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Vibrational Resonance and Electrical Activity Behavior of a
Fractional-Order FitzHugh–Nagumo Neuron System

Jia-Wei Mao and Dong-Liang Hu *

College of Mechanics and Materials, Hohai University, Nanjing 211100, China; 191308040019@hhu.edu.cn
* Correspondence: dlhu@hhu.edu.cn

Abstract: Making use of the numerical simulation method, the phenomenon of vibrational resonance
and electrical activity behavior of a fractional-order FitzHugh–Nagumo neuron system excited by
two-frequency periodic signals are investigated. Based on the definition and properties of the Caputo
fractional derivative, the fractional L1 algorithm is applied to numerically simulate the phenomenon
of vibrational resonance in the neuron system. Compared with the integer-order neuron model, the
fractional-order neuron model can relax the requirement for the amplitude of the high-frequency
signal and induce the phenomenon of vibrational resonance by selecting the appropriate fractional
exponent. By introducing the time-delay feedback, it can be found that the vibrational resonance will
occur with periods in the fractional-order neuron system, i.e., the amplitude of the low-frequency
response periodically changes with the time-delay feedback. The weak low-frequency signal in the
system can be significantly enhanced by selecting the appropriate time-delay parameter and the
fractional exponent. In addition, the original integer-order model is extended to the fractional-order
model, and the neuron system will exhibit rich dynamical behaviors, which provide a broader
understanding of the neuron system.

Keywords: fractional-order system; time-delay feedback; vibrational resonance; FitzHugh–Nagumo
neuron; numerical simulation

1. Introduction

Vibrational resonance (VR) has attracted considerable attention in the field of nonlinear
sciences in the last twenty years. Based on the study of stochastic resonance (SR) [1],
VR is firstly proposed by Landa and McClintock [2]. When replacing the noise in SR
with an appropriate high-frequency signal, the weak low-frequency signal can be greatly
amplified, which is similar to the typical “Inverted Bell” resonance phenomenon in SR,
and is named as VR. Compared with the noise in SR, the high-frequency signal in VR is
more controllable. Biharmonic signals are common in various fields, such as acoustics [3],
optics [4], engineering [5], neuroscience [6], etc. Recently, the research hotspots of VR
have changed from classic bistable systems [7–9] to fractional-order systems [10], delay
systems [11], and network dynamical systems [12].

Due to the complex definition and lack of corresponding application background,
the research on fractional calculus has been limited to the field of mathematics for a long
time. However, compared with integer calculus, the power-law characteristic of complex
social and physical phenomena can be accurately approximated through fractional calculus.
Hence, this theory is gradually used in viscoelastic materials [13], electrification process [14],
control theory [15], and neuron models [16], etc. To the best of our knowledge, the research
on VR for fractional-order systems is quite few, and most of which are limited to bistable
and multi-stable systems [17–19]. However, it is found that fractional calculus has its own
unique advantages in describing certain neuronal characteristics. For example, fractional-
order differentiation can be used to account for the firing rate of neocortical pyramidal
neurons when stimulated by sinusoidal current [20]. Anastasio et al. [21] thought that the

Mathematics 2022, 10, 87. https://doi.org/10.3390/math10010087 https://www.mdpi.com/journal/mathematics1
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net output of the motor neurons in the visual system is consistent with fractional-order
differentiation relative to eye position. Therefore, it is of great significance to study VR in
the fractional-order neuron system.

In this study, we consider the FitzHugh–Nagumo (FHN) neuron model. As one of
the simplest mathematical models for disclosing the dynamical behavior of neurons, the
FHN model is widely used in integer-order systems for studying VR [22,23]. In brain
activities [24], the neurons may exhibit two quite different time scales, and then, it is
reasonable to reveal the mechanism of weak signal detection of neuron by VR. Since time
delay is inherent in the neuron system, great progress has been made in the research on the
effect of time delay on VR. Adding the time-delay feedback to the recovery variable of the
FHN neuron model, the phenomenon of multiple VR can be induced in the neuron [25].
It is found that the bifurcation point and equilibrium point change periodically with the
increase of time delay in a fractional order quantic oscillator system, and the output can be
enhanced by selecting appropriate time delay [26].

Inspired by the above-mentioned ideas, the effects of fractional order and time delay
on VR and dynamical behavior are studied in the fractional-order FHN neuron model. The
VR can be induced in the fractional-order neuron model without strict requirement for the
amplitude of high-frequency signal. It can be found that multiple VR occurs in the neuron
with the increase of delay. Compared with integer-order model, the fractional-order FHN
neuron exhibits rich electrical activities. The remainder of this paper is organized as follows:
In Section 2, the fractional-order FHN neuron model excited by two periodic signals is
briefly introduced. In Section 3, the VR in the fractional-order FHN model without and with
time delay is studied. In Section 4, the effects of fractional exponent and time delay on the
dynamical behavior in the fractional-order FHN model are discussed. Several conclusions
are given in Section 5.

2. Fractional-Order FitzHugh–Nagumo Neuron Model

There are three common definitions of fractional calculus, namely Riemann–Liouville
(R-L) definition, Grünwald–Letnikov (G-L) definition, and the Caputo definition. With the
property of supersingularity, R-L definition is mainly used for the analysis of mathematical
theory and is not convenient for engineering and physical modeling. G-L definition can
be regarded as the extension of the limit form of integral calculus difference definition,
which is widely applied to early numerical calculation. As its initial condition is the form
of integer calculus, and it has clear physical meaning, the Caputo definition is used in
this paper.

The fractional derivative of univariate function f (t) is defined as

dα f (t)
dtα

= t0
Dα

t f (t) =
1

Γ(n − α)

∫ t

t0

f (n)(τ)dτ

(t − τ)α−n+1 , (n − 1 < α < n), (1)

where Γ(n − α) is the gamma function, t0 and t are the lower limit and upper limit of
the definite integral, n is the minimum positive integer greater than α, and f (n)(τ) is the
nth derivative of the function f (τ). Under the joint excitation of harmonic signals, the
fractional-order FHN neuron model with time delay (the model comes from the model
involved in Ref. [27]) is given by the following form:

ε dαx
dtα = x(t)− x(t)3

3 − y(t),
dαy
dtα = x(t) + a + f cos(ωt) + F cos(Ωt) + K(y(t − τ)− y(t)),

(2)

where x(t) and y(t) represent the fast-varying membrane potential and the slow-varying
recovery variable of neuronal cells, respectively; α(0 < α ≤ 1) is the fractional exponent;
K is the strength of time-delay feedback. τ ≥ 0 is the delay parameter, and Equation (2)
degenerates into the fractional-order FHN neuron model without delay when τ = 0.
ε = 0.05 is the time scale ratio, which is chosen to ensure that the membrane potential

2
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x(t) evolves faster than the recovery variable y(t). f cos(ωt) and F cos(Ωt) represent the
low-frequency signal and the high-frequency signal, respectively, which satisfy f << 1,
ω << Ω. The value of a determines the behavior of the system under the conditions that
f = F = τ = 0 and α = 1. If |a| > 1.0, the system is excitable and has only a stable fixed
point; if |a| < 1.0, a limit cycle in the system arises. Here, the parameter a = 1.05 is chosen
to make the system in the excitable state [28]. The variables in the model are dimensionless.

We consider the fractional derivative of x(t) defined with the Caputo fractional derivative,

dαx(t)
dtα

= f (x, t). (3)

The discrete format of fractional-order L1 algorithm is [29]:

dαx(t)
dtα

≈ (dt)−α

Γ(2 − α)

[
N−1

∑
k=0

[x(tk+1)− x(tk)]
[
(N − k)1−α − (N − 1 − k)1−α

]]
, (4)

where tk = kΔt. Combining the right sides of Equations (3) and (4) and solving for x at
time tN , it can be concluded that the discrete format of Equation (3) is

x(tN) ≈ (dt)αΓ(2 − α) f (x, t) + x(tN−1)−
[

N−2

∑
k=0

[x(tk+1)− x(tk)]
[
(N − k)1−α − (N − 1 − k)1−α

]]
. (5)

where the Markov term weighted by the gamma function is given by

(dt)αΓ(2 − α) f (x, t) + x(tN−1) (6)

and the memory trace is given by

N−2

∑
k=0

[x(tk+1)− x(tk)]
[
(N − k)1−α − (N − 1 − k)1−α

]
(7)

The memory trace integrates information of all the previous activities and has a
memory effect, which is the typical property of fractional-order system. When α = 1, the
memory trace has no effect, and Equation (5) degenerates into classical Euler algorithm.

According to Equation (5), the discrete format of Equation (2) can be obtained as follows:

x(tN) ≈ 1
ε (dt)αΓ(2 − α)(x(tN−1)− (x(tN−1))

3

3 − y(tN−1)) + x(tN−1)

−
[

N−2
∑

k=0
[x(tk+1)− x(tk)]

[
(N − k)1−α − (N − 1 − k)1−α

]]
,

y(tN) ≈ (dt)αΓ(2 − α)(x(tN−1) + a + f cos(ωtN−1) + F cos(ΩtN−1) + K(y(tN−m)− y(tN−1))) + y(tN−1)

−
[

N−2
∑

k=0
[y(tk+1)− y(tk)]

[
(N − k)1−α − (N − 1 − k)1−α

]]
,

(8)

where m is the number of discrete points caused by time delay.

3. Vibrational Resonance in the Fractional-Order FHN Neuron Model

3.1. VR in the Fractional-Order FHN Neuron Model without Time Delay

The response amplitude Q at the low-frequency signal is usually used as the index to
measure the VR, which is defined by:

Q =
√

Q2
s + Q2

c , (9)

3
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with

Qs =
2

nT

nT∫
0

x(t) sin(ωt)dt,

Qc =
2

nT

nT∫
0

x(t) cos(ωt)dt,
(10)

where T = 2π/ω and n is a positive integer. For the numerical simulation, the parameters
are selected as ε = 0.05, K = 0.2, f = 0.01, n = 50.

Under fixed parameters ω = 0.5, Ω = 5, the curves of VR in the fractional-order FHN
neuron without time delay are plotted in Figure 1a. It can be seen that different fractional
exponents correspond to different phenomena of the VR. In Figure 1b, with the decrease
of α, the region of the VR in the neuron changes, and the amplitude of low-frequency Q
corresponding to the optimal F gradually decreases. Compared with the integer-order
FHN neuron model, it is found that the low-frequency signal can also be amplified without
strict requirement for the amplitude of high-frequency F in the fractional-order neuron.
For example, in Figure 1b, the integer-order FHN neuron model fails to reach the state of
the VR for F = 0.15, while for α = 0.96, the VR occurs for the same value of F. Hence, it is
shown that the VR in the FHN neuron can be induced by adjusting appropriate fractional
exponent and the high-frequency force.

(a) (b) 

Figure 1. Response amplitude Q as a function of α and F. (a) The three-dimensional surface of
response amplitude Q versus α and F; (b) response amplitude Q versus F for different values of α.

In order to further discuss the effect of α on the VR, the response amplitude Qmax
versus α for F ∈ [0.1, 0.25] is depicted in Figure 2a. For a certain range of F, although the
response amplitude Qmax is not a strictly monotonic increasing function of α, in general,
with the increase of α, the response amplitude Q can be optimized under the appropriate
high-frequency force. However, when the value of F is fixed, the function of Q versus α
shows different monotonic characteristics, as shown in Figure 2b. For F = 0.11, the curve
of response amplitude is approximately a straight line, which indicates that VR does not
occur with the change of α, while for F = 0.15 or F = 0.2, the response amplitude Q is
a nonlinear function of α, and the low-frequency signal can be significantly enhanced by
selecting an appropriate fractional-order α compared with the integer-order system.

4
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3.2. Multiple VR in Fractional-Order FHN Neuron Model with Delay

For the fractional-order FitzHugh–Nagumo neuron with time delay, the numerical
result of functional curves of the response amplitude Q versus τ can be obtained by
combining Equation (8) with Equation (9). The response amplitude Q versus time delay τ
in the fractional-order FHN neuron excited by two frequency signals is given in Figure 3.
Figure 3e,f are partial, enlarged views of Figure 3a,d, respectively. From Figure 3a–d, it
is seen that multiple resonance occurs in the neuron with the increase of the time-delay
parameter. Therefore, the response amplitude Q can reach the maximum by selecting
appropriate time-delay parameters, and the response amplitude Q can be greatly amplified
compared with the neuron without time delay. Another notable phenomenon is that the
response amplitude Q is periodic with the change of τ. From Figure 3a–d, it is clear that
that the period of response amplitude Q is 2π/ω, while Figure 3e,f shows that the response
amplitude Q varies with another period of 2π/Ω. Therefore, the response amplitude Q in
the fractional-order FHN neuron with time-delay feedback presents two different periods,
namely fast period 2π/Ω and slow period 2π/ω, which exactly correspond to the period
of high-frequency signal and low-frequency signal. Utilizing the periodicity of response
amplitude Q and selecting appropriate time-delay parameters are helpful to realizing the
effective control of the fractional-order FHN neuron. The only regret is that the parameters
involved in the system are difficult to be optimized quickly to satisfy the requirement of
resonance, which is consistent with the conclusion in Ref. [30].

 
(a) (b) 

Figure 2. Relationship curve between response amplitude Q and fractional-order α. (a) Response
amplitude Qmax versus α; (b) response amplitude Q versus α for three different values of F.

5
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 3. Relationship curve between response amplitude Q and τ: (a) ω = 0.5, Ω = 5, α= 0.96, F = 0.123;
(b) ω = 0.5, Ω = 5, α = 0.85, F = 0.138; (c) ω = π/4, Ω = 12, α = 0.7, F = 0.395; (d) ω = π/4, Ω= 12,
α = 0.6, F = 0.298; (e) ω = 0.5, Ω = 5, α = 0.96, F = 0.123; (f) ω = π/4, Ω= 12, α= 0.6, F = 0.298.

4. Dynamical Behavior of Fractional-Order FHN Neuron Model

4.1. Effect of the Fractional-Order

In this subsection, the dynamical behavior of the fractional-order FHN neuron without
time-delay feedback is studied. Figure 4 shows the bifurcation diagram of interspike
interval (ISI) of the neuron versus the fractional-order α, where α ∈ [0.6, 1]. From Figure 4,
when α is small, it can be seen that the fractional-order FHN neuron does not fire, and
when the α is relatively large, various periodic and irregular firing patterns appear in the
neuron. It can be found that the fractional-order FHN neuron displays complex dynamics
by adjusting a single parameter α, which is also observed in other neurons [31,32].

In order to intuitively depict the effect of the fractional-order α on the dynamical
behavior of the FHN neuron, the evolution of the membrane potential x(t) is given in
Figure 5. From Figure 5a, when α = 0.6, the neuron is in the quiescent state. As can be seen
from Figure 5b,c, when α = 0.792 and α = 0.84, the firing pattern of the neuron is period 1
bursting. Obviously, their interspike intervals are different, which are four times and two
times 2π/ω, respectively. In Figure 5a, when α = 0.934, the discharge rhythm of the FHN
neuron alternates between period 1 and period 2. From Figure 5a–d, it is found that the

6
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fractional-order FHN neuron is more active with the increase of α, which is consistent with
that revealed in Figure 4.

Figure 4. Bifurcation diagram of interspike interval (ISI) versus the fractional-order α; other parame-
ters are ω = 0.5, Ω = 5, F = 0.15.

(a) (b) 

(c) (d) 

Figure 5. Time evolution of the membrane potential x(t) for different values of α; other parameters
are ω = 0.5, Ω = 5, F = 0.15; (a) α = 0.6; (b) α = 0.792; (c) α = 0.84; (d) α = 0.934.

4.2. Effect of the Time Delay

In order to study the effect of time-delay feedback on the dynamical behavior of the
fractional-order FHN neuron, α = 0.84 in Figure 5c is selected. Figure 6 depicts the bifurca-
tion diagram of interspike interval (ISI) of the neuron versus the time-delay parameter τ,
from which it can be seen that the fractional-order FHN neuron with time-delay feedback
exhibits rich dynamical behaviors. The time series of the membrane potential x(t) for
different values of τ are given in Figure 7. When τ = 0, the neuron fires with period

7
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1, which corresponds to the case of the neuron without time delay in Figure 5c. When
τ = 5.6, it is seen that the firing pattern of the neuron is period 2 bursting. It can be seen
from Figure 7c that a new firing pattern appears in the neuron, which regularly alters
between period 2 and period 1. The multiple spiking of the firing pattern also appears in
the neuron, as shown in Figure 7d. Thus, bursting patterns and interspike intervals of the
fractional-order FHN neuron can be controlled by adjusting α or τ.

Figure 6. Bifurcation diagram of interspike interval (ISI) versus the time-delay τ; other parameters
are α = 0.84, ω = 0.5, Ω = 5, F = 0.15.

 
(a) (b) 

 
(c) (d) 

Figure 7. Time evolution of the membrane potential x(t) for different values of τ; other parameters
are α = 0.84, ω = 0.5, Ω = 5, F = 0.15; (a) τ= 0; (b) τ = 5.6; (c) τ= 25; (d) τ = 31.8.

5. Conclusions

The vibrational resonance and electrical activity behaviors in the fractional-order FHN
neuron are studied in this paper. When the original integer-order model is extended to
the fractional-order model, the region of the VR will be wider, so the requirement for the
amplitude of high-frequency signal can be relaxed, and then, the VR phenomenon can be

8



Mathematics 2022, 10, 87

induced by choosing the appropriate fractional-order α. Introducing time-delay feedback, it
is found that the phenomenon of vibrational resonance appears with two different periods
in the fractional FHN neuron, which are exactly equal to the periods of two frequency
signals. The fractional-order FHN neuron exhibits rich electrical activities, and its bursting
patterns and interspike interval can be controlled by adjusting α or τ.
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Abstract: In this work, a hybrid localized meshless method is developed for solving transient
groundwater flow in two dimensions by combining the Crank–Nicolson scheme and the generalized
finite difference method (GFDM). As the first step, the temporal discretization of the transient
groundwater flow equation is based on the Crank–Nicolson scheme. A boundary value problem in
space with the Dirichlet or mixed boundary condition is then formed at each time node, which is
simulated by introducing the GFDM. The proposed algorithm is truly meshless and easy to program.
Four linear or nonlinear numerical examples, including ones with complicated geometry domains,
are provided to verify the performance of the developed approach, and the results illustrate the good
accuracy and convergency of the method.

Keywords: groundwater flow; generalized finite difference method; Crank–Nicolson; transient

1. Introduction

As an important component of the hydrological cycle system, groundwater is a key
source of domestic and industrial water supply. Therefore, the analysis of the groundwater
flow has great significance for water supply security. Due to the complexity of the problem,
an analytical solution is rarely available for most models of groundwater flow. With the
development of computing techniques, more and more numerical approaches have been
developed and applied to numerical simulations of science and engineering problems, such
as the finite element method (FEM) [1–3], the boundary element method (BEM) [4,5], and
the meshless method [6–10].

As a new approach in recent years, the meshless method is now widely applied in
various fields [11–19], particularly in computational fluid dynamics (CFD). The developed
meshless approaches can be classified into collocation-based and Galerkin-based meth-
ods. Compared with the latter, the meshless collocation methods have the advantages
of no numerical quadrature and mesh generation, and some of these are the localized
method of fundamental solutions (LMFS) [20–22], the generalized finite difference method
(GFDM) [23–33], the localized Chebyshev collocation method [34], the singular boundary
method (SBM) [35–43], and the localized knot method (LKM) [44].

The GFDM, as a popular localized meshless collocation method, employs the Taylor
series expansions and moving least squares (MLS) approximations [45,46] to form the
system of algebraic equations with a spare matrix [47,48]. Thanks to this spare system, this
method is highly efficient and suitable for the numerical simulations of large-scale problems.
Many physical applications have been addressed by the GFDM, such as the thin elastic
plate bending analysis [49], the electroelastic analysis of 3D piezoelectric structures [50],
the acoustic wave propagation [51], the inverse Cauchy problem in 2D elasticity [52], the
heat conduction problems [53], and the stationary flow in a dam [54].

A hybrid localized meshless method is proposed in this paper for the solution of
transient groundwater flow in a two-dimensional space by combining the Crank–Nicolson
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scheme and the GFDM. As the first step, the Crank–Nicolson scheme is applied to the
temporal discretization of the transient groundwater flow equation. At each time node,
a boundary value problem in space is then formed and subsequently solved with the GFDM.
Through the above process, a hybrid localized meshless approach is finally established,
which is truly meshless and easy to program. The rest of the work is organized as follows.
The governing equation of transient groundwater flow with boundary and initial conditions
is described in Section 2. The formulations of the hybrid localized meshless method are
derived in Section 3. Several linear and nonlinear numerical examples are provided in
Section 4 to verify the performance of the developed method. Some conclusions are
presented in Section 5.

2. Problem Definition

The movement of transient groundwater flow of a constant density in a homogeneous
and anisotropic two-dimensional (2D) medium with the domain Ω can be described by
using the following equation:

Tx
∂2H(x, y, t)

∂x2 + Ty
∂2H(x, y, t)

∂y2 + W(x, y, t) = us
∂H(x, y, t)

∂t
, (x, y) ∈ Ω, t > 0, (1)

where H denotes hydraulic head, W is the volumetric flow rate of a source or sink per unit
volume, us means the specific aquifer storativity, Tx and Ty are hydraulic conductivities
along the x- and y-axis, and t is the time.

To obtain the solution of Equation (1), the boundary and initial conditions are imposed
as the following:

H(x, y, t) = g1(x, y, t), (x, y) ∈ ∂ΩD, t ≥ 0, (2)

∂H(x, y, t)
∂n(x, y)

= g2(x, y, t), (x, y) ∈ ∂ΩN , t ≥ 0, (3)

H(x, y, 0) = g3(x, y), (x, y) ∈ Ω, (4)

where gi(i = 1, 2, 3) are given functions, ∂ΩD ∪ ∂ΩN = ∂Ω (∂ΩD ∩ ∂ΩN = ∅), and n is
unit outward normal vector to ∂ΩN .

3. Hybrid Localized Meshless Method

To solve the transient groundwater flow of Equations (1)–(4), the temporal discretiza-
tion of this system is first made by using the Crank–Nicolson scheme. The spatial equation
is then formed at each time node. The GFDM is finally used for the solution of the spatial
equation with corresponding boundary conditions.

3.1. Temporal Discretization by the Crank–Nicolson Scheme

We insert n nodes
{

t1 = 0, t2, . . . , tn = Tf

}
in the time domain [0, Tf ] where Tf is the

final time. By using the Crank–Nicolson scheme, the governing Equation (1) at each time
node ti+1 is then recast as the following:

1
2

[
Tx

∂2 H(x,y,ti+1)
∂x2 + Ty

∂2 H(x,y,ti+1)
∂y2 + W(x, y, ti+1) + Tx

∂2 H(x,y,ti)
∂x2 + Ty

∂2 H(x,y,ti)
∂y2 + W(x, y, ti)

]
= us

H(x,y,ti+1)−H(x,y,ti)
Δti

, i = 1, 2, . . . , n − 1,
(5)

where the time step size Δti = ti+1 − ti. Then we can reformulate Equation (5) as the following:

Δti
2

[
Tx

∂2 H(x,y,ti+1)
∂x2 + Ty

∂2 H(x,y,ti+1)
∂y2

]
− usH(x, y, ti+1) =

= −us H(x, y, ti)− Δti
2

[
Tx

∂2 H(x,y,ti)
∂x2 + Ty

∂2 H(x,y,ti)
∂y2 + W(x, y, ti) + W(x, y, ti+1)

]
, i = 1, 2, . . . , n − 1,

(6)

As a result, a system of spatial equations with the boundary conditions (2) and (3) at
time node ti+1 is formed and will be solved by using the GFDM.
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3.2. Spatial Discretization by the GFDM

For the GFDM, some collocation nodes are first distributed in the computational
domain Ω and its boundary Γ. A supporting domain called a star for each node x0 = (x0, y0)
is defined by collecting m nearest nodes xj = (xj, yj)(j = 1, 2, . . . , m) as shown in Figure 1.
In the star, x0 and xj(j = 1, 2, . . . , m) are respectively named as the central node and the
supporting nodes. This distance criterion is the simplest way of star selection. However, it
should be noted that distorted (ill-conditioned) stars may be formed based on this distance
criterion, particularly for cases with very irregular distributions of collocation nodes.
To overcome the above drawback, the “cross” and the “Voronoi neighbours” criterions
discussed in Refs. [55,56] can be used to form more reasonable stars.

Figure 1. A star of collocation node x0.

To conveniently derive the system of algebraic equations, the Hj(j = 0, 1, . . . , m) are
employed to denote the values of hydraulic head at nodes xj(j = 0, 1, . . . , m) in the star of
central node x0. Based on Taylor series expansions, Hj can be given as

Hj = H0 + aj
∂H0

∂x
+ bj

∂H0

∂y
+

1
2

(
a2

j
∂2H0

∂x2 + b2
j

∂2H0

∂y2

)
+ ajbj

∂2H0

∂x∂y
+ . . . . . . , j = 1, 2, . . . , m, (7)

with
aj = xj − x0, and bj = yj − y0. (8)

By truncating the expansion (7) after second-order derivatives of hydraulic head H,
we can define a residual function R(H) as the following:

R(H) =
m

∑
j=1

[(
H0 − Hj + aj

∂H0

∂x
+ bj

∂H0

∂y
+

a2
j

2
∂2H0

∂x2 +
b2

j

2
∂2H0

∂y2 + ajbj
∂2H0

∂x∂y

)
κj

]2

, (9)

with the following weighting function κj [57,58]:

κj =
exp
(
−λ2

j

)
− exp

(−λ2
m
)

1 − exp(−λ2
m)

, j = 1, 2, . . . , m, (10)

in which λj =
∣∣xj − x0

∣∣, and λm = max
{

λj, j = 1, 2, . . . , m
}

. It should be noted that the
weighting function in the GFDM should be a monotonic decreasing function of λj. Because
the Taylor series approximation becomes more accurate when the distance λj is smaller,
which should have a higher weight κj in residual function R(H) of Equation (9). Some
other weighting functions can be found in [53,59].

A vector PH is defined by the following:

PH =

[
∂H0

∂x
,

∂H0

∂y
,

∂2H0

∂x2 ,
∂2H0

∂y2 ,
∂2H0

∂x∂y

]T

(11)

13



Mathematics 2022, 10, 515

Minimizing the residual function R(H) with respect to each element in the vector
PH , i.e.,

∂R(H)

∂
{

∂H0
∂x

} = 0,
∂R(H)

∂
{

∂H0
∂y

} = 0,
∂R(H)

∂
{

∂2 H0
∂x2

} = 0,
∂R(H)

∂
{

∂2 H0
∂y2

} = 0,
∂R(H)

∂
{

∂2 H0
∂x∂y

} = 0, (12)

we can have a system of linear equations as the following:

APH = b, (13)

with the following:

A =
m

∑
j=1

diag
(

E(j)
1

)
� diag

(
E(j)

2

)
, (14)

b = BH =

(
−

m

∑
j=1

κjE
(j)
2 , κ1E(1)

2 , κ2E(2)
2 , · · · , κmE(m)

2

)
5×(m+1)

⎛⎜⎜⎜⎜⎜⎝
H0
H1
H2

...
Hm

⎞⎟⎟⎟⎟⎟⎠
(m+1)×1

, (15)

where � is a 5 × 5 square matrix that all elements are one, diag
(

E(j)
1

)
and diag

(
E(j)

2

)
are

both diagonal matrices with their diagonal elements as the following:

E(j)
1 = κj

[
aj bj a2

j b2
j ajbj

]T
, and E(j)

2 =
κj

2

[
2aj 2bj a2

j b2
j 2ajbj

]T
, (16)

and H = [H0, H1, H2, . . . , Hm]
T .

With the help of Equation (13) and Equation (15), the vector PH can be formulated as
the following:

PH = A−1B[H0, H1, H2, . . . , Hm]
T . (17)

As a result, all the first- and second-order derivatives of hydraulic head H at central
node x0 are expressed as the linear combinations of values Hj (j = 0, 1, . . . , m). By substi-
tuting the corresponding second-order derivatives of Equation (17) into Equation (6), we
can easily recast Equation (6) as the following:

m

∑
j=0

αj Hj = Q, (18)

where αj (j = 0, 1, . . . , m) and Q are obviously known and can be determined by
Equations (6) and (17). For each collocation node excepting that of satisfying boundary
condition (2), one equation can be obtained by using the above similar derivation. It should
be noted that H0 = g(x0, y0, ti+1) is directly used as one equation for collocation nodes of
satisfying boundary condition (2). Finally, by using the GFDM, the spatial equation with
the corresponding boundary conditions has been transformed into a system of linearly
algebraic equations with a sparse matrix. The values of hydraulic head H at all collocation
nodes can be calculated once this system is solved.

In addition, we consider a case with a nonlinear volumetric flow rate in the following
numerical example 4 to further verify the proposed approach. Through a similar derivation
process, a nonlinear system of algebraic equations is established and solved by using
“fsolve” function of MATLAB.

4. Numerical Examples

In this section, four numerical examples with square and complicated domains are
given to test the accuracy and stability of the proposed method. To preferably estimate

14
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the precision of numerical results, two different error definitions are provided as the
following [60,61]:

Global error =

√√√√ N

∑
i=1

(Hi − Hi)
2/

√√√√ N

∑
i=1

Hi
2 , (19)

Max error = max
1≤i≤N

{∣∣Hi − Hi
∣∣

|Hi|

}
(20)

in which N denotes the number of collocation nodes, Hi and Hi represents the exact and
numerical results of hydraulic head at the i-th node. Unless otherwise specified, the number
of supporting nodes in a star is set to m = 12 in all numerical examples.

4.1. Example 1: Hydraulic Head Distribution in a Square Domain

As the first numerical example, we consider the distribution of hydraulic heads in
a unit square domain with its central point (0.5, 0.5). The specific aquifer storativity is
us = 1, and the hydraulic conductivities are Tx = 1 and Ty = 3. The volumetric flow rate
W is given as the following:

W(x, y, t) = sin(0.5πx) sin(0.5πy)
(

π2 sin t + cos t
)

. (21)

The Dirichlet boundary condition H(x, y, t) = 0 is imposed on the boundaries x = 0,
and y = 0. The Neumann boundary condition ∂H(x,y,t)

∂n = 0 is applied to the boundaries
x = 1, and y = 1. The initial condition is H(x, y, 0) = 0. Based on these, the exact solution
can be determined as the following:

H(x, y, t) = sin(0.5πx) sin(0.5πy) sin t. (22)

In the numerical simulation, the final time is set to Tf = 2, and the time step size is
Δt = 0.05. For the spatial discretization, 396 collocation nodes are distributed in the domain
and its boundary, which have the following two different patterns: regular distribution
(case 1) and irregular distribution (case 2), as shown in Figure 2a. From t = 0 to t = 2, the
variations of global and max errors of hydraulic head H calculated by the GFDM with the
Crank–Nicolson scheme (CN-GFDM) are plotted in Figure 2b. As we can see from this
figure, the developed method has good performance for two different collocation node
distributions. We also find that errors obtained by employing the irregular distribution
(case 2) are larger than those obtained by using the regular distribution (case 1).

 
(a) (b) 

0 0.2 0.4 0.6 0.8 1
X

0

0.2

0.4

0.6

0.8

1
Boundary collocation nodes Interior collocation nodes

Figure 2. (a) Irregular distribution of 396 collocation nodes, (b) Global and max errors of hydraulic
head H from t = 0 to t = 2.
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To investigate the convergence behavior of the CN-GFDM, the program is rerun by
only changing the number of collocation nodes compared with the previous setting. Here,
the distribution of nodes is regular. By using the developed method with a different number
of collocation nodes (or a different mean distance of collocation nodes), Table 1 provides
the max and global errors of the numerical results of the hydraulic head at time t = 2. It can
be obviously observed that the errors decay with an increasing collocation node number,
which indicates the CN-GFDM has a good convergence property for this case.

Table 1. Max and global errors of hydraulic head H with different number of collocation nodes.

Number of
collocation nodes 21 96 192 285 396

Mean distance of
collocation nodes 2.50 × 10−1 1.11 × 10−1 7.69 × 10−2 6.25 × 10−2 5.26 × 10−2

Max error 1.01 × 10−2 3.75 × 10−3 2.05 × 10−3 1.42 × 10−3 1.04 × 10−3

Global error 5.94 × 10−3 2.74 × 10−3 1.57 × 10−3 1.11 × 10−3 8.18 × 10−4

4.2. Example 2: Hydraulic Head Distribution in a Heart-Shaped Domain

The second numerical example is a hydraulic head distribution in a heart-shaped
domain, and the dimension of this domain is shown in Figure 3. The specific aquifer
storativity and hydraulic conductivity are assumed to be as the following:

us = 3, Tx = 2Ty = 2. (23)

The volumetric flow rate is W = 0. In this case, the Dirichlet boundary and initial
conditions are imposed as the following:

H(x, y, t) = e−t cos x cos y + c, (x, y) ∈ Γ, (24)

H(x, y, 0) = cos x cos y + c, (x, y) ∈ Ω, (25)

where c = 0.2. The exact solution for this example is determined as
H(x, y, t) = e−t cos x cos y + c.

Figure 3. The dimension of a heart-shaped domain.

To simulate the solution from t = 0 to t = 5, the developed method employs 218, 464
(see Figure 4), and 1700 collocation nodes. The time step size is set to Δt = 0.05. Figure 5
provides the contours of relative errors (RE) of the hydraulic head at final time t = 5 by
using these three distributions of collocation nodes. It can be found that the max relative
error of numerical results in the computational domain is less than 3× 10−4 even only using
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218 collocation nodes. Moreover, all numerical errors overall decreased with an increasing
number of collocation nodes.

Figure 4. Distribution of 464 collocation nodes.

   
(a) 218 (b) 464 (c) 1700 

Figure 5. The contours of relative errors of hydraulic head H with three distributions of
collocation nodes.

Next, we keep the above-mentioned setting and distribute 1700 collocation nodes. The
mean distance of these nodes is 0.101. Table 2 lists the max and global errors of hydraulic
head H at final time t = 5, which are calculated by the CN-GFDM with different time step
sizes. As we can observe, the errors decay rapidly when decreasing the time step size.

Table 2. Max and global errors of hydraulic head H with different time step size.

Time step size 0.625 0.50 0.25 0.125 0.05

Max error 2.51 × 10−3 1.60 × 10−3 4.05 × 10−4 8.42 × 10−5 1.17 × 10−5

Global error 1.20 × 10−3 7.80 × 10−4 1.91 × 10−4 3.89 × 10−5 4.97 × 10−6

Finally, we investigate the influence of supporting node number m on the precision and
computational efficiency of the developed approach. The time step size is reset as Δt = 0.25.
Table 3 provides the variations of two kinds of errors and CPU time with different numbers
of supporting nodes. As we can observe, the accuracy of numerical results obtained by the
present method is relatively insensitive to the number of supporting nodes. To have a higher
computing efficiency of the CN-GFDM, we should choose a relatively small number of
supporting nodes when the numerical results satisfy the accuracy requirement.
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Table 3. Max and global errors of hydraulic head H and CPU time with different supporting
node numbers.

m 12 16 20 24 28

Max error 4.05 × 10−4 3.53 × 10−4 3.45 × 10−4 3.38 × 10−4 3.23 × 10−4

Global error 1.91 × 10−4 1.71 × 10−4 1.66 × 10−4 1.61 × 10−4 1.55 × 10−4

CPU time (s) 0.27 0.34 0.38 0.44 0.49

4.3. Example 3: Hydraulic Head Distribution in a Complicated Domain

As the third numerical example, the distribution of hydraulic head in a complicated
domain is considered. The dimension of this domain is 2.7 × 1.4, as shown in Figure 6. The
specific aquifer storativity is set to us = 0.3, and hydraulic conductivities are assumed to
be functions as the following:

Tx = e|x|, and Ty = e|y|. (26)

The volumetric flow rate is given as the following:

W(x, y, t) = ex+y[us cos t − (Tx + Ty) sin t
]

(27)

The Dirichlet boundary condition is imposed as the following:

H(x, y, t) = ex+y sin t, (x, y) ∈ Γ, (28)

and initial condition is H = 0. The exact solution for this example is H(x, y, t) = ex+y sin t.



Figure 6. The dimension of a complicated domain.

We first consider the simulation from t = 0 to t = 5, and set the time step size as
Δt = 0.1. By using the present approach with 3398 (see Figure 7) and 8918 collocation
nodes, Figures 8 and 9 respectively plot the contours of relative errors of hydraulic head
H and its flux ∂H

∂x at final time t = 5. The numerical results in these figures illustrate the
availability and convergency of the developed CN-GFDM.

Finally, a long-time simulation of hydraulic head H from t = 0 to t = 100 is considered.
The number of collocation nodes is 8918, and the time step size is Δt = 0.1. Figure 10 shows
the max and global errors of hydraulic head H, which are changed as functions of time. As
we can see from this figure, the two kinds of errors both remain stable in this simulation.
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Y

Figure 7. Distribution of 3398 collocation nodes.

 
(a) 3398 (b) 8918 

Figure 8. The contours of relative errors of hydraulic head H with two distributions of
collocation nodes.

  
(a) 3398 (b) 8918 

Figure 9. Relative error distributions of flux ∂H/∂x with different number of collocation nodes.
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Figure 10. Two types of error curves of hydraulic head H from t = 0 to t = 100.

4.4. Example 4: Nonlinear Hydraulic Head Distribution in a Gear Domain

As the final numerical example, we consider the distribution of nonlinear hydraulic
head in a gear domain. Figure 11 shows the dimension of the gear domain. The specific
aquifer storativity is assumed to be us = 1200, and hydraulic conductivities are the following:

Tx = x2, and Ty = y2. (29)

Figure 11. The dimension of a gear domain.

The volumetric flow rate is a nonlinear term given as the following:

W(x, y, t) = H2(x, y, t)−
[(

x4 + y4
)

e
t

100 + 0.1
]2

(30)

The Dirichlet boundary condition is imposed as the following:

H(x, y, t) =
(

x4 + y4
)

e
t

100 + 0.1, (x, y) ∈ Γ, (31)

and initial condition is the following:

H(x, y, t) = x4 + y4 + 0.1, (x, y) ∈ Ω. (32)

The exact solution for this case is determined as the following:

H(x, y, t) =
(

x4 + y4
)

e
t

100 + 0.1 (33)
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The numerical simulation for this case is run from t = 0 to t = 10. The time step size
is set to Δt = 0.05, and 1186 collocation nodes are distributed in the gear domain and its
boundary as shown in Figure 12. The contours of relative errors of the hydraulic head H
at t = 5 and t = 10 are plotted in Figure 13. As we can see from this figure, the present
approach obtains the satisfied numerical results for this nonlinear case, and max relative
error is less than 4 × 10−3. Figure 14 provides the max and global errors of hydraulic
head H at each time node, which illustrates that the developed CN-GFDM yields accurate
numerical results as an increasing time.

Figure 12. Distribution of 1186 collocation nodes.

  
(a) 5t   (b) 10t   

Figure 13. The contours of relative errors of hydraulic head H at t = 5 and t = 10.
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Figure 14. Two types of error curves of hydraulic head H from t = 0 to t = 10.

5. Concluding Remarks

To simulate the transient groundwater flow in homogeneous and anisotropic
two-dimensional mediums, a hybrid localized meshless method is constructed based
on the Crank–Nicolson scheme for temporal discretization and the GFDM for spatial
discretization. The present approach is truly meshless and easy to program.

To fully investigate the performance of the developed method, the max and global
errors of hydraulic head are both provided for numerical examples with different boundary
conditions, complicated geometry domains, and several kinds of hydraulic conductivities.
Numerical results indicate that the hybrid localized meshless method developed in this
work obtains the satisfied accuracy and convergency in time and space.
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Abstract: In this paper, a novel semi-analytical collocation solver, the spatial–temporal radial Trefftz
collocation method (STRTCM) is proposed to solve 3D transient wave equations with specified sound
source excitations. Unlike the traditional time discretization strategies, the proposed numerical
scheme introduces the spatial–temporal radial Trefftz functions (STRTFs) as the basis functions for
the spatial and temporal discretization of the transient wave equations. The STRTFs are constructed
in the spatial–temporal domain, which is a combination of 3D Euclidean space and time into a 4D
manifold. Moreover, since the initial and boundary conditions are imposed on the spatial–temporal
domain boundaries, the original transient wave propagation problem can be converted to an inverse
boundary value problem. To deal with the specified time-dependent sound source excitations, the
composite multiple reciprocity technique is extended from the spatial domain to the spatial–temporal
domain, which transforms the original problem with a source term into a high-order problem without
a source term. By deriving the related STRTFs for the considered high-order problem, the proposed
scheme only requires the node discretization on the spatial–temporal domain boundaries. The
efficiency of the proposed method is numerically verified by four benchmark examples under 3D
transient wave equations with specified time-dependent sound source excitation.

Keywords: meshless collocation method; semi-analytical; radial Trefftz basis functions; transient
wave propagation analysis

MSC: 65M70; 35L05

1. Introduction

As is well known, the phenomenon of wave propagation [1–7] widely exists in various
areas of science and engineering, such as acoustics, elastodynamics, electromagnetics,
and fluid dynamics. Numerical simulation plays an important role in understanding
and mastering the fundamental laws of such wave propagation. Traditional numerical
methods [8–10], such as the finite difference method and finite element method (FEM),
have been widely used in wave propagation analysis. However, they usually have the
problems of low computational efficiency and poor computational accuracy due to the use
of universal polynomial functions. To overcome these drawbacks, several basis functions,
including wave characteristics, have been introduced, and then a series of semi-analytical
numerical methods have been constructed, such as the wave-based method [11], scaled
boundary finite element method [12] and boundary element method [13–15], and so on.
The aforementioned numerical methods belong to the mesh-based methods, which are
sensitive to the mesh quality. To eliminate the effect of mesh generation, a group of
meshless methods is developed. Similarly, by introducing the basis functions including
the wave characteristics, several boundary-type meshless methods are proposed. They
can be divided into two categories: weak-form boundary meshless methods and strong-
form boundary meshless methods. The weak-form boundary meshless methods mainly
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include the local boundary integral equation method [16], boundary node method [17],
hybrid boundary node method [18], boundary face method [19], null-field boundary
integral equation method [20], and so on. The strong-form boundary meshless methods
mainly include the wave superposition method [21,22], method of fundamental solutions
(MFS) [23,24], regularized meshless method [25], boundary distributed source method [26],
singular boundary method (SBM) [27–31], collocation Trefftz method (CTM) [32,33], and so
on. Due to their simpler form, integral-free and easy-to-use merits, this study focused on
the strong-form boundary meshless methods based on the semi-analytical basis functions.

A broader and more challenging problem in wave propagation analysis is the simu-
lation of wave propagation in the time domain. The following three popular approaches
have been widely used to treat transient wave propagation problems: (1) Time-stepping
methods (TSM) [23,34] transform the transient wave propagation problem into a series of
time-independent problems, and the accuracy and stability of this method highly depend
on the time-step size. (2) Frequency domain techniques (FDT) [35,36] use the transformation
technique to eliminate the time derivative leading to a time-independent equation in the
frequency domain, and then employ a numerical inversion scheme to invert the frequency
domain solutions back into the time-dependent solutions. The FDT does not require time
stepping, and thus avoids the effect of the time step on numerical accuracy. However, for
systems with no intrinsic damping and mismatched initial and ending responses, the nu-
merical inversion transformation fails to produce accurate results. This is why in practical
calculations often small artificial damping is added to the model. (3) Spatial–temporal semi-
analytical basis function methods [37–39] employ the spatial–temporal semi-analytical
basis function a priori to satisfy the transient wave equation and then solve it directly.
Among these three time-discretization schemes, the first two have been widely used for
transient wave propagation analysis; the last one has not been widely used because the
time-dependent semi-analytical basis functions are not easy to construct, in particular, the
transient wave equation, including the source excitations.

Fortunately, the composite multiple reciprocity method (CMRM) [40] has been pro-
posed and applied to deal with some specified source terms in time-independent nonho-
mogeneous PDEs. In this study, the CMRM is extended from the spatial domain to the
spatial–temporal domain, which transforms the original transient wave propagation prob-
lem with a source term into the high-order time-dependent problem without a source term.
Then a group of spatial–temporal semi-analytical basis functions and spatial–temporal
radial Trefftz functions are derived to satisfy the governing equation of such high-order
time-dependent problem in advance. Correspondingly, the so-called spatial–temporal
radial Trefftz collocation method (STRTCM) is constructed to solve 3D transient wave equa-
tions with specified sound source excitations, which only require the node discretization
on the spatial–temporal domain boundaries.

In this paper, a novel spatial–temporal radial Trefftz collocation method is proposed
without differential approximation for the temporal derivatives, which may cause the
accumulated error to solve the 3D transient wave equations, and the composite multiple
reciprocity method is extended from the space domain to the spatial–temporal domain to
treat the time-dependent source term. Due to the use of the related spatial–temporal radial
Trefftz functions, the proposed STRTCM requires fewer node discretizations to obtain more
accurate results. A brief outline of this paper is as follows. In Section 2, the numerical
procedure of the spatial–temporal radial Trefftz collocation method for solving 3D transient
wave equations with specified sound source excitations is introduced. The efficiency of
the proposed method is numerically verified by four benchmark examples in Section 3.
In Section 4, several conclusions are drawn based on the present study.
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2. Methodology

Considering a transient wave equation in 3D finite domain Ω bounded by Γ, the gov-
erning equation of 3D transient wave propagation problem with sound source excitations
is stated as follows: (

∂2

∂t2 − v2Δ
)

u(x, t) = f (x, t), x ∈ Ω, 0 < t ≤ T (1)

subjected to the initial conditions

u(x, t)|t=0 = u0, x ∈ Ω (2)

∂u(x, t)
∂t

|t=0 = u1, x ∈ Ω (3)

and the Dirichlet boundary condition

u(x, t)|Γ = u, x ∈ Γ, 0 < t ≤ T. (4)

where Δ is the Laplace operator, v denotes the wave speed, T represents the final time in-
stant, u0, u1 and u are the known functions, and f (x, t) is the known sound source function.

If the sound source function f (x, t) = 0, then the homogeneous type of Equation (1) is
obtained as (

∂2

∂t2 − v2Δ
)

u(x, t) = 0, x ∈ Ω, 0 < t ≤ T. (5)

By using the derived spatial–temporal radial Trefftz function [41],

G0(x, t; s, τ) =

[
cos(v(t − τ)) +

sin(v(t − τ))

v

]
sin(r(x, s))

r(x, s)
(6)

the approximate solution of Equation (5) by using the spatial–temporal radial Trefftz
collocation method can be represented as follows

u0(x, t) =
NS

∑
j=1

α0jG0(x, t; sj, τj) (7)

where r(x, s) = ‖x − s‖2 denotes the Euclidean distance between collocation nodes xi
and source nodes sj, t and τ are the time variables corresponding to the collocation
nodes xi and source nodes sj, respectively.

{
α0j
}

are the unknown coefficients and
NS represents the number of the source node pair

(
sj, τj
) ∈ ∂(Ω × 〈0, T〉), in which

∂(Ω × 〈0, T〉) = [Γ × 〈0, T〉] ∪ [Ω × {0, T}] stands for the boundaries of the considered
spatial–temporal domain Ω × 〈0, T〉. Substituting expression (7) into the initial conditions
(2) (3) and boundary conditions (4), one may have

NS

∑
j=1

α0jG0(x, 0; sj, τj) = u0, x ∈ Ω, t = 0 (8)

NS

∑
j=1

α0j
∂G0(x, 0; sj, τj)

∂t
= u1, x ∈ Ω, t = 0 (9)

NS

∑
j=1

α0jG0(x, t; sj, τj) = u, x ∈ Γ, 0 < t ≤ T (10)
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To determine the unknown coefficient
{

α0j
}

, N collocation node pairs
(xi, ti) ∈ [Γ × 〈0, T〉] ∪ [Ω × {0}] are placed on the boundaries of the considered spatial-
temporal domain, and then the discretized formulation can be represented as follows

NS

∑
j=1

α0jG0(xi, ti; sj, τj) = u0, xi ∈ Ω, ti = 0 (11)

NS

∑
j=1

α0j
∂G0(xi, ti; sj, τj)

∂t
= u1, xi ∈ Ω, ti = 0 (12)

NS

∑
j=1

α0jG0(xi, ti; sj, τj) = u, xi ∈ Γ, 0 < ti ≤ T. (13)

which can be also written as the following matrix form⎡⎢⎢⎢⎣
[
G0(xi, ti; sj, τj)

]
Ni×NS[

∂G0(xi ,ti ;sj ,τj)

∂t

]
Ni×NS[

G0(xi, ti; sj, τj)
]

Nb Nt×NS

⎤⎥⎥⎥⎦[α0j
]

NS×1 =

⎡⎢⎢⎣
[u0]Ni×1

[u1]Ni×1

[u]Nb Nt×1

⎤⎥⎥⎦ (14)

where N = 2Ni + NbNt, in which Ni and Nb represent the number of the collocation nodes
inside the spatial domain Ω and on the boundary Γ of spatial domain Ω, respectively.
The total node number in the spatial domain Ω is NTotal = Ni + Nb, and Nt represents
the number of the collocation nodes along the time axis. If the same set of nodes to the
collocation node discretization is used in the source node discretization inside the spatial
domain Ω and on the boundary Γ of spatial domain Ω, the resultant matrix in Equation (14)
is square due to NS = 2Ni + NbNt.

Next, consider 3D transient wave propagation problems (1–4) with the non-zero
sound source function f (x, t). The approximate solution can be first divided into two parts,
homogeneous solution uh(x, t) and particular solution up(x, t), i.e.,

u(x, t) = uh(x, t) + up(x, t) (15)

where the particular solution up(x, t) is constructed to satisfy the following equation(
∂2

∂t2 − v2Δ
)

up(x, t) = f (x, t) (16)

and then the following updated homogeneous problem can be represented by substituting
Equations (15) and (16) into the original transient wave propagation problems (1–4),⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
∂2

∂t2 − v2Δ
)

uh(x, t) = 0, x ∈ Ω, 0 < t ≤ T

uh(x, t) |Γ = u − up

uh(x, t) |t=0 = u0 − up
∂uh(x)

∂t |t=0 = u1 − ∂up
∂t

, (17)

where the homogeneous solution uh(x, t) of Equation (17) can be obtained by using the
spatial–temporal radial Trefftz collocation method with node discretization on the bound-
aries of the considered spatial–temporal domain.

To evaluate the particular solution up(x, t), the composite multiple reciprocity method
(CMRM) is extended from the spatial domain to the spatial–temporal domain. The key issue
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is to introduce the different spatial/spatial–temporal differential operators L1, L2, · · · LM to
eliminate the related non-zero sound source function f (x, t) in Equation (16), namely,

LM · · · L2L1 f (x, t) ∼= 0 (18)

It should be pointed out that the commonly used differential operators (Laplace,
Helmholtz, modified Helmholtz, diffusion equation and wave equation operators) can be
chosen as L1, L2, · · · LM according to the form of f (x, t), which could be the polynomial,
exponential and trigonometric functions, or a combination of these functions. For complex
functions, e.g., non-smooth functions, a set of discrete measured data or large-gradient
functions in the source term f (x, t), we can express the complex functions or a set of discrete
measured data by a series representation of polynomial or trigonometric functions, and
then Laplace and Helmholtz operators can be chosen as L1, L2, · · · LM to satisfy Equation
(18). In the numerical implementation, the order M is usually finite, or can be determined
by a specified truncation error.

Then the particular solution up(x, t) can be obtained by solving the following m-order
homogeneous equation with m − 1 constraint conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lm · · · L2L1�up(x, t) = 0 (x, t) ∈ (Ω × (0, T])
...
L2L1�up(x, t) = L2L1 f (x, t) (x, t) ∈ ∂(Ω × (0, T])

L1�up(x, t) = L1 f (x, t) (x, t) ∈ ∂(Ω × (0, T])

�up(x, t) = f (x, t) (x, t) ∈ ∂(Ω × (0, T])

(19)

where � = ( ∂2

∂t2 − v2Δ) denotes the governing differential operator. Then the particular
solution up(x, t) can be represented by a linear combination of high-order spatial–temporal
radial Trefftz functions G1(x, t; s, τ), · · · , Gm(x, t; s, τ), namely,

up(x, t) =
m

∑
k=1

NS

∑
j=1

αkjGk(x, t; sj, τj) (20)

where the high-order spatial–temporal radial Trefftz functions are derived by satisfying the
following equations: ⎧⎪⎨⎪⎩

L1�G1(x, t; sj, τj) = 0
...

Lm · · · L2L1�Gm(x, t; sj, τj) = 0

(21)

Table 1 lists the related radial Trefftz functions for several commonly used spatial/spatial–
temporal differential operators.

Table 1. Radial Trefftz functions of some commonly used spatial/spatial–temporal differential
operators [41].

Lk 3D

Δ + k2 sin(kr)/(4πr)

Δ − k2 sinh(kr)/(4πr)
∂
∂t − kΔ e−k(t−τ) sin(r)

r ,
∂2

∂t2 − v2
kΔ

[
cos(vk(t − τ)) + sin(vk(t−τ))

vk

]
sin(r)

r
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By combining Equations (7), (15) and (20), the approximate solution of 3D transient
wave propagation problems (1–4) can be expressed as follows:

u(x, t) =
m

∑
k=0

NS

∑
j=1

αkjGk(x, t; sj, τj), (22)

By employing Equation (22) to discretize Equations (17) and (19), the unknown coeffi-

cients
{

αkj

}j=1,2,··· ,NS

k=0,1,··· ,m
can be obtained. After that, the numerical solution at any node pair

(x, t) ∈ [Ω × 〈0, T〉] can be calculated by using Equation (22).

3. Numerical Results and Discussions

This section presents four benchmark examples of 3D transient wave propagation
problems with specified sound source excitations to verify the efficiency of the proposed
spatial–temporal radial Trefftz collocation method (STRTCM). To assess the performance of
the proposed solver, the following L2 relative error Lerr, relative error Rerr and maximum
relative error MRE are adopted as follows:

Lerr =

√√√√ 1
NN

NN

∑
n=1

(
unum(xn, t)− uana(xn, t)

uana(xn, t)

)2

(23)

Rerr =
∣∣∣∣unum(xn, t)− uana(xn, t)

uana(xn, t)

∣∣∣∣ (24)

MRE = max
1≤n≤NN

∣∣∣∣unum(xn, t)− uana(xn, t)
uana(xn, t)

∣∣∣∣ (25)

where uana(xn, t) and unum(xn, t) stand for the analytical solution and the numerical solution
on the test nodes xn ∈ Ω, n = 1, · · · , NN at time instant t, respectively. NN denotes the
number of test nodes {xn}. Unless otherwise specified, the test nodes {xn} are chosen as
the same set of the collocation nodes inside 3D spatial domain {xi} ∈ Ω\Γ and NN = Ni
in this study.

Example 1. Transient wave equation with specified sound source excitation under a unit cube.

In this example, the efficiency and accuracy of the proposed spatial–temporal radial
Trefftz collocation method (STRTCM) in the solution of transient wave equations with
the sound source f (x, t) = −(sin(x1) + cos(x2) + sin(x3)) cos(

√
2t) under the unit cubic

domain Ω1 = {(x1, x2, x3)|0 ≤ x1, x2, x3 ≤ 1} are investigated. The geometry and node
distribution are depicted in Figure 1. The governing equation is represented as(

∂2

∂t2 − v2Δ
)

u(x, t) = −(sin(x1) + cos(x2) + sin(x3)) cos(
√

2t), x ∈ Ω, 0 < t ≤ T, (26)

subjected to the initial conditions

u(x, t)|t=0 = (sin(x1) + cos(x2) + sin(x3)), x ∈ Ω, (27)

∂u(x, t)
∂t

|t=0 = 0, x ∈ Ω, (28)

and the Dirichlet boundary condition

u(x, t)
∣∣∣Γ = (sin(x1) + cos(x2) + sin(x3)) cos(

√
2t), x ∈ Γ, 0 < t ≤ T (29)
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(a) (b) 

Figure 1. Schematic configurations of the unit cube model. (a) Geometry, (b) Node distribution.

Its analytical solution of Example 1 is

u(x, t) = (sin(x1) + cos(x2) + sin(x3)) cos(
√

2t) (30)

Table 2 presents L2 relative errors obtained by the proposed STRTCM and COMSOL at
different time instants in Example 1. It can be found that under the same node discretization,
the proposed STRTCM produces more accurate results with a slight longer computational
time than the COMSOL (FEM). Figure 2 shows the numerical errors along with the time
evolution by using the proposed STRTCM in Example 1. From Table 2 and Figure 2, it can
be observed that the numerical errors may slightly increase with the time evolution. Table 3
presents L2 relative errors obtained by the proposed STRTCM with different total node
numbers, it can be found that with the increasing total node number, the L2 relative error
decreases rapidly and then remains at the same level.

Table 2. Relative errors obtained by the proposed STRTCM and COMSOL at different time instants
in Example 1.

T = 0.1 s t = 0.5 s T = 1.0 s CPU Time

STRTCM 1.92 × 10−7 6.21 × 10−7 1.20 × 10−6 1.76 s
COMSOL 2.14 × 10−3 2.33 × 10−2 5.98 × 10−2 1.00 s

0.1 0.2 0.� 0.4 0.� 0.6 0.� 0.8 0.� 1
t

10��

10�6

10��

05E
/err

Figure 2. Numerical errors along with the time evolution by using the proposed STRTCM in Example 1.
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Table 3. Relative errors obtained by the proposed STRTCM with different total node numbers in
Example 1.

NTotal 32 81 432 896 1600 4725

Lerr 1.01 × 10−1 4.04 × 10−6 1.30 × 10−6 1.31 × 10−6 1.06 × 10−6 1.34 × 10−6

For ease of comparison, the same set of discretized nodes are used in both the pro-
posed STRTCM and COMSOL, in which the number of collocation nodes is NTotal = 1023,
the boundary nodes number is Nb = 374 and the interior nodes number is Ni = 649, and
the number of total nodes distributed on the boundaries of spatial–temporal domain is
N = 5421. It should be mentioned that, based on these collocation nodes, 4892 four-node
tetrahedral elements are used in the COMSOL simulation. In addition, some other pa-
rameters are set as follows: the wave speed v = 1.0 m/s, the final time T = 1.0 s, the time
interval dt = 0.1 s. The annihilation spatial–temporal differential operator L1 =

(
∂2

∂t2 − 2Δ
)

is employed to vanish the specified sound source excitation f (x, t) in Equation (26) by
using the extended CMRM.

Example 2. Transient wave equation with specified sound source excitation under a circular tube.

This example considers the transient wave equations with the sound source
f (x, t) = − sin( x1+x2+x3√

3
) cos(340

√
2t) under the circular tube domain as shown in Figure 3a.

The distribution of boundary nodes and interior nodes is depicted in Figure 3b. The
governing equation is represented as(

∂2

∂t2 − v2Δ
)

u(x, t) = − sin(
x1 + x2 + x3√

3
) cos(340

√
2t), x ∈ Ω, 0 < t ≤ T, (31)

subjected to the initial conditions

u(x, t)|t=0 = − sin(
x1 + x2 + x3√

3
), x ∈ Ω (32)

∂u(x, t)
∂t

|t=0 = 0, x ∈ Ω (33)

and the Dirichlet boundary condition

u(x, t)|Γ = sin(
x1 + x2 + x3√

3
) cos(340

√
2t), x ∈ Γ, 0 < t ≤ T (34)

 
(a) (b) 

Figure 3. Schematic configurations of the circular tube model. (a) Geometry, (b) Node distribution.
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Its analytical solution of Example 2 is

u(x, t) = sin(
x1 + x2 + x3√

3
) cos(340

√
2t) (35)

In the proposed STRTCM implementation, the number of collocation nodes is NTotal = 780,
the boundary nodes number is Nb = 499, the interior nodes number is Ni = 281, the wave
speed is v = 340 m/s, the final time instant is T = 10 s, and the annihilation spatial–
temporal differential operator L1 =

(
∂2

∂t2 − 231200Δ
)

is employed to vanish the specified
sound source excitation f (x, t) in Equation (31) by using the extended CMRM.

Table 4 presents numerical errors at final time instant T = 10 s obtained by using
the proposed STRTCM with different time intervals dt in Example 2. From Table 3, it
can be found that the proposed STRTCM with different time intervals dt can provide
equally accurate results, which reveals that the time interval dt has a slight influence on
the numerical accuracy. Figure 4 plots the absolute and relative error distributions at
two time instants (t = 5 s and 10 s) by using the proposed STRTCM with a large time
interval dt = 5.0 s. Numerical results given in Figure 4 show that the proposed STRTCM
performs very accurate results, even with large time interval dt = 5.0 s.

Table 4. Numerical errors at final time instant T = 10 s obtained by using the proposed STRTCM with
different time intervals dt in Example 2.

dt 0.5 s 1.0 s 2.0 s 2.5 s 5 s 10 s

Lerr 1.55 × 10−5 3.84 × 10−6 3.76 × 10−6 2.34 × 10−5 2.54 × 10−6 3.23 × 10−5

MRE 3.14 × 10−5 9.94 × 10−6 9.96 × 10−6 8.98 × 10−5 9.77 × 10−6 9.86 × 10−5

 
 

(a). Absolute error distribution at t = 5 s (b). Relative error distribution at t = 5 s 

 
(c). Absolute error distribution at t = 10 s (d). Relative error distribution at t = 10 s 

Figure 4. Error distributions at two time instants (t = 5 s and 10 s) by using the proposed STRTCM
with large time interval dt = 5.0 s: (a) absolute error distribution and (b) relative error distribution at
t = 5 s; (c) absolute error distribution and (d) relative error distribution at t = 10 s.
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Example 3. Transient wave equation with specified sound source excitation under a room model.

This example considers the transient wave equations with the sound source
f (x, t) = −(cos(x1) + sin(x2) + cos(x3)) sin(

√
2t) under the room model [42] with prin-

cipal dimensions being 5.0 m in length, 4.0 m in width and 3.0 m in height (see Figure 5a).
The distributions of boundary nodes and interior nodes are depicted in Figure 5b. The
governing equation is represented as(

∂2

∂t2 − v2Δ
)

u(x, t) = −(cos(x1) + sin(x2) + cos(x3)) sin(
√

2t), x ∈ Ω, 0 < t ≤ T (36)

subjected to the initial conditions

u(x, t)|t=0 = 0, x ∈ Ω (37)

∂u(x, t)
∂t

|t=0 =
√

2(cos(x1) + sin(x2) + cos(x3)) cos(
√

2t), x ∈ Ω (38)

and the Dirichlet boundary condition

u(x, t)
∣∣∣Γ = (cos(x1) + sin(x2) + cos(x3)) sin(

√
2t), x ∈ Γ, 0 < t ≤ T (39)

 
(a) (b) 

Figure 5. Schematic configurations of the room model. (a) Geometry, (b) Node distribution.

Its analytical solution of Example 3 is

u(x, t) = (cos(x1) + sin(x2) + cos(x3)) sin(
√

2t) (40)

In the proposed STRTCM implementation, the number of collocation nodes is
NTotal = 3588, the boundary nodes number is Nb = 1447, the interior nodes number
is Ni = 2141, the number of total nodes distributed on the boundaries of the spatial–
temporal domain is N = 17,305, the wave speed is v = 1.0 m/s, the final time instant is
T = 1000 s, the time interval is dt = 125 s, and the annihilation spatial–temporal differential
operator L1 =

(
∂2

∂t2 − 2Δ
)

is employed to vanish the specified sound source excitation
f (x, t) in Equation (36) by using the extended CMRM.

Figure 6 shows the relative error distributions on the plane x3 = 1.5 at different time
instants (t = 250, 500, 750, 1000 s) by using the proposed STRTCM with time interval
dt = 125 s in Example 3. It can be observed that the proposed STRTCM with a large
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time interval can still obtain very accurate results in the solution of the transient wave
problem under a complicated geometry domain (room model). This is because the semi-
analytical spatial–temporal radial Trefftz functions are employed as the basis functions
in the proposed STRTCM, which allows the few temporal discretizations to simulate the
long-term evolution of the wave propagation.

 
(a) (b) 

 
(c) (d) 

Figure 6. Relative error distributions on the plane x3 = 1.5 at different time instants ((a) t = 250,
(b) t = 500, (c) t = 750, (d) t = 1000 s) by using the proposed STRTCM with time interval dt = 125 s in
Example 3.

Example 4. Transient wave equation with specified sound source excitation under a submarine model.

The final example considers the transient wave equations with the sound source
f (x, t) = −(cos(x1) + sin(x2) + cos(x3)) sin(

√
2t) under the submarine model with the

principal dimensions being 15.0 m in length, 4.0 m in width and 6.0 m in height (see
Figure 7a). The distribution of boundary nodes and interior nodes are depicted in Figure 7b.

The governing equation is represented as(
∂2

∂t2 − v2Δ
)

u(x, t) = −(cos(x1) + sin(x2) + cos(x3)) sin(
√

2t), x ∈ Ω, 0 < t ≤ T (41)

subjected to the initial conditions

u(x, t)|t=0 = 0, x ∈ Ω (42)

∂u(x, t)
∂t

|t=0 =
√

2(cos(x1) + sin(x2) + cos(x3)) cos(
√

2t), x ∈ Ω (43)
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and the Dirichlet boundary condition

u(x, t)
∣∣∣Γ = (cos(x1) + sin(x2) + cos(x3)) sin(

√
2t), x ∈ Γ, 0 < t ≤ T (44)

Its analytical solution of Example 4 is

u(x, t) = (cos(x1) + sin(x2) + cos(x3)) sin(
√

2t) (45)

 
(a) (b) 

Figure 7. Schematic configurations of the submarine model. (a) Geometry, (b) Node distribution.

In the proposed STRTCM implementation, the number of collocation nodes is
NTotal = 2804, the boundary nodes number is Nb = 1312, and the interior nodes number
is Ni = 1492, the wave speed is v = 1.0 m/s, the time interval is dt = 1 s, the final time is
T = 10 s, and the annihilation spatial–temporal differential operator L1 =

(
∂2

∂t2 − 2Δ
)

is
employed to vanish the specified sound source excitation f (x, t) in Equation (41) by using
the extended CMRM.

By using the proposed STRTCM for Example 4, very accurate results with Lerr= 4.40 × 10−6

can be obtained in 1 min. However, it requires about 9 GB memory storage for getting the
results in a large time instant T = 10 s. To enhance the ability of the proposed STRTCM for
long-time evolution simulation, the entire time interval [0, 10] is divided into NP sub-time
intervals ([0, 10/NP], · · · , [10(NP − 1)/NP, 10]), and the STRTCM is used to solve the
problems (41–44) in each sub-time interval in sequence. For each problem in the considered
sub-time interval (np), the initial conditions are updated by using the final solution at the
previous sub-time interval (np − 1), np = 1, · · · , NP. Table 5 gives the numerical results of
Example 4 by using the proposed STRTCM with different numbers of sub-time intervals. It
can be found from Table 5 that with the increasing NP, the proposed STRTCM can perform
enough accurate results with less computational cost (CPU time and memory storage).

Table 5. Numerical results of Example 4 by using the proposed STRTCM with different numbers of
sub-time intervals.

NP 1 2 5 10

CPU time 53.0 s 20.0 s 15.9 s 15.7 s
Lerr 4.40 × 10−6 6.92 × 10−6 1.39 × 10−5 5.17 × 10−5

Memory requirement 9973 MB 5671 MB 4794 MB 4647 MB
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4. Conclusions

In this paper, the spatial–temporal radial Trefftz collocation method (STRTCM) is pro-
posed to solve transient wave propagation problems with specified sound source excitations.

To deal with the specified sound source excitations, the extended composite multiple
reciprocity method (CMRM) is presented from the spatial domain to the spatial–temporal
domain for constructing the high-order homogeneous equation with the related constraint
conditions. Then, the particular solution can be obtained by using a linear combination of
the related high-order spatial–temporal radial Trefftz functions. Therefore, the proposed
STRTCM only requires the node discretization on the boundaries of the spatial–temporal
domain in 3D transient wave propagation analysis.

Numerical investigation shows that the proposed STRTCM produces more accurate
results with a slight longer computational time than the COMSOL (FEM) under the same
node discretization. The time interval dt has a slight influence on the numerical accuracy
of the proposed STRTCM. The iterative strategy is feasible to reduce the storage and CPU
time. Due to the use of the spatial–temporal radial Trefftz functions, the proposed STRTCM
only requires few temporal discretizations to accurately simulate the long-term evolution
of the wave propagation.

Overall, it is concluded that the proposed STRTCM could be considered as a competi-
tive alternative for the transient wave problems with specified sound source excitations
under 3D complicated structures after further theoretical and numerical investigations.
Moreover, it should be mentioned that as the first step, only 3D transient wave propaga-
tion with specified sound source excitations is considered in this paper, whose analytical
solutions with regular form can be easily derived. The STRTCM for 3D transient wave
problems with general sound source excitations is still under our intensive investigation.
In addition, the present STRTCM scheme cannot handle the problems with heterogeneous
materials because it is a nontrivial task to derive the corresponding semi-analytical basis
solutions. For this, combining with the localized collocation scheme [43] and the extended
multiple reciprocity method—generalized reciprocity method [44]—may be a good way.
These topics are under study and will be reported in a subsequent paper.
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Nomenclature

u(x, t) acoustic pressure r(x, s) distance between source node and colocation node
v wave speed {α} unknown coefficients
Δ Laplace operator Ni number of interior nodes on spatial domain
f (x, t) spatial-temporal source function Nb number of boundary nodes on spatial domain
x collocation node Nt number of collocation nodes along with time axis
s source node NTotal number of total nodes on spatial domain
T final time instant G0(x, t; s, τ) spatial–temporal radial Trefftz function
t time variable corresponding to collocation node uh(x, t) homogeneous solution
τ time variable corresponding to source node up(x, t) particular solution
u0, u1 known functions on boundary LM · · · L2L1 differential operators
Ω computational domain MRE maximum absolute error
Γ boundary of computational domain Lerr L2 relative error
� partial differential operator matrix Rerr relative error
N number of collocation node pairs NP numbers of evolution steps
NS number of source node pairs
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Abstract: In this paper, a localized boundary knot method is adopted to solve two-dimensional
inverse Cauchy problems, which are controlled by a second-order linear differential equation. The
localized boundary knot method is a numerical method based on the local concept of the localization
method of the fundamental solution. The approach is formed by combining the classical boundary
knot method with the localization method. It has the potential to solve many complex engineering
problems. Generally, in an inverse Cauchy problem, there are no boundary conditions in specific
boundaries. Additionally, in order to be close to the actual engineering situation, a certain level of
noise is added to the known boundary conditions to simulate the measurement error. The localized
boundary knot method can be used to solve two-dimensional Cauchy problems more stably and is
truly free from mesh and numerical quadrature. In this paper, the stability of the method is verified
by using multi-connected domain and simply connected domain examples in Laplace equations.

Keywords: inverse Cauchy problem; Laplace equation; localized boundary knot method; noise;
multiply domain

MSC: 65N21

1. Introduction

In the engineering field, due to the limitations of engineering measurement technology,
some information that is required for engineering calculations can be difficult to obtain.
Such problems are called inverse problems. The lack of information about inverse problems
can be mainly classified into two modes: the detection of the boundary location and
the determination of boundary conditions. Chang, Yeih and Shieh (2001) [1] showed
that neither the traditional Tikhonov’s regularization method, nor the singular value
decomposition method can yield an acceptable numerical result for the inverse Cauchy
problem of Laplace equations, when the influence matrix is highly ill-posed. In order
to obtain sufficiently stable and accurate numerical results for inverse Cauchy problems,
different numerical methods have been studied by scholars in previous works.

In order to obtain stable solutions, some mesh-based methods have been widely used
to solve inverse problems, including the finite element method (FEM) [2], the finite differ-
ence method (FDM) [3] and the boundary element method (BEM) used by Lesnic et al. [4–6].
However, as a mesh-based method, it is still nontrivial of the BEM to generate a well-
behaved mesh for complex-shaped surfaces. As a competitor to the mesh-based method,
the meshless method has been proposed by researchers to solve inverse Cauchy prob-
lems. Similar to the FEM, the domain-type meshless method needs to employ arbitrarily
distributed interior and boundary collocations to represent the domain and boundary of
the problem. The domain-type meshless methods are the radial basis function method

Mathematics 2022, 10, 1324. https://doi.org/10.3390/math10081324 https://www.mdpi.com/journal/mathematics40
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(RBFCM) and the generalized finite-difference method (GFDM), which are commonly used
recently. The RBFCM was proposed by Kansa in 1990 [7,8], after which the selection of
its optimal parameters was studied [9–11], and then this method became popular [12].
The GFDM has been applied to inverse problems and is widely used for engineering
problems [13–16]. Similar to the BEM, boundary-type methods have the advantages of
reducing the calculation dimensions and can easily obtain highly accurate numerical results.
Considering their merits, boundary-type methods, including the Trefftz method [17–19],
the modified collocation Trefftz method (MCTM) [20,21], the singular boundary method
(SBM) [22] and the boundary particle method (BPM) have been widely studied for use in
inverse Cauchy problems [23].

It is worth emphasizing that among the boundary-type meshless methods, the method
of fundamental solutions (MFS) proposed by Kupradze and Aleksidze in 1964 [24] is
the most popular in the application of inverse problems [25,26] due to its high accuracy.
Young [27] studied the condition number of MFS in a Cauchy problem, and Fan [28] further
extended the scheme to solve a Cauchy problem involving Stokes equations. Despite the
popularity of the method, determining the appropriate location of the source nodes is one of
the difficulties that the MFS needs to overcome. Therefore, in 2002, Chen and Tanaka [29,30]
proposed a boundary-type method with a nonsingular general solution instead of a singular
fundamental solution as its basis function, named the boundary knot method (BKM). Since
then, the BKM has also been applied to solve different problems [31,32], especially inverse
problems [33,34].

In recent years, the concept of localization has been proposed to overcome the prob-
lems caused by the full matrix. The localized radial basis function collocation method
(LRBFCM) [35–38], the first localized meshless method, was developed from the combi-
nation of the localization method and the RBFCM. Then, this method was applied to the
study of an inverse Cauchy problem by Chan and Fan in 2013 [39]. After that, in 2019, in
order to expand the application of the MFS in large-scale problems, Fan [40] proposed the
localized method of fundamental solutions (LMFS) by combining a similar localization
concept with MFS. This localized method was used to solve inverse Cauchy problems
by Wang [41], who proved its accuracy. In addition, the localized Trefftz method (LTM)
and the localized singular boundary method (LSBM) were studied by Liu et al. [42] and
Wang et al. [43], respectively. In this paper, the traditional BKM is improved into a localized
meshless method, which is called the localized boundary knot method (LBKM). Moreover,
large-scale problems that were difficult to solve in the past using the traditional methods
can be solved efficiently by the LBKM, and successful tests for solving direct problems can
be found in recent works [44,45]. Considering the merits of the LBKM, we take the Laplace
equation as the governing equation and discuss the application of the LBKM for the inverse
Cauchy problem for the first time.

The structure of this paper can be studied as follows: In the first section, we introduce
previous research on the use of numerical methods in inverse problems and discuss their
merits and drawbacks. In the second section, we give the details and formulations of the
inverse Cauchy problem. In the third section, we illustrate the LBKM calculation process
with a specific description. Six numerical examples are shown in the fourth section. Then,
the defined errors and numerical results are compared and analyzed. In the last section,
the discussion and conclusions about the entire work can be found.

2. Inverse Cauchy Problem

In this paper, we use the localized boundary knot method to solve the two-dimensional
Cauchy inverse problem. The core of the problem is that some of the boundary conditions
are unknown, so we need to add the overdetermined boundary condition to the known
boundary section. The governing equation and boundary conditions are:

∇2U(x, y) = 0, (x, y) ∈ Ω, (1)

U(x, y) = p(x, y), (x, y) ∈ ΓD, (2)
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UN = (∇U) · →n = q(x, y), (x, y) ∈ ΓN , (3)

U(x, y) = k(x, y), (x, y) ∈ Γos, (4)

UN = (∇U) · →n = d(x, y), (x, y) ∈ Γos, (5)

where ∇2 = ∂2

∂x2 +
∂2

∂y2 is the two-dimensional Laplacian, U(x, y) represents any unknown

variable in the field Ω, ∂Ω = ΓD ∪ ΓN ∪ Γos ∪ η is the boundary of the computational
domain and we assume that the boundary ∂Ω consists of two components that are dis-
jointed from each other Γos ∩ η = ∅. ΓD and ΓN are the Dirichlet boundary condition and
the Neumann boundary condition, respectively. Γos represents the boundary portions with
overspecified boundary conditions. η represents the boundary portions without boundary
conditions.

→
n =
(
nx, ny

)
is the unit outward normal vector on the boundary. p(x, y) and

q(x, y) are the given boundary conditions.

3. Numerical Method

In this study, we used a localized BKM to solve this two-dimensional Cauchy inverse
problem, whose governing equation is the Laplace equation. However, the traditional
boundary knot method is extended from the method of the fundamental solution, and
this study improves the global-type meshless method by changing it into the local type.
N = ni + nb1 + nb2 is assumed to represent the total number of points to be calculated,
where ni represents the number of internal points, while nb1 and nb2 represent the points of
two kinds of boundary, i.e., ΓD and ΓN , respectively. A schematic diagram of the calculation
nodes of the localized BKM method is shown in Figure 1a.

Figure 1. Schematic diagram of the localized boundary knot method. (a) The global domain. (b) The
local domain of the ith node.

In the localized BKM method, a subdomain is formed in each node, as shown in
Figure 1b. The numerical solution for each subdomain can be approximately expressed
as follows:

U(xi, yi) =
nk

∑
k=1

αkG(rk), x, y ∈ Ω, (6)

in which αj stands for the unknown coefficients, and N is the number of adjacent nodes.

G(rk) = e(−c(x2−y2)) cos(2cxy) is the BKM basis function, which satisfies the two-dimensional
Laplace equation. nk is the number of nodes in a subdomain. c is the shape parameter.
c = 0.1 is adopted in the following case. r =

√
x2 + y2 (x = ‖x− xk‖, y = ‖y − yk‖ ) is the

Euclidean distance, where xk and yk represent the x and y coordinates of the local node
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near the computing node, respectively. The source points are obtained from the nearest
computing nodes in the subdomain.

By introducing the spatial coordinates of the nearest nodes into Equation (6), the
following system is obtained:

U(i) = Cα(i), (7)

where U(i) = [u(i)
1 u(i)

2 ui
3 . . . u(i)

N ]
T

is the vector of unknown variables at nk nodes, and

α(i) = [α
(i)
1 α

(i)
2 α

(i)
3 . . . α

(i)
m ]

T
is the vector of the unknown coefficients. C is the coefficient

matrix. The unknown coefficients can be expressed by unknown variables:

α(i) = C−1U(i). (8)

The inverse matrix C−1 is calculated by using the MATLAB command pinv, and we
set the tolerance to be 10−3–10−4 in this article.

The numerical solution for the ith node can be obtained from introducing the node
coordinates of this point into Equation (7). The form is as follows:

U(i) =
nk

∑
k=1

α
(i)
k G(rk) = c(i)Tα(i) = c(i)TC(−1)U(i) =

nk

∑
k=1

ψi
kUi

k, (9)

where c(i) = [G(ri1) G(r i2) G(ri3) . . . G(rink )]
T is the vector of the fundamental solution at

the ith node. {ψ
(i)
k }nk

k=1 represents the weighting coefficients.
In addition, according to Equation (3), we have

∂U
∂x

∣∣∣∣
i
=

nk

∑
k=1

α
(i)
k

∂

∂x
G(rk)

∣∣∣∣∣
i

= h(i)Tx α(i) = h(i)Tx H−1U(i) =
nk

∑
k=1

ψ
x(i)
k Ui

k, (10)

and
∂U
∂y

∣∣∣∣
i
=

nk

∑
k=1

α
(i)
k

∂

∂y
G(rk)

∣∣∣∣∣
i

= h(i)Ty α(i) = h(i)Ty H−1U(i) =
nk

∑
k=1

ψ
y(i)
k Ui

k, (11)

where

h(i)x =

[
∂G(r1)

∂x

∣∣∣∣
i

∂G(r2)

∂x

∣∣∣∣
i

∂G(r3)

∂x

∣∣∣∣
i

. . .
∂G(rk)

∂x

∣∣∣∣
i

]T
, (12)

h(i)y =

[
∂G(r1)

∂y

∣∣∣∣
i

∂G(r2)

∂y

∣∣∣∣
i

∂G(r3)

∂y

∣∣∣∣
i

. . .
∂G(rk)

∂y

∣∣∣∣
i

]T
(13)

In order to obtain the expression for the Neumann boundary conditions, we can bring
Equations (10) and (11) into Equation (3):

∂U
∂n

=
∂U
∂x

nx +
∂U
∂y

ny = q(x, y), x, y ∈ ΓN (14)

The linear equations that satisfy the Laplace equation, Dirichlet boundary conditions
and Neumann boundary conditions are combined to form sparse linear algebraic equations,

AU = b, (15)

where AN×N is the sparse coefficient matrix that avoids the ill-conditioned matrix,
U = [U1 U2 U3 . . . UN ]

T is the unknown field quantity at every node and b represents
the known conditions. Therefore, U can be calculated from Equation (15). The localized
BKM, which combines BKM with the localization concept of localized MFS, is simple and
clear, and the method of determining local points is also novel. In addition, due to the
sparse matrix generated in the calculation of linear algebraic equations, it can also be
applied to some complex fields.
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4. Numerical Results and Comparisons

In this section, we present an analysis and comparison of the results of five cases.
These five examples include a simply connected domain and a multi-connected domain.
At the same time, different levels of noise are added to the boundary conditions to verify
the stability of the localized BKM. For the last case, we carry out the process of forward
calculation and then reverse calculation by guessing the analytical solution and relative
error of the Laplace equation. In this paper, we compare the analytical solution ua with the
numerical solution U and take the maximum relative error as the index of error analysis.

error = max(|(U − ua)/ua|).
4.1. Case 1

In the first example, we use a square computing field, as shown in Figure 2. The
field is denoted by ∂Ω = Γ1 + Γ2 + Γ3 + Γ4. The boundary corner points are removed,
and the internal points and boundary points are evenly distributed throughout the entire
calculation domain. The analytical solution of the applied boundary condition is as follows:

ua(x, y) = ex cos(y) + ey sin(x) + 5, (16)

where the Γ1 boundary is unknown, and the overdetermined boundary conditions (Dirich-
let and Neumann) are added to the remaining edges, which are Γ2, Γ3 and Γ4. Hence, the
points on this edge are calculated as interior points. The following parameters are used
in this example: N = 4896, nb = 272, nk = 100, c = 0.1, where N is the number of total
nodes, while nb is the number of boundary nodes.

Figure 2. Schematic diagram for case 1.

In order to reflect the real boundary conditions, different levels of noise s are added to
the boundary to consider possible errors in advance. Therefore, the boundary conditions
take the following forms:

ua = f (x, y)(1 +
s

100
× rand), (x, y) ∈ Γ2 + Γ3 + Γ4, (17)

uan = [(∇u) · →n ](1 + s
100 × rand) = g(x, y)(1 + s

100 × rand)
= [∇(ua(x, y)) · →n ](1 + s

100 × rand), (x, y) ∈ Γ2 + Γ3 + Γ4
(18)

where s is the percentage of added noise, rand is the random number and the range is
−1 ≤ rand ≤ 1. The function rand in MATLAB software is used in this paper to generate
the noise.

In order to show the calculation results more clearly, we draw the solution along
the boundary Γ1, as shown in Figure 3. In this figure, we can see that, although different
degrees of noise interference are added, the numerical solution along the boundary Γ1 is
relatively stable, and the line-fitting degree with the analytical solution is relatively high.
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Figure 3. The profiles of numerical solutions along Γ1 for case 1.

In Figure 4, we use a solid line to represent the internal numerical solution and a
dotted line to represent the internal analytical solution. It can be seen from these four
pictures that the errors increase with an increase in added noise, but they are all within the
acceptable range, and those near the unknown boundary increase significantly. In Table 1,
we describe the maximum relative error corresponding to different degrees of disturbance
in detail.

Table 1. The maximum relative error obtained by adding different percentages of noise for case 1.

Percentage of Noise s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

Maximum relative error 0.00943 0.0136 0.0147 0.0184 0.0189 0.0209 0.0286

4.2. Case 2

In this case, a circle is used as the calculation domain, as shown in Figure 5. The radius
of the circle is 1, and half of the boundary is unknown. Γ1 is an unknown boundary, while
Γ2 is a known boundary. The analytical solution for this example is:

ua = x2 − y2 + xy + 5 (19)

The following parameters are used in this example: N = 2809, nb = 200, nk = 100, c = 0.1.
The boundary conditions take the following forms:

u = f (x, y)(1 + s
100 × rand)

= (x2 − y2 + xy + 5)(1 + s
100 × rand), (x, y) ∈ Γ2

(20)

uan = [(∇u) · →n ](1 + s
100 × rand) = g(x, y)(1 + s

100 × rand)
= [∇(x2 − y2 + xy + 5) · →n ](1 + s

100 × rand), (x, y) ∈ Γ2
(21)

The marked solid lines in Figure 6 represent the numerical results for the unknown
boundary Γ1 under different noise disturbances, and the dotted line represents the analytical
solution curve of Γ1. Obviously, the numerical solutions are in good agreement with the
analytical solution.
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Figure 5. Schematic diagram for case 2.
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Figure 6. The profiles of numerical solutions along Γ1 for case 2.

In Table 2, we list the maximum relative error obtained when adding different degrees
of noise, and they are all very small. In Figure 7, we draw the internal distributions under
different disturbances. The error near the unknown boundary is relatively large but is still
within the acceptable range. The analytical solution line and the numerical solution line
near the boundary with known boundary conditions fit well.

Table 2. The maximum relative error obtained by adding different percentages of noise for case 2.

Percentage of Noise s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

Maximum relative error 0.0198 0.0272 0.0347 0.0428 0.0504 0.0596 0.0779

4.3. Case 3

For the third inverse problem, we use a doubly connected domain. The computational
domain is concentric annular, as shown in Figure 8. The radius of the outer circle is 2, and
the radius of the inner circle is 1. The analytical solution for this example is:

ua = sinh(y) sin(x) + cosh(x) cos(y) + 5. (22)

The outer boundary has two kinds of boundary conditions, while the inner boundary
has no boundary conditions. The given boundary conditions are obtained by the analytical
solution, and the nodes are uniformly distributed in the computational domain and on the
boundary. The parameters used in this example are as follows:

N = 1476, nb1 = 380, nb2 = 180, nk = 60, c = 0.1, where nb1 and nb2 represent the
numbers of nodes on the outer and inner boundaries, respectively.

In Table 3, we list the maximum relative errors obtained when adding different degrees
of noise, and the errors are also stable. A comparison of the analytical and numerical
solutions drawn along the unknown boundary is shown in Figure 9. An internal contour
map of different degrees of disturbance is shown in Figure 10. It can be seen from the
figures that the numerical solution and the analytical solution are very similar.

Table 3. The maximum relative error obtained by adding different percentages of noise for case 3.

Percentage of Noise s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

Maximum relative error 9.45 × 10−5 0.0056 0.0146 0.0214 0.0274 0.0375 0.0465 0.0654
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Figure 8. Schematic diagram for case 3.
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Figure 9. The profiles of numerical solutions along Γ1 for case 3.
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4.4. Case 4

In order to verify the stability of the numerical method, we use the multi-connected
domain as the computational domain in this case, as shown in Figure 11. In this case, we
take the outer boundary Γ2 as the unknown boundary and the inner boundary Γ1 as the
known boundary. Therefore, two kinds of boundary conditions are added to the inner
boundary. The analytical solution for this example is:

ua = x2 − y2 + xy + 5. (23)

Figure 11. Schematic diagram for case 4.

The boundary of the peanut shape is regarded as an unknown boundary, so the points
on the boundary are calculated as internal nodes. Two internal wave elimination blocks are
used as known boundaries, and a Dirichlet boundary condition and Neumann boundary
condition are added. The parameters used in this example are as follows:

N = 3068, nb1 = 120, nb2= 102, nk = 100, c = 0.1.

In Table 4, we list the maximum relative errors obtained when adding different degrees
of noise, and the errors are also stable. A comparison of the analytical and numerical
solutions drawn along the unknown boundary is shown in Figure 12. The data from tables
and graphs show that the error is relatively stable and small.

 

Figure 12. The profiles of numerical solutions along Γ2 for case 4.
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Table 4. The maximum relative error obtained by adding different noise for case 4.

Percentage of Noise s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

Maximum relative error 1.96 × 10−4 0.0154 0.0196 0.0277 0.0496 0.0590 0.0688

4.5. Case 5

In this example, the geometry of this computational domain is more complex and
there are many sharp angles at the boundary; its schematic diagram is shown in Figure 13.
The equation for the gear shape is as follows:

∂Ω = { (x, y)|x = ρ(θ) cos(γ(θ)), y = ρ(θ) sin(γ(θ))}, (24)

where ρ(θ) = 0.2(2 + 0.5 sin(7θ)), γ(θ) = θ + 0.5 sin(θ), 0 ≤ θ ≤ 2π.

Figure 13. Schematic diagram for case 5.

We set the boundary conditions (0 < θ ≤ π) of the upper half as unknown and the
boundary conditions of the lower half (π < θ ≤ 2π) as given. The Dirichlet boundary con-
dition and the Neumann boundary condition are given by the following analytical solution:

ua = cos(x)sinh(y) + x2 − y2 + xy + 1 (25)

The following parameters are used: N = 901, nb1 = 150, nb2= 150, nk = 80, c = 0.1.
From Table 5, it can be observed that even the geometry of the boundary is more

complex under the setting of different levels of noise, and we can use the localized boundary
knot method to solve this inverse Cauchy problem and still maintain a stable level of
accuracy. Additionally, Figure 14 clearly shows the error curves obtained by applying
different percentages of noise under different numbers of local points. This means that
when the number of local points increases, the maximum relative error from the analytical
solution approaches a stable state. In Figure 15, we show that (a) s = 1, (b) s = 2, (c) s = 3
and (d) s = 4. These four graphs show that there is indeed a certain degree of deviation in
the upper half of the lack of boundary information, but the numerical results in the domain
are consistent with the analytical solution.

Table 5. The maximum relative error obtained by adding different noise for case 5.

Percentage of Noise s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

Maximum relative error 7.39 × 10−4 0.0150 0.0265 0.0376 0.0473 0.0582 0.0675
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4.6. Case 6

In order to further verify the accuracy of the localized BKM, in the last case, we also
use the circle as the calculation domain, where a quarter of the boundary is used as the
unknown boundary, namely Γ2 :

( 3
2 π ≤ θ ≤ 2π

)
. We assume that the boundary conditions

do not satisfy the analytical solution. This means that the corresponding analytical solution
cannot be derived from the governing equations and boundary conditions. The known
boundary satisfies the following conditions:

u =
(

sinh(
x
4
) + cosh(

x
4
)
)

cos(
y
4
) + 50, x ∈ ΓD, (26)

∂u(x)
∂n

=
1
10

(x + y), x ∈ ΓN , (27)

In Step 1, the boundary Γ1 :
(
0 ≤ θ < 3

2 π
)

is set as the Neumann boundary condition,
and the boundary Γ2 is set as the Dirichlet boundary condition. The numerical solutions
[u]Γ1

can be solved by LBKM.
In Step 2, Γ1 is selected as the unknown boundary condition and the numerical solution

obtained from the previous solution [u]Γ1
and the Neumann boundary condition on the

Γ2 boundary are used. For the first of the step calculation, the total number of nodes is
N = 2949, the number of boundary nodes is nb = 200, the number of local domain nodes
is nk = 100, and the shape parameter is c = 0.1, and for the second step of the calculation,
the total number of nodes is N = 4249, the number of boundary nodes is nb = 200, and
the shape parameter is c = 0.1. We analyze the maximum relative error of the numerical
solutions for Step 1 and Step 2.

To show the stability of the numerical method, we solved this problem by using
different numbers of local points, and the maximum relative error is presented in Table 6.
The change in maximum relative error corresponding to the change in total points is
recorded in Table 7. It can be seen from the test of different total points N and local points
nk that, in the case where the boundary conditions do not use analytical solutions, the
maximum relative error can still remain accurate and stable.

Table 6. The maximum relative error obtained with different values of nk for case 6. (N = 2949).

nk 40 70 100 130 150

Maximum relative error 3.75 × 10−3 7.22 × 10−4 1.20 × 10−3 1.92 × 10−3 1.72 × 10−3

Table 7. The maximum relative errors with different values of N for case 6. (nk = 100).

N 3405 4093 5308 6380 8560

Maximum relative error 1.00 × 10−3 7.89 × 10−4 9.91 × 10−4 9.76 × 10−4 2.14 × 10−3

The distributions of numerical solutions to the direct and inverse problems are shown
in Figure 16. In this figure, it can be seen that numerical solutions to the inverse problem
are basically the same as in Step 1, and the maximum relative error is 7.89 × 10−4.
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Figure 16. The numerical solution distribution of Step 1 (dashed lines) and Step 2 (solid lines) for
case 6. (N = 4093, nk = 100).

5. Conclusions

In this paper, the localized BKM was used to solve an inverse Cauchy problem con-
trolled by a two-dimensional Laplace equation. The localized BKM is a method that
combines the BKM of the meshless method with the localization concept. This method
does not need grid generation and numerical integration, and it eliminates border radius
issues with source points. For Cauchy problems, some boundary conditions are not readily
available or there are measurement errors, so the numerical simulation is unstable. There-
fore, we used the localized BKM to calculate such problems and verify the accuracy of
this method.

We presented five examples that illustrate the stability and accuracy of this method
for solving inverse problems. With different percentages of noise on the boundaries, the
maximum relative error remained stable and within the acceptable range. In particular, in
the last case, the direct algorithm was first used to obtain the data with an extra boundary
and was then applied to the reverse calculation in the second step. From the results of the
error analysis presented in this paper, the localized BKM was shown to be more stable and
accurate for solving Cauchy inverse problems.

In the future, the localized BKM will be applied to various mathematical and physical
problems as well as more complex problems, for example, moving boundary problems and
three-dimensional problems.
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Abstract: A time-domain adaptive algorithm was developed for solving elasto-dynamics problems
through a mixed meshless local Petrov-Galerkin finite volume method (MLPG5). In this time-
adaptive algorithm, each time-dependent variable is interpolated by a time series function of n-order,
which is determined by a criterion in each step. The high-order series of expanded variables bring
high accuracy in the time domain, especially for the elasto-dynamic equations, which are second-
order PDE in the time domain. In the present mixed MLPG5 dynamic formulation, the strains
are interpolated independently, as are displacements in the local weak form, which eliminates the
expensive differential of the shape function. In the traditional MLPG5, both shape function and
its derivative for each node need to be calculated. By taking the Heaviside function as the test
function, the local domain integration of stiffness matrix is avoided. Several numerical examples,
including the comparison of our method, the MLPG5–Newmark method and FEM (ANSYS) are
given to demonstrate the advantages of the presented method: (1) a large time step can be used in
solving a elasto-dynamics problem; (2) computational efficiency and accuracy are improved in both
space and time; (3) smaller support sizes can be used in the mixed MLPG5.

Keywords: meshless local Petrov-Galerkin approach (MLPG); finite volume methods; mixed methods;
adaptive algorithm; time-domain; moving least squares (MLS)

MSC: 74H15

1. Introduction

Structural vibration analysis is an important system dynamics problem in engineering.
This dynamics problem is governed by partial differential equations of elasto-dynamics
associated with a group of boundary conditions and initial conditions. The elasto-dynamics
equation is a second-order PDE in both time and space domains. Exact analyses are usually
very difficult, and only few analytical solutions are obtained [1]. Therefore, numerical
methods have been developed to solve these complex problems, such as the finite difference
method (FDM) [2], the stepwise integration method [3], the Newmark method [4], the
Wilson-θ method and the Houbolt method [5] for the time domain; and the FDM [6],
the finite element method (FEM) [7], the boundary element method (BEM) [8–11], the
differential quadrature method (DQM) [12] and the meshless methods (MMs) [2] for the
space domain.

Since the dynamics equation of vibration is a high-order partial differential equation
in the time domain, many efforts have been made studying the time-domain methods [13].
Thus, the methods that are commonly used in solving vibration problems can be divided
into two categories: mode superposition methods and direct integration methods. In
a mode superposition method, the computational cost comes from solving the n-order
generalized eigenvalue problem. If the structure vibrates in a short period, this method is
less efficient than a direct integration method. In contrast, if the vibration lasts for some
time, it is more effective to use the mode superposition method. In the direct integration
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method, the dynamics equation is directly solved by integration of, e.g., the FDM [2], the
Newmark method [4], the Wilson-θ method or the Houbolt method [5]. In these methods,
the computational cost in one time step is proportional to the product of the freedom
degrees and the square of the average bandwidth of the matrix. All variables are usually
constant or linear in every time step, which may lead to inefficient calculation, incomplete
accuracy and even divergent results if the time step is selected improperly [14].

To improve the computing accuracy and reduce the error caused by an improper
time step size, the time-domain adaptive algorithm was proposed by Haitian. Y. It is
an unconditionally stable direct integration method [15]. Differently from the difference
method [16], all the time-dependent variables are expanded into series in discrete time
steps, and the expansion coefficients can be obtained by solving the recursive equation.
Therefore, the variables in each discrete time step can be more accurately described without
any assumptions made for nonlinearity. Since the computing accuracy can be controlled by
the truncation error, the time step size can be freely selected in a large range. This means
large time steps are allowed in the time domain. This method has been successfully used
together with FEM in a large time step and has shown advantages in terms of calculation
accuracy [17].

Besides the discretization in the time domain, the elasto-dynamics equations also need
to be discretized in the space domain. Although the FEM is the most widely used method
for structure vibration analysis in engineering, it still encounters many challenges due to
the mesh distortion and remeshing when solving large deformation problems, such as
high-speed impact, dynamic crack propagation and strain localization [18]. However, these
disadvantages of the FEM can be avoided in MMs, as they do not need elements. Over the
past two decades, some efforts were devoted to solving the elasto-dynamics equations with
MMs [2].

Speaking of MMs, Atluri proposed the meshless local Petrov-Galerkin Method (MLPG)
to avoid the background mesh [19]. In this method, the idea of eliminating residuals in the
subdomain was firstly proposed. When combined with the moving least squares (MLS)
approximation, a true meshless method is realized which does not need interpolation mesh
or integral mesh [20]. Since the MLPG method establishes a residual equation on each
subdomain separately, the equations from different subdomains are relatively independent,
so different weighted residual methods can be easily mixed and used. Additionally, it
provides a good platform for the coupling of various methods [21]. Nowadays, the MLPG
is a general term for a series of methods (MLPG1–MLPG6) [22]. Nevertheless, MLPG
has the problem of low efficiency. An effective way to overcome this shortcoming is to
eliminate or simplify the domain integral in the stiffness matrix. In the above six methods,
MLPG2, MLPG4 and MLPG5 have no domain integrals. However, MLPG2 relies too much
on the configuration of nodes, and MLPG4 has singular integrals. Only MLPG5 includes
neither domain integration in the stiffness matrix nor singularity integration, along with
only local boundary integrals. Therefore, the MLPG5 is an attractive method that has
high computational efficiency [23]. In this paper, MLPG5 is developed for solving elasto-
dynamics equations through a “mixed” approach. Independent meshless approximations
are used for both strains and displacements. The strain-displacement compatibility is
enforced at nodal points by using the collocation method; thus, the independent nodal
strains are expressed in terms of nodal displacements. The “mixed” approach eliminates
the expensive process of differentiating the shape function, which greatly increases the
computational efficiency.

In this paper, attention is devoted to the meshless time-domain adaptive method for
structural vibration analyses of two-dimensional solids. Local weak forms are developed
using the weighted residual method from the elasto-dynamics equations. In Section 2,
the MLS approximation is introduced to establish shape functions for a set of regularly
or randomly distributed nodes, and the Heaviside function is used as a test function. In
Section 3, all the time related-variables are expanded in every time step, and then the
spatiotemporally coupled dynamics equations are converted into a series of recursively
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solved spatial problems. In Section 4, the validity and accuracy of the proposed method are
verified by several numerical examples.

2. Moving Least Square (MLS) Approximation

The moving least square (MLS) interpolation is generally considered to be one of the
best schemes with which to interpolate random data with a reasonable accuracy, because
of its completeness, robustness and continuity [24]. In this section, a briefing of MLS
approximation is given. Consider a local sub-domain Ωs, which is the neighborhood of a
point X = [x, y]. The distribution of a function u can be approximated, over a number of
scattered local points {xi}, (i = 1, 2, . . . , n), as

u(X) ≈ uh(X) =
m

∑
j=1

pj(X)aj(X) = pT(X)a(X) (1)

where p(X) is a monomial basis function of order m. In two dimensions, it is given by

pT(X) =
[
1, x, y, x2, xy, y2, . . .

]
(2)

The vector a(X) containing coefficients are functions of the global Cartesian coordi-
nates, depending on the monomial basis. They are determined by minimizing a weighted
discrete L2 norm, defined as:

J =
n

∑
i=1

“W(X − Xi)
[
pT(Xi)a(X)− ui

]2
(3)

where “W are the weight functions and ui are the fictitious nodal values.
The stationarity of J in Equation (3) with respect to a(X) leads to the following

relationship:
a(X) = A−1(X)B(X)Us (4)

Substituting a(X) into Equation (1), we have

uh(X) =
n

∑
i=1

φi(X)ui (5)

where the MLS shape function φi(X) can be defined as:

φi(X) =
m

∑
j=1

pj(X)
(

A−1(X)B(X)
)

ji
= pT(X)

(
A−1B

)
i

(6)

where A(x) and B(x) are defined by

A(X) =
n

∑
i=1

“W(X − Xi)p(Xi)p(X)pT(Xi) =
n

∑
i=1

“W(X − Xi)

⎡⎣ 1 xi yi
xi x2

i xiyi
yi xiyi y2

i

⎤⎦ (7)

B(X) = [W1(X)p(X1), W2(X)p(X2), . . . , Wn(X)p(Xn)] (8)

The weight function is very important for the MLS interpolation, because the smooth-
ness of the shape function and its derivatives depends on the order of the weight function.
In two-dimensional problems, discontinuities in derivatives can be produced if the order of
the spline is not sufficient, and unwanted oscillations in nodal shape functions are produced
when a high order of spline function is used. It has been found that the best nodal shape
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function and its first derivative come from 4th order spline function [25]. Thus, in this
paper, the following 4-order spline function is used:

“Wi(X) =

{
1 − 6

(
di
rw

)2
+ 8
(

di
rw

)3 − 3
(

di
rw

)4
0 ≤ di ≤ rw

0 di > rw
(9)

where di =
∣∣xQ − xi

∣∣ is the distance from node xi to the sampling point xQ, and rw is the
support size for the weight function.

3. Recursive Governing Equations

3.1. Recursive Elasto-Dynamics Equations

Consider a linear elastic body in a 2D domain Ω, with a boundary Γ, shown in Figure 1.
The solid is assumed to undergo infinitesimal deformations. The governing differential
equation for small displacement elasto-dynamics can be written as:

σij,j + bi − ρ
..
ui − c

.
ui = 0; σij = σji (10)

where σij is the stress tensor, which corresponds to the displacement field ui; bi is the body

force; ρ is the mass density; c is the damping coefficient;
.
ui =

∂ui
∂t is the velocity;

..
ui =

∂2ui
∂t2

is the acceleration.

Figure 1. Local domains and boundaries of MLPG.

The boundary conditions are given as follows,

ui = ũi on Γu (11)

ti ≡ niσij = p̃i on Γt (12)

where ui and ti are the prescribed displacements and tractions, respectively, on the dis-
placement boundary Γu and on the traction boundary Γt; and ni is the unit outward normal
to the boundaryΓ. The initial conditions are defined by

u(X, t0) = uin(X) X ∈ Ω (13)

.
u(X, t0) = vin(X) X ∈ Ω (14)

With uin and vin being the initial displacements and velocities at the initial time t0,
respectively.

To improve the computing accuracy, exploiting a discretized expanding technique is
of interest. At each discretized time subdomain, all variables can be described as

σ = ∑
m=0

σmsm (15)
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ε = ∑
m=0

εmsm (16)

c = ∑
m=0

cmsm (17)

b = ∑
m=0

bmsm (18)

u = ∑
m=0

umsm (19)

ũ = ∑
m=0

ũmsm (20)

p̃ = ∑
m=0

p̃msm (21)

s =
t − tk−1

Tk
(22)

where tk−1 and Tk represent the beginning time and size of time step, respectively; ũ and
p̃ represent the prescribed displacement and traction on the boundary, respectively; and
σm, εm, cm, bm, um, ũm, pm and p̃m are the expanding coefficients of σ, ε, c, b, u, ũ, p and
p̃, respectively.

The derivative with respect to t can be written in the form

d
dt

=
1
Tk

d
ds

(23)

Substitute Equations (15), (18) and (19) into Equation (10), and obtain

∑
m=0

σmij,jsm + ∑
m=0

bmism − ρ ∑
m=0

(m + 2)(m + 1)
T2

k
um+2ism−c ∑

m=0

m + 1
Tk

um+1ism = 0 (24)

Equate every power of sm, m = 1, 2, 3 . . ., and obtain

σmij,j + bmi − ρ
(m + 2)(m + 1)

T2
k

um+2i − c
m + 1

Tk
um+1i = 0 (25)

Equation (25) is the recursive governing equation by the time-domain adaptive method.
In the first time step, u0 and u1 are the initial conditions of displacement u and velocity

.
u, which can be described as:

u0 = u(X, 0) (26)

u1 =
.
u(X, 0)Tk (27)

Then, um can be obtained by solving Equation (37) iteratively. In the (m + 1)th time
step, the displacement and velocity can be obtained by:

un+1 =
n

∑
m=0

umk (28)

.
un+1 =

1
Tk

n

∑
m=0

mumk (29)

In each time step, the expanded order m could be obtained adaptively from the
following criteria:

||umsm ||2
||∑m−1

0 umsm ||2
≤ β (30)

where β is an error bound (for example β = 10−6)-; || ||2 represents the 2-norm of the matrix.
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3.2. Numerical Implementation of MLPG5

In the MLPG approaches, one may write a weak form over a local sub-domain Ωs,
which can be: (1) a circle, (2) an ellipse, (3) a rectangle or any other regular or irregular shape.
A generalized local weak form of the differential Equation (25) over a local sub-domain Ωs
can be written as:∫

Ωq
WI(σmij,j + bmi − ρ

(m + 2)(m + 1)
T2

k
um+2i − c

m + 1
Tk

um+1i)dΩ = 0 (31)

where WI is the test function. In mixed MLPG5, the Heaviside function is used as the test
function in the local weak form. It is defined as:

WI =

{
1 inside Ωq
0 outside Ωq

(32)

By substituting Equation (32) into Equation (31) and applying the divergence theorem,
Equation (31) may be rewritten in a symmetric weak form as:

∫
Ωq

(
ρ
(m + 2)(m + 1)

T2
k

um+2i + c
m + 1

Tk
um+1i

)
dΩ −

∫
Γqi

σmijnjdΓ −
∫

Γqu
σmijnjdΓ=

∫
Γqt

σmijnjdΓ +
∫

Ωq
bmidΩ (33)

where Γqi is a part of the local boundary, which is inside the solution domain; Γqu is the
intersection between the local boundary and the global displacement boundary; and Γqt is
a part of the boundary over which the natural boundary conditions are specified, as shown
in Figure 1.

In this paper, it is assumed that the body force is zero. By substituting the Equation (12)
into Equation (33), we have:

∫
Ωq

(
ρ
(m + 2)(m + 1)

T2
k

um+2i + c
m + 1

Tk
um+1i

)
dΩ −

∫
Γqi

tmi dΓ −
∫

Γqu
tmi dΓ=

∫
Γqt

p̃mi dΓ (34)

with the constitutive relations of an isotropic linear elastic homogeneous solid, the tractions
in Equation (34) can be written in terms of the strains:

tmi = nσm = nDεm (35)

εm = Lum (36)

where

n =

[
nx 0 ny
0 ny nx

]
(37)

D =
E

1 − ν2

⎡⎣ 1 ν 0
ν 1 0
0 0 1−ν

2

⎤⎦ f or plane stress (38)

In the mixed MLPG5 method, the interpolation of nodal displacements umi and strains
εmi can be accomplished by using the shape function mentioned in Section 2, as

uh
m(X) =

n

∑
k=1

φk(X)umk = ΦUm (39)

εh
m(X) =

n

∑
k=1

φk(X)εmk = Φεm (40)

where Φ is the shape function matrix; and Um and εm are the vector of virtual nodal
displacement and strain, respectively.
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With Equations (35)–(40), one may discretize the local symmetric weak-form of Equa-
tion (34), as:

(m + 2)(m + 1)
T2

k

∫
Ωq

ρΦdΩUm+2 +
m + 1

Tk

∫
Ωq

cΦdΩUm+1 −
∫

Γqi

nDΦdΓ(LΦUm)−
∫

Γqu
nDΦdΓ(LΦUm) =

∫
Γqt

p̃mdΓ (41)

Obviously, it can be found that no derivatives of the shape functions are involved in
the local integrals. While both shape function and its derivative at each point need to be
calculated in the traditional MLPG, which greatly increases the computing cost. The final
system equation can be rewritten in a matrix form:

(m + 2)(m + 1)
T2

k
MUm+2 +

m + 1
Tk

CUm+1 − KUm = F (42)

where M, C, K and F are the matrixes of mass, damping and stiffness, and the vector of
force, respectively. They are defined as follows.

M = ρ
∫

Ωq
ΦdΩ = ρS (43)

C = c
∫

Ωq
ΦdΩ = cS (44)

F =
∫

Γqt
p̃mdΓ (45)

K =
∫

Γqi

nDΦdΓ(LΦ) +
∫

Γqu
nDΦdΓ(LΦ) (46)

Once nonlinear damping is introduced, the system equation can be rewritten in
another form:

(m + 2)(m + 1)
T2

k
MUm+2 +

c0(m + 1)
Tk

SUm+1 +

(
c1m
Tk

S − K
)

Um = F (47)

where c0 and c1 represent the expanding coefficients of damping coefficient c.
In the present study, the Gauss quadrature is used for the subdomain integration in

Equations (43)–(46).

3.3. Natural Frequency Solved by Mixed MLPG5

The natural frequencies and corresponding mode shapes are often referred to as the
dynamic characteristics of the structure. While the mass matrix M and the stiffness matrix
K in the vibration system are obtained from Equation (42), the elasto-dynamics equation of
the undamped system can be written as a typical eigenvalue equation as follows:

λ = eig
(

M−1K
)

(48)

where λ is the vector of eigenvalues. Finally, the natural frequency can be solved by:

fi =

√
λi

2π
(49)

4. Numerical Examples

4.1. Free Vibration Analysis

Example 1:A Variable-Cross-Section Beam

In this example, the presented method is used in free vibration analysis of a cantilever
beam with a variable cross-section, as shown in Figure 2. The problem is solved for the
plane stress case with the following parameters: the length L = 10 m, the height H1 = 5 m,
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H2 = 3 m, the density ρ = 1 kg/m3, the Young’s modulus E = 3 × 107 Pa and the Poisson
ratio ν = 0.3.

Figure 2. A cantilever beam with a variable cross-section.

Regular and irregular nodal configurations were used, as shown in Figure 3. For
comparison, the problem was also analyzed by FEM software ANSYS (Mechanical). Addi-
tionally, the number of nodes used in ANSYS was 3978, which is 13 times more that used
in the presented method.

 

(a) (b) 

Figure 3. Nodal configuration for a variable-cross-section beam. (a) regular nodal distribution;
(b) irregular nodal distribution.

The natural frequencies of the first five modes were calculated by the presented mixed
MLPG method and the FEM software, as listed in Table 1. It can be seen that the natural
frequencies obtained by the presented method are in good agreement with that of ANSYS,
whether a regular or random node distribution is used.

Table 1. Comparison of the natural frequencies of the variable-cross-section beam obtained by the
meshless algorithm and ANSYS (FEM).

Mode

Mixed MLPG5 Regular Mixed MLPG5 Random
ANSYS

(FEM) (Hz)Frequency
(Hz)

Relative
Error (%)

Frequency
(Hz)

Relative
Error (%)

1 42.65 2.45 42.37 1.78 41.63
2 145.57 0.36 147.43 0.92 146.09
3 153.44 1.27 153.88 1.56 151.51
4 293.04 0.64 293.52 0.48 294.94
5 412.59 0.30 414.02 0.64 411.37

The first four eigenmodes obtained with the present mixed MLPG5 method are plotted
in Figure 4. Compared with the FEM results obtained by ANSYS, the results are identical.
As fewer nodes are used, the presented method has higher computational efficiency.
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(a) (b) 

 
(c) (d) 

Figure 4. Eigenmodes for the variable-cross-section beam by the mixed MLPG5 method. (a) Mode 1;
(b) mode 2; (c) mode 3; (d) mode 4.

4.2. Forced Vibration Analysis

Example 2:A cantilever beam with horizontal traction.

In the second example, the forced vibration analysis of a 2D cantilever beam is consid-
ered, as shown in Figure 5. The parameters are taken as, length L = 20 m, width D = 4 m,
Young’s modulus E = 1 × 105 Pa, Poisson ratio ν = 0.3, density ρ = 1 kg/m3 and damping
coefficient c = 1 Ns/m. The initial conditions are defined as:

u0 = uin(X, 0) = 0 (50)

u1 =
.
uin(X, 0) = 0 (51)

Figure 5. A cantilever beam subjected to horizontal traction.

The transient response of the beam subjected to a suddenly loaded traction P = 300 Pa
is considered. A regular uniform nodal configuration is used with nodal distances d = 1 m,
as shown in Figure 6.
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Figure 6. The nodal distribution for a cantilever beam.

The presented method was used to obtain the transient response. The Newmark
method and the present time-adaptive method were utilized in this analysis. The results of
time steps Δt = 0.001, 0.002, 0.005, 0.01, 0.02 s were obtained. For comparison, solutions
for this problem were also obtained using the FEM software ANSYS (Mechanical).

The horizontal displacement ux at point A of different time steps by the Newmark
method is plotted in Figure 7. Additionally, the parameters β = 0.3 and γ = 0.6 were
used. One can observe that for Δt = 0.001 s, the results are in good agreement with FEM.
However, it should be noted that the computational error would increase with the increase
in time step in the Newmark method due to the dissipation and dispersion errors. When
the time step is too large (e.g., Δt = 0.02 s), the accuracy would become unacceptable.
Thus, a straightforward way of reducing the dispersion and dissipation error in Newmark
method is to use a smaller time step size.

Figure 7. Displacements ux at point A using Newmark method with different time steps.
(α = 0.3, β = 0.6, 105 nodes with nodal distance d = 1.0 m ).

The horizontal displacement ux at point A for different time steps via the time-adaptive
method is plotted in Figure 8. As the results are quite close to the reference solution when
the time steps are 0.001, 0.002 and 0.005 s, it is hard to distinguish them on the figure.
Only the results of the time steps Δt = 0.01, 0.02, 0.04 s are plotted in Figure 8. It can be
found that all the results obtained by time-adaptive methods are in good agreement with
FEM, even if the time step is very large and the peak of displacement cannot be accurately
obtained. Since high-order expansion in each time step is adopted in a time-domain
adaptive method, a high precision result can be obtained by this time-adaptive method.
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Figure 8. Displacements ux at point A using a time-adaptive method with different time steps
(105 nodes with nodal distance d = 1.0 m ).

The calculation time and relative error at point A obtained by the two methods at
different time steps are shown in Table 2. One can observe that the computing time of the
Newmark method is less than that of our method, which shows that efficiency of Newmark
method is higher at any sized time step. Although not as fast as the Newmark method,
our method has higher accuracy when a large time step is used. Only when Δt = 0.001,
were the efficiency and accuracy of Newmark method higher than those of our method.
However, in engineering, it is difficult to predict the “best time step size.” As shown in
Table 2, the expansion order would increase with the increase in time step while the relative
error would remain unchanged. This is very useful for the forced vibration analysis in
engineering applications, especially in long-time response analysis, as a large time step
is preferred.

Table 2. The computing time, the order of expanding and the mean relative error at point A for two
time-discretization methods.

Method DeltaT (s)
Computing

Time (s)
Order of

Expanding
Relative Error at

Point A (%)

Newmark

0.001 0.283

/

3.30
0.002 0.164 3.99
0.005 0.072 7.45
0.01 0.042 14.40
0.02 0.026 27.87
0.04 0.018 52.91

Adaptive

0.001 1.183 7 3.47
0.002 0.693 9 3.42
0.005 0.419 15 3.72
0.01 0.314 24 3.17
0.02 0.259 42 3.29
0.04 0.227 79 3.13

The test-domain size St and the support size Ss (or the size of the influence domain) are
the key components for the mixed MLPG5 method. Both of them affect the computational
efficiency and the accuracy. In the present study, the test domain size and the support size
were chosen to be proportional to the nodal distance d.

In practice, the test-domain size is chosen to be less than 1.0 d to ensure that the local
sub-domains of the internal nodes are entirely within the solution domain, without being
intersected by the global boundary. In the present study, five test-domain sizes were used,
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0.4, 0.5, 0.6, 0.7 and 0.8 d. Additionally, the support size was fixed as 1.5 d and the nodal
distance was fixed as 1 m. The displacements ux at point A (shown in Figure 5) were used
to examine the effects of the different test-domain size, as shown Figure 9. It can be seen
that accuracy is excellent when the test-domain size is less than 0.7 d. It is noticeable that
the accuracy would become unacceptable when the test-domain size is larger than 0.8 d,
as the sub-domains are obviously over-lapping. Our study has found that the test size
St = 0.4 − 0.7 works for most of forced vibration problems. Additionally, St = 0.6 was
used in the following calculations.

Figure 9. Influence of the test domain size in a cantilever beam under an end load (105 nodes with
nodal distance d = 1.0 m, at point A).

For a small support size, the meshless approximation algorithms may be singular, and
the shape function cannot be constructed because of too few nodes. In the present study,
four support sizes (1.2, 1.5, 1.8 and 2.1 d) were used for the MLPG5 mixed approach. The
nodal distance was fixed as 1 m. The displacements ux at point A (shown in Figure 5) were
also used to examine the effects of the support-domain size, as shown in Figure 10.

Figure 10. Influence of the support size in a cantilever beam under an end load (105 nodes with nodal
distance d = 1.0 m, at point A).

It can be seen that good accuracy is obtained when the support sizes are 1.5 d and
1.8 d. However, the result becomes more unstable when the support size is 2.1 d, as the
continuous shape function leads to smoother results but lower accuracy. Our study has
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found that support sizes of Ss = 1.2 − 1.8 work for most of forced vibration problems.
Additionally, Ss = 1.5 was used in the following calculations.

Example 3:A cantilever beam with vertical traction.

In this example, our method is used to analyze the forced vibration of a cantilever beam
subjected to a vertical traction with different damping coefficient, as shown in Figure 11.
The problem is solved for the plane stress case with: length L = 48 m, width D = 12 m,
Young’s modulus E = 3 × 107 Pa, Poisson ratio ν = 0.3 and density ρ = 1 kg/m3. A
regular set of 85 scattered nodes with nodal distances d = 3 m is employed here, as shown
in Figure 12. The same initial conditions are defined as:

u0 = uinitial(X, 0) = 0 (52)

u1 =
.
uinitial(X, 0) = 0 (53)

Figure 11. A cantilever beam subjected to a vertical traction.

Figure 12. The nodal distribution for a cantilever beam.

Three kinds of traction at the free end of the beam while using P(x, t) = 10, 000 g(t) N/m
are considered in this example: one is a Heaviside step loading, another is a transient
loading with a finite decreasing time and the last is a transient loading with a finite
increasing time, as shown in Figure 13. Additionally, the g(t) is the time-dependent function.
The vertical displacement at point A, and the normal stress at points B and C (shown in
Figure 11) were computed. To verify the accuracy of the present algorithm, the problem
was also analyzed by FEM software ANSYS (Mechanical), where 2425 nodes (27 times more
than our method) were adopted.

69



Mathematics 2022, 10, 1722

 
 

(a) (b) (c) 

Figure 13. Schematic diagram of dynamic loadings. (a) Heaviside step loading with an infinite
duration; (b) transient loading with a finite decreasing time; (c) transient loading with a finite
increasing time.

a. Heaviside step loading with an infinite duration

The transient response of the beam subjected to Heaviside step loading with an infinite
duration is considered. The loading function is determined by

g(t) = 1.0 (54)

as shown in Figure 13a. This type of dynamics analysis under impact loading is usually
defined as dynamic relaxation [26]. The mixed MLPG5 method was combined with the time-
adaptive method and used to obtain the transient response. The displacements uy of point A
with damping coefficients c = 1, 10 and 20 Ns/m are plotted in Figures 14–16, respectively.
It is evident that the response converges to the static deformation (uy = 10.682 m, obtained
by ANSYS) once a damping is introduced, and the deformation declines fast with an
increase in damping coefficient. All of them are in good agreement with the ANSYS results.

Figure 14. The transient vertical displacement at point A with damping (c = 1 Ns/m), Δt = 0.005 s,
under Heaviside step loading with an infinite duration.

70



Mathematics 2022, 10, 1722

Figure 15. The transient vertical displacement at point A with damping (c = 10 Ns/m), Δt = 0.005 s,
under Heaviside step loading with an infinite duration.

Figure 16. The transient vertical displacement at point A with damping (c = 20 Ns/m), Δt = 0.005 s,
under Heaviside step loading with an infinite duration.

In addition, the vertical displacement fields of the deformed cantilever beam at differ-
ent time steps (t = 0.005, 0.01, and 0.02 s) are shown in Figures 17–19. One can observe that
with time, the stress wave propagates from the free end towards the fixed end. Thus, the
displacement distribution in elasto-dynamics is quite different from that in static analysis.

Figure 17. Vertical displacement field of the cantilever beam (c = 1 Ns/m, t = 0.005 s,), under
Heaviside step loading with an infinite duration.
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Figure 18. Vertical displacement field of the cantilever beam (c = 1 Ns/m, t = 0.010 s), under
Heaviside step loading with an infinite duration.

Figure 19. Vertical displacement field of the cantilever beam (c = 1 Ns/m, t = 0.020 s), under
Heaviside step loading with an infinite duration.

The normal stress σxx at point B is shown in Figure 20. The damping coefficient is
c = 1 Ns/m. It can be seen that the results obtained by Newmark method have larger
errors due to the numerical dissipation and dispersion, and the results obtained by our
time-adaptive method are in good agreement with those of the reference solution. Thus,
our method works very well, and it is more accurate than the Newmark method for the
forced vibration analysis.

Figure 20. The normal stress σxx at point B with damping coefficient c = 1 Ns/m and Δt = 0.005 s
under Heaviside step loading with an infinite duration.
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b. Transient loading with finite decreasing time

The transient response of the beam subjected to a transient loading with a finite
decreasing time is considered. The loading function is defined as

g(t) =
{

1 − t 0 < t < 1
0 t > 1

, (55)

as shown in Figure 13b.
The displacements uy of point A with different damping coefficients are plotted in

Figures 21–23. It can be seen that as the damping coefficient increases, the amplitudes
decay faster and the duration of vibration is shorter. Very stable results with different
damping coefficients were obtained by our method, and they are in good agreement with
the results obtained by ANSYS. The computing time with the mixed MLPG5 time-domain
adaptive method and ANSYS (FEM) are included in Table 3, for different nodal numbers.
Additionally, the time step was fixed to 0.001 s. It also can be seen that our method is more
efficient than ANSYS (FEM). From these results, our method shows good approximations
to the transient responses of different damps with high efficiency.

Figure 21. The transient vertical displacement at point A with damping (c = 1 Ns/m) and
Δt = 0.001 s under transient loading with finite decreasing time.

Figure 22. The transient vertical displacement at point A with damping (c = 4 Ns/m) and
Δt = 0.001 s under transient loading with finite decreasing time.
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Figure 23. The transient vertical displacement at point A with damping (c = 10 Ns/m) and
Δt = 0.001 s under transient loading with finite decreasing time.

Table 3. Computing time of two algorithms.

Numerical Methods Number of Nodes Step Size (s) Computing Time (s)

Mixed MLPG5 time
Adaptive Method

85 (17 × 5)

0.001

3.3257
175 (25 × 7) 10.105

ANSYS(FEM)
85(17 × 5) 10.484

175 (25 × 7) 21.828

c. Time-dependent damping

In this example, the transient response of the beam subjected to a time dependent
loading (shown in Figure 13c) and nonlinear damping is considered. The loading function
and the damping coefficient are defined as follows:

g(t) =
{

2.5t 0 < t < 0.4
0 t > 0.4

(56)

c = 1 + t (57)

The example was solved by our method using different time step sizes. It can be seen
in Figure 24 that the normal stress levels σxx at point C with different time step sizes are
quite close to each other. For comparison, the normal stress levels σxx at point C solved by
the Newmark method are plotted in Figure 25. It can be seen that the Newmark method still
has large errors due to the numerical dissipation and dispersion. It also cannot accurately
capture the stress peaks when a larger time step (Δt = 0.006 s) is adopted.

In addition, the shear stress levels τxy at different times solved by our method are
shown in Figures 26–28. It can be clearly seen in Figures 27 and 28 that the stress concen-
trated on the center of the beam, as a result of the diffraction and reflection of elastic stress
waves. This shows that the stress distribution in the dynamic problem is very different
from that in a static problem. The results demonstrate that our method works well for the
nonlinear forced vibration analysis.
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Figure 24. The normal stress σxx at point C with different time steps (nonlinear damping
c = 1 + t Ns/m ).

Figure 25. The normal stress σxx at point C using time-adaptive method and the Newmark method
(nonlinear damping c = 1 + t Ns/m ).

Figure 26. Shear stress τxy of the cantilever beam (t = 0.4 s), with time-dependent damping.
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Figure 27. Shear stress τxy of the cantilever beam (t = 0.48 s), with time-dependent damping.

Figure 28. Shear stress τxy of the cantilever beam (t = 0.58 s), with time-dependent damping.

Example 4:A Perforated Tension Strip

The last example is a perforated strip under axial tension, as shown in Figure 29. This
problem has been studied by Kontoni and Beskos, using the dual reciprocity BEM [27].
The strip was subjected to a Heaviside tension step load with initial value P = 20 Pa.
The material properties of the strip were taken as: length L = 1.6 m, width D = 1.0 m,
Young’s modulus E = 2 × 103 Pa, Poisson ratio ν = 0.3, density ρ = 1 kg/m3 and damping
coefficient c = 1 Ns/m. The initial conditions were defined as:

u0 = uin(X, 0) = 0 (58)

u1 =
.
uin(X, 0) = 0 (59)

Symmetry conditions were imposed on the left and right edges, and the inner bound-
ary of the hole had no traction. Regular uniform nodal configurations with nodal distances
d = 0.03 m were used in this example, as shown in Figure 30. The time step used in the
time-adaptive method was Δt = 0.001 s. The horizontal displacement of point A (0.00,
0.05) and vertical displacement of point B (0.05, 0.00) are plotted in Figures 31 and 32,
respectively. For comparison, solutions for this problem were also obtained using the
finite element software ANSYS (Mechanical). It is evident that the results obtained by our
method are in very good agreement with those obtained by ANSYS.
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Figure 29. A perforated tension strip subjected to a Heaviside tension step loading.

Figure 30. Nodal configurations for a perforated tension strip.

Figure 31. The transient vertical displacement at point A, Δt = 0.001 s and c = 1 Ns/m for the
Heaviside tension step loading.
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Figure 32. The transient vertical displacement at point B, Δt = 0.001 s and c = 1 Ns/m for the
Heaviside tension step loading.

It can be observed that the maximum displacement level for point A and point B
occurs at t = 0.065 s, and the maximum displacement of point A in the reverse direction
occurs at t = 0.105 s. The displacement fields of this perforated tension strip at t = 0.065 s
and t = 0.105 s are shown in Figures 33 and 34. The results prove the efficiency and accuracy
of the developed meshless time-adaptive method for forced vibration analysis in multiple
connected domains.

Figure 33. The displacement field of this perforated tension strip at t = 0.065 s.

Figure 34. The displacement field of this perforated tension strip at t = 0.105 s.
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5. Conclusions

In this paper, a new meshless time-domain adaptive method was presented for vi-
bration analysis through mixed MLPG-FVM (MLPG5). In this method, each variable is
interpolated by time series of variable order in the time domain. Thus, more accurate stress
and displacement can be obtained, and larger time steps can be used in vibration analysis
compared with the Newmark method (when the time step is 0.04, the calculation error of
this method is only 1/17 of that of the Newmark method). Furthermore, through the inde-
pendent interpolation of strain and displacement, the differentiation of the shape function
is eliminated and the lower-order polynomial basis can be used in the MLS interpolations.
Thus, smaller support sizes (Ss = 0.4− 0.7, and the test sizes St were 1.2–1.8) can be used in
the MLPG approach. By using the Heaviside function as the weighted function, the domain
integral of stiffness matrix is removed and the calculation efficiency is improved. All the
numerical results show that the time-domain adaptive method can cooperate well with
the meshless method, and the calculation accuracy of the present method is satisfactory
with various time step sizes. This high-accuracy time-domain scheme is very attractive for
second-order PDE in time as elasto-dynamics equations. Put simply, this method provides
a high efficiency and accuracy solution for solving free and forced vibration problems in
both simply and multiply-connected domains under large time step sizes without any type
of mesh.
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Abstract: Short-term wind power forecasting (SWPF) is essential for managing wind power systems
management. However, most existing forecasting methods fail to fully consider how to rationally
integrate multi-view learning technologies with attention mechanisms. In this case, some potential
features cannot be fully extracted, degenerating the predictive accuracy and robustness in SWPF. To
solve this problem, this paper proposes a multi-view ensemble width-depth neural network (MVEW-
DNN) for SWPF. Specifically, MVEW-DNN consists of local and global view learning subnetworks,
which can effectively achieve more potential global and local view features of the original wind
power data. In MVEW-DNN, the local view learning subnetwork is developed by introducing the
deep belief network (DBN) model, which can efficiently extract the local view features. On the
other hand, by introducing the attention mechanism, a new deep encoder board learning system
(deBLS) is developed as the global view learning subnetwork, which provides more comprehensive
global information. Therefore, by rationally learning the effective local and global view features,
MVEW-DNN can achieve competitive predictive performance in SWPF. MVEW-DNN is compared
with the state-of-the-art models in SWPF. The experiment results indicate that MVEW-DNN can
provide competitive predictive accuracy and robustness.

Keywords: renewable energy; wind power forecasting; hybrid model; machine learning

MSC: 65-04

1. Introduction

Since wind power has clean and pollution-free features compared with traditional
energy sources, it has become an important part of modern power systems [1–3]. In fact,
accurate wind power forecasting (WPF) is becoming increasingly important because it
can optimize the generation schedules and units, as well as improve the profitability and
stability of the power system [4,5]. However, it is still a challenging task to obtain accurate
and robust WPF due to the uncertainty, volatility, and intermittency of wind speed [6].

To improve the predictive accuracy and robustness in SWPF, various forecasting meth-
ods have been developed. These systems can be divided into physical methods, statistical
methods, and machine learning methods [7]. Physical methods mainly rely on numerical
weather prediction (NWP) information such as atmospheric pressure, temperature, and
relative humidity [8]. For example, Zjavka et al. [9] designed a wind power forecasting sys-
tem by polynomial decomposition of the general differential equation. Jacondino et al. [10]
proposed a weather and research forecasting (WRF) system for forecasting wind power
from two different wind farms.
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Statistical methods involve the application of autoregressive dynamic adaptive (ARDA)
models [11], Bayesian models [12], autoregressive moving average (ARMA) models [13],
Gaussian mixture models [14,15], and the quantile regression neural network (QRNN)
models [16]. In ultra-short wind power forecasting (UWPF), wind power data are almost
linear. Since statistical and physical methods can be easily formulated into linear predictive
models, they provide promising predictive results for UWPF [17]. However, different from
UWPF, short-term wind power forecasting (SWPF) has higher volatility and more uncertain
power load data. Therefore, statistical and physical methods cannot handle such nonlinear
characteristics information in SWPF [18].

To obtain better predictive performance in SWPF, various machine learning models
have been developed. Because machine learning effectively constructs the nonlinear map-
ping relationship between the input and output of wind power data, it can effectively learn
and mine the nonlinear characteristics from wind power data [19]. The commonly used
machine learning models are support vector machines (SVRs) [20], deep belief networks
(DBNs) [21], echo state networks (ESNs) [22], extreme learning machines (ELMs) [23], and
broad learning systems (BLSs) [24].

For example, as a promising deep learning network, DBN is composed of multi-
ple restricted Boltzmann machines, which provides powerful nonlinear data processing
capability. However, DBN can produce high-dimensional features because of multiple
BPNN layers. This may limit the prediction performance [25]. BLS is a new single-layer
incremental neural network. Its advantages lie in fast computing speed, low computing
resource consumption, easy online incremental learning, and easy expansion. However,
BLS needs to perform the random nodes selection and pseudo-inverse calculation, so that
its predictive accuracy is often inferior to deep-learning networks in the face of large-scale
data. Furthermore, a single BLS model may have problems such as over-training, poor
generalization ability, or limited prediction accuracy [26].

Wind power can be significantly influenced by many natural factors such as geograph-
ical location, weather conditions, and seasonal effects [27]. To overcome the instability and
intermittent nature of the time series in SWPF, the combination of the decomposition-based
method and the machine learning model has been proven to be an effective solution [28].
Chen et al. [29] used the discrete wavelet transform to decompose PV output power. The
decomposed subsequences were then fed into an adaptive neuro-fuzzy inference system
(ANFIS) to predict the short-term PV output power. Wang et al. [30] developed the VMD-
CISSA-LSSVM model, consisting of the variational modal decomposition (VMD) data
preprocessing method, the sparrow search algorithm (SSA), and the least squares support
vector machine (LSSVM) model, which has high prediction accuracy and stable prediction
results. Devi et al. [31] rationally combined ensemble empirical mode decomposition
(EEMD), cuckoo search optimization algorithm, and an improved LSTM to improve fore-
casting accuracy. Zhang et al. [15] integrated CEEMDAN to Gaussian process regression,
which can also obtain promising prediction performance.

Furthermore, to further improve the prediction ability of a single machine learning
model, hybrid models are also considered effective solutions. This because the hybrid
models can compensate for the disadvantage of each method. For example, Zhao et al. [32]
used CNN and attention mechanisms to provide more reliable multitask learning accuracy.
In [33], the attention mechanism is combined with the gated recurrent unit (GRU) network,
obtaining robust prediction performance. In [34], a novel genetic long short-term memory
(GLSTM) framework was developed to provide accurate, reliable, and robust performance
in SWPF. The genetic technology is used to automatically optimize LSTM parameters
according to different wind power data. Khan et al. [35] combined autoencoder (AE) and
bidirectional long short-term memory (BiLSTM) to form a novel hybrid model. Duan
et al. [36] proposed a novel hybrid model consisting of VMD, LSTM, and PSO-DBN. Wu
et al. [37] used the charged system search (CSS) algorithm to construct a hybrid model,
which consists of least-squares-support vector machines (LS-SVM), a modified artificial
neural network (ANN), and an adaptive network-based fuzzy inference system (ANFIS)
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model. Ogliari et al. [38] built a hybrid model by combining the physical and ANN-
developed models, which can give some knowledge about the wind turbine characteristics
to the ANN model. Hong et al. [39] effectively combined CNN with a radial basis function
neural network (RBFNN). Here, RBFNN is built for dealing with uncertain characteristics,
and CNN is built for extracting wind power characteristics, so that it also has outstanding
prediction performance. Ribeiro et al. [40] proposed an ensemble learning model by
introducing bagging and stacking, which integrated the samples through the arithmetic
and weighted average values.

Note that some multi-view hybrid models have recently also gained outstanding
prediction performance. For example, Lai et al. [41] proposed a multi-view neural network
by rationally combining LSTM model with RBFNN model for short- and mid-term load
forecast, which has higher generalization ability. Nguyen et al. [42] decomposed time series
data into a closely related time series group and a loosely related group, which are fed into
a multitask learning model and a multi-view learning part, respectively. Zhong et al. [43]
devised a multi-view deep forecast model for solar irradiance forecast, which uses multiple
related data sets to feed into the RBFNN model and one hybrid model (MvDF).

Although the existing methods have achieved great success, there are still some
problems that need to be further solved as follows:

1. For the SWPF task, the existing machine learning methods rarely consider the com-
promise between prediction accuracy and computation cost. Although BLS [24] has
attracted considerable attention for its fast training speed and incremental learning
algorithm, the prediction performance of BLS is also limited. Because BLS has prob-
lems such as the randomness of its parameter settings [26] and its sensitivity to the
number of enhanced nodes, vulnerability to noise, and lack of uncertainty expression
ability. Furthermore, although various deep learning models can achieve promising
performance, computation costs are high.

2. Most hybrid machine learning methods rarely consider how to establish a multi-
view learning mechanism, which may degenerate the predictive accuracy. Although
researchers [15,30,31] have introduced decomposition in single models, the models
cannot comprehensively learn original data characteristics, so that the robustness of
the models is limited.

3. The attention mechanism is integrated into CNN [32] and GRU [33] for obtaining
stable performance and providing feature selection, respectively. However, this
technology is rarely considered for adjusting network structures while applying to
different regression tasks, which may limit the improvement of model performance
on other data sets.

4. Most existing models seldom consider how to effectively and stably connect two
distinctly different models. For instance, a fully connected neural network is used
to connect two different models in [35], which may cause gradient disappearing or
exploding while connecting two much different models.

From the above analysis, our investigation mainly considers how to effectively inte-
grate a decomposition mechanism and a multi-view learning mechanism into machine
learning for efficient and stable SWPF. Considering the above motivation, this paper pro-
poses a multi-view ensemble width-depth neural network (MVEW-DNN), which involves
a local view learning subnetwork (CEEMDAN-DBN), a global view learning subnetwork
(deBLS), and a feature dynamic decisionmaker (FDDM). The local view learning subnet-
work covers CEEMDAN and a deep belief network (DBN), which can effectively extract
part features of wind power load data. On the other hand, the global view learning
subnetwork is an encoder board learning system (deBLS), which can provide more com-
prehensive features. In addition, the effective feature dynamic decisionmaker (FDDM)
is developed to effectively fuse the local view learning subnetwork and the global view
learning subnetwork.
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The main contributions are as follows:

1. A novel width-depth integration model with a global view and a local view is intro-
duced for short-term wind power forecasting. Different from other multi-view models,
our model focuses on improving model performance and reducing the computational
cost of the global view learning subnetwork (deBLS) as much as possible.

2. The deBLS model is developed by rationally replacing the feature nodes with the
multiple encoder nodes, which can improve the learning ability of BLS. Furthermore,
the deBLS introduced an attention mechanism of adjusting the enhancement nodes to
achieve higher prediction accuracy.

3. An effective feature fusion model FDDM is proposed for rationally combining the
deBLS and CEEMDAN-DBN, which can promise optimal predictive performance.

The rest of this paper is arranged as follows. The framework of the model and related
theoretical knowledge are introduced in Section 2. Section 3 analyses the test data and
details the concrete case analysis. Section 4 is the conclusion of this paper.

2. The Proposed MVEW-DNN

As shown in Figure 1, the proposed MVEW-DNN is divided into global view and local
view learning subnetworks. In the local view learning subnetwork (CEEMDAN-DBN),
CEEMDAN decomposes the original wind power data into multiple local view components.
Then, the DBN network is used to extract the features of the local view components. In
the global view learning subnetwork (deBLS), the original wind power data are regarded
as the global view data. The deBLS model is developed to learn the features of the global
view data. Finally, the FDDM method is developed to fuse CEEMDAN-DBN and deBLS
by dynamically adjusting the fusion parameters. The FDDM method can monitor the
performance of deBLS and CEEMDAN-DBN in the training phase, which can obtain the
best model fusion performance.

Figure 1. MVEW-DNN consists of the CEEMDAN-DBN, deBLS, and FDDM. deBLS is established for
the global view. CEEMDAN-DBN is established for the local view.

2.1. Local View Subnetwork

Wind power data have high uncertainty and volatility, degenerating the predictive
accuracy. To address these problems, CEEMDAN is applied to decompose the original
wind power data into multiple smooth local view components called eigen-modes [44],
and DBN is used to effectively capture more local view characteristics of wind power data.
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2.1.1. Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)

In contrast with EMD and EEMD, CEEMDAN overcomes the modal aliasing of EMD
and the inefficiency of EEMD on some closely spaced spectral signals. Furthermore,
CEEMDAN adds white noise to each decomposition stage so that the noise of the original
data and the added white noise are superimposed and cancel each other. Therefore,
CEEMDAN gradually eliminates the reconstruction error in the iterative process, which
ensures the accuracy of the decomposition and greatly improves the influence of the modal
aliasing. The details of CEEMDAN are given as follows:

Assumption 1. y0(t) is defined as the original signal. nm(t) is defined as a Gaussian white noise
signal with a standard normal distribution, and m ∈ [1, M]. β is defined as the noise coefficient
of nm(t). E[∗] is defined as the EMD decomposition. IMFk(t) is defined as the kth intrinsic mode
function obtained by the CEEMDAN.

Step 1 Add Gaussian white noise to y0(t) to get a new signal y0(t) + (−1)qβ0nm(t), q = 1, 2.
Perform EMD on the new signal to get the IMFm

1 (t):

E
(
y0(t) + (−1)qβ0nm(t)

)
= IMFm

1 (t) + rm (1)

Step 2 Average IMFm
1 (t) to get IMF1(t), as show in Formula (2). Then, calculate the residual

r1(t) after removing IMF1(t):

IMF1(t) =
1
M ∑M

m=1 IMFm
1 (t) (2)

r1(t) = y0(t)− IMF1(t) (3)

Step 3 Add Gaussian white noise to r1(t) to get a new signal and perform EMD on the new
signal to get the IMFm

2 (t). Then, IMF2(t) and residual r2(t) can be obtained:

IMF2(t) =
1
M ∑M

m=1 IMFm
2 (t) (4)

r2(t) = r1(t)− IMF1(t) (5)

Step 4 The above steps are repeated until the obtained residual signal is a monotonic function
and the decomposition signal cannot be continued. At this time, the number of
intrinsic mode function is K. Finally, the original signal y0(t) is decomposed into

y0(t) =
K

∑
k=1

IMFk(t) + rK(t) (6)

2.1.2. Deep Belief Network (DBN)

DBN is a probability map model that includes multiple restricted Boltzmann machines
(RBM). Here, it is used to effectively extract effective local multiple view features from the
decomposed smooth signals of CEEMDAN. The training process of DBN can be divided into
two phases, namely pretraining and fine-tuning. In the pretraining phase, RBM is trained in
an unsupervised manner. In the fine-tuning phase, DBN is treated as a backward propagation
neural network for supervised learning that can fine-tune the model parameters.

2.2. Global View

Although decomposition methods such as CEEMDAN can decompose the original
wind power load data into multiple smooth local view components, it may lead to the
loss of the original wind data during the entire decomposed process. To compensate for
the information loss from the above decomposed view components, we develop a deep
encoder board learning system (deBLS) to extract global view information from original
wind power data.
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In the traditional BLS, its feature node generation method is feature mapping, and
its number of enhancement nodes is preset. Different from the traditional BLS, deBLS has
improvements in how it generates both feature nodes and enhancement nodes. Specifically,
the deBLS method of generating feature nodes contains not only feature mapping but also
a sparse encoder. Its number of enhanced nodes can also be automatically adjusted via an
attention mechanism. The details of deBLS are given as follows:

Definition 1. X and Ŷ are defined as the input and output of deBLS, respectively. Ji is defined as the
feature nodes, i = 1, 2, · · · , n. Jn = [J1, J2, · · · Jn] is defined as the combination of all feature nodes;
δe, and δh are defined as bias matrices; and the four matrices are fine-tuned by a sparse encoder.

Step 1 By feature mapping, the original data X is mapped into n nodes Ki, as shown in Formula
(7). Here, η(·) is a linear transform. Then, by increasing the depth, a three-layer sparse
encoder is used to perform feature extraction on nodes Ki to obtain Jn.

Ki = η(XWei + δei ), i = 1, 2, · · · , n (7)

Step 2 By enhancing and transforming with Jn, the enhancement nodes Ek can be obtained as

Ek = tanh
(

JnWhk
+ δhk

)
, k = 1, 2, · · · , m (8)

Note that the number of enhancement nodes has an impact on the prediction perfor-
mance. To obtain a suitable number of enhancement nodes, we introduce the attention
mechanism to deBLS, which can automatically adjust the number of nodes of deBLS to the
most suitable number in the training phase. Here, a detailed pseudo-code for the attention
mechanism algorithm is given in Algorithm 1. When the number of enhancement nodes is
determined, Em and B can be obtained.

Algorithm 1: Attention Mechanism Algorithm.

// Our attention mechanism Algorithm is located on lines 11 to 13
Original data X is divided into training set and testing set. The training set consists of train-x and
train-y, the testing set consists of test-x and test-y.
Input: train-x, train-y, test-x
Output: W
Process:

while 1

1: if the training error threshold is not satis f ied do

2: k = k + 1, m = m + 1;
3: Random Whk

, δk;
4: Calculate Em = [ξ

(
JnWk + δhk

)
];

5: Set Em = [E1, E2, · · · , Em], B = [Jn|Em];
6: r is the number of rows of matrix B′;
7: I is a r × r unit matrix;
8: Set parameter C as 2−30;

9: Calculate Wm by B′×train−y
(B′×B+I×C) ;

10: Calculate Y by B × Wm;
11: Calculate the cosine similarity between train-y and Y as δ;
12: Wm = Wm + δ × ω, ω is a parameter ∈ [0, 1];
13: Update Y by Y = B × Wm;
14: Calculate the training error between Y and train-y;
15: else

16: break;
17: end

18: end

Step 3 Calculate the weight matrix W. The predictive result Ŷ can be expressed as Ŷ = BW.
Furthermore, during the training phase, the actual value Y is known, and therefore,
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the weight matrix W can be calculated as shown in Formula (9), where B+ is the
pseudo-inverse of B:

W = B+Y (9)

To obtain a suitable W, the ridge regression is used to transform the above problem
into argmin

W

(
‖Ŷ − Y‖2

2 + λ‖W‖2
2

)
. Here, λ is the regularization parameter; when λ → 0 ,

W =
(
λI + BBT)−1BTY where I is the identity matrix. Thus, B+ can be obtained as

B+ = lim
λ→0

((λI + BBT)−1BT). (10)

2.3. FDDM

FDDM was developed to reasonably allocate the fusion weights of deBLS and
CEEMDAN-DBN on the training stage and the test stage by dynamically adjusting the
fusion parameters. This can achieve the optimal prediction performance of the proposed
hybrid MVEW-DNN model (Algorithm 2).

Algorithm 2: FDDM Algorithm.

M: Cross-validation fold
N : The length of the test set (the number of output nodes)
WB : Fusion weight of deBLS
VB
(
V̂B
)
: Prediction validation data (Real validation data) of deBLS

TB : Prediction test data of deBLS
WD : Fusion weight of DBN
VD
(
V̂D
)
: Prediction validation data (Real validation data) of DBN

TD : Prediction test data of DBN
ρ: Correlation test threshold
Error of each node : ε(x, y) = |xi−yi |

‖x−y‖2
, i ε [1, N ] (11)

Correlation value : λ(x, y) = |∑n
i=1(xi−x)(yi−y)|√

∑n
i=1(xi−x)4 ∑n

i=1(yi−y)4
(12)

Process:

1: WB = WD = zero[M, N ];
2: ρ = 2; M = 4;
3: for m = 1; m ≤ M do

4: Obtain Vm
B and V̂m

B from VB and V̂B , respectively.
5: Obtain Vm

D and V̂m
D from VD and V̂D , respectively.

6: for n = 1; n ≤ N do

7: Calculate error εB between Vm
B and V̂m

B by Formula (11).
8: Calculate error εD between Vm

D and V̂m
D by Formula (11).

9: if εn
B > εn

D then

10: WB(m, n) = 1; // Give deBLS a higher fusion weight.
11: else WD(m, n) = 1;
12: end

13: end

14: for m = 1; m ≤ M do

15: Calculate λ between WB(m, :) and WD(m, :) by Formula (12).
16: if λ < ρ then

17: WB(m, :) = WD(m, :) = [ ];// Clear WB(m, :) and WD(m, :).
18: end

end

Here, the original data are divided into training data set, validation data set, and the
test data set, whose proportion is set as 6:2:2. The cross-validation fold parameter M is set
as 4, which keeps the same weight length of validation data set and test data set. Therefore,
the final prediction data can be defined as P = WB ∗ TB +WD ∗ TD . Additionally, the
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parameter ρ is set as 2, which is determined by our experimental tests [45]. In general,
MVEW-DNN can effectively provide the prediction of SWPF by rationally combining
deBLS and CEEMDAN-DBN.

2.4. Evaluation Criteria

To test the performance of the proposed MVEW-DNN, we use three evaluation in-
dicators: Normalized Root Mean Square Error (NRMSE), Normalized Mean Absolute
Error (NMAE), and Theil’s inequality coefficient (TIC), as shown in Formulas (13)–(15).
NRMSE and NMAE are utilized to measure the deviation between the actual value and the
predictive value. TIC is applied to characterize the predictive performance of predictive
models. The smaller the NRMSE and NMAE are, the stronger the non-linear approximation
capability is. The closer to 0 the TIC is, the stronger the spatial learning ability is:

NRMSE =

√
1
N ∑N

i=1(yi − ŷi)
2

ŷmax − ŷmin
(13)

NMAE =
1
N ∑N

i=1|ŷi − yi|
ŷmax − ŷmin

(14)

TIC =

√
1
N ∑N

i=1(yi − ŷi)
2√

1
N ∑N

i=1 y2
i +
√

1
N ∑N

i=1 ŷ2
i

(15)

where ŷi and yi are the predictive and actual values at the time i, N is the observation size.

3. Results and Discussion

3.1. Data Description and Experiment Settings
3.1.1. Data Description

The real wind power data from the Wind Forecasting track of the Global Energy
Forecasting Competition 2021 (GEF-Com2021) are used to test the predictive performance
of MVEW-DNN [46]. This data set contains the wind power measurement values and wind
speed data from seven wind farms (WF1–WF7). The time resolution of the data is one hour.
In [46], the data set was normalized. The data set contains data from 1 a.m. on 1 July 2009
to 12 a.m. on 26 June 2012. The entire data set contains 18,757 samples. In experiments, we
consider the forecasts for the next 24 h. To effectively test the predictive models, the data
from the last 24 h of the data set is first excluded. Then, the data set is divided into training
set (75%) and testing set (25%).

Wind power data form a random, seasonal, nonlinear time series. Figure 2 displays the
wind power data characteristics of the seven wind farms (wp1–wp7) in a box diagram. By
analyzing the data characteristics of the seven wind farms, we find that there are inevitably
abnormal data points in the data set. The abnormal data points are mainly caused by
uncontrollable factors such as breakdown and operation planning [47].

Figure 3 shows some data points that correspond to high wind speeds and zero
power generation. These abnormal data points are mainly caused by the shutdown of the
turbine [48]. Therefore, prediction systems are required to provide high prediction accuracy
and robustness when performing SWPF tasks.
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Figure 2. The wind power data characteristics of 7 wind farms. The green triangles and circles
represent the outliers and the average values of the data set respectively. The short purple lines on
the upper side represent the maximum values, while those on the lower side represent the minimum
values. And the short green lines represent the median values.

Figure 3. Wind power curve of WF3 under 1-h sampling rate. The blue points refer to the sampling
moments. The vertical coordinates of the blue points indicate the wind power measurement values at the
sampling moments, and the horizontal coordinates of the points are the corresponding wind speed data.

3.1.2. Experiment Settings

The parameter settings of the proposed MVEW-DNN model are given as follows.
MVEW-DNN mainly consists of the local learner (DBN) and the global learner (deBLS).
First, when the original data are decomposed by the CEEMDN algorithm, the signal-to-
noise ratio of CEEMDAN (Nstd) is set as 0.01. The number of noise additions is set to 6. The
maximum number of iterations is 2000. Then, the sub-models (IMFs) are split into training set
(train-x, train-y) and testing set (test-x, test-y) in a ratio of 8 to 2. The training data set is used as
input data, and the input layer of the local learner (DBN) has 20 input layer nodes. We adopt
three hidden layers of 100 nodes in each layer. Each sigmoid activation function is optimized.
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For the global learner, we directly use the original normalized wind power measurement values
for the training task. We set the number of mapped features to 73 and the dimension of the
mapped features is 6. The mapped features are mapped to the enhancement nodes. Every
enhancement node group has 4 enhancement nodes. All experiments are implemented using
MATLAB on a laptop equipped with Intel-i7 1.8 GHz CPU.

3.2. Models

To verify the predictive performance of the MVEW-DNN model, we compare it with
some state-of-the-art and conventional predictive models in the SWPF task. These models
are described as follows:

1. Autoregressive Integrated Moving Average (ARIMA) [49] is a seasonal model ex-
pressed as ARIMA (p, d, q) (P, D, Q)m. Here, m refers to the number of periods in
each season, and P, D, and Q refer to autoregressive, differencing, and moving average
terms for the seasonal part of the ARIMA model, respectively.

2. Random Vector Functional Link (RVFL) Network [50] is a multilayer perceptron
(MLP). Its input and output are directly linked; only the output weights are selected
as adaptive parameters. However, the remaining parameters are set to random
values that are independently preselected. RVFL can also obtain promising prediction
performance on SWPF tasks.

3. MOGWO-ELM [51] can provide promising SWPF by integrating the variational mode
decomposition (VMD), the extreme learning machine model, the error factor, and a
nonlinear ensemble method.

4. IVMD-SE-MCC-LSTM [52] is composed of the improved variational mode decom-
position (IVMD), sample entropy (SE), the maximum correntropy criterion (MCC),
and long short-term memory (LSTM) neural network. Here, the parameter K of the
IVMD is determined by the MCC; the decomposed subseries is reconstructed by SE to
improve the prediction efficiency. Then, the MCC is also utilized to replace the mean
square error in the classic LSTM network.

5. Multi-view Neural Network Ensemble [41] is an ensemble of Radial Basis Function
Neural Networks (RBFNN). In this ensemble neural network, a long short-term
memory network (LSTM) and a multi-resolution wavelet transform are first used to
extract the features for training. Then, the extracted feature data is input into multiple
RBFNN networks for prediction. The output layer of the Multi-view Neural Network
Ensemble is a local generalization error model, which assigns the corresponding
weights to the output of multiple RBFNN networks. Finally, these output results of
RBFNN are weighted and summed to provide the final predictive results.

3.3. Results

The NRMSE, NMAE, and TIC metrics are used to evaluate the predictive performance
of the above six models on wind farm validation data (WF1–WF7). Interestingly, Table 1
shows that the proposed MVEW-DNN model provides lower NRMSR, NMAE, and TIC
values than those of ARIMA, RVFL, MOGWO-ELM, IVMD-SE-MCC-LSTM, and Multi-
view Neural Network Ensemble on WF1-WF7. For instance, the predictive results given
by IVMD-SE-MCC-LSTM for NRMSE, NMAE, and TIC on WF1 are 0.2547, 0.2058, and
0.4131, respectively. On the other hand, the proposed MVEW-DNN gives 0.2103, 0.1603,
and 0.3381 from NRMSE, NMAE, and TIC, respectively. Furthermore, we also provide a
clear visual prediction display of the above six predictive models on WF3 in Figure 4. An
interesting observation is that the proposed MVEW-DNN model has the best predictive
performance among all compared models. Table 1 and Figure 4 indicate that our model
can provide the best nonlinear approximation capability, robustness, and spatial learning
ability among all six models.
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Table 1. The NRMSE, NMAE, and TIC assessment results of the 6 models.

Data Set Metrics ARIMA RVFL
MOGWO-

ELM
IVMD-SE-

MCC-LSTM

Multi-View
Neural

Network
Ensemble

MVEW-
DNN

WF1
NRMSE 0.4477 0.3417 0.2534 0.2547 0.2758 0.2103
NMAE 0.3285 0.2505 0.2042 0.2058 0.1916 0.1603

TIC 0.5878 0.651 0.4118 0.4131 0.6618 0.3381

WF2
NRMSE 0.4744 0.3494 0.2761 0.2766 0.2944 0.2236
NMAE 0.3458 0.2575 0.2306 0.2275 0.241 0.173

TIC 0.571 0.6543 0.4219 0.4253 0.4145 0.3281

WF3
NRMSE 0.5442 0.4566 0.3188 0.3119 0.2839 0.2378
NMAE 0.4178 0.3373 0.2744 0.268 0.2386 0.1879

TIC 0.5503 0.7596 0.398 0.3865 0.3714 0.2784

WF4
NRMSE 0.5008 0.4023 0.2992 0.2925 0.2664 0.2264
NMAE 0.3686 0.2935 0.2505 0.2465 0.1859 0.1784

TIC 0.5586 0.7166 0.4217 0.4035 0.6372 0.2954

WF5
NRMSE 0.4978 0.425 0.3208 0.3221 0.3863 0.2502
NMAE 0.36 0.308 0.2591 0.2603 0.2738 0.1988

TIC 0.5838 0.7119 0.453 0.4535 0.7101 0.3113

WF6
NRMSE 0.4804 0.4057 0.2915 0.2882 0.302 0.2328
NMAE 0.356 0.2936 0.2414 0.2349 0.208 0.1821

TIC 0.5504 0.7219 0.4078 0.4092 0.6483 0.2977

WF7
NRMSE 0.5041 0.4058 0.3025 0.2973 0.3872 0.5041
NMAE 0.368 0.2953 0.2599 0.2541 0.2367 0.368

TIC 0.5492 0.7502 0.4218 0.4108 0.6439 0.5492

(a) (b)

Figure 4. The prediction results are executed by the above models with the data set from WF3.
(a) Prediction results from 6 models for WF3 wind power data forecasted 24-h in advance. (b) Partial
enlargement of the 6 model predictions.

Figure 5 shows the NRMSE, NMAE, and TIC results for the six predictive models
on WF1-WF7. We can clearly see that the proposed MVEW-DNN model achieves the
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best predictive performance. This further indicates that our model has the best nonlinear
approximation capability, robustness, and spatial learning ability among all six models.

(a)

(b)

(c)

Figure 5. The NRMSE, NMAE, and TIC assessment results: (a) comparison of prediction results from
6 models on NMAE; (b) comparison of prediction results from 6 models on TIC; (c) comparison of
prediction results from 6 models on NRMSE.
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3.4. Ablation Investigations of MVEW-DNN

Note that the proposed MVEW-DNN model covers the local view learning subnetwork
(CEEMDAN-DBN), the global view learning subnetwork (deBLS), and FDDM. To evaluate
the effectiveness of the local view learning subnetwork (CEEMDAN-DBN), the global view
learning subnetwork (deBLS), and FDDM, ablation investigations are performed.

3.4.1. Effect of the Local View Learning Subnetwork

The local view learning subnetwork covers CEEMDAN and DBN. To evaluate the
performance of the local view learning subnetwork (CEEMDAN-DBN), it is compared
with DBN. The experimental results are listed in Table 2, where we can observe that
CEEMDAN-DBN has better results for NRMSE, NMAE, and TIC on WF1–WF7 than DBN.
For instance, CEEMDAN-DBN can provide NRMSE = 0.2555 on WF4, whereas DBN
provides NRMSE = 0.3024 on WF4. CEEMDAN-DBN can provide NMAE = 0.2054 on WF4,
but DBN provides NMAE = 0.2583 on WF4. These findings indicate that CEEMDAN-
DBN has better nonlinear approximation capability than the single DBN. Furthermore,
CEEMDAN-DBN can provide TIC = 0.3364 on WF4, whereas the single DBN achieves TIC
= 0.4077. This implies that CEEMDAN-DBN has better spatial learning ability than the
single DBN. From the above analyses, CEEMDAN-DBN can provide promising predictive
performance on WF1–WF7.

Table 2. The assessments results of DBN and CEEMDAN-DBN on three metrics.

Data Set Metrics CEEMDAN-DBN DBN

WF1
NRMSE 0.2519 0.2702
NMAE 0.1925 0.2172

TIC 0.3388 0.4146

WF2
NRMSE 0.2454 0.2778
NMAE 0.1979 0.2338

TIC 0.3595 0.4141

WF3
NRMSE 0.2845 0.3278
NMAE 0.2346 0.2798

TIC 0.3275 0.4021

WF4
NRMSE 0.2555 0.3024
NMAE 0.2054 0.2583

TIC 0.3364 0.4077

WF5
NRMSE 0.2736 0.3327
NMAE 0.2204 0.2678

TIC 0.3592 0.4561

WF6
NRMSE 0.2533 0.3002
NMAE 0.2124 0.2506

TIC 0.3155 0.4049

WF7
NRMSE 0.2512 0.3178
NMAE 0.2102 0.2745

TIC 0.3296 0.4195

3.4.2. Effect of the Global Network

The proposed global view learning subnetwork is called deBLS, which is composed
of the attention mechanism, the additional enhancement nodes, and BLS. To assess the
performance of deBLS, it is compared with BLS, BLS with the additional enhancement
nodes (BLS-AEN), and BLS with the attention mechanism (BLS-A). The experimental results
are presented in Table 3. It can be seen that deBLS has better results than BLS, BLS-AEN,
and BLS-A on the NRMSE, NMAE, and TIC indicators of WF1–WF7. For example, de-
BLS can provide NRMSE = 0.2956 on WF4, whereas BLS, BLS-AEN, and BLS-A provide
NRMSE = 0.3074, NRMSE = 0.3028, and NRMSE = 0.2999 on WF4, respectively. The NMAE
for deBLS is 0.245 on WF4, versus 0.2521, 0.2531, and 0.251 for BLS, BLS-AEN, and BLS-A,
respectively. These suggest that deBLS has better non-inear approximation capability than
either BLS, BLS-AEN, and BLS-A. Furthermore, deBLS provides TIC = 0.4053 on WF4, ver-
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sus TIC = 0.4174, TIC = 0.4215, and TIC = 0.4206 for BLS, BLS-AEN, and BLS-A, respectively.
This implies that deBLS has better spatial learning ability. Based on the above analyses,
deBLS has competitive predictive performance on WF1–WF7.

Table 3. The assessment results of BLS, BLS-AEN, BLS-A, and deBLS.

Data Set Metrics BLS BLS-AEN BLS-A deBLS

WF1
NRMSE 0.2776 0.2713 0.2628 0.2548
NMAE 0.2223 0.2184 0.213 0.209

TIC 0.4082 0.4128 0.3998 0.3783

WF2
NRMSE 0.2817 0.2783 0.2759 0.2757
NMAE 0.2329 0.2313 0.2255 0.2241

TIC 0.418 0.4219 0.4257 0.4362

WF3
NRMSE 0.3238 0.3199 0.3127 0.3126
NMAE 0.2731 0.2742 0.2669 0.2628

TIC 0.3863 0.3975 0.3791 0.3879

WF4
NRMSE 0.3074 0.3028 0.2999 0.2956
NMAE 0.2521 0.2531 0.251 0.245

TIC 0.4174 0.4215 0.4206 0.4053

WF5
NRMSE 0.339 0.3321 0.3205 0.3179
NMAE 0.2727 0.2683 0.2597 0.2543

TIC 0.4451 0.4526 0.4508 0.4443

WF6
NRMSE 0.3052 0.2944 0.2925 0.2892
NMAE 0.2462 0.2428 0.2424 0.2376

TIC 0.408 0.4117 0.4071 0.3917

WF7
NRMSE 0.3203 0.3054 0.3023 0.2997
NMAE 0.2652 0.2608 0.2576 0.2521

TIC 0.4181 0.4247 0.4016 0.4085

3.4.3. Effect of FDDM

Our MVEW-DNN consists of CEEMDAN-DBN, deBLS, and FDDM. To better as-
sess the performance of MVEW-DNN, it is compared with CEEMDAN-DBN and de-
BLS. The experimental results are displayed in Table 4. We can see that the proposed
MVEW-DNN model has better NRMSE, NMAE, and TIC results on WF1–WF7 than ei-
ther CEEMDAN-DBN or deBLS. For example, the proposed MVEW-DNN model can
provide NRMSE = 0.2264 and NMAE = 0.1784 on WF4, versus either NRMSE = 0.2555
and NMAE = 0.2054 for CEEMDAN-DBN or NRMSE = 0.2956 and NMAE = 0.245 for
deBLS. This indicates that the proposed MVEW-DNN has better nonlinear approxima-
tion capability than CEEMDAN-DBN and deBLS. Furthermore, the proposed MVEW-
DNN model can provide TIC = 0.2954 on WF4, versus TIC = 0.3364 and TIC = 0.4053 for
CEEMDAN-DBN and deBLS, respectively. This means that the proposed MVEW-DNN
model has better spatial learning ability. Moreover, the above analyses also imply that
FDDM can effectively integrate CEEMDAN-DBN and deBLS to improve the predictive
performance of MVEW-DNN.

To highlight the prediction performance difference, we visualize the data from Ta-
bles 2–4 with the radar charts in Figure 6. Interestingly, we can see that CEEMDAN-DBN
outperforms DBN in predicting wind power generation on WF1–WF7. It strongly clarifies
the effectiveness of CEEMDAN. Moreover, both BLS-AEN and BLS-A have better prediction
performance than that of BLS, validating the effectiveness of the attention mechanism and
the additional enhancement nodes. The proposed deBLS outperforms BLS-A and BLS-AEN,
further suggesting that the combination of the attention mechanism and the additional
enhancement nodes can improve the prediction performance of deBLS. MVEW-DNN
outperforms CEEMDAN-DBN and deBLS, indicating that FDDM can provide effective
combination between CEEMDAN-DBN and deBLS.
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Table 4. The results of CEEMDAN-DBN, deBLS, and the proposed MVEW-DNN model.

Data Set Metrics
CEEMDAN-

DBN
deBLS MVEW-DNN

WF1
NRMSE 0.2519 0.2548 0.2103
NMAE 0.1925 0.209 0.1603

TIC 0.3388 0.3783 0.3381

WF2
NRMSE 0.2454 0.2757 0.2236
NMAE 0.1979 0.2241 0.173

TIC 0.3595 0.4362 0.3281

WF3
NRMSE 0.2845 0.3126 0.2378
NMAE 0.2346 0.2628 0.1879

TIC 0.3275 0.3879 0.2784

WF4
NRMSE 0.2555 0.2956 0.2264
NMAE 0.2054 0.245 0.1784

TIC 0.3364 0.4053 0.2954

WF5
NRMSE 0.2736 0.3179 0.2502
NMAE 0.2204 0.2543 0.1988

TIC 0.3592 0.4443 0.3113

WF6
NRMSE 0.2533 0.2892 0.2328
NMAE 0.2124 0.2376 0.1821

TIC 0.3155 0.3917 0.2977

WF7
NRMSE 0.2512 0.2997 0.2271
NMAE 0.2102 0.2521 0.1782

TIC 0.3296 0.4085 0.2926

(a)

Figure 6. Cont.
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(b)

(c)
Figure 6. Ablation experiments on NMAE, TIC, and NRMSE evaluation indicators for 7 wind power
data sets: (a) results of ablation experiments on NMAE evaluation indicators for 7 wind power data
sets; (b) results of ablation experiments on TIC evaluation indicator for 7 wind power data sets;
(c) results of ablation experiments on NRMSE evaluation indicator for 7 wind power data sets.

3.5. Parameter Selection Experiments

Our proposed model involves only one key parameter, ω, which is used for the
attention mechanism. It serves to adjust the output layer weights Wm (see Algorithm 1).
The different values of ω inevitably lead to discrepancies in the global learner predictions.
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We apply different values of ω to optimize the global learner on different sub-data sets.
Some representative results are listed in Table 5. It can be seen that the different values
of ω provide similar results for NRMSE, NMAE, and TIC on WF3. This indicates that
MVEW-DNN is insensitive to ω. This further implies that MVEW-DNN has promising
robustness in predictive performance.

Table 5. Effect of adjusting parameter ω with the data from WF3.

ω NRMSE NMAE TIC

0.5 0.3275 0.2794 0.3881
0.6 0.3268 0.2692 0.3857
0.7 0.3263 0.2792 0.3835
0.8 0.3257 0.2891 0.3814

3.6. Discussion

Based on the above experiments, our proposed MVEW-DNN has outstanding predic-
tive performance in the SWPF field, mainly for the following reasons:

First, MVEW-DNN provides global and local view learning subnetworks, which can
effectively learn more potential feature information to enhance the prediction accuracy.

Second, in MVEW-DNN, deBLS can provide higher predictive accuracy by rationally
integrating the attention mechanism and the additional enhancement nodes.

Third, FDDM can provide effective feature fusion between the global and local view
learning subnetworks to perfectly complement each other.

Fourth, the local view learning subnetwork provides the combination of CEEMDAN and
DBN to achieve more potential local view feature data in SWPF, effectively reducing the impact
of data volatility and avoiding the model confounding problem on model prediction results.

4. Conclusions

In this paper, the developed MVEW-DNN model is a new width-depth integrated
predictor that consists of a global view learning subnetwork and a local view learning
subnetwork. The global view learning subnetwork effectively integrates the attention
mechanism and the additional enhancement nodes, which gives it the advantages of low
computational cost and high prediction accuracy. The local view learning subnetwork
rationally combines CEEMDAN and DBN, which can achieve better potential local view
features, enhancing the predictive accuracy and robustness. FDDM can provide an effective
feature fusion between the global and local view learning subnetworks, further enhancing
the predictive accuracy and robustness. Therefore, the proposed MVEW-DNN provides
better predictive performance, e.g., nonlinear approximation capability and spatial learning
ability, than that of the state-of-the-art and conventional predictive models on the SWPF
task. MVEW-DNN can effectively and significantly improve the wind power schedule
and production program, which relieves the pressure on the power system for peak and
frequency regulation, to greatly improve the wind energy utilization. Table 6 shows that
the high time-computation costs of our model are mainly due to the local view learning
subnetwork (CEEMDAN-DBN). Therefore, in the future, we will consider how to effectively
reduce the computational costs of the proposed MVEW-DNN.

Table 6. The time computation costs of deBLS, CEEMDAN-DBN, FDDM, and the proposed MVEW-DNN.

Wind Farm deBLS (s) CEEMDAN-DBN (s) FDDM (s) MVEW-DNN (s)

WF1 0.654 142.582 0.984 144.22
WF2 0.833 135.888 0.994 137.715
WF3 0.438 149.442 0.643 150.523
WF4 0.394 160.626 0.717 161.737
WF5 0.423 188.86 0.815 190.098
WF6 0.417 163.324 0.893 164.634
WF7 0.433 172.055 0.927 173.415
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Abbreviations

SWPF Short-term wind power forecasting
CEEMDAN Complete ensemble empirical mode decomposition with adaptive noise
BLS-AEN BLS network with Addition Enhancement Nodes
BLS-A The BLS network with Attention Mechanism
deBLS Deep encoder board learning system
MVEW-DNN Multi-view ensemble-based width-depth neural network
Variables

X(t) The original wind power data
IMFk(t) The kth decomposition in CEEMDAN
Wei The randomly generated weight matrix
δei The randomly generated bias matrix
Jn The feature nodes
Jn The feature nodes group
Em The enhancement nodes
Em The enhancement nodes group
B The combination matrix of Jn and Em
P The output of our proposed model
WB The fusion weight of deBLS
WD The fusion weight of DBN
Indices

k The IMF index
n The index of the feature nodes
m The index of the enhancement nodes
Nstd The signal-to-noise ratio
ω The adjusting weights in attention mechanism algorithm
C The regularization parameter for sparse regularization
S The shrinkage parameter in deBLS
ρ The correlation test threshold
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Abstract: In this study, taking the Sheng’an coal mine as an engineering background, the failure
characteristics of the surrounding rock of a roadway under repeated mining in a close-distance coal
seam is comprehensively illustrated through field measurements (e.g., drilling imaging), theory
analysis and numerical simulation (finite difference method (FDM)). The results show that although
the return airway 10905 remains intact, the apparent failure of the roadway’s roof and the coal pillar
can be observed. In addition, the expression of floor failure depth caused by upper coal seam mining
is obtained through elastic-plastic theory. Meanwhile, the deformation of the surrounding rock
of the roadway increases with the increase of repeated mining times, especially for the horizontal
displacement of the roadway on the coal pillar side. Moreover, the cracks’ evolution of surrounding
rock in the roadway can be observed as asymmetric characteristics. Finally, the stability control
technology of “asymmetric anchor net cable + I-steel” is proposed to prevent potential mining
disasters, and the feasibility of this support scheme is verified by numerical simulation and field
practices. It can meet the requirement of safe mining and provide guidelines to effectively solve the
failure of a roadway in close-distance coal seam mining.

Keywords: failure characteristics; surrounding rock of roadway; repeated mining; close-distance coal
seam; stability control technology

MSC: 86-08; 86-10; 65E05

1. Introduction

In the process of coal formation, it will experience many crustal movements, and the
coal measure strata are hosted in sedimentary rocks. Therefore, multiple coal seams will
appear in the same coal measure strata with a small distance between the adjacent multi-
coal seams. Different from the mining of a single coal seam, the mining activities of a close
coal seam group can be influenced by each other’s coal seams with the characteristics of
mutual disturbance, stress concentration and severe damage to the mining roadway [1–4].
The roadway in the lower coal seam is significantly affected by the caving gangue generated
after upper coal seam mining and the dynamic pressure due to the mining activities of the
adjacent working face. Therefore, the roof management of the working face under repeated
mining should be paid more attention in order to prevent the occurrence of mining disasters.
In the process of coal formation, it will experience many crustal movements, and the coal
measure strata are hosted in sedimentary rocks. Therefore, multiple coal seams will appear
in the same coal measure strata with a small distance between the adjacent multi-coal
seams. Different from the mining of a single coal seam, the mining activities of a close coal
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seam group can be influenced by each other’s coal seams with the characteristics of mutual
disturbance, stress concentration and severe damage to the mining roadway [5–10]. The
roadway in the lower coal seam is significantly affected by the caving gangue generated
after upper coal seam mining and the dynamic pressure due to the mining activities of the
adjacent working face.

Currently, the support theory and control technology of the surrounding rock of a road-
way under repeated mining in a close-distance coal seam is comprehensively illustrated.
Refs.studied the dynamic stress evolution law of floor in the process of repeated mining and
discussed the distribution characteristics of surrounding rock stress and the displacement
of floor roadway. Meanwhile, the grouting bolt to strengthen shallow broken surrounding
rock and hollow grouting anchor cable to strengthen deep cracks combined with double
anchor mesh shotcrete support were proposed to fully mobilize the self-supporting ability
of the surrounding rock. In addition, Xiong et al. [11] illustrated the stress distribution
of the floor under the repeated mining and the staggered arrangement of the roadway
in the lower coal seam. Zhang et al. [12] illustrated that the lower coal mining roadway
was prone to instability under the action of the low support strength of the roadway, the
over-speed mining and the vertical arrangement of the upper coal seam roadway. Liu
et al. [13] proposed the segmented support design technology to control different types of
roofs, which can significantly improve the stress state of the surrounding rock. Using nu-
merical simulation, Han et al. [14] conducted the roadway stability under a reinforcement
support scheme. The results showed that the instability mechanism of the roadway met
the requirements of an extremely close coal seam, and the section shrinkage rate remained
at 5.29%. Cheng et al. [15] proposed three schemes of lengthening an anchor bolt combined
support to solve the problem of significant roof subsidence in the roadway of the lower coal
seam. Geng et al. [16] analyzed the plastic failure characteristics, stress distribution and
displacement variation of the roadway under the influence of the superimposed stress after
the upper coal seam mining. Then the comprehensive roof control technology of ‘broken
roof hole + pressure relief hole + high pre-stressed anchor cable + single hydraulic prop’
was proposed.

Throughout the literature review, the current research mainly focused on the stress
distribution law of a floor under a coal pillar in the close-distance coal seam group mining
and the layout offset of a roadway in the lower coal seam. However, there are few studies
proposing the stability control technology to support the surrounding rock of a roadway in
the lower coal seam while considering the action of the caving gangue generated in the
upper coal seam and the dynamic pressure due to the mining activities of the adjacent
working face. There may be no residual coal pillar after the upper coal seam mining when
the close-distance coal seam group adopts the downward mining method. In addition, the
stress and displacement of the surrounding rock of the roadway under the repeated mining
in the close-distance coal seam group should be explored in detail. Therefore, taking the
Sheng’an coal mine in Guizhou Province (China) as an engineering background, this study
aims to illustrate the failure characteristics and instability law of the surrounding rock of
the roadway in the lower coal seam and the damage depth of the floor caused by the upper
coal seam mining [17,18]. Most importantly, the corresponding support techniques are
proposed and applied in engineering practices, which provide the guideline to control the
stability of the surrounding rock of the roadway in similar mining conditions.

2. Engineering Background

2.1. Geological Conditions

The Sheng’an coal mine has two main coal seams, named ##6 and ##9, respectively.
The coal seam #9 is buried with a depth of 191 m and an average thickness of 1.81 m.
Moreover, its roof is silty mudstone, argillaceous siltstone and mudstone, and its floor is
mudstone, silty mudstone and argillaceous siltstone. On the other hand, the coal seam #6
with an average thickness of 1.26 m is away from coal seam #9 by 4.14–7.01 m, which is a
typical close-distance coal seam group.
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The working face 10905 is arranged in coal seam #9 without leaving the coal pillar,
located in the south of working face 10903, as shown in Figures 1 and 2. Moreover, the
return airway of working face 10905 and the transportation roadway of working face 10903
are separated by coal pillars of 13 m. Therefore, significant roof subsidence and horizontal
displacement of the return airway in working face 10905 during the excavation process can
be observed due to the influence of upper coal seam #6 mining and the adjacent working
face 10903 mining. Notably, various disasters (e.g., roof leakage and roof caving) can be
observed, which greatly affect the safe and efficient production of the mine in working face
10905.

Figure 1. Arrangement of multi-working faces.

Figure 2. Arrangement of working face 10905.

2.2. Roof Failure Characteristics of Return Airway in Working Face 10905

The working face 10905 mined coal seam #9 is arranged below the 10606 working face
of coal seam #6. Originally, the bolt + I-steel combined symmetric support scheme was
adopted as shown in Figure 3. The row spacing between the bolts is 0.8 × 0.8 m, and the
spacing between the sheds and frames is 0.8 m. However, the sidewall of the return airway
is not fully supported, and the I-steel is only used to maintain the stability of the roadway.
Due to the neglect of the asymmetry of the stress and deformation of the roadway sidewall,
severe sidewall heave and roof subsidence deformation can still be observed in the process
of roadway excavation, as shown in Figure 4.
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Figure 3. Previous support scheme of return airway of working face 10905.

Figure 4. Deformation of surrounding rock during roadway excavation.

Based on the results of drilling images, Figure 5 illustrates that there are few cracks in
the upper part of the roadway roof from 2.5 to 3.0 m, while the surrounding rock of the
borehole is relatively complete. In addition, an obvious transverse fracture in the upper
roof 3.5 m can be observed, which is similar to the annular interval fracture zone. Moreover,
the loose fracture of the surrounding rock in the borehole is observed at the upper roof
of 4 m, and zoning fracture exists in shallow and deep parts of the roadway roof. On the
other hand, the integrity of the surrounding rock in the borehole is good when the borehole
depth on the coal pillar side of the roadway reaches 1.5–2 m as shown in Figure 6. When
the drilling depth reaches 2.5 m, the coal body begins in a broken state. Meanwhile, the
number of cracks is small, and there are few longitudinal cracks when the depth of the
borehole on the side of the roadway increases to 1.5 m, as shown in Figure 7. With the
increase of drilling depth, the shape of longitudinal fractures decreases, and the integrity
of the surrounding rock is good at the drilling depth of 2.5–3 m. The comprehensive
analysis shows that the roadway roof of working face 10905 is not fully broken, while the
overall bearing capacity is weak. However, the roof and coal pillar side of the roadway
are obviously broken in different areas. It is possible that a large deformation in the future
working face mining may appear.
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Figure 5. Drilling images of a borehole at different distances from roadway roof. (a) 2.5 m. (b) 3.0 m.
(c) 3.5 m. (d) 4.0 m.

Figure 6. Drilling images of a borehole at different distances from coal pillar side of roadway. (a) 1.5 m.
(b) 2.0 m. (c) 2.5 m. (d) 3.0 m.

Figure 7. Drilling images of a borehole at different distances from working face side. (a) 1.5 m.
(b) 2.0 m. (c) 2.5 m. (d) 3.0 m.

2.3. Instability Factors of Roadway

After coal seam #6 was mined, the floor strata were damaged to influence the mining
of lower coal seam #9. Moreover, the coal seam #6 above the working face 10905 was mined
without leaving the coal pillar. In addition, the rock strata activity of adjacent working face
10903 has not reached a stable state. The surrounding rock of the roadway in working face
10905 is again experiencing severe deformation and failure, especially in the coal pillar side
of the roadway. Most importantly, the support method of the return airway in working face
10905 is unreasonable. Therefore, the roof subsidence of the roadway in working face 10905
is significant, and two sides of the roadway are seriously moved during the excavation
process.

3. Calculation of Floor Damage Depth after Coal Seam #6 Mining

A rectangular goaf is generally formed in the rear after the working face is mined,
and the ratio of the height of the mined coal seam to the width of the working face is
minimal [19–22]. Therefore, the mechanical model of the longwall working face can be
simplified, as shown in Figure 8.
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Figure 8. Mechanical model based on elastic-plastic theory.

According to the elastic-plastic theory and using the coordinate system as shown in
Figure 9, the vertical stress and shear stress of the surrounding rock can be expressed as
follows. ⎧⎪⎪⎪⎨⎪⎪⎪⎩

σx = γH
√

L
2r cos θ

2 (1 − sin θ
2 sin 3θ

2 )− (1 − x)γH

σy = γH
√

L
2r cos θ

2 (1 + sin θ
2 sin 3θ

2 )

τxy = γH
√

L
2r cos θ

2 sin θ
2 cos 3θ

2

(1)

where L and H are the length and buried depth of the working face, γ is the bulk density of
rock mass, x is lateral stress ratio, r is the limit failure distance ahead of the working face, θ
is the angle between the edge line and the horizontal direction at the maximum yield depth
h.

Figure 9. Surrounding rock yield failure of working face.
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According to the actual mining situation of the Sheng’an coal mine, the lateral pressure
coefficient is 1, and then the principal stress expression of the stope edge can be deduced as
follows. ⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ1 = γH
2

√
L
r cos θ

2 (1 + sin θ
2 )

σ2 = γH
2

√
L
r cos θ

2 (1 − sin θ
2 )

σ3 = μγH
√

L
r cos θ

2

(2)

where μ is the Poisson’ s ratio of surrounding rock.
Assuming that the failure of surrounding rock obeys the Mohr-Coufomb criterion, the

following expression can be obtained.

σ1 − ξσ3 = Rc (3)

ξ =
1 + sin φ

1 − sin φ
(4)

where Rc is the uniaxial compressive strength of surrounding rock, and ϕ is the internal
friction angle of the surrounding rock.

Therefore, the yield failure depth (h) of floor rock caused by stress concentration in
coal seam mining can be obtained as follows.

h =
γ2H2L
4Rc2 cos2 θ

2
(1 + sin

θ

2
)

2
sin θ (5)

The maximum failure depth of floor strata under the plane stress state is expressed as
follows.

hmax =
1.57γ2H2L

4Rc2 (6)

It can be observed that the damage depth of floor rock increases linearly with the
square of inclined length and the buried depth of the working face, and decreases linearly
with the square of the compressive strength of floor rock.

On the other hand, the failure zone near the stope edge (r′) can be expressed as follows.

r′ = γ2H2L
4Rc2 cos2 θ

2
(1 + sin

θ

2
− 2εμ)

2
(7)

where ε is the strain of the rock element in the plane strain state.
Therefore, the horizontal failure range of stope edge r′0 at θ = 0◦ is shown as follows.

r′0 =
γ2H2L(1 − 2εμ)2

4Rc2 (8)

The failure depth of floor strata in lower coal seam (h′) can be calculated according to
the geometric relationship under the plane strain state as follows.

h′ = r′ sin θ =
γ2H2L

4R2 cos2 θ

2
(1 + sin

θ

2
− 2ξμ)

2
sin θ (9)

According to the comparison of the failure depth of floor strata under the plane stress
and strain states, it can be seen that the failure range obtained under the plane stress state
is larger than that under the plane strain state. Therefore, when the elastic-plastic theory is
used to calculate the failure depth of floor strata, the calculation results in plane stress state
are used to measure the failure depth of floor strata in coal mining. The influence of the

107



Mathematics 2022, 10, 2166

joint fissures of the floor strata on the failure depth is then comprehensively considered,
and Equation (6) is transformed as follows.

hmax = 1.57γ2H2L/
(

4R2
c•δ2
)

(10)

where δ is the influence coefficient of joint fissure in floor strata.
The average mining height and buried depth of coal seam #6 in Sheng’an Coal Mine is

1.35 m and 185 m, respectively. The length of the working face 10606 is 150 m. According
to the experimental test results, the internal friction angle of cohesion of coal body #6 are
25.2◦ and 1.18 MPa, respectively. In addition, the friction coefficient of the contact surface
between coal seam 5# and the floor is 0.32, and the influence coefficient of the joint fracture
is 0.39. Moreover, the uniaxial compressive strength of floor strata is 14.9 MPa, and the
bulk density of floor strata is 2300 kN/m3. The maximum stress concentration coefficient
is 3.5. Inserting these geological parameters into Equation (10), the failure depth of floor
strata caused by the upper coal seam #6 is 4.63 m, as follows.

hmax = 1.57γ2H2L/
(

4R2•δ2
)
=

1.57 × 232 × 1852 × 150
0.6084 × 31, 9002 ≈ 4.63 m

4. Numerical Simulation of Roadway Instability under Repeated Mining

4.1. Numerical Model Establishment and Parameter Determination

In order to explore the influence of repeated mining on the instability law of the
roadway, FLAC3D is used to illustrate the stress distribution law and the development
of the plastic zone in the stope when the upper and lower coal seams are mined [23–25].
The numerical calculation model adopts the Mohr-Coulomb constitutive model because it
is a nonlinear model and is widely used in the calculation of the actual bearing capacity
and failure load of rock mass in underground space engineering. FLAC 3D can simulate
the mechanical properties and plastic flow analysis of three-dimensional structures of soil,
rock and other materials by adjusting the polyhedral units. Based on the finite difference
method, the computational region is divided into several tetrahedral elements, each of
which follows the Moor-Coulomb constitutive model under given boundary conditions.

According to the occurrence conditions of the coal seam in the Sheng’an coal mine,
the numerical simulation model is established with the length, width and height of 250 m,
120 m and 108 m, respectively, as shown in Figure 10. The bottom boundary of the model is
fixed, and the displacement in the X, Y and Z directions of the bottom boundary is set as
zero. In addition, the top of the model is a free boundary. The upper rock layer is applied
to the equivalent load, and the self-balancing treatment is carried out before the excavation
of the model.

The average buried depth of coal seam #6 is about 185 m, and the uniform load is
applied according to the buried depth. The average density of rock strata is 2500 kg/m3,
and the lateral stress coefficient is 1. In addition, according to the experimental tests of rock
specimens collected from the Sheng’an coal mine and then conducted in the laboratory of
Guizhou University, various physical and mechanical parameters (e.g., volumetric weight,
compressive strength, tensile strength, Poisson’s ratio, cohesion and internal friction angle)
of coal seam and rock mass are obtained and used in the numerical model as listed in
Table 1.
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Figure 10. Numerical simulation model.

Table 1. Physical and mechanical properties of coal and rock mass.

Rock Name
Volumetric

Weight g/cm3
Compressive
Strength/MPa

Tensile
Strength/MPa

Poisson’s Ratio Cohesion/MPa
Internal Friction

Angle/◦

Coal #6 1.29 13.25 0.33 0.32 1.18 25.16
Mudstone-1 2.13 38.90 0.88 0.31 1.78 23.40
Argillaceous

Sandstone 2.32 79.65 1.57 0.28 3.80 34.00

Silty
Mudstone 2.44 62.18 1.23 0.21 3.30 30.05

Coal #9 1.30 11.89 0.26 0.36 1.42 24.50
Mudstone-2 2.00 38.20 0.82 0.29 1.80 24.00

4.2. Stress and Displacement Characteristics of Surrounding Rock in Lower Coal Seam
4.2.1. Stress Evolution Law

Figure 11 illustrates the stress distribution of surrounding rock in lower coal seam
mining #9 with the working face advancing of 20 m, 40 m, 60 m and 80 m. Specifically, the
stress concentration coefficient at the coal wall of the working face on the open-off cut is
significantly reduced with the working face advancing of 20 m under the pressure relief
effect of coal seam #6 mining. With the working face advancing increasing to 40 m, the
small stress value of the roof and floor of coal seam #9 has been extended to an extensive
range, and a small range of the stress concentration area appears in front of the coal wall of
the working face. Subsequently, part of the pressure relief is reduced to connect into slices,
and the force is redistributed again when the advance of the working face is 60 m. With the
continuous increase of working face advancing, the pressure relief range of the connected
slices increases periodically, while the increased effect of the pressure relief range is not
apparent in the upper and lower ranges. It indicates that the rock entirely collapses, the
rear of the working face is compacted, and the pressure relief range reaches stability.

4.2.2. Evolution Law of Plastic Zone

Figure 12 illustrates the distribution of plastic zone during the lower coal seam mining.
It can be seen that there is a large range of plastic area at the cutting hole, while the plastic
range at the coal wall is less under the working face advancing 20 m. Subsequently, the
plastic range in the front of the working face and floor strata increase with the advance of
working face increasing to 40 m, and the roof of the goaf is still in the elastic area. Moreover,
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the plastic zones of overlying and floor strata increase significantly at the working face
advancing 60 and 80 m.

Figure 11. Vertical stress distribution of surrounding rock in lower coal seam #9. (a) Advancing 20 m.
(b) Advancing 40 m. (c) Advancing 60 m. (d) Advancing 80 m.

Figure 12. Cont.
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Figure 12. Plastic zone of coal seam #9 with different advancing distances. (a) Advancing 20 m.
(b) Advancing 40 m. (c) Advancing 60 m. (d) Advancing 80 m.

4.3. Stress and Deformation Evolution Law of Surrounding Rock under Repeated Mining

Figure 13 illustrates the model excavation scheme to fully mine the upper coal seam
and excavate the adjacent roadway of 30 m. Moreover, the gob-side entry retaining technol-
ogy without the coal pillar is used in the mining of upper coal seam #6.

Figure 13. Model excavation scheme.

Figure 14 shows the vertical stress distribution at the position of the reserved roadway
and the roof of the coal pillar in the upper coal seam mining. The pressure relief effect at
the position of reserved roadway and coal pillar is good with the low stress value due to
the small space between the two coal seams. Moreover, the stress value at the position
of reserved roadway strike 30 m and 90 m is slightly higher with the average value of
about 0.3 MPa due to the influence of the coal pillar boundary in the goaf, and the direction
of vertical stress is downward. On the other hand, the direction of vertical stress at the
position of the reserved roadway strike 40 m, 50 m, 70 m and 80 m is upward because the
lower strata of the goaf is changed from original extrusion pressure into tensile stress and
the cracks also begin to be expended after the upper coal seam mining. Meanwhile, the
location of a roadway strike at 60 m may be the first weighing site, and the overlying strata
is collapsed and compacted resulting in the downward direction of vertical stress.
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Figure 14. Influence of excavation disturbance on upper coal seam.

Figure 15 illustrates that there exists a certain of lateral pressure concentration because
of the adjacent roadway excavation to cause the vertical stress of the reserved roadway and
the roof of the coal pillar increasing firstly and then decreasing from near to far. Figure 16
illustrates that the vertical stress distribution at the position of 40 m and 50 m along the
roadway has limited change, while the vertical stress distribution is greatly changeable at
the position of 30 m and 60 m along the roadway behind the working face. Meanwhile, the
stress in the roof of the roadway is large. In summary, the excavation of the upper coal seam
has a significant effect on the stress value and distribution of the reserved roadway and
coal pillar because of the low rock strength and the small interlay space of two coal seams,
while the stress value and range is limited changed under the influence of the excavation
of adjacent roadway and local roadway.

Figure 15. Influence of adjacent roadway excavation disturbance.
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Figure 16. Influence of excavation disturbance on this roadway.

Figure 17 illustrates the variation of horizontal displacement of the roadway along
with the strike position. Under the repeated mining, the deformation of surrounding rock
in the roadway increases with the increase of mining times, especially for the coal pillar
side. The deformation variables of the two sides are prone to have asymmetric situations
during the mining process, and the stability maintenance of the coal pillar side needs to be
emphasized.

Figure 17. Cont.
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Figure 17. Displacement of roadway. (a) Displacement of roadway roof. (b) Displacement of roadway
floor. (c) Displacement of roadway in working face side. (d) Displacement of roadway in coal pillar
side.

5. Support Measurements Numerical Simulation Analysis

5.1. Influence of Fracture Angle on Unconfined Compressive Strength

Considering the repeated disturbance of the adjacent working face of the roadway, the
asymmetric anchor cable + I-steel support scheme is proposed to effectively prevent the
deformation and fracture of the roadway roof as shown in Figure 18. Specifically, five left-
handed helical steel bolts (Φ20 × 2200 mm), four left spiral steel anchors (Φ20 × 2400 mm),
and three reinforced fiber glass bolts (Φ20 × 2200 mm) are installed in the roof strata of the
roadway, the first side of the coal pillar and the first side of the working face with the row
spacing of 800 × 800 mm and connected with W-shaped steel strip, respectively. Meanwhile,
a high strength drum anchor plate (150 × 150 × 10 mm) is also used. In addition, the
anchor cables of Φ22 × 4300 mm are arranged in the roof strata of the roadway with the
spacing of 1400 × 2400 mm, and three anchor cables are installed in each row. Similarly,
the anchor cables are arranged in the side of the coal pillar and working face with the row
spacing of 1600 × 2400 mm, and 2 anchor cables are installed in each row [26–28].

Figure 18. Roadway section support scheme.

5.2. Comparative Analysis of Supporting Effect in Numerical Simulation

Numerical simulation is performed to analyze the feasibility of the surrounding
rock control scheme through comparison of the deformation, plastic zone and stress field
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distribution of surrounding rock in the roadway of the lower coal seam by using the
original support scheme and the proposed optimized support scheme (asymmetric anchor
cable + I-steel).

As shown in Figure 19a, the surrounding rock of the roadway is mainly shear failure
and the plastic zone decreases when the bolt is used in time after the excavation of the
roadway, while there is still a large area of the plastic zones in the roof and the two sides by
using the original support scheme. In addition, the surrounding rock is unstable again if
the support stillness of the roadway is insufficient in the later period of coal seam mining.
However, the timely support of the bolt and anchor cable plays a controlling role in the
surrounding rock of the roadway, and the plastic zones of surrounding rock are less by
using the proposed optimized support scheme as shown in Figure 19c. Meanwhile, the
bearing capacity of surrounding rock can also gradually increase from 0–2 MPa to 2–4 MPa.
Overall, the asymmetric anchor cable + I-steel can basically realize the temporary support
demand to meet the deformation requirement of surrounding rock in the later mining.

Figure 19. Plastic zone and stress diagram of surrounding rock in two support schemes. (a) Plastic
zone of original support scheme. (b) Vertical stress of original support scheme. (c) Plastic zone of
proposed support scheme. (d) Vertical stress of proposed support scheme.

5.3. Engineering Practices

As shown in Figure 20, 20 monitoring points are arranged to measure the deformation
of surrounding rock in the roadway with the distance of each point being 10 m, and
Figure 21 illustrates the typical displacement curve of the surrounding rock of roadway
in working face 10905. The results show that the maximum displacement of the roadway
roof, coal pillar side and working face side is 326 mm, 225 mm and 201 mm, respectively.
Moreover, the deformation on both sides of the roadway is asymmetric distribution and its
deformation rate is the largest in the range of +20 m to −40 m from the working face. In
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addition, the displacement of the roadway increases with the advancement of the working
face 10903, and the displacement of the roadway far from the working face is small. The
overall displacement of the roadway is within the controllable range, and the roadway
support effect is shown in Figure 22.

Figure 20. Layout of monitoring points.

Figure 21. Displacement curve of the surrounding rock of the roadway.

Figure 22. Support effect of return airway in working face 10905. (a) Return airway after support.
(b) test section.
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6. Conclusions

In this study, comprehensive research methods (e.g., field test, theory analysis and
numerical simulation) are adopted to illustrate the failure characteristics of surrounding
rock of a roadway in a lower coal seam under repeated mining in close-distance coal seam
considering the caving gangue in the upper coal seam and the mining activities of the
adjacent working face. Meanwhile, the corresponding support scheme is also proposed.
The main conclusions can be drawn as follows.

(1) Through field investigation and data observation, the surrounding rock of the roadway
presents the asymmetric evolution characteristics of cracks. The expression of floor
failure depth caused by upper coal seam mining is obtained through the elastic-plastic
theory. Combined with the geological conditions of coal seam #6, the floor failure
depth caused by coal seam #6 is 4.63 m.

(2) According to the results of numerical simulation, the stress concentration in working
face 10905 and roadway without a residual coal pillar is in a low stress environment.
After repeated mining, the deformation of the overall surrounding rock of the roadway
increases with the increase of mining times. In particular, the horizontal displacement
of the roadway coal pillar side changes greatly, and the actual damage degree is
the largest. The deformation variables of the two sides are prone to asymmetric
situations during mining, and the stability maintenance of the coal pillar side needs
to be emphasized.

(3) The asymmetric anchor cable + I-steel support scheme is proposed to effectively
prevent the deformation and fracture of the roadway roof in this study. And the
bolt-cable timely support plays a controlling role on the surrounding rock of the
roadway. In addition, the plastic zone of the surrounding rock of the roadway is the
least, and the bearing capacity of surrounding rock in the roadway increases from
0–2 MPa to 2–4 MPa.

(4) Through the field observation of the surrounding rock deformation of the roadway
in the test section, the maximum displacement of the roadway roof, coal pillar side
and working face side is 326 mm, 225 mm and 201 mm, respectively. Moreover,
the deformation on both sides of the roadway is asymmetric in distribution, and its
deformation rate is the largest in the range of +20 m to −40 m from the working face.
The overall displacement of the roadway is within the controllable range as a result of
using the optimized support scheme.

The finite difference method in numerical simulation has a certain limitation to simu-
late the practice situations of background engineering. In addition, further research should
also consider the influence of temperature and humidity on the strength of rock mass,
especially for the coal seam under a large buried depth.
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Abstract: It is challenging to obtain accurate and efficient predictions in short-term load forecasting
(STLF) systems due to the complexity and nonlinearity of the electric load signals. To address these
problems, we propose a hybrid predictive model that includes a sliding-window algorithm, a stacking
ensemble neural network, and a similar-days predictive method. First, we leverage a sliding-window
algorithm to process the time-series electric load data with high nonlinearity and non-stationarity.
Second, we propose an ensemble learning scheme of stacking neural networks to improve forecasting
performance. Specifically, the stacking neural networks contain two types of networks: the base-layer
and the meta-layer networks. During the pre-training process, the base-layer network integrates
a radial basis function (RBF), random vector functional link (RVFL), and backpropagation neural
network (BPNN) to provide a robust predictive model. The meta-layer network utilizes a deep
belief network (DBN) and the improved broad learning system (BLS) to enhance predictive accuracy.
Finally, the similar-days prediction method is developed to extract the relationship of electric load
data in different time dimensions, further enhancing the robustness and accuracy of the model.
To demonstrate the effectiveness of our model, it is evaluated using real data from five regions of
the United States in three consecutive years. We compare our method with several state-of-the-art
and conventional neural-network-based models. Our proposed algorithm improves the prediction
accuracy by 16.08%, 16.83%, and 22.64% compared to DWT-EMD-RVFL, SWT-LSTM, and EMD-BLS,
respectively. Empirical results demonstrate that our model achieves better accuracy and robustness
compared with the baselines.

Keywords: short-term load forecasting (STLF); stacking ensemble learning; similar-days forecasting;
sliding window; broad learning system–backpropagation (BLS–BP)

MSC: 68T07

1. Introduction

Power load forecasting is essential to power system planning [1]. Since it is challenging
to store electric energy, an accurate load forecasting algorithm is critical for efficient power
consumption and the security of the power grid [2]. The load forecasting task can be
classified as long-term, medium-term, or short-term based on the time span of the load
forecasting. For medium-term and long-term load forecasting, they are mainly used to
develop long-term power generation plans. Due to the short interval of STLF, it can be
used to adjust the operation mode of the power grid and promote the stable operation of
the power system.

In past decades, various forecasting methods have been proposed to tackle STFL. They
can be classified into two categories: One includes statistical models such as autoregressive
moving average (ARMA) [3,4] and linear regression (LR) [5]. The other includes machine
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learning methods including support-vector regression (SVR) [6], backpropagation neural
networks (BPNNs), deep neural networks (DBNs) [7], broad learning systems (BLSs) [8],
random vector functional link (RVFL) [9], and long short-term memory (LSTM) [10]. Due
to the nonlinear and non-stationary characteristics of short-term power load data, statistical
methods cannot effectively process such characteristic information. Therefore, machine
learning has gradually become the mainstream STLF method, which can effectively extract
features from nonlinear time series and provide an effective connection between input
and output.

Recently, machine learning has achieved remarkable results in load forecasting [11].
Artificial neural networks (ANNs) are one of the most popular methods [12], which can
simulate human brain behavior by training and learning ways to obtain the relationship
between input and output. Deep learning methods such as LSTM and DBN have powerful
nonlinear data processing capabilities, and are also very popular methods [7,10]. However,
a deep neural network requires a lot of computational costs, as it depends on a large
amount of training data. To save computational costs, a new single-layer incremental
neural network BLS is gradually obtained.

More recently, various hybrid models have been developed to effectively improve
the predictive accuracy of STFL. This is because the hybrid models can integrate the
advantages of each model to solve the limitations of each mode by weighted combination.
Chen et al. [13] presented a new combination model to enhance power load forecasting.
In [14,15], multiple artificial neural network models are integrated to improve predictive
performance. In [16], artificial neural networks are integrated to improve the accuracy of
STLF with a new evolutionary method. In [17], support-vector machines with ant colony
optimization are combined to improve the performance of power load forecasting.

To tackle the complexity and nonlinearity of electric signals, various hybrid predictive
frameworks have been developed by combining decomposition methods with neural
networks. Nengling et al. [18] proposed dividing the load data into different resolutions
by wavelet transform and applying different combination forecasting methods based
on statistical models to each scale. Ghayekhloo et al. [19] and Ghofrani et al. [20] both
used wavelet transform to convert the load data into multiple frequency components.
Subsequently, they trained multiple artificial neural networks on the data by linking the
weighted outputs of the trained networks in the STLF task. Qiu et al. [7] introduced
integrated deep learning based on empirical mode decomposition for load-demand time-
series forecasting. Laouafi et al. [21] combined traditional methods and intelligent methods
for STLF.

The above hybrid predictive models achieve promising prediction results, as in [22,23];
however, they still cannot solve the following problems:

1. The existing popular empirical mode decomposition [24] often has the problem of
modal aliasing. Furthermore, the difficulty of wavelet decomposition [25] lies in
how to effectively select the wavelet basis and decomposition scale. In addition, the
decomposition methods may introduce some redundant decomposition information
to the predictive models, degenerating the predictive computational cost.

2. Each machine learning method—such as LSTM, DBN, and BLS—has its own specific
limitations, which may influence its predictive performance in STLF.

3. The selection of the dataset is also a challenging problem. Generally, continuous time
series are used, and are divided into training and test sets. This approach can lead to
ineffective extraction of correlations between continuous time series and, therefore,
may result in lower accuracy of model predictions.

To address the above problems, we propose an improved hybrid predictive model,
which includes a sliding-window algorithm, a stacking ensemble neural network model,
and a similar-days predictive method. Specifically, a sliding-window algorithm [26] is
first introduced to directly process the nonlinearity and non-stationarity of the time-series
electric load data. This method effectively mines spatiotemporal features of the time
series. Furthermore, a stacking ensemble neural network model is proposed to improve the
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forecasting performance. The stacking neural networks contain two types of networks: the
base-layer network and the meta-layer network. During the pre-training process, the base-
layer networks integrate radial basis function (RBF), random vector functional link (RVFL),
and backpropagation neural network (BPNN) to provide a robust predictive model; the
meta-layer networks utilize a deep belief network (DBN) and the improved broad learning
system (BLS) to improve predictive accuracy; the predictive results of RBF, RVFL, BPNN,
DBN, and BLS are rationally weighted to obtain the final prediction result. Finally, the
similar-days prediction method is developed to extract the relationship of electric load data
in different time dimensions, further enhancing the robustness and accuracy of the model.
This paper selects the load data of five regions in the United States for three consecutive
years to conduct a large number of experiments, proving that the framework has high
prediction accuracy and strong robustness.

The main contributions of this paper are as follows:

1. The sliding-window algorithm is an effective method for extracting the spatiotemporal
characteristics of load data, which are used to reduce computational costs and improve
prediction accuracy.

2. The stacking neural network is proposed to greatly improve the prediction accuracy.
3. The similar-days predictive method is developed to extract the relationship of electric

load data in different time dimensions, further enhancing the robustness and accuracy
of the model.

The rest of this paper is organized as follows: Section 2 introduces the framework of
the proposed model and the theoretical knowledge of interest; Section 3 shows the data
analysis; Section 4 introduces the details of the case analysis; Section 5 concludes the paper.

2. Methodology

2.1. Model Framework

We show the overall framework of our proposed method in Figure 1. It contains four
parts: (A) data preprocessing, (B) base learners, (C) data processing, and (D) meta-learners.
And the detailed pseudo-code of the stacking algorithm is given in Algorithm 1. The
proposed model can be described as follows:

Figure 1. Framework of the proposed model.

Part A: The collected power load data are divided into three parts: (1) the training set,
which is used as training data; (2) the validation set, which is used for weight adjustment
between meta-learners; and (3) the test set, which is used for evaluation and error analysis.
The time series in each of the three parts are input into the sliding-window algorithm to
obtain the reconstructed multidimensional matrix H as the data input matrix for the base
learner (refer to Section 2.2 for more details).

Part B: The base-layer learning system consists of RBF, BPNN, and RVFL networks for
preliminary training (refer to Section 2.3 for more details).

Part C: During data processing, the prediction data of the base-layer learner are
recombined as the input of the meta-layer learner (refer to Section 2.3 for more details).
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Part D: The meta-layer learning system involves two neural networks: DBN and
BLS–BP. BLS–BP is an improved network that is first used in load forecasting (refer to
Section 2.3 for more details).

Algorithm 1: Stacking: Based on sliding window

1: Input: training data
D =

{
ai,bi
}m

i=1(xi ∈ Rn, yi ∈ Y)

2: Step 1: analysis with sliding window
3: Reconstruct D to H
4: end for

5: Step 2: learn base-layer learners
6: for n: 1 to N do

7: Learn a base learner Sn based on H
8: end for

9: Step 3: construct new datasets from H
10: for i: 1 to m do

11: Construct a new dataset that contains

Hs =
{

x1
i , yi

}
,

where x1
i = {s1(xi), s2(xi), . . . , sN(xi)}

12: end for

13: Step 4: learn meta-layer learners
14: for t: 1 to T do

15: Learn a meta-learner St based on Hs
16: end for

17: Return S(x) = s1{s1(x), s2(x), . . . , sN(x)}
18: Output: ensemble learner S

2.2. Sliding-Window Algorithm

The principle of the sliding-window algorithm is to reconstruct the original power
load data into a multidimensional matrix H by sliding the window. When training and
validating the model, the reconstruction matrix H includes both the input and output data
(also known as training data and label data, respectively). In the evaluation step, only
training data are in the reconstruction matrix H. Figures 2 and 3 illustrate the reconstruction
process. In each window slot, three components are included, namely, input data X, output
data Y, and delay time T. The window is slid to remove the data at the beginning of the
previous window, and then the same amount of new data is added at the end of the window
to ensure that the window size is constant. The sliding window will go through the entire
dataset until all of the data are covered.

Figure 2. Flowchart of the sliding window.
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Figure 3. The reconstructed matrix.

2.3. Stacking Algorithm
2.3.1. Algorithm Structure

Figures 4 and 5 show the framework structure of the stacking algorithm; the specific
process is as follows:

1. First, we leverage the sliding-window method to perform data preprocessing on the
original data and obtain a new training set, validation set, and test set. The training
set is divided into n parts: {Train(i) | i = 1, 2, . . . , n}, where n is the number of folds in
cross-validation (see Section 3.3 for details).

2. Model training: We choose RBF, BPNN, and RVFL as the base-layer learners. After
each model is pre-trained, we train the base learners with {Train(i)| i = 1, 2, . . . , n},
in turn. We make the base learners well-trained with the i-folder cross-validation
method, as shown in Figure 5. We generate an intermediate dataset A by vertically
merging the n predictions of the base learners. Specifically, we name the datasets
generated by RBF, BPNN, and RVFL as A(1), A(2), and A(3), respectively, and merge
these three datasets horizontally to obtain A(x). We use DBN and BLS–BP as our
meta-learners and train the meta-learners on A(x). We repeat the above process for
the validation set and the test set using the well-trained base learners to generate two
intermediate datasets B(x) and C(x), where x∈{1,2,3}.

3. Weight adjustment between meta-learners: We obtain a new dataset B(x) from the
predictions of the base learners on the validation set, and utilize B(x) to adjust the
weights between the meta-learners. The weights between the two meta-learners are
updated according to the error between the predictions and the labels.

4. Model Evaluation: We forward the test set to the well-trained base learners to obtain
C(x), and forward C(x) to the well-trained meta-learners to make predictions. Finally,
the optimal weights are used to obtain a weighted average of the predicted values of
the two meta-learners to obtain the final prediction results. The model is evaluated by
the error between the final prediction result and the actual value.

2.3.2. Base-Layer Network

The base-layer network consists of a radial basis function (RBF), random vector func-
tional link (RVFL), and backpropagation neural network (BPNN), to provide a robust
predictive model for STLF.

The RBF [27] is composed of three layers: The first layer is the input layer, which takes
the signal source as input. The second layer is the hidden layer, whose transformation
function is the radial basis function. The non-negative transformation function is linear,
symmetric, and attenuated. The third layer is the output layer, which responds to the input
mode. The output layer leverages a linear optimization strategy to fine-tune the linear
weight between the hidden layer and the output layer.
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Figure 4. Algorithm structure.

Figure 5. Cross-validation in the training process of the base learners.
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RVFL [9] is a neural network based on the learning paradigm. RVFL is more efficient
than the conventional iterative learning neural network. This feedforward structure can
be regarded as a linear combination of a fixed number of nonlinear expansions of the
original inputs. RVFL contains three layers: the input layer, enhanced node layer, and
output layer. The principle of RVFL is to use the augmented nonlinear kernel raw data
learned at the implicit layer to improve the generalization ability. The neural network has
a direct connection from the input layer to the output layer, which is helpful to map the
relationship between input and output. It is very suitable for the characteristics of our
selected basic learner.

The BPNN [28] is the most basic supervised learning neural network. Its output is
rendered by the forward propagation, and the errors are carried out in one-way propagation.
The BPNN contains three layers: the input layer, the hidden layer, and the output layer.
Specifically, the input of the hidden layer is the output of the input layer. Then, the hidden
layer applies an activation function to the hidden features, and the output of the hidden
layer is forwarded to the output layer to generate the output results.

The partial derivative gradient descent method is used to obtain the minimum value
of the cost function so that the error between the expected value and the output is reduced
as much as possible.

2.3.3. Meta-Layer Network

The meta-layer network applies a deep belief network (DBN) and the improved broad
learning system (BLS) to improve predictive accuracy.

The DBN [7] is a deep neural network model composed of a stacked RBM and a layer
of BP network, and it is also a current mainstream neural network. The structure is shown
in Figure 6. The training process of the DBN includes two steps:

Figure 6. Frame structure of the DBN.
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Step 1: Pre-training. The pre-training process involves training each layer of the RBM
network in an unsupervised manner. The aim is to keep sufficient feature information
when the features are mapped to different feature spaces. The overall training process
includes three steps: (1) train the first RBM until convergence; (2) freeze the weight and
bias of the well-trained RBM and take the state of its hidden layer as the input of the second
RBM; and (3) stack the two RBM models after the second RBM is converged. We repeat the
above three steps until the whole network is converged.

Step 2: Fine-tuning. In the fine-tuning step, we set up a supervised network in the
last layer of a DBN model. The model takes the output of the RBM as input, and trains
the entity relationship in a supervised manner. In addition, the backpropagation process
propagates the error information to each RBM model, and fine-tunes the parameters in the
DBN network.

As shown in Figure 7, the BLS [8] consists of four parts: input, feature node, enhance-
ment node, and output. In fact, the network performance of the BLS after two training
steps is insufficient. We establish the links between the output and input of the network,
and fine-tune it by backpropagation. Based on this idea, this paper designs an improved
BLS variant, namely, BLS–BP.

Figure 7. Frame structure of the BLS.

After the load data are trained by the BLS, the error in the output layer is propagated
to the input layer for fine-tuning by backpropagation. Then, we calculate the gradient
based on the error, and leverage the gradient to update the weights and biases. The training
step is stopped if certain conditions are met. We can set the maximum number of iterations
or calculate the prediction accuracy of the training set on the network, and stop training
after reaching a certain threshold. The training process of the BLS can be viewed as the
weight initialization of a BP network, which can help the network get rid of the local optima
and shorten the training time. Here, a detailed pseudo-code for the BLS-BP is given in
Algorithm 2.
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Algorithm 2: Broad Learning: Increment of the backpropagation neural network

Input: training samples X;
Output: the weight matrix between feature nodes, W;
Parameter setting: Zn (the feature mapping group); Hm (the enhancement nodes group); W (the
output weight of the BLS); E (the condition for stopping iteration);

1: for i = 0; i ≤ n do

2: Random Wei , βei ;
3: Calculate Zi = [ϕ(UWei + βei )];
4: end

5: Set Zn = [Z1, . . . , Zn];
6: for j = 1; j ≤ m do

7: Random Whj
, βhj

;

8: Calculate Hi =
[
ξ j

(
PWhj

+ βhj

)]
;

9: end

10: Set Hm = [H1, H2, . . . , Hm];
11: Set Y = [Z1, Z2, . . . , Zn |H1, H2, . . . , Hm]; W = [P|Hm]W ;
12: Calculate Ep = f ′ ·(Yp

)·(dp − Yp
)
;

13: while Ep > E do
14: Return W
15: Calculate W(n) = W + ·Ep·Yp ;
16: Update Y(n) = [Z1, Z2, . . . , Zn |H1, H2, . . . , Hm] ; Wn =[P|Hm]W(n);
17: W = W(n);
18: n = n + 1;
19: end

20: Repeat steps 12–19
21: Export W

3. Numerical Analysis

3.1. Datasets

To demonstrate the effectiveness and robustness of our model, we conducted experi-
ments on five datasets collected in the United States between 2017 and 2019. All datasets
were from five regions in the US, and were called CAPITL, CENTRL, DUNWOD, GENESE,
and HUDVL. The dataset sampling interval was 30 min, meaning that one day covers
48 load data samples. Figure 8 shows the load data in March to demo the training mode
of similar-days [29] prediction in this paper. We selected the similar-days period data of
different years to divide the training set, validation set, and test set. Before starting the
experiment, we normalized the sample data to the range [0, 1] to eliminate the dominant
effect of those data with large values.

Figure 8. Dataset for March.
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The normalization formula was as follows:

ŷm =
ymax − ym

ymax − ymin
(1)

where ŷm is the normalized value, ym represents the actual load data, ymax is the maximum
value of the load data, and ymin is the minimum value of the load data.

3.2. Evaluation Criterion

To effectively evaluate the predictive performance of our proposed model in STLF, we
used the following two evaluation criteria: the root-mean-square error (RMSE) [30] and the
mean absolute percentage error (MAPE) [31]. They are defined as follows:

RMSE =

√√√√ 1
M

M

∑
m=1

(
ˆ
ym − ym

)2
(2)

MAPE =
100%

M

M

∑
m=1

∣∣∣∣ ŷm − ym

ym

∣∣∣∣ (3)

where ŷm represents the prediction data, ym represents the actual load data, and M is the
size of the dataset. For both of the evaluation criteria, a smaller value indicates better
performance of the models.

3.3. Parameter Settings

We performed hyperparameter exploration before we started our formal experiment.
In our data pre-processing, the window size of the sliding-window algorithm was critical
to the final performance. To ensure the optimal window size, we applied the controlled
variable method, and adopted RMSE and MAPE as the evaluation metrics. According to the
test results in Figure 9, we can see that our model has the smallest RMSE and MAPE when
the sliding window takes the value of 96, indicating that the model has the best prediction
performance. Since there are 48 samples of load data in a day, and the size of the window
needs to be an integer number of days, we need to consider the practical significance of the
window size representing a specific time interval. Therefore, we determined the optimal
window size for the sliding window to be 96.

Figure 9. The corresponding error of window size.
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In the cross-validation (CV) module [32], an error experiment was carried out to filter
out the number of CV folds with the smallest error. We utilized MAPE as the evaluation
metric, and plotted the figure of error lines with regard to the power load in the spring for
CAPITL. As shown in Figure 10, when the CV is too small, the empirical error is large and
the model is not robust. When the CV is too large, the experimental error is not reduced,
although the computational effort increases greatly. We set CV to 12 as a compromise
of the computational effort and the model prediction performance. Table 1 shows the
optimal parameter settings of the machine learning methods used for comparison after
many experiments.

Figure 10. Corresponding error of CV folding number.

Table 1. Comparison of method parameter settings.

Model Optimal Parameters

BPNN nh = 200, mi = 10, a f = Sigmoid
DBN nh = 10, eta = 0.001, a f = Sigmoid, rb = 1, vm = 0.01, mi = 20

RBFNN fRBF = Gaussian, sRBF = 50
RVFL ne = 10000, a f = Sigmoid, DL = true, rm = Gaussian

EMD-BLS n f = 24, ne = 15
SWT-LSTM nh = 200, eta = 0.01

DWT-EMD-RVFL ne = 10000, a f = Sigmoid, DL = true, rm = Gaussian

EMD-EDBN nh = [100, 100], eta = 0.001, a f = Sigmoid, rb = 2,
vm = 0.01, mi = 500

nh—the number of hidden nodes; nh—the maximum number of iterations; a f —activation function; eta—learning
rate; rb—the random batch size of each time; vm—momentum value; fRBF—radial basis functions; sRBF—the
spread of radial basis functions; ne—the number of enhancement nodes; DL—whether to have the direct link
between the input layer and output layer; rm—randomization methods; n f —the number of feature nodes.

4. Case Study

To demonstrate the effectiveness and robustness of our model, we extensively com-
pared the performance of the proposed model with several baselines. Among the baselines,
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five approaches are single components of our stacking model: RBFNN, BPNN, RVFL, DBN,
BLS–BP, and four models are state-of-the-art in STLF: DWT-EMD-RVFL [9], SWT-LSTM [33],
EMD-BLS [8], and EMD-EDBN [7]. We conducted four sets of experiments to show the
superiority of our model against the baselines. Our experiments were implemented in
MATLAB R2021b (which is produced by US based MathWorks, Inc., Natick, MA, USA) on
a laptop equipped with Intel(R) Core (TM) i7-9750H CPU @ 2.60 GHz 2.59 GHz.

1. Ablation study: In this experiment, we compared our stacking model with the five
components of our model, and verified that the proposed model can outperform all
the baselines (see Section 4.1).

2. Compare to other ensemble models: In this experiment, we demonstrated the effec-
tiveness of the stacked meta-learners in our model against the baseline models with a
single meta-learner. We adopted the same base-layer learners in our model and the
baseline models (see Section 4.2).

3. Compare to state-of-the-art models: We compared our model with other state-of-the-
art models, and demonstrated that our model outperforms other baseline models (see
Section 4.3).

4. Comparison of computation times between models: We compared the computation
times required for each case based on the spring load data in HUDVL (see Section 4.4).

5. Heavy load test: In this experiment, we repeated the above three experiments on the
data collected on a special holiday. The high demand for electricity on the holiday
leads to a heavy power load, and increases the uncertainty of the power load (see
Section 4.5).

4.1. Ablation Experiment between Single Models and Hybrid Models

In this experiment, we took five single machine learning methods as baselines, and
the results are shown in Table 2. We emphasize the prediction results of our model using
the grey background. We can observe that our model outperforms the baselines in each
sub-dataset. Specifically, our model can achieve an outstanding performance even when
the power load time series is nonlinear and non-stationary (see CAPITL and CENTRL for
example). Although DBN can already make good predictions, the improved BLS proposed
in this article even has a prediction error less than that of the DBN in many cases. The results
demonstrate that the regression-based BLS has an effective predictive ability. In addition,
our model significantly outperforms other baseline models. In Figure 11, we can also
observe that the proposed method has the lowest MAPE, demonstrating the effectiveness
and robustness of our model. The proposed method achieves the best performance in all
datasets and forecasting steps. The forecast curves of the various methods on Christmas
Day are shown in Section 4.5.

Table 2. The error of comparison with separate neural network models.

Area
Season Spring Summer Autumn Winter

Model RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

CAPITL

OURS 21.97 1.47 27.73 1.24 24.72 1.54 25.70 1.47
RBFNN 60.05 3.93 55.50 2.55 70.27 4.80 38.59 2.34
BPNN 39.75 2.52 35.70 1.71 37.66 2.59 35.04 2.09
RVFL 31.13 2.00 38.74 1.77 33.95 2.17 31.29 1.82
DBN 31.74 2.09 39.39 1.82 33.99 2.17 29.68 1.73

BLS–BP 37.71 2.38 35.57 1.61 41.29 2.55 26.77 1.48

CENTRL

OURS 41.60 1.95 41.04 1.61 36.20 1.75 38.02 1.74
RBFNN 79.29 3.69 51.33 1.93 61.56 3.06 66.51 3.03
BPNN 63.32 2.99 60.29 2.42 46.15 2.28 58.08 2.52
RVFL 60.14 2.96 44.13 1.74 38.99 1.80 41.17 1.83
DBN 46.39 2.23 56.13 2.26 37.88 1.78 40.00 1.74

BLS–BP 50.04 2.37 46.96 1.97 46.45 2.10 42.54 1.88
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Table 2. Cont.

Area
Season Spring Summer Autumn Winter

Model RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

DUNWOD

OURS 14.20 1.86 22.82 1.82 17.87 2.28 16.42 2.09
RBFNN 28.05 3.68 34.47 2.92 28.59 3.82 25.46 3.28
BPNN 25.80 3.40 24.32 2.13 32.09 4.52 18.22 2.43
RVFL 21.17 2.89 27.93 2.08 19.21 2.38 18.09 2.32
DBN 16.86 2.17 32.22 2.76 18.61 2.48 17.12 2.16

BLS–BP 18.29 2.37 24.20 1.89 18.59 2.38 16.29 2.10

GENESE

OURS 18.48 1.44 18.88 1.16 15.55 1.16 16.59 1.18
RBFNN 29.90 2.38 22.10 1.34 23.71 1.84 24.29 1.78
BPNN 28.51 2.38 38.84 2.61 16.30 1.19 20.93 1.57
RVFL 32.36 2.67 28.89 1.69 21.28 1.62 23.06 1.66
DBN 23.23 1.91 35.34 2.04 21.95 1.71 24.21 1.88

BLS–BP 29.20 2.23 26.79 1.60 21.69 1.68 24.15 1.69

HUDVL

OURS 24.05 1.99 28.19 2.11 47.49 4.08 28.08 2.07
RBFNN 48.70 4.12 36.44 1.92 64.84 5.31 41.37 3.10
BPNN 36.69 3.08 47.62 2.78 50.98 4.17 31.40 2.25
RVFL 37.67 3.11 39.81 2.10 59.71 5.19 31.51 2.40
DBN 24.69 1.99 44.47 2.43 56.60 4.83 31.25 2.41

BLS–BP 32.54 2.73 34.97 1.91 51.98 4.27 32.47 2.46

Figure 11. Stacked evaluation indicators of each model.

4.2. Comparison with Other Ensemble Models

Based on the base learners, we utilized DBN and BLS networks as our meta-learners.
We further applied the backpropagation algorithm in the BLS network. We renamed the
DBN and improved BLS as S-DBN and S-BLS, respectively. The error results are shown
in Table 3. From the table, we can observe that the accuracy and stability of the stacked
model outperform those of a single model. However, the performance is still insufficient
compared to the algorithm proposed in this article, which shows the feasibility of our
proposed algorithm. The forecast curves of various methods on Christmas Day are shown
in Section 4.5.
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Table 3. The error of comparison with other ensemble models.

Area
Season Spring Summer Autumn Winter

Model RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

CAPITL
OURS 21.97 1.47 27.73 1.24 24.72 1.54 25.70 1.47
S-DBN 34.52 2.39 52.53 2.40 34.35 2.26 27.23 1.57
S-BLS 30.33 1.93 35.28 1.57 31.60 2.01 26.96 1.61

CENTRL
OURS 41.60 1.95 41.04 1.61 36.20 1.75 38.02 1.74
S-DBN 55.57 2.71 49.04 1.95 36.67 1.79 40.88 1.80
S-BLS 51.69 2.40 54.28 2.09 58.70 2.77 40.51 1.78

DUNWOD
OURS 14.20 1.86 22.82 1.82 17.87 2.28 16.42 2.09
S-DBN 15.43 2.06 27.70 2.26 18.00 2.36 16.68 2.14
S-BLS 15.37 2.05 24.58 1.92 18.98 2.47 20.02 2.52

GENESE
OURS 18.48 1.44 18.88 1.16 15.55 1.16 16.59 1.18
S-DBN 19.79 1.58 28.20 1.50 17.96 1.34 16.65 1.22
S-BLS 23.86 1.91 20.77 1.20 17.16 1.26 18.48 1.40

HUDVL
OURS 24.05 1.99 28.19 2.11 47.49 4.08 28.08 2.07
S-DBN 29.77 2.51 37.57 2.01 60.14 5.39 29.12 2.18
S-BLS 24.59 2.02 30.12 1.63 48.67 4.08 29.47 2.24

4.3. Comparison with Other Hybrid Models

To date, a variety of hybrid models have been proposed for short-term load forecasting.
We took four models as the baselines for our model: DWT-EMD-RVFL [9], SWT-LSTM [33],
EMD-BLS [8], and EMD-EDBN [7]. The empirical results show a similar trend with previous
experimental results: the proposed model outperforms the hybrid models for each dataset
in all forecasting horizons. The respective error experiments are shown in Table 4. We can
observe that the EMD-EDBN model has the worst results for all datasets in all forecasting
horizons. Figure 12 shows that our method has the smallest errors on each sub-dataset,
demonstrating the effectiveness and robustness of our model. The forecast curves of various
methods on Christmas Day are shown in Section 4.5.

Table 4. The error of comparison with other hybrid models.

Area
Season Spring Summer Autumn Winter

Model RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

CAPITL

OURS 21.97 1.47 27.73 1.24 24.72 1.54 25.70 1.47
DWT-EMD-RVFL 29.38 1.95 43.22 1.93 27.12 1.75 29.54 1.66

SWT-LSTM 29.56 1.90 42.37 1.97 25.71 1.60 43.56 2.70
EMD-BLS 23.28 1.51 30.83 1.43 39.42 3.05 30.93 1.61

EMD-EDBN 36.00 2.26 74.20 3.64 47.37 3.20 30.93 1.61

CENTRL

OURS 41.60 1.95 41.04 1.61 36.20 1.75 38.02 1.74
DWT-EMD-RVFL 43.72 2.08 48.46 1.93 39.66 1.86 39.75 1.77

SWT-LSTM 35.52 1.65 44.14 1.85 37.58 1.79 38.83 1.73
EMD-BLS 52.07 2.55 47.50 1.92 39.86 1.83 45.50 2.00

EMD-EDBN 42.34 1.98 88.28 3.64 50.78 2.51 79.92 3.76

DUNWOD

OURS 14.20 1.86 22.82 1.82 17.87 2.28 16.42 2.09
DWT-EMD-RVFL 16.14 2.20 28.01 2.28 17.94 2.38 17.49 2.16

SWT-LSTM 15.64 2.06 26.41 1.98 18.70 2.17 18.96 2.45
EMD-BLS 19.76 2.69 34.56 3.45 30.28 4.71 23.21 3.25

EMD-EDBN 29.76 4.00 95.57 7.39 45.02 5.93 30.02 4.37
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Table 4. Cont.

Area
Season Spring Summer Autumn Winter

Model RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

GENESE

OURS 18.48 1.44 18.88 1.16 15.55 1.16 16.59 1.18
DWT-EMD-RVFL 22.53 1.77 28.59 1.65 19.49 1.42 20.94 1.43

SWT-LSTM 23.75 1.93 27.46 1.70 23.73 1.87 23.01 1.75
EMD-BLS 26.34 2.08 26.23 1.42 42.30 3.04 30.54 2.22

EMD-EDBN 46.70 3.89 153.69 9.01 39.91 3.02 77.17 6.00

HUDVL

OURS 24.05 1.99 28.19 2.11 47.49 4.08 28.08 2.07
DWT-EMD-RVFL 28.93 2.35 40.06 2.09 48.32 4.14 32.67 2.44

SWT-LSTM 34.30 2.73 30.61 1.70 59.02 5.21 28.20 2.04
EMD-BLS 34.64 2.93 40.73 2.41 47.95 4.29 33.41 2.46

EMD-EDBN 64.31 5.85 82.02 4.61 97.17 8.74 50.54 3.60

Figure 12. MAPEs of the hybrid models.

4.4. Comparison of Computation Times between Models

Considering that the computational effort should be considered for the prediction
performance evaluation of the models, the computation times required for each case are
discussed in this section. We selected the computation times of each model in the case
of predicting the spring load data in HUDVL, and the computation times for each model
are shown in Table 5. As shown in Table 5, the proposed model has a computation time
of 83.928 s. Although the proposed model has a longer computation time than most of
the individual comparative models, it significantly outperforms the other comparative
models in terms of prediction performance, and the time cost of implementation is within
acceptable limits. In addition, the experimental results show that the proposed model
has a shorter computation time and better prediction performance than a single complex
SWT-LSTM model.
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Table 5. The computation times required for each case.

Area
Season Spring

Model Time/Second

HUDVL

OURS 83.928
RBFNN 13.214
BPNN 15.893
RVFL 12.039
DBN 12.901

BLS–BP 11.574

S-DBN 81.259
S-BLS 66.374

DWT-EMD-RVFL 13.333
SWT-LSTM 107.791
EMD-BLS 12.618

EMD-EDBN 28.211

4.5. Model Performance Analysis on a Heavy Load Test

This section selects a special day in the United States—Christmas—to analyze the
performance of the model. Figure 13a–c show the prediction curves of three groups of
comparative experiments on Christmas Day. The figures show that although other models
can effectively predict the load in some regions where the original electric load increases
and decreases steeply, there are still large errors in the prediction results in the regions
where the original electric load curve fluctuates widely at the peaks and valleys. In contrast,
the load prediction curve of the hybrid network proposed in this paper can fit the original
power load curve well. It can predict well even in some areas with large fluctuations of
the original power load curve, as well as peaks and troughs. This shows that the method
proposed in this paper has strong robustness.

Figure 13. Cont.
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Figure 13. (a) The prediction curve of the comparison with separate neural network models; (b) the
prediction curve of the comparison with other ensemble models; (c) the prediction curve of the
comparison with other hybrid models.

4.6. Discussion

The empirical results demonstrate that our model can achieve promising performance,
and that our model is more robust than the baseline models for the STLF task. The high-
level intuition is that the sliding-window algorithm can smooth the nonlinearity and
non-stationarity of the power load data series. In addition, the proposed stacking method
can effectively combine multiple neural networks to improve the prediction performance
of this method. The forecasting accuracy is further improved by the improved BLS. In
addition, the similar-days prediction method is developed for extracting the relationship of
electric load data in different time dimensions, proving the robustness of the model.

5. Conclusions

This paper proposes a novel ensemble learning framework for short-term load forecast-
ing. The proposed forecasting framework employs the sliding-window technique to deal
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with the time-series electric load data. After that, the data are processed in a similar-time
prediction method after the training of ensemble learning. Finally, the proposed model
is compared with individual neural network models, other ensemble models, and hybrid
models. Error analysis is obtained based on MAPE and RMSE evaluation criteria.

In conclusion, the proposed model has advantages in robustness and effectiveness.
(i) Robustness: The regression-based broad learning system can achieve outstanding per-
formance when tackling the noise and outliers. The proposed model stacks sub-models to
obtain a stacking ensemble model. Our empirical results show that our proposed stacking
method can outperform its sub-component, demonstrating the robustness of our model.
(ii) Effectiveness: The proposed model can outperform the four existing hybrid baseline
models and the sub-component model. The experimental results show that our model
can achieve significantly better results than the baseline models because it has a rational
framework and design.

However, there are still some limitations to the proposed work. For example, our
proposed stacking model has a higher computational cost compared to other individual
prediction models. In the future, we plan to explore better model selection for the base-
and meta-learners in the stacking approach to tackle this issue, and we intend to use
optimization methods to tune the hyperparameters of the prediction models to obtain
better prediction accuracy. In addition, we are also interested in investigating electricity
load forecasting for individual household customers with higher volatility to validate the
robustness and accuracy of our proposed model.
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Abbreviations

ANN Artificial neural network
ARMA Autoregressive moving average
BLS Broad learning system
BLS–BP Broad learning system–backpropagation
BPNN Backpropagation neural network
CV Cross-validation
DBN Deep belief network
DWT Discrete wavelet transform
EMD Empirical mode decomposition
EDBN Ensemble DBN
LR Linear regression
LSTM Long short-term memory
MAPE Mean absolute percentage error
RBF Radial basis function
RBM Restricted Boltzmann machine

136



Mathematics 2022, 10, 2446

RVFL Random vector functional link
RMSE Root-mean-square error
S-BLS Selected BLS
S-DBN Selected DBN
STLF Short-term load forecasting
SVR Support-vector regression
SWT Stationary wavelet transform
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Abstract: Developing reliable tidal-energy turbines of a large size and capacity links to preservation of
the structural safety and stability of the blades. In this study, a bidirectional fluid–structure coupling
method was applied to analyze the hydrodynamic performance and structural characteristics of
the blade of a tidal-stream turbine. Analyses were conducted on the transient and stable structural
stresses, fatigue, and deformations under the influence of water depth and turbine rotational speed.
The performance predictions with and without fluid–structure coupling are similar to measurements.
The water-depth change has little effect on the stress and deformation change of the blade, while the
turbine-speed change has the most significant effect on it. When the turbine just starts, the blade
will be subject to a sudden change load. This is due to the increase in turbine speed, resulting in
the sudden load. Similar to the trend of blade stress, the blade safety factor is lower near the root
of the blade, and the turbine-speed change has a more significant impact on the blade structure’s
safety. However, the number of stress cycles in the blade at different rotational speeds is within the
safety range.

Keywords: tidal stream turbine; CFD; fatigue life; fluid–structure interaction; blade safety factor

MSC: 76E07

1. Introduction

Environmentalists emphasize the imminent animal- and human-habitat disruption
from the rising climate temperatures due to the large-scale implementation and burning
of fossil fuels. Attempts to reverse the ecological damage are without economical side
effects and comprise the carbon residues’ elimination and the minimization and eventual
substitution of fossil-based systems into renewable power systems. However, the strategy
carries obstacles, such as overcoming renewable discontinuous power output, equalizing
cost disparities, and improving reception among users. More recently, supporters have
stressed the importance of combining renewable resources, named hybrid systems, to
achieve economy of scale and solve the cost-inefficient energy accumulators. Tidal-stream
energy fits into this concept. It is a high-density, unrenowned, and foreseeable source, and
it could supplement wind offshore systems, once viable. The popular mode for current
kinetic energy conversion is through rotary machines (three-bladed turbines) stationed in
the sea bottom and coupled to electrical generators. Due to its parallelism to offshore wind,
the blade profile can be selected to achieve power efficiencies of 48% but may be more in
bounded conditions; this is presumed from the multi-member concept and relatively large
sweep to incident channel area.

Relevant inquiries, nevertheless, are whether the underwater devices can survive
the corrosity and unexpected sea environments, as well as where they can live up to
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investors’ expectations to deliver large low-cost energy over a reasonable time. Since
direct field testing is difficult, scientific strategies involve the artificial flow replication, to
comprehend the alone and multi-turbine operation, and possible interference in the aquatic
life. However, as sites diverge in bathymetry and geographical position, caution in regard
to the measured properties must be applied; the current may prompt turbine blockage
effects due to shallow depth and mix with omni-directional waves, and the turbulence
intensity (TI) can be small (0.1) or critical (0.4), whilst the shear may or not exemplify power
laws.

Contrary to uniform flows, the turbine’s fluctuating performance is intricate, and thus,
the association is unclear between the dynamic blade effects and the main properties of
the turbulence and with waves. Tidal-energy turbines are generally arranged in complex
marine environments with high flow velocities [1,2]. So, the research methods for tidal-
energy turbines are mainly model tests and numerical simulations [3–7]. Allmark et al. [8]
conducted model tests of a tidal-energy turbine with a model scale of 1:20 in a recirculating
water tank. They found that by using the upstream region of the turbine to achieve
acceleration, the turbine could achieve higher power, and the control scheme used had
a significant effect on power and load fluctuations. Myers et al. [9] conducted model
experiments in a circulating water tank with a turbine diameter of 0.4 m and a ratio of
1:30 and found that, as the inlet flow rate increases, it increases the turbulence around
the runner and the change in water-surface height. Zhang et al. [10] evaluated the wake
characteristics of a turbine under wave action and showed that the presence of waves
has an effect on the intensity of vorticity and turbulence in the near wake field. Gaurier
et al. [5] studied load fluctuations in a tank for a turbine model with a scale of 1:20 and
showed that fluctuations in turbine load respond directly to fluctuations in low-frequency
velocities and are influenced by turbulence shedding from the turbine. This provides
substantial suggestions for conducting further fatigue analyses for turbine conditions with
high Reynolds-number flow.

Numerical simulations have gradually become a convenient and credible research method
through the continuous validation of model experiments conducted by researchers [11]. Tian
et al. [12] used available experimental data to verify the reliability of the adopted calculation
method, and based on this, the effects of the yaw angle and turbulence-intensity drops
on the performance of a horizontal axis tidal energy turbine with a diameter of 3 m were
calculated. The results showed that the effects of different turbulence intensities on power
coefficient (Cp) and thrust coefficient (Ct) are small, but the effects on wake are large.
Ahmadi et al. [13] and others studied the evolution of the wake characteristics of horizontal-
axis tidal-energy turbines experimentally, followed by numerical simulations of the flow
field, using a combination of Large Eddy Simulation (LES) and Augmented Lagrangian
Method (ALM) to partition the turbine wake into different regions, suggesting that to study
the characteristics of the turbine wake, it is necessary to understand the variation of flow
characteristics in the transition zone.

With the development of tidal-energy turbines to large capacity and large size, their
structural safety and stability have received more and more attention [14–17]. On the one
hand, the horizontal-axis tidal turbine will produce hydroelastic deformation under the
action of water flow, and the deformation produced by the blades will also act on the water
flow to produce a certain impact on the flow field; on the other hand, compared with
the wind turbine, the tidal turbine will be subject to greater thrust due to the density of
seawater [18]. Therefore, the study of fluid–structure coupling for tidal-energy turbines
has also attracted the attention of experts and scholars. At present, many scholars have
started to conduct fluid–structure coupling analysis on tidal turbines, mainly focusing on
their structural reliability, and then achieved the purpose of optimizing the blades.

Some researchers have analyzed the structural performance of tidal turbine blades
under different conditions by using the unidirectional fluid–structure coupling method [19].
Hafeez et al. [20] investigated the effect of the velocity shear on the performance and
structure of the tidal turbine, comparing the blade deformation in uniform flow and
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shear flow, and found that the blade deformation of the turbine under velocity shear
flow changed significantly. Liu et al. [21] analyzed the structural performance of blades
made of stainless steel and structural steel at different rotational speeds, and the results
showed that the output power of the turbine was lower at low rotational speeds, but the
energy gain efficiency was higher, and the blades of both materials met the structural safety
requirements. Ullah et al. [22], on the other hand, performed a fatigue-life analysis and
modal analysis of the hydraulic turbine. Some scholars have also used a bidirectional
fluid–structure coupling approach in order to obtain the transient structural response
of the blades [23–25]. Nicholls-Lee et al. [26] developed an adaptive composite blade
design tool and performed a bidirectional fluid–structure coupling analysis on a series of
composite bending–torsion coupled blades, and the results showed that practical design
of a properly designed blade can achieve a 12% reduction in thrust coefficient and an
effective 5% increase in power coefficient. Badshah et al. [27] showed that the difference
between CFD calculation results and fluid–structure coupling calculation results is less than
10%, and the two calculation conditions differ in the results of the blade-surface pressure
difference. Tatum et al. [28] recognized that wave action would cause the hydraulic
turbine’s asymmetric loading, so the turbine characteristics were calculated for uncoupled
CFD and bidirectional fluid–structure coupling conditions, and the comparison revealed
no significant difference between the two calculations; this is a matter of blade-material
selection. Khalid et al. [24] simulated the transient structural response of a vertical axis tidal-
energy turbine runner, using the fluid–structure coupling method; the blade deformation
at each time step was considered in the calculation, and a new calculation method was
proposed: transferring the file in ANSYS-APDL to obtain the solution results.

Clearly, an implication of turbine (performance curve and number of blades) and
flow operation (turbulence profile) and design (vertical vs horizontal), along with the
model differences, raises important questions about the generalizability of the above
numerical findings. Therefore, in this study, the hydrodynamic performance and structural
characteristics of the turbine were numerically simulated and analyzed based on the
bidirectional fluid–structure coupling calculation, and the accuracy of the calculation
results was verified by model tests. The prototype is a standard three-bladed horizontal-
axis concept, operating in a flow with a turbulence intensity of 7%, and depth variation
resembling the logarithmic power law. The fatigue life of the blade was also predicted by
considering the influence of the turbine speed and water-depth-variation factors. Our work
provides a reference for the design and material application of the blade of the tidal-energy
turbine. In our view, these results represent an excellent initial step toward the wider use
of the Coupled Fluid Structure model due to high computational accuracy and resource
efficiency, as well as further testing in more complex situations, such as incoming waves
and currents, and floating turbine systems.

2. Basic Theory

The fluid–structure coupling models the complex interaction between the turbine and
water by first treating separately and then coupling the behavior of the incompressible
fluid (water) and deformable structure. The strategy has been used to contemplate complex
physical phenomena, such as smoking, and can benefit by the use of advanced backed-up
separate solvers, applicable to the matter and operating state. Parameters in the method’s
stability, resource and time requirement, and preciseness comprise the mode and mecha-
nisms of fluid–structure data (interface) communication. If the governing equations of the
fluid and structure both satisfy, per time-step calculation, the coupling is said to be strong.
The integrated equation is as follows:[

AFF AFS
ASF ASS

][
ΔXK

F
ΔXK

S

]
=

[
BF
BS

]
(1)

where AFF is the fluid domain coefficient matrix, ΔXK
F is the physical solvable quantity,

BF is the external force, and K is the number of time iteration steps; the subscripts F and S
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refer to the fluid and solid domain, respectively whilst ASF and AFS are both fluid–structure
coupling matrices.

Theoretically, the strong coupling lacks time lag, and the solution’s stability, visualiza-
tion, and accuracy are high. However, the iterative process in the interface becomes time
and resource exhaustive, especially for three-dimensional natural-phenomena problems.
An alternative to maximize resource efficiency is to satisfy the interface’s governing equa-
tions, only once per time step, called weak coupling; however, it carries well-known defects:
instabilities in strong added-mass circumstances and in solutions, confining the time-step
calculation. Additionally, the data transfer between the fluid and the solid modules can be
unidirectional, reducing complexity, or reciprocal by assuming the solid deformations alter
the surrounding flow, as in the blade against the incident current. The structural dynamics
equations of the two-way coupling is as follows:

[M]{x′′ }+ [C]
{

x′
}
+ [K]{x} = {F(t)} (2)

where the matrix, [M], is the mass; [C] is the damping; and [K] is the stiffness. Moreover,
the vector of displacement is {x}, that of force is {F(t)}, that of velocity is {x′}, and that of
acceleration is {x′′ }.

The following conditions are satisfied for data exchange at the relevant fluid–structure
coupled intersection: {

us, f = u f ,s
vs, f = v f ,s

(3)

where u is the normal-phase displacement component, and v is the normal-phase velocity
component.

3. Computational Model

3.1. Numerical Calculation Model

A bidirectional weak coupling fluid–structure model, the ANSYS Workbench platform
Fluent, Transient Structural and System Coupling, simulates the turbine transient responses
due to incident turbulent current. The CFD-based model is divided into two domains: the
blade domain of radius 0.15 m (D/2), and a rectangular prism comprising the outflow field.
The width of the prism is set to 4D, consistent with the channel’s width, whilst the water
depth is set to h = [1.6D, 2D, 2.4D] in order to capture the channel blockage effects on the
wake and turbine development. The blade hub is at half-water depth, 8D from the upstream
inlet and 30D from the downstream outlet. The blade material is set to Aluminum 6061,
with properties summarized in Table 1. To acquire a consistent mesh around the complex
blade geometry by virtue of the radial angle variation, the tetrahedral grids are used for
the blade domain, with blade sections locally encrypted to increase the result accuracy. The
boundary-layer grid is set for the blade boundary, and the height of the first-layer grid is
0.02 mm. The hexahedral grid, known for yielding higher accuracy, distortion resistance,
and the number of divided grids, is used for the outflow field. In order to further reduce the
influence of the outflow field calculation, the blade domain is encrypted, and the final grid
structure is divided as shown in Figure 1. The eddy-viscosity model, SST k-ω, accounts for
turbulent shear stresses. The solution of the Navier–Stokes (NS) equations incorporates an
implicit scheme. The convective components are discretized with second-order upwind
schemes, owing to good convergence and stability features. The pressure–velocity linkage
in the NS equation is resolved iteratively via the SIMPLE algorithm. The velocity depth
variation is close to the logarithmic power law, as shown in Figure 2. The fitting formula is
as follows:

V = 0.023In
( z

0.0015
+ 57.7

)
+ 0.25 (4)
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Table 1. Material properties of 6061 aluminum.

Material Density (kg·m−3) Young’s Modulus (Pa) Poisson’s Ratio

Aluminum 6061 2750 7e + 10 0.33

Figure 1. CFD model and the division of the mesh.

Figure 2. Vertical velocity distribution.

The mean velocity across the swept area is 0.4m/s, with a turbulence intensity of 7%.
Consequently, the boundary condition at the inlet is the velocity inlet, and the velocity
varies according to Equation (4), whereas at the pressure outlet, the relative atmospheric
pressure is set to 0. The free liquid surface is set to symmetry, and the moving mesh is used
for the non-constant solution of the fluid domain. Figure 1 shows the mesh structure and
main characteristics of the domains.
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The solid domain part uses a tetrahedral mesh. The radial and axial displacement
constraints are applied to the blade structural body. Gravity is present, and the blade
surface is the fluid–structure coupling intersection. The constraints and mesh domain of
the solid part are shown in Figure 3.

(a) 

  
(b) 

Figure 3. Mesh division and constraint setting of solid domain model: (a) mesh of solid domain and
(b) constraints on solid domain.

3.2. Grid-Independence Verification

A grid-independence test investigates the method’s computational resource with
result accuracy. For the fluid domain, the grid number ranges from 3.5 to 7 million, whereas
in the solid, the unidirectional fluid–structure coupling uses a grid size of 2 to 6 mm.
The water depth is set to 0.6 m, with a blade angular speed of 100 r/min. As shown in
Figure 4 and Table 2, the Cp and Ct values quickly decrease from 4.5 to 6 million grids,
and then asymptote with numbers over 6 million. The maximum deformation and stress
increases with grid reduction and converges with sizes less than 4 mm. Consequently,
using a grid size of 3 mm for the solid and 6 million grids for the fluid saves computational
resource without sacrificing accuracy level (<0.1%). The bidirectional fluid–solid coupling
simulation was conducted by a computer with 32-cores AMD CPU. The final computation
time for each case is 132 h.
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(a) (b) 

Figure 4. Grid-independence verification of fluid domain: (a) Cp and (b) Ct.

Table 2. Grid-independent verification of solid domains.

Segmentation Scheme Grid Size (mm) Number of Grids
Maximum

Deformation (m)
Maximum Stress (MPa)

1 6 4187 0.012049 979.2
2 5 6409 0.012191 984.68
3 4 9616 0.012376 1122.3
4 3 15,337 0.012614 1307.5
5 2 43,382 0.012691 1337

3.3. Model Test Validation

The power output of the modeled 3-bladed turbine was examined in the hydrodynamic
laboratory of Shandong Transportation Institute, using a flume of 50 m in length, 1.2 m
in width, and 1.2 m in depth. The pumped water recirculates from the upstream inlet to
the downstream via a returning underneath chamber, and the water depth (h) is 0.6 m.
The piled turbine is suspended in a metal cage, confining the speed and torque controller
and electric cables. This is then fixed by using a crossbeam on the flume, allowing for the
adjustment of the hub height (0.3 m). Figure 5 presents the experimental setup.

 

Figure 5. Layout of circulation pool and turbine.
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Figure 6 shows the comparison of results calculated by the FSI method and regular
CFD method with the experimental results of the current study. As seen, the predicted
power coefficients by BEMT, FSI, and CFD follow an inverted u-curve with a tip–speed
ratio (TSR) of TSR = ωR/U, culminating at TSR = 3.9, with Cp = 0.332–0.345. In general,
the FSI simulations deviate more from the measurements than the CFD’s do due to the
non-optimal initial twist blade angle and deformation consideration; however, the error is
less than 4.01% for the contemplated study’s range (TSR = 3.64–4.32).

Figure 6. Graph of Cp with TSR.

4. Results Analysis

4.1. Hydrodynamic Performance of Blades

As Figure 7 demonstrates, the pressure simulations follow S-shaped curves, with upper
asymptote (near the root) stretching further and lower (at the tip) shifting downwardly
with radial distance. This behavior is attributed to two issues: a larger power section
performance, apart from the blade root, augmenting the low–high pressure ranges; and
the closer cavitation occurrence at the wingtip due to high tangential velocity (ω*r). The
only observable simulation difference is at the rear of the blade; it is slightly more negative
with than without the fluid–structure coupling condition, due to a small deformation of the
blade.

    
(a) (b) (c) 

Figure 7. Cont.
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(d) (e) (f) 

Figure 7. Pressure distribution of different blade sections: (a) span = 20%, (b) span = 40%,
(c) span = 50%, (d) span = 60%, (e) span = 70%, and (f) span = 80%.

4.2. Blade Structural Stress Analysis

The structural characteristics of the blade were analyzed for a water depth of 0.6 m,
an installation height of 0.3 m, and a turbine speed of 100 r/min under fluid–structure
coupling conditions. The operation of the tidal-energy turbine for 3 s is calculated, and
Figure 8 shows the dynamic stress distribution of the turbine blades at different times. It
can be seen that the stress features similar lanceolate contours per blade, extending from
the mid-root to almost all the blade, and reducing in intensity radially, reminiscent of
an enlarged flame-like shape. Over time, the inner-core strength slightly augments and
extends radially. This is because the blade is fixedly connected to the hub, and the blade
can be regarded as a cantilever beam, and the bending moment and shear force near the
blade root are maximum under the action of fluid loads, such as water thrust. The trend
of the stress distribution on the three blades of the blade under each moment is that the
maximum stress is at the root of the blade and decreases with an elliptical gradient toward
the tip of the blade. When the blade starts to operate, the maximum stress on its surface
rises rapidly, with the maximum value reaching 0.596 MPa, and the large stress-distribution
area expands rapidly. As the turbine operation gradually stabilizes, the blade’s stress
distribution is basically similar, and the maximum stress fluctuates in a small range, which
is the result of the alternating cyclic load on the blade.

Figure 9 shows the deformation distribution of the blade at different moments. It can
be clearly seen that the deformation of the blade’s surface at each moment is gradually
increasing from the root to the tip of the blade. Combined with Figure 8, it can be found
that the maximum blade deformation increases equally rapidly when the turbine is first
started and fluctuates in a small range subsequently, due to the stable operation of the
blade.

Figure 10 shows the variation of the maximum blade stress with time for 3 s operation
under the water depth of 0.48 m, 0.6 m, and 0.72 m operating conditions. From the curves
in the figure, it can be seen that the stress initially features an abrupt inverse u-curve
before stabilizing, though in a fluctuating manner. The water depth reduces moderately
the transient peak but slightly the stable stress. The maximum stress changes in all three
water depth conditions show similar small amplitude periodic fluctuations. The turbine
is operated under the maximum blocking ratio at the water depth of 0.48 m, and the
maximum stress of the blade exists under the three water-depth conditions. Moreover, it
can be observed that, under the three water-depth conditions, the maximum stress of the
blade tends to decrease with the increase of water depth, but the maximum stress value is
very close, so the change of water depth-conditions has little effect on the maximum stress
of the blade under stable operation.

Figure 11 shows the variation of the average values of stress and deformation with the
water depth during the stable operation of the turbine. It can be seen more directly that, as
the water depth decreases, the average stress and average deformation of the blade show
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an overall decreasing trend, and the average deformation of the blade does not change
much after the water depth is lower than 0.6 m.

The influence of the tip–speed ratio (TSR) on the energy conversion of the turbine
runner is relatively obvious. As the TSR increases, the runner thrust coefficient increases,
and the thrust force acting on the blades also increases. Therefore, it is necessary to inves-
tigate the influence of TSR on the blade structure performance under the fluid–structure
coupling condition and provide a theoretical basis for the blade strength design of tidal
energy turbine. In this calculation, the incoming flow velocity of 0.4 m/s is kept constant,
and the TSR is changed by changing the blade’s rotational speed. The rotational speeds are
92.69 r/min, 100 r/min, 102.11 r/min, and 110.01 r/min, respectively.

Figure 12 shows the graph of stress variation of the runner at different rotational
speeds. When the turbine just started, the blade was also subjected to sudden load changes,
and the maximum stress showed periodic fluctuations after 1 s. The higher the rotational
speed, the greater the load acting on the blade. Take the rotation speed 100 r/min and
110.01 r/min for example; when the rotation speed increases by about 10%, the sudden
stress on the blade at the initial start-up increases by about 30%. Therefore, in the designed
operating speed range, the abrupt load changes generated at the start of the turbine cannot
be ignored.

Figure 8. Distribution of blade’s dynamic stress at different times (Pa).
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Figure 9. Distribution of blade deformation at different times (m).

Figure 10. Variation of maximum stress of blade at different water depths.
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Figure 11. Stable cycle stress and deformation of the blade at different water depths.

Figure 12. Variation of maximum blade stress at different rotation speeds.

When the turbine operation was stabilized, the average stress and average deformation
at four rotational speeds were calculated, as shown in Table 3. It can be found that the
average stress and average deformation generally increase with the increase of rotational
speed. The average stress becomes larger with the increase of the rotational speed, which
is consistent with the trend of the thrust load on the blade. The stress and deformation
of the blade are mainly caused by the fluid load [19], and the horizontal-axis tidal-energy
turbine is mainly subjected to the axial-thrust force. Moreover, as the speed increases, the
axial-thrust force on the turbine increases. The average deformation of the blade decreases
at the maximum speed, and this may be due to the second-order oscillation of the blades.

Table 3. Average stress and average deformation.

Rotational Speed (r/min) Average Stress (MPa) Average Deformation (mm)

92.69 0.339 0.543
100 0.361 0.550

102.11 0.364 0.551
110.007 0.38 0.544

4.3. Blade-Fatigue-Life Analysis

Figure 13 shows the distribution of the safety coefficient of the blade under different
water-depth conditions. The safety factor is uniform, except in near the inner root section of
the individual blades; it features irregular elliptical cores of the half safety factor extending
along the blade’s axis. The depth both slightly affects the distribution and increases the
magnitude of the safety factor.
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(a) (b) (c) 

Figure 13. Blade safety factor at different water depths: (a) water depth of 0.48 m, (b) water depth of
0.6 m, and (c) water depth of 0.72 m.

Overall, the low safety coefficient of the blade is located at the root of the blade, which
corresponds to the stress distribution of the blade in the previous section, where a large
stress concentration occurs at the root of the blade leading to a decrease in the safety
coefficient at the root. Meanwhile, with the increase of the water depth, the minimum
safety coefficient increases slightly, but the influence range of the blade’s minimum safety
coefficient is basically the same under different water-depth conditions, and the influence
range increases only under the minimum water depth.

Figure 14 depicts the safety-factor distribution of the blade under different TSR condi-
tions. Individually (blade), the half-safety-factor area in the root stretches along the blade
axis, though irregularly, with rotational speed. Figure 14d shows the distribution of the
safety coefficients on the front and back of the blade at the maximum speed, and it is found
that the range of the low safety coefficients on the back of the blade is much larger and has
reached the middle of the blade. If the turbine is in a more complex marine environment,
the middle of the blade may break, so special attention should be paid when performing
the blade’s strength calibration.

 
(a) (b) (c) 

 
(d) 

Figure 14. Blade safety factor at different rotational speeds: (a) 92.69 r/min, (b) 100 r/min,
(c) 102.11 r/min, and (d) 110.01 r/min.
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Considering the influence of different rotational speeds on the safety coefficient of the
blade, the calculation of the number of stress cycles was carried out for different rotational
speeds of the blade. The number of stress cycles of turbine blades under different rotational
speeds all reach 108, indicating that the blades are in the safe range under these rotational
speeds.

5. Conclusions

This paper calculated and analyzed the hydrodynamic performance and structural
characteristics of the tidal stream turbine under bidirectional fluid–structure coupling
conditions, and the main conclusions are as follows:

(1) The difference between the calculated hydraulic turbine power coefficients with and
without fluid–structure coupling conditions is not significant, and the deformation
of the blade under the bidirectional fluid–structure coupling calculation will have a
certain impact on the pressure difference on the blade’s surface.

(2) As a cantilever beam structure, the blade has its maximum stress concentrated in the
root of the leaf, and its maximum deformation is located near the tip of the leaf. The
change of water depth has little influence on the stress and deformation of the blade,
but the change of rotation speed has the most significant influence on it. The blade
will be subjected to abrupt load when it is first started, and the increase of rotation
speed will increase the abrupt load.

(3) The fatigue-life prediction of the blade of the tidal-energy turbine was carried out.
Similar to the blade stress variation, the lower safety factor of the blade is located near
the root of the blade, and the blade’s rotation-speed variation has a more significant
effect than water depth. The number of stress cycles of the blade at different rotational
speeds is within the safety range.

(4) During the design process of the blade, not only the hydraulic performance but also
the strength of the blade situation should be taken into consideration.

(5) These results represent an excellent initial step toward the wider use of the coupled
fluid structure model due to high computational accuracy and resource efficiency;
and toward further testing in more complex situations, such as incoming waves and
currents, and floating turbine systems.
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Abstract: This paper proposes a fast meshless scheme for acoustic sensitivity analysis by using the
Burton–Miller-type singular boundary method (BM-SBM) and recursive skeletonization factorization
(RSF). The Burton–Miller formulation was adopted to circumvent the fictitious frequency that occurs
in external acoustic analysis, and then the direct differentiation method was used to obtain the
sensitivity of sound pressure to design variables. More importantly, RSF was employed to solve the
resultant linear system obtained by the BM-SBM. RSF is a fast direct factorization technique based
on multilevel matrix compression, which allows fast factorization and application of the inverse
in solving dense matrices. Firstly, the BM-SBM is a boundary-type collocation method that is a
straightforward and accurate scheme owing to the use of the fundamental solution. Secondly, the
introduction of the fast solver can effectively reduce the requirement of computer memory and
increase the calculation scale compared to the conventional BM-SBM. Three numerical examples
including two- and three-dimensional geometries indicate the precision and efficiency of the proposed
fast numerical technique for acoustic design sensitivity analysis associated with large-scale and
complicated structures.

Keywords: recursive skeletonization factorization; Burton–Miller-type singular boundary method;
fast solver; fundamental solution; acoustic design sensitivity

MSC: 65N35; 76Q05

1. Introduction

In recent years, various methods [1–4] have been proposed to address acoustic prob-
lems, such as transient acoustic wave propagation in unbounded domains [5], acoustic trans-
mission across multilayered construction [6], wave diffusion in unbounded domains [7],
and acoustic sensitivity analysis [8]. For these problems, numerical simulation plays an
irreplaceable role. Common methods for the analysis of acoustic problems include the
finite element method (FEM) [9,10], the boundary element method (BEM) [11,12], and some
alternative meshless/mesh-free methods. Meshless methods can reduce or even eliminate
the tasks of grid generation and numerical integration. Therefore, many scholars and engi-
neers have developed numerous meshless approaches, such as the element-free Galerkin
method [13,14], the exponential basis function method [15,16], the localized semi-analytical
meshless collocation method [17–19], the method of fundamental solutions (MFS) [20,21],
and the singular boundary method (SBM) [22].

Among the above methods, the SBM is a semi-analytical and boundary-type meshless
approach using fundamental solutions, which is mathematically simple, numerically accu-
rate, and easy to program. Unlike the MFS, the SBM avoids the singularity of fundamental
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solutions by introducing the origin intensity factor (OIF), and circumvents the fictitious
boundary issue in the traditional MFS. To overcome the influence of the fictitious eigenfre-
quency issue, the BM-SBM was proposed to deal with sound scattering and radiation [23,24].
Up to now, this scheme has been successfully applied to acoustic simulations [25–27], heat
conduction analysis [28,29], electromagnetic problems [30], and other domains.

Similar to the traditional boundary-type methods [31–33], the resultant matrix of
the BM-SBM is a dense matrix. Assuming that the number of boundary nodes is N, the
storage process needs to occupy the memory of O(N2), and the operations of O(N3) are
required in the direct calculation. Therefore, insufficient memory and time-consuming
computation are often encountered when solving large-scale problems. In order to reduce
the calculation time and increase the calculation scale, some scholars have introduced
various fast algorithms. The fast multipole (FM) and adaptive cross approximation (ACA)
have been used to establish a series of new fast algorithms, such as the fast multipole BEM
(FM-BEM) [34–36], the fast multipole MFS (FMM-MFS) [37], the ACA-BEM [38], and the
ACA-MFS [39]. Moreover, the ACA-BEM has also been successfully applied to the solution
of acoustic sensitivity. The SBM, which draws inspiration from the boundary element
technique, has also been combined with fast algorithms to address large-scale problems.
Qu et al. [40,41] proposed the fast multipole accelerated SBM (FMM-SBM) to solve large-
scale Helmholtz problems, increasing the computational scale of boundary nodes to more
than one million. Wei et al. [42] developed an adaptive cross approximation SBM (ACA-
SBM) to simulate 2D steady-state heat transfer problems. Li et al. [43–45] developed a
precorrected-FFT SBM (PFFT-SBM) to address large-scale 3D Laplace problems, Helmholtz
problems, and high-frequency acoustic radiation and scattering problems. Li et al. [46,47]
proposed a fast SBM for solving the 2D steady-state heat conduction problem and large-
scale 3D potential problem.

This paper aims to present a fast formulation of the BM-SBM for analyzing the acoustic
sensitivity of 2D and 3D complex structures. In our earlier works [48,49], we built a BM-
SBM framework for acoustic design sensitivity analysis. Benchmark numerical examples
confirmed the accuracy and effectiveness of the method. However, the approach still faces
the challenge of addressing a large-scale structure. Recursive skeletonization factorization
(RSF) [50,51] is a fast and direct scheme based on multilevel matrix compression, and has
been successfully applied to various problems. In this paper, RSF is adopted to solve the
resultant system of the BM-SBM, and then a new fast method called the RSF-BM-SBM is
proposed. Compared with the original BM-SBM, the calculation time is greatly reduced,
and the computational scale is significantly increased.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the
acoustic sensitivity formula of the BM-SBM and the empirical formula of the OIFs. In
Section 3, recursive skeletonization factorization is shown to solve the linear system formed
in the sensitivity analysis using the BM-SBM. In Section 4, three examples, including
classical models and a complex car model, are demonstrated to verify the accuracy and
efficiency of the proposed RSF-BM-SBM for acoustic sensitivity analysis. In Section 5, some
conclusions are drawn.

2. Burton–Miller-Type Singular Boundary Method for Acoustic Sensitivity

2.1. Acoustic Sensitivity Analysis

We consider an external sound field problem in two- and three-dimensional spaces,
which can be described by the following Helmholtz equation [48,49]:

∇2u(x) + k2u(x) = 0 , x ∈ Ω (1)

with the following Dirichlet and Neumann boundary conditions:

u(x) = u(x), x ∈ Γu, (2)
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∂u(x)
∂nx

= iρωv(x), x ∈ Γq, (3)

where ∇2 represents the Laplace operator; k = ω/c is the wave number; ω is the angular
frequency; c is the speed of sound in the propagating medium; and u(x) and v(x) are the
sound pressure and the normal vibration velocity on Γu and Γq, respectively.

Considering sound propagation in an infinite field, the sound pressure should satisfy
the Sommerfeld radiation condition at infinity:

lim
r→∞

r
1
2 (d−1)(

∂u(x)
∂r

− iku(x)) = 0 (4)

where d is the spatial dimension (d = 2, 3) and r is the distance between point x and the
sound field’s center. The fundamental solution employed in the BM-SBM automatically
satisfies the aforementioned requirements; therefore, no additional handling is necessary in
the numerical computation.

For acoustic sensitivity analysis, the most important thing is to obtain the gradient
of the objective function with respect to the design variables. In many applications, the
objective function is sound pressure, and the design variables are size, wave number,
or frequency.

2.2. Burton–Miller-Type Singular Boundary Method

Assuming the total number of boundary nodes is N, the BM-SBM formulas can be
given by [49]:

u(xi) =
N

∑
j = 1
i �= j

αj
(
G(xi, sj) + λE(xi, sj)

)
+ αiuBM, xi ∈ Γu, sj ∈ Γ (5)

∂u(xi)

∂nx
=

N

∑
j = 1
i �= j

αj
(

F(xi, sj) + λH(xi, sj)
)
+ αiqBM, xi ∈ Γq, sj ∈ Γ (6)

E(xi, sj) =
∂G(xi, sj)

∂ns
, F(xi, sj) =

∂G(xi, sj)

∂nx
, H(xi, sj) =

∂2G(xi, sj)

∂ns∂nx
(7)

where λ = i
k+1 is a complex number [24]; αj is the unknown coefficient; and xi and sj

denote ith boundary node and jth source point, respectively. uBM and qBM are the OIFs,
which can be computed by the following formulas [52,53]:

uBM = uii − λ
N

∑
j = 1
j �= i

ζ ji
∂G0(xi, sj)

∂ns
(8)

qBM = qii + λ

⎛⎜⎜⎜⎜⎜⎝
k2

2
uii −

N

∑
j = 1
j �= i

ζ ji
∂2G0(xi, sj)

∂ns∂nx

⎞⎟⎟⎟⎟⎟⎠ (9)

where uii and qii are given in Refs. [24,48], and G0(xi, sj) is the fundamental solution of

the Laplace equation. G0(xi, sj) = − ln|xi−sj|
2π for 2D problems; G0(xi, sj) = 1

4π|xi−sj| for

3D problems.
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Substituting the boundary conditions into Equations (5) and (6), the following system
of equations can be obtained:

Mα = b (10)

where MN×N is the coefficient matrix, αN×1 is the undetermined coefficient vector, and
bN×1 is the known vector. The matrix M is generated from Burton–Miller-type formulation
(a combination of single- and double-layer potentials), and its condition number is related
to the number of nodes. Since the method is implemented by MATLAB programming,
the condition number of the matrix can be viewed by the routine cond(M). By solving
Equation (10), α can be obtained. After that, the following formulas can be employed to
determine the sound pressure and normal derivative at point x:

u(x) =
N

∑
j=1

αj
(
G(x, sj) + λE(x, sj)

)
(11)

q(x) =
N

∑
j=1

αj
(

F(x, sj) + λH(x, sj)
)

(12)

Based on the formulas mentioned above, the direct differentiation approach can be
used to compute the sensitivities:

.
u(x) =

N

∑
j=1

[ .
αj
(
G(x, sj) + λE(x, sj)

)
+αj

( .
G(x, sj) +

.
λE(x, sj) + λ

.
E(x, sj)

) ] (13)

.
q(x) =

N

∑
j=1

[ .
αj
(

F(x, sj) + λH(x, sj)
)

+αj

( .
F(x, sj) +

.
λH(x, sj) + λ

.
H(x, sj)

) ] (14)

where the superscript (˙) denotes the differentiation of a function. For the differentiation
calculation in the right hand sides of the above equations, one can refer to Ref. [48].

3. Recursive Skeletonization Factorization

Recursive skeleton factorization is a fast direct solver which allows fast factorization
and application of the inverse in the process of solving asymmetric dense matrices.

3.1. Interpolative Decomposition

The present paper adopts interpolative decomposition (ID) to compress the low-rank
blocks [46,54]. If the submatrix Mpq ∈ R

m×n of M is a matrix of rank h ≤ min(m, n), then
there exist Rq ∈ R

h×(n−t) such that Mpq′ ≈ Mpq′′ Rq. It should be pointed out that m and n
denote the dimension of the matrix M, which are set as m = n = N. Here, p and q represent
ordered sets of indices, q′ and q′′ denote the skeleton and redundant indices, and they satisfy
the following relationships: q = q′ ∪ q′′ and |q′′ |= h . If Rq satisfy Mpq′ = Mpq′′ Rq, then

[
Mpq′ Mpq′′

][ I

−Rq I

]
=
[
0 Mpq′′

]
(15)

It should be pointed out that ID is commonly applied to cases with an error matrix E,
i.e., Mpq′ = Mpq′′ Rq + E, in which ||E||∼ σh+1(M) , and σh+1(M) stands for the (h + 1)th-
largest singular value of M. In this regard, ID can be employed to select h adaptively, so
that ||E||≤ ε||M|| for a given tolerance ε > 0. In this paper, ID is achieved by a random
sampling scheme [54], which only requires O

(
mn log(h) + h2n

)
operations.
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3.2. Skeletonization

In this subsection, ID is adopted to compress a matrix with low-rank off-diagonal
blocks. We consider a block matrix M with index sets p and q:

M =

[
Mpp Mpq
Mqp Mqq

]
(16)

where Mpq and Mqp are low-rank submatrices. After applying ID to M with p = p′ ∪ p′′ ,
we obtain

M =

⎡⎢⎣ Mp′p′ Mp′p′′ Mp′q
Mp′′ p′ Mp′′ p′′ Mp′′ q
Mqp′ Mqp′′ Mqq

⎤⎥⎦ (17)

Let

Qp =

⎡⎣ I

−Rp I

I

⎤⎦ (18)

and then

QT
pMQp ≈

⎡⎢⎣ Np′p′ Np′p′′
Np′′ p′ Mp′′ p′′ Mp′′ q

Mqp′′ Mqq

⎤⎥⎦ (19)

where
Np′p′ = Mp′p′ − RT

pMp′′ ,p′ − Mp′p′′ Rp + RT
pMp′′ p′′ Rp (20)

Np′p′′ = Mp′p′′ − RT
pMp′′ p′′ , Np′′ p′ = Mp′′ p′ − Mp′′ p′′ Rp (21)

Supposing Np′p′ is a nonsingular matrix, and Np′p′′ can be decomposed into Lp′Dp′Up′
(Dp′ is a diagonal matrix; Lp′ and Up′ are unit triangular matrices), we obtain

sT
p′Q

T
pMQpTp′ ≈

⎡⎢⎣Dp′
Np′′ ,p′′ Mp′′ ,q
Mq,p′′ Mq,q

⎤⎥⎦ ≡ Ψp(M) (22)

where Ψp(·) is called the skeletonization operator, and

sT
p′ =

⎡⎢⎣ I

−Np′′ p′U
−1
p′ D−1

p′ I

I

⎤⎥⎦
⎡⎢⎣ L−1

p′
I

I

⎤⎥⎦ (23)

Tp′ =

⎡⎢⎣U−1
p′

I

I

⎤⎥⎦
⎡⎢⎣I −D−1

p′ L−1
p′ Np′p′′

I

I

⎤⎥⎦ (24)

Np′′ p′′ = Mp′′ p′′ − Np′′ p′N
−1
p′p′Np′p′′ (25)

Considering a collection of disjoint index sets C, in which Mc,cC and McC ,c are low-rank
for any c ∈ C, ΨC(M) can be decomposed into

ΨC(M) ≈ UTMV (26)

where cC denotes the complement of the index set c, U = ∏
c∈C

QcSc′ , and V = ∏
c∈C

QcTc′ .
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3.3. Recursive Skeletonization Factorization (RSF)

Let Cj denote the collection of the skeleton index set at level j. We define the matrix at
each level j by using Mj. It should be noted that M0 = M. Based on the skeletonization
mentioned above, we have

Mj+1 = ΨCj(Mj) ≈ UT
j MjVj, Uj = ∏

c∈Cj

QcSc′ , Vj = ∏
c∈Cj

QcTc′ (27)

By using RSF, each Uj and Vj are products of unit triangular matrices, and can be
simply inverted and transposed. Then, according to the same principle, the factorization
can be written as

Mj ≈ UT
j−1 · · ·UT

0 MV0 · · ·Vj−1 (28)

Note that the inversion and transposition of matrices Uj and Vj can be easily ob-
tained, since they are products of unit triangular matrices. Therefore, M and M−1 can be
calculated by

M ≈
[
U−1

0

]T · · · [U−1
j−1

]T
MjV

−1
j−1 · · ·V−1

0 (29)

M−1 ≈ V0 · · ·Vj−1MjU
T
j−1 · · ·UT

0 (30)

After obtaining M−1 from Equation (30), the unknown coefficient vector α in Equa-
tion (10) can be acquired by the following formula:

α = M−1b (31)

4. Numerical Examples

Here, two benchmark examples are firstly investigated to demonstrate the accuracy of
the RSF-BM-SBM, and then the feasibility and effectiveness of the method to solve large-
scale problems are verified by calculating the sensitivity of a vehicle model. Assuming that
the design variable t is divided into m equidistant nodes, the following relative-root-mean-
square error (RRMSE) [24] is adopted to evaluate numerical error:

RRMSE =

√
m
∑

j=1

( .
ue(tj)− .

un(tj)
)2

√
m
∑

j=1

.
ue(tj)

2
(32)

where
.
ue and

.
un denote the exact and numerical solutions of the acoustic sensitivity,

respectively. In the following numerical calculation, we have fixed the air density and the
sound speed to ρ = 1.2 kg/m3 and c = 341 m/s.

In acoustic sensitivity analysis, the gradient of the objective function with respect to
the design variables needs to be obtained. Taking the sound pressure p as the objective
function, it can be expressed as ∂p(x)

∂t , where t represents the design variable.

4.1. Example 1

In the first example, we consider an infinite pulsating cylinder [49] with radius
a = 0.1 m, which can be reduced to a 2D problem as shown in Figure 1.
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(a) (b)

Figure 1. Infinite pulsating cylinder: (a) a pulsating cylinder; (b) simplified model.

Taking the wave number as the design variable, the analytical solution of the acoustic
sensitivity at the test point xt can be given by

∂pe(r)
∂k

=
−iρcv0(
H1

1(ka)
)2 [rH1

1(kr)H1
1(ka) +

a
2

H1
0(kr)

(
H1

0(ka)− H1
2(ka)

)]
(33)

where v0 = 1 m/s(Neumann boundary condition); H1
0 and H1

1 are first-kind zero-order
and one-order Hankel functions, respectively; and r is the distance between the test point
and the center of cylinder.

Firstly, we investigate the influence of compression accuracy on calculation results.
Figure 2 displays error curves of sound pressure sensitivity at the test point xt = (3, 3)
under various values of ID (ε = 10−4, ε = 10−7, and ε = 10−10). In this calculation, the
range of the design variable is fixed at 5~6, and the traditional BM-SBM solutions are used
for an intuitive comparison. We can see from Figure 2 that the numerical error of the RSF-
BM-SBM increases with a decreasing value of ID. When ε = 10−10, the calculation accuracy
is basically consistent with the traditional BM-SBM. Therefore, the higher compression
accuracy should be chosen to obtain accurate and reliable results.

(a) (b)

Figure 2. The RRMSEs of the RSF-BM-SBM and conventional BM-SBM: (a) real part; (b) imagi-
nary part.
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In addition, Figure 3 compares the computation times of the RSF-BM-SBM and the
BM-SBM under different numbers of nodes. When the number of nodes is small, both the
BM-SBM and the RSF-BM-SBM consume less time. However, with an increasing number of
nodes, the RSF-BM-SBM requires significantly less time than the BM-SBM.

Figure 3. Comparison of CPU computation times under different numbers of nodes.

4.2. Example 2

In this example, we consider a 3D sound radiation problem on a pulsating sphere [48]
with radius a = 0.1 m, as shown in Figure 4. This acoustic sensitivity analysis takes the
wave number k as the design variable. The analytical solution of the acoustic sensitivity is

∂pe(r)
∂k

=
iρcv0a2eik(r−a)

r(1 − ika)2

[
(1 − ika)2 + ikr(1 − ika) + ika

]
(34)

Figure 4. Acoustic radiation from a pulsating sphere.

Table 1 lists the condition numbers and the GPU memories of the conventional BM-
SBM and the RSF-BM-SBM with various numbers of nodes. When the number of nodes
increases, the memory required by the traditional BM-SBM increases rapidly. Therefore,
when the number of nodes increases to a certain number, there will be a problem of

161



Mathematics 2022, 10, 3817

insufficient memory. The RSF-BM-SBM requires less memory than the BM-SBM. The
traditional BM-SBM will fail when the number of boundary nodes exceeds 10,000, due
to the limitation of computer memory. In addition, it should be noted that the condition
number is better when using fewer nodes. As the number of nodes increases, the condition
number also increases.

Table 1. Memory and condition number of the RSF-BM-SBM and the BM-SBM with various numbers
of nodes.

Boundary Nodes N Condition Number

Memory (MB)

Conventional
BM-SBM

RSF-BM-SBM
(ID: 1 × 107)

100 22.94 0.16 0.32
2000 104.37 64.00 107.82
4000 1.50 × 107 256.00 239.01
7500 3.33 × 107 900.00 530.60
9000 2.79 × 108 1296.00 589.31

58,204 —— —— 6772.86
112,722 —— —— 14,541.76
150,082 —— —— 27,069.25

4.3. Example 3

The last example considers a scaled-down vehicle model, as shown in Figure 5. This
is an acoustic scattering problem, and but there is no analytical solution for sound pres-
sure and sensitivity. Due to the complexity of the model, a large number of boundary
points need to be configured, and the traditional BM-SBM cannot be calculated, so the
acoustic sensitivity of the model is established by applying the RSF-BM-SBM involving
104,896 source points. In this model, a unit amplitude plane wave of wavenumber k = 4
propagates in the positive x-axis direction.

(a) (b)

Figure 5. An irregular rigid vehicle model boundary point configuration (N = 104, 896): (a) vehicle
model; (b) boundary points.

Firstly, we chose a spherical surface with radius r = 1 m in order to test the accuracy
of the proposed method in solving the acoustic scattering of this complex structure. The
RSF-BM-SBM and COMSOL Multiphysics FEM solver were used to calculate the scattered
sound pressure levels on the surface. The FEM needs to set a perfectly matched layer when
solving this kind of problem. Numerical results in Figure 6 indicate the capability and
reliability of the proposed method for the 3D complex structure.
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(a) (b)

Figure 6. Distributions of the scattered sound pressure level on the investigated surface obtained by
using the FEM and RSF-BM-SBM: (a) FEM; (b) RSF-BM-SBM.

We intercepted a limited domain around the car body as shown in Figure 7, and the
distributions of sensitivity values with respect to the design variable k were computed
by the RSF-BM-SBM. Figure 8 shows the amplitudes of sound pressure sensitivity under
different wave numbers. Obvious differences can be observed, which provides a reference
for the analysis of acoustic sensitivity of complex structures.

Figure 7. Distributions of boundary source points and test points.

(a) (b) (c)

Figure 8. Acoustic pressure sensitivities (|∂p/∂k|) on {(x, y, z, )|−0.5 ≤ y ≤ 0.5, −0.4 ≤ z ≤ 0.6, x = 0}
cross section under different values of k: (a) k = 3; (b) k = 6; (c) k = 9.

5. Conclusions

In this paper, a fast RSF-BM-SBM has been developed for the acoustic sensitivity
analysis of 2D and 3D domains. The present scheme is an accurate and semi-analytical
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method with the merits of being truly meshless, integration free, mathematically simple,
and easy to program. As a boundary-type method based on the fundamental solution, the
RSF-BM-SBM is straightforward for addressing exterior acoustic problems encountered
in acoustic design sensitivity analysis. In addition, the fictitious frequency issue has been
successfully overcome by using the Burton–Miller formulation. Compared with previous
approaches [48,49], the proposed fast RSF-BM-SBM greatly reduces the computation time
and improves the computation scale by introducing the RSF technique, which makes
it possible for the method to analyze the acoustic sensitivity of high-dimensional and
large-scale structures.

Through investigating the acoustic scattering problem of an infinite pulsating cylinder,
the RSF-SM-SBM shows obvious advantages in solving large-scale problems. Under high
compression accuracy (ID: ε = 10−10), the CPU computation time of the RSF-SM-SBM
is much shorter than that of the BM-SBM, while the calculation accuracy is basically the
same. Numerical results for sound radiation from a pulsating sphere demonstrate that
the traditional BM-SBM has a huge demand for memory, which limits its application in
large-scale problems. Conversely, the RSF-BM-SBM has significant advantages in reducing
computation time and computation cost. For the acoustic sensitivity analysis of a car-like
structure, the proposed scheme is also applicable, which indicates the ability and potential
of the fast method for 3D complex geometries.
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Abstract: In this paper, the singular boundary method (SBM) in conjunction with the exponential
window method (EWM) is firstly extended to simulate the transient dynamic response of two-
dimensional saturated soil. The frequency-domain (Fourier space) governing equations of Biot theory
is solved by the SBM with a linear combination of the fundamental solutions. In order to avoid the
perplexing fictitious boundary in the method of fundamental solution (MFS), the SBM places the
source point on the physical boundary and eliminates the source singularity of the fundamental
solution via the origin intensity factors (OIFs). The EWM is carried out for the inverse Fourier
transform, which transforms the frequency-domain solutions into the time-domain solutions. The
accuracy and feasibility of the SBM-EWM are verified by three numerical examples. The numerical
comparison between the MFS and SBM indicates that the SBM takes a quarter of the time taken by
the MFS.

Keywords: singular boundary method; meshless methods; exponential window method; saturated
soil; transient dynamic response analysis

MSC: 65N35; 65N80; 74H15

1. Introduction

The transient dynamic analysis is of great importance in the geotechnical and mechan-
ical engineering to observe the time-history mechanical response caused by the dynamic
loads [1,2]. Although there are some analytical solutions for the regular geometric shapes
with isotropic and homogeneous material properties and simple boundary conditions, the
numerical tools are usually more flexible and effective for general real-world problems.
The transient analysis is usually divided into two parts, viz. spatial discretization and
temporal discretization.

For the spatial discretization, the finite element method (FEM) is one of most powerful
numerical methods. In light of its theoretical completeness and well-established commercial
software, the FEM is robust to different engineering applications [3,4]. Nevertheless, the
FEM requires the artificial boundary [5] to analyze the infinite and semi-infinite medium.
Besides the FEM, the other domain-type methods [6] encounter the same difficulty. The
boundary element method (BEM) has been boosted as an effective alternative in infinite and
semi-infinite problems because the fundamental solutions used in the BEM automatically
satisfy the Sommerfield radiation condition at infinity. The utilization of the fundamental
solutions makes the BEM avoid domain discretization, because the kernel function satisfies
governing equations. The superiority of the BEM motivated researchers to develop novel
numerical methods based on analytical solutions, such as the fundamental solutions [7–9],
the general solutions [10–12] and the particular solutions [13–16]. Among them, most
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of numerical methods are pertinent to the fundamental solutions, including the method
of fundamental solutions (MFS) [8,17], modified method of fundamental solutions [18]
and singular boundary method (SBM) [19–21], to just name a few. The SBM was firstly
proposed by Chen [19] with introducing the concept of the origin intensity factor (OIF) to
desingularize the fundamental solutions. Originally, the OIF was evaluated via a tedious
inverse interpolation technique [22]. Later, simple analytical and empirical formulas
were developed and extended the application of the SBM to different problems [23–32].
The abovementioned boundary-type methods required expensive operation counts and
memory storage in real-world large-scale problems. This promotes the development of
fast algorithms accelerated techniques [33–37] and localized methods [38–41]. It is worth
noting that the localized variant of the boundary-type method is a domain-type method.

To implement the transient analysis, the boundary methods require special treatment to
deal with time-dependent terms, including the direct time integration methods [42–44], trans-
form methods [45–47] and time-domain fundamental solutions [48]. Except the transform
method, the other methods require a proper time-step for numerical stability. Nevertheless,
the long-time solution may deteriorate as the time increases. The Krylov deferred correction
method (KDC) [49] allows larger time step size for the long-time analysis with acceptable
temporal accumulation errors. In the transform methods, the frequency-domain governing
equation is solved at some discrete sampling frequencies, and then the frequency-domain
solutions are transformed back to the time-domain solutions via the inverse transform,
namely the Laplace transform or Fourier transform. The inverse transform is carried out
by numerical methods, which may consume a lot of time. The Fourier transform is more
attractive because its inverse process can be accelerated by the fast Fourier transform
(FFT). However, in lightly damped systems or undamped systems, the FFT is inefficient,
or even not applicable without the desired attenuation. This problem was circumvented
by introducing an artificial damping to the system by the exponential window method
(EWM) [50].

There are few works related to the transient dynamic response analysis of saturated
soil. In this study, the SBM in conjunction with the EWM is firstly established to solve the
transient dynamic problems in two-dimensional saturated soil. The SBM is formulated in
the frequency domain (Fourier space). Thanks to the fundamental solutions, the SBM can
be directly applied to finite-, semi-infinite and infinite domains. The source singularity of
the fundamental solution is bypassed with simple formulas. Subsequently, the frequency-
domain SBM solutions are transformed by the EWM. The selection of the parameters in
the EWM will be discussed. The stability and accuracy of the SBM will be investigated via
three numerical examples.

2. Governing Equations

For the saturated soil, it is better to take the coupling effect of two phases into considera-
tion [51,52]. Thus, the coupling effect is taken into account in the constitute equation [53,54]:

σij = λδijuk,k + 2μεij − αδij p, i = 1, 3, j = 1, 3, (1)

p = −αMui,i − Mwi,i, (2)

where σij is the effective stress; δij the Kronecker delta; εij =
(
ui,j + uj,i

)
/2 the strain tensor;

wi the fluid displacement with respect to the solid skeleton; p the pore pressure; ui the
average skeleton displacement; λ and μ the solid skeleton Lamé constants; and α and M the
Biot parameters describing the compressibility of the fluid-saturated two-phase material.

Taking Equations (1) and (2) into the equilibrium equations, we obtained the equations
of motion for the bulk porous medium and the pore fluid without body forces as [53,54]

μui,jj +
(

λ + α2M + μ
)

uj,ji + αMwj,ji = ρ
..
ui + ρ f

..
wi, (3)

αMuj,ji + Mwj,ji = ρ f
..
ui + m

..
wi +

η

k
K(t) ∗ .

wi, (4)
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where a dot (•) denotes the time derivative and a star (∗) denotes the time convolution;
ρ = (1 − φ)ρs + φρ f is the density of the saturated poroelastic medium; ρs and ρ f are
the density of the skeleton and fluid; φ the porosity; η the viscosity of the pore fluid; k
the permeability of the saturated poroelastic medium; m = α∞ρ f /φ; α∞ is the tortuosity;
and K(t) is a time-dependent viscosity correction factor which describes the transition
between the viscous flow in the low-frequency range and the inertia-dominated flow in the
high-frequency range.

The initial boundary conditions and boundary conditions are given as

us|t=0 =
∂us

∂t

∣∣∣∣
t=0

= 0, w| t=0 = 0, and p|t=0 = 0, (5)

us
i = ûs

i , on Γs
u, (6)

ts
i = σs

i1n1 + σs
i3n3 = t̂s

i , on Γs
t , (7)

wi = ŵi, on Γ f
w, (8)

p = p̂, on Γ f
p, (9)

where n = (n1, n3) is the normal vector to the boundary, and ûs
i , t̂s

i , ŵi and p̂ are the
prescribed solid displacements, tractions, relative fluid displacements and pore pressure
on the boundary, respectively.

We introduce the Fourier transform with respect to time and frequency as

f̃ (ω) =
∫ +∞

−∞
f (t)e−jωtdt, f (t) =

1
2π

∫ +∞

−∞
f̃ (ω)ejωtdω, (10)

where j =
√−1 is the imaginary unit.

After Fourier transform on Equations (3) and (4), the frequency-domain governing
equations in terms of solid displacement and fluid pressure [54] are recast as

μũi,jj + (λ + μ)ũj,ji + ρgω2ũi − αg p̃,i = 0, (11)

p̃,jj + β2ω2 p̃ − β3ũj,j = 0, (12)

where ρg = ρ − β4ρ f , αg = α − β4, β1 = M/
[
mω2 − jω(η/k)K̃(ω)

]
, β2 = 1/

(
β1ω2),

β4 = ρ f ω2β1/M; β3 = ρ f ω2 − α
[
mω2 − jω(η/k)K̃(ω)

]
, K̃(ω) is the Fourier transform of

K(t), and “~” denotes the representation in the frequency-domain.

3. Singular Boundary Method in Frequency-Domain

In this section, the SBM formulation is established for the frequency-domain governing
equations. The SBM evaluates the frequency-domain solution with a linear combination of
fundamental solutions in terms of the source points as [55]

ũs
i (xm) =

N

∑
n=1

β1nũs
i1(xm, sn) +

N

∑
n=1

β3nũs
i3(xm, sn) +

N

∑
n=1

β4nũs
i4(xm, sn), i = 1, 3, (13)

p̃(xm) =
N

∑
n=1

β1n p̃1(xm, sn) +
N

∑
n=1

β3n p̃3(xm, sn) +
N

∑
n=1

β4n p̃4(xm, sn), (14)

t̃s
i (xm) =

N

∑
n=1

β1nt̃s
i1(xm, sn) +

N

∑
n=1

β3nt̃s
i3(xm, sn) +

N

∑
n=1

β4nt̃s
i4(xm, sn), i = 1, 3, (15)

q̃n(xm) =
N

∑
n=1

β1nq̃1(xm, sn) +
N

∑
n=1

β3nq̃3(xm, sn) +
N

∑
n=1

β4nq̃4(xm, sn). (16)
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where xm, sn are the mth field point and nth source point; N is the total number of boundary
source points; {βkn}N

n=1(k = 1, 3, 4) are the coefficients to be determined; and ũs
ik, t̃s

ik, p̃k
and q̃k (i = 1, 3, k = 1, 3, 4) are the fundamental solutions of solid displacements, traction,
pore pressure and flux, which are given as

ũs
ik = Aδik − Br,ir,k, ũs

i4 = Dr,i, i, k = 1, 3, (17)

t̃s
ik = λ

[
A′ − B′ − B

r

]
r,kni + μ

[(
A′ − B

r

)
(r,nδik + r,ink)

− 2B
r r,kni + 2

(
−B′ + 2B

r

)
r,ir,kr,n

]
, i, k = 1, 3,

t̃s
i4 =
[
(λ + 2μ)D

r + λD′
]
ni + 2μ

(
−D

r + D′
)

r,ir,n, i = 1, 3,

(18)

p̃k = Cr,k, p̃4 =
1

2π ∑
d=1,2

rdhdK0(zd), k = 1, 3, (19)

q̃k =

⎧⎪⎨⎪⎩
−αg
β3

[
C
r nk +

(
C′ − C

r

)
r,kr,n

]
, k = 1, 3,

jαgr,n
2πβ3

∑
d=1,2

rdhdkdK1(zd), k = 4,
(20)

where

A =
1

2π

[
− ∑

d=1,2
gd

K1(zd)

zd
+ g3

(
K0(z3) +

K1(z3)

z3

)]
, C =

j
2π

[
∑

d=1,2

rdgd
kd

K1(zd)

]

B =
1

2π

[
− ∑

d=1,2
gdK2(zd) + g3K2(z3)

]
, D =

−j
2π ∑

d=1,2
kdhdK1(zd)z3 = jk3r

zd = jkdr, rd =
ω2ρg − (λ + 2μ)k2

d
αg

(d = 1, 2), g1 =
β3 − r2

(λ + 2μ)(r1 − r2)
,

g2 =
β3 − r1

(λ + 2μ)(r2 − r1)
, g3 =

1
μ

, h1 = − β3

αg(r1 − r2)
, h2 = − β3

αg(r2 − r1)

in which r =
√
(x1 − y1)

2 + (x3 − y3)
2 is the distance between field point x = (x1, x3) and

source point y = (y1, y3). Kn is the modified Bessel function of the second kind of order n,
and kd is

k1 =

√
β2ω2

2
+

ρgω2 − αgβ3 +
√

H
2(λ + 2μ)

, k2 =

√
β2ω2

2
+

ρgω2 − αgβ3 −
√

H
2(λ + 2μ)

, k3 =
√

ω2ρg/μ

where

H =
(

λβ2ω2 − αgβ3 + ρgω2
)2

+ 4(λ + μ)β2ω4(μβ2 − ρg
)− 4μαgβ2β3ω2

The derivation of the fundamental solutions is detailed in Appendix A.
With the fundamental solutions, Equations (13)–(16) are forced to satisfy the boundary

conditions for the determination of the unknown coefficients. Then the boundary conditions
with Equations (13)–(16) are formulated as

ũs
i (ym) = ∑

k=1,3,4

N

∑
n �=m

βknũs
ik(ym, yn) + ∑

k=1,3,4
βkmŨs

ik(ym, ym), i = 1, 3, (21)

t̃s
i (ym) = ∑

k=1,3,4

N

∑
n �=m

βknt̃s
ik(ym, yn) +

3

∑
k=1,3,4

βkmT̃s
ik(ym, ym), i = 1, 3, (22)
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p̃(ym) = ∑
k=1,3,4

N

∑
n �=m

βkn p̃k(ym, yn) + ∑
k=1,3,4

βkmP̃k(ym, ym), (23)

q̃n(ym) = ∑
k=1,3,4

N

∑
n �=m

βknq̃k(ym, yn) + ∑
k=1,3,4

βkmQ̃k(ym, ym). (24)

The singular terms, namely, ũs
ik(ym, ym), t̃s

ik(ym, ym), p̃k(ym, ym) and q̃k(ym, ym), are
involved when the boundary data points overlaps the source points. To deal with this
issue, some numerical or analytical methods are introduced to desingularize these terms.
In the SBM, the diagonal terms are called the origin intensity factors (OIFs), as Ũs

ik(ym, ym),
T̃s

ik(ym, ym), P̃k(ym, ym) and Q̃k(ym, ym) in Equations (21)–(24). The OIFs for 2D saturated
poroelastic problems [20,21,56], as shown in Equations (21)–(24) are calculated as

Ũs
ik(ym, ym) =

{
[ĝ(ym, ym)χ1 − χ2]δik + χ3Λik, i, k = 1, 3,
0, k = 4, i = 1, 3,

(25)

T̃s
ik(ym, ym) =

{
t̂ik(ym, ym), i, k = 1, 3,
[ĝ(ym, ym)χ4 + χ5]ni, k = 4, i = 1, 3,

(26)

P̃k(ym, ym) =

{
0, k = 1, 3,
ĝ(ym, ym)χ6 + χ7, k = 4,

(27)

Q̃k(ym, ym) =

{
[ĝ(ym, ym)χ8 + χ9]nk, k = 1, 3,
q̂(ym, ym)χ10, k = 4,

(28)

where χ1, . . . , χ10 are provided in Appendix B; Λik = lim
x→y,x∈Γ

r,ir,k =
τiτk

τ2
1 +τ2

3
, τ = (τ1, τ3) is

the tangent vector of point x on the boundary, ĝ(ym, ym) and q̂(ym, ym) are the OIFs for
the fundamental solution of the Laplace operator for Dirichlet and Neumann boundary
conditions, and t̂ik(ym, ym) is the OIF for the fundamental solution of the traction boundary
condition. These terms are computed as

ĝ(ym, ym) = − 1
2π

ln
(

lm
2π

)
, q̂(ym, ym) = − 1

2lm
, t̂ij(ym, ym) = − δij

2lm
(29)

where lm is a half-length of the arc between source points ym+1 and ym−1.
Finally after obtaining the coefficients, the frequency-domain solutions of the variables

within the domain can be evaluated via Equations (13)–(16).

4. Exponential Window Method

The frequency-domain solutions can be converted to the transient solutions via the
inverse Fourier transform, which is accelerated by the fast Fourier transformation (FFT) [47,57].
It should be noted that the time responses decay slowly in lightly damped systems, and
even never decay in undamped systems. In these two cases, the FFT is inefficient. Thus, a
powerful numerical technique, the exponential window method (EWM) [58], is introduced.
In the EWM, artificial damping is created to produce the desired attenuation, and the
artificial damping is removed by scaling back in the final. The detail of the EWM is
summarized as follows:

(1) Determine the total calculation time T and the number of sampling frequencies Nω,
then to determine the angular frequency resolution Δω = 2π/T with Δt = T/Nω;

(2) Determine the shifting constant according to the numerical experiments and experi-
ence as

ϑ =
κ ln 10

T
, (30)

where κ denote the damping coefficient, and 2 ≤ κ ≤ 3 is recommended;
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(3) Construct a desired damping system with scaling the variables ξ(x, t) (us
i , σs

ik, wi and
p) with the scaling function e−ϑt as ξew(x, t) = ξ(x, t)e−ϑt. Bring new variables ξew
into the governing equations, and a novel frequency-domain boundary value problem
Equations (6) and (7) with ω = ω − jϑ is obtained.

(4) Simultaneously, the boundary condition P(x, t) is scaled into Pew(x, t) = P(x, t)e−ϑt,
and the frequency-domain boundary condition can be obtained via discretized Fourier
transform

P̂ew(x, ωk) =
1

Nω

Nω−1

∑
n=0

Pew(x, nΔt)e−2πjnk/Nω =
1

Nω

Nω−1

∑
n=0

e−ϑnΔtP(x, nΔt)e−2πjnk/Nω , (31)

where ωk = kΔω − jϑ(k = 0, 1, . . . , Nω − 1).
(5) Perform the SBM to evaluate the solutions of the frequency-domain problems R∗

ew(ωk)
at the frequencies ωk = kΔω − jϑ(k = 0, 1, . . . , Nω/2). The remaining of results can
be obtained through conjugate symmetric property as

R∗
ew(ωk) = conj(R∗

ew(ωNω−k)), k = Nω/2 + 1, . . . , Nω − 1. (32)

(6) Perform the IFFT with the inverse DFT with Hanning window function Wk, and
obtain the time-domain solutions as

Rew(nΔt) =
Nω−1

∑
k=1

WkR∗
ew(ωk)e2πjnk/Nω , (33)

The Hanning window function Wk = 0.5[1 + cos(2πk/Nω)] is used to alleviate the
Gibbs oscillations.

(7) Descale the time-domain solutions and obtain the solutions of the original problems as

R(nΔt) = eϑnΔtRew(nΔt). (34)

5. Numerical Examples

In this section, three numerical examples are used to verify the accuracy and effec-
tiveness of the proposed method for the transient dynamic response of two-dimensional
saturated soil. The accuracy of the SBM-EWM is evaluated by the absolute error of variable
ξ versus time at point x as

AE(ξ) =
∣∣∣∣ξ( kT

Nω
, x
)
− ξ

(
kT
Nω

, x
)∣∣∣∣, (35)

where ξ represents the exact solution, ξ denotes the numerical result obtained by the SBM.
Unless otherwise specified, the parameters of the saturated soil are set as

λ = 4.0 × 107 Pa, μ = 2.0 × 107 Pa, ρs = 2500 kg/m3, ρ f = 1.0 × 103 kg/m3, a∞ = 3,
α = 0.95, M = 4.0 × 108 Pa, φ = 0.3, η = 1.0 × 10−3 Pa·s, k = 1.0 × 10−12 m2. All
calculations of this paper are fulfilled on a desktop with an Intel Core (TM) I7-6500U at
2.50 GHz on a 64-bit Windows server with a total of 12GB DDR4 memory. The SBM is
implemented via MATLAB software.

5.1. Verification of the Proposed SBM-EWM Method

In the section, a saturated poroelastic column problem (Figure 1) is considered. A
uniform normal load on the upper boundary and the rest boundaries is sliding:{

ts
n = −H(t)N/m2, ts

τ = 0N/m2, p = 0Pa, on the top boundary,
us

n = 0m, ts
τ = 0N/m2, wn = 0m, on the other boundaries,

(36)

where H(t) is the Heaviside step function.
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Figure 1. Computational model of saturated column.

Firstly, the transient problem is transformed into the frequency domain. The frequency-
domain exact solution for the problem can be constructed as

ũs
3 = a1jk1ejk1(x3−h) + a2jk2ejk2(x3−h) − a3jk1e−jk1x3 − a4jk2e−jk2x3 ,

p̃ = a1r1ejk1(x3−h) + a2r2ejk2(x3−h) + a3r1e−jk1x3 + a4r2e−jk2x3 ,
(37)

in which h = 1 m, and the unknown coefficients a1, a2, a3 and a4 can be derived from⎡⎢⎢⎢⎣
−k2

1 −k2
2 −k2

1e−jk1h −k2
2e−jk2h

r1 r2 r1e−jk1h r2e−jk2h

jk1e−jk1h jk2e−jk2h −jk1 −jk2

jk1

(
r1 − ω2ρ f

)
e−jk1h jk2

(
r2 − ω2ρ f

)
e−jk2h jk1

(
r1 − ω2ρ f

)
jk2

(
r2 − ω2ρ f

)
⎤⎥⎥⎥⎦
⎡⎢⎢⎣

a1
a2
a3
a4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−1

λ+2μ

0
0
0

⎤⎥⎥⎦
Then the transient exact solution is retrieved via the EWM.
The SBM discretizes the boundary into 400 boundary nodes. The EWM-SBM is

employed for the numerical solutions in a duration of T = 18 ms. In the EWM, Nω and κ
are set as 128 and 3.

In Figure 2, some numerical results are picked up to show the accuracy of the present
method, including us

3 at (0.5, 0.8), p at (0.5, 0.5), w3 at (0.5, 0.7) and σs
33 at (0.5, 0.3). It is shown

that the numerical results are in good agreement with the exact solutions. Nevertheless,
the results without the Hanning window function drastically oscillate in the end of the
duration, which is called Gibbs oscillations. The problem is ameliorated by the Hanning
window function. The application of the Hanning window functions does not bring much
time. For example, in Figure 2a, the SBM-EWM without and with the Hanning window
functions, respectively, take 57.08 s and 56.48 s. As a consequence, it is essential to employ
the window function in the EWM-SBM.

It is obvious that the selection of the parameters Nω , κ has an influence on the accuracy
and the stability of the solutions. In the following, the influence is studied.

Nω is the number of the sample frequencies. More sample frequencies enhance the
accuracy of the results but in the meantime bring more operation counts. If the sample
frequencies are not enough, the numerical methods may yield inaccurate results. Figure 3
shows the effect of Nω on the numerical methods via σs

33 at (0.5, 0.8) and p at (0.5, 0.5). In
this figure, the number of boundary points is 400 and κ = 2.7. As the number of sampling
frequencies increases, the numerical solutions converge to the exact solutions. The solution
with Nω = 64 deviates from the exact solutions most in comparison with Nω = 128 and
256. However, the case with Nω = 256 takes 111.7 s in total, which is nearly two times that
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of the case with Nω = 128, which consumes 59.3 s. Overall, Nω = 128 is considered in the
following numerical experiments.
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Figure 2. Time history of (a) us
3 at (0.5, 0.8), (b) p at (0.5, 0.5), (c) w3 at (0.5, 0.7), (d) σs

33 at (0.5, 0.3).
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Figure 3. Time history of (a) σs
33 at (0.5, 0.8) and (b) p at (0.5, 0.5) with respect to the number of

sampling frequencies Nω .

κ is the damping coefficient to determine the artificial damping. A numerical investi-
gation on the κ is given in Figure 4 via the absolute error of us

3 at (0.5, 0.5) under different
damping coefficients. κ = 1.5, 2, 2.5, 3 and 3.5 are selected. The method with κ = 1.5 results
in the worst solutions. The reason lies in that more sampling frequencies are required in
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lightly damped systems. In Figure 4, the results with κ = 2, 2.5, 3 and 3.5 are acceptable.
Nevertheless, an arbitrary large damping coefficient may lead to loss of numerical precision.
As a trade-off, the κ = 2.5 is applied in the subsequent examples.
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Figure 4. Time history of absolute error of us
3 at point (0.5, 0.5) under different κ.

In general, the numerical transient results are limited to a short time duration because
the results deteriorate if the calculation duration is too long. In this study, the long time
behavior of the present method is investigated. In this case, T = 140 ms and Nω = 1024.
Figure 5 plots the history of us

3 at (0.5, 0.8) and p at (0.5, 0.5). In the entire calculation time,
no obvious differences can be observed between the SBM-EWM and exact solutions, which
verifies the accuracy and stability of the SBM-EWM in the long-term dynamic simulation.
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Figure 5. A long time dynamic response of saturated column (a) us
3 at (0.5, 0.8) and (b) p at (0.5, 0.5).

5.2. A Half-Space Problem Subjected to a Transient Load

In the section, a saturated poroelastic half-space subjected to transient loads on the
ground is shown in Figure 6. Thus, the saturated poroelastic half-space is subjected to the
boundary condition expressed as{

ts
3 = −H(t)N/m2, ts

1 = 0N/m2, p = 0Pa, x1 ∈ [−1, 1], x3 = 0,
ts
3 = 0N/m2, ts

1 = 0N/m2, p = 0Pa rest
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Figure 6. The sketch of the semi-infinite domain.

The boundary is discretized into 500 points. The parameters Nω , κ are respectively 128
and 2.5 for the SBM. The analytical solution of this problem in frequency-domain is derived
by Ba [59]. Then the transient analytical solution is obtained by the EWM with Nω = 256
and κ = 2.5. The mesh plots of the analytical solutions and SBM solutions are displayed
in Figures 7 and 8. The solutions at different times at different depths are plotted. Good
agreement indicates that the SBM is successfully applied to the half-space transient problem.
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Figure 7. Time history of u1 at x3 = −1 generated by the analytical solution (left) and the
SBM-EWM (right).
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Figure 8. Time history of σ11 at x3 = −2 generated by the analytical solution (left) and the
SBM-EWM (right).

176



Mathematics 2022, 10, 4323

Furthermore, the MFS is introduced for comparison with the SBM in Figure 9. All the
parameters for the MFS and SBM are the same as the above. The MFS avoids the origin
singularity via the artificial boundary outside the computational domain. d is the distance
between the artificial boundary and physical boundary. To obtain stable solutions, the
MATLAB built-in function pinv is used to solve the linear system of the MFS. As shown in
the figure, the MFS and SBM could obtain acceptable solutions. Nevertheless, the results of
the MFS are influenced by the location of the artificial boundary. Only the MFS with d = 0.1
converges to the analytical solutions. Otherwise, because of the application of pinv, the
MFS takes 357.34 s for the whole process, while the SBM takes 92.96 s. It can be observed
that the MFS takes a much longer time than the SBM.
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Figure 9. Numerical comparison between the MFS and SBM.

5.3. A Tunnel Embedded in a Saturated Poroelastic Half-Space

In this example, a model of a semi-circular tunnel embedded in a saturated poroelastic
half-space in Figure 10 is considered. The radius of the tunnel is R = 3 m and the depth of
invert of the tunnel is H = 6 m. A triangularly distributed transient load is imposed at the
invert of the tunnel. The ground and the surface of the tunnel are set as permeable. Thus,
the boundary conditions are expressed as{

ts
3 = ((|x| − 3)P(t))N/m2, ts

1 = 0N/m2, p = 0Pa, x1 ∈ [−3, 3], x3 = −6
ts
3 = 0N/m2, ts

1 = 0N/m2, p = 0Pa, otherwise
,

where

P(t) =

⎧⎪⎪⎨⎪⎪⎩
100t 0 ≤ t ≤ 0.01
1 0.01 < t ≤ 0.03
4 − 100t 0.03 < t ≤ 0.04
0 otherwise

In this case, no analytical solution is available. Thus, the accuracy of the SBM-EWM
is presented with different parameters. The total time of tunnel transient response T is
90 ms, and the damping coefficient κ is 2.5. Figure 11 gives σs

33 at (−2, −7) and p at (1, −7)
calculated by the SBM-EWM with different numbers of sampling frequencies Nω (128, 256)
and numbers of boundary points N (471, 786). It is observed that the SBM-EWM with
different parameters obtains identical results.
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