ixy
are inertia tensor elements.

2.1.3. Kinematic Equations

In the modeling, it is assumed that the UAV is a rigid body and that the six-degrees-of-
freedom motion of the UAV is the displacement and rotation around the center of mass.

3
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With the help of the transformation matrix of the ground inertial system and the aircraft
dynamic system, the kinematic equations are obtained as follows [17,18].⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

.
x = V cos θ cos ψV.

y = V sin θ
.
z = −V cos θ sin ψV.

ϑ = ωy sin γ + ωz cos γ
.
ψ =

(
ωy cos γ − ωz sin γ

)
/ cos ϑ

.
γ = ωx − tan ϑ

(
ωy cos γ − ωz sin γ

)
(3)

where x, y, z are the center-of-mass position components of the man-machine, ϑ is the pitch
angle, and γ is the roll angle.

2.2. UAV Turbofan Engine Modeling

The object of this study is a twin-shaft small-culvert-ratio mixed-exhaust turbofan
engine containing no afterburner. The main components of the engine include the inlet,
fan, compressor, burner, high-pressure turbine, low-pressure turbine, bypass, mixer, and
nozzle; its structural schematic diagram is shown in Figure 2.

Figure 2. UAV turbofan engine structure schematic.

The aerodynamic and thermal processes during the operation of an aero-engine
are very complex, and, when modeling them, the real physical processes need to be
suitably simplified, and the following assumptions are usually made when modeling at the
component level [19].

• Ignore the effect of the Reynolds number variation on the characteristics of the engine
components; ignore the effect of atmospheric humidity on the parameters of the
thermodynamic properties of the gas; the effect of rotor inertia is considered.

• The flow of air in the engine is treated as quasi one-dimensional flow, i.e., the airflow
parameters are considered to be the same in the same cross-section of the engine.

The idea of component-level modeling is to first establish each component sub-model;
then, build a non-linear system of equations based on the aerodynamic thermodynamic
laws governing the gas flow process, combined with the assumptions of flow continuity
and energy balance; finally, determine the engine operating state by solving the system of
common operating equations to construct the engine model.

When a small-culvert-ratio turbofan engine enters into quasi-steady-state operation,
each component needs to satisfy a series of common operating conditions in mechanical and
aerodynamic aspects, including flow continuity and power balance. It is generally accepted
that the inlet and outlet sections of each component meet the flow continuity condition and
the two rotors meet the power balance condition, i.e., the power from the high-pressure
turbine is balanced with the power consumed by the fan and booster stage, and the power
from the low-pressure turbine is balanced with the power consumed by the high-pressure
compressor. The dynamic engine simulation process also requires an iterative solution

4
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of the common set of operating equations, unlike the steady-state simulation, where the
flow continuity balance condition is still satisfied, but the power balance condition is no
longer satisfied. The high- and low-pressure rotor speeds are no longer used as initial guess
variables but are determined by the speed and acceleration at the previous moment, i.e.,
the power balance conditions are transformed into the rotor dynamics equations.

2.2.1. Inlet

As the inlet section of the engine, the calculation of the relevant parameters of the air
inlet tract is related to the height of the engine. The main parameters of the inlet cross-
section—atmospheric pressure PH in Pa and atmospheric temperature TH in K at different
altitudes (H km)—can be obtained by the atmoscoesa function in MATLAB. The inlet
pressure p∗1, temperature T∗

1 , and flight speed c0 of the engine are calculated as follows.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p∗1 = σi pH

(
1 + k−1

2 M2
H

) k
k−1

T∗
1 = TH

(
1 + k−1

2 M2
H

)
c0 = MH × aH = MH

√
kRTH

(4)

in the above equation, MH is the Mach number; σi is the total pressure recovery factor,
where σi = σi(MH); k is the adiabatic index; and aH is the local speed of sound.

2.2.2. Fan

Assuming the same main and bypass flow pressure ratios and efficiencies of the fan,
we have:

π∗
cL = π∗

cI I , η∗
cL = η∗

cI I (5)

where π∗
cL, π∗

cI I represent the pressure ratios of the main and bypass flow and η∗
cL, η∗

cI I .
represent the overall efficiencies of the main and bypass flow.

The exit section airflow parameters of the turbofan engine fan are calculated as follows.

p∗1.5 = π∗
cL p∗1

p∗2 = p∗1.5

ma = maL,cor
p∗1

101325

√
288
T∗

1

T∗
1.5= T∗

1

(
1 + π∗

cL
r−1

η∗cL

)
T∗

2I I = T∗
1.5

η∗
cL = η∗

cL
(
ncL,cor, π∗

cL, φL
)

maL,cor = maL,cor(ncL,cor, π∗
cL, φL)

(6)

in the above equation, r = k−1
k , where k = k

(
T∗

1.5
)
; ma is the total air flow through the fan;

maL,cor is the converted air flow; φL is the fan adjustable parameter; η∗
cL is the converted

speed at different temperatures. The last two equations in Formula (6) show that the
specific values of maL,cor and η∗

cL are obtained by interpolating the variables associated with
each of them.

2.2.3. Compressor

Similar to the fan characteristics, the generic characteristics of a compressor are calcu-
lated as follows.

maH,cor = maH,cor(ncH,cor, π∗
cH , φH)

η∗
cH = η∗

cH
(
ncH,cor, π∗

cH , φH
) (7)

5
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where maH,cor is the converted air flow; φH is the compressor adjustable parameter; ncH,cor
is the converted speed of the compressor.

If the fan control law φH = φH
(
n∗

cH
)

is known, then the mathematical relationship
between the conversion speed and the rotational speed ncH,cor = nH

√
288/T∗

1.5, and we
can obtain ncH,cor and π∗

cH . Then, from ncH,cor, π∗
cH , and φH , we can calculate maH,cor and

η∗
cH , where the relevant parameters for the outlet section of the compressor are calculated

as follows:
p∗2 = π∗

cH p∗1.5

ma2 = maH,cor
p∗1.5

101325

√
288
T∗

1.5

T∗
2 = T∗

1.5

(
1 + π∗

cH
r−1

η∗cH

) (8)

2.2.4. Burner

The burner characteristics are generally given by the component characteristics test; in
general, the burner efficiency ηb and the total pressure recovery coefficient σb are the main
characteristics parameters of the combustion chamber and are calculated as follows.

ηb = ηb(α̃, p∗2, T∗
2 , T∗

3 )

σb = σb(cb, θ)

α̃ = ma2
m f ·14.8

θ = T∗
3 /T∗

2

(9)

in the above equation, α̃ is the residual gas coefficient of the gas mixture; cb is the gas flow
rate; θ is the heating ratio.

The ηb is calculated from α̃, p∗2, T∗
2 , and T∗

3 (the burner characteristics), and then the
T∗

3 is calculated from the energy balance (by iteration). The energy balance equation is
calculated as follows.

ma2

m f

[
Huηb + h f

(
Tf 0

)
− h f (T∗

3 )
]
− hg(T∗

3 ) + ha(T∗
2 ) = 0 (10)

in the formula above, Tf 0 is the fuel temperature, and ha, h f , and hg denote the enthalpy
per unit (kg) of mass of air, fuel, and fuel after vaporization, respectively.

In summary, the combustion chamber output parameters can be calculated as follows.

p∗3 = σb p∗2
mg3 = ma2 + m f

(11)

2.2.5. High-Pressure Turbine (HPT) and Low-Pressure Turbine (LPT)

The efficiencies of the high-pressure turbine η∗
TH , the gas flow rate mgH,cor, and the

conversion speed nTH,cor are related to the expansion ratio π∗
TH , i.e., its operating state

can be determined from π∗
TH and nTH,cor. The mathematical representation of nTH,cor and

mgH,cor, obtained from the characteristic curve diagram, is as follows.

mgH,cor = mgH,cor(nTH,cor, π∗
TH)

η∗
TH = η∗

TH(nTH,cor, π∗
TH)

(12)

where nTH,cor = nH
√

288/T∗
3 , and T∗

3 is the engine turbine inlet section temperature in the
design condition.

6
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In summary, the high-pressure turbine outlet parameters are calculated as follows.

mg3.5 = mgH,cor
p∗3

101325

√
288
T∗

3

p∗3.5 =
p∗3

π∗
TH

T∗
3.5= T∗

3 [1 − (1 − π∗
TH

−r′)η∗
TH ]

(13)

in the above equation, r′ = k′−1
k′ , where k′ = k′(T∗

3 , α̃) is the adiabatic coefficient of fuel oil
after vaporization.

The structures of the high-pressure turbine and the low-pressure turbine are the
same, as are the models, and the parameters of the low-pressure turbine outlet section can
be obtained.

mg4 = mgL,cor
p∗3.5

101325

√
288
T∗

3.5

p∗4 =
p∗3.5
π∗

TL

T∗
4 = T∗

3.5[1 − (1 − π∗
TL

−r′)η∗
TL]

(14)

in the above equation, r′ = k′−1
k′ , and k′ = k′(T∗

3.5, α̃) is the thermal insulation index. mgL,cor,
π∗

TL, and η∗
TL correspond to mgH,cor, π∗

TH , and η∗
TH , representing the characteristics of the

low-pressure turbine.

2.2.6. Mixer

The gas flow rate contained in the mixing chamber is calculated as follows:

mg4 = K′
g

p∗4 A4Iq(λ4)√
T∗

4
(15)

Equivalently, the above equation is transformed as:

q(λ4) =
mg4
√

T∗
4

p∗4 A4IK′
g

(16)

where K′
g =

√
k′
R′
(

2
k′+1

) k′+1
k′−1 , R′ is the gas constant, k′ = k′

(
T∗

4 , α̃
)
, and A4I is the cross-

sectional area of the inner culvert (main flow) into the mixing room.
Additionally, since q(λ4) can be expressed as

q(λ4) =

(
k′ + 1

2

) 1
k′−1

λ4

(
1 − k′ − 1

k′ + 1
λ4

2
) 1

k′−1
(17)

the above equation leads to λ4, which, in turn, gives

π(λ4) =

(
1 − k′ − 1

k′ + 1
λ4

2
) 1

k′−1
(18)

f (λ4) =
(

λ4
2 + 1

)(
1 − k′ − 1

k′ + 1
λ4

2
) 1

k′−1
(19)

p4 = π(λ4)p∗4 (20)

Again, the main flow and bypass flow pressures are equal, i.e., p4I I = p4, so we have

π(λ4) =
p4I I
p∗4I I

=
p4

σI I p∗2I I
(21)

7
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λ4I I =

√
k + 1
k − 1

{
1 − [π(λ4I I)]

1
k−1

}
(22)

So, there is

q(λ4I I) =

(
k + 1

2

) 1
k−1

λ4I I

(
1 − k − 1

k + 1
λ4I I

2
) 1

k−1
(23)

f (λ4I I) =
(

λ4I I
2 + 1

)(
1 − k + 1

k − 1
λ4I I

2
) 1

k−1
(24)

m4I I = K′
q

p∗4I I A4I Iq(λ4I I)√
T∗

2I I
(25)

where A4I I indicates the area of the bypass duct at the entrance to the mixing room.
The mixer outlet pressure is calculated as follows.

p∗cm = σcm
mg4 p∗4 + maII p∗4I I

mg4 + maII
(26)

where σcm is the total pressure recovery coefficient of the mixer.
λcm can be calculated from f (λcm), and then π(λcm) and q(λcm) can be calculated from

the pneumatic function calculation formula. In summary, the gas flow and temperature at
the outlet section of the mixing chamber are calculated as follows.

mgcm = mg4 + ma − maH

T∗
cm =

cpT∗
2I I maII+c′pT∗

4 mg4

c′′p mgcm

(27)

where cp = cp(T∗
2I I), c′p = c′p

(
α̃, T∗

4
)
, and c′′p = c′′p(α̃, T∗

cm).

2.2.7. Nozzle

According to the different relationship between the ratio of the total pressure of the noz-
zle outlet p∗e and the total atmospheric pressure pH and the nozzle pressure ratio πecr, the en-
gine nozzle can be divided into subcritical, critical, and supercritical operating conditions.

When p∗e
pH

< πecr, the nozzle is operating in a sub-critical condition. At this point, the
calculation of p∗e and πecr are as follows.

p∗e = σe p∗cm (28)

πecr =
p∗e
pcr

=

(
k′ + 1

2

) k′
k′−1

(29)

At this point, the exit section of the nozzle airflow velocity is less than the speed of
sound, so λe < 1. The gas in the nozzle is completely expanded; at this time, the nozzle exit
section pressure and the external atmospheric pressure are the same, that is, pe = pH .

From p∗e and pe, we have

π(λe) =
p∗e
pe

=
p∗e
pH

(30)

from π(λe), we obtain λe and find q(λe).
When p∗e

pH
= πecr, the nozzle works in the critical state; at this time, λe = 1 and q(λe) = l.

At this time, the gas in the nozzle is completely expanded, and the nozzle outlet section
pressure and the external atmospheric pressure are the same, that is, pe = pH .

When p∗e
pH

> πecr, the nozzle operation is in the supercritical state; at this time, λe = 1
and q(λe) = l. At this time, the gas in the nozzle is not fully expanded, and the nozzle outlet
cross-section pressure is greater than the atmospheric pressure, that is, pe > pH .

8
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Therefore, its operating condition can be determined from the nozzle parameters
(λe, q(λe), pe), and the parameters related to the exit section of the tail nozzle are calculated
as follows.

mge = K′
q

p∗e Aeq(λe)√
T∗

cm
(31)

ce = ϕeλeacr = ϕeλe

√
2k′

k′ + 1
R′T∗

cm (32)

In the above equation, mge is the nozzle outlet flow rate, ce is the exhaust velocity, acr
is the critical speed of sound, and ϕe is the nozzle flow loss coefficient number.

2.3. Problem Description

As mentioned in the introduction, the aim of this paper is to improve the thrust
performance of the UAV by reducing the surge margin reserve of the turbine engine.
The real-time estimation of the surge margin is caused by many factors, including inlet
distortion, and calculations of the proper pressure ratio of the fan and the compressor are
carried out to satisfy the surge margin requirements through multivariable control.

From a mathematical point of view, the thrust lifting problem under this line of thought
can be described as the optimization problem of engine thrust regulation control.⎧⎪⎪⎪⎨⎪⎪⎪⎩

Max
s.t.

Popt

(
π∗

cH , maH,cor, A8, H, Ma, Nf an

)
SMopt < SMre

T∗
3.5 < Tcr

p∗2 < p∗2,cr

(33)

where Popt is the current state of the engine output thrust; in this optimization problem, the
engine output thrust considered is related to the compressor pressurization ratio π∗

cH , the
compressor converted air flow rate maH,cor, the fan speed Nf an, the ambient altitude H, and
the flight Mach number Ma. SMopt and SMre represent the current surge margin and the
current allowable surge margin, respectively. T∗

3.5 and Tcr are the turbine front temperature
and the threshold of the turbine front temperature protection, p∗2 and p∗2,cr represent the
current total compressor outlet pressure and the overpressure protection threshold. SM is
described as

SM =

⎡⎣
(

π∗
cH

maH,cor

)
s
−
(

π∗
cH

maH,cor

)
o(

π∗
cH

maH,cor

)
o

⎤⎦
Nc=const

× 100% (34)

The problem is constrained by three inequalities: the first is the surge margin of the
engine, that is, the compressor does not surge; the second is, in the optimization process,
the turbine front temperature cannot exceed the overtemperature protection temperature
while the engine is working; the third inequality constraint is that the total compressor
outlet pressure of the engine cannot exceed the limit pressure.

In this optimization problem, the independent variables are π∗
cH ,maH,cor, H, Ma, and

Nf an, where H and Ma are environment variables that change with the motion of the
vehicle and the surrounding environment. The value of Nf an can be determined by π∗

cH ,
so the independent variables that can be adjusted in this optimization problem are π∗

cH ,
maH, and cor, and the dependent variable is the thrust Popt.

According to the engine model established in Section 2.2, for a known compressor
operating state, we can obtain a set of engine operating parameters. In the engine control,
π∗

cH , as one of the main parameters controlling the compressor operating catch state, can
directly affect the working state of the compressor. The physical principle is to change the
deflection angle of the guide vane and increase the work carried out by the compressor on
the airflow such that the pressure of the airflow at the exit of the compressor is greater. The
gas mixture entering the burner carries more energy, so it can increase the overall reasoning
performance; however, if π∗

cH is too large, it will lead to a reduction in SM, that is, it will

9
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lead to the occurrence of the gas turbulence of the compressor, so another control parameter
maH,cor should be adjusted at the same time to limit the appearance of dangerous situations.

3. Major Studies

3.1. Thrust Optimization Based on the Adaptive Margin Model

In the introduction, the idea of thrust promotion is introduced, which is to reduce
the compressor surge margin reserve and increase the propulsion performance under the
premise of ensuring the safe operation of the engine; a detailed description of this strategy
is provided below.

As shown in Figure 3, the first step is to predict the angle of attack α̂ in a short period
of time in the future by building a dynamic model of the UAV, which is combined with the
current mission; then, the distortion index Wa is determined by the current compressor gas
conversion flow maH,cor, and the available pressure ratio increment ΔπcH is determined
by the distortion index and the current surge margin value of the engine; then, the final
pressure ratio correction plan is given according to the protection limit of the turbine engine,
and the instruction correction quantity is transmitted to the controller to achieve the goal
of thrust lifting.

Figure 3. Optimal thrust strategy schematic diagram based on the adaptive margin model.

3.1.1. Angle of Attack Prediction for UAV

Based on the symmetry and small perturbation approximations theory [20], the UAV
dynamic model is expanded on the point of longitudinal motion equilibrium and rewrit-
ten as perturbation equation. The following equations of motion for the longitudinal
disturbance of the UAV are given.

dΔV
dt − a11ΔV − a13Δθ − a14Δα = a6Fgx

d2Δθ
dt − a21ΔV − a22

dΔθ
dt − a24Δα − a′24

dΔα
dt = a25Δδz + a26Mgx

dΔθ
dt − a31ΔV − a33Δθ − a34Δα = a35Δδz + a36Fgy

−Δϑ + Δθ + Δα = 0

(35)

where Fgx, Fgy denote the disturbance force due to the disturbance introduced during the
small disturbance linearization process and the disturbance torque Mgx. δz denotes the

10
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elevator deflection angle. a11 . . . a36 are known as the power factors, which characterize
the dynamics of the UAV. The specific expressions are shown in Table 1.

Table 1. The symbol of the dynamic coefficient aij and its expression.

Equations of
Motion Number ‘i’

Coefficient of Motion Serial Number ‘j’

1 2 3 4 5 6

1 a11 = PV−XV

m(
s−1) a12 = 0 a13 = −g cos θ(

m·s−2) a14 = −Xα+Pα

m(
m·s−2) -

a16 = 1
m(

Kg−1
)

2 a21 = MV
z

Izz(
m−1·s−1) a22 = Mωz

z
Izz(

s−1) a23 = 0
a24 = Mα

z
Izz

(
s−2)

a′24 = M
.
α
z

Izz

(
s−1) a25 = Mδz

z
Izz

(
s−2)

a′25 = M
.

δz
z

Izz

(
s−1) a26 = 1

Izz(
Kg−1·m−2

)
3 a31 = PV α+YV

mV(
m−1) a32 = 0 a33 =

g sin θ
V(

s−1) a34 = P+Yα

mV(
s−1) a35 = Yδz

mV
(
s−1) a36 = 1

mV(
s·Kg−1·m−1

)

In the table above, Xα, · · · , YV , · · · , M
.

δz
z , · · · , PV represent the partial derivative of

parameters such as the aerodynamic torque and thrust with respect to the parameter
α, · · · , V, · · · ,

.
δz, · · · , ωz.

In the longitudinal motion of UAV, the outputs of the airframe are ΔV, Δϑ, Δθ, and Δα,
while the input is Δδz. If there is external interference, the input is Fgx, Fgy, and Mgz.
In order to obtain the transfer function of UAV short-period longitudinal perturbation
motion, the long-period output ΔV is first ignored, and the Equation (40) are transformed
by Laplace transform as⎡⎣s(s − a22) 0 −(a′24s + a24

)
0 s − a33 −a34
−1 1 1

⎤⎦⎡⎣Δϑ(s)
Δθ(s)
Δα(s)

⎤⎦ =

⎡⎣a25
a35
0

⎤⎦Δδz(s) +

⎡⎣a26Mgz(s)
a36Fgy(s)

0

⎤⎦ (36)

Then, the transfer function from the elevator to the angle of attack is obtained as

Wα
δz
(s) =

Δα(s)
Δδz(s)

=
−a35s2 + (a35a22 + a25)s

s
[
s2 +

(
a34 − a22 − a′24

)
s − (a34a22 + a24)

] (37)

So far, we have obtained the transfer function from the elevator deflection command
to the change in the angle of attack in the short-period longitudinal motion of the UAV,
by which the current flight parameters of the UAV and the elevator command can be
combined, and the angle of attack can be predicted in a short time.

3.1.2. Engine Model under the Influence of Inlet Distortion

The inlet distortion creates an uneven flow field at the engine inlet, which leads to stall
boundary degradation and steady-state characteristic decay of the entire engine, causing
the stall point of the entire compressor to move to the lower right [21] (Figure 4), that is to
say, the inlet distortion affects the performance parameters of each component of the engine
and results in the offset of the common working line and the reduction in the surge margin.

The inhomogeneous air flow caused by the inlet distortion changes the inlet total
pressure and affects the thermodynamic process of the subsequent parts. The average total
pressure recovery coefficient σ of the inlet cross-section is generally used to measure the
inlet total pressure after the inlet distortion. The main formulas are as follows.

σAV =

∫ 2π
0 σr(θ)dθ

2π
(38)
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in the formula, σr(θ) is the radial mean total pressure recovery coefficient function, and the
expression is

σr(θ) =

∫ 1
rhub

2σ(r, θ)rdθ

1 − r2
hub

(39)

where rhub is the relative radius of the wheel hub and σ(r, θ) is the circumferential angle
of θ; the total pressure recovery coefficient is a function of the relative radius r, and the
schematic diagram of the parameters is shown in Figure 5. The shaded area is below σAV in
the low-pressure region θ−. θ1 and θ2 are the starting and ending points of the low-pressure
region, respectively.

Figure 4. Sketch of the compressor surge boundary movement caused by inlet distortion.

Figure 5. Radial mean total pressure recovery coefficient σr(θ).

The recovery coefficient of the surface mean total pressure directly reflects the variation
in total pressure after distortion [17]. Figure 6 shows the surface mean total pressure
recovery coefficient σAV and the mean total pressure σ0 of the distorted low-pressure sector
of an inlet at different angles of attack during subsonic and sonic travel. The angle of attack
is directly related to the distortion. The larger the angle of attack, the stronger the distortion
is. As can be seen from Figure 6, the total pressure recovery coefficient is closely related to
the angle of attack. The σAV attenuates rapidly from the 0◦ angle of attack to both sides,
and the attenuation is faster at a negative angle of attack. It can be concluded that σAV
is closely related to the distortion strength and increases with the increase in distortion
strength. Therefore, the inlet total pressure in the component-level model needs to be
corrected according to the inlet distortion.
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Figure 6. The surface mean total pressure recovery coefficient σAV of an inlet at different angles of
attack during subsonic operation.

In order to quantify the impact of inlet distortion, it is necessary to select a distortion
index that can reflect the magnitude of the distortion. The distortion index is mainly used
to measure the degree of distortion quantitatively. At present, different countries use
different calculation methods, so there is not a universal definition of the distortion index.
Because the Russian comprehensive distortion index is widely used in engine stability
assessment and experimental research, the research work in this paper is based on the
definition of the distortion index. The distortion index only considers the total pressure
distortion, not the total temperature distortion, and mainly consists of three parts, namely,
the circumferential total pressure unevenness, the radial total pressure unevenness, and
the mean surface turbulence. However, a large number of statistical data show that the
influence of radial total pressure unevenness on the stability of different types of engine
structures is very small, so it is not considered. Therefore, the total pressure distortion
index can be expressed as

W = Δσ0 + εAV (40)

The composite distortion index W is the sum of the steady-state circumferential
total pressure distortion index Δσ0 and the surface mean turbulence degree εAV . For the
convenience of description, the Ws in this paper are all percentages. The Δσ0 indicates
the difference between the surface mean total pressure recovery coefficient and the total
pressure recovery coefficient in the low-pressure area.

Δσ0 = 1 − σ0

σAV
(41)

The mean surface turbulence εAV represents the quantitative characteristics of the total
pressure fluctuation at the aerodynamic interface.

εAV =
∑n

i=1 εi

n
(42)

εi is the ratio of the root-mean-square value of the pulsating pressure to the mean value of
the total pressure P∗.

εi = ΔP∗/P∗

ΔP∗ =

√
1
T

T∫
0

(
P∗(τ)− P∗)2

P∗
= 1

T

T∫
0

P∗(τ) dτ

(43)

In the formula above, T is the sampling time of the pulse airflow.
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In Section 2.2.1, we present the calculation of inlet and outlet flow parameters, and
in Formula (4), we refer to the total inlet pressure recovery factor σi, which is used to
characterize the total pressure loss of the inlet flow. The general total pressure recovery
coefficient is calculated by the following formula.

σi =

{
1.0 − 0.075(Ma − 1)1.35 , Ma > 1.0
1.0 , Ma ≤ 1.0

(44)

For the total pressure recovery coefficient with inlet distortion, it is correlated not only
with Ma but also with W. The total pressure recovery coefficient in this paper is:

σi =

{
(1 − 0.01W)

[
1 − 0.075(Ma − 1)1.35

]
, Ma > 1.0

1 − 0.01W , Ma ≤ 1.0
(45)

The conventional fan component calculation module obtains the conversion flow
and efficiency based on the interpolation of the fan relative conversion speed, and the
calculation expression is

σi =

{
(1 − 0.01W)

[
1 − 0.075(Ma − 1)1.35

]
, Ma > 1.0

1 − 0.01W , Ma ≤ 1.0
(46)

Similarly, in Section 2.2.2, some modifications are made to the fan characteristics by
taking into account the inlet distortion index W in the fan converted air flow and the overall
efficiency calculations, i.e., Formula (6) is changed to:

maL,cor = maL,cor(ncL,cor, π∗
cL, φL, W)

η∗
cL = η∗

cL
(
ncL,cor, π∗

cL, φL, W
) (47)

So far, the calculation flow of the components related to the inlet distortion has been
modified and combined with the existing engine component-level modeling methods. The
nonlinear engine component-level model with the inlet distortion can be formed, and the
schematic diagram of its main calculation flow is shown in Figure 7.

Figure 7. Flow chart of the turbine engine component-level model with inlet distortion.
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3.2. Adaptive Disturbance Rejection Control

The basic configuration of adaptive disturbance rejection control is a nonlinear dy-
namic inverse (NDI) control law. The control logic is shown in Figure 8.

Figure 8. Control Structure chart of adaptive disturbance rejection.

Taking the tilt-turn dynamics model of UAV as an example, first, according to the
dynamics of UAV established in Section 2.1, the instruction design rule is that the time scale
of the state variable is separated, and the control instructions are generated by dynamic
inversion according to the response speed of the variable.

3.2.1. Design of Slow Loop Control Instruction

The desired angular rate command
.

γt and
.

ϑt can be obtained from the desired attitude
angular response, and the expression is as follows:

.
γt = Kγ(γcmd − γ)

.
ϑt = Kϑ(ϑcmd − ϑ)

(48)

The angular rate instructions can be obtained by associating with the dynamic equa-
tions. The results are as follows:

ωx,cmd = Kγ(γcmd − γ) + tan ϑ
(
ωy cos γ − ωz sin γ

)
ωz,cmd = 1

cos γ

(
Kϑ(ϑcmd − ϑ)− ωy sin γ

) (49)

Observing the dynamic model, the angular acceleration model can be considered
as the result of the interaction of the moment part and the non-moment part, and the
non-moment control parts are a1, a2, a3.

a1 = − (IZZ−Iyy)Iyy−I2
xy

Ixx Iyy−I2
xy

ωyωz − (Ixx−Izz+Iyy)Ixy

Ixx Iyy−I2
xy

ωxωz

a2 = − (Ixx−Izz)Ixx−I2
xy

Ixx Iyy−I2
xy

ωxωz +
(Ixx−Izz+Iyy)Ixy

Ixx Iyy−I2
xy

ωyωz

a1 = − Iyy−Ixx
Izz

ωxωy +
Ixy
Izz

(
ω2

x − ω2
y

) (50)
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The above equation can be rewritten as⎡⎣ .
ωx.
ωy.
ωz

⎤⎦ =

⎡⎣−Ixy Iyy 0
Ixx −Ixy 0
0 0 Izz

⎤⎦−1⎛⎝⎡⎣ l
m
n

⎤⎦+

⎡⎣ lδ
mδ

nδ

⎤⎦⎞⎠+

⎡⎣a1
a2
a3

⎤⎦ (51)

The control quantities are lδ, mδ, nδ, and the control instruction is designed according
to the above expected response method.⎡⎣ .

ωx,t.
ωy,t.
ωz,t

⎤⎦ =

⎡⎣Kωx 0 0
0 Kωy 0
0 0 Kωz

⎤⎦⎡⎣ωx,cmd − ωx
ωy,cmd − ωy
ωz,cmd − ωz

⎤⎦ (52)

which is associated with the kinetic equations:⎡⎣ lδ,cmd
mδ,cmd
nδ,cmd

⎤⎦ =

⎡⎣−Ixy Iyy 0
Ixx −Ixy 0
0 0 Izz

⎤⎦−1⎛⎝⎡⎣Kωx 0 0
0 Kωy 0
0 0 Kωz

⎤⎦⎡⎣ωx,cmd − ωx
ωy,cmd − ωy
ωz,cmd − ωz

⎤⎦−
⎡⎣a1

a2
a3

⎤⎦⎞⎠−
⎡⎣ l

m
n

⎤⎦ (53)

3.2.2. Design of Adaptive Disturbance Rejection Control

In the above derivation process, the body torque of the UAV is strongly nonlinear
during the flight process, and it cannot accurately rely on the existing data to calculate it
during the flight process. Similarly, when the moment control command is calculated, the
rudder surface efficiency cannot be obtained accurately, and the exact value of rudder sur-
face deflection cannot be determined to realize the control moment; the original control law
is improved to overcome its dependence on an accurate model. The adaptive disturbance
rejection control operates by comparing the measured response with an internal model of
the desired dynamics. It then adjusts the control signal based on the difference between the
desired and measured behaviors. First, the desired angular rate is designed as follows:

.
ωdes = Kωωcmd − ωdes (54)

Because of the simplified assumptions, model uncertainty, external disturbance, and
so on, dynamic inversion cannot achieve its goal completely. Therefore, d is introduced
to describe all the uncertainty errors of the system. The system dynamics are written in a
form similar to the expected behavior as follows.

.
ω = Kω(ωcmd − ωdes) + uad + d (55)

Among them, uad brings the angular acceleration increment for the adaptive control
moment, uad = I−1ΔM. The angular rate internal model instruction is designed as.

.
ω̂ = Kω(ωcmd − ωdes) + uad − Kd( ω̃ − ω) (56)

where ω̂ is an output of the UAV state space model. ω̃ = ω̂ − ω is defined. The difference
between the true angular rate and the internal model angular rate is obtained.

.
ω̃ =

.
ω̂ − .

ω = −Kadω̃ − d (57)

According to the solution of the first-order non-homogeneous differential equation,
the functional relationship of ω̃ with time can be solved.

ω̃ = − d
Kad

+

(
ω̃(0) +

d
Kad

)
e−Kadt (58)
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From the above, we know that, in a certain period of time, ω̃ converges to −d/Kad,
and in the same way, in this period of time,

.
ω̃ converges to 0, that is, −Kadω̃ − d converges

to 0. Based on the actual ω differential equation, the uad = Kadω̃ can be substituted into
Formula (61) to obtain:

.
ω = Kω(ωcmd − ωdes) (59)

According to the solution of the first-order non-homogeneous linear differential equation,

ω = ωcmd + (ω(0)− ωcmd)e−Kadt (60)

In this case, ω converges to ωcmd within a certain time, so uad = Kadω̃ can suppress
the effect of error d.

According to the dynamic inversion of the above dynamic equations, the adaptive
input is added to the NDI control torque command to generate the total torque command.

M = IKω(ωcmd − ωdes) + IKad(ω̂ − ω) + I
[
a1 a2 a3

]T (61)

4. Simulation Results

In the preceding paragraph, we build the dynamics model of UAV and the engine
model of UAV and add the influence of inlet distortion into the engine model. Then, the
strategy of thrust optimization based on the adaptive margin model and the method of
adaptive disturbance rejection flight control for UAV are proposed. In order to verify
this, the flight control strategy and the thrust optimization strategy proposed earlier are
simulated and verified successively. The parameters of a certain type of UAV are given
in Table 2. The simulation is based on the model and strategy established in the previous
paper, which are implemented in code in MATLAB, where the turbine engine model is
built by Simulink of MATLAB.

Table 2. Parameters of a certain type of UAV.

Parameter Symbol Value

aircraft mass (kg) m 9295.44
wingspan (m) b 9.144
wing area (m2) S 27.87

mean aerodynamic chord (m) c 3.45
roll moment of inertia (kg·m2) Ixx 12,874.8
yaw moment of inertia (kg·m2) Iyy 85,552.1
pitch moment of inertia (kg·m2) Izz 75,673.6

product moment of inertia (kg·m2) Ixy 1331.4
product moment of inertia (kg·m2) Ixz 0
product moment of inertia (kg·m2) Iyz 0

c.g. location (m) xcg 0.3c
reference c.g. location (m) xcgr 0.35c

4.1. Simulation Results of Thrust Optimization Based on the Adaptive Margin Model

In order to verify the optimization results of the engine thrust performance, we use
the acceleration performance improvement of the UAV at the altitude of 7500 m as a way
to test the engine thrust optimization, to increase the speed of the UAV from 150 m/s to
250 m/s with the altitude change, and to check the time of the engine acceleration plan as
well as the thrust output of the engine. The simulation results are as follows:

Figure 9a shows the speed simulation results of the UAV for a given speed command,
and we compare the speed results after the thrust performance optimization with the
original case. It can be seen that the acceleration performance of the UAV after the thrust
lift is obviously improved compared with the original situation. In the original acceleration
plan, the UAV used 28.9 s to accelerate the speed to 249 m/s, the speed was increased to
250 m/s in 40 s, the time of acceleration to 249 m/s was advanced to 25.5 s, and the time
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of acceleration to 250 m/s was reduced to 29.9 s after the thrust optimization. This shows
that, under the same engine acceleration control parameters, the engine thrust optimization
strategy proposed in this paper can significantly improve the acceleration capability of
UAV and shorten the acceleration time. It is also possible to see this by the slope of the
velocity resultant curve in plot 9(a), i.e., the maximum acceleration of the UAV.

Figure 9. The result graph of engine thrust lifting: (a) Speed result of the UAV acceleration process,
(b) Result of the UAV engine throttle command.

Figure 9b shows the result of UAV engine throttle command. Under the original con-
dition, the engine throttle command needs to keep 19.3 s fully open, but after improvement,
the change time is reduced to 17.5 s. The result shows that the full throttle time of UAV
is shorter after the thrust performance is improved. In the acceleration control program
of the UAV, the controller parameters used in the two simulated scenarios are exactly the
same. Therefore, the optimized throttle command maximum output time is shorter than
the original one, which can also indicate that the optimized case has an increased maximum
thrust output compared to the original case.

To visualize the thrust improvement, Figure 10 shows the UAV thrust output during
this acceleration; the percentage increase in the thrust of the engine at 100% throttle is
in the corner of the image (take the first 17.5 s, which is 100% of the time for the engine
throttle command in both cases). The right axis of the small graph is the label, and
the unit is the percentage of thrust performance improvement. It can be seen that the
maximum thrust output of the engine can be increased by at least 8% under the condition
of maximum throttle command and also increases with the increase in the UAV speed,
reaching 10.4% at 17.5 s.

Figure 11 is the result diagram of the working state of the compressor. It can be
seen that the working point of the engine is closer to the surge boundary after the more
reasonable order of the turbocharging ratio, that is, the surge margin reserve of the engine
is reduced but still kept in safe working conditions, and the engine did not surge.

Brief summary:

1. Under the same acceleration control parameters, the thrust optimization strategy
proposed in this paper can significantly improve the acceleration capability of UAV
and shorten the acceleration time.

2. With improved thrust performance, the UAV requires a shorter full throttle time.
3. At the same flat flying speed, the throttle command of the engine after thrust opti-

mization is smaller than the original throttle command.
4. At maximum throttle, the engine’s maximum thrust output can be increased by at

least 8%.
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Figure 10. Thrust output diagram.

Figure 11. Compressor working state diagram.

4.2. Simulation Results of Adaptive Disturbance Rejection Control

In order to verify the designed adaptive disturbance rejection control strategy, the
UAV is given different flight instructions in the longitudinal and rolling directions, and the
advantages and disadvantages of the control method and the traditional PID control were
observed. The flight environment is given under two conditions: altitude 7500 m, speed
150 m/s.

The first is the longitudinal simulation results, the initial pitch angle is γ = 7.2◦, the
initial track angle α is 0◦, the UAV is controlled in the first 5 s of the flat flight, the UAV
is given a 15◦ pitch command at 5 s, and the UAV is made to climb quickly. Observe the
response of the pitch angle and the command output of the rudder deviation.

For the PID control case in the simulation, we used the Ziegler–Nichols tuning method.
This method provides a good starting point for the PID gains, which can then be refined
through further tuning. Start by adjusting the proportional gain Kp until the system’s
response is close to the desired response. Then, adjust the integral gain Ki until the steady-
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state error is reduced to an acceptable level. Finally, adjust the derivative gain Kd to reduce
the overshoot and dampen the oscillations caused by the proportional and integral gains. A
set of PID controller parameters with the fastest response time and the smallest overshoot
is obtained by the above method.

As shown in Figure 12c, it took 17.39 s for the PID controller to make the pitch angle
converge to the command, while the adaptive disturbance rejection control took 3.62 s to
achieve the equivalent situation (0.05 degrees of static difference). Compared with the PID
control, the pitch angle of the adaptive disturbance rejection control method converges to
the given instruction more rapidly, the overshoot is smaller, and the overshoot arrival time
is shorter.

Figure 12. Simulation results of UAV adaptive disturbance rejection control in longitudinal flight:
(a) Result of the angle of attack response graph; (b) Result of the pitch angular velocity response graph;
(c) Result of the pitch angular response graph; (d) Result graph of the elevator deflection command.

Similarly, the simulation results for the roll direction are given in Figure 13. The initial
tilt angle is 0◦, and the control UAV will fly horizontally in the first 5 s. The UAV is given a
35◦ tilt command at 5 s to make the UAV roll quickly. Observe the response of the tilt angle
and the command output of the rudder.

As shown in Figure 13a, The PID controller produces a large overshoot in the tilt
angle (12.82% overshoot), which is obviously undesirable in this case, while the adaptive
disturbance rejection control method has only 0.4% overshoot. Compared to the result of
PID control, the tilt angle of the adaptive disturbance rejection control mode converges
to the given instruction more quickly, the overshoot is smaller, and the overshoot arrival
time is shorter. The aileron command, compared with the PID control in the case of swing,
greatly reduced. This increases the potential of the UAV to perform other maneuvers.
The results of both the longitudinal and rolling flight simulation show that the adaptive
disturbance rejection control method proposed in this paper can achieve fast attitude
maneuvers; compared with PID control, it can complete the maneuver command more
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accurately in a short time and improve the overshoot and rudder surface jitter caused by
PID control.

Figure 13. Flight simulation results of UAV adaptive interference suppression control roll direction:
(a) The resulting graph of the tilt-angle response; (b) Result diagram of aileron deflection command.

5. Conclusions

We designed a strategy for exchanging the surge margin of the engine for the improve-
ment of the thrust performance in order to meet the requirement of the development of
the propulsion system for UAVs. First, the dynamic equation of UAV is established, which
describes the straight motion of the center of mass and the rotation motion of the body
around the center of mass. A mathematical model of the turbofan’s components is built.
Then, an optimal thrust algorithm based on the adaptive margin model is designed. The
internal working environment of the engine and the angle of attack in flight dynamics
are considered. From the angle of aircraft/engine integration, the way to improve the
performance of the engine propulsion system is studied; in this part, the UAV body transfer
function is obtained from the UAV dynamic equation, and the UAV angle of attack is
predicted by the transfer function. Then, the inlet and fan models are modified by adding a
correction term considering inlet distortion. For further flight simulation, a flight control
strategy based on adaptive disturbance rejection control is designed. In order to compen-
sate for the external loop control law, a disturbance observer is introduced to estimate the
flight disturbance of the UAV.

Finally, the feasibility of the proposed strategy is verified by numerical simulation.
The numerical simulation results show that the thrust lifting strategy based on the adaptive
margin model can ensure the safety of the flight and the stability of the compressor; the
maximum thrust of the UAV is increased by at least 8% by reducing the surge margin
reserve and improving the maneuverability of the UAV. The adaptive disturbance rejection
control method can suppress the attitude fluctuation quickly and has strong robustness
and adaptive ability.

Nowadays, there are more and more research works on aircraft/engine integration,
and in this paper, we meet the demand of the thrust performance improvement of UAVs
from this perspective, which has some implementability in engineering practice. However,
the strategy still has some limitations, namely, a high accuracy requirement for the engine
model. In fact, turbine engine power system modeling is a complex discipline, and the
engine model has strong nonlinearity. The component-level modeling method used in this
paper, at the cost of a lengthy and complex mechanism model and in exchange for a higher
accuracy, sacrifices a certain amount of computing speed. We plan to continue to explore
the thrust optimization method based on the adaptive margin model and, on the other
hand, to seek a more accurate and faster engine modeling method.
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Abstract: In this paper we investigate the problem of a finite-time contractive control method for
a spacecraft rendezvous control system. The dynamic model of relative motion is formulated by
the C-W equations. To improve the convergent performance of the spacecraft rendezvous control
system, a finite-time contractive control law is introduced. Lyapunov’s direct method is employed to
obtain the existence condition of the desired controllers. The controller parameter can be obtained
with the help of the cone complementary linearization algorithm. A numerical example verifies the
effectiveness of the obtained theoretical results.
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1. Introduction

The spacecraft rendezvous system is an important part of the orbital spacecraft since
it provides important technical support for various space missions such as astronaut
pick-up, material supply, space station construction and maintenance, and even manned
lunar landings and deep-space exploration missions. An autonomous rendezvous system
involves two spacecraft: one is the target spacecraft and the other is the chaser spacecraft.
In general, the relative dynamic model of two spacecraft is a set of nonlinear equations [1].
To facilitate analysis and controller design, two kinds of linearized relative motion models
were developed, namely the Clohessy–Wiltshire (C-W) equation [2] and the Tschauner–
Hempel (T-H) equation [3]. The C-W equation is linear time-invariant and is suitable
for target spacecraft running in circular orbits. In contrast, the T-H equation is linear
time-varying and is more appropriate for target spacecraft operating in circular orbits.

The quality of the adopted control strategies directly affects the overall performance
of the autonomous rendezvous system, and then affects the orbital service mission. This
has stimulated an outpouring of enthusiasm from researchers and in the past decades,
various insightful and innovative results on the control of the autonomous rendezvous of
spacecraft have emerged [4–10]. Here, to name a few, a new relative dynamic model that
takes the parameter uncertainty and output tracking into account was developed in [5],
and the guaranteed cost output tracking controller was designed by virtue of the convex
optimization method and the linear matrix inequality technique. Moreover, saturated
state feedback controllers were developed by Luo [7] to globally stabilize the spacecraft
rendezvous system constrained by thrust saturation and/or time delay. In addition, the
semi-global finite-time stabilization issue of a spacecraft rendezvous system with input con-
straints was reported in [8], where the dynamic event-triggered control and self-triggered
control techniques were considered.
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However, finite-time contractive stability (FTCS), proposed in [11] for the first time,
relates to the transient performance of systems in a fixed time interval rather than the
steady performance over an infinite time interval. Roughly speaking, if, given the bound of
the initial condition c1, the state trajectory of a finite-time contractively stable system does
not exceed a bound c2 > c1 over the prescribed time interval [0, Tu], the state trajectory
will further lie within a bound c3 over the time interval [ts, Tu], and it will never escape
from the bound c3 after it comes in [12], where 0 < c3 < c1 < c2, and 0 < ts < Tu. This
suggests that systems under FTCS also have superior convergence performance on the
basis of “boundedness” [13]. In recent years, FTCS has drawn more attention, which
has resulted in the FTCS issue of several kinds of systems being discussed, such as the
stochastic system [14], impulsive systems [15,16], switched systems [17,18], and so on.
Physical applications of FTCS in fields such as clinical medicine [19] and population
control [20] have also been reported. Moreover, we note that there exists the potential
practical application of finite-time contractive stability control of the spacecraft rendezvous
systems on occasions where the relative distance and relative velocity along the x-axis,
y-axis, and z-axis between the target spacecraft and chaser spacecraft need to be within an
ideal prescribed bound after a fixed time ts. However, to the best of the authors’ knowledge,
there exist few results on the FTCS of spacecraft rendezvous systems in the literature, which
motivates this work.

The finite-time contractive control issue for a spacecraft rendezvous system is consid-
ered in this paper. The state feedback controller is designed to finite-time contractively
stabilize the spacecraft rendezvous system. The main contribution of this paper is threefold
as follows. (1) This is the first attempt for the finite-time contractive control of a spacecraft
rendezvous system, and a sufficient condition for the existence of desired controllers is
established. (2) A convex optimization problem with linear matrix inequality constraints is
established for control synthesis, which can be solved by a cone complementary lineariza-
tion algorithm. (3) A numerical example shows that the proposed controller has faster
convergence speed compared with traditional control methods.

Notations: tr(A) represents the trace of A. Matrix A > 0 (≥ 0) denotes that A is
a positive definite matrix (positive semi-definite matrix). Moreover, we assume that the
dimensions of the matrices are compatible with each other, if this is not explicitly stated
before. “w.r.t” denotes the phrase “with respect to”.

2. Problem Formulation

We assume that the target spacecraft is running in a circular orbit, and the coordinate
frame for the two spacecraft is shown in Figure 1. The origin of the coordinate system is
located at the center of mass of the target spacecraft. The x-axis is in the orbital plane of
the target spacecraft, with the positive direction of the Earth center pointing to the target
spacecraft. The y-axis points to the running direction of the target spacecraft. The z-axis is
perpendicular to the orbital plane and forms a right-handed rectangular coordinate system
with the other two axes. Hence, the relative dynamic motion would obey the following
C-W equations [21] ⎧⎨⎩

ẍ − 2nẏ − 3n2x = 1
m Tx,

ÿ + 2nẋ = 1
m Ty,

z̈ + n2z = 1
m Tz,

(1)

where x, y, and z stand for the relative position, m is the mass of the chaser, n is the angular
velocity of the target spacecraft, and Ti(i = x, y, z) is the i-th component of the specific
control force acting on the relative motion dynamics. Letting x(t) = [x, y, z, ẋ, ẏ, ż]T, and
u(t) =

[
Tx, Ty, Tz

]T, then (1) can be further described as{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(2)
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where A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
1
m 0 0
0 1

m 0
0 0 1

m

⎤⎥⎥⎥⎥⎥⎥⎦, C =

⎡⎣1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤⎦.

Figure 1. Coordinate frame.

Lemma 1 ([22]). For matrices P > 0 and H > 0, if and only if the conditions

tr(PH) = n, (3)

[
P I
I H

]
≥ 0, (4)

hold, PH = I holds.

Definition 1 ([19]). System (2) is finite-time contractively stable w.r.t (c1, c2, c3, R, ts, Tu), if
xT(0)Rx(0) < c1 implies that xT(t)Rx(t) < c2, ∀t ∈ [0, Tu]; furthermore, xT(t)Rx(t) < c3,
∀t ∈ [ts, Tu], where 0 < c3 < c1 < c2, 0 < ts < Tu, and R > 0.

3. Finite-Time Contractive Stabilization

Consider a state feedback control law for (2)

u = Kx(t), (5)

where K is the controller parameter to be designed. Then, the closed-loop system is
established as below

ẋ(t) = (A + BK)x(t). (6)
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The following theorem gives a sufficient condition for the existence of state feedback
controller (5) under which the closed-loop system (6) is finite-time contractively stable.

Theorem 1. For given scalars α > 0, c3 < c1 < c2, and 0 < ts < Tu, and a matrix R > 0, the
closed-loop system (6) is finite-time contractively stable w.r.t (c1, c2, c3, R, ts, Tu), if there exist a
symmetric matrix P > 0 and a matrix K, as well as a scalar ε > 0 satisfying

PA + PBK + ATP + KTBTP + αP < 0, (7)

R < P < εR, (8)

εc1 < c2, (9)

e−αts εc1 < c3, (10)

and the equation restriction
PH = I, (11)

Proof. Choosing a Lyapunov function V(x(t)) = xT(t)Px(t), then taking the time deriva-
tive yields

V̇(x(t)) = xT(t)((PA + PBK) + (PA + PBK)T)x(t). (12)

Furthermore, according to (7), it can be obtained that

PA + PBK + ATP + KTBTP < −αP, (13)

from which we have

xT(t)((PA + PBK) + (PA + PBK)T)x(t) < −αxT(t)Px(t), (14)

i.e.,
V̇(x(t)) < −αV(x(t)). (15)

Multiplying both sides of (15) by eαt, and then integrating both sides of it from 0 to t for
t ∈ [0, Tu], one has

V(x(t)) < e−αtV(x(0)). (16)

Furthermore, since it yields from (8) that xT(t)Rx(t) < V(x(t)) < εxT(t)Rx(t), then,
by letting xT(0)Rx(0) < c1, it can be obtained from (16) and (9) that

xT(t)Rx(t) < V(x(t)) < εc1 < c2, ∀t ∈ [0, Tu]. (17)

Simliar to the proof processes (16)–(17), by (8) and (10), it follows from (15) that

xT(t)Rx(t) < e−αts εc1 < c3, ∀t ∈ [ts, Tu]. (18)

Hence, according to Definition 1, system (6) is finite-time contractively stable w.r.t
(c1, c2, c3, R, ts, Tu). This completes the proof.

Remark 1. The parameters c1, c2, and c3, where 0 < c3 < c1 < c2, represent the specific
bounds within which system state variables lie over the prescribed time interval. They are generally
chosen from practical consideration and are pre-specified in a given problem, as stated in [23,24].
Furthermore, the obtained conditions for the finite-time contractive stability control issue in theorems
are provided in terms of feasibility problems [25]. Hence, this suggests that the expected parameters
c1, c2, and c3 that we choose are achievable and the considered system can be said to be finite-time
contractively stable w.r.t. (c1, c2, c3, R, ts, Tu) over the fixed time interval according to Definition 1
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if the established sufficient conditions in theorems are feasible. In addition, if needed, achievable
values of c1, c2, and c3 that make the obtained sufficient conditions feasible can be chosen by using
the one-dimension linear search method or trial-and-error method.

A sufficient condition for the existence of the finite-time contractive controller (5) is
established in Theorem 1. However, it is different to solve the controller parameter K
straightforwardly since there exists the nonlinear term PBK in inequality (7). To make the
controller design numerically tractable, a controller design method is developed by the
following theorem where the parameters P and K are separated.

Theorem 2. For given scalars α > 0, c3 < c1 < c2, and 0 < ts < Tu, and a matrix R > 0, the
closed-loop system (6) is said to be finite-time contractively stable w.r.t (c1, c2, c3, R, ts, Tu), if there
exist a matrix Q, symmetric matrices H > 0, P > 0, and a scalar ε > 0 such that

(AH + BQ) + (AH + BQ)T + αH < 0, (19)

R < P < εR, (20)

εc1 < c2, (21)

e−αts εc1 < c3, (22)

with the equation restriction
PH = I, (23)

where H = P−1 and the controller parameter is obtained by K = QH−1.

Proof. Pre-and post-multiplying (19) by P, one has

(PA + PBK) + (PA + PBK)T + αP < 0. (24)

Then, following from the proof processes of Theorem 1, it can be easily obtained that
system (6) is finite-time contractively stable w.r.t (c1, c2, c3, R, ts, Tu). Here, the proof is
omitted for simplicity.

Remark 2. It follows from (19) that V̇(x(t)) < −αV(x(t)) < 0, which indicates that the sys-
tem (6) must be Lyapunov asymptotically (exponentially) stable in the case of finite-time contractive
stability control. Furthermore, due to the existence of contraction conditions (21) and (22) over
a finite-time interval for state trajectory under finite-time contractive stability control, when the
system (6) is Lyapunov asymptotically (exponentially) stable, it may not be finite-time contractively
stable w.r.t prescribed parameters c1, c2, c3, R, ts, and Tu. Briefly speaking, if a system is said to be
finite-time contractive stable, it must be Lyapunov asymptotically stable, while, conversely, it may
not be. In addition, with the aim of small ts and c3, the convergence speed of finite-time contractively
stable systems may be better than that of Lyapunov asymptotic stable systems, which results in the
considered system approaching the equilibrium state faster under FTCS.

Remark 3. In Theorem 2, the analytic solution of controller parameters K is given in the form
of K = QH−1, which is numerically solvable through the use of the well-established variable
substitution method. However, matrices P and H that only satisfy the conditions (19)–(22) may not
qualify since the potential relationship shown in (23) does not hold in this case. Hence, to ensure that
the obtained feasible set satisfies both the constraints (19)–(22) and (23), the following minimization
problem is considered.
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Problem 1.

min tr(PH)
s.t. (4) and (19)–(22)

Remark 4. On one hand, according to Lemma 1, tr(PH) ≥ n always holds if (4) holds. Then, if and
only if tr(PH) = n, tr(PH) reaches the minimum, and PH = I holds. Hence, conditions (19)–(23)
are feasible, and the controller parameter K can be further solved, when the solution of Problem 1 is n.
On the other hand, Problem 1 is essentially a non-convex problem and it is difficult to solve. Hence,
inspired by [26], the following cone complementary linearization algorithm (CCLA) is employed to
address it (Algorithm 1). By this algorithm, φ + tr(P1H + PH1) is used to linearly approximate
tr(PH) at a given point (P1, H1), where φ is a constant that is small enough. In this way, if and
only if tr(P1H + PH1) = 2n, the constraint PH = I holds.

Algorithm 1 CCLA for solving Problem 1

Step 1. Given parameters α, c1, c2, c3, R, ts, and Tu. Moreover, set j = 1, φ = 1 × 10−6, and
maximum iterations Iter = 50.
Step 2. Compute conditions (4) and (19)–(22). If not feasible, exit; otherwise, go to Step 3.
Step 3. Set (Hj, Pj, Qj, εi) = (H, P, Q, ε), where (H, P, Q, ε) is the feasible solution attained
in Step 2. Furthermore, compute Problem 1.
Step 4. Compare the value of tr(Pi H + PHi) with 2n, where n is the dimension of P. If
|tr(Pi H + PHi)−2n| < φ, output the value of K = QH−1 and then exit; else, j = j + 1, and
compare j with Itea, if i ≤ Iter, go to Step 3; else, exit.

Next, the Lyapunov asymptotical stabilization and the classical linear quadratic regu-
lator (LQR) control issues of system (2) are also discussed for comparison.

(A) Lyapunov asymptotical stabilization
When α = 0, one has from (19) that

(AH + BQ) + (AH + BQ)T < 0, (25)

Then, based on Problem 1 and Remark 2, it can be attained that closed-loop system (6)
is Lyapunov asymptotic stable (LAS) if the following Problem 2 is feasible.

Problem 2.

min tr(PH)
s.t. (4) and (25)

The following Algorithm 2 can be applied to compute the above Problem 2.

Algorithm 2 CCLA for solving Problem 2

Step 1. Set j = 1, φ = 1 × 10−6, and maximum iterations Iter = 50.
Step 2. Solve the conditions (4) and (25). If not feasible, exit; otherwise, go to Step 3.
Step 3. Set (Hj, Pj, Qj) = (H, P, Q), where (H, P, Q) is the feasible solution attained in
Step 2. Furthermore, solve Problem 2.
Step 4. Compare the value of tr(Pi H + PHi) with 2n, where n is the dimension of P. If
|tr(Pi H + PHi)−2n| < φ, output the value of K = QH−1 and then exit; else, j = j + 1, and
compare j with Itea, if i ≤ Iter, go to Step 3; else, exit.

(B) LQR control [27]
Considering system (2) with controllable (A, B), we can obtain an optimal LQR by

using the full state feedback control law u = −Kx, which can minimize the performance
index as below
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J =
∫ ∞

0

(
xTQx + uTRu

)
dt (26)

where symmetrical matrices Q ≥ 0 and R > 0.
In this case, the controller gain K is represented as K = R−1BTP, where P is the

solution of the following algebraic Riccati equation

PA + ATP +Q− PBR−1BTP = 0

4. Simulation Results

In this section, the effectiveness of the proposed method is verified through the use of
the following example.

We assume that the mass m of the chaser spacecraft is 300 kg and the angular velocity
n of the target spacecraft is 1.168 × 10−3 rad/s. Furthermore, we assume that the two
spacecraft are relatively static at t = 0, and the initial relative positions of the two spacecraft
are 750 m (along the x-axis), 650 m (along the y-axis), and 550 m (along the z-axis) at t = 0.
Then, it is obtained that x(0) = [750, 650, 550, 0, 0, 0]T. Next, we will stabilize the considered
spacecraft rendezvous system in the case of finite-time contractive stability and the case of
the Lyapunov asymptotical stability, respectively.

Case 1. Finite-time contractive stabilization

For given parameters c1 = 1.3 × 106, c2 = 2.5 × 106, c3 = 1 × 104, R = I, ts = 10, and
Tu = 40, we solve Algorithm 1 through the use of the Yalmip toolbox [28]; when α = 0.56,
it can obtain the following feasible set of Problem 1 as follows.

P =

⎡⎢⎢⎢⎢⎢⎢⎣

1.4615 0.0046 0.0031 0.3576 −0.0014 −0.0010
0.0046 1.4644 −0.0011 −0.0013 0.3568 0.0004
0.0031 −0.0011 1.4663 −0.0008 0.0003 0.3562
0.3576 −0.0013 −0.0008 1.2772 −0.0048 −0.0033
−0.0014 0.3568 0.0003 −0.0048 1.2742 0.0012
−0.0010 0.0004 −0.3562 −0.0033 0.0012 1.2721

⎤⎥⎥⎥⎥⎥⎥⎦,

H =

⎡⎢⎢⎢⎢⎢⎢⎣

0.7346 −0.0027 −0.0018 −0.2057 0.0007 0.0006
−0.0027 0.7329 0.0007 0.0007 −0.2052 −0.0002
−0.0018 0.0007 0.7318 0.0005 −0.0002 −0.2049
−0.2057 0.0007 0.0005 0.8406 0.0027 0.0019
0.0007 −0.2052 −0.0002 0.0027 0.8423 −0.0007
0.0006 −0.0002 −0.2049 0.0019 −0.0007 0.8435

⎤⎥⎥⎥⎥⎥⎥⎦,

W =

⎡⎣−217.5592 0.7428 −0.5725 −603.5876 123.1579 123.7787
−1.0199 −218.1600 0.3047 123.2236 −603.8824 123.6221
−0.5871 0.3145 −218.5594 123.2847 123.7681 −603.9867

⎤⎦.

η = 1.8807.

Then, the controller gain matrix K can be obtained as

K = QH−1 =

⎡⎣−534.1135 42.7502 43.1158 −849.7152 160.1318 159.6025
42.2767 −535.0346 44.4461 159.8061 −847.7123 156.1346
42.9813 44.4588 −535.6834 158.8171 156.4078 −846.4539

⎤⎦.

Case 2. Lyapunov asymptotic stabilization.

By Algorithm 2, we can obtain the qualified feasible set of Problem 2 below
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P =

⎡⎢⎢⎢⎢⎢⎢⎣

3.0361 −0.0086 −0.0086 1.2422 0.0585 0.0513
−0.0086 3.0374 −0.0084 0.0434 1.2404 0.0500
−0.0086 −0.0084 3.0372 0.0506 0.0514 1.2412
1.2422 0.0434 0.0506 9.7036 0.9601 0.9577
0.0585 1.2404 0.0514 0.9601 9.7123 0.9645
0.0513 0.0500 1.2412 0.9577 0.9645 9.7090

⎤⎥⎥⎥⎥⎥⎥⎦,

H =

⎡⎢⎢⎢⎢⎢⎢⎣

0.3477 0.0008 0.0008 −0.0449 0.0020 0.0023
0.0008 0.3475 0.0007 0.0026 −0.0449 0.0023
0.0008 0.0007 0.3475 0.0023 0.0023 −0.0449
−0.0449 0.0026 0.0023 0.1108 −0.0100 −0.0100
0.0020 −0.0449 0.0023 −0.0100 0.1107 −0.0101
0.0023 0.0023 −0.0449 −0.0100 −0.0101 0.1107

⎤⎥⎥⎥⎥⎥⎥⎦,

Q =

⎡⎣−10.0000 1.8545 1.8133 −10.0000 0.5097 0.5140
1.7942 −10.0000 1.8326 0.5097 −10.0000 0.5104
1.8145 1.8309 −10.0000 0.5140 0.5101 −10.0000

⎤⎦,

from which it yields that

K = QH−1 =

⎡⎣−42.7585 5.9275 5.7365 −108.3038 −2.3458 −2.2657
5.5921 −42.7602 5.7790 −2.2787 −108.3461 −2.3347
5.7346 5.7838 −42.7628 −2.2725 −2.3341 −108.3334

⎤⎦.

Case 3. LQR control
Through numerous simulations in trial and error, the following matrices Q and R, by

which a great convergence performance of system (2) can be achieved, are set.

Q =

⎡⎢⎢⎢⎢⎢⎢⎣

12 0 0 0 0 0
0 16 0 0 0 0
0 0 20 0 0 0
0 0 0 12 0 0
0 0 0 0 20 0
0 0 0 0 0 14

⎤⎥⎥⎥⎥⎥⎥⎦, R =

⎡⎣0.001 0 0
0 0.002 0
0 0 0.015

⎤⎦.

Then, we can obtain a qualified solution P and a corresponding controller gain K as
below

P =

⎡⎢⎢⎢⎢⎢⎢⎣

30.5407 0.0042 0 32.8636 0.1238 0
0.0042 45.1365 0 −0.1011 53.6654 0

0 0 82.7805 0 0 164.3151
32.8636 −0.1011 0 83.6389 −0.0726 0
0.1238 53.6654 0 −0.0726 151.3918 0

0 0 164.3151 0 0 680.1108

⎤⎥⎥⎥⎥⎥⎥⎦,

K =

⎡⎣109.5452 −0.3371 0 278.7964 −0.2421 0
0.2064 89.4424 0 −0.1211 252.3197 0

0 0 36.5145 0 0 151.1357

⎤⎦.

Remark 5. Note that the best results obtained through numerous experiments in trial and error
were chosen to be compared to ensure the fairness of the comparison in the above three cases.

Furthermore, the illustration of the trajectory xT(t)Rx(t) of the designed spacecraft ren-
dezvous system in the cases of finite-time contractive stabilization, Lyapunov asymptotic
stabilization, and LQR control are shown in Figure 2, where xT(t)Rx(t)-FTCS, xT(t)Rx(t)-
LAS, and xT(t)Rx(t)-LQR denote the trajectory of xT(t)Rx(t) under the finite-time contrac-
tive stabilization, the Lyapunov asymptotic stabilization, and LQR control, respectively.

In Figure 2, the curve “xT(t)Rx(t)-FTCS” indicates that for given x(0) = [750, 650, 550, 0,
0, 0]T, which satisfies xT(0)Rx(0) = 1.2875 × 106 < 1.3 × 106, xT(t)Rx(t) < 2.5 × 106
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holds, ∀ t ∈ [0, 40], xT(t)Rx(t) < 1.0 × 104 holds, ∀ t ∈ [10, 40]. Hence, according to
Definition 1, the designed spacecraft rendezvous system is finite-time contractively stable
w.r.t.(1.3 × 106, 2.5 × 106, 1.0 × 104, I, 10, 40) under finite-time contractive stabilization. In
addition, the curve “xT(t)Rx(t)-LAS” shows that the trajectory of xT(t)Rx(t) reaches the
bound c3 at 7.947 s for the first time under the case of Lyapunov asymptotic stabilization;
however, it escapes from the bound at the time interval [10, 14.022]. Hence, the designed
spacecraft rendezvous system is Lyapunov asymptotically stable but is not finite-time
contractively stable w.r.t. (1.3 × 106, 2.5 × 106, 1.0 × 104, I, 10, 40) in this case, which verifies
the conclusion that if a system is finite-time contractively stable, it must be Lyapunov
asymptotically stable, but not vice versa.
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Figure 2. Evolution of xT(t)Rx(t) under different control methods.

The trajectories of relative position and velocity under different control laws are
presented in Figures 3–8. Moreover, the distribution diagram of pole points of the resulting
closed-loop system from input u1 to all outputs (y1, y2, y3) is shown in Figure 9. (Such
diagrams from u2, u3 to all outputs (y1, y2, y3) are the same as that from u1 to all outputs
in this case. Here, they are not listed for simplicity.) It follows from Figures 3–8 that the
relative position and velocity of the considered two spacecrafts along the x, y, and z axes
gradually reduce to 0 under cases of finite-time contractive stabilization and Lyapunov
asymptotic stabilization. This indicates that the spacecraft rendezvous can be achieved
through the use of the designed controllers. Furthermore, comparing x(t)-FTCS, . . . , ż(t)-
FTCS with x(t)-LAS, . . . , ż(t)-LAS and x(t)-LQR, . . . , ż(t)-LQR, respectively, it is attained
that in the case of finite-time contractive stabilization, the achievement of the spacecraft
rendezvous is quicker than that in the case of Lyapunov asymptotic stabilization and LQR
control, from which it can be concluded that the convergence performance for finite-time
contractive stability can be better than Lyapunov asymptotic stability. This conclusion can
also be supported intuitively by Figure 9, where poles in the FTCS case that all lie on the
left of “s = −α” are definitely farther from the imaginary axis than that in the LAS and
LQR cases.

In addition, according to the simulation results, if assuming that the chaser spacecraft
needs to approach the target spacecraft within a short enough ts, there is no doubt that the
strength of thrust of the chaser spacecraft is suffering challenges in the consideration of
finite-time contractive stabilization in this paper, and thus, the corresponding cased energy
consumption has to be accommodated. Actually, a balance between the expected ts and
acceptable strength of thrust is needed in practice.
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Figure 3. Relative position along x-axis under different control laws.
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Figure 4. Relative position along y-axis under different control laws.
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Figure 5. Relative position along z-axis under different control laws.
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Figure 6. Relative velocity along x-axis under different control laws.
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Figure 7. Relative velocity along y-axis under different control laws.
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Figure 8. Relative velocity along z-axis under different control laws.
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Figure 9. Distribution diagram of pole points from input u1 to all outputs.

5. Conclusions

The finite-time contractive control problem for spacecraft rendezvous was investi-
gated in this paper. Based on the Lyapunov stability theory, the existence condition of the
finite-time contractive controller was established. The cone complementary linearization
technique was adopted to make the controller design numerically tractable. An illustrative
example showed the effectiveness of the proposed controller. Considering that the state
unavailability and noise of the spacecraft rendezvous system, which we ignored in this
paper, commonly need to be considered in practice, the future research interests of this
paper include the robust finite-time contractive boundedness control issue for an uncertain
spacecraft rendezvous system with disturbance and noise effects under observer-based
dynamic output feedback control, and the guaranteed cost finite-time contractive stabiliza-
tion issue for an uncertain spacecraft rendezvous system with/without disturbances and
noise effects.
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Abstract: The traditional particle swarm optimization algorithm is fast and efficient, but it is easy to
fall into a local optimum. An improved PSO algorithm is proposed and applied in 3D path planning
of UAV to solve the problem. Improvement methods are described as follows: combining PSO
algorithm with genetic algorithm (GA), setting dynamic inertia weight, adding sigmoid function to
improve the crossover and mutation probability of genetic algorithm, and changing the selection
method. The simulation results show that the improved PSO algorithm solves better route results
and is faster and more stable.
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1. Introduction

Currently, as robots enter our lives, boring, repetitive work is being transformed to
a more unmanned and intelligent system using machines instead of work. Among them,
the development of technologies related to drones has brought great convenience to our
lives, such as inspecting and exploring dangerous environments, delivering deliveries,
power patrols, and other tasks. For performing complex tasks in low-altitude flight, UAV
navigation capabilities and planning paths are particularly important [1].

In 1959, Dr. Dantzig and Dr. Ramser first raised the vehicle-based routing problem.
From then on, the routing problem has become a new research topic for domestic and
foreign scholars [2]. Path planning algorithms suitable for UAV use can be divided into
two categories, global path planning algorithms in the continuous domain range and
local path planning algorithms in the continuous domain range [3]. In a two-dimensional
environment, traditional algorithms such as A* algorithm [4], Dijkstra algorithm [5], and
simulated annealing algorithm [6] perform search to find the optimal path by means of a
raster map. However, when extended to three dimensions, the consumption of time and
memory increases proportionally and is no longer applicable with path planning.

Sampling-based stochastic methods [7] have received wide application and attention
in recent years. Random sampling in state space can effectively solve high-dimensional
and complex path planning problems, but there are problems of low accuracy and slow
convergence [8].

Inspired by nature, swarm intelligence algorithms are applied to route planning
in complex environments, for example, particle swarm algorithm [9], ant colony algo-
rithm [10], and genetic algorithm [11]. These algorithms find an efficient path through
different strategies and then obtain the final path by continuous iterations. However, the
tendency to fall into local optimum is still one of the problems that swarm intelligence
algorithms need to solve.

Three-dimensional path planning is global path planning, which finds the best and
collision-free path in 3D clutter considering geometric, physical, and temporal constraints [12].
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This requires high accuracy and speed of the algorithm. The algorithms presented above
have been applied to 3D path planning, among which the swarm intelligence algorithm
stands out due to its excellent search capability. However, a single swarm intelligence algo-
rithm still has limitations, and how to improve it has become one of the topics of scholars.
Wang Yihu et al. [13] introduced the convergence and migration operations of the bacterial
foraging algorithm (BFO) in the PSO algorithm, which effectively improved some of the
defects of the PSO algorithm and improved its search capability. Xueying Sun et al. [14]
proposed a high-performance bacterial foraging-genetic-particle swarm hybrid algorithm
to address the defects of the particle swarm algorithm, which improved the computational
speed and capability of the algorithm and further improved the usability of the method. B.
Abhishek et al. [15] proposed a harmony-based search algorithm, which performs both ex-
ploratory search and usage search, and further optimizes the generated path combined with
unmanned aerial vehicle constraints, while speeding up the algorithm to avoid falling into
local optimum. Manh Duong Phung [16] presents a spherical quantum-oriented particle
swarm optimization algorithm (SPSO), which transforms the path planning problem into
an optimization problem containing the requirements and constraints for UAV’s feasible
and safe operation. The SPSO algorithm is used to find the optimal path through the
relationship between particle position and UAV speed, turn angle, and pitch angle.

In this paper, the hybrid particle swarm optimization algorithm CPSO is designed to
solve the UAV 3D path planning problem by combining the excellent design.

• Establish the experimental environment model, set 3D mountains as obstacles, con-
struct fitness function based on obstacles and path length, and introduce cubic B-spline
curve to smooth the path.

• Set the adaptive dynamic inertia weight of the adaptive particle swarm optimization
algorithm to ensure the early search ability while enhancing the optimization ability
of the later population.

• By introducing the selection operation of improved SHADE algorithm and improved
genetic algorithm, the population diversity is improved, avoiding falling into local
optima and reducing search time.

• Finally, comparative simulation experiments were conducted using MATLAB to com-
pare with various swarm intelligence algorithms, including particle swarm optimiza-
tion (PSO), particle swarm optimization algorithm with adaptive inertia weights
(wPSO), SHADE algorithm (SHADE), genetic algorithm (GA), and ant colony algo-
rithm (ACA), taking into account the overall performance of the algorithm.

The other parts of this article are arranged as follows: Section 2 establishes the experi-
mental environment and path smoothing algorithm; Section 3 introduces the improvement
strategy of CPSO in detail; Section 4 introduces the experimental environment, experimen-
tal results analysis, and algorithm comparison. Finally, the conclusion is given in Section 5,
and the focus and improvement direction of follow-up work are proposed.

2. Model Establishment

This section describes the environmental model and path smoothing model used in
this experiment, specifically for building a three-dimensional environmental model with
mountain barriers and a cubic B-spline curve for smooth paths.

2.1. Environmental Model

The 3D path planning of the UAV needs to obtain information from the terrain model,
and the actual situation should be considered when modeling the terrain. By considering
obstacles, environment, and other factors, the established terrain model [17] is described
as follows:

Z1(x, y) = sin(y + a) + b · sin(x) + c · cos(d ·
√

x2 + y2)

+ e · cos(y) + f · sin(g ·
√

x2 + y2)
(1)
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where x and y are the horizontal coordinates, and Zi are the corresponding height values.
a, b, c, d, e, f , and g are constant coefficients that control the undulation of the base terrain
and can be set as needed or generated randomly. For a mountain in 3D environment, it can
be represented by the following model:

z(x, y) =
P

∑
i=1

hi exp

[
−
(

x − xi
xsi

)2
−
(

y − yi
ysi

)2
]

(2)

where P represents the total number of mountain peaks,(xi, yi) represents the center coor-
dinate of the i-th peak, and hi is the parameter that controls the height. xsi and ysi are the
attenuations of the i-th peak along the x-axis and y-axis which can be used to control the
slope, respectively.

2.2. Path Smoothing Algorithm Based on Cubic B-Spline Curve

In order to prevent frequent angle adjustment during the flight, ensure the safety
of the UAV, and reduce the sailing time, a cubic B-spline curve is introduced [18]. In a
given m + n + 1 plane or space vertex Pi(i = 0, 1, . . . , m + n), it is called a parametric curve
segment of degree n:

Pk,n(t) =
n

∑
i=0

Pi+kGi,n(t)t ∈ [0, 1] (3)

where Pk,n(t) is the n-th degree B curve segment of the k-th segment, and these curve
segments are called n-th degree B-spline curves. Gi,n(t) is the basis function which is
defined based on Equation (4).

Gi.n(t) =
1
n!

n−i

∑
j=0

(−1)jCj
n+1(t + n − i − j)n

t ∈ [0, 1]i = 0, 1, ...n

(4)

in order to ensure the smoothness of the path and consider the difficulty, let n = 3, and a
cubic B-spline curve is used to smooth the path.

3. Improved Particle Swarm CPSO Algorithm Design

This section describes the design ideas of the improved particle swarm optimization
algorithm CPSO, including constructing a fitness function based on barriers and path
length, changing fixed weights to adaptive dynamic weights to improve the optimization
ability, and finally fusing the SHADE algorithm to improve population diversity.

3.1. Particle Swarm Algorithm

Particle swarm optimization (PSO) is an evolutionary computing technique. Inspired
by the results of artificial life studies, Dr. Eberhart and Dr. Kennedy proposed a particle
swarm algorithm by simulating bird foraging migration and population behavior and
improving Craig Reynolds’ bird cluster model [19]. A massless particle is designed to
simulate a bird in a flock, and the particle has only two attributes: speed and position,
where speed represents the speed of movement and location represents the direction of
movement. Each particle individually searches for the optimal solution, records it as the
current individual extreme value, and shares the individual extreme value with other
particles in the whole particle swarm to find the optimal individual extreme value as the
current global optimal solution for the whole particle swarm. All particles in the particle
swarm adjust their speed and position according to the current individual extreme value
they find and the current global optimal solution shared by the whole particle swarm. The
basic idea of the particle swarm optimization algorithm is to find the best solution through
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collaboration and information sharing among individuals in a group. The particle swarm
optimization algorithm operates on particles using the following formulas:

vij(t + 1) = wvij(t) + c1r1(t)
[
pbesti − xij(t)

]
+ c2r2(t)

[
gbesti − xij(t)

]
(5)

xij(t + 1) = xij(t) + vij(t + 1) (6)

where w denotes the inertial weight and the degree of trust in the current speed direction.
c1, c2 is the learning factor, also known as the acceleration constant; r1, r2 is a random value
between 0 and 1, increasing search randomness. vij is the velocity of the particle. pbest
is the best position for the i particle to experience, and gbest is the best position for all
particles of the group to experience. xij is the current position of the particle.

3.2. Fitness Function Design

The quality of the path length is one of the important indicators to measure the success
of the algorithm improvement. Due to the lack of battery capacity of the UAV, the flight
distance is limited. The shorter the flight path, the less time and energy it takes.

Based on the cubic B-spline curve fitting path, the interpolation process is performed,
and the interpolation is differentiated to obtain the fitness function:

f itness =
√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2 (7)

where (xi, yi, zi) are the coordinates of the i node of the path; (xi+1, yi+1, zi+1) are the
coordinates of the i + 1 node. The obstacle risk factor f is introduced to avoid the collision
between the UAV and the obstacle. The barrier coefficient formula is described as follows:

f =

{
0 Lmin > Ld
1 Lmin < Ld

(8)

considering the real environment, UAV is not a particle and it has its own size. So, Lmin is
set as the minimum distance close to the peak, and Ld as the safe distance. Combined with
laboratory drone data, set Ld = 0.12. When f = 1, the minimum distance is less than the
safe distance, which is prone to danger, so it is necessary to increase the fitness function.
The fitness function is changed to:

f itness = k f itness (9)

where k is the multiple of expansion, which can be set according to the experimental
environment. This experiment has set k = 5.

3.3. Adaptive Dynamic Inertial Weight

The inertia weight is an important control parameter in the particle swarm algorithm,
and the size of the inertia weight indicates how much of the current velocity inheritance
goes to the particle. If inertia weight is set larger, the global search ability is stronger, and if
inertia weight is set smaller, the local search ability is stronger and the global search ability
becomes weaker [20]. In this paper, a linearly decreasing inertia weight is designed. In
the early stage of the algorithm, a larger inertia weight is used to ensure the global search
ability. With the increase in number of iterations, the inertia weight becomes smaller and
the local search ability is enhanced. The formula is described as follows:

w =(wmax − wmin)× (N − iter)
N

+
(wmax − wmin)

iter

(10)
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where wmax is the maximum inertia weight, wmin is the minimum inertia weight, N is the
maximum number of iterations, and iter is the current iteration number of the algorithm.

3.4. Improved SHADE Algorithm

Differential evolution algorithm (DE) [21] belongs to one of the evolutionary algo-
rithms (EA). It includes the following steps: 1. initialization of the population. 2. mutation
operation. 3. crossover operation. 4. selection operation. Then after that, the JADE [22]
algorithm is updated, which has the same logic as DE. Subsequently, SHADE [23] was
introduced on the basis of JADE. In this paper, the DE family algorithm is chosen to increase
the population diversity, prevent falling into local optimum, and at the same time improve
the operation speed.

According to the characteristics of DE, JADE, and SHADE algorithms, the variation
operation and crossover operation are taken to be used in the algorithm. The number of
populations in this experiment is M = 50; if each iteration does not consider the interference
of invalid points, this will lead to an increase in the algorithm running speed. By the
selection operation of hybrid genetic algorithm GA, the good individuals are left and the
bad ones are eliminated.

This paper adopts the mixed selection operator. The first method uses the optimal
fitness selection method to sort the fitness and selects the better fitness as the parent 1, with
selection of populations at 50%. The second method uses the roulette method by selecting
the probability psec. The selected population is used as parent 2, and the population share
is 50%. The combination becomes the parent of the next iteration.

The variation operation achieves individual variation through a difference strategy,
and the improved variation strategy is chosen in this paper: DE/current-to-best/1. The
equation is as follows:

Vi,j,v(g + 1) = Xi,G + Fi ·
(

XP
best ,G − Xi,G

)
+ Fi · (Xri

1 ,G
− Xri

2,G)
(11)

μF = (1 − c) · μF + c · mean(SF) (12)

Fi = rand(μF, 0.1) (13)

where Xi,G is the i particle being processed, XP
best ,G is an individual in the top p ∗ M of the

current population fitness ranking, p is a given proportion, p = 10%, Xri
1 ,G

is the i particle

being processed of parent 1 selected by GA, Xri
2,G is the i-th particle being processed of

parent 2 selected by GA, μF = 0.4, Fi is the scale factor, c = 1
10 , and mean(SF) is the ratio of

parent optimal fitness function to population size.
Afterwards, crossover operations between individuals were performed to improve pop-

ulation diversity for the populations after mutation operations. The formula is as follows:

uj,i,v(g + 1) =
{

vj,i,v(g+1),i f rand(0,1)≤Cr

xj,i,v(g+1),otherwise (14)

μCR = (1 − c) · μCR + c · mean(Scr) (15)

Cr = rand(μCR, 0.1) (16)

where xj,i,v(g + 1) is the parent population, Cr is the crossover probability, μCR = 0.5,
c = 1

10 , and mean(Scr) is the ratio of the current population optimal fitness function to the
population size.
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3.5. Constraint Condition

In order to prevent the UAV from being dangerous during flight, constraints need to
be set according to the actual situation. Firstly, the altitude has a great influence on the UAV.
Flight at high altitude is susceptible to temperature and airflow, and flight at low altitudes
is susceptible to disturbances from buildings and trees. Therefore, flying at the appropriate
altitude can be expressed as Equation (13):

zmin < zj < zmax (17)

where zj is the height position of the j-th time. zmin, zmax represent the minimum and
maximum heights, and zmin = 5, zmax = 100 is set according to the actual situation.
Meanwhile, the size of environment is set to 100 × 100 × 250 m to prevent the UAV from
flying out of the set environment.

4. Experimental Simulation and Analysis

Firstly, summarize the algorithm flowchart according to the third section, and then
introduce the experimental hardware configuration and some algorithm parameters of
this experiment. Perform comparative analysis of algorithms in the same and random
environments to validate the improved particle swarm optimization algorithm.

4.1. Improved Algorithm Operation Flow

The flow chart of the improved PSO algorithm is presented in Figure 1.
(1) Establishing an experimental environment according to Equations (1) and (2); refer

to Section 2.1. Setting the start point and end point. The starting point is represented as a
box and the ending point is an asterisk.

(2) Parameter initialization. Setting the particle population size, maximum number of
iterations, inertia weight, social weight, and cognitive weight. For parameter settings, refer
to Table 1.

(3) Population initialization. Randomly generating particles and initializing the ve-
locity, calculating the initial fitness and performing collision detection, and updating the
individual optimum as well as the global optimum.

(4) Enter the main loop. Update velocity and position, perform velocity and position
detection at the same time to avoid out-of-bounds, calculate fitness values and perform
collision detection, update individual optimum and global optimum.

(5) The selection operation of genetic algorithm is introduced to select the outstanding
particle population as the parent, followed by the crossover and mutation operation of
SHADE algorithm. The new population is used as the initial population for the next
performed cycle.

(6) End condition. Determine if the maximum number of iterations has been reached,
and if so, exit the loop and output the result; otherwise, return to step (4).

4.2. Experimental Environment and Parameters

To verify the advantages of the proposed CPSO algorithm, traditional PSO algorithm,
SHADE, and PSO with modified dynamic inertia weights (wPSO) are used as control group,
and the parameters such as the number of iterations remain unchanged. The above three
algorithms are simulated and tested on MATLAB. Two sets of experiments are carried out
and the experimental results are analyzed. The test environment is Windows 10, 64-bit
system, MATLAB R2020b simulation platform. Parameters in the algorithm are shown in
Table 1:

In order to verify the superiority of the improved PSO algorithm in 3D path planning,
the following two experiments are carried out, respectively.
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Figure 1. Flow chart.

Table 1. Algorithm parameters.

Quantity Symbol Numerical Value

Spatial scope / 100 × 100 × 250
Starting point start (1,1,1)

End point goal (95,76,30)
Total group

number
M 50

Number of
iterations

N 200

Current iterations iter /
Social weight c1 2

Cognitive weight c2 2
Maximum

inertia weight
wmax 0.9

Minimum
inertia weight

wmax 0.4

Expand multiple k 5

4.3. Comparative Analysis in the Same Simple Environment

This section conducted comparative analysis experiments on algorithms in simple
and complex environments. Figure 2 shows the front view of 3D path planning results in
a simple environment, and Figure 3 shows the front view of 3D path planning results in
a complex environment. Figures 4 and 5 show the fitness curves of simple and complex
environments, respectively.
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Figure 2. Simple environment result diagram.

From Figures 2 and 3, it can be seen that several algorithms can complete path planning
tasks in a three-dimensional environment. From the e and f graphs in Figure 3, it can be
observed that the GA and ACA algorithms generate long paths with multiple inflection
points, and although they can stay away from obstacles, they are not the optimal choice.
Compared to e and f graphs, the path generation of C graph is better, but there is still a
significant curve situation. The generation path of D graph is excellent, but the inflection
points can be clearly found in the graph. The simple PSO algorithm is not sufficient for
path smoothness, so it is not adopted. The path generation in Figure 2b is smooth, but
compared to Figure 2a, the degree of path optimization is clearly not excellent enough.
Overall, the CPSO generated in Figure 2a has a smooth path, no inflection points, good
continuity, and the shortest path.
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Figure 3. Complex environment result diagram.

From the fitness curve in Figure 6, it can be seen that the PSO algorithm and wPSO
algorithm have been trapped in local optimum around 20 iterations, lacking the ability
to jump out of local optimum, among which PSO algorithm has been trapped in local
optimum in the ninth iteration. Although the search was still in progress at the 115th
iteration, the effect was no longer apparent. Because of the inertial dynamic weights, wPSO
reaches its optimum in about 20 generations and still tries to optimize in later generations,
but the diversity of the population is insufficient, resulting in poor search ability in later
generations. Because the SHADE algorithm needs to be continuously evolved, it takes a
long time to reach its optimal level in about 60 generations, and the performance of the
algorithm is not as good as other control groups. GA and ACA algorithms have large
fitness and weak optimization ability, which require great computing power for 3D path
optimization tasks, so there is still great room for the development of the two algorithms.
The CPSO algorithm incorporates dynamic inertia weights, which are larger in the pre-
iteration period; it guarantees global searching ability and sharply reduces the fitness
curve. As the number of iterations increases, the weight decreases, the local optimization
ability is strengthened, and the convergence rate is increased, and the optimal result is
basically reached in 23 generations. The selection operation in the genetic algorithm and
the crossover and mutation operation in SHADE are introduced to improve the diversity
of the population, enhance the search ability, and still perform local optimization in the
late iteration.
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For the complex path planning in Figure 3, the differences in path generation are
particularly prominent. Firstly, the drawbacks of Figure 3e,f in simple obstacles are magni-
fied in complex obstacles, resulting in more inflection points and longer generation paths,
proving that the two algorithms have poor processing ability in complex three-dimensional
environments. The d and b graphs perform well in simple environments, but their own
shortcomings are exposed when the environment is complex. Firstly, there is a problem of
generating path differences in both Figure 3b,d, and there are large-scale curves, which can
lead to the risk of drone crashes during flight. In addition, there are also a few inflection
points in the paths generated by the two, further increasing the danger of drone flight. From
the image, CPSO and SHADE are both excellent for complex 3D path planning problems,
but from the fitness Figure 5, it can be found that CPSO’s fitness curve is significantly lower
than SHADE’s, so the path generated by CPSO is better.

In summary, in increasingly complex environments, CPSO performs significantly
better than other comparative algorithms, so CPSO can be used as a choice for dealing with
path planning problems in complex environments.

Figure 4. Simple environmental fitness value.

Figure 5. Complex environmental fitness value.

4.4. Comparative Analysis in Random Environment

Establish a three-dimensional random environment within the range of 100 × 100
× 100 m, with a starting point of (1,1,1) m and an endpoint of (100100,50) m. Randomly
generate 10 obstacles with 200 iterations. Perform 10 simulation tests on the 6 algorithms
mentioned above, and the simulation results are shown in Figure 6. The statistical results are
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shown in Table 2. It can be found from the statistical table that the average fitness of CPSO
algorithm is significantly lower than that of other comparison algorithms, showing good
optimization ability. Through variance comparison, CPSO has good stability. According
to Table 2, by comparing the number of iterations and time to reach the average fitness
value, it can be found that CPSO can reach the average fitness in a relatively short time. The
number of iterations is 14 generations, and it takes 14.48 s. The traditional PSO algorithm
requires 37 iterations and takes 12.84 s. The SHADE algorithm and wPSO require 26 and 37
iterations, consuming 14.21 s and 7.21 s. GA and ACA are obviously poor in fitness and
higher than other algorithms. In summary, it can be proven that the CPSO algorithm is
more stable and faster than other algorithms.

Figure 6. Ten simulation results.

Table 2. Simulation result statistics.

Algorithm
Average
Fitness
Value

Average
Running
Time/s

Fitness
Value

Variance

Average
Number of
Iterations to

Reach
Average

Value

Time to
Reach

Average
Fitness

CPSO 128.723 50.56 0.11 14 3.5
PSO 135.314 69.38 6.21 37 12.84

SHADE 140.237 90.45 4.011 60 27.14
wPSO 132.301 55.49 2.69 26 7.21

GA 192.585 85.28 44.941 34 14.5
ACA 195.355 275.38 47.337 39 53.7

5. Conclusions

Aiming at the shortcomings of the traditional PSO algorithm, with which it is easy
to fall into local optimum, this paper proposes an improved PSO algorithm and applies it
to 3D path planning. The improvement method is: introducing dynamic inertia weight,
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adding selection operation in genetic algorithm, adding crossover and mutation operation
in SHADE algorithm, using mixed selection operations, introducing crossover and mutation
operations, increasing the diversity of the population, retaining the global search ability
of the particle swarm optimization algorithm, and enhancing the local search ability in
the later stage of iteration. The CPSO algorithm, PSO algorithm, GA algorithm, and other
algorithms are simulated and tested by MATLAB. The test results show that the improved
PSO algorithm has better searching ability and stability, and performs significantly better
in a complex environment than the comparison algorithm. Compared with PSO, GA, and
other algorithms, the CPSO algorithm generates a shorter path length and smoother path,
which improves the quality and efficiency of UAV routing. The CPSO average fitness value
increased by about 5.12% compared with PSO, 49.61% compared with GA, 2.78% compared
with wPSO, 8.94% compared with SHADE, and 51.76% compared with ACA.

This experiment verifies the feasibility of the algorithm through simulation, and
assumes that the external environment has no influence. Future research will focus on the
optimization of UAV three-dimensional path planning algorithms in real and dynamic
environments and make them available for daily use.
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Abstract: In this paper, a new fixed-time convergence guidance law is proposed against maneuvering
targets in the three-dimensional (3-D) engagement scenario. The fixed-time stability theory is used to
zero the line-of-sight (LOS) angle rate, which will ensure the collision course and the impact of the
target. It is proven that the convergence of the LOS angle rate can be achieved before the final impact
time of the guidance process, regardless of the initial conditions. Furthermore, the convergence rate is
merely related to control parameters. In theoretical analysis, the convergence rate and upper bound
are compared with that of other laws to show the potential advantages of the proposed guidance
law. Finally, simulations are carried out to illustrate the effectiveness and robustness of the proposed
guidance law.

Keywords: three-dimensional engagement; maneuvering target; LOS angle rate; collision course;
fixed-time convergence
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1. Introduction

During a typical missile guidance process, the most important stage is the terminal
guidance phase, which plays a decisive role in determining the missile’s intercept perfor-
mance [1]. In the terminal guidance phase, the target may be maneuvering. On the other
hand, the time left for impacting the target is usually very short. Therefore, novel guidance
laws with a fast convergence rate to ensure the impact and robustness to target maneuvers
have great significance for the missile’s performance.

In order to improve the missile’s performance, many modern theories are utilized to
design guidance laws. An effective way to improve the robustness of guidance laws is to
apply the H∞ control theory. In [2], the H∞ guidance law was derived from solving the
associated Hamilton–Jacobi function. In [3], based on the nonlinear robust H∞ filtering
method to estimate the LOS rate, a guidance law was proposed considering input saturation
as well as system stability. Although strong robustness was obtained and exhibited, the
H∞ guidance laws cannot achieve finite-time convergence.

Another approach is to apply the Lyapunov asymptotic stability theory. In [4], a
quadratic Lyapunov candidate function was proposed. By a particular selection of LOS
angle function, the resulting guidance law can be free of singularities. In [5], a Lyapunov
candidate function concerning the heading angle error was proposed, and the exact ex-
pression of the flight time was derived. The incomplete beta function was used, and the
flight time can be adjusted by a single control parameter. As an improvement of the work
in [5], another Lyapunov-based guidance strategy was proposed in [6] with impact angle
constraints. In [7], the impact time constraint was considered, and the resulting guidance
law can zero the heading error angle to ensure the collision course. In [8], a novel adap-
tive integrated guidance and control law was designed with a barrier Lyapunov function;
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Mathematics 2023, 11, 2090

the resulting guidance law can handle input saturation and constraints of angles. This
group of guidance laws was based on the Lyapunov asymptotic stable theory, and only
guaranteed the convergence of the system as time approached infinitely. Moreover, the
targets were assumed stationary in the design of the guidance law. Obviously, they are
theoretically imperfect.

As an improvement of asymptotic convergence law, guidance laws that can ensure
finite-time convergence were investigated. A guidance law based on finite-time conver-
gence theory was proposed in [9], which was an early work considering both finite-time
convergence and target maneuver together. The LOS rate converged to zero or a small
neighborhood of zero in finite time under the proposed guidance law. Then, the work
in [9] was improved by taking the autopilot dynamic into account [10,11]. In [12], based
on sliding mode control theory, a finite-time convergence guidance law with impact angle
constraint was proposed, and the guidance command was generated to enforce terminal
sliding mode on the designed switching surface from nonlinear engagement dynamics. As
an improvement of [12], the work in [13] was based on the output feedback continuous
terminal sliding mode guidance. The resulting guidance law can achieve not only finite-
time convergence but also ensure continuity of control action. Compared with guidance
laws based on stable asymptotic theory, this group of guidance laws can achieve finite-time
convergence. However, the convergence upper bound is relative to initial states.

Recently, the design of guidance law also applied the fixed-time stability theory, which
was an improvement of finite-time stability theory since it can provide a settling upper
bound irrelevant to initial conditions. Since this theory was first presented in [14] in
2012, few works have utilized this theory for guidance law design. The earliest work in
this direction was found in [15], where a planar adaptive fixed-time guidance law was
presented; the resulting guidance law can stabilize the guidance system with a bounded
settling time without dependence on the initial conditions. Then, the work in [15] was
improved by considering time constraints with input delays [16]. The fixed-time stability
was further applied to the 3-D engagement scenario [17,18]. The work in [17] utilized the
fixed-time stability theory to achieve a fast consensus protocol. Then, it was improved
in [18] by considering the impact angle constraint. Despite the settling time being irrelative
to initial conditions, the guarantee of the settling time before the final impact time is not
discussed by the above-mentioned guidance laws. The fixed-time consensus tracking
algorithms of second-order MASs via event-triggered control are presented in [19]; for the
fixed-time consensus result, the consensus can be reached in a settling time with any initial
condition, and it is revealed that the ratio of each pair of states is constant resulting in
shorter output trajectories [20,21] investigate the fixed-time synchronization problem for
the coupled neural networks, respectively. Recently, [22] has given the concept of practically
fixed-time stability for the first time. The finite/fixed-time stabilization and tracking control
problems are simultaneously concerned in [23–25].

Inspired by the above observation, this paper proposes the fixed-time convergence
guidance law against maneuvering targets in 3-D engagement scenarios. It is proven that
the convergence of the LOS angle rate to zero can be completed before the final impact
time, regardless of the initial conditions. To the best of the authors’ knowledge, guidance
laws consider the following three problems simultaneously, i.e., fixed-time convergence,
3-D engagement against maneuvering target, and the guarantee of the settling time before
the final impact time, which are rare in the literature.

The main contribution of this work can be stated as follows:

(1) A fixed-time convergence guidance law for 3-D engagement scenarios is proposed
against the maneuvering target. The novel guidance law can ensure fixed-time
convergence and fixed-time stability without initial condition constraints.

(2) The settling time of the LOS rate is proven to be surely shorter than the minimum
final impact time by the proposed fixed-time guidance law. It can ensure the success
of the missile in hitting the maneuvering target.
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(3) The convergence rate is proven merely related to control parameters, a suitable
selection of which can ensure the convergence rate without violating acceleration
constraints.

The following of this paper is structured as follows. The homing guidance model for
the 3-D engagement scenario and the main objective of the guidance law are introduced in
Section 2, respectively. The Fixed-time convergent guidance law design and the analysis
of its property are offered in Section 3. Simulations are carried out in Section 4 to show
the effectiveness of the proposed guidance laws. Finally, the conclusion of the work is
proposed in Section 5.

2. Problem Formulation

In this section, first, the dynamic model describing the motion of the aerospace vehicle
is offered. Then, the main objective of the guidance law is introduced.

Homing Guidance Model

The guidance geometry in 3-D space is constructed in Figure 1, where MXYZ is the
inertial reference coordinate and Mxyz is the LOS coordinate. M represents the missile
and T denotes the target. r denotes the relative range between the missile and the target.
φ and θ are the azimuth and elevation LOS angle, respectively. The angles in Figure 1 are
measured positively in the counterclockwise direction.

M

T

Figure 1. Three-dimensional missile-target interception geometry.
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Define aT = (aTr, aTθ , aTφ) and aM = (aMr, aMθ , aMφ) as the accelerations measured
in the LOS frame for the target and the missile, respectively. According to the virtue of
kinematics, the relative velocity V between the missile and the target can be expressed as

V(R, θ, φ) =

⎡⎢⎣
.
R
R

.
θ

−R
.
φ cos θ

⎤⎥⎦ (1)

According to the derivative rule of vector derivatives, we have

dV
dt

= ω × V +
∂V
∂t

= aT − aM (2)

where dV/dt and ∂V/∂t refers to the derivate of V in MXYZ and Mxyz, respectively, and
ω represents the rotation speed for Mxyz relative to the inertial coordinate system MXYZ.
It can be acquired from Figure 1 that

ω× =

⎡⎢⎣ 0 −
.
θ

.
φ cos θ

.
θ 0 − .

φ sin θ

− .
φ cos θ

.
φ sin θ 0

⎤⎥⎦ (3)

By substituting Equations (1) and (3) into Equation (2), we can obtain

..
r − r

.
φ

2 − r
.
θ

2
cos2 φ = aTr − aMr (4)

r
..
θ cos φ + 2

.
r

.
θ cos φ − 2r

.
φ

.
θ sin φ = aTθ − aMθ (5)

r
..
φ + 2

.
r

.
φ + r

.
θ

2
sin φ cos φ = aTφ − aMφ (6)

It should be noted that the collision course can be achieved with the LOS angle rate
.
θ and

.
φ converging to zero before hitting the target. Thus, Equations (5) and (6) are

considered in the design of the guidance law.
Define x1 =

.
θ, x2 =

.
φ u1 = aMθ , u2 = aMφ, and the coupling state equations of LOS

angles can be acquired as:

.
x1 = −2

.
r
r

x1 + 2x1x2 tan φ − u1

r cos φ
+

aTθ

r cos φ
(7)

.
x2 = −2

.
r
r

x2 − x2
1 sin φ cos φ − u2

r
+

aTφ

r
(8)

It can be concluded from Equation (7) that there exists cross-coupling between
.
θ and

.
φ. By virtue of the analysis in [1], x1 and x2 are small variables during the time horizon of
the impact process. This gives cos φ ≈ 1. Moreover, the third order of the small variables
can be neglected. Hence, Equation (7) can be rewritten as

.
x1 = −2

.
r

r
x1 − u1

r
+

aTθ

r
(9)

.
x2 = −2

.
r
r

x2 − u2

r
+

aTφ

r
(10)

The primary objective of the guidance law is to hit the target, which can be achieved
with the convergence of the LOS angle rates converging to zero in both planes. Therefore,
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the objective is to design the guidance law that can zero the LOS angle rates before hitting
the target.

3. Guidance Law Design

Considering the 3-D LOS angle motions are decoupled into two (2-D) LOS angular
motions in the previous analysis, in this section, the planar fixed-time convergence guidance
law is presented first. Then, the planar guidance law is further applied to the 3-D scenario.
Although the decoupled model is utilized in the design of the 3-D guidance law, the proof
for the convergence of LOS angle rates conducts on the cross-coupling model directly.

3.1. The Planar Guidance Law Design

In this subsection, the planar guidance law that can zero the LOS rate before hitting
the target is proposed, and the decouple planar LOS motion of Equation (9) is considered in
the design of the guidance law. Before deriving the guidance law, it is obliged to introduce
some basic lemma of fixed-time stability theory.

Before deriving the guidance law, it is obliged to introduce some basic concepts of
fixed-time stability theory [14].

Definition: The following nonlinear system is considered:

.
x(t) = f (t, x(t)), x(0) = x0 (11)

where the state and the upper semi-continuous mapping are denoted by x(t) ∈ Rl and
f : R+ × Rn → Rn , respectively. The state is fixed-time stability if it is globally finite-time

stable. Meanwhile, the function of the settling time T(x0) is restricted by a real positive
number Tmax, i.e., T(x0) ≤ Tmax, ∀x0 ∈ Rl . The definition can be stated mathematically as{

lim
t→T(x0)

x(t, x0) = 0. t ∈ [t0, T(x0))

x(t, x0) = 0. t ≥ T(x0), T(x0) < Tmax
(12)

Denote D∗ϕ(t) as the upper right-hand derivative of a function ϕ(t), D∗ϕ(t) =
lim

h→+0
(ϕ(t + h) − ϕ(t))/h. The fixed-time stability under the Lyapunov criterion is pre-

sented in Lemma 1.

Lemma 1. Suppose a continuous positive definite and radially unbounded function as V(x) :
Rn → R+ ∪ {0} , such that:

D∗V(x(t)) ≤ −mVp(x(t))− nVq(x(t)) (13)

for m, n > 0, p = 1 − 1
2γ , q = 1 + 1

2γ , γ > 1, then the origin is fixed-time stable for the system
V(x), and the settling time is given by:

T(x0) ≤ Tmax :=
πγ√
mn

(14)

Assume the deviations from the collision course for both the missile and target are
small, then the relative velocity can be approximated as:

.
r = −c, c = const. > 0 (15)

This assumption is reasonable since it can be conducted by a well-midcourse guidance
process. Then, the instant range at time t can be acquired as

r(t) = r0 − ct (16)
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Theorem 1. If the guidance command u1 can make the LOS angle rate x1 satisfying:

x1[
.
x1 +

m|x1|1−
1
γ sgn(x1) + n|x1|1+

1
γ sgn(x1)

2r(t)
] ≤ 0 (17)

where m = const. > 0, n = const. > 0, γ = const. > 1, and

sgn(x) =
{

1, x ≥ 0
−1, x ≤ 0

(18)

Then,
.
x1 will converge to zero before hitting the target.

Proof. The following continuously differential candidate function is considered:

W1 = x2
1 (19)

The derivative of Equation (19) to time is

.
W1 = 2x1

.
x1 (20)

Substituting Equation (17) into Equation (20) yields

.
W1 ≤ −m

r
W1

1− 1
2γ − n

r
W1

1+ 1
2γ (21)

According to Lemma 1, W1 will converge to zero in fixed-time. Define the settling time
for W1 as T1, then we have

lim
t→T1

W1 = 0 (22)

Since W1 = 0 in Equation (21) is a trivial case, assuming W1 = 0 yields

dW1

dt
≤ −mW1

1− 1
2γ + nW1

1+ 1
2γ

r
(23)

Substituting Equation (13) into (23) yields:

dW1

mW1
1− 1

2γ + nW1
1+ 1

2γ

≤ − dt
r0 − ct

(24)

Integrating the right side of Equation (24) from 0 to T1, and the corresponding integral
interval for the left side is [W1(0), W1(T1)]. One can obtain

∫ W1(T1)

W1(0)

1

mW1
1− 1

2γ + nW1
1+ 1

2γ

dW1 ≤ 1
c

ln(1 − cT1

r0
) (25)

Define

ϕ = −
∫ W1(T1)

W1(0)

c

mW1
1− 1

2γ + nW1
1+ 1

2γ

dW1 (26)

Substituting Equation (26) into (25) yields

T1 ≤ (1 − 1
eϕ )

r0

c
(27)

Define t f as the final time of the engagement. According to Equation (16), one can obtain

t f =
r0

c
(28)
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Then, Equation (27) can be rewritten as

T1 ≤ (1 − 1
eϕ )t f (29)

where ϕ merely relates to the initial LOS rate. Substituting Equation (22) into (26), one can
further obtain

ϕ =
∫ W1(0)

W1(T1)

c

mW1
1− 1

2γ + nW1
1+ 1

2γ

dW1 (30)

Thus, we can obtain ϕ > 0. Combining Equations (29) and (30) yields T1 < t f , which
implies that the convergence time for the LOS rate is always less than t f regardless of the
initial conditions. Hence, the proof of Theorem 1 is completed. �

Substituting Equation (9) into (17) yields

x1[−2
.
r

r
x1 +

1
r

u1 − 1
r

aTθ +
m
2r

|x1|1−
1
γ sgn(x1) +

n
2r

|x1|1+
1
γ sgn(x1)] ≤ 0 (31)

Then, the guidance command is chosen a

u1 =

{
−N

.
rx1 + r(m

2 |x1|1−
1
γ + n

2 |x1|1+
1
γ )sgn(x1) + aTθ , r ≥ 1

−N
.
rx1 + (m

2 |x1|1−
1
γ + n

2 |x1|1+
1
γ )sgn(x1) + aTθ , 0 ≤ r < 1

(32)

where N = const.>2, and the additional term r acts as the adaptive term to speed up the
convergence process before hitting the target.

Theorem 2. The guidance command in Equation (32) can zero the LOS angle rate before hitting
the target.

Proof. Substitute Equation (32) into (9), we have

.
x1 =

{
(N−2)

.
rx1

r − (m
2 |x1|1−

1
γ + n

2 |x1|1+
1
γ )sgn(x1), r ≥ 1

(N−2)
.
rx1

r − ( m
2r |x1|1−

1
γ + n

2r |x1|1+
1
γ )sgn(x1), 0 ≤ r ≤ 1

(33)

By substituting Equation (33) into (17) yields⎧⎨⎩
(N−2)

.
rx2

1
r + m

2 |x1|2−
1
γ ( 1

r − 1) + n
2 |x1|2+

1
γ ( 1

r − 1) ≤ 0, r ≥ 1
(N−2)

.
rx2

1
r ≤ 0, 0 ≤ r < 1

(34)

According to Theorem 1, the proposed guidance command in Equation (32) can lead to
fixed-time convergence for the LOS angle rate, and the convergence rate increases as the
value of m and n increases, or as the value of γ decreases. Hence, the proof of Theorem 2 is
completed. �

3.2. Guidance Law Design in 3-D Engagement Scenario

According to the planar guidance law designed in the previous section, the fixed-time
convergence guidance command for the 3-D engagement scenario can be designed as

u1 =

{
−Nrx1 + aTθ + r(m

2 |x1|1−
1
γ + n

2 |x1|1+
1
γ )sgn(x1), r ≥ 1

−Nrx1 + aTθ + (m
2 |x1|1−

1
γ + n

2 |x1|1+
1
γ )sgn(x1), 0 ≤ r ≤ 1

u2 =

{
−Nrx2 + aTφ + r(m

2 |x2|1−
1
γ + n

2 |x2|1+
1
γ )sgn(x2), r ≥ 1

−Nrx1 + aTφ + (m
2 |x1|1−

1
γ + n

2 |x1|1+
1
γ )sgn(x1), 0 ≤ r ≤ 1

(35)
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Theorem 3. The guidance commands in Equation (35) can achieve fixed-time convergence for the
LOS angle rates in Equations (7) and (8) before hitting the target.

Proof. The proof of Theorem 3 is divided into two parts. First, the effectiveness of the
proposed guidance command under the condition 0 < r ≤ 1 is proven.

Substituting Equation (35) into (7) and (8) yields

.
x1 = (N/ cos φ−2)

.
r

r x1 + 2x1x2 tan φ − sgn(x1)(m|x1|1−
1
γ + n|x1|1+

1
γ )/2r cos φ

.
x2 = (N−2)

.
r

r x2 − x2
1 sin φ cos φ − sgn(x2)(m|x2|1−

1
γ + n|x2|1+

1
γ )/2r cos φ

(36)

The following continuously differential candidate function is considered:

W2 = x2
1 cos2 φ + x2

2 (37)

The derivative of Equation (37) with respect to time is

.
W2 = 2x1

.
x1 cos φ + 2x2

.
x2 − 2x2

1x2 sin φ cos φ (38)

Substituting Equation (36) into (38) yields

.
W2 =

2(N/ cos φ−2)
.
rx2

1 cos2 φ
r − sgn(x1)(m|x1|2−

1
γ + n|x1|2+

1
γ ) cos φ

r

+ 2(N−2)
.
r

r x2
2 − sgn(x2)(

m
r |x2|2−

1
γ + n

r |x2|2+
1
γ )

(39)

Since
2(N/ cos φ − 2)

.
rx2

1 cos2 φ

r
≤ 0 (40)

Then, we can obtain

.
W2 ≤ −(mx

2− 1
γ

1 + nx
2+ 1

γ

1 )
cos φ

r
− (mx

2− 1
γ

2 + nx
2+ 1

γ

2 )
1
r

(41)

By choosing an appropriate inertial reference coordinate system, we can ensure that
−0.5π < cos φ < 0.5π. Thus, 0 < cos φ < 1. Then, Equation (41) can be rewritten as:

.
W2 ≤ −[m

r (x1 cos φ)2− 1
γ + m

r x
2− 1

γ

2 ]− [ n
r (x2 cos φ)2+ 1

γ + n
r x

2+ 1
γ

2 ]

≤ −m
r (x2

1 cos2 φ + x2
2)

1− 1
2γ − n

r (x2
1 cos2 φ + x2

2)
1+ 1

2γ

(42)

As we define in Theorem 1 that γ = const. > 1, we can further obtain

.
W2 ≤ −m

r
(x2

1 cos2 φ + x2
2)

1− 1
2γ − n

r
(x2

1 cos2 φ + x2
2)

1+ 1
2γ (43)

which can be written in an alternative form as
.

W2 ≤ −m
r

V1− 1
2γ − n

r
V1+ 1

2γ (44)

The proof for the proposed guidance command under the condition r ≥ 1 is similar; thus,
it is omitted here. According to Theorem 1, the proposed guidance commands in Equation
(35) can achieve fixed-time convergence for the LOS angle rate in Equations (7) and (8).
Define T2 as the convergence time in a 3-D scenario, the upper bound of the convergence
time is given by

T2 ≤ Tm2 = (1 − 1
eϕm

)t f (45)

where Tm2 is the upper bound for the settling time for the 3-D guidance scenario. It is
obvious that Tm2 is independent of the initial states. �
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3.3. Discussion of the Potential Advantage of the Proposed Guidance Law

To facilitate the comparison between different guidance laws, the variable that needs
to be restrained to zero during the guidance process is defined as ε. Some results on the
design of guidance laws adopt the Lyapunov asymptotic stability theory as [6], the dynamic
of ε is

.
ε =

kV sin ε0

rk
0

rk−1, k > 1 (46)

Theoretically, the Lyapunov asymptotic stability theory only guarantees the conver-
gence of ε when the time approaches infinity, and Equation (46) implies that

.
ε(t) = 0 when

and only when r = 0, which means the convergence process of ε completes exactly at the
instant of hitting the target. Some ideal assumptions are made during the design process
of the guidance law. On the other hand, uncertainties and disturbances exist in practical
applications. Hence, the error dynamic in Equation (46) may fail to converge to zero at
the terminal instant in practical applications. Compared with the guidance law in [6], the
proposed guidance law can ensure the convergence of ε before hitting the target, which
makes it more robust to uncertainties and disturbances.

Some other results are based on the finite-time stability theory as [11], the convergence
of ε can be completed in finite time, and the settling time satisfies

T <
|ε0|1−ηr0

β(1 − η)
(47)

where β = const. > 0 and 0 ≤ η = const. < 1.
Compared with guidance laws based on the Lyapunov asymptotic stability theory, this

group of guidance laws can achieve finite-time convergence of ε. However, the convergence
upper bound in Equation (47) depends on initial states, and only a proper selection of
the control parameter can ensure ε converged to zero before the final interception time.
By contrast, the proposed guidance law can ensure convergence before hitting the target
regardless of the initial conditions.

4. Simulations

In this section, numerical simulations are carried out to show the effectiveness of the
proposed guidance laws. All the simulations are conducted on the Matlab platform via
C++ programming. The simulation step is 0.01 s. All the simulations are terminated when
the sign of the relative velocity becomes positive, or the relative range is less than 0.01 m.

4.1. Comparison Simulations

In this case, the comparison simulation is considered to show the effectiveness of the
proposed guidance law. Detailed simulation parameters are tabulated in Table 1.

Table 1. Initial states for the missile.

Parameter Value

Initial missile position (0, 0) m

Missile speed 300 m/s

Missile’s initial heading angle 80◦

The performance of the proposed guidance law is compared with the finite-time
convergence guidance law (FTCG) proposed in [9]. The guidance command for FTCG is
given by

aFTCG
M (t) = −C

.
R

.
λ + β

∣∣∣ .
λ
∣∣∣ηsgn(

.
λ) (48)

where C = const. > 2, β = const. > 0, 0 ≤ η = const. < 1.
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Two different control parameters are selected for the comparison law. Detailed control
parameters, in this case, are summarized in Table 2.

Table 2. Control parameters for guidance laws.

Guidance Law Value

FTCG1 β = 20, η = 0.1

FTCG2 β = 20, η = 1

Proposed m = n = 0.2, γ = 5

Simulation results for both guidance laws are shown in Figure 2. Dot lines represent
the results of the proposed guidance law. Dash lines and solid lines represent the results for
FTCG under two different control parameters. Figure 2a shows the elevation acceleration,
and Figure 2b represents the profile of the elevation LOS angle rate. Figure 2c shows the
azimuth acceleration, and Figure 2d represents the profile of the azimuth LOS angle rate.
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Figure 2. Comparison results. (a) Elevation acceleration. (b) Elevation LOS angle rate. (c) Azimuth
acceleration. (d) Azimuth LOS angle rate.

Although each guidance law can impact the target successfully, the acceleration varia-
tion and the convergence of the LOS angle rate are significantly different. The acceleration
for the proposed guidance law converges to zero in fixed time and remains there afterward,
while the comparison law with the first group of control parameters will fluctuate around
zero until the instant of impact, as demonstrated by FTCG1. There would be no chattering
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for the proposed guidance law under any allowable control parameters. As a result, the
proposed guidance law can achieve higher accuracy than the comparison law. However, the
comparison law can avoid chattering by proper selection of control parameters, as FTCG2
does. However, the LOS angle rate only converges to zero at the end of the impact, failing
to exhibit the characteristic of finite-time convergence. Hence, the proposed guidance law
has better performance than the comparison law.

4.2. Simulations with Autopilot Dynamics

As shown in the previous simulation case, the initial acceleration for the missile
under the proposed law is very large. However, acceleration usually grows from scratch
in practice. Furthermore, the autopilot delays are uncompensated during the design of
the guidance law. Hence, it is necessary to investigate the performance of the proposed
guidance law under the effect of autopilot dynamics.

Some existing methods compensate for the autopilot dynamics by computing the
control parameter at each time step in a feedback manner, which makes the guidance law
more complicated. Since robustness is a generic characteristic of the proposed guidance
law, the control parameters do not need to be calculated in a feedback-step manner. To
show the robustness of the proposed guidance laws, a first-order autopilot dynamic is
considered in this simulation, which can be expressed as

aqa

aq
=

1
1 + τs

(49)

where aq is the ideal acceleration, aqa is the actual acceleration. The time constant τ
considered for the autopilot dynamic, in this case, is 0.5s. Initial conditions and control
parameters are the same as in the previous section.

Simulation results are shown in Figure 3. Ideal and actual accelerations are plotted
with different types of lines in Figure 3a,c. It is obvious that there exists a tracking error
between the ideal and actual accelerations under the effect of autopilot delays. However,
this error can be eliminated in a fixed time without extra effort under the proposed guidance
law. Simulation results with actual command are plotted in blue solid line in Figure 3b,d,
which converge to zero before the final time and ensure the successful impact of the target.
Even though the proposed guidance law is derived from a lag-free system, the guidance
law can provide high accuracy in a realistic missile system with autopilot lag.
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Figure 3. Simulation with autopilot dynamics. (a) Elevation acceleration. (b) Elevation LOS angle
rate. (c) Azimuth acceleration. (d) Azimuth LOS angle rate.

4.3. Simulations with Different m and n

In this case, the performance of the proposed guidance law in a 3-D Scenario is studied
under different control parameters, which are m = n = 0.1, m = n = 0.2, m = n = 0.4.

Simulation results are shown in Figures 4 and 5. Solid lines, dash lines, and dot lines
represent the results for three different control parameters. Figure 4a shows the elevation
acceleration, and Figure 4b represents the profile of the elevation LOS angle rate. Figure 5a
shows the azimuth acceleration, and Figure 5b represents the profile of the azimuth LOS
angle rate.
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Figure 4. Simulation results in the elevation plane with different m and n. (a) Elevation acceleration.
(b) Elevation LOS angle rate.

For all the various values of control parameters, the LOS angle rate can converge to
zero in fix time, as shown in Figures 4b and 5b. The collision course can be achieved, and the
impact of the target can be ensured. Moreover, the miss distance for the missile can be less
than 0.1 m. It also can be concluded from Figures 4b and 5b that the convergence rate for
the LOS angle rate increases as the value of the control parameter increases. This is in line
with Theorem 3. However, a higher convergence rate requires larger guidance commands
at the beginning of the guidance process, as is demonstrated in Figures 4a and 5a.
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Figure 5. Simulation results in the azimuth plane with different m and n. (a) Azimuth acceleration.
(b) Azimuth LOS angle rate.

4.4. Simulations with Different γ

In this case, the initial conditions for the missile and the initial coordinates for the
target are the same as in Section 4.1. The speed for the target is VT = 200 m/s , and the
acceleration is aT = 6 m/s .

Simulation results are shown in Figures 6 and 7. Solid lines, dash lines, and dot lines
represent the results for three different control parameters. Figure 6a shows the elevation
acceleration, and Figure 6b represents the profile of the elevation LOS angle rate. Figure 7a
shows the azimuth acceleration, and Figure 7b represents the profile of the azimuth LOS
angle rate. The collision course is achieved with the LOS angle rate converging to zero. It is
clear from Figures 6b and 7b that the convergence of the LOS angle rate achieves in fixed
time for all the control parameters. It also can be concluded from Figures 6b and 7b that
the convergence rate for the LOS angle rate increases as the value of the control parameter
decreases. This is in line with Theorem 3. Moreover, a higher convergence rate requires
larger guidance commands at the beginning of the guidance process, as is demonstrated in
Figures 6a and 7a.
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Figure 6. Simulation results in the elevation plane with different γ. (a) Elevation acceleration.
(b) Elevation LOS angle rate.
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(a) (b) 

Figure 7. Simulation results in the azimuth plane with different γ. (a) Azimuth acceleration. (b) Az-
imuth LOS angle rate.

5. Conclusions

Novel fixed-time convergence guidance laws are proposed for diverse engagement
scenarios, and the fixed-time convergence of the LOS angle rate is proven under the
proposed laws. The convergence rate is merely related to control parameters, a suitable
selection of which can ensure the convergence is fulfilled before the final impact time.
Unlike finite-time convergence guidance law, the proposed method is not affected by the
chattering effect. The simulation results present high accuracy in a realistic missile system
for autopilot first-order time constants as high as 0.5 s. In our future related research, more
constraints to improve the missile performance should also be concerned, such as impact
time and impact angle.
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Abstract: To deal with the uncertainty and disturbance that exist in the tracking system of an
aerospace vehicle, an adaptive trajectory-tracking method based on a novel tracking model predictive
static programming (T-MPSP) is proposed. Firstly, to make the proposed method more adaptive
to uncertain parameter deviations, an extended Kalman filter (EKF) parameter correction strategy
is designed. Then, the control constraints are considered to form a novel T-MPSP algorithm. By
combining the parameter correction strategy with the improved T-MPSP algorithm, a novel adaptive
tracking guidance scheme is presented. Finally, simulations are carried out to demonstrate the
effectiveness of the proposed method.

Keywords: trajectory tracking; uncertainty; extended kalman filter; adaptive; control constraints;
T-MPSP

MSC: 90C29

1. Introduction

For the past few decades, aerospace vehicles have been applied in both military and
civilian fields, and their performance has been very compelling. For missions involving
aerospace vehicles, a good trajectory-tracking ability is the essential prerequisite for the
successful application of the vehicles [1]. In a traditional trajectory-tracking process for an
aerospace vehicle, the dynamic model of the vehicle and the desired trajectory satisfying all
the constraints are given in advance. Then, the control methods are designed to guide the
vehicle to track the desired trajectory. However, the trajectories of aerospace vehicles usually
cover a wide range of altitudes, which may lead to a dramatic change in the atmospheric
environment during the trajectory-tracking process. In addition to the disturbance brought
about by the dramatic change in the external environment, there are also uncertainties
about the dynamic system of the vehicles [2,3]. Thus, the precise model information is not
always available, and the traditional trajectory-tracking method cannot achieve satisfactory
performance under these circumstances. As a result, the design of the novel trajectory-
tracking control method to cope with disturbance and uncertainty is very important.

One of the most commonly used control architectures for trajectory-tracking control
is the proportional-integral-derivative (PID) controller and its variants [4–7], which are
known for the simplicity of their framework. To improve the tracking performance, many
modern control theories, including intelligent optimization [4], feedback control [5], and
fuzzy control [6,7], have been applied to the trajectory-tracking method design process.
Another popular control architecture for trajectory-tracking control derives from the sliding
mode control theory. In [8], the sliding mode control theory is applied to make the tracking
error converge to zero in a finite time period. As an improvement of the method in [8],
the fixed-time control theory was combined with the sliding mode control theory. The
robustness of the resulting tracking laws was further enhanced [9,10]. Recently, the neural

Mathematics 2023, 11, 2160. https://doi.org/10.3390/math11092160 https://www.mdpi.com/journal/mathematics65



Mathematics 2023, 11, 2160

network and adaptive updating laws were applied to the sliding mode control framework.
The convergence of the tracking error was ensured by the sliding mode control approach,
and any system uncertainties were handled by the neural network [11].

In addition, the nonlinear model predictive control (NMPC) was applied to the
trajectory-tracking control [12–15]. However, several issues exist in the implementation
of the NMPC-based tracking methods, which are summarized as follows: (1) a universal
and exact model of the whole tracking system is difficult to acquire, (2) the calculation
speed of the NMPC cannot meet the requirement in practice. A feasible way to cope with
these issues is to use model predictive static programming (MPSP) [16], which combines
the characteristics of approximate dynamic programming [17] and NMPC. The MPSP has
been proven to be an effective method to cope with two-point boundary value problems
with terminal constraints, which has significant advantages: (1) the terminal constraints are
transformed into linear equality constraints with only the control variable to be optimized,
(2) the closed analytical expression of the appropriate objective function is acquired from
the static algorithm, (3) the sensitivity matrix of the algorithm can be calculated skillfully
using recursion, which improves the calculation speed. The MPSP method has been used
in many applications, such as in the trajectory control of launch vehicles, reentry guidance,
cooperative control, etc. [18–20]. Typically, the MPSP method aims to improve the terminal
accuracy by iteratively discretizing and updating. For a trajectory-tracking problem, only
the terminal-tracking accuracy can be guaranteed using the MPSP method, and its com-
puting time increases exponentially with the number of discrete nodes that are tracked. To
deal with this drawback, the T-MPSP is put forward to track a trajectory over a receding
horizon window. Meanwhile, the predicted time horizon can be set manually to balance
the computational efficiency and the precision, which is another advantage of the T-MPSP
algorithm [21,22].

Some trajectory-tracking methods are based directly on the input and output data of
the system. For example, a robust model-free controller for trajectory-tracking control is
proposed in Ref. [23]. No dynamic model information of the controlled system is needed,
and the resulting controller is a combination of the PID controller and the sliding mode
control. As an improvement of the work in Ref. [23], a forecasting-based data-driven
model-free adaptive sliding mode attitude control method is proposed for the post-capture
combined spacecraft with unknown inertial properties and external disturbances [24]. To
cope with the unknown dynamics of the system, a model-free control method is proposed
via the time-varying compensation of the un-modeled system [25]. An iterative sliding
mode control technique is utilized to design the adaptive model-free trajectory-tracking
method in Ref. [26]. Although these model-free control methods can deal with model
uncertainties, the operation data require a huge memory size, and the computing burden
is heavy.

Hence, considering the uncertainty and disturbance that exist in the tracking system of
the aerospace vehicle, an adaptive trajectory-tracking method based on the novel T-MPSP
is proposed. Firstly, to cope with the uncertain parameter deviations, an EKF parameter
correction strategy is designed. Then, the control constraints are considered to form a novel
T-MPSP algorithm. By combining the parameter correction strategy with the improved
T-MPSP algorithm, an adaptive tracking guidance scheme is presented. Finally, simulations
are carried out under various deviation conditions to verify the reliability and robustness
of the proposed method.

The main contributions of this paper are summarized as follows:

(1) To our best knowledge, no existing methods have applied the EKF with the T-MPSP
to solve the trajectory problems of aerospace vehicles.

(2) Compared with the MPSP method in [18–20], the proposed method has a fast com-
puting speed and high accuracy.

(3) Compared with [21–23], the proposed scheme can cope with the control constraints.

The rest of this paper is organized as follows: Section 2 presents the model of the
aerospace vehicle. Section 3 presents the online parameter identification method and the
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improved T-MPSP algorithm. The simulations are presented in Section 4. Finally, the
conclusion is presented in Section 5.

2. Model of the Aerospace Vehicle

In this section, first, the dynamic model describing the motion of the aerospace vehicle
is presented. Then, the constraints that should be satisfied are introduced.

2.1. Dynamic Equations

The three-dimensional mass point dynamic equations [22,27] of the aircraft in the
longitudinal plane are ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dh
dt = v sin γ
dv
dt = T cos α−D

m − g sin γ
dγ
dt = T sin α+L

mv − g
v cos γ + v

r cos γ
dm
dt = − T

g0 Isp

(1)

where h, v, γ, α and m represent the altitude, velocity, flight path angle, angle of attack
(AOA), and mass, respectively. g and g0 represent the gravitational acceleration at the
current altitude and on the earth’s surface, respectively. Isp represents the specific impulse
of the engine. T, L and D denote the engine thrust, aerodynamic lift, and drag, respectively,
which are defined as ⎧⎨⎩

T = 0.029φIspρg0vCT AC
L = 1

2 ρv2SrefCL(Ma, α)
D = 1

2 ρv2SrefCD(Ma, α)

(2)

where CT , CL, and CD denote the thrust, lift and drag coefficients, respectively. φ denotes
the throttle. ρ, Sref and Ma denote the atmospheric density, reference area, and Mach
number, respectively.

2.2. Flight Constraints

To ensure flight safety, the dynamic pressure constraint is considered, which is de-
fined as

q =
1
2

ρv2 ≤ qmax (3)

In addition, the aircraft must satisfy the terminal constraints, which are described as⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣h f − h∗

f

∣∣∣ ≤ εh∣∣∣v f − v∗
f

∣∣∣ ≤ εv∣∣∣γ f − γ∗
f

∣∣∣ ≤ εγ

(4)

where the subscript f refers to the final value and the superscript ∗ refers to the desired
value. εh, εv, and εγ represent the deviation thresholds of the terminal altitude, velocity,
and flight path angle, respectively.

The control variables considered are α and the throttle φ, the constraints of which are
as follows: {

αmin ≤ α ≤ αmax
φmin ≤ φ ≤ φmax

(5)

Additionally, to prevent the control variable from changing too drastically, the rate of
AOA must satisfy the following constraint:

.
αmin ≤ .

α ≤ .
αmax (6)
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3. The Trajectory-Tracking Strategy

In this section, we will introduce an online parameter identification method and an
improved T-MPSP algorithm. By combining these two methods, an adaptive trajectory-
tracking guidance algorithm based on an improved T-MPSP will be presented.

3.1. Online Parameter Identification Method

Since an accurate model can improve the trajectory-tracking accuracy, a parameter
correction strategy based on the EKF is designed in this subsection. In the actual tracking
process, there are deviations in the parameters of atmospheric density, thrust coefficient,
lift coefficient, and drag coefficient, which will make the model inaccurate. We define these
parameters as

ρ = ρ∗(1 + Δρ), CT = C∗
T
(1 + ΔCT), CL = C∗

L
(1 + ΔCL), CD = C∗

D(1 + ΔCD) (7)

where ρ∗, C∗
T
, C∗

L
and C∗

D are the desired values. ρ, CT , CL and CD are the actual values.
Δρ, ΔCT , ΔCL, and ΔCD respectively represent the unknown deviation of each parameter.
These unknown deviations are written in an overall form as

β = [Δρ ΔCT ΔCL ΔCD]
T (8)

Defining x =
[
h v γ m

]
, the following dynamic equations are obtained from (1)

and (7) as
.
x = f (x, u, β) (9)

in which

f (x, u, β) =

⎡⎢⎢⎢⎢⎣
v sin γ

T∗(1+Δρ)(1+ΔCT) cos α−D∗(1+Δρ)(1+ΔCD)
m − g sin γ

T∗(1+Δρ)(1+ΔCT) sin α+L∗(1+Δρ)(1+ΔCL)
mv − g

v cos γ + v
r cos γ

− T∗(1+Δρ)(1+ΔCT)
g0 Isp

⎤⎥⎥⎥⎥⎦ (10)

Since the EKF algorithm [28] needs to augment the unknown parameters into the state
variables of the system, the new augmented dynamic equation is defined as

.
xa = fa(xa, u) + ωa =

[
f (x, u, β)

0

]
+ ωa (11)

where {
xa = [h v γ m Δρ ΔCT ΔCL ΔCD]

T

u =
[

α φ
]T (12)

ωa represents the uncorrelated zero-mean white Gaussian noise. To identify the unknown
parameters, the EKF algorithm also requires the measurement information of the unknown
parameters. The measurement equation is expressed as

y =

⎡⎢⎢⎣
xm
axm
azm
qm

⎤⎥⎥⎦ = h(xa, u) + va =

⎡⎢⎢⎢⎢⎣
x

ρv2

2m Cx +
T
m

ρv2

2m Cz
ρv2

2

⎤⎥⎥⎥⎥⎦+ va (13)

where xm, axm, azm and qm denote the state values, axial acceleration, normal acceleration
and dynamic pressure measured by the sensor, respectively. va represents the uncorrelated
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zero-mean Gaussian white noise. Cx and Cz refer to axial and normal force coefficients,
respectively. The calculation formulas of Cx and Cz are{

Cx = CL sin α − CD cos α
Cz = −CL cos α − CD sin α

(14)

Then, the two-step online parameter identification method will be introduced
as follows:

a. Prediction

First, the prior estimate of the state at the current time instant k is

x̂−ak
= x̂ak−1 + f

(
x̂ak−1

)
Δt +

Fk f
(
x̂ak−1

)
2

Δt2 (15)

where Fk represents the Jacobian matrix of the augmented state equation fa
(
x̂ak−1

)
to

estimate the state x̂ak−1 at the previous time instant and Δt represents the sampling time
interval. Then, the error covariance matrix of the current time instant k according to the
equation is acquired as

P−
k = ΦkPk−1ΦT

k + Qk (16)

where Φk = I + FkΔt represents the state transition matrix, and Qk represents the noise
covariance matrix.

b. Update

Using the error covariance matrix P−
k , we update the Kalman filter gain coefficient Kk

at the current time instant k as

Kk = P−
k Hk

T
(

HkP−
k HT

k + Vk

)−1
(17)

where Vk represents the measurement noise covariance matrix, and Hk represents the
Jacobian matrix of the prior estimate x̂−ak

of the state from the measurement equation

y
(

x̂−ak

)
. Subsequently, the error covariance matrix is updated as

Pk = (I − Kk Hk)P−
k
(I − Kk Hk)

T + KkRkKk
T (18)

The measurement correction is updated as

Δyk = yk − y
(

x̂−ak

)
(19)

where yk represents the actual measurement value.
Finally, we update the posterior estimate of the state at the current time instant k using

x̂ak = x̂−ak
+ KkΔyk (20)

x̂ak of the augmented state has been obtained through the EKF algorithm, from which the
estimated value of the corresponding unknown parameter β is also obtained. Thus, the
new model that accounts for uncertain derivations is obtained by substituting the estimated
value of β into (10).

Remark 1. An imprecise model will make it difficult for the trajectory-tracking method
design, and uncertain parameter deviations will affect the accuracy of the model. Hence, a
parameter correction strategy based on the EKF is designed in this subsection. By applying
the EKF algorithm, the augmented state x̂ak is obtained, from which the estimated value
of the corresponding unknown parameter β is also obtained. Then, the exact model that
considers uncertain derivations is obtained.
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3.2. Improved T-MPSP Algorithm

According to (1), the state variables are X = [h, v, γ, m]T , the control variables are
U = [α, φ]T , and the output variables are Y = [h, v, γ]T . The discrete form of the state
equation and output equation of a continuous nonlinear system is expressed as

Xi
k+1 = Fk

(
Xi

k, Ui
k

)
(21)

Yi
k = h

(
Xi

k

)
(22)

where X ∈ R
n, U ∈ R

m and Y ∈ R
p denote the state, control, and output variables,

respectively. k = 1, 2, · · · , Ny represents the kth sampling point, and Ny represents the
total length of the prediction time domain. k = 1 and k = Ny represent the starting and
ending points of the prediction time domain, respectively, and i represents the number
of iterations.

The main objective of the trajectory-tracking algorithm is to find the suitable control
variables Ui+1

k to make the output Yi+1
k as close to the desired output Y∗

k (k = 2, 3, · · · , Ny)

as possible at each sampling time; that is, Yi+1
k → Y∗

k , where Ui
k represents the control

variables at the current ith iteration, and Ui+1
k represents the control variables for the

next iteration.
Similarly, Yi

k is the current output, and Yi+1
k is the output of the next iteration. We

should also add a performance index that minimizes the deviation of the control variables
to avoid overly drastic changes in the control variables. Therefore, the following objective
function is proposed:

J =
1
2

Ny

∑
k=2

(
Yi+1

k − Y∗
k

)T
Qi

k

(
Yi+1

k − Y∗
k

)
+

1
2

Ny−1

∑
k=1

(
Ui+1

k − Ui
k

)T
Ri

k

(
Ui+1

k − Ui
k

)
(23)

where Qi
k and Ri

k are both the positive definite weight matrix at the ith iteration.
The deviation vectors between two consecutive iterations at the same time are defined

as follows:
Yi+1

k = Yi
k + ΔYi

k (24)

Xi+1
k = Xi

k + ΔXi
k (25)

Ui+1
k = Ui

k + ΔUi
k (26)

By expanding the Taylor series of ΔYi
k and ignoring its higher-order terms, we obtain

ΔYi
k ≈ dYi

k =

[
∂Yk
∂Xk

]
dXi

k (27)

Similarly, we obtain

ΔXi
k+1 ≈ dXi

k+1 =

[
∂Fk
∂Xk

]
dXi

k +

[
∂Fk
∂Uk

]
dUi

k (28)

where dXi
k and dUi

k represent deviations in the state variables and control variables at the
kth time instant, respectively. By substituting (27) into (26), we obtain

dYi
k =

[
∂Yk
∂Xk

][
∂Fk−1
∂Xk−1

]
dXi

k−1 +

[
∂Yk
∂Xk

][
∂Fk−1
∂Uk−1

]
dUi

k−1 (29)
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where dXk−1 is also expanded into an equation composed of dXk−2 and dUk−2, and the cor-
responding equation is substituted into (29). By successively substituting dXk, dXk−1 . . . , dX2
into the expression of dYi

k, we obtain

dYi
k =

[
Ak
]i

dXi
1 +
[

Bk
1

]i
dUi

1 +
[

Bk
2

]i
dUi

2 + · · ·+
[

Bk
k−1

]i
dUi

k−1 (30)

It is obvious that dXi
1 = 0. Then, (30) is simplified to

dYi
k =

k−1

∑
j=1

[
Bk

j

]i
dUi

j (31)

[
Bk

j

]i
=

[
∂Yk
∂Xk

][
∂Fk−1
∂Xk−1

]
· · ·
[

∂Fj+1

∂Xj+1

][
∂Fj

∂Uj

]
, k = 2, 3, · · · , Ny (32)

where
[

Bk
j

]i
is called the sensitivity matrix. Then, the deviations in the output variables

and control variables at each sampling time are formed into a linear equation, in which
each dUi

j is a variable to be optimized. (32) is calculated recursively in the following way:

[
Ak

k

]i
= In×n[

Ak
j

]i
=
[

Ak
j+1

]i[ ∂Fj
∂Xj

]
[

Bk
j

]i
=
[

∂Yk
∂Xk

][
Ak

j+1

]i[ ∂Fj
∂Uj

] (33)

where k = 2, 3, . . . , Ny, j = (k − 1), (k − 2), . . . , 1, when j ≥ k,
[

Bk
j

]i
= 0p×m.

According to (24) and (26), and considering the small approximation ΔYi
k ≈ dYi

k,
ΔUi

k ≈ dUi
k, we obtain⎧⎨⎩

(
Yi+1

k − Y∗
k

)
= ΔYi

k +
(
Yi

k − Y∗
k
)
= ΔYi

k − ΔY∗i
k = dYi

k − ΔY∗i
k(

Ui+1
k − Ui

k

)
= ΔUi

k = dUi
k

(34)

Hence, the objective function in (23) is rewritten as

J =
1
2

Ny

∑
k=2

(
dYi

k − ΔY∗i
k

)T
Qi

k

(
dYi

k − ΔY∗i
k

)
+

1
2

Ny−1

∑
k=1

(
dUi

k

)T
Ri

k

(
dUi

k

)
(35)

In the traditional T-MPSP algorithm, the increment of the control variables is added
to the performance index to indirectly constrain the control variables. However, this
method cannot strictly constrain the control variables, which may fail to satisfy the
constraints. Therefore, we propose an improved T-MPSP algorithm by adding control
variable constraints.

The control variable constraints (5) and (6) are expressed as

Umin ≤ Ui+1
k ≤ Umax

.
Umin ≤ .

U
i+1
k =

Ui+1
k+1−Ui+1

k
h ≤ .

Umax
(36)

where h represents the sampling step size, U ∈ R
m. According to (34), we obtain

Umin ≤ Ui
k + dUi

k ≤ Umax ⇒
{

dUi
k ≤ Umax − Ui

k
−dUi

k ≤ Ui
k − Umin

(37)
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which is simplified to {
dUi

k ≤ Umax − Ui
k = C1i

k
−dUi

k ≤ Ui
k − Umin = C2i

k
(38)

The control magnitude constraint is thus transformed into a linear inequality constraint

with the only unknown dUi
k. Then,

.
U

i+1
k is converted into

.
U

i+1
k =

Ui+1
k+1 − Ui+1

k
h

=

(
Ui

k+1 + dUi
k+1

)
− (Ui

k + dUi
k
)

h
(39)

Thereby,

.
Umin ≤

(
Ui

k+1 + dUi
k+1

)
− (Ui

k + dUi
k
)

h
≤ .

Umax ⇒
{

−dUi
k + dUi

k+1 ≤ h
.

Umax − Ui
k+1 + Ui

k
dUi

k − dUi
k+1 ≤ −h

.
Umin + Ui

k+1 − Ui
k

(40)

which is simplified to⎧⎪⎪⎨⎪⎪⎩
[ −Im Im

][ dUi
k

dUi
k+1

]
≤ h

.
Umax − Ui

k+1 + Ui
k = C3i

k[
Im −Im

][ dUi
k

dUi
k+1

]
≤ −h

.
Umin + Ui

k+1 − Ui
k = C4i

k

(41)

where Im is an identity matrix of order m × m. In this way, the change rate constraint is
transformed into linear inequality constraints with unknowns dUi

k and dUi
k+1. In order to

facilitate the subsequent solution, (41) is rewritten in the following form:{
PdUi = C3i

−PdUi = C4i (42)

where P =

⎡⎢⎢⎢⎣
−Im Im 0 · · · 0

0 −Im Im · · · 0

0 0
. . .

. . . 0
0 0 0 −Im Im

⎤⎥⎥⎥⎦,dUi =

⎡⎢⎢⎢⎢⎢⎢⎣
dUi

1
dUi

2
...

dUi
N−2

dUi
N−1

⎤⎥⎥⎥⎥⎥⎥⎦,C3i =

⎡⎢⎢⎢⎢⎢⎢⎣
C3i

1
C3i

2
...

C3i
N−2

C3i
N−1

⎤⎥⎥⎥⎥⎥⎥⎦,C4i =

⎡⎢⎢⎢⎢⎢⎢⎣
C4i

1
C4i

2
...

C4i
N−2

C4i
N−1

⎤⎥⎥⎥⎥⎥⎥⎦.

Therefore, combining (35) with the inequality constraints in (38) and (42) yields

minJ = 1
2

Ny

∑
k=2

(
dYi

k − ΔY∗i
k

)T
Qi

k

(
dYi

k − ΔY∗i
k

)
+ 1

2

Ny−1
∑

k=1

(
dUi

k

)T
Ri

k

(
dUi

k

)
s.t.
{

dUi
k ≤ C1i

k
−dUi

k ≤ C2i
k

,
{

PdUi = C3i

−PdUi = C4i

(43)
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In this paper, the Lagrangian multiplier method and the penalty function are applied to solve
the NLP problem; thus, we have

L = 1
2

Ny

∑
k=2

(
k−1
∑

j=1
Bk

j dUj − ΔY∗
k

)T

Qk

(
k−1
∑

j=1
Bk

j dUj − ΔY∗
k

)

+ 1
2

Ny−1
∑

k=1
(dUk)

T Rk(dUk)

+ 1
2

Ny−1
∑

k=1
(dUk − C1k)

Tσ1k(dUk − C1k)

+ 1
2

Ny−1
∑

k=1
(−dUk − C2k)

Tσ2k(−dUk − C2k)

+ 1
2

Ny−2
∑

k=1

(
Ny−1

∑
j=1

PkjdUj − C3k

)T

σ3k

(
Ny−1

∑
j=1

PkjdUj − C3k

)

+ 1
2

Ny−2
∑

k=1

(
Ny−1

∑
j=1

−PkjdUj − C4k

)T

σ4k

(
Ny−1

∑
j=1

−PkjdUj − C4k

)

(44)

where Pkj represents the element of the kth row and the jth column of the matrix P. The data in the
following equations are all in the same iteration i, so the superscript i is omitted for the convenience
of subsequent derivation. According to the necessary conditions for first-order optimality, we obtain

∂L
∂dUl

= 0

⇒ RldUl +
Ny

∑
k=2

((
Bk

l

)T
Qk

k−1
∑

j=1
Bk

j dUj

)
−

Ny

∑
k=2

(
Bk

l

)T
QkΔY∗

k + σ1l(dUl − C1l)+

σ2l(dUl + C2l) +
Ny−2

∑
k=2

(
(Pkl)

Tσ3k

Ny−1
∑

j=1
PkjdUj

)
−

Ny−2
∑

k=2
(Pkl)

Tσ3kC3k+

Ny−2
∑

k=2

(
(Pkl)

Tσ4k

Ny−1
∑

j=1
PkjdUj

)
+

Ny−2
∑

k=2
(Pkl)

Tσ4kC4k = 0

(45)

where σ1k, σ2k, σ3k and σ4k are all penalty factors. By changing the positions of the terms in
Equation (45), we obtain

(Rl + σ1l + σ2l)dUl +
Ny

∑
k=2

((
Bk

l

)T
Qk

k−1
∑

j=1
Bk

j dUj

)
+

Ny−2
∑

k=2

(
(Pkl)

T

(
σ3k

Ny−1
∑

j=1
PkjdUj + σ4k

Ny−1
∑

j=1
PkjdUj

))

=
Ny

∑
k=2

(
Bk

l

)T
QkΔY∗

k +
Ny−2

∑
k=2

Pkl
T(σ3kC3k − σ4kC4k) + σ1lC1l − σ2lC2l

(46)

All dUl(l = 1, 2, . . . , Ny − 1) in (46) are expressed in a matrix form as⎡⎢⎢⎢⎢⎣
M11 + T1 · · · M1(Ny−2) M1(Ny−1)

M21 M22 + T2 · · · M2(N−1)
... · · · . . .

...
M(Ny−1)1 · · · · · · M(Ny−1)(Ny−1) + TNy−1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

dU1
dU2

...
dUNy−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
b1
b2
...

bNy−1

⎤⎥⎥⎥⎥⎦ (47)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Mij =

Ny

∑
l=(j+1)

Bl
i
TQl Bl

j +
Ny−2

∑
k=2

(
Pki

Tσ3kPkj + Pki
Tσ4kPkj

)
bi = σ1iC1i − σ2iC2i +

Ny

∑
l=2

Bl
i
TQlΔY∗

l +
Ny−2

∑
k=2

Pki
T(σ3kC3k − σ4kC4k)

Ti = Ri + σ1i + σ2i

(48)

By solving (47), we obtain the corrections for all control variables dU =
[
dU1, dU2, . . . , dUNy−1

]
.

Finally, the updated control variables are calculated as

Ui+1 = Ui + dU (49)
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3.3. Overall Structure and Operating Steps
In this subsection, we combine the online parameter identification method with the improved T-

MPSP algorithm to propose an adaptive trajectorytracking guidance algorithm based on an improved
T-MPSP. By applying the first-order Euler method, we obtain

Xk+1 = Xk + h f (X, U) = Fk(Xk, Uk) (50)

where h represents the sampling step size. Xk = [hk, vk, γk, mk]
T , Uk = [αk, φk]

T and Yk = [hk, vk, γk]
T

denote the state, control, and output variables of the aircraft, respectively. f (X, U) represents the state
differential equation of (1). The comprehensive block diagram of the proposed method is presented in
Figure 1, and the operating steps of the adaptive tracking guidance algorithm based on the improved
T-MPSP are as follows:

Figure 1. The block diagram of the proposed method.

Step 1: Parameter initialization, such as initializing the prediction time domain, sampling step
size, EKF parameters, etc.

Step 2: Use the EKF algorithm to identify the parameter deviation online, which is used to
correct the prediction model for the T-MPSP algorithm.

Step 3: In the improved T-MPSP algorithm, use the revised model to update the control variables
until they converge or the algorithm reaches the maximum number of iterations.

Step 4: Use the first control values of the prediction time-domain window of the T-MPSP
algorithm as the control variables of the current time.

Step 5: Integrate the dynamic equations using fourth-order Runge-Kutta to the next time instant.
Step 6: Determine whether the terminal time is reached. If it is reached, stop the operation.

Otherwise, go to step 2 and continue with the same steps.

4. Simulations

In this section, simulations are carried out to show the effectiveness of the proposed method.
First, comparison simulations against the existing T-MPSP tracking method are presented. Then,
several extreme combinations of parameter deviations are considered in the simulation. Finally, the
Monte Carlo simulations are carried out to verify the robustness of the proposed method.

The control parameters are initialized as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ny = 7

Qk =

⎡⎣ 1.11 0 0
0 1.96 0
0 0 5000

⎤⎦
Rk =

[
1000

90000

] (51)

And the constraints considered in this simulation are tabulated in Table 1.
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Table 1. Constraints.

Process constraints qmax 150 (kPa)

Control constraints

[αmin, αmax] [−3, 21] (◦)

[φmin, φmax] [0, 2]

[
.
αmin,

.
αmax] [−5, 5] (◦/s)

Terminal constraint

εh 500 (m)

εv 50 (m/s)

εγ 0.5 (◦)

4.1. Comparison Simulations
To demonstrate the effectiveness of the proposed method, both the open-loop tracking method

and the MPSP tracking law presented in [22] are considered as comparison methods in this subsection.
The detailed simulation results are presented in Table 2 and Figure 1.

Table 2. Comparison results.

Terminal Height
Deviations (m)

Terminal Velocity
Deviations (m/s)

Terminal Flight Path
Angle Deviations (◦)

Proposed method 32.95 −12.53 0.279

Open-loop tracking method −444.49 272.40 1.124

T-MPSP method −242.36 −15.48 0.025

In Figure 2, the solid lines in blue represent the tracking results of the proposed method, dash
lines in blue refer to the tracking results of the open-loop control, dot lines in pink denote the tracking
results of the comparison T-MPSP method, and the reference curves are presented in dash-dot form.

For the open-loop control scenario, the tracking performance is far from satisfactory. Moreover,
the maximum dynamic pressure violates the constraint, which will cause damage to the vehicle. As
for the comparison T-MPSP method, the terminal accuracy is acceptable, while the overall tracking
performance is not so good. In the proposed method, the terminal deviations are much smaller than
in the comparison law, which confirms the effectiveness and superiority of the proposed method. The
optimization process of the proposed method and the T-MPSP method requires about 1.7 s on our
laptop with an AMD 1.8 GHz CPU. However, it needs about 2.8 s for the MPSP tracking method.

4.2. The Monte Carlo Simulations
In this subsection, trajectory tracking is carried out under 300 sets of deviations sampled

through the LHS method. Furthermore, the distribution intervals of the four uncertain conditions are
as follows: ⎧⎪⎪⎨⎪⎪⎩

Δρ ∈ [−0.1, 0.1]
ΔCT ∈ [−0.05, 0.05]
ΔCL ∈ [−0.1, 0.1]
ΔCD ∈ [−0.1, 0.1]

(52)

The terminal state deviations under the 300 groups of random deviations are presented in
Figures 3–5. The statistical maximum deviations in the terminal states are recorded in Table 3.

Table 3. Maximum tracking deviations.

Terminal Height
Deviations (m)

Terminal Velocity
Deviations (m/s)

Terminal Flight Path
Angle Deviations (◦)

Dynamic
Pressure (kPa)

148.73 47.26 0.313 142.12
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(a) Height (b) Velocity

(c) Flight path angle (d) AOA

(e) Thro le (f) Dynamic pressure
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Figure 2. Comparison results.
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Figure 3. Terminal state deviation distributions.
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Figure 4. Terminal state deviation distributions (left view).
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Figure 5. Terminal state deviation distributions (vertical view).

The maximum tracking deviation in the terminal height is less than 150 m, which is far lower
than the requirements of terminal height accuracy. At the same time, the maximum tracking deviation
in the terminal speed is less than 50 m/s, which also meets the requirements. In addition, the absolute
value of terminal flight path angle deviation is also within the allowable range of 0.5◦, and the
maximum dynamic pressure also meets the constraints. These simulation results show that the
novel T-MPSP method proposed in this paper has a good anti-interference ability against coefficient
deviations caused by complex flight environments.

5. Conclusions

An adaptive trajectory-tracking method based on a novel tracking model predictive static
programming (T-MPSP) was proposed. The proposed method had advantages in computing efficiency
and tracking accuracy. Further, it was more adaptive to uncertain parameter deviations due to the
parameter correction strategy. Firstly, a parameter correction strategy was designed. Then, the
control constraints were considered to form a novel T-MPSP algorithm. By combining the parameter
correction strategy with the improved T-MPSP algorithm, an adaptive tracking guidance scheme was
presented. Finally, simulations were carried out to show the effectiveness of the proposed method.
In related future research, the saturation of the input should be considered in the design of the
trajectory-tracking method.
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Nomenclature

Scalar
h altitude v velocity
γ flight path angle α angle of attack (AOA)
m mass g gravitational acceleration
Isp the specific impulse of the engine T the engine thrust
L the aerodynamic lift D the aerodynamic drag
CT the thrust coefficient CL the lift coefficient
CD the drag coefficient ρ the atmospheric density
φ the throttle Sref the reference area
Ma mach number ε the terminal deviation thresholds
ωa uncorrelated white Gaussian noise Cz normal force coefficients
Cx axial force coefficients k the current time instant
Matrix
F the Jacobian matrix P the error covariance matrix
Φ the state transition matrix Qk the noise covariance matrix
K the Kalman filter gain coefficient matrix Rk the noise covariance matrix
Subscripts
max the maximum value min the minimum value
f the final value and the superscript ∗ the desired value
a the new augmented state
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Abstract: This paper introduces an improved sequential convex programming algorithm using
adaptive non-uniform discretization for the hypersonic entry problem. In order to ensure real-time
performance, an inverse-free precise discretization based on first-order hold discretization is adopted
to obtain a high-accuracy solution with fewer temporal nodes, which would lead to constraint
violation between the temporal nodes due to the sparse time grid. To deal with this limitation, an
adaptive non-uniform discretization is developed, which provides a search direction for purposeful
clustering of discrete points by adding penalty terms in the problem construction process. Numerical
results show that the proposed method has fast convergence with high accuracy while all the path
constraints are satisfied over the time horizon, thus giving potential to real-time trajectory planning.
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1. Introduction

With the increasing demand for spacecraft autonomy, not only the accuracy and opti-
mality of the result trajectory but also the stability and efficiency of the solving algorithm
are of crucial importance for real-time guidance. For the hypersonic entry problem, tra-
jectory optimization is a popular method due to its extensive application prospect, yet it
is still very challenging because of the highly nonlinear and complicated dynamics and
constraints involved [1–5].

For the trajectory optimization problem, the existing methods can be classified as indirect
methods and direct methods [6]. Based on Pontryagin’s maximum principle [7], indirect
methods derive the necessary conditions of optimality and solve a two-point boundary
value problem (TPBVP) to obtain the result trajectory [8,9]. Due to the inherent nonlinearity
in dynamics of the hypersonic entry problem, the solution of TPBVP presents significant
challenges and falls short of real-time requirements [10]. Despite theoretical guarantees on
the optimality of the solution, practical considerations limit its feasibility. The direct methods
convert the original problem into an approximated finite parameter optimization problem
and use a nonlinear programming (NLP) algorithm to solve it [11–13]. Although NLP-based
methods have been successful in many applications, the time-consuming solution process
and the lack of convergence guarantee are major challenges [10]. Furthermore, an appropriate
initial guess should be selected to achieve a high-quality solution, especially for the hypersonic
entry problem.

In recent years, the application of convex optimization in trajectory optimization has
shown great potential in many problem, including powered descent guidance [14] and
spacecraft rendezvous and proximity operations [15]. If a problem can be formulated in
a convex form, it can be solved in polynomial time with a strong convergence guarantee
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while obtaining the global optimal solution [16,17]. There are many state-of-the-art solvers
based on the interior-point method (IPM) [18], such as GUROBI [19], MOSEK [20], and
ECOS [21], to solve convex optimization problems efficiently. However, the majority of the
trajectory optimization problems are non-convex. To deal with the nonlinearity in dynamics
and constraints, the sequential convex programming (SCP) technique is developed to solve
a sequence of convex subproblems to approximate the original problem [22]. The sub-
problems are formulated by linearization about a reference trajectory and subsequently
solved via iterative refinement of the reference trajectory until convergence of the solution is
achieved. In order to ensure the convex approximation is accurate, a trust region is imposed
to make sure that the solution is not far from the reference trajectory. There are both hard
and soft methods to address the trust region [23,24]. Recently, this SCP technique has been
applied to hypersonic re-entry problems and has shown its effectiveness to obtain high-
accuracy solutions. Liu formulated the entry problem as a second-order cone programming
(SOCP) problem and applies the successive convexification method to solve it [25]. Wang
and Grant proposed an improved SCP algorithm and introduced a new control input for the
entry problem [26,27]. Wang and Cui developed a rapid trajectory optimization algorithm
with the pseudospectral method [28]. However, multiple hundreds of temporal nodes are
usually required to maintain the accuracy due to the nonlinearity of the hypersonic entry
problem and the long flight duration. Achieving a balance between real-time performance
and accuracy represents a significant challenge, as reducing the number of discrete points
may result in a loss of precision.

To deal with this issue, Kamath and Açıkmeşe et al. [29–31] propose an inverse-free
precise discretization based on first-order hold (FOH) discretization. Considering the
consistency of the original non-convex dynamics with the reference trajectory and addition
of the stitching condition, this discretization would guarantee high accuracy with few
temporal nodes and has been effectively applied to various problems, including powered
descent guidance [29], multi-phase rocket landing [30], and hypersonic entry guidance [31].
In [31], the amount of the temporal nodes is only 40 to achieve the commensurate accuracy
in [27], which necessitated an excess of 200 nodes. Nevertheless, for uniform discretization,
a reduced number of temporal nodes would generate a sparse time grid, which may lead
to constraint violation between the temporal nodes since the constraints are only imposed
at discrete points in the SCP subproblems, resulting in a new issue. In [30], an non-uniform
discretization with additional time interval dilation variables is introduced in multi-phase
rocket landing to adaptively decide the turning points of different phases. A similar idea is
extended to the hypersonic entry problem and the penalized trust region (PTR) algorithm,
a soft trust region method, is used to construct the SCP process [31]. However, the resulting
trajectory would still experience constraint violation. In addition, in our experiment for
the hypersonic entry problem, both hard and soft trust region methods with additional
time interval variables showed worse convergence compared with those with uniform
discretization. One of the reasons is that the dynamics are time-sensitive, and the other is
that an effective search direction should be given to achieve a purposeful distribution of
discrete points.

In this paper, we propose a novel adaptive non-uniform discretization method to
handle the above issues.

• An inverse-free precise discretization is adopted to obtain high accuracy with few
temporal nodes for real-time performance.

• An adaptive non-uniform discretizaiton is proposed to construct the SCP subproblem
with additional penalty terms. This would give the solver a search direction to cluster
the temporal nodes more purposefully and the propagated trajectory would satisfy all
the path constraints as a result, which is the main contribution of this paper.

• The validity of proposed method is substantiated through a numerical experiment
compared with other SCP methods.

This paper is organized as follows. Section 2 presents the model of the hypersonic
entry trajectory optimization problem including the dynamics and constraints. Section 3
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introduces the adaptive non-uniform discretization and constructs the SCP subproblem and
iteration process. Simulation and results analysis are shown in Section 4. The conclusions
are summarized in Section 5.

2. Problem Formulation

In this section, we consider a typical entry trajectory problem for an unpowered
hypersonic vehicle with multiple path constraints.

2.1. 3-DoF Entry Dynamics

The dimensionless dynamic equations over a spherical, rotating Earth can be modeled
as follows. More details can be referred to in [27].

ẋ = f (x, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = V sin γ

θ̇ =
V cos γ sin ψ

r cos φ

φ̇ =
V cos γ cos ψ

r

V̇ = −D − L sin γ

r2 + ΩV

γ̇ =
L cos σ

V
+

(V2 − 1/r) cos γ

Vr
+ Ωγ

ψ̇ =
L sin σ

V cos γ
+

V cos γ sin ψ tan φ

r
+ Ωψ

(1)

where the state vectors are x = [r, θ, φ, V, γ, ψ], representing the orbital radius, longitude,
latitude, relative velocity, flight path angle, and heading angle, respectively. The Earth
rotation-dependent terms, ΩV , Ωγ, Ωψ, and the lift and drag accelerations, L, D, in (1) are
shown below.

ΩV = Ω2r cos φ(sin γ cos φ − cos γ sin φ cos ψ)

Ωγ = 2Ω cos φ sin ψ + Ω2r cos φ(cos γ cos φ + sin γ sin φ cos ψ)/V

Ωψ = −2Ω(tan γ cos ψ cos φ − sin φ) + Ω2r sin φ cos φ sin ψ/(V cos γ)

L = R0ρV2Sre f CL/(2m)

D = R0ρV2Sre f CD/(2m)

(2)

where Ω is the Earth self-rotation rate, ρ = ρ0e(−h/hs) is the atmospheric density depending
on the altitude h, Sre f , m is the reference area and mass of the vehicle, and CL, CD are the
aerodynamic lift and drag coefficients related to Mach number and the attack angle α.

As in [27], the control variable is restricted to bank angle u = σ. The attack angle α is
pre-specified as a function of Mach number, as described in Section 4. All the variables are
dimensionless and the dimensionless factors are shown in Table 1, where R0 = 6378.0 km
and g0 = 9.81 m/s2 represent the Earth’s radius and the acceleration of gravity, respectively.

Table 1. The dimensionless factors’ values.

Variable Unit Value

Time s
√

R0/g0
Distance m R0
Velocity m/s

√
R0g0

Acceleration m/s2 g0
Angle rad 1

Angle rate rad/s
√

g0/R0
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2.2. State, Control, and Path Constraints

The inital and terminal conditions are

x(t0) = x0

x(t f ) = x f
(3)

The control bounds and control rate constraints are given as follows:

−σmax ≤σ ≤ σmax

−dumax ≤σ̇ ≤ dumax
(4)

where σmax and dumax are the bounds of the bank angle and its rate, respectively.
Three typical path constraints, including heat rate, dynamic pressure, and normal

load, are considered:
Q̇ = p1(r, V) = kQ

√
ρV3.15 ≤ Q̇max

q = p2(r, V) = 0.5ρV2 ≤ qmax

n = p3(r, V) =
√

L2 + D2 ≤ nmax

(5)

In this paper, no-fly zone constraints are considered as well, which are defined as
cylinder zones with center (θNFZ, φNFZ), radius RNFZ, and infinite altitude. Thus, the
no-fly zone constraints are expressed as

(θ − θNFZ)
2 + (φ − φNFZ)

2 ≥ R2
NFZ (6)

2.3. Nonconvex Optimal Control Problem

The maximum terminal velocity hypersonic entry trajectory optimization problems
with fixed flight time are considered in this paper, which is the same as [27]. The nonconvex
optimal control problem is shown in Problem 1.

Problem 1.
min
x,u

J = −V(t f )

s.t. (1), (3)–(6)
(7)

3. Improved SCP Method with Adaptive Non-Uniform Discretization

In this section, we introduce the improved SCP algorithm using adaptive non-uniform
discretization for the hypersonic entry problem. In the interest of completeness, we provide
a brief introduction to the non-uniform scheme and precise discretization technique, both
of which, as in [31], are utilized in the proposed method. Further details will be presented
subsequently. In order to seek an appropriate search direction and achieve a purposeful
distribution of temporal nodes, additional penalty terms with respect to the nonlinear term
of path constraints and the distance term from the trajectory to the no-fly zone center are
considered in the SCP subproblem construction.

3.1. Time Interval Dilation

To introduce the non-uniform discretization, we consider the original nonlinear dy-
namics in the sub-interval [tk, tk+1), k = 1, . . . , N − 1,

ẋ(t) = f (t, x(t), u(t)), t ∈ [tk, tk+1) (8)

where t0 = t1 < t2 < · · · < tN = t f , and define an affine map to normalize the orginal time
interval (may not be equal) to a fixed interval, [0, 1):

τk(t) =
t − tk

sk
, t ∈ [tk, tk+1) (9)
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where sk = tk+1 − tk is the length of the kth time interval and can be referred to as the time
interval dilation [30]. So far, the dynamics Equation (8) can be rewritten with respect to the
normalized time τk:

ẋ(τk) = sk f (τk, x(τk), u(τk)) = F(τk, x(τk), u(τk), sk), τk ∈ [0, 1) (10)

By treating sk as additional decision variables, the solver is allowed to decide the
adaptive time grids rather than a uniform temporal grid.

What is more, some exact constraints should be added in practical implementation to
ensure physical meaning:

0 < Δmin ≤ sk ≤ Δmax (11)

to ensure the time order t0 = t1 < t2 < · · · < tN = t f and adjacent temporal nodes are not
far away, and

N

∑
k=1

sk = t f (12)

to ensure the fixed flight time.

3.2. Convexification and Discretization

A convex approximation of the dynamic (10) can be obtained by the first-order Tylor
expansion about a reference trajectory (x̄, ū, s̄). The approximate equation is a linear time-
varing (LTV) system as follows:

ẋ(τk) ≈ A(τk)x(τk) + B(τk)u(τk) + S(τk)sk + d(τk) (13)

where A(τk), B(τk), S(τk) are the Jacobians of the dynamics with state control and time
dilation, respectively.

A(τk) � ∇xF(τk, x̄(τk), ū(τk), s̄k)

B(τk) � ∇uF(τk, x̄(τk), ū(τk), s̄k)

S(τk) � ∇sk F(τk, x̄(τk), ū(τk), s̄k)

d(τk) � F(τk, x̄(τk), ū(τk), s̄k)

− A(τk)x̄(τk)− B(τk)ū(τk)− S(τk)s̄k

(14)

For discretization, a precise inverse-free discretization technique based on first-order
hold (FOH) is adopted [29–31]. In the FOH case, the control input signal is considered as a
piecewise affine function; thus, the control variables are only defined at the discrete time
nodes and the control signal in the sub-interval can be parameterized as follows:

u(τk) = (1 − τk)uk + τkuk+1, k = 1, . . . , N − 1 (15)

where t ∈ [tk.tk+1) and τk ∈ [0, 1) as given in (9). Thus, The LTV dynamics (13) can be
easily rewritten with respect to the deviations from the reference trajectory.

Δẋ(τk) = A(τk)Δx(τk) + B(τk)(1 − τk)Δuk + B(τk)τkΔuk+1 + S(τk)Δsk (16)

where � denotes the reference quantity, Δ� denotes the deviations from the reference
trajectory, i.e., Δ� = �−� and Δẋ(τk) = ẋ(τk)− F(τk, x̄(τk), ū(τk), s̄k), and the coefficient
matrixes A, B, S are the same as (14). It can be considered that the reference trajectory in
the sub-interval [tk, tk+1) is in accordance with the original dynamics (10), rather than the
convex approximation (13), like the typical FOH discretization in [32].

According to the knowledge of the linear system [33], the unique solution of (16) for
t ∈ [tk.tk+1) and τk ∈ [0, 1) is

Δx(τk) = Ak(τk)Δx(0) + B−
k (τk)Δuk + B+

k (τk)Δuk+1 + SkΔsk (17)
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where
Ak(τk) = Φ(τk, 0),

B−
k (τk) = Ak(τk)

∫ τk

0
Φ−1(ζ, 0)B(ζ)(1 − ζ)dζ,

B+
k (τk) = Ak(τk)

∫ τk

0
Φ−1(ζ, 0)B(ζ)ζ dζ,

Sk(τk) = Ak(τk)
∫ τk

0
Φ−1(ζ, 0)S(ζ)dζ,

(18)

where Φ(τk, 0) is called the state transition matrix (STM) with the following properties:
Φ(0, 0) = I, Φ̇(τk, 0) = A(τk)Φ(τk, 0), and Φ−1(τ, η) = Φ(η, τ).

In order to eliminate the inversion operation to avoid numerical problems, the B∓
k , Sk

in (18) have the closer forms, as shown in Thereom 1, which is not proven in [29–31].

Theorem 1. The coefficient matrixes (18) of the linear time-varying system (17) have the inverse-
free form: ∀τk ∈ [0, 1):

B−
k (τk) =

∫ τk

0
A(ζ)B−

k (ζ) + (1 − ζ)B(ζ)dζ,

B+
k (τk) =

∫ τk

0
A(ζ)B−

k (ζ) + ζB(ζ)dζ,

Sk(τk) =
∫ τk

0
A(ζ)Sk(ζ) + S(ζ)dζ

(19)

Proof. Choosing the B−
k as an example, then taking the derivative and invoking the chain

rule yields
d

dτk
B−

k (τk) =
d

dτk
Ak(τk)

∫ τk

0
Φ−1(ζ, 0)B(ζ)(1 − ζ)dζ

+ Ak(τk)Φ
−1(τk, 0)B(τk)(1 − τk)

= A(τk)Φ(τk, 0)
∫ τk

0
Φ−1(ζ, 0)B(ζ)(1 − ζ)dζ

+ I · B(τk)(1 − τk)

= A(τk)B−
k (τk) + B(τk)(1 − τk)

(20)

The first and second equal signs come from the properties of STM, while the last one is
a simplification of the original form of B−

k from (18). With B−
k (0) = 0, the inverse-free form

of B−
k (τk) is obtained as shown in (19). B+

k and Sk can be obtained by the same process.

For simplicity, we define 0k and 1k as 0 and 1, respectively, which denote that t is in
the sub-interval [tk, tk+1). Then evaluating the LTV system (13) at τk = 1−k , we obtain

Δx(1−k ) = AkΔx(0k) + B−
k Δuk + B+

k Δuk+1 + SkΔsk (21)

Since the reference trajectory may not satisfy the original dynamics (1) in the sub-
interval [tk, tk+1), Equation (22) would give N − 1 trajectory segments, which makes a
discontinuity occur in the temporal time nodes t2, . . . , tN . The stitching condition is in-
troduced to obtain a continuous trajectory over the time horizon, as shown in Figure 1.

Δx(1−k ) + x̄(1−k ) = Δx(1k) + x̄(1k) (22)
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Figure 1. The discontinuity in the temporal nodes and the stitching condition, as in [31].

As a result, the discretized dynamics in terms of the deviations are as follows:

Δxk+1 = AkΔxk + B−
k Δuk + B+

k Δuk+1 + SkΔsk + xprop
k+1 − x̄k+1 (23)

where Δxk = Δx(0k), x̄k+1 = Δx(1k) and xprop
k+1 = x̄(1−k ) = x̄k +

∫ 1−k
0k

F(ζ, x̄(ζ), ū(ζ), s̄)dζ,
which denotes the integration of the original dynamic in [tk, tk+1) from the reference
trajectory.

Thus the discretized dynamics with respect to absolute variables are recovered from
Equation (23):

xk+1 = Akxk + B−
k uk + B+

k uk+1 + Sksk + xprop
k+1 − (Akx̄k + B−

k ūk + B+
k ūk+1 + Sks̄k) (24)

With the idea of consistency of the original dynamics of the reference trajectory in
sub-intervals and the addition of the stitching condition, the accuracy of the solution would
be improved even over a sparse time grid.

3.3. Additional Penalty Terms in SCP Subproblem

In our experiments for the non-uniform scheme, it is observed that regardless of a
hard trust region method with additional fixed constraints or a soft trust region method
by augmenting the objective function with penalty terms, the method may not converge
or converge very slowly, while the resulting propagated trajectory may violate the path
constraints between temporal nodes as well.

As mentioned above, one reason is that an effective search direction should be given.
Inspired by the PTR algorithm [24], we augment the objective function with additional
penalty terms with respect to the nonlinear term of path constraints and the distance
term of the no-fly zone, which would give a more purposeful direction to distribute the
temporal nodes. As the path constraints exhibit high levels of nonlinearity, the logarithm
transformation is used to mitigate this issue.

3.3.1. Log-Tranforms of Path Constraints

Consider the typical path constraints (5) of the hypersonic entry problem: heat rate,
dynamic pressure, and normal load. Since the Tylor expansion of the original path con-
straints (5) would obtain complicated nonlinear terms, we take the logarithm transforma-
tion of both sides of (5):
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ln(Q̇) = ln(kQ) + 0.5 ln(ρ0)− R0

2hs
(r − 1) + 3.15 ln(V)

≤ ln(Q̇max)

ln(q) = ln(0.5) + ln(ρ0)− R0

hs
(r − 1) + 2 ln(V)

≤ ln(qmax)

ln(n) = 0.5 ln(C2
L + C2

D) + ln(
R0ρ0Sre f

2m
)− R0

hs
(r − 1) + 2 ln(V)

≤ ln(nmax)

(25)

Due to the monotonicity of logarithmic transformations, Equation (25) is equivalent
to (5), while the transformed constraints are linear to orbital radius r and only nonlinear
to velocity V. Thus, the Tylor expansion of the transformed constraints has a simpler
nonlinear term ln(V) than that of the original constraints.

Consider the second-order Tylor series expansion of ln(V):

ln(V) = ln(V) +
1
V
(V − V)− 1

2V2 (V − V)2 (26)

Then we replace ln(V) in (25) with the primary term ln(V) + 1
V
(V − V) as the lin-

earization of the transformed constraints and augment the objective function with the
nonlinear term 1

V2 (V − V)2, since the quadratic term is convex. With the variable time-step
scheme and additional nonlinear penalty term, this would give the optimizer a target or
direction to incentivize the temporal nodes to cluster around the highly nonlinear region.

3.3.2. Distance Penalty Term of No-Fly Zone

The propagated trajectory between temporal nodes could be within the no-fly zone
because of the sparse time interval, as shown in Figure 2. In order to address the above
issue, prior work is to set a dense time grid around the no-fly zone in advance. Instead of
that, our method can allow discrete points to adaptively cluster around the no-fly zone
during iteration, which would take full advantage of the non-uniform scheme.

The nonlinear no-fly zone constraints (6) can be linearized with first-order Tylor expan-
sion:

2(θ̄ − θNFZ)θ + 2(φ̄ − φNFZ)φ ≥ d (27)

where d = R2
NFZ − (θ̄ − θNFZ)

2 − (φ̄ − φNFZ)
2 + 2(θ̄ − θNFZ)θ̄ + 2(φ̄ − φNFZ)φ̄.

We penalize the distance from the trajectory to the center of the no-fly zone ∑(θ −
θNFZ)

2 + (φ − φNFZ)
2 in the objective function, which would give the solver a search

direction with physical significance. With the linear no-fly zone constraints (27), the
discrete points would tend to cluster around the no-fly zone and disperse beyond it.

Note that the penalty term of the no-fly zone should be restricted to several temporal
nodes to prevent all nodes from gathering around the no-fly zone.

3.4. Discrete Convex Subproblem and Iteration Algorithm

After the appeal discussion, we summarize the discrete convex sub-problem as shown
in Problem 2. The control difference is regarded as the control rate constraint because
of the FOH approximation of control. A hard trust region on time dilation is enforced
in constraints, while the objective function is augmented with trust region terms of state
and control, and two additional penalty terms: the nonlinear term of path constraints and
distance penalty term of the no-fly zone. The trust term of time dilation can be omitted
since the penalty terms of path constraints and the no-fly zone have shown a good iterative
performance in our experiment. Thus, the SCP iteration process is given in Algorithm 1
as follows:
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Algorithm 1: Improved SCP algorithm with adaptive non-uniform discretization
Input: Initial guess x̄, ū, s̄, convergence condition εx, εs, maximum iteration

number kmax
1 Set k = 1;
2 while k ≤ kmax do

3 Call for IPM solver to solve the subproblem Problem 2 and obtain the solution
x̂k, ûk, ŝk.

4 if |Δx| ≤ εx and |Δs| ≤ εs then

5 Optimal trajectory xopt = x̂k, uopt = ûk, sopt = ŝk,
6 break;

7 end

8 Update the reference trajectory x̄ = xk, ū = uk, s̄ = sk.
9 Set k = k + 1;

10 end

Result: Obtain optimal trajectory or reach maximum iteration.

Problem 2. Discrete convex subproblem in SCP iteration

min
x,u

J = −VN + ωtr,1

N

∑
k=1

‖xk − x̄k‖2
2 + ‖uk − ūk‖2

2︸ ︷︷ ︸
Jtr,1

+(ωtr,2

N−1

∑
k=1

‖sk − s̄k‖2

︸ ︷︷ ︸
Jtr,2

)

+ ωnl

N

∑
k=1

‖Vk − Vk‖2

V2
k︸ ︷︷ ︸

Jnl

+ωNFZ

inj

∑
k=i1j

‖θk − θNFZ‖2|+ ‖φk − φNFZ‖2

︸ ︷︷ ︸
JNFZ

s.t. ∀k = 1, . . . , N

xk+1 = Akxk + B−
k uk + B+

k uk+1 + Sksk + dk

x1 = x0

xN = x f

− σmax ≤ uk ≤ σmax

− dumax ≤ uk+1 − uk
s̄k

≤ dumax

p̄1,k − R0

2hs
r +

3.15
Vk

(V − Vk) ≤ ln(Q̇max)

p̄2,k − R0

hs
r +

2
Vk

(V − Vk) ≤ ln(qmax)

p̄3,k − R0

hs
r +

2
Vk

(V − Vk) ≤ ln(nmax)

2(θ̄k − θNFZ)θk + 2(φ̄k − φNFZ)φk ≥ dNFZ

Δmin ≤ sk ≤ Δmax

k−1

∑
k=1

sk = t f

− ΔTmax ≤ sk − s̄k ≤ ΔTmax

(28)

where p̄i,k, i = 1, 2, 3 and dNFZ can be obtained from (25) and (27), and i1j , . . . in
j are the

temporal nodes set to cluster around the no-fly zone. Note that the augmented objective
with Jtr,1 and Jtr,2 is the general PTR algorithm for non-uniform scheme.
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Figure 2. The propagated trajectory within the no-fly zone.

4. Numerical Results

In this section, the effectiveness of the proposed method is verified compared with
a different SCP algorithm, as shown in Table 2. Two cases are considered to focus on
distinct instances of constraint violation. Case 1 does not include the no-fly zone constraint
and focuses on potential violations of path constraints as the number of discrete points
decreases. With an additional no-fly zone constraint, Case 2 focuses on the phenomenon
that the propagated trajectory may pass through the no-fly zone.

Table 2. Comparative SCP methods.

Name Method Reference

SCP1 non-uniform precise discretization [31]
SCP2 uniform precise discretization [29,32]
SCP3 uniform FOH discretization [27]

The reference area and the mass of the vehicle are Sre f = 391.22 m2 and m = 104,305.0 kg.
The aerodynamic coefficients depend on the attack angle α (in degrees), while the angle-of-
attack profile depends on the vehicle’s velocity:

CL = −0.041065 + 0.016292 α + 0.0002602 α2

CD = 0.080505 − 0.03026 CL + 0.86495 C2
L

(29)

α =

{
40, if V > 4570 m/s

40 − 0.20705(V − 4570)2/3402, else
(30)

The remaining simulation parameters are shown in Table 3, which is the same as [27].

Table 3. Parameters for entry problem.

Parameter Value Parameter Value

t f 1600 s
h0 100 km h f 25 km
θ0 0 deg θ f 12 deg
φ0 0 deg φ f 70 deg
V0 7450 m/s γ f −10 deg
γ0 0 deg ψ f 90 deg
ψ0 0 deg σmax 80 deg

dumax 10 deg/s kQ 1.65 × 10−4

Q̇max 1500 kW/m2 qmax 18,000 N/m2

nmax 2.5 g Δmin 10 s
Δmax 150 s ΔTmax 50 s

No-fly zone used in Case 2

θNFZ 5 deg φNFZ 50 deg
RNFZ 5.5 deg
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The subproblem is constructed in YALMIP [34], a MATLAB modeling toolbox, and
solved by ECOS [21], an open-source convex optimization solver. All of the numerical
simulations are running on a personal desktop with an Intel Core i9 3.1 GHz processor.

The initial reference is the trajectory obtained by integrating the original dynam-
ics (1) with the given initial control, as in [27]. The convergence condition is selected as
Δx = max

1≤i≤N
|x̂k

i − x̄i| ≤ εx = [1000 m, 1 deg, 1 deg, 100 m/s, 1 deg, 1 deg] and Δs = max
1≤i≤N−1

|ŝk
i − s̄i| ≤ εs = 5 s, where x̂ and ŝ are the solution of the subproblem.

4.1. Iterative Performance

Comparisons of the state and control profiles for Case 1 and Case 2 are shown in
Figures 3–8. The account of temporal nodes for the proposed method are as follows. SCP1
and SCP2 are each 40, in which case the constraint violation is observed, and SCP3 is 300 in
order to maintain the same accuracy as the above methods.

It can be seen that the solutions of the proposed method are similar to those from SCP2
and SCP3. Note that the solutions of SCP1 are quite different due to its poor convergence.
As shown in Figures 5 and 8, one shortcoming of the proposed method is that the control
jitter in the segments where points cluster is obvious because of the dense time grid around
those points.
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Figure 3. Comparisons of the altitude–velocity and latitude–longitude profiles for Case 1.
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Figure 4. Comparisons of the flight path angle and heading angle profiles for Case 1.
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Figure 5. Comparisons of the control profile for Case 1.

0 1000 2000 3000 4000 5000 6000 7000 8000

Velocity (m/s)

20

30

40

50

60

70

80

90

100

110

A
lti

tu
de

 (
km

)

(a) Altitude–Velocity profiles

-5 0 5 10 15 20 25

Longitude (deg)

-10

0

10

20

30

40

50

60

70

80
La

tit
ud

e 
(d

eg
)

Proposed
SCP1
SCP2
SCP3
Inital Guess

(b) Latitude–Longitude profiles

Figure 6. Comparisons of the altitude–velocity and latitude-longitude profiles for Case 2.
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Figure 7. Comparisons of the flight path angle and heading angle profiles for Case 2.
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Figure 8. Comparisons of the control profile for Case 2.

The iterative performance of the proposed method and comparative methods is shown
in Figure 9. The iteration number of the proposed method is less than the comparative
methods. Note that the comparative methods would require more iterations to meet the
convergence condition when the objective function is near the optimal value, while the
proposed method required fewer iterations, demonstrating its fast convergence. What is
more, for the non-uniform scheme, SCP1 with light penalty weighting ωtr,2 < 1 in Jtr,2
reached the maximum number of iterations, while that with heavy weighting ωtr,2 > 1
would show negligible alterations for the distribution of temporal nodes; thus, the addition
of time interval dilation is not necessary in this case.
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Figure 9. The terminal velocity in each iteration.

For the non-uniform scheme, the discrete point distribution and the change of time
dilation, max |s − s̄|, with iterations are shown in Figure 10. It can be observed that there is
no obvious clustering rule for SCP1, while the position of discrete points always changes
with the number of iterations. In contrast, the discrete points of the proposed method
would cluster after a few iterations. In addition, the results of time interval change with
iterations show that the proposed method has stable convergence performance, since the
change between two adjacent iterations decreases progressively, which means the result
trajectory would become increasingly similar.

In order to guarantee that the result trajectory of the SCP process is feasible to meet
the original dynamics, the residual error between the optimized results and the trajectory
obtained by integrating the original dynamics is measured. The residual error results for
Case 1 and Case 2 are shown in Tables 4 and 5, averaged over 50 simulation runs.
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Table 4. Residual error with different temporal nodes for Case 1.

Method
Temporal

Node
Iteration

CPU
Time (s)

Δr (m) Δθ (deg) Δφ (deg) ΔV (m/s) Δγ (deg) Δψ (deg)

Proposed

40 8 1.409 22.577 0.044 0.011 1.910 0.022 0.072

50 8 1.452 18.457 0.042 0.010 1.509 0.018 0.046

60 10 1.758 3.798 0.035 0.005 1.249 0.019 0.027

SCP1

40 30 5.247 814.272 0.323 0.128 25.132 1.196 0.203

50 30 5.790 627.624 0.218 0.105 28.145 0.288 1.544

60 30 6.293 587.483 0.203 0.097 26.329 0.279 1.416

SCP2

40 14 2.085 5.201 0.005 0.002 0.236 0.001 0.010

50 14 2.2370 21.356 0.011 0.006 0.851 0.004 0.055

60 14 2.548 11.769 0.002 0.001 0.172 0.040 0.051

SCP3

200 15 5.5930 95.028 0.001 0.001 0.496 0.147 0.282

300 19 9.857 42.689 0.004 0.002 0.048 0.034 0.085

400 20 14.833 27.497 0.005 0.002 0.287 0.005 0.018
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Figure 10. Discrete point distribution and time dilation change with iteration.
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Table 5. Residual error for entry problem for Case 2.

Method
Temporal

Node
Iteration

CPU
Time (s)

Δr (m) Δθ (deg) Δφ (deg) ΔV (m/s) Δγ (deg) Δψ (deg)

Proposed

40 8 1.262 14.279 0.017 0.006 0.076 0.015 0.083

50 8 1.403 9.201 0.025 0.007 0.426 0.022 0.032

60 9 1.730 9.907 0.030 0.005 0.813 0.012 0.006

SCP1

40 30 4.234 1045.231 0.445 0.280 86.537 0.994 3.329

50 30 4.532 654.915 0.192 0.111 29.263 0.279 1.672

60 30 5.054 516.706 0.175 0.084 22.669 0.258 1.145

SCP2

40 11 1.437 5.142 0.002 0.004 0.234 0.002 0.015

50 15 1.771 5.453 0.001 0.001 0.164 0.004 0.016

60 15 1.932 5.285 0.001 0.0004 0.126 0.017 0.026

SCP3

200 11 3.891 97.585 0.002 0.001 0.682 0.224 0.573

300 13 6.760 47.728 0.002 0.002 0.462 0.094 0.281

400 15 10.334 36.177 0.005 0.006 0.586 0.057 0.182

It can be observed that for SCP2 and SCP3, the precise discretization can guarantee
commensurate accuracy with fewer temporal nodes, while more than 200 nodes are needed
to achieve the same result in [27], which demonstrates the effectiveness of the precise
discretization. Note that, with the non-uniform scheme, SCP1 showed worse convergence
performance and low accuracy as mentioned above, which means that the feasibility of
the result trajectory is not guaranteed. In contrast, the proposed method overcomes the
shortcomings, maintains the advantage of the precise discretization, and shows better
convergence performance, as shown in Tables 4 and 5.

4.2. Constraint Satisfaction Performance

As mentioned above, for the uniform precise discretization, the propagated trajectory
may violate the path constraints between temporal nodes due to the sparse time grid. This
phenomenon was observed to occur when the account of temporal nodes decreased to 40.
Thus, we choose the case of 40 nodes for presentation. The path constraints of the proposed
method for Case 1 are shown in Figure 11 and contrasted with SCP1 and SCP2.

It can be observed that the heat load would touch the boundary during the initial state
of flight. The constraint violations occur for the propagated trajectory of SCP1 and SPC2
due to the sparse time grid. In contrast, the propagated trajectory of the proposed method
satisfies the path constraints over the time horizon. In addition, the discrete points would
cluster around the peak value of heat load, as shown in Figure 11.

Furthermore, the same phenomenon may occur for the no-fly zone constraints as well.
Case 2 focuses on the no-fly zone constraint violation, and the numerical results are shown
in Figure 12. In this case, all the path constraints were satisfied for all methods in our
experiments. It can be observed that the propagated trajectories of SCP1 and SCP2 both
pass through the no-fly zone. Note that, for the non-uniform scheme, the discrete points
of SCP1 do not cluster around the no-fly zone. The 3D trajectory of tbe proposed method
is shown in Figure 12b; the points in red are set to cluster around the no-fly zone. The
propagated trajectory of the proposed method skimmed over the no-fly zone, while the
time interval between adjacent red points is the minimum set in (11), which indicated that
the point distribution of the proposed method is better than SCP2.
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(a) Path Constraints for propagated trajectory of proposed method
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(b) Path Constraints for propagated trajectory of SCP1
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(c) Path Constraints for propagated trajectory of SCP2

Figure 11. Path constraints of propagated trajectories for Case 1.
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Figure 12. The propagated trajectory for Case 2.
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5. Conclusions

This paper proposes an improved SCP algorithm for the hypersonic entry problem
using a novel adaptive non-uniform discretization. The proposed method has advantages
in performance of path constraint satisfaction and convergence. Firstly, the proposed
method employs an inverse-free precise discretization to ensure high accuracy and real-
time performance. Then, an adaptive non-uniform scheme is developed to distribute
discrete points adaptively by adding additional penalty terms in the SCP subproblem,
which would guarantee constraint satisfaction. Finally, numerical results show that the
proposed method achieves a fast convergence while maintaining high accuracy with few
temporal nodes. More importantly, the discrete points of the proposed method would
cluster around the segment where the constraints may be violated, and the propagated
trajectory satisfies all the path constraints over the time horizon even for a small number of
discrete points.

Future work will focus on the following points: (1) Due to the non-uniform scheme,
a similar idea can extend to the hypersonic entry problem with the waypoint constraint
and other problems; (2) The simulation will be carried out on an embedded platform to
verify the effectiveness of the proposed method for a limited-power environment; (3) High-
performance solvers are considered to further improve the solving speed, such as the
proportional integral projected gradient method [35], a first-order method for the conic
convex problem.
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Abstract: This paper proposes a CKF-MPSP guidance method for hitting stationary targets with
impact time and angle constraints for missiles in the presence of modeling errors. This innovative
guidance scheme is composed of three parts: First, the model predictive static programming (MPSP)
algorithm is used to design a nominal guidance method that simultaneously satisfies impact time
and angle constraints. Second, the cubature Kalman filter (CKF) is introduced to estimate values of
the influence of the inevitable modeling errors. Finally, a one-step compensation scheme is proposed
to eliminate the modeling errors’ influence. The proposed method uses a real missile dynamics
model, instead of a simplified one with a constant-velocity assumption, and eliminates the effects of
modeling errors with the compensation scheme; thus, it is more practical. Simulations in the presence
of modeling errors are conducted, and the results illustrate that the CKF-MPSP guidance method
can reach the target with a high accuracy of impact time and angles, which demonstrates the high
precision and strong robustness of the method.

Keywords: terminal guidance; impact time constraint; impact angle constraint; model predictive
static programming; cubature Kalman filter; modeling errors

MSC: 37M10

1. Introduction

Guidance methods have always been a hot research topic in the field of missiles. The
early guidance-law design considers only the minimized miss distance requirement, such
as proportional navigation (PN). With the development of military science and technology,
classical guidance methods no longer satisfy combat requirements [1]. There is an urge to
research advanced guidance methods with multiple constraints. Impact angle and impact
time constraints are essential for advanced terminal guidance methods. Impact angles are
divided into path angle and azimuth angle. Attacking the target with a missile with proper
impact angles may improve the destructive effect and hit weak parts of the target. The im-
pact time is vital for attacking time-sensitive targets. Moreover, the guidance method with
impact angle and time constraints gives the multi-missile cooperative guidance capability.
Thus, investigating the impact time and angle-constrained guidance method (ITACG) is
very important.

In this paper, a CKF-MPSP guidance method with impact time and angle constraints
for a stationary target is proposed considering modeling errors. A baseline guidance
method with impact time and angle constraints is designed based on the MPSP algorithm.
The modeling errors are estimated by the CKF and compensate the baseline guidance
method to eliminate their effects. The main contributions of this paper are shown below.

(1) An ITACG is designed for a stationary target based on the MPSP algorithm, which
can simultaneously achieve impact time and angle constraints. This guidance method
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considers the missile’s dynamic model instead of a constant-velocity model. Therefore,
the proposed method is more suitable for practical missiles.

(2) The proposed guidance method takes the desired time as a terminal condition for
static planning. Time-to-go information is not required during the guidance process,
which avoids the influence of time-to-go estimation errors on time control accuracy.

(3) A CKF-based modeling error compensation scheme is proposed to solve the problem
of the MPSP algorithm being unable to be used for error conditions. This improvement
enhances the feasibility of the guidance method in practical applications since the
modeling error is inevitable.

It is worth noting that, although the CKF-MPSP guidance method is proposed in the
scenario of a missile attacking a stationary target on the ground, in this paper, it can also
be used for position control, such as aircraft landing. Furthermore, by predicting and
introducing the target’s motion model, the CKF-MPSP method can be used for moving-
target interception. However, these applications are not the focus of this paper and require
further research in the future.

This article is organized as follows. Section 2 provides a literature review of existing
achievements in related research fields. Section 3 formulates the problem researched in
this paper. Section 4 proposes the CKF-MPSP guidance method to implement time- and
angle-constrained guidance. Simulation results are given in Section 5. Section 6 gives
the conclusion.

2. Literature Review

Many scholars have conducted much research on ITACG problems. The mainstream
methods can be divided into non-predictive guidance and predictive guidance methods.

The guidance laws that utilize the current relative motion information between missiles
and targets are called non-predictive guidance. These kinds of methods only adopt the
relative motion model instead of the actual model of the missile, making the design of such
methods relatively simple. The existing non-predictive guidance methods basically follow
two design paradigms.

The first design paradigm is to design guidance laws both in the line-of-sight (LOS) and
normal LOS direction for time control and angle constraints, respectively. These kinds of
methods are widely used in cooperative guidance scenarios. Zhang [2] proposed an ITACG
with finite time convergence. Yu [1], Chen [3], and Lin [4] proposed fixed-time ITACGs
based on the sliding mode theory. Ma [5] designed a disturbance-observer-based ITACG
to enable the interception of maneuvering targets. Wang [6] proposed a decoupled three-
dimensional sliding mode guidance law achieving simultaneous arrival at the target for
multiple missiles with angle constraints. Jing [7] proposed a predefined-time convergence
ITACG method for a multi-missile cooperative guidance scenario. Because of the design
paradigm, the methods presented in Refs. [1–7] all need a control force both in the LOS
and normal LOS direction for time control and angle constraints, respectively. However,
most existing missiles are thrust-free and controlled by aerodynamic force in the terminal
guidance period. In reality, missiles cannot provide the guidance command in the LOS
direction, limiting the practical application of such guidance methods.

The second design paradigm is to design guidance laws only in the normal direction
of LOS/velocity, which is more practical but more challenging compared to the above
methods. Chen [8] simplified missile dynamics under a small heading error approximation
and derived an optimal guidance law with impact time and angle constraints against a
stationary target. Kim [9] introduced a polynomial guidance method considering impact
time and angle constraints. Zhao [10] designed the trajectory as a function with two unde-
termined parameters and adjusted them to control the impact time and angle. Kang [11]
derived a look-angle shaping scheme for ITACG. Hou [12,13] proposed a time-to-go esti-
mation scheme for terminal sliding mode guidance with an impact angle constraint and
further designed a nonsingular terminal sliding mode guidance law considering impact
time and angle simultaneously. Chen [14] designed a two-stage guidance that satisfies
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time and angle constraints through a proper guidance-switching strategy. Zhang [15]
proposed an ITACG by introducing an impact time feedback control term based on biased
PN. Yan [16] proposed a computational geometry guidance against stationary targets,
satisfying the constraints by iterating parameters of the geometry curve. Majumder [17]
proposed a sliding-mode-control-based nonlinear guidance scheme for controlling both
impact angle and impact time simultaneously. Liu [18] designed an adaptive sliding mode
ITACG method, increasing its adaptability and robustness. Wang [19] designed a two-stage
guidance method, achieving ITACG through reasonable switching between two guidance
rules. In Refs. [8–19], the guidance methods rely on time-to-go or range-to-go estimation.
However, the estimation is difficult because of the uncontrollable varying velocity. To
simplify the design process, the missile’s velocity is assumed as constant, which may cause
significant time estimation errors, especially when the trajectory is winding due to impact
angle constraints. Thus, the guidance effect is not satisfactory in reality. Overall, there are
difficulties in the practical application of the non-predictive ITACG methods in missiles
because of the model mismatch.

Unlike non-predictive guidance, the predictive guidance methods predict the terminal
states using a real model, which can avoid the model mismatch and thus can derive a better
guidance performance. As one of the predictive guidance methods, the MPSP-based guid-
ance methods have received widespread attention in recent years. The MPSP algorithm was
first introduced in Ref [20]. Combining the philosophy of approximate dynamic program-
ming and model predictive control, the MPSP algorithm obtains the terminal estimation
of the output vector by integral prediction. Then, it efficiently solves the optimization
problem by turning the dynamic programming problem into a static one. It has been
applied in guidance problems due to its ability to deal with varying velocities. The existing
MPSP-based guidance methods are mainly focused on the angle constraint only. Oza [21]
designed an angle-constrained guidance method for an air-to-ground missile and verified
the feasibility of MPSP guidance. Maity [22] further introduced the static Lagrange multi-
plier in MPSP guidance, improving the computational efficiency. Refs. [23–27] improved
the computational efficiency of the MPSP algorithm through further improvements and
designed angle-constrained guidance methods, respectively. Refs. [21–27] verified that the
MPSP algorithm is feasible for solving guidance problems online. However, during integral
prediction, modeling errors will cause the accumulation of estimation errors, affecting
the algorithm’s performance and stability. Although the receding horizon strategy can
correct some previous errors, it cannot eliminate the influence of modeling errors. Thus, the
MPSP algorithm is highly dependent on the model’s accuracy. To the best of the authors’
knowledge, no paper has studied MPSP guidance in the presence of modeling errors so far.

Through the analysis of the ITACG method literature, we can draw the
following conclusions:

(1) Compared to non-predictive guidance, predictive guidance may present better perfor-
mance for unpowered missile reality applications.

(2) As one of the predictive guidance methods, MPSP-based guidance can avoid the
model mismatch and thus can derive a better guidance performance, which has been
verified in Refs. [21–27].

(3) The existing MPSP-based guidance methods are mainly focused on the angle con-
straint only. The MPSP-based ITACG methods still need further research.

(4) As an inevitable but significant factor affecting the MPSP algorithm, the modeling
errors have not been considered so far.

Based on the above analysis, this paper focuses on the ITACG problems for unpowered
missiles in the presence of modeling errors, trying to fill existing research gaps.

3. Problem Description

A 3-D terminal guidance scenario of a missile attacking a stationary ground target is
considered in this paper, as shown in Figure 1. M is the missile whose position is (x0, y0, z0).
T is a stationary ground target whose position is (xt, yt, zt). The missile is supposed to
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arrive at the target point with the desired impact path angle θ f , impact azimuth angle ψv f ,
and impact time t f .

fθ

vfψ

fV

x

y

z

( ), , ,f t t tt x y z

( )0 0 0 0, , ,t x y z
M

T

O

Figure 1. Terminal guidance scenario.

The dynamic model of the missile with an unknown modeling error is written as

.
X = f(X, U, d) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V cos θ cos ψv
V sin θ
−V cos θ sin ψv
−D(α, β)− g sin θ + dx
L(α)−g cos θ

V + dy

− Z(β)
V cos θ + dz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where X = [x, y, z, V, θ, ψv]
T is the state vector. x, y, and z are 3-D position coordinates of the

missile. V, θ, and ψv are the missile’s velocity, path angle, and azimuth angle, respectively.
The angle of attack (AOA) α and the side slip angle (SSA) β compose the control vector
U = [α, β]T. The drag acceleration D, lift acceleration L, and lateral acceleration Z are
written as ⎧⎨⎩

D = Cx(α, β)qSre f /m
L = Cy(α)qSre f /m
Z = Cz(β)qSre f /m

. (2)

In Equation (2), aerodynamic coefficients Cx, Cy, and Cz are related to AOA and SSA.

q is dynamic pressure, Sref is reference area, m is the missile’s mass. d =
[
dx, dy, dz

]T is
the unknown modeling error, which may be caused by unmodeled dynamics, uncertain
parameters, external disturbances, etc.

Selecting the output vector as Y =
[

x y z θ ψv
]T, the purpose of our guidance

method is to determine proper control commands U, making sure Y → Yd when t → t f ,

where Yd =
[

xt yt zt θ f ψv f
]T.

4. CKF-MPSP Terminal Guidance Method

A CKF-MPSP guidance method is proposed and applied in the terminal guidance
scenario to achieve offset-free control in the presence of modeling errors. The CKF-MPSP
method comprises three parts: nominal MPSP guidance, CKF modeling error estimation,
and one-step modeling-error compensation. The nominal MPSP guidance generates a
baseline guidance command ignoring modeling errors. The CKF modeling error estimation
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generates the guessed modeling error, and the one-step modeling-error compensation
introduces an error compensation term in the baseline guidance command to maintain
precision and stability.

The schematic of the CKF-MPSP guidance method is shown in Figure 2. The nom-
inal MPSP guidance method is firstly used to obtain the nominal control command Un
according to initial states X0 and a guess value of control command U0. Then, regarding
the disturbance as an initial guess value d̂0, the one-step modeling-error compensation
method is utilized to eliminate the modeling error’s influence and generate the control
command U, which is substituted into the dynamic model to update the states X. The CKF
algorithm is utilized to generate the estimation of the states and the modeling error, which
are denoted as X̂ and d̂, according to the measurement ŷ of the global navigation satellite
system (GNSS). X̂, d̂, and U are used as initial values to calculate the control vector in the
next guidance period. Repeating the process until hit, the ITACG is achieved.

( ), ,f=X X U d

XUnU

( )Ö g= +y X v

ÖX Öd

ÖX

0U
0X

0X 0
Öd

( ),f=X X U ( )Ö, ,f=X X U d

U

U

Figure 2. CKF-MPSP guidance method schematic.

4.1. Nominal MPSP Guidance

Ignoring the unknown modeling error, the MPSP method [20] is used to generate the
baseline control commands. The nominal dynamic model is represented as

.
X = f(X, U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V cos θ cos ψv
V sin θ
−V cos θ sin ψv
−D − g sin θ
L−g cos θ

V
− Z

V cos θ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

Discretizing Equation (3), the discretized dynamic model can be described as{
Xk+1 = Fk(Xk, Uk) = Xk + hfk(Xk, Uk)
Yk = CXk

, (4)

where k = 1, 2, 3, · · · , N represents the time grids and h is the simulation step. The output
matrix C is shown as

C =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎦. (5)

After settling the desired terminal time N and the desired terminal output Yd =[
xt yt zt θ f ψv f

]T, the prediction output vector YN can be obtained through Runge–
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Kutta integration using initial states and previous control commands. Then, the updated
control commands can be obtained according to the deviation between YN and Yd.

Denote the terminal output deviation as ΔYN = YN − Yd. Expanding ΔYN at Yd and
ignoring the high-order terms, we can obtain

ΔYN ∼= dYN =

(
∂YN
∂XN

)
dXN . (6)

According to Equation (4), we can determine ∂YN/∂XN = C, and the following
formula holds.

dXk+1 =

(
∂Fk
∂Xk

)
dXk +

(
∂Fk
∂Uk

)
dUk, (7)

where dXk and dUk are the change in state and control at the k-th step, respectively.
The partial derivative of Fk with respect to Xk and Uk are shown as below:

∂Fk
∂Xk

= I6×6 + h ∂fk
∂Xk

= I6×6 + h

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 cos θ cos ψv −V sin θ cos ψv −V cos θ sin ψv
0 0 0 sin θ V cos θ 0
0 0 0 − cos θ sin ψv V sin θ sin ψv −V cos θ cos ψv
0 0 0 0 −g cos θ 0
0 0 0 − L−g cos θ

V2
g sin θ

V 0
0 0 0 Z

V2 cos θ
− Z sin θ

V cos2 θ
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

∂Fk
∂Uk

= h
∂fk
∂Uk

= h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

−Cα
x qSre f
m

−Cβ
x qSre f
m

Cα
y qSre f
mV 0

0 − Cβ
z qSre f

mV cos θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9)

where Cα
x is the partial derivative of the drag coefficient with respect to AOA, Cα

y is the

derivative of the lift coefficient with respect to AOA, Cβ
x is the partial derivative of the

drag coefficient with respect to SSA, and Cβ
z is the derivative of the lateral coefficient with

respect to SSA. They can be obtained from the aerodynamic data.
Substituting Equation (7) into Equation (6), we can obtain

dYN =

(
∂YN
∂XN

)[(
∂FN−1

∂XN−1

)
dXN−1 +

(
∂FN−1

∂UN−1

)
dUN−1

]
. (10)

In Equation (10), dXN−1 can be expressed as

dXN−1 =

(
∂FN−2

∂XN−2

)
dXN−2 +

(
∂FN−2

∂UN−2

)
dUN−2 (11)

And dXN−2 can be further expressed by dXN−3 and dUN−3. Repeating the above
process until dX1 and dU1, it is clear that Equation (10) can be rewritten as

dYN = AdX1 + B1dU1 + B2dU2 + · · ·+ BN−1dUN−1, (12)

where
A � ∂YN

∂XN

∂FN−1
∂XN−1

∂FN−2
∂XN−2

· · · ∂F1
∂X1{

Bk � ∂YN
∂XN

∂FN−1
∂XN−1

∂FN−2
∂XN−2

· · · ∂Fk+1
∂Xk+1

∂Fk
∂Uk

, k = 1, 2, · · · , N − 2

Bk � ∂YN
∂XN

∂FN−1
∂UN−1

, k = N − 1

. (13)
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Since the initial states are with no errors (dX1 = 0), the final output error is only
decided by control commands as

dYN =
N−1

∑
k=1

BkdUk. (14)

The purpose of guidance is to find a series of control commands Uk = U0
k − dUk

(k = 1, 2, · · · , N) to make dYN → 0 , where U0
k is the previous control history solution. It

is worth noting that Equation (14) has 2 × (N − 1) unknowns and 5 equations. Usually,
2 × (N − 1) > 5; thus, the solutions are not unique. To maximize guidance performance,
set the following energy-optimal performance index and aim to minimize it.

J =
1
2

N−1

∑
k=1

(
U0

k − dUk

)T
Rk

(
U0

k − dUk

)
, (15)

where Rk is a positive definite weight coefficient matrix.
Equations (14) and (15) constitute a static optimization problem, whose solution at

every time step k = 1, 2, · · · , N, according to static optimization theory, is

U∗
k = U0

k − dUk = R−1
k BT

k A−1
λ (dYN − bλ), (16)

where Aλ � −N−1
∑

k=1
BkR−1

k BT
k ,bλ �

N−1
∑

k=1
BkU0

k .

4.2. Modeling Error Estimation Based on CKF

The MPSP guidance method highly relies on modeling accuracy because of the integral
prediction. However, the realistic model inevitably has unknown modeling errors or
external disturbances. It has been pointed out in the literature [28] that, in the presence of
model mismatch, the MPSP method cannot realize the desired terminal states. Estimating
and compensating for modeling errors are common ways to achieve offset-free terminal
state control. This section uses the CKF algorithm to estimate states and modeling errors
simultaneously for subsequent compensation.

To estimate the modeling errors, consider them as constants and extend them to states.
The dynamic model (1) can be rewritten as

.
X

E
= fE

(
XE
)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V cos θ cos ψv
V sin θ
−V cos θ sin ψv
−D − g sin θ + dx
L−g cos θ

V + dy
− Z

V cos θ + dz
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ w, (17)

where XE =
[
x, y, z, V, θ, ψv, dx, dy, dz

]T is the expansion state vector, w is Gaussian-distributed
process noise, and E

[
wwT] = Q.

During flight, GNSS measures the missile’s motion in real time. So, the measurement
equations can be denoted as

ŷE = XE + v, (18)

where v is Gaussian-distributed measurement noise and E
[
vvT] = R. ŷE =[

x̂, ŷ, ẑ, V̂, θ̂, ψ̂v, d̂x, d̂y, d̂z

]T
is the expansion output vector.
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Discretizing Equations (17) and (18), we can obtain the nonlinear filter model:{
XE

k = FE
(
XE

k−1
)
+ wk−1

YE
k = XE

k + vk−1
, (19)

where FE
(
XE

k−1
)
= XE

k−1 + hfE
(
XE

k−1
)
.

The CKF algorithm consists of two procedures: Time Update and Measurement
Update [29]. Combined with the filter model, the CKF algorithm process is shown below.

4.2.1. Time Update

Assume at time k that the posterior probability density function p
(

XE
k−1

∣∣yk−1
)
=

N
(

X̂E
k−1, Pk−1

)
is known. Denote the Cholesky factorization of the error covariance Pk−1

as Sk−1.
Pk−1 = Sk−1ST

k−1. (20)

Calculate the cubature points χ
(i)
k−1 based on the third-degree cubature rule:

χ
(i)
k−1 = X̂E

k−1 + Sk−1ξ i, i = 1, 2, · · · , 2n, (21)

where n is the dimension of states. ξ i =
√

n[1]i is the basic cubature point set. The point set
[1] is defined as

[1] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

1
0
...
0

⎤⎥⎥⎥⎦
n×1

,

⎡⎢⎢⎢⎣
0
1
...
0

⎤⎥⎥⎥⎦, · · · ,

⎡⎢⎢⎢⎣
0
0
...
1

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
−1
0
...
0

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
0
−1

...
0

⎤⎥⎥⎥⎦, · · · ,

⎡⎢⎢⎢⎣
0
0
...

−1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭︸ ︷︷ ︸

2n

, (22)

and [1]i represents the i-th column vector in [1].
Calculate the one-step prediction at time k and its error covariance:

χ
∗(i)
k|k−1 = FE

(
χ
(i)
k−1

)
, (23)

X̂E
k|k−1 =

1
2n

2n

∑
i=1

χ
∗(i)
k|k−1, (24)

Pk|k−1 =
1

2n

2n

∑
i=1

[
χ
∗(i)
k|k−1 − X̂E

k|k−1

][
χ
∗(i)
k|k−1 − X̂E

k|k−1

]T

+ Qk−1. (25)

4.2.2. Measurement Update

Calculate the cubature points for Measurement Update, and then calculate
measurement prediction:

Pk|k−1 = Sk|k−1ST
k|k−1, (26)

χ
(i)
k|k−1 = X̂E

k|k−1 + Sk|k−1ξ i, i = 1, 2, · · · , 2n, (27)

ŷE
k|k−1 =

1
2n

2n

∑
i=1

χ
(i)
k|k−1. (28)
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Calculate the innovation covariance matrix Pxy and the cross-covariance matrix Pyy:

Pxy =
1

2n

2n

∑
i=1

[
χ
(i)
k|k−1 − X̂E

k|k−1

][
χ
(i)
k|k−1 − ŷE

k|k−1

]T

, (29)

Pyy =
1

2n

2n

∑
i=1

[
χ
(i)
k|k−1 − ŷE

k|k−1

][
χ
(i)
k|k−1 − ŷE

k|k−1

]T
+ Rk. (30)

Calculate the Kalman gain:
Kk = PxyP−1

yy . (31)

Estimate the updated state and the corresponding error covariance:

X̂E
k = X̂E

k|k−1 + Kk

(
yE

k − ŷE
k|k−1

)
, (32)

Pk = Pk|k−1 − KkPyyKT
k . (33)

4.3. One-Step Modeling-Error Compensation

After estimating the modeling errors, compensate for the effect of modeling errors on
the system by attaching an additional control term ΔUk to the MPSP optimal command

U∗
k at time k. Denoting the estimation modeling error vector as d̂k =

[
d̂xk, d̂yk, d̂zk

]T
, the

disturbed system model can be described as{
X̃k+1 = X̃k + hfk

(
X̃k, Ũk, d̂k

)
Ỹk+1 = CX̃k+1

. (34)

At time k, denote Yk+1 as the output vector obtained by a one-step calculation with cur-
rent state Xk and the MPSP control command U∗

k . The objective of modeling-error compen-
sation is to generate a modified control command Ũk = U∗

k + ΔUk making Ỹk+1 → Yk+1 .
Denote the output error as

ΔYk+1 = Ỹk+1 − Yk+1. (35)

Substituting Equations (4) and (34) into (35) and because of X̃k = Xk, we can obtain

ΔYk+1 = hC
[
fk
(
Xk, U∗

k + ΔUk, d̂k
)− fk(Xk, U∗

k )
]
. (36)

Expanding fk

(
Xk, U∗

k + ΔUk, d̂k

)
and ignoring high-order terms, we can obtain

fk
(
Xk, U∗

k + ΔUk, d̂k
) ∼= fk(Xk, U∗

k ) +
∂fk
∂Uk

ΔUk +
∂fk
∂dk

d̂k. (37)

Substituting Equation (37) into (36), we can obtain

ΔYk+1 = hC
[

∂fk
∂Uk

ΔUk +
∂fk
∂dk

d̂k

]
. (38)

The compensation term is desired to make the output error zero. According to Equa-
tion (38), we can obtain the desired additional control term as

ΔUk = −
(

C
∂fk
∂Uk

)−1(
C

∂fk
∂dk

d̂k

)
. (39)
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The modified control command at time k is

Ũk = U∗
k + ΔUk. (40)

4.4. CKF-MPSP Terminal Guidance Process

Considering the above, the CKF-MPSP guidance process is summarized below (Algorithm 1).

Algorithm 1: CKF-MPSP Terminal Guidance Scheme.

INPUT: current time k, desired terminal time N, desired terminal output Yd, current states Xk, guessed control command[
U0

k , U0
k+1, · · · , U0

N−1

]
, estimated modeling error d̂k, CKF initial values X̂E

k−1, P̂k−1.
1: while current time k is no larger than N, do

2: while terminal output deviation ΔYN is larger than tolerance value ε, do

3: predict the terminal output vector YN through Runge-Kutta integration with the nominal dynamic model (4), the current

states Xk and the guessed control command
[
U0

k , U0
k+1, · · · , U0

N−1

]
.

4: calculate terminal output deviation ΔYN = YN − Yd.

5: calculate matrices
[
Bk, Bk+1, · · · , BN−1

]
according to Equation (13).

6: calculate the optimal control command
[
U∗

k , U∗
k+1, · · · , U∗

N−1

]
according to Equation (16).

7: take
[
U∗

k+1, · · · , U∗
N−1

]
as the new guessed control command.

8: end while.
9: calculate the one-step output Ỹk+1 with the disturbed system model (34) in presence of the estimated modeling error d̂k
10: calculate the modified control command Ũk at time k, according to Equations (39) and (40).
11: substitute Ũk into the realistic dynamic model (1) and obtain the updated state Xk+1.
12: estimate the filter state X̂E

k , error covariance P̂k, and modeling error d̂k+1, using CKF algorithm (20)~(33).
13: time update, k = k + 1.
14: end while

Remark 1. The MPSP guidance method takes the desired impact time as the terminal time N of
static planning. The target’s position and impact angles are regarded as desired terminal output Yd.
Making the terminal output deviation ΔYN no larger than tolerance value ε by iterating U∗, the
impact time and angle constraints can be satisfied simultaneously.

Remark 2. The MPSP guidance method relies on initial guessed control commands[
U0

k , U0
k+1, · · · , U0

N−1
]
. The guessed control commands are quickly generated through some simple

guidance laws in common. In this paper, the traditional PN guidance law is used to obtain the
initial guessed control commands. Usually, the impact time of PN, represented by the symbol
NP, is different from the desired time N. For the MPSP algorithm, NP must be no less than N,
so the outputs at time N can be predicted. In this paper, a protection mechanism is introduced to
make sure the MPSP algorithm normally runs even if NP is less than N: Let U0

k = U0
NP−1, for

NP − 1 < k ≤ N − 1.

5. Simulations and Results

In this section, several numerical simulations are carried out to evaluate the perfor-
mance of the proposed terminal guidance method in the presence of modeling errors. A
three-dimensional guidance scenario of a missile attacking a stationary target is constructed.
The initial simulation conditions are listed below (Table 1):

Table 1. Simulation initial conditions.

Parameters Values

Missile’s initial velocity V 200 m/s
Missile’s initial path angle θ 0◦

Missile’s initial azimuth angle ψv 0◦
Missile’s initial position (x, y, z) (0 m, 4000 m, 0 m)

Target’s position (xt, yt, zt) (5000 m, 0 m, 1000 m)
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Besides achieving precision arrival, the impact time and impact angles are also re-
quired. The desired impact time is settled as 35 s, and the desired terminal path angle
and azimuth angle are settled as −80◦ and −50◦, respectively. The dynamic model-
ing errors in Equation (1) are settled as dx = −0.4 sin(t/400) cos(t/400), dy = 1, and
dz = 2.5 cos(πt/200). The measurement errors from the GNSS system are assumed to be
normally distributed. The position error, velocity error, and acceleration error are settled to
be 10 m (3σ), 1 m/s (3σ), and 0.1 m/s2 (3σ), respectively.

For the MPSP algorithm, the guessed control commands
[
U0

k , U0
k+1, · · · , U0

N−1
]

are
needed. The traditional PN [30] is used to produce the initial values of

[
U0

k , U0
k+1, · · · , U0

N−1
]

in this paper, and the navigation ratio is settled as 6. In addition, a comparison with the
MPSP guidance method presented in [21] is provided to validate the superiority of the
method. The end condition for PN simulation is that the missile reaches the target. And
the end conditions for the other two simulations are that the simulation times reach the
desired impact time, which is 35 s on this occasion. For MPSP and CKF-MPSP methods,
the tolerance value vector is settled as ε = [1m, 1m, 1m, 0.1◦, 0.1◦]T. The simulation results
are shown below.

To evaluate the guidance accuracy, some crucial parameters of the three methods
shown in Figure 3 are provided in Tables 2 and 3, which include the terminal miss distance,
terminal velocity, terminal path angle, terminal azimuth angle, and impact time.

 
(a) (b) 

 
(c) (d) 

Figure 3. Cont.
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(e) (f) 

Figure 3. Comparative simulation results of three methods: (a) three-dimensional trajectory;
(b) missile velocity profiles; (c) path angle profiles; (d) azimuth angle profiles; (e) angle-of-attack
profiles; and (f) side slip angle profiles.

Table 2. Simulation results of PN method.

Method Miss Distance (m) Velocity (m/s) Path Angle (◦) Azimuth Angle (◦) Impact Time (s)

PN 0.26 242.56 −46.42 −15.23 30.5

Table 3. Simulation results of MPSP and CKF-MPSP methods at the desired impact time (35 s).

Method Miss Distance (m) Velocity (m/s) Path Angle (◦) Azimuth Angle (◦)

MPSP 289.73 161.18 −90.24 218.31
CKF-MPSP 0.29 249.90 −79.99 −50.00

It is obvious that the CKF-MPSP method has good accuracy for miss distance while
strictly constraining the terminal path angle, azimuth angle, and impact time. The PN
method leads to the minimum miss distance. However, it cannot consider impact time and
angle constraints. Because of the dynamic modeling errors, the MPSP method cannot find a
feasible solution, which leads to a significant guidance error. Affected by modeling errors,
the MPSP method’s velocity is lower than the CKF-MPSP’s at every identical moment,
which is also the main reason for the MPSP method not reaching the destination. The
CKF-MPSP method estimates the modeling errors with high accuracy. Referring to Figure 4,
the estimation error of modeling errors is no larger than 0.04 m/s2. The influence of
modeling errors can be reduced by compensating for the nominal command acceleration.
The simulation results illustrate the effectiveness and superiority of the CKF-MPSP method
in the presence of modeling errors.
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(a) (b) 

Figure 4. CKF estimation results: (a) CKF estimation of modeling errors and (b) estimation error of
modeling errors.

Based on the above simulation, the influence of atmospheric density deviation, aero-
dynamic parameter deviation, and the random variation in the dynamic modeling errors
are further considered. The deviations are assumed to be normally distributed, and their
values are 10% (3σ). The results of 200 Monte Carlo simulations are as follows.

The key indexes in Figure 5 is summarized in Table 4. According to Table 4, the
miss distances are no larger than 5.56 m and the average impact angle errors are 0.055◦
and 0.077◦, respectively. The missile maintains high guidance accuracy in the presence
of disturbances. The simulation results illustrate that the proposed guidance method has
strong robustness.

 
(a) (b) 

 
(c) (d) 

Figure 5. Monte Carlo simulation results: (a) terminal miss distance; (b) terminal velocity; (c) path
angle profiles; and (d) azimuth angle profiles.
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Table 4. Monte Carlo simulation results.

Method Miss Distance (m) Velocity (m/s) Path Angle (◦) Azimuth Angle (◦)

Average 1.21 248.92 −79.95 −49.93
Maximum value 5.56 250.11 −79.21 −48.49
Minimum value 0.03 240.40 −80.12 −50.26
Standard error 0.95 1.84 0.16 0.34

6. Conclusions

ITACG is a vital field for missiles because it can improve destructive effects and hit
weak parts of time-sensitive targets, and make it possible for multiple missiles to attack a
target simultaneously. Studying ITACG can effectively enhance the combat effectiveness
of missiles.

In this paper, an ITACG is proposed based on the MPSP algorithm. By taking the
desired impact time and angles as terminal conditions, the guidance method can satisfy
these constraints simultaneously. Furthermore, to eliminate the influence of modeling
errors on prediction, the CKF algorithm is used for error estimation, and a compensation
scheme is designed. The proposed guidance method considers the missile’s dynamic model
instead of a constant-velocity model. Meanwhile, the modeling errors are estimated and
compensated. Thus, this method is more practically significant. A terminal guidance
scenario is settled, and the PN method, MPSP method, and CKF-MPSP method are used for
simulation in the presence of modeling errors. According to the simulation results, the CKF-
MPSP method can achieve impact time and angle constraint guidance, and maintain high
accuracy within the influence of modeling errors. Furthermore, the Monte Carlo simulation
is conducted, considering the influence of atmospheric density deviations, aerodynamic
parameter deviations, and random variations in the dynamic modeling errors. According
to the simulation results, the miss distances are no larger than 5.56 m, and the average
impact angle errors are 0.055◦ and 0.077◦, respectively. The missile maintains high guidance
accuracy in the presence of disturbances. Comprehensively, the simulation results illustrate
that the proposed CKF-MPSP guidance method has high precision and strong robustness.

It should be acknowledged that this article still has some limitations. The research of
this paper is mainly focused on the ITACG against stationary targets. For moving targets, it
is also necessary to introduce their motion models into the guidance method. However,
the accurate estimation of the moving targets’ motion is still a difficult problem, because of
insufficient target information and potential maneuvering. Motion model estimation and
MPSP-based guidance for moving targets remain to be researched in the future.
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Abstract: This paper tackles the saturation and fault-tolerant attitude tracking problem without un-
winding for rigid spacecraft with external disturbances and partial loss of actuator effectiveness faults.
A hybrid saturation and fault-tolerant attitude control (HSFC) is proposed. The Lyapunov method is
employed to prove that the tracking errors of the spacecraft system tend to the equilibrium point
asymptotically with HSFC. The advantages of the HSFC are that it is fault-tolerant, anti-unwinding
and explicitly upper bounded a priori which means that both actuator saturation and the unwinding
phenomenon can be avoided. Simulations verify the effectiveness of the proposed approach.

Keywords: spacecraft attitude control; saturation control; unwinding; fault tolerant

MSC: 93D20

1. Introduction

In the last few decades, the attitude control of rigid spacecraft has attracted extensive
attention and several elegant attitude control strategies for rigid spacecraft have been pro-
posed. More specifically, the authors of [1] using the passivity theory develop an adaptive
control scheme for the attitude control of rigid spacecraft. In [2], an adaptive finite time non-
singular terminal sliding mode attitude tracking control (AFNTSMC) scheme is presented
for uncertain rigid spacecraft. In [3], the authors propose a simple non-singular terminal
sliding mode control (NTSMC) to obtain high precision and robust finite-time bounded
attitude tracking for rigid spacecraft with finite-time stability. In [4], a new integral sliding
mode control integrating the bi-limit homogeneous theory is explored to obtain fixed-time
stability for rigid spacecraft attitude tracking. Recently, the authors of [5] exploit the
predefined-time guaranteed performance takeover control for non-cooperative spacecraft.

But, these aforementioned controls are formulated with the assumption that the
actuators could supply any requested torque for the attitude control of spacecraft. In a
practical scenario, when the requested control torque exceeds the maximum value that
the actuator can supply, the performance of the spacecraft system cannot be guaranteed
and even leads to instability. Obviously, it is more unrealistic to design a robust control
strategy under the above assumption [6,7]. Recognizing this drawback, several approximate
solutions that take into account actuator constraints have been proposed. Particularly, the
authors of [8] propose a continuous globally robust attitude saturation control for spacecraft
in the presence of parametric uncertainty and external disturbances. In [9], a nonlinear
backstepping attitude saturation control integrating the inverse tangent-based tracking
function and a family of augmented Lyapunov functions is exploited to achieve attitude
maneuver of rigid spacecraft. In [10], an adaptive saturation attitude tracking control is
designed for rigid spacecraft with unknown system parameters and disturbance. In [11],
two very simple saturated PD (SPD) controllers are developed for rigid spacecraft to obtain
global asymptotic stabilization. Subsequently, velocity-free asymptotic attitude stabilization
control is introduced for rigid spacecraft in the presence of actuator constraints [12]. In [13],
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a unified formulation of simple but effective SPD control is proposed for asymptotic
stabilization of spacecraft in the presence of actuator constraints. In [14], a simple single
saturated PD (SSPD) control is proposed for spacecraft stabilization. In [15], a saturated
output feedback finite-time proportional–derivative control is developed for spacecraft
subject to actuator constraints and attitude measurements only.

In spite of the above-mentioned schemes addressing the attitude saturation problem of
the spacecraft, they do not consider the actuator faults. It should be pointed out that actuator
faults of spacecraft may dramatically degrade the attitude tracking performance [16,17].
To eliminate this weakness, a fault-tolerant technique is added to the spacecraft attitude
control scheme to improve the safety and accuracy of the attitude tracking. Recognizing this
benefit, several effective fault-tolerant control schemes for spacecraft attitude control have
been developed to compensate actuator failure. The authors of [18] develop an adaptive
robust fault-tolerant control to tackle the spacecraft attitude tracking problem. In [19],
an adaptive fault-tolerant control with fast transient is proposed to address spacecraft
attitude tracking. The authors of [20] introduce a fault-tolerant on-line control to solve
the spacecraft attitude tracking with actuator failure. In [21], a fixed-time fault-tolerant
attitude tracking control is explored for rigid spacecraft described by the unit quaternion
subject to model uncertainties, external disturbances and actuator faults. In [22], based
on the fixed-time disturbance observer, a quantized fixed-time control is introduced to
obtain attitude stabilization. In [23], an incremental nonlinear control technology is used to
simplify the attitude control system with a synthetic uncertainty or fault term.

For the unit-quaternion representation, although it is a global nonsingularity, it has
the weakness of the unwinding phenomenon [24]. In comparison with the almost ‘global’
stability in the above quaternion-based controls, the hysteresis-based hybrid attitude control
can ensure that the global stability of the spacecraft system is obtained. Recognizing these
advantages, several hysteresis-based hybrid attitude control schemes have been exploited.
The authors of [25] propose a quaternion-based hybrid feedback scheme to address global
attitude stabilization without the angular velocity measurement. The authors of [26] present
a smooth control system, which can provide almost semi-global exponential stability. The
authors of [27] introduce a hybrid certainty equivalence controller scheme with a hybrid
observer for the rigid spacecraft with only quaternion measurement. More recently, in [28],
a global finite-time attitude control based on the hybrid control technique is designed
to solve the attitude tracking of a rigid body using a quaternion description. In [29], a
saturated hybrid output feedback PD plus (SHOPD+) scheme with attitude measurements
only is developed to achieve global stability for rigid spacecraft subject to the actuator limit.
Furthermore, a velocity-free saturated hybrid proportional–derivative (PD) plus (PD+)
control is constructed to achieve global finite-time attitude tracking for spacecraft [30]. The
authors of [31] present a novel anti-unwinding finite-time attitude tracking control law
with a designed control signal which works within a known actuator-magnitude constraint
using a continuous nonsingular fast terminal sliding mode (NFTSM) concept.

In this paper, a simple hybrid attitude saturation and fault-tolerant control is proposed
to address the spacecraft attitude tracking problem subject to external disturbances and
partial loss of actuator effectiveness faults. An adaptive hybrid robust saturation control is
developed to obtain global stability which means the tracking errors tend to the equilibrium
point asymptotically without the unwinding phenomenon. In comparison with the existing
saturation attitude controls of spacecraft in [29,30], the proposed control can tackle actuator
faults. Compared with the available fault-tolerant control schemes for spacecraft in [31],
the proposed control can remove the possibility of degraded or unpredictable motion
and actuator failure due to excessive torque input levels by selecting control gains a
priori. Advantages of the proposed control include anti-unwinding, global stability, control
constraint, fault-tolerance and robustness. Simulations are performed on the spacecraft to
verify the effectiveness performance of the developed HSFC.

Throughout this paper, notations λm(K) and λM(K) are utilized to denote the smallest
and largest eigenvalues, respectively, of a symmetric positive-definite bounded matrix K.
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We use ‖x‖ =
√

xTx to define the norm of a vector x ∈ Rn and the corresponding induced
norm ‖K‖ =

√
λM(KTK) is used to define the norm of a matrix K, and I3 denotes an R3×3

identity matrix.
The framework of this paper is organized as follows. The preliminaries are given

in Section 2. The control design including hybrid system and controller formulation is
presented in Section 3. In Section 4, asymptotic stability analysis is given. In Section 5,
numerical simulations are illustrated to verify the effectiveness performance of the proposed
approach. Finally, the conclusion is presented in Section 6.

2. Preliminaries

2.1. Spacecraft Model and Properties

The attitude kinematics and dynamics of a rigid spacecraft are formulated as [2,32]:⎧⎨⎩
q̇v = 1

2 (q4 I3 + q×v )ω,

q̇4 = − 1
2 qT

v ω.
(1)

Jω̇ = −ω× Jω + u + d. (2)

where a unit quaternion q ∈ S̄3 =
{

x ∈ R4 : xTx = 1
}

is used to describe the attitude
orientation of the spacecraft in the body frame with respect to an inertial frame, and S̄3

denotes the three-dimensional sphere embedded in R4, q = (qv, q4) includes vector qv ∈ R3

and scalar q4 ∈ R and satisfies the constraint qT
v qv + q2

4 = 1, ω ∈ R3 represents the angular
velocity, J ∈ R3×3 denotes the constant symmetric positive-definite inertia matrix of the
spacecraft, u = [uτ1, uτ2, uτ3]

T ∈ R3 denotes the control torque, d ∈ R3 represents the
external disturbances, and the operation (·)× ∈ R3×3 denotes a skew-symmetric matrix,
that is

z× =

⎡⎣ 0 −z3 z2
z3 0 −z1
−z2 z1 0

⎤⎦, ∀z = [z1, z2, z3] ∈ R3. (3)

Assumption 1 ([21,23]). The desired angular velocity ωd and its first derivative are bounded by
‖ωd‖ ≤ c1 and ‖ω̇d‖ ≤ c2, respectively, where c1 and c2 are known positive constants.

Assumption 2 ([8,33]). Assume that the disturbance d is bounded by ‖d‖ ≤ lg where lg is a
known positive constant.

Assumption 3 ([29]). The inertia matrix J is bounded by ‖J‖ ≤ JM, where JM is a known positive
constant.

Property 1 ([29]). The following properties hold for the skew-symmetric matrices a× and b× with
a, b ∈ R3

a×b× = baT − aTbI3. (4)

a×b = −b×a. (5)

∥∥a×
∥∥ = ‖a‖. (6)

Property 2 ([29]). The matrix (Cωd)
× J + J(Cωd)

× is skew-symmetric matrix and C is the
rotation matrix.
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2.2. Problem Statement

The desired attitude qd = (qT
dv, qd4)

T ∈ R3 × R is defined by [8,32]⎧⎨⎩
q̇dv = 1

2
(
qd4 I3 + q×dv

)
ωd,

q̇d4 = − 1
2 qT

dvωd.
(7)

The relative attitude tracking error of the spacecraft is defined by qe = (eT
v , e4)

T ∈ S̄3

where ev = [e1, e2, e3] ∈ R3 and e4 ∈ R. Then, the attitude tracking problem can be
described as follows. ⎧⎨⎩

ėv = 1
2 (e4 I3 + e×v )ωe,

ė4 = − 1
2 eT

v ωe.
(8)

Jω̇e = −ω× Jω + J
(
ω×

e Cωd − Cω̇d
)
+ Γu + d. (9)

ωe = ω − Cωd. (10)

where the diagonal matrix Γ = diag(γ1(t), γ2(t), γ3(t)) ∈ R3×3 denotes the actuator
health condition and γi(t) satisfies γ0 ≤ γi(t) ≤ 1, (i = 1, 2, 3) with a known positive
constant γ0. Clearly, γi(t) = 1 indicates the fault-free spacecraft and γ0 ≤ γi(t) ≤ 1 denotes
that the ith actuator partially loses its power [18,19]. The rotation matrix C is defined by
C = (e2

4 − eT
v ev)I3+2eveT

v − 2e4e×v where ‖C‖ = 1 and Ċ = −ω×
e C [8]. The error quaternion

(ev, e4) satisfies eT
v ev + e2

4 = 1.
We assume that exact attitude and velocity measurements are available and each

actuator has a known maximum torque uτi,max satisfying

|uτi,max| > JM

(
c2

1 + c2

)
+ lg. (11)

In this paper, the objective is to develop an adaptive hybrid fault-tolerant control law
u subject to actuator constraints given by (11) to guarantee that the attitude tracking errors
converge to the equilibrium point asymptotically without the unwinding phenomenon,
which means (0, 0, 0,±1)T is global stability for the rigid spacecraft in the presence of the
actuator fault described by (8) and (9).

|uτi| ≤ uτi,max. (12)

3. Control Design

3.1. Hybrid System

Motivated by the work in [25,29], the following hysteresis-based hybrid function is
introduced firstly to avoid the unwinding phenomenon.

h̄
{

ẋ = M(x), x ∈ D,
x+ = N(x), x ∈ E.

(13)

where the flow map M : Rn → Rn belongs to the flow set D, the jump map N : Rn → Rn

belongs to the jump set E and x+ represents the state value immediately after a jump [29].
Based on the hybrid system, we first introduce the following coordinate transforma-

tion S
S = ωe + hγ2ev. (14)
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where γ denotes the update law defined in (20) and the auxiliary variable h ∈ h̄ = {−1, 1}
satisfies h+ = −h. The continuous set D and the jump set E are defined, respectively,
as follows.

D =
{

x ∈ S3 × R3 × h̄ : he4 > −η
}

. (15)

E =
{

x ∈ S3 × R3 × h̄ : he4 ≤ −η
}

. (16)

where x = {qe, ωe, h}, η ∈ (0, 1) indicates the hysteresis gap.

Remark 1. It is worth noting that h is chosen to change the desired rotation direction to push qe to
either (0, 0, 0, 1)T or (0, 0, 0,−1)T. Thus, the desired rotation direction changes only when there is
a significant benefit in switching it, where “significant” is defined precisely by the selection of η.
The hysteresis width η manages a trade-off between robustness to disturbance and a small amount of
hysteresis-induced inefficiency [25].

3.2. Controller Formulation

The hybrid saturation and fault-tolerant attitude control (HSFC) is proposed as:

u = u1 + u2. (17)

where
u1 = −k

S
(|Si|+ γ2δ)

+(Cωd)
× JCωd+JCω̇d. (18)

u2 = −
(

1 − γ0

γ0
‖u1‖

)
sign(ωe). (19)

γ̇ =
αγ

1 + 2αk1(1 − he4)

(
k

3

∑
i=1

(
heviωei

(|Si|+ γ2δ)
− |ωei|(1 + δ)

|ωei|+ γ2(1 + δ)

)
− 1

2
k1heT

v S

)
. (20)

where sign(·) denotes the sign function, k, k1, α, δ are positive constants and k > lg.

Remark 2. It should be pointed out that the equilibrium point (0, 0, 0,±1)T represents the same
physical attitude for rigid spacecraft formulated by quaternion. When this double covering is
neglected, the traditional controller can induce the notion called “unwinding”, which leads to the
spacecraft making an unnecessarily full rotation [25] and consuming more unnecessary energy. The
proposed HSFC is designed to tackle the unwinding phenomenon.

Utilizing the facts that ‖C‖ = 1, ‖e4 I3 + e×v ‖ = 1, |ei| ≤ 1 and h2 = 1, the control
torque u given by (17) can be upper bounded by

|uτi| ≤ 1
γ0

(
k + JM

(
c2

1 + c2

))
, u = [uτ1, uτ2, uτ3]

T . (21)

Rewriting Γu as u1 − (I3 − Γ)u1 + Γu2 and utilizing the fact ω = ωe + Cωd, we have

Jω̇e = −ω×
e Jωe − ω×

e JCωd − (Cωd)
× Jωe − (Cωd)

× JCωd
+J(ω×

e Cωd − Cω̇d) + u1 − (I3 − Γ)u1 + Γu2 + d.
(22)

4. Stability Analysis

Now, Theorem 1 of the main result of this paper is stated as follows.

Theorem 1. Considering the rigid spacecraft described as (8) and (9), the developed approach
defined by (17)–(19) ensures the attitude tracking errors globally converge to the equilibrium point
asymptotically.
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Proof. The proof includes the following two consecutive main steps. First, when x ∈ D, all
the states are continuous and h remains unchanged such that ḣ = 0; we prove that system
states are stable in set D by using LaSalle’s invariance principle for the hybrid system.
Second, when x ∈ E, the jump only occurs with the variable h and the other system states
are still continuous; we prove that system states are stable in set E.

Step 1. The following positive-definite Lyapunov function candidate is proposed.

V = γ2 k1

2

[
(1 − he4)

2 + eT
v ev

]
+

1
2

ωT
e Jωe +

γ2

2α
. (23)

Note that the following equality holds with the fact eT
v ev + e2

4 = 1.

(1 − he4)
2 + eT

v ev = 1 − 2he4 + e2
4 + eT

v ev = 2 − 2he4 = 2(1 − he4). (24)

In light of (24), we can rewrite (23) as

V = γ2k1(1 − he4) +
1
2

ωT
e Jωe +

γ2

2α
. (25)

The time derivative of V along (22) takes

V̇ = −γ2k1hė4 + ωT
e Jω̇e + γ̇γ

(
1
α
+ 2k1(1 − he4)

)
. (26)

By virtue of the fact ė4 = − 1
2 eT

v ωe, (26) can be further formulated as

V̇ =
1
2

γ2k1heT
v ωe + ωT

e Jω̇e + γ̇γ

(
1
α
+ 2k1(1 − he4)

)
. (27)

When x ∈ D, substituting Jω̇e from (22) into (27), it follows that

V̇ = 1
2 γ2k1heT

v ωe + γ̇γ
(

1
α + 2k1(1 − he4)

)
+ωT

e

( −ω×
e Jωe − ω×

e JCωd − (Cωd)
× Jωe − (Cωd)

× JCωd
+J(ω×

e Cωd − Cω̇d) + u1 − (I3 − Γ)u1 + Γu2 + d

)
.

(28)

Using Properties 1 and 2, this yields

ωT
e ω×

e = 0,
ω×

e Cωd = −(Cωd)
×ωe,

ωT
e

(
(Cωd)

× J + J(Cωd)
×)ωe = 0.

(29)

Upon utilizing the above facts, Equation (28) yields

V̇ = 1
2 γ2k1heT

v ωe + γ̇γ
(

1
α + 2k1(1 − he4)

)
+ωT

e

(
u1 + d − (Cωd)

× JCωd − JCω̇d

)
+ ωT

e (−(I3 − Γ)u1 + Γu2).
(30)

Upon substituting the controller (18) into (30) and applying the fact that ωe = S −
hγ2ev, we obtain

V̇ = 1
2 γ2k1heT

v
(
S − hγ2ev

)
+ γ̇γ

(
1
α + 2k1(1 − he4)

)
+ωT

e d + ωT
e (−(I3 − Γ)u1 + Γu2)− k

3
∑

i=1

ωeiSi
(|Si |+γ2δ)

.
(31)

118



Mathematics 2023, 11, 3431

In light of (14), we can rewrite (31) as

V̇ = 1
2 γ2k1heT

v
(
S − hγ2ev

)
+ γ̇γ

(
1
α + 2k1(1 − he4)

)
+ωT

e d + ωT
e (−(I3 − Γ)u1 + Γu2)− k

3
∑

i=1

ω2
ei+hγ2eviωei
(|Si |+γ2δ)

.
(32)

By virtue of the triangle inequality, we have

3
∑

i=1

ω2
ei

(|Si |+γ2δ)
=

3
∑

i=1

ω2
ei

(|ωei+hγ2evi|+γ2δ)
,

3
∑

i=1

ω2
ei

(|ωei+hγ2evi|+γ2δ)
≥ 3

∑
i=1

ω2
ei

(|ωei |+γ2(1+δ))
,

3
∑

i=1

ω2
ei

(|ωei |+γ2(1+δ))
=

3
∑

i=1

(
|ωei| − |ωei |γ2(1+δ)

|ωei |+γ2(1+δ)

)
.

(33)

Upon applying (33) and the facts that
3
∑

i=1
|ωei| ≥ ‖ωe‖ and ‖d‖ ≤ lg to (32), we obtain

V̇ ≤ 1
2 γ2k1heT

v
(
S − hγ2ev

)
+ γ̇γ

(
1
α + 2k1(1 − he4)

)
+ωT

e d + ωT
e (−(I − Γ)u1 + Γu2)

−k
3
∑

i=1

(
|ωei| − |ωei |γ2(1+δ)

|ωei |+γ2(1+δ)

)
− k

3
∑

i=1

hγ2eviωei
(|Si |+γ2δ)

.

(34)

After substituting the update law (20) into (34), we obtain

V̇ ≤ −1
2

γ4k1h2eT
v ev + ‖ωe‖lg − k‖ωe‖+ ωT

e (−(I3 − Γ)u1 + Γu2). (35)

Recalling the facts that
3
∑

i=1
|ωei| ≥ ‖ωe‖, γ0 ≤ γi and ‖I3 − Γ‖ = λM(I3 − Γ) ≤ 1 − γ0,

we have

ωT
e Γu2 = ωT

e Γ
(
−
(

1−γ0
γ0

‖u1‖
)

sign(ωe)
)
≤ −λmin(Γ)

(
1−γ0

γ0
‖u1‖

) 3
∑

i=1
|ωei|

≤ −γ0

(
1−γ0

γ0
‖u1‖

) 3
∑

i=1
|ωei| = −(1 − γ0)‖u1‖

3
∑

i=1
|ωei|

≤ −(1 − γ0)‖u1‖‖ωe‖.

(36)

Substituting (19) and (36) into (35) yields

V̇ ≤ −c‖ωe‖ − 1
2

γ4k1h2eT
v ev + ‖ωe‖(1 − γ0)‖u1‖ − (1 − γ0)‖u1‖‖ωe‖. (37)

In light of h2 = 1, (37) can be rewritten as

V̇ ≤ −c‖ωe‖ − 1
2

γ4k1eT
v ev. (38)

where
c = k − lg > 0. (39)

When x ∈ E, the jump occurs in V and we have

V(x+)− V(x) = 2γ2k1he4. (40)

In view of (16), we obtain

V(x+)− V(x) ≤ −2γ2k1η < 0. (41)
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It is clear from (38) that V̇ ≤ 0 where c > 0, γ4 > 0 and k1 > 0, when x ∈ D. Moreover,
V̇ = 0 implies that ev = 0 and ωe(t) = 0. Otherwise, when x ∈ E, we can conclude that
V̇ ≤ 0 from (41). Hence, by applying LaSalle’s invariance theorem [34] and theorem 7.6
from [35], we can conclude that lim

t→∞
ev(t) = 0 and lim

t→∞
ωe(t) = 0.

Step 2. When x ∈ E, no jump occurs. Thus, we have

V(x+)− V(x) = 0. (42)

Actually, the set {x ∈ E : V(x+)− V(x) = 0} is empty. Using Theorem 4.7 in [35], the
tracking errors converge to the largest invariant set Ψ =

{
(ωe, qe, h)| V̇ = 0, he4 ≥ −η

}
.

By virtue of (38), it is clear that V̇ = 0 means that ev = 0 and ωe(t) = 0.

Remark 3. Comparing with our recent work in [5,32,33], the proposed control not only can
guarantee the control torque of the actuator can be upper bounded a priori by selecting the controller
parameters but also can compensate the partial failure of the actuator. This is in contrast to the work
of [29,30] who only tackle the attitude tracking problem for the fault-free spacecraft system.

Remark 4. The saturation vector W(ωe) = [w(ωe1), w(ωe2), w(ωe3)]
T is used to eliminate

chattering caused by the discontinuous vector function sign(ωe) in controller (19) and w(ωei ) is
given by

w(ωei ) =

⎧⎪⎨⎪⎩
ωei
|ωei | |ωei | > ε̄,

ωei
ε̄ |ωei | ≤ ε̄ .

(43)

where ε̄ is a small positive constant.

Remark 5. To avoid control torque over the real actuator maximum output (that is actuator
saturation) in advance, the parameters k and γ0 are chosen to constrain the control amplitude,
and k and γ0 satisfy k > lg and γ0 ≤ γi(t) ≤ 1, respectively. Moreover, γ0 in Equation (19) is
designed to compensate the partial loss of actuator effectiveness faults. For a healthy actuator, γ0 is
chosen as γ0 = 1, while γ0 is selected as γ0 ≤ γi(t) ≤ 1 for the actuator partial loss effectiveness
to compensate the fault. Finally, to avoid the unwinding phenomenon, h = {1,−1} is chosen to
change the desired rotation direction to push qe to either (0, 0, 0, 1)T or (0, 0, 0,−1)T. In addition,
a large value of 0 < δ < 1 will decrease the convergence rate.

5. Simulation

The simulations are performed on the spacecraft used in [2] to illustrate the effective-
ness and the improved performance of the proposed HSFC. It should be pointed out that
the parameters used in the simulation except actuator failure are completely the same as [2].
The inertia matrix is J = [22 1.2 0.9; 1.2 19 1.4; 0.9 1.4 18] kg · m2. The desired angular
velocity is selected as ωd(t) = 0.05 [sin(πt/100), sin(2πt/100), sin(3πt/100)] rad/sec,
the desired attitude is generated by (7) and the initial desired attitude is chosen as qd(0) =
[0, 0, 0, 1]T . The initial update law is chosen as γ(0) = 2.5. The initial attitude and
angular velocity of the spacecraft are q(0) = [0.3, −0.2, −0.3, 0.8832]T and ω(0) =
[0.06, −0.04, 0.05]Trad/sec, respectively. The external disturbance is chosen as d(t) =
[0.1 sin(t), 0.2 sin(1.2t), 0.3 sin(1.5t)] N · m.

In light of the above system parameters and utilizing Assumptions 1–3, we obtain

JM = 22.8 kg · m2, lg = 0.3 N · m, c1 = 5 × 10−2 , c2 = 4.71 × 10−3. (44)

5.1. Verification of the Effectiveness of HSFC with Fault Compensation

The comparison is performed on both HSFC and HSFC without fault compensation
term u2 for the actuator faulted spacecraft to verify the fault-tolerant property of the
proposed HSFC. It is assumed that the actuator failure matrix is chosen as Γ = diag(0.5 +
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0.01sin(10t), 0.5 + 0.02cos(20t), 0.5 + 0.03sin(30t)) and γ0 = 0.2. The other parameters of
the proposed HSFC are chosen as k = 5, k1 = 5, k2 = 5, α = 0.01, ε̄ = 0.005 and δ = 0.05.

The maximum torque of the actuator in practical system is assumed to be |uτi,max | = 10 N · m.
According to Equations (21) and (44), the upper bound of the control torque is 8.6 N · m
and satisfies |uτi| ≤ 8.6 N · m ≤ |uτi,max| = 10 N · m, which means that the proposed
HSFC can be an anti-saturated controller, due to the maximum actual control torque being
constrained to 10 N · m.

The simulation results of the HSFC without fault compensation term u2 for the ac-
tuator faulted spacecraft are shown in Figures 1–3, while those of the HSFC with fault
compensation term u2 are illustrated in Figures 4–6. Clearly, the HSFC with fault compen-
sation term u2 converges to the equilibrium point fast due to the fault-tolerant property, as
we see in Figures 4 and 5, while the HSFC without the fault compensation term u2 takes
more time to complete its tracking, as we see in Figures 1 and 2.
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Figure 1. Attitude tracking errors.

0 10 20 30 40 50
-0.5

0

0.5

ω
e1

 [r
ad

/s
]

HSFC without fault compensation

0 10 20 30 40 50
-0.5

0

0.5

ω
e2

 [r
ad

/s
]

HSFC without fault compensation

0 10 20 30 40 50

Time t(sec)

-0.5

0

0.5

ω
e3

 [r
ad

/s
]

HSFC without fault compensation

Figure 2. Angular velocity tracking errors.

121



Mathematics 2023, 11, 3431

0 10 20 30 40 50
-5

0

5

u
1 [N

m
] HSFC without fault compensation

0 10 20 30 40 50
-5

0

5
u

2 [N
m

] HSFC without fault compensation

0 10 20 30 40 50

Time t(sec)

-5

0

5

u
3 [N

m
] HSFC without fault compensation

Figure 3. Control torque.
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Figure 4. Attitude tracking errors.
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Figure 5. Angular velocity tracking errors.
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Figure 6. Control torque.

5.2. Comparisons with the AFNTSMC and SHOPD+

Firstly, a comparison with the AFNTSMC in [2] is performed to show the anti-
unwinding performance of the proposed HSFC. Because the AFNTSMC does not consider
actuator failure, the comparison is conducted on the fault-free spacecraft. Thus, the ma-
trix Γ = diag(1.0, 1.0, 1.0) is chosen to describe the healthy actuator and γ0 = 1. The
AFNTSMC is formulated as follows.

u = −
(

τ + uadp(t)
)

S(t)− β0sigχ0(S). (45)

S = ωe + k̄2ev + k̄3Sau. (46)
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Saui =

{
eν

i , if S̄i = 0 or S̄i = 0, |ei| ≥ ε,
ι1ei + ι2sign(ei)e2

i , if S̄i = 0, |ei| < ε.
(47)

and ι1 = (2 − ν)εν−1, ι2 = (ν − 1)εν−2.

S̄i = ωei + k̄2ei + k̄3eν
i . (48)

uadp = diag(χ̂i). (49)

χ̂i =
1
2

ε−2
5i ψ̂i +

1
2

ε−2
6i φ̂i‖ξ‖2. (50)

˙̂ψi(t) = −ε3iψ̂i(t) +
1
2

n1iε
−2
5i |Si(t)|2. (51)

˙̂φi(t) = −ε4iφ̂i(t) +
1
2

n2iε
−2
6i |Si(t)|2‖ξ‖2. (52)

where τ and β0 are diagonal constant matrices, and τi, β0i, i = 1, 2, 3, k2 and k3 are positive
constants, ε is a small positive constant, 0 < χ0 < 1, ν1, ν2 are positive odd integers and
satisfy 0 < ν = ν1

ν2
< 1, and ‖ξ‖ = max

{
‖ω‖2, ‖ω‖

}
.

The initial conditions are changed to q(0) = [0.3, −0.2, −0.3, −0.8832]T and
ω(0) = [0.06, −0.04, 0.05]Trad/sec to verify the anti-unwinding performance. The fol-
lowing parameters of the AFNTSMC are chosen the same as [2]: ε3i = ε4i = 0.35,
ε5i = ε6i = 0.16, k̄2 = k̄3 = 1, χ0 = 0.5, ε = 0.001, τi = 20, ν2 = 5, ν1 = 3, n1i = n2i = 6,
β0i = 10 and ψ̂i(0) = φ̂i(0) = 0.1. The parameters of the proposed HSFC are selected as
k = 5, k1 = 5, k2 = 5, α = 0.1, ε̄ = 0.005 and δ = 0.01.

The comparison results are shown in Figures 7–10. From the comparison of Figure 7, it
is clearly seen that the proposed HSFC can guarantee the attitude tracking errors converge
to the equilibrium point (0, 0, 0,−1) instead of (0, 0, 0, 1), which means that the unwinding
phenomenon is tackled in comparison with the AFNTSMC. It is important to note that the
unwinding property of the proposed HSFC has the benefit of decreasing excessive energy
consumption compared to AFNTSMC, as we see in Figure 10.
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Figure 7. Comparison of attitude tracking errors.
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Figure 9. Comparison of control torque.

Secondly, a comparison with SHOPD+ in [29] is also illustrated to show the improved
performance of the proposed HSFC. Both HSFC and SHOPD+ are anti-unwinding con-
trollers. The SHOPD+ is given as follows

u = −k4hev − k5
(
e4 I3 + e×v

)TSa + (Cωd)
× JCωd + JCω̇d, (53)

Sa(νi) =

{
sign(νi), |νi| ≥ 1
νi, |νi| < 1

, (54)

{
ν = qc + Bev
q̇c = −Aν

. (55)

The parameters of the SHOPD+ are selected as: k4 = 30 and k5 = 8, A = diag(1, 1, 1)
and B = diag(3, 3, 3).
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The comparison results are demonstrated in Figures 11–13. Obviously, HSFC and
SHOPD+ can completely track their desired attitude and angular velocity within the
allowable torques. Compared with SHOPD+, the proposed HSFC can achieve a fast
transient over the SHOPD+ due to the fault compensation ability of HSFC, as we see in
Figures 11 and 12. Moreover, the proposed HSFC has the benefit of decreasing excessive
control torque compared to SHOPD+, as we see in Figure 13.

Based on the above simulation results, one can conclude that the designed HSFC can
tackle the actuator saturation and partial loss failure problem of rigid spacecraft subject
to external disturbances. Furthermore, in contrast to AFNTSMC in [2], the proposed
HSFC also can overcome the unwinding phenomenon of rigid spacecraft. Compared
with SHOPD+ in [29], the proposed HSFC can obtain a fast transient and compensate the
actuator failure within the allowable torques of spacecraft.

Figure 11. Comparison of attitude tracking errors.
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Figure 12. Comparison of angular velocity tracking errors.

Figure 13. Comparison of control torque.

6. Conclusions

In this paper, a robust hybrid saturation and fault-tolerant control has been proposed
for rigid spacecraft subject to external disturbances and actuator partial loss failure. The
proposed HSFC can avoid actuator saturation and partial loss failure by selecting the
control gains in advance, which implies that degraded performance of the actuator or
unpredictable attitude tracking can be completely eliminated. Lyapunov’s method is
borrowed to prove the global asymptotic stability. The main features of the proposed
HSFC include actuator saturation, fault-tolerance and robustness. Simulations verify the
effectiveness and improved performance of the proposed control.
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Abstract: The cooperative active defense guidance problem for a spacecraft with active defense is
investigated in this paper. An engagement between a spacecraft, an active defense vehicle, and an
interceptor is considered, where the target spacecraft with active defense will attempt to evade the
interceptor. Prior knowledge uncertainty and observation noise are taken into account simultane-
ously, which are vital for traditional guidance strategies such as the differential-game-based guidance
method. In this set, we propose an intelligent cooperative active defense (ICAAI) guidance strategy
based on deep reinforcement learning. ICAAI effectively coordinates defender and target maneuvers
to achieve successful evasion with less prior knowledge and observational noise. Furthermore, we
introduce an efficient and stable convergence (ESC) training approach employing reward shaping and
curriculum learning to tackle the sparse reward problem in ICAAI training. Numerical experiments
are included to demonstrate ICAAI’s real-time performance, convergence, adaptiveness, and robust-
ness through the learning process and Monte Carlo simulations. The learning process showcases
improved convergence efficiency with ESC, while simulation results illustrate ICAAI’s enhanced
robustness and adaptiveness compared to optimal guidance laws.

Keywords: cooperative guidance; reinforcement learning; active protection; guidance law

MSC: 93-08

1. Introduction

Spacecraft such as satellites, space stations, and space shuttles play an important
role in both civil and military activities. They are also at risk of being intercepted in the
exo-atmosphere. The pursuit-evasion game between the spacecraft and the interceptor will
be critical in the competition for space resources and has been widely studied in recent
years. The trajectory of spacecraft can be accurately predicted [1] since the dynamics of the
spacecraft is generally described in terms of a two-body problem. With the development
of accurate sensors, guidance technology, small-sized propulsion systems, and fast servo-
mechanism techniques, the Kinetic Kill Vehicle (KKV), which can be used for direct-hit
killing, has superior maneuverability compared to the other spacecraft. In other words, it is
not practical for targeted spacecraft involved in the pursuit-evasion game to rely solely on
orbital maneuvering.

Among the many available countermeasures, launching an Active Defense Vehicle
(ADV) as a defender to intercept the incoming threat has proven to be an effective ap-
proach to compensate for the inferior target maneuverability [2–4]. In an initial study [2],
Boyell proposed the active defense strategy of launching a defensive missile to protect
the target from a homing missile. Boyell proposed an approximate normalized curve of
game results under the condition of constant or static target velocity based on the relative
motion relationship among the three participants. The dynamic three-body framework was
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introduced by Rusnak in Ref. [4], inspired by the narrative of a “lady-bodyguard-bandit”
situation. This framework was later transformed into a “target-interceptor-defender” (TID)
three-body spacecraft active defense game scenario as described in Ref [3]. In the TID sce-
nario, the defender aims to reduce the distance from the interceptor, while the interceptor
endeavors to increase the distance from the defender and successfully intercept the target.
In Refs. [3,4], Rusnak proposed a game guidance method under the TID scenario based on
Multiple Objective Optimization and differential games theories. It was proven that the
proposed active defense method significantly reduces the miss distance and the required
acceleration level between interceptor and defender.

The efficacy of the active defense method has garnered increased attention to the
collaborative strategy between the target and defender in the TID scenario. Traditional
methods for solving optimal strategies in this context include Optimal Control [5–7] and
differential games theories [8–10]. In Ref. [7], Weiss employed the Optimal Control theory
to independently design the guidance for both the target and defender. This approach
considered the influence of target maneuvers on the interceptor’s effectiveness as a defender.
Furthermore, in Ref. [6], collaborative game strategies for the target and defender were
proposed, emphasizing their combined efforts in the TID scenario. Aiming at the multi-
member TID scenario in which a single target carries two defenders against two interceptors,
Ref. [5] designed a multi-member cooperative game guidance strategy and considered
the fuel consumption of target and defender. However, Optimal-Control-based strategies
rely on perfect information, demanding accurate maneuvering details of the interceptor.
In contrast, Differential Game approaches require prior knowledge instead of accurate
target acceleration information, enhancing algorithm robustness [11]. In Ref. [8], optimal
cooperative pursuit and evasion strategies were proposed using Pontryagin’s minimum
principle. A similar scenario was studied in Ref. [9] for both continuous and discrete
domains using the linear–quadratic differential game method. It is worth noting that the
differential game control strategies proposed in Ref. [9] solve the fuel cost and saturation
problem. However, they introduce computational problems and make the selection of
weight parameters more difficult. A switching surface [10], designed with zero-effort
miss distance, was introduced to divide the multi-agent engagement into two one-on-
one differential games, thereby achieving a balance between performance and usability.
Nonetheless, using the differential game method to solve the multi-agent pursuit-evasion
game problem still faces shortcomings [11–13]. First, it is difficult to establish a scene
model of a multi-member, multi-role game due to the extremely large increase in the
dimension of the state quantity; second, it has high requirements for the accuracy of the
prior knowledge, and the success rate of the game is low if the prior knowledge of the
players in the game cannot be obtained accurately; third, the differential game algorithm is
complicated, involving a high-dimensional matrix operation, power function operation,
integral calculation, etc., which places a high demand on the computational resources of
the spacecraft. More on this topic can be found in [14–20].

With the advancement of machine learning technology, Deep Reinforcement Learning
(DRL) has emerged as a promising approach for addressing active defense guidance problems.
In DRL, an agent interacts with the environment and receives feedback in the form of rewards,
enabling it to improve its performance and achieve specific tasks. This mechanism has
led to successful applications of DRL in various decision-making domains, including robot
control, MOBA games, autonomous driving, and navigation [21–25]. In Ref. [26], the DRL was
utilized to learn an adaptive homing phase control law, accounting for sensor and actuator
noise and delays. Another work [27] proposed an adaptive guidance system to address
the landing problem using Reinforcement Meta-Learning, adapting agent training from one
environment to another with limited steps, showcasing robust policy optimization in the
presence of parameter uncertainties. In the context of the TID scenario, Lau [28] demonstrated
the potential of using reinforcement learning for active defense guidance rating, although an
optimal strategy was not obtained in their preliminary investigation.
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It is worthy to point out that, on one hand, to better align with real-world engineering
applications, research in guidance methods often needs to consider the presence of various
information gaps and noise [29,30]. However, most of the existing optimal active defense
guidance methods rely on perfect information assumptions, leading to subpar performance
when faced with unknown prior knowledge or observation noise. Additionally, these
methods often struggle to meet the real-time requirements of spacecraft applications. On
the other hand, the majority of reinforcement learning algorithms have been applied to
non-adversarial or weak adversarial flight missions, where mission objectives and process
rewards are clear and intuitive. However, in the highly competitive TID game scenario, ob-
taining effective reward information becomes challenging due to the intense confrontation
between agents, leading to sparse reward problems or “Plateau Phenomenon” [31].

Given these observations, there is a strong motivation to develop an active defense
guidance method based on reinforcement learning that possesses enhanced real-time
capabilities, adaptiveness, and robustness, while addressing the challenges posed by
adversarial scenarios and sparse reward issues.

In this paper, we focus on the cooperative active defense guidance strategy design of a
target spacecraft with active defense attempting to evade an interceptor in space. This TID
scenario holds significant importance in the domains of space attack-defense and ballistic
missile penetration. The paper begins by deriving the kinematic and first-order dynamic
models of the engagement scenario. Subsequently, an intelligent cooperative active defense
(ICAAI) guidance method for active defense is proposed, utilizing the twin-delay deep
deterministic policy gradient (TD3) algorithm. To address the challenge of sparse rewards,
an efficient and stable convergence (ESC) training approach is introduced. Furthermore,
benchmark comparisons are made using Optimal Guidance Laws (OGLs), and simulation
analyses are presented to validate the performance of the proposed method.

The paper is organized as follows. In Section 2, the problem formulation is provided.
In Section 3, the guidance law is developed. In Section 4, experiments are presented where
the proposed method has been compared with its analytical counterpart, followed by the
conclusions presented in Section 5.

2. Problem Formulation

Consider a multi-agent game with a spacecraft as the main target (T), an active defense
vehicle as the defender (D), and a highly maneuverable small spacecraft as the interceptor
(I). In this battle, the interceptor chases the target, which launches the defender to protect
itself by destroying the interceptor. During the endgame, all players are considered as
constant-speed mass points whose trajectories can be linearized around the initial line of
sight. As a consequence of trajectory linearization, the engagement, a three-dimensional
process, can be simplified and will be analyzed in one plane. However, it should be noted
that in most cases these assumptions do not affect the generality of the results [11].

A schematic view of the engagement is shown in Figure 1, where X − O − Y is a
Cartesian inertial reference frame. The distances between the players are denoted as
ρID and ρIT, respectively. Each player’s velocity is indicated as VI, VT, and VD, while
their accelerations are represented as aI, aT, and aD. The flight path angles of the players
are defined as φI, φT, and φD, respectively. The line of sight (LOS) between the players
is described by LOSID and LOSIT, and the angles between the LOS and the X-axis are
denoted as λID and λIT. The lateral displacements of each player relative to the X-axis are
represented as yI, yT, and yD, while the relative displacements between the players are
defined as yIT and yID.

Considering the collective mission objectives, the target’s priority is to evade the
interceptor with defender support. Simultaneously, the interceptor aims to avoid the
defender while chasing the target. Consequently, the target’s guidance law strives for
maximum convergence, while the defender’s aims for convergence to zero. Conversely,
the interceptor’s guidance law assumes the opposite role (as depicted in Figure 1). This
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scenario can thus be segmented into two collision triangles: one involving the interceptor
and the target, and the other between the interceptor and the defender.

 

Figure 1. Schematic view of the engagement.

2.1. Equations of Motion

Consider the I-T collision triangle and the I-D collision triangle in a multi-agent
pursuit-evasion engagement. The kinematics are expressed using the polar coordinate
system attached in the target and defender as follows:

.
ρIT = −VI cos(φI + λIT)− VT cos(φT − λIT).
yIT = VI sin φI − VT sin φT.
λIT = VI sin(φI+λIT)−VT sin(φT−λIT)

ρIT

(1)

.
ρID = −VI cos(φI + λID)− VD cos(φD − λID).
yID = VI sin φI − VD sin φD.
λID = VI sin(φI+λID)−VD sin(φD−λID)

ρID

(2)

Furthermore, the flight path angles associated with dynamics can be defined for each
of the players:

.
φi =

ai
Vi

, i = {I, T, D} (3)

2.2. Linearized Equations of Motion

In the research context, both the LOS angle λ and fight path angle φ are small quan-
tities, and the inter-spacecraft distances are much larger than the spacecraft velocities.
Furthermore, during the terminal guidance phase, the rate of change in spacecraft velocity
magnitude approaches zero. Therefore, the equations of motion can be linearized around
the initial line-of-sight:

.
ρIT = −VI cos(φI + λIT)− VT cos(φT − λIT) ≈ −(VI + VT)..
yIT = (VI sin φI − VT sin φT)

′ ≈ (VIφI − VTφT)
′

=
.

VIφI −
.

VTφT + VI
.
φI − VT

.
φT =

.
VIφI −

.
VTφT + aI − aT

≈ aI − aT.
λIT = VI sin(φI+λIT)−VT sin(φT−λIT)

ρIT
≈ VI(φI+λIT)−VT(φT−λIT)

ρIT
≈ 0

(4)

.
ρID = −VI cos(φI + λID)− VD cos(φD − λID) ≈ −(VI + VD)..
yID = (VI sin φI − VD sin φD)

′ ≈ (VIφI − VDφD)
′

=
.

VIφI −
.

VDφD + VI
.
φI − VD

.
φD =

.
VIφI −

.
VDφD + aI − aD

≈ aI − aD.
λID = VI sin(φI+λID)−VD sin(φD−λID)

ρID
≈ VI(φI+λID)−VD(φD−λID)

ρID
≈ 0

(5)
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The dynamics for each of the players is assumed to be a first-order process:

.
ai = − ai − ui

τi
, i = {I, T, D} (6)

Furthermore, the variable vector can be defined as follows:

x =
[
yIT

.
yIT yID

.
yID aI aT aD

]
(7)

while the linearized equations of motion in the state space form can be written as follows:

.
x = Ax + B

[
uI uT uD

]T (8)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
0 0 0 0 1 −1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 −1
0 0 0 0 −1/τI 0 0
0 0 0 0 0 −1/τT 0
0 0 0 0 0 0 −1/τD

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

B =

[
05×3
B1

]
, B1 =

⎡⎣1/τI 0 0
0 1/τT 0
0 0 1/τD

⎤⎦ (10)

Since the velocity of each player is assumed to be constant, the engagement can be
formulated as a fixed-time process. Thus, the interception time can be calculated using
the following:

tf,IT = −ρ0
IT/

.
ρIT = ρ0

IT/(VI + VT)
tf,ID = −ρ0

ID/
.
ρID = ρ0

ID/(VI + VD)
(11)

where ρ0
IT represents the initial relative distance between the interceptor and the target,

while ρ0
ID is the distance between the interceptor and the defender, allowing us to define

the time-to-go of each engagement by

tgo,IT = tf,IT − t
tgo,ID = tf,ID − t

(12)

which represents the expected remaining game time for the interceptor in the “Interceptor
vs. Target” and “Interceptor vs. Defender” game scenarios, respectively.

2.3. Zero-Effort Miss

A well-known zero-effort miss (ZEM) is introduced in the guidance law design and
reward function design. It is obtained from the homogeneous solutions of equations of
motion and is only affected by the current state and interception time. It can be calculated
as follows:

ZIT(t) = L1Φ(t, tf,IT)x(t)
ZID(t) = L2Φ(t, tf,ID)x(t)

(13)

where
L1 =

[
1 0 0 0 0 0 0

]
L2 =

[
0 0 1 0 0 0 0

] (14)

Thus, the ZEM and its derivative with respect to time are given as follows:

ZIT(t) = x1 + tgoITx2 + aIτ
2
I ϕ
(
tgoIT/τI

)
x5 − aTτ2

T ϕ
(
tgoIT/τT

)
x6

ZID(t) = x3 + tgoIDx4 + aIτ
2
I ϕ
(
tgoID/τI

)
x5 − aDτ2

D ϕ
(
tgoID/τD

)
x7

(15)
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.
ZIT(t) = τI ϕ

(
tgoIT/τI

)
uI − τT ϕ

(
tgoIT/τT

)
uT.

ZID(t) = τI ϕ
(
tgoID/τI

)
uI − τD ϕ

(
tgoID/τD

)
uD

(16)

where
ϕ(χ)= e−χ + χ − 1 (17)

2.4. Problem Statement

This research focuses on the terminal guidance task of evading a homing interceptor
for a maneuvering target with active defense. We design a cooperative active defense
guidance to facilitate coordinated maneuvers between the target and the defender based
on DRL. This enables the target to evade the interceptor’s interception while allowing the
defender to counter-intercept the incoming threat.

3. Guidance Law Development

In this section, we develop the Intelligent Cooperative Active Defense (ICAAI) guid-
ance strategy and design an efficient and stable convergence (ESC) training approach.
The target and defender utilize ICAAI guidance, while the interceptor employs OGL. We
describe the game scenario using a Markov process, present the ICAAI guidance strategy,
and design an ESC training approach based on reward shaping and curriculum learning.

3.1. Markov Decision Process

The sequential decision making that an autonomous RL agent interacts with the
environment (e.g., the engagement) can be formally described as an MDP, which is required
to properly set up the mathematical framework of an DRL problem. A generic time-
discrete MDP can be represented as a 6-tuple {s, o, a, Psa, γ, R}. st ∈ S ∈ R

n is a vector
that completely identifies the state of the system (e.g., the EOM) at time t. Generally, the
complete state is not available to the agent at each time t; the decision-making relies on
an observation vector ot ∈ O ∈ R

m. In the present paper, the observations are defined
as an uncertain (e.g., imperfect and noisy) version of the true state, which can be written
as a function Ω of the current state st. The action a ∈ A ∈ R

l of the agent is given by a
state-feedback policy π : O → A , that is, at = π(ot). Psa is time-discrete dynamic model
describing the transformation led by the state–action pair (st, at). As a result, the evolution
rule of the dynamic system can be described as follows:

st+1 = Psa(st, at)
ot = Ω(st)
at = π(ot)

(18)

Since a fixed-time engagement is considered, the interaction between the agent and
the environment gives rise to a trajectory I:

I = [ι1, ι2, · · · , ιt, · · · , ιT−1, ιT ]

ιt = [ot, at, rt]
T (19)

where the trajectory information at each time step ιt is composed of observational ot,
action at, and reward signal rt generated through the interaction between the agent and
the environment.

The return, the agent received at time t in the trajectory I, is defined as a discounted
sum of rewards:

RI
t = ∑T

i=t γi−tri (20)

where γ ∈ (0, 1] is a discount rate determining whether the agent has a long-term vision
(γ = 1) or is short-sighted (γ � 1).
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Prior to deriving the current guidance law, we outline the key elements of the MDP:
state space, action space, and observations. We present the reward design separately by
highlighting a crucial aspect of the configuration.

3.1.1. Perfect Information Model

In a deterministic model, the basic assumption is that each player has perfect in-
formation about the interceptor (e.g., states, maximum acceleration, and time constant).
The communication of this information between the defender and the protected target is
assumed to be ideal and without delay. Thus, the state space can be identified by states,
maximum acceleration, and time constant:

st = [t xt yt Vt at amax τ]
T (21)

xt =
[
xt,T xt,D xt,I

]
, yt =

[
yt,T yt,D yt,I

]
(22)

Vt =
[
Vt,T Vt,D Vt,I

]
(23)

at =
[
at,T at,D at,I

]
(24)

amax =
[
amax,T amax,D amax,I

]
(25)

τ =
[
τT τD τI

]
(26)

As with the multi-agent system, interactions introduce uncertainty into the environ-
ment, which significantly affects the stability of the RL algorithm. Given the full cooperation
between defender and target due to communication assumptions, the model must learn a
shared guidance law for both. This effectively mitigates environmental uncertainty and
enhances model convergence. In practical application, the same trained agent is assigned
to the target pair, yielding the following action space:

action = [uT uD] (27)

Since the dynamics of the scenario are formulated in Section 2.1, the state can be
propagated implicitly as the linearized equation of motion presented in Equations (4)–(6).

3.1.2. Imperfect Information Model

The imperfection of information is usually due to the limitations of radar measurement
and the erasure of prior knowledge. However, in existing studies, perfect information is a
strong assumption, which leads to implementation difficulties in practice. To address this
dilemma, this thesis considers information degradation. On the one hand, the interceptor
is assumed to have perfect information (i.e., the relative states and maneuverability of the
target and the defender). On the other hand, the observation of the target and defender is
imperfect and even noise-corrupted. The observation uncertainty is modeled as observation
noise and a mask on the perfect information.

ot = Ω(st) = Γst × (I +ωo,t) =

⎡⎢⎢⎢⎢⎣
t
xt
yt
Vt
at

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0

δxo,t
δyo,t
δVo,t
δao,t

⎤⎥⎥⎥⎥⎦ (28)

136



Mathematics 2023, 11, 4211

where Γ is the mask matrix and ωo,t is the observation noise vector. ωo,t can be calculated
by Equations (29)–(32).

ωo,t =

⎡⎢⎢⎢⎢⎣
0

δxo,t
δyo,t
δVo,t
δao,t

⎤⎥⎥⎥⎥⎦∼U(013, Σ) ∈ R
13 (29)

Σ =
[
0, 0, 0, σxI, 0, 0, σyI, 0, 0, σv, 0, 0, σa

]T (30)

σxI = cos(σLOS + λIT)
(
ρIT + σρ

)− xI ≈ 0 (31)

σyI = sin(σLOS + λIT)
(
ρIT + σρ

)− yI ≈ σLOS · ρIT (32)

where Σ represents the noise amplitude, with σρ(m), σLOS(mrad), σv(m/s), and σa(m/s2)
the nonnegative parameters.

3.2. ICAAI Guidance Law Design

In this section, we present the mathematical framework of actor–critic RL algorithms,
focusing on the algorithm used in ICAAI guidance: Twin-Delay Deep Deterministic Policy
Gradient (TD3) [32]. TD3 is an advanced deterministic policy gradient reinforcement
learning algorithm. In comparison to stochastic policy gradient algorithms like Proximal
Policy Optimization (PPO) [33] and Asynchronous Advantage Actor–Critic (A3C) [34], TD3
exhibits a higher resistance to converging into local optima. Furthermore, when compared
to traditional deterministic policy gradient RL algorithms such as Deep Deterministic Policy
Gradient (DDPG) [35], TD3 achieves superior training stability and convergence efficiency.
This assertion is supported by our prior RL algorithm selection experiments, as illustrated
in Figure 2.

Figure 2. Comparison of training results of various reinforcement learning algorithms.

Without loss of generality, throughout the entire section the MDP is supposed to
be perfectly observable (i.e., with ot = st) to conform with the standard notation of RL.
However, the perfect information state st can be replaced by observation ot whenever the
observations differ from the state.
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3.2.1. Actor–Critic Algorithms

The RL problem’s goal is to find the optimal policy πφ with parameters φ that maxi-
mizes the expected return, which can be formulated as follows:

J(φ) = E
τ∼πφ

[Rτ
0 ] = E

τ∼πφ

[
T

∑
i=0

γi−0ri

]
(33)

where E
τ∼π

denotes the expectation taken over the trajectory τ. In actor–critic algorithms,
the policy, known as the actor, can be updated by using a deterministic policy gradient
algorithm [36]:

∇φ J(φ) = EPsa

[
∇aQπ(s, a)

∣∣∣a=π(s)∇φπφ(s)
]

(34)

The expected return, when performing action a in state s and following π after, is
called the critic or the value function, which can be formulated as follows:

Qπ(s, a) = E
τ∼πφ

[Rτ
t |s, a ] (35)

The value function can be learned through off-policy temporal differential learning, an
update rule based on the Bellman equation which describes the relationship between the
value of the state–action pair (s, a) and the value of the subsequent state–action pair (s′, a′):

Qπ(s, a) = r + γ E
s′ ,a′
[
Qπ(s′, a′)

]
(36)

In deep Q-learning [37], the value function can be estimated with a neural network
approximator Qθ(s, a) with parameters θ, and the network is updated by using temporary
differential learning with a secondary frozen target network Qθ′(s, a) to maintain a fixed
objective U over multiple updates:

U = r + γQθ′(s
′, a′), a′ = πφ′(s′) (37)

where the actions a′ are determined by a target actor network πφ′ . Generally, the loss
function and update rule can be formulated as follows:

J(θ) = U − Qθ(s, a) (38)

∇θ J(θ) = [U − Qθ(s, a)]∇θQθ(s, a) (39)

The parameters of target networks are updated periodically to exactly match the
parameters of the corresponding current networks, which is called delayed update. This
leads to the original actor–critic method, the basic structure of which is shown in Figure 3.

3.2.2. Twin-Delayed Deep Deterministic Policy Gradient Algorithm

To address the common RL issues in actor-critic algorithms (i.e., overestimation bias
and accumulation of errors), in the TD3 algorithm, the actor–critic framework is modified
from three aspects.

A novel variant of double Q-learning [38] called clipped double Q-learning is devel-
oped to limit possible overestimation. This provides the update objective of the critic:

U = r + γmin
i=1,2

Qθ′ i (s
′, πφ′

1
(s′)) (40)
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The parameters of policy networks are updated periodically to match the value net-
work, which is called delayed policy update, and the soft update approach is adopted,
which can be formulated as follows:

θ′ ← κθ + (1 − κ)θ′ (41)

where κ is a proportion parameter.

Figure 3. Structure of actor–critic method.

Target policy smoothing regularization is adopted to alleviate the overfitting phe-
nomenon, which can be explicated as follows:

y = r + γQθ′(s
′, πφ′(s′) + ε) (42)

where ε is a clipped Gaussian noise.
An overview of the TD3 algorithm is demonstrated in Figure 4.

 

Figure 4. Structure of the TD3 algorithm.
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3.2.3. Implementation Details

As for the network architecture setting, the agent observations are vectors with 13 di-
mensions. Both the guidance policy estimation (actor) and the value function estimation
(critic) consist of three fully connected layers with sizes of 64, 256, and 512, respectively,
along with layer normalization. The output layer has two units for the actor, representing
the unified command of the target and defender, respectively, and one unit for the critic.
The activation function is ReLU for the hidden layer neurons and linear for the output layer
neuron. This structure is heuristically designed and can be generalized for efficient function
approximation. Deeper and wider networks are avoided for real-time performance and
fast convergence.

The hyperparameters of TD3 have been devised and validated by empirical experi-
ments, which are reported in Table 1.

Table 1. TD3 hyperparameters.

Hyperparameter Symbol Value

Discount factor γ 0.99
Learning rate α 3 × 10−4

Buffer size B 5120
Batch size nbatch 128

Soft update coefficient ζ 5 × 10−3

Policy delay nopt 2
Train frequency ω 6000

3.3. ESC Traning Technique

Aiming at the sparse reward problem in the multi-agent pursuit-evasion game, an
efficient and stable convergence (ESC) training approach of reinforcement learning is
proposed based on reward shaping [39] and curriculum learning [40].

3.3.1. Reward Shaping

The design of a reward function is the most challenging part of solving this multi-
agent pursuit-evasion game through RL, as the function had to be adaptive to engagement
with a sparse reward setting. It is found that, except for the common leadership mission,
the pursuit-evasion game can be formulated as a strictly competitive zero-sum game. In
addition, the agent policy network weights were randomly initiated at the beginning of
training, while the interceptor was deployed with optimal guidance and is sufficiently
aggressive.

In [41], a shaping technique was presented as a particularly effective approach to
solving sparse reward problems through a series of biological experiments. The researchers
divided a difficult task into several simple units and trained the animals according to
an easy-to-hard schedule. This approach requires adjusting the reward signal to cover
the entire training process, followed by gradual changes in task dynamics as training
progresses. In [40], researchers took this idea further and proposed curriculum learning,
a type of training strategy. In this work, the shaping technique and curriculum learning
were used to speed up the convergence of neural networks and to increase the stability and
performance of the algorithm.

The goal of the target and the defender is to converge ZID to zero as t → t f 2 while
keeping ZIT as large as possible. On the contrary, the interceptor control law is designed to
make ZIT converge to zero while maintaining ZID as large as possible.

For this reason, a non-sparse reward function is defined in Equations (43) and(44):

rmedium = γΦ
(
s′
)− Φ(s) (43)
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Φ(s) =
∣∣∣∣ZIT

α1

∣∣∣∣β1

−
∣∣∣∣ZID

α2

∣∣∣∣β2

(44)

rterminal =

{
σ, if succeed
−σ, else

(45)

where γ is the discount factor in the Markov decision process and α1, α2, β1, β2, and σ are
the positive hyperparameters.

It must be stressed that, since both the number and maneuverability of players com-
pletely change the environment, the hyperparameter values used in this paper may be
not universal. Thus, in the following subsection, the focus will be on the applied design
method instead of the specific hyperparameter values. The rterminal is the terminal reward
signal given to the terminal behavior of the agent, which is sparse but intuitive. Situa-
tions in which the interceptor is destroyed by the defender (when t = tf,ID) or when the
interceptor is driven away by the defender and misses the target are judged as a success.
Furthermore, the rmedium is a non-sparse reward function based on the difference form of a
potential function Φ(s) which ensures the consistency of the optimal strategy [42–44]. It is
important to emphasize that the design of Φ(s) relies on a fractional exponential function.
This function provides a continuous reward signal for the agent’s evaluation of each state.
Notably, this model exhibits a unique property: as the base number approaches infinity, the
gradient decreases to zero, and as the base number approaches zero, the gradient increases
infinitely. This specific characteristic significantly aids the agent in converging towards
states where the base number is either greater than zero or approaches zero.

In this paper, the defined reward function carries the physical meaning of the mission—
the target must escape from the interceptor, while the defender has to get close to the
interceptor. The rmedium value increases as ZID converges to zero, or when ZIT increases.
On the other hand, it decreases when ZID is divergent or when ZIT converges to zero.

Generally, reward normalization is beneficial to neural network convergence. How-
ever, determining the bounds of ZIT and ZID is a complex task. For this reason, hyperpa-
rameters α1, α2, β1, and β2 are tuned, aiming to scale the rmedium close to [−c, c], in which c
is a positive constant. In the following step, the design of ρ is considered, which introduces
the expectation of agent foresight. If the agent is expected to predict the terminal reward
rterminal n steps before, the discounted terminal reward must be larger than the rmedium
bounds. Thus, the hyperparameter ρ satisfies the following expression:

ρ ≥ c
γn (46)

3.3.2. Curriculum Learning

After hyperparameter tuning, we enhance the training stability of intelligent algo-
rithms using an adaptive progressive curriculum learning approach. This method incre-
mentally raises training complexity to enhance agent capability and performance. The
agent’s training level is adaptively assessed through changes in network loss, determining
appropriate training difficulty. The vPG calculation formula is as follows:

vPG = L(x, θ)− L
(
x, θ′
)

(47)

where L(·) represents the calculation function of network loss; θ is the current network
parameter and θ′ is the new network parameter obtained after data x training. Given a
small amount ε(1 � ε > 0), when

|vPG| < ε (48)

the agent training enters the next stage. A sequence of increasingly difficult tasks is allocated
to the agent, as shown in Table 2. The curriculum was divided into three stages:

• The agent is required to combat the interceptors employing non-maneuvering;
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• Square wave signal;
• OGL.

Finally, it is possible to complete the reward shaping process.

Table 2. Curriculum learning.

Curriculum Stage 1 Stage 2 Stage 3

Interceptor guidance
command None Square wave signal OGL

Maximum interceptor
acceleration 0 8 g 4 g/6 g/8 g

In summary, the block diagram of ICAAI guidance strategy is shown in Figure 5.

 

Figure 5. Block Diagram of ICAAI Guidance Strategy.

4. Experiments

In this section, we demonstrate the efficacy of the proposed guidance method and
the effectiveness of the shaping technique through learning processes and Monte Carlo
simulations. We establish benchmark comparisons by including OGLs and evaluating
application requirements. To illustrate, we consider a scenario [10] involving a maneuver-
able small spacecraft (Interceptor, I), a defensive vehicle (Defender, D), and an evading
spacecraft (Target, T), all in circular Earth orbits. Gravity effects are incorporated in the
simulations. Assumptions include the interceptor’s superior maneuverability and time
constant compared to the target and defender.

4.1. Optimal Pursuit and Evasion Guidance Laws

Lemma 1. The linear–quadratic optimal guidance law (LQOGL) [10]:

u∗
I =

⎧⎨⎩ −K(t)ZID(t)
ω1

umax
I τI ϕ

(
tf,ID−t

τI

)
for ‖ZID(t)‖ < η

− P(t)ZIM(t)
ξ1

umax
I τI ϕ

(
tf,IT−t

τI

)
else

(49)
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where η is a positive constant representing the limit-collision radius between the interceptor and the
defender, and umax

I is the maximum control force provided by the interceptor. Furthermore, variable
K(t) and P(t) can be defined as follows:

K(t) =
1∫ tfID

t

[
1

ω1

(
umax

I τI ϕ
(

tf,ID−t
τ1

))2 − 1
ω2

(
umax

D τD ϕ
(

tf,ID−t
τD

))2
]

dt − 1
(50)

P(t) =
1∫ tfIM

t

[
1
ξ1

(
umax

I τI ϕ
(

tf,IM−t
τ1

))2 − 1
ξ2

(
umax

M τM ϕ
(

tf,IM−t
τM

))2
]

dt − 1
(51)

whereω1, ω2, ξ1, and ξ2 are nonnegative constants ensuring the interceptor converges towards the
target, guaranteeing its escape from the defender.

Proof. The detailed proof of similar results can be found in [10]; see Theorem 1 and the
associated proof. �

Lemma 2. Standard optimal guidance law (SOGL) [45]:

u∗
I = umax

I sgn[ZID(tf,ID)]sgn
[

ϕ
(

tf,ID−t
τI

)]
for ‖ZID(t)‖ < η

u∗
I = −umax

I sgn[ZIT(tf,IT)]sgn
[

ϕ
(

tf,IT−t
τI

)]
else

(52)

whereη is a positive constant representing the switching condition always equal to the defender
kill radius.

Proof. Consider the following cost function:

J1 = − 1
2 Z2

ID(tfID) for ‖ZID(t)‖ < η

J2 = 1
2 Z2

IT(tfIT) else
(53)

For J1, the Hamiltonian of the problem is defined as follows:

H1 = λ1
.
ZID(t) (54)

The costate equation and transversality condition are provided by the following:

.
λ1(t) = − ∂H1

∂ZID
= 0 (55)

λ1(tfID) =
∂J1

∂ZID(tfID)
= −ZID(tfID) (56)

The optimal interceptor controller minimizes the Hamiltonian satisfying the following:

u∗
I = arg

uI

min(H1) (57)

The interceptor guidance law can thus be obtained:

u∗
I = umax

I sgn[ZID(tfID)]sgn
[

ϕ

(
tfID − t

τI

)]
(58)

For J2, a similar interceptor guidance law can be found:

u∗
I = −umax

I sgn
[

ZIT

(
t f IT

)]
sgn
[

ϕ

( t f IT − t
τI

)]
(59)

143



Mathematics 2023, 11, 4211

Finally, the interceptor guidance schemes for evading the defender and pursuing the
target are proposed after combining Equations (58) and (59):

u∗
I = umax

I sgn
[

ZID

(
t f ID

)]
sgn
[

ϕ
( t f ID−t

τI

)]
for ‖ZID(t)‖ < η

u∗
I = −umax

I sgn
[

ZIT

(
t f IT

)]
sgn
[

ϕ
( t f IT−t

τI

)]
else

(60)

�

4.2. Engagement Setup

In this scenario, a target carrying an active anti-interceptor is threatened by a KKV
interceptor in orbit at an altitude of 500 km. The defender maintains an initial safe distance
of approximately 50 m longitudinally and 10 km transversely to the target. Given that the
detection range of the interceptor’s guided warhead is about 100 km, the initial transverse
distance between the interceptor and the target is set at 100 km, and the initial longitudinal
position is random in the range 499.8–500.2 km. In addition, the maneuverability and
control response speed of the interceptor are better than those of the target and defender,
and the OGL is used for guidance.

The comprehensive list of engagement parameters is shown in Table 3.

Table 3. Engagement parameters.

Parameters
Interceptor

Interceptor Target Defender

Horizonal location (km) 100 0 0~15
Vertical location (km) 499.8~500.2 500 500.05

Horizonal velocity (km/s) −3 2 2
Vertical velocity 0 0 0

Maximum acceleration (g) 8 2 6
Time constant (s) 0.02 0.1 0.05

Kill radius (m) 0.25 0.5 0.15

Furthermore, Gaussian noise with standard variance of σLOS = 1 mrad, σv = 0.2 m/s,
and σa = 1 m/s2 is considered in the interceptor information obtained by the target and
defender through a radar seeker.

4.3. Experiment 1: Real-Time Performance of the Guidance Policy

To verify that the proposed RL training approach ESC can improve convergence effi-
ciency and stability, the learning processes were demonstrated using the sparse reward (SR)
signal and ESC, respectively, with the same hyperparameters. During the learning process,
the weights of the neural network model were stored every 100 episodes for subsequent
analysis. In addition, to remove stochasticity as a confounding factor, six random seeds
were set for each case. Meanwhile, the real-time performance of the optimized agent is
evaluated by comparing it with the traditional OGLs.

The agents were obtained after a training of 20,000 episodes, which took 12 h with
8 parallel workers on a computer equipped with a 104-core Intel Core Xeon Platinum
8270 CPU @2.70 GHz. Similarly, both the traditional methods and the proposed method are
provided a current state or observation and return the required action. Table 4 shows the
comparison of computational cost and update frequency obtained by using SOGL, LQOGL,
and the proposed method. It can be seen from the table that LQOGL is time-consuming due
to the calculation of the Riccati function, which is the reason why it has not been applied
in practice. As a proven approach, the SOGL has excellent real-time performance. The
proposed method achieved an update frequency of 103 Hz and showed great potential for
on-board applications. While a variety of approaches (e.g., pruning and distillation) were
effective to compress the policy network and further improve its real-time performance, it
is not the main work of this research.
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Table 4. Statistics of time consumption with different guidance methods.

Metrics LQOGL SOGL ICAAI

Duration (1e3 step) 2.773 s 0.0145 s 0.910 s
Update frequency ≈360 HZ ≈6.9 × 104 HZ ≈1.1 × 103 HZ

Remark 1. As shown in Equations (18) and (19), the LQOGL has to solve the Riccati differential
equation. However, the experimental results show that its update frequency cannot meet the real-
time requirements of spacecraft guidance. Compared to the LQOGL, the SOGL in Equation (60)
does not need to solve the Riccati differential equation and has no hyperparameter. This improves
both its computational efficiency and robustness at the cost of flexibility and the occurrence of the
chattering phenomenon. To take into account the practical situation, the SOGL was chosen as an
OGL benchmark.

4.4. Experiment 2: Convergence and Performance of the Guidance Policy

The performance of the trained agent in the fully observable game was investigated by
comparing the escape success rate corresponding to an optimized policy πφ(s), obtained by
performing Monte Carlo simulation in the fully observable (deterministic and with default
engagement parameters) environment, with the solution of the SOGL.

4.4.1. Baselines

The SOGL for the target and the defender were considered as an OGL benchmark.
Through a brief derivation similar to that in Section 3, it can be proven that the SOGLs for
the target and the defender are as follows:

uT = −umax
T sgn

[
ZIT

(
t f IT

)]
sgn
[

ϕ
( t f IT−t

τT

)]
uD = umax

D sgn
[

ZID

(
t f ID

)]
sgn
[

ϕ
( t f ID−t

τD

)] (61)

4.4.2. Convergence and Escape Success Rate

Figure 6 displays the learning curves depicting the mean accumulated reward across
learning episodes for various scenarios. As depicted, in the ESC case, the agent’s reward
consistently escalated throughout the training episodes, ultimately stabilizing at around
6000 after 4000 iterations. Conversely, within the sparse reward (SR) framework, the ICAAI
encountered a plateau phenomenon during training, resulting in an unstable convergence
process for the associated reward function and eventual convergence failure.

Figure 6. Learning curves of the ICAAI.

Figure 7 presents success rate curves for target evasion over learning episodes, com-
paring agents trained with and without ESC. The green line denotes OGL’s deterministic
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environment success rate of 83.4%. The ESC-trained agent surpassed the baseline by
2700 episodes, achieving a peak performance of 99% after around 13,800 episodes. Con-
versely, the agent without ESC exhibited a gradual decline in performance after reaching
a zenith of 77%, signifying policy network overfitting during continued training. The
ESC-trained agent demonstrated accelerated convergence and improved local optima.
It can be inferred that the proposed ESC training approach effectively organizes explo-
ration, addressing sparse reward issues and showcasing heightened learning efficiency
and asymptotic performance. Furthermore, the proposed methodology adeptly mitigates
overfitting phenomena.

Figure 7. Escape success rate.

4.4.3. Performance Test

Figure 8 depicts spacecraft trajectories, featuring the interceptor’s actual path (blue
curve) and the observed trajectory from the target’s perspective (yellow curve). Figure 9
displays the lateral acceleration profiles for each spacecraft, while Figure 10 illustrates the
ZEM measurements between the target and interceptor and between the defender and
interceptor. The simulation results presented in Figure 11 reaffirm the impact of the relative
distance between the target and defender disDT on the game outcomes for the target.

Figures 8–10 illustrate the evident cooperation between the target and the defender,
utilizing relative state information. Taking the simulation results at disDT = 10 km as an
example, the miss distance between the target and the interceptor was approximately 15 m.
The defender maintained a miss distance of less than 1 m from the interceptor, confirming
its successful interception threat. Figures 9 and 10 depict that, within 16 s of the scenario’s
initiation, the target collaborated with the defender, executing subtle maneuvers to intercept
the interceptor. At around the 16 s mark, the interceptor perceived the threat and initiated
an escape strategy. Simultaneously, the target executed an evasive maneuver in the opposite
direction, utilizing its maximum maneuverability, which resulted in an increase in distance.
Ultimately, the interceptor managed to evade the defender’s interception attempt but failed
to intercept the target in time, leading to the target’s successful evasion.

In addition, the above simulation results show that the relative distance between
the target and defender disDT directly determines the time it takes for the interceptor to
intercept the target after evading the defender. Consequently, disDT significantly influences
the game outcomes for the target, including the success rate of evasion and miss distance.
Therefore, to explore the effect of disDT on the performance of ICAAI, the game results for
disDT ranging from 0 to 15 km are introduced in Figure 11.
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Figure 8. Spacecrafts game trajectory. (a) disDT = 5 km, (b) disDT = 10 km, (c) disDT = 15 km.

 
(a) 

 
(b) 

 
(c) 

Figure 9. Lateral acceleration curve of each spacecraft. (a) disDT = 5 km, (b) disDT = 10 km,
(c) disDT = 15 km.
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Figure 10. ZEM curve between each spacecraft. (a) disDT = 5 km, (b) disDT = 10 km, (c) disDT = 15 km.

As evident from Figure 11, employing the ICAAI intelligent game algorithm results
in the target achieving success rates of no less than approximately 90% when the relative
distance to the defender is less than 10 km. However, as the disDT increases from 10 to
15 km, the success rate of target evasion decreases from 90% to 0%. These simulation
results illustrate that a smaller relative distance leads to an increased evasion success rate.
Additionally, the curve depicting the average miss distance for the target reveals that the
miss distance follows a pattern of initially increasing and then decreasing with disDT. The
miss distance reaches its maximum value of approximately 50 m around a relative distance
of 5 km. The occurrence of this phenomenon can be attributed to the fact that, when disDT
is less than 5 km, the miss distance increases with the target’s evasion time. Moreover, at
this point, the interceptor has not had sufficient time to alter its trajectory to intercept the
target. Conversely, when disDT exceeds 5 km, the interceptor has ample time to intercept
the target after evading the defender. Consequently, the miss distance decreases with an
increasing disDT.

4.5. Experiment 3: Adaptiveness of the ICAAI Guidance

In the real-world game confrontation process, obtaining the opponent’s prior knowl-
edge, such as the maximum acceleration and time constant, is often impractical. To assess
the proposed ICAAI guidance method’s superior adaptability compared to the OGL method
under conditions of unknown opponent knowledge, several comparison conditions were
designed and evaluated using the Monte Carlo target shooting method. The adaptive
capabilities of both methods were analyzed based on the game results (escape success rate
and miss distance) of the target spacecraft employing the two strategies.

While the target utilized OGL guidance, we considered it adopting umax
I = 8 g,

τ I = 0.02 s as the prediction of the prior knowledge of the interceptor, while the actual
umax

I = 6∼10 g, τ = 0.05∼0.002 s. The simulation results are shown in Figure 12.
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Figure 11. Target game results under different distances between target and defender.

 
(a) 

 
(b) 

Figure 12. Simulation results in situations without prior knowledge. (a) umax
I = 6∼10 g, τ = 0.02 s,

(b) umax
I = 8 g, τ = 0.05∼0.002 s.

As depicted in Figure 12a, as the interceptor’s maneuverability improves, the target’s
escape ability decreases for both guidance methods. However, it is evident that, when em-
ploying the ICAAI guidance, the rate of decline in the target’s escape ability is significantly
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lower compared to the OGL guidance method. Similarly, Figure 12b demonstrates that an
increase in the interceptor’s response speed yields a similar trend in the target’s escape
ability as in Figure 12a. Specifically, when accurately estimating the prior knowledge of
the target, the escape abilities of both methods are comparable. However, when the prior
knowledge error exceeds 25%, the OGL guidance leads to a reduction of over 75% in the
target’s escape ability, while the ICAAI guidance results in less than a 34% decrease. In
conclusion, the proposed ICAAI guidance exhibits superior adaptability compared to the
OGL guidance when the interceptor’s prior knowledge is unknown.

Remark 2. As an analytical method, the SOGL is stable but inflexible due to its theoretical
framework [46] and stringent assumptions [47]. Correspondingly, the ICAAI control strategies are
flexible and can be continuously optimized. The proposed method is independent of the time constant,
which means that it performs better with less prior knowledge than the OGL. Furthermore, the
adaptability of the proposed method can be improved by considering the tolerance of the maximum
interceptor acceleration.

4.6. Experiment 4: Robustness of the RL-Based Guidance Method

In addition to the unperturbed, fully observable game, the following noisy, partially
observable game studies have been analyzed separately in this manuscript. The parameters
used to describe the imperfect information model defined in Section 3 are shown in Table 5.
The Monte Carlo simulation method is used to obtain the escape success rate and the
miss distance of the target using the proposed ICAAI guidance and SOGL guidance under
different noise conditions. The results of the Monte Carlo simulation are shown in Figure 13.

Table 5. Parameters of the different imperfect information models.

Measurement Noise Parameter Case 1 Case 2 Case 3

LOS σLOS(mrad) 0.05 0~0.2 0.05

Velocity σv(m/s) 0.2 0.2 0~0.5

Acceleration σa(m/s) 1~3 2 2

Based on the simulation results of Case 2, it was observed that the OGL method
exhibited significant sensitivity to LOS noise. In scenarios without LOS noise, the escape
success rate of the proposed ICAAI guidance matched that of the OGL guidance, and,
in some cases, the OGL method even achieved a larger miss distance. However, as the
LOS noise variance increased to 0.05 mrad, the success rate of the OGL method dropped
to approximately 50%. Eventually, at a LOS noise variance of 0.15 mrad, the target was
practically unable to escape using the SOGL method, while the ICAAI guidance still
maintained an escape success rate of around 80%.

Analyzing the simulation results of Case 1 and Case 3, it was found that due to the
presence of LOS noise, the target employing the OGL method exhibited reduced sensitivity
to acceleration and velocity noise. Nevertheless, its escape capability remained weaker
compared to that of the ICAAI guidance. This could be attributed to the policy network
propagating observation information with different weights, leveraging the exploration
mechanism of reinforcement learning (RL). Consequently, training the agent in a determin-
istic environment resulted in a robust guidance policy with strong noise-resistant ability.

150



Mathematics 2023, 11, 4211

 
(a) 

 
(b) 

 
(c) 

Figure 13. Simulation results in noise-corrupted environment. (a) Case 1, (b) Case 2, (c) Case 3.

5. Conclusions

In this research, we solved the cooperative active defense guidance problem for a
target with active defense attempting to evade an interceptor. Based on deep reinforcement
learning algorithms, a collaborative guidance strategy termed ICAAI was formulated to
enhance active spacecraft defense. Monte Carlo simulations were conducted to empirically
substantiate the real-time performance, convergence, adaptiveness, and robustness of the
introduced guidance strategy. The conclusions are stated as follows:

(1) In the presence of less prior knowledge and observation noise, the proposed ICAAI
guidance strategy is effective in achieving a higher success rate of target evasion by
guiding the target to coordinate maneuvers with defensive spacecraft.

(2) Utilizing a heuristic continuous reward function and an adaptive progressive cur-
riculum learning method, we devised the ESC training approach to effectively tackle
issues of low convergence efficiency and training process instability in ICAAI.

(3) The ICAAI guidance strategy outperforms the linear–quadratic optimal guidance law
(LQOGL) [10] in real-time performance. This framework also achieved an impressive
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update frequency of 103 Hz, demonstrating substantial potential for onboard applica-
tions.

(4) Simulation results confirm ICAAI’s effectiveness in reducing the relative distance
between interceptor and defender, enabling successful target evasion. In contrast
to traditional OGL methods, our approach exhibits enhanced robustness in noisy
environments, particularly in mitigating line-of-sight (LOS) noise.
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Nomenclature

a acceleration, m/s2

A, B state-space model of the linearized equations of motion
H Hamiltonian
I identity matrix
J(·) cost function
L constant vector
L−1 inverse Laplace transform
LOS light-of-sight
Q(·) reward signal
r reward signal
s state defined in Markov decision process
o observation of the agent
t, tgo, tf time, time to go, and final time, respectively, s
u guidance command, m/s2

V velocity, m/s
X − O − Y Cartesian reference frame
x state vector of the linearized equations of motion
y lateral distance, m
Z zero-effort-miss, m
α, β, σ design parameters of the reward function
φ flight path angle, rad
Φ transition matrix
γ discount factor
η killing radius, m
λ the angle between the corresponding light-of-sight and X-axis, rad
λ(·) Lagrange multiplier vector
μ(·) policy function
ρ relative distance between the adversaries, m
τ time constant
ω, ξ design parameters of the optimal guidance law (OGL)
I, T, D interceptor, target, and defender, respectively
max maximum
∗ optimal solution

References

1. Ye, D.; Shi, M.; Sun, Z. Satellite proximate pursuit-evasion game with different thrust configurations. Aerosp. Sci. Technol. 2020, 99,
105715. [CrossRef]

2. Boyell, R.L. Defending a moving target against missile or torpedo attack. IEEE Trans. Aerosp. Electron. Syst. 1976, AES-12, 522–526.
[CrossRef]

152



Mathematics 2023, 11, 4211

3. Rusnak, I. Guidance laws in defense against missile attack. In Proceedings of the 2008 IEEE 25th Convention of Electrical and
Electronics Engineers in Israel, Eilat, Israel, 3–5 December 2008; pp. 090–094.

4. Rusnak, I. The lady, the bandits and the body guards—A two team dynamic game. IFAC Proc. Vol. 2005, 38, 441–446. [CrossRef]
5. Shalumov, V. Optimal cooperative guidance laws in a multiagent target–missile–defender engagement. J. Guid. Control Dyn. 2019,

42, 1993–2006. [CrossRef]
6. Weiss, M.; Shima, T.; Castaneda, D.; Rusnak, I. Combined and cooperative minimum-effort guidance algorithms in an active

aircraft defense scenario. J. Guid. Control Dyn. 2017, 40, 1241–1254. [CrossRef]
7. Weiss, M.; Shima, T.; Castaneda, D.; Rusnak, I. Minimum effort intercept and evasion guidance algorithms for active aircraft

defense. J. Guid. Control Dyn. 2016, 39, 2297–2311. [CrossRef]
8. Shima, T. Optimal cooperative pursuit and evasion strategies against a homing missile. J. Guid. Control. Dyn. 2011, 34, 414–425.

[CrossRef]
9. Perelman, A.; Shima, T.; Rusnak, I. Cooperative differential games strategies for active aircraft protection from a homing missile.

J. Guid. Control Dyn. 2011, 34, 761–773. [CrossRef]
10. Liang, H.; Wang, J.; Wang, Y.; Wang, L.; Liu, P. Optimal guidance against active defense ballistic missiles via differential game

strategies. Chin. J. Aeronaut. 2020, 33, 978–989. [CrossRef]
11. Anderson, G.M. Comparison of optimal control and differential game intercept missile guidance laws. J. Guid. Control 1981, 4,

109–115. [CrossRef]
12. Dong, J.; Zhang, X.; Jia, X. Strategies of pursuit-evasion game based on improved potential field and differential game theory

for mobile robots. In Proceedings of the 2012 Second International Conference on Instrumentation, Measurement, Computer,
Communication and Control, Harbin, China, 8–10 December 2012; pp. 1452–1456.

13. Li, Z.; Wu, J.; Wu, Y.; Zheng, Y.; Li, M.; Liang, H. Real-time Guidance Strategy for Active Defense Aircraft via Deep Reinforcement
Learning. In Proceedings of the NAECON 2021-IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 16–19
August 2021; pp. 177–183.

14. Liang, H.; Li, Z.; Wu, J.; Zheng, Y.; Chu, H.; Wang, J. Optimal Guidance Laws for a Hypersonic Multiplayer Pursuit-Evasion
Game Based on a Differential Game Strategy. Aerospace 2022, 9, 97. [CrossRef]

15. Liu, F.; Dong, X.; Li, Q.; Ren, Z. Cooperative differential games guidance laws for multiple attackers against an active defense
target. Chin. J. Aeronaut. 2022, 35, 374–389. [CrossRef]

16. Weintraub, I.E.; Cobb, R.G.; Baker, W.; Pachter, M. Direct methods comparison for the active target defense scenario. In
Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 0612.

17. Shalumov, V. Cooperative online guide-launch-guide policy in a target-missile-defender engagement using deep reinforcement
learning. Aerosp. Sci. Technol. 2020, 104, 105996. [CrossRef]

18. Liang, H.; Wang, J.; Liu, J.; Liu, P. Guidance strategies for interceptor against active defense spacecraft in two-on-two engagement.
Aerosp. Sci. Technol. 2020, 96, 105529. [CrossRef]

19. Salmon, J.L.; Willey, L.C.; Casbeer, D.; Garcia, E.; Moll, A.V. Single pursuer and two cooperative evaders in the border defense
differential game. J. Aerosp. Inf. Syst. 2020, 17, 229–239. [CrossRef]

20. Harel, M.; Moshaiov, A.; Alkaher, D. Rationalizable strategies for the navigator–target–missile game. J. Guid. Control Dyn. 2020,
43, 1129–1142. [CrossRef]
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Abstract: The reentry trajectory planning problem of hypersonic vehicles is generally a continuous
and nonconvex optimization problem, and it constitutes a critical challenge within the field of
aerospace engineering. In this paper, an improved sequential convexification algorithm is proposed
to solve it and achieve online trajectory planning. In the proposed algorithm, the Chebyshev pseudo-
spectral method with high-accuracy approximation performance is first employed to discretize the
continuous dynamic equations. Subsequently, based on the multipliers and linearization methods,
the original nonconvex trajectory planning problem is transformed into a series of relaxed convex
subproblems in the form of an augmented Lagrange function. Then, the interior point method is
utilized to iteratively solve the relaxed convex subproblem until the expected convergence precision
is achieved. The convex-optimization-based and multipliers methods guarantee the promotion of
fast convergence precision, making it suitable for online trajectory planning applications. Finally,
numerical simulations are conducted to verify the performance of the proposed algorithm. The
simulation results show that the algorithm possesses better convergence performance, and the
solution time can reach the level of seconds, which is more than 97% less than nonlinear programming
algorithms, such as the sequential quadratic programming algorithm.

Keywords: reentry trajectory planning; improved sequential convexification; hypersonic vehicle;
pseudo-spectral method; method of multipliers

MSC: 49M37

1. Introduction

Hypersonic vehicles generally refer to near-space vehicles with flight speeds greater
than Mach 5. They possess the advantages of strong maneuverability, flexible trajectory,
they are difficult to intercept, and so on, and they have been increasingly valued by the
major space powers due to their high flight speeds and vast airspace coverage. Among the
related technologies, trajectory planning technology can provide important support for
performance analysis regarding flight range, maneuverability, and ballistic characteristics.
The hypersonic vehicle trajectory planning problem typically involves solving a nonlinear
optimal control problem with various state and control constraints, including boundary
conditions, no-fly-zone constraints, path constraints, etc. [1–3].

In this regard, many scholars and engineers have carried out a series of in-depth
studies, and the proposed trajectory planning algorithms generally include indirect and
direct methods. The indirect methods transform the trajectory planning problem into a
Hamiltonian boundary value problem based on the Pontryagin maximum principle and
solves it by employing the gradient method and other algorithms. On the other hand,
many scholars have proposed and developed the collocation method, pseudo-spectral
method, and other methods [4–7], demonstrating the advantages of direct methods in

Mathematics 2024, 12, 1306. https://doi.org/10.3390/math12091306 https://www.mdpi.com/journal/mathematics155



Mathematics 2024, 12, 1306

solving trajectory optimization problems. However, the direct methods still have some
shortcomings under the requirement of rapid trajectory planning, such as high sensitivity
to initial guess value and uncertain solving time and convergence, which restrict their
efficient solving ability [8].

In recent years, convex-optimization-based methods have effectively met the demand
for efficient solutions and attracted more and more attention in terms of spacecraft tra-
jectory optimization. When a problem can be formulated within a convex optimization
framework, its complexity is low and can be reliably solved to global optimality in the poly-
nomial time by the primal-dual interior point method. The upper bound of the number of
iterations required for convergence is also determined. Moreover, the primal-dual interior
point method can be adopted to solve the convex problem without the initial guess value.
Motivated by these preponderances, the convex-optimization-based methods have been ap-
plied to different aerospace problems, such as planetary reentry trajectory optimization [9],
ascent trajectory optimization [10,11], Mars-landing trajectory planning [12,13], low-thrust
orbit transfer [14], spacecraft rendezvous and proximity operations [15,16], and trajectory
planning for satellite cluster reconfigurations [17].

Most aerospace problems are limited by nonlinear, nonconvex dynamics and path
constraints, so they cannot be solved directly under the convex optimization framework.
Therefore, convexification technologies that make the approximate error as small as possible
are a significant research direction [18]. Among them, the two mainstream convexifica-
tion methods include lossless convexification and sequential convexification methods.
In Refs. [12,13], Ackimese et al. employed the lossless convexification method to solve
the Mars-landing trajectory planning problem by replacing nonconvex constraints with
relaxed convex constraints without a loss of accuracy. But the lossless convexification
method is only suitable for a few constraints with particular forms, which limits its wide
application. On the other hand, the sequential convexification method can conduct highly
nonlinear complex problems. The basic idea is to obtain a series of convex subproblems by
approximating the nonlinear terms and then solve them iteratively until it converges to the
expected precision [19,20].

However, the sequential convexification method can be further improved in terms
of discretization and accelerating convergence. Firstly, the traditional trapezoidal discrete
method [3,19,20] is often chosen to discretize the continuous optimization problem, which
leads to a large deviation between the approximate model used in the solution procedure
and the actual one. To obtain a precise-enough solution, the equidistant discrete nodes
should be sufficiently numerous. Nevertheless, it also results in a dramatic increase in
the number of optimization variables and takes lots of time to solve. In contrast, the
pseudo-spectral discretization methods offer higher accuracy under the same number
of discrete nodes and have been widely employed for solving the optimal control prob-
lem [5,8]. Among the pseudo-spectral methods, the Chebyshev pseudo-spectral discretiza-
tion method [21,22] is a special category, which can minimize the Runge phenomenon and
supply the best polynomial approximation under the minimax norm. On the other hand,
“artificial infeasibility” [23,24] caused by the convexification errors occurs when the original
problem is feasible but the convex subproblem is not. Researchers address this issue by
introducing slack variables to relax the feasible domain limited by various constraints, with
large constant penalty parameters added to penalize these slack variables. As a result, the
“artificial infeasible” gradually disappears and the slack variables tend towards zero as the
iterative solution converges. Unfortunately, the fixed penalty parameters could cause the
solution to converge to a stagnation point of the penalty problem rather than the original
problem, according to Ref. [25].

To address the aforementioned issues, an improved sequential convexification algo-
rithm is proposed to improve the performance of solving the trajectory planning problem
of hypersonic vehicles in this paper. Firstly, the Chebyshev pseudo-spectral method with
higher approximation precision is employed to discretize the continuous optimal control
problem. And the flight terminal time is designed as an optimization variable, so that it can
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be applied to the optimal control problem with a fixed initial state and free terminal state.
Then, by introducing automatically updated penalty parameters and Lagrange multipliers,
the relaxed convex subproblem in the form of the augmented Lagrange function is con-
structed to improve the convergence and computational properties based on the method of
multipliers (or the augmented Lagrange method). And it is solved iteratively by the interior
point method in the framework of the improved sequential convexification algorithm.

The rest of this paper is organized as follows. In Section 2, the reentry trajectory
optimization problem is formulated. In Section 3, the improved sequential convexification
algorithm is detailed. In Section 4, numerical simulations are presented to verify the
performance of the algorithm. Finally, the conclusion and discussion are provided in
Section 5.

2. Problem Formulation

2.1. Reentry Dynamics

In view of the dynamics characteristics of the reentry flight of hypersonic vehicles, the
dimensionless three-degrees-of-freedom augmented dynamics model is established in the
half-velocity coordinate system without considering Earth’s flatness and rotation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
r = v sin γ
.
θ = v cos γ sin ψ/(r cos φ)
.
φ = v cos γ cos ψ/r
.
v = −D − sin γ/r2
.
γ = L cos σ/v + (v2 − 1/r) cos γ/(vr)
.
ψ = L sin σ/(v cos γ) + v cos γ sin ψ tan φ/r
.
σ = u

, (1)

where r is the radial distance from the Earth center to the vehicle, θ and φ are the longitude
and latitude, respectively, v is the velocity, γ is the flight path angle, ψ is the heading angle,
and σ is the bank angle. The above variables are defined as system state variables, i.e.,
x = [r, v, θ, φ, γ, ψ, σ]T , and the control variable is the bank angle rate u ∈ R. The variables r,
v and time are scaled by R0,

√
R0g0 and

√
R0/g0, respectively, where R0 = 6371 km is the

Earth radius and g0 = 9.8 m/s2 is the gravitational acceleration at sea level. Dimensionless
lift and drag accelerations L and D are scaled by g0 and calculated as:

L = R0ρv2SCL
2m

D = R0ρv2SCD
2m

, (2)

where m is the vehicle mass, S is the reference area of the vehicle, and ρ is the atmospheric
density, ρ = ρ0e−H/Hs , where H = rR0 − R0 is the height, Hs is the atmospheric density
scale height, and ρ0 is the atmospheric density at sea level. Moreover, CL and CD are lift
and drag coefficients, respectively. For reference to the aerodynamic parameters of the
vehicle in [9], the aerodynamic coefficient can be expressed as:{

CL = −0.041065 + 0.016292α + 0.0002602α2

CD = 0.080505 − 0.03026CL + 0.86495C2
L

, (3)

in which the angle of attack α is in degree and expressed as a function of velocity. The
angle-of-attack velocity profile is preset as follows:

α =

{
40, v

√
R0g0 > 4570 m/s

40 − 0.20705
(v
√

R0g0−4570)
2

3402 , otherwise
. (4)

In general, the design of the bank angle is the main means to change the trajectory of
the vehicle when the angle of attack is preset. However, the bank angle rate is adopted
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here as the new control variable for the following reasons. Firstly, boundary constraints are
applied to make the bank angle profile smoother. Secondly, the current system dynamics are
transformed into affine control form, which expedite subsequent convexification operations
and alleviate the high-frequency fluctuations in the bank angle [9].

2.2. Constraint Conditions

The trajectory planning problem of hypersonic vehicles belongs to a class of optimal
control problems, and its purpose is to determine the optimal control variables and optimize
the performance index function under various constraints.

Generally, the vehicle must meet different constraints, such as heat rate, dynamic
pressure, load, and control margin, during the ultra-high-speed flight to ensure the safety
of the vehicle structure, thermal protection, guidance, and control systems. To meet the
mission requirements, the initial conditions and terminal states of the vehicle also need to
be limited. In addition, the vehicle should avoid certain no-fly zones due to radar detection,
geopolitics, or other considerations. In summary, all of these constraint conditions can be
divided into two categories: equality constraints and inequality constraints.

First of all, the equality constraints mainly include dynamic equations and initial and
terminal constraints. Here, the system dynamics Equation (1) is abstractly expressed as

.
x = f (x, u, t) = f0(x, t) + Bu, (5)

where t is the system time variable, and f (·, ·, ·) is the right function of the dynamic equa-

tions. And f0(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

v sin γ
v cos γ sin ψ/(r cos φ)
v cos γ cos ψ/r
−D − sin γ/r2

L cos σ/v + (v2 − 1/r) cos γ/(vr)
L sin σ/(v cos γ) + v cos γ sin ψ tan φ/r
0

, B = [0, 0, 0, 0, 0, 0, 1]T .

The initial and terminal constraints are determined by the flight mission, which
contains the requirements of the reentry start point and the target point, and they can be
represented as follows:

Φ(x(t0), x0) = 0
Ψ(x(t f ), x f ) = 0 , (6)

where t0 and t f are the initial and terminal time, respectively. Φ(·, ·) and Ψ(·, ·) are the
initial and terminal state constraints, respectively.

Then, inequality constraints can be divided into the following three categories. First,
the path constraints, including the maximal heat rate, dynamic pressure, and load, are
expressed as:

p(r, v) =

⎡⎣
.

Q −
.

Qmax
q − qmax
n − nmax

⎤⎦ =

⎡⎢⎣ KQρ0.5(v
√

R0g0)
3.15 −

.
Qmax

0.5ρ(v
√

R0g0)
2 − qmax√

L2 + D2 − nmax

⎤⎥⎦ ≤ 0, (7)

where
.

Qmax, qmax and nmax are the corresponding maximum values, respectively.
Second, the bounded constraints about the state and control variables are given by:

xmin ≤ x ≤ xmax
umin ≤ u ≤ umax

, (8)

where ·min and ·max are the lower and upper bound values, respectively.
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The last class of inequality constraints is the no-fly-zone (NFZ) constraint. In general,
an NFZ is modeled as a circular exclusion zone in the horizontal place with infinite height
and limits the longitude and latitude of the flight trajectory by

(θ − θc)
2 + (φ − φc)

2 ≥ d2, (9)

where θc and φc are the longitude and latitude at the center of the NFZ, and d is the radius.

2.3. Optimal Control Problem

In the trajectory optimization problem, the performance indexes can be reasonably
selected according to the different flight tasks and design requirements. Common perfor-
mance indexes include minimum flight time, maximum range, minimum heat load, etc. In
this paper, the minimum flight time is chosen as the performance index, considering that
the vehicle needs to reach the anticipative target point quickly. Henceforth, the original
reentry trajectory optimization problem can be formulated as a highly constrained optimal
control problem:

P0 : min J =
∫ t f

0 1 dt
s.t. Eq. (5), (6), (7), (8), (9)

.

3. Improved Sequential Convexification Algorithm

In this section, an augmented Lagrange-based Chebyshev pseudo-spectral form im-
proved sequential convexification (AL-CP-ISC) algorithm is proposed to solve the above
continuous and nonlinear reentry trajectory optimization problem. The advantages of
the pseudo-spectral method with high discrete accuracy and the method of multipliers
with good convergence performance and stable numerical computation are synthesized to
empower the AL-CP-ISC algorithm. Firstly, the discretization and convexification process
of the vehicle’s nonlinear system are given on the strength of the Chebyshev pseudo-
spectral method and first-order Taylor expansion. Subsequently, the original problem is
transformed into a series of relaxed convex subproblems by introducing the slack variables,
penalty parameters, and Lagrange multipliers. Finally, an algorithm solution procedure
is presented.

3.1. Discretization and Convexification

The Chebyshev pseudo-spectral discretization method with unique time-domain
mapping is adopted to discretize the continuous reentry trajectory optimization problem P0
with the free terminal time. In the Chebyshev pseudo-spectral discretization method, the
domain of the Chebyshev–Gauss–Lobatto (CGL) points is τ ∈ [−1, 1], but the flight time
interval is t ∈ [t0, t f ] in the practical problem. Hence, the time variable is transformed into

τ =
2t

t f − t0
− t f + t0

t f − t0
. (10)

The CGL points are unevenly distributed on the interval [−1, 1]:

τk = cos
(

πk
N

)
k = 0, . . . , N. (11)

Taking the real state and control variables at N + 1 nodes above, the Lagrange interpo-
lation polynomials are constructed, respectively, as approximations of continuous state and
control variables. The approximate expressions of the real state variable x and the control
variable u are

x(τ) ≈ xN(τ) =
N
∑

j=0
xjφj(τ)

u(τ) ≈ uN(τ) =
N
∑

j=0
ujφj(τ)

, (12)
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where φj(τ) is the Nth Lagrange interpolation basis function

φj(τ) =
(−1)j+1

N2cj

(
1 − τ2) .

TN(τ)

τ − τj
, (13)

where TN(τ) is the Nth − order Chebyshev polynomial and

cj =

{
2, j = 0, N
1, 1 ≤ j ≤ N − 1

. (14)

Deriving the approximate expression for the state variables x(τ) yields:

.
x(τk) ≈ .

xN
(τk) =

N

∑
j=0

xj
.
φj(τk) =

N

∑
j=0

Dkjxj (15)

where Dkj is the kth row and jth column element of the differential matrix D(N+1)×(N+1) of
the Chebyshev pseudo-spectral discretization method, and the calculation of each element’s
value of the matrix D is shown in Ref. [21].

The derivatives of the state variables in the dynamic equations are replaced using the
right-hand term in Equation (15) and discretized at the nodes, so that the original differential
dynamic equation constraints are transformed into discrete algebraic constraints:

2
N

∑
j=0

Dkjxj + (t0 − tk
f ) f (xk, uk, tk) = 2

N

∑
j=0

Dkjxj + (t0 − tk
f ) f0(xk, tk) + (t0 − tk

f )Buk = 0 k = 0, 1, · · · , N. (16)

Next, the above nonlinear algebraic constraints are linearized based on first-order
Taylor expansion as follows:

2
N

∑
j=0

Dkjxj + A(x∗, t f
∗)x + (t0 − t f

∗)Bu + [T(x∗, t f
∗)− Bu∗]t f + C = 0, (17)

where x∗, u∗ and t∗f are the reference values of the optimization variables [x, u, t f ], respec-
tively, and

A(x∗, t f
∗) =

∂[(t0 − t f ) f0(x, t)]
∂x

|x=x∗ ,t f =t f
∗ = (t0 − t f

∗)∂ f0(x, t)
∂x

|x=x∗ , (18)

(t0 − t f
∗)B = [0, 0, 0, 0, 0, 0, (t0 − t f

∗)]T , (19)

T(x∗, t f
∗) =

∂[(t0 − t f ) f0(x, t)]
∂t f

|x=x∗ ,t f =t f
∗ = − f0(x, t)|x=x∗ , (20)

C = (t0 − t∗f ) f ∗0 − A(x∗, t∗f )x∗ − T(x∗, t∗f )t
∗
f + Bu∗t∗f . (21)

One can see Appendix A for more details on the matrix A. Similarly, the nonlinear
path constraints are given by:

p(x) =

⎡⎣
.

Q(x)−
.

Qmax
q(x)− qmax
n(x)− nmax

⎤⎦ ≈
⎡⎣

.
Q(x∗) +∇

.
Q(x∗)(x − x∗)−

.
Qmax

q(x∗) +∇q(x∗)(x − x∗)− qmax
n(x∗) +∇n(x∗)(x − x∗)− nmax

⎤⎦ ≤ 0, (22)
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where

∇
.

Q(x∗) = [ ∂
.

Q
∂r , ∂

.
Q

∂v ] = [−0.5kQ(v
√

R0g0)
3.15

√
ρ

Hs
, 3.15kQ(

√
R0g0)

3.15v2.15√ρ]|x=x∗

∇q(x∗) = [ ∂q
∂r , ∂q

∂v ] = [−0.5(v
√

R0g0)
2 R0ρ

Hs
, (
√

R0g0)
2
ρv]|x=x∗

∇n(x∗) = [ ∂n
∂r , ∂n

∂v ] = [−0.5R2
0S
√

C2
L + C2

D
ρv2

mHs
, R0S

√
C2

L + C2
D

ρv
m ]|x=x∗

. (23)

The NFZ constraint is a nonconvex function and also needs to be convexified by the
first-order Taylor expansion, as shown below:

2(θ∗ − θc)θ + 2(φ∗ − φc)φ ≥ d2 + d̃, (24)

where
d̃ = −(θ∗ − θc)

2 − (φ∗ − φc)
2 + 2(θ∗ − θc)θ

∗ + 2(φ∗ − φc)φ
∗. (25)

Finally, to place limits on the deviation of the state variables between the linearized
and original system, a trust region constraint is introduced, so as to reduce the linearization
error and improve the convergence of the sequential linear approximation, denoted as

‖x − x∗‖ ≤ δ, (26)

where δ ∈ R
7 is a constant vector, and the inequality is expressed in components. This is a

second-order conic constraint that is, itself, convex. Adding the trust region constraint is
necessary to guarantee the linearized constraints to legitimately approximate the original
constraints. Meanwhile, proposition 2 in Ref. [9] theoretically explains that a feasible
solution of the linearized problem satisfies the linearized path constraints, and it also
satisfies the original path constraints.

Up to now, all the continuous and nonconvex functions in the trajectory optimization
problem have been discretized and convexified, and the problem P0 is converted into a
discretized convex problem:

DCP0 : min J =
∫ τf

0 1 dt
s.t. Eq. (6), (8), (17), (22), (24), (26)

.

3.2. Problem Transformation

Combining the discretization and convexification processes, the original problem
is transformed into an augmented Lagrange formal convex problem. The AL-CP-ISC
algorithm can profit from this conversion, resulting in convergence-rate promotion and
numerical difficulty avoidance according to the following analysis [26–28].

The linearized error causes the feasible region of the original problem to shrink to a cer-
tain extent in the process of convexification, resulting in the “artificial infeasible” situation
in which the original problem is feasible but the linearized problem is not feasible. Hereon,
slack variables are introduced to relax the “hard constraints”, such as dynamic equations,
path constraints, and terminal conditions, to compensate for the linearization errors [8,18].
In the meantime, penalty parameters are introduced to punish the slack variables. When
the iterative solution converges, the slack variables also gradually approach zero due to the
penalty imposed. However, the penalty parameters are usually selected as a larger constant
value in many studies of spacecraft trajectory optimization. Unfortunately, the constant
penalty parameters can cause the iterative solution to converge to the stationary point of
the penalty problem instead of the original problem [25].

Therefore, to resolve this matter, the slack variables are penalized by penalty parame-
ters, which are automatically updated incrementally. Meanwhile, to prevent the condition
number of the Hessian matrix from getting worse and worse when the penalty parameters
are updated to infinity, which leads to numerical difficulties in the algorithm, Lagrange
multipliers are introduced to transform the penalty function problem into the augmented
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Lagrange function one. According to the augmented Lagrange function method, by em-
bedding the multiplier update mechanism, the satisfaction degree of constraints and the
optimization of the objective function can be considered in each iteration, thus reducing the
number of iterations required to achieve the same precision. Additionally, the augmented
Lagrange function method can also effectively control the condition number of the Hessian
matrix through its unique construction, which avoids the instability of numerical compu-
tation. In short, the iterative solution of the algorithm can converge to the solution of the
original problem, and the penalty parameters do not need to go to infinity.

Here, the original problem is abstracted into a general nonlinear programming prob-
lem form to illustrate the relaxed convex problem of an augmented Lagrange form, as
shown below:

P1 min J =
∫ τf

0 1 dt = τf

s.t. hi(x̂) = 0, i ∈ E

gi(x̂) ≤ 0, i ∈ I

si(x̂) ∈ K, i ∈ C

,

where x̂ = [x, u, t f ]
T are augmented optimization variables, all equality constraints are

denoted as h(x̂), all inequality constraints are expressed as g(x̂), and s(x̂) represents the
second-order cone constraints. And E, I, and C are the corresponding feasible domain
sets, respectively.

Then, the slack variables ζh, ζg, penalty parameters p, and Lagrange multipliers μ, λ
are introduced to construct the relaxed problem of augmented Lagrange function form
as follows:

P2 min J̃(x̂, ζh, ζg) = τf + λTζh + p|ζh|+ μTζg + p
∣∣ζg
∣∣

s.t. hi(x̂) = ζi,h, i ∈ E

gi(x̂) ≤ ζi,g, ζi,g ≥ 0, i ∈ I

si(x̂) ∈ K, i ∈ C

,

where, for further transformation, the penalty term of the inequality function is not treated
as a standard cutoff function because the slack variables ζg are nonnegative but as an
absolute value term. The similar treatment method can also be found in Ref. [25].

Finally, the problem P2 is convexified by the first-order Taylor expansion:

P3 min J̃(Δx̂, ζk
h, ζk

g) = τf + (λk)
T

ζk
h + pk

∣∣∣ζk
h

∣∣∣+ (μk)
T

ζk
g + pk

∣∣∣ζk
g

∣∣∣
s.t. hi(x̂k) +∇hi(x̂k)Δx̂ = ζk

i,h, i ∈ E

gi(x̂k) +∇gi(x̂k)Δx̂ ≤ ζk
i,g, ζk

i,g ≥ 0, i ∈ I

si(x̂k + Δx̂) ∈ K, i ∈ C

.

The objective function of the problem P3 contains an absolute value term, so it is not
a convex second-order cone problem. For this purpose, auxiliary control variables η can
be introduced to convert the objective function with absolute values into a combination
of the linear objective function and the second-order cone constraints [29]. Specifically, an
equivalent unconstrained optimization problem is given below

min ∑ p|x|, p > 0.

The minimization problem is equivalent to

min ∑ pη
s.t. |x| ≤ η

,

in which the constraint condition is a second-order cone function, and it is naturally convex.
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At this point, a standard convex second-order cone problem PSOCP is represented as:

PSOCP min f T
0 x̃

s.t. Fx̃ = g0

‖Mix̃ + ni‖2 ≤ cT
i x̃ + di, i = 1, 2, . . . , (NC + NI) (∗)

in which it contains linear objective function, affine equality constraints, and second-order
cone constraints. And x̃ = [x̂, ζh, ζg, η]T is the set of the augmented optimization variables,
slack variables, and auxiliary control variables. Suppose Nx is the dimension of x̃ after
the discretization. The variables NC and NI are the number of the second-order cone and
inequality constraints, respectively, and let NE be the number of the equality constraints.
The parameters f0 ∈ R

Nx×1, F ∈ R
(NC+NE+NI)×Nx , g0 ∈ R

(NC+NE+NI)×1, Mi ∈ R
Nxi×Nx ,

ni ∈ R
Nxi×1, ci ∈ R

Nx×1, and di ∈ R are calculated based on the previous iteration solution

x̃k−1 = [x̂k−1, ζk−1
h , ζk−1

g , ηk−1]
T

. It should be noted that the linear inequality constraints
can be included in equation (*) because it is a particular case of the second-order cone
constraints. And the final convex subproblem PSOCP can be solved iteratively by the
advanced interior point method.

For the penalty parameters and Lagrange multipliers in a discrete convex problem P3,
the specific updating methods are as follows:

pk = ρp pk−1, (27)

λk
i = λk−1

i + 2pk−1hi(x̂k−1), (28)

μk
i = max

{
μk−1

i + 2pk−1gi(x̂k−1), 0
}

, (29)

where ρp > 1 is the update multiple of the penalty parameters.
Additionally, to accelerate the convergence of the algorithm, an update approach is

designed for the trust region radius in the second-order cone constraints. Let k be the
number of iterations and ksc > 1 be the number of iterations in which the trust region
starts to update. When k ≥ ksc, if J̃(k) ≤ J̃(k − 1), δk = b0δk−1; otherwise, δk = b1δk−1,
where 0 < b0 < 1 < b1 are the trust region contraction factors. Hereon, the trust region is
updated in the middle step of the iterations, rather than in the first step. It is to ensure that
there is a large manually set scope of trust regions in the early iterations when the system
has a certain approximation error. In this way, the algorithm can easily find a feasible
optimization direction and perform continuous iterations.

3.3. Solution Procedure

The solution procedure of the AL-CP-ISC to find the solution to the original problem
is given. As shown in Figure 1, the convex subproblem can be solved iteratively until
predetermined convergence precision is reached.
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Figure 1. Algorithm solution flow.

A more detailed solution procedure of the AL-CP-ISC algorithm is shown as follows
(Algorithm 1):

Algorithm 1. AL-CP-ISC

1. Let k = 0, set the initial reference trajectory x̂0 by propagating the dynamical Equation (1) with
the fixed control variables.
2. Assign initial values to the following parameters: penalty parameters p0, penalty parameter
update multiple ρp > 1, initial Lagrange multipliers λ0, μ0, initial trust region radius δ0, the
iteration number of the trust region starts to update ksc, the trust region contraction factor
0 < b0 < 1 < b1, and the number of discrete points N.
3. k ≥ 1, solve the convex subproblem PSOCP by the interior point method, and find solution pairs:

x̂k = [xk, uk, tk
f , ζk

h, ζk
g]

T
.

4. Define the value of constraint violation v:

vk =

√
∑ ζk

i,h·ζk
i,h + ∑

∣∣∣max
(

ζk
i,g,−μk−1

i /pk−1

)∣∣∣ (30)

When vk ≤ κ, go to 6, otherwise, go to 5, where κ is a sufficiently small positive number.
5. Update penalty parameters pk and Lagrange multipliers λk, μk.
Then, k = k + 1, and go to 3.
6. Obtain the optimal solution of the original problem:

x̂∗ = [x∗, u∗, t∗f , ζ∗h , ζ∗g ]
T = [xk, uk, tk

f , ζk
h, ζk

g]
T

.

Remark 1. In Step 1, the initial reference trajectory generated by the numerical integration method
meets the dynamic constraints, and the change in the bank angle and its rate are smooth. It is benefi-
cial to enable linearization and facilitate the iteration. Nevertheless, notice that the quality of this
initial trajectory may affect the convergence effect, such as the number of iterations and convergence
accuracy. Therefore, taking into account factors such as the flight time, mission characters, and
other constraint conditions, it is necessary to judiciously select the fixed control variable.

4. Numerical Verification

In this section, numerical simulations are employed to testify the effectiveness and
convergence of the AL-CP-ISC algorithm. To compare with the simulation results of the
AL-CP-ISC algorithm, CPM and P-CP-ISC algorithms are used to solve the same reentry
trajectory optimization problem of the hypersonic vehicle. The CPM is the Chebyshev
pseudo-spectral method that transforms the original problem into a general nonlinear
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programming problem and adopts the sequential quadratic programming algorithm to
solve the problem. The difference between P-CP-ISC and AL-CP-ISC lies in different
transformation approaches, and the objective function of the P-CP-ISC algorithm adopts
the form of a penalty function without Lagrange multipliers.

According to Ref. [30], it is considered that the mass of the reentry vehicle is m = 104, 035 kg,
and the aerodynamic reference area is S = 391.22 m2. In this paper, the fight mission of
the vehicle is to plan an optimal trajectory with the minimum flight time under various
constraints. Correspondingly, the initial and terminal constraints are: h0 = 100 km, θ0 = 0◦,
φ0 = 0◦, V0 = 7450 m/s, γ0 = −0.5◦, ψ0 = 0◦, σ0 = 1◦, h f = 25 km, θ f = 12◦, φ f = 72◦,
500 ≤ Vf ≤ 1500 m/s, γ f = −10◦, ψ f = 90◦. The maximum values of the path constraints

are
.

Qmax = 1500 kW/m2, qmax = 18, 000 N/m2, and nmax = 2.5g0, respectively. In
addition, to keep enough control margin, the magnitude of the bank angle and bank angle
rate are limited by 80 ◦ and 10 ◦/s. The longitude and latitude of the center of the NFZ
constraint are θc = 2◦ and φc = 50◦, respectively, and the radius is about 222 km. The initial
trust region size in Equation (26) is given as:

δ0 = [
15000

R0
,

25π

180
,

25π

180
,

500
V0

,
25π

180
,

25π

180
,

25π

180
]
T

.

In the solution procedure of the AL-CP-ISC algorithm, the termination condition is set
to be vk ≤ 10−9, and the number of CGL points is 80. In Step 1 of the algorithm procedure,
the initial reference trajectory is generated by the numerical integration method, in which
the fixed control variable is set to 0.015 ◦/s, and the estimated terminal time is 1610 s. All
optimization algorithms in this section are implemented by MATLAB 2020b on a desktop
computer equipped with Intel Core i7-10700K/3.80 GHz CPU. For the convex subproblems
PSOCP, the professional software MOSEK (Version 9. 3. 7.) [31] is used to solve them.

First, Figures 2–7 present the trajectories of the vehicle obtained by the three algorithms,
and Table 1 shows all the optimal solutions and solve time of each algorithm. The solid
red curves are the solution of the AL-CP-ISC, the blue double lines represent the results
of the CPM, and the other black dotted lines are the ones of the P-CP-ISC. In Figure 2, the
profiles of each iteration of the AL-CP-ISC algorithm are depicted in different colors, from
dark blue to warm red, to make the progression of the convergence clearer. The sequence
solution converges in the 25th iteration, and the corresponding minimum flight time is
1636.68 s, which is quite close to the optimal solution from the other two algorithms. The
trajectory curves almost overlap and are hard to distinguish in late iterations according
to the zoom-in view. Moreover, Figures 3–6 show a comparison of results between state
variables and control variables, including altitude, velocity, longitude, latitude, flight-path
angle, heading angle, bank angle, and its rate. It is obvious that all state and control
profiles tend to be relatively consistent, and the initial, terminal, and bounded conditions
required by the original problem are satisfied. In particular, it can be seen from Figure 4
that the trajectory of the vehicle successfully evades the no-fly zone. Meantime, the vehicle
trajectories obtained by the three algorithms all meet the conditions of path constraints in
Figure 7. In Table 1, in addition to the similar optimal solutions, it is worth noting that the
solve time of AL-CP-ISC and P-CP-ISC is only 4.20 s and 5.30 s, far less than the solve time
required by CPM. Given these analyses, it can be fully explained that the improvement
measures of the sequential convexification algorithm do not affect the optimal solution, and
the AL-CP-ISC algorithm can vastly reduce the computational cost; that is, the effectiveness
and efficiency of the proposed algorithm are verified.
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Figure 2. Convergence of the trajectories using AL-CP-ISC.

Figure 3. Comparison of altitude–velocity profile.

Then, the state trajectories of the AL-CP-ISC and P-CP-ISC algorithms are almost the
same, and some slight differences are seen in the optimal flight time and the solve time. This
shows that both algorithms can solve the approximate convex problem well. However, the
number of iterations required by both algorithms is quite different according to Figures 8
and 9, and they converge at the 25th and 32th iterations, respectively. Both figures are the
value of constraint violations and the terminal flight time in each iteration, respectively.
The only difference between the two algorithms is the form of the objective function. In a
numerical sense, it indicates that the AL-CP-ISC algorithm with the augmented Lagrange
function formal cost function has better convergence properties by comparing the trajectory
results of these two algorithms.
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Figure 4. Trajectories profile to avoid the NFZ.

Figure 5. Comparison of fight-path angle and heading angle profile.

Table 1. Comparison of the simulation results.

Algorithm Flight Time hf θf φf Vf γf ψf Solve Time

CPM 1638.91 s 25 km 12 deg 72 deg 892.71 m/s −10 deg 90 deg 287.8 s
AL-CP-ISC 1636.68 s 25 km 12 deg 72 deg 899.36 m/s −10 deg 90 deg 4.20 s
P-CP-ISC 1638.94 s 25 km 12 deg 72 deg 892.63 m/s −10 deg 90 deg 5.30 s
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Figure 6. Comparison of bank angle and bank angle rate profile.

Figure 7. Comparison of the path constraints.

Figure 8. Value of constraints violation for each iteration.
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Figure 9. Flight terminal time for each iteration.

5. Conclusions

In this paper, an improved sequential convexification algorithm is proposed to effi-
ciently solve the trajectory planning problem of hypersonic vehicles based on the Cheby-
shev pseudo-spectral method and the method of multipliers. By employing the Chebyshev
pseudo-spectral discretization method, the differential dynamical equations are trans-
formed into the algebraic equation constraint. The original problem is then discretized
into a finite-dimensional nonlinear programming problem. Next, through linearization
and relaxation techniques, the slack variables, penalty parameters, and multipliers are
introduced to transform the discrete problem into a series of relaxed convex subproblems in
the form of the augmented Lagrange function, which are iteratively and efficiently solved
by the MOSEK solver until the expected convergence precision is satisfied. The numerical
simulation results verify the effectiveness, efficiency, and convergence performance of the
proposed AL-CP-ISC algorithm. In the future, the proposed algorithm will be competitive
for use in realizing onboard optimization due to its excellent optimization efficiency after
code optimization.
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Appendix A

All elements of the matrix A in Equation (17) are given as follows.

A = (t0 − t f )
∂ f0(x, t)

∂x
= (t0 − t f )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 a14 a15 0 0
a21 0 a23 a24 a25 a26 0
a31 0 0 a34 a35 a36 0
a41 0 0 a44 a45 0 0
a51 0 0 a54 a55 0 a57
a61 0 a63 a64 a65 a66 a67
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

a14 = sin γ, a15 = v cos γ

a21 = − v cos γsinψ
r2 cos φ

, a23 = v cos γ sin ψ sin φ
r cos2 φ

, a24 = cos γ sin ψ
r cos φ ,

a25 = − v sin γsinψ
r cos φ , a26 = v cos γ cos ψ

r cos φ

a31 = −v cos γ cos ψ

r2 , a34 =
cos γ cos ψ

r
, a35 = −v sin γ cos ψ

r
, a36 = −v cos γ sin ψ

r

a41 = −Dr +
2 sin γ

r3 , a44 = −Dv, a45 = −cos γ

r2

a51 = Lr cos σ
v − v cos σ

r2 + 2 cos γ
r3v , a54 = Lv cos σ

v − L cos σ
v2 + cos γ

r + cos γ
v2r2

a55 = − v sin γ
r + sin γ

vr2 , a57 = − L sin σ
v

a61 =
Lr sin σ

v cos γ
− v cos γ sin ψ tan φ

r2 +
2 cos γ

vr3 , a63 =
v cos γ sin ψ

r cos2 φ

a64 = Lv sin σ
v cos γ + cos γ sin ψ tan φ

r , a65 = L sin σ sin γ
v cos2 γ

− v sin γ sin ψ tan φ
r

a66 = v cos γ cos ψ tan φ
r , a67 = L cos σ

v cos γ

Dr =
∂D
∂r

= −R2
0ρv2SCD

2mhs
= −R0

hs
D, Dv =

∂D
∂v

=
R0ρvSCD

m

Lr = −R0

hs
L, Lv =

R0ρvSCL
m
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