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Preface to “Basics and Applications in

Quantum Optics”

Quantum technologies are advancing very rapidly and have the potential to innovate

communication and computing far beyond current possibilities. Among the possible platforms

that are suitable for running quantum technology protocols, in recent decades, quantum optics has

received a lot of attention due to the handiness and versatility of optical systems. In addition to

studying the fundamentals of quantum mechanics, quantum optical states have been exploited for

several applications, such as quantum-state engineering, quantum communication and quantum

cryptography protocols, enhanced metrology and sensing, quantum optical integrated circuits,

quantum imaging, and quantum biological effects. In this Special Issue, we collect some papers and

a review focusing on some recent research activities that show the potential of quantum optics for

the advancement of quantum technologies. The addressed topics range from quantum computing

to quantum-state engineering, from quantum communication to quantum cryptography, and from

quantum simulation to quantum imaging, in perfect agreement with the four pillars of the European

Commission Quantum Technologies Flagship Program.

Maria Bondani, Alessia Allevi, Stefano Olivares

Editors
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1. Introduction

Quantum technologies are advancing very rapidly and have the potential to innovate
communication and computing far beyond current possibilities. Among the possible plat-
forms suitable to run quantum technology protocols, in the last decades quantum optics has
received a lot of attention for the handiness and versatility of optical systems. In addition
to studying the fundamentals of quantum mechanics, quantum optical states have been ex-
ploited for several applications, such as quantum-state engineering, quantum communication
and quantum cryptography protocols, enhanced metrology and sensing, quantum optical
integrated circuits, quantum imaging, and quantum biological effects. In this Special Issue,
we collect some papers and also a review on some recent research activities that show the
potential of quantum optics for the advancement of quantum technologies.

2. Quantum Optics Applications

The topics addressed in the Special Issue range from quantum computing to quantum-
state engineering, from quantum communication to quantum cryptography, from quantum
simulation to quantum imaging, in perfect agreement with the four pillars of the European
Commission Quantum Technologies Flagship Program.

The first paper [1] of this Special Issue, authored by A. Candeloro et al., focuses on an
enhanced version of an all-optical system used to implement a quantum finite automaton [2].
The considered automaton recognizes a well-known family of unary periodic languages that
play a crucial role in Descriptional Complexity Theory and in the area of Formal Language
Theory. The performance of the device benefits from considering the orthogonal output
polarizations of the employed single photons. Moreover, the effect of the detector dark
counts on the proper operation of the automaton is taken into account. This kind of photonic
quantum automaton could be hardwired into “hybrid” architectures that combine classical
and quantum components to build very succinct finite-state devices operating in environments
where dimension and energy absorption are particularly critical issues.

The paper written by G. Chesi et al. addresses the topic of quantum-state engineering.
The authors present the generation and characterization of Sub-Poissonian states by means of
conditional measurements performed on multi-mode twin-beam states [3]. These measure-
ments are based on the use of Silicon photomultipliers [4], a class of photon-number-resolving
detectors. Such detectors, very compact and cheap, can open new perspectives in the field of
quantum optics and quantum technologies, being suitable for investigating mesoscopic states
of light [5]. In the paper, a comprehensive model taking into account all the features of the
employed detectors is developed and experimentally verified.

In their paper, M.-S. Kang et al. develop a quantum message authentication protocol
for improving security against an existential forgery by means of single-qubit unitary oper-
ations [6]. The protocol consists of two parts: a quantum encryption and a correspondence

Appl. Sci. 2021, 11, 10028. https://doi.org/10.3390/app112110028 https://www.mdpi.com/journal/applsci
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check. The first part is realized by means of a linear combination of wave plates [7], while
the second one is performed using the Hong–Ou–Mandel interference [8]. The successful
experimental implementation of the protocol proves that the employed optical system can
be considered as the base technology for a complete quantum cryptosystem providing
confidentiality, authentication, integrity, and nonrepudiation.

Furthermore, the paper written by K. Park et al. is devoted to quantum-state engineer-
ing [9]. Starting form the recent proposal of obtaining high-purity bi-photon states without
degrading brightness and collection efficiency by means of a nonlinear interferometer [10],
the authors experimentally investigate the fine tunability of the nonlinear interference
method to match constructive interference patterns, while maintaining the high spectral
purity of the biphoton state. Their results enrich the usefulness and practicality of the
method based on the nonlinear interferometer for the efficient generation of photon pairs
with high spectral purity, which represents an excellent practical source for quantum
information protocols.

The paper authored by A. Allevi et al. focuses on the role of losses in the degradation
of the nonclassicality of mesoscopic quantum states of light to be used for secure data
transmission in quantum communication protocols [11]. In particular, the authors investigate,
both theoretically and experimentally, the effect caused by two realistic kinds of statistically-
distributed amounts of loss, namely a Gaussian distribution and a log-normal one, on the
nonclassical photon-number correlations between the two parties of multi-mode twin-beam
states [12]. The achieved results show to what extent the involved parameters, both those
connected to loss and those describing the employed states of light, preserve nonclassicality.

In the last research paper, J. Liñares et al. present the physical simulation of the
dynamical and topological properties of atom-field quantum interacting systems by means
of integrated quantum photonic devices [13]. The photonic device consists of integrated
optical waveguides supporting two collinear modes, which are coupled by integrated
optical gratings [14]. The two-mode photonic device with a single-photon quantum state
represents the quantum system, and the optical grating corresponds to an external field.
This photonic simulator can be regarded as a basic brick for constructing more complex
photonic simulators.

Finally, in the review paper by C. Abbattista et al. the advancement of the research
toward the design and implementation of quantum plenoptic cameras is presented and dis-
cussed [15]. At variance with standard plenoptic cameras, these devices have dramatically-
enhanced features, such as diffraction-limited resolution, large depth of focus, and ultra-low
noise [16]. For the quantum advantages of the proposed devices to be effective and appeal-
ing to end-users, the authors propose to develop high-resolution single-photon avalanche
photodiode arrays and high-performance low-level programming of ultra-fast electronics,
combined with compressive sensing and quantum tomography algorithms, with the aim
of reducing both the acquisition and the elaboration time by two orders of magnitude.
These new strategies will open the way to new opportunities and applications, such as for
biomedical imaging, security, space imaging, and industrial inspection.

Author Contributions: Conceptualization, A.A., S.O. and M.B.; methodology, A.A.; writing—
original draft preparation, A.A., S.O. and M.B; writing—review and editing, A.A., S.O. and M.B. All
authors have read and agreed to the published version of the manuscript.
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Abstract: In a recent paper we have described an optical implementation of a measure-once one-way
quantum finite automaton recognizing a well-known family of unary periodic languages, accepting
words not in the language with a given error probability. To process input words, the automaton
exploits the degree of polarization of single photons and, to reduce the acceptance error probability, a
technique of confidence amplification using the photon counts is implemented. In this paper, we
show that the performance of this automaton may be further improved by using strategies that
suitably consider both the orthogonal output polarizations of the photon. In our analysis, we also
take into account how detector dark counts may affect the performance of the automaton.

Keywords: quantum finite automata; periodic languages; confidence amplification; photodetection

1. Introduction

In the recent years, quantum computers have eventually leaped out of the laborato-
ries [1] and become accessible to a still growing community interested in investigating their
actual potentialities. Nevertheless, a full-featured quantum computer is still far from being
built. However, it is reasonable to think of classical computers exploiting some quantum
components. In this framework, quantum finite automata [2,3]—theoretical models for
quantum machines with finite memory—may play a key role, as they model small-size
quantum computational devices that can be embedded in classical ones. Among possible
models, the so-called measure-once one-way quantum finite automaton [4,5] is the sim-
plest, and it has been shown to be the most promising for a physical realization [6]. In fact,
restricted models of computation, such as quantum versions of finite automata, have been
theoretically studied [7–9] and, very recently, experimentally investigated [6,10].

In [6], a measure-once one-way quantum finite automaton recognizing a well-known
family of unary periodic languages [4], namely, languages Lm, has been implemented
using quantum optical technology [11,12]. In our implementation, a given input word is
accepted by the automaton, with a given error probability, whenever a single photon arrives
at the output of the device with a specific polarization. In particular, the experimental
realization, based on the manipulation of single-photon polarization and photodetection,
has demonstrated the possibility of building small quantum computational component to
be embedded in more sophisticated and precise quantum finite automata or also in other
computational systems and approaches [13–15]. Albeit the photonic automaton realized
in [6] is fed with single photons, it works in a regime where polarized laser pulses (coherent
states) are enough, up to detecting the intensity of the output signals instead of counting
the number of photons successfully passing through the device with a given polarization
(see in [6] for details).

Appl. Sci. 2021, 11, 8768. https://doi.org/10.3390/app11188768 https://www.mdpi.com/journal/applsci

5



Appl. Sci. 2021, 11, 8768

In this paper, we propose an enhanced version of our photonic automaton mentioned
above, where, to further reduce the acceptance error probability, we consider not only the
photons with the “correct” polarization, but also the other ones. To achieve this goal, the use
of single-photon techniques turns out to be crucial, such as the detection of coincidence
count to reduce the dark-count rate of the photodetectors [16]. Analytical and numerical
results, supported by simulated experiments, show that the enhanced version allows to
reduce the error probability by orders of magnitude compared to the previous version,
or, analogously, to drastically reduce the mean number of photons needed to achieve the
same performance.

The paper is structured as follows. As our work requires some previous knowledge
from Theoretical Computer Science about formal languages and finite automata, Section 2
is devoted to introduce the reader to these topics, providing the relevant motivations.
In Section 3, we briefly review basics of formal language theory and the definition of a
measure-once one-way quantum finite automaton. Section 4 describes the implementation
of the measure-once one-way quantum finite automaton based on the polarization of single
photons, linear optical elements, and photodetectors. In Section 5, we explain how to
improve the confidence of the obtained measure-once one-way quantum finite automaton
by processing the number of counts at the detectors. We also introduce new strategies that
reduce the error probability, namely, the probability that a “wrong” word is accepted by
the automaton or a “correct” word is rejected. The numerical results and the simulated
experiments are reported in Section 6. We close the paper with some concluding remarks
in Section 7.

2. Formal Languages, Finite Automata, and Quantum Computing

In this section, we would like to expand on motivations that have been driving our
research covered by the present contribution and the previous one in [6]. The aim of our
work, that bridges between Theoretical Computer Science and Experimental Quantum
Optics, has been and is to show that a quantum computing device with finite memory is
physically realizable by means of photonics, using a very limited amount of “quantum
hardware”. To the best of our knowledge, our physical implementation, described here
and in [6], of a quantum finite automaton for language acceptation is the first proposed in
the literature. Thus, we have shown how the quantum behaviour of microscopic systems
can actually represent a computational resource, as theoretically established within the
discipline of Quantum Computing. From this perspective, the simple language Lm, intro-
duced in the next section and for which we build our photonic quantum finite automaton,
is not really the point here. Instead, the point is the concrete creation of a programmable
fully quantum computer with finite memory.

With this being said, we would also like to quickly comment on the language Lm from
a Theoretical Computer Science viewpoint. Notwithstanding its simplicity, the language
Lm plays a crucial role in Descriptional Complexity Theory (see, e.g., in [17–21]), the area
of Formal Language Theory in which the size of computational models is investigated.
In particular, a well-consolidated trend in Descriptional Complexity is devoted to study
the size of several types of finite automata. The reader is referred to, e.g., the work in [22]
for extensive presentations of automata theory. Very roughly speaking, the hardware of a
(one-way) finite automaton A features a read-only input tape consisting of a sequence of
cells, each one being able to store an input symbol. The tape is scanned by an input head
always moving one position right at each step. At each time during the computation of A,
a finite state control is in a state from a finite set Q. Some of the states in Q are designated
as accepting states, while a state q0 ∈ Q is a designated initial state. The computation
of A on a word (i.e., a finite sequence of symbols) ω from a given input alphabet begins
by having (i) ω stored symbol by symbol, left to right, in the cells of the input tape; (ii)
the input head scanning the leftmost tape cell; and (iii) the finite state control being in the
state q0. In a move, A reads the symbol below the input head and, depending on such a
symbol and the state of the finite state control, it switches to the next state according to

6
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a fixed transition function and moves the input head one position forward. We say that
A accepts ω whenever it enters an accepting state after scanning the rightmost symbol
of ω; otherwise, A rejects ω. The language accepted by A consists of all the input words
accepted by A.

The one described so far is the original model of a finite automaton, called determin-
istic. Several variants of such an original model have been introduced and studied in
the literature, sharing the same hardware but different dynamics. Therefore, we have
nondeterministic, probabilistic and, recently, quantum finite automata (see, e.g., in [23–25]).
Furthermore, two-way automata are studied, where the input head can move back and
forth on the input tape.

Finite automata represent a formidable theoretical model used in the design and
analysis of several devices such as the control units for vending machines, elevators, traffic
lights, combination locks, etc. Particularly important is the use of finite automata in
very large-scale integration (VLSI) design, namely, in the project of sequential networks
which are the building blocks of modern computers and digital systems. Very roughly
speaking, a sequential network is a boolean circuit equipped with memory. Engineering
a sequential network typically requires modeling its behaviour with a finite automaton
whose number of states directly influences the amount of hardware (i.e., the number of logic
gates) employed in the electronic realization of the sequential network. From this point of
view, having fewer states in the modeling finite automaton directly results in employing
smaller hardware which, in turn, means having less energy absorption and fewer cooling
problems. These “physical” considerations, that are of paramount importance given
the current level of digital device miniaturization, have led to define the size of a finite
automaton as the number of its states. In particular, reducing or increasing the number
of states is studied, when using different computational paradigms (e.g., deterministic,
nondeterministic, probabilistic, quantum, one-way, and two-way) on a finite automaton to
perform a given task. Here, is where our simple language Lm comes into play. In fact, this
language is universally used as a benchmark to emphasize the succinctness of several types
of automata. Several results in the literature shows that accepting Lm on classical models
of finite state automata is particularly size-consuming (i.e., it requires a great number of
states), while only two basis states are enough on quantum finite automata, as we will see
in the next section.

Modular design frameworks have been theoretically proposed [7–9], where more
reliable and sophisticated quantum automata can be built by suitably composing (see,
e.g., in [26]) easy-to-obtain variants of the quantum automaton for Lm. Hence, our work
provides crucial and concrete quantum components for such frameworks, and suggest in-
vestigating a physical implementation of some automata composition laws. More generally,
the Krohn–Rhodes decomposition theorem [27] states that any classical finite automaton
can be simulated by composing very “simple” finite automata: one of these simple au-
tomata is exactly the one for Lm. From this perspective, our photonic quantum automaton
could be hardwired into “hybrid” architectures joining classical and quantum components
to build very succinct finite state devices operating in environments where dimension and
energy absorption are particularly critical issues (e.g., drone or robot-based systems [28]).

3. Measure-Once One-Way Quantum Finite Automaton

Here, we briefly overview the main concepts on automata and formal language
theory. We refer the interested reader to any of the standard books on these subjects
(see, e.g., in [22]), as well as to our contribution [6].

An alphabet is any finite set Σ of elements called symbols. A word on Σ is any
sequence σ1σ2 · · · σn with σi ∈ Σ. The set of all words on Σ is denoted by Σ∗. A language L
on Σ is any subset of Σ∗, i.e., L ⊆ Σ∗. If |Σ| = 1, we say that Σ is a unary alphabet,
and languages on unary alphabets are called unary languages. In case of unary alphabets,
we customarily let Σ = {a} so that a unary language is any set L ⊆ a∗. We let ak be the
unary word obtained by concatenating k times the symbol a.
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In what follows, we will be interested in the unary language Lm defined as

Lm = {ak | k ∈ N and k(mod m) = 0}. (1)

This language is rather famous in the realm of automata theory, since it has proven
particularly “size-consuming” to be accepted by several models of classical automata, as
the number of needed states increases with m [6]. The reader may find a deep investigation
on this fact in the literature [22,29–31]. On the other hand, as presented in [6], very
succinct measure-once one-way quantum finite automata (1qfa’s, from now on) may be
designed and physically realized for Lm. Let us now sketch the main ingredients for a 1qfa
accepting Lm.

If we consider the two orthogonal states |H〉 = (1, 0) and |V〉 = (0, 1), the 1qfa is
defined as (here we use the formalism based on the Dirac’s notation; the analysis based on
a more general formalism can be found in [6])

A1 =
{
|H〉, Um, PH

}
(2)

where |H〉 represents the initial state, the unitary operation applied by the automaton upon
processing any input symbol a is defined as

Um = exp(−iθmσy) (3)

=

(
cos θm sin θm

− sin θm cos θm

)
. (4)

with θm = π/m and σy the Pauli matrix, while PH = |H〉〈H| is the projector onto the
mono-dimensional accepting subspace spanned by |H〉. The probability pA1(ak) that the
1qfa A1 accepts the word ak writes as

pA1(ak) = pH(ak) ≡ |〈H|Uk
m|H〉|2 (5)

= cos2(kθm) →
{
= 1 k(mod m) = 0
≤ cos2 θm otherwise.

(6)

Therefore, the 1qfa A1 perfectly recognizes the word ak ∈ Lm, as we can set a cut
point λ and an isolation ρ to the following values (see in [6] for details on accepting languages
with isolated cut point)

λ =
1 + cos2 θm

2
and ρ =

1 − cos2 θm

2
. (7)

However, A1 may also recognize an input word not in Lm with a non-null probability.
In the following, we let ak1 with k1(mod m) = 1 any of the word with the highest
probability of erroneously being accepted, i.e., cos2 θm, which tends to 1 as m gets large.
This can be seen also by the fact that ρ → 0 as m increases.

As matter of fact, we can also introduce the following 1qft, where we still consider
the initial state |H〉, but, at the output, we focus on the final projection involving the state
|V〉, namely

A2 =
{
|H〉, Um, �− PV

}
, (8)

where PV = |V〉〈V|. Indeed, A2 is formally equivalent to A1, as �− PV ≡ PH . In fact,
the probability of accepting a word is now given by

pA2(ak) = 1 − pV(ak) →
{
= 1 k(mod m) = 0
≤ cos2 θm otherwise

(9)
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that is the same as in Equation (6), as one may expect. Nevertheless, we show in the next
section that the two are not equivalent in a photonic implementation for reasons that will
be clear soon.

4. Photonic Implementation of the 1qfa

A photonic implementation of the 1qfa described in the previous section was proposed
and demonstrated in [6]. Figure 1 depicts the main elements of the enhanced version of the
automata we will describe in the following.

Figure 1. Scheme of the photonic implementation of the 1qfa highlighting the main involved optical
elements. See the text for details.

The state of the automaton is encoded in the polarization of single photons, and the
Hilbert space is H = span{|H〉, |V〉}. A single photon source generates a horizontal-
polarized state, |H〉, which is sent to k rotators of polarization, ak being the input word to
be processed. Each rotator corresponds to a unitary rotation of an amount θm, which is
thus language-dependent. After the rotators, the single photon state reads

|kθm〉 = cos(kθm)|H〉+ sin(kθm)|V〉 (10)

and it is sent to a polarizing beam splitter (PBS; see Figure 1) that reflects the vertical
polarization component and transmits the horizontal one. Finally, two photodetectors
placed after the PBS realize the projective measure of PH and PV . As the reader can see,
the scheme is almost the same of that proposed in [6], but here we will implement a new
inference strategy exploiting the outcomes from both the detectors.

As we observed in the previous section, the automata A1 and A2 accept with certainty
a word ak that belongs to Lm. However, there is a high probability that an incorrect word,
such as ak1 with k1 mod m 
= 0 can be accepted, as we can see from Equations (6) and (9).
Therefore, strategies based on a single-photon shot may not be the optimal way to recognize
an arbitrary word ak.

5. Confidence Amplification: An Enhanced Strategy

To reduce the probability of error, we can adopt a technique of confidence amplification
as also proposed in [6], namely, we sent a mean number of photons 〈Nc〉 and we count the
number of click Nx

c (k) at the photodetector x = H, V, see Figure 1. Therefore, the observed
detection frequency at detector x = H, V for an input word ak will be

f x
k =

Nx
c (k)
〈Nc〉

〈Nc〉�1−−−−→ px
Ai=1,2

(ak) . (11)

Thereafter, we turn our problem into that of discriminating among the corresponding
detection frequencies and, in particular, we can focus on those related to k = 0 (or, equiva-

9
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lently, k mod m = 0) and k = 1 (or, more in general, k mod m = 1), since if k > 1 one
has f H

k < f H
1 ( f V

k > f V
1 ). To implement this strategy, we set a threshold frequency as

f x
th =

f x
0 + f x

1
2

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + f H

1
2

x = H,

f V
1
2

x = V,

(12)

where f H
1 ( f V

1 ) is the highest (lowest) frequency of erroneously accepted words ak1 , while
f H
0 ( f V

0 ) is the frequency corresponding to the correct word. In this formula, we have
distinguished the two different strategies: for the H detector, f H

0 = 1, as the corresponding
photon will always be detected; instead, for the V detector, f V

0 = 0, as no photon is detected
when the word belongs to Lm. Therefore, the strategy is to accept the word if f H

k > f H
th

( f V
k < f V

th) and reject it if f H
k < f H

th ( f V
k > f V

th). From now on, we will refer to these strategies
as “H strategy” and “V strategy”, respectively.

In an ideal scenario, namely, without fluctuations in the sent number of photons, it is
clear that the two approaches are complementary and yield to the same conclusion, as the
single detections in H and V are perfectly correlated. Moreover, given that only the words
ak ∈ Lm satisfy the condition fk > fth, with this strategy we have a zero error probability,
provided that 〈Nc〉 is large enough such that the integer part of NH

th (NV
th) is strictly positive

(negative) than NH
c (k1) (NV

c (k1)), i.e., we have the conditions

⌊
NH

th

⌋
=

⌊ 〈Nc〉(1 + cos2 θm)

2

⌋
>
⌊
〈Nc〉 cos2 θm

⌋
, (13)

⌊
NV

th

⌋
=

⌊
〈Nc〉 sin2 θm

2

⌋
<
⌊
〈Nc〉 sin2 θm

⌋
. (14)

In Figure 2 (black lines and dots), we report the minimum values of 〈Nc〉 such that the
last two inequalities hold.

Figure 2. Black line and dots: minimum value 〈Nc〉min such that Equation (13) (left plot) and
Equation (14) (right plot) are satisfied as a function of m in the absence of dark counts (Ndc = 0).
Red line and dots (Ndc = 50), blue line and dot (Ndc = 100): minimum vale 〈Nc〉min such that
Equation (22) (left plot) and Equation (23) (right plot) are satisfied. Notice the different scaling for
the y-axis.

In a realistic scenario, the photo-detection is influenced by two distinct noisy effects
that can affect the error probability. The first is that the number of detected photons follows
a Poisson distribution [32], that is, we have

Poi(n; μ) =
μne−μ

n!
(15)
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that is, the probability of detect n photons depends on the average number of detected
photons μ. How this affects the error probability has been thoroughly addressed both
theoretically and experimentally in [6].

The second effect that we should consider in order to apply our enhanced strategy is
due to the dark counts, namely, the random counts registered by the detector without any
incident light on it. Being still related to the detection process, also the dark counts follow a
Poissonian distribution, whose mean 〈Ndc〉 depends on the particular detector one choose
to use. In a typical quantum optics experiment, the dark-count rate ranges from tens to
hundreds of photons per second, but this number can be drastically reduced by using
coincidence counting techniques [16], up to making this effect negligible. For instance,
in the implementation in [6] the dark counts where only 0.001% of the effective coincidence
counts. As the dark counts occurs randomly, we cannot distinguish between a dark
count and signal one. Therefore, the probability of detecting N photon in the H or V
photodetector for a word ak is finally given by

Px
k (N) =

+∞

∑
n=0

+∞

∑
m=0

Poi(n; ηx)Poi(m; 〈Ndc〉)δn+m,N (16)

= Poi(N; μx
k ) (17)

where ηH = 〈Nc〉 cos2(kθm) and ηV = 〈Nc〉 sin2(kθm), while we have defined the overall
mean number of detected photons as

μH
k = 〈Nc〉 cos2(kθm) + 〈Ndc〉 and μV

k = 〈Nc〉 sin2(kθm) + 〈Ndc〉. (18)

As we noticed above, the dark count rate is usually very small with respect to the
detected count rate of the signal. Therefore, for the H detector which detects the higher
number of photons, see Equation (18), they are relevant only when 〈Nc〉 ∼ 〈Ndc〉. On the
contrary, for the V detector, detecting the lower number of photons, their role is funda-
mental in determining the performance of the photonic automaton, as μV

m = μdc = 〈Ndc〉.
This is the main difference between the two strategies: in the first, we need to distinguish
between two finite mean numbers of photon μH

m = 〈Nc〉+ 〈Ndc〉 and μH
k1

, while in the sec-
ond case, we need to distinguish between the noise due to dark counts, being μV

m = 〈Ndc〉,
and μV

k1
. However, to assess the performance of second strategy with respect the first one,

we need to evaluate the probability of errors in the two cases.
Let us first find the threshold values in the two different strategy. We need to find the

intersection between two Poissonian distributions for a word belong to Lm and a word
ak1 with highest probability of being erroneously being accepted, as show in Figure 3.
By imposing Poi(Nx

th; μx
1) = Poi(Nx

th; μx
m), where x = H, V, we find an exact solution for

Nx
th given by (see the vertical dashed line in Figure 3)

Nx
th =

μx
m − μx

k1

ln μx
m − ln μx

k1

. (19)

To highlight the dark counts effects, we introduce the ratio η = 〈Ndc〉/〈Nc〉, and we have

NH
th =

〈Nc〉 sin2 θm

ln(1 + η)− ln(cos2 θm + η)
, (20)

NV
th =

〈Nc〉 sin2 θm

ln
(
sin2 θm + η

)− ln(η)
. (21)

In our framework, the accepting problem is introduced as binary discrimination
between the correct word and the word with the highest probability of error. However,
in the photonic realization of the automata [6], when the number of input photons is small
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and m is large, also word with larger k(mod m) may contribute to the error. For this reason,
like in the ideal case, we establish the minimum number of input photon 〈Nc〉min which
are necessary to faithfully consider the problem as binary discrimination.

Figure 3. Probability density function of the Poissonian distribution in Equation (17) for the H detec-
tor (left plot) and the V detector (right plot) for 〈Nc〉 = 500, Ndc = 100 and m = 11. The probability
of error in Equations (25) and (29) are, respectively, pV

e = 0.034 (V detector) and pH
e = 0.205 (H

detector). The gray dashed line is the threshold values in Equation (19). The values of the involved
parameters have been chosen to better highlight the investigated effect.

To have faithfully binary discrimination the fluctuations due to the word with the
second-largest probability of error, i.e., a word ak2 with k2(mod m) = 2, must be much
larger than the fluctuations due to the correct word, where here for “large” we mean at least
two standard deviations. In this way, the discrimination can be considered only between
the words am and ak1 . In the case of a Poissonian random variable, the standard deviation
is the square root of the mean for Poissonian random variables. Hence, we have the two
conditions, respectively, for the H and V detector

μH
k2
+ 2

√
μH

k2
< μH

m − 2
√

μH
m , (22)

μDc + 2
√

μDc < μV
k2
− 2

√
μV

k2
. (23)

In the first one we ask that the fluctuations due to the word with the second largest proba-
bility of error, i.e., a word k2 with k2(mod m) = 2 are much larger than the fluctuations due
to dark counts. In a similar way, we define the threshold for the horizontal detector. These
equations can be solved for 〈Nc〉 and set a lower bounds for it such that the probability of
error can be evaluated in term of a binary discrimination problem, as shown in Figure 2
(red and blue lines and points) .

Now, we can evaluate the probability of error for the two strategies. Indeed, this is
equal to

px
e = p(ak1)px(ak1 → am) + p(am)px(am → ak1), (24)

where we have denoted px(ai → aj) as the probability of detecting the word ai as aj by the
detector x = H, V. As we have no a priori knowledge on the input word we set the prior
probabilities p(ak1) = p(am) = 1/2, and for the V detector we obtain

PV
e =

1
2

⎡⎣�NV
th�

∑
n=0

(μV
k1
)ne−μV

k1

n!
+

+∞

∑
n=�NV

th�+1

μn
dce−μdc

n!

⎤⎦ (25)

=
1
2

[
1 −

Γ(
⌊

NV
th

⌋
+ 1, μdc)− Γ(

⌊
NV

th

⌋
+ 1, μV

k1
)⌊

NV
th

⌋
!

]
(26)

=
1
2

[
1 −

∫ Nc sin2 θm+Ndc

Ndc

e−tt�NV
th�⌊

NV
th

⌋
!

dt

]
, (27)
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where Γ(a, x) is the incomplete Gamma function

Γ(a, x) =
∫ +∞

x
e−tta−1dt. (28)

Analogously, we may evaluate the probability of error for the detection of a horizon-
tally polarized photon, i.e.,

PH
e =

1
2

⎡⎣�NH
th�

∑
n=0

(μH
m )ne−μH

m

n!
+

+∞

∑
n=�NH

th�+1

(μH
k1
)ne−μH

k1

n!

⎤⎦. (29)

Eventually, we can introduce a third strategy that combines the two described so far:
for each beam of photon, we propose to measure both the H and V polarization and to
combine the results so obtained. From a theoretical point of view, this is equivalent to the
automata presented before, as in the ideal case the two detectors perfectly agree, i.e., one
sees the photon and the other one does not see it. However, in the non-ideal case, noisy
fluctuations affect photodetection. As the fluctuations in the H detector are independent
from the one in the V detector, the probability of erroneously accepting it by looking at
both H and V is given as

pJ
e = p(ak1)pH(ak1 → am)pV(ak1 → am) + p(am)pH(am → ak1)pV(am → ak1) (30)

where J here stands for joint.

6. Numerical Results and Simulations

The comparison of the three strategies is reported in Figure 4. We see that the V
strategy outperforms the H strategy for all the possible values of input photon, reaching
almost a negligible error for approximately an order of magnitude less than the H strategy.
The joint strategy realizes a further enhancement, even though the pJ

e approaches 0 with
the same order of magnitude of 〈Nc〉 as pV

e . We have also reported the solution for
the inequalities (22) and (23) as a point along the corresponding line: for smaller value,
the probabilities of error are not reliable as the contribution of the words with larger
k(mod m) is not negligible. In addition, increasing the average number of dark counts
slightly increases the probability of error for all the strategies considered, even though no
significant effects are detected for the considered range of values of 〈Ndc〉.

In Figure 5, we show the number of counts at the H and V detectors from a simulated
experiment. We can see a significant reduction of the fluctuations in the V detector, which
is also marked by the significant difference in the probability of error pH

e and pV
e . The main

reason is that the counts in the V detector are affected only by the randomness due to the
dark counts (if present), while in the H detector the expected number of photons contributes
to the randomness of the outcomes as well. We have also reported the results for words of
length k(mod m) = 2, which are are significantly separated from Nx

c (m) and Nx
c (k1) as the

value of 〈Nc〉 considered is much larger than the threshold given in (22) and (23).
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Figure 4. Probability of error for the different strategies as functions of the average num-
ber of input photon 〈Nc〉 in a semi-log plot. Red line: m = 5; blue line: m = 11; green
line m = 23. (Top panels): H (solid lines) and V (dashed lines) strategies in the absence of dark
counts (left) and for 〈Ndc〉 = 100 (right). (Bottom panel): joint strategy in the case 〈Ndc〉 = 100.
The dots on the lines refer to the threshold values evaluated according to (22) and (23). See the text
for details.

Figure 5. Simulation of Nx
c (k) for the horizontal (left) and vertical (right) automata as a function of

the experimental run number (Rep). Green dot: k = m = 11, i.e., k(mod m) = 0; red dot: k = 12,
i.e., k(mod m) = 1; orange dot: k = 13, i.e., k(mod m) = 2; black dashed line: Nx

th. We considered
〈Ndc〉 = 100 and 〈Nc〉 = 500 (the same parameters of Figure 3). The probabilities of error given
in Equations (25) and (29) are respectively pV

e = 0.034 and pH
e = 0.205. The minimum number of

input 〈Nc〉 for the H detector, solution of (22), is 〈NH
c 〉min = 238, while for V, solution of (23), is

〈NV
c 〉min = 151.

7. Conclusions

In this work, we have presented an enhanced photonic implementation of 1qfa for the
recognition of unary language that significantly improves the performance obtained by
the one originally proposed in [6]. The protocol uses the polarization degree of freedom of
single photons, and exploits the possibility of detecting not only the horizontal polarization,
as in [6], but also the vertical one. The resulting scheme largely outperforms the original
automaton for smaller values of the mean number of sent photon 〈Nc〉. In addition, we
have extended the results previously found with a detailed analysis of the conditions for
which such 1qfa can work with high reliability. We have evaluated the minimum number
of photons that must be sent in order to solve faithfully the inherent binary discrimination

14



Appl. Sci. 2021, 11, 8768

problem. As one would expect, the minimum 〈Nc〉 is smaller for the automaton that relies
on the new strategy based on the V detector.

In our analysis, we have discussed the presence of dark counts in the detection of
both strategies, and we have evaluated their effects both on the probability of error and on
the minimum 〈Nc〉. Eventually, we also examined a joint strategy in which we combine
both the H and the V detection, which can indeed be used at no additional cost. We have
therefore proved that when the number of sent photon is constrained to small values, the V
detection version of the 1qfa should be preferred.

Our results pave the way to the effective implementation of 1qfa using quantum
optical platform, thus opening the possibility of processing strings of input symbols using
feasible devices and, in turn, to introduce quantum languages and compare the complexity
of classes of languages in classical and quantum cases. More generally, as the assessment
of the actual power of quantum computers is one of the most significant challenges of
quantum technology, implementing quantum automata provides a relevant arena to better
understand the computing capabilities offered by quantum devices.
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Abstract: Nonclassical states of light can be efficiently generated by performing conditional measure-
ments. An experimental setup including Silicon Photomultipliers can currently be implemented for
this purpose. However, these devices are affected by correlated noise, the optical cross talk in the first
place. Here we explore the effects of cross talk on the conditional states by suitably expanding our
existing model for conditional measurements with photon-number-resolving detectors. We assess
the nonclassicality of the conditional states by evaluating the Fano factor and provide experimental
evidence to support our results.

Keywords: conditional states; silicon photomultipliers; optical cross-talk; nonclassicality

1. Introduction

Given an entangled state, a conditional measurement, which is a scheme exploiting
the reduction postulate [1], is a well-known option for the generation and manipulation of
nonclassical and non-Gaussian states [2,3]. Remarkably, optical states have proven to be
suitable for this task [3–8], especially in sight of Quantum Information protocols [9–11].

Here we focus on the detection of conditional states of light in the discrete-variable
regime via photon-number-resolving (PNR) detectors. In particular, a novel class of PNR
detectors, known as Silicon Photomultipiers (SiPMs), has recently experienced a remark-
able technological improvement [12] and attracted attention for Quantum Optics appli-
cations [13–15]. Due to both their outstanding PNR capability and to their compactness
and robustness, SiPMs may now be considered for discrete-variable Quantum-Information
protocols [16]. Motivated by these points, we have recently tested a pair of SiPMs for
the detection of nonclassical states of light [17,18]. Specifically, in [17] we generated a
mesoscopic multi-mode twin-beam (TWB) state via type-I parametric down-conversion
and post-selected one of the entangled beams by measuring the photon-number observable
on the other one. We succeeded in assessing the nonclassicality of the detected condi-
tional states.

However, as far as we know, the conditioning protocol via SiPMs on a TWB still lacks
a full theoretical description. Indeed, the existing model of the effects of detection [3,4]
does not include the influence of the major drawback of the SiPMs, i.e., the Optical Cross-
Talk (OCT) [12,13,19,20]. The OCT is a process intrinsically connected to the very pixel
structure of these devices. Being each pixel a single-photon avalanche diode, there is a
chance that the avalanche triggered by a photon emits a secondary photon, which may fire
a supplementary cell, resulting in a spurious count. Thus, the OCT influences the output
statistics and may conceal the nonclassicality of the detected state.

Here we extend the model presented in [4] by including the effects of the OCT and
provide a comparison with our experimental results. In Section 2 we define the positive
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operator-valued measure (POVM) describing photon counting affected by a limited quan-
tum efficiency and by the OCT, and provide the tools needed for retrieving the statistics
of the unconditioned and conditional states. Finally, we address the nonclassicality of the
conditional states as sub-Poissonianity and recall the definition of the Fano factor.

In Section 3 we show our results. Firstly, we provide an analytic closed formula for the
statistics of a multi-mode thermal state affected by the OCT. In a previous work of ours [21],
we have already shown that in the single-mode case such a distribution is expressed in
terms of the Fibonacci polynomials. In the present paper, we derive the distribution of
the conditional state and consider the limit case of a TWB with an infinite number of
modes. We also include the effect of the imbalance between the quantum efficiencies of the
detectors. We show the effects of the OCT on the first moment of the statistics and, finally,
we provide the Fano factor of the output conditioned distribution.

In Section 4 the theoretical predictions of the developed model are compared with the
data from our experiment. In the same Section we also discuss how the OCT affects the light
statistics and especially the consequences for the nonclassicality of the conditional states.

In Section 5 we draw our conclusions and suggest further improvements to our model.

2. Materials and Methods

2.1. Theoretical Description

We provide here all the theoretical tools needed to describe post-selection measure-
ments in the presence of the OCT. We start with the effects of the OCT on the statistics
of a multi-mode TWB, then, we derive the expression of the resulting conditional state,
and finally, we show how we estimate the nonclassicality of such a state in terms of
sub-Poissonianity.

2.1.1. Detected-Event Statistics of a TWB in the Presence of the OCT

A TWB is a multi-mode entangled state of light generated through a nonlinear process
known as parametric down conversion [22], which is investigated in the specific context of
the photon counting described in [23]. Under the assumption that the energy is equally
distributed among the μ modes, a TWB state can be written as the tensor product of μ
single-mode squeezed states [4,24], i.e.,

Λ̂ =
μ⊗

j=1

|λ〉〉j j〈〈λ| (1)

where
|λ〉〉 =

√
1 − λ2 ∑

n
λn|n〉|n〉, (2)

being n the number of photons, and

λ2 ≡ N
N + μ

(3)

with N as the mean number of photons in each beam. The conditioning measurement is
performed on one of the two parties of the TWB state, typically named as the idler, so that
the corresponding state of the other beam, which is called the signa, is ideally reduced to
the same outcome, accordingly with Born’s rule [1].

In the absence of the OCT effects, the POVM describing a direct measure of the
photon-number operator n̂ over multi-mode radiation reads [4]

Π̂m(η, μ) =
μ⊗

j=1
∑
lj

δm,γΩ̂lj
(η) (4)
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where m is the number of detected photons and γ ≡ ∑
μ
j=1 lj, being lj the contribution of

mode j to the number of detected photons. The detection is assumed to be affected by a
limited quantum efficiency η and

Ω̂l(η) =

(
η

1 − η

)l ∞

∑
n=l

(
n
l

)
(1 − η)n|n〉〈n| (5)

is the single-mode photon counting POVM.
The effect of the OCT is typically described [12–14,19] by the probability ε that an

avalanche triggers another single spurious avalanche from a different cell. Assuming
first-order OCT events, the number of fired spurious cells cannot be larger than the number
of detected photons, which implies that, for the detected event k in the presence of the OCT,
we have m ≤ k ≤ 2m ⇒ k/2 ≤ m ≤ k. Note that this assumption on the OCT model is
quite strong. In principle, one should consider that a primary avalanche may be related to
more than one OCT event [25–27]. Indeed, it may happen that more than one of the carriers
in the primary avalanche triggers a secondary one, or that a secondary avalanche triggers a
tertiary one as well, and the tertiary a quaternary and so on. However, here we develop a
first-order OCT model since the class of SiPMs employed in the experiment is characterized
by a very low cross-talk probability. Therefore, considering higher orders would be useless.
Indeed, in a previous paper of ours [14] we have shown that the cross-talk probability
associated to a cascade model can be assimilated to that limited to first order as long as a
larger effective value of OCT is considered.

Given this picture, we generalize the POVM in Equation (4) as follows

Π̂k(η, ε, μ) =
μ⊗

j=1
∑
lj

δk,γΩ̂lj
(η, ε) (6)

with

Ω̂l(η, ε) =

(
ε

1 − ε

)l l

∑
t=�l/2�

(
t

l − t

)(
(1 − ε)2

ε

)t(
η

1 − η

)t ∞

∑
n=t

(
n
t

)
(1 − η)n|n〉〈n| (7)

where �·� is the ceiling function. It can be shown that the operator in Equation (6) is a
POVM, i.e., Π̂k ≥ 0 and ∑k Π̂k = Î. Hence, one can derive the expression of the joint
probability of ks detected events on the signal and ki on the idler as

P(ks, ki) = Trs,i[Λ̂Π̂ks ⊗ Π̂ki
] (8)

and the marginal distributions by summing P(ks, ki) over the corresponding variable. Note
that the marginal detected-event distribution of a generic radiation field in the presence of
the OCT is expressed as [14]

p(k) =
(

ε

1 − ε

)k k

∑
m=�k/2�

(
m

k − m

)(
η(1 − ε)2

ε(1 − η)

)m ∞

∑
n=m

(
n
m

)
(1 − η)nPn (9)

where Pn is the photon-number distribution of the field. In Section 3 we will show the
explicit form of p(k) for a TWB.

We remark that our model is based on experimentally accessible quantities since the
only parameter connected with the pure photon statistics, which is λ in Equation (2), can
be easily expressed as a function of experimental data and parameters via

λ2 =
〈k̂i〉

〈k̂i〉+ η(1 + ε)μ
(10)
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where 〈k̂i〉 = (1 + ε)ηN is the mean value of detected events in the field including all the
experimental effects.

2.1.2. Detected-Event Statistics after Post-Selection

The measurement over the idler reduces the entangled counterpart, i.e., the signal,
to the corresponding outcome. The expression of the conditional state can thus be re-
trieved from

ρ̂
(ki)
s =

1
p(ki)

Tri[Λ̂Îs ⊗ Π̂ki
] (11)

where p(ki) is the marginal distribution of detected events over the idler, according to
Equation (9). Hence, the distribution of detected events for the conditional states follows as

p(ki)(ks) = Tr[ρ̂(ki)
s Π̂ks ], (12)

which can be read as the probability of detecting ks events in the signal arm as long as the
conditioning value is ki. Given the distribution in Equation (12), the n-th moment comes
straightforward from

〈k̂n
s 〉(ki) = ∑

ks

kn
s p(ki)(ks). (13)

2.1.3. Nonclassicality

Sub-Poissonianity is a well-known sufficient condition for nonclassicality [28,29].
A direct and experimentally approachable estimator of sub-Poissonianity is the ratio
between the variance and the mean value of the photon-number distribution, which is
known as Fano factor [29]. In particular, in Section 3 we will evaluate the Fano factor for
the number of detected events, i.e.,

F ≡ 〈Δk̂2〉
〈k̂〉 (14)

where 〈Δk̂2〉 = 〈k̂2〉− 〈k̂〉2 is the variance of the distribution. As already shown in Refs. [14,16],
in the presence of an OCT probability ε, the mean value of the detected events can be written
as 〈k̂〉 = (1 + ε)〈m̂〉, while the variance reads as 〈Δk̂2〉 = (1 + ε)2〈Δm̂2〉+ ε(1 − ε)〈m̂〉. The
nonclassicality condition is achieved if F < 1. Note that just the knowledge of the first and
the second moments, provided by Equation (13), is required.

As a last remark, we point out a well-known effect of the OCT which will be crucial
for our considerations on the nonclassicality: by inspecting the definition of OCT, one
may infer that both the mean value and the variance of the light distribution are increased
by the OCT. It can be shown that this is actually the case. However, one may also ask
whether this enhancement is the same for variance and mean value, i.e., if the Fano factor
remains unchanged under the effect of the OCT. The answer is no [14,16]: the OCT widens
the variance with respect to the mean value and thus it heavily affects the statistics of
light. This effect can be easily shown by retrieving the first and second moments of an
OCT-affected distribution from Equation (9) and noting that

〈Δk̂2〉 − 〈k̂〉
〈k̂〉 = (1 + ε)

[ 〈Δm̂2〉 − 〈m̂〉
〈m̂〉 +

2ε

(1 + ε)2

]
≥ 〈Δm̂2〉 − 〈m̂〉

〈m̂〉 ∀ε ≥ 0. (15)

2.2. Experimental Setup and Detection Apparatus

Here we provide a description of the experiment we performed and that we will
discuss in Section 4 to test our theoretical predictions.

The setup used to produce conditional states is shown in Figure 1. The fundamental
and the third harmonic of a Nd:YLF laser regeneratively amplified at 500 Hz are sent to
a β-barium-borate nonlinear crystal (BBO1, cut angle = 37 deg, 8-mm long) to generate
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the fourth harmonic (262 nm, 3.5-ps pulse duration) by sum-frequency generation. This
field is used to pump parametric down conversion in a second BBO crystal (BBO2, cut
angle = 46.7 deg, 6-mm long) to produce TWB states in a slightly non-collinear interaction
geometry. Two twin portions are spatially and spectrally selected by means of two irises
and two band-pass filters centered at 523 nm. The selected light is then delivered to a
pair of PNR detectors through two multi-mode fibers having a 600-μm core diameter.
As to the detectors, we employed two commercial SiPMs (mod. MPPC S13360-1350CS)
operated at room temperature with an overvoltage of 3V. According to the datasheet [30],
in such conditions, the detectors are endowed with a quantum efficiency of 40% at 460 nm,
a moderate dark-count rate (∼140 kHz), and a low cross-talk probability (∼2%). The output
of each detector is amplified by a fast inverting amplifier embedded in a computer-based
Caen SP5600 Power Supply and Amplification Unit, synchronously integrated by means of
a boxcar gated integrator (SR250, Stanford Research Systems) and acquired. In order to
reduce as much as possible the effect of SiPMs drawbacks, the light signal was integrated
over a short integration gate width (10-ns long), which roughly corresponds to the width of
the peak of the output trace of the detector. Thanks to this choice, the possible contributions
of dark counts and afterpulses can be neglected.

Nd:YLF laser

HWP
PBS

BBO2

BBO1 ADC+PC

BOXCAR
GATED 

INTEGRATOR

Figure 1. Setup of the experiment described in [17] and addressed in Section 4 to provide experimental
evidence to the model presented here. See the text for details.

A half-wave plate (HWP) followed by a polarizing cube beam splitter (PBS) is placed
on the pump beam in order to modify its intensity and thus the mean number of pho-
tons of the generated TWB states. For each mean value, 100,000 single-shot acquisitions
are performed.

3. Results

3.1. The Effects of the OCT on the Photon-Number Statistics of the TWB

Here we exploit the model developed in Section 2.1 to investigate the effects of the
OCT on the detection of light and, in particular, on the statistics of a multi-mode mesoscopic
TWB. The topic has been already widely investigated [13,14,16,17,19]. Still, we are anyway
going through this point in order to test our model and use it to provide new insights on
the OCT effects implied by this description.

From the inspection of Equation (8), we find that the joint probability of detecting ki
events on the idler and ks on the signal is given by

P(ks, ki) =(1 − λ2)μ

(
ε

1 − ε

)ks+ki ks

∑
ms=� ks

2 �

ki

∑
mi=� ki

2 �

(
ms

ks − ms

)(
mi

ki − mi

)
(
(1 − ε)2

ε

η

1 − η

)ms+mi ∞

∑
n=max(ms ,mi)

(
n + μ − 1

n

)(
n

ms

)(
n

mi

)
(λ(1 − η))2n

(16)

which is the extension of the joint probability retrieved in [4], where just the effect of a
limited quantum efficiency is considered.
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If we consider the marginal distribution from Equation (16) for the idler beam, we find

p(ki) =
(1 − λ2)μ((1 − ε)ηλ2)ki

(1 − λ2(1 − η))ki+μ

� ki
2 �

∑
l=0

(
ki + μ − 1 − l

μ − 1

)(
ki − l

l

)(
1 − λ2(1 − η)

(1 − ε)2ηλ2 ε

)l

=
(1 − λ2)μ((1 − ε)ηλ2)ki

(1 − λ2(1 − η))ki+μ

(
ki + μ − 1

μ − 1

)
·

2F1

(
− ki − 1

2
,− ki

2
;−(ki + μ − 1);−4ε

1 − λ2(1 − η)

(1 − ε)2ηλ2

)
(17)

where �·� is the floor function and 2F1(a, b; c; x) is the ordinary hypergeometric function. It
can be shown that Equation (17) can be obtained from Equation (9) as well by replacing Pn
with the photon-number distribution of a multi-mode TWB state [6,24]. We also remark
that, as we showed in [21], in the single-mode case (i.e., μ = 1) Equation (17) reduces
to a linear combination of Fibonacci polynomials, which should be kept in mind for the
considerations that follow.

As a first remark, we stress that our model for the OCT, as outlined in Section 2.1,
accounts for first-order events only. In the following paragraph, we briefly explore the
implications of our simplified model for arbitrary values of ε. Then we move back to the
realistic case related to our experiment.

We show the transformation of the detected-photon number statistics of TWBs due
to the OCT in Figure 2 for the single-mode case and in Figure 3 for the multi-mode one.
In both figures, we set the quantum efficiency η = 0.17 and the mean photon number
N = 10 (see Equation (2)), which are experimentally reasonable values as long as SiPMs
are employed for detection (see Section 4) and the photon-number regime is mesoscopic
(see Section 2). For what concerns the multi-mode case, we have considered the limit
μ → ∞, since, again, this case is comparable with the number of modes estimated in our
experiments, where μ ∼ 2000 [17]. As μ → ∞, the multi-thermal distribution of TWB
converges to a Poissonian one, whereas the detected-event distribution in Equation (17)
tends to

pμ→∞(ki) = exp

(
− 〈k̂i〉

1 + ε

) � ki
2 �

∑
l=0

(
ki − l

l

)
1

(ki − l)!

(
ε

1 − ε

)l(1 − ε

1 + ε
〈k̂i〉

)ki−l
. (18)

Note that here we replaced the parameter λ with 〈k̂i〉 through Equation (10).
At a first glance to Figure 2, we note that the OCT gives rise to an asymmetry in

the detected-event distribution: the detection probability of even events enhances pro-
portionally to ε as the detection probability of odd events declines. Moreover, this effect
is smoothed as the detected-event ki increases. A further inspection of our OCT model
may help to understand why. Let m be the number of photons detected with probability η.
As mentioned above, according to our OCT model, the outcome is a number k such that
m ≤ k ≤ 2m. If m is odd, then m/2 of the possible values for k are odd and m/2 are even,
but, if m is even, (m + 1)/2 of the possible values for k are even while still just m/2 are odd.
This is basically due to the fact that 2m, the superior bound to k, is always even. However,
as m increases, such a difference between even and odd detected-photon numbers becomes
negligible compared to k. This effect is especially apparent if we look at Equation (17) in the
single-mode case. As mentioned above, in such a situation the detected-event distribution
reduces to a linear combination of Fibonacci polynomials. This family of polynomials can
be defined as [31]

Fn(x) ≡ 1
2n

(√
x2 + 4 + x

)n
+ (−1)n+1

(√
x2 + 4 − x

)n

√
x2 + 4

(19)
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for given n ∈ N. The index of the polynomials in the single-mode detected-event distribu-
tion is n = ki + 1, so that we get larger contributions as ki is even and smaller otherwise.

Figure 2. Detected-event distribution of the idler beam from Equation (17) in the single-mode case
(μ = 1) as a function of the number of detected events ki and of the OCT probability ε. We set the
quantum efficiency η to 0.17, while the mean photon number N to 10. These choices, together with
a selected value of ε, yield the corresponding mean value 〈ki〉 = (1 + ε)ηN. The plot shows the
evolution of a single-thermal distribution due to the OCT.

Figure 3. Detected-event distribution of the idler beam from Equation (18) in the multi-mode limit
case (μ → ∞) as a function of the number of detected events ki and of the OCT probability ε. We set
the quantum efficiency η to 0.17, while the mean photon number N to 10. These choices, together
with a selected value of ε, yield the corresponding mean value 〈ki〉 = (1 + ε)ηN. The plot shows the
evolution of a Poissonian distribution due to the OCT.

In Figures 4 and 5 we emphasize the most obvious effect of the OCT on the statistics
of detected photons, i.e., compared to the case where no OCT affects the measurement,
the probability of detecting smaller numbers of events is depleted, while, on the con-
trary, the larger values of k are more likely to be revealed. An expected effect of the OCT
which, rather than a consequence, is the very definition of it. Note that here we focus
on experimental values of ε, which are typically small (ε < 0.1) due to the recent techno-
logical improvements mentioned above. The plots show the ratio between the difference
Δp ≡ p(ki)− p0 and p0, where p0 ≡ p(ki)|ε=0. Again, we explore the single-mode case in
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Figure 4, and the multi-mode limit case in Figure 5, having fixed every parameter as before.
Note that the effect of the OCT in the two cases is the same, as the differences between
the two plots have to be ascribed uniquely to the different distributions of pure photons,
single-thermal in Figure 4 and Poissonian in Figure 5.

0 1 2 3 4 5 6
-0.10-0.050.00
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p
/p 0

Figure 4. Plots of the relative differences Δp/p0, with Δp = p(ki)− p0 and p0 ≡ p(ki)|ε=0, in the
single-mode case (μ = 1) as a function of the number of detected events ki, for different values of
the OCT probability ε, which are ε = 1% (green), ε = 3% (red), ε = 5% (blue), ε = 7% (grey) and
ε = 9% (violet). The quantum efficiency η and the mean photon number N are again set to 0.17 and
10, respectively.
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Figure 5. Plots of the relative differences Δp/p0, with Δp = p(ki)− p0 and p0 ≡ p(ki)|ε=0, in the
multi-mode limit case (μ → ∞) as a function of the number of detected events ki, for different values
of the OCT probability ε, which are ε = 1% (green), ε = 3% (red), ε = 5% (blue), ε = 7% (grey) and
ε = 9% (violet). The quantum efficiency η and the mean photon number N are again set to 0.17 and
10, respectively.

3.2. The Effects of the OCT on the Photon-Number Statistics of the Conditional State

Here we investigate the effects of the OCT on the statistics of the signal after condition-
ing over the idler, as described in Section 2.1. We also consider the effect of the imbalance
between the quantum efficiencies of the signal and idler detectors.
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Note that, while we remove the assumption that the detectors of the two parties share
the same quantum efficiency η = ηs = ηi, we keep assuming the same OCT probability
ε = εs = εi. The imbalance is introduced through the parameter α ≡ ηs/ηi, with η ≡ ηi.

The expression of the reduced state of the signal after measuring ki events over the
idler is straightforward from Equation (11) and reads

ρ̂
(ki)
s =

(1 − λ2)μ

p(ki)

(
ε

1 − ε

)ki ki

∑
mi=� ki

2 �

(
mi

ki − mi

)(
(1 − ε)2

ε

η

1 − η

)mi

μ⊗
j=1

∑
lj

δmi ,γ

∞

∑
nj=lj

(
nj
mj

)
λ2nj(1 − η)nj |nj〉〈nj|

(20)

where again γ ≡ ∑
μ
j=1 lj and �·� is the ceiling function. Note that the conditional state

correctly does not depend on α since no detection over the signal party has occurred yet.
On the contrary, the related detected-event distribution is a function of α, other than

of the number of events detected over the idler ki:

p(ki)(ks) =
(1 − λ2)μ

p(ki)

(
ε

1 − ε

)ki+ks ki

∑
mi=� ki

2 �

ks

∑
ms=� ks

2 �

(
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)(
ms
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)(
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αη
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l

)(
l
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)(
l

mi

)
λ2l(1 − η)l(1 − αη)l .

(21)

In the limit of large number of modes, we find

p(ki)
μ→∞(ks) =

exp
(
− 〈ki〉

η(1+ε)

)
pμ→∞(ki)

(
ε
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)ki+ks ki
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2 �
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ki − mi

)(
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ε

η
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)mi( (1 − ε)2

ε
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1
l!

(
l

ms

)(
l

mi

)
( 〈ki〉(1 − η)(1 − αη)

η(1 + ε)

)l
.

(22)

Given Equation (21), we can have access to every moment of the conditional-state
distribution. For instance, the first moment reads

〈k̂s〉(ki) =
αη(1 + ε)

1 − λ2(1 − η)

[
ki + μλ2(1 − η)− ∂

∂x
log χ(x)

∣∣∣∣
x=0

]
(23)

where

χ(x) ≡
� ki

2 �
∑
l=0

(
ki + μ − 1 − l

μ − 1

)(
ki − l

l

)(
1 − λ2(1 − η)

(1 − ε)2ηλ2 ε

)l

elx (24)

is a sort of characteristic function related to the discrete probability distribution in Equation (17).
Indeed, one can easily prove that Equation (17) can be rewritten as

p(ki) =
(1 − λ2)μ[(1 − ε)ηλ2]ki

[1 − λ2(1 − η)]ki+μ
χ(0). (25)

The logarithmic derivatives of χ(x) evaluated in x = 0 contribute to the moments of
the conditional state, as shown in Equation (23) for the mean value. If ε is set to 0 and α to 1
in Equation (23), we retrieve the result reported in [4] for the limited-quantum-efficiency
condition, i.e.,
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〈k̂s〉(ki)(ε = 0, α = 1) =
ki(〈k̂i〉+ ημ) + μ〈k̂i〉(1 − η)

〈k̂i〉+ μ
. (26)

3.3. The Effects of the OCT on the Nonclassicality of the Conditional State

Finally, we focus on the nonclassicality of the state generated after post-selection and
evaluate to what extent the OCT is detrimental for this quantum resource.

The first and the second moments of the conditional-state distribution allow us to
retrieve the Fano factor for the detected events by means of Equation (14) expressed for the
operator k̂s. As mentioned in Section 2.1, the Fano factor provides a sufficient condition for
nonclassicality. For the distribution of the conditional state in Equation (21) we find that
it reads

F(ki)
s =

1 + 3ε

1 + ε
− αη(1 + ε) +

1
〈k̂s〉(ki)

[
αη(1 + ε)

1 − λ2(1 − η)

]2[
λ2(1 − η)(ki + μ)

]
−

1
〈k̂s〉(ki)

[
αη(1 + ε)

1 − λ2(1 − η)

]2
· ∂

∂x
log χ(x)

[
λ2(1 − η)− ∂

∂x
log
(

∂

∂x
log χ(x)

)]∣∣∣∣
x=0

(27)

where χ(x) is defined in Equation (24). Again, we highlight that Equation (27) can be
written as a function of experimental quantities by just replacing λ with 〈ki〉 through
Equation (10). Since the expression is quite complex, in Figure 6 we show the behavior of
F(ki)

s as a function of the conditioning value ki for different choices of the other parameters:
in panel (a), different mean values of the unconditioned state 〈ki〉, in panel (b), different
values of the balance parameter α, in panel (c), different choices of the cross-talk probability
ε, and finally in panel (d), different number of modes of the unconditioned state μ. It is
worth noting that the subPoissonianity of the Fano factor can be increased by decreasing
the mean value of the unconditioned state and increasing the number of modes, and by
operating on the features of the detectors, namely reducing the OCT probability and
increasing the balance factor.

Again, if ε = 0 and α = 1, we retrieve the known expression of the Fano factor for the
conditional state in the context of multi-mode TWB states and limited quantum efficiency,
as outlined in [6], i.e.,

F(ki)
s (ε = 0, α = 1) = (1 − η)

[
1 +

〈k̂i〉(ki + μ)(〈k̂i〉+ ημ)

(〈k̂i〉+ μ)[(ki + μ)(〈k̂i〉+ ημ)− ημ(〈k̂i〉+ μ)]

]
. (28)

Note that Equation (27) can be significantly simplified by taking the limit to realistic
values for the parameters μ and ε. As mentioned above, our experimental conditions allow
us to take the limit μ → ∞, which reduces the sum in Equation (24) to

χ(0) ∼
(
〈ki〉1 − ε

1 + ε

)ki �
ki
2 �

∑
l=0

1
l!(ki − 2l)!

(
ε(1 + ε)

〈k̂i〉(1 − ε)2

)l
, (29)

but then, being the typical OCT probabilities of modern SiPMs of the order 10−2, the largest
order in the argument of the sum for a given term l is

(ε/〈k̂i〉)l

l!(ki − 2l)!
. (30)
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Figure 6. Fano factor of the conditional states as a function of the conditioning values for different
choices of the other parameters involved in Equation (27). Panel (a): F for different choices of the
mean value of the unconditioned state. From bottom to top: 〈k〉 = 0.5 (black), 〈k〉 = 1 (red), 〈k〉 = 1.5
(blue), 〈k〉 = 2 (green), 〈k〉 = 2.5 (magenta), 〈k〉 = 3 (cyan). The other parameters are: η = 0.17,
μ = 100, α = 1, and ε = 0.01. Panel (b): F for different choices of the balance factor. From top to
bottom: α = 0.5 (black), α = 0.6 (red), α = 0.7 (blue), α = 0.8 (green), α = 0.9 (magenta), α = 1 (cyan).
The other parameters are: η = 0.17, μ = 100, 〈k〉 = 2, and ε = 0.01. Panel (c): F for different choices
of the cross-talk probability. From bottom to top: ε = 0.01 (black), ε = 0.02 (red), ε = 0.05 (blue),
ε = 0.10 (green), ε = 0.15 (magenta), ε = 0.20 (cyan). The other parameters are: η = 0.17, μ = 100,
〈k〉 = 2, and α = 1. Panel (d): F for different choices of the number of modes of the unconditioned
state. From top to bottom: μ = 1 (black), μ = 2 (red), μ = 5 (blue), μ = 10 (green), μ = 100 (magenta),
μ = 1000 (cyan). The other parameters are: η = 0.17, 〈k〉 = 2, α = 1, and ε = 0.01.

Thus, provided that the order of the mean number of detected events is larger than
the order of ε, the argument of the sum gets smaller as l increases. If we keep the l = 0
term only, all the logarithmic derivatives of χ(x) are null, so that the mean value and the
Fano factor of the conditional state are much simplified. By taking this limit, we neglect
the OCT contribution provided by the asymmetry between odd and even detected events,
which is reasonable if ε is small (i.e., ε < 0.1), as highlighted in Figures 4 and 5. Given this
approximation and the limit for μ, one gets

〈k̂s〉(ki)
μ→∞ = α[η(1 + ε)ki + (1 − η)〈k̂i〉]

F(ki)
sμ→∞ =

1 + 3ε

1 + ε
− αη(1 + ε)

[
1 − (1 − η)〈k̂i〉

η(1 + ε)ki + (1 − η)〈k̂i〉

]
.

(31)
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Equations (31) allow us to find the threshold conditioning value k̄ such that the

detected state is nonclassical, i.e., F(ki<k̄)
sμ→∞ < 1. Before retrieving k̄, we remark that in the

limit μ → ∞, the Fano factor in Equation (28), where ε = 0 and α = 1, is a function of the
quantum efficiency only, i.e.,

F(ki)
sμ→∞(ε = 0, α = 1) =

1 − η

1 − η/2
. (32)

However, 0 ≤ F(ki)
sμ→∞(ε = 0, α = 1) ≤ 1 ∀η ∈ [0, 1], which means that the imperfections

in detection due to limited quantum efficiency never provide a detected superPoissonian
statistics in this context. Only in the limit case η = 0 the nonclassicality of a conditional
state from multi-mode TWB is not revealed by the Fano factor, otherwise the detected
nonclassicality is just reduced with respect to the ideal case (η = 1). On the contrary,
the OCT can completely conceal the quantum nature of a conditional state since we may
have F(ki)

sμ→∞ > 1 for some ki < k̄ where

k̄ =
2ε(1 − η)〈k̂i〉

η(1 + ε)[αη(1 + ε)2 − 2ε]
. (33)

Note that k̄ > 0 ⇐⇒ αη(1 + ε)2 > 2ε, i.e., if

ηs > ηth(ε) ≡ 2ε

(1 + ε)2 (34)

where we replaced αη with the quantum efficiency of the detector of the signal party ηs
through the definition of α. Therefore, Equation (33) shows that for ε > 0 and η < 1 there
is a conditioning number k̄ > 0 such that if ki < k̄ the detected statistics is superPoissonian
(see Figure 6). Moreover, Equation (34) gives an experimental condition for the observation
of the nonclassicality of the conditional state: provided that ηs is larger than the thresh-
old ηth, then a finite k̄ exists such that one can measure F(ki)

sμ→∞ < 1 ∀ki > k̄. Note that
k̄(ε = 0, η 
= 0) = 0, which implies that the detected statistics is subPoissonian, if the only
detection imperfection is a non-unit η > 0. However, it is remarkable that in the ideal case
η = 1 we have a subPoissonian statistics independently of ε, while if η → 0 and ε 
= 0, then
the detected statistics is always superPoissonian, independently of ki.

One may ask if a combination of η and ε exists such that F(ki)
sμ→∞ = 0 for some ki.

Unfortunately, this is not the case since in the second line of Equations (31) the Fano factor
is a monotone decreasing function of ki and it converges to an asymptotic value which is
strictly positive ∀ε > 0. Finally, we remark that the threshold in Equation (34) is directly
connected to the sub-Poissonianity of the original state, which in turn depends on its
intrinsic nonclassical correlations. In fact the same threshold can be shown to hold for the
observation of sub-shot-noise correlations of TWB. The sub-Poissonianity condition on
correlations can be expressed by the noise reduction factor as R < 1, where R is defined as
the ratio of the variance of the difference of detected events and the mean value of their
sum, i.e.,

R ≡ 〈Δ(k̂s − k̂i)
2〉

〈k̂s + k̂i〉
. (35)

We showed in Ref. [20] that, in the case of TWB states with a large number of modes,
this figure of merit can be reduced to

R = 1 − αη(1 + ε) +
2ε

1 + ε
, (36)

which gives R < 1 for the same condition as in Equation (34). Hence, the connection
between the sub-Poissonianity condition and the requirement on the quantum efficiency in
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Equation (34) is straightforward. Incidentally, note that the Fano factor in the second of
Equations (31) can be expressed in terms of the noise reduction factor.

4. Discussion

In order to validate the model for conditioning addressed in the previous Section,
hereafter we present and discuss the experimental generation of nonclassical conditional
states. As already explained in [6,17,18], such states can be obtained in post-processing by
selecting a certain number of photons in one TWB arm and reconstructing the modified
distribution of photons in the other arm. In Section 3 we showed that the unconditioned
state is formally described by a multi-thermal distribution, which reduces to Equation (18)
when the light in one arm is characterized by a very large number of modes [32–34]
and is detected by a SiPM characterized by an OCT probability ε 
= 0. In Figure 7 we
show the detected-event distributions having mean values 〈k〉 = 2.63 (panel (a)), 2.66
(panel (b)), 1.43 (panel (c)), and 0.57 (panel (d)). The experimental data are shown as gray
dots, while the theoretical fitting functions according to Equation (18) are presented as
gray lines. To quantify the agreement between the experimental data and the theoretical
expectations we evaluate the fidelity f = ∑m̄

m=0

√
Pth(k)P(k), in which Pth(k) and P(k)

are the theoretical and experimental distributions, respectively, and the sum extends
up to the maximum number of detected events k above which both Pth(k) and P(k)
become negligible.
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Figure 7. Detected-event distributions P(k) of the unconditioned state having mean value 〈k〉 = 2.63
(panel (a)), 2.66 (panel (b)), 1.43 (panel (c)), and 0.57 (panel (d)). The experimental data are shown
as gray dots, while the theoretical expectations are presented as gray lines. The fidelity values are:
f = 0.9999 in all panels.
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From the fitting procedure, it is possible to obtain the value of the only fitting parame-
ter, namely the OCT. In particular, we notice that for the four considered measurements,
the OCT value is of the same order of magnitude and always less than 1%, thus proving
that the cross-talk probability affecting this model of SiPM is really small, even if not
completely negligible. We remark that the estimated values for the OCT probability in
Figure 8 are smaller than those reported in the datasheet of our sensors [30], but consistent
with the characterization that we have already provided for these SiPMs in [16].

In order to prove that the conditioning procedure changes the statistical properties
of such states making them sub-Poissonian, we calculate the Fano factor of the condi-
tional states obtained from each of the four considered unconditioned states. Indeed,
as mentioned in Section 2.1, F < 1 is a sufficient condition for nonclassicality.

1 2 3 4 5
0.92
0.94
0.96
0.98
1.00
1.02
1.04

ki

F

Figure 8. Fano factor as a function of the conditioning value for four different unconditioned states
having mean values 〈k〉 = 2.63 (black), 2.66 (red), 1.43 (blue), and 0.57 (magenta). The experimental
data are shown as dots plus error bars, while the theoretical fitting functions according to the
second line of Equations (31) are presented as dashed curves with the same color choice. The fitting
parameters are the following: η = 0.134, α = 0.990 (black curve), η = 0.157, α = 0.989 (red curve),
η = 0.158, α = 0.997 (blue curve), and η = 0.125, α = 0.986 (magenta curve). The reduced χ(2) are:
0.34 (black curve), 0.14 (red curve), 0.94 (blue curve), and 0.05 (magenta curve).

In Figure 8 we show the experimental Fano factors shown as dots plus error bars, while
the theoretical fitting functions according to the second line of Equations (31) are shown as
dashed lines with the same color choice. For all the fitting functions we left η and α as free
fitting parameters, while we used the same values of ε obtained from the fitting of the marginal
distributions. In particular, in all cases we obtained a balance factor α ∼ 0.99 and a quantum
efficiency η ∼ 0.14. As a general statement, we note that the data corresponding to the
conditioning value ki = 1 are larger than 1 for the largest mean values. Such a behavior is in
agreement with the theoretical expectation expressed by the second line of Equations (31) and
the plots in panel (a) of Figure 6. Moreover, we emphasize that for the smallest mean value the
conditioning operation is applied up to ki = 3 because the number of experimental data is not
sufficient to reliably build the states corresponding to ki > 3.

In order to explore in which way the conditional measurements modify the statisti-
cal properties of the unconditioned states in the presence of the OCT, in the two panels
of Figure 9 we show some conditional distributions at different conditioning values to-
gether with the corresponding unconditioned statistics having mean values 〈k〉 = 2.66
(panel (a)), and 1.43 (panel (b)). The data are presented as colored dots plus error bars
(ki = 1 in black, ki = 2 in red, and ki = 3 in blue), while the theoretical expectations
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are shown as solid lines with the same color choice. The theoretical curves have been
calculated according to Equation (22) using the parameter values of ε obtained from the
fit of the unconditioned states (see caption of Figure 7) and those of η and α obtained
from the fit of the Fano (see caption of Figure 8). For the sake of clarity, in each panel of
Figure 9 we show again the statistics of the unconditioned state as gray dots and the theo-
retical expectation as gray surface defined by dashed line. As expected from the two panels
of the figure, it clearly appears that the conditional measurements change the statistics
of the input state. Even in this case, to quantify the agreement between the experimental
data and the theoretical expectations we evaluate the fidelity. We note that the higher the
conditioning value the lower the fidelity value. This fact can be ascribed to the limited
number of data at our disposal to build the statistics, which is lower and lower at increasing
values of ki. Larger acquisitions of data could overcome such a limit. At the same time,
the good dynamic range of SiPMs would suggest that both the unconditioned states and
the corresponding conditional ones could be more populated, thus allowing us to really
explore the mesoscopic intensity domain.
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Figure 9. Detected-event distributions P(k) of the conditional states for ki = 1 (black curve), ki = 2
(red curve), and ki = 3 (blue curve) obtained from an unconditioned state having mean value
〈k〉 = 2.66 (panel (a)) and 1.43 (panel (b)). The experimental data are shown as colored symbols,
while the theoretical expectations are presented as solid lines with the same color choice. The fidelity
values are: f = 0.9999, 0.9961, and 0.9888 in panel (a) and f = 0.9999, 0.9954, and 0.9863 in panel (b).
The unconditioned state is shown as gray dots and its theoretical expectation as gray surface defined
by dashed line. The fidelity value is f = 0.9996 in panel (a) and f = 0.9999 in panel (b).
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In general, the good agreement between the experimental data and the theoretical
expectations validate the model used to describe the role played by the non-idealities of
the employed detectors, namely the cross-talk effect, the non-unitary quantum efficiency
and the possible imbalance between the two quantum efficiencies. We emphasize that the
detection of subPoissonian states was achieved because, even in the presence of a limited
quantum efficiency, the OCT probability is small enough to ensure that η > ηth. This is
not the case of either previous sensors generations, in which the OCT probability was
more than 10%, or new kinds of SiPMs with a higher sensitivity in the near infrared region.
Indeed, the best generation of such detectors exhibits a cross talk probability of 6% and a
low quantum efficiency (less than 20%), which could prevent the generation of nonclassical
states by conditional measurements.

5. Conclusions

In this paper we addressed a thorough theoretical model for the conditional measure-
ments with SiPMs. In particular, we included the contribution of the OCT and we took into
account the possibility of an imbalance between the two detection chains. We provided a
complete description of the detection of a multi-mode TWB state in the presence of the OCT,
showing explicitly the effects of such correlated noise on the reconstructed distribution. We
obtained a closed formula for the detected-event distribution of the conditional states and
an analytic expression for the first moments. Hence, we retrieved the Fano factor, which
represents a sufficient criterion for nonclassicality. In particular, we found that, in the
presence of cross-talk effect, nonclassicality is more easily attained by:

- reducing the imbalance between the two detection arms;
- decreasing the mean value of the unconditioned states;
- increasing the number of modes.

Moreover, we found a useful bound between the quantum efficiency of the detectors
and the OCT probability, which sets a link between their mutual values for still revealing
the nonclassicality of conditional states. Actually, we demonstrated that this bound is valid
in general for the twin-beam states, on which the conditioning operation is performed.

The theoretical expectations have been validated by the experimental generation of
conditional states by conditional measurements performed on multi-mode TWB states with
SiPMs. The good agreement between the experimental data and the theoretical predictions
suggests that the conditional measurements can be performed even on more populated
states to produce well-populated conditional states as well by exploiting the good dynamic
range of SiPMs.

Finally, we hint that the model may be further improved by including the dark counts,
which is another common drawback of SiPMs at room temperature. However, it is worth
noting that in the case of a light signal integrated over short gate widths [17], which
correspond to our experimental condition, the mean number of dark counts is remarkably
low, which is the reason why we did not address this topic here. Moreover, it could be
interesting to include cascade effects and generation of multiple secondary avalanches in
the model for the OCT, so that a realistic case for large ε could be compared with the one
explored here.
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Abstract: We have developed a quantum message authentication protocol that provides authentica-
tion and integrity of an original message using single qubit unitary operations. Our protocol mainly
consists of two parts: quantum encryption and a correspondence check. The quantum encryption part
is implemented using linear combinations of wave plates, and the correspondence check is performed
using Hong–Ou–Mandel interference. By analyzing the coincidence counts of the Hong–Ou–Mandel
interference, we have successfully proven the proposed protocol experimentally, and also showed its
robustness against an existential forgery.

Keywords: quantum message authentication; quantum three-pass protocol; Gao’s forgery; swap test

1. Introduction

Modern cryptography provides four functions, namely, confidentiality, authentication,
integrity, and nonrepudiation [1,2]. Therefore, as a substitution candidate for next-level
secure cryptography, quantum cryptography should also have the ability to offer these four
functions. Remarkable progress has been made in the area of confidentiality because the
quantum key distribution (QKD) protocol that provides confidentiality has been consider-
ably improved [3–6]. QKD aims to enable communication partners, e.g., Alice and Bob, to
share secret keys and ultimately perform a one-time pad communication. Those protocols
provide unconditional confidentiality based on the principle that an arbitrary unknown
quantum state cannot be copied and that quantum measurement is irreversible [7–10]. On
the other hand, many researchers have also studied how to use these secret keys in quan-
tum message authentication [11–13], arbitrated quantum signature [14–19], or quantum
digital signature [20–29], providing authentication, integrity, and non-repudiation.

In this paper, we introduce a simple and practical quantum message authentica-
tion protocol with a quantum three-pass protocol [30–33] and a quantum encryption
scheme [19,34]. This protocol is a lightweight to simplify the implementation by removing
an arbitrator from our proposed quantum signature protocol [19]. Here, the quantum
three-pass protocol is the quantum version of Shamir’s three-pass protocol [1,35], and
quantum encryption scheme is to prevent existential forgery, called Gao’s forgery. More
specifically, the core elements of the proposed protocol, such as the quantum three-pass pro-
tocol and the quantum encryption scheme, are implemented with only single qubit unitary
operators. In other words, these can be implemented easily by using linear combinations
of wave plates [36,37]. Additionally, the swap test that checks the correspondence of the
original message and quantum message authentication code (QMAC) can be implemented
using a Hong–Ou–Mandel interferometer [38–40]. In advance, as the Hong-Ou-Mandel
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interferometer is a destructive swap test [40], more resources are needed to implement a
controlled swap test.

In Section 2, we briefly explain the concept of the proposed scheme. Section 3 presents
a security analysis of the proposed protocol for Alice’s private key, the forgery of QMAC
pair, and the origin authentication of quantum message. Section 4 describes the experimen-
tal setup and measurement results. We conducted three experiments with the proposed
protocol. First, we implemented a quantum three pass protocol, which is a method of
conveying information in the proposed quantum message authentication. Second, we
implemented a quantum encryption scheme with a single qubit unitary operator to prevent
forgery. Finally, we confirmed that the QMAC pair with the quantum encryption scheme is
robust to Gao’s forgery. In Section 5, after a thorough discussion that includes the possibil-
ity of expanding the scheme to quantum signature and quantum entity authentication, we
present the conclusions of this work.

2. Quantum Message Authentication Protocol

Quantum message authentication, which is similar to conventional message authenti-
cation, should provide message integrity and origin authentication. What differentiates
quantum message authentication from conventional message authentication [41,42] is that
the former uses quantum states |0〉 and |1〉 as a message represented by a sequence of
“0” and “1” bits. In addition, using arbitrary quantum states as a message enables more
information to be delivered at once [43,44]. Moreover, there is a significant difference that
is described below. In modern cryptography, asymmetric key cryptography easily provides
message integrity, message origin authentication, and nonrepudiation. Unfortunately, a
quantum asymmetric key cryptosystem based on the quantum trapdoor one-way func-
tion do not exist, making the design of quantum authentication and quantum signature
protocols difficult. To overcome this difficulty, we propose a new quantum message au-
thentication protocol based on Shamir’s three-pass protocol [1,35]. Shamir’s three pass
protocol has the advantage that two parties, e.g., Alice and Bob, can share information
without exposing their own private keys. In the implementation, the central idea is that
the commutative property [19] of exponential operation in Shamir’s three-pass protocol
is implemented using single-qubit rotation operators consisting of linear combinations of
wave plates. To our knowledge, this is the first time a quantum message authentication
protocol has been proposed using the quantum three-pass protocol, though other applica-
tions of the quantum three-pass protocol, such as direct communication [32], quantum key
distribution [30], and quantum signature [19], have been proposed theoretically. Figure 1
schematically shows the quantum message authentication protocol that we implemented.
Our quantum message authentication protocol consists of preparation, quantum message
authentication, and verification phase.

2.1. Preparation Phase

In the preparation phase, Alice and Bob pre-share secret key sequences KAB =(
k1

AB, k2
AB, . . . , kN

AB
)

and KH =
(
k1

H , k2
H , . . . , kN

H
)

that determine which single-qubit opera-
tion is chosen. The sequences KAB =

(
k1

AB, k2
AB, . . . , kN

AB
)

and KH =
(
k1

H , k2
H , . . . , kN

H
)

are
a classical bit sequence with the size of 2N and N respectively, where ki

AB ∈ {00, 01, 10, 11},
ki

H ∈ {0, 1}. The secret keys ki
AB and ki

H correspond to the Pauli operators σki
AB

∈{
I, σx, σy, σz

}
and the operator Hki

H ∈ {
H0 = I, H1 = H

}
. Here, operator is a linear

combination of the Pauli operators
{

I, σx, σy, σz
}

and unitary operator H† H = HH† = I.

H =
(

I − iσx − iσy − iσz
)
/2 (1)
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Figure 1. Basic structure of the quantum message authentication protocol based on quantum three-pass protocol. Similar to
quantum three-pass protocol, which transmits bits three times, our protocol performs three quantum state transmissions.
After three attempts of quantum state transmission, Bob finally acquires quantum message states | M〉 u = ⊗N

i=1Ry(mi)| ϕ〉 i
u

and | M′〉 d = ⊗N
i=1Ry(mi)| ϕ〉 i

d. He then uses a swap test twice to confirm the similarity of the two arbitrary quantum states
| M〉 u, | M′〉 d and bit message sequence M. KAB and KH denote the secret key sequences that Alice and Bob previously
shared. S is the private key sequence that only Alice knows, and B is the one known only to Bob.

2.2. Quantum Message Authentication Phase

The quantum message authentication phase is composed of two stages: quantum
message generation, QMAC generation, and quantum encryption. In the quantum message
generation stage, Alice generates a quantum message state pair

|M〉 u|M〉 d =
[
⊗N

i=1Ry(mi)| ϕ〉 (i)u

][
⊗N

i=1Ry(mi)| ϕ〉 (i)d

]
(2)

by applying a single qubit rotation operator

Ry(mi) =

(
cos mi

2 −sin mi
2

sin mi
2 cos mi

2

)
, (3)

where M = (m1, m2, m3, . . . , mN) is a rotation angle sequence, 0◦ ≤ mi ≤ 360◦, and
| ϕ〉 (i)u | ϕ〉 (i)d are the logical states |0〉|0〉 or |1〉|1〉 , corresponding to horizontally polarized
photons |H〉|H〉 and vertically polarized photons |V〉|V〉 , respectively. The superscript
(i) denotes the i th qubit, and subscripts u and d denote up and down, corresponding to
the up-line and down-line, respectively, of the experimental setup used for our protocol.
The rotation angle sequence M = (m1, m2, m3, . . . , mN) is a bit message sequence, and
we assume that it has already been published in public as in the case of a contract or an
official document. The reason for publishing M is to prevent Alice from attempting to forge
using a modulated QMAC pair, which is discussed in detail in Section 3.2 impossibility of
forgery.

In the QMAC generation stage, Alice encrypts the quantum message pair |M〉 u|M〉 d
of Equation (2) by using a single qubit rotation operator Ry(si);

|M〉 u|S〉 d= |M〉 u
[⊗N

i=1Ry(si)|M〉 d
]
=
[
⊗N

i=1Ry(mi)| ϕ〉 (i)u

][
⊗N

i=1Ry(si)Ry(mi)| ϕ〉 (i)d

]
. (4)
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Here, S = (s1, s2, s3, . . . , sN) is a rotation angle sequence, 0◦ ≤ si ≤ 360◦. In addition,
S is a private key known only to Alice. Furthermore, we call |M〉 u|S〉 d to a QMAC state
pair.

In the quantum encryption stage, Alice applies quantum encryption σki
AB

Hki
H to the

QMAC state pair |M〉 u|S〉 d of Equation (4);

|M〉 u

[
⊗N

i=1σki
AB

Hki
H |S〉 d

]
. (5)

Here, |M〉 u

[
⊗N

i=1σki
AB

Hki
H |S〉 d

]
is an encrypted QMAC state pair, and then she sends

it to Bob. This quantum encryption is an essential function for verifying that the entity
sending the QMAC pair is Alice and for protecting against forgery.

The rotation angles mi and s1 are the elements of the finite discrete variable set. For
applying them to real protocols, Alice and Bob must preset the range of the finite discrete
variable set and pre-decide how to divide the set range. For example, if Alice and Bob split
the rotation angle from 0◦ to 360◦ in intervals of 10◦, then the finite discrete variable set
becomes {0◦, 10◦, 20◦, . . . , 350◦}. Here, the size of the discrete variable set is determined
by the performance of the experimental apparatus. Therefore, as the performance of
experimental apparatus improves, the size of the discrete variable set increases. Increasing
the size of the discrete variable set means that the rotation angle can be subdivided, and
this can lead to authenticating more information compared with using the four states of
the BB84 protocol. On the other hand, If the performance of the experimental apparatus
is poor, the size of the discrete variable set decreases. Then, the rotation angle cannot be
subdivided, and information that can be authenticated decreases. Additionally, in this
situation, if the communication members use the subdivided rotation angles to such an
extent that the experimental apparatus cannot distinguish, detecting the malicious behavior
of Eve is impossible.

2.3. Verification Phase

The verification phase is divided into five stages: “quantum decryption”, “Bob’s
encryption”, “QMAC recovery”, “Bob’s decryption”, and “swap test”. In Stage 1, for quan-
tum decryption, Bob uses secret key sequences KAB and KH , which were pre-shared with
Alice to decrypt the encrypted QMAC state pair |M〉 u

[
⊗N

i=1σki
AB

Hki
H |S〉 d

]
in Equation (5),

received from Alice to obtain the QMAC state pair |M〉 u|S〉 d of Equation (4). In Stage 2,
Bob’s encryption, Bob generates his own private key sequence B = (b1, b2, . . . , bN) and
re-encrypts quantum state |S〉 d = ⊗N

i=1Ry(si)|M〉 d with it to obtain quantum state
|S′〉 d = ⊗N

i=1Ry(bi)|S〉 d. Then, he sends |S′〉 d to Alice while keeping the other quan-
tum message state |M〉 u. In Stage 3, QMAC recovery, Alice uses her own private key
sequence S to apply rotation operator ⊗N

i=1Ry(−si) to quantum state |S′〉 d and sends
quantum state |S ′′〉 d = ⊗N

i=1Ry(−si)|S′
d to Bob. In Stage 4, Bob’s decryption, Bob uses

his own private key sequence B and applies rotation operator ⊗N
i=1Ry(−bi) to quantum

state |S ′′〉 d to obtain quantum message state |M′〉 d = ⊗N
i=1Ry(−bi)|S ′′〉 d. Because the

proposed quantum message authentication based on the quantum three-pass protocol oper-
ates Alice’s private key si, there is a need for a method to verify the encrypted QMAC pair
described thus far. This is an important element that the proposed protocol can guarantee
the origin of quantum message. In addition, to avoid counterfeiting, it is assumed that
quantum encryption such as σki

AB
Hki

H in Equation (5) is applied to Alice and Bob in every
process of exchanging quantum states.

In the final stage, Bob performs the swap test [42,45] twice to verify the QMAC state
pair. In the first swap test, Bob verifies whether quantum message state |M〉 u and quantum
message state |M′〉 d are the same. If the test result reveals that |M〉 u and |M′〉 d agree,
Bob accepts QMAC state pair |M〉 u|S〉 d sent by Alice. Otherwise, he does not accept it. In
the second swap test, Bob generates quantum state |M ′′〉 corresponding to the public bit
message sequence M and verifies that it matches quantum message state |M〉 u or |M′〉 d.
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If the test result reveals that (|M ′′〉 , |M〉 u) or (|M ′′〉 , |M′〉 d) agree, then the integrity of
QMAC state pair |M〉 u|S〉 d is verified completely. For the second swap test, it is noted
that the first swap test requires a non-demolition swap test. Figure 2 shows the swap test
in the circuit, and the result of inputting

|mi〉 u = Ry(mi)| ϕ〉 (i)u (6)

and ∣∣m′
i
〉

d = Ry
(
m′

i
)| ϕ〉 (i)d (7)

in the second and third lines of the circuit is expressed as follows:

1√
2
|0〉 ancilla

[
1√
2

(|mi〉 u
∣∣m′

i
〉

d +
∣∣m′

i
〉

u|mi〉 d
)]

+ 1√
2
|1〉 ancilla

[
1√
2

(|mi〉 u
∣∣m′

i
〉

d −
∣∣m′

i u|mi〉 d
)]

. (8)

Figure 2. Circuit of the quantum swap test. “SWAP” indicates a swap gate, and UH represents a
Hadamard gate. “MS” represents quantum measurement, and the single lines and the double line
represent the quantum channel and classical channel, respectively.

If |mi〉 u and
∣∣m′

i
〉

d agree, the above equation becomes |0〉 ancilla
[ 1√

2

(|mi〉 u
∣∣m′

i
〉

d+∣∣m′
i
〉

u|mi〉 d
)]

, which makes the measurement outcome of the ancilla state to always be |0〉 .
However, if |mi〉 u and

∣∣m′
i
〉

d do not agree, the measurement outcome becomes |0〉 with a
probability

(
1 + ε2)/2 or becomes |1〉 with a probability

(
1 + ε2)/2, where ε =

∣∣d〈m′
i

∣∣mi
〉

u|
and 0 ≤ ε ≤ 1. Therefore, if the swap test result of the measurement is |1〉 , we know
that |mi〉 u and

∣∣m′
i
〉

d are different. If the result is |1〉 , we cannot guarantee that |mi〉 u
and

∣∣m′
i
〉

d are the same. The parameter ε is determined by the arbitrary quantum state
components |mi〉 u of Equation (6) and

∣∣m′
i
〉

d of Equation (7). If the two rotation angles
mi and m′

i are the same, i.e., mi = m′
i, then the value of parameter ε is 1. On the other hand,

if the difference between mi and m′
i is 180◦, i.e., mi = m′

i ± 180◦, then the parameter ε is 0.
As a result, according to rotation angles mi and m′

i, the parameter ε has a value between
0 and 1, 0 ≤ ε ≤ 1. Further, the probability of failure in the verification phase is the total
error probability Pe for N qubits as follows:

Pe ≤ ⊗N
i=1

[(
1 +

∣∣d〈m′
i
∣∣mi
〉

u

∣∣2)/2
]

(9)

Therefore, it is expected that the swap test will work well even though the quantum
state sequence is finite. Hence, the probability of failure in the verification phase becomes
lower, approaching Pe as the size of the quantum state sequence N becomes considerably
larger [42,45]. For an arbitrary |mi〉 u, a random choice for

∣∣m′
i
〉

d on the Ry
(
m′

i
)
—rotation

circle, the average of ε2 is 1/2. In this case, the upper bound of the total error probability Pe

is (3/4)N . If the size of the quantum state sequence is 15, then the upper bound of the total
error probability Pe is only approximately 1.3%. Therefore, it is expected that the swap test
will work well even though the quantum state sequence is finite.
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3. Security Analysis

3.1. Security of Alice’s Private Key

Eve, including Bob, may try to obtain Alice’s private key. Especially, as described in
Section 2.3, malicious Bob may try to know Alice’s private key sequence S = (s1, s2, s3, . . . ,
sN), which consists of the degrees of rotation about ŷ-axis from |S〉 d = ⊗N

i=1Ry(si)|M〉 d
in Equation (4). However, the security of Alice’s private key sequence S is guaranteed by
Holevo’s theorem, as follows [19,32]:

I(x, S) ≤ V(ρ) ≤ H(S) (10)

Here, H(S) is the Shannon entropy of the sequence of arbitrary rotation angle si, V(ρ)
is the von Neumann entropy of mixed state ρ that Eve can acquire through the arbitrary
measurement of the quantum state |S〉 d = ⊗N

i=1Ry(si)|M〉 d, and I(x, S) is the mutual
information between arbitrary rotation si and measurement outcomes x. As we can see
in Equation (10), the amount of mutual information about the arbitrary rotation angle
sequence S that Bob acquires using measurement outcomes x is limited, and thus, it is
impossible for Eve to obtain the information of S. Based on the same principle, the security
of Bob’s private key sequence B = (b1, b2, b3, . . . , bN) is guaranteed.

3.2. Impossibility of Forgery

Many quantum message authentication and signature protocols use quantum en-
cryption implemented by Pauli operators to ensure message integrity and message origin
authentication. A QMAC pair (or quantum signature pair), which is composed of a quan-
tum message and an encrypted quantum message, checks the forgery and modulation
of the QMAC pair (or quantum signature pair) using a swap test [34]. As described in
Section 2.3, Bob validates the original quantum message state |M〉 u and the recovered
quantum message state |M′〉 d from the QMAC state pair of Equation (4) using the swap
test. Bob can be sure that |M〉 u and |M′〉 d are the same quantum state from the outcomes
of the swap test. However, it is not known whether they match the original message M.
Because of the limitations of this swap test, the proposed protocol can be falsified in two
ways.

The first falsification method is that Alice creates a modulated QMAC pair

I(x, S) ≤ V(ρ) ≤ H(S) (11)

with the two same quantum states
∣∣∣ M̃

〉
u

and
∣∣∣ M̃′

〉
d

that do not correspond to the original
message M and sends it to Bob. In this case, Bob cannot detect Alice’s malicious behaviour
even if he verifies that the two quantum states

∣∣∣ M̃
〉

u
and

∣∣∣ M̃′
〉

d
are the same from the

QMAC pair by using the swap test. To prevent this, Alice must disclose message M.
Additionally, Bob needs an additional process to validate |M′′〉 , which is converted to a
quantum state, and |M〉 u or |M′〉 d by using the swap test.

Second, Eve can try Gao’s forgery to apply Pauli operators to a QMAC pair [34,46].
Recently, Gao et al. showed that even if an adversary applies the arbitrary Pauli operator
to the QMAC pair (or quantum signature pair), the swap test could not detect it because
of the commutation relation of Pauli operators [46]. This is called Gao’s forgery, and
it can be considered as an existential forgery [34] of modern cryptosystems because it
randomly forges QMAC pairs (or quantum signature pairs), which are arbitrary quantum
states. The posing of this security problem by Gao et al. was a major turning point in
the study of quantum message authentication (or quantum signature) protocols. In 2011,
Choi et al. proposed the (I, H)- or (U, V)-type quantum encryption scheme to cope with
Gao’s forgery [47,48]. In 2013, Zhang et al. pointed out that the encryption scheme of
Choi et al. was still insecure against Gao’s forgery, and instead they proposed the key-
controlled-"I" quantum one-time pad or key-controlled-"T" quantum one-time pad [49,50]
as an alternative. The four unitary operators of the controlled-I quantum one-time pad
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are W00 = (σx + σz)/
√

2, W01 =
(
σy + σz

)
/
√

2, W10 =
(

I + iσx − iσy + iσz
)
/
√

2, and
W10 =

(
I + iσx + iσy + iσz

)
/
√

2. However, the encryption scheme of Zhang et al. is not
easy to implement with simple hardware. In contrast, we propose a quantum encryption
scheme with a single qubit unitary operation by randomly using unitary operator H, which
can be easily implemented by controlling wave plates and an authentication protocol.
Therefore, the proposed protocol is robust against an existential forgery. Section 4.3 in
Ref. [22] shows that unitary operators can be used randomly to prevent Gao’s forgery. The
detailed implementation of our experimental setup and the testing results of the quantum
three-pass protocol and security against Gao’s forgery are described in Section 4. Finally, to
prevent Gao’s forgery in the proposed protocol, the quantum encryption scheme should be
applied to all processes in which Alice and Bob exchange quantum states.

3.3. Origin Authentication of Quantum Message

To clarify the origin of the quantum message, the proposed quantum message authen-
tication operates by using not only the secret key pre-shared by Alice and Bob but also
Alice’s private key. In general, message authentication guarantees the origin of message
authentication by using a secret key previously shared by Alice and Bob. At this time, as
the user who can create a message authentication code (MAC) pair can be Alice or Bob, the
origin of the message may become unclear. On the other hand, in the proposed protocol,
Alice generates a QMAC pair |M〉 u|S〉 d of Equation (4) by using a private key sequence
S = (s1, s2, s3, . . . , sN) known only to her; thus, the possibility of such a dispute is very
low.

4. Experiment Setup and Measurement Results

Figure 3a shows the implementation setup of our proposed quantum message authen-
tication protocol. With this setup, we have experimentally proved that the proposed QMAC
is robust against existential forgery. Each stage is implemented with a linear combination
of wave plates; that is, the y-axis rotation operator Ry(θ), the unitary operator H, and
the Pauli operators are implemented by combinations of half-wave plates (HWPs) and
quarter-wave plates (QWPs). Figure 3b schematically shows a possible forgery attack that
Eve can try. Eve can attempt a forgery attack using the same Pauli operators σei = σe′i

[46],
or she can attempt a forgery attack using different Pauli operators σei 
= σe′i

[49,50]. We
define these two approaches as an original and improved Gao’s Forgeries, respectively. To
prevent Gao’s forgeries, we need to choose unitary operator H randomly. We explain this
in detail at the end of this section.

We assume that Alice and Bob have already pre-shared the secret key sequences in
the preparation phase. For the message authentication phase, we implemented message
generation, QMAC generation, and quantum encryption using wave plates on Alice’s
side. To create correlated photon pairs, Type-I spontaneous parametric down-conversion
(SPDC) photon pairs were generated in a beta barium borate (BBO) crystal pumped by
a multimode diode laser with a 408-nm wavelength. The SPDC photon pairs have the
same H-polarization and an 816-nm wavelength. The photon pairs are emitted with a
noncollinear angle of 3.3◦. One of the photons goes through only the rotation operator for
message generation, and the other experiences the sequence of operations from message
generation through the quantum encryption scheme with a single qubit unitary opera-
tor. Then, they are delivered to Bob. For the verification phase, one photon is kept on
Bob’s side, and the other photon experiences quantum decryption and Bob’s encryption
implemented by the wave plate, after which Bob sends it to Alice. Alice then decrypts
it by using QMAC recovery. In our experiment, we installed the QMAC recovery stage
between Bob’s encryption and Bob’s decryption for convenience of implementation; it
is marked by yellow shading in Figure 3a. Finally, after Bob’s decryption, the swap test
that verifies the agreement of the two photon sequences is performed using the Hong–
Ou–Mandel interferometer. The Hong–Ou–Mandel dip confirms the similarity between
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the two photons, which is the last step of the implementation of the proposed quantum
message authentication protocol.

Figure 3. Schematic representation of the experimental setup for the quantum message authentication protocol and an
existential forgery. (a) Quantum message authentication protocol: the blue box represents Alice’s operation, and the green
box represents Bob’s operation. mi is the rotation angle that indicates message. ki

AB, ki
H , si, and bi are the same as in Figure 1.

(b) Existential forgery: Eve can attempt forgery on the quantum message authentication code (QMAC) state pair using
Pauli operators when Alice transmits the encrypted QMAC state pair to Bob.

In other words, the realization of the quantum three-pass protocol, quantum encryp-
tion scheme, and the robustness of Gao’s forgery can be confirmed by the Hong–Ou–
Mandel Dip. Hong–Ou–Mandel interference is the same as the destructive swap test [40].
Because the destructive swap test does not have an ancilla qubit unlike the controlled swap
test, the two quantum states that are compared are directly measured and collapsed. For
this reason, we performed only the first swap test in the two swap tests shown in Figure
1. To implement the second swap test in Figure 1 using Hong–Ou–Mandel interference,
there is a need for more resources (e.g., single photons and wave plates) than the current
experimental setup. There are other ways to implement a second swap test by using an
experimental controlled swap gate that was recently implemented [51].

We tested the feasibility of our protocol with the experimental setup for the case
without Gao’s forgery. First, we verified that the quantum three-pass protocol (Figure 3)
was working correctly. As shown in Figure 4a, when the half-wave plate H1′s angle si/4
is −120

◦
, the coincidence count reaches its minimum at the half-wave plate H3′s angles

−si/4 = 30
◦
, 120

◦
as expected. This indicates that Alice generates the QMAC state by

applying rotation operator Ry
(−120

◦)
and then uses rotation operator Ry

(−120
◦ ± πn/2

)
to recover the QMAC state, where n is an integer, because the period of the half-wave plate
is π/2. The red plots represent the averages of the coincidence counts over one second. In
Figure 4b, we recognize that Bob’s encryption and decryption also work well. When the
half-wave plate H2′s angle bi/4 is −60

◦
, the Hong–Ou–Mandel dip occurs at the half-wave

plate H4′s angles −bi/4 = 60
◦
, 150

◦
. Bob uses rotation operator Ry

(−60
◦)

to re-encrypt
the QMAC state, and then he decrypts the re-encrypted QMAC state by applying rotation
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operator Ry
(
60

◦ ± πn/2
)
, where n is an integer. In Figure 4, the experimental data are the

average of 10 measurements per 10 s.

Figure 4. Coincidence counts of the quantum three-pass protocol. The red plots indicate the average of the coincidence
counts for one second. The red bars indicate the standard deviation of the coincidence counts for each point. The blue solid
line indicates the sine curve fitted to the data. (a) Test for QMAC generation and recovery. (b) Test for Bob’s encryption and
decryption.

During this time, the averages of single counts were 27, 000 and 27, 000, respectively,
and coincidence windows are 5 ns; the maximum value of the coincidence counts after
accidental coincidences were removed was 127, and the minimum value was 2.

Second, we tested the quantum encryption and decryption. If Alice and Bob are proper
users who previously shared secret key sequences KAB and KH then the quantum message
states |M〉 u and |M′〉 d should be identical. Bob can check the correspondence of these
states using the Hong–Ou–Mandel interferometer [38,39]. Figure 4 shows the experimental
results for Alice’s quantum encryption and Bob’s quantum decryption. Pc is the coincidence
probability of Hong–Ou–Mandel interference, and Pc = 1 − Pc represents the probability
of two quantum message states matching. Figure 5a,b represents whether operator H
exists or not, respectively. Although theoretically, the red blocks on the diagonal in both
cases should be 100%, experimentally they are greater than 82% and 76%, respectively.
On the other hand, the blue blocks off the diagonal, when Alice and Bob share different
secret keys ki

AB and ki
H , |M〉 u and |M′〉 d have different quantum states, and the respective

probabilities are less than 41% and less than 46%. Considering that theoretically Pc can
only have less than 50%, the measurement results prove that our scheme works well.
From these results, we can conclude that the encryption operates properly because Pc is
greater than 76% in the case of the same operators and Pc is less than 46% in the case of
different operators regardless of the existence of operator H. The above theoretical values
are derived from the success probability ε2 =

∣∣d〈ψ′
i

∣∣ψi
〉

u

∣∣2 of the swap test, with |ψi〉 u =

UiRy(mi)|0〉 (i)u ,
∣∣ψ′

i
〉

d = U′
i Ry(mi)|0〉 (i)d , Ui, U′

i ∈ {
I, σx, σy, σz, H, σx H, σyH, σz H

}
, and

mi = 135
◦
. Errors in the experiment shown in Figure 5 could be due to an inherent error of

the swap test, birefringence in the beam splitter, and/or systematic errors in the wave-plate
setting [38,39,42,45].

From the measurement results given in Figures 4 and 5, we have demonstrated that
our implementation succeeds in realizing the proposed protocol. Although there are some
errors due to unavoidable imperfections of the realization, our practical implementation
still performs message integrity and message origin authentication successfully only if our
protocol is applied to multiple bits sequentially and analyzed statistically.
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Figure 5. Pc is the coincidence probability of the quantum encryption scheme with a single qubit unitary operator for
quantum message authentication. Pc = 1 − Pc represents the probability of two quantum message states being matched. In
(a), Pc corresponds to the quantum encryption scheme with a single qubit unitary operator that Alice and Bob can select
when secret key ki

H of Alice and Bob is zero. In (b), Pc corresponds to every type of quantum encryption with single qubit
unitary operator that Alice and Bob can select when secret key ki

H of Alice and Bob is one. In this experiment, message mi

was set to 135
◦
.

Gao et al. demonstrated the possibility of existential forgery in the case of quantum
message authentication that includes a swap test [34,46,48]. In other words, if the QMAC
state pair that Alice generates is not encrypted, Alice cannot detect Eve’s intervention. In
the quantum encryption σki

AB
Hki

H in Equation (5), the secret key ki
AB ∈ {00, 01, 10, 11}

and ki
H ∈ {0, 1} correspond to the Pauli operator σki

AB
∈ {I, σx, σy, σz

}
and the operator

Hki
AB ∈ {I, H} of quantum encryption with a single qubit unitary operator, respectively.

The two bits information ei ∈ {00, 01, 10, 11} corresponds to the Pauli operator σei ∈{
I, σx, σy, σz

}
for Gao’s Attack. For example, if ki

AB = 01, ki
H = 0, an encrypted QMAC

state pair is

|M〉 u

[
σ01H0|S〉 d]= |M〉 u[σx|S〉 d

]
(12)

In addition, the forged QMAC state pair by Eve’s Pauli operator σ10
(
= σy

)
is

σ10|M〉 u

[
σ10σ01H0|S〉 d

]
= σy|M〉 u

[
σyσx|S〉 d

]
(13)

The forged QMAC state pair of Equation (13) transforms into the following state after
a decryption process:

σ10|M〉 u

[(
H†
)0

σ01σ10σ01H0|S〉 d

]
= σy|M〉 u

[
σxσyσx|S〉 d

]
= σy|M〉 u

[−σy|S〉 d
]
.

(14)
Assuming that |M〉 u and |S〉 d of Equation (14) are the same, Eve succeeded in attack-

ing because the Pauli operator σy remained in the first and second qubits of Equation (14).
This is the first method to forge the quantum message code or quantum signature pair
proposed by Gao et al. [34,46,48].

As another example, if ki
AB = 01, ki

H = 1, an encrypted QMAC state pair is

|M〉 u

[
σ01H1|S〉 d]= |M〉 u[σxH|S〉 d

]
. (15)

The forged QMAC state pair by Eve’s Pauli operator σ10
(
= σy

)
is

σ10|M〉 u

[
σ10σ01H1|S〉 d]= σy|M〉 u[σyσxH|S〉 d

]
. (16)
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The forged QMAC state pair transforms into the following state after a decryption
process:

σ10|M〉u

[(
H†)1

σ01σ10σ01H1|S〉d

]
= σy|M〉 u

[
H†σxσyσxH|S〉 d]= σy|M〉 1[− σx|S〉 2

]
(17)

Despite the assumption that |M〉 u and |S〉 d of Equation (17) are the same, Eve’s
attack is unsuccessful. The reason is that the Pauli operators σy and σx remained in the
first and second qubits of Equation (17), respectively. This is the (I, H)-type quantum
encryption proposed to overcome Gao’s forgery [47]. Zhang et al., however, showed
that the (I, H)-type quantum encryption is not secure for improved Gao’s forgery [49,50].
We [19,34] overcome the original Gao’s forgery [46] or the improved Gao’s forgery [49,50]
with quantum encryption σki

AB
Hki

H , which randomly uses operator H. Here, the number of

all possible cases of quantum encryption σki
AB

Hki
H ∈ {I, σx, σy, σz, H, σxH, σyH, σzH

}
is 8. Furthermore, except σei = I, there are three possible ways that Eve can attack with σei .
Therefore, there are a total of 24 forgery cases using the Pauli operator σei in the encrypted

QMAC state pair |M〉 u

[
σki

AB
Hki

H |S〉 d

]
of Equation (5) in the manuscript, Table 1 lists

these 24 cases, and Figure 6 shows the results of the experiment with the existential forgery
using the Pauli operator for 12 cases in Table 1.

Table 1. A total of 24 forgery cases using the Pauli operator ei ∈
{

σx, σy, σz
}

in the encrypted QMAC

state pair | M〉 u

[
σki

AB
Hki

H |S〉 d

]
. Here, σei ∈

{
σx, σy, σz

}
, σki

AB
∈ {I, σx, σy, σz

}
, and Hki

H ∈ {I, H}.
We assume that the quantum states | M〉 u and |S〉 d are the same. The yellow shade represents the
case where the operator σz is not used for quantum encryption or Gao’s forgery.

Hki
H σki

AB
σei Up(u) Qubit Down(d) Qubit

H0 = I

σ00 = I
σ01 = σx σx| M〉 u σx| S〉 d

σ10 = σy σy| M〉 u σy| S〉 d

σ11 = σz σz| M〉 u σz| S〉 d

σ01 = σx

σ01 = σx σx| M〉 u σxσxσx| S〉 d = σx| S〉 d

σ10 = σy σy| M〉 u σxσyσx| S〉 d = −σy| S〉 d

σ11 = σz σz| M〉 u σxσzσx| S〉 d = −σz| S〉 d

σ10 = σy
σ01 = σx σx| M〉 u σyσxσy| S〉 d = −σx| S〉 d

σ10 = σy σy| M〉 u σyσyσy| S〉 d = σy| S〉 d

σ11 = σz σz| M〉 u σyσzσy| S〉 d = −σz| S〉 d

σ11 = σz

σ01 = σx σx| M〉 u σzσxσz| S〉 d = −σx | S〉 d

σ10 = σy σy| M〉 u σzσyσz| S〉 d = −σy| S〉 d

σ11 = σz σz| M〉 u σzσzσz| S〉 d = σz| S〉 d

H1 = H

σ00 = I
σ01 = σx σx| M〉 u H†σx H| S〉 d = σz| S〉 d

σ10 = σy σy| M〉 u H†σy H| S〉 d = σx | S〉 d

σ11 = σz σz| M〉 u H†σz H| S〉 d = σy| S〉 d

σ01 = σx

σ01 = σx σx| M〉 u H†σxσxσx H| S〉 d = σz| S〉 d

σ10 = σy σy| M〉 u H†σxσyσx H| S〉 d = −σx | S〉 d

σ11 = σz σz| M〉 u H†σxσzσx H| S〉 d = −σy| S〉 d

σ10 = σy
σ01 = σx σx| M〉 u H†σyσxσy H| S〉 d = −σz| S〉 d

σ10 = σy σy| M〉 u H†σyσyσy H| S〉 d = σx | S〉 d

σ11 = σz σz| M〉 u H†σyσzσy H| S〉 d = −σy| S〉 d

σ11 = σz

σ01 = σx σx| M〉 u H†σzσxσz H| S〉 d = −σz| S〉 d

σ10 = σy σy| M〉 u H†σzσyσz H| S〉 d = −σx | S〉 d

σ11 = σz σz| M〉 u H†σzσzσz H| S〉 d = σy| S〉 d
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Figure 6. Coincidence probability by existential forgery. Red bars denote the case where Eve
attempts original Gao’s Forgery when operator H is not used in the quantum encryption scheme(

ki
H = 0

)
. The blue bars show the case of attempting improved Gao’s Forgery when operator H

is used in the quantum encryption scheme
(

ki
H = 1

)
. Pc is the coincidence probability. The black

bars indicate the standard deviation of the coincidence counts for 1 s. ki
AB is the same as in Figure 1.

ei ∈ {00, 01, 10, 11} corresponds to the Pauli operator σei ∈
{

I, σx, σy, σz
}

that Eve uses to attempt
Gao’s Forgery 1.

5. Conclusions and Discussion

We have proposed a new quantum message authentication protocol including quan-
tum encryption for improving security against an existential forgery. Additionally, a
practical implementation of the proposed protocol has been developed and its robustness
against existential forgery has been verified experimentally. It consists of wave plates and
the Hong–Ou–Mandel interferometer. The measurement results for each function—QMAC
generation and recovery, Bob’s encryption and decryption, and quantum encryption and
decryption—successfully show the feasibility of robustness against Gao’s forgeries.

The system loss and the optical channel loss, etc., should be considered when applying
our protocol to real implementation. Let us assume that Alice and Bob use the single
photon detector with 20% efficiency and are connected by 30-km single-mode fiber with
0.2 dB/km loss. In a result, the total efficiency becomes 0.08% because the qubits are pass
through total 100 km, and if the QMAC pairs are generated at 100 MHz, Bob can receive
8 × 104 pairs/s. As we mentioned in Section 2, the size of the quantum state sequence
should be more than 15. Therefore, Alice must generate at least 1.9 × 104 QMAC pairs, i.e.,(
1.9 × 104)× 0.08% = 15 that is quite implementable number, and send them to Bob to

ensure this accuracy of the swap test.
Our protocol can be used as an arbitrated quantum signature protocol if a trusted

center (TC) is added in the communication channel used by Alice and Bob [19]. In ad-
dition, if freshness property is added to our protocol, it can be used for quantum entity
authentication as well [1,52]. In conclusion, we have proposed the base technology for a
complete quantum cryptosystem that provides confidentiality, authentication, integrity,
and nonrepudiation.
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Abstract: Recently, a method of engineering the quantum states with a nonlinear interferometer was
proposed to achieve precise state engineering for near-ideal single-mode operation and near-unity
efficiency (L. Cui et al., Phys. Rev. A 102, 033718 (2020)), and the high-purity bi-photon states can
be created without degrading brightness and collection efficiency. Here, we study the coarse or fine
tunability of the nonlinear interference method to match constructive interference patterns into a
transmission window of standard 100-GHz DWDM channels. The joint spectral intensity spectrum is
measured for various conditions of the nonlinear interference effects. We show that the method has
coarse- and fine-tuning ability while maintaining its high spectral purity. We expect that our results
expand the usefulness of the nonlinear interference method. The photon-pair generation engineered
via this method will be an excellent practical source of the quantum information process.

Keywords: quantum state engineering; nonlinear interferometer; spontaneous four-wave mixing

1. Introduction

Modal purity or indistinguishability is an essential factor in achieving high visibility
of quantum interference for quantum photonic applications such as quantum teleporta-
tion [1] and linear optical quantum computing [2]. High visibility yields high operation
fidelity and a high probability of success in quantum information processing using non-
classical states of single photons. Among many approaches to obtain non-classical states
of photons, spontaneous four-wave mixing (SFWM) has been intensively investigated for
the frequency correlated photon-pair generation and heralded single-photon states [3].
However, frequency-correlated photon pairs by the spontaneous parametric process have
complicated two-photon states and have a multi-mode nature [4,5]. The multi-mode nature
makes photons distinguishable, degrading the quantum interference’s visibility. Therefore,
spectrally uncorrelated photon pairs with a factorable joint spectral amplitude (JSA) can
induce high visibility of quantum interference [4,6] with high indistinguishability and high
spectral purity.

The simplest way to obtain spectrally uncorrelated photon-pair is the spectral filtering
method with narrow-band filters, but this method can degrade the brightness and photon-
number purity due to the optical loss by the filters [7]. The other ways for spectrally
uncorrelated photons comes from engineering the dispersion of a parametric medium [8,9].
In spontaneous parametric down-conversion, near unity spectral purity can be achieved
with a periodically poled structure [10–12], and SFWM has been tested as well with similar
techniques [8,13–17]. While most of the methods are successful to some extent, many
sources are expensive to make, not easy to implement, or limited to a specific wavelength
range of operation due to strict requirements for dispersion and phase matching [18].

Recently, a new method of engineering the quantum states with nonlinear interference
(NLI) is proposed and demonstrated [18–20]. The NLI system consists of two identical
nonlinear media and one linear dispersive medium, which is placed in between them. Due
to the phase shift induced by the linear dispersive medium, the joint spectral intensity
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(JSI) function of bi-photons shows oscillating interference patterns. By adjusting the NLI
properties, the authors demonstrated the improved quantum properties of single-photon,
spectral correlation, and Hong-Ou-Mandel interference using commercially available
optical fibers [19,20]. The author used programmable and tunable filters as the signal and
idler filters to reduce noise photons other than the generated photon pair and to have high
spectral purity.

Optical fiber systems can guarantee the interoperability between systems and im-
prove their price competitiveness through the standardization of optical communications
technology. The standardization of optical frequency channels is necessary for wave-
length division multiplexing and is defined by the International Telecommunication Union-
Telecommunication standardization sector (ITU-T). Note that the use of customized filters
or optical devices raises the entire system’s price and makes system development difficult.
Using photons on the ITU-T grids makes quantum technologies simple, as most optical de-
vices in current telecommunication systems have frequency channels specified on the ITU-T
grids and are commercially available with a reasonable price, high transmittance, narrow
bandwidth, well-defined wavelength, etc. The center wavelength of the constructive inter-
ference is mainly determined by the length of the linear medium of an NLI system [18–20].
A carefully selected linear medium can make one of the constructive interference modes
in a transmission window of DWDM filters without degrading brightness and collection
efficiency to obtain high spectral purity. For the case of using single-mode fiber (SMF)
as a dispersive medium, only one constructive island can be matched on the ITU grid
as ΔkSMF of SMF is quadratically dependent on the detuning of pairs from the pump
frequency (Δωs(i) = |ωp − ωs(i)|) [18,21]. In order to match all islands on the ITU grids,
ΔkSMF should be linearly proportional to the detuning, and this requires the replacement
of SMF with a device having linear ΔkSMF on the detuning [18]. Having pairs over the
several ITU-T grids would be helpful for complex multi-photon interference experiments
or multi-wavelength channel QKD.

A simple NLI system consists of two dispersion-shifted fiber (DSF) segments as a
nonlinear pair generation medium and a section of standard SMF (Corning SMF-28), which
is placed between two DSF segments as a linear dispersive medium. The NLI system can
be extended by repeatedly adding additional sections of SMF and DSF, and the number of
stage (N) is the number of DSF sections in the NLI system. For the case of pumping in the
C-band (1530–1560 nm) and using a sufficiently long fiber, C-band photon-pair generation
in SMF is negligible for a signal and idler detuning of 400 GHz (~3.2 nm) [21]. Ignoring the
propagation loss of fibers and pump chirping, the bi-photon state amplitude through an
N-stage NLI system can be calculated by [18],

FNLI(ωs, ωi) = FDSF(ωs,ωi)×
[

N

∑
n=1

exp{i(n − 1)(ΔkDSFLDSF + ΔkSMFLSMF)}
]

(1)

where FDSF(ωs,ωi) is the JSA at the signal (ωs) and idler (ωi) frequency generated by
SFWM in a single DSF section, ΔkDSF (ΔkSMF) is the phase mismatch between signal, idler,
and two pump fields in DSF (SMF), LDSF (LSMF) is the length of DSF (SMF), respectively.
Each n-th segment of DSF generates an identical bi-photon state to each other, and the
phase shift of ΔkDSFLDSF + ΔkSMFLSMF induces the quantum interference in the bi-photon
state [18]. From Equation (1), the center wavelength of a constructive interference pattern
is tunable by changing ΔkDSF, ΔkSMF, LDSF, LSMF, and N. The physical parameters such as
LDSF, LSMF, and N are variable by changing the length of DSF and SMF and the number of
DSF and SMF sections in the NLI system. The optical parameters of ΔkDSF and ΔkSMF are
controllable with the pump wavelength, types of fiber, and temperature.

Here, we investigate the coarse and fine tunability of the nonlinear interference
method for creating bi-photon states with high spectral purity. The stimulated-emission-
based JSI, which is the absolute square of JSA, measurement technique [22] is used for fast
measurements of the JSI spectra, and the measured results are compared to the theoretical
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prediction, which is calculated using Equation (1). We change the pump wavelength,
length of DSF and SMF sections, number of stages, and temperature. The coarse and
fine tunability of the NLI method is experimentally demonstrated to control a bright JSI
pattern to enter into one of the 100-GHz DWDM filters with the ITU-T channel grid. These
results prove that the study in this paper enriches the usefulness and practicality of the
NLI method for the efficient photon-pair generation with high spectral purity.

2. Measurement Setup

Figure 1 shows the experimental setup for the stimulated-emission-based JSI mea-
surements. The pump laser is a mode-locked femtosecond (fs) pulse laser (CALMAR
FPL-02CTF) with a repetition rate of 18 MHz. Femtosecond pulses are spectrally filtered by
a 100-GHz DWDM filter, which has a flat-top spectral shape with about 0.6-nm full-width
at half-maximum (FWHM) bandwidth. After filtering, pulses are amplified by an Erbium-
Doped Fiber Amplifier (EDFA) and filtered again by DWDM filter to reduce amplified
spontaneous emission (ASE) noise from EDFA (not included in Figure 1). The final pump
pulse width is about 15 ps and effective bandwidth is about 0.5 nm. The pump peak power
(Pp) is about 500 mW, and the seed (or signal) laser is a continuous wave laser with a power
of about 10 mW. The lights from the pump and seed lasers are combined by a 200-GHz
DWDM filter and injected into an NLI sample. The NLI samples consist of N sections of
DSF and N-1 sections of SMF. The length of the DSF and SMF sections is measured using
the time-of-flight measurement technique [23]. The polarization states of the pump and
seed lights are matched using a polarization controller and an in-line polarizer. The pump
light is filtered via a 200-GHz DWDM filter and monitored using an optical power meter
to maximize the transmitted power through the in-line polarizer. We discretely vary the
wavelength of the seed light while measuring the power of the seed, and generated idler
lights using an optical spectrum analyzer. To clearly observe the trend in the shape and
position of the JSI spectrum while changing several experimental conditions, we show the
normalized spectra. The generated idler power is divided by the input signal power to
compensate the system’s wavelength-dependent transmittance, and then we normalize it
to the maximum value from each measurement’s spectrum.

 

Figure 1. Experimental setup for stimulated-emission-based joint spectral intensity measurement. PUMP: A 15-ps pulse
laser with a repetition rate of 18 MHz, PROBE: CW laser for seed and its wavelength is swept during measurement, PC:
polarization controller, C: 200 GHz DWDM filter for pump and seed combining, NLI: nonlinear interferometer sample, ILP:
in-line polarizer, F: 200 GHz DWDM filter for pump filtering, PM: power meter for pump power monitoring, OSA: optical
spectrum analyzer for measuring seed power and generated signal spectrum.

The spectral purity of bi-photons might be changed according to the pump bandwidth
(σp), but under our experimental conditions, the FWHM pump bandwidth is fixed. Since
the pump bandwidth is narrower than that of 100-GHz DWDM filters, we selected the
100-GHz DWDM filters as the target filters of signal/idler photons. In addition, since
Raman noise photons increase further away from the pump frequency [24], we decided
that 100-GHz DWDM filters, whose center frequency spacing from the pump is ±400 GHz,
were the target filters for reducing the Raman noise through the NLI optical fiber system.
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3. Results

3.1. Pump Wavelength

First, we test the effect of the pump wavelength (λp) on the NLI patterns. When
we change the pump wavelength, ΔkDSF and ΔkSMF are varied, simultaneously. The
NLI system under this test consists of two 100-m DSF sections and a 50-m SMF section
located between two DSF sections. Figure 2a–c show the measured JSIs for various pump
wavelengths, λp = [(a) 1550.92 nm (ITU ch.33), (b) 1555.75 nm (ITU ch.27), (c) 1560.61 nm
(ITU ch.21)]. The patterns show the constructive and destructive interference patterns
as an island arc along the diagonal dashed white line as seen in Figure 2a, and the first
bright island (m = 1) is about 400 GHz away from the pump frequency. The JSI spectrum
in Figure 2a–c looks very similar to each other for various λp’s, but as seen in Figure 2d,
the normalized diagonal JSI spectrum (like the dotted white line in Figure 2a) against
the frequency detuning from the pump frequency shows the slow JSI shift towards λp as
λp increases.

 
Figure 2. The measured joint spectral intensity (JSI) for various pump wavelengths, (a) 1550.92 nm, (b) 1555.75 nm, and (c)
1560.61 nm. (d) The plot of the diagonal line (white dotted line in (a)). (e) Peak frequency against the pump wavelength for
m = 1, 2, and 3. Lines are theoretical predictions extracted from the calculated JSI by using Equation (1).
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Figure 2e shows the difference between the pump center frequency and the peak
frequency of the first, second, and third islands (m = 1, 2, and 3, respectively) against λp. The
lines are the theoretical predictions extracted from the calculated JSI using Equation (1). In
the JSI calculation, the zero group-velocity-dispersion (GVD) wavelength of DSF (λ0,DSF) is
1555.5 nm, and its dispersion slope is 71.5 s/m3. The zero GVD wavelength of SMF (λ0,SMF)
is known to be about 1300 nm, and the dispersion of SMF at 1550 nm used in the calculation
is 18 × 10−6 s/m2 with a dispersion slope of 53.3 s/m3. As seen in Figure 2e, the measured
peak shift rates with increasing λp are approximately −2.5 GHz/nm, −3.6 GHz/nm, and
−4.3 GHz/nm for the interference mode number m = 1, 2, and 3, respectively. As the mode
number, m, increases, the peak frequency moves faster towards the pump frequency with
increasing λp, and the measured results match well with the theoretical predictions. This
slow frequency shift yields the fine tunability of the center frequency of islands.

3.2. Length of Nonlinear Pair Generation Medium

Second, we test the effect of the DSF length on the NLI patterns. In references [18–20],
the authors assume that the wave vector mismatch goes to zero to ensure the satisfaction
of the phase matching conditions. This study, however, considers the case where the wave
vector mismatch is small but not negligible. In this case, we expect fine changes in NLI
with varying the DSF length.

The NLI system in this test consists of two equal-length DSF sections of various lengths
and a 50-m SMF section located between two DSF sections, and λp is fixed at 1550.92 nm.
Figure 3a–c show the measured JSIs for various DSF lengths (LDSF), and Figure 3d is the
normalized diagonal JSI spectra for various DSF lengths against the frequency detuning
from the pump frequency. As seen in Figure 3d, the peak frequency gets away from the
pump frequency as LDSF becomes longer. Figure 3e is the difference between the pump
center frequency and the peak frequency of the first, second, and third islands (m = 1, 2,
and 3, respectively) against the DSF length. The frequency shift rates with increasing LDSF
are approximately 0.11322 GHz/m, 0.11953 GHz/m, and 0.14266 GHz/m for m = 1, 2, and
3, respectively. The lines are the theoretical predictions using the identical parameters as in
Section 3.1 except the DSF lengths and the pump wavelength. The frequency difference
slowly grows as increasing LDSF if we consider the phase shift induced in DSF (ΔkDSFLDSF)
(solid lines in Figure 3e), meanwhile, the difference is constant if we neglect the DSF phase
shift (dashed lines). The measured results match well with the theoretical predictions with
the phase shift in DSF. This slow frequency shift may induce the fine-tuning ability of the
center frequency of islands.

In addition, Figure 3d shows the envelope changes of the pair-generation spectrum
for different DSF lengths. It is known that the pair-generation rate is proportional to the
square of the SFWM medium length. Recently, we investigate the length dependence of
the pair-generation bandwidth, showing that the longer the SFWM length is, the narrower
the spectrum bandwidth is [21]. Therefore, a long DSF nonlinear medium can have a large
maximum generation rate but a rapidly degraded generation rate at a frequency away
from the pump frequency, as seen in Figure 3d. We should carefully select the DSF length
for balancing both the bandwidth and pair-generation rate even though the LDSF is the
selectable parameter for the fine-tuning of peak frequency.
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Figure 3. The measured JSI for various dispersion-shifted fiber (DSF) lengths, (a) 100 m, (b) 150 m, and (c) 200 m. (d) The
plot of the diagonal lines. Dotted lines are measured single stage (N = 1, non-interference) JSI case with same length. (e)
Peak frequency against the DSF length for m = 1, 2, and 3. Lines are theoretical predictions extracted from the calculated JSI
by using Equation (1) with (solid lines) and without (dashed lines) the phase shift induced in DSF (ΔkDSFLDSF).

3.3. Length of Linear Dispersive Medium

The change of LSMF causes dramatic effects on the NLI patterns. In this test, λp is
fixed (1550.92 nm), and LDSF is 100 m. Figure 4a–d show the measured JSI for various
SMF lengths. The spectra right and above the JSI in Figure 4a indicate the transmittance
spectra of idler and signal filters, respectively. The filter type used in this study is the
DWDM filters whose center frequencies are detuned by 400 GHz from the pump frequency,
and its 3-dB bandwidth is about 0.6 nm (~75 GHz). Insets in Figure 4a–d show the JSI
islands after passing through the signal/idler filters for m = 1, 2, 3, and 4, respectively.
Note that the m = 0 islands in Figure 4b–d is not shown as the m = 0 islands end before
200 GHz. Figure 4e shows the differences between the pump center frequency and the
peak frequency for m = 1, 2, 3, and 4 islands against the SMF length. The maximum island
frequency gets closer as the SMF length becomes longer. The solid curved lines are the
theoretical predictions using the identical parameters as in Section 3.1 except the DSF
lengths and SMF lengths with the phase shift induced in DSF. The frequency difference
decreases rapidly as increasing LSMF. The measured results match well with the theoretical
predictions. This fast frequency shift yields the coarse-tuning ability of the center frequency
of islands.
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Figure 4. The measured JSI for various SMF lengths, (a) 50 m, (b) 94 m, (c) 140 m, and (d) 185 m.
Spectra right side and above JSI in (a) are signal/idler filters (100-GHz DWDM filter (3dB-bandwidth
~80 GHz)). Inset in each JSI indicates the filtered JSI after the signal/idler filters within filter
bandwidth. (e) Frequency difference against the SMF length for m = 1, 2, 3, and 4. Lines are
theoretical predictions extracted from the calculated JSI by using Equation (1).

The maximum island frequency can be centered at the center of the 100-GHz DWDM
filter frequency detuned by 400 GHz from the pump frequency if the condition,
ΔkDSFLDSF + ΔkSMFLSMF = 2 mπ, can be satisfied [18]. The first, second, third, and fourth
islands can be within the signal/idler filter transmittance bandwidth if the SMF length is
about 50 m, 90 m, 135 m, and 180 m, respectively. The m = 1 island in Figure 4a is elongated
diagonally. The JSI bandwidth is wider than the filter bandwidth so that the brightness
and collection efficiency, i.e., heralding efficiency, will be degraded. The m = 4 island in
Figure 4d, however, is almost round, indicating high spectral purity. The spectral purity (P)
can be extracted from the measured data using the Schmidt decomposition method [22].
The extracted p values from the data are p = 0.74, 0.85, 0.95, and 0.91 for inset of (a), (b), (c),
and (d), respectively. Therefore, we could obtain the photon pairs with high spectral purity
by choosing the proper length of SMF.
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3.4. Number of Stages

The change in the number of NLI stages (N) has been demonstrated in reference 18
(N = 2) and 19 (N = 3) under different NLI conditions, such as the DSF and SMF lengths.
Here, we increase the stage number under identical NLI conditions and measure the JSI
spectrum and its bandwidth. As seen in Figure 5a–d, varying the stage number does not
change the maximum island frequency but the FWHM bandwidth of islands. λp is fixed at
1550.92 nm, LDSF is 100 m, and LSMF is 94 m. This condition makes the second island away
from the pump frequency by 400 GHz, as seen in Figure 4b. Figure 5a–d are the measured
JSI for various Ns. Insets show the JSI filtered by the signal/idler filters. Note that the
second island is anchored at the center of the signal and idler DWDM filters even if we
change the stage number from N = 2 to N = 5.

 
Figure 5. The measured JSI for various number of stage (i.e., number of DSF sample): (a) 2, (b) 3, (c) 4, and (d) 5. Inset
indicates JSI after signal/idler filter which is 400-GHz detuned 100-GHz DWDM filter (3dB-bandwidth ~ 80 GHz)). (e) The
plot of the diagonal line. The black dashed line indicates signal/idler filter (flat-top spectral shape). (f) Full-Width at
Half-Maximum (FWHM) bandwidth of each peak against the number of stages. Lines are theoretical predictions extracted
from the calculated JSI by using Equation (1).

Figure 5e is the normalized diagonal JSI spectra for various stage numbers against the
frequency detuning from the pump frequency. The black dashed line indicates the signal
filter spectrum, and the m = 2 island is centered on the filter spectrum. The normalized di-
agonal JSI spectra in Figure 5e show that the bandwidth of each island gets narrower as the
stage number increases, but the peak frequency is stationary. Figure 5f shows the FWHM
bandwidth of each island against the stage number. The curved lines are the theoretical
predictions with considering the DSF phase shift. The FWHM bandwidth decreases as the
stage number increases. The measured data matches well with the theoretical predictions
except for the N = 5 case. We believe that the non-uniformity of the DSF sections causes
this discrepancy, but further study is necessary. The measured p values are 0.82, 0.96, 0.98,
and 0.97 for N = 2, 3, 4, and 5, respectively. Therefore, we could obtain the photon pairs
with high spectral purity by adding the proper NLI stages.
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3.5. Cooling

Finally, we test the temperature effects on the NLI method with the NLI system of
N = 4 in Section 3.4. Since the silica material of optical fibers can generate noise photons by
the Spontaneous Raman Scattering (SpRS) process, the SFWM photon generation medium
needs cooling to suppress SpRS. The lower the temperature, the less SpRS occurs [25,26],
but cooling the fiber system down to liquid nitrogen temperature is the best cost-effective
way. When the optical fiber is cooled down, some properties of optical fibers, such as the
zero GVD wavelength, are changed. For the DSF case, λ0,DSF is changed by −4 nm at liquid
nitrogen temperature [26], and we assume that λ0,SMF also shifts by −4 nm as the DSF and
SMF are made of silica. The dispersion slopes of DSF and SMF are not changed. Figure 6a,b
are the theoretical predictions of the JSI at the signal/idler filter frequencies detuned by
400 GHz from the pump frequency, and (c), (d) are the measured JSI. Figure 6a,c are the
cases at room temperature with λp= 1550.92 nm. The peak center is placed at around
399.5 GHz in the simulation results and 396 GHz in the experimental results. This peak
center shifts if we cool down the temperature to liquid nitrogen temperature. λ0,DSF and
λ0,SMF are changed from 1555.5 nm to 1551.5 nm and from 1314 nm to 1310 nm, respectively,
without changing the dispersion slope. As seen in Figure 6b,d, the peak center shifts to
around 393.5 GHz (−6 GHz changed) in the simulation and 390.5 GHz (−5.5 GHz) in the
experiment, respectively. As the shifted island due to cooling is within the signal/idler filter
bandwidth and the shape of JSI is almost identical, the spectral purities in the simulation
and experiment have almost no change.

Figure 6. The calculated (a,b) and measured (c,d) JSIs at (a,c) room temperature and (b,d) liquid
nitrogen cooled with λp = 1550.92 nm. The calculation of cooling condition is carried out with the
assumption that λ0 of DSF and SMF are shifted −4 nm and dispersion slopes are not changed. The
x- and y-axes are shown ±40 GHz from filter center which is equivalent to the 3-dB bandwidth of
signal/idler filter.

4. Conclusions

Here, we investigate the coarse and fine tunability and cooling effect of the nonlinear
interferometer method. The constructive interference islands are controllable by changing
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the properties of the nonlinear pair generation medium and linear dispersive medium,
such as ΔkDSF, ΔkSMF, LDSF, LSMF, and the number of stages (N). We succeed in adjusting
the peak frequency of constructive interference patterns into a transmission window of
commercial 100-GHz DWDM filters. As demonstrated in reference 18, 19, and 20, the
dominant parameter is LSMF. The peak frequency of a constructive interference island can
be coarsely placed near a target wavelength by adjusting the length of SMF. In addition,
the pump wavelength and length of DSF can be used for fine-tuning. To match the peak
frequency with a DWDM filter center frequency, we should consider the phase shift induced
in DSF (ΔkDSFLDSF). The selection of LDSF should be carefully considered as not only the
peak frequency but also the pair-generation rate and pair-generation spectral bandwidth
are also related to LDSF.

Finally, we achieved high spectral purity by selecting an appropriate number of stages
(N) and interference mode number (m). The demonstrated methods show the coarse- and
fine-tuning ability to match the peak frequency of a constructive interference island and the
center frequency of a commercial filter while maintaining high spectral purity. We think
that the demonstrated methods in this study expand the usefulness of the NLI method. The
generated photon pairs with the engineered quantum state can be an excellent practical
source of quantum information processing involving quantum interference.
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Abstract: In the past twenty years many experiments have demonstrated that quantum states of
light can be used for secure data transfer, despite the presence of many noise sources. In this paper
we investigate, both theoretically and experimentally, the role played by a statistically-distributed
asymmetric amount of loss in the degradation of nonclassical photon-number correlations between
the two parties of multimode twin-beam states in the mesoscopic intensity regime. To be as close
as possible to realistic scenarios, we consider two different statistical distributions of such a loss,
a Gaussian distribution and a log-normal one. The results achieved in the two cases show to what
extent the involved parameters, both those connected to loss and those describing the employed
states of light, preserve nonclassicality.

Keywords: mesoscopic quantum states of light; nonclassical photon-number correlations; lossy
transmission channels

1. Introduction

Since the seminal paper in which Bennett and Brassard dealt with the transmission of quantum
states and cryptographic keys through 0.3-m-long free-space air [1], Quantum Communication over
long distances has received a lot of interest. In the past two decades, many experiments have
been performed using both optical fibers [2–4] and free-space [5–7] channels. Starting from the
successful implementation of ground-to-ground atmospheric links [8,9], some most recent experiments
have also involved a satellite link [10–12]. Despite all these results, the development of a real
global communication network in free-space propagation is still prevented by the atmospheric
turbulence, which acts as a temporal and spatial variation of the air refraction index, thus varying
the transmittance of the links in a turbulent way. In order to understand the behavior of quantum
states of light propagating through atmospheric links, a deep investigation of quantum channels is
required [13]. In this respect, quite recent works have introduced different fluctuation loss models
capable of accurately describe some experimental results [14,15]. At the same time, it is also important
to investigate which kinds of quantum states and nonclassical features are more robust against
atmospheric fluctuations and can survive under specific conditions [16]. Until now, most experiments
have been implemented at the single-photon level. Recently, we have realized an experiment involving
mesoscopic twin-beam states, in which signal and idler were affected by different amounts of loss
distributed according to specific statistical distributions [17]. In particular, we have investigated
how nonclassicality changes as a function of the mean value of the distributions for fixed values
of their standard deviation. Here we face the problem from a different point of view, that is we
consider the case in which the standard deviation of the distribution is varied and the mean value
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of the distribution is fixed. At variance with the previous paper, we deeply analyze the behavior
of nonclassicality by choosing worse and worse situations, down to very low and very noisy
transmission-efficiency values. For all the chosen values of the parameters, we consider two possible
transmittance distributions, namely the log-normal distribution [18,19], which is typically used to
describe very turbulent transmission channels, and the Gaussian distribution, which can be exploited
to model free-space channels under specific weather conditions [20]. To investigate the nonclassicality
of the generated twin beams, which are entangled in the number of photons, we consider the noise
reduction factor (R). Indeed, it has been demonstrated that R < 1 represents a sufficient criterion for
entanglement in the case of bipartite Gaussian states [21]. Actually, many other nonclassicality criteria
exist and have been proposed over the years [22–27]. However, not all of them can be easily applied
to any experimental situation. Some of them, such as those based on separability criteria, require the
full reconstruction of the state under investigation. On the contrary, the noise reduction factor can
be calculated from experimental data in a more direct way, also because it can be defined in terms
of measurable quantities [28] (see the next section). The obtained results shed light on the different
behavior of nonclassicality according to the chosen distribution of the transmission efficiency and
on the evolution of such a behavior as a function of the different parameters. To be more exhaustive,
in this work we also investigate the role played by the mean number of photons per mode of the
employed quantum states in the entanglement degradation process.

Our analysis can give some useful hints not only for the exploitation of quantum states in
communication protocols, but also for their application in different contexts, such as for imaging
protocols [29–31].

2. Materials and Methods

2.1. Statistical Distributions of the Transmittance Coefficient

The transmission of light through a linear medium can be described by a wavelength-
and polarization-dependent transmission coefficient. However, noise effects, such as absorption,
depolarization, dephasing and scattering, can occur simultaneously, thus determining a variable
transmittance coefficient or, more properly, a statistically-distributed transmittance coefficient.
The situation is even more critical when the transmitted light is not represented by a single state but
rather by a multipartite one. Indeed, in such a case, the different components of the state can experience
different transmission efficiencies. This fact can determine the degradation of the correlations existing
among the parties. It is thus crucial to quantify the amount of degradation in order to verify if the
employed multipartite state is still useful for applications or not [32]. For instance, in the case of
correlated bipartite systems, both classical and quantum, it is possible to get a fair estimation of the
occurrence of degradation in terms of the noise reduction factor R, which is defined as

R =
σ2(n1 − n2)

(〈n1〉+ 〈n2〉) , (1)

in which σ2(n1 − n2) is the variance of the distribution of the photon-number difference between the
two parties, while (〈n1〉+ 〈n2〉) is the shot-noise-level, that is the value of σ2(n1 − n2) in the case of
coherent states having mean values 〈n1〉 and 〈n2〉.

Typically, the noise reduction factor is used to test the nonclassicality of quantum states of light,
R < 1 being a sufficient condition for entanglement be expressed in terms of measurable quantities,
such as the “detected” number of photons. As an example, in the case of multimode twin-beam states,
the measured noise reduction factor reads [33]

R = 1 − 2
√

η1η2
√〈m1〉〈m2〉

〈m1〉+ 〈m2〉 +
(〈m1〉 − 〈m2〉)2

μ(〈m1〉+ 〈m2〉) (2)
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and the condition R < 1 proves the existence of sub-shot-noise correlations between the two parties.
In Equation (2), 〈m1〉 and 〈m2〉 are the mean number of detected photons in the two arms of twin beam,
μ is the number of modes, and η1 and η2 are the detection efficiencies. In Ref. [17] we considered the
presence of an asymmetric loss in the two arms of twin beam, and defined 〈m1〉 = 〈m〉 = η〈n〉 and
〈m2〉 = 〈m〉t = η〈n〉t (t ∈ (0,1)). The expression for R modifies as:

R = 1 − 2ηt
1 + t

+
(1 − t)2

(1 + t)
mμ, (3)

in which mμ = 〈m〉/μ is the mean number of photons per mode. As stated above, in realistic situations,
the asymmetric transmittance coefficient t is not constant but rather statistically distributed. In this
case, by following the procedure presented in Ref. [17], it is still possible to find an analytic expression
for the noise reduction factor R, that is

R = 1 − 2η〈t〉
1 + 〈t〉 +

1 − 〈t〉)2

1 + 〈t〉 mμ +
(〈m〉+ mμ

) σ2(t)
1 + 〈t〉 . (4)

We notice that in Equation (4) only the first two moments of the statistics of t are involved, namely
〈t〉 and σ2(t). This makes the investigation of the degradation of entanglement for twin-beam states
particularly straightforward once the two moments of the distribution of t are known (or can be
calculated). As an example, in Figure 1 we show a 3D plot of R as a function of 〈t〉 and σ(t) for
η = 0.145, 〈m〉 = 2.23 and mμ = 0.04, which represent typical experimental values.

Figure 1. Theoretical expectation, according to Equation (4), of R (red surface) as a function of 〈t〉 and
of σ(t) for η = 0.145, 〈m〉 = 2.23 and mμ = 0.04. The gray surface at R = 1 represents the boundary
plane between classical and nonclassical correlations.

As expected, the observation of nonclassical correlations becomes very difficult both at low values
of 〈t〉 and at values of σ(t) exceeding a threshold that depends on 〈t〉.

In the following, we consider two loss distributions that are involved in the propagation process of
light through media. In particular, we deal with Gaussian and log-normal distributions. The Gaussian
distribution of t can be expressed as

Pg(t) =
1√

2πσ0
exp

[
−(t − t0)

2

2σ2
0

]
, (5)

where t0 and σ0 are the mean value and the standard deviation for t ∈ (−∞,+∞), while the log-normal
distribution is usually defined as

Pln(t) =
1√

2πσξ t
exp

[
−[−ξ + ln(t)]2

2σ2
ξ

]
, (6)
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in which ξ ∈ � is the so-called location parameter and σξ > 0 is the scale parameter. Both parameters
are linked to the mean value and the standard deviation of the distribution for t ∈ (0, +∞):
t0 = exp[ξ + σ2

ξ /2] and σ2
0 = (exp[2ξ + σ2

ξ ])(−1 + exp[σ2
ξ ]).

For the specific application we are considering, the transmittance coefficient t is limited to the
interval (0,1), which means that the distributions in Equations (5) and (6) must be properly normalized
in the interval (0,1). The resulting probabilities can be expressed through closed formulas and the same
holds for the first two moments of the distributions, 〈t〉 and σ(t).

In order to appreciate the differences between the two distributions, in Figure 2 we show some
examples. We observe that, in general, at increasing the standard deviation, the discrepancies between
Gaussian and log-normal distributions become more evident, since the log-normal distribution
gets more asymmetric, while the Gaussian one remains symmetric. Moreover, comparing the two
distributions for a given choice of standard deviation and mean value shows that for small mean values
of t0 (see panels (a) and (b)) and large values of σ0 (see magenta curves) the log-normal distribution
is confined in the region corresponding to small values of t (dashed line), while the Gaussian one is
uniformly distributed all over the range (0,1) (solid line). On the contrary, for large mean values of
t0 (see panels (c) and (d)) and large values of σ0 (see magenta curves) the Gaussian distribution has
a longer tail towards small values of t than the log-normal one. At variance with these conditions,
in all panels for small values of σ0 (see black curves) the two distributions are more confined and
more similar.
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Figure 2. Gaussian (solid lines) and log-normal (dashed lines) probability distributions of t in the interval
(0, 1). The four panels (a–d) correspond to different choices of the mean value t0 of the distributions,
as indicated in the label on top of each panel. Inside each panel, the different colors correspond to different
choices of the standard deviation: σ0 = 0.15 is represented in black, while σ0 = 0.7 in magenta.

Before presenting the results of our investigation, we summarize the main features of the
experimental implementation and explain the method used to prepare the data according to the
specific distributions.
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2.2. Experimental Setup and Data Preparation

A sketch of the employed experimental setup in shown in Figure 3. The fundamental (at 1047 nm)
and the third harmonic (at 349 nm) of a Nd:YLF laser (IC-500, High Q Laser, Rankweil, Austria and
2003) regeneratively amplified at 500 Hz are sent to a β−barium-borate crystal (BBO1, cut angle = 37◦,
8-mm long) in order to produce the fourth-harmonic (at 262 nm) field by noncollinear sum-frequency
generation. The generated beam is used to pump spontaneous parametric downconversion in a second
BBO (BBO2, cut angle = 46.7◦, 6-mm long) crystal.

Nd:YLF laser
BBO2

BBO1

HPD

HPD

HWP PBS

Acquisition
system

I BF

IBF
MF

MF

L
L

Figure 3. (Color online) Sketch of the experimental setup. See the text for details.

Two twin portions at frequency degeneracy are selected both spatially and spectrally by means of
two irises (I) and two bandpass filters (BF), respectively. The filtered portions are then focused
into two multimode fibers (600-μm-core diameter) and delivered to two hybrid photodetectors
(HPD, mod. R10467U-40, Hamamatsu Photonics, Hamamatsu City, Japan and 2010). These are
photon-number-resolving detectors endowed with a partial photon-number-resolving capability and a
good linearity up to 100 photons. Each detector output is amplified, synchronously integrated and
digitized. As extensively explained in previous papers, by applying a self-consistent method to each
detector output it is possible to have access to detected photons and thus to the statistical properties of
the measured states [33,34].

In order to introduce a variable transmittance coefficient (from 0 to 1) only in one arm of the
twin-beam state, a half-wave plate (HWP) followed by a polarizing cube beam splitter (PBS) is
inserted in that arm. During the measurements, the half-wave plate is rotated in steps of 2◦ and
50,000 acquisitions are saved for each angle value.

To build a given distribution P(t) of the transmission coefficient, for each measured value ti in
the interval (0,1) we select a dataset of P(ti) elements on both arms and join all the chosen datasets
preserving the correspondence of the single data in the two arms. In such a way, the statistics of light in
the arm without variable transmittance remains unchanged, while that on the other arm gets modified.
This determines a degradation of the nonclassical photon-number correlations between the two arms,
which can be quantified by evaluating the noise reduction factor.

Note that this procedure allows us to check, starting from the same datasets, the effect of different
distributions of t by simply changing P(t) and choosing different values of t0 and σ0.

3. Results

At variance with Ref. [17], in which we focused our attention on the possibility of keeping
observing nonclassicality in the presence of an asymmetric loss between the two parties of the
twin-beam states, here we aim at finding the limits imposed by the parameters that describe
the transmittance statistics, both for the Gaussian and the log-normal distributions. According to
Equation (4), the noise reduction factor is a function of the first two moments of the distribution of t,
independent of the considered distribution. This means that by choosing the same mean value 〈t〉 and
the same standard deviation σ(t), the Gaussian and the log-normal distributions act in the same way.
On the contrary, if we consider the values of t0 and σ0 over the entire domains, we expect different
results. To better emphasize this point, in panel (a) of Figure 4 we show, as contour plot, the difference
〈t〉GAUSS − 〈t〉LOG between the mean value 〈t〉 of the normalized Gaussian distribution and that of the
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normalized log-normal distribution as a function of t0 and σ0, while in panel (b) of Figure 4 we do the
same for the standard deviation σ(t), namely we plot the difference σ(t)GAUSS − σ(t)LOG. In panel (a)
(panel (b)), the pink region corresponds to values of 〈t〉GAUSS − 〈t〉LOG (σ(t)GAUSS − σ(t)LOG) larger
than 0, the gray region to values lower than 0, and the black-dashed line dividing the pink region
from the gray one corresponds to the condition 〈t〉GAUSS − 〈t〉LOG = 0 (panel (a)), and to the condition
σ(t)GAUSS − σ(t)LOG = 0 (panel (b)). As it can be noticed by comparing the two panels, it is not
possible to find a set of t0 and σ0 values corresponding to equal values of 〈t〉 and σ(t) for the two
distributions, unless one considers sparse choices of t0 and σ0 for σ0 < 0.05.

(a)
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Figure 4. Panel (a): Contour plot of the difference 〈t〉GAUSS − 〈t〉LOG of the Gaussian and log-normal
distributions defined over the interval (0,1) as a function of the mean value t0 and of the standard
deviation σ0 of the same distributions defined over the entire domain. Panel (b): The same as (a) for the
difference σ(t)GAUSS − σ(t)LOG. In both panels, the black-dashed line corresponds to the condition in
which the difference is equal to 0, the pink region to values larger than 0 and the gray region to values
lower than 0.

For the above reasons, a direct comparison between the distributions could be not essential. On the
contrary, it can be more interesting, for each one of the two distributions separately, to investigate the
survival of nonclassical correlations as a function of its first two moments.

In particular, it is straightforward to deal with the expressions defined over the entire domain and
their corresponding moments by considering the link among 〈t〉 and σ(t) in Equation (4) to t0 and σ0.

First of all, we consider the case of the Gaussian distribution. In Figure 5 we show the noise
reduction factor as a function of the standard deviation σ0 for different values of t0. Even if, in general,
σ0 can assume values larger than 1, in our analysis we explored only values in the interval (0,1) since
they are sufficient to observe the degradation of nonclassicality. The data, shown as colored dots
+ error bars, are superimposed to the theoretical fitting curves that can be obtained according to
Equation (4), in which we fix the values of 〈m〉 and η and leave mμ and t0,FIT as fitting parameters.
In particular, we set 〈m〉 = 2.23, which is the maximum value of the mean number of photons detected
in the variable arm, and η = 0.145, which is the quantum efficiency of the detection chain obtained
as η = 1 − RMIN , being RMIN the value of the noise reduction factor corresponding to t = 1. In the
fitting procedure, we leave t0,FIT as a free fitting parameter to take into account the possibility that
the preparation of the distribution of t is not ideal due to the discrete values of t at our disposal.
By inspecting panel (a) of Figure 5, we notice that the smaller the mean value the more difficult the
observation of nonclassicality. Indeed, for t0 = 0.4 only small values of σ0 make the condition R < 1
possible. On the contrary, for t0 = 0.9 the chance to observe nonclassicality is higher.
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Figure 5. Noise reduction factor as a function of the standard deviation σ0 of the Gaussian (panel (a))
and log-normal (panel (b)) distributions defined over the entire domain for different values of t0.
The experimental data are shown as colored dots + error bars: pink dots refer to t0 = 0.4, magenta
dots to t0 = 0.5, green dots to t0 = 0.6, blue dots to t0 = 0.7, black dots to t0 = 0.8, and red dots to
t0 = 0.9. The corresponding theoretical fitting functions are plotted as colored curves with the same
color choice. In the fitting procedure we fixed 〈m〉 = 2.23 and η = 0.145 and we left t0,FIT and mμ as
fitting parameters. The values of such parameters are reported in Tables 1 and 2 together with the χ2

per degree of freedom.

The behavior exhibited by the noise reduction factor in the case of the log-normal distribution,
shown in panel (b) of Figure 5, is quite similar. Indeed, also in this case, observing the nonclassicality
is particularly difficult for small values of t0. However, it is interesting to notice that, at variance
with the Gaussian distribution, for large values of t0 the values of R linearly increase as a function of
σ0, while for small values the behavior is more similar to a sigmoid. The different behavior of R for
different choices of t0 is due to the nontrivial and asymmetric shape of the log-normal distribution
at different mean values, as already shown in Figure 2. The fitting parameters corresponding to the
data shown in Figure 5 are summarized in Table 1 for the Gaussian distributions and in Table 2 for the
log-normal ones. In particular, we note that the fitted values of mμ are almost constant in the case of
Gaussian distributions, while they change in the case of log-normal ones.

Table 1. Values of the fitting parameters t0,FIT and mμ of the noise reduction factor as a function of σ0

for 〈m〉 = 2.23 and η = 0.145 in the case of Gaussian distributions of t. In the last column the χ2 per
degree of freedom is shown.

t0 t0,FIT mμ χ2
ν

0.4 0.460 ± 0.002 0.2171 ± 0.0007 0.018
0.5 0.523 ± 0.002 0.2115 ± 0.0007 0.060
0.6 0.616 ± 0.002 0.2115 ± 0.0008 0.054
0.7 0.721 ± 0.002 0.213 ± 0.001 0.118
0.8 0.839 ± 0.003 0.217 ± 0.002 0.198
0.9 0.964 ± 0.003 0.226 ± 0.002 0.463

Table 2. Values of the fitting parameters t0,FIT and mμ of the noise reduction factor as a function of σ0

for 〈m〉 = 2.23 and η = 0.145 in the case of log-normal distributions of t. In the last column the χ2 per
degree of freedom is shown.

t0 t0,FIT mμ χ2
ν

0.4 0.369 ± 0.007 0.077 ± 0.004 0.418
0.5 0.508 ± 0.007 0.126 ± 0.006 0.784
0.6 0.618 ± 0.004 0.161 ± 0.005 0.423
0.7 0.734 ± 0.002 0.189 ± 0.003 0.309
0.8 0.852 ± 0.002 0.213 ± 0.003 0.346
0.9 0.964 ± 0.003 0.226 ± 0.006 0.697
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4. Discussion

The different behavior of the mean number of photons per mode for the two distributions can
be ascribed to the fact that, when the mean number of photons is varied in one arm of the twin
beam, also the number of modes changes. Indeed, the number of modes we obtain from the first
two moments of the light statistics is an “effective” one describing the multimode state as the tensor
product of μ equally-populated single-mode states. This is just a useful approximation since in the
real experiment the different modes are differently populated [35]. For this reason, the attenuation
of light by a filter (the HWP followed by the PBS is equivalent to such a condition) can vary the
number of effective modes since some of the real modes can be so attenuated to go below the detection
threshold. In particular, we experimentally observed that the number of effective modes monotonically
increases at increasing the values of the mean number of photons. The variability of the number of
modes is amplified when the data are combined according to specific distributions of t. As discussed
above, this is more visible in the case of log-normal distribution due to its nontrivial shape at different
mean values.

To better investigate the role played by the mean number of photons per mode in the calculation
of the noise reduction factor for the two considered distributions, we theoretically study the behavior
of R as a function of σ0 by properly fixing the parameters appearing in Equation (4). In particular,
we set 〈m〉 = 2.23, η = 0.145 and consider two possible values of mμ, 0.1 and 0.04. The resulting
expressions for R are plotted in Figure 6.
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Figure 6. Theoretical values of the noise reduction factor as a function of the standard deviation σ0 of
the Gaussian (panels (a,b)) and log-normal (panels (c,d)) distributions for different values of t0. For all
the shown curves we set 〈m〉 = 2.23, η = 0.145. In panels (a,c) mμ = 0.1, while in panel (b,d) mμ = 0.04.
In each panel, the pink curve corresponds to t0 = 0.4, the magenta curve to t0 = 0.5, the green curve to
t0 = 0.6, the blue curve to t0 = 0.7, the black curve to t0 = 0.8 and the red curve to t0 = 0.9.
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We note that the choice 〈m〉 = 2.23, and mμ = 0.1 corresponds to a twin-beam state with
∼22 modes, while 〈m〉 = 2.23, and mμ = 0.04 corresponds to a twin-beam state with ∼56 modes,
which represents a more reliable experimental condition than the first choice.

The curves shown in panels (a) and (b) are for Gaussian distributions, while those in panels (c)
and (d) are for log-normal distributions. In general, the plots resemble the experimental behavior
of the plots in Figure 5. However, we notice that depending on the choice of mμ, the value of σ0 at
which the noise reduction factor is equal to 1, namely the boundary between classical and nonclassical
correlations, changes. In particular, the lower the value of mμ, the larger the threshold value of σ0.
Indeed, according to Equation (4), the lower the value of mμ, the lower the value of R. To better
investigate this result, in Figure 7 we plot the values of σ0 at which, for fixed choices of 〈m〉 and η

and for 4 possible choices of mμ, the theoretical value of R is equal to 1 as a function of t0. We show
the results in the case of Gaussian distributions in panel (a) and those for log-normal distributions in
panel (b). In general, we can see that the threshold values of σ0 increase at increasing values of t0 with
different slopes for the two distributions. Moreover, for log-normal distributions of t the growth is
more rapid than for Gaussian distributions.

The direct comparison among the curves corresponding to the same kind of distribution leads us
to conclude that reducing the mean number of photons per mode, that is increasing the number of
modes, makes it possible the detection of nonclassical correlations in the case of wider distributions
of t, that is for a highly fluctuating transmittance of the communication channel. Thus, a proper
tailoring of the mode structures of the state can make the employed twin beam more robust to losses.
We also notice that all the results achieved so far encourage us to test our optical states in more realistic
situations. Indeed, as reported in Ref. [20], the probability distributions of t corresponding to free-space
quantum channels under diverse weather conditions are characterized by mean values that range
from 0.9 down to 0.3. In some cases, the model that describes the transmission efficiency is more
symmetric thus resembling a Gaussian distribution, whereas in other situations is more similar to a
log-normal distribution.
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Figure 7. Expected threshold value of σ0 obtained by setting R = 1 in Equation (4) for 〈m〉 = 2.23
and η = 0.145. The data are shown as a function of t0 for different choices of mμ: 0.2 (black curve),
0.1 (red curve), 0.04 (blue curve) and 0.02 (green curve). Panel (a) corresponds to the case of Gaussian
distributions of t0, while panel (b) to the case of log-normal distributions.

5. Conclusions

In this paper we explored the survival of nonclassical correlations between the parties of
mesoscopic twin-beam states propagating through an asymmetric lossy channel, in which the
transmission coefficient was statistically distributed. In particular, we considered the case of Gaussian

69



Appl. Sci. 2020, 10, 9094

distributions and that of log-normal ones. We investigated the role played by the parameters
characterizing the light (mean number of photons and mean number of photons per mode),
the transmission channel (mean value and standard deviation of the distribution) and the detection
chain (quantum efficiency). In general, we can conclude, as expected, that the larger the mean value
of the distribution the better the observation of nonclassicality. Moreover, at a given mean value
of the distribution, the larger its standard deviation the worse the observation of nonclassicality.
In general, these results hold for both the Gaussian and the log-normal distributions. Not surprisingly,
the different shape of the distributions is responsible for the different behavior for the same choice of
parameters. In addition, we studied the dependence of the robustness of sub-shot-noise correlations
undergoing a statistically distributed amount of loss on the number of modes. We found that high
multimode twin-beam states are more robust to loss than low-multimode ones. This result can be
ascribed to the fact that a twin beam endowed with many modes has a photon-number distribution
less thermal, and thus less fluctuating, than a single-mode one [36–38]. Such a result suggests that,
in order to optimize the propagation of light in the presence of loss, a proper tailoring of the employed
quantum state should be performed in advance.
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Abstract: In this work, we present the physical simulation of the dynamical and topological
properties of atom-field quantum interacting systems by means of integrated quantum photonic
devices. In particular, we simulate mechanical systems used, for example, for quantum processing
and requiring a very complex technology such as a spin-1/2 particle interacting with an external
classical time-dependent magnetic field and a two-level atom under the action of an external classical
time-dependent electric (optical) field (light-matter interaction). The photonic device consists of
integrated optical waveguides supporting two collinear or codirectional modes, which are coupled
by integrated optical gratings. We show that the single-photon quantum description of the dynamics
of this photonic device is a quantum physical simulation of both aforementioned interacting systems.
The two-mode photonic device with a single-photon quantum state represents the quantum system,
and the optical grating corresponds to an external field. Likewise, we also present the generation
of Aharonov–Anandan geometric phases within this photonic device, which also appear in the
simulated systems. On the other hand, this photonic simulator can be regarded as a basic brick for
constructing more complex photonic simulators. We present a few examples where optical gratings
interacting with several collinear and/or codirectional modes are used in order to illustrate the new
possibilities for quantum simulation.

Keywords: integrated photonics; quantum optics; quantum simulation

1. Introduction

One of the most promising tasks in quantum science and technology is the implementation of
quantum simulations. Its physical foundation is based on the fact that the dynamics of a quantum system
is governed by its Hamiltonian Ĥ (time evolution) or momentum operator M̂ (spatial evolution), that is
given a Hilbert space H and some input state |Ψ(0)〉 ∈ H, the full evolution of the system is given
by the action of the evolution operator on such a state. The evolution operator can be either the time
evolution one Ût = exp (−iĤt/h̄), which comes from the Schrödinger equation −ih̄∂|Ψ〉/∂t = Ĥ|Ψ〉,
that is |Ψ(t)〉 = Ût|Ψ(0)〉, or its spatial counterpart Ûs = exp (iM̂s/h̄), which comes from the
momentum operator in the position representation, that is ih̄∂|Ψ〉/∂s = M̂|Ψ〉, where s is the spatial
variable that defines the direction along which the system evolves (it can be, for instance, the z-direction)
then |Ψ(s)〉 = Ûs|Ψ(0)〉. One is perhaps more familiar with the temporal case |Ψ(t)〉 = Ût|Ψ(0)〉,
but note that the spatial case is totally analogous [1,2]. Now, as it occurs in nature that very different and
unrelated quantum systems share analogous Hamiltonians or momentum operators, the dynamics of
these systems will be analogous. This implies that if we have some system of interest, we will be able
to mimic its behavior (evolution) by means of other very different system. This last system, which is
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required to be fully controllable by the experimenter, constitutes a quantum simulator [3,4] of the system
of interest.

On the other hand, the importance of making quantum simulations obeys various reasons. First of
all, whether classical or quantum, simulation is often an indispensable tool in science. Physical systems
can be very complicated to study. If we find a way to mimic their behavior in a manageable way,
their dynamics can be analyzed with much less difficulty, much less expensively, and much faster [3].
For instance, we can imagine that the system of interest is one whose working conditions are fragile
and very sensitive to small perturbations. It could also be that those conditions are very specific
and/or hard (even impossible) to achieve in the laboratory. Simulating these complicated systems
will, in principle, improve our knowledge about them with much ease. Secondly, quantum simulation
offers a crucial advantage over classical simulation. Quantum systems have a greater information
storing capacity than classical systems; thus, a quantum simulator, which is a quantum system itself,
will require much fewer physical resources than a classical simulator to store the same amount of
information. Furthermore, classical simulations find difficulties simulating quantum systems when
strong entanglement is present [3]. Finally, it is possible that the potential applications of a quantum
system may be better implemented using a quantum simulation [5], if it happens that the quantum
simulation parameters are easier to handle, compared to those of the quantum system of interest,
in the sense of greater tunability [4]. All of this strongly suggests the need for quantum simulations.
Formally, one has a quantum device, called the quantum simulator, which reproduces the evolution
of the system of interest, the quantum system. Following [4], let us call the initial input state of
the quantum system |φ(0)〉, which evolves to |φ(ζ)〉, where ζ stands either for time or some spatial
coordinate, under the evolution operator Û = exp (iÔζ/h̄). Here, Ô can be a Hamiltonian (−Ĥ) or a
momentum operator (M̂). The quantum simulator, on the other hand, starts in the state |ψ(0)〉 and
evolves to |ψ(ζ)〉 under the action of the operator Û′ = exp (iÔ′ζ/h̄). Since we have a system and a
simulator, there exists a correspondence relating these elements, that is a correspondence between
|φ(0)〉 ↔ |ψ(0)〉, |φ(ζ)〉 ↔ |ψ(ζ)〉, Û ↔ Û′, and thus, Ô ↔ Ô′. This is revealed via measurements on
both systems. The greater the accuracy of this correspondence, the more one can trust the simulator [3].

In this work, we present an integrated quantum photonic simulator for atom-field quantum
interacting systems. It is based on optical gratings and can be regarded as a basic brick for constructing
more complex photonic simulators. First of all, we would like to stress the high interest in quantum
photonic simulators; for instance, integrated photonic structures allow simulating a number of
condensed matter effects such as Anderson localization, Mott transition, etc. [6], and more recently,
anyonic interaction has been simulated by using an array of channel optical waveguides with a
helically bent axis [7]. In our case, we will simulate in an integrated photonic device the dynamical
and topological properties of two very well-known quantum interacting systems. This is relevant
since a way to check the fidelity of a simulation is testing the same physical model of the dynamics
with different systems and then comparing the results [5]. The two systems to be simulated are the
well-known interaction of a spin-1/2 particle under a time-dependent external classical magnetic field
(see for instance [8]) and the interaction of a two-level atom with an external classical electric field
(see for instance [9]) which are used, at present, for implementing quantum information devices for
quantum processing, quantum computation, and so on [8]. It is also well known that these mechanical
systems require a very complex technology. We will take a standard photonic device, that is a two-mode
planar guide modulated by an integrated grating (see for instance [10]) in which a single-photon
quantum state is propagated. We will show that it can emulate both the dynamical and geometrical
properties of the two aforementioned systems. As mentioned, this photonic simulator based on
integrated optical gratings can be regarded as a basic brick for more complex photonic simulators;
thus, the results obtained can be extended to multi-level systems or to several concatenated two-mode
systems simulating concatenated temporal operations. Addressing practical issues, this simulator will
also benefit from some advantages of classical and quantum integrated photonics [6,11,12], such as
the fast and energetically efficient operation and miniaturization capabilities of integrated photonics,
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which favor scalability. Moreover, integrated photonic devices are becoming some of the most powerful
and appealing technologies for classical and quantum information [13,14]. Finally, we must stress
that although we present a photonic device for quantum simulation, it can be also used to implement
quantum operations and/or effects with the photonic device itself such as logic gates, geometric
phases, and so on.

The plan of the paper is as follows: In Section 2, we briefly present the Hamiltonian of the
quantum interacting systems, in a suitable form for their photonic simulation, along with the physical
parameters and some useful solutions. In Section 3, starting from quantum states as single-photon
states, an integrated photonic device for the quantum simulation of both a spin-magnetic field coupling
and light-matter interaction is presented, along with the limits of this simulation. In Section 4,
quantum simulation of geometric phases is studied. Finally, a summary is presented in Section 5.

2. Mechanical Interacting Systems

In this section, we present the main results about the mechanical interacting systems whose
dynamic and topological properties are going to be simulated with an integrated photonic device.
The primary aim is to write the Hamiltonians of these systems in a suitable form to facilitate the study
of their photonic simulations.

2.1. Spin-1/2 Particle Interacting with a Magnetic Field

The Hamiltonian of a spin particle interacting with a magnetic field is given by Ĥ = −μ · B,
where μ is the magnetic moment of the particle, which is proportional to the spin operator, and B
is the magnetic field. Let us consider a spin- 1

2 particle, then μ = 1
2 μσ, where μ = h̄γp, with γp the

gyromagnetic ratio of the particle (p = e for an electron, p = n for a neutron, etc.), and σ = (σx, σy, σz)

are the Pauli matrices. Moreover, we choose a time-dependent magnetic field, which, by assuming a
sinusoidal dependence in time with frequency ω, is written as B = B0(sin θ cos ωt,− sin θ sin ωt, cos θ),
representing a magnetic field of modulus B0 rotated an angle θ with respect to the z-axis and
spinning around this same axis with a frequency ω. We can then write the well-known spin-magnetic
Hamiltonian as (see for instance [8]):

Ĥ(t) = − h̄
2

γpB0 cos θσz − h̄
2

γpB0 sin θ(cos ωt σx − sin ωt σy). (1)

By taking into account the expressions of the Pauli matrices, then the above Hamiltonian gives
rise to the following time-dependent Schrödinger equation:

ih̄
∂

∂t
|Ψ(t)〉 = − h̄

2
γpB0

(
cos θ sin θ exp (iωt)

sin θ exp (−iωt) − cos θ

)
|Ψ(t)〉 =

≡ Ĥ(t)|Ψ(t)〉. (2)

This time-dependent Hamiltonian is enough for our simulation purposes. Note that for the
neutron case, we have the well-known Nuclear Magnetic Resonance (NMR). The solution of the
equation above can be obtained as a time-dependent linear combination of down and up spin states,
|0〉 and |1〉, of the particle, that is |Ψ(t)〉 = co(t)|0〉+ c1(t)|1〉. Thus, by using the vector representation
of |Ψ(t)〉 and the matrix Hamiltonian given by Equation (2), the Schrödinger equation can be rewritten
as follows:

ih̄
dcn(t)

dt
= En cos θcn(t) + i ∑

n 
=m
Cnm(t)cm(t). (3)
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with n = 0, 1, Eo = − h̄γp
2 Bo and E1 =

h̄γp
2 Bo the eigenvalues of spin states when a static magnetic field

along z-direction is applied, and C01(t) = C∗
10(t) = − h̄γp

2 Bo sin θ exp(iωt) the coupling coefficients.
On the other hand, it is interesting, for the sake of expositional convenience, to present the main results
about the dynamics of the system. First of all, in order to simplify things, we can shift to a reference
frame that is rotating at a frequency ω by means of the following unitary transformation:

|η(t)〉 = Û(t, ω)|Ψ(t)〉 = exp (−iωσzt/2)|Ψ(t)〉; (4)

therefore, by inserting |Ψ(t)〉 = exp (iωσzt/2)|η(t)〉 into the Schrödinger equation, we obtain,
after some simple calculations, the following Hamiltonian acting on |η(t)〉:

Ĥ′|η(t)〉 = h̄
2

(
−γpB0 cos θ + ω −γpB0 sin θ

−γpB0 sin θ γpB0 cos θ − ω

)
|η(t)〉. (5)

This Hamiltonian Ĥ′ can be rewritten as a product of the form − h̄
2 γp(σ · Be f ), with Be f an effective

static magnetic field, that is,

Ĥ′ = − h̄
2

γp(σ · Be f ) = − h̄
2

γpB0Δ cos θ′σz − h̄
2

γpB0Δ sin θ′σx = − h̄
2

Δo

(
cos θ′ sin θ′

sin θ′ − cos θ′

)
, (6)

with:

Δo = γpB0Δ = γpB′
o (7)

and:

Δ = γpB0

√
1 − 2ω

γpB0
cos θ +

ω2

γ2
pB2

0
; (8)

therefore, the effective magnetic field is given by Be f = (B′
0 sin θ′, 0, B′

0 cos θ′), where B′
0 and θ′ are

related to B0 and θ by B′
0 = B0Δ, with sin θ′ = γpB0 sin θ/Δo = sin θ/Δ and cos θ′ = γpB0[cos θ −

(ω/γpB0)]/Δo = [cos θ − (ω/γpB0)]/Δ. As seen from the expression for Δ, it would seem that for
this reparametrization to have physical meaning, restrictions on the parameters would appear, as Δ
contains a possible non-positive term under the square root. The worst case would be likely to happen
if cos θ = 1, but one can find that the resulting quantity 1− (2h̄ω/μB0) + (h̄ω/μB0)

2 is never negative,
for any value of the parameters.

Next, it is interesting to compute the eigenstates |η〉 and eigenvalues Eη of Hamiltonian Ĥ′ given
by Equation (6), that is |η(t)〉 = exp

(− i
h̄ Eηt

)|η(0)〉. After a standard calculation, we have:

|η+(0)〉 = cos
θ′

2
|0〉+ sin

θ′

2
|1〉, |η−(0)〉 = sin

θ′

2
|0〉 − cos

θ′

2
|1〉, (9)

where |0〉 ≡ (1, 0)T and |1〉 ≡ (0, 1)T , with T denoting the transpose. The eigenvalues are E± = ± h̄
2 Δo,

that is E± = ± h̄
2 γpB′

0 = ± μ
2 B′

0. Therefore, by taking into account Equation (4), the full evolved states
|Ψ(t)〉 can be easily obtained.

2.2. Two-Level Atom Interacting with an Electric (Optical) Field

On the other hand, let us consider a two-level atom coupled to a harmonic external classical
electric field, which describes semiclassical light-matter interaction. As is usually done [9], we label
the atomic levels as |g〉 (ground) and |e〉 (excited). They have energies h̄ωg and h̄ωe, respectively.
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Their energy difference is given by hω0 = h̄ (ωe − ωg). The expression for this non-interacting part of
the Hamiltonian can be formally written as follows:

Ĥo = h̄ωg|g〉〈g|+ h̄ωe|e〉〈e| = h̄ω̄I + h̄ωoσz/2, (10)

where we used the matrix representation of |g〉〈g| and |e〉〈e|, with ω̄ = (ωg + ωe)/2, and I the
two-dimensional identity matrix. As for the interacting part, it is given by the dipole interaction
(electric dipole approximation) between an external electric (optical) field and the atom. Indeed,
by assuming, for the sake of simplicity, that the field is propagating along z, has a sinusoidal
dependence in time with frequency ω, and is linearly polarized along the x-direction, then the electric
(optical) field can be written as follows E = E0 cos

(
ω(z/c − t

)
ux. Moreover, we disregard the spatial

dependence of the electric (optical) field because the wavelength λ = c/2πω is considered much
larger than the atomic dimensions. Therefore, we apply the dipole or long-wavelength approximation,
that is by assuming without lost of generality ωz/c = 2mπ, with m an integer, then E = E0 cos ωt ux,
the electric-dipole interaction is given by ĤI = −d · E = −dxEx = exEx, where d is the atomic dipole
operator d = q · r, with q = −e, and r is the electron’s position vector (operator). This interaction term
allows transitions between the two levels. The form of the dipole operator can be calculated by using
twice the closure relationship Î = |g〉〈g|+ |e〉〈e|, that is Î(−ex) Î; therefore:

dx = −〈g|ex|g〉|g〉〈g| − 〈e|ex|e〉|e〉〈e| − 〈g|ex|e〉(|g〉〈e|+ |e〉〈g|) ≡ −c+I + c−σz − doσx, (11)

with c± = (〈g|ex|g〉 ± 〈e|ex|e〉)/2, d0 = 〈g|ex|e〉, and where we have used the matrix representations
(|g〉〈e|+ |e〉〈g| ≡ σx, |g〉〈g| ≡ (I + σz)/2, and |e〉〈e| = (I − σz)/2. We must stress that sometimes,
parity arguments [9] narrow the form of the dipole operator, leading up to the expression dx =

−〈g|ex|e〉(|g〉〈e| + |e〉〈g|) = −doσx. Likewise, it is customary to introduce the Rabi frequency
Ω = Eodo/h̄. In short, the total Hamiltonian is given by Ĥo + ĤI , and therefore, the corresponding
Schrödinger equation, by using this new variables, is given by:

ih̄
∂

∂t
|Ψ(t)〉 =

(
h̄(ω̄ + C+) I − h̄(

ω0

2
− C−)σz + h̄Ωσx cos ωt

)
|ψ(t)〉 = Ĥ|Ψ(t)〉, (12)

with C± = c± cos ωt. The general solution of this Schrödinger equation can again be obtained by
using a time-dependent linear combination of fundamental and excited states, |g〉 ≡ |0〉 and |e〉 ≡ |1〉,
of the particle, that is |Ψ(t)〉 = co(t)|0〉 + c1(t)|1〉. However, the high value of the frequency ω

means that the electric field is rapidly oscillating, which suggests to make the following change
|Ψ(t)〉 = f0(t) exp(iωt/2)|0〉 + f1(t) exp(−iωt/2)|1〉 ≡ exp (iωσzt/2)|η(t)〉. Moreover, in many
cases, by parity arguments, it is fulfilled that c± = 0. Therefore, by substituting this state into
Equation (12), we obtain the following Hamiltonian for the state

(
f0(t), f1(t)

)T ≡ |η(t)〉,

Ĥ′|η(t)〉 ≈
(

h̄ω̄ I − h̄δ

2
σz +

h̄Ω
2

σx

)
|η(t)〉, (13)

with δ = (ω0 − ω) the detuning parameter and where we have neglected terms rapidly oscillating of
the form exp(±iωt); that is, a temporal Rotating Wave Approximation (RWA) has been made, and a
time independent Hamiltonian has thus been obtained. We must stress that under this approximation,
the terms C± in Equation (12) can be also neglected independently of the wave-function parity. Finally,
note that Hamiltonians given by Equations (6) and (13) have the same algebraic structure.

3. Quantum Photonic Simulations

In this section, we present the quantum simulation, which can be implemented by an integrated
photonic device, that is integrated optical gratings supporting two collinear guided modes, that is
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two mode guides assisted by a periodic perturbation. It can be considered the basic brick for
constructing more complex simulators.

3.1. Classical Study of the Photonic Device

Let us consider a standard integrated photonic device consisting of, for example, an integrated
waveguide 1D (one-dimensional) with refractive index n(x) (slab guide) that supports two optical
modes e0(x) and e1(x). These modes are collinear and travel in the z-direction with propagation
constants β0 and β1, that is wave vectors in the z-direction defined as β = (ω/c)N, where ω is
the frequency of the mode and N is the effective index [10]. The mentioned modes are coupled by
an integrated grating present in a region of the slab guide, as shown in Figure 1a), where relevant
parameters are indicated, that is substrate index ns, film index n f , cover index nc = 1, and film
thickness d. The grating is represented, for example, by a periodic modulation (perturbation) of the
electrical permittivity [10],

Δε(x, z) = Δε(x) cos(γz + αo), (14)

with Δε(x) the modulation strength of the optical grating, αo an initial phase, if required, γ = 2π/Λ
the frequency of the perturbation, and Λ its period. This index profile can be obtained by different
technologies of integrated optics, for instance ion-exchange in glass [15,16] could be used, or even by
optical fiber technology [17]. Likewise, in crystals such as lithium niobate, these optical gratings can
also be reconfigurable due to acousto-optic or electro-optic effects [18].

Figure 1. (a) Integrated optical grating with period Λ on a two-mode slab waveguide with modes e0(x)
and e1(x). The inset shows the simulated mechanical device: atom-field interaction. (b) Integrated
optical grating with period Λ on a two-mode channel waveguide with modes, for example e00(x, y)
and e10(x, y).

As we assume that only two guided modes are excited in our integrated photonic structure,
the perturbed electric field amplitude is given by e(x, z) = a0(z)e0(x) + a1(z)e1(x). It is well known
that the general set of equations that describe the coupling between n copropagating optical modes
with propagation constants βn in a perturbed waveguide and that allow calculating the amplitude
coefficients an(z) is given by (see for instance [10]):

−i
dan(z)

dz
= β̃n(z)an(z) + ∑

n 
=m
Cnm(z)am(z), (15)
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where β̃n(z) = βn +Cnn(z) are the corrected propagation constants due to the self-coupling coefficients
Cnn and Cnm are the coupling coefficients between the n mode and each of the other m modes. All these
coefficients are calculated as follows [10]:

Cnm(z) =
ω

2

∫
Δε(x, z) en(x) e∗m(x)dx, (16)

with ω the temporal frequency of the modes and en(x) and em(x) the normalized optical n and m
modes of a planar guide.

The study with 2D guides (integrated channel guides or optical fibers) can be also made, but no
new relevant result would be obtained. Indeed, a channel guide can be defined starting from a planar
guide whose width is reduced up to a size a of the same order as its depth, that is a ≈ d, as shown in
Figure 1b). In such a case, the optical modes are characterized by two subscripts, one for each spatial
direction, that is enp(x, y) and emq(x, y); therefore, the general coupling coefficients are given by:

Cnpmq(z) =
ω

2

∫
Δε(x, y, z) enp(x, y) e∗mq(x, y)dxdy, (17)

where we assumed that the grating modulation can also have a y-dependence. Finally, the mode
coupling equations can be obtained by applying the formal changes n→ np, m→mq in Equation (15).
Accordingly, the results for planar guides can be easily transferred to channel guides.

3.2. Quantum Study of the Photonic Device

A canonical quantization procedure [1,2] proves that the a(z) coefficients become the photon
absorption (or emission) operators â(z) (correspondence principle). Therefore, the coupled mode
equations are in fact the Heisenberg equations, which, in general, give the evolution of the operators in
time. In this case, they give the spatial evolution of the operators. Moreover, the relevant operator here
responsible for the spatial propagation of quantum states of the device is the momentum operator,
which is the generator of spatial translations [2,19], and not the Hamiltonian, which is the generator
of temporal translations. In short, we can study the integrated photonic device in a fully quantum
mechanical way, by solving the equations for absorption operators (spatial Heisenberg equations).
That is, by performing the change a(z) → h̄â(z) in Equation (15), we obtain [2,20]:

−ih̄
dân(z)

dz
= h̄β̃nân(z) + h̄ ∑

n 
=m
Cnm(z)âm(z). (18)

We must stress that modal coupling preserves energy; therefore, Equation (18) corresponds
to a unitary transformation, and accordingly, Cnm = Cmn. On the other hand, we only consider
single-photon states, which is enough for our simulation purposes. We must stress that the linear
momentum of a single photon without modal coupling, that is Δε(x, y) = 0, is given by p(0,1) = h̄β(0,1)
depending on whether the photon is excited in mode β0 or mode β1 [19,20]. Obviously, more general
quantum states could be used such as multiphoton states, entangled states of two photons, and so
on. These states would give rise to more complex quantum simulations, which fall outside of the
scope of this work. In general, the single-photon state is a quantum superposition because the photon
can either be excited in the mode β0, that is |10〉, or in the mode β1, that is |11〉. Hence, the general
quantum state is given by:

|L(z)〉 = a0(z)|10〉+ a1(z)|11〉, (19)

where a0(z) and a1(z) are the quantum complex amplitudes and fulfil the normalization condition
|a0(z)|2 + |a1(z)|2 = 1. States |10〉 and |11〉 must be understood as single-photon states at a distance
(plane) z. It can be checked that the solutions of Equation (18) for the spatial propagation of
emission operators are the same as for single-photon states |L(z)〉 [21]. The main reason is that
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single-photon states are proportional to emission operators, that is |10〉 = â†
0|0〉, |11〉 = â†

1|0〉.
Indeed, let us consider free propagation, that is non-coupling case Cnm = 0, then the solutions
of Equation (18) are â0,1(z) = exp(iβ0,1z)â0,1(0). Now, let us consider, for the sake of simplicity,
a single-photon state at z = 0, for instance |10〉, then the optical propagation can be obtained
as follows: |10〉 = â†

0(0)|0〉 (one-photon emission), but by taking into account the z-propagation,
we have |L(z)〉 = exp(iβ0z)â†

0(z)|0〉 = exp(iβ0z)|10〉 ≡ a0(z)|10〉; therefore, the coefficients a0,1(z) of
a single-photon state have the same optical propagation solution as the operators â0,1(z). This can be
proven for a general unitary transformation after a certain algebra. We will take advantage of this
property for simulation purposes. Accordingly, for single-photon states, Equation (18) can formally be
rewritten as follows:

ih̄
d|L(z)〉

dz
= −h̄

(
β̃0(z) C12(z)
C21(z) β̃1(z)

)
|L(z)〉 = −M̂(z)|L(z)〉, (20)

where |L(z)〉 is given, in vector representation, by (ao(z), a1(z))T and M̂ is the matrix representation
of the so-called momentum operator. This is equivalent to the matrix equation given by Equation (2)
for the Hamiltonian. We must stress that Equations (2), (3), (13), (18) and (20) are the main results for
implementing the quantum simulations in this work.

3.3. Photonic Simulation of Spin-Magnetic Field Interaction

Let us consider an integrated optical grating characterized by the function given by Equation (14).
It will be useful to work with the slowly varying operators Ân, defined as Ân = ân exp(−iβnz).
On the other hand, the coupling coefficients for a grating with initial phase αo = 0 can be written
as C00 = c00 cos γz, C11 = c11 cos γz, and C01 = C10 = Co cos γz, where cnm = (ω/2)

∫
Δε(x)en(x) ·

e∗m(x)dx, and so on. Therefore, from Equation (18), we obtain, for the two-mode case, the following
spatial Heisenberg equations:

i
dÂ0(z)

dz
= −Â0 c00 cos γz − Â1

C0
2 e−iΔβ01z[eiγz + e−iγz], (21)

i
dÂ1(z)

dz
= −Â1 c11 cos γz − Â0

C0
2 eiΔβ01z[eiγz + e−iγz], (22)

where Δβ01 = β0 − β1. The above equation reveals that we have oscillating terms coming from the
cosine of the self-coupling terms with arguments ±γz and also terms with arguments (γ − Δβ01)z and
(γ + Δβ01)z. We make the assumption that γ is of the same order as Δβ01, so that (γ − Δβ01) is small.
The other terms are rapidly oscillating and, thus, will average to zero on a sufficiently large z-scale.
We must stress that what we do here is essentially a spatial RWA, which is well-known in light-matter
interaction in the time domain. Therefore, the above equations become, to a good approximation,

i
dÂ0(z)

dz
= −Â1

Co

2
exp [−i(Δβ01 − γ)z], (23)

i
dÂ1(z)

dz
= −Â0

Co

2
exp [i(Δβ01 − γ)z]. (24)

Next, we make the following relabeling Δβ01 ≡ Δβ and define the new absorption operators
Â0 = b̂0 exp(−iΔβz/2) and Â1 = b̂1 exp(iΔβz/2). We rewrite the Heisenberg equations in terms of
the b̂(z) operators,

i
db̂0

dz
= −Δβ

2
b̂0 − Co

2
b̂1 exp (iγz), (25)

i
db̂1

dz
=

Δβ

2
b̂1 − Co

2
b̂0 exp (−iγz). (26)
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It is interesting to note that â0,1 and b̂0,1 are, after the spatial RWA, the same operators, except a
global phase, that is â0,1 = b0,1 exp(iβ̄z), β̄ = (β0 + β1)/2. Finally, as mentioned above, we can write
the above equation in a matrix form acting on the single-photon state |Lb(z)〉 = b0(z)|10〉+ b1(z)|11〉,
where |L(z)〉 = |Lb(z)〉 exp(iβ̄z), that is,

ih̄
∂

∂z
|Lb(z)〉 = − h̄

2

(
Δβ Co exp (iγz)

Co exp (−iγz) −Δβ

)
|Lb(z)〉 =

= − h̄
2

B

(
cos α sin α exp (iγz)

sin α exp (−iγz) − cos α

)
|Lb(z)〉 = −M̂(z)|Lb(z)〉, (27)

with cos α = Δβ/B, sin α = Co/B, and B =
√

Δβ2 + C2
o . This equation is just the spatial equivalent of

Equation (2). A Hamiltonian operator is replaced by a momentum operator. Obviously, the dynamic
properties are identical under the formal changes: ω ↔ γ, γpBo ↔ B, θ ↔ α. Note that a rotating
equivalent vector (γpB)eq ≡ B = B(sin α cos γz,− sin α sin γz, cos α) is obtained. In short, we have
achieved a photonic simulator of aspin-magnetic field coupling. However, we must stress some
limitations for this simulator. The momentum operator M̂ defined by (27) and simulating the coupling
spin-magnetic field only is valid under the spatial RWA, that is the values of Δβ and γ have to be high
and not too different. Therefore, we will be able to simulate the interaction with magnetic fields with a
large z-component and oscillating with a frequency ω of the same order as the term γpBo cos θ.

Finally, it is interesting to obtain a constant momentum operator by applying a unitary
transformation (rotating reference system) to the quantum state |Lb(z)〉, that is,

|l(z)〉 = Û(z, γ)|Lb(z)〉 = exp (−iγσzz/2)|Lb(z)〉. (28)

Therefore, by using |Lb(z)〉 = exp (iγσzz/2)|l(z)〉 in Equation (27), we obtain, after a certain,
but straightforward calculation, the following momentum operator for the state |l(z)〉:

−M̂′|l(z)〉 = h̄
2

(
−Δβ + γ −Co

−Co Δβ − γ

)
|l(z)〉 = − h̄

2
Do

(
cos α′ sin α′

sin α′ − cos α′

)
|l(z)〉, (29)

where cos α′ = (Δβ − γ)/Do, sin α′ = Co/Do, and Do =
√
(Δβ − γ)2 + C2

o . As shown later,
these results are important for simulating both dynamical and topological properties. By comparison
between Equations (5) and (29), we obtain the following simulation parameters:

(ω − γpBo cos θ) ↔ (Δβ − γ), γpBo sin θ ↔ Co. (30)

Next, it is interesting to compute the eigenstates |l(z)〉 and eigenvalues βl of the momentum
operator M̂′ given by Equation (6), that is |l(z)〉 = exp

( i
h̄ plz

)|l(0)〉 = exp
(
iβlz

)|l(0)〉. After a
standard calculation, we have:

|l+(0)〉 = cos
α′

2
|10〉+ sin

α′

2
|11〉, |l−(0)〉 = sin

α′

2
|10〉 − cos

α′

2
|11〉, (31)

with eigenvalues β± = ±Do/2, that is linear momentums p± = ± h̄
2 Do = ±po. Therefore, by taking

into account Equation (28), the full evolved states |Lb(z)〉 can be easily obtained. Note that we are
simulating the quantum state Ψ(t) given by Equation (4), and thus, for example, quantum processing
based on NMR could be simulated by this photonic device. For the sake of expositional convenience,
we will return to this question in the next subsection.
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3.4. Photonic Simulation of Light-Matter Interaction

For the case of light-matter interaction, we have a more direct photonic simulation by using a
two-mode planar guide perturbed by an integrated optical grating. Thus, by defining Δβ = β0 − β1

and β̄ = (β0 + β1)/2 and for the sake of simulation purposes, choosing an initial phase αo = π,
the momentum operator defined in Equation (20) can be rewritten as follows:

M̂|L(z)〉 = h̄
[
(β̄ + C+

)
I + (

Δβ

2
− C−)σz − Co cos(γz)σx

]
|L(z)〉, (32)

where C± = (C00(z)± C11(z))/2. As in the mechanical case, these terms could be zero if the optical
modes en,m(x) and perturbation Δε(x) have a suitable parity, that is even or odd modes along with an
odd perturbation. Next, we perform the following relevant change in the vector representation
of the single-photon state |L(z)〉 ≡ (

l0(z) exp(iγz/2), l1(z) exp(−iγz/2)
)t ≡ exp(iγσzz/2)|l(z)〉,

with t indicating the transpose. By inserting this state into the above equation, using M̂ = −ih̄∂/∂z,
and neglecting terms that are rapidly oscillating, that is exp(±iqγz) with q = 1/2, 1, 3/2, the following
momentum operator is obtained for the state |l(z)〉 ≡ (

l0(z), l1(z)
)t:

M̂′|l(z)〉 ≈
(

h̄β̄ I +
h̄δs

2
σz − h̄Co

2
σx

)
|l(z)〉, (33)

with δs = Δβ − γ. This momentum operator simulates the Hamiltonian given by Equation (13),
where the following simulation parameters are obtained:

ω̄ ↔ −β̄, δ = (ωo − ω) ↔ δs = (Δβ − γ), Ω ↔ Co, (34)

with δ ↔ δs the detuning simulation parameter and Ω ↔ Co the Rabi frequency simulation parameter.
Hence, this photonic device simulates light-matter interaction under a spatial RWA. Obviously,
all temporal dynamics obtained by light-matter interaction can be simulated by means of this photonic
device, as for example Rabi oscillations, logic gates for one-qubit transformations, and so on. In order
to make clear these possibilities, let us consider the synchronous (or resonant) case, that is Δβ = γ.
The momentum operator is thus simplified, and the solutions can be easily obtained. In matrix form,
the solution of the equation above is given by:(

l0(z)
l1(z)

)
=

(
cos Co

2 z −i sin Co
2 z

−i sin Co
2 z cos Co

2 z

)(
l0(0)
l1(0)

)
≡ X(Θ/2)

(
l0(0)
l1(0)

)
, (35)

with Θ=Coz and where an irrelevant global phase eiβ̄z has been omitted. As a simple example,
if we choose a length of the grating (interaction length) z = 2π/Co, then a Xquantum logic gate is
implemented. We must stress that these are transformations corresponding to the so-called Θ-pulses
in atom-light temporal interaction for computing purposes [22]. For example, given an input state |10〉,
the state propagating along the optical grating will be:

|L(z)〉 = l0(z)|10〉+ l1(z)|11〉. (36)

On the other hand, for the case |δs| � Co and by omitting again the global phase eiβ̄z, we obtain,
as a solution to Equation (33), a phase gate, that is,(

l0(z)
l1(z)

)
=

(
exp(i δs

2 z) 0
0 exp(−i δs

2 z)

)(
l0(0)
l1(0)

)
≡ Z(Φ/2), (37)

where Φ = δsz. Therefore, a Z quantum logic gate is obtained from Equation (37) if δsz/2 = π/2,
an S-gate if δsz/2 = π/4, a T-gate if δsz/2 = π/8, and so on. Moreover, by using an optical grating
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implementing a transformation X(Θ/2) and two phase gates Z(Φ/2), a ZXZ-factorization of SU(2)
is obtained; therefore, any unitary transformation can be implemented with the photonic device,
and consequently, any one-qubit can be generated.

Next, we present solutions for the asynchronous case, that is Δβ 
= γ, which provides a most
general solution and will be very useful to obtain geometric phases. By using standard methods to
solve a linear equation system, the general solution of Equation (33) is given by:(

l0(z)
l1(z)

)
=

(
cos δr

2 z + i δs
δr

sin δr
2 z −i Co

δr
sin δr

2 z
−i Co

δr
sin δr

2 z cos δr
2 z − i δs

δr
sin δr

2 z

)(
l0(0)
l1(0)

)
, (38)

with δr =
√

δ2
s + C2

o and where, once more, the irrelevant global phase eiβ̄z is omitted. Note that
for δs = 0, the matrix given by Equation (35) is recovered. Likewise, under the condition |δs| � Co,
the matrix solution given by Equation (37) is obtained. We must recall that all these transformations
are obtained in a spatial rotating reference system defined by Equation (28) and induced by the
RWA approximation, as occurs in atom-light temporal interactions. Likewise, we must stress that by
using the simulation parameters given by Equation (34), mechanical solutions for light-matter (atom)
interaction are directly obtained. Finally, it is also easy to check that the same solutions are obtained
for the spin-magnetic field interaction simulation given by Equation (29); therefore, such an interaction
has the same quantum processing properties as the atom-optical field interaction.

Finally, it is worth paying attention to the problem of properly initializing a quantum state.
For that, let us consider an SPDC (Spontaneous Parametric Down Conversion) source of biphotons
|1ka 1kb

〉, that is twin photons excited in two spatial modes propagating along directions ka and
kb. Photon |1kb

〉 is directed towards an APD device, and the other one |1ka〉 is directed to the
prism-waveguide coupler, as shown in Figure 1a). The direction ka is chosen in such a way that,
for example, if the fundamental mode of the planar guide is excited, that is ka = k0, then we
obtain the single-photon state (or register) |10〉. Alternatively, direction ka = k1 can be chosen
to excite the mode e1 of the planar guide, and thus, the single-photon state (or register) |11〉 is
obtained. If we had channel waveguides, a similar procedure can be used, for example before the
channel waveguide, there would be a planar waveguide with a prism-waveguide coupler and, next,
an integrated lens or a similar integrated optical element [15] in such a way that the excited mode is
focused onto the channel waveguide to excite the desired single-photon state. Next, by using optical
gratings, different quantum transformations can be performed, and consequently, a general output
state |L〉 = a0(z)|1k0〉 + a1(z)|1k1〉 is obtained. Finally, at a distance z, another prism-waveguide
coupler can be placed at the end of the device to detect the quantum state. Photon detections can be
made by using coincidences between the output photon and the photon |1kb

〉 reaching the APD.

3.5. Implementation of Photonic Simulators

In this subsection, we present more complex simulators by using several integrated optical
gratings along with other integrated components as Directional Couplers (DCs) made with
Single-Mode (SMWs) or Two-Mode channel Waveguides (TMWs). We present a simulator of
the interaction between an atom with four levels and Θ-pulses, next the interaction of a particle
(or physical system) with spin 3/2 and a magnetic field, and finally, an arbitrary unitary transformation
SU(4) implemented with optical gratings what allows reducing the number of paths by half or
even to a quarter, which can be generalized to SU(N) transformations, which can be of interest for
photonic simulators.

Let us consider, as the first example, the Optical Grating (OG) studied above, but with a number
d = 4 of collinear guided modes whose propagation constants are β j with j = 1, 2, 3, 4. This simple
device can simulate a four-level atom, which can be used to implement a CNOT logic gate operation
under atom-laser interaction [22]. The optical grating fulfills γ = β2 − β3; therefore, it will produce an
efficient transition between Modes 2 and 3 if z = π/Co (π-pulse in atom-laser interaction) according to
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Equation (35). We can identify each single-photon state excited in each optical mode as a computational
state (two-qubit single-photon [23]); thus, we have the state |L〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉.
When this state goes through the optical grating, the output state is |L〉 = c00|00〉+ c01|01〉+ c11|10〉+
c10|11〉, that is a CNOT operation is obtained. Obviously, this is not the best way to implement logic
gates for two-qubits, but it makes clear how OGs can be used to simulate interaction between an atom
with several levels and the so-called Θ-pulses.

The second example consists of using single-mode channel guides coupled by OGs in order
to simulate the interaction between a particle (or physical system) with spin s and a magnetic
field. This can be implemented by using a number N=2s+1 of optical modes excited in N channel
waveguides and coupled by OGs, as shown in Figure 2 for the particular case of four guides
(spin s=3/2). We must stress that coupling between parallel SMWs can be also described by the
Heisenberg quantum equations given by Equation (18). In order to simulate spin-magnetic field
interaction, either the strength of the OGs or the separation between consecutive SMWs has to be
adjusted, and therefore, proper coupling strength values Cj,j+1 with j=1, ...N − 1, between consecutive
guides, are obtained. Likewise, the SMWs have to be designed with different propagation constants β j
(asynchronous guides) by changing, for example, the depth of each channel waveguide. Finally, it is
well known in integrated optics that for asynchronous DCs assisted by optical gratings, the coupling
due to the overlapping fields is negligible. As a particular example, let us consider spin s = 3/2.
The general equation system is given by:

−ih̄
dâj(z)

dz
= h̄β̃ j(z)âj(z) + h̄ ∑

j′ 
=j
Cj j′(z)âj′(z). (39)

with (|j − j′| < 2), that is coupling only exists between consecutive channel guides. Next, by using
the same procedure followed for the case of spin-1/2, we obtain, after a long, but straightforward
calculation, the following equation system:

−ih̄
∂

∂z
|Lb(z)〉 = −ΔoI4x4+

+

⎛⎜⎜⎜⎝
3Δo C12 exp (iγz) 0 0

C21 exp (−iγz) Δo C23 exp (iγz) 0
0 C32 exp (−iγz) −Δo C34 exp (iγz)
0 0 C43 exp (−iγz) 3Δo

⎞⎟⎟⎟⎠ |Lb(z)〉 (40)

where I4x4 is the identity matrix and the following propagation constants are used: β1, β2=β1−Δo,
β3=β1−2Δo, β4=β1−3Δo. These values can be achieved by adjusting, for example, the width of
the channel waveguides. On the other hand, the coupling coefficients for the gratings fulfil the
relationships C12=C21=C34=C43=

√
3Co and C23=C32=2Co, which can be achieved by adjusting the

separation between consecutive guides with optical modes ej(x, y), j=1, 2, 3, 4. In our case, Guides 2−3
are closer than 1−2 and 3−4 because the coupling between Guides 2and3 is larger, as shown in Figure 2.
Finally, by defining cos θ = Δo/Γ and sin θ = Co/Γ, with Γ = (Δ2

o + C2
o )

1/2, and a fictitious magnetic
field B f = (sin θ cos γz,− sin θ sin γz, cos θ), we can write the above equation system as follows:

−ih̄
∂

∂z
|Lb(z)〉 = {−h̄ΔoI4x4 +

h̄
2

Γ J(3/2) B f } |Lb(z)〉 (41)

where J(3/2) = (Jx(3/2), Jy(3/2), Jz(3/2)) are the spin matrices for spin s = 3/2. In short,
we constructed a photonic simulator for interaction between a spin-3/2 particle, or physical system,
and a periodic magnetic field.
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e1 
e2 
e3 
e4 

z

SMW

Figure 2. Four non-synchronous Single-Mode channel Waveguides (SMWs) assisted by an optical
grating to simulate the interaction between a spin s = 3/2 particle and an oscillating magnetic field.

Next, we present a general unitary transformation SU(4) by using optical gratings. With this
example, we want to show that OGs allow reducing the number of paths required for constructing a
simulator. Indeed, an SU(4) simulator is formed by four paths implemented by SMWs with optical

modes e(j)00 (x, y) (j=1, ...,4), six DCs, and six Phase Shifters (PSs), as shown in Figure 3 (bottom).
However, if OGs are used, we only need two paths, that is TMWs with modes e(j)00 (x, y), e(j)10 (x, y)
(j = 1, 2) and six OGs, as shown in Figure 3 (up). In this case, we also use Selective Directional Couplers
(SDCs) (a SDC always performs an X transformation in one mode, and the other mode undergoes
an identity transformation). Note that the number of paths was reduced by half because OGs act on
collinear modes, unlike directional couplers, which act on codirectional modes. Obviously, if we had
used OGs with four modes, we could reduce the number of paths by 1/4. Overall, we will be able
to reduce the number of paths by 1/d if we use OGs with a number d of collinear modes. Ultimately,
we can take advantage of the OGs to increase integration and thus to implement more flexible and
scalable photonic simulators such as for example boson sampling ones [24], where the number of paths
would be reduced by half. In short, the number N of paths of any required SU(N) transformation [25]
could be reduced up to N/d.

Z

SMW

TMW

DC
PS

SDC
PSOGe00 ,e10

(1)(1)

e00 ,e10
(2)(2)

e00
(1)

e00
(2)

e00
(3)

e00
(4)

Figure 3. Standard implementation (bottom) of an arbitrary unitary transformation SU(4) by using
Single-Mode channel Waveguides (SMWs) and Directional Couplers (DCs) (bottom). Alternative
implementation (top) by using Two-Mode channel Waveguides (TMWs), Selective Directional Couplers
(SDCs) and Optical Gratings (OGs). PS, Phase Shifter.

Finally, it is important to indicate that quantum photonic devices have their own limitations [4].
Thus, the difficulty to implement two-qubit logic gates is well known, which is, at present, an important
drawback in general purpose quantum photonic computation. However, quantum photonic simulation,
or simply quantum photonic computation, for specific purposes can provide efficient technological
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solutions, particularly if new degrees of freedom are incorporated. In our case, we have just shown that
integrated OGs allow processing with several collinear modes, which improves the optical integration
for high-dimensional problems, that is it provides a moderate increase of the on-chip flexibility
and scalability for photon-based quantum simulation. Moreover, OGs enable simulating quantum
devices under variable perturbations and, in particular, periodic perturbations, which usually appear
in quantum systems interacting with fields like spin (N=2s+1 modes)-magnetic field interaction,
atom (d modes)-optical field interaction, and so on.

4. Quantum Geometric Phases

So far, we have simulated the dynamics of the spin-magnetic and light-matter interaction systems
with a photonic device. However, these quantum devices also generate topological or geometric
phases besides the dynamic phases. Geometric phases are precisely due to geometric properties
as was originally proven by Berry in his seminal work about an adiabatic quantum system [26].
Later, these geometric phases were generalized by Aharonov and Anandan [27] to non-adiabatic
processes, and their calculation is made by using the geometric properties of the projective Hilbert
space. Finally, a useful extension to geometric phases associated with non-cyclic circuits on the
projective Hilbert space was also proposed [28]. On the other hand, topological phases in optics have
also been extensively studied in bulk devices with polarization modes [29] and also in integrated
optics with spatial modes [30]. At present, geometrical phases have regained interest for their possible
application to geometric quantum computation [31,32]. Non-adiabatic spatial propagation on the
Hilbert space generate the geometric phase known as the Aharonov–Anandan (AA) phase. It is well
known that the spin-magnetic field interaction, as for example NMR, produces AA phases. We must
stress that the geometric phase for a two-dimensional projective Hilbert space can be calculated in a
geometric way as φg = (1/2)Ω(C), where Ω(C) is the solid angle subtended by the circuit C followed
by the quantum state on the Bloch sphere. In this section, we prove that quantum geometrical phases
can be obtained by an integrated photonic grating, and therefore, it simulates the geometric phases
produced by both a spin-magnetic field system and an atom-optical field system.

4.1. Geometric Phases in Spin-Magnetic Field Photonic Simulation

Let us consider the eigenstates |l±(0)〉 given by Equation (31). Spatial propagation of these
states is given, according to Equations (28) and (31), by |Lb(z)〉 ≡ |L±(z)〉 = exp(iγσzz/2)|l±(z)〉 =
exp( ip±

h̄ z) exp(iγσzz/2)|l±(0)〉. For instance, let us take |L+(z)〉 after a propagation distance z = νΛ,
that is for a photonic integrated grating with a length νΛ, where Λ = 2π/γ and ν is the number of
cycles taken, then we have:

|L+(νΛ)〉 = exp
( ip+

h̄
νΛ
)(

cos
α′

2
exp(iνπ)|10〉+ sin

α′

2
exp(−iνπ)|11〉

)
(42)

By following the same procedure for the state |L−(z = νΛ)〉 and taking into account that ν is an
integer, we obtain:

|L±(νΛ)〉 = exp
(

ip±
h̄

νΛ ± iνπ

)
|l±(0)〉 = exp(iφ±))|l±(0)〉. (43)

The phases φ± obtained above are the full phases acquired by the states |L±〉 after ν cycles in the
optical grating, that is,

φ± = ν(±poΛ/h̄ ± π) (44)

A photonic Bloch sphere is shown on the left in Figure 4 where each point corresponds to a
single-photon state given by Equation (19). For comparison purposes, an NMR Bloch sphere is also
shown on the right. A single-photon state propagating along z can be represented by the following
general expression |L(z)〉 = c0(z)|10〉+ c1(z)|11〉; therefore, each point (x, y, z) of the photonic Bloch
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sphere is defined as follows: x = 2 Rec0(z)c1(z), y = 2 Imc0(z)c1(z), z = |c0(z)|2 − |c1(z)|2, where Re
and Im stand for real and imaginary parts, respectively.

It is easy to check that eigenstates |L±(z)〉 follow the curves Cc and C′
c corresponding to spherical

caps, as shown in Figure 4. The solid angle subtended by a spherical cap with an angular extension α′

is given by Ω(C) = 2π(1 − cos α′).
As the full phase φ can be decomposed into a dynamical part φd and a geometric one φg, then the

geometric phase can be obtained from the relationship:

φ±
g = φ± − φ±

d (45)

We first compute the dynamical phase, that is φ±
d = 1

h̄

∫ νΛ
0 〈L±(z)|M̂(z)|L±(z)〉dz; therefore,

by taking into account the transformation (28) and expression (29) for M̂′, we obtain:

φ±
d = 1

h̄

∫ nΛ
0 〈L±(z)|M̂(z)|L±(z)〉dz = 1

h̄

∫ νΛ
0 〈l±(0)|M̂(0)|l±(0)〉dz =

= 1
h̄

∫ νΛ
0

(〈l±(0)|M̂′|l±(0)〉 − γ
2 〈l±(0)|σz|l±(0)〉

)
dz =

= p±
h̄ νΛ ± νπ cos α′, (46)

and by taking into account the total phase given by Equation (43), the geometrical phases acquired by
the eigenstates are given by:

φ±
g = ±νπ(1 − cos α′) = ±νπ

(
1 − Δβ − γ√

(Δβ − γ)2 + C2
o

)
. (47)

Note that the geometric phase is half the solid angle subtended by the circuit, where the sign ±
depends on the direction of rotation followed by the state on the Bloch sphere. The corresponding
spherical cap circuits Cc and C′

c are shown in Figure 4. Moreover, the geometric phase depends on the
device parameters, that is Δβ, γ, Co. Likewise, it is important to indicate that the dynamical phase is of
order ω1 (note that β ∝ ω), but the geometrical phase is of order ω0; therefore, the geometric phase is
less sensitive to errors in the distance propagation.

X

Z

YOO P

X

Z

YO PO PP

Cc

Cc

Cw

Cc

Cc

Cw

Figure 4. On the left, a photonic Bloch sphere shows the evolution of the single-photon states |l+〉 and
|l−〉 (spherical cap circuits Cc and C′c). Likewise, a spherical wedge circuit Cw is shown. On the right,
the simulated mechanical Bloch sphere for an interacting atom-field system is shown, with similar
spherical cup circuits for states |η+〉 and |η−〉 and also a spherical wedge circuit Cw.
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In short, a single-photon state acquires an AA geometric phase under propagation in an
integrated photonic grating. The same expression is found for a spin-1/2 particle in a magnetic
field; therefore, topological simulations can be made. Thus, by applying the simulation parameters
given by Equation (30), geometric phases can be obtained.

4.2. Elimination of the Dynamical Phase in Spin-Magnetic Field Photonic Simulation

It is well known in the mechanical case that the geometric phase is hidden in the spin-magnetic
field interaction because it is combined with the dynamical phase within φ±; therefore, the dynamical
phase has to be eliminated in order to take advantage of the properties of a geometric phase. We present
a photonic solution, which is similar to the one used in the mechanical case, that is if the quantum state,
after evolution under a first Hamiltonian Ĥ1 = Ĥ for time T, finds a second Hamiltonian Ĥ2 = −Ĥ,
then the dynamical phase are mutually canceled; however, the eigenstates do not change, therefore
neither does the geometrical phase.

In the photonic case, we have to find a new momentum operator, that is a new integrated optical
grating, such as M̂2 = −M̂. We assume that such a new optical grating has the same frequency
γ; therefore, we have the same rotating system, that is the same transformation (28). Accordingly,
the condition for eliminating the dynamical phase is obtained from the operator M̂′, that is,

M̂′
2 =

h̄
2

(
Δβ′ − γ C′

o
C′

o −Δβ′ + γ

)
= −M̂′ = − h̄

2

(
Δβ − γ Co

Co −Δβ + γ

)
; (48)

therefore, C′
o = −Co and (Δβ − γ) = −(Δβ′ − γ). The first condition can be achieved by introducing

an initial phase in the second grating, that is Δε(x, z) = Δε(x) cos(γz + π), and the second one
is achieved if Δβ′ = 2γ − Δβ. These results indicate that we need an additional grating with a
new difference between propagation constants (linear momentum of the photon) Δβ′ = (β′

0 − β′
1).

In Figure 5 the system for eliminating the dynamical phase is shown . Therefore, the total phases are
φ± = ν(∓pΛ/h̄ − π), and the dynamical phases are:

φ±
d =

p±
h̄

νΛ ∓ νπ cos α′ (49)

Therefore, the total dynamical phase is Φd = 0, and the total geometrical phase after the single-photon
state propagates through the two integrated gratings is twice the value acquired in the first grating,
that is,

Φ±
g = ∓2νπ(1 − cos α′) = ∓Φg. (50)

Alternatively, propagation constants can be unchanged, and the grating frequency can be modified,
that is γ′ = 2Δβ − γ; however, in this case, the transformation (28) must be applied with the factor γ′.
In short, we eliminated the dynamical phase; therefore, these results could be used for implementing
logic gates or transformations based on topological phases, which are much more insensitive to
fabrication errors, unlike dynamical phases, which as mentioned are of order ω. With these results,
robust P-gates (Phase gates) can be designed; thus, the following transformation is implemented
between the eigenstates:

P =

(
exp(−i2νπ cos α′) 0

0 exp(i2νπ cos α′)

)
= exp(−iΦg σz) (51)

Note that for 4ν cos α′ = ±1, a Z-gate is obtained, and for 4ν cos α′ = ±1/2, an S-gate is
implemented, and so on.
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Figure 5. Elimination of the dynamical phase by using two consecutive integrated optical gratings.
The second grating has an initial phase π. Likewise, a prism is used to make a projective measure of
states |10〉 and |11〉 for obtaining the probabilities P0 and P1 and, therefore, the geometric phase Φg.

4.3. Geometric Phases with Other Quantum States

On the other hand, the eigenstates given by Equation (31) can be written as single-photon
states excited in rotated optical modes, that is e+(x, y) = cos α′

2 eo(x, y) + sin α′
2 e1(x, y) and e−(x, y) =

− sin α′
2 eo(x, y) + cos α′

2 e1(x, y); therefore:

|l+(0)〉 = cos
α′

2
|10〉+ sin

α′

2
|11〉 = |1+〉, |l−(0)〉 = − sin

α′

2
|10〉+ cos

α′

2
|11〉 = |1−〉 (52)

The elimination of the dynamical phase means that these eigenstates have undergone the
transformation e±iΦg |1±〉; therefore, the following formal relationships can be written:

eiΦg |1+〉 = eiΦg â†
+|0±〉, e−iΦg |1−〉 = e−iΦg â†−|0±〉 (53)

with Φg = −2νπ(1 − cos α′). Accordingly, the following transformations, induced by geometric
phases, for the absorption operators are obtained:

â±(z = nΛ) = e±iΦg â±(0) (54)

This result can be used for obtaining geometric phases of other quantum light states. As an
example, we present two states, that is the number photon state or Fock state |n+〉 and the coherent
state |α+〉, where subindex + indicates that the state is excited in the optical mode e+(x, y). The Fock
state under propagation becomes:

|n+(0)〉 = 1√
n+!

(
â+(0)†)n+ |0〉 −→ 1√

n+!
ein+Φg(â†

+

)n+ |0〉 = ein+Φg |n+〉 (55)

Therefore, the quantum state has acquired a geometric phase n+Φg. Likewise, the coherent state
can be rewritten by using the complex displacement operator, that is,

|α+(0)〉 = e (α+ â†
+(0)−c.h.)|0〉 −→ e (α+eiΦg â†

+−c.h.)|0〉 = |eiΦg α+〉 (56)

Therefore, the geometric phase is Φg, that is the same as the one acquired by a single photon.
The same procedure can be applied to any other quantum light state excited in the integrated
photonic grating.
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4.4. Optical Measurement of Geometric Phases

Finally, we present how to measure the geometric phase starting from the measurements of
the single-photon detection probability, which can be extracted by a prism-waveguide coupler [10],
as shown in Figure 5. We focus on the spin-magnetic field interaction simulation case. By assuming that
the input state is a single photon excited in the mode e0(x, y) and taking into account the relationships
given by Equation (52), the following final state is obtained after the two gratings:

|L(z)〉 = (cos2 α′

2
+ sin2 α′

2
eiΦg)|10〉+ cos

α′

2
sin

α′

2
(1 − eiΦg)|11〉 (57)

The probability of the detection of a photon in Mode 0, that is P0, or in Mode 1, P1, is a function of
the geometric phase, that is,

P1 =
sin2 α

2
(1 − cos Φg), P0 = 1 − P1 (58)

If Φg = 2π, then P1 = 0 and P0 = 1, and if Φg = π, then P1 = sin2 α and P0 = cos2 α. Therefore,
from the measurement of P1 and P0, the phase Φg is obtained. In Figure 5 it is shown the projective
measure of states |10〉 and |11〉 by a prism-waveguide coupler, which projects these state in different
spatial directions. Finally, note that by using a coherent state, these probabilities are proportional to the
intensity of the light, what can be called a semiclassical optical characterization, or in the most technical
way, the geometric phase is also acquired by the classical fields, but would rigorously correspond to
the so-called Hannay phase [33].

4.5. Geometric Phases in Light-Matter Photonic Simulation

Finally, we check that light-matter simulation can be also used to obtain geometric phases. For the
sake of simplicity, we show geometric phases for wedge circuits, although more general cases can be
studied. Let us consider an initial state |L(0)〉 = |10〉, that is the point (0, 0, 1) on the photonic Bloch
sphere. Next, let us consider an asynchronous optical grating with δs � Co; therefore, according to
Equation (37) (phase gate), for δszo = 3π/2, we obtain |L(zo)〉 = (1/

√
2)(|10〉+ i|11〉), that is the state

reaches the Bloch sphere point (0, 1, 0). Next, we consider that the grating has a greater coupling
coefficient Co, then the single-photon state is given by the expression:

|L(z)〉 = 1√
2
[(cos

δrz
2

+ b sin
δrz
2

+ ia sin
δrz
2
)|10〉+ (a sin

δrz
2

+ i cos
δrz
2

− ib sin
δrz
2
)|11〉] (59)

where a = δs/δr and b = Co/δr. If we choose a distance z = z1 such as δrz1/2 = π/2, then, after a
certain calculation, the following state is obtained:

|L(z1)〉 = eiφo√
2
(|10〉+ i|11〉) (60)

where φo = atn(a/b) = atn(δs/Co), that is a = sin φo and b = cos φo. The state has reached the point
(0,−1, 0) of the photonic Bloch sphere. Now, we show that φo is a geometric phase. Indeed, for the
sake of symmetry, the state before reaching the above state has crossed the meridian y = 0 when
δrz/2 = π/4, that is, the state:

|L′〉 = (1 + b + ia)
2

|10〉+ (a + i(1 − b))
2

|11〉 ≡ m0 eiε0 |10〉+ m1 eiε1 |11〉. (61)

It is easy to prove that both states have the same phase, that is ε0 = ε1, and the modulus is given
by m0 = sin(φo/2) and m1 = cos(φo/2); therefore, the state crosses the point P = (sin φo, 0, cos φo)

of the photonic Bloch sphere as indicated in Figure 4 for ϕ = φo. Now, we must recall that partial
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cycles also generate geometric phases, which can be calculated by closing the end points of the open
cycle by a geodesic line [28,30]. In our case, the corresponding geodesic lies along the meridian
at the plane x = 0, from point (0,−1, 0) to initial point (0, 0, 1). In short, the state has followed a
wedge circuit Cw, as shown in Figure 4. Now, we calculate the subtended solid angle by this wedge
circuit. It is easy to check that a wedge circuit with angle φo subtends a solid angle Ω(Cw) = 2φo;
therefore, the geometric phase is Φg = (1/2)Ω(Cw) = φo = atn(δs/Co), which is just the global phase
obtained in Equation (60). It is worth underlining that in this case, the geometric phase is not hidden,
and therefore, the dynamical phase does not have to be eliminated. Moreover, this geometric phase
can be also obtained in a atom-optical field system out of resonance by using Θ-pulses, with the first
optical field with low amplitude Eo (Z gate) and the next with a higher amplitude Eo. By using the
simulation parameters given by Equation (34), the geometric phase would be Φg = atn(δ/Ω).

5. Conclusions

We propose a quantum photonic device based on integrated optical gratings in a two-mode
slab guide to simulate the interaction between external fields and atoms. By using single-photon
states, we study the simulations of a spin-(1/2)-magnetic field system, as for example nuclear
magnetic resonance, and a two-level atom-optical field system corresponding to light-matter simulation.
Both dynamical and geometric properties are simulated, in particular the geometric phases obtained by
the mentioned systems. We prove that dynamical properties can be simulated for a wide range of cases
with practical interest, although in the spin-(1/2)-magnetic field system it is restricted to relatively
high values of frequency and magnetic field amplitude Bo. Overall, atom-optical field interaction does
not present these restrictions. This study of integrated optical gratings opens up possibilities to more
general simulations if several modes are used. Thus, spin (s)-magnetic field interaction simulations
could be implemented by using a number N = 2s+1 of codirectional optical modes assisted by optical
gratings; multilevel atom (n)-optical field interaction can be simulated by using N = n collinear optical
modes coupled by optical gratings, which can in turn simulate, for example, two-qubit single photon
logic gates, which has a high interest in quantum information systems; likewise, optical gratings
allow interaction between d collinear modes, and thus, simulators based on N codirectional modes
can reduce the number of paths used up to N/d, which improves the optical integration of the
photonic simulator. On the other hand, AA geometric phases have been also obtained for both systems.
The spin-(1/2)-magnetic field system requires dynamic phase cancellation, which is simulated by
using two optical gratings; however, in the atom-optical field system, such cancellation is not required.
Obviously, we must emphasize that although the proposed integrated photonic device is intended for
quantum simulation, it can also be used to implement quantum operations and/or effects with the
photonic device itself, such as logic gates, geometric phases, and so on, by using single-photon states
or more general quantum states, as shown.
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Abbreviations

The following abbreviations are used in this manuscript:

RWA Rotating Wave Approximation
NMR Nuclear Magnetic Resonance
AA Aharonov–Anandan
SPDC Spontaneous Parametric Down Conversion
DC Directional Coupler
SDC Selective Directional Coupler
APD Avalanche Photodiode
SMW Single-Mode Waveguide
TMW Two-Mode Waveguide
OG Optical Grating
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Abstract: We review the advancement of the research toward the design and implementation of quan-
tum plenoptic cameras, radically novel 3D imaging devices that exploit both momentum–position
entanglement and photon–number correlations to provide the typical refocusing and ultra-fast,
scanning-free, 3D imaging capability of plenoptic devices, along with dramatically enhanced per-
formances, unattainable in standard plenoptic cameras: diffraction-limited resolution, large depth
of focus, and ultra-low noise. To further increase the volumetric resolution beyond the Rayleigh
diffraction limit, and achieve the quantum limit, we are also developing dedicated protocols based
on quantum Fisher information. However, for the quantum advantages of the proposed devices to be
effective and appealing to end-users, two main challenges need to be tackled. First, due to the large
number of frames required for correlation measurements to provide an acceptable signal-to-noise
ratio, quantum plenoptic imaging (QPI) would require, if implemented with commercially available
high-resolution cameras, acquisition times ranging from tens of seconds to a few minutes. Second,
the elaboration of this large amount of data, in order to retrieve 3D images or refocusing 2D images,
requires high-performance and time-consuming computation. To address these challenges, we are de-
veloping high-resolution single-photon avalanche photodiode (SPAD) arrays and high-performance
low-level programming of ultra-fast electronics, combined with compressive sensing and quantum
tomography algorithms, with the aim to reduce both the acquisition and the elaboration time by two
orders of magnitude. Routes toward exploitation of the QPI devices will also be discussed.

Keywords: quantum imaging; plenoptic imaging; quantum correlations; SPAD arrays; quantum
fisher information; compressive sensing

1. Introduction

Fast, high-resolution, and low-noise 3D imaging is highly required in the most diverse
fields, from space imaging to biomedical microscopy, security, industrial inspection, and
cultural heritage [1–5]. In this context, conventional plenoptic imaging represents one of the
most promising techniques in the field of 3D imaging, due to its superb temporal resolution:
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3D imaging is realized in a single shot, for seven frames per second at 30 M pixel resolution,
and 180 frames per second for 1M pixel resolution [5]; no multiple sensors, near-field
techniques, time-consuming scanning or interferometric techniques are required. However,
conventional plenoptic imaging entails a loss of resolution which is often unacceptable. Our
strategy to break such limitation consists of combining a radically new and foundational
approach with last-generation hardware and software solutions. The fundamental idea
is to exploit the information stored in correlations of light by using novel sensors and
measurement protocols to implement a very ambitious task: high speed (10–100 fps)
quantum plenoptic imaging (QPI) characterized by ultra-low noise and an unprecedented
combination of resolution and depth-of-field. The developed imaging technique aims
at becoming the first practically usable and properly “quantum” imaging technique that
surpasses the intrinsic limits of classical imaging modalities. In addition to the foundational
interest, the quantum character of the technique allows for extracting information on 3D
images from correlations of light at very low photon fluxes, thus reducing the scene
exposure to illumination. The interest in QPI is specially motivated by the potential
advantages with respect to other established 3D imaging techniques. Actually, other
methods require, unlike QPI, either delicate interferometric measurements, as in digital
holographic microscopy [6,7], or phase retrieval algorithms, as in Fourier ptychography [8],
or fast pulsed illumination, as in time-of-flight (TOF) imaging [9–14]. Moreover, QPI
provides the basis of a scanning-free microscopy modality, overcoming the drawbacks of
the confocal methods [15].

In view of the deployment of quantum plenoptic cameras suitable for real-world
applications, the crucial challenge is represented by the reduction of both the acquisition
and data elaboration times. In fact, a typical complication arises in quantum imaging
modalities based on correlation measurements: the reconstruction of the correlation func-
tion encoding the desired image requires collecting a large number of frames (30,000–50,000
in the first experimental demonstration of the refocusing capability of correlation plenoptic
imaging [16]), which must be individually read and stored before elaborating the output.
Therefore, to get an estimate of the total time required to form a quantum plenoptic image,
the data reading and transmission times must be added to the acquisition time of the
employed sensor. This problem is addressed by an interdisciplinary approach, involving
the development of ultrafast single-photon sensor systems, based on SPAD arrays [17–22],
the optimization of circuit electronics to collect and manage the high number of frames
(e.g., by GPU) [23,24], the development of dedicated algorithms (compressive sensing,
machine learning, quantum tomography) to achieve the desired SNR with a minimal
number of acquisitions [25–28]. Finally, the performances of QPI will be further enhanced
by a novel approach to imaging based on quantum Fisher information [29,30]. Treating the
physical model of plenoptic imaging in the view of quantum information theory brings
new possibilities of improving the setup towards super-resolution capability in the object
3D space. Having the optimal set of optical setup parameters enables object reconstruction
close to ultimate limits set by nature. In this article, we will combine a review of the state
of the art in the aforementioned fields with the discussion on how they contribute to the
development of QPI and its application.

The paper is organized as follows: in Section 2, we discuss the working principle
and recent advances of Correlation Plenoptic Imaging (CPI), a technique that represents
the direct forerunner of QPI; in Section 3, we present the hardware innovations currently
investigated to reduce the acquisition times in CPI; in Section 4, we review the algorithmic
solutions to improve QPI; in Section 5, we outline the perspectives of our future work in the
context of Qu3D project; in Section 6, we discuss the relevance of our research. The work
presented in this paper involves experts from three scientific research institutions, Istituto
Nazionale di Fisica Nucleare (INFN, Italy), Palacky University Olomouc/Department
of Optics (UPOL, Czechia), and Ecole polytechnique fédérale de Lausanne/Advanced
Quantum Architecture Lab (EPFL, Switzerland), and from the industrial partner Planetek
Hellas E.P.E. (PKH, Greece). The activity is carried within the project “Quantum 3D
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Imaging at high speed and high resolution” (Qu3D), founded by the 2019 QuantERA
call [31].

2. Plenoptic Imaging with Correlations: From Working Principle to Recent Advances

Quantum plenoptic cameras promise to offer the advantages of plenoptic imaging,
primarily ultrafast and scanning-free 3D imaging and refocusing capability, with per-
formances that are beyond reach for the classical counterpart. State-of-the-art plenoptic
imaging devices are able to acquire multi-perspective images in a single shot [5]. Their
working principle is based on the simultaneous measurement of both the spatial distri-
bution and the propagation direction of light in a given scene. The acquired directional
information translates into refocusing capability, augmentable depth of field (DOF), and
parallel acquisition of multi-perspective 2D images, as required for fast 3D imaging.

In state-of-the-art plenoptic cameras [32], directional detection is achieved by inserting
a microlens array between the main lens and the sensor of a standard digital camera (see
Figure 1a). The sensor acquires composite information that allows identification of both the
object point and the lens point where the detected light is coming from. However, the image
resolution decreases with inverse proportionality to the gained directional information,
for both structural (use of a microlens array) and fundamental (Gaussian limit) reasons;
plenoptic imaging at the diffraction limit is thus considered to be unattainable in devices
based on simple intensity measurement [5].

Figure 1. (a) the scheme of a conventional plenoptic imaging (PI) device: the image of the object is
focused on a microlens array, while each microlens focuses an image of the main lens on the pixels
behind. Such a configuration entails a loss of spatial resolution proportional to the gain in directional
resolution; (b) shows the scheme of a correlation plenoptic imaging (CPI) setup, in which directional
information is obtained by correlating the signals retrieved by a sensor on which the object is focused
with a sensor that collects the image of the light source. The image in (a) is reproduced with the
permission from Ref. [16], copyright American Physical Society, 2017.

Recently, the INFN group involved in Qu3D has proposed a novel technology, named
Correlation Plenoptic Imaging (CPI), that enables overcoming the resolution drawback of
current plenoptic devices, while keeping their advantages in terms of refocusing capability
and 3D reconstruction [1,16,33]. CPI is based on either intensity correlation measurement
or photon coincidence detection, according to the light source: actually, CPI can be based
on the spatio-temporal correlations characterizing both chaotic sources [16,33] and entan-
gled photon beams [34] to encode the spatial and directional information on two disjoint
sensors, as shown in Figure 1b. CPI with chaotic light is based on the measurement of the
correlation function

Γ(ρa, ρb) = 〈Ia(ρa)Ib(ρb)〉 − 〈Ia(ρa)〉〈Ib(ρb)〉, (1)

where 〈. . . 〉 denotes the average on the source statistics, and Ijρj (j = a, b) are the intensities
propagated by the beam j and registered in correspondence of point ρj on the sensor
Dj. Experimentally, the statistical averages are replaced by time averages, obtained by
retrieving a collection of frames, simultaneously acquired by the two detectors. In CPI
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devices, the correlation function encodes combined information on the distribution of light
on two reference planes, one of which corresponds to the “object plane” that would be
focused on the sensor in a standard imaging setup, placed at a distance so from the focusing
element. In general, given an object placed at a distance s from the focusing element,
and characterized by the light intensity distribution A(ρ), its images are encoded in the
function Γ(ρa, ρb), in the geometrical-optics limit, as

Γ(ρa, ρb) ∼ An
(

s
so

ρa

M
+

(
1 − s

so

)
ρb
ML

)
, (2)

where M and ML are the magnifications of the images of the reference object plane and
of the focusing element, respectively, while the power n is equal to 1 or 2, according to
whether the object lies in only one [16,33,35] or both [36,37] optical paths.

Experimental CPI based on pseudo-thermal light is shown in Figure 2c, where both
the acquired out-of-focus image and the corresponding refocused image are shown [16]. It
was demonstrated in this proof of principle that CPI is characterized by diffraction-limited
resolution on the object plane focused on the sensor. Details on the resolution limits are
shown in Figure 2a, where one can observe an even more striking effect: thanks to its
intrinsic coherent nature, CPI enables an unprecedented combination of resolution and
DOF [16]. However, the low-noise sCMOS camera employed in the experiment, working
at 50 fps at full resolution, requires several minutes to acquire 30,000 frames used to
reconstruct the plenoptic correlation function, and a standard workstation has taken over
10 h for elaborating the acquired data and perform refocusing. The resulting image was
also rather noisy, due to the well-known resolution vs. noise compromise of chaotic light
ghost imaging that keeps also affecting CPI [35].

Figure 2. (a) shows the resolution limits, as a function of the longitudinal position, of the image of a
double-slit mask with center-to-center distance d equal to twice the slit width; here, CPI outperforms
both conventional imaging and standard PI with 3 × 3 directional resolution. The evident asymmetry
of the CPI curve is due to the existence of two planes in which the object is focused: one at zb = za

and one at zb = 0 (see [16]). Plots in (b) show a result of a simulation: the target is moved from the
focused plane (top left) to an out-of-focus plane (top right). Starting from this position, we show
the results of PI refocusing with 3 × 3 directional resolution (bottom left) and the CPI refocusing
(bottom right); (c) shows the results of an experiment [16] in which the standard image of a triple
slit was completely blurred (top), while the image obtained by CPI (bottom) was made fully visible
by exploiting information on light direction. Plots in (c) are reproduced with the permission from
Ref. [16], copyright American Physical Society, 2017.

We are addressing these issues by employing two kinds of sources:

• Chaotic light sources, such as pseudothermal light, natural light, LEDs and gas lamps,
and even fluorescent samples, operated either in the high-intensity regime or in
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the “two-photon” regime, in which an average of two photons per coherence area
propagates in the setup. Chaotic light sources are well known to be characterized
by EPR-like correlations in both momentum and position variables [38,39], to be
exploited in an optimal way to retrieve an accurate plenoptic correlation function in
the shortest possible time. In order to efficiently retrieve spatio-temporal correlations,
tight filtering of the source can be necessary to match the filtered source coherence
time with the response time of the SPAD arrays that can be as low as 1 ns. Alterna-
tively, pseudorandom sources with a controllable coherence time, made by impinging
laser light on a fast-switching digital micromirror device (DMD), can be employed.
Interestingly, recent studies have shown that, in the case of chaotic light illumination,
the plenoptic properties of the correlation function do not need to rely strictly on
ghost imaging: correlations can be measured between any two planes where ordinary
images (see Figure 1b) are formed [35]. This discovery has led to the intriguing re-
sult that the SNR of CPI improves when ghost imaging of the object is replaced by
standard imaging [40]. In particular, excellent noise performances are expected in the
case of images of birefringent objects placed between crossed polarizers. This kind of
source is particularly relevant in view of applications in fields like biomedical imaging
(cornea, zebrafish, invertebrates, biological phantoms such as starch dispersions),
security (distance detection, DOF extension), and satellite imaging.

• Momentum–position entangled beams, generated by spontaneous parametric down-
conversion (SPDC), which have the potential to combine QPI with sub-shot noise
imaging [41], thus enabling high-SNR imaging of low-absorbing samples, a challeng-
ing issue in both biomedical imaging and security.

The design of both quantum plenoptic devices are currently undergoing optimization
by implementing a novel protocol that enables further mitigating the resolution vs. DOF
compromise with respect to the one shown in Figure 2a: this protocol is based on the
observation that, for any given resolution, the DOF can be maximized by correlating the
standard images of two arbitrary planes, chosen in the surrounding of the object of interest,
instead of imaging the focusing element [36]. Moreover, we are investigating the possibility
to merge quantum plenoptic imaging with the measurement protocols developed in the
context of differential ghost imaging [42].

In the following section, we will discuss all the technical solutions, both on the
hardware and on the software side that we are investigating to speed up the process of
generating a correlation plenoptic image. The problematic aspects can be clarified by a
description of the practical process of CPI imaging that is made of the following steps:

1. Collecting Nf synchronized pairs of frames from a sensor Da, with resolution Nax × Nay,
and Db, with resolution Nbx × Nby. Synchronization of two separate digital sensors
entails technical complications that can be overcome by using two disjoint parts of
the same sensor [16]. The total acquisition time is

T = Nf (τexp + τd), (3)

where τexp is the frame exposure time that must be shorter than the coherence time
of impinging light in order to exploit the maximal information on intensity fluctu-
ations, while τd is the dead time between subsequent frames, usually fixed by the
employed sensors.

2. Each acquired frame is transferred to a computer to be processed. This step can occur
either progressively during the capture of the subsequent frames, or at the end of the
acquisition process.

3. The collected frames are used to obtain an estimate of the correlation of intensity
fluctuations (1) as

Γ(ρa, ρb) � 1
Nf

Nf

∑
k=1

I(k)a (ρa)I(k)b (ρb)− 1
Nf

Nf

∑
k=1

I(k)a (ρa)
1

Nf

Nf

∑
k′=1

I(k
′)

b (ρb), (4)
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where I(k)j (ρj), with j = a, b, is the intensity measured in frame k in correspondence of
the pixel on the detector Dj centered on the coordinate ρj. In this way, an information
initially encoded in Nf (Nax Nay + Nbx Nby) numbers is used to reconstruct a correlation
function determined by Nax NayNbx Nby values.

The accuracy of the correlation function estimate (4) increases with the number of
frames like

√
Nf [40]. However, increasing Nf also linearly extends the total acquisition

time T. Therefore, the combination of (1) fast and low-noise sensors, (2) methods to extract
a good quality signal from smaller number of frames, and (3) tools for efficient data transfer
and elaboration, is crucial in order to speed-up the acquisition process and make the CPI
technology ready for real-world applications.

3. Hardware Speedup: Advanced Sensors and Ultra-Fast Computing Platforms

To improve the performances of CPI in terms of acquisition speed and data elaboration
time, we are employing dedicated advanced sensors and ultra-fast computing platforms.
In this section, we describe the details of the implementation and the perspectives on
these fields.

3.1. SPAD Arrays as High-Resolution Time-Resolved Sensors

A relevant part of the speedup that we are seeking is determined by replacing com-
mercial high-resolution sensors, like scientific CMOS and EMCCD cameras, with sensors
based on cutting-edge technology such as single-photon avalanche diode (SPAD) arrays.
A SPAD is basically a photodiode which is reversely biased above its breakdown voltage,
so that a single photon which impinges onto its photosensitive area can create an electron–
hole pair, triggering in turn an avalanche of secondary carriers and developing a large
current on a very short timescale (picoseconds) [17,18]. This operation regime is known
as Geiger mode. The SPAD output voltage is sensed by an electronic circuit and directly
converted into a digital signal, further processed to store the binary information that a
photon arrived, and/or the photon time of arrival. In essence, a SPAD can be seen as a
photon-to-digital conversion device with exquisite temporal precision. SPADs can also be
gated, in order to be sensitive only within temporal windows as short as a few nanoseconds,
as shown in Figure 3. Individual SPADs can nowadays be used as the building blocks of
large arrays, with each pixel circuit containing both the SPAD and the immediate photon
processing logic and interconnect. Several CMOS processes are readily available and allow
for tailoring both the key SPAD performance metrics and the overall sensor or imager
architecture [43,44]. Sensitivity and fill-factor have for some time lagged behind those of
their scientific CMOS or EMCCD counterparts but have been substantially catching up in
recent years.

Based on the requirements of QPI, we have chosen to employ the SwisSPAD2 array
developed by the AQUA laboratory group of EPFL, characterized by a 512 × 512 pixel
resolution (see Figure 4), which is one of the widest and most advanced SPAD arrays to
date [20,22]. The sensor is internally organized as two halves of 256 × 512 pixels to reduce
load and skew on signal lines and enable faster operation. It is a purely binary gated
imager, i.e., each pixel records either a 0 (no photon) or a 1 (one or more photons) for each
frame, with basically zero readout noise. The sensor is controlled by an FPGA generating
the control signals for the gating circuitry and readout sequence and collecting the pixel
detection results. In the FPGA, the resulting one-bit images can be further processed, e.g.,
accumulated into multi-bit images, before being sent to a computer/GPU for analysis and
storage. The maximum frame rate is 97.7 kfps, and the native fill factor of 10.5% can be
improved by 4–5 times, for collimated light, by means of a microlens array [21] (higher
values are expected from simulation after optimization); the photon detection probability is
50% (25%) at 520 nm (700 nm) and 6.5 V excess bias. The device is also characterized by low
noise (typically less than 100 cps average Dark Count Rate per pixel at room temperature,
with a median value about 10 times lower) and advanced circuitry for nanosecond gating.
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A detailed comparison of SwissSPAD2 with other large-format CMOS SPAD imaging
cameras is presented in Ref. [22].

Figure 3. SwissSPAD2 gate window profile. The transition times and the gate width are annotated
in the figure. The gate width is user-programmable, and the minimum gate width in the internal
laser trigger mode is 10.8 ns. The image is reproduced with permission from Ref. [45], copyright The
Authors, published by IOP Publishing Ltd., 2020.

Figure 4. SwissSPAD2 photomicrograph (left) and pixel schematics (right). The pixel consists of 11
NMOS transistors, 7 with thick-oxide, and 4 with thin-oxide gate. The pixel stores a binary photon
count in its memory capacitor. The in-pixel gate defines the time window, with respect to a 20 MHz
external trigger signal, in which the pixel is sensitive to photons. The image is reproduced with
permission from Ref. [22], copyright IEEE, 2018.

Currently, we are using the available version of SwissSPAD2, with a 512 × 256 pixel
resolution, to generate sequences of frames and store them in an on-board 2 GB memory,
before transferring them to a computer by a standard USB3 connection, which can be
done using existing hardware. We are integrating this sensor in the prototype of chaotic-
light base quantum plenoptic camera in a way that two disjoint halves of the sensor (of
256 × 256 pixels each) are used for retrieving the images of the two reference planes. The
high speed of this sensor is expected to reduce the acquisition time of quantum plenoptic
images by two order of magnitudes with respect to the first CPI experiment [16], in
which the region of interest on the sensor was made of 700 × 700 pixels for the spatial
measurement side, and 600 × 600 for the directional measurement side; 2 × 2 binning on
both sides during acquisition and a subsequent 10 × 10 binning on the directional side led
to the effective spatial resolution of 350 pixels, and angular resolution of 25 × 25 pixels.

We are also working towards several further optimizations of the sensor system, e.g.,
by developing gating for noise reduction in QPI devices. In order to employ the full sensor
(512 × 512 pixels), we are implementing a synchronization mechanism for a pair of imagers
by means of two FPGAs, so as to operate on a common time-base at the nanosecond
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level (to this end, two control circuits shall operate from a single clock and have a direct
communication link). Finally, the SwissSPAD2 arrays are being integrated with a fast
communication interface in order to speed up data transfer and make it possible to deliver,
in a sustained way, full binary frame sequences to a GPU. The latter will run advanced
algorithms for data pre-processing, image reconstruction and optimization, as we will
discuss in more detail in the next subsection.

3.2. Computational Hardware Platform

In a QPI device integrated with SwissSPAD2, the acquired data rate for a single frame
acquisition can be estimated to 26 Gb/s, which is beyond the reach of standard data
buses. This poses great challenges in both hardware and software design. Our approach
is to employ the expertise of PKH to seek careful design of electronic interconnections
(buses) between sensor control electronics and processing device, theoretical refinement,
and optimization of algorithms (e.g., compressive sensing [46,47]), porting to an efficient
computational environment, and design of a specific acquisition electronics for optimizing
data flow from the light sensors to a dedicated processing system, able to guarantee the
required computational performance (e.g., exploiting GPUs or FPGA) [23,24].

The introduction of an embedded data acquisition- and processing board, integrating
a GPU, aims at data pre-processing, thus significantly reducing the amount of data to
be transferred to (and saved on) an external workstation. GPUs exploit a highly parallel
elaboration paradigm, enabling to design algorithms that run in parallel on hundreds or
thousands of cores and to make them available on embedded devices. A great advantage
of GPUs is programmability: many standard tools exist (e.g., OpenCL and CUDA) that
allow fast and efficient design of complex algorithms that can be injected on the fly in the
GPU memory for accomplishing tasks ranging from simple filtering to advanced machine
learning. Efforts are made to design a processing matrix, so that each line and column
of the sensor will be managed by a dedicated portion of the heterogeneous processing
platform (CPU/GPU/FPGA): the pixel series processor. Those dedicated units will be
interconnected to one another to cooperate for implementing algorithms that require
distributed processing on a very small scale.

The embedded acquisition-processing board is designed to best fit to SPAD array
and SW application needs. The optimal system design will be evaluated by considering
theoretical algorithms, engineered SW implementations, HW set-up, and HW/SW trade-
off. We will identify a preliminary set of possible configurations and perform a trade-off by
comparing overall performances, considering the requirements in data quality, processing
speed, costs, complexity, etc.

Based on the challenging objectives to be achieved, a preliminary analysis based on
COTS (Commercial-Off-The-Shelf) solutions was performed, in order to identify a set of
accelerating devices addressing QPI requirements in terms of computing capability and
portability. The option offered by the NVIDIA Jetson Xavier AGX board shown in Figure 5
is considered a promising candidate to achieve our goal. This device indeed offers an
encouraging performance/integration ratio with low power usage and very interesting
computing capabilities. Its main characteristics are reported in Table 1.

Considering the listed HW capabilities, despite the ARM processor having a limited
computing power when compared to high-end desktop processors, it allows for leveraging
multi-core capabilities for implementing that part of the code that will feed the quite
powerful GPU device on board. In addition, the foreseen optimization strategy will require
a dedicated implementation able to consider the maximum amount of memory of 16 GB
available, shared with the GPU. In addition, the solution to be developed should take into
account the bandwidth of about 136 GB/s of the on-board memory, which may represent
a limiting factor when GPU and CPU exchange buffers. An implementation based on
the CUDA framework—over OpenCL or other technologies—will be preferred to best
use the NVIDIA device. Finally, given the capability of the NVDLA Engines to perform
multiplications and accumulations in a very fast way, we consider it interesting to perform
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an assessment of how to exploit these devices for implementing the QPI-specific correlation
functions and/or other multiplication/sum intensive computations.

Figure 5. Qu3D scenario for GPU parallel processing based on NVIDIA Volta architecture as provided
by an NVIDIA Jetson AGX Xavier device.

Table 1. NVIDIA Jetson Xavier AGX: Technical Specifications.

Jetson Xavier AGX

GPU 512-core NVIDIA Volta™ GPU with 64 Tensor Cores
CPU 8-core NVIDIA Carmel Arm®v8.2 64-bit CPU 8MB L2 + 4MB L3

Memory 16 GB 256-bit LPDDR4x 136.5GB/s
PCIE 1 × 8 + 1 × 4 + 1 × 2 + 2 × 1 (PCIe Gen4, Root Port & Endpoint)

DL Accelerator 2× NVDLA Engines
Vision Accelerator 7-Way VLIW Vision Processor

Connectivity 10/100/1000 BASE-T Ethernet

Along with the assessment of a dedicated HW solution, further optimizations ap-
plicable at the algorithmic level have been considered in order to enrich the engineered
device with a highly customized algorithmic workflow able to exploit the peculiarities of
the CPI technique and its related input data. More specifically, we are analyzing those steps
of QPI processing that appear as more computationally demanding, thus representing a
bottleneck for performances. To this end, tailored reshaping operations applied over the
original three-dimensional multi-frame structure of the input data were explored, to facili-
tate the development of a parallelized elaboration paradigm for evaluating the CPI-related
correlation function. In addition, the peculiar feature of the input dataset to be acquired by
SPAD sensors as one-bit images will be valued through dedicated implementations able to
gain from intensive multiplication/sum math among binary-valued variables.

4. Quantum and Classical Image-Processing Algorithms

Further reduction of the acquisition speed and the optimization of the elaboration
time is addressed by exploiting dedicated quantum and classical image processing, as well
as novel mathematical methods coming on one hand from compressive sensing, and on
the other hand from quantum tomography and quantum Fisher information.

4.1. Compressive Sensing

In order to reduce the amount of required data (at present 103–104 frames) by at least
one order of magnitude, we are exploring different approaches. First, we are investigating
the opportunity of implementing compression techniques for improving bus bandwidth
utilization, thus acting on data transfer optimization. Data compression may also rely
on manipulation of raw input data to determine only the relevant information in a sort
of information bottleneck paradigm, in which software nodes in a lattice provide their
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contribution to a probable reconstruction of the actual decompressed data. This is very
similar to artificial neural network structures, where the network stores a representation
of a phenomenon and returns a response based on some similarity rating versus the
observed data. Moreover, the availability of advanced processing technologies allows the
investigation and implementation of alternative techniques able to exploit the sparsity
of the retrieved signal to reconstruct information from a heavily sub-sampled signal, by
compressive sensing techniques [46,47].

As in other correlation imaging techniques, such as ghost imaging (GI), in the CPI
protocol, the object image is reconstructed by performing correlation measurements be-
tween intensities at two disjoint detectors. Katz et al. [48] demonstrated that conventional
GI offers the possibility to perform compressive sensing (CS) boosting the recovered
image quality.

CS theory asserts the possibility of recovering the object image from far fewer samples
than required by the Nyquist–Shannon sampling theorem, and it relies on two main
principles: sparsity of the signal (once expressed in a proper basis) and incoherence
between the sensing matrix and the sparsity basis.

In conventional GI, the transmission measured for each speckle pattern represents
a projection of the object image and CS finds the sparsest image among all the possible
images consistent with the projections. In practice, CS reconstruction algorithms solve a
convex optimization problem, looking for the image which minimizes the L1−norm in the
sparse basis among the ones compatible with the bucket measurements, see Refs. [49–52]
for a review.

We are developing a novel protocol reducing the number of measurements required for
image recovery by an order of magnitude. Once properly refocused, a single acquisition can
be fed into the compressive sensing algorithm several times thus exploiting the plenoptic
properties of the acquired data and increasing the signal-to-noise ratio of the final refocused
image. We tested the CS-CPI algorithm with numerical simulations, as summarized
in Figure 6. In (a), a double-slit mask is reconstructed by correlations measurements
considering N = 6000 frames; in (b), the standard reconstruction is repeated considering
only the 10% of available frames, while, in (c), the CS reconstruction using the same
reduced set of measured data. In addition to a data-fidelity term corresponding to a
linear regression, we penalized the L1−norm of the reconstructed image to account for
its sparsity in the 2D − DCT domain. The resulting optimization problem is known as
the LASSO (Least Absolute Shrinkage and Selection Operator) [53]. We employed the
coordinate descent algorithm to efficiently solve it, and we set the regularization parameter,
controlling the degree of sparsity of the estimated coefficients, by cross-validation. In this
proof-of-concept experiment, we simply use Pearson’s correlation coefficient to measure
the similarity between the reconstructions obtained using the restricted dataset and the
image obtained considering all the N = 6000 frames.

Figure 6. (a) double-slit image reconstruction obtained by correlations measurements, considering
N = 6000 frames and two detectors characterized by a 128 × 128 and a 10 × 10 pixel resolution;
(b) the standard reconstruction is repeated considering only the 10% of the available frames, chosen
randomly; (c) compressive sensing reconstruction using the same dataset as in (b). While in the first
case, the Pearson’s correlation coefficient is rred = 0.55; in the latter case, the coefficient is increased
to rCS = 0.81.
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4.2. Plenoptic Tomography

Novel reconstruction algorithm with the advantage of real 3D image lack of artifacts
is based on the idea of recasting plenoptic imaging as an absorption tomography. The
classical refocusing algorithm is based on superimposing images of the 3D scene from
different viewpoints, which necessarily results in the contribution of out-of-focus parts
of the scene, the effect responsible for the existence of the blurred part of 3D image
reconstruction. The tomography approach is based on a different principle and provides
sufficient axial and transversal resolution without artifacts. For this purpose, the object
space is divided into voxels and the goal is to reconstruct absorption coefficients of each
voxel. The measured correlation coefficient of a pair of points from the correlated planes is
transformed to be linearly proportional to the attenuation along the ray path connecting
those two points. Classical inverse Radon transform can be used in this scenario to obtain
a 3D image, but using the Maximum Likelihood absorption tomography algorithm [54]
further enhances the quality of the tomography reconstruction and performs well even
for a small range of projections angels. In fact, advanced tomographic reconstruction
algorithms based on the Maximum Likelihood principle are more resistant to noise and
require fewer acquisitions, for a given precision, in comparison to standard tomographic
protocols. We are investigating special tools to deal with informationally incomplete
detection schemes for very high resolution and optimal methods for data analysis based
on convex programming tools.

4.3. Quantum Tomography and Quantum Fisher Information

A further quantum approach to image analysis and detection schemes will be em-
ployed to achieve super-resolution (or, eventually, for maintaining the desired resolution
and speeding up acquisition and elaboration of the quantum plenoptic images) and to
compare correlation plenoptic detection scheme to the ultimate quantum limits. The basic
concept underpinning the Fisher Information super-resolution imaging is the formal math-
ematical analogy between the classical wave optics and quantum theory, which makes
it possible to apply the advanced tools of quantum detection and estimation theory to
classical imaging and metrology [29,55]. The advantage of this approach lies in the ability
to quantify the performance of the imaging setup based on rigorous statistical quantities.
Inspired by the quantum theory of detection and estimation, quantum Fisher informa-
tion, a quantity connected with the ultimate limits allowed by nature, is computed for
simple 3D imaging scenarios like localization and resolution of two points in the object
3D space [30,56–58]. For example, one might be interested in measuring the separation of
two point-like sources and seeking the optimal detection scheme, extracting the maximum
amount of information about this parameter. We shall thus employ quantum Fisher infor-
mation to design optimal measurement protocols within the quantum plenoptic devices,
able to extract specific relevant information, for enhanced resolution, with a minimal num-
ber of acquisitions. The question of the minimal number of detections over the correlation
planes which achieves acceptable reconstruction quality is of relevance because of the
direct connection to the amount of processed data and can lead to reduced time for data
processing.

5. Perspectives

In the context of the Qu3D project, all the developments and technologies presented in the
previous sections will be integrated into the implementation of two quantum plenoptic imaging
(QPI) devices, namely,

• a compact single-lens plenoptic camera for 3D imaging, based on the photon number
correlations of a dim chaotic light source;

• an ultra-low noise plenoptic device, based on the correlation properties of entangled
photon pairs emitted by spontaneous parametric down-conversion (SPDC), enabling
3D imaging of low-absorbing samples, at the shot-noise limit or below.
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Our objective is to achieve, in both devices, high resolution, whether diffraction-
limited or sub-Rayleigh, combined with a DOF larger by even one order of magnitude
compared to standard imaging. The science and technology developed in the project will
contribute to establishing a solid baseline of knowledge and skills for the development of a
new generation of imaging devices, from quantum digital cameras enhanced by refocusing
capability to quantum 3D microscopes [37] and space imaging devices.

6. Conclusions

We have presented the challenging research directions we are following to achieve
practical quantum 3D imaging: minimizing the acquisition speed without renouncing to
high SNR, high resolution, and large DOF [1–5]. Our work represents a significant advance
with respect to the state-of-the-art of both classical and quantum imaging, as it enhances
the performances of plenoptic imaging and dramatically speeds up quantum imaging, thus
facilitating the real-world deployment of quantum plenoptic cameras.

This ambitious goal will be facilitated by working toward the extension of the reach
of quantum imaging to other fields of science, and opening the way to new opportunities
and applications, including the prospects of offering new medical diagnostic tools, such
as 3D microscopes for biomedical imaging, as well as novel devices (quantum digital
cameras enhanced by 3D imaging, refocusing, and distance detection capabilities) for
security, space imaging, and industrial inspection. The collaboration crosses the tradi-
tional boundaries between the involved disciplines: quantum imaging, ultra-fast cameras,
low-level programming of GPU, compressive sensing, quantum information theory, and
signal processing.
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Abbreviations

The following abbreviations are used in this manuscript:

SPAD Single-Photon Avalanche Diode
QPI Quantum Plenoptic Imaging
fps frames per second
GPU Graphics Processing Unit
CPI Correlation Plenoptic Imaging
SNR Signal-to-Noise Ratio
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DOF Depth of Field
EPR Einstein–Podolski–Rosen
FPGA Field-Programmable Gate Array
CPU Central Processing Unit
GI Ghost Imaging
CS Compressive Sensing
DCT Discrete Cosine Transform
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