
Mathematics 2022, 10, 4323

Figure 10. Schematic sketch of the semi-infinite domain tunnel.

  
(a) (b) 

0 10 20 �0 40 �0 60 �0 80 �0
7iPe�Ps

�10

�8

�6

�4

�2

0

2

6B0 �1  2�6�1 �86�

6B0 �1  128�1 �86�

6B0 �1  128�1 4�1�

Figure 11. Time history of (a) σs
33 at (−2, −7) and (b) p at (1, −7) under different sampling numbers

and boundary points.

To further investigate the numerical results, the time history of the distribution of
us

3 and p of the domain (x1, x3) ∈ [−10, 10]× [−20, 0] are plotted in Figures 12 and 13 to
observe the wave propagation in the entire time. In all results, the dynamic response is
symmetric, which is reasonable according to the symmetry loads. In both figures, it can be
seen that the wave is caused by loads at the invert of the tunnel. Then it propagates outward
in different directions and around the tunnel to the ground. Theoretically speaking, the
whole propagation process complies with the law of wave propagation in solids.

 

Figure 12. Distribution of us
3 with of domain (x1, x3) ∈ [−10, 10]× [−20, 0] at different times.
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Figure 13. Distribution of p with of domain (x1, x3) ∈ [−10, 10]× [−20, 0] at different times.

6. Conclusions

In this paper, a novel boundary-only meshless approach is developed to simulate
transient dynamic response in the saturated soil. In this method, the SBM is employed to
solve the frequency-domain governing equations, while the EWM transforms the frequency-
domain solutions into time-domain solutions. In the SBM, the solutions are approximated
via the fundamental solutions in terms of boundary points. The boundary-only property
makes the SBM very suitable in solving semi-infinite domain problems. The fundamental
solutions are derived via the wave decomposition method and eigenanalysis, and their
source singularities are removed by the OIFs. The EWM is boasted as an effective inverse
Fourier transform method, which incorporates exponential artificial damping into the FFT
to enhance its numerical efficiency. The Hanning window function is used to smooth the
Gibbs oscillation as the computation period increases. The influence of the parameters in
the EWM was investigated in the first numerical experiment. All numerical results validate
that the present SBM-EWM is accurate and effective to solve the transient soil dynamic
response. Nevertheless, the SBM-EWM is only applicable when the fundamental solutions
exist because the fundamental solutions are the kernel function of the SBM.
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Appendix A. Detailed Derivations of the 2D Fundamental Solutions

The fundamental solution is one of most important parts for the boundary-only
methods. However, it is not a trivial work to derive the fundamental solutions for coupled
governing equations. This section decouples the governing equations into several simpler
scalar governing equations with known fundamental solutions, and then coupled these
fundamental solutions with the eigenanalysis.

(1) Solid loads

The singular loads are applied to the solid phase as Fs = −δ(x − y)ek(k = 1, 3) where
e1 and e3 are the unit vectors along x1 and x3 direction. The variables in governing
Equations (11) and (12) are decomposed into underdetermined potentials AL, AT and AP as

ũs = ∇∇ ·
(

ALek
)
−∇×∇×

(
ATek

)
, (A1)

p̃ = ∇ ·
(

APek
)

, (A2)

The Laplace operator can be decomposed into

Δ
(

τek
)
= ∇∇ ·

(
τek
)
−∇×∇×

(
τek
)
= −δ(y − x)ek, (A3)

where τ is the fundamental solutions for the Laplace operator.
With Equations (A1) and (A2), we decouple the governing Equations (11) and (12) as

(λ + 2μ)∇2 AL + ω2ρg AL − αg AP = τ, (A4)

μ∇2 AT + ω2ρg AT = τ, (A5)

∇2 AP + ω2β2 AP − β3∇2 AL = 0. (A6)

Potentials AT can be obtained from Equation (A5) as

AT = − g3

2πk2
3
(ln r + K0(jk3r)). (A7)

The other two potentials AL and AP are coupled in Equations (A4) and (A6). To solve
AL and AP, the eigenanalysis is introduced for the matrix system as

M1∇2
[

AL
AP

]
+ M2

[
AL
AP

]
=

[
τ
0

]
, (A8)

where

M1 =

[
λ + 2μ 0
−β3 1

]
, M2 =

[
ω2ρg −αg

0 β2ω2

]
Reformulate Equation (A8) as

∇2
[

AL
AP

]
+ M
[

AL
AP

]
= τM−1

1

[
1
0

]
= τg, M = M−1

1 M2 (A9)

with matrix g written as

g =
1

λ + 2μ

[
1

β3

]
(A10)

Search the solutions through the eigenvector basis as[
AL
AP

]
= φ1

[
1
r′1

]
+ φ2

[
1
r′2

]
, (A11)
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where
(
1, r′i
)T

(i = 1, 2) denote the eigenvector of M and r′1, r′2 are given by

r′i =
(λ + 2μ)k2

i − ω2ρg

−αg
, i = 1, 2, (A12)

where k2
i (i = 1, 2) are the eigenvalue of M and k2

3 = ω2ρg/μ. Then based on
Equations (A11), Equation (A9) can be simplified as

∇2φi + k2
i φi = giτ, (A13)

where g3 = 1/μ and gi(i = 1, 2) are

g = g1

[
1
r′1

]
+ g2

[
1
r′2

]
. (A14)

Thus, the solution of Equation (A13) is

φi(r) = − gi

2πk2
i
(ln r + K0(jkir)), (A15)

where K0 is the modified Bessel function of zero order.
Bringing the potentials into Equations (A1) and (A2), the 2D fundamental solutions

are derived as
ũs

ik = Aδik − Br,ir,k, i, k = 1, 3, (A16)

p̃k = Cr,k, k = 1, 3. (A17)

where

A =
1

2π

[
− ∑

d=1,2
gd

K1(zd)

zd
+ g3

(
K0(z3) +

K1(z3)

z3

)]

C =
j

2π

[
∑

d=1,2

rdgd
kd

K1(zd)

]

B =
1

2π

[
− ∑

d=1,2
gdK2(zd) + g3K2(z3)

]

D =
−j
2π ∑

d=1,2
kdhdK1(zd), z3 = jk3r, zd = jkdr

rd =
ω2ρg − (λ + 2μ)k2

d
αg

(d = 1, 2), g1 =
β3 − r2

(λ + 2μ)(r1 − r2)
,

g2 =
β3 − r1

(λ + 2μ)(r2 − r1)
, g3 =

1
μ

, h1 = − β3

αg(r1 − r2)
, h2 = − β3

αg(r2 − r1)

in which r =
√
(x1 − y1)

2 + (x3 − y3)
2 is the distance between field point x = (x1, x3) and

source point y = (y1, y3). Kn is the modified Bessel function of the second kind of order n,
and kd is

k1 =

√
β2ω2

2
+

ρgω2 − αgβ3 +
√

H
2(λ + 2μ)

, k2 =

√
β2ω2

2
+

ρgω2 − αgβ3 −
√

H
2(λ + 2μ)

,k3 =
√

ω2ρg/μ

where

H =
(

λβ2ω2 − αgβ3 + ρgω2
)2

+ 4(λ + μ)β2ω4(μβ2 − ρg
)− 4μαgβ2β3ω2
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With the constitutive relationship, we have the traction fundamental solutions as

t̃s
ik = λ

[
A′ − B′ − B

r

]
r,kni + μ

[(
A′ − B

r

)
(r,nδik + r,ink)

− 2B
r r,kni + 2

(
−B′ + 2B

r

)
r,ir,kr,n

]
i, k = 1, 3,

(A18)

where r,i =
xi−yi

r , r,n = r,1n1 + r,3n3 and (•)′ are the derivatives of • with respect to r.
For the fluid, the flux fundamental solutions are

q̃k =
−αg

β3

[
C
r

nk +

(
C′ − C

r

)
r,kr,n

]
, k = 1, 3. (A19)

(2) Fluid load

The singular load Fp = −δ(x − y) is applied to Equation (12). The variables are
decomposed by the Helmholtz decomposition as

ũs = ∇ϕ +∇× Ψ, (A20)

Taking Equations (A2) and (A20) into Equations (11) and (12), we have

(λ + 2μ)∇2 ϕ + ω2ρg ϕ − αg p = 0, (A21)

μ∇2Ψ + ω2ρgΨ = 0, (A22)

∇2 p + ω2β2 p − β3∇2 ϕ = −δ(x − y) (A23)

Only Ψ is associated with Equation (A22). For simplicity, let Ψ = 0. The other two
potentials are derived from

∇2
[

ϕ
p

]
+ M
[

ϕ
p

]
= h
[

0
−δ

]
, (A24)

where M is the same as in Equation (A9), and h = (0, 1)T . Then the eigenanalysis is based
on [

ϕ
p

]
= φ1

[
1
r′1

]
+ φ2

[
1
r′2

]
. (A25)

Recast Equation (A24) as

∇2φi + k2
i φi = −hiδ(x − y), (A26)

where hi(i = 1, 2) satisfies

h = h1

[
1
r′1

]
+ h2

[
1
r′2

]
. (A27)

The solutions of Equation (A26) are

φi(r) =
hi
2π

K0(jkir). (A28)

The 2D fundamental solutions can be derived via potentials and decomposition
equations as

ũs
i4 = Dr,i, i = 1, 3, (A29)

p̃4 =
1

2π ∑
d=1,2

rdhdK0(zd). (A30)
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Similarly, the fundamental solutions of the traction and flux are

t̃i4 =

[
(λ + 2μ)

D
r
+ λD′

]
ni + 2μ

(
−D

r
+ D′

)
r,ir,n, i = 1, 3, (A31)

q̃4 =
jαgr,n

2πβ3
∑

d=1,2
rdhdkdK1(zd). (A32)

Appendix B. The χ1,. . . ,χ10 of OIFs for 2D Saturated Poroelastic Problems

χ1 =
g1 + g2 + g3

2
, χ3 = − 1

2π

(
g1 + g2 − g3

2

)
, χ4 = −(λ + μ)

(
∑

m=1,2
k2

mhm

)
,

χ2 =
1

2π

[
g1 + g2 + g3

2
τ +

g1

2
ln
(

jk1

2

)
+

g2

2
ln
(

jk2

2

)
+

g3

2
ln
(

jk3

2

)
− g1 + g2 − g3

4

]
,

χ5 =
1

2π

[
2(λ + μ)

(
∑

m=1,2

k2
mhm

2

(
τ + ln

(
jkm

2

)))
− μ ∑

m=1,2

k2
mhm

2

]
, χ6 = r1h1 + r2h2,

χ7 =
1

2π

[
−(r1h1 + r2h2)τ − r1h1 ln

(
jk1

2

)
− r2h2 ln

(
jk2

2

)]
, χ8 = −αg(r1g1 + r2g2)

2β3
,

χ9 =
αg

2πβ3

[
r1g1 + r2g2

2

(
τ − 1

2

)
+

r1g1

2
ln
(

jk1

2

)
+

r2g2

2
ln
(

jk2

2

)]
, χ10 = ∑

m=1,2
−αgrmhm

β3
,

τ = 0.57721566490153286 is the Euler–Mascheroni constant.
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Abstract: Electrochemical stress induced by the charging/discharging of electrode materials strongly
affects the lifetime of lithium-ion batteries (LIBs) by regulating mechanical failures. Electrochem-
ical stress is caused by a change in the local volume of the active materials associated with the
lithium-ion concentration. The local volume change of certain active materials, such as nickel-rich
LiNixMnyCozO2 (NMC), varies nonlinearly with the lithium content, which has not been considered
in the stress calculations in previous studies. In this paper, the influence of nonlinear local volume
change on the mechanical response of NMC-active materials is investigated numerically. The goal is
achieved by using a concentration-dependent partial molar volume calculated from the previously
obtained local volume change experimental results. A two-dimensional axisymmetric model was
developed to perform finite element simulations by fully coupling lithium diffusion and stress gener-
ation at a single particle level. The numerical results demonstrate that (1) the global volume change
of the particle evolves nonlinearly, (2) the stress response correlates with the rate of change of the
active particle’s volume, and (3) stress–concentration coupling strongly affects the concentration
levels inside the particle. We believe this is the first simulation study that highlights the effect of
a concentration-dependent partial molar volume on diffusion-induced stresses in NMC materials.
The proposed model provides insight into the design of next-generation NMC electrode materials to
achieve better structural stability by reducing mechanical cracking issues.

Keywords: lithium-ion battery; concentration-dependent material property; nonlinear volume
change; NMC electrode; finite element simulation
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1. Introduction

With the growing demand for energy storage devices, lithium-ion batteries (LIBs) are
gaining more interest due to their higher capacity and longer cycle life [1]. LIB applications
range from small medical and portable electronic devices to electric vehicles (EVs); however,
their capacity decreases over time [2]. One of the main goals of the development of the
next-generation batteries is to increase their efficiency by limiting the capacity-fading
mechanisms [3]. Layered cathode materials, such as lithium nickel manganese cobalt oxide
LiNixMnyCozO2 (NMC), are the most promising active materials with lower costs and
higher energy density [4,5]. However, the battery capacity quickly decreases due to various
mechanical failures caused by diffusion-induced stress (DIS) when lithium is introduced
into (lithiation) or extracted from active materials (delithiation) [6,7].

A lot of effort has gone into the development of charging/discharging models to un-
derstand the mechanisms underlying DIS generation. One of the pioneering works are the
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studies of Christensen and Newman [8]. They investigated the lithiation-induced stresses
and predicted mechanical failure in a single spherical graphite anode. A thermal analogy
was then employed to calculate the DIS using finite element method (FEM) simulations [9].
Later, the DIS model was further updated by including the phase transition effects [10,11],
grain boundaries [12–14], charging/discharging rates [15], material properties [16,17], active
material morphology [18], surface stresses [19,20], yielding and plastic deformations of
the active material [21–24], and solid–electrolyte interface [25–27]. Furthermore, several re-
searchers have developed various stress-regulated charging/discharging strategies to reduce
stresses using such DIS models [28–30]. Going a step further, the dynamic growth of failures
in LIB model systems under the influence of DIS has also been simulated [31–33]. However,
in order to reduce the simulation complexity, the mentioned studies have mainly used
constant material properties, whereas most of the active material properties depend on the
lithium concentration. Therefore, to accurately predict the charging/discharging behavior
of the material, precise property values should be used when performing simulations.

In the last few years, many researchers have devoted themselves to determining the
effect of concentration-dependent material properties on the charging and discharging
processes of lithium-ion batteries. The researchers included the lithium concentration-
dependent elastic properties especially Young’s modulus [34–41], yield stress [24,42,43],
Poisson’s ratio [44], coefficient of chemical expansion or partial molar volume [45,46], tough-
ness [47], and lithium diffusion coefficient [48,49] to DIS simulation models. For example,
Deshpande et al. [50] used a simple cylindrical electrode particle to find that Young’s modu-
lus variation has a significant effect on the evolution of DIS. Zhang et al. [51] examined the
effect of the concentration-dependent elastic modulus on lithium diffusion and DIS genera-
tion using composition-gradient LCO cathode particles. They found that lithiation-induced
stiffening regulates DIS in composition-gradient electrodes. Hong et al. [44] investigated
the effects of concentration-dependent diffusivity, Young’s modulus, and Poisson’s ratio
on stress evolution during lithiation of the Sn particle and concluded that the change in
material properties with lithium content significantly alters mechanical failure modes. Cai
and Guo [48] examined the effect of changing the diffusion coefficient and elastic modulus
hardening with the lithium concentration on DIS in an anisotropic graphite anode particle.
They found that diffusivity as a function of concentration increased concentration gradients
and thus enhanced DIS because the change in the volume of the active material induced
by the lithium concentration change is the main source of DIS. However, the effects of the
concentration-dependent chemical expansion coefficient have rarely been investigated in
the past. The study of nonlinear volume change and its effects on DIS is essential to deter-
mine strategies for avoiding mechanical failures in high-energy-density cathode materials
such as NMC.

During charging, both the lattice parameters a and c of the NMC unit cell change
strongly, which ultimately leads to a large change in the unit cell volume [52]. This volume
change evolves nonlinearly with the lithium content. Distinct changes in the lattice struc-
ture are the main sources of stress generation that lead to various modes of mechanical
cracks [53]. The disintegration and cracks induced by lithium diffusion in NMC materi-
als disrupt the ionic and electronic conduction pathways [54]. Consequently, structural
degradation accelerates the capacity decrease of NMC cathodes. However, the effects of
the nonlinear volume change of NMC materials in stress diffusion problems have not yet
received much attention.

In this paper, we focus on the effects of diffusion-induced nonlinear volume change
on the evolution of lithium concentration distributions and the related stress development.
To achieve the goal, we first calculated the partial molar volume (chemical expansion
coefficient) based on experimentally obtained volume change values given in reference [52].
Next, we simulated the charging (delithiation) phenomenon in a single NMC particle
using the concentration-dependent partial molar volume under galvanostatic charging
conditions. We then compared the results of the constant and variable (concentration-
dependent) partial molar volumes to evaluate the effects of the nonlinear volume change
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on the chemomechanical response of the NMC-active material. The main objectives of this
paper are as follows:

1. To construct a fully coupled finite element chemomechanical model in order to investi-
gate the effects of a concentration-dependent partial molar volume on the mechanical
response of NMC particle.

2. To study and compare the simulation results for the constant and concentration-
dependent partial molar volume of the NMC particle during the charging (delithia-
tion) process.

3. To investigate the simultaneous effects of the particle size or the charging rate and
the concentration-dependent partial molar volume on the mechanical response of the
NMC-active material.

The rest of the paper is organized as follows: we first developed a fully coupled
chemomechanical model that considered the local effects of a nonlinear volume change on
the distribution of stress and lithium concentration. We then validated the application of the
concentration-dependent partial molar volume by comparing the finite element simulation
results with the experimentally obtained volume changes. Afterwards, we compared
the stress and lithium concentration results for the constant and variable (concentration-
dependent) partial molar volumes for the delithiation (charging) process. We then evaluated
the effects of the particle size and charge rate. Finally, the article is concluded in the
last section.

2. Methodology

For numerical simulations, an isolated active particle with a radius Rs was considered,
as shown in Figure 1. The axisymmetric model system and its spatial discretization for a
representative case of lithiation are illustrated in Figure 1a,b, respectively. We employed
full coupling between lithiation/delithiation kinetics and mechanics of diffusion-induced
deformations. The computational modeling of this fully coupled chemomechanical model
is presented in the following subsections.

Figure 1. (a) Schematic representation and (b) spatial discretization of an axisymmetric model system
used to perform numerical simulations.

2.1. Fully Coupled Chemomechanical Model
2.1.1. Modeling of Lithium Ion Diffusion in an Active Particle

The diffusion of lithium ions inside the active particle was assumed to follow Fick’s law [55]:

∂c
∂t

+∇ · J = 0 (1)
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where c is the lithium ion molar concentration; t is the lithiation/delithiation time, and
J is the lithium ion flux inside the active material. The flux J is defined as a function of
chemomechanical potential as [9]:

J = −M c ∇μ (2)

where M is the mobility factor given by M = D/RT, and μ is the stress-dependent chemical
potential, which can be defined by hydrostatic stress (σh) as [9]:

μ = μo + RT ln X − Ωσh (3)

where μo is the reference state potential; R is the universal gas constant; T is the absolute
temperature; X is the molar fraction, and Ω is the partial molar volume. Combining
Equations (2) and (3) leads to:

J = −D
(
∇c − c

RT
∇(Ωσh)

)
(4)

Finally, putting Equation (4) to Equation (1) gives the final form of the partial differential
equation for solving lithium concentrations in a coupled stress–concentration manner [56]:

∂c
∂t

− D∇2c +
D
RT

∇c · ∇(Ωσh) +
Dc
RT

∇2(Ωσh) = 0 (5)

The third and fourth terms on the left-hand side of Equation (5) result from the
stress–concentration coupling. Thus, without stress–concentration coupling, the partial
differential equation above reduces to:

∂c
∂t

− D∇2c = 0 (6)

2.1.2. Modeling of Diffusion-Induced Stress

The DIS in the active particle was solved by the following partial differential equation
for mechanical equilibrium [20]:

∇ ·σ+ Fb = 0 (7)

where σ is the Cauchy stress tensor, and Fb is the body fore. In this work, no body force
was assumed, so Fb = 0. For elastic deformations during the charging/discharging process,
the stress–strain relationship is governed by Hook’s law as [33]:

σ = C : εe (8)

where C is the fourth-order stiffness matrix, and εe is the elastic strain. The total strain
caused by the elastic and diffusion-induced deformations is given as [33]:

εt = εe + εd =
1
2

(
(∇u)T +∇u

)
(9)

where εt and εd are the total and diffusion-induced strains, and u denotes the displacement
field. Thus, the elastic strain is calculated by subtracting the diffusion-induced strain from
the total strain as [9,14]:

εe = εt − εd (10)

For the DIS calculations, the diffusion strain was calculated using the thermal anal-
ogy [8,9,57] as:

εd =
1
3

c̃ΩI (11)

where c̃ is the concentration difference between the current and the initial state, and I is the
identity matrix. In another method, using directly the volume change (ΔV/Vo) obtained
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from the experiments, the diffusion-induced strain can be represented by the following
diffusion-induced deformation gradient Fd:

Fd =

(
1 +

ΔV
Vo

)1/3
I (12)

2.2. Material Properties and Numerical Simulations

To perform the finite element fully coupled chemomechanical simulations, the struc-
tural mechanics and transport of the dilute species modules of COMSOL Multiphysics
(version 6.0) was employed in this work. The partial differential equation of the mechanical
equilibrium was solved in the structural mechanics’ module, while the partial differential
equations of the mass balance of lithium ions inside the active material were solved using
the transport of the dilute species module. The built-in parallel sparse direct solver (PAR-
DISO) transient solver was used to solve the weak forms of partial differential equations in
a fully coupled manner. The delithiation phenomenon was modeled by applying a constant
negative flux to the exposed surfaces of the active particle. The partial differential equations
were solved in time increments until the local minimum state of charge reached the lower
limit of the respective NMC-active material. To explore the effects of the concentration-
dependent volume change of the active material, a representative case of 2 μm particle size
of LiNi1/3Mn1/3Co1/3O2 (NMC-111) at 1C charge/discharge rate was considered, unless
otherwise specified. Furthermore, the following initial and boundary conditions were
considered to solve the partial differential equations given in Equations (5) and (7).

Initial conditions: At the start of the simulation, it was assumed that the maximum
lithium concentrations (cmax) were homogeneously distributed throughout the NMC active
particles as:

c = ctotal at t = 0 (13)

where ctotal is the stoichiometric lithium concentration in the NMC material. To solve the
partial differential equation of mechanical equilibrium Equation (7), initially no stress was
considered in the particle as:

(∇ ·σ)t=0 = 0 (14)

Boundary conditions: To solve the issue of lithium diffusion inside the particle, a
constant lithium flux was applied to the particle surface, such as:

J · n = − in
F

= −Crateαρ

F
× Rs

3
(15)

where n, in, F, and Crate denote the outward normal unit vector on the external surface of the
particle, the current density, the Faraday’s constant, and the charging rate, respectively. The
α, ρ, and Rs are the specific capacity, density, and radius of the active particle, respectively.

To quantify the effects of the nonlinear volume change, during the simulation the total
volume change of the active material was calculated as:

ΔV
Vo

=
(
∫

dv)t=t − Vt=0

Vt=0
(16)

where ΔV is the change in particle volume between the current (at t = t) and initial
(at t = 0) delithiation state. To explore the mechanical response of active materials, the
maximum first principal stress (σmax) was calculated and compared for various cases.
Further, to investigate the change in lithium concentration behavior, the difference between
the maximum and minimum states of charge (ΔSOC) was evaluated as:

ΔSOC =
cmax − cmin

ctotal
× 100% (17)
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where cmax and cmin are local maximum and minimum lithium concentrations. Finally, to
assess the change in charge storage, the normalized capacity (Π) of the active particle was
calculated as follows:

Π =
F
∫

cdv
αρVo

(18)

where Π will change between 1 and 0 during delithiation.
The convergence of both the maximum stress (σmax) and change in state of charge

(ΔSOC) parameters was confirmed by increasing the degrees of freedom by refining the
mesh size. According to the mesh independence test, the simulations were carried out with
5673 mesh elements and 46,356 degrees of freedom.

Concentration-Dependent Partial Molar Volume

To calculate the concentration-dependent partial molar volume, the volume change
data during the delithiation process of NMC materials were obtained from reference [52].
The concentration-dependent partial molar volume of each NMC structure (i.e., NMC-111,
LiNi0.5Mn0.2Co0.3O2 (NMC-523), LiNi0.6Mn0.2Co0.2O2 (NMC-622), and LiNi0.8Mn0.1Co0.1O2
(NMC-811)) was calculated separately. The volumetric strain (λ) due to the volume change
caused by the delithiation was calculated as:

λ =

(
ΔV
Vo

+ 1
)1/3

− 1 =

(
Vx=x − Vx=xmax

Vx=xmax

+ 1
)1/3

− 1 (19)

where ΔV is the volume change that is calculated as the delithiation states increase. The
Vx=x is current, and Vx=xmax is the initial (with maximum lithium content) unit cell volume.
Based on this strain value, the partial molar volume is given by:

Ω =
3 × λ

(x − xmax)× ctotal
(20)

Using Equation (20), the concentration-dependent partial molar volume of each NMC
was calculated and plotted in Figure 2. For simplicity, we proposed that other material
properties, such as Young’s modulus and diffusion coefficient of the active material, were
independent of the lithium-ion concentrations. Other material properties and simulation
parameters used in this work are listed in Table 1.

Figure 2. Calculated partial molar volume as the function of normalized lithium concentrations or
lithium contents.
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Table 1. Summary of simulation parameters and material properties for NMC materials used for
numerical simulations.

Parameters Symbols Units
Values

NMC-111 NMC-523 NMC-622 NMC-811

Young’s modulus 1 E GPa 202.98 191.79 181.52 194.4
Diffusion coefficient 2 D m2 s−1 3.39 × 10−15 3.89 × 10−15 7.5 × 10−15 4.0 × 10−14

Specific capacity 3 α mAh g−1 188.75 194.89 203.18 213.42
Stoichiometric lithium concentration 4 ctotal mol m−3 33,452 34,542 36,009 37,825

Minimum SOC 5 SOCmin % 21 19 18 11
Maximum SOC 6 SOCmax % 94 93 93 90

Poisson’s ratio 7 ν - 0.25
Density 8 ρ kg m−3 4750

Faraday’s constant F C mol−1 96,487
Absolute temperature T K 300
Universal gas constant R J mol−1 K−1 8.314

1 Sun and Zhao [58]; 2 Wei et al. [59] and Huang et al. [60]; 3,5,6 de Biasi et al. [52]; 4 Calculated by ctotal = αρ/F;
7 Cheng et al. [61]; 8 Mistry et al. [62].

3. Results and Discussions

3.1. Validations of Numerical Results

In this section, we validate the calculations of the concentration-dependent partial
molar volume of NMC with different nickel contents; NMC-111, NMC-523, NMC-622,
and NMC-811. If the distributions of lithium concentration inside the active particle are
sufficiently homogenized, then the local volume change will equal the percentage of the
total volume change of the active particle. Therefore, in Figure 3, we compare the results
by plotting the global volume change obtained by simulating a small particle under a
lower charge rate (i.e., Rs = 2 μm and Crate = 1C) against the normalized charge capacity
and the local volume change of the respective NMC material against the lithium content
obtained from [52]. The close volume change values obtained from the simulations and the
experiments suggest that this concentration-dependent partial molar volume can be used
for stress calculations of NMC-active materials.

Figure 3. Local and global volume changes obtained by experiments (Adapted with permission from
Ref. [52]. Copyright 2017, American Chemical Society.) and finite element simulations, respectively.
The local volume change is plotted against the lithium content, and the global volume change is
plotted against the normalized capacity of the various NMC materials.
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Then, the simulation results obtained by directly using the local volume change as
the intercalation strain (Equation (12)) and using the calculated concentration-dependent
partial molar volume as the thermal analogy (Equation (11)) are compared in Figure 4.
To avoid changes caused by stress–concentration coupling, only uncoupled simulations
were performed in this section using Equation (6). All simulation results are similar either
by using the intercalation strains or thermal analogy. This, therefore, proves the validity
of the thermal analogy method and the use of concentration-dependent partial molar
volume instead of the direct use of the local volume change as the volumetric strain in finite
element simulations.

 

Figure 4. Validation of the use of concentration-dependent partial molar volume by performing
simulations by intercalation strain and thermal analogy methods. (a) change in the total volume of
the active particle (ΔV/Vo), (b) the maximum value of the local first principal stress (σmax ), (c) the
difference between maximum and minimum local charge states (ΔSOC ), and (d) the normalized
lithium charge capacity (Π) inside the active particle.

3.2. Effects of Variable Partial Molar Volume

Figure 5 compares the simulation results obtained for a representative case of a 2 μm
NMC-111 particle at a discharge rate of 1C with and without considering the nonlinear local
volume change during the delithiation process. Figure 5a shows that the total volume of the
active particle (ΔV/Vo) changes nonlinearly when the variable (concentration-dependent)
partial molar volume (Ωvar) is considered. On the other hand, using a constant partial
volume (Ωconst), the change of ΔV/Vo is linear. This indicates that the local volume change
significantly affects the global volume change, suggesting that the local volume change will
also increase the stress due to the surrounding constraints provided by the binder, other
active particles, current collector, and separator.
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Figure 5. Comparison of the results of the delithiation process simulation with and without consider-
ing the concentration-dependent partial molar volume. (a) change in the total volume of the active
particle (ΔV/Vo), (b) the maximum value of the local first principal stress (σmax), (c) the difference
between the maximum and minimum local states of charge (ΔSOC), and (d) the normalized lithium
charge capacity (Π) inside the active particle.

The evaluation of the stress generation caused by lithium diffusion is essential for the
analysis of mechanical failure. For this purpose, the local maximum of the first principal
stress (σmax) was analyzed here. DIS developed because of the local mismatch of lithium
concentration levels between the inner and outer regions of the active particle. This mis-
match caused the regions to expand/contract based on the magnitude of the partial molar
volume. Consequently, using Ωvar, the rate of volume change induced by lithium diffusion
is different at different concentration levels, and the associated stress increase is different
along the radial direction. As a result, σmax evolves differently for Ωvar, as illustrated in
Figure 5b. The evolution of σmax reveals several smaller peaks before a larger peak toward
the end of the delithiation process, while these peaks are not visible when Ωconst is used.
Instead, σmax increases gradually after achieving a distinct peak in the early stages of the
delithiation process. Figure 5b also shows that the peak magnitude of σmax is almost three
times higher for the Ωvar case compared to the Ωconst case indicating a higher probability
of mechanical failures. In summary, the evolution and levels of diffusion-induced stress in
the active particle are significantly affected by the use of concentration-dependent partial
molar volume. The reason for the appearance of such smaller peaks in the evolution of
σmax is given in the following paragraphs.

The maximum concentration difference in the active particle measures concentration
gradients to some extent. Therefore, the maximum SOC difference (ΔSOC) was evaluated
to express the change in the evolution of the concentration gradients. Figure 5c compares
the evolution of ΔSOC using Ωconst and Ωvar. For Ωconst, ΔSOC initially increases sharply,
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and after reaching a distinct peak, the increase becomes more gradual. In the initial stages
of a particle’s delithiation, only the outermost regions undergo the deintercalation process,
so, over time, the SOC difference between the surface and the core increases rapidly, but
when the deintercalation front reaches the particle’s core, the core starts to delithiate. The
change in ΔSOC drops, which is the second stage of a gradual increase in ΔSOC. In contrast,
when Ωvar is included, the change of ΔSOC becomes irregular. It is affected by either a
local volume change or a stress change through stress–concentration coupling.

To explore the effects of the concentration-dependent partial molar volume on the
capacity stored inside the active particle, the normalized capacity (Π) was compared for
both the Ωconst and Ωvar cases, as shown in Figure 5c. The same capacity value was observed
for both partial volume cases. This indicates that although the nonlinear local volume
affects the particle’s response to stress, the total stored charge remains the same.

Uncoupled numerical simulations were performed to isolate the effects of stress–
concentration coupling and concentration-dependent partial molar volume on the SOC
differences. In Figure 6a, the ΔSOC evolution is again plotted for Ωconst and Ωvar, without
considering the coupling between the stress and concentration. The ΔSOC is the same for
both partial molar volumes, although changes are still present in the evolution of σmax, as
shown in Figure 6b when Ωvar is considered. Thus, this proves that (1) changes in ΔSOC
are caused by stress–concentration coupling, meaning that inhomogeneous stress levels
due to nonlinear volume changes affect the lithium concentration levels, and (2) σmax is not
directly affected by the change in ΔSOC.

Figure 6. Comparison of results for uncoupled simulations. (a) The difference between the maximum
and minimum local state of charges (ΔSOC). (b) The maximum value of the local first principal
stress (σmax).

Further, to figure out the mechanism underlying the stress response caused by the
concentration-dependent partial molar volume, we investigated the rate of change of
ΔV/Vo over time. The evolution of the 1st temporal derivative of ΔV/Vo was plotted
with the evolution of σmax in Figure 7. The trend of σmax perfectly matches the trend of
the 1st derivative of ΔV/Vo. This proves that the change in maximum stress behavior is
directly affected by the rate of change in ΔV/Vo.
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Figure 7. The delithiation time evolution of the maximum stress (σmax) and the 1st derivative of the
volume change (ΔV/Vo ).

We then investigated the effects of the concentration-dependent partial molar volume
on the distribution patterns of the lithium concentration and the associated stress gener-
ation. It is clear from the comparison that the distribution patterns of the local lithium
concentration and the first principal stress are consistent as the partial molar volume
changes from constant to a variable. As shown in Figure 8a,b, the maximum local con-
centration of lithium occurs at the center of the particle, while the minimum occurs at the
surface of the particle. Similarly, the local maximum first principal stress occurs at the
surface of the particle, and the minimum stress occurs at the center of the particle, as shown
in Figure 8c,d. This indicates that although the use of concentration-dependent partial
volume enhances stress levels, it does not change the location of maximum stress.

Figure 8. (a) Representative contour plots for (a,b) lithium concentration distributions (c/ctotal) and
(c,d) first principal stress at the end of the delithiation. The results (a,c) are based on a constant partial
molar volume, and (b,d) were obtained using a concentration-dependent partial molar volume.
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3.3. Effects of Particle Size

Usually, the particle size (Rs) inside the electrode varies. Particle size plays an essen-
tial role in the stress increase caused by lithium diffusion. Therefore, in this section, the
particle size was changed from Rs = 1 μm to Rs = 30 μm in order to study the effects of
concentration-dependent partial molar volume on the stress increase. Figure 9 compares the
simulation results for various particle sizes with and without the use of a diffusion-induced
nonlinear local volume change. The red dots to the right of each 3D plot represent the
peak value during the delithiation time evolution of the corresponding parameter. The
absolute (positive) volume change values are plotted in Figure 9 for better visibility and
comparison of trends.

 

Figure 9. Impact of particle size (Rs) on the transient chemomechanical response during the delithia-
tion process. The results (a–c) were obtained using a constant partial molar volume, and the results
(d–f) were obtained using a variable partial molar volume. The red dots to the right of each graph
denote the evolution of the peak values with respect to the particle size increase. (a,d) Evolution of
the volume change (ΔV/Vo) of particle size. (b,e) Evolution of the maximum difference in this state
of charge (ΔSOC). (c,f) Evolution of the first principle maximum stress (σmax) in the active particle.

In both cases, active particles with different Rs shrink in the same manner. However,
for Ωconst, the volume change is linear, and for Ωvar, the volume change is nonlinear, as
illustrated in Figure 9a,d, respectively. Moreover, as Rs increases, the peak values of volume
change decrease, which is consistent for both cases of partial molar volume. The peak
values of ΔV/Vo decrease because the stop condition for larger particles is achieved earlier,
and the maximum volume achieved decreases. This indicates that the nonlinear volume
change will have minimal effects for larger particles.

The ΔSOC curves in Figure 9b,e show that as Rs increases, the magnitude of ΔSOC
increases significantly. Larger particles take longer to start delithiating the core, resulting in
enhanced concentration gradients within the particle that remain for a longer period of time.
As a consequence, ΔSOC increases. However, the trends and magnitude for both Ωconst
and Ωvar remain almost the same, suggesting that the concentration-dependent partial
molar volume has a minimal effect on ΔSOC with increasing particle size.

Meanwhile, as the concentration gradients increase, σmax also increases, as shown in
Figure 9c,f. Although the evolution in time and magnitude of σmax for both the constants
Ωconst and Ωvar are different, the trend in the rise of the peak value of σmax with increasing
Rs is the same. For larger particles, the difference between the peak values of σmax is due
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to a very small volume change. In summary, the trends in the evolution of ΔV/Vo, ΔSOC,
and σmax remain consistent, while Rs increases for both the Ωconst and Ωvar cases. However,
the propensity for mechanical fracture increases with increasing particle size. Meanwhile
the effects of concentration-dependent partial molar volume on the stress rise decrease for
larger particles.

3.4. Effects of Charge Rate

Fast charging is the most desirable aspect of EVs. However, fast charging significantly
increases the capacity degradation of lithium-ion batteries. Therefore, to explore the effects
of fast charging in combination with the use of a concentration-dependent partial molar
volume, the Crate was varied from 0.5 C to 10 C with a difference of 0.5 C. Simulations were
performed for Rs = 2 μm of the NMC-111-active particle.

Figure 10 shows that the evolution trends of ΔV/Vo, ΔSOC, and σmax are consistent
for different Crates, even when Ωvar was used. As the stopping condition of the numerical
simulations was achieved earlier with an increasing Crate, the peak magnitude of ΔV/Vo
decreases, as presented in Figure 10a,d for Ωconst and Ωvar, respectively. Although the
trends are consistent, the evolution of ΔV/Vo becomes nonlinear once the concentration-
dependent partial molar volume is used.

Figure 10. Impact of the charging rate (Crate) on the transient chemomechanical response during
the delithiation process. The results (a–c) were obtained using a constant partial molar volume, and
the results (d–f) were obtained using a variable partial molar volume. The red dots to the right of
each graph denote the evolution of the respective peak values. (a,d) Evolution of volume change
(ΔV/Vo) of the particle size. (b,e) Evolution of the maximum difference in this state of charge (ΔSOC).
(c,f) Evolution of the first principle maximum stress (σmax) in the active particle.

Furthermore, increasing the Crate causes an increase in ΔSOC due to enhanced concen-
tration gradients. Figure 10b,e show a slight increase in the ΔSOC values for Ωvar compared
to Ωconst. This is caused by this stress–concentration coupling effect.

Moreover, small SOC differences for a lower Crate indirectly indicate a more uniform
distribution of lithium inside the particles and thus exhibit reduced concentration gradients.
Since the lithium diffusion-induced strain mismatch is the main cause of stress generation,
with smaller SOC differences, stress increase is also reduced for the lower Crate. As the
Crate increases, σmax in a given delithiation time increases. The increase in the stress raises
the probability of fracture. Although trends in the evolution of σmax remain consistent for
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Ωconst and Ωvar, using Ωvar, the stress rise is significantly higher, as shown in Figure 10c,f
for Ωconst and Ωvar, respectively. Thus, the propensity for mechanical failure increases
significantly when using a concentration-dependent partial molar volume under fast
charging conditions.

4. Conclusions

In this paper, the influence of a concentration-dependently local volume change
of active materials on the lithium concentration evolution and diffusion-induced stress
generation was studied by performing finite element simulations using a fully coupled
chemomechanical model at the particle level. The concentration-dependent partial molar
volume was calculated based on the previously obtained local nonlinear volume change of
the NMC-active materials. We first validated the calculations of the partial molar volume by
comparing the results of the global volume change obtained by finite element simulations
with the local volume change values that were previously received in experiments described
in the literature. We then compared the chemical and mechanical response of the active
material with and without considering the concentration-dependent partial molar volume.

The main findings of this work are given below:

1. The local volume change induced by the concentration-dependent chemical expansion
of the active material significantly alters the global volume change of the active
particles, which suggests that the stress increase due to the surrounding materials in
electrodes will be affected by the concentration-dependent partial molar volume of
the active materials.

2. The concentration-dependent partial molar volume significantly changes the stress
evolution trends and SOC differences. The peak stress due to diffusion is almost three
times greater for a variable partial molar volume. However, the accumulated capacity
within the particle remains independent of the change in partial molar volume.

3. The trends of the maximum diffusion-induced stress in the particle correlate with vari-
ations in the time rate of ΔV/Vo change (total volume change of particle). Although
changes in the partial molar volume affect the stress response of the active particles,
the lithium concentration patterns and stress distributions remain the same.

4. As the particle size increases, the propensity for mechanical failure increases with
the use of the concentration-dependent partial molar volume. However, the effect of
changing the partial molar volume on the stress rise decreases for larger particles.

5. Faster charging with a concentration-dependent partial molar volume increases
diffusion-induced stress levels compared to using a constant partial molar volume.
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Abstract: An implication of a turbine current is the development of a wake, a reduced speed flow,
thus affecting the performance of an adjoined turbine. The aim of this study is to examine the turbine
wake properties to offer a basic framework for the exploration of efficient turbine arrangements
through the OpenFOAM source package and the entropy production theory. The results indicate that
the diffuser inlet produces the largest entropy rate; however, this dissipates quickly after the rotor
plane. In terms of vorticity, the Q and λ2-criterion results are sensitive to the isosurface thresholds.
In general, the Ω-Rortex method proves a convenient and accurate solution for vortex visualization
and identification. For the overall mean wake structure, the velocity profile follows a tadpole-shape,
whilst the velocity deficits above 100% are observed around the nacelle and throat (diffuser) and
behind the tower. The concentration of maximum turbulent intensities appears behind the throat
of the diffuser and at the top and bottom of the tower. Owing to the swirling effect after rotor, we
proposed recommended values of b0 = 10−5 for the hydrodynamic investigation of tidal stream
turbines. The present findings extend our knowledge on the flow disruption due to shrouded turbines
and are particularly relevant for farm project advisors.

Keywords: diffuser-augmented tidal stream turbine; near wake structure; turbulent intensity; entropy
production theory; Rortex criterion

MSC: 76D25

1. Introduction

As petroleum power phases out, researchers focus on renewable and predictable
power sources to combine with energy storage systems, with the aim of restoring the
ecosystem balance. A promising approach is the deployment of multiple underwater
turbines at tidal stream sites with great speeds (1∼2 m/s [1]) and smooth profile veloci-
ties due to the negative consequences of turbulence, such as excessive response [2] and
structural-induced vibration on the turbine components. Although widely considered to
be a predictable resource [3], the turbine supports are exclusively for low channel depths,
therefore, forbidding large rotor size, although they can produce the same power output
of a standard, similar wind turbine using a smaller diameter due to larger flow density.
Currently, many authors still focus on the viability of unshrouded 3-bladed horizontal
axis turbines as a result of simpleness, competitive capital costs and reliability, although
new designs report higher efficiencies using diffuser casings [4,5], despite using a smaller
rotor size owing to a higher flow concentration along the blades. This is achieved mainly
through the diffuser, owing to the increase of flow pressure in the downstream section,
and reduction afterwards the rotor. As a result, the current tends to converge in the inlet
section, leading to a greater energy capture per rotor area and velocity across the turbine,
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compared to the free-stream condition. Despite the power benefits, even at misaligned
flows [6] and the possibility of harnessing sites with lower than conventional profitable
current speeds; further work is required to not only justify the diffuser costs but also assess
the environmental and social risks. In addition, little is known about its performance in
unsteady, as well as the effects of channel blockage and water environment, such as marine
fouling and cavitation.

It is widely accepted that the positioning of the turbines within the resource is influen-
tial in the project assessment, since their functioning emits a wake, a reduction of current
speed compared to the upstream section. This effect appears to be linked with the operation
of the turbine, configuration of the entire device (e.g., type of support [7]) and inflow
characteristics, and may merge with nearby wakes, thus influencing the upstream flow of
the turbines afterwards. Although theories of the wake field are abundant, it is alleged that
the wake interactions may be understood better through quantifications of the patterns
and mechanisms of the single turbine wake in terms of the operating flow characteristics:
turbulence intensities, depth-dependent velocity, and length scale profiles [8]. Nonetheless,
most experimental and theoretical studies have been focused on single unshrouded rather
than shrouded tidal stream turbines operating in low turbulent and with specific wave
flows [9,10]. Thereby, it is unclear to what extent the diffuser affects the inflow properties
and tower and wingtip vortices, determinants of the device efficiency and wake evolution.
One way to investigate the optimum position of arrays is to predict through Computational
Fluid Dynamic (CFD) programs the flow induced by the front turbines to the next rows of
turbines, in terms of the entropy production [11]. The increase of the turbine downstream
flow entropy is known to be inevitable and associated with lower subsequent device effi-
ciency [12], hence the measure can serve as a tool for quantifying the resource potential and
determining the parameters of a shrouded turbine system for reducing the overall losses
and wake lengths.

Consequently, this paper considers the entropy theory as a main subject, to predict the
downstream flow and visualize the vortex structure, along with the developed turbulence
intensity. It is divided into three subsequent sections. The second section deals with the
methodology, as well as the parameters to measure the entropy production and the vortex
identification methods. The third section shows the computational set up and validation
against experimental measurements of a scaled rotor. The fourth section discusses findings
and results, and the fifth the conclusions.

2. Methodology

2.1. Governing Equation

Assuming that the fluid is incompressible, based on the law of mass and momentum
conservation, the continuity and momentum equation of Navier–Stokes equation are
evaluated as:

∇ · u = 0 (1)

ρ
∂u
∂t

+ ρ∇ · (uu) = −∇p +∇ · τ + Fs (2)

where Fs represents the body force which acts on the control volume. For Newtonian fluids,
the shear stress tensor τ has a linear relationship with the velocity vector u:

τ = 2μS (3)

where μ is the dynamic viscosity, S = 0.5 · (∇u +∇uT) is the rate of deformation of the
isotropy fluid, and the equation can be further expressed as:

ρ
∂u
∂t

+ ρ∇ · (uu) = −∇p +∇ · (μ∇u) + Fs (4)
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Time averages the instantaneous values of the equation and omits the source term Fs,
and the equation becomes:

ρ
∂U

∂t
+ ρ∇ · (UU) = −∇P +∇ · τ −∇ · τR (5)

According to Reynolds averaging, the instantaneous velocity can be split as u = U + u′;
here, U and u′ are mean and fluctuating vectors. P = p is time–mean pressure. τ =
μ
(∇U +∇UT), and τR represents viscous and Reynolds stress, respectively. In general,

Reynolds stress is much greater than the viscous stress in the turbulent core. Hence, it is
crucial to model Reynolds stress.

The Boussinesq eddy viscosity assumption determined that Reynolds stress (τR)
conforms to the following linear relationship:

− τR = μt

(
∇U +∇UT

)
(6)

where μt = ρνt is dynamic turbulent viscosity, and νt is kinematic turbulent viscosity. Let
νeff = ν + νt, Peff = P + 2/3 · ρk and, substituting τR into Equation (5), RANS (Reynolds
averaged Navier–Stokes) equation is expressed as:

∂U

∂t
+∇ · (UU) = −1

ρ
∇Peff +∇ · (νeff∇U) (7)

2.2. Turbulence Model

As proposed by Menter [13,14], the SST k − ω model is a two-equation eddy-viscosity
model whose accuracy has been widely validated. For the SST k − ω model used in
OpenFOAM, the turbulence kinetic energy (k) equation of incompressible fluid is:

∂k
∂t

+∇ · (Uk)−∇ · (Dk∇k) = Pk − β∗kω + Sk (8)

The equation of specific dissipation rate (ω) can be expressed as:

∂ω

∂t
+∇ · (Uω)−∇ · (Dω∇ω) =γ · min

(
G
νt

,
c1

a1
β∗max

(
a1ω, b1F2

√
S2

))
− βω2 + (1 − F1)CDkω + Sw

(9)

The kinematic eddy viscosity (νt) can be calculated as:

νt =
a1k

max(α1ω, b1F2S2)
(10)

where S2 = 2 · |S|2, and the auxiliary relations are defined as:

Dk = B(F1, αk1, αk2)νt + ν

Dω = B(F1, αω1, αω2)νt + ν

β = B(F1, β1, β2)

γ = B(F1, γ1, γ2)

B(a, b, c) = ab + (1 − a)c

(11)

The closure Coefficients in SST k − ω equations are:
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Pk = min(G, c1β∗kω)

CDkω =
2αω,2(∇k · ∇ω)

ω

G = 2νt · (S : ∇U)

F1 = tanh

(
min

(
min

(
max

( √
k

β∗ωy
,

500ν

ωy2

)
,

4αω,2k
CDkωy2

)
, 10

))4

F2 = tanh

(
min

(
max

(
2
√

k
β∗ωy

,
500ν

ωy2

)
, 100

))2

F3 = 1 − tanh
(

min
(

150ν

ωy2 , 10
))

(12)

where y is the wall-distance, according to empirical value which was suggested by Menter [15],
αk,1 = 0.85, αk,2 = 1, αω,1 = 0.5, αω,2 = 0.856, γ1 = 5/9, γ2 = 0.44, β1 = 0.075, β2 = 0.0828,
β∗ = 0.09, a1 = 0.31, b1 = 1, c1 = 10.

2.3. Entropy Production Analysis

To analyze the energy transfer of free shear flows, the entropy production method can
be used to present the irreversibility and energy deficit of the fluid system [16]. According
to the Fourier heat conduction equation, for the incompressible fluid, the entropy transport
per finite control volume is:

ρ

[
∂s
∂t

+ u · (∇s)
]
= ∇ ·

( q
T

)
+

ΦI
T

+
ΦI I

T2 (13)

where s is the specific entropy, T is the thermodynamic temperature, and q represents
the heat flux. ΦI and ΦI I represent the dissipation functions of the fluid. As the en-
tropy production caused by radiation is negligible, the entropy production rate ṡ can be
expressed as:

ṡ =
ΦI
T

+
ΦI I

T2 = ṡD + ṡT (14)

As seen in Equation (14), the entropy production rate consists of two terms that
represent viscous (ṡD) and thermal (ṡT) contribution, respectively [17]. Since the main
content of this article belongs to the field of ocean hydrodynamics, it is convenient to
assume that the environment temperature is constant [18–22], and the contribution of the
temperature gradient to entropy production is negligible (ṡT ≈ 0). To reduce computational
resource requirements, the energy equation is not solved in this numerical simulation. The
entropy production rate can be further calculated by:

ṡD =
2ρν · ‖S‖2

T
(15)

where the notation ‖∗‖ represents a Frobenius norm of strain rate tensor S, which can be
split as: S = S + S′. The direct (time-averaged) and indirect (turbulent) entropy production
rate (ṡVD and ṡTD) are defined by:

ṡVD =
2ρν · ∥∥S

∥∥2

T
(16)

ṡTD =
2ρν · ∥∥S′∥∥2

T
(17)

With the Reynolds Averaged Navior Stokes method, the strain rate tensor of veloc-
ity fluctuation (S′) cannot obtained directly from existing equations. However, in high
Reynolds number flows, the turbulent production and dissipation rate are considered
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equal [23], namely: 2ν · S′S′ = u′
iu

′
j · S. Hence, with Boussinesq eddy viscosity assumption,

the following relationship can be derived: ν · ∥∥S′∥∥2
= νt ·

∥∥S
∥∥2. The entropy production

rate (ṡD) per finite control volume can be further expressed as:

ṡD = ṡVD + ṡTD =
2ρ(ν + νt) ·

∥∥S
∥∥2

T
=

2ρνeff ·
∥∥S
∥∥2

T
(18)

Furthermore, the total entropy production rate S can be calculated from the volume
integral of ṡD over the computational domain:

S =
∫∫∫

V

ṡDdv (19)

2.4. Vortex Identification Methods

In order to analyze the entropy production characteristics in turbine wake, the struc-
ture of the vortex must be identified and visualized. It is necessary to outline the most
commonly used vortex identification in the field of ocean hydrodynamics.

2.4.1. Vorticity Method

Vorticity is the most convenient method to identify wake vortices. It can be expressed
as the curl of velocity vector: ω = ∇× u. It is common to quantity the core of the vortex by
the magnitude of vorticity (|ω|) in free shear flows. However, the vorticity method cannot
effectively extract the fluid swirling in the wall shear layer [24]. Thus, it is a fundamental
identification method but not sufficient to identify the vortex in free shear turbulence.

2.4.2. Q and λ2-Criterion

Q and λ2-criteria are the most widely used vortex identification methods [25–27].
These methods are eigenvalue-based criteria that can be obtained from a velocity gradient
tensor (∇u). As the measurement of vorticity and strain rate magnitude, the criteria Q is
expressed as:

Q =
1
2

(
∇ · u + ‖Ω‖2 − ‖S‖2

)
(20)

where Ω is the rotation rate tensor defined by the skew-symmetric part of the velocity
gradient tensor: Ω = 0.5 · (∇u −∇uT). For incompressible flows, ∇ · u ≡ 0, which means
that Q is equal to the second invariant of ∇u [28]. It can be directly calculated with the
symmetric (S) and skew-symmetric (Ω) terms of the matrix. The Q-criterion indicates the
fluid region that has a positive second invariant of the velocity gradient tensor, which
means that a larger rotational force component is observed.

Equation (20) indicates that the shear effect of an incompressible fluid is less than the
rotational force. As another commonly used vortex identification method [29], λ2-criterion
is defined as the second eigenvalue λ2 of the tensor Ω2 + S2. It essentially represents the
vortex core region that is associated with the negative eigenvalues of the matrix [28]; given
this, λ2 < 0. Nevertheless, for both the Q and λ2 criteria method, it is difficult to separate
the individual vortices in the multiple vortices coexisting environment.

2.4.3. Ω and Ω-Rortex Criterion

According to Liu et al. [30], the vortex identification criterion named Ω has been
proposed, which could extract the rotational part from the vorticity of fluid. Ω is defined
as a dimensionless scalar that is obtained by the ratio of the skew-symmetric part of the
velocity gradient:

Ω =
‖Ω‖2

‖Ω‖2 + ‖S‖2 + ε
(21)
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where ε = b0 · max
(
‖Ω‖2 − ‖S‖2

)
is a positive parameter to avoid dividing by zero and

obtain an extremely large Ω. b0 is a positive constant, which is further discussed in Section 4.
As a systematical definition of the local fluid rotation based on critical point theory [31],

the Rortex/Liutex method utilizes the complex conjugate eigenvalues of ∇u to represent
the swirling of the fluid [32–34]. The local vector rl , named the Rortex vector, represents
the rotation axis of local velocity gradient tensor and is defined as: ∇u · rl = λr · rl , and
λr is the real eigenvalue of ∇u. To balance the sign of the Rortex vector, the following
conditions must be imposed: ω · rl > 0, where ω is the vorticity. The explicit definition of
the magnitude of Rortex vector Rl has been given by Wang et al. [35] as:

Rl = ω · rl −
√
(ω · rl)

2 − 4λ2
ci (22)

where λci is the imaginary part of the complex conjugate eigenvalues of ∇u. Hence, the
Rortex vector can be expressed as: Rl = Rl · rl .

Similar to the definition of Ω-criterion, Dong et al. [36] defined a normalized scalar
ΩR, based on the Rortex vector. According to Zhao et al.’s derivation [27], it can be written
as the following explicit equation:

ΩR =
(ω · rl)

2

2 ·
[
(ω · rl)

2 + 2
(
λ2

cr − λ2
ci
)
+ λ2

r

]
+ ε

(23)

where λci and λcr are the imaginary and real part of the complex conjugate eigenvalues
of ∇u. As the definition of Equation (21), ε here is calculated by the eigenvalues as:
ε = b0 · max

(
4λ2

ci − 3λ2
cr − 1.5λ2

r
)
.

3. Computational Setup and Verification

3.1. Model Turbine and Numerical Method

As illustrated in Figure 1a, the diffuser-augmented horizontal-axis tidal stream turbine
(DAHATT) consists of three components: rotor, diffuser, and support structure, represented
here by green, dark orange, and blue, respectively. The model of turbine rotor is shown
in Figure 1b. The diameter of the horizontal-axis three-bladed rotor is D = 0.2 m, and the
depth of the flume is H = 0.8 m. According to the Froude similarity, the Froude number of
the investigation is Fr = U0/

√
gH = 0.143. The bulk velocity U0 is constant at 0.35 m/s

with a 1:60 Froude scale, exemplifying a prototype turbine which has a rated power of
0.5 MW and an environmental incoming velocity of 3.1 m/s, consistent with our presented
research [37].

Figure 1. Sketch and image of the turbine and diffuser shape.

The rotor follows a unique NREL S822 airfoil, with respect to rotor radius R, the chord
(c), and pitch angle (θ) of the cross-section are indicated in Table 1. The model-scaled rotor
achieves peak performance similar to the full-size turbine. The diameters of the nacelle and
pile are 40 mm.
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Table 1. Model turbine specifications.

No. of the Section r/R c (mm) θ (rad)

1 0.2 23.0 0.2380
2 0.3 34.4 0.2078
3 0.4 32.1 0.1775
4 0.5 27.4 0.1473
5 0.6 25.0 0.1170
6 0.7 22.7 0.0868
7 0.8 20.3 0.0565
8 0.9 18.0 0.0263
9 1.0 15.6 −0.0040

As a diffuser-augmented turbine, the tip clearance size (ξ) is constant at 2.5% of the
rotor diameter. The center of the diffuser support is located at 0.5D from the rotor with
a length of 42 mm. Table 2 provides the detailed specifications of the model turbine. As
shown in Figure 1c, the diffuser is designed with a cubic B-spline curve, which is expressed
in Equation (24):

h − Ho

Hi − Ho
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − 1

x2
m
· (x/L)3 x/L ≤ xm

1

(1 − xm)
2 · [1 − (x/L)]3 x/L > xm

(24)

where L is the length of the tapering section, Hi and Ho are inlet and outlet radii of
the diffuser, and h is the local radius with distance x from the diffuser inlet. xm is the
inflection point position of the cubic B-spline curve. These parameters were determined as:
L = 74.2 mm, Hi = 135 mm, Ho = 108 mm, and xm = 0. To install the support structure,
the diffuser has 75mm straight section, which gives it a total length of LD = 139.2mm.

Table 2. Specifications of the turbine.

Turbine Parameter Value

Number of the blades Nb 3
Rotor diameter D (mm) 200
Hub ratio αH 20%
Nacelle diameter DN (mm) 40
Length of diffuser LD (mm) 149.2
Radius of diffuser inlet Hi (mm) 135
Radius of diffuser outlet Ho (mm) 108
Thickness of diffuser δD (mm) 5
Tip clearance size ξ (mm) 5
Tip speed ratio TSR 2.5∼4.5
Bulk velocity U0 (m/s) 3.5
Reference temperature T (K) 288

The computations were performed using the Reynolds-Averaged Navier Stokes
(RANS) model with the pimpleFoam solver of OpenFOAM. As a finite volume method
based solver, pimpleFoam [38] combines the PISO [39,40] and SIMPLE [41,42] algorithms
for solving N–S equations for transient incompressible Newtonian fluids. Owing to good
convergence, the time and convective components are discretized with Euler and a limited
linear scheme. The gradient term is discretized using a cell limited least squares method.
To ensure convergence at each time step, there are a maximum of 50 corrections for the
SIMPLE algorithm and a constant two iterations for the PISO loop. The time step of the
calculation is set to 0.1 deg rotation angle of the rotor, which has a maximum Courant
number Co < 40. For this investigation, the rotational region is modeled with a fixed
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rotating speed relative to the stationary domain and SST k − ω model is applied to resolve
wake turbulence.

3.2. Domain and Boundary Conditions

As illustrated in Figure 2, dimensions of the computational domain are 19D× 6D× 4D,
with 4D from the upstream inlet and 15D from the downstream outlet. The rotor center
is set at half depth and mid plane of the computational volume which coincides with the
origin of the coordinate. The computational volume can be split into two individual regions,
a cylinder region containing the rotor called rotational region, and the other one including
the static support and diffuser, which is called the background region. In our case, the field
data are transmitted through the AMI interface of each region. To avoid possible numerical
oscillation on the interface, the diameter of rotational region is set to 1.05D.

Figure 2. Schematic of computational domain and boundary conditions.

The boundary conditions of the computational domain are presented in Table 3. The
free surface patch (top) is set as a slip wall. The moving wall boundary is used for blade
and hub surfaces, which is stationary relative to the rotational region. The rotational speed
of the rotor ωr is varied from 8.75 rad/s to 17.5 rad/s corresponding to tip–speed ratio
(TSR = ωrR/U0) from 2.5 to 5.0.

Table 3. The boundary conditions of each patch.

Patch Velocity (U) Pressure (p) Turbulent Kinetic Energy (k)

inlet codedFixedValue inletOutlet fixedValue
outlet inletOutlet zeroGradient zeroGradient
top slip zeroGradient zeroGradient
staticWalls fixedValue zeroGradient kqRWallFunction
rotationWalls movingWallVelocity zeroGradient kqRWallFunction

The environmental turbulence intensity (I) approximates 6%. The depth-variation
inflow velocity (Uinc) follows the logarithmic law near the ground and gradually transitions
to a linear distribution as the bottom distance (d = z + 2D) increases. With a velocity-based
inlet boundary condition, the velocity varies according to Equation (25), whereas at inlet
and outlet, the relative atmospheric pressure is set to zero.
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Uinc =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u∗ ·
[

1
κ

ln
(

u∗d
ν

)
+ 5.0

]
d ≤ 0.45D

1.6506 · d3 − 1.8122 · d2 + 0.6684 · d + 0.2696 0.45D < d < 1.75D

0.0065 · d + 0.3500 d ≥ 1.75D

(25)

where u∗ = 0.01411 m/s denotes the estimation of friction velocity, and κ = 0.41 is the von
Kármán constant. Figure 3 presents the velocity and turbulence intensity profiles along the
vertical direction at x = y = 0 without the turbine installed. Here, the turbulence intensity
refers to as the turbulence level. For RANS simulation, it can be defined as:

I =
u′
|U| =

√
2/3 · k
|U| (26)

where k = 0.5 · ∑ u′
i
2 is the turbulent kinetic energy, and |U| =

√
∑ U2

i is the magnitude of
the local velocity vector.

Figure 3. Vertical profile of normalized incoming velocity and turbulence intensities.

3.3. Mesh and Its Independence Assessment

The hexahedral-dominated mesh of the investigation is generated by ANSYS ICEM
with a maximum wall y+ ≈ 16 of the rotation region. Figure 4 illustrates the overall and
magnified computational mesh. The layered-grid near the rotor surface is produced to
improve the overall quality of the grid with a maximum height of 0.5 mm and growth rate
of 1.07. Mixed mesh of prisms and hexahedra are used near the nose of the rotor hub. With
1.3 million grids in the rotation region and 6.1 million grids of the flume, the total number
of grids is approximately 7.4 million.

A grid-independence test was performed to reduce the requirement computing re-
source requirements. As mentioned in Table 4, the grid number ranges from 2.9 to 11.3 mil-
lion. The computations were conducted by two AMD EPYC workstations, and the end
time of calculation is one rotor rotation cycle. Results indicate that, when the number of
grids is ’Medium’, fewer computational resources are used with the relative error of mean
power coefficient less than 1%.
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Table 4. Mesh independence verification of computational domain.

Case No. of Celles Clock Time (hour)
Max Wall y+ of
Rotation Region

Mean Power
Coefficient CP

Relative Error
(%)

Coarsest 2,898,716 (2.9 M) 15.9 >70 0.337 11.59
Coarse 3,574,652 (3.6 M) 18.4 ≈50 0.331 9.60
Medium 7,446,432 (7.4 M) 83.1 ≈16 0.304 0.66
Fine 9,847,484 (9.8 M) 108.6 ≈13 0.301 0.33
Finest 11,304,968 (11 M) 130.3 ≈11 0.302 −

Figure 4. Overall and magnified computational mesh.

4. Results and Discussion

4.1. Performance Validation

The hydrodynamic performance of diffuser-augmented tidal stream turbine can be
defined as a normalized power coefficient CP that varies with the tip–speed ratio (TSR) as:

Cp =
Mωr

0.5ρAU3
0

(27)

where M is the torque of all rotation surfaces, and A = πR2, the swept area of the rotor.
To validate the accuracy of the numerical method, the results are compared with

experimental results, which are shown in Figure 5. The power coefficients follow an
inverted u-shape curve with maximum Cp = 0.296 at TSR ≈ 3.72 for the experiment, whilst
peak Cp = 0.301 at TSR ≈ 3.6 for CFD investigation. At the range of TSR = 3.4∼3.8,
numerical and experimental curves experience a good agreement, whereas, it deviates
more when the tip–speed ratio is out of the range. The relative error is less than 3% for the
contemplated study range, while the maximum value occurs at TSR = 2.76. Eventually, the
result provides confidence in the ability of the numerical simulation to accurately replicate
hydrodynamic experimental investigation.

4.2. Near Wake Structure
4.2.1. Mean Velocity Deficit

As defined as Δ1 = 1 − U1/Uinc, the velocity deficit represents the change of time-
averaged longitudinal velocity (U1) relative to the incoming velocity (Uinc) from Equation (25).
Figure 6 is the contour map of transverse (xOy) and the vertical (xOz) plane.

Over the mid-depth plane (see Figure 6a), maximum deficit (Δ1 ≈ 1.4) occurs after
the outer edge of the diffuser (|y/D| = 0.675), where the reverse flow is found. In order
to compensate for the rapid momentum dissipation, an increment of velocity is observed
in the region of |y/D| = 0.8∼1.2, which presents a sharply velocity acceleration (Δ1 < 0).
However, this accelerated portion does not extend more than 3D downstream. The flow
separation that occurs within this area is caused by the momentum losses induced by
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the diffuser inlet. As mentioned in Cresswell et al.’s research [6], owing to the tip gap jet
generated by the inside wall of the diffuser, the velocity deficit remains low in a narrow
region bypassing the rotor. The second large deficit zone is noticeable between rotor and
the support, where an increment of the local velocity appears. This is caused by less energy
losses induced by the root of the blades. Over the region of 1 ≤ x/D ≤ 6, sub-figure (a)
indicates the maximum deficit (≈0.95) at the closest center point (x/D = 1, y = 0). Overall,
the wake exhibits a tadpole-shape with a width covering three rotor diameter and the
inner core behind the support at the transverse plane. Furthermore, 5.5D downstream, the
time-averaged deficit is almost constant at 10%, which reveals that it has a significantly
momentum dissipation in the near wake region (x/D ≤ 4).

Figure 5. Vertical profile of normalized incoming velocity and turbulence intensities.

Figure 6. Contours of velocity deficit (Δ1) on horizontal and vertical plane (TSR = 3.6).
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As plotted in Figure 6b, the cloud map of the vertical velocity deficit indicates similar
behavior to the transverse distribution outside of the diffuser. Due to the significant effect
of the robust support, it is noticeable that the wake region with maximum Δ1 ≈ 1.3 is
existing close to the support. The vertical profiles of Δ1 exhibit a triple peak distribution in
the near wake. Among z/D ≥ 1.5, the peak tilts up towards the water surface. Before the
2D section, the velocity deficit is slightly influenced by the bed shear layer. Owing to the
combined effect of wake swirling and support shadow, the magnitude of middle plateau is
lower than the other, but still remains until 5D downstream.

4.2.2. Turbulence Characteristics

Figure 7 illustrates the contour of total turbulence intensities (Equation (26)) of the
diffuser-augmented turbine. According to this figure, the high turbulence regions are close
to the position behind the diffuser inlet, blade root, and support structures.

Similar to the maximum velocity gradient locations mentioned in Figure 6, the dis-
tributions of turbulence intensity, which are illustrated in Figure 7a, are almost symmet-
rical with respect to the rotor centerline on the horizontal plane. Among the range of
x/D = −0.3∼0.7, there are three high turbulence plateaus which the turbulence intensity
I > 90%: mid plateau after the rotor hub; top and bottom plateaus outside the diffuser.
Inside the diffuser, a low-turbulence core exists due to the bypass flow through rotor tip
clearance. In the near wake region, the maximum turbulence intensity occurs at x/D ≈ 1
near the centerline and its |U| ≈ 0; thus, I � 100%. Three high turbulence plateaus are
mixed in the range of 1.5∼2D. Further downstream, the turbulence intensity exponentially
reduced and converged to around 6% after a 4.5D section.

Figure 7. Contours of turbulence intensity (I) on horizontal and vertical plane (TSR = 3.6).

On the other hand, the turbulent flow is slightly asymmetrical to the centerline on the
vertical plane (Figure 7b). Similar to its distributions on the horizontal plane, turbulence
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intensities experience two high value zones above and below the diffuser. In the wake
region, the turbulence intensity is higher behind the supporting pile due to the blockage
effect. The enhancement occurs especially in the zones close to the free surface (z/D > 1.2)
and sea bed (z/D < −1). As a similar phenomenon to the mean wake deficit, the centerline
of turbulent flow tilts up towards the water surface, and it expands in a convex upward
shape with the focal point at the rotor center. In the presence of the diffuser, the turbulence
intensity in the near wake region is increasing, and the higher values are located close to
the rotor tips and the free surface.

4.3. Entropy Production

Figure 8 depicts the entropy production rate distribution (Equation (18)) with TSR = 3.6.
As a result of flow separation behind the diffuser inlet, it can be observed that higher ṡD is
revealed at x/D = −0.3∼0.7 outside the diffuser, across horizontal plane (xOy). Moreover,
a high entropy production rate region exists behind the blade tip and hub of the turbine.
This is because of the appearance of the blade vortex, which is generated by the pressure
difference of blade surfaces. However, because of the vortex breakup caused by the support
structure, the entropy production rate experiences a rapid dissipation before the turbulent
flow enters the wake region. Due to a certain flow separation at the outlet of the diffuser, a
part of the vortex falls off from the trailing edge of the duct and propagates downstream,
and the outlet of the diffuser is also a region of a high entropy production rate. Owing
to the large range of flow separation, most of the entropy is produced behind diffuser
surfaces, which contributes to the main entropy production. Moreover, the intensity of
entropy production rate in the near wake region continues to propagate downstream, but it
converges to ṡD < 0.015 (W/m3/K).

Figure 8. Contours of entropy production rate (ṡD) on horizontal and vertical plane (TSR = 3.6).
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As shown in Figure 8b, the entropy production rate presents continuous high ṡD
regions around the diffuser across vertical plane (xOz). These regions are highly consistent
with the high turbulence regions that are illustrated in Figure 7b. With the presence of
the diffuser, two extremely large zones (ṡD > 0.1) appear behind the support structure at
z/D = 0.4∼0.9 and z/D = −0.8∼−0.5. Due to the diffusion of turbulence viscosity, the
distribution of entropy production rate is depicted as deflecting towards the free surface
and bottom of the flume at 1D downstream. Furthermore, as the wake develops, the
entropy production presents a discontinuous characteristic with ṡD ≈ 0.015, and slowly
tilts up towards the free surface similar to the distribution of turbulence intensities.

Figure 9 shows the distribution of the entropy production rate at different longitudinal
sections that |y/D| and |z/D| ≤ 0.7. Sub-figure (a) is the 30 mm upstream section from the
origin; (b) is the rotor plane (x = 0); (c)–(e) are the specific sections inside the diffuser; (f) is
the mid-section between the outlet of the diffuser and support pile; (g) is the immediately
downstream plane (x/D = 1) in the near wake region. It can be seen from Figure 9b,c
that the energy loss of the turbulent flow is concentrated in the area attached to the rotor
surfaces and especially near the tip clearance and presents anticlockwise characteristics,
which is the same as the rotation direction. As illustrated in Figure 9d,e, it is obvious that
the dissipation of ṡD is evident in the tip clearance. The radius of the center of blade-roots
energy loss is gradually increasing along x/D = 0.1∼0.6. Note that, in sub-figure (f), the
large magnitude of the entropy production rate is concentrated on the outlet of the diffuser
and four corners, which means lower effective viscosity (νeff) along horizontal and vertical
directions. This phenomenon is caused by the rear support pile and nacelle, which hinders
the spread of the vortex in a certain direction.

Figure 9. ṡD distribution of the turbine at different longitudinal positions (TSR = 3.6).

The wake structure of the diffuser-augmented turbine shows a rapidly dissipation
tendency, and it can be separated into two high entropy rate regions in the near wake.
Meanwhile, it can be clearly seen that the morphology of the high intensity region of
ṡD changes from −0.15D to 1.0D, which relates to the diffuser and support structures of
the turbine.

4.4. Vortex Identification

Figures 10–12 depict the visualizations of the instantaneous flows for the diffuser-
augmented horizontal-axis tidal stream turbine. These vortical structures are identified
by different criteria with TSR = 3.6 and colored by the intensity of entropy production
rate (ṡD). As illustrated in these figures, the dominant wake structures follow clockwise tip
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vortices, which are generated by the turbine whilst the rotor blades rotate in an anticlock-
wise direction.

Figure 10. Vortical structure of the turbine. Isosurfaced by different Q, colored by ṡD (TSR = 3.6).

Figure 10 presents the vortical structure of the turbine, which is resolved by the
isosurfaces of different Q-criteria. As can be seen in these sub-figures, the extracted tip
vortices are clearly illustrated as the value of Q decreases. However, the vortices identified
by Q-criteria contain redundant motions in the wall shear layer of the diffuser. Similar to
the study on the ship propeller [27], these deformations are excluded in Figure 12 when
resolving the vortices by Ω-Rortex criteria.

Figure 11. Vortical structure of the turbine, isosurfaced by different λ2 (TSR = 3.6).

Figure 12. Vortical structure of the turbine, isosurfaced by ΩR = 0.52 with different b0 (TSR = 3.6).
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Figure 11 shows the contours of vortical structure with different λ2 values. Compared
to the Q isosurfaces, a λ2-criterion cannot distinguish the vortical tubes with certain distinct
boundaries. The vortex has a discontinuous intermittent structure after passing the rotor
and behind the outlet of the diffuser. Notice that both Q and λ2 criteria are sensitive to the
isosurface thresholds. In general, it is different to identify the vortex structure inside the
diffuser of a horizontal-axis tidal stream turbine with the vortex identification methods
that are based on a velocity gradient [43].

Figure 12 depicts the vortical structure of DAHATT with Ω-Rortex criteria. Owing to
the clear physical meaning of ΩR defined by Liu et al. [32], ΩR = 0.52 is recommended
to illustrate the rotation strength of vortices. However, when the strong swirling vortex is
broken due to the presence of the supporting structure, ε (in Equation (23)) will not be large
enough to identify the vortical structure even if the rotational strength is stronger than the
deformation. Hence, it is crucial to study the sensitivity of b0 for the vortex identification
using the Ω-Rortex method. As mentioned in Zhao et al.’s research [27], b0 = 10−6 is
reasonable for most marine hydrodynamic investigations. According to our investigation,
b0 = 10−6 is too large, so the wrong vortical structure, which contains extra shear motion
near the tip clearance, is captured. For our case, the threshold value of b0 = 10−5 is suitable
for extracting the vortices inside the diffuser and behind the support structure.

5. Conclusions

The presented investigation focused on the near wake structure, entropy production
analysis, and vortex identification of diffuser-augmented horizontal-axis tidal stream
turbine (DAHATT). After the detailed discussions, the following conclusions are drawn:

(1) The overall mean wake structure follows a tadpole-shape on the horizontal plane,
whilst it has the maximum velocity deficit after the outer edge of the diffuser. In
the near wake, the vertical profiles exhibit a triple peak distribution and significant
recovery within 6D downstream.

(2) On the whole, the region that is behind the tip of the diffuser inlet accounts for
the greatest proportion of entropy production rate (ṡD). Inside the diffuser, entropy
production rate (ṡD) experiences a rapid dissipation after passing the rotor. Moreover,
in the near wake region, the distribution of ṡD can be depicted as deflecting towards
the free surface and the bottom of the flume.

(3) Q and λ2-criteria are sensitive to their isosurface thresholds. The vortices identified by
Q-criteria contain redundant wall shear motions, and λ2-criteria cannot distinguish
the vortical structure with certain distinct boundaries. Thus, the Ω-Rortex method
provides reliable vortex identification results for DAHATT.

(4) Owing to the vortex breakup of the strong swirling flows, b0 should be a small value
that distinguishes the rotational part from the overall vortical structure. For the
investigation of DAHATT, we suggest that b0 should be set to 10−5.
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Abstract: Wind energy has been widely used in recent decades to achieve green and sustainable
development. However, wind speed prediction in wind farm clusters remains one of the less studied
areas. Spatial features of cluster data of wind speed are not fully exploited in existing work. In
addition, missing data, which dramatically deteriorate the forecasting performance, have not been
addressed thoroughly. To tackle these tough issues, a new method, termed input set based on wind
farm cluster data–deep extreme learning machine (IWC-DELM), is developed herein. This model
builds an input set based on IWC, which takes advantage of the historical data of relevant wind
farms to utilize the spatial characteristics of wind speed sequences within such wind farm clusters.
Finally, wind speed prediction is obtained after the training of DELM, which results in a better
performance in forecasting accuracy and training speed. The structure IWC, complete with the
multidimensional average method (MDAM), is also beneficial to make up the missing data, thus
enhancing data robustness in comparison to the traditional method of the moving average approach
(MAA). Experiments are conducted with some real-world data, and the results of gate recurrent unit
(GRU), long- and short-term memory (LSTM) and sliced recurrent neural networks (SRNNs) are also
taken for comparison. These comparative tests clearly verify the superiority of IWC-DELM, whose
accuracy and efficiency both rank at the top among the four candidates.

Keywords: wind speed forecasting; wind farm cluster; input set based on wind farm cluster data;
robustness analysis; deep extreme learning machine; multidimensional average method

MSC: 68T07

1. Introduction

Clean energy is largely needed to achieve peak carbon emission and carbon neutral-
ity [1]. Wind power, as a renewable and widely distributed energy source, has received
increasing attention in the past two decades [2]. Large-scale wind energy integration
brings challenges for grid security due to the intermittent and random nature of wind
speed [2–4]. Therefore, accurate forecasting of wind speed among wind farms in the cluster
has gradually taken on a key role in operating strategies, capacity planning and power
balance [5].

Existing work on wind speed and wind power forecasting can be classified as single-
wind-farm prediction and wind farm cluster prediction according to the scale of research
objects. Single-wind-farm forecasting methods mainly include four categories: physical
models, traditional statistical models, artificial-intelligence-based models and hybrid mod-
els [6]. Deep learning methods have emerged as a powerful tool in wind speed and wind
power prediction due to their ability to realize nonlinear fitting [7,8]. Gate recurrent unit
(GRU) and sliced recurrent neural networks (SRNNs) are used in wind speed forecasting
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in [9,10]. References [11,12] adopt deep extreme learning machine (DELM) to predict wind
power. However, the prediction of a single farm only focuses on its own data analysis
without considering surrounding environmental factors including humidity, tempera-
ture, latitude and orography, leading to insufficient prediction accuracy [13,14]. These
environmental factors can be reflected by the historical data of adjacent wind farms [15].
Additionally, the data capacity of a wind farm cluster is several times that of a single wind
farm, which indicates that single-wind-farm forecasting methods may be not suitable for
wind farm cluster forecasting.

Wind farm cluster prediction imposes a significant influence on the generation sched-
ule and reserve capacity of the power system compared with a single wind farm [16,17].
Taking spatial–temporal correlation into consideration, a wind farm cluster fully utilizes
information of the surrounding environment. Existing works related to multi-wind-farm
prediction mainly focus on wind power prediction (WPP). In [18], three coefficients repre-
senting the characteristics of a wind farm in a wind cluster are weighted by the Shapley
value method. The characteristics of the wind cluster are extracted by a convolutional
neural network (CNN), and then such characteristics are fed into a long- and short-term
memory (LSTM) neural network to establish the relationship between key characteristics
and power generation. Peng et al. [19] proposed a regional WPP method called multifea-
ture similarity matching (MFSM) on the basis of the single feature similarity matching
(SFSM) method. The four key parameters in MFSM are proposed while the impact of each
parameter on forecasting error and the method applicability in varying regional scales
are analyzed.

There are few studies concerning wind speed forecasting (WSF) of wind farm clusters.
However, WSF has a wider range of applications, including meteorological uses and energy
uses. Additionally, unlike wind power data, historical wind speed sequences can directly
represent the relevance between different wind farms. In [20], a prediction method based
on collaborative filtering against a virtual edge expansion graph structure is proposed in
order to tackle the problem of underutilization of wind speed sequences. This method
ensures that the spatial correlation can be fully learned by extending the scale of the dataset.
It connects the wind turbines in different wind farms through virtual edges and takes LSTM
as the main body for wind speed prediction. In [15], the CNN and LSTM are combined
to build a deep architecture termed predictive spatiotemporal network (PSTN). CNNs at
the bottom of the prediction model are used to extract spatial features from the spatial
wind speed matrices, and LSTM captures the temporal dependencies amongst the spatial
characteristics. This model is trained by a loss function in an end-to-end manner to learn the
temporal correlations along with spatial correlations. Reference [21] proposed a predictive
deep convolutional neural network (PDCNN), which is an integration of CNNs and a
multilayer perceptron (MLP). Spatial characteristics are extracted by CNNs, and MLP is
intended to construct a relationship between temporal and spatial features. However, the
structure of [15,21] cannot be directly applied to WSF of wind farm clusters, since these
two studies focus on wind turbines that are neatly arranged, and the CNN is intended to
solve graphic issues [22].

It can be found that most existing works apply hybrid models, which bring about
framework complications and calculation costs, thus reducing efficiency. They tend to have
a longer training time period.

Additionally, few of them consider the robustness training of the input set [23]. The
prediction accuracy cannot maintain a high degree of accuracy when the input data are con-
tinuously missing in a time interval, for instance, due to damage to the measuring devices
or data transmission failure. Interpolation methods are always used to solve this problem,
typically from two perspectives, spatial characteristics and temporal characteristics [24].
From a spatial perspective, the ‘’1/7 power law”, “revised power law” and “ANFIS” are
typical interpolation methods for dealing with wind speed prediction at different heights.
Recently, a new method, the vertically correlated echelon model (VCEM), which utilizes
vertical correlation of wind speeds, is proposed with a significant improvement in the
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prediction accuracy [25]. From a temporal perspective, there are a few interpolation meth-
ods based on a time sequence. The most commonly used method is the moving average
approach (MAA), which entirely neglects the spatiotemporal features of wind speed data.
Therefore, the multidimensional average method (MDAM) is first proposed in this paper
to utilize spatial characteristics so as to enhance data robustness.

To address the issues of insufficient utilization of the spatiotemporal features and
inefficiency in large-volume data processing, as well as to improve the input data robustness,
this paper proposes a new model termed input set based on wind farm cluster data–
deep extreme learning machine (IWC-DELM). This model enlarges the input dataset by
utilizing the historical data of adjacent wind farms with full consideration of their data
correlation. This model constructs DELM as the main body for achieving high prediction
efficiency. By means of adopting the multidimensional input set, this model can also
enhance the wind speed prediction robustness. It is demonstrated in [26,27] that the RNN
has a better performance than the CNN in time series data prediction. Therefore, some
variants of CNNs, for instance, GRU, LSTM and SRNN, are selected to prove the validity
of IWC-DELM.

The main contributions of this paper can be summarized as follows:

1. A new input configuration of the wind speed prediction model, i.e., an input set
based on wind farm cluster data (IWC), is built. The capacity of the input set has been
expanded by utilizing historical data of adjacent wind farms, thus fully considering
the spatial features of wind speed sequences.

2. A new machine learning architecture, IWC-DELM, is proposed for the WSF within
wind farm clusters. This model contributes to more accurate and efficient prediction
compared to some promising deep learning methods. Three algorithms, GRU, LSTM
and SRNN, are selected to verify the superiority of the proposed method.

3. Robustness analysis on the input set is performed. The forecasting accuracy is required
to maintain a high level even if some input data are missing in a time interval. The
MDAM, which completes the temporal features of data with the spatial features of
the wind farm cluster, is first proposed for this purpose.

The rest of this paper is organized as follows: Section 2 introduces the main methods
in data preprocessing, and Section 3 illustrates the model structure of the proposed method.
A case study located in the USA is discussed in Section 4. Section 5 provides the conclusion.

2. Data Preprocessing Theory

2.1. Weighted Mean Filtering

Weighted mean filtering (WMF) is employed as a denoise method to replace the
traditional methods in order to overcome the boundary effects issue [28]. Its transfer
function can be described as:

D(d)(Z)
D(Z)

=

L
∑

i=0
ατ−i · Z−i

L
∑

i=0
ατ−i

(1)

The denoised wind speed data and the corresponding raw data are represented by
D(d)(Z) and D(Z), respectively. (Z) denotes its Z-transform. ατ−i denotes the weight for
each timestamp, and L − 1 represents the window size. Accordingly, the output of WMF in
the time domain can be defined as:

D(d)[τ] =

L
∑

i=0
ατ−i · D[τ]

L
∑

i=0
ατ−i

(2)
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where D[τ] is the original wind speed data and D(d)[τ] is the denoised data at a particular
time instant τ.

2.2. Multidimensional Average Method

Traditional interpolation methods, for example, the MAA, make the missing data be
determined as the average of the preceding data number with a defined autoregressive
order [24]. In this paper, it is modified to apply in the cluster, which is defined as:

xj =
1
ω

j−1

∑
i=j−ω

xi (3)

where xj is the first missing data and ω is the autoregressive order. However, this method
only uses the temporal characteristics of wind speed data.

To better utilize the spatiotemporal characteristics of wind speed, the MDAM is first
proposed in this paper. As shown in Figure 1, the relevant data sequences from other wind
farms within the same wind farm cluster are adopted in the MDAM to make up for the
missing data. Assuming there are k relevant sequences with the same length, x1,j, which
stands for the first missing data of wind farm speed series x1, can be represented as:

x1,j =
x2,j + x3.j + ... + xk,j

k − 1
(4)

......Wind Speed Series x2

... ...Wind Speed Series x1

...Wind Speed Series xk

... ... ...

Missing 
Data

j

...

MDAM

j+1

, , ,

,

...2 3

1 1
j j k j

j

x x x
x

k
+ + +

=
−

 
Figure 1. Schematic diagram of MDAM.

3. The Ensembled Model IWC-DELM

3.1. Deep Extreme Learning Machine

Extreme learning machine (ELM) is a popular feed-forward neural network for clas-
sification or regression uses, which was first proposed by Huang et al. in [29]. ELM has
a good generalization performance along with a comparatively fast speed. Its trainable
parameters connecting the input layer and hidden layer are randomly assigned instead
of backpropagation [30]. Its output weights are obtained by calculating the generalized
inverse operation of the hidden matrix [31]. Assuming there are l training samples, the
output of ELM with L hidden neurons can be represented as:

y =
L

∑
i=1

ηihi(x) = Hη, f or i = 1, 2, ...l (5)

H = g(wx + b) (6)

where y represents the output vector and ηi represents output weight connecting the ith
hidden layer and output neuron. H is the hidden layer matrix, and g(·) is the activation
function. w and b denote input weight and bias, respectively. We can also have

Hη = T (7)
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where T is the matrix of targets. η is determined by reaching the smallest training error
between the output y and the target T.

η = min‖T − Hη‖2
2 = H†T (8)

where H† is the generalized inverse matrix of H.
Due to the shallow architecture of ELM, it is incapable of capturing the complex

characteristics of input data [32]. To tackle this issue, deep extreme learning machine
(DELM) was proposed in [33], whose configuration is shown in Figure 2. This model,
utilizing a multilayer extreme learning machine (MLELM) and based on an extreme learning
machine autoencoder (ELM-AE), takes advantage of both deep learning and ELM. The
output of ELM-AE is the same as (6) and (9) is used to ensure the orthogonality of w and b.

wTw = 1, bTb = 1 (9)

1

2

i

L

Input layer Hidden Layers Output Layer

1

2

i

L
...

kH x( )

...
...

...
...

H x 1( )

i i(w , b )

α β( , )i i

ηi

...

2

1

n

x

...

2

1

m

y

Figure 2. DELM configuration with n inputs and L-length hidden layer.

The relationship between the adjacent hidden layers can be expressed as:

Hj = g(αi Hj−1 + βi), f or i = 1, 2, ...L; j = 1, 2, ...k; (10)

where αi and βi denote the weight and bias of the ith hidden neuron.
Unlike traditional machine learning methods using a gradient-based method, which

include many iterations and deep learning models, which contain a memory unit leading
to a slow procession, DELM determines the output weight by calculation of a hidden
matrix [34]. Therefore, DELM shows great efficiency in processing big-capacity data.

3.2. Input Set Based on Wind Farm Cluster Data

Figure 3 illustrates a newly proposed approach, IWC, for input set construction. It is
defined as follows:

X =

⎡⎢⎢⎢⎣
xa,1 xa,2 · · · xa,m
xb,1 xb,2 · · · xb,m

...
...

. . .
...

xn,1 xn,2 · · · xn,m

⎤⎥⎥⎥⎦ (11)

where X is the constructed n-dimensional input set, xa, xb, . . . , and xn is wind speed series
from wind farm a, b, . . . , and n.
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nD ... ...

LabelTraining Set

...
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...
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Figure 3. Schematic diagram of IWC configuration.

In Figure 3, an n-dimensional training set is constructed based on wind farm cluster
data containing n wind farms. X contains both the training set and the testing set. The
overall process is named the IWC approach.

3.3. The Proposed IWC-DELM

Figure 4 illustrates a newly proposed model for IWC-DELM that consists of n-dimensional
input sets and three major steps.

Start 

End
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wind speed 
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Raw wind 
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−

Figure 4. Flowchart of IWC-DELM.

Step 1: During the data cleaning preprocess, the original wind speed data is filtered
by WMF to suppress the white noise in the original time series. WMF can maintain the
causality of the whole system and reduce the noise at the same time [28].

Step 2: Once the denoised wind speed series is obtained, a proper wind farm cluster
should be selected to construct a multidimensional input set of DELM using the IWC
method. Moreover, whenever the wind speed of any wind farm in a cluster is unavailable,
the model will make up for the continuous missing data via the MDAM.
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Step 3: As described in Section 3.2, the multidimensional input set is used to train
the prediction model of DELM. Then, it is applied to future prediction to obtain improved
wind speed forecasting data.

Parameters of the IWC-DELM model can be found in Table 1.

Table 1. Configuration of the proposed ensemble model IWC-DELM.

Type Configuration

WMF
Batch extent 5

Weights [0.80, 0.64, 0.51, 0.41, 0.33]

IWC
X =

⎡⎢⎢⎢⎣
xa,1 xa,2 · · · xa,m
xb,1 xb,2 · · · xb,m

...
...

. . .
...

xn,1 xn,2 · · · xn,m

⎤⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

Xa data series of wind farm a
Xb data series of wind farm b

· · ·
Xn data series of wind farm n

DELM

Layers Hyperparameters

Hidden layer 1 Input: 5 × 3
Nodes: 30

Hidden layer 2 Input: 10 × 1
Nodes: 15

4. Case Study

4.1. Datasets and Evaluation Indices

The datasets used in this paper are shown in Figure 5 with their longitudes and
latitudes. Further information, both data and maps, can be found in the data availability
statement. Site 1 to Site 5 are adjoining to one other, and Site 6 and Site 7 are apart from
these five wind farms. Figure 6 illustrates the data preprocessing of seven selected wind
farms by WMF.

Figure 5. Seven selected wind farms with their longitudes and latitudes: (a) nonadjacent wind farms
from Site 1 to Site 6 to Site 7; (b) adjacent wind farms from Site 1 to Site 5.
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Figure 6. Data preprocessing on the historical wind speed sequences of seven selected wind farms:
(a) Site#1, (b) Site#2, (c) Site#3, (d) Site#4, (e) Site#5, (f) Site#6, (g) Site#7.

Four indices, the root mean squared error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE) and R-squared (R2), are used for evaluation [28,35].
Their definitions are available below:

RMSE =

√√√√ 1
μ

μ

∑
i=1

(yp
i − yi)2 (12)

MAE =
1
μ

μ

∑
i=1

∣∣∣yp
i − yi

∣∣∣ (13)

MAPE =
1
μ

μ

∑
i=1

∣∣∣∣∣y
p
i − yi

yi

∣∣∣∣∣ (14)

R2 = 1 −

μ

∑
i=1

(
yp

i − yi

)2

μ

∑
i=1

(y − yi)
2 (15)
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where yp denotes the wind speed prediction, y is the real data and y represents the mean
value of real data. μ represents the wind speed sequence length.

To measure the improvement of these four indices, ηI is defined as:

ηI = − I′ − I
I

× 100% (16)

where the I represents any of the four indices and I′ is the improved one. If ηI is positive, it
indicates lower error and better performance, and vice versa.

4.2. Tests under Various Influential Factors
4.2.1. Accuracy Analysis of Different Methods Operated on Different Input Sets

Historical data of the adjacent wind farms are involved in the input dataset in order
to utilize the spatial relevance of wind sequences in wind farm clusters. The number of
adopted wind farms changes from one to five, which means the input dataset can be from
one-dimensional to five-dimensional (i.e., 1D to 5D). Three models, GRU, LSTM and SRNN,
are adopted as candidate algorithms for comparison.

Table 2 and Figure 7 illustrate the performance of three promising algorithms and
the selected algorithm DELM. SRNN and DELM obtain a similar performance, which is
better than those of GRU and LSTM. DELM shows more competitive capability in terms
of all error indices at 3D input, with an RMSE of 0.288, MAE of 0.224, MAPE of 0.140
and R2 of 0.898. Four indices of GRU and LSTM become larger along with an increase in
input dimension, indicating a drop in prediction accuracy. For instance, the RMSE of GRU
increases from 0.316 to 0.628. Their lack of capabilities of addressing large-volume data
and overfitting issues may result in this phenomenon, which indicates that GRU and LSTM
are not suitable for the prediction of wind farm clusters herein. In contrast, the forecasting
accuracies of SRNN and DELM are improved when enlarging the input dimension. The
RMSE of DELM declines from 0.325 to 0.287. The fitting lines shown in Figure 8 clearly
represent their capacities for prediction. Prediction of DELM is always the closest to the
real wind speed data. These experimental results indicate that utilizing relevant spatial
data plays a significant role in prediction accuracy improvement.

Table 2. Performance of different models with diverse input dimensions from 1 to 5 *.

Model Indices 1D 2D 3D 4D 5D

GRU RMSE 0.316 0.452 0.564 0.658 0.628
MAE 0.267 0.353 0.442 0.507 0.489

MAPE 0.529 0.674 1.412 1.978 1.979
R2 0.898 0.831 0.766 0.765 0.723

LSTM RMSE 0.319 0.390 0.452 0.722 0.725
MAE 0.257 0.301 0.344 0.558 0.585

MAPE 0.438 0.364 0.648 1.911 2.458
R2 0.896 0.858 0.874 0.763 0.728

SRNN RMSE 0.352 0.302 0.289 0.267 0.298
MAE 0.280 0.241 0.235 0.216 0.234

MAPE 0.235 0.137 0.266 0.226 0.237

R2 0.841 0.872 0.891 0.903 0.872

DELM RMSE 0.325 0.301 0.288 0.286 0.287

(selected
algorithm)

MAE 0.262 0.234 0.224 0.228 0.236
MAPE 0.354 0.168 0.140 0.145 0.297

R2 0.777 0.809 0.898 0.886 0.875

* The minimum error of 4 indices among candidate algorithms with different input dimensions are in bold.
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Figure 7. Error indices of different models.
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Figure 8. Fitting lines of different models with input dimensions from 1 to 5: (a) 1D input set; (b) 2D
input set; (c) 3D input set; (d) 4D input set; (e) 5D input set.

4.2.2. Efficiency Analysis of Different Methods Operated on Different Input Sets

To measure the efficiency of different prediction methods, their training periods are
displayed in Table 3. Three comparative methods and DELM are conducted with 1D to
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5D input set conditions. Figure 9 shows the efficiency improvement percentage of three
candidates compared to DELM.

Table 3. CPU time for both training and testing sets of different models (s) *.

Model 1D 2D 3D 4D 5D

GRU 105.225 165.201 195.250 227.745 306.538
LSTM 140.558 240.385 342.736 410.983 501.438
SRNN 51.800 55.793 57.255 58.372 56.018

DELM (selected
algorithm) 0.228 0.268 0.279 0.343 0.462

* The minimum training time with different input dimensions is in bold.
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Figure 9. The efficiency improvement percentage of three candidates compared to DELM.

According to Table 3, when the input dimension ranges from one to five, the training
times of GRU and LSTM increase sharply from 105.225 s to 306.538 s and from 140.558 s to
501.438 s, respectively. The time cost of SRNN and DELM shows a slight rise. The SRNN
period increases by 4.218 s, and the DELM period with five dimensions is only 0.234 s
longer than with one dimension. Despite the fact that the training time of DELM increases
by 102.63% compared to the 1D input, its absolute CPU time is comparatively shorter than
others. These results mainly stem from different model configurations. GRU and LSTM
cannot be computed in parallel owing to their recurrent structure [10]. Every current input
is connected to its previous step, so the larger the input database is, the longer it will take for
computation. However, SRNN, as an improvement of this recurrent structure, slices input
data into subsequences so that each subsequence can be operated simultaneously, leading
to a markable reduction in training time [36]. The larger the input dataset is, the more
significant the speed advantage SRNN achieves. When the input dimension reaches five,
SRNN only needs 56.018 s, while GRU and LSTM take 306.538 s and 501.438 s, respectively.

It is mentioned that the parameters of the three comparison models are consistent with
those in [1,9,10] as shown in Table 4. Among the mentioned four models, the selected DELM
markedly surpasses the other models in training time. As shown in Figure 9 and Table 4,
its speed is hundreds or even thousands of times faster than the other three candidate
methods as it has the least parameters. The learning period of DELM is extremely fast,
which can be completed within one second [36,37].

Table 4. Number of parameters of different methods.

Model GRU LSTM SRNN
DELM

(Selected
Algorithm)

Number of
parameters 845,601 1,849,441 4137 3600
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4.2.3. Comparison of Datasets with Different Correlation Degrees

To evaluate the validity of IWC-DELM model, we chose the prediction results of a
single wind farm as a blank control group and compared the results of wind farm clusters
with high relevance and weak relevance. Adjacent wind farms and nonadjacent wind farms
represent strong and weak correlations, respectively, since the distance between wind farms
is positively related to correlation.

The performance of three different input datasets is displayed in Table 5. When the
input set includes adjacent wind farm data, the RMSE declines by 11.38%, MAE drops by
14.50%, MAPE dramatically falls by 60.56% and R2 increases by 5.40% compared to the
single-wind-farm prediction. Inversely, nonadjacent farm data input leads to the RMSE,
MAE and MAPE experiencing a rise of 2.15%, 5.34% and 1.98%, respectively. Figure 10 intu-
itively shows the fitting lines of the three conditions mentioned above. It can be obviously
observed that forecasting of adjacent wind farms is most close to the original data.

Table 5. Performance of different input datasets *.

Single Wind
Farm

Wind Farm Cluster

Nonadjacent
Farms

Improvement
Adjacent

Farms
Improvement

RMSE 0.325 0.332 −2.15% 0.288 11.38%
MAE 0.262 0.276 −5.34% 0.224 14.50%

MAPE 0.354 0.361 −1.98% 0.140 60.45%

R2 0.777 0.748 −3.73% 0.819 5.40%

* The minimum error and maximum improvement are in bold.
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Figure 10. Fitting lines of different data inputs.

Therefore, a conclusion can be drawn that the forecasting accuracy is improved with
a highly correlated historical data input, which verifies the effectiveness of the proposed
model utilizing spatial corrections of wind speed sequences in wind farm clusters.
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4.2.4. Discussion

According to the experiment results shown above, the prediction accuracies of SRNN
and DELM are higher than those of GRU and LSTM. In addition, the operation efficiency
of DELM is outstanding. Therefore, DELM is selected as the main body of the model,
and the 3D input is designed due to the balance between training cost and prediction
accuracy. The input dataset is constructed by wind farm data with a strong correlation.
This proposed model, termed IWC-DELM and proved validly, can achieve a better wind
speed forecasting result.

The main advantages of the proposed model can be summarized as follows:

1. DELM has boasted its operational efficiency as it determines the output weight by sim-
ple computations of the hidden matrix. It also employs the multi-hidden-layer struc-
ture to capture complex nonlinear characteristics. Hence, using DELM as the main
body of the model is critical for forecasting accuracy and training speed improvement.

2. Considering the spatial correlation, the multidimension input can improve the fore-
casting capacity. The proposed model is an integration of DELM and IWC, which
outperforms the other candidate algorithms with a smaller prediction fluctuance,
better adaptiveness and greatly enhanced efficiency.

4.3. Input Dataset Robustness Analysis

Robustness analysis is conducted to prevent the prediction capability from a significant
drop in extreme cases. Figure 11 shows the selected two periods that experience 5, 10 and
15 missing points, respectively. Those missing points in single-farm prediction are made
up by the MAA [25], while those in wind farm cluster prediction are made up by the
MDAM. Error indices of prediction results of the single wind farm and wind farm cluster
are displayed in Table 6. Their improvement compared to the original forecasting is shown
in Table 7.
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Figure 11. Selected two periods where data are missing.

Table 6. Comparison of single-farm and wind farm cluster performance in different conditions of
missing data *.

Missing
Period

Indices
Original

Prediction

Single Farm Wind Farm Cluster

MAA MDAM (Proposed Method)

5 Missing 10 Missing 15 Missing 5 Missing 10 Missing 15 Missing

Period 1

RMSE 0.288 0.340 0.386 0.448 0.296 0.312 0.331
MAE 0.224 0.267 0.303 0.342 0.234 0.245 0.257

MAPE 0.140 0.373 0.439 1.078 0.153 0.168 0.308

R2 0.898 0.724 0.548 0.238 0.858 0.734 0.702

Period 2

RMSE 0.288 0.328 0.445 0.454 0.291 0.288 0.292
MAE 0.224 0.263 0.352 0.365 0.231 0.226 0.230

MAPE 0.140 0.386 0.281 0.306 0.145 0.144 0.145

R2 0.898 0.827 0.582 0.292 0.796 0.726 0.705

* The minimum error in the different missing conditions is in bold.
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Table 7. Improvement of single-farm and wind farm cluster prediction in different conditions of
missing data *.

Missing
Period

Indices

Single Farm Wind Farm Cluster

MAA MDAM (Proposed Method)

5 Missing 10 Missing 15 Missing 5 Missing 10 Missing 15 Missing

Period 1

ηRMSE −18.06% −34.03% −55.56% −2.78% −8.33% −14.93%
ηMAE −19.20% −35.27% −52.68% −4.46% −9.38% −14.73%
ηMAPE −166.43% −213.57% −670.00% −9.29% −20.00% −120.00%

ηR2 −19.38% −38.98% −73.50% −4.45% −18.26% −21.83%

Period 2

ηRMSE −13.89% −54.51% −57.64% −1.04% −0.32% −1.39%
ηMAE −17.41% −57.14% −62.95% −3.13% −0.89% −2.68%
ηMAPE −175.71% −100.71% −118.57% −3.57% −2.86% −3.57%

ηR2 −7.91% −35.19% −67.48% −11.36% −19.15% −21.49%

* The maximum improvement ratios in the different missing conditions are in bold.

According to Table 6, as a result of missing data, the negative ηI indicates that the
performance of both the single farm and wind farm cluster are worse than the original
one without missing data. As the numbers of lost data increase, the four indices decline
in both prediction forms and in both periods. Table 7 illustrates that a wind farm cluster
can achieve a better prediction than a single wind farm. Especially in the 15-point-missing
condition in period 2, the improvement of the RMSE in the wind farm cluster only falls
by 1.39% compared to 57.64% in the single wind farm. This can be attributed to different
interpolation methods. Our MDAM adopts the historical wind speed sequences of two
adjacent wind farms, which characterize the original wind speed data.

Additionally, the accuracy reduction in period 2 is not as serious as in period 1, which
is mainly arisen from the sharp variation in wind speed in period 1. For instance, in the
15-point-missing condition, the RMSE in period 2 drops by 1.39%, while that in period
1 declines by 14.93%.

Using a paired t-test to study the differences in experimental data [38], it can be seen
from the Table 8 that there are six groups of paired data in total, amongst which five groups
of paired data show differences (p < 0.05). With the increase in missing data, the p value
becomes smaller (p < 0.01), and this indicates a more significant difference between the
MAA and MDAM.

Table 8. Results of paired t-test analysis of missing data in both MAA and MDAM methods *.

Missing Period Paired Name

Pair (Mean ± Standard
Deviation) Difference

(Pair 1–Pair 2)
t p

Pair 1 Pair 2

Period 1

MAA(5) vs.
MDAM(5) 1.17 ± 0.48 1.15 ± 0.48 0.03 0.664 0.517

MAA(10) vs.
MDAM(10) 1.55 ± 0.62 1.28 ± 0.47 0.27 4.144 0.001 ***

MAA(15) vs.
MDAM(15) 1.57 ± 0.00 1.37 ± 0.29 0.21 2.756 0.015 **

Period 2

MAA(5) vs.
MDAM(5) 0.71 ± 0.29 1.01 ± 0.32 −0.30 −2.611 0.021 **

MAA(10) vs.
MDAM(10) 0.53 ± 0.37 0.98 ± 0.35 −0.45 −3.822 0.002 ***

MAA(15) vs.
MDAM(15) 0.62 ± null 1.02 ± 0.34 −0.40 −4.578 0.000 ***

* MAA(5), MAA(10) and MAA(15) mean 5, 10 and 15 missing values in MAA method, while the same rule holds
for MDAM as well. ** p < 0.05; *** p < 0.01
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From these experimental results, it can be concluded that the proposed MDAM can en-
hance the data robustness, thus leading to a reduction in accuracy loss in some special cases.

5. Conclusions

Existing studies focus on WSF in wind farm clusters without consideration of spatial
correlation. Additionally, there are few effective solutions for dealing with missing data
conditions. Therefore, IWC-DELM is proposed in this paper based on a combination of
IWC and MDAM. IWC takes advantage of spatial correlations within wind farm clusters by
employing the historical data of adjacent wind farms. DELM is selected as the main body
of this proposed model for its extremely fast speed in processing. Robustness analysis is
conducted using the MDAM to prevent prediction accuracy from a dramatic drop in the
missing data conditions. Therefore, IWC-DELM outperforms some promising deep learning
algorithms, for instance, GRU, LSTM and SRNN, in both accuracy and efficiency, especially
when processing large volumes of wind farm cluster data. It is mentioned above that
the parameters of the three comparison models are consistent with those in [1,9,10]. Four
indices, RMSE, MAE, MAPE and R2, in the 3D input condition using DELM are improved
by 48.94%, 49.32%, 90.08% and 17.23%, respectively, compared to GRU and are improved
by 36.28%, 34.88%, 78.40% and 2.75%, respectively, compared to LSTM. As for different
input datasets, IWC-DELM used in adjacent wind farms achieves an improvement in
RMSE, MAE, MAPE and R2 of 11.38%, 14.50%, 60.45% and 5.40%, respectively, compared to
nonadjacent wind farms. When dealing with missing data, the proposed method, MDAM,
also performs better than the MAA. For instance, the MAE is improved by 9.38~25.89%
with 5, 10 and 15 missing data. Such an accurate prediction can be applied in broad fields,
such as the making of grid operation strategies, and is available for meteorological usage.

Meanwhile, there is still room for improvement. Firstly, the selected DELM could be
not the best option with the advent of other state-of-the-art forecasting methods. Moreover,
hybrid state-of-the-art approaches in both wind prediction studies and other AI-assisted
contributions can be applied in terms of handling missing data. Some promising statistics
and probability methods should be taken into consideration as well. Numerical weather
prediction (NWP) can be also adopted to further expand the input dataset since the current
dataset only includes historical data on wind speed.
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Abstract: Mechanical stability of the solid electrolyte interphase (SEI) is crucial to mitigate the capacity
fade of lithium–ion batteries because the rupture of the SEI layer results in further consumption of
lithium ions in newly generated SEI layers. The SEI is known as a heterogeneous bilayer and consists
of an inner inorganic layer connecting the particle and an outer organic layer facing the electrolyte.
The growth of the bilayer SEI over cycles alters the stress generation and failure possibility of both the
organic and inorganic layers. To investigate the probability of mechanical failure of the bilayer SEI,
we developed the electrochemical-mechanical coupled model with the core–double-shell particle/SEI
layer model. The growth of the bilayer SEI is considered over cycles. Our results show that during
charging, the stress of the particle changes from tensile to compressive as the thickness of bilayer
SEI increases. On the other hand, in the SEI layers, large compressive radial and tensile tangential
stress are generated. During discharging, the compressive radial stress of the bilayer SEI transforms
into tensile radial stress. The tensile tangential and radial stresses are responsible for the fracture
and debonding of the bilayer SEI, respectively. As the thickness ratio of the inorganic to organic
layers increases, the fracture probability of the inorganic layer increases, while that of the organic
layer decreases. However, the debonding probability of both layers is decreased. In addition, the SEI
covering large particles is more vulnerable to fracture, while that covering small particles is more
susceptible to debonding. Therefore, tailoring the thickness ratio of the inorganic to organic layers
and particle size is important to reduce the fracture and debonding of the heterogeneous bilayer SEI.

Keywords: SEI formation; core–double-shell structure; stress; fracture; debonding;
electrochemical model

MSC: 74F25; 74S05; 78A57

1. Introduction

Lithium–ion batteries are considered a prominent energy storage device, ranging from
consumer electronics to electric vehicles [1,2]. The solid electrolyte interphase formation
(SEI) inside the electrode is crucial to battery performance [3]. The developed SEI layer leads
to degradation and capacity loss by consuming cyclable lithium ions [4]. Current research
is focused on the development of a mechanically stable bilayer SEI, as during cycling, the
rupture of the SEI layer additionally consumes the cyclable lithium content [5,6].

The decomposition of the electrolyte during initial charge–discharge cycles forms a
passivating layer on the electrode surface termed the SEI layer [7]. The SEI layer allows
lithium ion transport and blocks electrons to prevent further electrolyte decomposition. The
SEI layer grows over cycles causing capacity fade [8]. Many studies on the bilayer structure
of the SEI have been reported. For example, the bilayer SEI develops on the particle surface
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in the form of a shell, consisting of both inorganic and organic compounds [9,10]. Smith
et al. reported a heterogeneous bilayer SEI comprised of inorganic (Li2CO3) and organic
((CH2OCO2Li)2) species [11]. Peled et al. concluded that the SEI comprises inner inorganic
and outer organic layers [9,12]. Lan et al. experimentally proved the double-layer hybrid
SEI on a SnO2 electrode [13]. Ha et al. prepared a 3D-structured inorganic–organic hybrid
bilayer SEI with enhanced mechanical stability [14]. Lee et al. observed a bilayer SEI with a
3.7 nm inner inorganic layer and a 15.4 nm outer organic layer [15]. Aspern et al. observed
that after 1171 charge–discharge cycles, half of the developed SEI layer was inorganic,
while the other half was the organic layer [16]. Li et al. developed an in situ inner inorganic
and outer organic bilayer SEI for zinc aqueous batteries [17]. Zhao et al. synthesized an
organic–inorganic SEI layer with sufficient mechanical strength [18].

In addition, SEI formation in solid-state batteries has been studied. Fitzhugh et al. de-
veloped an ab inito computational method to study the properties of the SEI layer formed at
the interface of the solid-state electrolyte [19]. Tu et al. investigated the mechanical fracture
and debonding of the SEI layer formed on the surface of lithium metal inside solid-state
batteries [20]. In addition, many efforts have been made to enhance lithium conductivity
and reduce the interfacial resistance of the solid-state electrolyte [21–24]. Qin et al. added
La2O3 nanoparticles to a garnet-type solid electrolyte to enhance lithium conductivity [25].
Using thermodynamic analysis, Qin et al. increased the lithium conductivity of a Ta-doped
solid-state electrolyte [26].

The developed SEI layer varies in composition and physiochemical properties, which
alters its mechanical stability [27–29]. Since the continuous conversion of organic SEI to
inorganic SEI occurs over several cycles, the actual mechanical properties of the developed
SEI cannot be well predicted [30–32]. In addition, different electrolyte additives also alter
the actual thickness and porosity of the developed SEI [33,34]. Zheng et al. reported
that the SEI layer has an inhomogeneous multilayered structure with varied mechanical
properties [35]. Moeremans et al. studied the mechanical properties of the heterogeneous
bilayer SEI in situ [36]. They addressed that the mechanical properties of the developed
layers can be controlled via the addition of additives or electrolyte formulations [36].
Using the AFM topographical imaging technique, Zhang et al. confirmed that the SEI is
inhomogeneous in morphology and mechanical properties [37]. Shin et al. investigated that
the stiffness of SEI layers widely varies between 0.2 and 80 GPa. Moreover, the inorganic
LiF exhibited a peak value of 135.3 GPa [38].

Significant efforts are devoted to developing a mechanically stable bilayer SEI. One
example is to develop an elastic SEI [7,39,40]. The elastic polymeric films and inherently
bonded lithium salts provided considerable mechanical strength [7]. In addition, artificial
single- [41–43] and double-layer SEIs are constructed to enhance mechanical stability,
suppressing the fracture and debonding of the SEI layer [44,45].

Various attempts have been made to understand the mechanical failure of the het-
erogeneous bilayer SEI [46–48]. For instance, Chen et al. studied the impact of SEI in-
homogeneities on the fracture of the SEI layer in Si electrodes [49]. Guo et al. examined
the cracks in the outer SEI layer. The produced cracks stopped at the inorganic/organic
interface [50]. He et al. studied the stress in the heterogeneous SEI. They concluded that
the peak tensile stress occurred at the active material/inorganic SEI layer interface. They
further observed that the strength of SEI layers largely varies with the thickness of the
inorganic layer, compared to the organic layer [51]. Yuanpeng et al. studied the wrinkling
and ratcheting of the SEI layer during lithiation with varying SEI thicknesses [52].

In most of the theoretical models, the bilayer SEI has been assumed to be a continuum
with homogenized properties throughout the thickness. This idealized assumption cannot
capture the interfacial debonding at the inorganic/organic interfaces [51]. In addition,
a constant thickness of the bilayer SEI has been assumed over cycles. The constant SEI
thickness does not consider the effect of the increased mechanical constraint as the SEI
layer grows. Furthermore, the impact of the inorganic/organic thickness ratio of the SEI
layer on stress generation and electrochemical performance is rarely studied. In this article,
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we analyze the mechanical stability of a heterogeneous bilayer SEI, while considering the
combined effect of a reduction in the state of charge (SOC) because of lithium consumption
and an increase in the mechanical constraint as a result of the growing thickness of the
bilayer SEI. The particle–SEI layer is modeled in the form of a core–double-shell, where
the inner and outer shells represent the inorganic and organic SEI layers, respectively. A
one-dimensional (1D) electrochemical model fully coupled with a two-dimensional (2D)
core–double-shell model is developed to evaluate stress generation inside the particle while
considering the growth of the bilayer SEI. The stresses are calculated for different inorganic-
to-organic-layer-thickness ratios. Furthermore, using the elastic strain energies, the fracture
and debonding probability of both inorganic and organic SEI layers are analyzed. Finally,
the impact of microstructural variation on the mechanical failure probability of the bilayer
SEI is studied.

2. Electrochemical Model

Figure 1 shows the coupling between the 1D electrochemical model (Model 1) and the
2D core–double-shell model (Model 2). Model 1 consists of negative and positive electrodes,
a separator, an electrolyte, and current collectors. The active particle and the bilayer SEI are
modeled as a core–double-shell, where the active particle is modeled as a core, the inorganic
SEI layer (SEIin) as an inner shell, and the organic SEI layer (SEIor) as an outer shell. The
formation of the bilayer SEI is studied at the negative electrode in Model 1. Using direct
projection coupling, the interfacial current density and the SEI current density, which are
computed in Model 1, are applied to the particle/inorganic SEI interface (P/SEIin) in Model
2. During lithiation/delithiation, the electrode region facing the separator experience large
stresses. Therefore, the flux calculated from this region in Model 1 is input into Model 2.

Figure 1. Simulation model showing the coupling between the 1D electrochemical model and the 2D
core–double-shell model.

The SEI thickness computed in Model 1 is mapped to the thickness of SEIin and SEIor
in Model 2. The thickness of the shells is increased every cycle to consider the growth of
the bilayer SEI. Table 1 shows the cell-level parameters.
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2.1. Cell-Level Model

The time-dependent lithium concentration inside the electrolyte is described by:

εl
∂cl
∂t

= ∇ · (Dl∇cl) + (
1 − t+

F
) asj (1)

where Dl and εl are the diffusivity and effective porosity, respectively, t+ is the ion transport
number, and j is the interfacial current density applied at the P/SEIin interface. The
boundary conditions for the electrolyte current density are given in Equation (2) and
illustrated in Figure 1:

−Dl∇cl x=0 = 0,
−Dl∇cl x= l = 0,
−Dl∇cl x = (ln)

− = −Dl∇cl x = (ln)
+ ,

−Dl∇cl x = (ln+ls)
− = −Dl∇cl x = (ln+ls)

+ .

(2)

Inside the electrolyte, the ionic charge balance follows the governing equation [53]:

∇ ·
(

kl∇ϕl − 2RT(1 − t+)
F

kl∇ ln cl

)
= −asj (3)

with the following boundary conditions:

−kl∇ϕl|x=0 = −kl∇ϕl|x=l = 0 (4)

The lithium diffusion in the particles is written by:

∂C(r, t)
∂t

= Ds∇2C(r, t) (5)

where C(r,t) is the lithium concentration and Ds represents the lithium ions diffusivity. The
mass flux inside the particle is related to interfacial current density as [54]

− Ds∇C(r, t) =
j
F

(6)

2.2. Interfacial Kinetics

The lithium current density applied at the P/SEIin interface follows the
Butler–Volmer equation:

j = kF(cl(cm − csurf)csurf)
0.5
{

exp
(

αaηF
RT

)
− exp

(−αcηF
RT

)}
(7)

where k is the reaction rate constant. csurf and cl are the lithium concentration on the
particle surface and electrolyte, respectively. The overpotential η on the P/SEIin interface
is calculated as η = ϕs − ϕl − Eeq − ΔϕSEI

s , where ϕs is the electrode potential and ϕl
represents the electrolyte potentials. Eeq is the equilibrium potential and ΔϕSEI

s represents
the reduction in potential due to SEI layer resistance. The charge conservation inside the
electrode obeys Ohm’s law:

ks∇2 ϕs = as j (8)

The boundary conditions for charge balance are written as:

−ks∇ϕs|x=0 = 0 , −ks∇ϕs|x=l = iapp (9)
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2.3. Effect of SEI Formation

During battery charging and discharging, the ethylene carbonate (EC) is reduced to
lithium ethylene di-carbonate (CH2OCO2Li)2, consuming the cyclable lithium ions: [55]

EC + 2Li+ + 2e− → [CH2O CO2Li]2 (10)

The SEI formation follows the equation: [56]

jSEI = −j0SEI exp
(−αSEIηSEIF

RT

)
(11)

where j0SEI is the SEI exchange current density. ηSEI = ϕs − ϕl − ESEI
eq − ΔϕSEI

s represents the
overpotential of the SEI layer. In Model 1, the side reaction is coupled with the electrode
reaction to simulate the formation of bilayer SEI and accompanied SOC variation. To
solve this, the interfacial kinetics responsible for lithiation and SEI formation reaction
are separately defined on the electrode/electrolyte interface [57]. The volume fraction of
lithium consumed in the bilayer SEI is given as:

∂cSEI

∂t
= −as

υSEIjSEI
nF

(12)

The temporal evolution of SEI layer volume fraction follows:

∂εSEI

∂t
=

∂εSEI,In

∂t
+

∂εSEI,Or

∂t
=

(
hSEI

MSEI,In

ρSEI,In
+ (1 − hSEI)

MSEI,Or

ρSEI,Or

)
∂cSEI

∂t
(13)

where MSEI,In is the molecular mass of the SEIin, and ρSEI,In is the SEIin density. As the
volumetric fraction of the bilayer SEI increases, the electrode porosity is reduced. εl|n is
the electrode porosity at the nth cycle. In any cycle, the electrode porosity is calculated as:

εl|n = εl|n−1 − ΔεSEI|n (14)

where ΔεSEI|n depicts the change in the volume content of the bilayer SEI. The increase in
the SEI thickness is: [58]

∂thSEI

∂t
=

∂thSEI,In

∂t
+

∂thSEI,Or

∂t
= − jSEI

F

(
hSEI

MSEI,In

ρSEI,In
+ (1 − hSEI)

MSEI,Or

ρSEI,Or

)
(15)

Over cycles, the thickness of the SEI layer increases as: thSEI|n = thSEI|n−1 + ΔthSEI|n.

2.4. Reduction in State of Charge

The battery capacity is defined as:

Q = εscmF(xmax − xmin) (16)

where εs is the volumetric fraction of the active material inside the positive electrode and
cm is the stoichiometric lithium concentration of the material. xmax and xmin represent the
maximum and minimum SOC of the electrode. In this model, no degradation and side
reactions are considered at the positive electrode. Part of the available lithium is used
during SEI formation, which reduces the discharge capacity, ΔQSEI. Q|n is the discharge
capacity of the nth cycle. Over charge–discharge cycles, the net cell capacity can be
obtained as:

Q|n = Q|n−1 − ΔQSEI|n (17)

Substituting Equation (16) into Equation (17) and solving for xmax:

xmax|n = xmax|n−1 −
1

εscm
ΔcSEI|n (18)
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The decrease in xmax of the positive electrode correspondingly reduces the xmax of
the anode.

3. Mechanical Model

During lithium intercalation deintercalation, the stress in Model 2 can be
obtained as [59]

εij =
1
E
[
(1 + ν)σij − νσkkδij

]
+

C(r, t)Ω
3

δij (19)

where εij and σij represents the strain and stress tensors, respectively,
σkk = tr(σ) = σ1 + σ2 + σ3. Ω represents the change in volume of the electrode per
one addition of lithium. In the current study, the radial σr and tangential σθ stress are
studied inside Model 2. During charging and discharging, the stress–strain relationship is
given as [60,61]

du(r, t)
dr

=
1
E
(σr − 2νσθ) +

Ω
3
{C(r, t)− C(r, 0)} (20)

u(r, t)
r

=
1
E
{σθ − ν(σr + σθ)}+ Ω

3
{C(r, t)− C(r, 0)} (21)

In Equations (20) and (21), the last term on the right-hand side represents the diffusion-
induced strain. The mechanical equilibrium is expressed:

1
2

dσr

dr
+

σr

r
=

σθ

r
(22)

The governing equation for radial displacement can be obtained by plugging
Equations (20) and (21) into Equation (22).

d2u
dr2 +

2
r

(
du
dr

− u
r

)
= k

dC(r, t)
dr

(23)

where k = Ω
3
(1+ν)
(1−ν)

. Integrating Equation (23) yields: [62]

u(r, t) =
k
r2

∫ r

α
Cr2dr + Ar + Br−2 (24)

For the particle, the lower limit of integration is α = 0. For the inorganic and organic
SEI layers, α = Rp, and Rp + thSEI,In, respectively, where Rp is the particle radius. When
there is no SEI layer, the boundary conditions become: [63]

up
r

∣∣∣
r=Rp

= 0, σ
p
r

∣∣∣
r=Rp

= 0 (25)

The boundary conditions during the SEI layer formation are:

up
r

∣∣∣
r=Rp

= uSEI,In
r

∣∣∣
r=Rp

, uSEI,In
r

∣∣∣
r=Rp+thSEI,In

= uSEI,Or
r

∣∣∣
r=Rp+thSEI,In

σ
p
r

∣∣∣
r=Rp

= σSEI,In
r

∣∣∣
r=Rp

, σSEI,In
r

∣∣∣
r=Rp+thSEI,In

= σSEI,Or
r

∣∣∣
r=Rp+thSEI,In

σSEI,Or
r

∣∣∣
r=Rt

= 0

(26)

where up
r , uSEI

r , and σ
p
r , σSEI

r are the radial displacements and corresponding stresses of
the particle and the bilayer SEI, respectively. The radial displacement u is plugged into
Equations (20) and (21) to obtain the corresponding stresses inside the SEI shell and
the core.
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3.1. Stress inside the Bilayer SEI

Applying the appropriate boundary conditions shown in Equation (26), the σr and σθ

in the SEIIn (Rp ≤ r ≤ Rp + thSEI,In) are calculated as:

σSEI,In
r = 2(1 − 3b1)

ESEI,In
Ωp
3

(
1 − (Rp+thSEI,In)

3

r3

)
×
(

1
R3

p

Rp∫
0

Cr2dr

)
3(1 − νSEI) +

{
Eeff,In(1 − 2νp)− (1 − 2νSEI)

}
6b1

(27)

σSEI,In
θ =

ESEI,In
Ωp
3

(
1
r3 +

2
(Rp+thSEI,In)

3

)
×
(

1
R3

p

Rp∫
0

Cr2dr

)
3(1 − νSEI) +

{
Eeff,In(1 − 2νp)− (1 − 2νSEI)

}
6b1

(28)

Similarly, the stresses inside the organic SEI layer (Rp + thSEI,In ≤ r ≤ Rt), are:

σSEI,Or
r = 2(1 − 3b2)

ESEI,Or
Ωp
3

(
1 − (Rt)

3

r3

)
×
(

1
R3

p

Rp∫
0

Cr2dr

)
3(1 − νSEI) +

{
Eeff,Or(1 − 2νp)− (1 − 2νSEI)

}
6b2

(29)

σSEI,Or
θ =

ESEI,Or
Ωp
3

(
1
r3 +

2
(Rt)

3

)
×
(

1
R3

p

Rp∫
0

Cr2dr

)
3(1 − νSEI) +

{
Eeff,Or(1 − 2νp)− (1 − 2νSEI)

}
6b2

(30)

where b1 =
thSEI,In

Rp+thSEI,In
, b2 =

thSEI,Or
Rt

, Eeff,In =
ESEI,In

Ep
, and Eeff,Or =

ESEI,Or
Ep

.
In the presence of the SEI layer constraint, the σr and σθ inside the particle are calcu-

lated as:

σ
p
r =

2EpΩp

3(1 − νp)

⎛⎜⎝m
1

R3
p

Rp∫
0

Cr2dr − 1
r3

r∫
0

Cr2dr

⎞⎟⎠ (31)

σ
p
θ =

EpΩp

3(1 − νp)

⎛⎜⎝2m
1

R3
p

Rp∫
0

Cr2dr +
1
r3

r∫
0

Cr2dr − C(r, t)

⎞⎟⎠ (32)

where m is:

m =
Eeff(1 − 2b)− νSEIEeff(1 − 4b)− b(1 + νp)

2b(1 − 2νp) + Eeff(1 − 2b)− νSEIEeff(1 − 4b)
(33)

where Eeff = Ep/(hSEIEeff,In + (1 − hSEI)Eeff,Or), and b = thSEI
Rt

. When no SEI layer is
formed, m =1 and Equations (31) and (32) transform into general analytical equations to
calculate the σr and σθ [64].

3.2. Numerical Simulations

The models are numerically solved using COMSOL software. The Transport of diluted
species (tds) module is adopted to solve the lithium concentration of the core, whereas the
Solid mechanics module is used to compute the stresses in the core and bilayer SEI. After
the mesh independence tests are conducted, the final mesh contained 257,830 triangular
elements with 1,985,032 degrees of freedom. During the simulation, the charge–discharge
process of the battery is controlled by varying the applied current. The battery is constantly
charged at 1 C (cc_ch), until the maximum voltage of 4.25 V is achieved. The battery is
further charged at the maximum voltage (cv_ch), while decreasing the current until it
decreases to 0.05 C. Then, the battery is discharged at 1 C to 2.7 V (cc_dch).

271



Mathematics 2023, 11, 543

4. Results and Discussion

4.1. Capacity Fading

Figure 2A depicts the discharge profiles for the first 2000 cycles. Over cycles, the
capacity decreases to 80.2% of the initial capacity. This decrease in capacity is solely
due to the formation of the bilayer SEI, which decreases the available cyclable lithium
content. Figure 2B shows the reduction in SOC of the anode from the initial (33 to 27) % in
2000 cycles. The consumed ions are used in the formation of the bilayer SEI on the particle
surface. Figure 2C shows the evolution of the heterogeneous bilayer SEI thickness. In
2000 cycles, the SEIin and SEIor increase to 0.308 and 0.462 μm, respectively. Figure 2D
shows the thickness of SEIin and SEIor with different hSEI. The total thickness of the SEI layer
is SEItotal = SEIin + SEIor = hSEISEItotal + (1 − hSEI)SEItotal. The hSEI is the ratio of SEIin
to SEItotal.

Figure 2. (A) Discharge curves over cycles. (B) Decrease in SOC of the negative electrode due to SEI
formation. (C) Evolution of SEI layer thickness. (D) Thickness of the inorganic and organic SEI layer
according to hSEI.

4.2. Stress Analysis

The developed bilayer SEI increases the mechanical constraint to the swelling and
shrinkage of the particle during lithiation and delithiation. Over cycles, the bilayer SEI
continuously grows on the particle surface, forming a core–double-shell structure. Figure 3a
shows the radial stress contours inside Model 2 at 2000 cycles during lithiation. The zoomed
view shows that the largest compressive radial stress occurs at the P/SEIin interface and
decreases toward the center of the particle center and the surface of SEIor. Figure 3b

272



Mathematics 2023, 11, 543

depicts the tangential stress contour inside Model 2 at 2000 cycles during lithiation. The
extended view shows the stress discontinuity at the interfaces. The maximum tangential
stress occurred at the P/SEIin interface. Figure 3c shows the detailed contour maps of
the tangential stress in the separate domain of the particle, inorganic, and organic SEI
layers. The largest compressive stress inside the particle occurs at the surface as shown in
Figure 3c(i). Figure 3c(ii) depicts that the highest tensile tangential stress in SEIin occurs at
the P/SEIin interface and decreases along the thickness. Figure 3c(iii) illustrates that the
tensile stress in SEIor is smaller than that in SEIin. Inside the organic layer, the largest stress
happens at the SEIin/SEIor interface and decreases along the thickness. The compressive
stress of the particle and bilayer SEI is caused by the simultaneous effect of diffusion-
induced stress and mechanical confinement from the bilayer SEI.

Figure 3. Stress contours in the particle and SEI layer at the end of 2000 cycles. (A) Radial stress with
magnified view in the inorganic and organic SEI layers. (B) Tangential stress with magnified view in
the inorganic and organic SEI layers. (C) Detailed tangential stress distribution (i) inside the particle,
(ii) inorganic SEI layer, and (iii) organic SEI layer. The results are plotted for hSEI = 0.4.

Figure 4A shows the radial stress distribution inside Model 2 for hSEI = 0.4 at the
end of lithiation. At the initial cycles, tensile radial stress occurred inside the particle.
As the bilayer SEI becomes thicker during charge–discharge cycles, the corresponding
mechanical constraint against the particle expansion increases, causing a reduction in the
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tensile behavior. After 800 cycles, the SEI layer confinement is sufficient to transform
the tensile radial stress to compressive. The compressive stress of the particle increases
outward from the particle center, reaches the maximum at the P/SEIin interface, and then
decreases to zero along the SEI thickness.

Figure 4. Evolution of radial and tangential stress inside the particle and SEI layer during lithiation.
(A) Radial stress inside the particle and SEI layer, with (B) magnified view inside the inorganic and
organic SEI layer. (C) Tangential stress inside the particle and SEI layer, with (D) magnified view
inside the inorganic and organic SEI layer.

Figure 4B depicts the magnified view of the compressive radial stress of the bilayer
SEI, showing that the compressive stress is decreased in a linear manner. The gradient of
the stress reduction is decreased at the interface of SEIin and SEIor.

Figure 4C illustrates the tangential stress inside Model 2. Compared to the particle,
significantly large tensile tangential stress occurred in the bilayer SEI. The maximum tensile
tangential stress occurs in SEIin and decreases along the SEI thickness. Inside the bilayer SEI,
the tangential stress shows discontinuities twice at the P/SEIin and SEIin/SEIor interfaces.
However, the tangential stress in the SEIor is smaller than that in SEIin.

4.3. Effect of hSEI

In this section, we discuss how the variation in hSEI affects the stress distribution in
Model 2. Figure 5A depicts the radial stress distribution inside Model 2 with different hSEI.
The results are plotted for 2000 cycles. As hSEI increases, the tensile radial stress tends to
become compressive stress because thick SEIin provides a larger mechanical constraint
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to the particle expansion than thin SEIin. Figure 5B shows the magnified view of the
stress inside the bilayer SEI. Figure 5C illustrates the tangential stress inside Model 2 with
different hSEI. Similar to the radial stress, an increase in hSEI transforms the tangential stress
in the core from tensile to compressive. However, the tensile tangential stress of the SEIin is
reduced, as shown in Figure 5D. These stresses cause the fracture and debonding of the
bilayer SEI.

Figure 5. Effect of hSEI on radial and tangential stress inside the particle and SEI layer during
lithiation. The results are plotted for 2000 cycles. (A) Radial stress inside the particle and SEI layer,
with (B) magnified view inside the inorganic and organic SEI layer. (C) Tangential stress inside the
particle and SEI layer, with (D) magnified view of inside the inorganic and organic layers.

4.4. Fracture and Debonding Analysis

The tensile tangential stress that occurred in the bilayer SEI may cause a fracture of
the bilayer SEI. In the core–double-shell structure, the elastic strain energy responsible for
the cracking of the bilayer SEI can be calculated as [65]

Gf,x =
2
(

σSEI,x
θ

)2
thSEI,x

ESEI,x
(34)

where x = ‘in’ or ‘or’ represents the inorganic or organic portion of the bilayer SEI. The
maximum tensile tangential stresses at the P/SEIin and SEIin/SEIor interfaces are chosen
for the calculation of elastic strain energy. Figure 6A,B show the evolution of tensile
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tangential stress inside SEIin and SEIor, respectively, over 2000 cycles. In the initial cycles,
the stresses are higher and decrease as the cycling continues. In addition, as hSEI decreases,
the tangential stress increases. Figure 6C,D show the corresponding elastic strain energies
responsible for SEI rupture. For small hSEI, the fracture possibility of the inorganic layer is
low in all cycles, although the stress is large, as shown in Figure 6A. This is because the
increase in thickness has a stronger effect than the stress in Equation (34). On the other
hand, the cracking possibility of the organic layer is high for small hSEI after 800 cycles,
as shown in Figure 6D. As hSEI increases, the fracture probability of the SEIin increases,
while that of the SEIor decreases. Therefore, for small hSEI, a fracture in SEI is more likely
to occur at the organic layer, while for large hSEI, it occurs at the inorganic layer. The
simulation results suggest that having a similar thickness of the inorganic and organic
layers is preferred to avoid a fracture of the SEI layers.

Figure 6. Evolution of tangential stress at the (A) P/SEIin interface and (B) SEIin/SEIor interface, with
different hSEI. Contour plot of fracture energy release rate Gf as a function of hSEI and cycle numbers
for the (C) inorganic and (D) organic SEI layer.

In addition to the fracture, debonding of the bilayer SEI can occur when tensile radial
stress develops at the interface. The tensile radial stress develops during delithiation as
the shrinkage of the particle is prevented by the surrounding bilayer SEI. The debonding
energy release rate for the inorganic SEI layer is given as: [61]

Gd,in =
π
(

σSEI,in
r

)2
thSEI,in

2EpESEI,in

(
Ep+ESEI,in

)
(35)
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Similarly, for the organic layer, Equation (35) becomes:

Gd,or =
π
(

σSEI,or
r

)2
thSEI,or

2ESEI,inESEI,or
(ESEI,in + ESEI,or) (36)

Figure 7A shows the radial stress distribution along the particle and bilayer SEI at the
500th cycle with hSEI = 0.4. Figure 7B shows the zoomed view near the bilayer SEI. During
the charging process (cc_ch), the radial stresses at the P/SEIin and SEIin/SEIor interfaces
are compressive, as the swelling of the particle is confined by the bilayer SEI. After the
constant current charging (cc_ch) is changed to the constant voltage charging (cv_ch),
the compressive radial stress at the interfaces further increases. However, in subsequent
discharging (cc_dch), the radial stress at the interfaces transforms from a compressive to
a tensile state, because the particle shrinks upon delithiation. This tensile radial stress
inside the bilayer SEI increases over cycles as shown in Figure 7C. Figure 7D depicts the
debonding energy release rate for whole cycles. Over cycles, the debonding probability of
both SEIin and SEIor increases.

Figure 7. (A) Radial stress profile along the radius of particle at the end of constant current charge
(cc_ch), constant voltage charge (cv_ch), and discharge (cc_dch). (B) Magnified view of the parti-
cle/SEI interface and SEI layers. The magnified area is shown in (A). (C) Evolution of radial stress in
the inorganic and organic SEI layer interface (hSEI = 0.4). (D) Evolution of debonding energy release
rate in the SEI layers (hSEI = 0.4).
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Figure 8A,B show the contour plot of radial stress for the whole range of cycles and
hSEI at the P/SEIin and SEIin/SEIor interfaces, respectively. The maximum stress occurred
at later cycles and small hSEI. As the hSEI increases, the stress decreases. Moreover, the
radial stress at the P/SEIin interface is compressive in low cycles and at large hSEI. As the
cycling proceeds, the radial stress transforms from the compressive to the tensile state. The
stress of the SEIin/SEIor interface is greater than that of the P/SEIin interface.

Figure 8. Contour plots of radial stress and debonding energy release rate Gd as a function of cycle
number and hSEI. Radial stress inside the (A) inorganic and (B) organic SEI layers. Debonding energy
release rate Gd inside the (C) inorganic and (D) organic SEI layers. In (C), the white area indicates no
debonding onset, due to the compressive stresses.

Figure 8C,D show the debonding strain energy of the P/SEIin and SEIin/SEIor interface,
respectively. The contour map indicates that debonding is more likely to occur as the cycle
increases and as hSEI decreases. The white area in Figure 8C depicts the no-debonding
region, where the stress is compressive. In our simulation, debonding of the P/SEIin
interface does not occur up to 800 cycles for hSEI = 0.8.

4.5. Effect of Particle Size on Fracture and Debonding

A series of simulations are carried out to study the effect of particle size on the fracture
and debonding of the bilayer SEI. The particle size is varied from 5 to 25 um. Figure 9
shows the fracture and debonding energy release rate of the inorganic and organic SEI
layers. As the particle size increases, the fracture is more dominant, while debonding is
more likely to occur with the decrease in particle size. Since the fracture energy release rate
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of the SEIin is higher than that of the SEIor, fracture highly occurs at the inner SEI layer
(inorganic layer) of large particles. On the other hand, the debonding energy release rate of
the SEIor is greater than that of the SEIin, and debonding highly occurs at the SEIin/SEIor
interface of small particles. Our simulation results suggest that tuning the particle size to
approximately 13 μm is a better choice to minimize both SEI fracture and debonding.

Figure 9. Fracture and debonding energy release rate of the inorganic and organic SEI layers as a
function of particle size.

5. Conclusions

In this paper, we developed a 1D electrochemical model fully coupled with a core–
double-shell particle/SEI model to investigate the mechanical stability of the heterogeneous
bilayer SEI over multiple cycles. The SEI layer is considered a double-layer shell consisting
of the inorganic layer as the inner shell and the organic layer as the outer shell. Our
simulation results show that the increase in the mechanical constraint due to the growth
of the bilayer SEI transforms the tensile stress inside the particle into compressive stress.
Tensile tangential stress occurs at the particle/SEI interfaces, which leads to the initiation
of a fracture inside the inorganic SEI layer, and the total fracture of both inorganic and
organic SEI layers. As the thickness ratio of the inorganic layer increases, the compressive
radial stress at the interface increases, while tangential stress decreases. At the end of
discharge, the compressive radial stress at the interface converts to tensile stress, which
leads to debonding of the interfaces.

As the thickness ratio of the inorganic layer increases, the fracture probability of the
inorganic layer increases, while that of the organic layer decreases. On the other hand, the
debonding probability of both inorganic and organic layers increases as the thickness ratio
of the inorganic layer decreased. In addition, for the effect of particle size, the simulation
results suggest that, in a multiparticle electrode, fracture of the SEI layers is more likely to
occur for large particles, while the debonding of SEI layers is more likely to occur for small
particles. Therefore, tailoring the thickness ratio of the inorganic layer and particle size is
important to reduce the fracture and debonding of the heterogeneous bilayer SEI.
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Table 1. Parameters for the Cell level.

Parameter Unit Negative Ref. Positive Ref. Separator

Thickness of Electrode μm 90 52 70

Radius of Particle μm (5−25) 8

Volume fraction of active material 0.471 [57] 0.297 [57]

Electrolyte phase volume fraction 0.357 [66] 0.44 1

Conductivity of active material S/m 100 3.8

Active material diffusion coefficient m2/s 3.9 × 10−14 [67] 1 × 10−13

Initial electrolyte concentration mol/m3 1000 1000 1000

Electrolyte diffusivity m2/s 7.5 × 10−11 [66] 7.5 × 10−11 7.5 × 10−11

Charge transfer coefficient 0.5 0.5

Reaction rate constant m2.5/(mol0.5s) 2 × 10−11 [66] 2 × 10−11

Faraday constant C/mol 96,485

Youngs modulus of active material GPa 12 [68] 10 [68]

Elastic modulus of inorganic SEI layer GPa 40

Elastic modulus of organic SEI layer GPa 10

Poisson’s ratio 0.3 [68] 0.3

Partial molar volume m3/mol 3.64 × 10−6 [69]
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Abstract: This study proposes the DNN-MVLEM, a novel macromodel for the non-linear analysis of
RC shear walls based on deep neural networks (DNN); while most RC shear wall macromodeling
techniques follow a deterministic approach to find the right configuration and properties of the
system, in this study, an alternative data-driven strategy is proposed instead. The proposed DNN-
MVLEM is composed of four vertical beam-column elements and one horizontal shear spring. The
beam-column elements implement the fiber section formulation with standard non-linear uniaxial
material models for concrete and steel, while the horizontal shear spring uses a multi-linear force–
displacement relationship. Additionally, three calibration factors are introduced to improve the
performance of the macromodel. The data-driven component of the proposed strategy consists of a
large DNN that is trained to predict the force–displacement curve of the shear spring and the three
calibration factors. The training data is created using a parametric microscopic FEM model based on
the multi-layer shell element formulation and a genetic algorithm (GA) that optimizes the response of
the macromodel to match the behavior of the microscopic FEM model. The DNN-MVLEM is tested
in two types of examples, first as a stand-alone model and then as part of a two-bay multi-story frame
structure. The results show that the DNN-MVLEM is capable of reproducing the results obtained
with the microscopic FEM model up to 100 times faster and with an estimated error lower than 5%.

Keywords: shear wall; macromodel; deep neural network; genetic algorithm; OpenSees

MSC: 68T07; 74S05; 74-10

1. Introduction

The modeling of reinforced concrete (RC) shear walls is an essential area of research in
earthquake engineering [1]. Engineers have sought to create numerical models of RC shear
walls that can be reliably used for the analysis and design of structures under earthquake
hazards [2,3]. Over the years, the research and development of modeling strategies have
resulted in two main distinguished categories: macroscopic and microscopic models [4].

Microscopic modeling (micromodels) strategies attempt to create a model with an
elevated level of detail and refinement to reproduce the complex interaction between
the concrete and the reinforcement steel at a microscopic level [5,6]. The most popular
micromodeling technique is the implementation of finite element method (FEM) models
utilizing solid, shell, and beam/truss elements combined with state-of-the-art material
models for concrete and reinforcement steel [7–9]. One such example is the 3D FEM model
developed by Fei-Yu et al. [10], where each reinforcement bar is modeled independently,
including the corresponding contact interaction between steel and concrete. Micromodels
stand out for their good performance in reproducing the realistic behavior of RC shear
walls [11]. Their effectiveness has been extensively demonstrated in various studies [12–15].
However, their main disadvantage is their high computational cost, significantly reducing
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their practical applicability for the analysis of large-scale real-world structures. For example,
the model in Figure 1 contains more than 100,000 degrees of freedom and takes 22 h to run
100 steps of a static non-linear pushover analysis on four cores with a computer equipped
with an Intel Core i7-6700HQ CPU @2.60 GHz.

Figure 1. RC shear wall microscopic 3D FEM model using solid elements.

Macroscopic modeling (macromodels) techniques, on the other hand, attempt to re-
produce the overall behavior of RC shear walls at the macro scale with a much simpler
model [16]; thus, their computational cost is significantly lower. These models typically
combine springs and axial bars connected through rigid elements to mimic the wall geome-
try. They implement non-linear material laws for both the concrete and the reinforcement
steel. However, the shear and flexural response in these systems is usually uncoupled,
meaning that the element can experience shear and flexure deformations independently,
which is normally not physically possible. Hence, their efficacy to model certain effects is
limited [17]. Nonetheless, the research and development of macromodeling techniques is a
popular and active area of research as the analysis and design paradigm is shifting towards
performance-based techniques [18], where the assessment of the non-linear behavior of the
structure plays a central role. Therefore, creating reliable macromodels that contribute to
reducing the computational cost of the non-linear analysis of structures is of particularly
high interest.

Macroscopic modeling techniques have been around for a few decades; among the first
proposed macromodels is the three-vertical-line-element model by Kabeyasawa et al. [19]. It
consists of two axial springs, one rotational spring for flexure, and one horizontal spring for
shear deformation; see Figure 2a. Vulcano et al. [20,21] improved the model by removing
the rotational spring and using several vertical axial fibers in parallel instead, creating the
multiple-vertical-lines-element-model (MVLEM); see Figure 2b. Since then, the MVLEM
has become widely popular and has been thoroughly tested and verified in numerous
studies [22–26]. The MVLEM has also been included in various popular FEM packages,
such as in the OpenSees framework [27]. Additionally, it has served as the base and
motivation for developing similar models with enhanced properties, such as the SFI-
MVLEM [28,29] depicted in Figure 2c, the V-MVLEM [30], and others [31,32].

Despite the efforts to find the perfect macromodel, some of their disadvantages are
too difficult to overcome due to the underlying assumptions and simplifications implicit in
their formulations. For instance, they may be unable to fully capture the RC shear wall’s
complex behavior to its full extent. A comparative study by Kolozvari et al. [17] found that
some macromodels were not reliable in predicting the local strains at the base (where the
higher strains are localized). In such cases, the tensile strains were overestimated as much
as a factor of 2.0, while the compressive strains were underestimated up to 2.0–3.0 times.
Overall, RC shear walls’ behavior is a complex phenomenon challenging to model using
simplified methods based on deterministic strategies. Deterministic methods usually can-
not capture complex phenomena to their full extent, becoming subject to many limitations
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that restrict their applicability. In contrast, data-driven strategies that do not follow the de-
terministic road have proven to be a better alternative for complex problems [33], provided
that sufficient and high-quality data are used in their formulation.

Figure 2. Popular macromodels for RC shear wall analysis. (a) Model proposed by Kabeya-
sawa et al. [19]. (b) The MVLEM, proposed by Vulcano et al. [20]. (c) The SFI-MVLEM proposed by
Kolozvari et al. [28].

In this study, a novel data-driven macromodel for modeling RC shear walls is devel-
oped based on deep learning techniques. The macromodel, referred to as DNN-MVLEM, is
composed of four vertical beam-column elements that implement the fiber section formula-
tion and a non-linear horizontal shear spring. All the elements are connected together with
rigid elements to mimic the RC shear wall geometry. The material models for the vertical
elements are based on well-established non-linear models commonly used for concrete and
reinforcement steel. For the shear spring, a multi-linear material model is implemented.
The final piece of the macromodel is three factors that are introduced to calibrate it and
improve its accuracy. The data-driven component of the macromodel consists of a deep
neural network (DNN) trained in a two-phase procedure. In the first phase, the DNN is
trained to predict the force–displacement curve to define the multi-linear curve for the
shear spring material model. To that end, a parametric microscopic FEM model generates
the corresponding data. In the second phase, several macromodels are built and calibrated
to match the results of the microscopic FEM model using a genetic algorithm (GA). The
results are used to re-train the DNN to add the calibration factors to its predictions. Hence,
the final DNN is able to predict all the required information to construct the macromodel.

The DNN-MVLEM is a novel approach inspired by the effectiveness of data-driven
strategies to substitute intricate hard-computing models for solving complex problems
with reliable approximations that require significantly less computational effort. Notably, in
structural engineering [34], these strategies are quickly gaining momentum and acceptance
for both research and industrial applications [35]. Several recent examples can be found,
such as the following: using artificial neural networks (ANN) to predict the lateral capacity
of RC shear walls [36]; predicting the non-linear response of 3D buildings under seismic
actions with ANNs [37]; using ANNs as non-linear constitutive materials [38]; autonomous
design of structures using optimization algorithms [39–42]; speeding up the solution
procedure of FEM equations [43,44]; surrogate modeling of large FEM structures [45–47];
using the ensemble wavelet-neural networks [48] and physical informed neural networks
(PINN) [49] to estimate the properties of complex materials such as concrete composites;
and many other exciting applications [50,51].

The remainder of the paper is organized as follows. Section 2 presents the basic struc-
ture and components of the DNN-MVLEM. Section 4 explains the data-driven component
of the model, which includes a description of the microscopic FEM model used for the data
generation. Section 5 presents various numerical examples of the DNN-MVLEM compared
to the microscopic FEM model. Finally, the results are discussed in Section 6, and the
conclusions are presented in Section 7.
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2. The DNN-MVLEM

2.1. Base Elements

The DNN-MLVEM has been implemented using the FEM framework provided by the
OpenSeesPy library [52,53]. It is composed of four vertical columns—two columns Keb1
and Keb2 for the boundary elements, and another two Kweb1 and Kweb2 for the web part of
the wall. Each of the columns is positioned at the center of the tributary area of the portion
of the wall that is intended to represent. Additionally, to simulate the shear resistance, there
is a horizontal axial spring Sh in the middle of the model positioned at a distance of 0.4 h
from the bottom. The whole system is held together by rigid beam elements. The resulting
configuration of the macromodel is depicted in Figure 3.

Figure 3. The DNN-MVLEM macromodel. (a) Main components and geometry. (b) Fiber-based
discretization of the cross section used for all the vertical elements.

The columns are modeled using beam-column elements with the fiber section formula-
tion [54]. Their corresponding commands in OpenSees are the “forceBeamColumn” element
and the “fiber” section. For the four vertical elements, the cross-section is discretized into
20 rectangular fibers in the direction of the wall length for the concrete area. The total
quantity for the reinforcement steel is distributed into six fibers, with four positioned in
the corners and two in the middle of the larger edges. Figure 3b depicts the resulting fiber
section. The shear spring Sh consists of a uni-axial element that provides only stiffness in
the horizontal direction, modeled using the “zeroLenght” element in OpenSees. The rigid
beams at the top and bottom of the macromodel and the additional elements holding the
shear spring are modeled using the “elasticBeamColumn” element command with a large
cross-section assigned to simulate the rigid behavior.

2.2. Material Models for Vertical Elements

The material model for the concrete fibers in the columns is the Kent–Scott–Park model,
which does not include tensile strength in its formulation. It is denoted as “Concrete01” in
OpenSees, and its definition requires four parameters: the concrete compressive strength f ′c ;
the strain at the maximum compressive strength εco, taken as −0.002; the crushing strength
fcu, taken as 0.2 f ′c ; and the strain at the crushing strength εcu, taken as −0.01. A second
concrete material model is defined for the confined regions. The material parameters for
the unconfined concrete model are the same as those previously mentioned but with the
values of fcu = 0 and εcu = −0.005.

For the reinforcement steel fibers in the columns, the Giuffre–Menegotto–Pinto model
that includes the characteristic post-yielding and the Bauschinger effects have been used. It
is identified as “Steel02” in OpeenSees, and its definition requires three parameters: the
yield stress fy; the initial elastic tangent, taken as E0 = 210 GPa; and the strain-hardening
ratio, taken as b = 0.01 (b is the ratio between the elastic tangent E0 and the post-yield
tangent Ep).
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The values for the material parameters for the concrete and the reinforcement steel
sections are taken from well-established studies found in the literature, such as [55–60]. A
representative stress–strain curve for both material models is presented in Figure 4. Note
that the curves are not scaled; their only intention is to provide a visual definition of the
required parameters.

Figure 4. Illustrative uni-axial curves for the material models. (a) Concrete. (b) Reinforcement steel.

2.3. Material Model for Shear Spring

For the shear spring Sh, a multi-linear material is used with the “MultiLinear” uniaxial
material command in OpenSees. The force–displacement coordinates of the multi-linear
curve are obtained in the following way. Suppose that a more sophisticated FEM model is
used to model the RC shear wall and perform a static non-linear lateral pushover analysis.
Then, the computed pushover curve (horizontal force–displacement relation measured at
the top of the model through the analysis) is discretized into six segments so that six force–
displacement coordinates are obtained. These six force–displacement coordinates define
the multi-linear material model for the shear spring. A representative force–displacement
curve of the multi-linear model is given in Figure 5. Such a curve serves as the basic shape
of the multi-linear model that is later calibrated with a process described in Section 4.

Using the pushover curve obtained with FEM analysis as the curve for the multi-
linear material may seem counter-intuitive as it implies the solution of a computationally
expensive analysis first. However, this is not the case. The six points defining the multi-
linear model are obtained by calling a DNN previously trained with thousands of static
non-linear pushover FEM analyses of RC shear walls. The complete description of the
methodology to develop the DNN is given in Section 4.

Figure 5. Illustrative force–displacement curve of the multi-linear model used in the shear spring
obtained using an DNN.

2.4. Calibration Factors

The DNN-MVLEM is constructed on top of various assumptions and simplifications,
which, depending on multiple parameters such as the geometry and reinforcement quantity,
may deviate its performance from the actual behavior of the RC shear wall. Thus, a simple
data-driven calibration method has been developed. The strategy consists of using three
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factors to adjust its behavior, namely kc, ks, and km. The factor kc multiplies the thickness t
of the cross-sections, while ks multiplies the strength of reinforcement steel fy. The third
factor km multiplies the six force coordinates used to define the multi-linear model, shifting
the curve up or down.

The calibration is performed by solving an optimization problem using a genetic algo-
rithm. The decision to include these three factors to calibrate the macromodel’s behavior
comes after several attempts to improve its accuracy without sacrificing its simplicity or
computational efficiency. For instance, instead of adding more elements or implementing
more complex material models, the optimization algorithm calibrates its performance by
simply adjusting the response with three factors.

In principle, the macromodel is calibrated to match the results of a more sophisticated
microscopic FEM model. The strategy may seem paradoxical because it implies computing
the solution with an expensive microscopic FEM model to calibrate a simpler macromodel.
However, this is where the benefits of the data-driven paradigm are genuinely harnessed.
Instead of conducting the calibration process each time the macromodel is used, an exten-
sive database of macromodels is calibrated beforehand. Then, that database is used to train
a DNN to predict the calibration factors. Thus, the computationally expensive operation is
transferred to an external process where the database is generated, and the DNN model
is trained. After those processes are finalized, the DNN becomes ready to be used at any
given time, predicting the calibration factors in a few milliseconds. The process is described
in more detail in Section 4.

3. Parametric FEM Model for Data Generation

The required data for the DNN-MVLEM methodology are generated using a micro-
scopic FEM model based on the multi-layer shell element (MLSE) formulation, particularly
the implementation developed by Lu et al. [61,62]. The MLSE has proven to be an effective
and practical modeling approach capable of reproducing the in-plane and out-of-plane
bending and the characteristic in-plane shear and coupled bending–shear behavior of RC
shear walls [63,64]. In the MLSE approach, the shell thickness is discretized into several
fully-bonded layers, including the vertical and transverse reinforcement steel as smeared
orthotropic layers.

The model consists of a rectangular RC shear wall with special boundary elements
(BE) on both sides with a beam element added at the top to distribute the loads to all the
nodes on the top edge. The model is parameterized into 11 different variables that describe
the geometry and properties of the wall. These parameters are described in Table 1.

The model is subjected to a two-stage analysis procedure. In the first stage, a vertical
load is applied to simulate the gravity actions. In the second stage, a static non-linear lateral
pushover analysis with a target displacement of 20 mm applied at the top-left node at a
rate of 0.05 per step is conducted. The final form of the model and an illustration of the
multi-layer shell element discretization is shown in Figure 6.

The chosen bounding values in Table 1 are derived from design guidelines provided
by the American Concrete Institute (ACI318-19) [65] and from engineering criteria. The
bounding values are selected to produce realistic wall geometries and configurations. For
instance, the ACI318-19 specifies that the minimum thickness allowed for a structural wall
is t = 12.5 cm, and the smallest length-to-thickness ratio is lw/t = 6. As a result, the lower
bound for the wall length is set to t · 6. Additionally, Section 18.10.6.4 of the ACI318-19
recommends a transverse reinforcement quantity of ρtbe for the boundary element range
of 0.0075 to 0.020, depending on the material properties. The longitudinal reinforcement
ρlbe

is similar to concrete columns, so a value between 0.01 and 0.05 is reasonably selected.
Note that reinforcement is expressed as a ratio of the corresponding concrete cross-sectional
area. The compressive strength f ′c and yield strength fy range from traditional values
commonly used in the construction of modern buildings. The wall length lw and height h
are based on typical wall dimensions found in medium-rise buildings. The axial load value
qa is expressed as a ratio of the maximum axial strength for concrete sections according to
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Equation 22.4.2.2 of ACI318-19. The range of 0.010 to 0.1 is chosen based on the assumption
that a value of 0.1 represents the loading of a wall in the bottom story of a medium-height
building [66].

Table 1. Parameters that define the properties and dimensions of an RC shear wall.

n Symbol Lower Bound Upper Bound Description

1 f ′c 25 60 Concrete compressive strength [MPa]
2 fy 380 600 Reinforcing steel yield stress [MPa]
3 h 300 350 Wall height [cm]
4 t 12.5 40 Wall thickness [cm]
5 lw t · 6 300 Wall total length [cm]
6 lbe 0.15·lw 0.30·lw BE length [cm]
7 ρlbe

0.01 0.05 BE longitudinal reinforcement ratio
8 ρtbe 0.0075 0.02 BE transversal reinforcement ratio
9 ρlweb

0.0025 0.75·ρlbe
Web longitudinal reinforcement ratio

10 ρtweb 0.0025 0.75·ρtbe Web transversal reinforcement ratio
11 qa 0.005 0.1 Axial load ratio, P = qa · 0.85 · f ′c · t · lw

Figure 6. MLSE-based microscopic FEM model. (a) Elevation and mesh. (b) Realistic cross-section.
(c) MLSE discretization of the cross-section.

3.1. Validation

The selected MLSE approach is validated with two numerical examples by comparing
the results to some of the popular experimental tests available in the literature. For the first
case, the specimen labeled as SW22 taken from the study conducted by Lefas et al. [66]
is selected. The input values are: f ′c = 50.6 MPa, fy = 470 MPa, h = 130 cm, t = 7 cm,
lw = 65 cm, lbe = 0.215 (14 cm), ρlbe

= 0.033, ρtbe = 0.008, ρlweb
= 0.025, ρtweb = 0.008,

qa = 0.1. The second case corresponds to the specimen SW1-1 taken from the database [67].
The input values are: f ′c = 20.7 MPa, fy = 392 MPa, h = 200 cm, t = 12.5 cm, lw = 100 cm,
lbe = 0.20 (20 cm), ρlbe

= 0.0188, ρtbe = 0.0028, ρlweb
= 0.0037, ρtweb = 0.0018, and qa = 0.11.

The results for both examples are shown in Figure 7a,b.
The presented numerical examples demonstrate that the implemented RC shear wall

FEM model based on the MLSE formulation reproduces the experimental results reason-
ably, even when two different databases are used. Although only two specimens were
analyzed in this study, the same MLSE implementation has been tested extensively in other
studies [61,62,68].
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Figure 7. Comparison of the MLSE-based microscopic FEM model to experimental test results.
(a) Specimen SW22 [66]. (b) Specimen SW1-1 [67].

4. Data-Driven Component

The key ingredient of the DNN-MVLEM is adding the data-driven component, which
consists of a large deep neural network trained with thousands of non-linear analyses
of RC shear walls. The DNN is trained to predict the force–displacement curve for the
multi-linear model used in the shear spring and the three factors required to calibrate its
performance, as illustrated in Figure 8.

Figure 8. A diagram showing the methodology that is followed to create the DNN-MVLEM.

The data-driven component is summarized in eight steps. In the first phase
(Steps 1 to 4), a database is generated that contains thousands of RC shear walls and
their corresponding analysis results obtained with the FEM model described in Section 3.
The database is used to train a temporary DNN to predict the multi-linear model for the
shear spring. In the second phase (Steps 5 to 8), for every RC shear wall in the database,
the corresponding macromodel is generated and calibrated to match the FEM results using
a genetic algorithm. The calibration factors for each data point are added to the initial
database so that a second larger DNN is trained to predict the two parts: the multi-linear
curve for the shear spring and the calibration factors, thus obtaining a single DNN that
predicts the complete information required to define the DNN-MVLEM. The eight steps
are described in more detail in the following paragraphs.
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Step 1. A vector w that contains the 11 input values is generated using a uniform
random distribution based on the bounding values specified in Table 1. The vector has the
following form.

w = { f ′c , fy, h, t, lw, lbe, ρlbe
, ρtbe , ρlweb

, ρtweb , qa}

Step 2. The vector w is used to generate the microscopic FEM model described in
Section 3. The model is subjected to a static non-linear lateral pushover analysis. The
obtained pushover curve is discretized into six segments by reading the force at the dis-
placement values of 0.5, 1.0, 2.5, 5.0, 10.0, and 20.0 mm. Step 2 can be conveniently
summarized into a single function as:

p(w) = {p1, . . . , p6} (1)

where pi are the force coordinates of the discretized pushover curve obtained with the
microscopic FEM model.

Step 3. Steps 1 and 2 are repeated several times until a large database of analysis
results is generated. The database is denoted as 11 × 6 because it contains 11 input and
6 output values per data point.

Step 4. A temporary DNN, referred to as DNNb, is created and trained with the
11 × 6 database; thus, obtaining a DNN that predicts the 6 values corresponding to the
6 force coordinates of the discretized pushover curve.

Step 5. From the 11 × 6 database, a data point is selected, and the 11 input values
are used to build the corresponding macromodel according to the process described in
Section 2. The DNNb is used to obtain the force–displacement curve of the shear spring Sh,
and the calibration coefficients are set to an initial value of kc = ks = km = 1. Similarly to
Step 2, the following function is defined:

q(w, kc, ks, km) = {q1, . . . , q6} (2)

where qi are the force coordinates of the discretized pushover curve obtained with the
macromodel after performing the same static pushover analysis, and applying the same
six-value discretization as in Step 2.

Step 6. The calibration procedure is formulated as an optimization problem:

min e = |p(w)− q(w, kc, ks, km)|

0.1 ≤kc ≤ 2 kc ∈ R (3)

0.1 ≤ks ≤ 2 ks ∈ R

0.1 ≤km ≤ 5 km ∈ R

The calibration coefficients are computed by solving the optimization problem with a
genetic algorithm. To that end, the genetic algorithm in the multi-objective optimization
Python library known as “pymoo” [69] is used. The GA is run for a total of 50 generations
using the default parameters provided by the library, which include a population size of
100 and the genetic operators of SBX crossover, polynomial mutation, and tournament
selection. The optimization problem is unconstrained, but the solution vector is limited to
the space dictated by the bounding values of the variables kc, ks, km.

Step 7. Steps 5 and 6 are repeated until the calibration coefficients of all the RC shear
walls in the database are computed, obtaining a larger 11 × 9 database with nine output
values (the six values obtained in Step 2 and the three values obtained in Step 6).

Step 8. With the 11 × 9 database, a second larger DNN model is created and trained to
predict the complete information (the six output values used for the multi-linear model and
the three calibration factors). The DNN details, such as the architecture and its performance,
are given in Section 4.1.
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4.1. DNN Architecture and Performance

The DNN has been created using the TensorFlow library [70]. The chosen architecture
is a back-propagation neural network with 11 input neurons at the input layer, 3 hidden
layers with 250 neurons each, and an output layer with 9 neurons. Its size can be expressed
in the following way: 11 − 250 − 250 − 250 − 9. The total number of trainable parameters
is equal to (11 + 1)× 250 + (250 + 1)× 200 + (250 + 1)× 250 + (250 + 1)× 9 = 130,759.

The database is composed of 3000 data points that are generated using the procedure
described in Section 4. The inputs and the outputs are normalized to add flexibility and
stability to the DNN. A validation subset of 10% of the training data is used to monitor
the training process and avoid over-fitting. Other relevant characteristics are the usage of
the Adams optimizer, ReLu activation functions, a batch size of 5, and a random uniform
initialization of the weights.

After the training, the DNN is tested using a freshly generated data set containing
200 new data points. The testing set is processed by the DNN and the predictions are
compared with the ground truth using two metrics, the correlation coefficient (R) and
the coefficient of determination (R2) [71]. The results are shown in Figure 9 for the first
8 outputs. The average values of R and R2 are 0.9909 and 0.9806, respectively. Such results
indicate good correlation values with R and R2 close to 1, implying that the error is low
and that the DNN predicts the results with high accuracy.

Figure 9. Results of the correlation coeficients R and R2 of the first 8 output variables for the testing set.

The temporary DNNb model defined in Step number 4 of the process described in
Section 4 uses the same parameters described in this section, with the only difference that
its size is 11-200-200-200-6.
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5. Numerical Examples

This section presents a series of numerical examples to demonstrate the effectiveness
of the macromodel. For simplicity, the parameters used to build the microscopic and
macroscopic models of the tested walls are presented in Table 2.

Table 2. Properties of all the RC shear walls used in the numerical examples.

Parameters Wall Identifier
n var. Unit A B C D E F

1 f ′c MPa 45.1 33.7 55 35 40 30
2 fy MPa 530 462 580 420 558 400
3 h cm 320 335 342 320 340 330
4 t cm 21 27 36 25 30 20
5 lw cm 187 242 165 200 275 160
6 lbe cm 41 48 40 50 68 40
7 ρlbe

- 0.031 0.039 0.045 0.035 0.025 0.03
8 ρtbe - 0.0092 0.0102 0.0087 0.0075 0.006 0.0085
9 ρlweb

- 0.011 0.009 0.013 0.0125 0.01 0.0095
10 ρtweb - 0.0078 0.0067 0.0091 0.005 0.0075 0.0060
11 qa - 0.025 0.018 0.02 0.05 0.075 0.075

1 v1 kN 206 377 350 263 676 106
2 v2 kN 361 651 601 459 1184 190
3 v3 kN 605 1131 1071 790 2009 324
4 v4 kN 810 1447 1381 1047 2476 435
5 v5 kN 1086 2035 2101 1393 3357 601
6 v6 kN 1189 2177 2278 1501 3539 673
7 kc - 1.65 1.47 1.57 1.63 1.27 1.51
8 ks - 0.43 0.49 0.38 0.41 0.54 0.44
9 km - 4.65 4.63 3.44 3.32 4.81 4.15

5.1. Stand-Alone RC Shear Wall

The first testing round consists of three numerical examples (A, B, C) where the wall is
modeled as a stand-alone structure subjected to a static non-linear pushover analysis. The
dimensions and properties for the three examples are generated randomly and correspond
to the walls labeled as A, B, and C according to Table 2. The analysis is performed using
both the microscopic FEM model described in Section 3, and the developed DNN-MVLEM.
The boundary conditions are set so that the wall is fixed at the bottom, and a vertical
load equal to P = qa · 0.85 · f ′c · t · lw is added at the top-middle node. The prescribed
displacement for the pushover analysis is set to 20 mm, which is applied at a rate of 0.1 mm
per step (200 total steps). The results for each example are presented and compared in
Figure 10 and Table 3.

Table 3. Scenario A, B, and C error and computational cost comparisons.

Scenario Error Computational Efficiency
MAE
[kN]

Peak Force
[kN]

Total % FEM
8 × 10 [s]

FEM
12 × 15 [s]

DNN-MVLEM
[s]

Speed Factor
(8 × 10)/(12 × 15)

A 37 1320 2.8 27 81 0.247 109/327
B 109 2622 4.16 36 97 0.245 146/395
C 107 2292 4.66 30 86 0.252 119/341

Averages - - 3.87 31 88 0.248 125/355
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Figure 10. Comparison of results between the microscopic FEM model and the developed DNN-
MVLEM for the three stand-alone analysis examples labeled A, B, and C.

5.2. Multi-Story Frame

For the second round of tests, three additional numerical examples (D, E, F) are pre-
pared in which the macromodel has been incorporated into a larger structure that consists
of a two-bay multi-story frame. Each structure is modeled using both approaches—the
microscopic FEM model and the DNN-MVLME macromodel. The additional columns and
beams that form the framed structure are modeled using the same fiber section approach
and the non-linear material models described in Section 2.3. For scenarios D and E, the
column dimensions are set to 40 × 40 cm with rc = 3 cm of concrete cover and a quantity
of reinforcement steel equal to qc = 3% of the concrete cross-section gross area. The beam
dimensions are 30 × 50 cm with rc = 3 cm and qc = 1%. For the third scenario F, the
structure is intentionally made softer to test the methodology under extreme deformations.
For such a scenario, the column dimensions are 25 × 25 cm with rc = 2.5 cm and qc = 2%;
the beam dimensions are 20 × 30 cm with rc = 2.5 cm and qc = 1%. A static-nonlinear
pushover analysis is performed for each scenario and each model. For the D and E sce-
narios, the prescribed displacement for the pushover analysis is 60 mm applied at a rate
of 0.5 per step (120 total steps). For the third scenario, a larger target displacement of
600 mm applied at a rate of 1 mm per step is used (total 600 steps). The boundary condi-
tions for all scenarios are set so that the bottom of the frame is fully fixed. Additionally, the
vertical point load is added at the top-middle node of the top story with a magnitude equal
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to P = qa · 0.85 · f ′c · t · lw according to the values specified at Table 2. The results for each
example are presented and compared in Figure 11 and Table 4.

Figure 11. Comparison of results between the microscopic FEM model and the developed DNN-
MVLEM for the three multi-story frame analysis examples labeled as D, E, and F.

Table 4. Scenario D, E, and F error and computational cost comparisons.

Scenario Error Computational Efficiency
MAE
[kN]

Peak Force
[kN]

Total % FEM
[s]

DNN-MVLEM
[s]

Speed
Factor

D 50 1757 2.85 82 0.979 83
E 62 1243 4.99 214 2.01 106
F 24 889 2.70 1578 10.75 146

6. Discussion of the Results

6.1. Accuracy

From the numerical examples, it can be appreciated that the computed pushover curve
using the microscopic FEM model follows a highly non-linear path with a different shape
in each case, thus illustrating the complex non-linear behavior of RC shear walls under
intense lateral loading. However, despite the curves’ complex shape, the DNN-MVLEM
can approximate the results with reasonable accuracy every time. The mean average error
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(MAE) between the pushover curve obtained with the microscopic FEM model and the one
obtained with the DNN-MVLEM is computed as follows:

MAE =
nStep

∑
i=1

| f orceFEMi − f orceDNNi|
nStep

(4)

etotal =
MAE

PeakForce
(5)

where nStep is the total number of steps in the pushover analysis; the term f orceFEMi
is equal to the base shear obtained with the microscopic FEM model at Step i; the term
f orceDNNi is equal to the base shear obtained with the DNN-MVLEM at the Step i;
PeakForce is the maximum base shear measured in the entire pushover analysis. Hence,
the value etotal is a normalization of the mean average error and provides a reasonable
estimation of the overall error. With that in mind, the obtained results show that etotal <
5% in all scenarios, which indicates a reasonably good approximation from an engineering
point of view; see Tables 3 and 4.

The accuracy referred to in this section is the approximation of the DNN-MVLEM to
the reference microscopic FEM model. As it is well-known in FEM analysis, the reference
FEM model is itself an approximation of the actual behavior of the structure. In Section 3.1,
the accuracy of the reference FEM model is discussed.

6.2. Calibrated vs. Uncalibrated Response

In the first three scenarios, A, B, and C, the uncalibrated response of the DNN-MVLEM
is also presented (i.e., the response when kc = Ks = Km = 1); see Figure 10. It can be
appreciated that the calibration process is an essential step, as the uncalibrated version
deviates from the actual response. Such a deviation in the uncalibrated response may be
explained by the inability of the macromodel to simulate the coupled shear and flexural
behavior properly, among other disparities, such as using different material models for the
concrete. Nonetheless, the proposed calibration procedure using an optimization algorithm
has proven to be a simple and effective solution that does not increase the complexity of
the model, transferring the added computational cost to an external process to generate the
database and train the DNN model.

6.3. Computational Efficiency

This study’s computational operations have been performed with a conventional
PC with the following characteristics: CPU Intel Core i7-6700HQ @2.60 GHz with 16 GB
RAM. These operations include creating the database, solving the calibration optimization
problem using GA, training and testing the DNN, and solving the numerical examples.

The gains obtained by using the DNN-MVLEM are evident regarding the computa-
tional efficiency. For the first three scenarios, the computational cost is compared using
two different mesh sizes for the microscopic FEM model, a mesh of 8 × 10 and another of
12 × 15 elements. Each pushover analysis using 200 steps takes, on average, 31 and 88 s for
each case, respectively. In contrast, the DNN-MVLEM takes an average of 0.248 s. Thus,
the analysis is accelerated by 125 and 355 for each case. The results are equally impressive
for scenarios D, E, and F, where the speed acceleration factors obtained are 83, 106, and
146 for each case, respectively. The results are presented in Table 3 and 4 in the columns are
labeled as “Computational Efficiency”.

On the other hand, generating the database may be a computationally expensive
operation. However, the proposed microscopic FEM model based on the MLSE formulation
is significantly faster than other microscopic models and poses a viable option for creating
large data quantities. Each data point in the database takes approximately 1 min to be
generated (30 s for the FEM analysis and 30 for the genetic algorithm). Therefore, generating
the 3000 data points to train the DNN model would take about 50 h using a single PC and
a single core. Nonetheless, the procedure can be significantly accelerated using parallel
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processing with multiple cores and computers. For example, for this study, using two
computers with the same characteristics described above and running the process on
multiple cores, the 3000 data points are generated in 14 h. The training of the DNN with
130,759 features takes an additional 30 s. Once the DNN is trained and ready to be used, it
can be serialized into a file with a digital size of less than 5 megabytes. Loading the DNN
from a file takes merely 678 milliseconds, and predicting the output for a set of input values
takes less than 1 millisecond.

6.4. Advantages Summary

The advantages of the DNN-MVLEM can be summarized as follows.

• Computational Efficiency. The DNN-MVLEM can substantially speed up the non-
linear analysis of large structures. In the presented numerical example labeled scenario
D, a five-story frame is analyzed using both approaches. The analysis for the struc-
ture where the walls are modeled with the DNN-MVLEM is 116 times faster, taking
10.75 s to finalize compared to the 1253 s (or about 20 min) for the analysis with the
walls modeled with the microscopic FEM model.

• Simplicity. The full DNN-MVLEM can be created based only on the basic properties
of the RC shear wall and the pre-trained DNN model. There are no difficult-to-obtain
parameters required for its definition. Furthermore, the implemented material models
and element formulations are typically included in most commercial FEM packages.

• Adaptability. The methodology developed to create the DNN-MVLEM could be easily
enhanced or adapted to tackle new challenges. For instance, increasing the lower and
upper bound of the input values or adding additional variables to the problem. These
improvements are relatively easy to implement by adding more data points to the training
data and re-training the model. Similarly, the same strategy could be adapted to other
types of RC shear walls, such as L-shaped or T-shaped geometries.

• Improved convergence rate. The DNN-MVLEM has been shown to have fewer conver-
gence problems than those encountered with the microscopic FEM model. This can be
appreciated in example F, where the FEM model failed to converge to the target displace-
ment of 600 mm, but the DNN-MVLEM reached the target without issue. One potential
explanation is that the elements conforming to the macromodel are based on simpler
element and material formulations, making them less sensitive to convergence problems.

6.5. Scope and Applicability of DNN-MVLEM

In order to fully assess the advantages and limitations discussed in this section, it is
essential to mention the objectives and motivations that led to the creation of the proposed
strategy. Although the results are highly promising, DNN-MVLEM is not designed to
replace traditional FEM models of RC shear walls that are grounded in well-established
theoretical frameworks and have been extensively tested and verified over time. Instead,
DNN-MVLEM is conceived as a more straightforward and significantly more compu-
tationally efficient alternative for certain types of analyses and problems. For example,
uncertainty analysis, failure analysis, and risk assessment of structures. In these types
of studies, the structure must be modeled multiple times under various conditions to
determine quantities such as failure probabilities. Hence, a simpler and significantly faster
model approximating the results is preferred as long as the approximation quality is good
enough. For DNN-MVLEM, the obtained error for the tested examples is between 2% and
5%, which is within a reasonable range for such engineering applications.

Similarly, during the preliminary stages of a building’s design process, numerous
iterations are typically needed to identify the optimal shape or layout of walls and braces
to achieve the best possible performance of the building under lateral loads. Trading
some accuracy for a simpler and much faster model is usually preferred at this stage. The
faster model may be used for the pre-design, and once the ideal configuration has been
established, the structure can be re-analyzed using a more sophisticated (and precise) model
to ensure higher confidence in the final design.
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6.6. Current Limitations and Future Enhancements

There are some limitations that one needs to be aware of when using DNN-MVLEM
in its current form. For instance, the calibration factors slightly adjust the model’s stiffness
to match the FEM results in terms of displacements. This has turned out to be a simple
and straightforward solution. However, other properties of the structure, such as modal
frequencies, have not been taken into account. In future versions of DNN-MVLEM, such
additional quantities may be considered by including them into the optimization problem
that is solved to obtain the calibration coefficients.

Another inconvenience may be encountered when defining the axial load required as
input in the DNN. However, one simple solution is to perform a linear static analysis for
the gravitational load case with the uncalibrated form of the macromodel (i.e., kc = ks =
km = 1), thus obtaining an estimate of the axial load, which can then be used to define the
calibrated macromodel prior to the non-linear procedure.

There are also two common concerns for applying data-driven strategies in practical
applications. One is the availability of the data to train the model. Nonetheless, for DNN-
MVLEM that is not the case, as the data are generated using a parametric microscopic FEM
model and the quantity of data is only limited by the time or computational resources,
which have been discussed in Section 6.3. The second concern is the expertise that the user
requires to fully comprehend and apply these methodologies. However, in this regard,
big tech companies are constantly developing multiple tools that facilitate the application
of machine learning techniques. Hence, nowadays, it is becoming easier to build reliable
data-driven solutions.

7. Conclusions

In this study, a macromodel denoted as DNN-MVLEM has been developed for the analy-
sis of RC shear walls. The model is created based on a novel data-driven methodology using
deep neural networks. The DNN-MVLEM is composed of two main parts. The structural
part, which is comprised of four vertical elements and one horizontal shear spring, and the
data-driven part, which is a DNN trained to predict the properties of the shear spring and
three coefficients required to calibrate the macromodel’s behavior. The data utilized to train
the DNN have been generated in a two-step procedure using a microscopic FEM model based
on the multi-layer shell formulation, and a genetic algorithm that determines the calibration
coefficients. The DNN-MVLEM was tested in two sets of examples: as a stand-alone wall in
cantilever mode and as part of a multi-story frame structure subjected to a static non-linear
lateral pushover analysis. The results obtained with the DNN-MVLEM were compared to
those from the microscopic FEM model, showing an estimated error of less than 5% between
the two pushover curves. Moreover, the DNN-MVLEM demonstrated significantly improved
computational efficiency, being up to 140 times faster than the microscopic FEM model,
depending on the total number of elements in the FEM model.

This study has shown that alternative methods based on data-driven solutions are
exceptionally effective in reducing the computational time of the non-linear analysis of
structures with a minimum compromise in accuracy with respect to more sophisticated
FEM models. In essence, the computational effort is transferred to the database creation
and the DNN model’s training process. However, these heavy-duty operations can be
conveniently automated using parametric modeling techniques and high-performance
computing systems. Hence, significantly speeding the workflow process and enabling the
practical application of such data-driven techniques. In particular, the DNN-MVLEM is
suitable for applications where a large number of analysis are needed, and the engineer
(or designer) is willing to sacrifice a bit of accuracy for significantly greater computational
efficiency. Some examples of such applications are uncertainty analysis, failure analysis,
risk assessment of structures, and optimization of buildings in preliminary design stages.

We are entering an era where artificial intelligence and data-driven solutions are be-
coming much more efficient and mature, thus quickly taking over traditional deterministic
approaches, while the full implications of such fast phased progress is still uncertain for
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structural engineering, its effect is already taking place notoriously. This study serves as an
example of how AI-driven techniques could revolutionize the analysis and simulation of
structures in the future.
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Abstract: The primary goal of this study was to investigate the formability of Nimonic 90 sheet
which performs well at high temperatures and pressures, making it ideal for applications in the
aerospace, processing, and manufacturing industries. In this present study, finite element analysis
(FEA) and optimization of process parameters for formability of Nimonic 90 in sheet hydroforming
were investigated. The material’s mechanical properties were obtained by uniaxial tensile tests as per
the standard ASTM E8/E8M. The sheet hydroforming process was first simulated to obtain maximum
pressure (53.46 MPa) using the FEA and was then validated using an experiment. The maximum
pressure obtained was 50.5 MPa in experimentation. Since fully experimental or simulation designs
are impractical, the Box–Behnken design (BBD) was used to investigate various process parameters.
Formability was measured by the forming limit diagram (FLD) and maximum deformation achieved
without failure. Analysis of variance (ANOVA) results also revealed that pressure and thickness
were the most effective parameters for achieving maximum deformation without failure. Response
surface methodology (RSM) optimizer was used to predict optimized process parameter to achieve
maximized response (deformation) without failure. Experimental validation was carried out for the
optimized parameters. The percentage of error between experimental and simulation results for
maximum deformation was less than 5%. The findings revealed that all the aspects in the presented
regression model and FEM simulation were effective on response values.

Keywords: simulation; sheet hydroforming; optimization; Nimonic 90; mechanical properties;
formability; design of experiments; finite element analysis; Box–Behnken design

MSC: 65-04; 65-05; 65K10

1. Introduction

In most the industries, including the automotive and aerospace sectors, hydroforming
was used to manufacture components which are challenging in metal forming [1]. It
produces structurally strong components with complex geometry quickly, efficiently, and
cost-effectively [1–3]. The benefits of hydroformed parts include improved strength to
weight ratios, weight savings from section designs that are more effective, fewer parts,
and reduced costs associated with tooling development, better dimensional stability and
reproducibility of produced components, and subassemblies [4]. Since there are no welding
joints, the parts produced in hydroforming can absorb more crash energy. This means that
vehicles are more crashworthy, which translates into improved safety for vehicle occupants
in the event of a crash [2]. All complex geometries of automotive components, such as
rear axle subframe, a front axle, twin elbow exhaust manifold, fuel tank and roofs for
luxury class cars, can be obtained through hydroforming [2,5]. Hydroforming processes are
eco-friendly, as they reduce the amount of scrap, emit less noise pollution, and protect the
environment, as forming is carried out only by the liquid medium [2]. Tube hydroforming
and sheet hydroforming are the two primary divisions of the hydroforming process [4].
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Sheet hydroforming is a near net shape manufacturing process, which means the parts it
produces are very close to the final specified geometry and require very little rework [1].
This process will result in a reduction in the number of production steps and components in
an assembly. This would reduce dimensional variations and make assembly easier [3]. The
sheet hydroforming process, as shown in Figure 1, uses high pressure fluid for deformation
of a blank (sheet) into a desired shape with die.

Figure 1. The Schematic of the Sheet Hydroforming Process.

The most common material instabilities in sheet metals are wrinkling and tearing.
Parameters of the sheet hydroforming process must be adequately modified to produce
the desired results without wrinkling and tearing. The forming process parameters of
sheet hydroforming includes pressure, blank holder force, sheet thickness, etc. Although
most hydroforming operations are kept under 1000 bar, pressure intensification systems on
high pressure hydroforming equipment can reach pressures ranging from 1000 to 4000 bar.
Exceeding 4000 bar is possible, but it reduces the equipment’s service life while drastically
increasing its complexity [6,7]. Blank holding force (BHF) will depend on the magnitude of
the fluid pressure and the area of the blank in contact with the blank holder. It should be
noted that in sheet hydroforming, the area of the blank in contact with the blank holder
continuously decreases, and so, proper BHF is required to avoid wrinkling and rupture [8].
Sheet thickness influences formability and forming limits [9].

Improved formability in hydroforming is primarily caused by more evenly distributed
strain, which results in less thinning at the corners [10]. In all forming operations using
sheet metal as an input material, it is critical to understand the conditions that cause
necking (instability of material) or fracture. Such limits can be represented as a forming
limit diagram (FLD) shown in Figure 2, which plots the curve of major and minor strain
coordinates [11]. The strain in the direction of the maximum strain is defined as the major
strain. The strain perpendicular to the major strain is known as the minor strain. The
major strain is always positive and is plotted vertically, while the minor strain is plotted
horizontally [12]. The combinations of major and minor strains lying below the forming
limit curve (FLC) define a safe operating region and failure is represented by the region
above the FLC. FLD offers a useful summary. Formability helps to quickly identify key
areas that need additional investigation, especially for early feasibility studies.

As the experimental procedure for the metal forming process is costly and time-
consuming, the finite element method (FEM) has the advantage of lowering production
costs by predicting part defects such as spring-back, rupture, wrinkling, buckling, and
shape errors, as well as optimizing process parameters [13].

Design of experiments (DOE) approaches were used to maximize response variables in
the presence of multiple factors. DOE is the process of using geometric concepts to statistical
sampling in order to produce desired outputs. The DOE’s primary goal is to obtain the
desired response with the fewest possible trials because conducting fewer experiments
results in a reduction in the cost and time needed to carry out the experiments [14].
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Figure 2. The Schematic of Forming Limit Diagram.

Nickel alloys are long-lasting materials known for their ability to operate at extremely
high temperatures for extended periods of time. Nickel-based superalloys with outstanding
high-temperature tensile strength, improved oxidation resistance, weldability, fatigue resis-
tance, corrosion resistance, and long-term structural stability were used in high-temperature
parts of aeroengines and industrial gas turbines [15]. Single crystal superalloys based on
nickel have outstanding high-temperature mechanical properties and are commonly em-
ployed as turbine blade materials in current aviation gas turbine engines [16]. Although
strong, nickel alloys are also relatively ductile, allowing them to be formed using a variety
of different processes, although at higher pressures than other metals [17]. Nimonic 90,
an nickel alloy, is an ideal material to use in aircraft parts, exhaust nozzles, and gas tur-
bine components where the pressure and heat are extreme [18]. Nimonic 90 has high
strength at high temperature levels, and it is highly resistant to scaling, oxidation, heat, and
corrosion [19].

Existing studies lack in hydroforming Nimonic 90 sheet. The aim of this study is to
propose an FEA model for formability analysis in the hydroforming of Nimonic 90 sheets.
The following objectives will help to achieve this goal:

• Derivation of FEA model for sheet hydroforming;
• Validation of FEA result with experimentation;
• Evaluation of forming limit diagram;
• Determination of optimum process parameters for hydroforming of Nimonic 90 sheet;
• Discussion of the FEA model’s accuracy.

In this present study, first, mechanical properties of Nimonic 90 sheet were obtained
by uniaxial tensile test as per the standard ASTM E8/E8M. Secondly, finite element method
(FEM) simulation of the process was run to obtain the maximum pressure and blank
holder force and was compared to experimental results. Thirdly, Box–Behnken design
(BBD) of response surface methodology (RSM) was used to design the experiments by
using lower and higher levels of variable parameters. Fourthly, FEM simulations were
carried out as per the design of experiments (DOE). Fifthly, the impact of process factors
(Pressure, Blank Holder Force, and Sheet Thickness) during the hydroforming of Nimonic
90 sheets was analyzed using RSM. Sixth, RSM optimizer was used to predict the optimized
process parameter to achieve maximized response (deformation) without failure (crack or
wrinkling). Lastly, a validation experiment was conducted, and the findings were discussed.

2. Material and Methodology

In this section, details of material properties, computer-aided design (CAD) modeling,
FEM simulation, experimentation DOE, and optimization are discussed.
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2.1. Material and Its Properties

In this study, the material used was Nimonic 90. The material was tested in the AUM
Meta Lab, Mumbai, India, to obtain the chemical composition that is illustrated in Table 1.

Table 1. Composition of Nimonic 90.

Ni Cr Co Ti Al Fe Mn Si Cu C P S

Bal 18.65 16.7 2.37 1.38 0.98 0.67 0.34 0.085 0.082 0.008 0.007

Uniaxial tensile tests were carried out as per the standard ASTM E8/E8M as shown
in Figure 3. The specimens were cut using electrical discharge machining, as shown in
Figure 4.

Figure 3. Schematic of tensile test specimen.

Figure 4. Tensile Test Specimen.

The mechanical properties of the Nimonic 90 sheet as determined from the tensile
test are given in Table 2. True stress (σt) and True strain (εt) [20] were calculated using
Equation (1).

σt = σe (1 + εe), and εt = ln(1 + εe), (1)

where σe is Engineering stress and εe is Engineering strain.

Table 2. Mechanical Properties of Nimonic 90.

Material Properties Value

Yield stress (0.2%) 587 MPa
Young’s Modulus 105.95 GPa
Poisson’s Ratio 0.28
Ultimate Tensile Stress 1271 MPa
Strain Hardening Exponent at n value 0.30398
Strength Coefficient at n value 1555.36974

The multilinear points of the stress–strain curve can be obtained using Ramberg–
Osgood equation [21]. Where ε is strain, E is Young’s modulus, σ is stress, σy is yield
strength, and n is strain-hardening coefficient

ε =
σ

E
+ 0.002

(
σ

σy

)(1/n)
(2)

This Ramberg–Osgood equation shown in Equation (2) was used to approximate the
non-linear relationship between strain and stress.
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2.2. CAD Modeling and Finite Element Simulation
2.2.1. CAD Modeling

In this study, Autodesk Fusion 360 software was used to model components as shell
elements for FEA simulations, as shown in Figure 5 Shell elements were used in FEA to
achieve better results, because they allowed modelling of narrow features with fewer mesh
components [22], and computational time was reduced. As per the approximation model
shown in Figure 6, thin shell approximation was applied in this model as the ratio between
thickness and length (h/L Chart) was within 0.3 [23].

Figure 5. CAD model.

Figure 6. h/L Chart.

Thickness of all surface components were assigned in FEA simulation. Dimensions of
all components used in CAD modeling are shown in Table 3. The die corner radius should
be greater than four times the material thickness [24].

Table 3. Dimensions of Die and Sheet.

Component Dimension (mm)

Top Die 100 × 100
Bottom Die 100 × 100

Sheet 65 × 65
Sheet Thickness 0.8, 1 and 1.2

Die Cavity 38 × 38 × 20

2.2.2. Development of Finite Element Model

To input the properties of Nimonic 90, two regions, elastic and plastic regions, were
considered. The elastic properties were assigned as listed in Table 2 and true stress and
true strain of the plastic region of the material were given as per Figure 7.

Meshing was carried out using Ansys Mechanical. The elements used for meshing
were quadrilateral elements as they produced far smoother surfaces than triangular ele-
ments, as triangular elements frequently produced visible anomalies on the surface [25].
All the free elements were set to quad type and the element size was 2 mm. Some of the
critical areas such as the blank surface, fillets, and corner surfaces were defined with smaller
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element sizes of 1 mm using the face sizing option. Figure 8a–c shows the FEA mesh model.
Once the mesh was generated, it was exported in STL format to LS Dyna. In this work,
mesh refinement for convergence study was performed. Simulations were run for various
mesh refinement stages.

Figure 7. True Stress—True Strain Curve of Nimonic 90.

Figure 8. Cont.
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Figure 8. (a) FEA mesh model of top die. (b) FEA mesh model of bottom die. (c) FEA mesh model
of sheet.

2.3. Development of Experiment Model

To validate the outcomes of numerical simulations and identify the optimum process
parameters, experimental work was carried out using a 100-ton hydraulic press, as shown
in Figure 9, and 1000 bar pressure pump.

Figure 9. Hydraulic Press.

The dies shown in Figures 10 and 11 were made of P20 tool steel material which has a
high degree of resistance to the deformation [26].The top plate and the bottom plate were
attached to the respective dies with M8 bolts, which allowed the die to be clamped with the
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hydraulic press. The dimension of die and sheet used are given in Table 3. The specimen,
Nimonic 90, was cut as per the dimension shown in Figure 12 using a laser cutting machine.

Figure 10. Top Die with Plate.

Figure 11. Bottom Die with Plate.

Figure 12. Specimen-Nimonic 90.

The validation experiment was conducted for maximum pressure and for the optimum
process parameters that were obtained using an RSM optimizer.

Since the finite element simulation was validated using the experimental model and it
was in the permissible limit, the same was proceeded with in the design of experiments
approach.

2.4. Design of Experiments

The Box–Behnken design (BBD) of RSM was used in this study to analyze the regres-
sion model and determine the effects of variable parameters on the outputs. In the present
study, three processing parameters including pressure (Pr), blank holder force (BHF), and
thickness (T) of sheet were considered and their effects on the deformation without failure
were investigated using RSM. The experiments were designed in accordance with the BBD
by using lower and higher levels of variable parameters, procuring 15 experiments to run
using Minitab software. Table 4 illustrates the conditions under which the simulations
were performed.

310



Mathematics 2023, 11, 2437

Table 4. BBD- Design of Experiments.

Std Order Run Order Pt Type Blocks
Pressure

(MPa)
BHF (kN)

Thickness
(mm)

14 1 0 1 40 180 1
4 2 2 1 50 220 1

12 3 2 1 40 220 1.2
1 4 2 1 30 140 1
3 5 2 1 30 220 1

15 6 0 1 40 180 1
6 7 2 1 50 180 0.8
8 8 2 1 50 180 1.2
9 9 2 1 40 140 0.8

10 10 2 1 40 220 0.8
11 11 2 1 40 140 1.2
13 12 0 1 40 180 1
7 13 2 1 30 180 1.2
2 14 2 1 50 140 1
5 15 2 1 30 180 0.8

The primary goal of RSM was to achieve an optimal response through a series of
designed experiments. In most cases, the RSM regression model was a quadratic full
equation [13] as Equation (3), where y is the response variable. Additionally, α0, α1, α2, and
α3 are constant, linear, quadratic, and interaction coefficients, respectively. Additionally, xi
and xj are the independent variables and E is the statistical error. The effectiveness of the
regression model was then assessed using R2 as Equation (3), which can be obtained from
ANOVA.

y = α0 +
n

∑
i=0

α1 xi +
n

∑
i=0

α0 xi2 +
n

∑
i=0

n

∑
i=0

α3 xixj + E (3)

R2 = 1 − Sr

St
(4)

3. Results and Discussion

Figure 13 shows the analysis result of maximum pressure for failure. The simulation
result for maximum pressure was validated using experimentation. Figure 14 represents
the validation result of maximum pressure for failure during hydroforming.

Figure 13. FEA analysis for maximum pressure.
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Figure 14. Experimentation result for maximum pressure.

Table 5 represents the maximum pressure obtained during hydroforming in FEA
simulation and experimentation. Then, the finite element simulation process was carried
out under different conditions according to the design of experiments (Table 4), and the
response variable, i.e., deformation (De), was obtained, as shown in Table 6. Forming limit
diagram obtained using LSdyna, as shown in Figure 15, depicts the major and minor strain
of Nimonic 90 in hydroforming. Strain combinations over the FLC will result in fracture,
whereas those below the wrinkling limit line will result in wrinkles. For a fixed minor
strain, a larger gap between the FLC and wrinkling limit lines signifies more potential for
forming [27]. In Figure 15, the gap between the FLC and wrinkling limit line was more, the
Nimonic 90 sheet was more suitable for forming.

Table 5. Maximum Pressure obtained by FEA Simulation and Experiment.

Maximum Pressure (MPa) Percentage Error (%)

FEA Simulation 53.46
5.53Experimentation 50.5

Table 6. Deformation results obtained from FEA Simulation.

Inputs Output

Run Order Pr (MPa) BHF (kN) T (mm) De (mm)

1 40 180 1 7.88
2 50 220 1 9.62
3 40 220 1.2 6.65
4 30 140 1 6.19
5 30 220 1 6.16
6 40 180 1 7.88
7 50 180 0.8 11.9
8 50 180 1.2 8.11
9 40 140 0.8 9.7
10 40 220 0.8 9.66
11 40 140 1.2 6.68
12 40 180 1 7.88
13 30 180 1.2 5.27
14 50 140 1 9.65
15 30 180 0.8 7.52

312



Mathematics 2023, 11, 2437

Figure 15. Forming Limit Diagram for Nimonic 90 Safe Severe thinning. (a) Forming limit
curve (FLC), (b) Risk of Failure. (c) Wrinkling limit line.

The ANOVA analysis yielded regression models for estimating the value of deforma-
tion (De) for Nimonic 90 as Equation (5).

De = 8.52 + 0.3483 × Pr − 0.00044 × BHF − 14.59 × T + 0.000262 × Pr × Pr − 0.000001 × BHF × BHF
+ 7.344 × T × T − 0.000000 × Pr × BHF − 0.1925 × Pr × T + 0.00031 × BHF × T

(5)

During this study, a confirmatory experiment was carried out to validate the optimized
RSM solutions. Figure 16 shows the deformed Nimonic 90 sheet. Table 7 compares the
predicted and experimental results of the response (deformation) in the formability of
Nimonic 90. The table shows that the error percentage between predicted and experimental
results was less than 5%.

Figure 16. Deformed Nimonic 90 sheet for optimized parameter.
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Table 7. Confirmatory test results.

Process Parameter Predicted Experimental Percentage
Error (%)Pressure

(MPa)
BHF (kN) T (mm)

Deformation
(mm)

Deformation
(mm)

42.32 144.04 0.8 10.199 9.72 4.92

ANOVA (analysis of variance) generally helps to understand the influence of inde-
pendent input parameters on dependent output parameter(s). ANOVA helps the users
to prove cause and effect relationships in various forms such as R2 value, pareto chart,
p-values, etc. Here, the Pareto chart shown in Figure 17 depicts the standardized effects
of input parameters on output parameter (i.e., deformation). The R2 value for the present
regression model of deformation regarding formability of Nimonic 90 was greater than 95%,
indicating the authenticity of model [17]. Furthermore, according to Table 8, the p value
for most of the input terms were less than 0.05, implying that these terms had a significant
influence on the value of deformation in the sheet [28].

Figure 17. Pareto chart.

Table 8. ANOVA results for each coefficient for deformation.

Coefficient of Regression Model p-Value

Model 0.000
Linear 0.000

Pr 0.000
BHF 0.378
T 0.000

Square 0.000
Pr × Pr 0.337
BHF × BHF 0.962
T × T 0.000

2-Way Interaction 0.000
Pr × BHF 1.000
Pr × T 0.000
BHF × T 0.920
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Figure 18 shows the optimized process parameter achieved in RSM optimizer. In
experimental validation, the error percentage between experimental and simulation was
less than 10%. This indicates that the proposed simulation model is capable of making
accurate predictions [28,29]. Figure 19 shows the mesh convergence study.

Figure 18. Optimized parameters.

Figure 19. Mesh Convergence Study.

4. Conclusions

In this study, a finite element simulation of formability of Nimonic 90 in sheet hydro-
forming for investigating required pressure, blank holder force, and thickness reductions
was conducted. The main conclusions from this study can be concisely summarized
as follows.

• The Nimonic 90 sheet tested showed good formability. The formability was higher in
the plane strain and biaxial tension condition compared to the tension–compression
condition;

• The fluid pressure in sheet hydroforming caused the sheet to stretch in the flange area,
forcing strains above the wrinkling limit curve in the forming limit diagram (FLD);

• Since the FLD indicated no failure zone, these process parameter values were acceptable;
• As p value in the two-way interaction between pressure and thickness was less than

0.05, it was vital in achieving maximum deformation;
• Based on finite element analysis and verified experiments, BHF of 144.04 kN, pressure

of 42.32 MPa, and sheet thickness of 0.8 mm were the key parameters to prevent
wrinkling under the forming state for achieving the maximum deformation;
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• The statistical results revealed that the models proposed in analysis had a high accuracy
to estimate the optimum pressure, blank holder force, and thickness for achieving
maximum deformation in formability of Nimonic 90 sheets in sheet hydroforming;

• The results demonstrated that the most effective parameters on deformation were
pressure and thickness;

• The proposed FEA model is capable of accurate predictions, as the error percentage
between the experiment and simulation was less than 5%

Future research will include unconventional optimization techniques to predict the
optimum process parameters for better formability and applying the same methodology
for different super alloys and different shapes that are more complex. An optimization code
will be utilized to create the multiple response optimization for hydroforming complex
automotive parts.
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Abstract: Presented in this current study is the numerical analysis of magnetohydrodynamics
Williamson nanofluid flow over an exponentially stretching surface. The most important aspect of the
investigation is that the effects of the magnetic field, chemical reaction and thermal radiation in the
fluid flow are taken into account. The partial differential equations governing the present Williamson
nanofluid flow problem were observed to be highly nonlinear and coupled. Suitable similarity
transformations were used to transmute the coupled system of nonlinear partial differential equations
governing the fluid flow into a linear system. The linear system was solved numerically using the
spectral quasi-linearization method. The MATLAB bvp4c numerical technique and a comparison
with existing results for the skin friction coefficient were used to confirm the appropriateness of the
method in solving the current problem. The influence of some pertinent physical parameters on the
fluid’s velocity, temperature and concentration profiles were displayed graphically. The effects of all
the physical parameters on the skin friction coefficient, Nusselt number and Sherwood number were
portrayed in a tabular form. It was noted that enhancing the thermal radiation parameter reduces the
fluid’s temperature, Nusselt number and the skin friction coefficient, while the Sherwood number
is improved.

Keywords: magnetohydrodynamics; Williamson nanofluid; quasi-linearization; chemical reaction;
thermal radiation

MSC: 65N12; 76M22; 76M25; 80M25

1. Introduction

Non-Newtonian fluids occur most often in industrial and engineering applications.
The rheological properties of the non-Newtonian fluids cannot be explained using the
famous Navier–Stokes equations. As a consequence, a number of models have been used
to describe the characteristics of non-Newtonian fluids. These models include the Ellis
model [1], Carreaus model [2], power law model [3], Cross model [4] and Casson model [5],
to mention but a few. One special type of non-Newtonian model is the Williamson model [6],
which was proposed to describe the flow of pseudoplastic materials. The boundary layer
flow of the pseudoplastic materials has found applications in bio-engineering, chemical
and nuclear industry, material processing and geophysics.

In fluid dynamics, Sakiadis [7] was the first researcher to study the boundary layer
flow over a continuous stretching surface. An inaguaral study of fluid flow of Blasius type
past a stretching surface was initiated by Crane [8]. The study of fluid flow over a stretching
sheet has been a subject of interest in recent years due to its significant importance in areas
such as metallurgical processes, polymer extrusion, plastic films, metal spinning, etc. There

Mathematics 2023, 11, 2740. https://doi.org/10.3390/math11122740 https://www.mdpi.com/journal/mathematics318



Mathematics 2023, 11, 2740

are quite a number of studies that have been performed on fluid flow past a stretching
sheet, i.e., [9–13], among others.

In thermal engineering, the enhancement of the thermal characteristics of heat transfer
fluids is a priority. The thermal conductivity and heat transfer qualities of the base fluid
can be improved by dispersing nanosized (1–100 nm) solid particles into the fluid. These
nanoparticles are usually metals, carbon nanotubes, oxides or carbines. The enhancement
of heat transfer in fluids as a result of dispersing ultra-fine particles was first reported by
Masuda et al. [14]. The term ‘nanofluid’, a fluid that contains dispersed nanoparticles, was
introduced by Choi and Eastman [15]. A significant number of studies have been carried
out on nanofluids, which inlcude the works by Elboughdiri et al. [16], Ashraf et al. [17],
Nabwey et al. [18], Selimefendigil et al. [19] and Lou et al. [20].

Alfven [21] was the first to study the magnetic properties and the characteristics
of fluids that are electrical conductors. Typical examples of such magnetofluids include
electrolytes, plasmas, salt water and liquid metals. There has been growing interest in
studying the MHD Williamson nanofluid. Abbas et al. [22] investigated the effects of
heat generation and viscous dissipation on an MHD Williamson nanofluid that flows
past a linear stretching sheet in a porous medium. The characteristics of MHD flow and
heat transfer of a Williamson nanofluid flowing past a stretching sheet were examined by
Reddy et al. [23]. Shawky et al. [24] used the Runge–Kutta method to analyze the heat and
mass transfer of magnetohydrodynamic Williamson nanofluid flowing over a stretching
sheet. The influence of Joule heating, heat generation/absorption, thermal radiation and
chemical reaction on the MHD Williamson nanofluid flow over a stretching sheet through a
porous medium was investigated by Bouslimi et al. [25]. Other notable works on the MHD
Williamson nanofluid are [26–33], among others.

This current study mainly focuses on the Williamson nanofluid flow past an expo-
nentially stretching surface with a chemical reaction and thermal radiation. This study
has many applications in engineering and industrial processes. The Williamson fluid
model with a chemical reaction has applications in water and air pollution, atmospheric
flows and in chemical engineering problems such as food processes. Thermal radiation
has applications in processes such as drying and distribution of temperature and mois-
ture over agricultural fields [34]. Nadeen and Hussain [35] used the homotopy analysis
method to explore heat transfer effects on Williamson nanofluid flow over a porous ex-
ponentially stretching sheet. The Runge–Kutta–Fehlberg method was used to study the
MHD flow of a Williamson nanofluid flow over an exponentially stretching surface by
Kumar et al. [34]. Two cases of heat transfer, PEST and PEHF, were investigated on an
MHD Williamson nanofluid flow over an exponentially stretching surface by Ahmed and
Akbar [36]. Temperature-dependent viscosity and thermal conductivity in a Williamson
nanofluid flow over an exponentially stretching sheet were studied by Amjad et al. [37].
Li et al. [38] used MATLAB’s bvp4c package to analyze heat and mass transfer in MHD
Williamson nanofluid flow over an exponentially porous stretching surface.

Based on the aforementioned studies, it can be noted that there are many studies that
have been performed on the Williamson nanofluid flow past an exponentially stretching
surface. The novelty of this current study is the addition of thermophoresis and Brown-
ian motion effects in the momentum equation. Additionally, the effects of the magnetic
field, thermal radiation, chemical reaction, heat source and injection/suction parameters
are simultaneously investigated in this model. The highly non-linear partial differential
equations that govern the Williamson nanofluid flow are reduced into non-linear ordinary
differential equations using suitable similarity transformations and then solved using the
spectral quasi-linearization method (SQLM), developed by Motsa et al. [39]. The effects of
some chosen pertinent parameters on the fluid velocity, temperature, concentration, skin
friction coefficient, heat transfer rate and mass transfer rate were displayed using graphs
and tables. The numerical results obtained in this current research work were validated by
comparing the present results with those from MATLAB’s bvp4c routine and those results
from already-published work. A very good agreement was established.
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2. Fluid Model

The Williamson fluid model is used to describe the rheological behaviour of pseu-
doplastic materials over a wide range of shear stresses and shear rates. The continuity
and momentum equations of an incompressible Williamson model are given, respectively,
by [40]:

divV = 0, (1)

ρ f
dV

dt
= divS + ρ f b, (2)

where d
dt is the time derivative and b is the specific body force vector. The Cauchy stress

tensor S = −pI + τ∗, [41], where p is the pressure term and I the identity vector. The extra
stress tensor is given by:

τ∗ =
(

μ∞ +
μ0 − μ∞

1 − Γγ̇

)
A1,

where the respective viscosities at zero and infinity shear rate are μ0 and μ∞, respectively.
The terms A1 and Γ are the first Revlin–Ericksen tensor and time constant, respectively.
Additionally:

γ̇ =

√
π

2
, π = trace(A2

1).

Choosing μ∞ = 0 and Γγ̇ < 1 and applying the Binomial expansion, we have the extra
stress tensor τ∗ = μ0[1 + Γγ̇]A1.

3. Mathematical Analysis

Investigated in this current study is a two-dimensional flow of a steady incompressible
Williamson nanofluid over a sheet that stretches exponentially. In this flow problem, the
coordinate system is chosen in such a way that the x axis is along the stretching sheet and
the y axis is measured normal to the sheet. At y = 0, the sheet is assumed to be stretching
with a velocity Uw = U0e

x
l . The variable magnetic field B(x) = B0e

x
2l (B0 is a constant

magnetic field) is applied perpendicular to the direction of flow. At the sheet, the fluid has
temperature Tw = T∞ + T0e

x
2l and nanoparticle fraction Cw = C∞ + C0e

x
2l . The ambient

values of temperature and nanoparticle fraction, far way from the sheet, are denoted by
T∞ and C∞, respectively. Figure 1 displays the schematic flow diagram and the coordinate
system of the problem. Assuming that there is no pressure gradient and applying boundary
layer approximations, the continuity, momentum and energy equations governing the flow
are given by [25,40]:

∂u
∂x

+
∂v
∂y

= 0, (3)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂

∂y

{
∂u
∂y

+
Γ√
2

(
∂u
∂y

)2}
+ gβT(T − T∞) + gβC(C − C∞)− σB2

ρ f
u, (4)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 +

Q
(ρcp) f

(T − T∞) + τ

{
DB

∂T
∂y

∂C
∂y

+
DT
T∞

(
∂T
∂y

)2}
− 1
(ρcp) f

∂qr

∂y
, (5)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 − K(C − C∞), (6)

where u and v are the fluid velocity components in the x and y directions, respectively, ν is
the kinematic viscosity of the fluid, g is the acceleration due to gravity, βT is the thermal
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expansion coefficient, βC is the concentration expansion coefficient, σ is the electrical
conductivity, α is thermal diffusivity, Q(x)(= Q0e

x
l ) is the variable heat source, ρ f is the

fluid density, DB is the Brownian diffusion coefficient, DT is the thermophoresis coefficient,

K(x)(= K0e
x
l ) is the chemical reaction parameter and τ =

(ρcp)p
(ρcp) f

is the ratio of the effective

heat capacity of the nanoparticle material and heat capacity of the fluid.

C → C∞

T → T∞

stretching plate
x, u

y, v
g

CBL

TBL
MBL

Nano-particles

BB
C/T/MBL - Concentration/Thermal/Momentum Boundary Layer

Figure 1. Schematic flow diagram and coordinate system.

The energy Equation (5) can be simplified by using the Rosseland approximation [42],
which states that the radiative heat flux:

qr =
4σ∗

3k∗
∂T4

∂y
,

where σ∗ is the Stefan–Boltzmann constant and k∗ is the mean absorption coefficient.
Assuming that the temperature differences within the flow are so small, the linear Taylor
series expansion of T4 about T∞ gives T4 ≈ 4TT3

∞ − 3T3
∞ such that:

∂qr

∂y
= −16σ∗T3

∞
3k∗

∂2T
∂y2 . (7)

Using Equation (7) in Equation (5) gives:

u
∂T
∂x

+ v
∂T
∂y

=

(
α +

16σ∗T3
∞

3(ρcp) f k∗

)
∂2T
∂y2 +

Q
(ρcp) f

(T − T∞) + τ

{
DB

∂T
∂y

∂C
∂y

+
DT
T∞

(
∂T
∂y

)2}
, (8)

The suitable boundary conditions for the system of Equations (3)–(6) are:

u = Uw = U0e
x
l , v = −γ(x), where γ(x) = −V0e

x
2l ,

T = Tw = T∞ + T0e
x
2l , C = Cw = C∞ + C0e

x
2l , at y = 0, (9)

u → 0, T → T∞, C → C∞, as y → ∞.
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The similarity transformations which are used to solve the governing equations are defined
as follows [43]:

u = U0e
x
l f ′(η), v = −

√
νU0

2l
e

x
2l [ f (η) + η f ′(η)], η =

√
U0

2νl
ye

x
2l ,

T = T∞ + T0e
x
2l θ(η), C = C∞ + C0e

x
2l φ(η) (10)

Using similarity transformations Equation (10), the continuity Equation (3) is identically
satisfied and Equations (4)–(6) take the following form:

f ′′′ + f f ′′ − 2 f ′2 + λ f ′′ f ′′′ − M2 f ′ + 2GTθ + 2GCφ = 0, (11)(
1 +

4
3

Rd

)
θ′′ + Pr( f θ′ − f ′θ + Nbφ′θ′ + Ntθ

′2 + δθ) = 0, (12)

φ′′ + Sc( f φ′ − f ′φ − Krφ) +
Nt

Nb
θ′′ = 0, (13)

subject to boundary conditions:

f (0) = −S, f ′(0) = 1, θ(0) = 1, φ(0) = 1,

f ′(∞) → 0, θ(∞) → 0, φ(∞) → 0. (14)

where λ

(
= Γ

√
U3

0 e
3x
l

νl

)
is the Williamson fluid parameter, M2(=

2lσB2
0

ρU0
) is the magnetic

field parameter, GT(=
glBT T0

U2
0

) is the thermal Grashof number, GC(=
glBCC0

U2
0

) is the mass

Grashof number, Pr(= ν
α ) is the Prandlt number, Rd(=

4σ∗T3
∞

k∗κ ) is the radiation parameter,
Nb(=

τDB
ν (Cw − C∞)) is the Brownian motion parameter, Nt(=

τDT
νT∞

(Tw − T∞)) is the

thermophoresis parameter, δ(= 2lQ0
ρcpU0

) is the heat generation parameter, Sc(= ν
DB

) is the

Schmidt number, S(= V0

√
2l

νU0
) is the suction (S < 0) or the injection (S > 0) parameter

and Kr(=
2lK0
U0

) is the chemical reaction parameter.
The skin friction coefficient (c f ), the local Nusselt number (Nux) and the local Sher-

wood number (Shx) are the physical quantities of engineering significance discussed in
this study. Following the work by Ahmed and Akbar [36]:

c f =
1

ρU2
w

(
μ

(
∂u
∂y

+
Γ√
2

(
∂u
∂y

)2))
y=0

,

Nux = −
√

2l

(Tw − T∞)e
x
2l

(
∂T
∂y

)
y=0

,

Shx = −
√

2l

(Cw − C∞)e
x
2l

(
∂C
∂y

)
y=0

.

Using similarity transformations in Equation (10), the following dimensionless forms are
obtained:

√
2Rexc f =

(
f ′′(0) + λ

2
( f ′′(0))2

)
,

Nux√
Rex

= −θ′(0), Shx√
Rex

= −φ′(0),

where Rex = Uwl
ν is the Reynolds number.
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4. Method of Solution

In this study, the spectral quasi-linearization method is used to seek the numerical
solution of the coupled system of Equations (11)–(13) subject to boundary conditions Equa-
tion (18). A Newton–Raphson-based quasi-linearization method [44], which uses first-order
Taylor series expansion, is used to linearize the non-linear terms. Denote the respective
solutions of Equations (11)–(13) at iteration level s by fs, θs and φs, respectively. Assuming
that the difference between solutions at iteration level s and s + 1 are sufficiently close,
quasi-linearization gives the following iterative sequence of linear differential equations:

a0,s f ′′′s+1 + a1,s f ′′s+1 + a2,s f ′s+1 + a3,s fs+1 + a4,sθs+1 + a5,sφs+1 = R1,s, (15)

b0,sθ′′s+1 + b1,sθ′′s+1 + b2,sθs+1 + b3,s f ′s+1 + b4,s fs+1 + b5,sφ′
s+1 = R2,s, (16)

c0,sφ′′
s+1 + c1,sφ′

s+1 + c2,sφs+1 + c3,s f ′s+1 + c4,s fs+1 + c5,sθ′′s+1 = R3,s, (17)

where the variable coefficients known at iteration level s are defined as:

a0,s = 1 + λ f ′′s , a1,s = fs + λ f ′′′s , a2,s = −4 f ′s − M, a3,s = f ′′s , a4,s = 2GT , a5,s = 2GC,

b0,s = 1 +
4
3

Rd, b1,s = Pr( fs + Nbφ′
s + 2Ntθ

′
s), b2,s = −Pr( f ′s − δ), b3,s = −Prθs,

b4,s = Prθ′s, b5,s = PrNbθ′s, c0,s = 1, c1,s = Sc fs, c2,s = −Sc( f ′s + Kr),

c3,s = −Scφs, c4,s = Scφ′
s, c5,s =

Nt

Nb
.

The boundary conditions given in Equation (18) are transformed to:

f ′s+1(0) = 1, fs+1(0) = −S, θs+1(0) = 1, φs+1(0) = 1,

f ′s+1(∞) → 0, θs+1(∞) → 0, θs+1(∞) → 0. (18)

The terms on the right hand side are:

R1,s = fs f ′′s − 2 f ′2s + λ f ′′s f ′′′s , R2,s = Pr( fsθ′s − f ′sθ + Nbθ′sφ′
s + Ntθ

′2
s ),

R3,s = Sc( fsφ′
s − f ′sφs)

The unknown functions fs+1, θs+1 and φs+1 are approximated using Chebyshev interpolat-
ing polynomials, such that the their derivatives evaluated at Gauss–Lobatto collocation
points ηi = cos πi

N (i = 0, 1, 2, · · · , N) are given by:

dn fs+1

dη
(ηi) =

N

∑
k=0

Dn
ik fs+1(ηk) = DnFs+1,

dnθs+1

dη
(ηi) =

N

∑
k=0

Dn
ikθs+1(ηk) = DnΘs+1, (19)

dnφs+1

dη
(ηi) =

N

∑
k=0

Dn
ikφs+1(ηk) = DnΦs+1,

where

D = 2
L∞

D, Fs+1 = [ fs+1(η0), fs+1(η1), · · · , fs+1(ηN−1), fs+1(ηN)]
T ,

Θs+1 = [θs+1(η0), θs+1(η1), · · · , θs+1(ηN−1), θs+1(ηN)]
T ,

Φs+1 = [φs+1(η0), φs+1(η1), · · · , φs+1(ηN−1), φs+1(ηN)]
T .

Using derivatives in Equation (19) in the system of Equations (15)–(17) yields a system in
vector matrix form: ⎡⎣A11 A12 A13

A21 A22 A23
A31 A32 A33

⎤⎦⎡⎣Fs+1
Θs+1
Φs+1

⎤⎦ =

⎡⎣R1,s
R2,s
R3,s

⎤⎦,
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where

A11 = a0,sD3 + a1,sD2 + a2,sD + a3,s, A12 = a4,sI, A13 = a5,sI,

A21 = b3,sD + b4,s, A22 = b0,sD2 + b1,sD + b2,s, A23 = b5,sD,

A31 = c3,sD + c4,s, A32 = c5,sD2, A33 = c0,sD2 + c1,sD + c2,s.

where I is an (N + 1)× (N + 1) identity matrix. The spectral boundary conditions are:

fs+1(ηN) = S,
N

∑
k=0

DN,k fs+1(ηN) = 1, θs+1(ηN) = 1, φs+1(ηN) = 1,

N

∑
k=0

D0,k fs+1(η0) = 0, θs+1(η0) = 0, φs+1(η0) = 0.

The numerical iteration of the SQLM, coded in MATLAB R2022b on an Intel(R) Core(TM)
i5, is started by using the initial guesses that satisfy the boundary conditions Equation (18),
given by:

f0(η) = 1 − e−η + S, θ0(η) = e−η , φ0(η) = e−η .

5. Results and Discussion

5.1. Validation of Results

To confirm the accuracy of the SQLM used in this study, the values of the skin friction
−( f ′′(0) + λ

2 ( f ′′(0))2) are compared against the MATLAB bvp4c solver results and the
homotopy analysis method results obtained by Nadeem and Hussain [40] and Amjad
et al. [45]. Considering the values GT = GC = 0, Equation (11) reduces to the problem by
Amjad et al. [45], which is given by:

f ′′′ + f f ′′ − 2 f ′2 + λ f ′′ f ′′′ − M2 f ′ = 0, (20)

subject to boundary conditions:

f (0) = −S, f ′(0) = 1, f ′(∞) → 0. (21)

Using N = 40 collocation points, η∞ = 5.0, the MATLAB SQLM algorithm for solving
Equation (20) involves iteratively solving the following recursive sequence:⎡⎢⎢⎢⎢⎣

D0,0 D0,1 · · · D0,N−1, D0,N

A

DN,0 DN,1 · · · DN,N−1 DN,N
0 0 · · · 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

fs+1(η0)

Fs+1

fs+1(ηN−1)
fs+1(ηN)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0

Rs

1
−S

⎤⎥⎥⎥⎥⎦, (22)

where A = a0,sD3 + a1,sD2 + a2,sD + a3,s, Fs+1 = [ fs+1(η1), fs+1(η2), · · · , fs+1(ηN−3),
fs+1(ηN−2)]

T and Rs = −2F′
s ◦ F′

s + Fs ◦ F′′
s ) + λF′′

s ◦ F′′′
s . Performing 20 iterations, the

results obtained for −( f ′′(0) + λ
2 ( f ′′(0))2) are displayed in Table 1.

Table 1 displays the computed values of the skin friction coefficient compared against
the results by Amjad et al. [45] for different values of λ, S and M. A good match of the
results is observed. The accuracy of the SQLM was validated by a direct comparison with
the reported results.

Considering GT = GC = 0 = M = 0, Equation (11) reduces to the problem by Nadeem
and Hussain [40], which can be solved using MATLAB’s bvp4c solver by first using the
following substitutions:
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y(1) = f , y(2) = f ′, y(3) = f ′′ (23)

f ′′′ = y(3)′ = 2(y(2))2 − y(1)y(3)
(1 + λy(3))

(24)

and the boundary conditions are given as ya(1) + S, ya(2)− 1, yb(2). The three first-order
equations are coded in the MATLAB’s bvp4c solver with the function name “odeBVP”, and
with “odeBc” handling the boundary conditions. Choosing the interval of integration to
[0, 40], the solutions from the function “bvp4c” are given by:

s o l = bvp4c (@odeBVP , @odeBc , s o l i n i t , opt ions ) .

A comparison of the SQLM skin friction coefficient values against those from MATLAB’s
bvp4c routine and the results by Nadeem and Hussain [40] is shown in Table 2. A perfect
agreement was observed.

Table 1. Table of present values of
√

2ReCf compared against published results for varying values of
λ, S and M.

−( f ′′(0) + λ
2 ( f ′′(0))2)

λ S M Amjad et al. [45] SQLM

0.1 0.2 2.0 1.754213 1.754213105760364
0.2 0.2 2.0 1.678675 1.678675073146794
0.3 0.2 2.0 1.579827 1.578533717157394
0.1 0.1 2.0 1.799249 1.799249869955796
0.1 0.2 2.0 1.754213 1.754213105760364
0.1 0.3 2.0 1.710489 1.710489423953702
0.1 0.2 0.1 1.201556 1.201559983439274
0.1 0.2 0.2 1.237223 1.237224345281889
0.1 0.2 0.3 1.271816 1.271816653083256

Table 2. Table of present values of
√

2ReCf compared against MATLAB’s bvp4c results for selected
values of λ and S = 0.1.

−( f ′′(0) + λ
2 ( f ′′(0))2)

λ Nadeem and Hussain [40] MATLAB’s bvp4c SQLM

0.0 1.32930 1.329302736062721 1.329308462412963
0.1 1.29801 1.298017071294807 1.298022829158239
0.2 1.26310 1.263103796098337 1.263109548733657
0.3 1.22276 1.222776617114427 1.222781418705920

5.2. Results

The SQLM algorithm was implemented using MATLAB R2022b software. For all the
numerical results, unless otherwise stated, the default parameters considered are: N = 60,
M = 0.1, GT = 0.1, λ = 0.3, GC = 0.1, Nt = 0.1, Nb = 0.1, Pr = 0.5, δ = 0.2, S = 0.0,
Kr = 0.1, Sc = 1.0. The convergence and accuracy of the spectral quasi-linearization
method were verified using the solution error norms and residual errors, respectively. The
solution error norms, defined as the difference between values of successive iterations are
denoted by [46]:

Err[F(η)] = ||Fs+1(η)− Fs(η)||∞, Err[Θ(η)] = ||Θs+1(η)− Θs(η)||∞, Err[Φ(η)] = ||Φs+1(η)− Φs(η)||∞.

The residual error gives a measure of the extent to which the SQLM solution approximates
the true solution. The residual L∞ norms are given by Alharbey et al. [47] as:

Res( f ) = || f ′′′ + f f ′′ − 2 f ′2 + λ f ′′ f ′′′ − M2 f ′ + 2GTθ + 2GCφ||∞,

Res(θ) = ||(1 + (4/3)Rdθ′′ + Pr( f θ′ − f ′θ + Nbφ′θ′ + Ntθ
′2 + δθ)||∞,

Res(φ) = ||φ′′ + Sc( f φ′ − f ′φ − Krφ) + (Nt/Nb)θ
′′||∞,
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Figure 2a reveals that the SQLM converges after only five iterations with a solution
based error of order ≈ 10−10. Additionally, after three iterations, the SQLM achieves an
accuracy of order ≈ 10−9, as shown in Figure 2b.
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Figure 2. Error graphs of f (η), θ(η) and φ(η).

Figures 3–5 display the effects of the magnetic parameter (M), suction/injection
parameter (S) and the Williamson parameter (λ), respectively, on the fluid velocity profiles.
Figure 3 shows that the fluid velocity is depressed as the magnetic parameter is increased.
Physically, the fluid velocity drops due to the resistive Lorentz force, which is induced by
the magnetic parameter. It is depicted in Figure 4 that the Williamson nanofluid velocity
profiles are depressed when the suction parameter is increased. Additionally, it is revealed
in Figure 5 that there is an inverse relationship between the fluid velocity distribution and
the non-Newtonian Williamson parameter. An increase in the values of λ causes a decrease
in the fluid movement and reduces the boundary layer thickness.
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Figure 3. Influence of M on the nanofluid velocity.

The influences of the Prandtl number (Pr), Brownian motion parameter (Nb), thermal
Grashof parameter (GT) and thermal radiation parameter (Rd) on the Williamson nanofluid
dimensionless temperature (θ) are depicted in Figures 6–9, respectively. It is displayed in
Figure 6 that the fluid temperature and thermal boundary layer are reduced as the Prandtl
number increases. The Prandtl number can be viewed as the ratio of momentum to thermal
boundary layers. Physically, a high Prandtl number means a small thermal boundary
layer. It is revealed in Figure 7 that an increase in the values of the Brownian motion
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parameter increases the fluid temperature profile. An increase in the Brownian motion
parameter results in an increased kinetic energy of the Williamson nanoparticles, and hence,
a temperature increase. Figure 8 depicts that the fluid temperature is depressed as the
thermal Grashof number is enhanced. Essentially, the Grashof number signifies the ratio of
buoyancy to viscous forces. Increasing GT results in an addition of more thermal energy in
the fluid molecules, which in turn increases the fluid local heat transfer rate. The thermal
boundary layer is reduced, and hence, the temperature profiles decrease. It is shown in
Figure 9 that temperature is an increasing function of the thermal radiation parameter. The
effect of increasing the thermal radiation parameter is thickening the thermal boundary
layer, and hence, the temperature profiles are increased.
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Figure 4. Influence of S on the nanofluid velocity.
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Figure 5. Influence of λ on fluid velocity.

Figure 10 portrays the influence of the Schmidt number (Sc) on the Williamson nanopar-
ticle concentration. Sc can be defined as the ratio of momentum diffusivity and mass diffu-
sivity. High values of Sc corresponds to a weaker solute diffusivity and the concentration
distribution and solute boundary layer decrease as a consequence. The fluid dimensionless
concentration profiles are depressed when the chemical reaction parameter is increased as
seen in Figure 11. Physically, when the chemical reaction parameter is increased, quite a
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number of solute molecules will undergo chemical reaction, and hence, the reduction in
the concentration. The influence of the mass Grashof number (GC) on the concentration
is displayed in Figure 12. GC relates species buoyancy force to the viscous hydrodynamic
force. Increasing GC causes an enhancement of the concentration gradient, which in turn
boosts the buoyancy effect. A resulting induced flow will cause a decrease in concentration,
and hence, a decrease in the concentration profile, as depicted in Figure 12.
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Figure 6. Influence of Pr on fluid temperature.
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Figure 7. Influence of Nb on fluid temperature.

Table 3 displays the effects of all the pertinent thermo-physical parameters involved in
the current problem on the skin friction, Nusselt number and Sherwood number. The skin
friction coefficient upsurges as the values of injection parameter, Prandtl number, magnetic
parameter, Brownian motion parameter and Schmidt number are increased. The fluid flow
is improved by the functioning magnetic field regarding the Williamson nanofluid, and
thus, increases the surface friction. The increase of

√
2ReCf with an increasing Prandtl

number is attributed to increased fluid momentum. The opposite trend is observed when
the Williamson fluid parameter, mass Grashof number, thermal Grashof number, thermal
radiation parameter, thermophoresis parameter, heat generation parameter and chemical
reaction parameter are increased.
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Figure 8. Influence of GT on fluid temperature.
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Figure 9. Influence of Rd on fluid temperature.
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Figure 10. Influence of Sc on fluid concentration.
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Figure 11. Influence of Kr on fluid concentration.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
C

 = 0.1

G
C

 = 0.3

G
C

 = 0.5

G
C

 = 0.7

2 2.5 3 3.5

0.1

0.2

0.3

Figure 12. Influence of Gc on fluid concentration.

It is also noted that the mass Grashof number and the thermal Grashof number are the
only parameters whose increment enhances the Nusselt number. Increasing the values of
the Williamson fluid parameter, injection parameter, magnetic parameter, Prandtl number,
thermal radiation, Brownian motion parameter, thermophoresis parameter, heat generation
parameter, Schmidt number and chemical reaction parameter suppresses the heat transfer
rate. It is noted that Nusselt number is a decreasing function of Nb and Nt. Physically,
the effects of both Brownian motion and themorphoresis effects move the Williamson
nanoparticles away from the stretching sheet sheet, intensifying the the diffusion of the
nanoparticles into the boundary layer, and hence, causing a decrease in the Nusselt number.

The Sherwood number is improved as the values of mass Grashof number, thermal
Grashof number, thermal radiation parameter, Brownian motion parameter, heat generation
parameter, Schmidt number and chemical reaction parameter are increased and depreci-
ates as the Williamson fluid parameter, injection parameter, magnetic parameter, Prandtl
number and thermophoresis parameter are increased. The Schmidt number is the relative
effectiveness of the momentum and mass transport by diffusion in the hydrodynamic
and species boundary layers. An increase in Sc will result in an increase in the Sherwood
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number. An increased chemical reaction parameter means there will be more interaction
of species concentration with the momentum boundary, and hence, an increase in the
Sherwood number.

Table 3. The numerical values of the skin friction coefficient, Nusselt number and Sherwood number
for all the thermo-physical parameters.

λ S M Pr GC GT Rd Nb Nt δ Sc Kr
√

2ReCf − Nux√
Rex

− Shx√
Rex

0.1 0.2 2.0 0.5 0.1 0.1 0.1 0.5 0.5 0.1 1.0 0.1 1.776767 0.308282 0.700530
0.3 1.706494 0.295463 0.687057
0.9 1.608996 0.169515 0.539204

0.1 0.1 1.730004 0.323907 0.736618
0.2 1.776768 0.308282 0.700530
0.3 1.824988 0.294009 0.665454

0.2 0.1 1.174219 0.434167 0.794308
0.2 1.213171 0.426083 0.787275
0.3 1.251027 0.418169 0.780543

2.0 0.1 1.771939 0.147223 0.810761
0.2 1.773217 0.191519 0.780377
0.3 1.774461 0.233031 0.751949

0.5 0.3 1.635586 0.347227 0.724385
0.6 1.430563 0.391337 0.757335
0.9 1.232356 0.424697 0.786362

0.1 0.3 1.474263 0.368464 0.735159
0.6 1.246002 0.419482 0.777179
0.9 1.027907 0.454621 0.811112

0.1 0.3 1.470957 0.273691 0.724148
0.5 1.468421 0.248889 0.741101
0.7 1.466412 0.230255 0.753849

0.1 0.1 1.390481 0.316343 0.032976
0.3 1.461652 0.312301 0.593189
0.5 1.474263 0.308282 0.700530

0.5 0.1 1.491310 0.358320 0.807764
0.3 1.482646 0.324544 0.753061
0.5 1.474263 0.308282 0.700530

0.1 0.0 1.477366 0.382548 0.658192
0.1 1.474263 0.308282 0.700530
0.2 1.470240 0.198753 0.756672

0.1 0.6 1.446575 0.322304 0.458305
0.8 1.461864 0.314201 0.587691
1.0 1.474263 0.308282 0.700530

1.0 0.2 1.479727 0.303787 0.778334
0.4 1.488552 0.297958 0.906974
0.6 1.495533 0.294169 1.015232

6. Conclusions

In this manuscript, the spectral quasi-linearization method was applied to numerically
analyze the magnetoxhydrodynamics Williamson nanofluid flow over an exponentially
stretching surface with chemical reaction and thermal radiation nanofluid flow. A com-
parison of the skin friction coefficient results obtained from MATLAB’s bvp4c solver and
published work confirmed that the method is reliable for solving the current problem. The
key findings from the study are as follows:
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1. The dimensionless velocity ( f ′(η)) diminishes as the values of the magnetic parameter
are increased from 0 to 1.2;

2. The dimensionless temperature (θ(η)) is an increasing function of 0.1 ≤ Nb ≤ 1.6 and
0.0 ≤ Rd ≤ 0.9;

3. The dimensionless concentration (φ(η)) decreases for 0.5 ≤ Sc ≤ 0.8 and 0.1 ≤ Kr ≤ 0.7;
4. The skin friction coefficient increases as M(0.1 ≤ M ≤ 0.3) and Nb(0.1 ≤ Nb ≤ 0.5)

increase and depressed for increased values of Nt(0.1 ≤ Nt ≤ 0.5);
5. The Nusselt number diminishes as M(0.1 ≤ M ≤ 0.3), Nb(0.1 ≤ Nb ≤ 0.5) and

Nt(0.1 ≤ Nt ≤ 0.5) are increased;
6. The Sherwood number decreases as M(0.1 ≤ M ≤ 0.3) and Nt(0.1 ≤ Nt ≤ 0.37)

increase and decreases as Nb(0.3 ≤ Nb ≤ 0.7) increases.

Author Contributions: Conceptualization, H.M. and S.S.; Methodology, H.M.; Validation, S.S.;
Formal analysis, H.M.; Investigation, S.S.; Writing—original draft, H.M. and S.S.; Writing—review &
editing, H.M. and S.S.; Supervision, S.S.; Funding acquisition, S.S. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

x, y Cartesian coordinates [m]
u, v Velocity components in the x and y directions, respectively [m s−1]
U0 Reference velocity [m s−1]
βT Thermal expansion coefficient
βC Concentration expansion coefficient
B0 Magnetic field strength [NmA−1]
Cf Skin friction coefficient
Pr Prandtl number
M Magnetic parameter [Te]
T Fluid temperature [T]
Cw Concentration of nanoparticles at the surface [mol m−3]
C Concentration of nanoparticles [mol m−3]
Uw Velocity at the wall [m s−1]
Q Heat source
Kr Chemical reaction parameter [Ms−1]
T0 Reference temperature [K]
C0 Reference concentration [mol m−3]
Rd Thermal radiation parameter
qr Radiative heat flux [J]
S Suction/injection parameter
θ(η) Dimensionless temperature
φ(η) Dimensionless concentration
Nt Thermophoretic parameter
Nux Local Nusselt number
Shx Local Sherwood number
Tw Surface temperature [K]
T∞ Ambient temperature [K]
f Dimensionless stream function
g Acceleration due to gravity [m s−2]
Sc Schmidt number
DB Brownian diffusion coefficient [m2 s−1]
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DT Thermophoresis diffusion coefficient [m2 s−1]
μ∞ Infinite viscosity [Nsm−2]
(ρcp) f Heat capacity of the nanofluid [Jm−3K−1]
Rex Reynolds number
f ′(η) Velocity profile
η Dimensionless similarity variable
σ Electrical conductivity [Sm−1]
Γ Positive time constant
α Thermal diffusivity [m−2 s−1]
(ρcp)p Heat capacity of the nanoparticles [Jm−3 K−1]
ν Kinematic viscosity [m2 s−1]
ρ f Fluid density [kg m−3]
λ Williamson fluid parameter
GrT Thermal Grashof number
GrC Concentration Grashof number
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Abstract: Precise and dependable wind speed forecasting (WSF) enables operators of wind turbines
to make informed decisions and maximize the use of available wind energy. This study proposes a
hybrid WSF model based on outlier correction, heuristic algorithms, signal decomposition methods,
and DLinear. Specifically, the hybrid model (HI-IVMD-DLinear) comprises the Hampel identifier
(HI), the improved variational mode decomposition (IVMD) optimized by grey wolf optimization
(GWO), and DLinear. Firstly, outliers in the wind speed sequence are detected and replaced with the
HI to mitigate their impact on prediction accuracy. Next, the HI-processed sequence is decomposed
into multiple sub-sequences with the IVMD to mitigate the non-stationarity and fluctuations. Finally,
each sub-sequence is predicted by the novel DLinear algorithm individually. The predictions are
reconstructed to obtain the final wind speed forecast. The HI-IVMD-DLinear is utilized to predict
the real historical wind speed sequences from three regions so as to assess its performance. The
experimental results reveal the following findings: (a) HI could enhance prediction accuracy and
mitigate the adverse effects of outliers; (b) IVMD demonstrates superior decomposition performance;
(c) DLinear has great prediction performance and is suited to WSF; and (d) overall, the HI-IVMD-
DLinear exhibits superior precision and stability in one-to-four-step-ahead forecasting, highlighting
its vast potential for application.

Keywords: wind speed forecasting; Hampel identifier; improved variational mode decomposition;
grey wolf optimization; DLinear

MSC: 65-04

1. Introduction

The finite and non-renewable nature of fossil fuels has rendered the development
and utilization of renewable energy an indispensable choice [1]. A report published in
2021 stated that the cumulative installed capacity of wind farms globally skyrocketed
to 744 GW [2]. However, the inherent volatility and instability of wind energy led to
frequent fluctuations in wind power, thereby causing continuous oscillations in grid voltage
and frequency, which severely impairs power quality. Precise and dependable WSF are
important for all aspects of wind power systems, including electricity market operation,
energy storage system management, network planning, etc.

Recently, numerous forecasting methods have been developed to achieve WSF based
on different time scales. These methods primarily include physical methods, statistical
methods, machine learning methods, and neural network models. Physical methods
rely on physical factors such as altitude and atmospheric pressure to construct models
to predict the changes in wind speed. However, most physical factors are difficult to
obtain in the vast majority of situations. Additionally, the construction and the calculation
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of physical models are complex, which makes it difficult to obtain accurate WSF in a
short period [3–5]. Luckily, statistical methods such as the autoregressive (AR) [6] and
autoregressive integrated moving average (ARIMA) methods [7,8] operate at a fast pace.
These models were constructed mainly based on historical wind speed operational data.
However, statistical methods can only deal with linear data, but not with nonlinear wind
speed series. In addition, machine learning methods such as XGBoost [9], support vector
regression (SVR) [10,11], and least squares support vector machine (LSSVM) [12] can
identify more complex nonlinear relationships in sequences with good generalization
abilities. Usually, the predictive performance of machine learning models on large datasets
is limited. Compared with conventional machine learning models, neural networks are
favorite due to their unique fully connected structure, which promises better prediction
accuracy on large datasets. However, neural networks have not fully considered the
temporal properties of wind speed sequences. There exists a loss of temporal information
in wind speed sequences since neural networks treat time series as unordered and assign
equal weight to all time points [13–15].

To address this issue, the recurrent neural network (RNN) was proposed. The self-
connection among hidden layers in the RNN enables the retention of prior states, which
are then incorporated into the current step. This mechanism facilitates the consideration
of temporal information during the processing of sequential data [16]. It has two main
variations: long short-term memory (LSTM) [17–19] and gated recurrent unit (GRU) [20–22].
LSTM resolves the problem of gradient vanishing and exploding encountered in RNN by
introducing gate mechanisms and a special memory cell structure. Satyam et al. designed a
wind speed prediction method with LSTM [17]. GRU is an improvement of LSTM based on
a simpler memory cell structure with only two gates (reset gate and update gate) than LSTM.
GRU outperforms LSTM in terms of computational efficiency and storage space [20–22].
Syu et al. introduced a WSF model based on GRU to provide more precise WSF than RNN
and LSTM [23]. Although LSTM and GRU have shown good performance, they usually
only model short-term dependencies, while the transformer can handle longer sequences
of dependencies since it does not have a recurrent structure and can simultaneously view
the entire sequence at all time steps. Furthermore, the self-attention mechanism of the
transformer can capture local and global dependencies in a sequence, which can better
handle key information in the sequence [24–26]. Wu et al. devised a multi-step WSF model
based on the transformer, treating the problem as a sequence-to-sequence mapping. The
transformer-based model has better prediction performance than the GRU [26]. However,
Zeng et al. indicated that the comparatively elevated long-term forecasting accuracy of
the transformer does not substantially correlate with its capability to extract temporal
dependencies, and proposed a structurally simple DLinear model with better performance
than the complex transformer model in most cases [27]. The effectiveness of WSF based on
the transformer model should be reevaluated. Currently, the transformer model is widely
employed in the field of WSF, yet its effectiveness in this domain is questionable. Its intricate
structure does not improve the forecasting accuracy. To validate this proposition about
the transformer, this study utilizes the DLinear as the foundational model for prediction,
considering the transformer model as a comparable model. Furthermore, another reason
to adopte the DLinear mode is its remarkably simple structure, which has exceptional
forecasting accuracy.

Numerous studies have shown that, because of the non-stationarity and strong volatil-
ity of wind speed sequences, models with decomposition methods perform better in
predicting wind speed than those without decomposition [25,28–30]. Decomposition-based
models usually decompose the wind speed sequence into multiple sub-sequences, then
forecast each sub-sequence, and then the ultimate prediction can be obtained by aggregat-
ing the results. Currently, the popular decomposition methods include wavelet transform
(WT) [31,32], empirical mode decomposition (EMD) [33,34], and ensemble empirical mode
decomposition (EEMD) [35,36]. Zhang et al. decomposed the initial wind speed sequence
into finite sub-sequences by the complete ensemble empirical mode decomposition with
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adaptive noise (CEEMDAN) algorithm [37]. Subsequently, prediction models were ap-
plied to each sub-sequence to make individual forecasts. On the other hand, Pan et al.
introduced the VMD method to decompose wind speed signals and exploit their latent
information for more accurate forecasting results [38]. Li et al. decomposed ship-radiated
noise signals, extracting feature information of different frequencies and amplitudes with
successive variational mode decomposition (SVMD) [39]. Furthermore, VMD displays
superior performance in decomposing non-stationary signals when compared to EMD
and its improved methods [40]. Nevertheless, VMD lacks adaptability because critical
parameters, e.g., the number of decomposition modes and regularization, require manual
adjustment. The choice of these two parameters can impact the decomposition results
and performance significantly. Moreover, the grey wolf optimization (GWO) algorithm
exhibits superior optimization capabilities compared to renowned algorithms including
particle swarm optimization, gravitational search algorithm, and evolution strategy [41].
Consequently, in this paper, the hyperparameters of VMD will be optimized by the GWO
algorithm, thereby addressing the challenge of selecting the appropriate hyperparameters
of VMD.

Additionally, there are few researches focusing on detecting and correcting outliers
in the original wind speed sequence. It is reported that the predictive accuracy could be
enhanced by rectifying outliers within the original sequence [42]. To detect and rectify
outliers in the original wind speed sequence, the HI algorithm [43] is introduced to enhance
the final accuracy of wind speed prediction.

In recent years, various metrics such as entropy [44] and correlation dimension [45]
have been extensively employed in signal analysis across various research domains. Li et al.
introduced an innovative technique known as simplified coded dispersion entropy (SCDE)
to identify nonlinear dynamic transitions in signals [44]. A novel approach called FuzzDEα
was developed to detect dynamic changes in time series data for signal analysis and fault
diagnosis in bearings [46]. To assess the level of optimization of the hyperparameters
of VMD by GWO, the envelope entropy (EE) [47] as the fitness function for GWO was
employed. The magnitude of the EE serves as a criterion to evaluate the quality of the
hyperparameters obtained by GWO. The magnitude of SampEn reflects the complexity level
of a time series. If the series exhibits higher complexity, the corresponding SampEn value
will be larger; conversely, a lower complexity will result in a smaller SampEn value [48].
Therefore, in this study, the SampEn will be utilized to assess the effectiveness of the HI.

Synthetically speaking, to achieve high accuracy and stability in WSF, a hybrid model is
proposed based on outlier correction, heuristic algorithms, signal decomposition methods,
and DLinear. The model begins by employing the HI to detect and rectify outliers in the
original wind speed sequence. Subsequently, the GWO algorithm is utilized to optimize
the hyperparameters of the VMD. Then, employing the VMD algorithm based on the
optimal hyperparameters, the sequence processed by HI is decomposed into several sub-
sequences. Lastly, each sub-sequence is forecasted by the DLinear algorithm individually.
The final wind speed forecast is obtained by reconstructing the predictions. The primary
contributions of this study are as follows:

(1) To detect and rectify outliers in the wind speed sequence, an outlier detection tech-
nique based on the Hampel identifier (HI) is utilized to enhance the accuracy of WSF.

(2) To optimize the hyperparameters of VMD, the variational mode decomposition is
improved by the grey wolf optimization (GWO). The decomposition of the complex
non-stationary windspeed sequence with the improved VMD (IVMD) algorithm can
reduce the non-stationarity and the complexity of the sequence, thus improving the
prediction stability and accuracy.

(3) DLinear is introduced as a fundamental prediction model including only one decom-
position scheme and two linear networks. Its performance is significantly superior to
both LSTM and the currently popular transformer models.
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(4) The proposed method combining HI and IVMD with DLinear is utilized for the
multi-step WSF of three real windspeed sequences. The performance of the HI-IVMD-
DLinear is validated with comparative experiments from various aspects.

The rest of the paper is organized as follows: In Section 2, HI, GWO, VMD, DLinear,
and the proposed method are described in detail. Section 3 elucidates the experimental
configuration and elaborates, based on multiple evaluation criteria, on the performance
of the proposed model. Section 4 provides a detailed discussion on the computational
efficiency and the complexity of the HI-IVMD-DLinear. Finally, a concise conclusion is
stated in Section 5.

2. Materials and Methods

2.1. Hampel Identifier

Hampel identifier (HI) is a robust algorithm to detect and replace outliers in datasets [43].
This method identifies any value that falls outside of a certain distance window from the
median as an outlier and replaces it with the median value within that window. For dataset
D = [y1, y2, . . . , yn], let the window size be w = 2k + 1. Typically, window sizes of 5 or
7 are commonly used. The evaluation parameter α is set as 0.6745. By utilizing the median
absolute deviation (MAD) and α, the standard deviation σi can be determined [49].

The HI method is composed of the following steps:

(1) Computing median, MAD, and standard deviation: For each data point, the median
and the MAD of the neighboring points within the window size are calculated, and
then the standard deviation based on the median and MAD can be computed as [42]:

mi = median(yi−n, yi−n+1, . . . , yi, . . . , yi+n−1, yi+n) (1)

MADi = median(|yi−n − mi|, |yi−n+1 − mi|, . . . , |yi − mi|, . . . , |yi+n−1 − mi|, |yi+n − mi|) (2)

σi = MADi/α (3)

(2) Detecting outlier points: A sample point is considered as an outlier if its value
satisfies [50]:

|yi − mi| > 3σi (4)

(3) Substituting outlier points: For the identified outlier points, the median of the window
is used for substitution.

(4) Performing steps (1)–(3) for each sample point.

The HI method has more advantages over other similar methods in terms of robustness
to outliers. Additionally, the HI method is highly efficient in computation, making it suitable
for large-scale datasets. Processing the dataset with HI can effectively correct its outliers
and enhance the accuracy in WSF.

2.2. Variational Mode Decomposition

The VMD is an adaptive decomposition algorithm [51]. Compared to traditional
modal decomposition methods, the VMD could avoid aliasing and is more robust to noise.

The VMD method is capable of decomposing complex raw sequences into several
relatively simple intrinsic mode functions (IMFs). The VMD is composed of the follow-
ing steps:

(1) Construct the variational problem: It is essential for the variational problem to mini-
mize the sum of central frequencies of the IMFs [51]:

min
{uk},{ωk}

{
K

∑
k=1

‖ ∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt ‖2

2

}
(5)
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s.t.
K

∑
k=1

uk(t) = f (t) (6)

where uk and ωk are the k−th IMF and its corresponding center frequency, respectively;
δ(t) is Dirac function; f (t) is the original input signal; and K is the number of IMFs.

(2) Transform variational problems: To make it easier to solve the variational problem
above, a Lagrange function is introduced [51]:

L({uk}, {ωk}, λ) = α ∑
k

∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt2

2

+ f (t)−Σ
k

uk(t)
2
2 + λ(t), f (t)− ∑

k
uk(t)

(7)

where α represents the penalty factor, and λ represents the Lagrange multiplier.

(3) Solve the variational problem: To achieve the best solution to the variational problem,
the decomposition signal uk and their corresponding center frequencies ωk were up-
dated by the alternate direction method of multipliers (ADMM). The cyclic updating
rules and termination conditions for uk and ωk are as follows [51]:

∑
k

un+1
k − un

k
2
2

un
k

2
2

< ε, n < N (8)

un+1
k (ω) =

f (ω)− k
∑

i �=k
un

i (ω)+ λn(ω)
2

1 + 2a
(
ω − ωn

k
)2 (9)

ωn+1
k =

∫ ∞
0 ω
∣∣un

k (ω)
∣∣2dω∫ ∞

0

∣∣un
k (ω)

∣∣2dω
(10)

where f (ω), un
i (ω), and λn(ω) denote the Fourier transform of f (t), un

i (t), and λn(t), re-
spectively; and n and N are the number and the maximal number of iterations, respectively.

2.3. Grey Wolf Optimization

As a novel heuristic intelligent algorithm, Grey wolf optimization (GWO) [41] seeks
the best solution based on the hunting characteristics of wolf packs and the social hierarchy
system of grey wolves. There are four social ranks within a wolf pack: the alpha wolf (α),
the wolves that obey the alpha (β), the wolves that obey the top two wolves (δ), and the
wolves that obey higher-ranked wolves (ω). Their hunting process is:

(1) Wolves surround their prey:

D =
∣∣C · Yp(i)− Y(i)

∣∣ (11)

Y(i + 1) = Yp(i)− AD (12)

where i denotes the current iteration, and D represents the distance between Yp(i) (prey)
and Y(i) (grey wolves). A and C (the coefficient vector) can be represented as:

A = 2br1 − b (13)

C = 2br2 (14)
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where b is linearly diminished from 2 to 0 throughout the iterations; and r1 and r2 represent
vector compositions comprising random elements, with the values of these elements
ranging from 0 to 1. The grey wolves change their positions according to Equation (12).

(2) Capturing prey: As the location of prey cannot be determined, the optimal strategy
cannot be identified either. Therefore, assuming that the α wolf is closest to the
prey, followed by β and δ wolves, their distances from the prey are calculated with
Equation (11). By iteratively updating the positions of these three types of wolves
with Equation (12), the other wolves will also gradually approach the prey. Ultimately,
the position of the α wolf is considered to be the location of the prey, leading to the
optimal solution.

Dα = |C1Yα − Y| (15)

Dβ =
∣∣C2Yβ − Y

∣∣ (16)

Dδ = |C3Yδ − Y| (17)

Y1 = Yα − A1Dα (18)

Y2 = Yβ − A2Dβ (19)

Y3 = Yδ − A2Dδ (20)

Y(i + 1) =
Y1 + Y2 + Y3

3
(21)

where Yj(j = α, β, δ) represents the position of the corresponding individual.

2.4. VMD Optimized by GWO

In practical applications, the hyperparameters K and α of VMD are directly related
to the quality of the decomposition results and are often difficult to determine, although
the VMD technique exhibits exceptional decomposition capabilities for wind speed
sequences. An appropriate value of K can fully decompose the modal sequence, circum-
venting the emergence of mode-blending issues. α determines the accuracy of signal
reconstruction. Therefore, appropriate K and α are crucial for the wind speed sequence
decomposition process.

Therefore an improved VMD (IVMD) based on the GWO is proposed. The IVMD
method determines K and α with the GWO. The range of K is set as [3, 12] and that of α
is set as [0, 2000]. When the decomposed signal has less noise, the EE is smaller, and vice
versa. Therefore, the minimal EE Ep is utilized as the fitness function for the GWO.

Ep = −
N

∑
i=1

pilgpi (22)

pi =
c(i)

N
∑

i=1
c(i)

(23)

c(i) =
√

x2(i) + x′2(t) (24)
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where N is the length of the signal, x(i) represents the value of the i−th sample point of
the decomposed sequence (IMF), and x′(i) represents the demodulated result of Hibert of
x(i). The minimal envelope entropy is:

min
{

Ep
}
= min

{
Ep1, Ep2, . . . , EpK

}
(25)

where Epj represents the value of the EE of the j−th IMF.
The flowchart of IVMD is shown in Figure 1, and the steps of IVMD are as follows:

(1) Initialize the search space, encompass the ranges of K and α. Additionally, initiate
the parameters of the grey wolf optimization algorithm, such as population size,
maximum number of iterations, and so forth.

(2) Generate the initial population of grey wolves randomly within the provided search
space. For each grey wolf denoted by i = 1, 2, . . . , N (where N represents the total
number of grey wolves), the position Yi is initialized as (Ki, αi).

(3) Calculate the envelope entropy of each grey wolf with Equation (22). The positions of
the three grey wolves with the lowest envelope entropy values are updated by Yα, Yβ,
and Yδ, respectively. Yα with the best fitness value is recognized as the optimal solution.

(4) Compute the distance between the remaining grey wolf individuals (ω) and the top
three grey wolf individual locations Yα, Yβ and Yδ according to Equations (15)–(17).

(5) According to Equations (18)–(21), update the position of individual grey wolves.
(6) If the iteration of GWO reaches maximum, the algorithm ends and outputs an optimal

solution Yα; otherwise, return to (3) and continue the optimization search.

Figure 1. Flowchart of IVMD.

2.5. DLinear

DLinear is a novel high-precision time-series forecasting model proposed by Zeng et al.
in 2022 [27]. Despite its simple structure, consisting solely of a decomposition scheme
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and two linear networks, its predictive accuracy exceeds that of the more complex trans-
former model.

During the prediction process, the DLinear first decomposes the original sequence
X into a trend component Xt and a residual one Xr(Xr = X − Xt). Subsequently, two
single-layer linear networks are utilized to forecast each of these decomposed compo-
nents, respectively.

The foundational architecture of DLinear is depicted in Figure 2a. The output results
of the two single-layer linear networks are combined to yield the final predicted outcome
X̂ [27].

Hr = WrXr (26)

Ht = WtXt (27)

X̂ = Ht + Hr (28)

where Hr and Ht are the output values of the single-layer linear networks for the residual
and trend components, respectively. Similarly, Wr and Wt represent the single-layer linear
networks for the residual and the trend components, as depicted in Figure 2b.

Figure 2. Illustration of DLinear. (a): architecture of DLinear; (b): architecture of single-layer
linear networks.

2.6. Framework of the Proposed Model

The HI-IVMD-DLinear model is designed to achieve accurate multi-step WSF. The
basic framework of this hybrid WSF model is illustrated in Figure 3, which mainly consists
of three steps as follows:
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Figure 3. The basic framework of HI-IVMD-DLinear model.

Step 1: Outlier detection and replacement based on HI. Due to equipment malfunctions,
human factors, and other reasons, it is inevitable that the collected wind speed data will
contain outliers during the data collection process. The HI method is used to detect and
replace outliers in the dataset, which is beneficial to improve the accuracy of WSF.

Step 2: Decomposition of wind speed sequences. The sequence processed by the
HI is considered as input for the VMD. The GWO is then employed to optimize the
hyperparameters K and α of the VMD with the minimal envelope entropy as the fitness
function. Based on the optimized values of K and α, the VMD decomposes the sequence
into K IMFs.

Step 3: Prediction with DLinear. The DLinear model is constructed to predict each
of the K IMFs obtained from the decomposition. Subsequently, the predicted results are
summed to derive the ultimate wind speed prediction.

3. Results

3.1. Design of the Experiment
3.1.1. Data Source

The historical wind speed datasets collected from three regions in China serve as
the experimental dataset. These three regions are, respectively, located in Shijiazhuang,
Hebei Province; Lanzhou, Gansu Province; and Nanjing, Jiangsu Province. Their latitudes
and longitudes are significantly different. Lanzhou and Shijiazhuang are situated in the
northwestern and northern inland regions, respectively, both possessing abundant wind
energy resources. On the other hand, Nanjing is located in the southeastern coastal area
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and consistently ranks among the top in terms of offshore wind power installed capacity
nationwide. The wind speed sequences from all three regions were measured at a height of
ten meters above ground level at hourly intervals. The basic information of the three wind
speed datasets is presented in Table 1.

Table 1. Basic information of three datasets.

Dataset Time Interval Sample Size Minimum Mean Maximum Standard Deviation

Lanzhou 1 January 2021–31 March 2021 2160 0.000 1.830 6.765 1.317
Nanjing 1 August 2021–1 November 2021 2232 0.000 2.849 7.657 1.705

Shijiazhuang 1 July 2021–1 October 2021 2232 0.000 1.844 6.408 1.585

3.1.2. Evaluation Metrics

To evaluate the accuracy of the prediction methods, the mean absolute error (MAE),
root mean square error (RMSE), and mean absolute percentage error (MAPE) are employed

MAE =
1
N

N

∑
t=1

∣∣Ŷt − Yt
∣∣ (29)

RMSE =

√√√√ 1
N

N

∑
t=1

(
Ŷt − Yt

)2 (30)

MAPE =

N
∑

t=1

∣∣∣ Ŷt−Yt
Yt

∣∣∣
N

× 100% (31)

where Ŷt represents the predicted value of the wind speed, Yt represents the observed
value, and N refers to the number of test-set samples. Generally speaking, as the values of
these metrics decrease, the prediction accuracy of the model increases.

Furthermore, improvement percentage is utilized to quantitatively evaluate the pro-
posed model. PRMSE, PMAE, and PMAPE are the improvement percentages for RMSE, MAE,
and MAPE, respectively.

PRMSE =
RMSEi − RMSEj

RMSEi
× 100% (32)

PMAE =
MAEi − MAEj

MAEi
× 100% (33)

PMAPE =
MAPEi − MAPEj

MAPEi
× 100% (34)

where RMSEi, MAEi, and MAPEi represent the errors of the comparative methods, while
RMSEj, MAEj, and MAPEj represent the errors of the HI-IVMD-DLinear method. The
larger the PRMSE, PMAE, and PMAPE are, the more superior the precision of the proposed
model is.

In addition, the variance of absolute error (VAE) is introduced to assess the stability of
the model.

VAE = Var
(∣∣Yt − Ŷt

∣∣) (35)

Simultaneously, the improvement percentage of VAE is also introduced to compare
the proposed model with the comparative model.

PVAE =
VAEi − VAEj

VAEi
× 100% (36)
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where VAEi and VAEj represent the VAE of the comparative model and the proposed
one, respectively.

3.1.3. Model Development

To assess the performance of HI-IVMD-DLinear, a machine learning model, SVR, two
prevalent neural network models, namely, back propagation neural network (BPNN) and
LSTM, as well as a popular deep learning algorithm, the transformer, are incorporated as
comparative models.

The input for predicting the output values includes the true values from the previous
24 h; i.e., the time window size is 24 h. Table 2 provides the parameter settings for all
relevant models, along with the methods used to confirm these parameters. The dataset
is divided into training, validation, and testing sets at a ratio of 7:1:2. Additionally, all
models employ mean squared error (MSE) as the loss function. To optimize the weights and
enhance the prediction performance, the Adam algorithm is employed as an optimizer [52].

Table 2. Parameters of all related methods.

Methods Parameters Values

IVMD

Population size 50
Maximum iterations 30

K [3, 11]
α [0, 1000]

SVR
C [0, 10]

Epsilon [0, 1]
Gamma [0, 2]

BPNN

Dropout [0.05, 0.2]
Batchsize 64
Epochs 100
Initial lr 0.1

Hidden_units [10, 100]

LSTM

Dropout [0.05, 0.2]
Batchsize 64
Epochs 100
Initial lr 0.1

Hidden_units [10, 100]

Transformer

Dropout [0.05, 0.2]
Batchsize 64
Epochs 100
Initial lr 0.1

Model dimension [64, 256]
Feedforward dimension [128, 256]

Heads number [1, 5]
Enc_layers [1, 5]
Dec_layers [1, 5]

DLinear
Batchsize 64
Epochs 100
Initial lr 0.1

3.2. Analysis of Hampel Identifier

The performance of utilizing HI for the data cleaning of the wind speed sequence is
explored in this section. As illustrated in Figure 4, all three wind speed datasets exhibit
some outliers. Failure to clean these outliers would adversely impact the accuracy of the
final WSF. Therefore, the HI method can be utilized to handle the outliers in the wind speed
sequences. The effectiveness of the HI can generally be evaluated by calculating the sample
entropy of the sequences. The magnitude of the SampEn value reflects the complexity of
the sequence [48]. If the complexity of the sequence is greater, the SampEn value will be
larger, and vice versa. The SampEn values of the original wind speed sequences and the
HI-processed wind speed sequences are presented in Table 3. It is evident that the SampEn
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values of all three wind speed sequences are reduced after applying the HI method. It
indicates that the HI method can reduce the complexity of the original sequences.

Figure 4. Original wind speed sequences of Lanzhou, Nanjing, and Shijiazhuang.

Table 3. The SampEn value of original and HI-processed datasets.

SampEn Lanzhou Nanjing Shijiazhuang

Original sequence 1.0562 1.0230 1.0658
Sequence after HI 1.0497 0.9534 0.9570

The predictive performances of models with and without HI are also compared. Table 4
gives the forecasting accuracy of models with HI processing and without HI processing
under the three datasets. It can be observed that the improvement percentages of MAPE are
1.2316%, 2.1240%, and 2.1531% compared with the HI-IVMD-DLinear with IVMD-DLinear,
respectively. Other HI-based models also reduce the RMSE, MAE, and MAPE values.
Therfore the HI can enhance the accuracy of WSF, since HI is able to identify and rectify
outliers in the original wind speed sequence, which can efficiently mitigate the interference
caused by such outliers.
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Table 4. Improvement percentages with HI.

Dataset Model PMAE (%) PRMSE (%) PMAPE (%)

Lanzhou

HI-SVR vs. SVR 2.1206 4.1472 2.5125
HI-LSTM vs. LSTM 1.2452 3.5612 2.0106

HI-Transformer vs. Transformer 0.8921 3.5125 2.2215
HI-DLinear vs. DLinear 0.9915 1.1305 1.7683

HI-IVMD-DLinear vs. IVMD-DLinear 0.7624 1.0614 1.2316

Nanjing

HI-SVR vs. SVR 1.5125 3.8903 1.7246
HI-LSTM vs. LSTM 2.2092 5.2137 3.0165

HI-Transformer vs. Transformer 1.2875 5.1751 3.1062
HI-DLinear vs. DLinear 2.1785 2.1867 2.1554

HI-IVMD-DLinear vs. IVMD-DLinear 1.0126 1.8751 2.1240

Shijiazhuang

HI-SVR vs. SVR 3.5613 3.1451 6.1246
HI-LSTM vs. LSTM 2.5146 0.8915 4.1256

HI-Transformer vs. Transformer 1.8745 1.3271 4.6012
HI-DLinear vs. DLinear 2.0761 1.0512 3.1251

HI-IVMD-DLinear vs. IVMD-DLinear 1.5612 0.7951 2.1531

3.3. Decomposition Results

According to the augmented Dickey–Fuller (ADF) test results presented in Table 5,
the ADF statistics of the three datasets, after undergoing HI processing, are all below the
critical values at the 1%, 5%, and 10% confidence levels. Additionally, their p-values are
greater than 0.1. It is evident that the three wind speed sequences are non-stationary.
Hence, it is imperative to decompose the wind speed sequences appropriately to reduce
their complexity. The parameters of VMD are optimized by the GWO. The obtained
hyperparameters K and α for VMD on the three datasets are 4 and 1.2771, 4 and 0.4501,
5 and 0.2580, respectively.

Table 5. ADF test results.

Datasets t-Statistic p-Value 1% Level 5% Level 10% Level

Lanzhou −1.714 0.3704 −3.2334 −2.6828 −2.3674
Nanjing −1.227 0.5513 −2.8910 −2.2150 −1.9674

Shijiazhuang −1.827 0.3207 −3.3517 −2.7124 −2.4512

Taking Lanzhou as an example, the decomposition results of the wind speed sequence,
after undergoing HI processing, are illustrated in Figure 5a. IVMD decomposes the se-
quence of Lanzhou into four IMFs. Among them, IMF1 has the lowest frequency and
displays the long-term trend of the wind speed sequence. IMF2 and IMF3 belong to the
mid-frequency range signals, reflecting the fluctuations within smaller periods. IMF4
represents the high-frequency range signal. Evidently, the sequence exhibits a more regular
pattern after the IVMD decomposition.
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Figure 5. Cont.
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Figure 5. Decomposition results of the three wind speed sequences: (a) Lanzhou, (b) Nanjing, and
(c) Shijiazhuang. Res is the noise after decomposition.

3.4. Forecasting Results

The HI-processed dataset is utilized for IVMD decomposition, with the subsequent
prediction of each modal component with DLinear. Summing the predicted outcomes of
these components yields the final WSF. Specifically, during training, only the training set
should undergo decomposition, ensuring the data in the test set remain unknown. This
safeguards against the inflated accuracy resulting from test set leakage. Subsequently, the
IMFs derived from the training set decomposition are employed to train the model, while
hyperparameter selection is performed on the validation set. Finally, test is conducted
on the designated subsequence of the complete dataset. To assess the performance of the
HI-IVMD-DLinear, HI-SVR, HI-BPNN, HI-LSTM, HI-Transformer, HI-DLinear, HI-IVMD-
BPNN, HI-IVMD-LSTM, and HI-IVMD-Transformer are considered.

During the process of WSF, it is important to forecast wind speeds for multiple hours
in advance. For instance, multi-step WSF assists wind power generation companies in
accurately anticipating changes in wind speed over a specific period. This enables them
to devise more efficient power generation plans and scheduling strategies to enhance the
capacity and the efficiency of wind power generation. Therefore, the introduction of multi-
step WSF is crucial. Given the wind speed sequence {Y1, Y2, Y3, . . . , YT}, the forecasting
value for the k−th step can be calculated as

Ŷt+k = f
(

Yt, Yt−1, . . . , Yt−(w−1)

)
, t = 1, 2, . . . , T (37)

where Ŷt+k represents the predicted value at time t + k, Yt represents the observed value at
time t, and w refers to the lag order. The value of w is set as 24, in other words, the model
takes the past 24 h wind speed sequence as its input. The horizon k ranges from 1 to 4.
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3.4.1. Forecasting Accuracy

The forecasting results of three metrics for HI-IVMD-DLinear and other comparative
models are presented in Tables 6–8. In all three datasets, the HI-IVMD-DLinear model
outperforms the others in terms of MAE, RMSE, and MAPE. The HI-IVMD-DLinear exhibits
the best predictive accuracy among the comparative models and is better suitable for the
WSF task.

Table 6. Results of three evaluation metrics of multi-step-ahead prediction in Lanzhou.

Estimation
Horizon

Metric HI-SVR HI-BPNN HI-LSTM
HI-

Transformer
HI-

DLinear
HI-IVMD-

BPNN
HI-IVMD-

LSTM
HI-IVMD-

Transformer
HI-IVMD-
DLinear

1-step MAE 0.3179 0.2773 0.2689 0.2366 0.2064 0.1688 0.1213 0.0767 0.0501
RMSE 0.4116 0.3750 0.3592 0.3261 0.2582 0.2038 0.1452 0.1069 0.0641
MAPE 0.1535 0.1494 0.1362 0.1213 0.1023 0.0745 0.0700 0.0421 0.0237

2-step MAE 0.4391 0.4380 0.3345 0.3301 0.2826 0.2273 0.2025 0.1512 0.1207
RMSE 0.6031 0.5832 0.4533 0.4426 0.3779 0.3152 0.2898 0.2124 0.1578
MAPE 0.2240 0.2251 0.1785 0.1844 0.1596 0.1223 0.1065 0.0814 0.0601

3-step MAE 0.4512 0.4405 0.385 0.3816 0.3434 0.2877 0.2587 0.2223 0.1398
RMSE 0.6001 0.5813 0.5164 0.5173 0.4567 0.4045 0.3649 0.2882 0.1909
MAPE 0.2356 0.2304 0.212 0.2098 0.1799 0.1765 0.1528 0.1103 0.0687

4-step MAE 0.5240 0.5114 0.4412 0.4133 0.3713 0.3437 0.3381 0.2512 0.1666
RMSE 0.6861 0.6732 0.5942 0.5559 0.4898 0.4125 0.3538 0.3051 0.2136
MAPE 0.2523 0.2581 0.2345 0.2295 0.2034 0.2010 0.1782 0.1312 0.0839

Table 7. Results of three evaluation metrics of multi-step-ahead prediction in Nanjing.

Estimation
Horizon

Metric HI-SVR HI-BPNN HI-LSTM
HI-

Transformer
HI-

DLinear
HI-IVMD-

BPNN
HI-IVMD-

LSTM
HI-IVMD-

Transformer
HI-IVMD-
DLinear

1-step MAE 0.4463 0.4080 0.3691 0.3572 0.3295 0.1325 0.1152 0.0911 0.0705
RMSE 0.5533 0.5324 0.471 0.4694 0.4332 0.1668 0.1472 0.1253 0.0881
MAPE 0.3839 0.3082 0.292 0.2705 0.2418 0.0917 0.0792 0.0632 0.0479

2-step MAE 0.5244 0.5035 0.4785 0.4696 0.3797 0.2258 0.208 0.1717 0.1113
RMSE 0.6814 0.6615 0.6172 0.6118 0.4699 0.2989 0.2752 0.229 0.1477
MAPE 0.4356 0.4045 0.3905 0.3766 0.2557 0.1562 0.1511 0.1118 0.0773

3-step MAE 0.5724 0.5620 0.5368 0.5304 0.4531 0.2592 0.211 0.1871 0.1381
RMSE 0.7621 0.7394 0.6977 0.7005 0.6014 0.3488 0.3001 0.2624 0.1834
MAPE 0.4761 0.4300 0.4477 0.4459 0.3346 0.1825 0.1629 0.1412 0.0956

4-step MAE 0.6348 0.6034 0.5716 0.5615 0.4495 0.3071 0.2509 0.2215 0.1648
RMSE 0.8500 0.8108 0.7718 0.7457 0.6271 0.4024 0.3583 0.2918 0.2289
MAPE 0.5298 0.5009 0.4826 0.4682 0.3532 0.2206 0.2012 0.1811 0.1266

Table 8. Results of three evaluation metrics of multi-step-ahead prediction in Shijiazhuang.

Estimation
Horizon

Metric HI-SVR HI-BPNN HI-LSTM
HI-

Transformer
HI-

DLinear
HI-IVMD-

BPNN
HI-IVMD-

LSTM
HI-IVMD-

Transformer
HI-IVMD-
DLinear

1-step MAE 0.3073 0.3041 0.2697 0.2540 0.2060 0.1441 0.1277 0.0939 0.0669
RMSE 0.3937 0.3908 0.3564 0.3383 0.2847 0.2013 0.1765 0.1283 0.0861
MAPE 0.2506 0.2281 0.1935 0.1936 0.1510 0.1225 0.1022 0.0661 0.0480

2-step MAE 0.4121 0.4139 0.4026 0.3745 0.2976 0.2255 0.1768 0.1202 0.0814
RMSE 0.5261 0.5286 0.5188 0.5040 0.3945 0.3132 0.2371 0.1612 0.1054
MAPE 0.2799 0.2823 0.3379 0.2642 0.2215 0.1946 0.1268 0.0912 0.0569

3-step MAE 0.4625 0.4574 0.4396 0.3995 0.3246 0.2752 0.2248 0.1512 0.1000
RMSE 0.6031 0.5997 0.5657 0.5401 0.4224 0.3674 0.2903 0.2342 0.1338
MAPE 0.3412 0.3275 0.3392 0.3114 0.2551 0.2157 0.1735 0.1023 0.0690

4-step MAE 0.4951 0.4941 0.4871 0.4519 0.3814 0.3502 0.2861 0.2215 0.1439
RMSE 0.6431 0.6335 0.6195 0.5761 0.4745 0.4264 0.3683 0.3012 0.2141
MAPE 0.3620 0.3639 0.3530 0.3614 0.3095 0.2849 0.2543 0.2202 0.1023

Taking Lanzhou as an example, compared with other models, the HI-IVMD-DLinear
model achieves lower MAE, RMSE, and MAPE values. The MAE, RMSE, and MAPE
values for the HI-IVMD-DLinear’s one-step-ahead prediction are 0.0705, 0.0881, and 0.0479,
respectively, which are smaller than those of other models. Specifically, the MAPE values
for HI-SVR, HI-BPNN, HI-LSTM, HI-Transformer, HI-DLinear, HI-IVMD-BPNN, HI-IVMD-
LSTM, HI-IVMD-Transformer, and HI-IVMD-DLinear are 0.3839, 0.3082, 0.2920, 0.2705,
0.2418, 0.0917, 0.0792, 0.0632, and 0.0479, respectively. Among them, the HI-IVMD-DLinear
achieves the smallest MAPE value. Moreover, for one-step-ahead to four-steps-ahead
predictions, the HI-IVMD-DLinear obtains the optimal MAPE values of 0.0773, 0.0956, and
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0.1266, respectively. Additionally, the HI-IVMD-DLinear also obtains the best MAE and
RMSE values.

Furthermore, according to Tables 6–8, it is evident that the hybrid methods based on
IVMD outperform the individual models in terms of accuracy. Taking the one-step-ahead
forecasting in Lanzhou as an example, the MAPE value of the HI-DLinear is 0.2418, while
that of the HI-IVMD-DLinear is 0.0479. Therefore the IVMD method helps diminish the
complexity of the wind speed series enables the forecasting model to capture valuable pat-
terns within the wind speed series, and effectively improves the forecasting performance.

The comparison between the predicted and the observed wind speed values in the
three datasets is illustrated in Figure 6. It can be observed that the prediction curve of the
HI-IVMD-DLinear hybrid model closely resembles that of the observed wind speed values.
This highlights better predictive accuracy of the HI-IVMD-DLinear model in the field of
WSF than other comparative models.

Figure 6. Cont.
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Figure 6. Results of one-step-ahead prediction: (a) Lanzhou; (b) Nanjing; (c) Shijiazhuang.

Meanwhile, compared with the individual HI-SVR, HI-BPNN, HI-LSTM, HI-Transformer,
and HI-DLinear models, the prediction curves of HI-IVMD-SVR, HI-IVMD-BPNN, HI-
IVMD-LSTM, HI-IVMD-Transformer, and HI-IVMD-DLinear across the three datasets
exhibit a higher degree of similarity to the observed wind speed curves. Thus the IVMD
decomposition is helpful in WSF.

3.4.2. Improvement Percentage in Accuracy

The improvement percentages of accuracy metrics for the HI-IVMD-DLinear model
are presented in Tables 9–11. It can be seen that the proposed model consistently achieves
the lowest prediction errors across all four forecasting horizons on the three wind speed
datasets. Thus the accuracy of the proposed model is acceptable.

Table 9. Improvement percentages on three metrics of HI-IVMD-DLinear compared with comparable
models in Lanzhou.

Estimation
Horizon

Metric HI-SVR
HI-

BPNN
HI-LSTM

HI-
Transformer

HI-
DLinear

HI-IVMD-
BPNN

HI-IVMD-
LSTM

HI-IVMD-
Transformer

1-step PMAE (%) 84.2033 82.7196 80.9005 80.2659 78.6032 46.7841 38.8104 22.6125
PRMSE (%) 84.0766 83.4535 81.2947 81.2296 79.6612 47.1681 40.1372 29.6887
PMAPE (%) 87.5236 84.4584 83.5969 82.2938 80.1936 47.7605 39.5475 24.2089

2-step PMAE (%) 78.7740 77.8952 76.7398 76.3006 70.6891 50.7040 46.4791 35.1776
PRMSE (%) 78.3228 77.6722 76.0693 75.8583 68.5685 50.5914 46.3353 35.5022
PMAPE (%) 82.2549 80.8899 80.2049 79.4739 69.7645 50.5266 48.8467 30.8587

3-step PMAE (%) 75.8735 75.4275 74.2732 73.9633 69.5241 46.7304 34.5396 26.1892
PRMSE (%) 75.9363 75.1968 73.7148 73.8202 69.5041 47.4129 38.8968 30.1067
PMAPE (%) 79.9212 77.7699 78.6447 78.5622 71.4304 47.6040 41.3313 32.2946

4-step PMAE (%) 74.0380 72.6866 71.1707 70.6518 63.3334 46.3339 34.3082 25.5982
PRMSE (%) 73.0713 71.7671 70.3405 69.3023 63.4987 43.1154 36.1221 21.5559
PMAPE (%) 76.1047 74.7235 73.7673 72.9588 64.1566 42.6058 37.0858 30.0939
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Table 10. Improvement percentages on three metrics of HI-IVMD-DLinear compared with compara-
ble models in Nanjing.

Estimation
Horizon

Metric HI-SVR
HI-

BPNN
HI-LSTM

HI-
Transformer

HI-
DLinear

HI-IVMD-
BPNN

HI-IVMD-
LSTM

HI-IVMD-
Transformer

1-step PMAE (%) 84.2409 81.9333 81.3657 78.8260 75.7224 70.3199 58.6831 34.6806
PRMSE (%) 84.4272 82.9060 82.1564 80.3460 75.1727 68.5442 55.8529 40.0374
PMAPE (%) 84.5591 84.1313 82.5998 80.4556 76.8356 68.1678 66.1645 43.7055

2-step PMAE (%) 72.5134 72.4446 63.9205 63.4358 57.2882 46.8873 40.3826 20.1904
PRMSE (%) 73.8362 72.9428 65.1858 64.3458 58.2394 49.9432 45.5538 25.6908
PMAPE (%) 73.1711 73.2950 66.3302 67.4084 62.3519 50.8716 43.5630 26.1879

3-step PMAE (%) 69.0184 68.2667 63.6840 63.3623 59.2891 51.4043 45.9572 37.1233
PRMSE (%) 68.1908 67.1616 63.0349 63.0957 58.1990 52.8060 47.6892 33.7700
PMAPE (%) 70.8416 70.1822 67.5903 67.2581 61.8191 61.0778 55.0276 37.7379

4-step PMAE (%) 68.2063 67.4222 62.2392 59.6876 55.1269 51.5240 50.7219 33.6865
PRMSE (%) 68.8684 68.2711 64.0548 61.5750 56.3870 48.2202 39.6268 29.9954
PMAPE (%) 66.7518 67.4935 64.2221 63.4508 58.7554 58.2622 52.9276 36.0750

Table 11. Improvement percentages on three metrics of HI-IVMD-DLinear compared with compara-
ble models in Shijiazhuang.

Estimation
Horizon

Metric HI-SVR
HI-

BPNN
HI-LSTM

HI-
Transformer

HI-
DLinear

HI-IVMD-
BPNN

HI-IVMD-
LSTM

HI-IVMD-
Transformer

1-step PMAE (%) 78.2167 77.99 75.18 73.65 67.50 53.54 47.59 28.72
PRMSE (%) 78.1334 77.97 75.84 74.55 69.76 57.24 51.21 32.90
PMAPE (%) 80.8590 78.98 75.22 75.23 68.24 60.86 53.09 27.44

2-step PMAE (%) 80.2491 80.33 79.78 78.26 72.65 63.90 53.96 32.25
PRMSE (%) 79.9665 80.06 79.68 79.09 73.28 66.35 55.54 34.62
PMAPE (%) 79.6722 79.84 83.16 78.46 74.31 70.77 55.11 37.63

3-step PMAE (%) 78.3790 78.14 77.25 74.97 69.19 63.66 55.51 33.88
PRMSE (%) 77.8146 77.69 76.35 75.23 68.32 63.59 53.91 42.88
PMAPE (%) 79.7793 78.93 79.66 77.84 72.96 68.01 60.22 32.56

4-step PMAE (%) 70.9363 70.87 70.46 68.16 62.27 58.91 49.71 35.02
PRMSE (%) 66.7056 66.20 65.44 62.84 54.88 49.79 41.87 28.93
PMAPE (%) 71.7365 71.89 71.02 71.70 66.94 64.09 59.77 53.53

As shown in Table 10, for the Nanjing dataset, the improvement percentages of MAPE
for one-step-ahead prediction by the HI-IVMD-DLinear relative to HI-SVR, HI-BPNN, HI-
LSTM, HI-Transformer, and HI-DLinear are 87.5236%, 84.4584%, 83.5969%, 82.2938%, and
80.1936% respectively. This indicates the necessity of decomposing the original sequence
with IVMD in the WSF process.

Furthermore, like HI-IVMD-BPNN, HI-IVMD-LSTM, and HI-IVMD-Transformer, HI-
IVMD-DLinear also demonstrates significantly higher prediction accuracy. As shown in
Table 10, compared with HI-IVMD-BPNN, HI-IVMD-LSTM, and HI-IVMD-Transformer, the
HI-IVMD-DLinear exhibits improvement percentages 58.2622%, 52.9276%, and 36.0750%
in MAPE for the one-step-ahead and two-steps-ahead predictions, respectively.

Therefore the HI-IVMD-DLinear outperforms the other models in the field of WSF in
terms of accuracy.

3.4.3. Analysis of Forecasting Errors

Figure 7 is the frequency distribution of the predictive errors with the proposed model
and eight other comparative models, regarding one-step-ahead predictions. The graph
indicates that the error of the model based on the IVMD is small. Additionally, it can be
observed that the HI-IVMD-DLinear presents the smallest errors among the majority of the
data points in the test set.

354



Mathematics 2023, 11, 2746

Figure 7. One-step-ahead prediction errors on the three datasets: (a) Lanzhou; (b) Nanjing;
(c) Shijiazhuang.

Figure 8 illustrates the distribution of errors for each model. It is noticeable that the
HI-IVMD-DLinear exhibits a higher concentration of prediction errors around zero for each
dataset than the other models, with a smaller range of error variation. This implies that the
HI-IVMD-DLinear possesses exceptional predictive accuracy and robustness.
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Figure 8. The error distribution for one-step-ahead predictions across the three datasets: (a) Lanzhou;
(b) Nanjing; (c) Shijiazhuang.

3.4.4. Stability Analysis

Table 12 is the variance of absolute errors (VAE) with the proposed model and all
comparative models across three datasets for multi-step ahead predictions. It reveals that
the proposed model has good stability since it obtains the lowest VAE for one-to-four-
steps-ahead predictions across all three datasets. For instance, in the Lanzhou dataset, the
HI-IVMD-DLinear achieves VAE values of 0.0028, 0.0084, 0.0178, and 0.0264 for one-to-four-
steps-ahead predictions, respectively. These values are consistently lower than those of the
other comparative models.

Table 12. Predictive stability results (VAE) in three datasets.

Estimation
Horizon

HI-SVR
HI-

BPNN
HI-LSTM

HI-
Transformer

HI-
DLinear

HI-IVMD-
BPNN

HI-IVMD-
LSTM

HI-IVMD-
Transformer

HI-IVMD-
DLinear

Lanzhou
1-step 0.1200 0.1100 0.0893 0.1102 0.0513 0.0197 0.0129 0.0211 0.0028
2-step 0.1920 0.1890 0.1541 0.1899 0.1127 0.0383 0.0313 0.0316 0.0084
3-step 0.2112 0.2216 0.1873 0.2012 0.1577 0.0512 0.0544 0.0412 0.0178
4-step 0.2635 0.2539 0.2367 0.2524 0.2025 0.0551 0.0676 0.0518 0.0264

Nanjing
1-step 0.0667 0.0571 0.0536 0.0610 0.0506 0.0327 0.0114 0.0110 0.0052
2-step 0.1098 0.0835 0.0997 0.0811 0.0710 0.0477 0.0327 0.0411 0.0173
3-step 0.1371 0.1380 0.1178 0.1225 0.1048 0.0902 0.0669 0.0624 0.0353
4-step 0.1620 0.1610 0.1503 0.1503 0.1303 0.1333 0.1047 0.1009 0.0603

Shijiazhuang
1-step 0.0651 0.0610 0.0652 0.0782 0.0514 0.0137 0.0100 0.0416 0.0044
2-step 0.1021 0.1019 0.0922 0.0956 0.0781 0.0412 0.0266 0.0210 0.0096
3-step 0.1241 0.1221 0.1170 0.1018 0.0921 0.0810 0.0591 0.0411 0.0336
4-step 0.1407 0.1395 0.1301 0.1312 0.1139 0.1065 0.0872 0.0721 0.0655

The improvement percentages of VAE for the HI-IVMD-DLinear together with other
comparative models are depicted in Figure 9. Compared to HI-SVR, HI-BPNN, HI-LSTM,
HI-Transformer, and HI-DLinear, the HI-IVMD-DLinear exhibits a reduction in VAE of
over 50% under the three datasets,. The IVMD decomposition also enhances the stability
of predictions. Furthermore, compared to HI-IVMD-BPNN, HI-IVMD-LSTM, and HI-
IVMD-Transformer, the HI-IVMD-DLinear achieves a reduction in VAE ranging from
9.0707% to 85.8084%. Hence, the DLinear-based model is more stable than BPNN, LSTM,
and transformer.
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Figure 9. Improvement percentages of VAE for HI-IVMD-DLinear compared to other compara-
tive models.

3.5. Comparative Analysis of Decomposition Strategies

To validate the decomposition performance of IVMD, IVMD is compared with the
decomposition strategies including EMD [53], CEEMDAN [37], and the recently published
CEEMDAN-VMD [54] and CEEMDAN-LMD [55]. Additionally, the strategy without
decomposition methods is also compared. The CEEMDAN-VMD method begins by de-
composing the wind speed sequence into several IMFs with CEEMDAN, followed by
another decomposition of the highest-frequency IMF with VMD. Similarly, the CEEMDAN-
LMD method involves decomposing the wind speed sequence into multiple IMFs with
CEEMDAN, and subsequently decomposing the IMF1 generated from the CEEMDAN
decomposition with LMD. The comparative results are presented in Table 13.

Based on the data presented in Table 13, the following conclusions can be inferred:

• Compared with the other decomposition strategies, the predictive models based on
IVMD demonstrate the minimal RMSE values, specifically, 0.1712, 0.1668, 0.1472,
0.1253, and 0.0881. This further validates the superior performance of IVMD over
the other decomposition strategies. CEEMDAN-VMD and CEEMDAN-LMD fail to
address the inherent mode-mixing issue in the CEEMDAN algorithm, although they
employ secondary decomposition, which reduces the complexity of sequences once
again to some extent. This is why both have lower performance than IVMD.

• Compared to traditional machine learning methods like SVR, deep learning methods
including BPNN, LSTM, transformer, and DLinear present significant improvement in
predictive accuracy when combined with decomposition methods. For instance, the
RMSE of IVMD-SVR and the SVR are 0.3015 and 0.5533, respectively. The RMSE is
reduced by only 45.50% when incorporating IVMD. However, IVMD-DLinear and
DLinear achieve an RMSE of 0.4332 and 0.0881, respectively. It is demonstrated that a
remarkable RMSE reduction of 79.66% is achieved when combined with IVMD.

• For the same decomposition strategy, DLinear consistently obtains the lowest RMSE,
implying DLinear generally has optimal accuracy.

• Among different combinations of decomposition strategies and original prediction
models, IVMD-DLinear achieves the lowest RMSE of 0.0881. Therefore IVMD-DLinear
has best predictive performance than the aforementioned combinations.
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Table 13. The RMSE in Lanzhou obtained by basic forecasting models combined with different
decomposition strategies.

Strategy SVR BPNN LSTM Transformer DLinear

Non-decomposition 0.5533 0.5324 0.4710 0.4694 0.4332
EMD 0.4119 0.3992 0.3611 0.3574 0.3192

CEEMDAN 0.3633 0.2731 0.2632 0.2427 0.174
CEEMDAN-VMD 0.3211 0.2031 0.1754 0.1641 0.1259
CEEMDAN-LMD 0.3275 0.1832 0.1618 0.1517 0.1187

IVMD 0.3015 0.1668 0.1472 0.1253 0.0881

4. Discussion

WSF is a complex task influenced by various factors, such as temperature, humidity,
and air pressure. These factors contribute to the non-stationary and nonlinear characteristics
of wind speed sequences. It is challenging to forecast wind speeds with a single prediction
model accurately. Precise WSF holds significant importance in the energy industry, as
higher accuracy forecasts can help reduce operational costs of power systems.

4.1. Discussion of Computational Efficiency

In terms of computational efficiency, the proposed method outperforms the other
prediction models. Specifically, the VMD allows for higher computational efficiency with
distributed storage and parallel computing techniques, since each IMF’s prediction is
independent of the others. Furthermore, the DLinear model has high efficiency, with
each branch containing only a single linear layer. Significantly lower memory and fewer
parameters are involved than the transformer, and faster calculation speeds.

4.2. Discussion of Computational Complexity

Compared with the other non-decomposition methods, the IVMD-DLinear increases
the computational complexity within an acceptable range. The predictions for each IMF
are obtained by applying the DLinear model to each IMF and the hyperparameter in
VMD is optimized by the GWO algorithm, which significantly increases the computational
complexity. However, it is reasonable since the substantial improvement in prediction
accuracy augments the economic efficacy of wind power systems significantly.

5. Conclusions

Accurate and robust WSF is of great importance for the advancement of the wind
power industry. Nevertheless, the intricate and non-stationary nature of wind speed
sequences poses a significant challenge to achieve precise predictions. Therefore, a WSF
model (HI-IVMD-DLinear) based on outlier correction, heuristic algorithms, and sequence
decomposition is proposed to achieve high precision and robust wind speed forecasting.
Firstly, the outliers in the wind speed sequence are detected and corrected with the outlier
correction method HI to reduce the adverse effects of outliers on prediction accuracy.
Secondly, the hyperparameters K and α of the VMD are optimized by the GWO. Thirdly,
with the optimized K and α, the wind speed sequence processed by HI is decomposed into
several IMFs by the VMD, and the non-stationarity and the complexity of the sequence are
reduced. Finally, each IMF is individually predicted by the novel DLinear algorithm, and
the predicted outputs are summed to obtain the final wind speed prediction.

The experimental results conducted on wind speed datasets from three cities in China
validate the predictive performance of the HI-IVMD-DLinear. Based on the experiments,
the following conclusions can be drawn:

• HI assists in mitigating the detrimental effects of outliers on prediction accuracy, and
enhances the overall precision of the predictions. HI can detect and correct outliers in
wind speed series and reduce their interference in prediction.
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• The IVMD algorithm demonstrates significant advantages compared to the EEMD,
CEEMDAN, CEEMDAN-VMD, and CEEMDAN-LMD algorithms. The CEEMDAN
algorithm shows spurious modes during decomposition, which can affect the ac-
curacy of predictions to some extent. CEEMDAN-VMD and CEEMDAN-LMD fail
to address the mode-mixing issue in CEEMDAN, although they employ secondary
decomposition to reduce sequence complexity to some extent.

• The DLinear model has better optimal performance than the SVR, BPNN, LSTM, and
transformer models. Simultaneously, DLinear is stable with higher prediction accuracy
than that of the widely used and highly accurate transformer or LSTM models in the
field of WSF, and it is not necessary to adjust its hyperparameters. Therefore, DLinear
is more suitable for WSF than transformer and LSTM.

• In the one-to-four-steps-ahead forecasting on the three datasets, the HI-IVMD-DLinear
model demonstrates excellent prediction accuracy compared with the other eight
comparative models. This hybrid model utilizes HI for outlier correction, IVMD for
sequence decomposition, and DLinear for prediction. The performance of the hybrid
model has been validated at each stage.

Nevertheless, our study does possess certain limitations. Primarily, it relies heav-
ily on simulations due to the current cost constraints that prevent us from conducting
field measurements.
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Abstract: The paper presents an exact solution to the internal boundary value problem of the field
distribution in an electrostatic lens formed by two identical semi-infinite coaxially located round
cylinders separated by a slit of finite width and located inside an infinite outer cylinder. The problem
is reduced to a system of singular Wiener–Hopf integral equations, which is further solved by
the Wiener–Hopf method using factorized Bessel functions. Solutions to the problem for each
region inside the infinite outer cylinder are presented as exponentially converging series in terms of
eigenfunctions and eigenvalues. Using the obtained formulas, a numerical calculation of the axial
distribution of the potential of a two-electrode lens was made for various values of the radii of the
outer and inner cylinders.

Keywords: time-of-flight mass spectrometer; electron microscope; electrostatic lens; electrostatic
mirror; relativistic effect; system of singular integral equations; factorized functions; eigenfunctions;
eigenvalues

MSC: 45F15; 45E10; 47A68; 30E20

1. Introduction

Electrostatic mirrors have become indispensable structural elements of modern scien-
tific and technological instrumentation, which determine the quality of focusing of such
instruments as time-of-flight mass spectrometers and electron microscopes. In this regard,
electrostatic mirrors of rotational symmetry are of particular interest, since they perform
stigmatic focusing of electron beams, i.e., create the correct electron optical image of the
object. However, the most studied and highly demanded in practical implementation are
the designs of mirrors constructed as sets of coaxial circular cylinders. The advantage
of cylindrical electrodes is the possibility of shielding the beam from scattered electric
fields. For this reason, it is expedient to solve the internal boundary value problem for such
structures rather than the external one. In works [1,2], devoted to the study of the focusing
properties of electrostatic mirrors with cylindrical electrodes, the calculation of the field
was performed under the assumption that the width of the gap between the electrodes is
infinitely small. However, practical application of such mirrors in high-voltage electron
microscopy [3,4] imposes high requirements on the width of the gap between the electrodes
in terms of ensuring electrostatic strength at high field intensity. However, with an increase
in the width of the inter-electrode gap, the effect of scattered electric fields on the quality of
electron beam focusing increases. The aim of the work is to use the Wiener–Hopf (WH)
method to solve the problem of field distribution in an electrostatic lens formed by two
identical semi-infinite coaxially located circular cylinders, separated by gaps (slits) of finite
width and located inside an infinite outer cylinder. Such an electrode design makes it
possible to simultaneously provide electrostatic strength at high field intensities and the
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screening of the electron beam from external electric fields at large gap widths between the
internal electrodes. It should be noted that it was N.N. Lebedev [5] who first used the WH
method to solve the boundary value problem of the electrostatic field of an electron lens
consisting of a semi-infinite circular cylinder coaxially located inside an infinite cylinder,
which is a key for solving a number of other problems. However, a well-known power-
ful WH method has not been used since then even to calculate the field of the simplest
system of electrodes with two semi-infinite cylinders, not to mention the case when the
finite width between the electrodes is taken into account. The studied boundary value
problem, as a rule, is reduced to solving pairwise integral equations with kernels of Bessel
functions, which were studied by L.A. Weinstein [6], Titchmarsh [7], Noble [8], Erdelyi and
Sneddon [9], and others.

A comprehensive review of the historical development of pairwise integral equations
is given by Eswaran [10] and Sneddon [11], where they are reduced to a system of algebraic
equations or to a Fredholm-type equation. The methodology for solving paired integral
equations is considered in detail in the works of N.N. Lebedev [5], V.A. Fock, P.L. Kapitsa,
and L.A. Weinstein [12].

In these works, pairwise integral equations describing the problem of a conducting
hollow cylinder of finite length were reduced to the Fredholm integral equation of the
second kind [13] or solved by the variational method when the length of the cylinder is
large enough compared to its diameter [14,15]. However, the proposed methods are very
cumbersome and require a large amount of computational time.

It is known that the WH method [6,8,10,16–19], like the Riemann method, is a rigorous
method for solving pairwise singular integral equations (SIEs) for semi-infinite structures
whose solutions automatically satisfy the additional Meixner condition or the so-called
condition on a sharp edge, which determines the uniqueness of the solution to the problem
as well as the behavior of the field at small distances from the sharp edge. Note that,
as a rule, this condition is not mentioned in approximate methods. It should be recalled
that the classical WH method was previously used mainly for solving dynamic problems,
for example, in the theory of electromagnetic wave diffraction.

2. Statement of the Problem

Let us consider a lens consisting of two thin semi-infinite cylinders of radius a with a
common axis z and given potentials V1 and V2, coaxially located towards each other inside
a shielding infinite cylinder of radius b, which is at zero potential (Figure 1).

Figure 1. Electrostatic lens with a slit (z2 − z1) of finite width.

The desired potential ϕ(r, z) satisfies the Laplace equation

�ϕ(r, z) = 0

363



Mathematics 2023, 11, 2933

and boundary conditions

ϕ(b, z) = 0, ϕ(a, z < a) = V1, ϕ(a, z > a) = V2, (1)

ϕ(a − 0, z)− ϕ(a + 0, z) = 0, (2)(
∂

∂r
ϕ(r − 0, z)− ∂

∂r
ϕ(r + 0, z)

)∣∣∣
r=a

= 0 at z1 < z < z2, (3)

ϕ(a ± 0) = lim
0<ε→0

ϕ(a ± ε).

Let us introduce the notations

L(r, w) =
π

2 ln a
b J0(vb)

{
J0(vr)(a, b), at 0 ≤ r ≤ a;
J0(va)(r, b), at a ≤ r ≤ b,

(r, b) = N0(vr)J0(vb)− N0(vb)J0(vr),

v =
√

k2 − w2, Imv > 0,

(4)

where J0(vr), N0(vr) are zero-order Bessel and Neumann functions, and (r, b) is a combina-
tion of Bessel functions, and search for a solution in the form

ϕ(r, z) =
1

2πi

∞∫
−∞

eiwzL(r, w)
F(w)

L(a, w)
dw (5)

with respect to the desired function F(w).
For electrostatic problems, k should be assumed to have a vanishingly small positive

imaginary part, and we transfer to the limit |k| → 0 only in finite expressions.
The cuts of the function L(r, w) in (4) are located in the plane of the complex variable

w on the curves Im v = 0.
Due to the properties of the Bessel functions and boundary conditions (1) and (3), we

obtain a system of singular integral equations (SIE)

1
2πi

∞∫
−∞

eiwzF(w)dw = V1, z ≤ z1, (6)

1
2πi

∞∫
−∞

eiwzF(w)dw = V2, z ≥ z2, (7)

∞∫
−∞

eiwzL−1(a, w)F(w)dw = 0, z1 < z < z2. (8)

The last, Equation (8), can be obtained from the boundary condition (3) due to the
property of the Bessel functions

∂

∂r

(
J0(vr)(a, b)

J0(vb)
− J0(va)(r, b)

J0(vb)

)∣∣∣∣
r=a

≡ − 2
πa

.

3. Solution of a System of Integral Equations

The solution of SIE (6)–(8) is constructed by the Wiener–Hopf method in the form [20]

F(w) = L−(a, w)
(

A1
+(w) + B1

+(w)
)

e−iwz1 +

+L+(a, w)
(

A2−(w) + B2−(w)
)

e−iwz2 . (9)
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Here, the subscripts ‘+’ and ‘−’ denote holomorphic functions in the upper half-plane (UHP)
Im w ≥ 0, and lower half-plane (LHP) Imw ≤ 0, respectively, which do not have zeros and
poles there, and the functions L+ and L− are factorized functions, L = L− · L+ [6,8].

It should be noted that for the SIE solution to be unique, the desired function F(w)
must satisfy the Meixner condition [21,22] on the edge or the so-called sharp edge con-
dition (Ez, Er ∼ ρ−1/2, Eφ ∼ √

ρ), which is equivalent to the behavior of the function
F(|w|) ∼ |w|−3/2 at infinity |w| → ∞.

For convenience, we introduce the notations for the eigenvalues for each region inside
the infinite tube of radius b: (a), (b), (c). The regions (a) and (b) correspond to the regions
inside and outside the semi-infinite circular cylinder of radius a, respectively. The region
0 < r < b and z1 < z < z2 is denoted as (c). Further, the superscripts of the eigenvalues
will denote the corresponding region. Note that L+ has zeros at the points −wa

n, −wc
n and

poles in −wb
n (n = 1, 2, . . . ) in the LHP of the complex variable w. The function L− has the

same zeros and poles only in the UHP, due to the property of factorized functions:

L+(a,−w) = L−(a, w). (10)

The roots of the functions J0(va), J0(vb), and (a, b) with respect to the variable v in (4)
are va

n = γn/a; vb
n = γn/b and vc

n = δn/(b − a) (n = 1, 2, . . . ), where γn and δn denote the
roots of the equations with respect to arguments γ and δ [23]:

J0(γ) = 0,

N0
( aδ

b−a
)
J0
( bδ

b−a
)− N0

( bδ
b−a
)
J0
( aδ

b−a
)
= 0.

Equation (6), due to the function A1
+, will satisfy the solution if the function F(w) is

holomorphic everywhere in LHP (Imw ≤ 0) except for a single simple pole at the point
w = −k and uniformly tends to zero as |w| → ∞. Therefore, the remaining poles contained
in the LHP at the points w = −wb

n (n = 1, 2, . . . ) of the function L+ must be compensated
using the function B1

+(w).
To find a solution to Equation (7), we require the same conditions for the functions

A2−(w) and B2−(w) in the UHP (Imw ≥ 0).
Using the theory of residues to calculate the integrals (6) and (7), as well as compen-

sating all singular points inside the integration contour (IC), except for the poles ±k, we
obtain the desired functions in (9):⎧⎪⎪⎪⎨⎪⎪⎪⎩

A1
+(w) = − V1

w + k
,

A2−(w) =
V2

w − k
(
0 < Im(k), |k| → 0

)
,

(11)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

B1
+(w) = −

∞

∑
n=1

eiwb
n(z2−z1)

(w + wb
n)

L∗
+(a,−wb

n)

L−(a,−wb
n)

(
A2−(−wb

n) + B2−(−wb
n)
)
,

B2−(w) = −
∞

∑
n=1

eiwb
n(z2−z1)

(w − wb
n)

L∗−(a, wb
n)

L+(a, wb
n)

(
A1
+(w

b
n) + B1

+(w
b
n)
)
,

(12)

where

L∗
+(a,−wb

n) = lim
w→−wb

n

(w + wb
n)L+(a, w) =

− lim
w→wb

n

(w − wb
n)L−(a, w) = −L∗−(a, wb

n).
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The validity of the obtained solution of SIE (6)–(8) can be checked directly by substi-
tuting it into the Equations (6)–(8) and closing the IC in the LHP or UHP w, according to
the Jordan lemma, then calculating the residues at all poles of the integrand inside this IC.

It should be noted that the resulting solution (9) automatically satisfies (8), since the
integrand turns out to be holomorphic inside the corresponding IC.

Solution of a System of Functional Equations

The exact solution of the system of functional Equation (12) can be represented in the
form of rapidly convergent infinite series

B1
+(w) = −V2

( ∞

∑
n1

gn1

(w + wb
n1
)l(1)

+
∞

∑
n1,n2,n3

gn1 gn2 gn3

(w + wb
n3
)l(3)

+ . . .

+
∞

∑
n1,...,n2i−1

∏2i−1
k=1 gk

(w + wb
2i−1)l

(2i−1)

)
− V1

( ∞

∑
n1,n2

gn1 gn2

(w + wb
n2
)l(2)

+

∞

∑
n1,n2,n3,n4

gn1 gn2 gn3 gn4

(w + wb
n4
)l(4)

+ . . .
∞

∑
n1,...,n2i

∏2i
k=1 gk

(w + wb
2i)l

(2i)

)
,

(13)

B2−(w) = V1

( ∞

∑
n1

gn1

(w − wb
n1
)l(1)

+
∞

∑
n1,n2,n3

gn1 gn2 gn3

(w − wb
n3
)l(3)

+ . . .

+
∞

∑
n1,...,n2i−1

∏2i−1
k=1 gk

(w + wb
2i−1)l

(2i−1)

)
+ V2

( ∞

∑
n1,n2

gn1 gn2

(w − wb
n2
)l(2)

+

+
∞

∑
n1,n2,n3,n4

gn1 gn2 gn3 gn4

(w − wb
n4
)l(4)

+ . . .
∞

∑
n1,...,n2i

∏2i
k=1 gk

(w − wb
2i)l

(2i)

)
,

(14)

where the following notations are used:

gn =
L∗−(a, wb

n)

L+(a, wb
n)

eiwb
n(z2−z1),

l(k) = wb
n1
(wb

n1
+ wb

n2
) · · · (wb

nk−1
+ wb

nk
)︸ ︷︷ ︸

k

,

nk = 1, 2, . . . , k = 1, 2, . . . .

(15)

Factorized function L∗−(a, wb
n) is calculated by Formula (22). Indeed, system (12) can be

easily divided into separate recursive equations

B1
+(w) = −V2

∞

∑
n1=1

gn1
(w+wb

n1 )w
b
n1

− V1

∞

∑
n1,n2=1

gn1 gn2
(w+wb

n1 )(w
b
n1+wb

n2 )w
b
n2
+

+
∞

∑
n1,n2=1

gn1 gn2
(w+wb

n1 )(w
b
n1+wb

n2 )
B1
+(w

b
n2
),

B2−(w) = V1

∞

∑
n1=1

gn1
(w−wb

n1 )w
b
n1

+ V2

∞

∑
n1,n2=1

gn1 gn2
(w−wb

n1 )(w
b
n1+wb

n2 )w
b
n2
+

+
∞

∑
n1,n2=1

gn1 gn2
(w−wb

n1 )(w
b
n1+wb

n2 )
B2−(−wb

n2
),

(16)

from which we directly obtain solutions in (16), cyclically using the equation itself in its
right side.
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4. Potential Distribution in the Lens

Substituting the resulting solution F(w) (9) into (5) and calculating the integral along
the real axis w using the residue theory, we determine the potential ϕ.

Let us consider each case for different cylinder regions separately.

1. z ≤ z1, 0 ≤ r ≤ a.

In the region (a) to the left from z1, the IC should be closed in the LHP w. After making
calculations and passing to the limit k → 0, we obtain the potential distribution inside the
semi-infinite cylinder

ϕ(r, z) = V1 −
N

∑
n=1

J0(va
nr)

J∗0(−wa
na)
{

L−(a, w)
(

A1
+(w) + B1

+(w)
)
eiw(z−z1)

}
w=−wa

n
=

V1 −
N

∑
n=1

e
γn
a (z−z1)

J0(γn
r
a )

γnJ1(γn)
L+(a, i γn

a )
(

V1 + i
γn

a
B1
+(−i γn

a )
)

. (17)

Here we took into account that

J∗0(−wa
na) = lim

w→−wa
n
(w + wa

n)
−1J0(va) = −ia J1(v

a
na) = −ia J1(γn) (18)

and the property of factorized functions L± in (10).

2. z ≤ z1, a ≤ r ≤ b.

In this case for the region (c) to the left from z1, integration along the real axis w in
this case must also be closed, according to the Jordan lemma, in the LHP, then the integral
can be easily transformed into a series of residues

ϕ(r, z) = V1
ln b

r

ln b
a
−

N

∑
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(19)

Note that there is a transformation

(a, b)∗−wc
n
= lim

w→−wc
n
(w + wc

n)
−1(a, b) = −i

2
πvc

n
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, (20)

where in the derivation the Wronskian (z′, z) = N0(z)J1(z) − N1(z)J0(z) = 2/(πz) is
used [23]. Here the primes in the combination of Bessel functions (a,b) denote their deriva-
tives.

3. z1 ≤ z ≤ z2, 0 ≤ r ≤ b.

For area (a) between semi-infinite round cylinders, according to the Jordan lemma,
closing the IC in (5) for terms with an exponential factor eiw(z−z1) in the UHP, and with a
factor eiw(z−z2) in the LHP w, taking into account all the contributions of the poles inside
the IC, we similarly find the potential distribution in the slit region

ϕ(r, z) =
N

∑
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,
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or it can be written as

ϕ(r, z) =
1
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a
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b )
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using the properties of the Bessel functions
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in the expression for
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4. z2 ≤ z, 0 ≤ r ≤ a.

Similarly, in the region (a) to the right from the semi-infinite tube, closing the IC in
the UHP of the complex variable w, we obtain

ϕ(r, z) = V2 −
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5. z2 ≤ z, a ≤ r ≤ b.

In region (c) to the right outside the semi-infinite circular cylinder, deforming the IC
upwards, we also obtain

ϕ(r, z) = V2
ln b

r
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− π
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5. Numerical Calculation of the Potential in a Lens

The numerical implementation of the factorized Bessel functions can be performed
optimally using Formula (A5) with a given accuracy, which is expressed through the
functions P and Q [5] (Appendix A). It should be noted that the potential distribution is
ultimately expressed by a real function in the form of exponentially convergent series in
(17)–(24). In particular, let us consider the distribution of the potential along the lens axis
calculated by Formulas (17), (21) and (23).

Figures 2 and 3 show the results of calculating the potential in a two-electrode electro-
static lens depending on the radii of its inner and outer electrodes. The linear dimensions
are given in units of the radius of the inner cylinders: a = 1, b → b/a, z → z/a. The width
of the slit z2 − z1 = 2 (z1 = −1, z2 = 1).

As can be seen from Figure 2, as the radius of the semi-infinite cylinder increases,
the steepness of the curve decreases.

It should be noted, as calculations show (see Figure 3), that the radius of an infinite
cylinder b has an insignificant effect on the potential distribution along the z axis.
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Figure 2. Potential distribution along the lens axis. b = 6: a = 1 is a solid line, a = 2 is a dash−dotted
line, a = 3 is a dashed line.

Figure 3. Influence of the outer cylinder radius on the potential distribution. a = 1: b = 2 is a solid
line, b = 4 is a dashed line.

6. Discussion

Thus, the exact solution (9) of the boundary value problem for the potential ϕ in (5)
is found, where the auxiliary functions B1

+ and B2− are represented as rapidly convergent
infinite series, as well as the factorized Bessel functions (see Appendix A).

As expected, when passing to the limit z1 → −∞, when the end of the first semi-
infinite cylinder is shifted by a considerable distance to the left, the expressions for the
potential (21)–(24) coincide with the final results of N.N. Lebedev [5].

For each area (a), (b), and (c) inside an infinite round tube, the graphs of the distribu-
tion of potentials are calculated through their eigenfunctions and plotted for demonstration,
for example, on the z axis (see Figures 2 and 3). As can be seen in the above figures,
the curves turned out to be quite smooth, especially at the junctions of these regions, which
shows that the calculation of factorized functions is sufficiently accurate.

Note that the problem for a nonzero wavenumber k transforms into the corresponding
problem of wave diffraction in electrodynamics [20].

It should be expected that it will not be difficult to apply the WH method to similar
problems with three or more electrodes, since only the rank of the system of algebraic
equations will increase.
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So, the internal boundary value problem of the distribution of the electrostatic field
in a lens formed by two identical semi-infinite circular cylinders coaxially located inside
an infinite outer cylinder is reduced to solving a system of singular integral equations
WH and further solved by the WH method using factorized Bessel functions, which is
reduced to a system of linear algebraic equations, splitting into separate recursive equations.
Solutions to the problem for each region inside the infinite outer cylinder are presented as
exponentially converging series in terms of eigenfunctions and eigenvalues.

The final results of this problem can be useful for testing approximate methods as the
WH method is one of the mathematically rigorous methods.

7. Conclusions

The WH method was used to solve the internal boundary value problem of the el-
liptic type on the distribution of the electrostatic potential inside the structure formed
by a round cylinder with a slot of finite width coaxially located inside an infinite round
cylinder. The potentials of the cylinders are assumed to be constant and are set arbitrarily.
The studied problem is first, with the help of boundary conditions, reduced to a system of
singular integral Wiener–Hopf equations, the exact solution of which is constructed by the
WH method in the class of meromorphic functions with respect to two desired auxiliary
functions interconnected by a system of linear algebraic functions. This system breaks down
into recursive equations, as a result of which the solution of the problem is obtained in the
form of an infinite exponentially convergent series. It should be noted that the rigorous so-
lution automatically satisfies the so-called edge condition or the Meixner condition, which,
in fact, is responsible for the uniqueness of the solution to the boundary value problem,
since the electric field must tend to infinity according to a given power law as it approaches
the edge. Thus, the solution of the boundary value problem ϕ for each region is represented
by eigenfunctions in the form of Bessel functions and eigenvalues, which are their roots
at the corresponding radius of the cylinder inside the infinite outer cylinder. On the basis
of analytical formulas, a quantitative analysis of the axial distribution of the potential of a
two-electrode lens was carried out for various values of the radii of the outer and inner
cylinders. The WH method can be applied without significant changes to similar boundary
value problems with three or more internal electrodes. Undoubtedly, similar external
boundary value problems are also of theoretical interest for the WH method. In modern
electron microscopes, high resolution is provided by the use of aberration correctors, which
eliminate the main reason that limits the resolution of an electron microscope—spherical
and axial chromatic aberration of the electron lens that acts as its objective [1,24]. However,
the use of a two-electrode mirror enables us to eliminate only one of these aberrations, either
spherical or chromatic [1]. The development of aberration correctors with the simultaneous
elimination of both spherical and axial chromatic aberrations using electron mirrors with
three or more internal electrodes opens up great opportunities for increasing the resolving
power of a new generation of transmission electron microscopes. At the same time, such an
electrode design simultaneously provides electrostatic strength at high field strengths and
screening of the electron beam from scattered electric fields at large gap widths between
the internal electrodes.
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Appendix A. Factorization of Bessel Functions

Using a standard decomposition of integer functions into factorized functions, we can
represent the Bessel functions and their combinations as

L(a, w) = L(a, w)+ · L(a, w)−,

where [6,8]
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As the function L+ in its poles and zeros, which are imaginary, takes real values, it is
convenient to express it through the gamma function
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Here, as can be seen, the fast convergence in infinite products occurs due to the asymptotics
of the roots of the Bessel functions γ′

n = π(n − 1
4 ) and δ′n = πn (n = 1, 2, . . . ). For

convenience, denoting the infinite products in (A2) as
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we finally obtain the optimal formula for the numerical calculation with sufficient accuracy:
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Abstract: Coronary artery diseases (CADs) are a leading cause of death worldwide. Accurate
numerical simulations of coronary blood flow, especially in high-risk atherosclerotic patients, have
been a major challenge for clinical applications. This study pioneers a novel approach combining
the physiologically accurate five-element Windkessel and sPTT models to enhance the accuracy of
the hemodynamics and the fractional flow reserve (FFR) parameter. User-defined functions (UDFs)
of the outlet pressure boundary condition (Windkessel model) and the viscoelastic characteristics
of blood (sPTT model) were developed and dynamically loaded with ANSYS® 2023 software. In a
proof-of-concept study, a patient’s left coronary artery with 40% stenosis was provided by the hospital
for further analysis. The numerical FFR value obtained in the present work skews only 0.37% from the
invasive measurement in the hospital. This highlights the important roles of both blood viscoelasticity
and the five-element Windkessel model in hemodynamic simulations. This proof-of-concept of the
FFR numerical calculation tool provides a promising comprehensive assessment of atherosclerosis
in a fast, accurate, more affordable, and fully non-invasive manner. After validation with more
patient cases in the future, this tool could be employed in hospitals and offer a more accurate and
individualized approach for the diagnosis and treatment of CAD.

Keywords: computational programming; user-defined functions; hemodynamic simulations; coro-
nary arteries; Windkessel model; viscoelastic property of blood

MSC: 90-08; 90-10; 90-11

1. Introduction

Coronary artery disease (CAD) occurs when there is partial or total obstruction of the
coronary arteries through the development of plaque in the lumen (stenosis), reducing
the capacity of this organ (ischemia). This disease represents approximately one in three
deaths in developed countries since it is potentiated by population aging and poor lifestyle
choices [1]. Stenoses are assessed by medical doctors through the analysis of images
obtained with computed tomography (CT) scans [2]. There is an objective parameter used
to measure the impact that the stenosis has on the blood flow—the fractional flow reserve
(FFR)—which is a measure of pressure drop that occurs in the lumen of the artery. This
parameter is non-dimensional, with values between zero (the artery is completely blocked)
and one (there are no obstructions to blood flow).

The current invasive method for calculating FFR involves introducing a wire into the
stenosed artery while under hyperemic circumstances (maximum vasodilation induced by
administration of adenosine), measuring two pressure values, namely the aortic pressure
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and then the pressure distal to the stenosis at exactly 20 mm downstream [3]. The FFR is
defined as the ratio between distal and aortic pressures, pd and pa, respectively.

A stenosis is considered significant if the FFR is less than 0.75, and revascularization
procedures are conducted to assure reasonable blood flow. Moreover, the narrowing is
seen as having a mild impact if this parameter is greater than 0.8. For this case, the patient
is provided with medication and a set of preventive measures is recommended, such as
lifestyle changes. However, for intermediate values, the clinician is the one that determines
which treatment would produce the best outcome, which may not always be the one
chosen [4].

As alternatives to the invasive method, a growing body of research has focused
on using computational fluid dynamics (CFD) in conjunction with CT images to create
artificial models of the diseased arteries and solve numerical simulations of fluid dynamics
for coronary blood flow and determine FFR values non-invasively [5–9]. Thus, the non-
invasive process would be a viable and cost-free alternative, with no risk for the patient,
aimed at improving the accuracy of the diagnostic process.

Windkessel models are lumped-parameter models used to represent the entire circula-
tory system and are based on the simplified representation of the different cardiovascular
elements such as the heart and venous and arterial vessel structures [10]. Applying these
models as boundary conditions allows for the creation of a pressure distribution profile
along the entire vessel, eliminating the need to model the full circulatory system.

Jonášová et al. (2021) utilized several accurate Windkessel models with 3, 5, and
7 elements, to numerically assess coronary circulation, but they used the Newtonian and
shear-thinning blood models, and did not evaluate the fractional flow reserve [11]. Kim
et al. (2014) compared the invasive and the computed FFR measures of patient-specific
left coronary arteries and found remarkably similar results. However, the study does
not disclose the used boundary conditions, namely, which lumped-parameter model was
used to model pressure, as well as the rheological model used to model the viscosity of
blood. In addition, the numerical FFR results presented in the paper were calculated in the
patient’s resting conditions [12]. Nakazato et al. (2013) performed a numerical study with
252 patients using blood as a Newtonian model and a lumped-parameter model. Though
the model was able to overall match the invasive FFR, the simulation settings are not
disclosed [13]. The accuracy of the simulation results is heavily linked to the used boundary
conditions, so their study is essential for creating this non-invasive diagnostic tool. Csippa
et al. (2021) measured the FFR parameter and the coronary flow reserve (CFR) in vivo
and numerically. They also achieved good correlations utilizing patient-specific boundary
conditions that were measured through invasive methods [14]. The study considered blood
as a Newtonian fluid. Even though both parameters are commonly employed in the study
of the physiological impact the stenoses have on blood circulation, the CFR is a function of
numerous variables. In fact, CFR depends on properties such as the heartbeat rate. The
contribution of collateral flow to myocardial perfusion is not taken into account by this
parameter [15], unlike the FFR.

Blood is a series of different heterogeneous cells, such as erythrocytes, leukocytes, and
thrombocytes, suspended in plasma, a liquid. The blood suspensions grant blood its non-
Newtonian characteristics, that lead to very complex behavior [16]. In the literature, blood
is frequently modeled as a shear-thinning fluid that does not factor in the viscoelasticity [11,17–19].
In the study conducted by Pinto et al. (2020), three different viscoelastic constitutive models
were used to model blood and the results using a Newtonian and a Carreau model for
numerical simulations in right coronary arteries (RCAs) were compared. The differences
were significant [20]. In addition, from the studies of Campo-Deano et al. (2013), Bodnár
et al. (2011), and Good et al. (2016), it was concluded that the viscoelasticity is the most
accurate property of blood and hence, the viscoelastic effects should not be neglected [21–23].
Other works have showcased the importance of viscoelastic blood models for an accurate
modeling of blood [24,25]. The simplified Phan-Thien/Tanner (sPTT) model led to the most
precise results, and thus it was chosen in this study [20,21].
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The primary goal of this work is to create a numerical model that can faithfully mimic
the hemodynamics of real left coronary artery (LCA) circulation of a patient and, as a
result, correctly forecast the onset of ischemia. This is a significant step towards creating a
secure, non-invasive method of measuring the FFR, which, to the authors’ knowledge, is
still not attainable in the clinical settings. This work is innovative, by simultaneously using
a five-element Windkessel model as the boundary condition for the pressure in the outlets
of a patient-specific LCA model, and of the viscoelastic sPTT rheological model for blood.
The proposed boundary condition representing the pressure conditions influenced by the
entire circulatory system was implemented through a user-defined function in ANSYS®

2023 software, which can be dynamically loaded. This implementation was completed in
alliance with the use of a pulsatile Womersley velocity profile at the inlet of the arteries and
the representation of the complex blood rheology through a simplified Phan-Thien/Tanner
(sPTT) viscoelastic model, which was still not reported in the literature.

The present study is a proof-of-concept where a patient-specific LCA model with
40% stenosis was created through image segmentation methods of Computed Tomography
(CT) scans provided by the Vila Nova de Gaia/Espinho Hospital Centre (CHVNG/E).
After implementation and running the hemodynamic simulations, the computed FFR was
compared with the invasive FFR obtained in the hospital. Moreover, results considering
the viscoelastic property of blood or blood as a Newtonian fluid were achieved in order to
verify the importance of using the viscoelasticity of blood in hemodynamic simulations.

2. Materials and Methods

The entire process used to determine the computed FFR is detailed in this section,
including the data of the studied patient, the creation of the patient-specific coronary artery,
the replication of the artery in the hyperemia condition, the definition of all boundary
conditions, and the rheological model. The mesh convergence test, and the numerical
settings used in the CFD numerical simulations, conducted in ANSYS Fluent® 2023 software
are also included.

2.1. Data of the Patient Case

A patient from CHVNG/E with a degree of stenosis was evaluated in this study. The
patient is a 63-year-old man with a 40% stenosis located in the proximal region of the
left anterior descending artery (LAD). Moreover, other patient information was provided,
including the systolic blood pressure (SBP), the diastolic blood pressure (DBP), the FFR
measured invasively, and the resting heartbeat rate (HBRrest) (Table 1). The patient gave
informed consent for inclusion before participating in the study. The study was conducted
in accordance with the Declaration of Helsinki, and the protocol was approved by the
Ethics Committee of CHVNG/E 53945 2021-01-27.

Table 1. Data of the patient measured invasively: systolic blood pressure (SBP), diastolic blood
pressure (DBP), fractional flow reserve (FFR), and resting heartbeat rate (HBRrest).

SBP [Pa] DBP [Pa] FFR HBRrest [bpm]

16,705.3 11,279.1 0.93 59

2.2. Geometric Model

CT images provided by CHVNG/E were used and, through MIMICS® (v20.0) software,
a 3D model that represents the LCA of the patient was created, as well as the LAD and
the left circumflex artery (LCX). After loading the images in the program and selecting the
aorta, the inlet, and the outlets of the coronary tree, the software automatically generated a
3D model of the selected domain (Figure 1a).
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(a) (b) 

Figure 1. (a) LCA lumen model of the patient obtained in Mimics® (v20.0) software; (b) LCA lumen
model of the patient obtained in 3-matic® (v20.0) software. The stenosis is highlighted with a black
arrow, and it has an average diameter of 2.79 mm.

The model was further improved in 3-matic® software, where the geometry was
smoothed, and the inlet and outlets were trimmed to form a flat surface onto which the
boundary conditions must be applied in the numerical simulation process (Figure 1b). The
created model represents the normal resting conditions of the patient, and the visualization
of the three-dimensional geometry allows for an easier assessment of the severity of
the stenoses.

2.3. Hyperemia Condition for Simulations

For an accurate determination of the non-invasive FFR, maximal hyperemia condi-
tions, under which invasive FFR is determined, should be modeled. In clinical practice,
both in invasive FFR or in ischemia testing, a hyperemic status is induced through the
intravenous infusion of a pharmacologic vasodilator agent, in the present case adenosine
(dose of 140 μg/kg/min). This pharmacologic stress agent causes several hemodynamic
modifications that resemble the normal physiological response to stress or exercise [26],
including a decrease in the mean systemic arterial pressure (6 mmHg) and vessel resistance
(4.17 times), and an increase in heart rate (24 bpm) and absolute myocardial blood flow
(4.4 times), relative to the resting conditions.

The vessel resistance depends on the blood viscosity, on the artery length and on the
radius/cross-sectional area of the artery [27]. Therefore, the ratio between the cross-section
area of the artery in hyperemia conditions and in resting conditions is always 2.04, since
blood viscosity and artery length are the same for whatever the condition is (hyperemia
or resting). Thus, the radius in each point of the 3D geometry of the artery needs to be
increased 1.42 times relative to the resting conditions, and the resistance in hyperemia
conditions is 0.24 times lower relative to resting conditions.

Consider that the resistance of a Hagen–Poiseuille flow is given by:

Res =
8μL
πR4 (1)

where Res is the resistance, μ is the dynamic viscosity, L is the length, and R is the radius
of the vessel. With the resistance of the hyperemic vessel being 0.24 times lower than the
resting vessel, it is possible to deduce that, approximating the artery’s cross-sections to
circles, the cross-sectional area, A, of the vessel changes:

Reshyper

Resrest
= 0.24 ∴

Rhyper

Rrest
=

1
4
√

0.24
∴

Ahyper

Arest
= 2.04 (2)

Thus, to accurately depict the geometry during maximum hyperemia, the entire LCA
model must be scaled by 2.04 in its cross-sectional area. To achieve this goal, the resting
3D model was imported to Mimics®, and over forty values of diameter from differently
located LCA cross-sections were measured using the tools of this software. Their values,
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augmented by the factor deduced in Equation (2), were used as the diameter values to
rebuild the vasodilated model, approximating the cross-sections of the artery to perfect
circles. Then, these sections were connected to form the hyperemic model (Figure 2). To
assure a better representation of the stenosis, more diameter measurements were taken in
that region, both downstream and upstream of the stenosis. The authors assumed that the
coronary artery has rigid walls because the consideration of elastic walls in past works
led to excessive computational times without considerable improvement in the obtained
numerical results [28].

 

Figure 2. LCA lumen model of the patient under maximum hyperemic conditions. The inlet and
outlets are marked accordingly.

2.4. Boundary Condition Definitions

The heart drives the circulatory system, and because of its distinctive motion, it allows
blood to flow in a pulsatile manner. Additionally, because the circulatory system is a
closed loop, vessels in other parts of the body inevitably influence blood pressure in the
coronary arteries. The velocity and pressure boundary conditions defined in the control
volume should mimic real hemodynamic flows, and these properties are modeled through
a Womersley model and a lumped-parameter model (Windkessel model), respectively,
which are presented in this section.

2.4.1. Velocity Boundary Condition

Coronary blood flow is pulsatile and periodic over a cardiac cycle, which has a
duration, T, and an angular frequency, ω, defined as:

T =
2π

ω
(3)

ω =
2π HBR

60
(4)

The Womersley mathematical model of pulsatile flow is commonly used in the lit-
erature to represent blood flow [14,16,17,29], and a non-dimensional number, Wo, was
developed to measure the ratio between transient inertial forces and viscous forces for the
inlet of the artery:

Wo = Rinlet

√
ρω

μ
(5)

where ρ is the density of blood. The previous parameters are displayed in Table 2.

Table 2. Parameters used to calculate the Womersley number in hyperemia conditions.

Rinlet [m] ρ [kg m−3] ω [rad s−1] T [s] HBR [bpm] Wo

3.406 1060 8.692 0.72 83 5.566
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Because blood flow is oscillatory, the velocity profile in the direction of the flow, u, is
described through a tailored Poiseuille profile:

u(r, t) =
Âi
ω

⎛⎝1 −
J0

(
i

3
2 Wo r

R

)
J0

(
i

3
2 Wo

)
⎞⎠eiωt (6)

where J0 is a null-order Bessel function of the first kind, i is the imaginary number, Â is
the amplitude, r is the radial coordinate, and t is the time instant (Figure 3). This velocity
profile, applied in the inlet of the artery, was developed based on [30–32], where a velocity
waveform was approximated using a Fourier series in MATLAB® [33–35]. Using the
patient-specific values of R, ω, and, consequently, Wo, this profile approximates the real
pulsatile blood flow of the patient. The concept of normalized time, t*, calculated as the
ratio between the time instance and the cardiac cycle period, was introduced to better
establish the boundary conditions of the patient.

 

Figure 3. Velocity waveform at the inlet vs. nondimensional instant time (1 cardiac cycle) for the
patient-specific case.

2.4.2. Pressure Boundary Condition

The resistances and capacitances of electrical circuits can also be explained in blood
vessels [10]. In fact, both fluid inertia and wall elasticity can provoke resistance to the flow,
and from Equation (1), it became clear that smaller vessels result in higher resistances. The
capacitance (or compliance) of a blood vessel, C, is related to the level of inflating and
deflating throughout the cardiac cycle, and the amount of change in the pressure gradient
needed to produce a unit change of volume:

C =
ΔV
Δp

(7)

A Windkessel model is the direct application of the previous principles, and it is
applied exclusively to the hemodynamic description of the arterial circulation [10]. In this
work, a five-element Windkessel model was used (Figure 4) as the boundary condition of
the outlets. Here, Resa, Resv, Resa,micro, and Resv,micro represent the resistance of the arterial,
venous, and both arterial and venous capillary levels. Ca and Cim are the arterial and
intramyocardial compliances, and pa, pv, and pim correspond to the arterial, venous, and
variable intramyocardial pressures, respectively [11]. Moreover, the external pressure, pext,
and the heart’s right atrium pressure, pra, were considered null.
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Figure 4. The five-element Windkessel model used as the outlet boundary conditions. Adapted
from [11].

The governing equations of flow that are derived from this model are:

p0 = pa + ResaQ0, (8)

dpa

dt
=

Q0

Ca
− pa − pv

CaResa, micro
, (9)

dpv

dt
=

dpim
dt

+
1

Cim

(
pa − pv

Resa, micro
+

pv

Resv, micro + Resv

)
. (10)

The involved parameters are calculated based on the data of the patient. Other
considerations must be made. During the systole, the intramyocardial pressure can be
equated to the left ventricular pressure, which is the pressure at the inlet of the coronary
artery. The transition between systole and diastole was neglected and the pressure during
the diastole was considered null. The total resistance to flow, Restotal, which involves both
the arterial and venous circulation, was determined by:

Restotal =
1
3 SBP + 2

3 DBP
Qi

, (11)

where the numerator is the MAP and the average flow rate in the inlet is Qi. The resistance
to blood flow in each outlet, Resi, and the micro-circulatory arterial resistance, Resm, are
given by:

Resi = Restotal
Ai

∑N
i=1 Ai

, (12)

Resm = Resa, micro + Resa. (13)

The resistance in the venous circulation, the sum of Resv and Resv, micro, was obtained
considering that the average pressure in the veins is equal to 2666.45 Pa [36]:

Resvi + Resv, microi = 2666.45
Ai

∑N
i=1 Ai

. (14)

The arterial resistance can be calculated through:

Resai =
ρ
√

2
3ρ

(
k1·ek2Ri + k3

)
Ai

, (15)

where blood is considered incompressible (and therefore, ρ is constant, equal to 1060 kg m−3),
Ri is the radius of the outlet, and the constants k1, k2, and k3 are equal to 2000 kg2 s−1 m−1,
−2253 m−1, and 86.5 kg2 s−1 m−1, respectively [36].
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Moreover, the arterial microcirculation resistance can be obtained through:

Resa, microi = Restotal − (Rvi + Rv, microi)− Rai , (16)

and this was used to calculate the resistances of each outlet of the patient. The values of the
total arterial and intra-myocardial capacitances, Ca,tot and Cim,tot, are 1.998 × 10−10 m3 Pa−1

and 3.904 × 10−9 m3 Pa−1, respectively [36]. The authors assume that the myocardium
mass of this patient is 204.9 g based on the works of the analysis of male cadaveric hearts
completed by [37], since there are no works in the literature that measure the myocardial
mass of ischemic live patients. Moreover, the ventricular mass index could not be calculated
since there is not enough clinical information of the patient provided by the hospital.

Thus, in order to model the 5-element Windkessel, scripts in C language were written
as user-defined functions (UDFs) to be compiled in ANSYS Fluent®. To implement this
model, the equations need to be discretized using a second-order implicit method, which is
described following the ANSYS Fluent Theory Guide [38]. The variable φ is an arbitrary
variable and I is the calculation time step:

dφ

dt
=

3φi+1 − 4φi + φi−1

2Δt
. (17)

Numerically, the constitutive equations were discretized, where Q is the mass flow
rate and aux is an auxiliary variable:

dq
dt

=
3Qi+1

0 − 4Qi
0 + Qi−1

0
2Δt

(18)

dpim
dt

=
3pi+1

im − 4pi
im + pi−1

im
2Δt

(19)

aux =
3Cm

2Δt
+

1
Resm

+
1

Resv, micro + Resv
(20)

pi+1
0 =

(
1 + Resa

Resm

)
Qi+1

0 + Ca

(
Resadq − −4pi

0+pi−1
0

2Δt

)
3Ca
2Δt +

1
Resm

− 1
aux Res2

m

(21)

pi+1
v =

1
aux

(
pi+1

0
Resm

+ Cm

(
dpim − −4pi

v + pi−1
v

2Δt

)
− Resa

Resm
Qi+1

0 +
pra

Resv, micro + Resv

)
(22)

2.5. Blood Rheological Model

Blood is a viscoelastic fluid due to its composition. Thus, to achieve realistic simu-
lation results, the numerical modeling should take into account the elastic component of
blood [21–23]. The general linear momentum conservation equation is given by:

ρg −∇p +∇·τ = ρ
Du
Dt

(23)

where g is the gravitational acceleration, p is the pressure, and τ is the stress tensor. The
sPTT model for blood is modeled through the stress tensor, which is divided into an elastic
and a solvent part:

τi,j = τi,js + τi,je (24)

This contributes differently to the overall viscosity values. In the solvent part
(Equation (25)), the solvent viscosity, μs, is usually deemed constant (and equal to 0.0012 Pa.s)
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and Di,j is the shear strain rate tensor components. The elastic component (Equation (26)) is
the sum of the different k modal shear stress tensor components:

τi,js = 2μsDi,j (25)

τi,je =
N

∑
k=1

τi,jk (26)

The values for τi,j in Equation (26) are calculated through:(
1 +

λkεk
μek

tr
(
τi,jk
))

τi,jk + λk
∇

τi,jk = 2μek Di,jk (27)

where λk is the relaxation time, εk is the extensibility coefficient and μe is the elastic dynamic

viscosity. The upper convected derivative of the elastic stress tensor for each mode,
∇
τk, is

equal to:
∇
τk =

Dτk
Dt

− (∇·u)Tτk − τk(∇·u) (28)

The experimental study of Campo-Deaño et al. (2013) concluded that four modes
(N = 4) were sufficient to fit experimental data of rheological measurements of blood.
Therefore, they obtained the different coefficients involved (Table 3) [20,21].

Table 3. Properties of the multi-modal sPTT model. Adapted from [21].

Mode, k 1 2 3 4 Solvent

μe,k [Pa s] 0.05 0.001 0.001 0.0016 0.0012

λk [s] 7 0.4 0.4 0.006 0

εk 0.2 0.5 0.5 0.5 0

2.6. Numerical Settings

The FFR is calculated as the ratio between the distal pressure and the aortic pressure.
The positions occupied by the pressure sensor in the measurement of the invasive FFR—the
standardized method [3]—and the positions where the computed FFR is calculated must be
the same. Thus, two planes were generated in ANSYS Fluent® whose flow properties were
recorded (Figure 5). The aortic plane was defined parallel to the inlet at a small distance of
0.01 mm. The distal plane was positioned 20 mm downstream the center of the stenosis
and perpendicular to the direction of the flow.

 
Figure 5. Location of the aortic and distal planes.

The SIMPLE algorithm was used to solve the governing equations. A second order
implicit approach was employed in the temporal formulation for the resolution of the
pressure and flow fields as well as for the boundary condition—the five-element Windkessel
model—in the outlets. A second order upwind discretization method was applied to the
scalars produced by the usage of the viscoelastic non-Newtonian model (sPTT) for blood.

The time step duration was set at 0.005 s, with 20 iterations per time step, in order to
maintain a Courant number below one throughout the entire pulsatile cycle [17,20,26]. The

381



Mathematics 2023, 11, 4877

convergence criteria of the different scalars used to describe the different sPTT modes and
the continuity and momentum equations had a value of 1 × 10−6. This value was chosen
to ensure numerical stability and computational efficiency to have accurate simulations
results as shown in [20]. In addition, except for the pressure in the aortic and distal
planes and the outlets, which were saved every time step, the instantaneous results of the
hemodynamic simulations were saved every 0.02 s. The pressure values were averaged
through a trapezoidal rule to be able to achieve representative distal and aortic pressure
values used in the calculation of the numerical FFR.

2.7. Meshing

In CFD simulations, the quality of the results is highly dependent on the quality of
the chosen mesh. A courser mesh can lead to inaccurate results and, also, meshes that are
unnecessarily fine bring on large computational times unnecessarily. Thus, an accurate
mesh for the lowest computational time possible must be achieved. The meshes of the
models were created in ANSYS Meshing® 2023 software and tetrahedron elements were
chosen, with the options of patch independent mesh and no refinement, to create a uniform
mesh across the artery.

The maximum element size (MES) is the parameter that must be optimally selected.
Three mesh sizes were chosen, such as 6.70 × 10−4 m, 5.30 × 10−4 m, and 4.22 × 10−4 m
(Table 4), in order to double the number of elements with each mesh. Furthermore, the
parameter Skewness is usually used to evaluate the quality of the mesh. Its value should
not be above 0.95 for the calculation procedure to be stable and convergent [39].

Table 4. Mesh size and skewness parameters for the patient case.

Mesh Number MES [m] Number of Elements Maximum Skewness Average Skewness

Mesh 1 6.70 × 10−4 126,568 0.754 0.154

Mesh 2 5.30 × 10−4 255,996 0.867 0.136

Mesh 3 4.22 × 10−4 507,641 0.684 0.125

Every mesh complied with the necessary skewness requirements, so a second criterion
based on mesh convergence was employed to choose the mesh. The degree of convergence
of the results was conducted with the Richards Interpolation method: considering p* as the
average pressure in the distal plane (Equation (29)) and pi and pfinest as the current and the
finest mesh (MES = 4.22 × 10−4 m), respectively:

p∗ = pi +
pi − p f inest

r2 − 1
, (29)

where r is the ratio of the maximum element size of the finest mesh and the current mesh.
The relative error value, er, can be calculated by:

eri =
p∗ − pi

pi
. (30)

The tetrahedron meshes 1, 2, and 3 took a computational time of 0.92 h, 1.64 h, and
3.02 h, respectively. Table 5 shows the relative error of mesh 1 and mesh 2 relative to the
finest mesh, mesh 3. All blood flow simulations were performed using mesh 2, which
returned the smallest error (1.345%) for the patient even though it took 56% longer in
computational time than mesh 1.

In conclusion, mesh 2 has the best balance between the lowest computational time
and the highest result accuracy.
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Table 5. Relative error values of p* for the different mesh sizes.

Mesh 1 (MES = 6.7 × 10−4 m) Mesh 2 (MES = 5.3 × 10−4 m)

er [%] 4.010 1.345

3. Results and Discussion

The FFR value of the patient that was acquired invasively was compared with the one
obtained using hemodynamic simulations of coronary flow. The computed FFR was deter-
mined considering blood as viscoelastic or blood as a Newtonian fluid. This comparison is
important for highlighting the effects of the rheological model in the hemodynamic results.

In addition to the computed FFR, the average pressure in the outlets as well as the
velocity and pressure fields throughout the artery model were examined. These results
were used to evaluate the impact that the presence of stenosis has on the hemodynamic
flow, considering the viscoelastic property of blood and Newtonian model of blood in the
numerical simulations.

In summary, we examined the influence of blood rheology in the hemodynamic flow
and consequently in the computed FFR. The results were treated through a post-process
program, the ANSYS CFD-Post® 2023 software. Five cardiac cycles were computed, and
data from the last one were collected, since the errors associated with the initialization of
the computational process had diminished.

3.1. Velocity Fields

According to Figure 3, the minimum velocity occurs when the dimensionless time, t*,
is equal to 0.425 and the maximum one is equal to 0.79, during the diastole and the systolic
peak, respectively. The velocity fields in those times instances were retrieved, and they are
displayed for the sPTT model (Figure 6a,b) and the Newtonian blood model (Figure 6c,d).

  
(a) (b) 

  
(c) (d) 

Figure 6. Velocity fields for the patient case: sPTT model at (a) minimum velocity (t* = 0.425);
(b) maximum velocity (t* = 0.79); Newtonian model at (c) minimum velocity (t* = 0.425); (d) maximum
velocity (t* = 0.79).

Due to the rise in dynamic pressure, thinner cross-sections have higher velocity
magnitudes, such as in the case of the stenosis region and the outlet arteries. This happens
for both rheological models. Moreover, in the LAD, it is clear to see that downstream the
narrowed vessel, provoked by the stenosis, the velocity gradually decreases to values like
the ones registered in the inlet before the bifurcation. Near the walls, friction losses are the
cause of the witnessed velocity decreases. In the region near the wall surface before and
after outlet 4, there is a stagnant blood flow since the velocity values are near zero. This
region is bigger in the Newtonian case and in both time instances.
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The sPTT simulations returned higher maximum velocities than the Newtonian model
simulations. In fact, the maximum velocity achieved in t* = 0.425 was 9.72% larger and,
for the instant t* = 0.79, the maximum velocity was 8.68% higher. It could be concluded
that the Newtonian blood model underestimates the maximum velocity that occurs in the
stenosis, not accounting for its real impact on blood flow.

3.2. Pressure Fields and Profiles

For the calculation of the FFR, the pressures in the aorta and 20 mm downstream the
stenosis are required. The spatial-averaged pressure waveforms at the distal and aortic
planes (displayed on Figure 5) are shown in Figure 7 as a function of non-dimensional time,
for both sPTT and Newtonian models of blood.

 

Figure 7. Pressure waveform for the patient case in the aortic and the distal planes for the Newtonian
and the sPTT models.

The pressure peak and valley occur approximately in the same instances as the velocity
ones. The distal pressure profile reaches lower pressure values, confirming the pressure
drop that occurs because of the existence of the stenosis. This happens considering both
models for blood. Additionally, the propagation of the pressure pulse from the entrance
through the branches of the coronary tree is what causes the observed lag between the
minimum and maximum pressure peaks from the aortic to the distal planes. The Newtonian
model returned slightly higher pressure values for the aortic and distal plane than the sPTT
model since the latter accounts for viscoelastic impacts of blood flow, which lead to lower
pressure values.

The pressure fields for the patient are displayed for the minimum and the maximum
velocity time instances for the sPTT model (Figure 8a,b) and the Newtonian blood model
(Figure 8c,d).

For both rheological models, the maximum pressure reached in t* = 0.425 (Figure 8a,c)
is lower than the maximum pressure reached in t* = 0.790 (Figure 8b,d). Since the LCX
branch, which is upstream of the stenosis, manages to retain greater pressure values
lengthwise, a comparison of the pressure values with the LAD branch denotes the obvious
influence the stenosis has on blood flow. The stenosis leads to a pressure drop in the artery
that is slowly overturned downstream of the vessel, but the pressure never recovers to
the inlet pressure values. This conclusion is supported by Bernoulli’s principle, since the
increase in cross-sectional area after the stenosis leads to a pressure increase.
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(a) (b) 

  
(c) (d) 

Figure 8. Pressure fields for the patient case: sPTT model at (a) minimum velocity (t* = 0.425);
(b) maximum velocity (t* = 0.79); Newtonian model at (c) minimum velocity (t* = 0.425); (d) maximum
velocity (t* = 0.79).

Looking at the pressure contours, it is evident that the pressure decreases in the
stenosis area and starts increasing with the downstream distance to the stenosis. However,
the pressure considering the viscoelastic model (Figure 8a,b) recuperates over a shorter
distance than the Newtonian model (Figure 8c,d). The sPTT simulations returned maximum
and minimum pressure values that were lower than the ones using the Newtonian blood
model. Quantitatively, in the sPTT case, the maximum pressure reached in t* = 0.425
was 10.12% lower, and the minimum pressure obtained was 55.7% smaller. Similarly, for
t* = 0.79, the maximum pressure was 10.92% lower and the minimum pressure obtained
was 90.29% smaller.

If the artery had only been numerically studied with the Newtonian model, it could
be assumed that the pressure downstream the stenosis would never recuperate and affect
the entire circulatory system. Such a conclusion would be misleading and, therefore, a
more accurate blood model needs to be computed. Thus, the rheological model to be
used in hemodynamic simulations of coronary arteries should take into consideration the
viscoelastic property of blood, which is more accurate [20–24].

In the smaller arteries, such as the outlets, the pressure tends to be lower (Figure 8) due
to a greater preponderance of viscous strains, the reverse of what occurred with the velocity
(Figure 6). To better assess the stenosis impact downstream, the temporal distribution of
the spatial-average pressure in each outlet was calculated. These results are displayed
considering the sPTT (Figure 9a) and the Newtonian blood models (Figure 9b).

  
(a) (b) 

Figure 9. Outlet pressure waveforms of the patient case: (a) sPTT model; (b) Newtonian model.
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The results of the pressure curves for the sPTT and the Newtonian blood models
have similar magnitude and shape. The pressure peaks occur in the same time instances.
Before the stenosis, outlet 1 to 3 returned higher pressure values. Then, after the stenosis,
its closest exits are outlets 4 and 5, where the recorded pressure is significantly lower in
comparison with the first three outlets. The pressure continues to decrease in outlets 6 and
7. The magnitude of pressure is much lower, but it recovers downstream, as is evident
by the increase in the pressure values in outlets 8 to 10. Outlet 9 is the furthest from the
stenosis, and the pressure values, although larger than the ones of outlets upstream, are
still below the initial pressure values. This suggests that the presence of stenosis alters the
flow in the arteries and, consequently, of the capacity of the cardiac muscle.

For a better comparison of the results obtained using the two different rheological
models, the pressure peaks obtained in each outlet were recovered for both the Newtonian
and the sPTT blood models. The pressure values are presented in Table 6, where the relative
error between them is displayed.

Table 6. Maximum outlet pressure for the sPTT and the Newtonian blood models and the relative
error values.

Outlet Maximum Outlet Pressure (sPTT) [Pa] Maximum Outlet Pressure (Newtonian) [Pa] Relative Error [%]

Outlet 1 1449.8 1473.5 1.6

Outlet 2 2695.8 2835.0 5.2

Outlet 3 2119.7 2292.0 8.1

Outlet 4 1323.8 1235.4 6.7

Outlet 5 1210.0 1237.4 2.3

Outlet 6 837.4 710.9 15.1

Outlet 7 881.7 1321.3 49.9

Outlet 8 804.0 797.5 0.8

Outlet 9 1746.5 1840.6 5.4

Outlet 10 1233.2 1204.5 2.3

The calculated relative error values are diverse, ranging from 0.8% to 49.9% in outlets
8 and 7, respectively. The average relative error is 9.7%. This measure indicates that,
since the relative error values are high, the sPTT model must be used in the numerical
simulations.

3.3. Non-Invasive FFR

The previous data were used to calculate the temporal and spatial-averaged pressure
values for the distal and the aortic planes of the artery to obtain the non-invasive FFR. For
both locations, the spatial-average pressure values in different time steps were averaged
through a trapezoidal rule. With the ratio of the two values, the FFR value for the patient
case was calculated, as well as the relative error to the invasive measurement (Table 7).

Table 7. Comparison between invasive and non-invasive FFR for the patient case considering the
Newtonian and the sPTT blood models.

Blood Model Invasive FFR Non-Invasive FFR er [%]

Newtonian
0.930

0.904 2.74

sPTT 0.934 0.37

The non-invasive method captured the hemodynamics of the LCA, given the fact that
the computed FFR of the patient is practically equivalent to the invasive FFR, recording

386



Mathematics 2023, 11, 4877

a relative error of 0.37%. This error value is much smaller than the one registered in the
numerical simulations considering the Newtonian blood model (2.74%). This is due to the
fact that the sPTT model considers the viscoelasticity of blood, and it is a more accurate
representation of its fluid properties [20–24]. In addition, the use of the Womersley velocity
model and the five-element Windkessel flow are essential for reproducing the realistic
waveforms of this patient.

Moreover, it is crucial to compare our results with those reported in the recent literature
in order to validate the reliability of the implemented method. In a study conducted by Xue
et al. (2023), the outlet blood flow conditions were determined based on CT perfusion and
outlet diameter, while maintaining a constant pressure at the artery inlet. They assumed
blood to be a Newtonian fluid. Like the present work, these authors performed the
reconstruction of a coronary artery through 2D images and used clinical information to
determine patient-specific boundary conditions. The outlet boundary conditions used
were coronary outlet resistance based on the myocardial perfusion territory, extracted from
medical imaging of the heart during a cardiac cycle. The mesh used by the authors exceeds
1 × 106 elements, and the software OpenFOAM was used in the numerical simulations. The
results showed a relative error of 4.35% and 2.25% between invasive and computed FFR
for two patient cases [40]. On the other hand, Gao et al. (2020) utilized a machine learning
algorithm to predict the FFR based on CT imaging. The authors created a tree-structured
recurrent neural network. The hemodynamic results were obtained through simulations
using the finite element method of 1D models of coronary artery trees. The work used outlet
pressure and inlet velocity values based on lumped-parameter models. The neural network
was trained with 13,000 synthetic coronary trees authors, and eight patient cases were used
in the validation stage. The authors achieved an average relative error of 2.85% between
invasive and computed FFR for eight patients. Given the low relative error obtained in their
work in comparison with state-of-the-art methods, it could be stated that the implemented
methods are valid and reliable [41].

4. Conclusions

In this work, a patient-specific geometry of a left coronary artery was generated to
perform hemodynamic simulations using computational fluid dynamics, with the objective
of calculating the value of the FFR. This parameter is considered the gold standard in the
assessment of the severity of a lesion due to the existence of stenosis and the possible need
for revascularization. In order to assess the accuracy of the developed numerical model,
the non-invasive computed FFR value was compared with the invasively measured one,
obtained by the Vila Nova de Gaia/Espinho Hospital Centre.

The geometry of the LCA was modeled through CT scans provided by the CHVNG/E.
Using Mimics® (v20.0) and 3-matic® (v20.0) software, the geometry under resting con-
ditions was reconstructed. Then, its cross-sectional area was scaled by a factor of 2.04
to replicate the FFR measurement procedure in hyperemic conditions. In order to simu-
late coronary blood flow, a patient-specific Womersley velocity profile was used as the
inlet velocity boundary condition. A simplified Phan-Thien/Tanner rheological model
was implemented to model the viscoelastic properties of blood. Moreover, a five-element
Windkessel model was modeled as the pressure boundary condition for the outlets of the
patient-specific artery geometry. User-defined functions were implemented in ANSYS
Fluent® to consider the previous conditions.

The numerical tool allows for the creation of pressure and velocity domains in the
artery along a cardiac cycle, which, due to the accuracy of the chosen boundary conditions
and rheological model, would be very approximate to the real-life waveforms of the patients.
In addition, this tool allows for the calculation of the non-invasive FFR, a parameter used in
clinical settings to assess coronary artery disease and the level of constriction of the coronary
arteries. Hence, this work has clinical importance for potentially returning accurate values
custom to each patient case, aiding medical doctors in the diagnosis and treatment of their
patients with atherosclerosis.
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The implemented model produced an FFR value of 0.934 for the patient, which
corresponds to a relative error of 0.37% in comparison with the invasive measurement.
This error value is lower than the one obtained in the numerical simulations that took
into consideration the Newtonian model (2.74%). The results confirm the need to consider
the viscoelasticity of blood in realistic blood flow simulations, in alliance with accurate
boundary conditions for pressure (Windkessel model) and velocity (Womersley profile).

This work deals with a relevant problem in medical practice since obtaining a compu-
tational measure of FFR would aid in clinical practice by replacing invasive FFR procedures.
The non-invasive procedure could be a cost-free alternative, with no risk for the patient,
which improves the diagnosis and treatment of the disease. After validation with many
patient-specific cases, in the future, the final goal of this project is to create software to
be used by the medical doctors on-site to obtain an accurate computed FFR avoiding
invasive procedures.

Study Limitations

Even though this study returned promising results, some limitations are worth men-
tioning. Since the 3D geometric model of the patient artery is scaled manually, there can
be a loss in patient geometry information, which could be particularly more relevant for
higher stenosis severities. Moreover, the authors assumed that the hyperemia condition
impacts the vessel in the same constant proportion of 2.04. The ability of the artery to dilate
may be different in the stenotic region because of the material properties of the plaque.

Regarding the five-element Windkessel model, it allows for downstream vasculature
compliance but ignores coronary artery compliance. The used Windkessel model assumes
a Newtonian behavior downstream of the artery, but still considers a viscoelastic model
in the artery itself. Since the FFR pressure values are measured around the stenosis in
the artery model, where the viscoelastic model was implemented and the corresponding
results were very accurate when compared to the invasive measure, this consideration was
not relevant.

Moreover, in the coronary artery numerical simulations of the present study, the
fluid–structure interaction (FSI) method was not applied since our past works have shown
that the implementation of FSI in numerical simulations increased the computational time
without improving the accuracy of the hemodynamic results [28]. However, according
to the research of Amabili et al. (2020), the human aorta, larger than the coronary artery,
possesses a certain degree of flexibility, giving it a pulsatile diameter expansion (10% for a
young human aorta) [42].

The myocardial mass used to calculate the compliance parameters corresponds to an
average of cadaveric heart weight of healthy adults, and not of live ischemic hearts, because
of a lack of data from the hospital and the literature. The knowledge of the myocardial mass
index could better assist the authors in using a more accurate myocardial mass value for
other patient cases. Moreover, the authors did not consider the possibility of the thickening
of arterioles that can occur on ischemic hearts, which would consequently increase their
resistance to blood flow.

Evidently, the current study constitutes proof-of-concept, since only one patient has
been studied. Thus, in the near future and before clinical use, the numerical software must
be further validated with many patient cases, with different stenosis severities in separate
locations of the coronary artery.
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Abstract: This research deals with precision calculations of stationary magnetic fields of volumetric
bodies. The electrostatics analogy allows for the use of a scalar magnetic potential, which reformulates
the original task as a boundary value problem for the Laplace equation. We approach this with the
boundary element method, specifically in distance ranges close to the magnetized surface, where
existing standard numerical methods are known to struggle. This work presents an approach based
on the improved quadrature formulas for the simple layer potential and its normal derivative.
Numerical tests confirm significant improvements in calculating the field at any distance from the
surface of the magnet.

Keywords: boundary element method; magnetic fields; numerical integration; Laplace equation;
Fredholm integral equation
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1. Introduction

In order to accurately simulate and control a magnetic system, one needs a reliable
way of obtaining the values of the fields involved. This research deals with calculations of
stationary magnetic fields at close proximity to a magnetized object. Standard numerical
methods in the 3D case are known to struggle when the point of interest shifts towards
the surface of the object. In order to achieve an adequate representation of the field under
such conditions, one may need to heavily reduce the size of mesh elements, which greatly
increases computational costs. The boundary element method approach is a valid choice,
since it is known to yield a significant benefit because of the unit reduction in the dimensions
of the original system of equations. Here, we aim to develop a calculation approach that
provides uniform convergence and uniform approximation of stationary magnetic fields,
that is, at any distance from the surface.

Magnetic fields are used in various physical applications [1]. Coil design is crucial in
magnetic resonance imaging [2]. In transcranial magnetic stimulation, coils are used for
individualized field targeting. A magnetically induced electric field is adopted to modulate
brain tissue activity as a means of non-invasive scanning technology. Computational opti-
mization of coil placement improves the performance of such medical imaging systems [3].
Linearized models are widely used to determine controller parameters of magnetic systems.
However, the settings of a model usually fluctuate in relation to the operating point. A
robust closed-loop control strategy for systems with active magnetic bearings requires
calculations of the mentioned parameters over the entirety of the operating range [4]. Preci-
sion calculations of magnetic fields are required to successfully implement complicated
magnetic phenomena, like magnetic levitation [5,6]. A more detailed expression of the
magnetic force is an important optimization approach to controlling open-loop unstable

Mathematics 2024, 12, 21. https://doi.org/10.3390/math12010021 https://www.mdpi.com/journal/mathematics392



Mathematics 2024, 12, 21

magnetic systems [5]. Overall, magnets are parts of various mechanical systems and are
still studied with new methods [7,8].

All these devices go through a design stage where it is in the best interest of the
developer to find out more about the future performance of magnetic components. This is
the reason why various calculation techniques are used in magnetism, like the finite element
method, variational computing, the boundary element method and so on. For simple
surfaces and volumetric bodies, quite often, there exist explicit expressions for the magnetic
fields of such objects. A symmetry axis, for example, reduces the dimensions of the problem
and thus makes it much easier to acquire an exact formula. An infinite dimension of a
body like the infinitely long cylinder often used in theoretical endeavors allows for a limit
passage. Real magnetic objects, on the other hand, often possess complicated geometries.
For this reason, numerical methods are the only means of calculation in such situations.
But even in numerical calculations, one can see that standard quadrature formulas have
their limitations and may diverge under certain conditions [9]. Therefore, the development
of numerical methods that provide uniform approximation is important.

The Boundary Element Method

When modeling a physical process, the main efforts are usually aimed at solving dif-
ferential equations that characterize a physical system in a specific area, whose boundaries
may have a complex shape. The presence of complex boundaries in practice does not allow
for the construction of an explicit solution to the problem, so numerical methods have
become the only means of obtaining sufficient results. Standard numerical methods often
consider differential equations directly in the form in which they are obtained, without
special mathematical transformations [10]. In the finite difference method (FDR), differ-
ential operators are approximated by simpler algebraic (difference) operators acting in
a sequence of nodes located in the region of interest. The finite element method (FEM)
approximates the desired solution in the area under consideration by a sum of elements
that are not infinitely small. However, there is a range of tasks in which these approaches
face certain difficulties. Since accuracy directly depends on the density of the grid that
determines the nodal points, a need to discretize an entire region of interest may lead to a
large number of finite elements [11]. The resulting systems of a high order may be too large
even for modern computers. This is especially noticeable in external three-dimensional
problems, for example, in acoustic wave scattering [12].

The boundary element method (BEM) is viewed by many as a bit rarer alternative to
the dominating approaches, like FEM and FDR. It is a collection of numerical methods for
solving various boundary value problems for differential and integral equations [13]. A
layer potential transforms the original problem into a boundary integral equation, which
means that we only have to discretize the boundaries of the area of interest. Since a
numerical solution to a boundary integral equation is usually found as a solution to a
system of algebraic equations, the dimensions of the problem are reduced by one. When
using the BEM for external boundary value problems, one does not need to stretch the
calculation mesh for large distances, as it satisfies the conditions at infinity by default. This
decrease in many applied problems has a decisive influence on the choice of this solution
method [1,14,15]. Some researchers aim to combine, where possible, the benefits of both
finite and boundary element methods [16,17].

The BEM is also know as the potential or the boundary integral equation method.
It uses the principle of superposition. Simple and double layer potentials are used to
prove the existence of solutions to boundary value problems for the Laplace and Helmholtz
equations in simply connected domains [18,19]. It is a process of transition from the original
problem to the integral Fredholm equation of the second kind [20]. The numerical algorithm
for solving boundary value problems with layer potentials consists of two stages. First,
we need to find the values of the potential density on the surface. These values are the
numerical solutions to the boundary integral equation. Next, they are substituted into a
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quadrature formula for the designated layer potential; thus, we find the solution to the
boundary value problem at any point in space.

Standard quadrature formulas for the simple layer potential for the Laplace equation
do not provide uniform approximation and convergence. When reaching the surface where
the potential density is defined, the values of the simple layer potential tend to infinity,
wherein the simple layer potential is a continuous function everywhere, including the
surface itself. Thus, the property of boundedness and continuity of the potential on the
surface [9] is not satisfied. The insufficient accuracy in calculating potentials near the
surface using standard quadrature formulas is called the boundary layer effect [21]. The
problem of calculating surface potentials near singularity points is widely known [22,23].
The article [24] discusses the need to move from standard numerical integration formulas
to more advanced ones when calculating surface potentials near the surface on which the
potential density is specified.

In [25], a quadrature formula for the simple layer potential which preserves the
property of continuity was obtained. Unlike standard formulas of numerical integration,
the developed method provides uniform convergence and uniform approximation when
moving the point of interest through a given surface. This provides additional accuracy at
close proximity without the need for mesh refinement. In [26], this approach was applied
to obtain a quadrature formula for the direct value of the normal derivative of the simple
layer potential. It can be applied to solving boundary integral equations that occur when
dealing with various problems in mathematical physics. This research applies these results
to the physical task of determining stationary magnetic fields in a three-dimensional case.
We are going to see if these formulas should be used to numerically determine the magnetic
potential at any point in 3D space.

2. Materials and Methods

2.1. Electrostatics Analogy: A Scalar Magnetic Potential

A permanent magnet can be viewed as a collection of the so-called imaginary mag-
netic charges. The idea behind it is the analogy between the electrostatic and magne-
tostatic fields [1]. If the area of interest does not possess conduction currents, ∑ j = 0,
then div B = 0, and

B = μ0(H + M), (1)

where B is the magnetic flux density vector, μ0 is the vacuum permeability, H is the
magnetic field strength vector and M is the magnetization vector. Then, the density of
imaginary magnetic charges ρm can be formally introduced as

div B = μ0(div H − ρm) = 0. (2)

Since rot H = j and j = 0, {
div H = −div M = ρm,
rot H = 0.

(3)

Now, let us compare (3) with the electrostatic equations{
div E =

ρ

ε0
,

rot E = 0,
(4)

where ρ is the density of electrical charges and ε0 is the dielectric permeability of vacuum.
There is an analogy between Equations (3) and (4). The original magnetostatic problem
can be addressed as an equivalent problem of electrostatics. The solution to (4) with
constitutions E → H and ρ/ε0 → ρm is the solution to the original problem in (3).

If magnetization vector M is constant, then ρm = 0. However, one also needs to
consider the surface imaginary magnetic charge density (σm). It can be defined as

σm = (n, M2 − M1), (5)
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where M1 and M2 are the magnetization vectors of media 1 and 2, with n being the normal
vector from the first to the second area (see Figure 1).

Figure 1. The normal vector (n) between the two magnetized media (M1 and M2).

So, if surface magnetization is presented in this method, we also have to formally
constitute σ/ε0 → σm, where σ is the density of the surface electric charges. Also, if in
the electrostatic solution we also estimate polarization vector P, then P/ε0 → M is also
required. The same formal procedure can be constructed for a magnetic field induced by
stationary currents.

After solving the analogous electrostatic problem, the formal substitution is in place:⎧⎪⎪⎨⎪⎪⎩
E → H,
ρ/ε0 → ρm,
σ/ε0 → σm,
P/ε0 → M

(6)

which gives the solution to the original magnetostatic problem.
Let us assume the absence of free currents and that the electric fields (E) (if any)

present in the area of interest are constant. A scalar magnetic potential (u) is analogous
to an electric potential. It is used to determine the field of a permanent magnet when its
magnetization is known. Potential u uniquely provides the magnetic field at a given point
in space. In a magnetic levitation train, for example, the field is determined in the vicinity of
the accelerating channel [27]. A scalar magnetic potential (u) is introduced, so the magnetic
field is found as

B = − grad u. (7)

This is appropriate when the free currents and the gradient of electric field E are absent or
can be neglected.

2.2. Exterior Neumann Boundary Value Problem for the Laplace Equation in a
Three-Dimensional Domain

Let us introduce in space the Cartesian coordinate system x = (x1, x2, x3) ∈ R
3. We

consider a simple, smooth, closed surface Γ of class C2 enclosing a simply connected inner
region D. Let the electric fields (if any) in region D be constant. The normal component
of the magnetic flux vector (Bn) is set as a boundary condition and is assumed to be a
continuous function on Γ. Let us study an exterior Neumann boundary value problem for
the Laplace equation.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δu = 0, u ∈ C1(R3 \ D) ∩ C2(R3 \ D),
∂u(x)

∂n

∣∣∣∣
Γ
= f (x), x ∈ Γ, f (x) ∈ C1(Γ),

u = O
(

1
|x|
)

, |x| → +∞,

(8)

where ∂/∂n is the normal derivative [20] on surface Γ from the outside at a point x. We
assume that u(x) has a normal derivative on Γ. The solution is found in the form of a
simple layer potential V0[μ](x).

V0[μ](x) =
1

4π

∫
y∈Γ

μ(y)
1

|x − y|dSy, (9)
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where μ = μ(y) ∈ C0(Γ) is the potential density. The simple layer potential V0[μ](x) is a
harmonic function in the region R

3 \ D.
The normal derivative from the outside of surface Γ is given by the expression [20,26]

1
2

μ(x) +
∂V0[μ](x)

∂nx

∣∣∣∣
Γ
, x ∈ Γ, (10)

where
∂V0[μ](x)

∂nx
=

1
4π

∫
Γ

μ(y)
∂

∂nx

1
|x − y|dSy (11)

is the direct value of the normal derivative of the simple layer potential for the Laplace
equation at a point x ∈ Γ, while nx is a unit normal directed inwardly. By equating this
expression to the function defined on Γ, we obtain the following equation for the values of
the potential density (μ(x)):

1
2

μ(x) +
∂V0[μ](x)

∂nx

∣∣∣∣
Γ
= f (x), x ∈ Γ. (12)

Equation (12) is a linear Fredholm integral equation of the second kind, which, under given
assumptions, is known to be uniquely solvable [20,28].

2.3. Surface Parametrization

Consider the following parametrization of surface Γ:

y = (y1, y2, y3) ∈ Γ, y1 = y1(u, v), y2 = y2(u, v), y3 = y3(u, v);

u ∈ [0, A], v ∈ [0, B];

yj(u, v) ∈ C2([0, A]× [0, B]), j = 1, 2, 3. (13)

Let us introduce N points un with step h on the segment [0, A] and M points vm
with step H on the segment [0, B] and consider a partition of the rectangle [0, A]× [0, B]
(see Figure 2):

A = Nh, B = MH, un = (n + 1/2)h, n = 0, ..., N − 1;

vm = (m + 1/2)H, m = 0, ..., M − 1. (14)

Figure 2. The rectangle [0, A]× [0, B] is divided into N × M small rectangles, whose centers
are denoted as (un, vm) and are used as reference points in Equation (12).

Let us introduce the continuous numbering of all of the small rectangles sized h × H:

p = mN + n, (15)

then, 0 ≤ p ≤ NM − 1. If the number p is defined, then n, m are uniquely found as follows:

m = [p/N], n = p − [p/N]N, (16)
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where [·] denotes the integer part of a non-negative real number. Under yp = y(un, vm), p =
0, 1, ...NM − 1, we shall consider a central point of a small rectangle (un, vm), where n and
m are determined by (16).

It is known that at a point y = (y1, y2, y3) ∈ Γ, the components of a non-unit
normal vector η(y) = (η1(y), η2(y), η3(y)) can be expressed as matrix determinants by
the expressions

η1 =

∣∣∣∣ (y2)u (y3)u

(y2)v (y3)v

∣∣∣∣, η2 =

∣∣∣∣ (y3)u (y1)u

(y3)v (y1)v

∣∣∣∣, η3 =

∣∣∣∣ (y1)u (y2)u

(y1)v (y2)v

∣∣∣∣. (17)

Let |η(y)| = √(η1(y))2 + (η2(y))2 + (η3(y))2. For a surface integral of the first kind, it is
known that ∫

Γ
F(y)dsy =

∫ A

0
du
∫ B

0
F(y(u, v))|η(y(u, v))|dv. (18)

Note that if |η(y(u, v))| = 0 at some point, then the function |η(y(u, v))| may be non-
differentiable at this point. Therefore, we additionally require that

|η(y(u, v))| ∈ C2([0, A]× [0, B]). (19)

In addition, we require that

|η(y(u, v))| > 0, ∀ (u, v) ∈ ((0, A)× (0, B)). (20)

With such parametrization of surface Γ, the simple layer potential with density μ(y) ∈
C0(Γ) is expressed as

V0[μ](x) =
1

4π

∫
Γ

μ(y)
|x − y|dSy =

1
4π

∫ A

0
du
∫ B

0

μ(y(u, v))
|x − y(u, v)| |η(y(u, v))|dv =

=
1

4π

N−1

∑
n=0

M−1

∑
m=0

∫ un+h/2

un−h/2

∫ vm+H/2

vm−H/2

μ(y(u, v))
|x − y(u, v)| |η(y(u, v))|dudv, (21)

where

|x − y(u, v)| =
√
(x1 − y1(u, v))2 + (x2 − y2(u, v))2 + (x3 − y3(u, v))2.

On the other hand, the direct value of the normal derivative of the simple layer potential is
expressed as

∂V0[μ](x)
∂nx

=
1

4π

∫
Γ

μ(y)
∂

∂nx

1
|x − y|dsy = − 1

4π|η(x)|×

×
∫ A

0
du
∫ B

0
μ(y(u, v))|η(y(u, v))|

3

∑
j=1

ηj(x)(xj − yj(u, v))
|x − y(u, v)|3 dv =

= − 1
4π|η(x)|

N−1

∑
n=0

M−1

∑
m=0

∫ un+h/2

un−h/2
du
∫ vm+H/2

vm−H/2
μ(y(u, v))|η(y(u, v))|×

×
3

∑
j=1

ηj(x)(xj − yj(u, v))
|x − y(u, v)|3 dv. (22)

The double integrals in (21) and (22) are referred to as the canonical integrals. The numerical
calculation of these expressions is the subject of rigorous research. In most applications,
standard quadrature formulas of numerical integration are used for this task. But, as stated
above, this approach struggles in ranges close to surface Γ. In this work, we are going to
apply certain results in numerical methods [25,26] to the solution to the boundary value
problem for the Laplace equation, which originates from the problem of finding the scalar
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magnetic potential. However, we shall use the standard formulas of numerical integration
as a means of comparison.

2.4. Application of the Standard Quadrature Formulas for the Simple Layer Potential and Its
Normal Derivative

The standard quadrature formula for the direct value of the simple layer potential on
surface Γ is often used in applied calculations (Chapter 2, [9]) It is obtained by replacing
the canonical integrals at points x �= y(un̂, vm̂) with their approximate values at the centers
of the corresponding rectangles while zeroing the canonical integral over a piece of surface
Γ centered at the point x = y(un̂, vm̂)

∂V0[μ](x)
∂nx

∣∣∣∣
x=y(un̂ ,vm̂)∈Γ

≈ 1
4π|ηn̂m̂|

n=N−1, m=M−1

∑
n=0, m=0

(n,m) �=(n̂,m̂)

μnm|ηnm|Bnm(x), (23)

where

Bnm(x) = hH
3

∑
j=1

ηj(x)(yj(un, vm)− xj)

|x − y(un, vm)|3 . (24)

Using continuous numbering (15), Formula (23) takes the form

∂V0[μ](x)
∂nx

∣∣∣∣
x=y(un̂ ,vm̂)∈Γ

≈ 1
4π|ηp̂|

NM−1

∑
p=0
p �= p̂

μp|ηp|Bp(x), (25)

where μp = μ(yp) = μnm are the potential density values at the centers of small rectangles
yp and Bp(x) = Bnm(x).

Thus, for a given parametrization of surface Γ, integral Equation (12) is reduced to a
system of linear algebraic equations with respect to N · M values of the unknown potential
density function μ(yp) = μp at points yp = y(un, vm).

1
2

μ p̂ +
1

4π|ηp̂|
NM−1

∑
p=0
p �= p̂

μp|ηp|B p̂
p = f p̂, p̂ = 0, 1, 2, ..., NM − 1, (26)

where f p̂ = f (yp̂) are the values of the boundary condition function on surface Γ and

Bp(x) = Bp(y(un̂, vm̂)) = Bp(yp̂) = B p̂
p . Let us multiply system (26) by 4π and write it in

the general form NM−1

∑
p=0

(
2πΔ p̂

p +
|ηp|
|ηp̂|B

p̂
p

(
1 − Δ p̂

p

))
μp = 4π f p̂, (27)

where p̂ = 0, 1, 2, ..., NM − 1 and

Δ p̂
p =

{
1, if p = p̂,
0, if p �= p̂.

We multiply each p̂-th equation of the system by |ηp̂|
NM−1

∑
p=0

(
2π|ηp̂|Δ p̂

p + |ηp|B p̂
p

(
1 − Δ p̂

p

))
μp = 4π|ηp̂| f p̂, (28)

where p̂ = 0, 1, 2, ..., NM − 1. Equation (28) can be written in matrix form as seen in (A1)
in Appendix A. From this system of equations, we obtain the values of the potential
density μ p̂ = μ(yp̂) at the centers of small rectangles yp̂, which will then be used to calcu-
late the simple layer potential everywhere outside Γ, thus solving the original boundary
value problem.

To calculate the potential itself, as a means of comparison, we are going use the
standard quadrature formula:
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V0[μ](x) ≈ 1
4π

n=N−1,
m=M−1

∑
n=0, m=0

μnmDnm(x) =
1

4π

NM−1

∑
p=0

μpDp(x), (29)

where

Dnm =
hH|η(y(un, vm))|
|x − y(un, vm)|

and Dp(x) = Dnm(x). It is obtained by replacing the canonical integrals at points y(un, vm) ∈ Γ
to its approximate values at the centers of the corresponding rectangles. This formula, as we
are going to see in the Results and Discussion section, tends to infinity when point x tends
to the surface. In this case, the same is often true about more complex numerical integration
formulas [9,24]. Thus, one of the ways to reduce the calculation error is the reduction in
steps h, H which leads to a large number of boundary elements. This eliminates the main
benefit of the boundary element method in close proximity to a surface [9].

2.5. Application of the Improved Quadrature Formulas for the Simple Layer Potential and Its
Normal Derivative

In [26], a quadrature formula for the direct value of the normal derivative of the simple
layer potential on surface Γ was explicitly obtained.

∂Vk[μ](x)
∂nx

∣∣∣∣
x=y(un̂ ,vm̂)∈Γ

≈ 1
4π

μn̂m̂Jn̂m̂ +
1

4π|η(x)|× (30)

×
n=N−1, m=M−1

∑
n=0, m=0

(n,m) �=(n̂,m̂)

μnm|η(y(un, vm))|Tnm(x),

where the integrals Jn̂m̂ and Tnm(x) are calculated explicitly in [26]. Using continuous
numbering (15), Formula (30) becomes

∂V0[μ](x)
∂nx

∣∣∣∣
x=y(un̂ ,vm̂)∈Γ

≈ 1
4π

μn̂m̂Jn̂m̂ +
1

4π|ηn̂m̂|
n=N−1, m=M−1

∑
n=0, m=0

(n,m) �=(n̂,m̂)

μnm|ηnm|Tnm(x) =

=
1

4π
μ p̂J p̂ +

1
4π|ηp̂|

NM−1

∑
p=0
p �= p̂

μp|ηp|Tp(x), (31)

where μp = μ(yp) = μnm are the values of the potential density at the centers of small
rectangles yp, Tp(x) = Tnm(x) and |ηp| = |η(yp)| = |ηnm| are the absolute values of the
normal vector at yp. The integral J p̂ = Jn̂m̂, the density value μ p̂ = μ(yp̂) = μn̂m̂ and the
absolute value of the normal vector |ηp̂| = |η(yp̂)| = ηn̂m̂ correspond to the case when
point x lies in the region of integration. In this case, the integration is carried out over
a small rectangle centered at the point (un̂, vm̂), to which the dot yp̂ = y(un̂, vm̂) = x on
surface Γ corresponds.

Therefore, with the given parametrization of surface Γ, integral Equation (12) is
reduced to the system of linear algebraic equations for N · M values of the unknown
potential density function μ(yp) = μp at the points yp = y(un, vm).

1
2

μ p̂ +
1

4π
μ p̂J p̂ +

1
4π|ηp̂|

NM−1

∑
p=0
p �= p̂

μp|ηp|Tp̂
p = f p̂, p̂ = 0, 1, 2, ..., NM − 1, (32)

where f p̂ = f (yp̂) are the values of the boundary condition function given on surface Γ,

while Tp(x) = Tp(y(un̂, vm̂)) = Tp(yp̂) = Tp̂
p . Here, we multiply system (32) by 4π and

write it in a general form:
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NM−1

∑
p=0

((
J p̂ + 2π

)
Δ p̂

p +
|ηp|
|ηp̂|Tp̂

p

(
1 − Δ p̂

p

))
μp = 4π f p̂, (33)

where p̂ = 0, 1, 2, ..., NM − 1 and

Δ p̂
p =

{
1, if p = p̂,
0, if p �= p̂.

Next, each p̂-th equation of system (33) is multiplied by |ηp̂|.
NM−1

∑
p=0

(
|ηp̂|
(
J p̂ + 2π

)
Δ p̂

p + |ηp|Tp̂
p

(
1 − Δ p̂

p

))
μp = 4π|ηp̂| f p̂, (34)

where p̂ = 0, 1, 2, ..., NM − 1. Equation (34) can be written in matrix form as seen in (A2) in
Appendix A. By reversing the matrix on the left side of the equality in (A2) and multiplying
the inverse matrix on the left by the column with the values of the boundary condition
function, we obtain the density value capacity μ p̂ = μ(yp̂) at the centers of small rectangles
yp̂, which will then be used to calculate the simple layer potential everywhere outside Γ,
thereby solving the original boundary value problem.

To calculate the simple layer potential, we use the quadrature formula obtained in [25]

V0[μ](x) ≈ 1
4π

N−1

∑
n=0

M−1

∑
m=0

μnmθnm(x), (35)

where the integral θnm(x) is explicitly derived in [25]. This formula preserves the property
of continuity of the simple layer potential and approximates this function uniformly.

3. Results and Discussion

In [25], a quadrature formula for the simple layer potential which provides uniform
approximation was obtained. A quadrature formula for the normal derivative of the simple
layer potential with improved accuracy over standard numerical integration was suggested
in [26]. We adopt these results to solve a particular magnetostatics problem, which is an
external Neumann boundary value problem for the values of a scalar magnetic potential.

3.1. Numerical Tests

Testing was carried out for the case where surface Γ is a sphere of unit radius which is
given parametrically by

y1(u, v) = cos u sin v, y2(u, v) = sin u sin v, y3(u, v) = cos v, (36)

where (u, v) ∈ [0, 2π]× [0, π].
Test 1. Under a boundary condition of the form f (x) = 3/5 · P2(cos ϑ), x ∈ Γ, the

solution to the external Neumann boundary value problem for the Laplace equation is
known and is given by the expression

u(x) =
P2(cos ϑ)

5|x|2 when |x| > 1. (37)

In this case, the density of the simple layer potential is equal to

μ(x) = P2(cos ϑ), x ∈ Γ, (38)

where ϑ is the zenith angle in spherical coordinates centered at the origin and

P2(cos ϑ) =
3 cos2 ϑ − 1

2

is a Legendre polynomial.

400



Mathematics 2024, 12, 21

Test 2. Under a boundary condition of the form f (x) = 4/7 · P3(cos ϑ), x ∈ Γ, the
solution to the external Neumann boundary value problem for the Laplace equation is
known and is given by the expression

u(x) =
P3(cos ϑ)

7|x|3 when |x| > 1. (39)

In this case, the density of the simple layer potential is equal to

μ(x) = P3(cos ϑ), x ∈ Γ, (40)

where ϑ is the zenith angle in spherical coordinates centered at the origin and

P3(cos ϑ) =
5 cos3 ϑ − 3 cos ϑ

2

is a Legendre polynomial.
Test 3. Under a boundary condition of the form f (x) = 5/9 · P4(cos ϑ), x ∈ Γ, the

solution to the external Neumann boundary value problem for the Laplace equation is
known and is given by the expression

u(x) =
P4(cos ϑ)

9|x|4 when |x| > 1. (41)

In this case, the density of the simple layer potential is equal to

μ(x) = P4(cos ϑ), x ∈ Γ, (42)

where ϑ is the zenith angle in spherical coordinates centered at the origin and

P4(cos ϑ) =
35 cos4 ϑ − 30 cos2 ϑ + 3

8

is a Legendre polynomial.
Test 4. Under a boundary condition of the form f (x) = 3/5 · cos 2ϕ sin2 ϑ, x ∈ Γ, the

solution to the external Neumann boundary value problem for the Laplace equation is
known and is given by the expression

u(x) =
cos 2ϕ sin2 ϑ

5|x|2 when |x| > 1. (43)

In this case, the density of the simple layer potential is equal to

μ(x) = cos 2ϕ sin2 ϑ, x ∈ Γ, (44)

where ϑ and ϕ are the zenith and azimuth angles in spherical coordinates centered at
the origin.

Test 5. Under a boundary condition of the form f (x) = 4/7 · cos 3ϕ sin3 ϑ, x ∈ Γ, the
solution to the external Neumann boundary value problem for the Laplace equation is
known and is given by the expression

u(x) =
cos 3ϕ sin3 ϑ

7|x|3 when |x| > 1. (45)

In this case, the density of the simple layer potential is equal to

μ(x) = cos 3ϕ sin3 ϑ, x ∈ Γ, (46)

where ϑ and ϕ are the zenith and azimuth angles in spherical coordinates centered at
the origin.

Test 6. Under a boundary condition of the form f (x) = 5/9 · cos 4ϕ sin4 ϑ, x ∈ Γ, the
solution to the external Neumann boundary value problem for the Laplace equation is
known and is given by the expression
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u(x) =
cos 4ϕ sin4 ϑ

9|x|4 when |x| > 1. (47)

In this case, the density of the simple layer potential is equal to

μ(x) = cos 4ϕ sin4 ϑ, x ∈ Γ, (48)

where ϑ and ϕ are the zenith and azimuth angles in spherical coordinates centered at
the origin.

3.2. Calculations of the Potential Density

The solution to the external Neumann boundary value problem by the described
method consists of two stages. In the first stage, using one of the two given quadrature
formulas for the direct value of the normal derivative of the simple layer potential, we
obtain the values of the potential density μp, p = 0, 1, ..., NM − 1, at the centers of small
rectangles, solving the corresponding system of linear algebraic equations. This can be
either quadrature Formula (31), constructed in [26], or the standard quadrature formula for
the normal derivative of the simple layer potential in (25). The point coordinates that were
used to estimate the maximum absolute error are (see Figure 3)

xql
j = yj(uq, vl), j = 1, 2, 3,

uq =
2π

2N
q, q = 0, . . . , 2N; vl =

π

2M
l, l = 1, . . . , 2M − 1, (49)

where yj(u, v) is determined by the expressions in (36). That is, these points are located on
the unit sphere at the centers of the small rectangles (see Figure 2), the midpoints of the
boundaries between them and the intersections of these boundaries. Note that these points
are distributed over the entire unit sphere.

The calculations were carried out for various values of M and N. The step values
are determined as h = 2π/N, H = π/M. If N/2 = M = 10, then h = H ≈ 0.31; if
N/2 = M = 20, then h = H ≈ 0.16; if N/2 = M = 40, then h = H ≈ 0.079.

First, let us consider the calculation error of potential density. The first number in the
cells of Table 1 is the maximum absolute value of error of potential density μp, acquired
with the standard quadrature Formula (25) for the normal derivative of the simple layer
potential. The second number after the semicolon is the maximum absolute value of error
of potential density μp, acquired with the improved quadrature Formula (31) for the normal
derivative [26].

Table 1. The maximum absolute error of potential density in tests 1–3.

Test Number N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

Test 1 0.039; 0.015 0.021; 0.0096 0.019; 0.0057
Test 2 0.038; 0.014 0.02; 0.0091 0.018; 0.0055
Test 3 0.031; 0.014 0.019; 0.0088 0.018; 0.0054
Test 4 0.081; 0.0035 0.042; 0.0011 0.021; 0.0003
Test 5 0.087; 0.0038 0.044; 0.0014 0.022; 0.00039
Test 6 0.088; 0.0037 0.043; 0.0015 0.022; 0.00047

Let us also consider the average absolute error over all reference points (15) in
Equation (12). The first number in the cells of Table 2 is the mean absolute error of potential
density μp, acquired with the standard quadrature Formula (25). The second number
(after the semicolon) is the mean absolute error of potential density μp, acquired with the
improved quadrature Formula (31).
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Table 2. The mean absolute error of potential density in tests 1–3.

Test Number N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

Test 1 0.023; 0.0043 0.013; 0.0014 0.0066; 0.00047
Test 2 0.02; 0.0041 0.012; 0.0013 0.0059; 0.00045
Test 3 0.018; 0.0045 0.01; 0.0014 0.0053; 0.00046
Test 4 0.024; 0.0012 0.012; 0.00035 0.0059; 9.5 × 10−5

Test 5 0.023; 0.0011 0.011; 0.00036 0.0054; 9.9 × 10−5

Test 6 0.021; 0.001 0.0099; 0.00036 0.0051; 0.00011

3.3. Calculations of the Potential—The Solution to the Neumann Problem

In the second stage, the obtained values of potential density μp are used to calculate
the simple layer potential at any point in the region R

3 \ D using one of the two formulas.
It can be either (35) from [25] or the standard quadrature formula for the simple layer
potential (29).

In the numerical tests, the values of potential density μp, obtained using the improved
Formula (31), are only used in Formula (35). Similarly, the values of the potential density
μp obtained using the standard Formula (25) we will use only in Formula (29).

The calculations of the simple layer potential solutions of the original external Neu-
mann boundary value problem were carried out at some points on the auxiliary spheres
with centers at the origin and radii R = 1 + ΔR. Thus, the auxiliary spheres are outside
of the sphere of unit radius, on which the boundary condition or the potential density is
given, at a distance ΔR from it. Then, the values of absolute errors at these points were
calculated. For each auxiliary sphere the maximum values of these errors are determined.

The point coordinates that were used to estimate the maximum absolute error are
(see Figure 3)

xql
j = Ryj(uq, vl), j = 1, 2, 3,

uq =
2π

2N
q, q = 0, . . . , 2N; vl =

π

2M
l, l = 1, . . . , 2M − 1, (50)

where yj(u, v) is determined by the expressions in (36) and R is the auxiliary sphere radius.

Figure 3. Points x on the test spheres of radii equal to 1 + ΔR are chosen according to (50).
The maximum values of absolute error of the simple layer potential among all of these
points are used in Tables 3–8. If ΔR = 0, then it is the first stage of the numerical solution,
which is the determination of the potential density values (μp).

That is, these points are located at a distance ΔR outside of the unit sphere above the
centers of the small rectangles (see Figure 2), the midpoints of the boundaries between
them and the intersections of these boundaries. Note that these points are distributed over
the entire sphere.
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Table 3. Maximum absolute values of error of quadrature formulas in test 1.

ΔR N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

0.1 0.018; 0.013 0.0047; 0.0056 0.0021; 0.0018
0.06 0.039; 0.015 0.0077; 0.0077 0.0024; 0.0029
0.03 0.098; 0.016 0.02; 0.0094 0.004; 0.0045
0.01 0.35; 0.016 0.083; 0.01 0.017; 0.0056
0.001 3.86; 0.016 0.98; 0.01 0.24; 0.0058

0.0001 38.9; 0.016 9.97; 0.01 2.48; 0.0058

Table 4. Maximum absolute values of error of quadrature formulas in test 2.

ΔR N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

0.1 0.017; 0.011 0.0040; 0.0050 0.0010; 0.0016
0.06 0.030; 0.013 0.0069; 0.0070 0.0017; 0.0027
0.03 0.082; 0.014 0.015; 0.0087 0.0034; 0.0042
0.01 0.30; 0.014 0.066; 0.0094 0.013; 0.0054
0.001 3.36; 0.014 0.80; 0.0094 0.19; 0.0056

0.0001 33.9; 0.014 8.18; 0.0094 2.01; 0.0056

Table 5. Maximum absolute values of error of quadrature formulas in test 3.

ΔR N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

0.1 0.017; 0.011 0.0036; 0.0047 0.00076; 0.0015
0.06 0.028; 0.013 0.0065; 0.0067 0.0014; 0.0026
0.03 0.059; 0.014 0.014; 0.0083 0.0031; 0.0041
0.01 0.22; 0.014 0.058; 0.0090 0.012; 0.0053
0.001 2.4; 0.014 0.70; 0.0090 0.18; 0.0055

0.0001 24.2; 0.014 7.19; 0.0090 1.84; 0.0055

Table 6. Maximum absolute values of error of quadrature formulas in test 4.

ΔR N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

0.1 0.020; 0.015 0.0098; 0.015 0.012; 0.015
0.06 0.065; 0.010 0.0067; 0.010 0.0069; 0.010
0.03 0.19; 0.0068 0.033; 0.0057 0.0035; 0.0055
0.01 0.70; 0.010 0.16; 0.0026 0.032; 0.0021
0.001 7.74; 0.015 1.96; 0.0035 0.48; 0.00044

0.0001 78.2; 0.016 20; 0.0041 4.96; 0.00097

Table 7. Maximum absolute values of error of quadrature formulas in test 5.

ΔR N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

0.1 0.022; 0.012 0.0065; 0.01 0.0077; 0.0099
0.06 0.067; 0.0095 0.0055; 0.0073 0.0046; 0.0069
0.03 0.19; 0.0072 0.033; 0.0045 0.0028; 0.0039
0.01 0.72; 0.013 0.16; 0.0024 0.031; 0.0016
0.001 7.97; 0.018 1.98; 0.0041 0.48; 0.00049

0.0001 80.5; 0.019 20.1; 0.0047 4.97; 0.0011
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Table 8. Maximum absolute values of error of quadrature formulas in test 6.

ΔR N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

0.1 0.020; 0.019 0.012; 0.015 0.013; 0.015
0.06 0.062; 0.016 0.010; 0.011 0.0086; 0.010
0.03 0.19; 0.013 0.028; 0.0069 0.0055; 0.0061
0.01 0.72; 0.017 0.15; 0.0034 0.030; 0.0024
0.001 7.98; 0.022 1.88; 0.0049 0.47; 0.00067

0.0001 80.6; 0.022 19.2; 0.0055 4.92; 0.0013

The calculations were carried out for various values of M and N. The step values
were determined as h = 2π/N, H = π/M. If N/2 = M = 10, then h = H ≈ 0.31; if
N/2 = M = 20, then h = H ≈ 0.16; if N/2 = M = 40, then h = H ≈ 0.079.

Now, let us consider the calculation error of the solution to the external Neumann
boundary problem. The first numbers in the cells of Tables 3–8 are the maximum absolute
values of error of the solution, acquired with the standard quadrature formula for the simple
layer potential (29). The second numbers after the semicolon are the maximum absolute
values of error of the solution, acquired with the improved quadrature Formula (35) for
the simple layer potential [25].

Table 1 shows that the maximum absolute values of error of potential density μp,
acquired with the improved quadrature Formula (31) from [26], are a few times lower
than those of the standard quadrature Formula (25). The same can be observed about the
mean absolute values of error of potential density in Table 2, while in tests 4-6, the values
acquired with the improved quadrature Formula (31) are lower by an order of magnitude.
In both tables, Formula (31) shows the first order of convergence in H for tests 1-3 and the
third order of convergence in H for tests 4–6.

Let us perform an estimate of the maximum absolute value of error of the numerical
solution to the original problem in tests 1–6 from Tables 3–8. From them, it follows
that the standard Formula (29) for the simple layer potential does not provide uniform
approximation and uniform convergence of the solution in the form of the simple layer
potential, since at a fixed step H, the error tends to infinity when approaching surface Γ.
That is why this formula is not the priority choice for solving boundary value problems for
the Laplace equation near a surface Γ.

Quadrature Formula (35) provides uniform approximation of the solution to the
original problem. This remains true even for increasingly oscillating test functions, like in
test 3 or 6. Therefore, Formula (35) retains the property of continuity of the simple layer
potential while heading towards surface Γ. This is why both Formulas (31) and (35) should
be used for numerically solving various boundary value problems for the Laplace equation,
like the scalar magnetic potential.

4. Conclusions

1. In this work, a new method for determining three-dimensional stationary magnetic
fields is proposed. Based on the conception of a magnetic potential, this task can
be formulated as a boundary value problem for the Laplace equation with a Neu-
mann condition on a magnetized surface. This work presents a full solution using
the boundary element method (BEM). With the use of a simple layer potential, a
three-dimensional magnetostatic problem is reduced to a two-dimensional boundary
Fredholm integral equation that is uniquely solvable.

2. While, in an external boundary value problem, the BEM automatically satisfies the
conditions at infinity, it is known to struggle in close proximity to the boundary.
The non-integrable singularity is addressed by applying the improved quadrature
formulas for the simple layer potential (35) and its normal derivative (31) [25,26].
For the values of the potential density, a system of linear algebraic equations was
constructed, the matrix form of which can be seen in Appendix A. For the same task,
standard quadrature Formulas of numerical integration were used as a reference.
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3. With the mean and maximum absolute values of error of the potential density being
significantly lower (up to an order of magnitude) than that, when acquired with the
standard approach, Formula (31) shows improved accuracy. The improved Formula
(35) for the simple layer potential provides uniform approximation of the solution,
unlike the standard Formula (29), which tends to infinity. The developed approach
provides improved accuracy and approximates to the solution uniformly at any
distance from the surface, as was confirmed with numerical tests. This remains true
even for increasingly oscillating test functions. Therefore, the developed approach can
be used to solve the magnetostatic problem at any distance from a volumetric body.
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Appendix A

Here, we write system (28) in matrix form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2π|η0| |η1|B0
1 · · · |ηp̂−1|B0

p̂−1 |ηp̂|B0
p̂ |ηp̂+1|B0

p̂+1 · · · |ηNM−1|B0
NM−1

|η0|B1
0 2π|η1| · · · |ηp̂−1|B1

p̂−1 |ηp̂|B1
p̂ |ηp̂+1|B1

p̂+1 · · · |ηNM−1|B1
NM−1

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...
...

...
...

|η0|B p̂
0 |η1|B p̂

1 · · · |ηp̂−1|B p̂
p̂−1 2π|ηp̂| |ηp̂+1|B p̂

p̂+1 · · · |ηNM−1|B p̂
NM−1

|η0|B p̂+1
0 |η1|B p̂+1

1 · · · |ηp̂−1|B p̂+1
p̂−1 |ηp̂|B p̂+1

p̂ 2π|ηp̂+1| · · · |ηNM−1|B p̂+1
NM−1

...
...

...
...

...
...

. . .
...

|η0|BNM−1
0 |η1|BNM−1

1 · · · |ηp̂−1|BNM−1
p̂−1 |ηp̂|BNM−1

p̂ |ηp̂+1|BNM−1
p̂+1 · · · 2π|ηNM−1|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

×

⎛⎜⎜⎜⎝
μ0
μ1
...

μNM−1

⎞⎟⎟⎟⎠ = 4π

⎛⎜⎜⎜⎝
|η0| f0
|η1| f1

...
|ηNM−1| fNM−1

⎞⎟⎟⎟⎠. (A1)

Also, let us write system (34) in matrix form:
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|η0|(J 0 + 2π) |η1|T0
1 · · · |ηp̂−1|T0

p̂−1 |ηp̂|T0
p̂ |ηp̂+1|T0

p̂+1 · · · |ηNM−1|T0
NM−1

|η0|T1
0 |η1|(J 1 + 2π) · · · |ηp̂−1|T1

p̂−1 |ηp̂|T1
p̂ |ηp̂+1|T1

p̂+1 · · · |ηNM−1|T1
NM−1

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...
...

...
...

|η0|Tp̂
0 |η1|Tp̂

1 · · · |ηp̂−1|Tp̂
p̂−1 |ηp̂|(J p̂ + 2π) |ηp̂+1|Tp̂

p̂+1 · · · |ηNM−1|Tp̂
NM−1

|η0|Tp̂+1
0 |η1|Tp̂+1

1 · · · |ηp̂−1|Tp̂+1
p̂−1 |ηp̂|Tp̂+1

p̂ |ηp̂+1|(J p̂+1 + 2π) · · · |ηNM−1|Tp̂+1
NM−1

...
...

...
...

...
...

. . .
...

|η0|TNM−1
0 |η1|TNM−1

1 · · · |ηp̂−1|TNM−1
p̂−1 |ηp̂|TNM−1

p̂ |ηp̂+1|TNM−1
p̂+1 · · · |ηNM−1|(J NM−1 + 2π)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

×

⎛⎜⎜⎜⎜⎜⎝
μ0

μ1

...
μNM−1

⎞⎟⎟⎟⎟⎟⎠ = 4π

⎛⎜⎜⎜⎜⎜⎝
|η0| f0

|η1| f1

...
|ηNM−1| fNM−1

⎞⎟⎟⎟⎟⎟⎠. (A2)
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Abstract: Distribution companies (DISCOs) aim to maximize their annual profits by performing the
optimal planning of distributed generators (DGs) or energy storage systems (ESSs) in the deregulated
electricity markets. Some previous studies have focused on the simultaneous planning of DGs and
ESSs for DISCO profit maximization but have rarely considered the reactive powers of DGs and ESSs.
In addition, the optimization methods used for solving this problem are either traditional or outdated,
which may not yield superior results. To address these issues, this paper simultaneously performs
the optimal planning of DGs and ESSs in distribution networks for DISCO profit maximization. The
utilized model not only takes into account the revenues of trading active and reactive powers but also
addresses the active and reactive powers of DGs and ESSs. To solve the optimization problem, a new
hybrid evolutionary algorithm (EA) called the oppositional social engineering differential evolution
with Lévy flights (OSEDE/LFs) is proposed. The OSEDE/LFs is applied to optimize the planning
model using the 30-Bus and IEEE 69-Bus networks as test systems. The results of the two case studies
are compared with several other EAs. The results confirm the significance of the planning model in
achieving higher profits and demonstrate the effectiveness of the proposed approach when compared
with other EAs.

Keywords: active distribution networks; DISCO profit; distributed generators; energy storage sys-
tems; evolutionary computation

MSC: 68T20

1. Introduction

In recent years, research on active distribution networks (ADNs) has rapidly improved,
with a focus on numerous applications that integrate the latest technologies into such
systems [1]. Distributed generators (DGs) are among the best technologies to integrate into
ADNs due to their high availability, cost-effectiveness, efficiency, and overall advantages [2].
Several benefits can be achieved by installing DGs in ADNs, such as reliability improvement,
loss reduction, voltage improvement, etc. [3]. Recent research studies suggest that even
more advantages can be gained from the integrated DGs if energy storage systems (ESSs)
are planned alongside them [4]. ESSs are becoming more involved in energy and power
system planning due to their ability to provide techno-economic advantages, such as
improving power quality, peak shaving, and energy management [5]. However, improper
planning of energy sources in any power or energy system can result in the loss of desired
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benefits and create additional performance problems, which can negatively impact the
overall functioning of the system [6]. Therefore, research on the effective coordination
between DG and ESS units is of vital importance in the power and energy sector [7,8].

1.1. Literature Review

Various objectives, such as overall performance improvement [9], loss reduction [10],
voltage profile improvement [11], and cost minimization [12–14], have been adopted to
achieve optimal planning of DGs or ESSs in ADNs. However, the role of ADNs has
evolved significantly compared to that of conventional (passive) networks. ADNs locally
contribute to the power generation process through the integration of DG and ESS units. As
a result, rather than minimizing total planning and operating costs, distribution companies
(DISCOs) tend to increase their profit from selling energy to end users [15]. In deregulated
electricity markets, electricity companies at different levels aim to maximize their revenues.
Meanwhile, the system operators focus on maintaining the safe and secure operation
of the corresponding networks [16]. In this regard, DISCOs can effectively utilize DG
and ESS units to maximize their profit. The planning of DGs and ESSs for DISCO profit
maximization was performed in [17], where the model was solved using the particle
swarm optimization (PSO) method. The bi-level model proposed in [18] included techno-
environmental criteria in the developed objective function to maximize the DISCO profit as
well as the electric vehicle (EV) parking lot owner’s profit. A dynamic reliability planning
model of DGs in ADNs for DISCO profit maximization under load uncertainty was used
in the study presented in [19]. However, most of the previous studies on maximizing
DISCO profit in deregulated electricity markets have focused on planning either DG or
ESS. Moreover, these studies only included the revenue from active power trading in their
models, considering the active power of the integrated generation units.

As mentioned before, it is necessary to optimize the utilization of DGs and ESSs in
ADNs to obtain the maximum benefits from their installation. This has been achieved in
previous works using different optimization methods. Conventional methods, such as
the analytical method proposed in [11], have been used. Linear programming (LP) [20],
mixed-integer LP (MILP) [21], and mixed-integer nonlinear programming (MINLP) [13,15]
have been applied to build the proposed models. The main advantage of LP and NLP
methods is their solvability with a variety of commercial solvers such as MOSEK [13] and
IPOPT [15]. Nonetheless, the functions and codes of these solvers are masked and cannot
be edited or modified. This reduces flexibility, especially for complex systems. Various
concepts from game theory [16] and Karush-Kuhn-Tucker (KKT) conditions [18] have been
adopted to solve the developed models. However, conventional methods suffer from
increased complexity and inaccurate results in most applications, especially for complex
systems. On the other hand, evolutionary algorithms (EAs) have been used to achieve
the optimal planning of DGs and ESSs in ADNs. EA techniques provide more flexibility
than conventional methods even when system nonlinearity increases. PSO has been
applied with various objective functions such as cost minimization [12] and DISCO profit
maximization [17]. The authors of [14] proposed an equilibrium optimization (EO) method
to determine the optimal locations and sizes of PVs and ESSs by total cost minimization.
In [22], the locations and sizes of wind turbines and batteries were optimized by GA based
on a techno-economic model. Moreover, some hybrid methods have been developed. In [9],
the original artificial bee colony (ABC) algorithm was combined with two other methods:
fitness scaling and chaotic methods to avoid being trapped in local optima. The harmony
search algorithm (HSA) was integrated with the firefly algorithm (FA) in [19]. This provided
a more efficient method in terms of accuracy, convergence, and computation time. Other EA
methods have been used in previous papers, such as the artificial ecosystem optimization
(AEO) [23], the hybrid arithmetic optimization algorithm-sine-cosine approach (AOA-
SCA) [24], and the hybrid gradient-based optimizer with moth–flame algorithm [25]. As
observed from the literature, most of the methods do not guarantee obtaining global optima.
Hence, it is still necessary to develop effective methods that are particularly compatible
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with the corresponding problem. This can be achieved by advanced hybrid methods. In
this context, various state-of-the-art EAs have been recently proposed but not yet used to
solve the optimal planning of DGs and ESSs in ADNs. An example of these EAs is the social
engineering optimizer (SEO) algorithm proposed by Fathollahi-Fard et al. [26] in 2018. The
original SEO and several modified versions have been applied to various optimization
problems in many research areas. However, SEO still has significant potential for unique
improvements and applications to other engineering problems.

1.2. Research Motivations and Contributions

The following research motivations and contributions can be highlighted based on the
literature reviewed in this paper:

• Existing research on maximizing DISCO profit in deregulated electricity markets
separately performs the planning of DGs or ESSs, while planning both technologies
simultaneously has been rarely addressed. Therefore, this paper simultaneously inves-
tigates the optimal planning of DGs and ESSs in ADNs to maximize the DISCO profit;

• Unlike most previous studies, the model presented in this paper includes both active
and reactive power of DGs and ESSs. This can greatly increase the reactive power
support and enhance their role as effective ancillary services;

• In deregulated electricity markets, not only active power but also reactive power
is traded between the upstream grid and customers. Therefore, the revenues from
trading both active and reactive power are included in the model, which has not been
properly studied in previous relevant papers;

• The optimization techniques used so far for the DISCO profit maximization are either
traditional, software-based, or outdated EAs, which may not provide superior solu-
tions. Therefore, developing hybrid methods to be specifically compatible with the
studied model is necessary and worth investigation;

• Moreover, although SEO has been applied to solve various optimization problems, it
has not yet been applied to solve the optimal planning of DGs and ESSs in ADNs for
DISCO profit maximization;

• However, despite the remarkable results obtained by the SEO in solving the above
problems, it may require further improvements to specifically solve the optimal plan-
ning of DGs and ESSs in ADNs;

• Hence, this paper proposes a new hybrid approach that combines the optimiza-
tion mechanisms of SEO, differential evolution (DE), Lévy flights (LFs), and quasi-
oppositional-based learning (QOBL). With this developed combination, the global best
of SEO is improved by distinctively applying the search mechanisms of DE and LFs.
In addition, the QOBL technique is applied to improve the initial population of the
proposed algorithm;

• The new algorithm called the oppositional social engineering differential evolution
with Lévy flights (OSEDE/LFs) is benchmarked and compared to several state-of-the-
art EAs;

• Furthermore, the developed OSEDE/LFs is applied to solve the optimal planning
problem of DGs and ESSs in ADNs for DISCO profit maximization. The standard
30-Bus and IEEE 69-Bus distribution networks are used as test systems. The results
are obtained for two case studies and compared to various algorithms, including the
original SEO.

The rest of this paper is structured as follows: Section 2 demonstrates the integration
of DGs and ESSs in distribution networks, while Section 3 presents the mathematical
model of the DISCO profit maximization problem. The proposed OSEDE/LFs algorithm
is introduced in detail in Section 4, and its application to the standard 30-Bus and IEEE
69-Bus networks is provided in Section 5 with several discussions and comparisons. Finally,
Section 6 summarizes the conclusions.
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2. Integrating DGs and ESSs into Distribution Networks

DG units are integrated into the distribution network to generate electrical power
locally near the end user. Although a DG is mainly considered to be an active power source,
it can also produce reactive power [13]. As shown in Figure 1a, for a typical DG system,
active power (P kW) is generated and supplied to the grid. At the same time, reactive
power (Q kVAr) can be produced or absorbed (bidirectional) [17]. Hence, a DG unit could
be used as a reactive power compensator by setting the active power output to “zero” and
generating only reactive power. A DG can be modeled as a P-Q bus or P-V bus. However,
the P-Q model is more appropriate for distribution network applications, where the DG is
considered to be a specified load with fixed values of P and Q [22].

 

(a) (b) 

Figure 1. Typical units connected to the distribution network: (a) DG; (b) ESS.

Electrical energy can also be generated locally in distribution networks through the
integration of ESSs. Nonetheless, the main difference between DG and ESS in this respect
is that both P and Q of the ESS can flow bidirectionally, as depicted in Figure 1b.

As a controllable load or generator, an ESS can absorb P from the network and store
it for later use. This power can then be injected back into the network on demand [9].
As shown in Figure 1b, a generic battery ESS unit needs to include a storage device, an
inverter, and a transformer [12]. A DC voltage Vdc is generated by the storage device,
which is then converted into a controllable AC voltage Vac by means of the DC–AC inverter.
To deliver this AC voltage to the distribution network, it must be raised by a suitable
transformer. At the DC terminal, the storage device only absorbs (in charge mode) or injects
(in discharge mode) active DC power. The inverter then connects the storage device to the
transformer, where the power is converted to AC power at the AC terminal (the inverter
output) [12]. By controlling the voltage magnitude and angle (Vac∠δac), P and Q delivered
to the network by the transformer can be controlled independently. This provides four
possible supply/absorption cases for both P and Q [5,22,27].
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3. Mathematical Model of the DISCO Profit Maximization Problem

As discussed above, the optimal planning of DGs and ESSs (batteries) in ADNs is
performed in this paper to maximize the DISCO profit subject to several constraints and
take into account the active and reactive power of DGs and ESSs. Therefore, the decision
variables of this problem are the locations and sizes of DG and ESS units (including their
active and reactive power).

3.1. Objective Function

The objective function of the problem, represented by the net profit of the DISCO
(PROFITDIS (USD/year)), is to be maximized. The year is divided into 4 seasons of 91
days each, and each day is divided into 24 h. The objective function, including the active
and reactive power of the system, is given as follows [6,17]:

Max (PROFITDIS),
PROFITDIS =

[
PRP + PRQ

]− [CostDG + CostESS],
(1)

where PRP and PRQ denote the DISCO revenues from selling active and reactive power to
the customers (loads) (USD/year) as given in Equations (2) and (3), respectively:

PRP = ∑4
s=191 × ∑T

t=1

(
αDIS × Psold

t,s × αP
t,s − Ppurch.

t,s × αP
t,s

)
, (2)

PRQ = ∑4
s=191 × ∑T

t=1

(
αDIS × Qsold

t,s × αQ
t,s − Qpurch.

t,s × αQ
t,s

)
, (3)

where Psold
t,s (kW) and Qsold

t,s (kVAr) represent the active and reactive power sold to the

customers at time t in season s, and Ppurch.
t,s (kW) and Qpurch.

t,s (kVAr) are the active and
reactive power purchased by DISCO from the upstream grid at time t in season s, respec-
tively. The prices of active and reactive power at time t in season s are denoted by αP

t,s

(USD/kWh) and αQ
t,s (USD/kVArh), while αDIS is a percentage that defines the DISCO

profit from this process.
The third term of Equation (1) represents the total cost of DGs in the ADN, which is

calculated by:

CostDG = Costinv.
DG + CostO&M

DG , (4)

where Costinv.
DG and CostO&M

DG (USD/year) denote the investment and operation and mainte-
nance costs of DGs. The investment cost of a DG is mainly related to its apparent power.
The maintenance cost is related to the performance, service fees, and the price of other
equipment, and its value is usually fixed. The operation cost depends on the type of DG
and its output power. However, for conventional DG units, the operation and maintenance
cost is slightly increased on a seasonal basis, which is considered in this paper [6]. The
investment and operation and maintenance costs of DGs are given in Equations (5) and (6),
respectively:

Costinv.
DG =

[
∑NDG

n=1
(
SDG

n × CDG
inv.
)]× EAC, (5)

CostO&M
DG = ∑NDG

n=1 ∑4
s=191 × ∑T

t=1

(
PDG

n,t × CPDG
O&M,s + QDG

n,t × CQDG
O&M,s

)
, (6)

where SDG
n represents the apparent power (kVA) of the nth DG, NDG is the number of

DG units, while PDG
n,t (kWh) and QDG

n,t (kVArh) are the active and reactive power of the
nth DG at time t. The parameters CDG

inv. (USD/kVA), CPDG
O&M,s (USD/kWh), and CQDG

O&M,s
(USD/kVArh) denote the investment unit cost of DG and seasonal operation and mainte-
nance unit costs of active and reactive power, respectively. To convert the investment cost
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of DGs to the annual value, the equivalent annual cost (EAC) factor is used in Equation (5),
which is calculated as follows:

EAC =
d × (1 + d)Y

(1 + d)Y − 1
, (7)

where d represents the discount rate, and Y (years) is the selected lifetime [5,6,17].
Moreover, the total cost of ESSs in the ADN represented by the fourth term of

Equation (1) is given by:
CostESS = Costinv.

ESS + CostO&M
ESS , (8)

where Costinv.
ESS and CostO&M

ESS (USD/year) are the investment and operation and mainte-
nance costs of ESSs as given in Equations (9) and (10), respectively:

Costinv.
ESS =

[
∑NESS

n=1

(
SESS

n × CSESS
inv. + EESS

n × CEESS
inv.

)]
× EAC, (9)

CostO&M
ESS = ∑NESS

n=1 ∑4
s=191 × ∑T

t=1

(
SESS

n,t × CESS
O&M,s

)
. (10)

The investment cost of ESSs should be calculated for batteries and inverters, as shown
in Equation (9). Hence, for the total number of ESS units NESS, SESS

n denotes the apparent
power (kVA) of the nth ESS’s inverter and EESS

n is the nth ESS’s capacity (kWh). To calculate
the operation and maintenance cost in Equation (10), the apparent power SESS

n,t (kVAh)
of the nth ESS’s inverter at time t is used. The parameters CSESS

inv. (USD/kVA) and CEESS
inv.

(USD/kWh) are the investment unit costs of the inverter and ESS capacity, respectively,
while CESS

O&M,s (USD/kVAh) is the seasonal operation and maintenance unit cost [6].

3.2. Constraints

DISCO profit is maximized subject to several constraints on network power flow and
DG and ESS operation. Network power balance is maintained for active and reactive power
as defined in Equations (11) and (12), respectively [5,6,17]:

∑NB
b=1PIN

b,t = ∑NB
b=1POUT

b,t , (11)

∑NB
b=1QIN

b,t = ∑NB
b=1QOUT

b,t , (12)

where PIN
b,t and QIN

b,t represent the active and reactive power entering bus b at time t; POUT
b,t

and QOUT
b,t denote the active and reactive power leaving bus b at time t, and NB is the set of

network buses.
Network voltages are also constrained as follows [18,28]:

Vmin ≤ Vb,t ≤ Vmax; b = 1, . . . , NB, (13)

where Vb denotes the voltage on bus b at time t, and Vmin and Vmax are the maximum and
minimum voltage limits.

The apparent power of the nth DG at time t should not exceed the maximum limit
SDG

max as described in Equation (14):

SDG
n,t ≤ SDG

max; n = 1, . . . , NDG, (14)

where the relationship between SDG
n,t , PDG

n,t , and QDG
n,t is defined as follows [13,17,22]:

SDG
n,t =

√(
PDG

n,t

)2
+
(

QDG
n,t

)2
. (15)
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The operation of ESS units (batteries) is also constrained, where the apparent power
of the nth ESS’s inverter at time t must be maintained within the permissible limit as
described below:

SESS
n,t ≤ SESS

max; n = 1, . . . , NESS, (16)

where SESS
n,t is calculated based on the inverter’s active power PESS

n,t and reactive power
QESS

n,t at time t as follows [22,27]:

SESS
n,t =

√(
PESS

n,t

)2
+
(

QESS
n,t

)2
. (17)

The nth ESS’s capacity is also restricted, where its value at time t should not exceed
the maximum limit EESS

max as given below:

EESS
n,t ≤ EESS

max; n = 1, . . . , NESS, (18)

where EESS
n,t is calculated as follows [5,12,28]:

EESS
n,t = EESS

n,t−1 + PESS
n,t−1 × ηch −

PESS
n,t−1

ηdis
, (19)

where ηch and ηdis (%) represent the charge and discharge efficiencies of the inverter.
The initial energy stored in ESS at time t = 0 should be predefined, which is described

as follows:
EESS

n,t = EESS
n,0 ; f or t = 0. (20)

In this paper, EESS
n,0 is taken as 10% of the maximum capacity, i.e., the depth of discharge

is 0.9.
Moreover, the energy balance of the ESS should be preserved at the end of the day

(t = T = 24). Hence, the following equation is required:

EESS
n,t = EESS

n,0 ; f or t = T. (21)

4. The Proposed Algorithm for DISCO Profit Maximization

In this section, the proposed OSEDE/LFs algorithm is presented in detail. First, the
mechanisms and steps of the algorithm are explained. Then, the performance analysis is
performed by solving benchmark functions and comparing the results with those obtained
by other original algorithms. Finally, the proposed approach is applied to solve the DISCO
profit maximization problem.

4.1. Mechanisms of the Proposed Algorithm

The proposed algorithm is a unique hybridization of three mechanisms, namely SEO,
DE, and LFs. In addition, QOBL is applied to improve the initial population. On this basis,
the developed algorithm is called “oppositional social engineering differential evolution
with Lévy flights” (OSEDE/LFs).

4.1.1. Oppositional and Quasi-Oppositional-Based Learning

Several EAs suffer from performance-related drawbacks, such as being trapped around
local optima or slow convergence. This especially occurs for complex and high-dimensional
optimization problems. Recently, the concept of oppositional-based learning (OBL) has been
presented to further enhance the performance of EAs in terms of convergence, local optima
avoidance, and computational time [29]. The main advantages of OBL are the simplicity
and effectiveness when processing EA-based populations, either in the initialization step or
within the main loop [30]. The OBL is structured by comparing the current population with
its opposite, as the latter could be closer to the global optimum. Furthermore, the quasi-
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opposite number has been shown to be even closer to the global optimum than the opposite
number [31]. Thus, the quasi-opposite population is calculated by a random probabilistic
value and compared to the current population, then the best candidate between them is
selected, as shown in Figure 2.

Figure 2. The QOBL concept.

The mathematical definition of quasi-oppositional-based learning (QOBL) is presented
as follows [30,31]:

Xij(It + 1) =
{

Cj + rand()× (Cj − Xij(It)
)
, i f
(
Xij(It) < Cj

)
,

Cj − rand()× (Xij(It)− Cj
)
, i f
(
Xij(It) ≥ Cj

)
,

(22)

where Xij(It + 1) denotes the quasi-opposition number in dimension j of solution i at
iteration It + 1, rand() represents a random number, and Cj is the midpoint of the distance
between the upper bound (UB) and the lower bound (LB) in dimension j, which is calculated
as follows:

Cj =
(UB + LB)

2
. (23)

4.1.2. Social Engineering Optimizer (SEO)

The original SEO was developed as a single-solution metaheuristic algorithm by
Fathollahi-Fard et al. [26], inspired by the social interrelationship between individuals, i.e.,
how a person and his counterpart might interact given their conditions and environment.
Based on this principle, each potential solution in SEO is a vector containing an individual
and its counterpart. The characteristics of each member in this vector symbolize its social
abilities to represent the variables of each solution. To initialize the SEO, two random
individuals (representing two initial solutions) are generated and compared. After that,
the better solution between them is defined as (attacker), while the other is defined as
(defender). Then, the search process is led by the attacker trying to evaluate the defender by
its merits through a process called training-retraining. During this random pattern process,
the attacker replaces some of its variables with the best merits found in the defender, and
then the fitness function is tested once again. The training-retraining mechanism continues
the search until the best attacker-defender pair is found, which will guide the searching
process by defining a set of trait-exchange experiments that are calculated as follows:

Ntr = round{∝, Nvar}, (24)

where Ntr denotes the number of tested traits (merits), ∝ is the selected trait’s percent, and
Nvar represents the total number of a person’s traits, i.e., decision variables.

The algorithm then proceeds to the process of spotting an attack by performing four
unique techniques, as illustrated in Figure 3. During this process, a key parameter β is used
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as input to improve the exploration of the search space. These four techniques are briefly
described as follows [26]:

 

Figure 3. The techniques of SEO: (a) Obtaining. (b) Phishing. (c) Diversion theft. (d) Pretext.

1. The first technique is known as “obtaining”, in which the attacker directly mistreats
the defender to effectively obtain its desired traits. Based on that, the defender’s new
position is updated using the following equation:

De f n = De f c × (1 − sin β)× rand1(0, 1) +
(De f c + Att)

2
× sin β × rand2(0, 1), (25)

where De f n and De f c denote the new and current positions of the defender, Att represents
the attacker’s current position, and rand1,2(0, 1) are randomly generated numbers;

2. The second technique, known as “phishing”, involves the attacker faking an attack
against the defender. The defender then reacts by moving to a safe place. As a result,
two new positions of the defender are generated based on the movement of both the
attacker and defender, as described in the following equations:

De f 1
n = Att × (1 − sin β)× rand1(0, 1) +

(De f c + Att)
2

× (1 − sin β)× rand2(0, 1), (26)

De f 2
n = De f c ×

(
1 − sin

(π

2
− β
))

× rand1(0, 1) +
(De f c + Att)

2
× sin

(π

2
− β
)
× rand2(0, 1), (27)

3. The next technique is called “diversion theft”, in which the attacker deceives the
defender by leading the defender to a desired position (set by the attacker). This is
achieved using the average distance between the defender and a scaled amount of the
attacker. The defender’s new position is then updated by:

De f n = De f c × (1 − sin β)× rand1(0, 1) +

(
De f c + Att × sin

(
π
2 − β

)× rand2(0, 1)
)

2
× sin β × rand3(0, 1), (28)

4. The final technique is defined as “pretext”, in which the attacker uses some of the
defender’s favorite traits as bait to completely guide and defeat the defender. By the
end of this process, the defender’s new position is re-updated using a scaled amount
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of the defender’s current position and the average distance between the weighted
attacker and defender as follows:

De f n =
(

De f c × sin
(

π
2 − β

)× rand1(0, 1)
)× (1 − sin β × rand2(0, 1))+

((De f c×sin ( π
2 −β)×rand3(0,1))+Att)

2 × sin β × rand4(0, 1),
(29)

Finally, after the completion of the four techniques, the eventual position of the
defender is evaluated by comparing it with its old position, where the best position is
selected. Moreover, if the selected defender’s position is better than the attacker’s, it will
be defined as the new attacker, while another position of the defender will be randomly
generated. The whole procedure will be iteratively repeated until the termination condition
is met.

4.1.3. Differential Evolution (DE)

The well-known DE is an effective technique for solving optimization problems in
various applications. Mutation, crossover, and greedy selection are the three main mech-
anisms that define the structure of DE [32]. Based on the mutation process, new mutant
solutions SM are generated in each iteration as follows:

SM = SB + AP·((SA1 − SA2) + (SA3 − SA4)), (30)

where SB represents the best solution in every iteration while SA1, SA2, SA3, and SA4
denote arbitrary solutions. The amplifying parameter AP is calculated as follows:

AP = AP − (It − 1)·(AP − AP
)
/(Itmax − 1), (31)

where AP = 0, AP = 2 are the limits of AP; It and Itmax denote the current and maximum
number of iterations, respectively.

The obtained mutated solution is then improved by applying the crossover process,
evolving a trail solution ST in the next iteration by:

SIt+1
T =

{
SIt+1

M i f R ≤ RCO
SIt i f R ≥ RCO

, (32)

where R represents a parameter within the range [0, 1] and RCO represents the crossover rate.
After that, SIt+1

M and SIt+1
T are compared by greedy selection to keep the best solution

in the population [32].

4.1.4. Lévy Flights (LFs)

The LFs is a powerful search mechanism defined as the mathematical representation
of the random walks of the creatures as given in Equation (33), where the new solution is
obtained by [33]:

SIt+1 = SIt + STEP, (33)

where STEP represents the step size given by:

STEP = C·
(

SIt
A1 − SIt

A2

)⊕
Levy(β) ≈ 0.01

x1

|x2|
1
β

(
SIt

A1 − SIt
A2

)
, (34)

where C denotes a constant, SIt
A1 and SIt

A2 are arbitrary solutions,
⊕

stands for the entry-
wise multiplication, Levy(β) is the Lévy probability distribution function of β, and x1 and
x2 are calculated by the normal distribution function as follows:

x1 = N
(
0, σ2

x1

)
x2 = N

(
0, σ2

x2

), (35)
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where σx1 =

⎡⎣ Γ(1+κ)sin( πκ
2 )

Γ
[
(1+κ)

2

]
κ2

(κ−1)
2

⎤⎦
1
η

, κ is an index within the range [1,2], Γ represents the gamma

function, η = 1.5, and σx2 = 1.

4.1.5. The Proposed OSEDE/LFs Algorithm

To build the proposed algorithm, the above optimization mechanisms are uniquely
combined. The flowchart of the OSEDE/LFs algorithm showing its detailed steps is demon-
strated in Figure 4. A stepwise variation process is applied to the stochastic parameters
of the algorithm to determine their optimal values, which guarantees that the best perfor-
mance is achieved by the combined mechanisms. As depicted in Figure 4, the algorithm
starts by initializing a random population and defining the required operating parameters.
At this stage, the initial values of the attacker and the defender are also defined. The
randomly generated initial population is then improved by applying the QOBL mechanism.
It is worth mentioning that the QOBL technique is used only at the initialization stage to
enhance the initial population without its application within the main loop of the algorithm.
After that, the main loop begins by applying SEO, where the training-retraining mechanism
is performed. Then, a social attack is spotted and responded to through an iterative process
until all attacks are over. Subsequently, a new defender is selected, and the global best
is updated according to the value of the new attacker. This updated global best is then
improved using the DE mechanisms (mutation, crossover, and greedy selection). Further-
more, greedy LFs are performed, where the LF perturbation is improved by reapplying
crossover and greedy selection. This ensures achieving the best performance. Then, the
global best is updated and set as the new attacker. The main loop is executed iteratively
until the termination criteria are met. Finally, global optima are obtained.

 
Figure 4. Flowchart of the proposed OSEDE/LFs algorithm.
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4.2. Benchmarking of the OSEDE/LFs Algorithm

In this subsection, the performance of the proposed OSEDE/LFs is verified by solving
a set of benchmark functions (BFs). These BFs include unimodal, multimodal, fixed-
dimensional, and free-dimensional objective functions. A total of 23 BFs with multiple local
minima and different shapes (valley, bowl, and plate shapes) are used. Their detailed math-
ematical formulations can be found in [34,35]. Hence, by solving these BFs, the performance
of OSEDE/LFs is compared to that of 9 well-known state-of-the-art algorithms from the
literature: the ant lion optimizer (ALO) [36], dragonfly algorithm (DA) [37], grasshopper
optimization algorithm (GOA) [38], grey wolf optimizer (GWO) [39], moth–flame optimizer
(MFO) [40], multi-verse optimizer (MVO) [34], sine cosine algorithm (SCA) [35], salp swarm
algorithm (SSA) [41], and whale optimization algorithm (WOA) [42]. This comparison
is carried out using the original parameters of each algorithm, as recommended by their
developers and using the same 23 BFs. For a fair comparison, the population size and
maximum iterations are set to 100 and 500, respectively, for all algorithms. The results of
20 individual runs of each algorithm are recorded as given in Table 1 for fixed-dimensional
BFs (F1 to F13) and free-dimensional BFs (F14 to F23). As shown in this table, the average
(Avg) and standard deviation (STD) values are used for a comprehensive analysis of the
obtained results. Then, by ranking the performance of each algorithm for all the BFs, it is
observed that the best rank among all the compared algorithms is recorded by the proposed
OSEDE/LFs (the best total rank of 49 and the best average rank of 2.13). Moreover, Figure 5
depicts the convergence curves of the compared algorithms for some of the BFs, which
further validates the performance of the proposed OSEDE/LFs against several powerful
original algorithms found in the literature. In addition, the Wilcoxon signed rank test
is applied to all the algorithms corresponding to the solved BFs, as shown in Table 2.
By conducting this nonparametric test, the p-values for the compared algorithms are ob-
tained. These values demonstrate that the proposed OSEDE/LFs is statistically significant
compared to the other algorithms since most of the resulting p-values are below the 5%
significance level. Therefore, the proposed OSEDE/LFs can be recommended as a powerful
method for solving real-world problems and engineering applications.
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Figure 5. Cont.
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Figure 5. The convergence characteristics of the proposed OSEDE/LFs against other algorithms for
some BFs.

Table 2. The Wilcoxon signed rank test results.

Function
p-Value

ALO DA GOA GWO MFO MVO SCA SSA WOA

F1 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5

F2 8.86 × 10−5 1.03 × 10−4 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5

F3 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5

F4 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5

F5 0.601200 8.86 × 10−5 0.550300 8.86 × 10−5 8.86 × 10−5 0.145400 8.86 × 10−5 0.601200 1.03 × 10−4

F6 8.86 × 10−5 3.90 × 10−4 8.86 × 10−5 0.052200 0.001700 8.86 × 10−5 0.002200 8.86 × 10−5 0.350700

F7 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5

F8 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 0.295900 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5

F9 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.75 × 10−5 8.86 × 10−5 8.86 × 10−5 1.32 × 10−4 8.77 × 10−5 0.500000

F10 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 7.69 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.82 × 10−5 0.000488

F11 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 0.031250 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 1.00000

F12 0.009996 8.86 × 10−5 0.001507 0.000120 0.000103 0.013741 0.390530 0.295880 0.000254

F13 8.86 × 10−5 0.000254 8.86 × 10−5 8.86 × 10−5 0.191330 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5

F14 0.000130 8.86 × 10−5 8.86 × 10−5 0.000130 8.86 × 10−5 8.86 × 10−5 8.73 × 10−5 0.000282 8.43 × 10−5

F15 0.000892 0.000681 8.86 × 10−5 0.217960 8.86 × 10−5 8.86 × 10−5 0.002204 0.001507 0.033340

F16 0.226560 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 0.000488 0.000103

F17 8.83 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 0.000103 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 0.000103

F18 0.247140 0.000103 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5

F19 0.004550 0.000120 8.86 × 10−5 0.001713 0.000120 0.040044 8.86 × 10−5 0.278960 8.86 × 10−5

F20 0.108430 0.005111 8.86 × 10−5 0.125860 0.191330 0.501590 8.86 × 10−5 0.262720 0.000120

F21 8.86 × 10−5 8.86 × 10−5 8.86 × 10−5 0.525650 0.116890 0.601210 8.86 × 10−5 0.708910 0.015240

F22 0.550290 0.156000 8.86 × 10−5 0.005111 0.006425 0.708910 8.86 × 10−5 0.851920 0.012374

F23 0.092963 0.370260 8.86 × 10−5 0.001507 0.232230 0.061953 0.000140 0.217960 0.003592
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4.3. Applying OSEDE/LFs Algorithm to Maximize DISCO Profit

In this subsection, the proposed OSEDE/LFs is applied to solve the mathematical
model established in Section 2 for DISCO profit maximization. This application is demon-
strated in detail below Algorithm 1.

Algorithm 1: OSEDE/LFs for DISCO profit maximization

I—Input the distribution network’s data, define the algorithm’s parameters, and decision variables (number
and type).
II—Run the power flow and calculate the base-case value of the objective function (before adding DGs or
ESSs).
III—The algorithm’s initialization:

1. Generate a random population of initial solutions (IP1) containing locations and sizes of DGs and ESSs.
Active and reactive powers of DGs and ESSs are considered, and charging and discharging schedules of ESSs
are defined.
2. Initialize random values for the attacker and defender.
3. Run the power flow and evaluate IP1 by the objective function (OF) using Equation (1) subject to all
constraints using Equations (11)–(21).
4. Regenerate an initial population by QOBL technique (IP2) using Equation (22) and run the power flow to
evaluate it by the OF subject to all constraints.
5. Compare IP1 and IP2, save the best population, and assign it as the input population to the main loop.
IV—Main loop:

6. While stopping criteria are not satisfied:
7. Perform SEO on the current population:
• Train-retrain process.
• Set the 1st social attack.
• While number of attacks < max. number of attacks:

� Spot a social attack by the “obtaining,” Equation (25), “phishing,” Equations (26) and (27), “diversion
theft,” Equation (28), and “pretext,” Equation (29).

� Respond to the social attack.
� Number of attacks is increased by 1.

End while

• Evaluate the population by the OF subject to all constraints.
• Select a new defender.
8. Update the Global Best based on the new attacker.
9. Apply DE to the current population:
• Mutation using Equation (30) and evaluation of the population using the OF subject to all constraints.
• Crossover using Equation (32) and evaluate the population using the OF subject to all constraints.
• Greedy selection to compare the populations and save the best.
10. Execute LF perturbation on the best population using Equation (33) and evaluate it using the OF subject to
all constraints.
11. Crossover using Equation (32) and evaluate the population using the OF subject to all constraints.
12. Greedy selection to compare the populations and save the best.
13. Update the Global Best and set its value as the new attacker.
14. End while.

V—Save the global best solutions and display the final results.

5. Results and Discussion

The optimal planning of DGs and ESSs in ADNs for DISCO profit maximization
is performed using the proposed OSEDE/LFs. The standard 30-Bus and IEEE 69-Bus
distribution networks shown in Figure 6 are used as test systems, and the full line and
load data can be obtained from [24,30]. The base power and voltage are 10 MVA and 11 kV
for the 30-Bus system and 100 MVA and 12.66 kV for the 69-Bus system. Moreover, all
parameters required to perform the simulations are given in Tables 3 and 4, which are taken
from the relevant literature references [6,17,18,24]. The seasonal prices of active and reactive
power αP

t,s (USD/kWh) and αQ
t,s (USD/kVArh) are taken in which the prices in autumn

and winter are the same, and the prices in spring and summer are the same. Accordingly,
the operation and maintenance unit costs of active and reactive power of DGs CPDG

O&M,s
(USD/kWh) and CQDG

O&M,s (USD/kVArh) are the same in autumn and winter. Then, these
prices are increased by 20% in spring and summer. Since the operation and maintenance
cost of ESS is mainly dependent on its apparent power, the operation and maintenance
unit cost CESS

O&M,s (USD/kVAh) is fixed for all seasons [6]. The maximum apparent power
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of DGs (SDG
max) and ESSs (SESS

max) given in Equations (14) and (16), respectively, should not
exceed the sum of total load and network loss without DGs or ESSs [6,17,24].

Figure 6. The standard 30-Bus and IEEE 69-Bus distribution networks used as test systems.

Table 3. Load levels and hourly energy prices during the day (24 h) [6,17].

Hours 1–5 6–8 9–10 11–14 15–16 17–20 21–22 23–24

Load (%) 50 60 70 80 90 100 90 70

Energy prices in autumn and winter

αP
t,s (USD/kWh) 0.14 0.14 0.22 0.22 0.30 0.30 0.30 0.22

αQ
t,s (USD/kVArh) 0.028 0.028 0.044 0.044 0.060 0.060 0.060 0.044

Energy prices in spring and summer

αP
t,s (USD/kWh) 0.18 0.20 0.24 0.24 0.26 0.33 0.33 0.24

αQ
t,s (USD/kVArh) 0.036 0.04 0.048 0.048 0.05 0.066 0.066 0.048

Table 4. Simulation parameters [6,17,18,24].

Parameter Value Parameter Value

αDIS (%) 15 CEESS
inv. (USD/kWh) 81

d (%) 20 ηch, ηdis (%) 95

Y (years) 5 CESS
O&M,s (USD/kVAh) 0.02

Vmin (p.u.) 0.9 CPDG
O&M,s (USD/kWh), autumn and winter 0.189

Vmax (p.u.) 1.05 CQDG
O&M,s (USD/kVArh), autumn and winter 0.021

CDG
inv. (USD/kVA) 1150 CPDG

O&M,s (USD/kWh), spring and summer 0.2268

CSESS
inv. (USD/kVA) 805 CQDG

O&M,s (USD/kVArh), spring and summer 0.0252

For each system, the simulation is carried out considering two cases: the planning of
DGs only (Case 1) and the planning of DGs and ESSs simultaneously (Case 2). To validate
the performance of the proposed OSEDE/LFs, the model is also solved by the original
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state-of-the-art algorithms: DE, SEO, GWO, MVO, WOA, and PSO for all cases to compare
the results. The comparisons are performed based on the original parameters of each
algorithm. The parameters of OSEDE/LFs are defined by a stepwise variation to achieve
the best performance. For a fair comparison, the population size and the maximum number
of iterations are fixed to 50 and 200 for all algorithms, 10 independent runs are executed
for each case, and the best solutions are recorded and analyzed using the minimum (Min),
maximum (Max), Avg, and STD. Coding and simulations are carried out using Matlab-
R2016a on a PC with an Intel Core (TM) i7 processor, 3.2 GHz speed, and 8 GB RAM.

5.1. The 30-Bus Network
5.1.1. Case 1: The Optimal Planning of DGs

In this case, only DG units are considered. Hence, Equations (8)–(10) and (16)–(21) are
excluded, where the decision variables are the locations and sizes of DGs (for active and
reactive power). The results are obtained for all algorithms and listed in Table 5. As can be
seen in this table, the DISCO profit increased from 109,960.54 USD/year, which is the base
case before adding DGs to the network, to 167,003.63 USD/year by PSO. This value is further
increased to 167,276.76 USD/year by DE, 167,308.25 USD/year by WOA, 167,354.22 USD/year
by SEO, 167,518.23 USD/year by GWO, and 167,639.37 USD/year by MVO. However, when
using the proposed ODEDE/LFs, the DISCO profit reaches 168,383.40 USD/year, which is
obviously the maximum value compared to the other algorithms.

Table 5. The optimal planning of DGs for the 30-Bus network (Case 1).

Algorithm Optimal
Locations

Optimal Sizes PROFITDIS (USD/Year)

P (kW) Q (kVAr) Max Min Avg STD

Base case - - - 109,960.54

DE

11 102.64 68.71

167,276.76 167,209.48 167,270.00 21.2822 170.92 111.74

27 77.48 51.46

SEO

11 78.27 52.80

167,354.22 167,278.66 167,346.70 23.8921 137.95 94.86

25 136.29 93.01

GWO

10 112.75 75.18

167,518.23 167,480.62 167,510.70 15.8622 154.58 102.27

26 89.25 60.44

MVO

10 112.45 75.86

167,639.37 167,592.21 167,634.70 14.9122 155.04 103.79

26 88.51 60.17

WOA

11 99.07 66.57

167,308.25 167,214.94 167,298.90 29.5121 124.11 81.46

25 130.36 86.92

PSO

11 102.76 65.84

167,003.63 166,923.33 166,995.60 25.3922 164.25 107.38

26 87.06 55.33

OSEDE/LFs

10 110.58 79.48

168,383.40 168,359.84 168,381.00 7.4322 154.02 111.91

26 86.33 61.60
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In addition, the STD of the results obtained by ODEDE/LFs (7.43) is smaller than those
of the other algorithms. These results verify the robustness of the proposed ODEDE/LFs,
further illustrated in Figure 7, which shows the convergence characteristics of all compared
algorithms for Case 1. The ODEDE/LFs require a smaller number of iterations to reach the
optimal solution.

Figure 7. Convergence characteristics of the OSEDE/LFs compared to other algorithms for the 30-Bus
network (Case 1).

5.1.2. Case 2: The Optimal Planning of DGs and ESSs Simultaneously

In this case, DG and ESS units are considered. Hence, the decision variables are the
locations and sizes of DGs and ESSs (for active and reactive power). The locations and sizes
of DGs and ESSs obtained by all the algorithms are listed in Table 6. Comparing the results
of Case 1 (Table 5) to those of Case 2 (Table 6), it can be observed that the locations of DG
units obtained by each algorithm are not the same compared to Case 1. This is because
the algorithms consider the simultaneous planning of DGs and ESSs in Case 2 rather than
only DGs in Case 1. This demonstrates the importance of this strategy as it affects the final
results. It is also worth mentioning that all the algorithms are programmed to freely select
the locations of ESSs to obtain the maximum profit, even if these locations would be the
same as the locations of DGs. However, as can also be seen in Table 6, the optimal locations
of ESSs are different from the locations of DGs for all algorithms. This demonstrates that
when the DGs and ESSs are planned simultaneously, it is not necessary to allocate DG and
ESS units at the same location.

Table 6. The optimal planning of DGs and ESSs for the 30-Bus network (Case 2).

Algorithm

DG Units ESS Units

Optimal
Locations

Optimal Sizes Optimal
Locations

Optimal Sizes

P (kW) Q (kVAr) P (kW) Q (kVAr)

DE

12 39.83 24.99 6 56 112

23 161.02 100.21 9 43 79

28 27.32 17.22 27 42 87
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Table 6. Cont.

Algorithm

DG Units ESS Units

Optimal
Locations

Optimal Sizes Optimal
Locations

Optimal Sizes

P (kW) Q (kVAr) P (kW) Q (kVAr)

SEO

12 20.03 12.47 6 101 200

21 102.79 63.98 10 29 55

24 99.75 61.82 27 34 67

GWO

11 70.75 45.70 3 41 85

21 97.16 61.74 8 53 101

26 84.41 53.20 23 61 114

MVO

10 57.74 38.35 5 48 96

12 35.63 23.57 18 54 103

23 157.50 104.61 27 39 74

WOA

11 75.67 51.05 3 51 103

20 78.64 52.23 8 45 86

23 113.16 75.75 27 50 96

PSO

21 114.09 71.30 6 59 116

24 93.72 60.05 10 47 88

30 21.04 13.26 27 39 76

OSEDE/LFs

11 65.52 40.78 9 40 74

22 124.63 77.24 18 59 113

25 54.60 33.98 27 35 68

In addition, as can also be seen in Table 6, the reactive power of ESS units is higher than
their active power (these active and reactive powers represent the size of the ESS inverter).
This explains the high impact of reactive power control on the network. When there is no
exchange of active power (P is zero), the ESS unit can still exchange reactive power with
the network. In other words, when the inverter is neither charging nor discharging active
power, it can still draw or inject reactive power. During these periods, the ESS operates as a
capacitor bank, which greatly improves the performance of the network. However, this
exchange of reactive power is limited as the apparent power of the inverter must satisfy
the technical constraints given in Equations (16) and (17).

Based on the results of the optimal planning of DGs and ESSs shown in Table 6, the
DISCO profit is further maximized compared to Case 1, as detailed in Table 7. When
PSO is applied, the DISCO profit is increased to 176,734.33 USD/year. The profit reaches
176,975.90 USD/year, 177,097.47 USD/year, 177,100.48 USD/year, 177,282.74 USD/year,
and 177,359.65 USD/year by DE, WOA, SEO, GWO, and MVO, respectively. However, the
profit reaches its maximum value when the OSEDE/LFs is applied (178,314.58 USD/year).
These results emphasize the usefulness of considering the revenues from active and reactive
power trading when calculating the DISCO profit, where higher profits could be achieved.
Moreover, the simultaneous planning of DGs and ESSs, considering their active and reactive
power in the model, proves to be efficient as the profit is further maximized.

In addition, the effectiveness of the proposed algorithm is validated as the highest
profits are obtained when the OSEDE/LFs are applied. As also illustrated in Table 7, the
proposed algorithm achieves the optimal solutions with higher robustness as the STD
is the lowest among all compared algorithms (9.23). The robustness of ODEDE/LFs is
maintained even when the number of decision variables is increased. Accordingly, the
proposed algorithm can be applied to larger models with higher complexity. These findings
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are further illustrated in Figure 8, which depicts the convergence characteristics of all the
algorithms compared to Case 2. The ODEDE/LFs require fewer iterations to reach the
optimal solution.

Table 7. DISCO profit for the 30-Bus network, Case 2 (based on the results given in Table 6).

Algorithm
PROFITDIS (USD/Year)

Max Min Avg STD

Base case 109,960.54

DE 176,975.90 176,907.66 176,969.10 21.58

SEO 177,100.48 177,023.97 177,092.80 24.20

GWO 177,282.74 177,223.70 177,276.80 18.67

MVO 177,359.65 177,322.13 177,352.15 15.82

WOA 177,097.47 177,010.40 177,088.77 27.53

PSO 176,734.33 176,655.29 176,726.40 24.99

OSEDE/LFs 178,314.58 178,295.48 178,308.80 9.23

Figure 8. Convergence characteristics of the OSEDE/LFs compared to other algorithms for the 30-Bus
network (Case 2).

To demonstrate the operation of ESS during the optimization process using the
OSEDE/LFs, the charging and discharging powers, as well as the stored energy of the ESS
unit on Bus 18, are shown in Figure 9. It can be seen that the ESS is charged, discharged,
and disconnected in accordance with the load levels given in Table 3. During the light-load
hours, the ESS operates in charge mode, where the maximum charge power does not exceed
the maximum active power of the ESS. To avoid unnecessary power losses, the ESS is dis-
connected from the network during the medium-load hours, while it operates in discharge
mode during full-load hours. This figure also shows that the applied strategy is sufficient
to maintain the energy balance of the ESS, where at the end of the day (t = T = 24), the
residual energy is equal to the initial stored energy (t = 0).

5.1.3. Technical Impacts of DGs and ESSs

To analyze the technical impacts of DGs and ESSs on the 30-Bus network, the active
power loss is calculated when the OSEDE/LFs are applied for Cases 1 and 2 and compared
to that of the base case, as illustrated in Figure 10a.
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Figure 9. The power and stored energy of the ESS unit on Bus 18 of the 30-Bus network using the
OSEDE/LFs.

  
(a) (b) 

  
(c) (d) 

Figure 10. The technical impacts of DGs and ESSs on the 30-Bus network using the OSEDE/LFs:
(a) Active power loss; (b) Voltage profile at Hour 17; (c) Active power; and (d) Reactive power
exchanged with the upstream network.

It is obvious that maximizing the DISCO profit also reduces the active power losses in
both studied cases, especially during the full-load hours, where the impact is remarkably
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significant. Nonetheless, when DG and ESS units are considered, the active power losses
are still slightly higher during the ESS charging hours. This is reasonable since the ESS
units are considered to be loads during this period. However, when the ESS units operate
in discharge mode, the losses of Case 2 are further reduced compared to those of Case 1
during the same period. As a result, more benefits can be achieved if the DGs and ESSs are
integrated into the network simultaneously, considering their active and reactive power.

To better visualize the impact of the planning strategy on the network voltage,
Figure 10b depicts the voltage profile of all buses at Hour 17 (network fully loaded and ESS
units in discharge mode). It is validated that the voltages of all buses are greatly improved
compared to the base-case voltages. These improvements are clearly seen on the bus with
the lowest base-case voltage (the voltage on Bus 27 is improved from 0.8944 p.u. to 0.9631
in Case 1 and to 0.9701 p.u. in Case 2). Hence, the safe and secure operation of the network
is maintained in both cases since all voltages are within permissible limits. Nevertheless,
the voltages in Case 2 are better improved throughout the network than in Case 1. More
precisely, the worse the base-case voltages are, the better Case 2 improves over Case 1.

Finally, it is necessary to demonstrate the active and reactive power that the DISCO
exchanges with the upstream network during the day. This will further justify the above re-
sults. It will also validate the effectiveness of the planning strategy. Figure 10c shows the ac-
tive power exchanged with the upstream network using the OSEDE/LFs for Cases 1 and 2.
When only DGs are added to the network (Case 1), the received power from the upstream
network is well reduced compared to the base case. However, when DGs and ESSs are
added (Case 2), the power received is also lower than the base case but higher than that
of Case 1 during ESS charging and disconnecting hours. This is because more power is
needed to charge the ESS units. Starting from Hour 17, the power received in Case 2
becomes lower than that of Case 1 since the power stored in ESS units is discharged and
used. Thus, the DISCO can make more profit when DGs and ESSs are added because the
power used to charge the ESS units (during light-load hours) is cheaper than when ESS
units are discharged (the load levels are between 100% and 70%).

The reactive power exchanged with the upstream network is also analyzed, as illus-
trated in Figure 10d. After adding DG units to the network, the DISCO still must receive
reactive power but with a lower amount compared to that before adding DGs. Nevertheless,
in Case 2, the reactive power is sold to the upstream network during hours 1 to 9 instead
of receiving reactive power compared to Case 1 during the same period. Moreover, the
DISCO sells more reactive power in the last two hours of the day. Furthermore, during the
rest of the day, the reactive power received from the upstream network is clearly lower
in Case 2 than in Case 1. This was previously explained since the ESS is still exchanging
reactive power with the network when there is no active power being exchanged. Therefore,
by adding DGs and ESSs to the network considering their active and reactive power, the
DISCO can obtain more income by exchanging higher amounts of reactive power and
reducing the amount of power received from the upstream network.

5.2. The 69-Bus Network
5.2.1. Case 1: The Optimal Planning of DGs

Similar to the 30-Bus network, 3 DGs are added. The results for all of the compared
algorithms are listed in Table 8, which demonstrates that the DISCO profit increases
from 729,008.14 USD/year (base case) to 871,266.96 USD/year, 871,500.15 USD/year,
871,831.28 USD/year, 872,448.63 USD/year, 873,201.55 USD/year, 873,765.87 USD/year,
and 875,457.79 USD/year by PSO, SEO, WOA, DE, GWO, MVO, and OSEDE/LFs, respec-
tively. The maximum profit is obtained by the proposed algorithm. Moreover, the STD of
the results obtained by ODEDE/LFs (9.80) is smaller than those of the other algorithms.
Comparing the results of Case 1 for the 30-Bus and 69-Bus networks, it can be noticed that
the STD values of all algorithms are higher for the 69-Bus network. This is because the
search space is increased, and thus, the complexity of the problem is increased. However,
the proposed OSEDE/LFs maintains its robustness, as the optimal solution is obtained
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with the smallest STD value compared to the other algorithms. These results are further
illustrated in Figure 11, showing the convergence characteristics of all compared algorithms
for Case 1. The ODEDE/LFs require fewer iterations to reach the optimal solution.

Table 8. The optimal planning of DGs for the 69-Bus network (Case 1).

Algorithm Optimal
Locations

Optimal Sizes PROFITDIS (USD/Year)

P (kW) Q (kVAr) Max Min Avg STD

Base case - - - 729,008.14

DE

22 86.58 54.79

872,448.63 872,360.19 872,439.80 27.9761 1003.17 655.84

65 20.00 12.76

SEO

20 168.26 111.76

871,500.15 871,445.35 871,483.70 26.4761 146.47 94.99

62 853.11 575.52

GWO

24 72.46 48.88

873,201.55 873,145.33 873,195.90 17.7861 976.67 646.15

65 43.91 28.82

MVO

21 90.52 60.60

873,765.87 873,715.50 873,760.80 15.9361 786.28 518.14

64 231.27 151.20

WOA

17 68.23 44.78

871,831.28 871,751.03 871,817.00 30.4421 21.56 13.93

61 1020.37 661.76

PSO

61 147.01 99.18

871,266.96 871,110.72 871,267.00 49.4162 244.06 161.47

63 640.21 440.21

OSEDE/LFs

24 88.03 60.53

875,457.79 875,438.81 875,450.20 9.8061 765.34 530.23

64 240.87 169.38

Figure 11. Convergence characteristics of the OSEDE/LFs compared to other algorithms for the
69-Bus network (Case 1).
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5.2.2. Case 2: The Optimal Planning of DGs and ESSs Simultaneously

In this case, the decision variables are the locations and sizes of 3 DGs and 3 ESSs (for
active and reactive power). The locations and sizes of DGs and ESSs obtained by all the
algorithms are listed in Table 9. The results of Case 1 (Table 8) and Case 2 (Table 9) show
the difference between planning only DGs and planning DGs and ESSs simultaneously
in terms of optimal locations. However, unlike the 30-Bus network, the 69-Bus network
requires some DG and ESS units to be placed at the same locations to achieve the maximum
profit, as shown in Table 9. These results emphasize that the simultaneous planning of DG
and ESS units is also related to the nature and topology of the network under study.

Table 9. The optimal planning of DGs and ESSs for the 69-Bus network (Case 2).

Algorithm

DG Units ESS Units

Optimal
Locations

Optimal Sizes Optimal
Locations

Optimal Sizes

P (kW) Q (kVAr) P (kW) Q (kVAr)

DE

17 81.14 54.52 19 136 295

61 398.98 270.19 40 42 141

64 347.69 230.93 61 181 433

SEO

10 30.78 20.53 8 174 390

22 180.25 122.07 49 278 747

61 620.86 410.75 61 289 528

GWO

18 58.618 36.48 61 199 366

25 41.51 26.27 64 118 221

61 670.89 429.85 67 212 446

MVO

17 20.27 12.93 42 17 38

26 20.00 12.61 61 316 584

61 690.55 449.66 69 159 322

WOA

22 42.90 28.27 62 243 491

23 62.03 41.84 63 13 24

62 689.98 460.08 66 114 302

PSO

27 181.65 122.07 56 204 393

60 155.16 100.23 60 115 262

62 436.43 289.87 62 176 274

OSEDE/LFs

61 478.16 320.08 12 111 232

64 178.24 122.09 21 88 178

65 55.11 36.61 61 281 526

Based on the results of Case 2 shown in Table 10, the DISCO profit is further maximized
to reach 889,726.09 USD/year (by PSO), 891,756.92 USD/year (SEO), 897,791.51 USD/year
(WOA), 898,119.76 USD/year (DE), 900,334.02 USD/year (GWO), 900,813.13 USD/year
(MVO), and 904,013.05 USD/year (ODEDE/LFs), respectively.

Subsequently, it is proved that the utilized optimization model is effective for DISCO
profit maximization. It is also observed that as the complexity of the problem increases
(increasing the search space between the 30-Bus and 69-Bus networks), the compared
algorithms may perform differently. For example, the results of the SEO algorithm are
better than those of PSO, DE, and WOA for the 30-Bus system but worse than those of DE
and WOA for the 69-Bus system. Moreover, for both test systems, the SEO performs worse
than GWO, MVO, and the proposed OSEDE/LFs, especially for the 69-Bus system. These
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results confirm that the original SEO needs improvements to handle complex optimization
problems like the model used in this paper, especially for large-scale systems. This has
been achieved by the proposed OSEDE/LFs algorithm.

Table 10. DISCO profit for the 69-Bus network, Case 2 (based on the results given in Table 9).

Algorithm
PROFITDIS (USD/Year)

Max Min Avg STD

Base case 729,008.14

DE 898,119.76 898,054.43 898,100.20 31.56

SEO 891,756.92 891,629.72 891,744.20 40.23

GWO 900,334.02 900,253.20 900,325.90 25.56

MVO 900,813.13 900,767.78 900,799.50 21.91

WOA 897,791.51 897,721.00 897,770.40 34.06

PSO 889,726.09 889,551.00 889,708.60 55.37

OSEDE/LFs 904,013.05 903,979.67 904,006.40 14.07

It is clear that the highest profits with the lowest STD values are obtained for all
cases when the OSEDE/LFs are applied. Using the proposed algorithm, the performance
of SEO and DE is remarkably improved to overcome even the powerful state-of-the-art
GWO, MVO, and WOA algorithms. To further validate these results, the convergence
characteristics of all the algorithms compared to Case 2 are depicted in Figure 12, showing
that the ODEDE/LFs reach the optimal solution with fewer iterations.

Figure 12. Convergence characteristics of the OSEDE/LFs compared to other algorithms for the
69-Bus network (Case 2).

Furthermore, the charging and discharging powers and the stored energy of the ESS
unit on Bus 21 are shown in Figure 13, demonstrating that the energy balance of the ESS
is maintained.

5.2.3. Technical Impacts of DGs and ESSs

The technical impacts of DGs and ESSs on the 69-Bus network when the OSEDE/LFs
are applied for Cases 1 and 2 are shown in Figure 14, analyzing the (a) active power losses,
(b) voltage profile at Hour 17, (c) active power and (d) reactive power exchanged with the
upstream network.
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Figure 13. The power and stored energy of the ESS unit on Bus 21 of the 69-Bus network using the
OSEDE/LFs.

  
(a) (b) 

  
(c) (d) 

Figure 14. The technical impacts of DGs and ESSs on the 69-Bus network using the OSEDE/LFs:
(a) Active power loss; (b) Voltage profile at Hour 17; (c) Active power; and (d) Reactive power
exchanged with the upstream network.

Similar observations can be made when compared to the results of the 30-Bus network.
As shown in Figure 14a, the power losses are well reduced in both cases, especially during
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the full-load hours. In Case 2, the active power losses are higher during ESS charging
hours, and during the discharging hours, the losses are further reduced, which leads to
higher profits. Figure 14b illustrates that the voltages of all buses are significantly improved,
especially in Case 2. The lowest base-case voltage (on Bus 65) is improved from 0.9092 p.u.
to 0.9621 in Case 1 and to 0.9690 p.u. in Case 2. Figure 14c shows the active power exchange
with the upstream network using the OSEDE/LFs for Cases 1 and 2. In Case 1, the power
received from the upstream network is well reduced compared to the base case. In Case 2,
the received power is also reduced compared to the base case, but it is higher than that
of Case 1 during the charging and disconnecting hours of the ESSs. From Hour 17, the
received power in Case 2 becomes lower than in Case 1. This leads to higher profits due to
the difference in energy prices. The reactive power exchange with the upstream network is
illustrated in Figure 14d. In Case 1, the DISCO receives less reactive power than in the base
case. In Case 2, the reactive power is sold to the upstream network during hours 1 to 6.
During the rest of the day, the reactive power received from the upstream network in Case 2
is clearly lower than in Case 1. This is because the ESS is still exchanging reactive power
with the network when there is no active power being exchanged. Thus, the DISCO can
generate more income through the exchange of higher amounts of reactive power and the
reduction of the power received from the upstream network.

6. Conclusions

This paper has addressed the simultaneous planning of DGs and ESSs in deregulated
electricity markets for DISCO profit maximization. The revenues from trading active and
reactive power have been considered in the optimization model to further improve the
accuracy of the results. Meanwhile, the active and reactive power of DGs and ESSs have also
been included in the optimization process, which maximizes their utilization in the reactive
power support. Thus, the decision variables have been set to be the locations and sizes
(active and reactive power) of DGs and ESSs simultaneously. To solve the designated model,
a new hybrid EA called the OSEDE/LFs has been proposed based on the recently developed
SEO algorithm. The OSEDE/LFs exploits the advantages of the search mechanisms of DE
and LFs to improve the performance of SEO by their distinctive combination within the
main loop. Furthermore, the initial population of the algorithm is generated using the
QOBL technique. The proposed OSEDE/LFs has been benchmarked and compared with the
other nine state-of-the-art EAs using a set of well-known BFs. The results obtained for most
of the tested BFs have confirmed the outstanding performance of the OSEDE/LFs over the
other algorithms in terms of obtaining the global optima, fast convergence, and robustness
with the best total and average ranks achieved. Moreover, the Wilcoxon signed rank test
has proved the statistical significance of the OSEDE/LFs. Based on this, the proposed
algorithm has been applied to solve the planning model of DISCO profit maximization
using the standard 30-Bus and IEEE 69-Bus distribution networks. Two case studies have
been considered for each network, namely the optimal planning of DGs and the optimal
planning of DGs and ESSs simultaneously. For both networks, the maximum DISCO profits
with faster convergence and higher robustness have been obtained by the OSEDE/LFs
compared to other original algorithms. In addition, by comparing the results of Case 2
with Case 1 for each network, it has been verified that the proposed algorithm maintains its
robustness even when the number of decision variables and the search space are increased,
especially for the 69-Bus network. The results have also shown that some algorithms, such
as the original SEO, may have worse performance as the complexity of the optimization
model increases. This has justified the need to improve its performance for complex
optimization problems. Thus, the OSEDE/LFs can be recommended as a robust method
for solving more complex and larger-scale problems in different engineering applications,
which may be promising for future research. Moreover, the comparisons made between
Cases 1 and 2 have highlighted the importance of considering the revenues from active and
reactive power trading to achieve higher DISCO profits. This has been done by including
the active and reactive power of DGs and ESSs in the optimization model, which has
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remarkably increased the reactive power support. These results have been validated by
observing the reduced power losses, improved voltage profile, and power exchanged with
the upstream network.

Finally, several potential directions are worthy of investigation in future research, such
as including renewable DGs in the planning model, developing an objective function that
considers the environmental revenues, and comparing different types of storage systems.
For example, the utilization of pumped hydro storage or gravity energy storage in ADNs
for DISCO profit optimization could be an interesting trend for further research.
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20. Weckesser, T.; Dominković, D.F.; Blomgren, E.M.V.; Schledorn, A.; Madsen, H. Renewable Energy Communities: Optimal sizing
and distribution grid impact of photovoltaics and battery storage. Appl. Energy 2021, 301, 117408. [CrossRef]

21. Rajabzadeh, M.; Kalantar, M. Improving the resilience of distribution network in coming across seismic damage using mobile
battery energy storage system. J. Energy Storage 2022, 52, 104891. [CrossRef]

22. Khaki, B. Joint sizing and placement of battery energy storage systems and wind turbines considering reactive power support of
the system. J. Energy Storage 2021, 35, 102264. [CrossRef]

23. Thanh Nguyen, T.; Trung Nguyen, T.; Le, B. Artificial ecosystem optimization for optimizing of position and operational power
of battery energy storage system on the distribution network considering distributed generations. Expert Syst. Appl. 2022,
208, 118127. [CrossRef]

24. Abdel-Mawgoud, H.; Fathy, A.; Kamel, S. An effective hybrid approach based on arithmetic optimization algorithm and sine
cosine algorithm for integrating battery energy storage system into distribution networks. J. Energy Storage 2022, 49, 104154.
[CrossRef]

25. Mohamed, A.A.; Kamel, S.; Hassan, M.H.; Mosaad, M.I.; Aljohani, M. Optimal Power Flow Analysis Based on Hybrid Gradient-
Based Optimizer with Moth–Flame Optimization Algorithm Considering Optimal Placement and Sizing of FACTS/Wind Power.
Mathematics 2022, 10, 361. [CrossRef]

26. Fathollahi-Fard, A.M.; Hajiaghaei-Keshteli, M.; Tavakkoli-Moghaddam, R. The Social Engineering Optimizer (SEO). Eng. Appl.
Artif. Intell. 2018, 72, 267–293. [CrossRef]

27. Pires, V.F.; Pombo, A.V.; Lourenço, J.M. Multi-objective optimization with post-pareto optimality analysis for the integration of
storage systems with reactive-power compensation in distribution networks. J. Energy Storage 2019, 24, 100769. [CrossRef]

28. Saini, P.; Gidwani, L. An investigation for battery energy storage system installation with renewable energy resources in
distribution system by considering residential, commercial and industrial load models. J. Energy Storage 2022, 45, 103493.
[CrossRef]

29. Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International
Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; pp. 1–7.

30. Mahfoud, R.J.; Alkayem, N.F.; Sun, Y.; Haes Alhelou, H.; Siano, P.; Parente, M. Improved Hybridization of Evolutionary
Algorithms with a Sensitivity-Based Decision-Making Technique for the Optimal Planning of Shunt Capacitors in Radial
Distribution Systems. Appl. Sci. 2020, 10, 1384. [CrossRef]

31. Alkayem, N.F.; Shen, L.; Al-hababi, T.; Qian, X.; Cao, M. Inverse Analysis of Structural Damage Based on the Modal Kinetic
and Strain Energies with the Novel Oppositional Unified Particle Swarm Gradient-Based Optimizer. Appl. Sci. 2022, 12, 11689.
[CrossRef]

32. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces.
J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

33. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.

34. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization. Neural
Comput. Appl. 2016, 27, 495–513. [CrossRef]

35. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
36. Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
37. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [CrossRef]
38. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.

[CrossRef]
39. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
40. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.

[CrossRef]

440



Mathematics 2024, 12, 300

41. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer
for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]

42. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

441



Citation: Nabil, M.; Guo, F.; Jiang, L.;

Yu, Z.; Long, Q. Numerical

Investigation of Wind Flow and

Speedup Effect at a Towering Peak

Extending out of a Steep

Mountainside: Implications for

Landscape Platforms. Mathematics

2024, 12, 467. https://doi.org/

10.3390/math12030467

Academic Editor: Sergey Ershkov

Received: 8 January 2024

Revised: 26 January 2024

Accepted: 29 January 2024

Published: 1 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Numerical Investigation of Wind Flow and Speedup Effect at a
Towering Peak Extending out of a Steep Mountainside:
Implications for Landscape Platforms

Mohammed Nabil, Fengqi Guo *, Lizhong Jiang, Zhiwu Yu and Qiuliang Long

School of Civil Engineering, Central South University, Changsha 410075, China; monabil@csu.edu.cn (M.N.)
* Correspondence: fengqiguo@csu.edu.cn

Abstract: Wind flow over complex terrain is strongly influenced by the topographical features of
the region, resulting in unpredictable local wind characteristics. This paper employs numerical
simulation to study the wind flow at a towering peak extending out of a steep mountainside and
the wind-induced effect on onsite landscape platforms. First, the wind flow from seven different
directions is explored via 3D numerical simulations, and the wind load distribution on the platforms
is highlighted. Second, a 2D numerical simulation is conducted to evaluate the wind speedup effect
at the side peak, examining the influence of the side peak height and the mountainside steepness
on the wind speedup factor. The numerical simulations presented in this research were validated
by replicating a published numerical and experimental study. The results illustrate the amplifying
and blocking effects of the surrounding topography, yielding unpredictable and nonuniform wind
pressure distribution on the platforms. The presence of the side peak leads to a significant increase
in the speedup factor, and the side peak height and the mountainside steepness have a moderate
influence on the value of the speedup factor. Additionally, the speedup factor obtained from this
study varies significantly, especially near the surface, from the recommendations of several wind
load standards. Consequently, the impact of the local terrain and the wind speedup effect must be
thoroughly assessed to ensure the structural integrity of structures installed at a similar topography.

Keywords: numerical simulation; speedup factor; computational fluid dynamic; complex structure;
simulation accuracy

MSC: 74F10; 76F40

1. Introduction

The atmospheric boundary layer (ABL) over mountainous regions is significantly
affected by the local topography, resulting in its complex behavior. This complexity poses
challenges for scientists and engineers who require comprehensive evaluations of the wind
field within the relevant terrains. Moreover, this need becomes even more pronounced
with the escalating expansion of human projects—such as transportation infrastructures
and wind farms—into intricate regions. Over the past few decades, scholars have relied
on field measurements to extract local wind data. However, this approach poses certain
economic and technical challenges, especially when studying the wind field at a larger
scale. Researchers have employed alternative methods, primarily wind tunnel tests and
numerical simulations, to overcome these limitations.

Recent significant technological advancements, combined with the constant improve-
ment in computational fluid dynamics (CFD) software, have promoted the utilization of
numerical simulations to investigate wind field characteristics over mountainous valleys.
Hu et al. [1] numerically studied the wind flow over hilly terrain and proposed a novel
turbulence generating method. The numerical simulation successfully predicted the wind
field characteristics over realistic hilly terrain and three-dimensional hills with different
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slopes. Song et al. [2] conducted numerical simulation for the wind field in complex terrain.
The results were validated by the wind tunnel test, and it was established that the k-models
produced superior predictions to those of other RANS models. Blocken et al. [3] utilized
CFD simulation and field measurements to evaluate the wind characteristics in intricate
terrains. The results obtained by applying the steady realizable k-ε model show great
consistency with the experimental data. Moreira et al. [4] assessed the ability of various
RANS turbulence models to simulate airflow over the complex terrain of Askervein Hill
accurately. Han et al. [5] proposed a multiscale coupling approach suitable for determining
the inlet mean wind speed for numerical simulations of the wind field in mountain gorges.
In addition to conducting CFD simulations of wind fields in natural topography, researchers
have extensively studied wind flow over typical circular hills [6–9].

The intricate nature of real terrains often subjects the wind flow to a speeding-up effect,
a phenomenon that has been extensively discussed by many scholars [10–13]. Flay et al. [14]
conducted a comprehensive investigation of the speedup effect in the Belmont Hill region
to enhance wind speed predictions. This study involved a comparison of various national
wind standards with speedup predictions based on field observations. Chen et al. [15]
utilized wind tunnel tests and numerical simulations to assess the speedup effect at the
peaks of coastal island mountains, and the influence of the large-scale topography on the
speedup effect was highlighted. Pirooz et al. [16] performed numerical simulations for
2D and 3D bell-shaped hills to evaluate the accuracy of speedup multipliers suggested by
various wind load standards. The results, validated by a wind tunnel test, revealed certain
variations from the recommended values.

Despite abundant research focusing on the wind flow around and through structures
on flat surfaces [17–19], understanding the wind-induced effects on structures in complex
terrains remains inadequate. Meng et al. [20] conducted a CFD simulation for a tall building
with a rectangular section in relatively complex topography. The study revealed significant
negative pressure on the building’s side surfaces caused by flow separation induced by
the front terrain. Han et al. [21] employed numerical simulation to evaluate the impact of
surrounding hilly terrain on the wind-induced pressure of a traditional temple within a
complex terrain. Lee-Sak et al. [22] conducted wind tunnel tests to assess the influence of
terrain complexity on the wind load of low-rise buildings. The experiment also highlighted
the effect of terrain roughness on wind flow characteristics such as turbulence intensity.

In the last few decades, the Chinese economy and local individuals’ incomes have
grown exponentially. This growth led to a significant expansion in the local tourism indus-
try. Many local governments and businesses have capitalized on the local natural features,
including hills, waterfalls, and forests, to leverage this growth and attract the largest pos-
sible number of visitors. This study presents a comprehensive 3D and 2D simulation
investigation of the wind field at a towering peak protruding from a steep mountainside,
as depicted in Figure 1. This peak serves as the site for a front butterfly-lookalike landscape
platform, which will be connected—via a glass bridge over a narrow col—to a second
platform on the mountainside. This platform will hover over the astonishing landscapes
of Dajue Mountain, becoming a new tourist attraction and contributing to the region’s
economic growth.

As ecotourism gains popularity, the emergence of structures in similar locations is
expected to increase. Given the limited existing research on the wind loads experienced by
complex structures at unique sites, such as towering peaks, a thorough investigation of the
local wind field and its impact on structures is highly needed. This research aims to enhance
the understanding of the wind flow around architecturally sophisticated structure and ana-
lyze the influence of surrounding topography on its behavior. The study provides essential
information for designing engineers to ensure the stability of the structure under various
wind speeds and directions. Additionally, the research evaluates the speedup effect at the
side peak, emphasizing the impact of the side peak height and the mountainside steepness
on the speedup factor. The CFD simulation results are compared to the recommendations
of several national wind load standards. This investigation holds practical merit and offers
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valuable guidance for relevant future research. The remainder of this paper is as follows:
Section 2 presents numerical simulations of the wind flow over complex terrain, focusing
on the impact of the surrounding topography on the platforms wind-induced pressure.
Section 3 examines the speedup effect at the side peak and the influence of different side
peak heights and mountainside slopes. Section 2 lists the findings of this research.

 

 

 

Figure 1. The local topography and 3D model of the computational domain and platforms.

2. 3D Numerical Simulation

2.1. Computational Domain and Flow Directions

The targeted simulation domain is within Dajue Mountain Jiangxi Province, China.
The side peak stands at approximately 90 m on the steep mountainside. This towering peak
is isolated from the main body of the mountain by a narrow col with a width of 10 m. The
steel butterfly-lookalike landscape platforms have maximum dimensions of 60 m in length
and 75 m in width. The overall height of the platform is 29 m, and the glass bridge spans a
length of 40.5 m, as illustrated in Figure 1.

The model of the local topography of Dajue Mountain was generated using digital
elevation model (DEM) data provided by NASA, with a resolution of 12.5 m per pixel.
The contour lines of the region were extracted by Global Mapper, and the terrain surface
was modeled using Rhinoceros. The platform models were created in Ansys SpaceClaim
(2021 R1) based on the provided architectural drawings.

According to available wind field observations, the wind flow mainly blows at high
speeds from the south and the west. Furthermore, the mountain body blocks the wind flow
from the north, leading to a significant decrease in the wind speed to less than 2 m/s at
the platforms site, as shown in Figure 2. Consequently, this study did not investigate the
wind flow from the direct north. The other seven wind directions, every 45 degrees, are
studied with the initial case (0 degrees) signifying the flow from the south. Additionally,
the numerical simulations are conducted on scaled models at a ratio of 1/100.

2.2. Mesh Arrangement

Mesh settings highly influence the wind field numerical simulation results, and poor
mesh quality could prevent the convergence of the solution. To address this, scholars have
introduced various meshing guidelines, including the aerodynamic roughness suggested
by Blocken et al. [23]. In this context, the aerodynamic roughness of the terrain surface
is represented by an equivalent sand grain size kS, and the height of the first mesh layer
cannot be less than 6 m, according to Equation (1).

ks =
9.793z0

Cs
(1)
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ks = 29.6z0 (2)

where z0 = 0.05 is the roughness height, and Cs = 0.16 is the roughness constant according
to the Chinese wind resistance code [24].

Figure 2. Mean wind speed and direction.

Currently, researchers are utilizing several software and tools, such as Gambit and
Ansys ICEM tool, to generate mesh for wind field numerical simulation. However, due to
the geometric complexity of the landscape platforms and the natural terrain, Ansys (Fluent
meshing) (2021 R1) was used to generate the mesh, and the poly-hexacore mesh type was
chosen, as shown in Figure 3. Selecting an appropriate mesh arrangement is a repetitive
process that takes into account the simulation equality and calculation time requirements.
In this study, a grid independence test was conducted to select the ideal mesh scheme,
and three approaches with total mesh cell numbers of 11.0, 16.7, and 23.2 million were
examined. The test showed that the maximum wind speed difference of the three schemes
at the front platform was only 2.64%, as illustrated in Figure 4. Consequently, the second
scheme with 16.7 million mesh cells was applied for the subsequent simulations. In this
grid arrangement, the inner domain surrounding the platforms has a maximum cell length
of 1 m, and the entire simulation domain has mesh cells with minimum and maximum
lengths of 0.1 m and 50 m, respectively. This wide mesh size range ensures that the minor
details of complex geometry are captured while keeping the calculation time manageable.

 

Figure 3. Computational grid.
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Figure 4. Mesh independency test.

2.3. Atmosphere Boundary Layer and Boundary Conditions

The atmospheric boundary layer (ABL) numerical simulation has been of great inter-
est to researchers, and the currently common approaches involve wall-shear-driven and
pressure-driven models. However, since the wind flow within the ABL is generated pri-
marily through differences in regional atmospheric pressure, many scholars have utilized
pressure-driven models to simulate the airflow over natural topographies. Additionally,
the accuracy of this approach in predicting wind field characteristics in complex terrains
has been validated via comparisons with wind tunnel tests and field measurements [16].
This study utilized the pressure-driven mathematical model developed by Deaves and
Harris [25] as follows:

U(z) =
u∗

κ

(
ln
(

z
z0

)
+ 5.75

( z
h

)
− 1.875

( z
h

)2 − 1.333
( z

h

)3
+ 0.25

( z
h

)4
)

(3)

where u* is the fraction velocity, κ = 0.4 is the Von Karman constant, h is the gradient
height, and f is the Coriolis parameter.

h =
u∗

6 f
(4)

The turbulence model applied in this research is the (k-ε; Realizable) model, and the
inlet profile is defined according to Richards and Norris [26] as follows:
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)3
)

(7)

τ = ρu∗2 (8)

where U(z) is the wind speed, k(z) is the turbulence kinetic energy, ε(z) is the turbulence
dissipation rate, τ is the wall shear stress, and ρ = 1.225 kg m−3 is the air density. The
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values of the constants mentioned in Equations (5)–(7) were previously calculated by
Richards and Norris [26].

The symmetry boundary condition is assigned to the top and side surfaces, and the
pressure outlet boundary condition with zero-gauge pressure is applied at the outlet of the
domain. The terrain’s surface and platforms are selected as no-slip walls, and the surface
roughness of the terrain due to the vegetation cover is represented by the corresponding
wall function parameters kS and CS, as in Equation (1). This method simulates the impact of
the forest on the airflow development throughout the domain by altering the surface initial
roughness length z0 with the equivalent sand grain size roughness height kS. Additionally,
this approach is widely applied by researchers, and has produced high-quality wind
numerical simulations [3]. Furthermore, the scalable wall function is applied to the terrain
surface to ensure the accuracy of the near-ground wind simulation. The airflow simulated
in this study maintains the initial settings of Ansys Fluent, with a density of 1.225 kg m−3.
The simulation convergence criteria were set to 1 × 10−6, and the solution reached stability
within 5000 steps.

2.4. Results

The results obtained from the 3D numerical simulation conducted using Ansys Fluent
(2021 R1) are presented in this section, and the impact of the local terrain on the wind-
induced effects on the platforms is highlighted.

2.4.1. Platforms Wind-Induced Effects

The platforms’ wind-induced pressure resulting from the wind flow from seven
different directions is depicted in Figure 5 and Figure 7. The figures show that the sides
of the platform facing the wind flow direction experience significant pressure and lifting
forces. This effect is particularly evident in Cases 5 and 6, where the wind-induced positive
pressure reaches a maximum value of approximately 750 Pa. This is attributed to the
relatively open topography of the western and northwestern regions of the terrain. As in
Case 6, the wind flow experienced a speeding-up effect by the relatively shorter mountain
in the west. In Case 7, the northwestern mountains redirected the wind flow toward the
side peak, resulting in higher wind pressure. However, due to the shading effect of the
mountains in the northeast direction (Case 4), the platforms, especially the one on the
mountainside, were subjected to a significant negative wind pressure. This pressure results
from the large vortex formed behind the mountains, attempting to lift the platforms off
their bases.

Due to the complex shape of the landscape platforms and the unique installation
location, a towering peak, the wind flow undergoes critical separation, resulting in local
vortices, as depicted in Figure 6. The figure illustrates the wind flow streamlines from the
west (Case 6) and northwest directions (Case 6). As can be seen, the wind flow from the
west separates around the edges and domes of the platforms, creating small vortices. These
vortices led to the nonuniform distribution of wind pressure on the platforms and the
appearance of negative pressure. Furthermore, as the wind flow reattached, a positive wind
pressure occurred on the other side of the platforms. This force distribution, coupled with
the lifting forces resulting from the upwards redirected wind flow, imposes a significant
torsional wind load on the platforms. This torsional effect threatens the structural stability
of such lightweight metal structures, and under extreme weather conditions, this may cause
uplift or detachment of the platforms’ wings. Additionally, the glass bridge connecting the
two platforms appears to be more susceptible to damage, and wind-induced vibrations
may occur.
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Figure 5. Platforms’ mean surface pressure for Cases 2, 4, 5, and 7.

  

  

Figure 6. Streamlines of mean velocity for Cases 5 and 6.

2.4.2. Effect of Local Topography

The complex terrain surrounding the landscape platforms significantly influences
the approaching airflow and plays a crucial role in determining the wind-induced effects
on the structure. To closely examine the local topography effect, additional numerical
simulations of the wind flow from the front and two sides of platforms on a plain surface
were conducted. Furthermore, the same domain boundary conditions and mesh settings
used for the real terrain are applied in these CFD simulations. The numerical simulation
results of the wind flow over the real terrain and the plain surface are shown in Figure 7.
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The figure demonstrates the substantial amplifying effect imposed by the local topography
on the platforms’ wind-induced pressure. The wind pressure shows a significant increase,
reaching over five times that of the plain surface, particularly in Case 1 and Case 6, where
the relatively open area of the terrain provides an unobstructed path for the speedup effect
to occur. The following section extensively investigates the speedup effect at the site of
the front platform under Case 1, and the findings predicted a speedup factor near the
surface of around three. This threefold increase in the wind speed at the side peak is close
to the observed pressure increase of around 3.5 times on the front face of the platform. This
conclusion highlights the accuracy of the wind speedup effect predictions provided by the
second half of this study.

  

  

  

Figure 7. Platforms’ mean surface pressure for Cases 1, 3, and 6.

Furthermore, the comparison reveals significant variations in the distribution of nega-
tive wind pressure, resulting in lifting and torsional forces. Therefore, a thorough evaluation
of the wind behavior and the effect of the surrounding topography is highly recommended
when undertaking construction projects or installing wind turbines at similar sites. Failing
to do so may result in structural failure, especially under intense weather conditions and
powerful storms.

3. Wind Speedup Effect

3.1. Wind Load Standards and Speedup Effect

The wind speedup factor refers to the ratio of the wind speed at a certain height above
the hill or escarpment to the wind speed at the same height on flat ground. The wind
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speedup factor has proven essential in determining the wind load on structures in complex
terrains. According to the previous investigation, the speedup phenomenon resulting
from the local topography could significantly amplify the wind load on local structures,
potentially causing unpredictable structural damage.

Many national wind load standards have addressed the wind speedup effect by intro-
ducing a topographic multiplier and developing straightforward mathematical approaches
to calculating this multiplier. These calculations consider various factors, such as the height
of the hill/escarpment and the horizontal distance from the hill’s peak to the targeted
hillside location. More explicit details regarding the calculation process can be found in the
listed references. This study compares the speedup factor at the side peak obtained from 2D
numerical simulations under different side peak heights (90 and 135 m) and mountainside
slopes (0.2, 0.31, and 0.5), with the topography multipliers suggested by four wind load
standards, namely AS/NZS 1170.2 (2021) [27], NBC-2020 [28], BS-EN (2005–2010) [29,30],
and ASCE-7 (2022) [31].

3.2. Computational Domain and Grid

The mountain profile used for this simulation represents a vertical section at the side
peak of the 3D model of the actual topography of Dajue Mountain, as shown in Figure 6.
Furthermore, the mountain extends upwind to the valley’s lowest point at 2185 m from the
mountain peak. The overall height of the mountain is 685 m, and the side peak extends
90 m from the mountainside. Additionally, the front mountain, located over 2800 m from
the side peak, was omitted and treated as a flat surface. This prevents the possible blocking
effect of the distant mountain, which could disturb the wind flow and divert the results.
As the backside of the mountain is not considered in this simulation, nor does it affect the
speedup factor at the side peak, it was replaced by the Witozinsky transition curve [32] and
positioned 720 m from the mountain peak. The dimensions of the computational domain
are shown in Figure 8, and the scale ratio of the simulation model is 25:100.

Figure 8. Computational domain and mesh arrangement.

This investigation utilized the Ansys CFX (2021 R1) package to carry out the numerical
simulation, and the turbulence k-ε model (realizable with scalable wall functions) and the
inlet profile defined by Equations (5)–(7) were applied. Furthermore, a zero-gauge pressure
outlet boundary condition was assigned to the domain outlet, and the symmetry boundary
condition was applied to the top boundary. As for the ground, the equivalent roughness
height kS = 1.5 and roughness constant CS = 0.16 were applied with scalable wall function
treatment to reflect the realistic aerodynamic resistance of the terrain vegetation cover, as
shown in Equation (2).
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Due to the relative simplicity of the 2D mountain profile, the Ansys ICEM (2021 R1)
meshing tool was utilized to generate the structure mesh, as shown in Figure 8. Further-
more, the mesh arrangement had a first layer height of 3 m and a maximum cell length of
10 m.

3.3. Numerical Simulation Validation

The boundary conditions and turbulence model applied in this study were also utilized
in the wind tunnel and numerical simulation study by Pirooz et al. [16]. This study
examined the speedup effect at a bell-shaped hill under varying slopes. The reliability of the
current CFD simulations was validated by replicating the published study (Pirooz et al. [16]),
and the obtained results were compared with the original ones, as shown in Figure 9. The
results show that the wind speedup factor from the conducted simulation (blue line) is
almost identical to the published result, with a maximum difference of 5.4% occurring
below 1.5 m in height. This highlights the accuracy of the numerical simulations presented
in the following discussion.

 
Figure 9. Validation of the numerical simulation accuracy.

A noticeable reduction in the inlet wind velocity and turbulence profile of numerical
simulations that employ the k-ε model was reported by Hargreaves et al. [33]. This
phenomenon could occur even prior to the presence of an obstacle. To ensure that this
did not affect the findings reached in this study, a numerical simulation for the same
domain was conducted before introducing the mountain profile, and the homogenous
development of the wind field throughout the CFD domain was evaluated. The results
demonstrate an evident consistency of the wind velocity, turbulence kinetic energy (TKE),
and turbulence dissipation rate throughout the domain, as shown in Figure 10. Furthermore,
an insignificant variation in the TKE profile emerged as the flow developed, and the
maximum value of divergence was around 3.27% which decreased as the height increased.

3.4. 2D Numerical Simulation Results
3.4.1. Wind Profile at the Side Peak

The wind speed profile at the side peak extending from the mountainside is plotted in
Figure 11. The figure shows the influence of the present side peak, with different heights, on
the wind speed. The plot illustrates that the incoming wind flow from the inlet experiences
a speeding-up effect due to the mountain, without the side peak, reaching 9.5% at a height
of 100 m (black line). However, the presence of the extending side peak amplified this effect

451



Mathematics 2024, 12, 467

to 28.5% and 37.3% for the 90 and 135 m high side peaks at 10 m above the top, respectively.
This significant increase in wind speed critically enhances the wind influence and loads on
structures at such a site. Additionally, the speedup factor extracted from the 3D simulation,
which includes the entire realistic topography of Dajue Mountain, is compared with the
results from the 2D simulation. The calculation shows a maximum difference of around
10% between the two, which falls to 7% under a height of 200 m. Considering the variations
that may occur due to the surrounding topography and the minor differences in results
between Ansys Fluent and Ansys CFX, maximum variations of 10% and 7% verify the
accuracy of the 3D numerical simulations conducted in Section 2.

  

  

 

Figure 10. Horizontal homogeneity of the ABL: (A) wind speed; (B) wind speed development
through empty domain; (C) TKE; (D) TKE development through empty domain; (E) turbulence
dissipation rate.
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Figure 11. Wind speed profile for different height side peaks.

3.4.2. Speedup Effect at the Mountain Peak

The ability of different wind load standards to predict the speedup effect at the
mountain peak is evaluated via comparison with the numerical simulation findings, as
shown in Figure 12. The result reveals significant variations between the numerically
obtained speedup factors and the recommendations, especially under 50 m high. However,
the speedup factor predictions of the ASCE (2022) and AS/NZ (2021) standards over 50 m
closely agree with the simulation result.

 
Figure 12. Speedup profile at the mountain peak.

3.4.3. Effect of Different Mountainside Slopes

The mountainside slope directly affects the wind speedup phenomenon, especially
near the mountain surface. Figure 13 compares the speedup factor at the position of the
side peak after being replaced with a straight line of the same mountain slope under three
different slopes; 0.2, 0.31 (original slope), and 0.5. The result shows that under around 25 m,
the speedup effect decreases and then surges again; this occurred due to the presence of
the short crest before the measurement position, which causes a shading effect.
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Figure 13. Speedup profile for different mountainside steepness.

Additionally, the difference in the speedup effect of various slopes did not surpass
14% and diminished as the height increased.

3.4.4. Effect of Different Side Peak Heights

Another factor that significantly affects the occurrence of a speedup effect is the
presence and height of the side peak. The effects of various side peak heights under
different mountainside slopes are plotted in Figure 14. The plots illustrate the significant
impact of the side peak on the speedup factor, which led to an increase of approximately
60% near the surface. Additionally, as the height of the side peak increased by 45 m, the
speedup factor increased by about 10%. Furthermore, the impact of the side peak on the
speedup factor diminishes as the mountainside slope increases. This is attributed to the
overall speeding effect caused by the mountain, which, under a certain height, increases
with the mountainside slope. This overall speeding effect reduces the significance of the
local speedup effect by the side peak.

   

Figure 14. Speedup profile of different side peak heights with various mountainside slopes: (A) 0.2;
(B) 0.31; (C) 0.5.

3.4.5. Comparison with Different National Wind Load Standards

The wind speedup factors obtained from the numerical simulation and the recommen-
dations of various wind load specifications are compared in Figure 15. The figure illustrates
the speedup effect of the 90 and 135 m high side peaks with different mountainside slopes.
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Figure 15. Comparison between the speedup effect of CFD and various national wind load codes
under different mountainside slopes: (A) 0.2; (B) 0.31; (C) 0.5.

It is evident that the speedup factor suggested by the standards differs significantly
from the simulation results, especially near the peak. Furthermore, apart from BS-EN
(2005–2010), these variations diminish with increasing height. Therefore, a thorough
evaluation of the wind speedup effect is highly recommended when installing structures
at a similar topography. Otherwise, this may result in an unpredictable increase in wind
loads, leading to structural damage or, in extreme cases, posing a threat to the safety of
occupants or visitors.

4. Conclusions

Numerical simulations have been conducted to investigate the wind flow at a side
peak extending out of a mountainside in intricate terrain, where landscape platforms will
be installed. The k-e turbulence model was utilized to simulate the wind flow from seven
different directions and to evaluate the resulting platforms’ wind-induced pressure. This
study examined the speedup effect at the towering peak, and the influence of different
peak heights and mountainside slopes was explored. The major conclusions of this study
are drawn as follows:

• The landscape platforms at the side peak experienced complex patterns of wind
pressure due to the influence of surrounding topography, including amplifying and
blocking, on the wind and the flow separation around the platforms. This nonuniform
wind pressure generates critical torsional and lifting forces that could threaten the
structural stability of the platforms.

• The complex terrain substantially amplified the platforms’ wind-induced pressure,
which in some cases, reached 3.5 times that of when the structure was on flat ground.
Therefore, it is crucial to thoroughly evaluate and address this amplifying effect
during the design process of structures at such topography, especially lightweight
steel structures with complex geometries.
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• The investigation of the speedup effect at the towering peak showed that the presence
of the peak significantly magnified the speedup effect by approximately 60%, and
the variation in the peak height and mountainside steepness has a moderate impact
(around 10%) on the resulting speedup factor.

• A comparison of the numerically obtained speedup factor at the side peak and the
recommendations of several wind load standards revealed significant variations,
especially near the surface. Consequently, further attention should be given to the
speedup effect of the actual topography to ensure the accurate assessment of the
additional wind load essential for the onsite structure wind resistance design.
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