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Preface to “Symmetry Measures on Complex 
Networks” 

Here, we aim to analyze some very interrelated concepts regarding graphs, in relation to 
Symmetry/Asymmetry degrees, their Entropies, Clustering Coefficients, and so on. These interrelated 
concepts may be applied when we study different types of systems, in particular complex networks. 
A system can be easily defined as a set of components functioning together as a whole. A systemic 
point of view allows us to isolate one part of the world, and in doing so, we can focus on those aspects 
that interact more closely than others. Network Science is a new scientific field that analyzes the 
interconnection among diverse networks, for instance, among Physics, Semantics, and so on. Among 
its developers, we may recall Duncan Watts, who developed the Small-World Network, or Albert-
László Barabasi and Réka Albert, who developed Scale-Free Networks. In this latter work, both 
authors found that websites constitute the network of the World Wide Web (WWW) and they have 
very interesting mathematical properties. Network Theory is a rapidly expanding area of Computer 
Sciences, and may be considered as part of Graph Theory.  

Complex networks are everywhere. Many different phenomena in nature can be modeled as a 
network, such as brain structures, the brain as a network of neurons (their nodes), connected by 
synapses (their edges); and social interactions, or the WWW. 

All such systems can be represented in terms of nodes and edges. On the Internet, nodes 
represent routers and edges are represented by wires, or physical connections between them. In transport 
networks, nodes can represent cities, and edges show the roads that connect them. These edges can 
have weights. Such networks are not random. The topology of very different networks may be very 
close. They are rooted in the Power Law, with a scale-free structure. How can very different, complex 
systems have the same underlying topological features? Searching the hidden laws of these networks, 
as well as modeling and characterizing them, constitute the current lines of research. 

Here, it seems appropriate to study the most theoretical and applied aspects—currently of great 
relevance—of all these developments, in thirty-two interesting articles. 

Angel Garrido 
Special Issue Editor 
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Abstract: In this paper, we analyze a few interrelated concepts about graphs, such as their degree,
entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different
types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as
any set of components functioning together as a whole. A systemic point of view allows us to isolate
a part of the world, and so, we can focus on those aspects that interact more closely than others.
Network Science analyzes the interconnections among diverse networks from different domains:
physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis
of Complex Networks, based on graph theory, have been rapidly translated to studies of brain
network organization. The brain’s systems have complex network features—such as the small-world
topology, highly connected hubs and modularity. These networks are not random. The topology of
many different networks shows striking similarities, such as the scale-free structure, with the degree
distribution following a Power Law. How can very different systems have the same underlying
topological features? Modeling and characterizing these networks, looking for their governing laws,
are the current lines of research. So, we will dedicate this Special Issue paper to show measures of
symmetry in Complex Networks, and highlight their close relation with measures of information
and entropy.

Keywords: graph theory; applications of graph theory; group theory fuzzy sets; fuzzy logic; logic of
vagueness; fuzzy topology; Fuzzy Measure theory; fuzzy real analysis; Small World graphs; Complex
Networks; artificial intelligence

MSC Classification: 05C10; 97K30; 94C15; 54A99; 94D05; 05C82; 05B52; 28E10; 26E50; 05C82; 97R40.

1. Some Previous Concepts

A graph [1] may be defined as a pair, G = (V, E), where V = V(G) is the node set, and E = E(G) is
the edge set, i.e., the set of 2-element subsets of V.

Given an edge {i, j}∈E, we say that the nodes i and j are adjacent; and we denote i ~j.
The neighborhood of i will be:

N(i) = {j∈V: j ~i}

And the degree of i can be expressed as:

deg(i) = d(i)= card {N(i)}

A graph, G, is finite, if the set of its nodes, V(G), is finite.
And it is locally finite, if all of its nodes have finite degrees.
Two very important results may be considered now:

Symmetry 2011, 3, 1–15 3 www.mdpi.com/journal/symmetry
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Handshaking Lemma (or Theorem).

In any graph, the sum of the degrees of all nodes (or “total degree”) is equal to twice the number of edges.

Degree Theorem.

In any graph there is an even number of nodes with an odd degree.

The adjacency matrix is a convenient representation of the interaction between nodes. Several
Complex Networks measures can be defined over adjacency matrices; for instance: clustering
coefficient (local or global), diameter, average degree of the network, and so on. All of them play a key
role in network theory.

The distance between two nodes is defined as the length of the shortest path connecting them.
The diameter of a network is the maximal distance between any pair of their nodes.
The average path length is the average of the distance over all pairs of nodes. Thus, it determines

the “size” of the network.
An automorphism of a graph, G, is any bijection:

a: V(G) → V(G)

that applies edges onto edges, and non-edges onto non-edges.
The set of all automorphisms of a graph, G, is denoted by Aut (G). It is the automorphism group of

G. We will come back later to this concept.
Succinctly, the more symmetry a graph has the larger its automorphism group will be, and vice versa.

2. Symmetry and Networks

Pierre Curie stated [2]:

It is asymmetry that creates a phenomenon.

Paul Renaud generalized Curie’s idea and stated [3]:

If an ensemble of causes is invariant with respect to any transformation,
the ensemble of their effects is invariant with respect to the same transformation.

Joe Rosen has stated the Symmetry Principle as [4]:

The symmetry group of the cause is a subgroup of the symmetry group of the effect.

Or less precisely:

The effect is at least as symmetric as the cause (and might be greater).

Also from Joe Rosen is the quote:

Recognized causal relations in nature are expressed as laws.
Laws impose equivalence relations in the state sets of causes and of effects.

So,

Equivalent states of a cause are mapped to (i.e., correlated with)
equivalent states of its effect.

This is the Equivalence Principle.
Somewhat less precisely, this principle may be expressed as:

Equivalent causes are associated with equivalent effects.

Concerning the Equivalence Principle for Processes on isolated physical systems, we can say that:

4
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Equivalent initial states must evolve into equivalent states
(while inequivalent states may evolve into equivalent states).

And the General Symmetry Evolution Principle:

The “initial” symmetry group is a subgroup of the “final” symmetry group.

This assertion can also be stated as:

For an isolated physical system the degree of symmetry
cannot decrease as the system evolves; instead,

it either remains constant or increases.

Finally, we have the Special Symmetry Evolution Principle:

As an isolated system evolves, the populations of the equivalence
classes of the sequence of states through which it passes cannot

decrease, but either remain constant or increase.

Equivalently,

The degree of symmetry of the state of an isolated system
cannot decrease during evolution; instead, it either

remains constant or increases.

As a further implication, Joe Rosen proposes this general theorem:

The degree of symmetry of a macrostate of stable equilibrium must be relatively high.

In the following, we will draw on the concepts and intuitions by Prof. Rosen, summarized in his
paper “The Symmetry Principle” [4].

According to the traditional viewpoint, higher symmetry is related to higher order, less entropy
and less stability.

In Prigogine’s theory, symmetry has been regarded as order, or reduction of entropy. But this idea
is incorrect. Rosen’s Principle of Symmetry is the opposite of such theory.

Shu-Kun Lin [5] has proved both: the Symmetry Principle, around a continuous higher
similarity-higher entropy relation; and the Rosen’s Symmetry Principle, around a higher symmetry-higher
stability relation. He proposed that entropy is the degree of symmetry and information is the degree of
asymmetry of a structure.

According to Shu-Kun Lin [5], “symmetry is in principle ugly, because it is related to entropy and
information loss”

With the motto:
Ugly Symmetry-Beautiful Diversity

This contradicts the more usual and commonplace vision of symmetry as a concept equivalent
to desirable beauty, proportion and harmony. This can be surprising, but Shu-Kun Lin’s arguments
are really strong and convincing: Symmetric structure is stable but not necessarily beautiful.
All spontaneous processes lead to the highest symmetry, which is the equilibrium or a state of “death”.

“Life is beautiful but full of asymmetry”

It concludes [6] that

Beauty = Stability + Information

Intuitively, symmetry, like perfection or beauty, up to a certain level, is precious, but above
that—apart from inexistent in the real world—would mean an end to the human thing, which is by
nature- and fortunately- imperfect.

5



Symmetry 2011, 3, 1–15

3. Symmetry as Invariance

Symmetry [1,6,7] in a system means invariance of its elements under a group of transformations,
i.e., the mathematical definition of symmetry of a graph is the set of transformations that leave the
properties of the graph unchanged. When we focus on Network Structures, it means invariance of
adjacency of nodes under the permutations on the node set [8,11].

A graph isomorphism is an equivalence, or equality, as relation on the set of graphs. Therefore, it
partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that
some objects have the same structure, if we omit some individual characteristics of their components.
A set of graphs isomorphic to each other is called an isomorphism class of graphs [1,8,10].

An automorphism of a graph, G = (V, E), is an isomorphism from G onto itself. The family of
all automorphisms of a graph, G, is a permutation group on V (G). The inner operation of such a
group is the composition of permutations. Its name is very well-known, the Automorphism Group of G,
denoted by Aut (G). And conversely, all groups may be represented as the automorphism group of
some connected graph.

The automorphism group is an algebraic invariant of a graph. So, we can say that an automorphism
of a graph is a form of symmetry in which the graph is mapped onto itself while preserving the
edge-node connectivity. Such an automorphic tool may be applied both on Directed Graphs (DGs), and
on Undirected Graphs (UGs), or Mixed Graphs.

Graphs are discrete mathematical constructs. Also, they are topological objects, not geometrical
entities. And they may exhibit symmetries under transformations that are not node permutations: e.g.,
by scale invariance on fractals [31].

Another interesting concept in mathematics, the word “genus”, has different, but strongly related,
meanings. So, in Topology it depends on whether we consider orientable or non-orientable. In the case
of connected and orientable surfaces, it is an integer that represents the maximum number of cuttings,
along closed simple curves, without rendering the resultant manifold disconnected. Visually, we can
imagine that it is the number of “handles” on the manifold. Usually, it is denoted by the letter g.

It is also definable through the Euler number, or Euler Characteristic, denoted χ.Such a relationship
will be expressed, for closed surfaces, by χ = 2 − 2g. When the surface has b boundary components, this
equation transforms to χ = 2 − 2g − b, which obviously generalizes the above equation. For example,
a sphere, an annulus, or a disc have genus g = 0. Instead of this, a torus has g = 1.

In the case of non-orientable surfaces, the genus of a closed and connected surface will be a
positive integer, representing the number of cross-caps attached to a sphere.

Recall that a cross-cap is a two-dimensional surface that is topologically equivalent to a
Mobius string.

As in the precedent analysis, it can be expressed in terms of the Euler characteristic, by χ = 2 − 2
k, where k is the non-orientable genus. For example, a projective plane has a non-orientable genus
k = 1. And a Klein bottle has a non-orientable genus k = 2.

Turning to graphs [1], the corresponding genus will be the minimal integer, n, such that the graph
can be drawn without crossing itself on a sphere with n handles. So, a planar graph has genus n = 0,
because it can be drawn on a sphere without self-crossing.

In the non-orientable case, the genus will be the minimal integer, n, such that the graph can be
drawn without crossing itself on a sphere with n cross-caps.

Moving on to topological graph theory, we will define as genus of a group, G, the minimum
genus of any of the undirected and connected Cayley graphs for G.

From the viewpoint of Computational Complexity, the problem of “graph genus” is NP-complete.
Recall that a problem, L, is NP-complete if it has two properties: It is in the set of NP (nondeterministic
polynomial time) problems, i.e., any given solution to L can be verified quickly (in polynomial time);
and it is also in the set of NP-hard problems, i.e., any NP problem can be converted into L by a
transformation of the inputs in polynomial time.

6
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A graph invariant, or graph property, is a property that depends only on the abstract structure of
the graph, not on its representations, such as a particular labeling or drawing of the graph. So, we
may define a graph property as any property that is preserved under all possible isomorphisms of the
graph. Therefore, it is a property of the graph itself, independent of the representation of the graph.

The semantic difference between invariant and property also consists in its quantitative or
qualitative character. For instance, when we say that “the graph has no directed edges”, this is a
property, because it is a qualitative statement. While when we say “the number of nodes of degree two
in such a graph”, this is an invariant, because it is a quantitative statement.

From a strictly mathematical viewpoint, a graph property can be interpreted as a class of graphs,
composed by the graphs that have in common the accomplishment of some conditions. Hence, a graph
property can also be defined as a function whose domain would be the set of graphs, and which range
would be the bi-valued set, {true, false}; the value of the property depending on whether it is verified
or violated for the graph.

A graph property is called hereditary, if it is inherited by its induced subgraphs.
And a graph property will be additive, if it is closed under disjoint union.
For example, the property of a graph being planar is both additive and hereditary. And the

property of being connected is neither.
The computation of certain graph invariants is very useful to discriminate whether two graphs are

isomorphic or non-isomorphic. For any particular invariant, two graphs with different values cannot
be isomorphic. However, two graphs with the same invariant value may or may not be isomorphic.

It is possible to prove that every group is the automorphism group of a graph.
If the group is finite, the graph may be taken to be finite.
G. Polya observed that not every group is the automorphism group of a tree.
Many reasons are behind the current popularity of Complex Networks [13]. To cite but a few,

their generality and flexibility for representing any natural structure, including those structures that
reveal dynamical changes of topology [11,14,20,22].

Before turning to Complex Networks, it is very convenient to introduce some concepts which are
useful in understanding Networks, as measures of their principal characteristics [1,11].

The characteristic path length measures the distance from every node to every other node. It is
calculated by the median of the shortest paths from each node to every other node. So, as a derived
measure, the diameter gives us the maximum possible distance between all pairs of reachable nodes.

Another commonly used value is the Clustering Coefficient. It is the mean of the clustering indices
of all the nodes in the graph. It is usually denoted C. It tells us how well connected the neighborhood
of the node is. So, it is the answer to this question: How close is the neighborhood of a node to be a
clique (i.e., a complete subgraph). Finding C, we look for the neighbors of the corresponding node,
and then find the number of existing edges between them. The ratio of the number of existing edges to
the number of all possible edges is the clustering index of the node.

If the neighborhood is fully connected, then the clustering coefficient must be equal to one, C = 1.
In the opposite situation, a value of C = 0 signifies that the neighborhood is fully disconnected. And
any intermediate value is a measure of the graph’s degree of connectedness. Values close to zero mean
that there are hardly any connections in the neighborhood.

This measure has been used to summarize features of undirected and unweighted networks in
Complexity Science.

An interesting type of graph is Regular Networks, where each node is connected to all other nodes;
i.e., they are fully connected. Because of such a type of structure, they have the lowest path length (L),
and the lowest diameter (D), being L = D = 1. Also, they have the highest clustering coefficient (C).
So, it holds that C = 1.

Furthermore, they have highest possible number of edges, given by

Card (E) = n (n − 1)/2~n2;

7
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4. Random Graphs

In Random Graphs (RGs), each pair of nodes is connected with probability p. They have a low
average path length [8,17], following that:

L ~(ln n) / n<k> ~ln n, for n � 1

Therefore, the total network may be covered in <k> steps, from which

n ~ <k>L

Moreover, Random Graphs possess a low clustering coefficient, when the graph is sparse. Thus,

C = p =< k > /n � 1

The reason is that the probability of each pair of neighboring nodes to be connected is precisely
equal to p.

The Small-World effect is observed on a network when it has a low average path length:

L << n, for n >> 1

Recall [15,21,24,25] the now very famous “six degrees of separation”, which also may be called
“small-world phenomenon”. The subjacent idea is that two arbitrarily selected people may be connected
by only six degrees of separation, or six handshakes (in average, and it is not much larger than this
value). Therefore, the diameter of the corresponding graph is not much larger than six.

The usual example is social connections. So, the Small-World property [11,15] can be interpreted
as that despite its large size (of the corresponding graph), the shortest path between two nodes is small,
as for example on the WWW, or on the Internet.

5. Self-Similarity

Self-similarity on a network [11] indicates that it is approximately similar to any part of itself, and
therefore, it is fractal. In many cases, real networks possess all these properties, i.e., they are Fractal,
Small-World, and Scale-Free.

Fractal dimensions describe self-similarity of diverse phenomena: Images, temporal signals, etc.
Such fractal dimension gives us an indication of how completely a fractal appears to fill the space, as
one zooms down to finer and finer scales. It is so a statistical measure.

The most important of such measures are Renyi dimension, Hausdorff dimension, and
Packing dimension.

A Fuzzy set approach also may produce some very consistent models [26–28].

6. Small-World Model

The Watts-Strogatz Small-World Model, proposed in 1998, is a hybrid case between a Random Graph
and a Regular Lattice [14,20,22]. So, Small-World models share with Random Graphs some common
features, such as: The Poisson or Binomial degree distribution, near to Uniform degree distribution;
network size: It does not grow; each node has approximately the same number of edges.

Therefore, it shows a homogeneous nature. Because of their ease of implementation, the more usual
procedures to compute such measures are correlation dimension and box counting.

Watts-Strogatzmodels show the low average path length typical of Random Graphs,

L ∼ ln n, for n >> 1

8
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And also such models give us the usual high clustering coefficient of Regular Lattices, being

C ≈ 0.75, f or k >> 1

In consequence, WS-models have a small-world structure, being well clustered. The Random
Graphs coincide on the small-world structure, but they are poorly clustered. This model (WS) has a
peak degree distribution, of Poisson type.

7. Scale-Free Networks

With reference to the last analyzed model [16,17,23,24], called Scale-Free Network, this appears
when the degree distribution follows a Power-Law:

P (k) ~ k−γ

In such a case, there exist a small number of highly connected nodes, called Hubs, which are the
tail of the distribution.

On the other hand, the great majority of the sets of their nodes have few connections, representing
the head of such distribution.

Such a model was introduced [8,14,16] by Albert-Laszlo; Barabasi and Reka Albert, in 1999.
Some of their essential features are these: non-homogeneous nature, in the sense that some (few)

nodes have many edges from them, and the remaining nodes only have very few edges, or links;
as related to the network size, it continuously grows; and regarding to the connectivity, it obeys a
Power-Law distribution.

Many massive graphs, such as the WWW graph, share certain characteristics, described as such
aforementioned Power-Law.

Bela Bollobas and Oliver Riordan [9,11] consider a Random Graph process in which nodes are
added to the graph one at a time, and joined to a fixed number of earlier nodes, chosen with probability
proportional to their degree. After n steps, the resulting graph has diameter approximately equal to
log n. This affirmation is true for n = 1. But for n � 2, the diameter value would show asymptotical
convergence to (logn)/log(log n).

Another very interesting mechanism is the so-called Preferential Attachment process (PA). This would
be any class of processes in which some quantity is distributed among a number of sets (for instance,
objects or individuals), according to how much they already have, so that intuitively “the rich get
richer” (the more interrelated get more new connections than those who are not).

The principal scientific interest in PA is that they may produce interesting power law distributions.
A very notable example of a Scale-Free Network is the World Wide Web (WWW). As we

know [23,25], it is a collection of many, possibly very different, sub-networks. Related to the Web graph
characteristics, we notice the Scale Invariance as being very important [10].

8. Diameter of the Web

Another interesting feature is the possibility of obtaining a measurement of the World Wide Web,
its diameter, i.e., the shortest distance between any pair of nodes into the system, or at least some
adequate bound, either a mean value [18,19], etc.

The WWW representation is made by a very large digraph, whose nodes are documents, and
whose edges are links (URLs), pointing from one document to another [14,20,22].

Reka Albert et al. [18] found that the average of the shortest path between two nodes will be

<d> = 0.35 + 2.06log N

where N is the number of nodes in the Random Graph considered. This shows that the WWW is a
Small-World network.

9
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In particular, if we take
N = 8 × 108

we will obtain
<dWeb> = 18.59

This important result signifies that two randomly chosen nodes (documents), on the graph which
represent the WWW, are only on average 19 clicks (or steps into the WWW graph) from each other.

For a given value of the number of nodes, N, the distribution associated to d is of Gaussian
(Normal) type. It is also very remarkable the logarithmic dependence of such diameter on the value of
N. In this sense, R. Albert et al. indicate that the future evaluation of <d>, with the increasing of the
WWW, would change from 19 to only 21.

9. Community Structure

The Community Structure can also be called Modularity. It is a very frequent characteristic in many
real networks. Therefore, it has become a key problem in the study of networked systems [11,12,21].

Giving out its deterministic definition is nontrivial because of the complexity of networks.
The concept of modularity (Q) can be used as a valid measure for community structure.

Some current models have proposed to capture the basic topological evolution of Complex
Networks by the hypothesis that highly connected nodes increase their connectivity faster than their
less connected peers, a phenomenon denoted as PA (preferential attachment). So, we can find a class of
models that view networks as evolving dynamical systems, rather than static graphs.

Most evolving network models are based on two essential hypotheses, growth and preferential
attachment.

Growth suggests that networks continuously expand through the addition of new nodes and links
between the nodes. And preferential attachment states that the rate at which a node with k links acquires
new links will be a monotonically increasing function of k.

We can consider an undirected n-graph, or network, G, with adjacency matrix denoted as A = (aij),
where aij = 1, if nodes i and j are connected; otherwise, aij = 0. Then, the modularity function, denoted by
Q, will be defined as:

Q(Pk) = Σ
[{

L(V j, V j)/L(V, V)
}
−

{
L(V j, V)/L(V, V)

}
2
]

where Pk is a partition of the nodes into k groups, and:

L (V’, V”) = Σ i∈V’,i∈V” aij

The modularity function, Q, provides a way to determine whether a partition will be valid to
decipher the community structure in a network. Maximization of such modularity function, over all
the possible partitions of a network, is indeed a highly effective method.

An important case in community detection is that some nodes may not belong to a single
community, and then placing them into more than one group may be much more reasonable. Such
nodes can provide a “fuzzy” categorization [25], and hence, they may take a special role, such as signal
transduction in biological networks.

10. Fuzzy Symmetry

Recall that according to Klaus Mainzer, “Symmetry and Complexity determine the spirit of
nonlinear science”. And “the universal evolution is caused by symmetry break, generating diversity,
increasing complexity and energy” [26].

10
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Graph theory has emerged as a primary tool for detecting numerous hidden structures in various
information networks, including Internet graphs, social networks, biological networks, or more
generally, any graph representing relations in massive data sets. Analyzing these structures is very
useful to introduce concepts such as Graph Entropy and Graph Symmetry.

We consider a function on a graph, G = (V, E), with P a probability distribution on its node set, V.
The mathematical construct called Graph Entropy will be denoted by G, E. It will be defined as

H (G, P) = min Σ pi log pi

Observe that such a function will be convex. It tends to +∞ on the boundary of the non-negative
orthant of Rn. And monotonically to −∞ along rays from the origin. So, such a minimum is always
achieved and it will be finite.

The entropy of a system represents the amount of uncertainty one observer has about the state of
the system. The simplest example of a system will be a random variable, which can be shown by a
node into the graph, where their edges represent the mutual relationship between them. Information
measures the amount of correlation between two systems, and it reduces to a mere difference in
entropies. So, the entropy of a graph is a measure of graph structure, or lack of it. Therefore, it may be
interpreted as the amount of Information, or the degree of “surprise”, communicated by a message.
And as the basic unit of Information is the bit, entropy also may be viewed as the number of bits of
“randomness” in the graph, verifying that the higher the entropy, the more random is the graph.

It is possible to introduce some new asymmetry and symmetry level measures as by [27,28]. Note
that our results may also be applied to some different classes of spaces.

Recall some very useful definitions from Fuzzy Measure Theory.
Definition 1: Let U be the universe of discourse, with ℘ a σ-algebra on U. Then, given a function

m : ℘ → [0, 1]

we describe m as a Fuzzy Measure, if it verifies:

(I) m (θ) = 0;
(II) m (U) =1;
(III) If A, B ∈ ℘, with A ⊆ B, then m (A) � m (B) [monotonicity].

When we take the Entropy concept, we attempt to measure the fuzziness, i.e., the degree of being
fuzzy for each element in ℘.

Definition 2: The Entropy measure can be designed as the function.

H:℘ → [0, 1]

verifying:

(I) If A is a crisp set, then H (A) = 0;
(II) If H (x) = 1/2, for each x∈A, then H (A) is maximal (total uncertainty);
(III) If A is less fuzzified than B, it holds that H (A) � H (B);
(IV) H (A) = H (U/A).

Definition 3: The Specificity Measure will be introduced as a measure of the tranquility when we
take decisions. Such Specificity Measure (denoted by Sp) will be a function:

Sp: [0,1]U → [0,1] ()

where

11
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(I) Sp (θ) = 0;
(II) Sp (k) = 1 if and only if k is a unitary set (singleton);
(III) If V and W are normal fuzzy sets in U, with V ⊂ W, then Sp (V) � Sp (W);

Note. [0,1]U denotes the class of fuzzy sets in U; Let (E, d) be a fuzzy metric space.
We proceed to define our new fuzzy measures. Such functions might be defined as some of

the type
{Li}i∈{s,a}

where s denotes symmetry, and a denotes asymmetry.
Suppose that from here we denote by c (A) the cardinal of a fuzzy set, A. We denote by H (A) its

entropy measure, and by Sp (A) its corresponding specificity measure.
Theorem 1. Let (E, d) be a fuzzy metric space, with A as a subset of E, and let H and Sp be both

above fuzzy measures defined on (E, d). Then, the first function, operating on A, may be defined as

Ls (A) = Sp(A)((1 − c(A))/(1 + c(A)) + (1/(1 + H(A))

and will be also a fuzzy measure. This measure is called Symmetry Level Function.
Theorem 2. Let (E, d) be a fuzzy metric space, with A as any subset of E, and let H and Sp be both

above fuzzy measures defined on (E, d). Then, the function

La(A) = 1 −
{

Sp(A)
(
(1 − c(A))/(1 + c(A)) + (1/(1 + H(A)

)}

This measure is called Asymmetry Level Function.
Corollary 1. In the same precedent hypotheses, the Symmetry Level Function is a Normal

Fuzzy Measure.
Corollary 2. Also, in such conditions the Asymmetry Level Function will be a Normal

Fuzzy Measure.
Recall that the values of a fuzzy measure, Sp, are decreasing when the size of the considered set is

increasing. And also that the Range of the Specificity Measure, Sp, will be [0,1].

11. New Lines of Research

An important fact, but commonly forgotten, is that an element can belong to more than a fuzzy
set at the same time. This admits new generalizations on the theoretical basis of important topics [30],
as may be Clustering and Community structures.

And recall the line which was open by the Three Laws of Similarity of Shu-Kun Lin [30], according
to which, in parallel to the first and the second laws of thermodynamics, we have:

(i) The first law of information theory. The logarithmic function L = ln w, or the sum of entropy and
information, L = S + I, of an isolated system remains unchanged, where S denotes the entropy
and I the information content of the system.

(ii) The second law of information theory. Information of an isolated system decreases to a minimum
at equilibrium.

(iii) The third law of information theory. For a perfect crystal (at zero absolute thermodynamic
temperature), the information is zero and the static entropy is at the maximum. Or in a more
general form, “for a perfect symmetric static structure, the information is zero and the static
entropy is the maximum”.

Analyzing the Gibbs’ paradox, Dr. Lin arrives to its well-known:
(iv) Similarity principle. The higher the similarity among the components is, the higher the value of

entropy will be and the higher the stability will be.

12
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By these three laws and such principle, Dr. Lin has clarified the relation of symmetry to several
other concepts, as higher symmetry, higher similarity, higher entropy, less information and less
diversity, related to higher stability. Upon these deep foundations, the tracks of mutual relationships
between such fuzzy measures can be traced: as it is the case with Symmetry, Entropy, Similarity, and
so on, which can lead in the future to advances for innovative fields connected to them.

The paper of Prof. Joel Ratsaby is also very inspiring [31]. He introduces an algorithmic complexity
framework for representing Lin’s concepts of static entropy, stability and their connection to the second
law of thermodynamic. Instead of static entropy, according to Ratsaby, the Kolmogorov complexity of a
static structure may be the proper measure of disorder. Consider one static structure in a surrounding
perfectly-random universe in which it acts as an interfering entity which introduces a local disruption
of randomness. This is modeled by a selection rule, R. So, we may clearly explain why more complex
static structures are less stable. To continue in this line of promising investigation can be very interesting
in the future.

According to Garlaschelli et al. [32], “while special types of symmetries (e.g., automorphisms)
are studied in detail within discrete mathematics for particular classes of deterministic graphs, the
analysis of more general symmetries in real Complex Networks is far less developed”.

They argued that real networks, as any entity characterized by imperfections or errors, necessarily
require a stochastic notion of invariance. So, they propose a definition of stochastic symmetry based
on graph ensembles.

But we suggest that in addition, they can and must try theoretical approximations from the field
of fuzzy measures, since it is those of symmetry and entropy, really interrelated between them. Thus,
to regulate mathematically, by modulating, the diverse degrees with which one will find these types of
characteristics in reality, when we consider networks and systems.

12. Conclusions

Our initial purpose was to provide a comprehensive vision on principal aspects, and essential
properties, of Complex Networks, from a new Mathematical Analysis point of view, and in particular
to show the promise of the new functions of Symmetry/Asymmetry Levels.

The essential idea was to obtain an as wide as possible perspective of certain aspects of Complex
Networks, as well as of the fuzzy measures when they are acting on them. With the new results and the
pointed lines of advance, we think that it will be possible to penetrate into the aforementioned problems,
to come to a deeper comprehension of the symmetry, of the entropy and of other similar fuzzy measures,
interesting not only from a theoretical viewpoint, but promising for many scientific applications.
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1. Introduction

Let us consider a compact connected Lie group G of dimension d endowed with its normalized
biinvariant Haar measure dg. Let us consider the Laplacian Δ on it. It is equal to ∑(∂ei )

2 where ei is an
orthonormal basis of the Lie algebra of G. It generates a Markov semi-group Pt:

∂

∂t
Pt f = ΔPt f (1)

if f is smooth. Moreover there is a strictly positive heat kernel

Pt f (g) =
∫

G
pt(g, g′) f (g′)dg′ =

∫
G

pt(e, g−1g′) f (g′)dg′ (2)

when t → ∞
Pt f (g) →

∫
G

f (g)dg (3)

Let us consider a Bilaplacian on G, this means a power Δk k > 1. It generates still a semi-group
Pk

t . Pk
t is not a Markovian semi-group. This means that the heat kernel pk

t (g, g′) associated to Pk
t can

change sign. We have still when t → ∞

Pk
t f (g) →

∫
G

f (g)dg (4)

In the first case, the heat semi-group is represented by the Brownian motion on G. In the second case,
there is until now no stochastic process associated to it. In the case of Rd, the path integral involved
with the semi-group Pk

t is defined as a distribution in [1].
We are motivated in this work by an extension in infinite dimension of these results, by considering

the case of the path-group C([0, 1], G) from continuous path from [0, 1] into G starting from e.
Let us recall that the Haar measure dg̃ on a topological group G̃ exists as a full measure if and

only if the group is locally compact. Haar measure means that for all bounded measurable function F̃
∫

G̃
F̃(g̃1 g̃)dg̃ =

∫
G̃

F̃(g̃)dg̃ (5)
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The difficult requirement to satisfy is the Lebesgue dominated convergence: Let F̃n be a bounded
increasing sequence of measurable functions tending almost surely to F̃. Then

∫
G̃

F̃ndg̃ →
∫

G̃
F̃dg̃ (6)

Haar measures in infinite dimension were studied by Pickrell [2] and Asada [3]. We have defined
the Haar distribution on a path group by using the Hida-Streit approach of path integrals as distribution
[4–7]. We refer to the review of Albeverio for various rigorous approaches to path integrals [8] and our
review on geometrical path integrals [4,9].

In the case of a path group, we can consider the Wiener process on a path-group t → {s → gs,t}
starting from the unit path (See the work of Airault-Malliavin ([10]), the work of Baxendale [11] and
the review paper of Léandre on that topic [12]). We have shown that

E[F(g.,t)] →
∫

C([0,1],G)
F(g(.))dD (7)

when t → ∞ where dD is the Haar distribution on the path group and F is a test functional of
Hida type [7].

Recently we are motivated by extending stochastic analysis tools in the non-Markovian
context ([13–17]). Especially in [1], we are interested in constructing the sheet and martingales problem
in distributional sense for a big-order differential operator on Rd. We consider for that the Connes
test algebra.

Let us recall what is the main difference between the Hida test algebra and the Connes test algebra.
(1) Hida considers Fock spaces and tensor product of Hilbert spaces.
(2) Connes, motivated by his work on entire cyclic cohomology, considers Banach spaces. Tensor

product of Banach spaces whose theory (mainly due to Grothendieck) is much more complicated than
the theory of tensor product of Hilbert spaces.

In [1], we are motivated by the generalization of martingale problems in the non-Markovian
context. We consider Connes spaces in [1]. In the present context, we are not motivated by that and we
return in the original framework of [7].

We consider the heat semi-group on a path group associated to a bilaplacian on the group in the
manner of [1]. In [1], we look at the case of Rd. Here we consider the case of the compact Lie group G.
The analysis is similar because we have analog estimates of the heat-kernel [18–20].

In order to resume, we consider an element σ of an Hida Fock space, we associate a functional
Ψ(σ) on the path group. The heat-semi group (in the distributional sense) Qk

t satisfies the three next
properties:

(1) Qk
t Ψ(σ) is still in the considered space

(2) Qk
t ◦ Qk

t′ = Qk
t+t′

(3) When t → ∞

Qk
t Ψ(σ)(g.) →

∫
C([0,1],G)

Ψ(σ)dD (8)

Qk
t is not a Markovian semi-group on C([0, 1], G). Especially, Qk

t is not represented by a stochastic
process. However we expect to extend in this context (7).

2. A Brief Review on the Haar Distribution on a Path Group

Let us recall what is the Brownian motion t → Bt on R. We consider the set of continuous path t →
Bt issued from 0 from R+ into R. We consider the sigma-algebra Ft spanned by Bs, s ≤ t. The Brownian
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motion probability measure dP is characterized as the solution of the following martingale problem: if
f is any bounded smooth function on R,

t → f (Bt)−
∫ t

0
Δ f (Bs)ds (9)

is a martingale associated to the filtration Ft. This means that

E[( f (Bt)−
∫ t

0
Δ f (Bs)ds)G] = E[( f (Bt′)−

∫ t′

0
Δ f (Bs′)ds′)G] (10)

where G is a bounded functional Ft′ measurable (t′ < t).
The Brownian motion is only continuous. However we can define stochastic integrals (as it was

done by Itô). Let s → hs be a bounded continuous process. We suppose that hs is Fs measurable. Then
the Itô integral is defined as follows:

∫ 1

0
hsδBs = lim

k→∞
∑
l≤k

h(
l
k
)(B (l+1)

k
− B l

k
) (11)

Moreover we have the Itô isometry

E[(
∫ 1

0
hsδBs)

2] = E[
∫ 1

0
h2

s ds] (12)

Associated to the Brownian motion is classically associated the Bosonic Fock space.
Let H2 be the Hilbert space of L2 functions h(.) from R+ into R. We consider the symmetric tensor

product H⊗̂n

2 of H2. It can be realized as the set of symmetric maps hn from (R+)n into R such that

∫
(R+)n

|hn(s1, .., sn)|2ds1..dsn = ‖hn‖2
2 < ∞ (13)

The symmetric Fock space WN0 coincides with the set of formal series σ = ∑ hn such that ∑ n!‖hn‖2 <

∞. To each hn we associate the nth Wiener chaos

Ψ(hn) =
∫
(R+)n

hn(s1, .., sn)δBs1 ...δBsn (14)

if Bs is the standard R-valued Brownian motion. The definition of the Wiener chaos Ψ(hn) is a small
improvement of the stochastic integral

∫ 1
0 h(s)δBs. By using the symmetry of hn, we have:

Ψ(hn) = n!
∫

0<s1<s2<...<sn
hn(s1, .., sn)δBs1 ...δBsn (15)

Moreover EP[|Ψ(hn)|2] = n!‖hn‖2
2 and Ψ(hn) and Ψ(hm) are orthogonal in L2(dP). The L2 of the

Brownian motion can be realized as the symmetric Fock space through the isometry Ψ.
We introduce the Laplacian Δ+ on (R)+ and we consider the Sobolev space H2,k associated to

(Δ+ + I)k. On the set of formal series σ = ∑ hn, we choose a slightly different Hilbert structure:

‖σ‖2
k,C =

∞

∑
n=0

n!Cn‖hn‖2
2,k < ∞ (16)

We get another symmetric Fock space denoted WNk,C. We remark that if k′ ≥ k, C′ ≥ C

‖σ‖k′ ,C′ ≥ ‖σ‖k,C (17)
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The Hida test function space W.N.∞− is the intersection of W.Nk,C k ≥ 1, C ≥ 1 endowed with the
projective topology. A sequence σn of the Hida Fock space converges to σ for the topology of the Hida
Fock space if σn converges to σ in all W.Nk,C. The map Wiener chaos Ψ realized a map from W.N∞−
into the set of continuous Brownian functional dense in L2(dP). We refer to the books [21] and [22] for
an extensive study between the Fock space and the L2 of the Wiener measure.

In infinite dimensional analysis, there are basically 3 objects:

(i) An algebraic model.
(ii) A mapping space and a map Ψ from the algebraic model into the space of functionals on this

mapping space.
(iii) A path integral μ which is an element of the topological dual of the algebraic model.

In the standard case of the Brownian motion, μ is the vacuum expectation:

μ[Ψ(σ)] = h0 (18)

A distribution on the Hida Fock space is a linear map μ from W.N∞− into R which satisfies the
following requirement: there exists k, C, K such that for all σ ∈ W.N∞−

|μ(σ)| ≤ C‖σ‖k,C (19)

Getzler in his seminal paper [23] is the first author who considered another map than the map
Wiener chaos. Getzler is motivated by the heuristic considerations of Atiyah-Bismut-Witten relating
the structure of the free loop space of a manifold and the Index theorem on a compact spin manifold.
Getzler used as algebraic space a Connes space and as map Ψ the map Chen iterated integrals.

Getzler’s idea was developed by Léandre ([9]) to study various path integrals in the Hida-Streit
approach with a geometrical meaning. Especially Léandre ([5–6]) succeeded to define the Haar
measure dD as a distribution on a current group. Let us recall quickly the definition on it. We consider
a compact Riemannian manifold M (S ∈ M) and a compact Lie group G (g ∈ G). We consider the
current group C(M, G) of continuous maps S → g(S) from M into G. We consider the cylindrical
functional h(g(S1), .., g(Sr)) on the current group. We have

∫
C(M,G)

h(g(S1), .., g(Sr))dD =
∫

Gr
h(g1, .., gr)dg1..dgr (20)

We would like to close this operation consistently. It is the object of [5-6].
(1) Construction of the algebraic model. We consider the positive self-adjoint Laplacian on M × G

ΔM×G. We consider the Sobolev space Hk of maps from h M × G into R such that
∫

M×G
((ΔM×G + 2)kh)2dSdg = ‖h‖2

k (21)

We consider the tensor product H⊗n
k associated to it and we consider the natural Hilbert norm on it (dS

and dg are normalized Riemannian measures on M and G respectively). W.Nk,C is the set of formal
series σ = ∑ hn such that

∑ Cn‖hn‖2
k = ‖σ‖2

k,C < ∞ (22)

The Hida test functional space is the space W.N∞− = ∩W.Nk,C endowed with the projective topology.
(2) Construction of the map Ψ. To hn we associate

Ψ(hn)(g(.)) =
∫
[0,1]n

hn(g(S1), .., g(Sn), S1, .., Sn)dS1...dSn (23)
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We put if σ = ∑ hn

Ψ(σ) =
∞

∑
n=0

Ψ(hn) (24)

The map Ψ realizes a continuous map from W.N∞− into the set of continuous functional on C(G, M).
(3) Construction of the path integral. We put if hn belongs to all the Sobolev Hilbert spaces Hk

∫
G,M)

Ψ(hn)dD =
∫

Mn×Gn
hn(g1, .., gn, S1, .., Sn)dg1..dgndS1..dSn (25)

This map can be extended into a linear continuous application from W.N∞− (We say it is a Hida
distribution) into R. This realizes our definition ([5–7]) of the Haar distribution on the current group
C(M, G).

Let I ∈ [0, 1]n. We consider the normalized Lebesgue measure dνn on [0, 1]n. Let Li be the ith

partial Laplacian on Gn. We consider the total operator

Ln
t =

n

∏
i=1

(Li + 2)
n

∏
i=1

(− ∂2

∂s2
i
+ 2) (26)

which operates on function hn on Gn × [0, 1]n and we consider its power (Ln
t )

k. Let hn(gn, I) be a
function on Gn × [0, 1]n. We put

‖hn‖2
C,k = Cn

∫
Gn×[0,1]n

|(Ln
t )

khn(gn, I)|2dgndνn(I) (27)

(dgn is the normalized Haar measure on Gn and dνn the normalized Lebesgue measure on [0, 1]n).
We put

σ = ∑ hn (28)

and we consider the Hilbert norm
‖σ‖2

k,C = ∑ ‖hn‖2
k,C (29)

Definition 1. The Hida Fock space W.N∞− is the space constituted of the σ defined above such that for all
k ∈ N, C > 0 ‖σ‖2

k,C < ∞

If σ belongs to W.N∞−, we associate

Ψ(σ)(g(.)) =
∞

∑
n=0

∫
[0,1]n

hn(g(s1), .., g(sn), I)dνn(I) (30)

where s → g(s) belongs to C([0, 1], G).

Theorem 2. If σ ∈ W.N∞−, Ψ(σ) is a continuous bounded function on C([0, 1], G).

We put ∫
C([0,1],G)

Ψ(hn)dD =
∫
[0,1]n×Gn

hn(g1, .., gn, s1, .., sn)dg1..dgnds1..dsn (31)

Let us recall three of the main theorems of [7]:

Theorem 3. dD can be extended as a distribution on the Hida Fock space. This means that there exists k, C, K
such that for all σ ∈ W.N∞−

|
∫

C([0,1],G)
Ψ(σ)dD| ≤ K‖σ‖k,C (32)
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Theorem 4. If Ψ(σ) ≥ 0,
∫

C([0,1];G) Ψ(σ)dD ≥ 0.

Theorem 5. If Ψ(σ) = 0,
∫

C([0,1];G) Ψ(σ)dD = 0.

3. A Non-Markovian Semi-group on a Path Group

In the sequel, we will suppose that 4k ≥ d. In such a case ( [20]), we have

|pk
t (g, g′)| ≤ C

td/4k G2k,a(
d(g, g′)

t1/4k ) (33)

where Gm,a(u) = exp[−au2m/2m−1]. pk
t (g, g′) is the heat-kernel associated to the heat semi-group Pk

t
and d is the biinvariant Riemannian distance on G.

Pk
t f (g) =

∫
G

pk
t (g, g′) f (g′)dg′ (34)

Moreover, since Δk is biinvariant

pk
t (gg1, g′g1) = pk

t (g1g, g1g′) = pk
t (g, g′) (35)

Since it is an heat kernel associated to a semi-group, it satisfies the Kolmogorov equation:

pk
t+s(g, g′) =

∫
G

pk
t (g, g1)pk

s(g1, g′)dg1 (36)

This shows that if t ∈ [0, 1] that
‖Pk

t f ‖∞ ≤ C‖ f ‖∞ (37)

and that
|Pk

t |[|d(e, .)|p](e) ≤ Ctα(k,p) (38)

Remark: We could get in the sequel more general convolution semi-groups [20] with generators of degree 2k
whose associated heat-kernels satisfied still (33).

Let us divide the interval time [0, 1] into in time intervals [tl , tl+1] of length 1/m. Let F be a
cylindrical functional h(gt1 , gt2 , gtm). Let us introduce

Pk,m
t h(gt1 , .., gtm) =

∫
Gm

h(gt1 g1, .., gtm gm)
m

∏
i=1

pk
t/m(gi−1, gi)dgi (39)

(g0 = e). This defines a semi-group on Gm. Let us show this statement. We remark

Pk,m
s Pk,m

t Fm(gt1 , .., tm) =
∫

Gm×Gm
h(gt1 g1g1, .., gtm gmgm)

m−1

∏
i=0

pk
t/m(gi, gi+1)

m−1

∏
i=0

pk
s/m(gi, gi+1)dgidgi (40)

We do the change of variable g̃i = gigi ; gi = gi. We recognize in the last expression

∫
Gm×Gm

h(gt1 g̃1, .., gtm g̃m)
m−1

∏
i=0

pk
t/m(gi, gi+1)

m−1

∏
i=0

pk
s/m(g̃ig−1

i , g̃i+1g−1
i+1)dgidg̃i (41)
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But

∫
Gm

m−1

∏
i=0

pk
t/m(gi, gi+1)

m−1

∏
i=0

pk
s/m(g̃ig−1

i , g̃i+1g−1
i+1)dgi =

∫
Gm

m−1

∏
i=0

pk
t/m(gi, gi+1)pk

s/m(g̃i, g̃i+1g−1
i+1gi)dgi =

∫
Gm

m−1

∏
i=0

pk
s/m(g̃i, gi)pk

t/m(gi, g̃i+1)dgi =
m−1

∏
i=0

pk
s+t
m
(g̃i, g̃i+1) (42)

We have used the semi-group property (36) of Pk
t and the fact that Pk

t is biinvariant (35).
We would like to extend by continuity this formula for functionals which depend on an infinite

number of variables Ψ(σ) of the previous type. We put for hn:

μ[Ψ(hn)] =
∫

Gn×[0,1]n
hn(g1, .., gn, s1, .., sn)

n−1

∏
i=0

pk
si+1−si

(gi, gi+1)dgidνn(s1, .., sn) (43)

(s0 = 0). We order s1 < s2 < .. < sn without to loose generality.
We extend μ by linearity.

Theorem 6. μ is a Hida distribution . Moreover if Ψ(σ) = 0, μ[Ψ(σ] = 0.

Proof: By the property of the cylindrical semi-group listed in the beginning of this part, we have

∫
Gn

|hn(g1, .., gn, s1, .., sn)|
n−1

∏
i=0

|pk
si+1−si

(gi, gi+1)|dgi ≤ Cn‖hn‖∞ (44)

where ‖‖∞ is the uniform norm of hn. This uniform norm can be estimated by Sobolev imbedding
theorem by ‖hn‖k,C for some big k and C independent of n. It follows clearly from that μ is an Hida
distribution.

Let us give some details in order to estimate ‖hn‖∞. We introduce the ordered set of eigenvalues
λi of Δ. Let (α) = (i1, .., in). Let φi be the normalized eigenvectors associated to λi. We consider
C-valued functions to do that. We introduce φ(α)(g1, .., gn) = ∏ φij(gj). We get

hn = ∑
(α)

λ(α)φ(α) (45)

Therefore
‖hn‖∞ ≤ ∑

(α)

‖λ(α)‖∞‖φ(α)‖∞ (46)

By Garding and Sobolev inequality, the right-hand side of the previous inequality is smaller than

Cn ∑
(α)

K−l
(α)

‖λ(α)‖k,C‖φ(α)‖k,C (47)

for some big k, some big C and some big l.

K(α) = ∏
i∈(α)

(2 + λi) (48)
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Let us recall that λi ≥ 0 and that λi ≥ Cimfor some m ([24]). We apply Cauchy-Schwartz inequality
in (47). We deduce that

‖hn‖∞ ≤ Cn{∑
(α)

K−l
(α)

}1/2{∑
(α)

‖λ(α)|2k,C‖φ(α)‖2
k,C}1/2 (49)

But

∑
(α)

‖λ(α)‖2
k,C‖φ(α)‖2

k,C = ‖hn‖2
k,C (50)

Moreover, by [8], λi ≥ Cim for some i. Therefore if l is big enough, ∑(α) K−l
(α)

is finite bounded
independently of n.

Let us consider the polygonal approximation of mesh 1/l gl
. of g.. If Ψ(σ) = 0, we get Ψ(σ)(gl

. ) =

0. But Ψ(σ)(gl
. ) is a cylindrical functional which depends only of gt1 , .., gtl = x1. We use the properties

listed in the beginning of this part. We get

Pk,l
1 [Ψ(σ)(gl

. )](e) = 0 (51)

by the property listed of the beginning of the cylindrical semi-group Pk,l
t . It remains to show that when

l → ∞ that Pk,l
1 [Ψ(σ)(gl

. )] is very close from μ[Ψ(σ)(g.)]. This follows from the next consideration. Let
hn be an elementary tensor product. We get clearly

|μ[Ψ(hn)(gl
. )]− μ[Ψ(hn)(g.)]| ≤ Cn‖hn‖1,∞

n

∑
i=0

∫
[0,1]n×G

|d(e, gi)|(|pk
si−[si ]−(e, gi)|+ |pk

[si ]+−si
(e, gi)|)dgidνn(s1, .., sn) (52)

where [s]− denotes the supremum of the time of the subdivision smaller to s and [s]+ denotes the
infimum of the time of the subdivision larger to s. ‖hn‖1,∞ is the uniform C1 norm of hn. This norm can
be estimated by the Sobolev imbedding theorem by ‖hn‖k1,C1

for k1 and C1 independent of n as in (50).
It remains to use the inequality (35) to conclude.♦

Definition 7: μ is called the Wiener distribution issued from the unit path associated to Δk.
Let hn be a smooth function from Gn × [0, 1]n into R. We suppose that 0 < s1 < s2.. < sn in order

to simplify the exposition. We put

Pk,n
t Fn(g1, .., gn, s1, .., sn) =

∫
Gm

hn(g1y1, .., gmyn, s1, .., sn)
n−1

∏
i=0

pk
t(si+1−si)

(yi, yi+1)dyi (53)

Pk,n
t is the cylindrical semi-group on cylindrical functional associated to gs1 , .., gsn .

lemma 8: There exist a C′ bounded when t is bounded and which depend not of n, a k′ which depend only
of k and not on n such that

‖Pk,n
t hn‖C,k ≤ ‖hn‖C′ ,k′ (54)

Proof: If we take derivative in gi, the result comes by taking derivative under the sign integral in
(43). The result arises then from (37). Let us take first of all derivative in si. Either we take derivative of
hn and the result goes by the same way. Or we take derivative in si+1 or si of the heat kernel pk

s . We
represent in the way (43) the integral, we remark that the heat kernel satisfies the heat-equation and
we integrate by parts in order to conclude.♦

Let us suppose that the time subdivision is fixed. Clearly

Pk,n
t′ ◦ Pk,n

t = Pk,n
t+t′ (55)
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Let hn be a function from Gn × [O, 1]n into R. We put

Qk
t [Ψ(hn)](g.) =

∫
[0,1]n

Pk,n
t hn(gs1 , .., gsn , s1, .., sn)dνn(s1, .., sn) (56)

Theorem 9: Qk
t can be extended by linearity as a continuous linear operator on the Hida Fock space. If

Ψ(σ)(g.) = 0, Qk
t [Ψ(σ)](g.) = 0 and we get the semi-group property

Qk
t [Q

k
t′ [Ψ(σ)]](g.) = Qk

t+t′ [Ψ(σ)](g.) (57)

if σ belong to W.N∞−.
Proof: The fact that Qk

t can be extended by linearity follows from the previous lemma.
Qk

t [Ψ(σ)](x.) = 0 if Ψ(σ) = 0 holds exactly as in the proof of Theorem 6. For a simple element
hn of the Hida Fock space, we have clearly:

Qk
t [Q

k
t′ [Ψ(hn)]](g.) = Qk

t+t′ [Ψ(hn)](g.) (58)

This result can be extended by continuity.♦

4. Long Time Behaviour

The main theorem of this paper is the following:
Theorem 10: If σ belong to W.N∞−, then when t → ∞

Qk
t [Ψ(σ)](e.) →

∫
C([0,1];G)

Ψ(σ)dD (59)

where e. is the unit path.
Proof: Let us decompose L2(G) in an orthonormal basis of eigenvectors φi of Δ associated to

the eigenvalues λi. Classically [24], supg |φi(g)| ≤ Cim0 and λi ≥ Cim1 for some positive m0 and m1.
Classically the heat kernel is given by

pk
t (g, g′) = 1 + ∑

i>0
exp[−λk

i ]φi(g)φi(g′) (60)

>From the previous bound, we deduce if t ≥ 1

sup
g,g′

|pk
t (g, g′)| ≤ C < ∞ (61)

Pk,n
t is associated if s1 < s2 < .. < sn < 1 to a invariant elliptic operator on Gn. It has therefore the

unique invariant measure ⊗dgi. This shows that if hn is an element of the Hida Fock space that

Pk,n
t hn(e, .., e, s1, sn) →

∫
Gn

hn(g1, .., gn, s1, .., sn)
n

∏
i=1

dgi (62)

provided all si are different.
By the previous estimates, if t ≥ 1

sup |Pk,n
t hn| ≤ Cn‖hn‖∞ (63)
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where ‖hn‖∞ is the supremum norm of hn which can be estimated by Sobolev imbedding theorem by
‖hn‖C′ ,k′ for some C′, some k′ independent of n. Therefore

Qk
t [Ψ(σ)](e.) =

∞

∑
n=0

∫
[0,1]n

Pk
t [h

n](e, .., e, s1, ..sn)ds1..dsn (64)

By the dominated Lebesgue convergence, this tends when t → ∞ to

∞

∑
n=0

∫
Gn×[0,1]n

hn(g1, .., gn, s1, .., sn)
n

∏
i=1

dgi

n

∏
i=1

dsi =
∫

C([0,1];G)
Ψ(σ)dD (65)

♦

5. Conclusions

We define a non-Markovian semi-group on a path group which acts on a Hida type test algebra
on the path group and we study its long time behaviour related to the Haar distribution on the path
group.
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Abstract: An independent set in a graph is a set of pairwise non-adjacent vertices, and α(G) is the size
of a maximum independent set in the graph G. A matching is a set of non-incident edges, while μ(G)

is the cardinality of a maximum matching. If sk is the number of independent sets of size k in G, then
I(G; x) = s0 + s1x + s2x2 + ... + sαxα, α = α(G), is called the independence polynomial of G (Gutman
and Harary, 1986). If sj = sα−j for all 0 ≤ j ≤ �α/2�, then I(G; x) is called symmetric (or palindromic).
It is known that the graph G ◦ 2K1, obtained by joining each vertex of G to two new vertices, has a
symmetric independence polynomial (Stevanović, 1998). In this paper we develop a new algebraic
technique in order to take care of symmetric independence polynomials. On the one hand, it provides
us with alternative proofs for some previously known results. On the other hand, this technique
allows to show that for every graph G and for each non-negative integer k ≤ μ(G), one can build a
graph H, such that: G is a subgraph of H, I(H; x) is symmetric, and I(G ◦ 2K1; x) = (1 + x)k · I(H; x).

Keywords: independent set; independence polynomial; symmetric polynomial; palindromic polynomial

MSC: 05C31; 05C69

1. Introduction

Throughout this paper G = (V, E) is a simple (i.e., a finite, undirected, loopless and without
multiple edges) graph with vertex set V = V(G) and edge set E = E(G). If X ⊂ V, then G[X] is the
subgraph of G spanned by X. By G − W we mean the subgraph G[V − W], if W ⊂ V(G). We also
denote by G − F the partial subgraph of G obtained by deleting the edges of F, for F ⊂ E(G), and we
write shortly G − e, whenever F = {e}.

The neighborhood of a vertex v ∈ V is the set NG(v) = {w : w ∈ V and vw ∈ E}, while NG[v] =
NG(v) ∪ {v}; if there is no ambiguity on G, we write N(v) and N[v].

Kn, Pn, Cn denote, respectively, the complete graph on n ≥ 1 vertices, the chordless path on n ≥ 1
vertices, and the chordless cycle on n ≥ 3 vertices.

The disjoint union of the graphs G1, G2 is the graph G = G1 ∪ G2 having as vertex set the disjoint
union of V(G1), V(G2), and as edge set the disjoint union of E(G1), E(G2). In particular, nG denotes
the disjoint union of n > 1 copies of the graph G.

If G1, G2 are disjoint graphs, A1 ⊆ V(G1), A2 ⊆ V(G2), then the Zykov sum of G1, G2 with respect
to A1, A2, is the graph (G1, A1) + (G2, A2) with V(G1) ∪ V(G2) as vertex set and

E(G1) ∪ E(G2) ∪ {v1v2 : v1 ∈ A1, v2 ∈ A2}

as edge set [1]. If A1 = V(G1) and A2 = V(G2), we simply write G1 + G2.

Symmetry 2011, 3, 472–486 26 www.mdpi.com/journal/symmetry
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The corona of the graphs G and H with respect to A ⊆ V(G) is the graph (G, A) ◦ H obtained
from G and |A| copies of H, such that every vertex belonging to A is joined to all vertices of a copy of
H [2]. If A = V(G) we use G ◦ H instead of (G, V(G)) ◦ H (see Figure 1 for an example).
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Figure 1. G, H and L = (G, A) ◦ H, where A = {a, b}.

Let G, H be two graphs and C be a cycle on q vertices of G. By (G, C)� H we mean the graph
obtained from G and q copies of H, such that each two consecutive vertices on C are joined to all
vertices of a copy of H (see Figure 2 for an example).
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Figure 2. G and W = (G, C)� H, where V(C) = {a, b, c, d} and H = K1.

An independent (or a stable) set in G is a set of pairwise non-adjacent vertices. By Ind(G) we mean
the family of all independent sets of G. An independent set of maximum size will be referred to as a
maximum independent set of G, and the independence number of G, denoted by α(G), is the cardinality of
a maximum independent set in G.

Let sk be the number of independent sets of size k in a graph G. The polynomial

I(G; x) = s0 + s1x + s2x2 + ... + sαxα, α = α(G)

is called the independence polynomial of G [3,4], the independent set polynomial of G [5]. In [6], the
dependence polynomial D(G; x) of a graph G is defined as D(G; x) = I(G;−x).

A matching is a set of non-incident edges of a graph G, while μ(G) is the cardinality of a maximum
matching. Let mk be the number of matchings of size k in G.

The polynomial

M(G; x) = m0 + m1x + m2x2 + ... + mμxμ, μ = μ(G)

is called the matching polynomial of G [7].
The independence polynomial has been defined as a generalization of the matching polynomial,

because the matching polynomial of a graph G and the independence polynomial of its line graph
are identical. Recall that given a graph G, its line graph L(G) is the graph whose vertex set is the edge
set of G, and two vertices are adjacent if they share an end in G. For instance, the graphs G1 and G2

depicted in Figure 3 satisfy G2 = L(G1) and, hence, I(G2; x) = 1 + 6x + 7x2 + x3 = M(G1; x).
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Figure 3. G2 is the line-graph of and G1.
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In [3] a number of general properties of the independence polynomial of a graph are presented.
As examples, we mention that:

I(G1 ∪ G2; x) = I(G1; x) · I(G2; x), I(G1 + G2; x) = I(G1; x) + I(G2; x)− 1.

The following equalities are very useful in calculating of the independence polynomial for various
families of graphs.

Theorem 1. Let G = (V, E) be a graph of order n. Then the following identities are true:

(i) I(G; x) = I(G − v; x) + x · I(G − N[v]; x) holds for each v ∈ V [3].

(ii) I(G ◦ H; x) = (I(H; x))n · I
(

G; x
I(H;x)

)
for every graph H [8].

A finite sequence of real numbers (a0, a1, a2, ..., an) is said to be:

• unimodal if there is some k ∈ {0, 1, ..., n}, such that a0 ≤ ... ≤ ak−1 ≤ ak ≥ ak+1 ≥ ... ≥ an;
• log-concave if a2

i ≥ ai−1 · ai+1, i ∈ {1, 2, ..., n − 1};
• symmetric (or palindromic) if ai = an−i, i = 0, 1, ..., �n/2�.

It is known that every log-concave sequence of positive numbers is also unimodal.
A polynomial is called unimodal (log-concave, symmetric) if the sequence of its coefficients is

unimodal (log-concave, symmetric, respectively).
For instance, the independence polynomial:

• I(K42 + 3K7; x) = 1 + 63x + 147x2 + 343x3 is log-concave;
• I(K43 + 3K7; x) = 1 + 64x + 147x2 + 343x3 is unimodal, but it is not log-concave, because 147 ·

147 − 64 · 343 = −343 < 0;
• I(K127 + 3K7; x) = 1 + 148x + 147x2 + 343x3 is non-unimodal;
• I(K18 + 3K3 + 4K1; x) = 1 + 31x + 33x2 + 31x3 + x4 is symmetric and log-concave;
• I(K52 + 3K4 + 4K1; x) = 1 + 68x + 54x2 + 68x3 + x4 is symmetric and non-unimodal.

It is easy to see that if α(G) ≤ 3 and I(G; x) is symmetric, then it is also log-concave.
For other examples, see [9–14]. Alavi et al. proved that for every permutation π of {1, 2, ..., α}

there is a graph G with α(G) = α such that sπ(1) < sπ(2) < ... < sπ(α) [9].
The following conjecture is still open.

Conjecture 1. The independence polynomial of every tree is unimodal [9].

Hence to prove the unimodality of independence polynomials is sometimes a difficult task.
Moreover, even if the independence polynomials of all the connected components of a graph G are
unimodal, then I(G; x) is not for sure unimodal [15]. The following result shows that symmetry gives
a hand to unimodality.

Theorem 2. If P and Q are both unimodal and symmetric, then P · Q is unimodal and symmetric [16].

A clique cover of a graph G is a spanning graph of G, each connected component of which is a
clique. A cycle cover of a graph G is a spanning graph of G, each connected component of which is
a vertex, an edge, or a proper cycle. In this paper we give an alternative proof for the fact that the
polynomials I(G ◦ 2K1; x), I(Φ(G); x), and I(Γ(G); x) are symmetric for every clique cover Φ, and
every cycle cover Γ of a graph G, where Φ(G) and Γ(G) are graphs built by Stevanović’s rules [17]. Our
main finding claims that the polynomial I(G ◦ 2K1; x) is divisible both by I(Φ(G); x) and I(Γ(G); x).

The paper is organized as follows. Section 2 looks at previous results on symmetric independence
polynomials, Section 3 presents our results connecting symmetric independence polynomials derived
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by Stevanović’s rules [17], while Section 4 is devoted to conclusions, future directions of research, and
some open problems.

2. Related Work

The symmetry of the matching polynomial and the characteristic polynomial of a graph were
examined in [18], while for the independence polynomial we quote [17,19,20]. Recall from [18] that
G is called an equible graph if G = H ◦ K1 for some graph H. Both matching polynomials and
characteristic polynomials of equible graphs are symmetric [18]. Nevertheless, there are non-equible
graphs whose matching polynomials and characteristic polynomials are symmetric.

It is worth mentioning that one can produce graphs with symmetric independence polynomials
in different ways. For instance, the independence polynomial of the disjoint union of two graphs
having symmetric independence polynomial is symmetric as well. Another basic graph operation
preserving symmetry of the independence polynomial is the Zykov sum of two graphs with the same
independence number. We summarize other constructions respecting symmetry of the independence
polynomial in what follows.

2.1. Gutman’s Construction [21]

For integers p > 1, q > 1, let Jp,q be the graph built in the following manner [21]. Start with three
complete graphs K1, Kp and Kq whose vertex sets are disjoint. Connect the vertex of K1 with p − 1
vertices of Kp and with q − 1 vertices of Kq (see Figure 4 as an example).
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Figure 4. I(J4,3; x) = 1 + 8x + 14x2 + x3 and I(J4,3 + K6; x) = 1 + 14x + 14x2 + x3.

The graph thus obtained has a unique maximum independent set of size three, and its
independence polynomial is equal to

I
(

Jp,q; x
)
= 1 + (p + q + 1)x + (pq + 2)x2 + x3.

Hence the independence polynomial of G = Jp,q + Kpq−p−q+1 is

I(G; x) = I
(

Jp,q; x
)
+ I

(
Kpq−p−q+1; x

)− 1 = 1 + (2 + pq)x + (2 + pq)x2 + x3,

which is clearly symmetric and log-concave.

2.2. Bahls and Salazar’s Construction [20]

The Kt-path of length k ≥ 1 is the graph P(t, k) = (V, E) with V = {v1, v2, ..., vt+k−1} and
E =

{
vivi+j : 1 ≤ i ≤ t + k − 2, 1 ≤ j ≤ min{t − 1, t + k − i − 1}}. Such a graph consists of k copies

of Kt, each glued to the previous one by identifying certain prescribed subgraphs isomorphic to
Kt−1. Let d ≥ 0 be an integer. The d-augmented Kt path P(t, k, d) is defined by introducing new
vertices {ui ,1, ui ,2, ..., ui,d}t+k−2

i=0 and edges
{

viui,j, vi+1ui,j : j = 1, ..., d
}t+k−2

i=1 ∪ {
v1, u0,j : j = 1, ..., d

}
.

Let G = (V, E) and U ⊆ V be a subset of its vertices. Let v /∈ V and define the cone of G on U
with vertex v, denoted G∗(U, v) = (G, U) + K1, where K1 = ({v}, ∅). Given G and U and a graph H,
we write H + (G, U) instead of (H, V(H)) + (G, U).

Theorem 3. Let t ≥ 2, k ≥ 1, and d ≥ 0 be integers, and let G = (V, E) be a graph with U ⊆ V a
distinguished subset of vertices. Suppose that each of the graphs G, G−U, and (G, U)+K1 has a symmetric and
unimodal independence polynomial, and deg(I(G; x)) = deg(I((G, U) + K1; x)) = deg(I(G − U; x)) + 2.
Then the independence polynomial of the graph P(t, k, d) + (G, U) is symmetric and unimodal [20].
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2.3. Stevanović’s Constructions [17]

Taking into account that s0 = 1 and s1 = |V(G)| = n, it follows that if I(G; x) is symmetric, then
s0 = sα and s1 = sα−1, i.e., G has only one maximum independent set, say S, and n− α(G) independent
sets, of size α(G)− 1, that are not subsets of S.

Theorem 4. If there is an independent set S in G such that |N(A) ∩ S| = 2|A| holds for every
independent set A ⊆ V(G)− S, then I(G; x) is symmetric [17].

The following result is a consequence of Theorem 4.

Corollary 1. (i) If α(G) = α, sα = 1, sα−1 = |V(G)|, and for the unique stability system S of G it is true
that |N(v) ∩ S| = 2 for each v ∈ V(G)− S, then I(G; x) is symmetric [17]; (ii) If G is a claw-free graph with
α(G) = α, sα = 1, sα−1 = |V(G)|, then I(G; x) is symmetric.

Corollary 1 gives three different ways to construct graphs having symmetric independence
polynomials [17].

• Rule 1. For a given graph G, define a new graph H as: H = G ◦ 2K1.

For an example, see the graphs in Figure 5: I(G; x) = 1 + 6x + 9x2 + 3x3, while

I(H1; x) = (1 + x)6
(

1 + 12x + 48x2 + 77x3 + 48x4 + 12x5 + x6
)
= 1 + 18x + 135x2 + 565x3

+1485x4 + 2601x5 + 3126x6 + 2601x7 + 1485x8 + 565x9 + 135x10 + 18x11 + x12.
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Figure 5. G and H1 = G ◦ 2K1.

• A cycle cover of a graph G is a spanning graph of G, each connected component of which is a
vertex (which we call a vertex-cycle), an edge (which we call an edge-cycle), or a proper cycle. Let Γ
be a cycle cover of G.

Rule 2. Construct a new graph H from G, denoted by H = Γ(G), as follows: if C ∈ Γ is
(i) a vertex-cycle, say v, then add two vertices and join them to v;
(ii) an edge-cycle, say uv, then add two vertices and join them to both u and v;
(iii) a proper cycle, with

V(C) = {vi : 1 ≤ i ≤ s}, E(C) = {vivi+1 : 1 ≤ i ≤ s − 1} ∪ {v1vs},

then add s vertices, say {wi : 1 ≤ i ≤ s} and each of them is joined to two consecutive vertices on C, as
follows: w1 is joined to vs, v1, then w2 is joined to v1, v2, further w3 is joined to v2, v3, etc.

Figure 6 contains an example, namely, I(G; x) = 1 + 6x + 9x2 + 3x3, while

I(H2; x) = 1 + 13x + 60x2 + 125x3 + 125x4 + 60x5 + 13x6 + x7 =

= (1 + x)
(

1 + 12x + 48x2 + 77x3 + 48x4 + 12x5 + x6
)

.
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Figure 6. G and H2 = Γ(G), where Γ = {{x}, {a, b, c}, {y, z}}.

• A clique cover of a graph G is a spanning graph of G, each connected component of which is a
clique. Let Φ be a clique cover of G.

Rule 3. Construct a new graph H from G, denoted by H = Φ(G), as follows: for each Q ∈ Φ, add
two non-adjacent vertices and join them to all the vertices of Q.

Figure 7 contains an example, namely, I(G; x) = 1 + 6x + 9x2 + 3x3, while

I(H3; x) = 1 + 12x + 48x2 + 77x3 + 48x4 + 12x5 + x6.
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Figure 7. G and H3 = Φ(G), where Φ = {{x}, {a, b, c}, {y, z}}.

Theorem 5. Let H be the graph obtained from a graph G according to one of the Rules 1, 2 or 3. Then H has a
symmetric independence polynomial [17].

Let us remark that I(H1; x) = (1 + x)6 · I(H3; x) and I(H2; x) = (1 + x) · I(H3; x), where H1, H2

and H3 are depicted in Figures 5, 6, and 7, respectively.

2.4. Inequalities and Equalities Following from Theorem 5

When inequalities connecting coefficients of the independence polynomial is under consideration,
the symmetry mirrors the area, where they are already established. The following results illustrate
this idea.

Proposition 1. Let G = H ◦ 2K1 be with α(G) = α, and (sk) be the coefficients of I(G; x). Then I(G; x) is
symmetric, and [22]

s0 ≤ s1 ≤ ... ≤ sp , f or p = �(2α + 2)/5� , while

st ≥ ... ≥ sα−1 ≥ sα , f or t = �(3α − 2)/5�.

Theorem 6. Let H be a graph of order n ≥ 2, Γ be a cycle cover of H that contains no vertex-cycles, G be
obtained by Rule 2, and α(G) = α. Then I(G; x) is symmetric and its coefficients (sk) satisfy the subsequent
inequalities [22]

s0 ≤ s1 ≤ ... ≤ sp , f or p = �(α + 1)/3� , and

sq ≥ ... ≥ sα−1 ≥ sα , f or q = �(2α − 1)/3�.

Let Hn, n ≥ 1, be the graphs obtained according to Rule 3 from Pn, as one can see in Figure 8.
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Figure 8. Pn and Hn = Ω{Pn}.

Theorem 7. If Jn(x) = I(Hn; x), n ≥ 0, then [23]

(i) J0(x) = 1, J1(x) = 1 + 3x + x2 and Jn, n ≥ 2, satisfies the following recursive relations:

J2n(x) = J2n−1(x) + x · J2n−2(x), n ≥ 1,

J2n−1(x) = (1 + x)2 · J2n−2(x) + x · J2n−3(x), n ≥ 2;

(ii) Jn is both symmetric and unimodal.

It was conjectured in [23] that I(Hn; x) is log-concave and has only real roots. This conjecture has
been resolved as follows.

Theorem 8. Let n ≥ 1. Then [24]

(i) the independence polynomial of Hn is

I(Hn; x) =
�(n+1)/2�

∏
s=1

(
1 + 4x + x2 + 2x · cos

2sπ

n + 2

)
;

(ii) I(Hn; x) has only real zeros, and, therefore, it is log-concave and unimodal.

3. Results

The following lemma goes from the well-known fact that the polynomial P(x) is symmetric if
and only if it equals its reciprocal, i.e.,

P(x) = xdeg(P) · P
(

1
x

)
. (1)

Lemma 1. Let f (x), g(x) and h(x) be polynomials satisfying f (x) = g(x)· h(x). If any two of them are
symmetric, then the third is symmetric as well.

For H = 2K1, Theorem 1 gives

I(G ◦ 2K1; x) = (1 + x)2n · I

(
G;

x

(1 + x)2

)
.

Since
x

(1 + x)2 =
1
x(

1 + 1
x

)2 and deg(I(G ◦ 2K1; x)) = 2n,

one can easily see that the polynomial I(G ◦ 2K1; x) satisfies the identity (1). Thus we conclude with
the following.
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Theorem 9. For every graph G, the polynomial I(G ◦ 2K1; x) is symmetric [17].

3.1. Clique Covers Revisited

Lemma 2. If A is a clique in a graph G, then for every graph H

I((G, A) ◦ H; x) = I(H; x)|A|−1 · I((G, A) + H; x).

Proof. Let G1 = (G, A) ◦ H and G2 = ((G, A) + H) ∪ ((|A| − 1)H).
For S ∈ Ind(G), let us define the following families of independent sets:

ΩG1
S = {S ∪ W : W ⊆ V(G1 − G), S ∪ W ∈ Ind(G1},

ΩG2
S = {S ∪ W : W ⊆ V(G2 − G), S ∪ W ∈ Ind(G2)}.

Since A is a clique, it follows that |S ∩ A| ≤ 1.
Case 1. S ∩ A = ∅.
In this case S ∪ W ∈ ΩG1

S if and only if S ∪ W ∈ ΩG2
S . Hence, for each size m ≥ |S|, we get that

∣∣∣{S ∪ W ∈ ΩG1
S : |S ∪ W| = m}

∣∣∣ =
∣∣∣{S ∪ W ∈ ΩG2

S : |S ∪ W| = m}
∣∣∣.

Case 2. S ∩ A = {a}.
Now, every S ∪ W ∈ ΩG1

S has W ∩ V(H) = ∅ for exactly one H, namely, the graph H whose
vertices are joined to a. Hence, W may contain vertices only from (|A| − 1)H.

On the other hand, each S ∪ W ∈ ΩG2
S has W ∩ V(H) = ∅ for the unique H appearing in

(G, A) + H. Therefore, W may contain vertices only from (|A| − 1)H.
Hence for each positive integer m ≥ |S|, we obtain that

∣∣∣{S ∪ W ∈ ΩG1
S : |S ∪ W| = m}

∣∣∣ =
∣∣∣{S ∪ W ∈ ΩG2

S : |S ∪ W| = m}
∣∣∣.

Consequently, one may infer that for each size, the two graphs, G1 and G2, have the same number
of independent sets, in other words, I(G1; x) = I(G2; x).

Since G2 = ((G, A) + H)∪ ((|A| − 1)H) has |A| − 1 disjoint components identical to H, it follows
that I(G2; x) = I(H; x)|A|−1 · I((G, A) + H; x).

Corollary 2. If A is a clique in a graph G, then

I((G, A) ◦ 2K1; x) = (1 + x)2|A|−2 · I((G, A) + 2K1; x).

Theorem 10. If G is a graph of order n and Φ is a clique cover, then

I(G ◦ 2K1; x) = (1 + x)2n−2|Φ| · I(Φ(G); x).

Proof. Let Φ =
{

A1, A2, ..., Aq
}

. According to Corollary 2, each
(a) vertex-clique of Φ yields (1 + x)2−2 = 1 as a factor of I(G ◦ 2K1; x), since a vertex defines a

clique of size 1;
(b) edge-clique of Φ yields (1 + x)2 as a factor of I(G ◦ 2K1; x), since an edge defines a clique of

size 2 (see Figure 9 as an example);

(c) clique Aj ∈ Φ,
∣∣Aj

∣∣ ≥ 3, produces (1 + x)2|Aj|−2 as a factor of I(G ◦ 2K1; x) (see Figure 10 as
an example).

Since the cliques of Φ are pairwise vertex disjoint, one can apply Corollary 2 to all the q cliques
one by one.
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Figure 9. G1 = K2 ◦ 2K1, I(G1; x) = (1 + x)2 · I(Φ(K2); x) = (1 + x)2 · (1 + 4x + x2).
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Figure 10. G1 = K4 ◦ 2K1, G2 = 6K1 ∪ Φ(K4), and I(G1; x) = (1 + x)6 · I(Φ(K4); x).

Using Corollary 2 and the fact that A1 ∩ A2 = ∅, we have

I((G, A1 ∪ A2) ◦ 2K1; x) = I((((G, A1) ◦ 2K1), A2) ◦ 2K1; x) =

= (1 + x)2|A2|−2 · I((((G, A1) ◦ 2K1), A2) + 2K1; x) =

= (1 + x)2|A2|−2 · I((((G, A2) + 2K1), A1) ◦ 2K1; x) =

= (1 + x)2(|A1|+|A2|)−2 · I((((G, A2) + 2K1), A1) + 2K1; x).

Repeating this process with
{

A3, A4, ..., Aq
}

, and taking into account that all the cliques of Φ are
pairwise disjoint, we obtain

I((G ◦ 2K1; x) = I((G, A1 ∪ A2 ∪ ... ∪ Aq) ◦ 2K1; x) =

= (1 + x)2(|A1|+|A2|+...+|Aq|)−2q · I(
(
(((G, A1) + 2K1), A2...), Aq

)
+ 2K1; x) =

= (1 + x)2n−2|Φ| · I(Φ(G); x),

as required.

Lemma 1 and Theorem 10 imply the following.

Corollary 3. For every clique cover Φ of a graph G, the polynomial I(Φ(G); x) is symmetric [17].

Clearly, for every k ≤ μ(G) there exists a clique cover containing k non-trivial cliques, namely,
edges. Consequently, we obtain the following.

Theorem 11. For every graph G and for each non-negative integer k ≤ μ(G), one can build a graph H, such
that: G is a subgraph of H, I(H; x) is symmetric, and I(G ◦ 2K1; x) = (1 + x)k · I(H; x).

3.2. Cycle Covers Revisited

Lemma 3. If C is a proper cycle in a graph G, then for every graph H

I((G, C) ◦ 2H; x) = I(H; x)|C| · I((G, C)� H; x).

Proof. Let C = (V(C), E(C)), q = |V(C)|, G1 = (G, C) ◦ 2H, and G2 = ((G, C)� H) ∪ (qH).
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For an independent set S ⊂ V(G), let us denote:

ΩG1
S = {S ∪ W : W ⊆ V(G1)− V(G), S ∪ W ∈ Ind(G1)},

ΩG2
S = {S ∪ W : W ⊆ V(G2)− V(G), S ∪ W ∈ Ind(G2)}.

Case 1. S ∩ V(C) = ∅.
In this case S ∪ W ∈ ΩG1

S if an only if S ∪ W ∈ ΩG2
S , since W is an arbitrary independent set of

2qH. Hence, for each size m ≥ |S|, we get that
∣∣∣{S ∪ W ∈ ΩG1

S : |S ∪ W| = m}
∣∣∣ =

∣∣∣{S ∪ W ∈ ΩG2
S : |S ∪ W| = m}

∣∣∣.
Case 2. S ∩ V(C) �= ∅.

Then, we may assert that
∣∣∣ΩG1

S

∣∣∣ = |{S ∪ W : W is an independent set in 2(q − |S ∩ V(C)|)H}| =
∣∣∣ΩG2

S

∣∣∣,
since W has to avoid all the “H-neighbors” of the vertices in S ∩ V(C), both in G1 and G2.

Hence, for each positive integer m ≥ |S|, we get that
∣∣∣{S ∪ W ∈ ΩG1

S : |S ∪ W| = m}
∣∣∣ =

∣∣∣{S ∪ W ∈ ΩG2
S : |S ∪ W| = m}

∣∣∣.
Consequently, one may infer that for each size, the two graphs, G1 and G2, have the same number of
independent sets. In other words, I(G1; x) = I(G2; x).

Since G2 has |C| disjoint components identical to H, it follows that

I(G2; x) = (1 + x)|C| · I((G, C)� H; x),

as required.

Corollary 4. If C is a proper cycle in a graph G, then

I((G, C) ◦ 2K1; x) = (1 + x)|C| · I((G, C)� K1; x).

Theorem 12. If G is a graph of order n and Γ is a cycle cover containing k vertex-cycles, then

I(G ◦ 2K1; x) = (1 + x)n−k · I(Γ(G); x).

Proof. According to Corollaries 2 and 4, each
(a) vertex-cycle of Γ yields (1 + x)2−2 = 1 as a factor of I(G ◦ 2K1; x), since each vertex defines a

clique of size 1;
(b) edge-cycle of Γ yields (1 + x)2 as a factor of I(G ◦ 2K1; x), since every edge defines a clique of

size 2;
(c) proper cycle C ∈ Γ produces (1 + x)|C| as a factor (see Figure 11 as an example).

Let Γ =
{

Cj : 1 ≤ j ≤ q
} ∪ {vi : 1 ≤ i ≤ k} be a cycle cover containing k vertex-cycles, namely,

{vi : 1 ≤ i ≤ k}.
Using Corollary 4 and the fact that C1 ∩ C2 = ∅, we have

I((G, C1 ∪ C2) ◦ 2K1; x) = I((((G, C1) ◦ 2K1), C2) ◦ 2K1; x) =

= (1 + x)|C2| · I((((G, C1) ◦ 2K1), C2)� K1; x) =

= (1 + x)|C2| · I((((G, C2)� K1), C1) ◦ 2K1; x) =
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Figure 11. G1 = C4 ◦ 2K1, G2 = 4K1 ∪ Γ(C4) and I(G1; x) = (1 + x)4 · I(Γ(C4); x)

= (1 + x)|C1|+|C2| · I((((G, C2)� K1), C1)� K1; x).

Repeating this process with
{

C3, C4, ..., Cq
}

, and taking into account that all the cycles of Γ are
pairwise vertex disjoint, we obtain

I((G ◦ 2K1; x) = I((G, C1 ∪ C2 ∪ ... ∪ Cq) ◦ 2K1; x) =

= (1 + x)|C1|+|C2|+...+|Cq| · I(
(
(((G, C1)� K1), C2...), Cq

)� K1; x) =

= (1 + x)n−k · I(Γ(G); x),

as claimed.

Lemma 1 and Theorem 12 imply the following.

Corollary 5. For every cycle cover Γ of a graph G, the polynomial I(Γ(G); x) is symmetric [17].

4. Conclusions

In this paper we have given algebraic proofs for the assertions in Theorem 5, due to Stevanović [17].
In addition, we have shown that for every clique cover Φ, and every cycle cover Γ of a graph G, the
polynomial I(G ◦ 2K1; x) is divisible both by I(Φ(G); x) and I(Γ(G); x).

For instance, the graphs from Figure 12 have: I(G; x) = 1 + 6x + 9x2 + 2x3, while

I(G ◦ 2K1; x) = (1 + x)6
(

1 + 12x + 48x2 + 76x3 + 48x4 + 12x5 + x6
)
=

= (1 + x)5 · I(Γ(G); x) = (1 + x)6 · I(Φ(G); x),

I(Γ(G); x) = 1 + 13x + 60x2 + 124x3 + 124x4 + 60x5 + 13x6 + x7,

I(Φ(G); x) = 1 + 12x + 48x2 + 76x3 + 48x4 + 12x5 + x6.

The characterization of graphs whose independence polynomials are symmetric is still an open
problem [17].

Let us mention that there are non-isomorphic graphs with the same independence polynomial,
symmetric or not. For instance, the graphs G1, G2, G3, G4 presented in Figure 13 are non-isomorphic,
while

I(G1; x) = I(G2; x) = 1 + 5x + 5x2 , and

I(G3; x) = I(G4; x) = 1 + 6x + 10x2 + 6x3 + x4.

Recall that a graph having at most two vertices with the same degree is called antiregular [25]. It is
known that for every positive integer n ≥ 2 there is a unique connected antiregular graph of order n,
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Figure 12. G with Γ(G) = {{y, z}, {x}, {a, b, c}} and Φ(G) = {{z}, {x, y}, {a, b, c}}.
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Figure 13. Non-isomorphic graphs.

denoted by An, and a unique non-connected antiregular graph of order n, namely An [26]. In [27] we
showed that the independence polynomial of the antiregular graph An is:

I(A2k−1; x) = (1 + x)k + (1 + x)k−1 − 1 , and

I(A2k; x) = 2 · (1 + x)k − 1, k ≥ 1.

Let us mention that I(A2k; x) = I(Kk,k; x) and I(A2k−1; x) = I(Kk,k−1; x), where Km,n denotes the
complete bipartite graph on m + n vertices. Notice that the coefficients of the polynomial

I(A2k; x) = 2 · (1 + x)k − 1 =
k

∑
j=0

sjxj

satisfy sj = sk−j for 1 ≤ j ≤ �k/2�, while s0 �= sk, i.e., I(A2k; x) is “almost symmetric”.

Proposition 2. Characterize graphs whose independence polynomials are almost symmetric.

It is known that the product of a polynomial P(x) =
n
∑

k=0
akxk and its reciprocal Q(x) =

n
∑

k=0
an−kxk

is a symmetric polynomial. Consequently, if I(G1; x) and I(G2; x) are reciprocal polynomials, then the
independence polynomial of G1 ∪ G2 is symmetric, because I(G1 ∪ G2; x) = I(G1; x) · I(G2; x).

Proposition 3. Describe families of graphs whose independence polynomials are reciprocal.

Acknowledgments: We would like to thank one of the anonymous referees for helpful comments, which improved
the presentation of our paper.
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Abstract: Our paper analyzes some aspects of Uncertainty Measures. We need to obtain new ways to
model adequate conditions or restrictions, constructed from vague pieces of information. The classical
entropy measure originates from scientific fields; more specifically, from Statistical Physics and
Thermodynamics. With time it was adapted by Claude Shannon, creating the current expanding
Information Theory. However, the Hungarian mathematician, Alfred Renyi, proves that different and
valid entropy measures exist in accordance with the purpose and/or need of application. Accordingly,
it is essential to clarify the different types of measures and their mutual relationships. For these
reasons, we attempt here to obtain an adequate revision of such fuzzy entropy measures from a
mathematical point of view.

Keywords: mathematical analysis; measure theory; fuzzy systems; information theory

1. Introduction

The Shannon Entropy is a measure of the average information content one is missing when one does
not know the value of the random variable. This concept proceeds from the famous Shannon paper [1].
It represents an absolute limit on the best possible lossless compression of any communication under
certain constraints, treating messages to be encoded as a sequence of independent and identically
distributed random variables.

Usually, we define the Shannon Entropy by the following expression:

H(P) = −Σi pilogpi = Σi pilog(1/pi)

Hn will be a function of n non-negative random variables that add up to 1, and represent
probabilities. Hn acts on the n-tuple of values on the sample, (pi)i=1,2,...,n.

The information that we receive from an observation is equal to the degree to which uncertainty
is reduced.

Among its main properties, we have:
Continuity. The measure H should be continuous, in the sense that changing the values of the

probabilities by a very small amount, should only change the H value by a small amount.
Maximality. The measure H will be maximal, if all the outcomes are equally likely, i.e., the

uncertainty is highest when all the possible events are equiprobable; thus,

Hn(p1, p2, ..., pn) ≤ Hn(1/n, 1/n, ..., 1/n)

And the entropy will increase with the number of outcomes,

Hn(1/n, 1/n,...,1/n) < Hn+1 (1/(n + 1), 1/(n + 1),...,1/(n + 1))

Additivity. The amount of entropy should be independent of how the process is considered, as
being divided into parts. Such a functional relationship characterizes the entropy of a system with

Symmetry 2011, 3, 487–502 39 www.mdpi.com/journal/symmetry
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respect to the sub-systems. It demands that the entropy of every system can be identified and, then,
computed from the entropies of their sub-systems.

i.e., if S = �i=1,2,...,n Si, then H(S) = Σi=1,2,...,n H(Si).
This is because statistical entropy is a probabilistic measure of uncertainty, or ignorance about data,

whereas Information is a measure of a reduction in that uncertainty.
Entropy and related information measures provide descriptions of the long term behavior of

random processes [2], and that this behavior is a key factor in developing the Coding Theorems of IT
(Information Theory).

The contributions of Andrei Nikolaievich Kolmogorov (1903–1987) to this mathematical theory
provide great advances to the Shannon formulations, proposing a new complexity theory, now
translated to Computer Sciences. According to such theory, the complexity of a message is given by the
size of the program necessary to enable the reception of such a message. From these ideas, Kolmogorov
analyzes the entropy of literary texts and the subject Pushkin poetry. Such entropy appears as a
function of the semantic capacity of the texts, depending on factors such as their extension and also
the flexibility of the corresponding language.

It should also be mentioned that Norbert Wiener (1894–1964), considered the founder of
Cybernetics, who in 1948 proposed a similar vision for such a problem. However, the approach
used by Shannon differs from that of Wiener in the nature of the transmitted signal and in the type of
decision made by the receiver.

In the Shannon model, messages are firstly encoded, and then transmitted, whereas in the Wiener
model the signal is communicated directly through the channel without need of being encoded.

Another measure conceptualized by R. A. Fischer (1890–1962), the so called Fisher Information
(FI), applies statistics to estimation, representing the amount of information that a message carries
concerning an unobservable parameter.

Certainly the initial studies on IT were undertaken by Harry Nyquist (1889–1976) in 1924, and
later by Ralph Hartley (1888–1970), who in 1928 recognized the logarithmic nature of the measure of
information. This was later essential the key in Shannon and Wiener’s papers.

The contribution of the Romanian mathematician and economist Nicholas Georgescu-Roegen
(1906–1994), who studied in London with Karl Pearson, is also very interesting, whose great work was
The Entropy Law and the Economical Process. In this memorable book, he proposed that the second law of
thermodynamics also governs economic processes. Such ideas permitted the development of some
new fields, such as Bioeconomics or Ecological Economics.

Also some others should be noted, studying a different kind of measure, the so called inaccuracy
measure, involving two probability distributions.

R. Yager [3], and M. Higashi and G. J. Klir [4] showed the entropy measure as the difference
between two fuzzy sets. More specifically, this is the difference between a fuzzy set and its complement,
which is also a fuzzy set.

The Shannon Entropy is a measure of the average information content one is missing when one does
not know the value of the random variable. These ideas proceed from their famous seminal paper [1].
It represents an absolute limit on the best possible lossless compression of any communication, under
constraints, treating messages to be encoded as a sequence of independent and identically distributed
random variables. The information that we receive from an observation is equal to the degree to which
uncertainty is reduced. So,

I = H(be f ore)− H(a f ter)

Finally, we may define I(Information) in terms of the probability, p, by the following
Properties of Information Measure, I.

(1) I(P) ≥ 0, i.e., information is a non-negative quantity;
(2) I(1) = 0, i.e., if an event has probability 1, we get no information from the occurrence of the event;
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(3) If two independent events occur, the information we get from observing the events is the sum of
both informations;

(4) Information measure must be continuous, and also a monotonic function of the probability. So,
slight changes in probability should result in slight changes in the information.

2. Graph Entropy

Graph theory has emerged as a primary tool for detecting numerous hidden structures in various
information networks, including Internet graphs, social networks, biological networks, or more
generally, any graph representing relations in massive data sets. Analyzing these structures is very
useful to introduce concepts such as Graph Entropy and Graph Symmetry.

We consider a functional on a graph, G = (V, E), with P a probability distribution on its node set,
V, and we suppose varying random samples, P = (pi)i=1,2,...,n, on the probabilistic space.

The mathematical construct called a Graph Entropy will be denoted by GE. It will be defined as

H(G, P) = minP

[
Σi=1,2,...,n pilogpi

]

Observe that such a function is convex. It tends to +∞ on the boundary of the non-negative
orthant of Rn. Also, monotonically tends to −∞ along rays departing from the origin. So, such a
minimum is always achieved and will be finite.

The entropy of a system represents the amount of uncertainty one observer has about the state
of the system. The simplest example of a system will be a random variable, which can be shown
by a node in the graph, being their edges representative of the mutual relationship between them.
Information measures the amount of correlation between two systems, and reduces in entropies to a
mere difference. So, the Entropy of a Graph (will be denoted by GE) is a measure of graph structure, or lack
of it.

Therefore, it may be interpreted as the amount of Information, or the degree of “surprise”,
communicated by a message. As the basic unit of Information is the bit, Entropy also may be viewed
as the number of bits of "randomness" in the graph, verifying that the higher the entropy, the more
random the graph.

Let G now be an arbitrary finite rooted Directed Acyclic Graph (or DAG, in acronym). For each
node, v, we denote i(v) the number of edges that terminates at v. Then, the Entropy of the graph is
definable as

H(G) = Σ
[
i(v)− 1

]
log2

[(
(Card(E)− Card(V) + 1

)
/
(

i(v)− 1)
)]

H(X) may be interpreted in different ways. For instance, given a random variable, X, it informs us
about how random X is, how uncertain we should be about X, or how much variability X has.

In a variant of the Graph Coloring Problem, we take the objective function to minimize the
Entropy of such coloring. So, it is called the Minimum Entropy Coloring. In Chromatic Entropy, we
understand the minimum Entropy of a coloring. Its role is essential in the problem of coding. If we
consider this problem from a computational viewpoint, it will be of NP-hard type; for instance, on
Interval Graphs.

The study of different concepts of Entropy will be very interesting, and not only on Physics,
but also on Information Theory, and other Mathematical Sciences, considered in its more general
vision. Also it may be a very useful tool for Biocomputing, for instance, or in many others, such
as studying Environmental Sciences. This is because, among other interpretations with important
practical consequences, the law of Entropy means that energy cannot be fully recycled.

Many quotations have been made until now referring to the content and significance of this fuzzy
measure, for example:

“Gain in Entropy always means loss of Information, and nothing more” [5].
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“Information is just known Entropy. Entropy is just unknown Information” [6].
Mutual Information and Relative Entropy, also called Kullback-Leibler divergence, among

other related concepts, have been very useful in Learning Systems, both in supervised and
unsupervised cases.

We attempt to analyze the mutual relationship between the distinct types of entropies, such as:

- The Quantum Entropy, also called Von Neumann Entropy;
- The KS-Entropy (from Kolmogorov and Sinai), which is also called Metric Entropy [7,8];
- The Topological Entropy; or
- The Graph Entropy, among others.

3. Quantum Entropy

This entropy was first defined by the Hungarian mathematician Janos Neumann (a.k.a. John von
Neumann) in 1927, with the purpose of showing the irreversible behavior of quantum measurement
processes. In fact, Quantum Entropy (will be denoted as QE) is an extension of the precedent Gibbs
Entropy to the quantum realm [8]. It will be interpreted as the average information the experimenter
obtains when he makes many copies of a series of observations, on an identically prepared mixed
state. It plays a very important role in studying correlated systems, and also for defining entanglement
measures. Recall that “Entanglement” is one of the properties of Quantum Mechanics that caused
Einstein to dislike this theory. However, from then on, Quantum Mechanics has reached high success
predicting experimental results and has also been proven on the correlation predicted by the theory of
such entanglement.

We can apply the notion of QE to Networks. As QE is defined for quantum states, we need a
method to map graphs into states. Such states for a quantum mechanical system are described by a
density matrix. Usually, it is denoted as ρ. It is a positive semi-definite matrix with unitary trace (ρ) = 1.
There are many different ways, however, to associate graphs to density matrices. Until now, we have
eliminated several problems through certain interesting results, but many open questions still remain.

Between the known results, we can see that the entropy for a d-regular graph tends to be in the
limit when n → ∞ to the entropy of Kn, i.e., the n-complete n-graph.

Another result may be that the entropy of graphs increases as a function of the cardinality of
their edges.

Between the open problems, we can list some of them as relative to an interesting tool, a related
matrix, called the Normalized Laplacian. This is defined by

£ (G) = �−1/2L(G)�−1/2

The Combinatorial Laplacian Matrix of G (abridged, Laplacian of G) is given as

L(G) = �(G)− A(G)

Hence being computable as the difference between matrix degree, �(G), and adjacency matrix,
A(G).

The degree of a node, v, is the number of edges adjacent to v. Usually it is denoted by d (v).
The degree sum of the graph G is dG, and it will be given by dG =Σ d(v). The average degree of G is
expressed as dG

* = m Σ d(v), where m is the number of non-isolated nodes.
A graph, G, is d-regular, if d(v) = d, for all v ∈ V(G).
The degree matrix of G is a (n × n)-matrix with entries given as

[�(G)](u, v) = d(v), i f u = v; andotherwise 0

So, the Laplacian of a graph, G, scaled by its degree-sum is a density matrix,
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ρG = ((L(G))/(dG)) = ((L (G))/(tr(�(G)))) = ((L(G))/(m dG
*))

With the well-known expression for the entropy of a density matrix, ρ, by S(ρ) = - tr(ρ log2 ρ).
Hence, departing from the concept of Laplacian of a Graph, we can say that S(ρ G) is the QE of G.
If we suppose two decreasing sequences of eigenvalues of L(G) and ρ G, respectively given by

λ1 ≥ λ2 ≥ ... ≥ λn = 0, and μ1 ≥ μ2 ≥ ... ≥ μn = 0

mutually related by a scaling factor, i.e.,

μi = ((λi)/(dG)) = ((λi})/(mdG
*))

Therefore, the Entropy of a density matrix ρG can also be written as

S(G) = −Σμilog2μi

with the notational convention 0 log 0 = 0. Since its rows sum up to 0, we can conclude that the smallest
eigenvalue of the density matrix must also be equal to zero, and the number of connected components
of the graph is given by the multiplicity of 0 as an eigenvalue.

The QE is a very useful tool for problems such as when it is applied to the Enumeration of
Spanning Trees.

4. Algorithmic Entropy

Algorithmic Entropy is the size of the smallest program that generates a string. It is denoted by
K(x), or AE. It receives many different names, for instance, Kolmogorov-Chaitin Complexity, or only
Kolmogorov Complexity, also Stochastic Complexity, or Program-size complexity [9,10].

AE is a measure of the amount of information in an object, x. Therefore, it also measures its randomness
degree. The AE of an object is a measure of the computational resources needed to specify such an
object. i.e., the AE of a string is the length of the shortest program that can produce this string as its
output. So, the Quantum Algorithmic Entropy (QAE), also called Quantum Kolmogorov Complexity
(QKC) is the length of the shortest quantum input to a Universal Quantum Turing Machine (UQTM)
that produces the initial “qubit” string with high fidelity. Hence, the concept is very different of the
Shannon Entropy, because, whereas this will be based on probability distributions, the AE is based on
the size of programs.

All strings used may be elements of Σ* = {0,1}*, being ordered lexicographically. The length of a
string x is denoted by |x|.

Let U be a fixed prefix-free Universal Turing Machine. For any string x of Σ* = {0,1}*, the Algorithmic
Entropy of x will be defined by

K(x) = minp{|p| : U(p) = x}
From this concept, we can introduce the t-time-Kolmogorov Complexity, or t-time-bounded

algorithmic entropy [11].
For any time constructible t, we introduce a refinement by

Kt(x) = minp{|p| : U(p) = x, inatmostt(|x|)steps}
From these, we may obtain that for all x and y,

(i)K(x) ≤ Kt(x) ≤ |x|+ O(1), (1)

and also
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(ii)Kt(x/y) ≤ Kt(x) + O(1)

The Kolmogorov-Chaitin (KC, by acronym) as new tool possesses many applications, in fields
as diverse as Combinatorics, Graph Theory, Analysis of Algorithms, or Learning Theory, among
others [10,11].

5. Metric Entropy

We consider now the Metric Entropy, also called Kolmogorov Entropy, or Kolmogorov-Sinai Entropy,
in acronym K-S Entropy. Its name is associated with Andrei N. Kolmogorov, and his disciple, Yakov
Sinai [4].

Let (X, Ω, μ) be a probability space, or in a more general way, a fuzzy measurable space [12].
Recall that a measurable partition of X is such that each one of their elements is a measurable set,
therefore, an element of the fuzzy σ-algebra, Ω. And let I X be the set of mappings from X to the closed
unit interval, I = [0,1].

A fuzzy σ-algebra, Σ, on a nonempty set, X, is a subfamily of I X satisfying that
(1) 1 ∈ Σ;
(2) If α ∈ Σ, then 1 – α ∈ Σ;
(3) If {αi} is a sequence in Σ, then ∨αi = sup i ∈ Σ;
A fuzzy probability measure, on a fuzzy σ-algebra, Σ, is a function

m : Σ → [0, 1]

which holds
[1] m (1) = 1
[2] for all α ∈ Σ, m(1 - α) = 1 - m(α)
[3] for all α, β ∈ Σ, m(α ∨ β) + m(α ∧ β) = m (α) + m (β)
[4] If {αi} is a sequence in Σ, such that αi ↑ α, being α ∈Σ, then m(α) = sup {m(αi)}
We call (X, Ω, μ) a fuzzy-probability measure space, and the elements of Ω are called measurable

fuzzy sets.
The notion of “fuzzy partition” was introduced by E. Ruspini. Given a finite measurable partition,Ե, we can define its Entropy by

H (Ե) = pאԵ  (p) log (p) (1)

As usual in these cases, we take as convention that 0 log 0 = 0.
Let T: X → X be a measure-preserving transformation. Then, the Entropy of T w.r.t. a finite

measurable partition, Ե, is expressed as
hμ(T, Ե)= lim n→∞ Hμ(Ե-k Ե)
with Hμ the entropy of a partition, and where ∨ denotes the join of partitions. Such a limit

always exists.
Therefore, we may define the Entropy of T as

hμ(T) = supԵ hμ(T,Ե) ()

by taking the supremum over all finite measurable partitions.
Many times hμ(T) is named the Metric Entropy of T. So, we may differentiate this mathematical

object from the well-known as Topological Entropy.
We may investigate the mutual relationship of the Metric Entropy and the Covering Numbers.
Let (X, d) be a metric space, and let Y ⊆ X be a subset of X. We say that Y* ⊆ X is an ε-cover of Y,

if for each y ∈ Y, there exists a y* ∈ Y* such that d (y, y*) ≤ ε. It is clear that there are many different
covers of Y. But we are especially interested here in one which contains the lesser number of elements.
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We call the cardinal, or size, of such a cover its Covering Number. Mathematically expressed, the
ε-covering number of Y is

N(ε, Y, d) = min{card (Y*):Y* is an ε-cover} ()

A proper cover is one where Y* ⊆ Y. And a proper covering number is defined in terms of the cardinality
of the minimum proper cover. Both, covering numbers and proper covering numbers, are related by

N(ε, Y) ≤ Nproper (ε, Y) ≤ N((ε/2), Y)

Furthermore, we recall that the Metric Entropy, H(ε, Y), is a natural representation of the cardinal of
the set of bits needed to send, in order to identify an element of the set up to precision ε. It will be
expressed by

H(ε,Y) = log N(ε,Y) ()

In a dynamical system, the metric entropy is equal to zero for non-chaotic motion. And it is strictly
greater than zero for chaotic motion. So, it will be interpreted as a simple indicator of the complexity
of a dynamical system.

6. Topological Entropy

Let (X, d) be a compact metric space, and let f: X → X be a continuous map. For each n > 0, we
define a new metric, dn, by

dn(x, y) = max{d( f i(x), f i(y)) : 0 ≤ i < n}
Two points, x and y, are close with respect to this metric, if their first n iterates (given by fi, i = 1, 2,...)
are close.

For ε > 0, and n ∈ N*, we say that S ⊂ X is an (n, ε)-separated set, if for each pair, x, y, of points of
S, we have dn(x, y) > ε. Denote by N(n, ε) the maximum cardinality of a (n, ε)-separated set. It must
be finite, because X is compact. In general, this limit may exist, but it could be infinite. A possible
interpretation of this number is as a measure of the average exponential growth of the number of
distinguishable orbit segments. So, we could say that the higher the topological entropy is, the more
essentially different orbits we have [2,7].

From an analytical viewpoint, the topological entropy is a continuous and monotonically
increasing function.

N(n,ε) shows the number of “distinguishable” orbit segments of length n, assuming we cannot
distinguish points that are less than ε apart.

The topological entropy of f is then defined by

Htop = limε→0 lim supn→∞ [(1/n) log N(n, ε)] ()

Therefore, TE is a non-negative number measuring the complexity degree of the system. So, it gives
the exponential growth of the cardinality for the set of distinguished orbits, according to time advances
[13–16].

7. Chromatic Entropy

A system can be defined as a set of components functioning together as a whole. A systemic point
of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact
more closely than others. The entropy of a system represents the amount of uncertainty one observer
has about the state of the system [10,12]. The simplest example of a system will be a random variable,
which can be shown by a node in the graph being their edges representative of the mutual relationship
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between them. Information measures the amount of correlation between two systems, and reduces to
a mere difference between entropies. So, the Entropy of a Graph (will be denoted by GE) is a measure
of graph structure, or lack of it. Therefore, it may be interpreted as the amount of Information, or the
degree of "surprise", communicated by a message. Further, as the basic unit of Information is the bit,
Entropy also may be viewed as the number of bits of "randomness" in the graph, verifying that the
higher the entropy, the more random the graph.

We consider a functional on a graph, G = (V,E), with P a probability distribution on its node (or
vertex) set, V. This mathematical construct will be denoted by GE and defined as

H(G, P) = minΣpilogpi

Let G now be an arbitrary finite rooted Directed Acyclic Graph (DAG, in acronym). For each node, v,
we denote i(v) the number of their edges that terminates at v. Then, the Entropy of the graph is

H(G) = Σ[i(v)− 1]log2[((Card(E)− Card(V) + 1)/(i(v)− 1))]

H(X) may be interpreted in some different ways. For instance, given a random variable, X, it informs
us about how random X is, how uncertain we should be about X, or how much variability X possesses.

In a variant of the “Graph Coloring Problem”, we take the objective function to minimize the
Entropy of such coloring. So, it is called the Minimum Entropy Coloring.

In Chromatic Entropy, we understand the minimum Entropy of a coloring. Its role is essential in
the problem of coding. If we consider this problem from a computational viewpoint, it is NP-hard; for
instance, on Interval Graphs.

8. Mutual Relationship between Entropies

In the mid 1950s, the Russian mathematician Andrei N. Kolmogorov imported Shannon’s
probabilistic notion of entropy into the theory of dynamical systems, and showed how entropy
can be used to tell whether two dynamical systems are non-conjugate, i.e., non-isomorphic. His
work inspired a whole new approach in which entropy appears as a numerical invariant of a class of
dynamical systems. Because the Kolmogorov’s metric entropy is an invariant of measure theoretical
dynamical systems, it is therefore closely related to Shannon’s source entropy [14].

Ornstein showed that metric entropy suffices to completely classify two-sided Bernoulli processes,
a basic problem which for many decades appeared completely intractable. Recently, has been shown
how to classify one-sided Bernoulli processes; this turns out to be quite a bit harder. In 1961, Adler
et al. introduced [17,18] the aforementioned topological entropy, which is the analogous invariant
for topological dynamical systems. There exists a very simple relationship between these quantities,
because maximizing the metric entropy over a suitable class of measures defined on a dynamical
system, gives its topological entropy. The relationship between TE and the Entropy in the sense of
Measure Theory (K-S) is given by the so-called Variational Principle, which established that

h(T) = sup{h (T)}  P(X) א 

This may be interpreted as TE is equal to the supremum of Kolmogorov-Sinai (or K-S) entropies,
hμ(T), with μ belonging to the set of all T-invariant Borel probability measures on X.

The mutual relationship between Algorithmic Entropy and Shannon Entropy is that the
expectation of the former gives us the latter, up to a constant depending on the distribution.

Also we may express, departing of P(x) as a recursive probability distribution, that

0 ≤ ΣP(x)K(x)− H(P) ≤ K(P)

Finally, we recall that given a random variable, X, its Shannon Entropy is given by
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H(X) = −ΣP(x)log2P(x)

whereas the Renyi Entropy of order α �= 1 of such random variable will be

H (X) = (1/(1  )) log ( P(x) )

The Renyi Entropy of order α converges to the Shannon Entropy, when α tends to one, i.e.,

lim 1{(1/(1  )) log ( P(x) )} = P(x) logP(x) 

Hence,

limα→1 Hα(X) = H(X) ()

Therefore, the Renyi Entropy may be considered as a generalization of the Shannon Entropy, or dually,
the Shannon Entropy will be a particular case of Renyi Entropy [13,14].

9. Graph Symmetry

As we know, Symmetry in a system means invariance of its elements under a group of
transformations. When we take Network Structures, it means invariance of adjacency of nodes
under the permutations on node set.

Let G and H be two graphs. An isomorphism from G to H will be a bijection between the node sets
of both graphs, i.e., a f: G → H, such that any two nodes, u and v, of G are adjacent in G if and only if
f(u) and f(v) are also adjacent in H. Usually, it is called “edge-preserving bijection”. If an isomorphism
exists between two graphs, G and H, then such graphs are called Isomomorphic Graphs.

The graph isomorphism is an equivalence, or equality, as relation on the set of graphs. Therefore,
it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is
that some objects have the same structure, if we omit the individual character of their components. A
set of graphs isomorphic to each other is denominated an isomorphism class of graphs.

An automorphism of a graph, G = (V, E), will be an isomorphism from G onto itself. So, a
graph-automorphism of a simple graph, G, is simply a permutation on the set of its nodes, V (G), f: G
→ G, such that the image of any edge of G is always an edge in G. That is, if e = {u, v} ∈ V(G), then f(e)
= {f(u), f(v)} ∈ V(G). Either expressed in group theoretical way, we have

u ∼ v if and only if ug ∼ vg if and only if ug ∼ vg ()

The family of all automorphisms of a graph G is a permutation group on V(G). The inner operation
of such group is the composition of permutations. Its name is very well-known, the Automorphism
Group of G, and abridgedly, it is denoted by Aut(G). Conversely, all groups may be represented as the
automorphism group of a connected graph. The automorphism group is an algebraic invariant of a
graph. So, we can say that an automorphism of a graph is a form of symmetry in which the graph
is mapped onto itself while preserving the edge-node connectivity. Such automorphic tool may be
applied both on Directed Graphs (DGs) and on Undirected Graphs (UGs).

We will say either graph invariant or graph property, when it depends only of the abstract
structure, not on graph representations, such as particular labeling or drawing of the graph. So, we
may define a graph property as every property that is preserved under all their possible isomorphisms
of the graph. Therefore, it will be a property of the graph itself, not depending on the representation of
the graph.

The semantic difference also consists in its quantitative or quantitative character. For instance,
when we said that “the graph does not possess directed edges”, this will be a property, because it is a
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qualitative statement. While when we say "the number of nodes of degree two in such graph", this
would be an invariant, because it is a quantitative statement.

From strictly a mathematically viewpoint, a graph property can be interpreted as a class of graphs,
composed by graphs that have the accomplishment of some conditions in common. Hence, a graph
property can also be defined as a function of whose domain would be the set of graphs, and its
range will be the bi-valued set composed of two options, true and false, {T, F}, according to which a
determinate condition is either verified or violated for the graph. A graph property is called hereditary,
if it is inherited by its induced subgraphs. And it is additive, if it is closed under disjoint union. For
example, the property of a graph to be planar is both additive and hereditary. Instead of this, the
property of being connected is neither.

The computation of certain graph invariants may be very useful for the purpose of discriminating
when two graphs are isomorphic, or rather non-isomorphic. The support of these criteria will be
that for any invariant at all, two graphs with different values cannot be isomorphic between them.
However, two graphs with the same invariants may or may not be isomorphic between them. So, we
will arrive to the notion of completeness.

Let I(G) and I(H) be invariants of two graphs, G and H. It will be considered complete if the
identity of the invariants ever implies the isomorphism of the corresponding graphs, i.e., if I(G) = I(H),
then G will be isomorphic to H.

A directed graph, or digraph, is the usual pair G = (V,E), but now with an additional condition: it
has at most one directed edge from node i to node j, being 1≤ i, j ≤ n. We add the term “acyclic” when
there are no cycles of any length. Usually, we use the acronym DAG to denote an acyclic directed
graph. A very important result may be this: For each n, the cardinality of the n-DAGs, or DAGs with n
labeled nodes, is equal to the number of (n × n)-matrices of 0’s and 1’s whose eigenvalues are positive
real numbers.

It is possible to prove that every group is the automorphism group of a graph. If the group is
finite, the graph may be taken to be finite. Further, George Polya observed that not every group must
be the automorphism group of a tree.

10. Symmetry as Invariance

One of the more fundamental results in Physics and in any Science [12,14–16,19] is that obtained
by the great mathematician Emmy Noether (1882–1935). This was proved in 1915, and published in
1918. It states that any differentiable symmetry of the action of a physical system has a corresponding
conservation law. Hence, for each continuous symmetry of a physical theory there is a corresponding
conserved quantity, i.e., a physical quantity that does not change with time. So, Symmetry under
translation corresponds to conservation of momentum; Symmetry under rotation to conservation of
angular momentum; Symmetry in time to conservation of energy. Also it is present in Relativity Theory,
Quantum Mechanics and so on. It is a very important result, because it allows us to derive conserved
quantities from the mathematical form of our theories. Recall that the action of a physical system is an
integral of a Lagrangian function, from which the behavior of the system can be determined by the
Principle of Least Action. Note that this theorem does not apply to systems that cannot be modeled
with a Lagrangian, for instance to dissipative systems.

The Noether Theorem has become essential not only in modern Theoretical Physics, but in the
Calculus of Variations, and therefore, in fields such as Modeling and Optimization. In fact, all modern
Physics is based on a bunch of Symmetry Principles, from which the rest follows. So, we can say that
the Laws of Nature are constrained by Symmetry. Such theorem admits distinct but essentially equivalent,
statements, as may be “to every differentiable symmetry generated by local actions, there corresponds a
conserved current”. This connects today with many evolving subjects of modern Physics, such as Gauge
Symmetry, in Quantum Mechanics, the results of Witten (String Theory) and many others. Noether is
remembered not only by this theorem (actually, they are two results, with many consequences), but by
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many contributions to Abstract Algebra. There is also a quantum version of this Noether’s theorem,
known as the Ward-Takahasi Identity.

The conservation law of a physical quantity is expressed by a continuity equation, where the
conserved quantity is named Noether’s Charge, and the flow carrying that “charge” is the Noether’s
Current. In Quantum Mechanics, invariance under a change of phase of the wave function leads to the
Conservation of Particle Number.

11. Fuzzy Entropies

In recent decades, the expansion of fuzzy mathematics and its applications are very formidable [17,
20]. The parallel version of different mathematical fields, but adapted to degrees of truth, is in advance.
The basic idea according to which an element not necessarily belongs totally, or does not belong in
absolute, to a set, but it can belong more or less, that is, in some degree it signifies a modern revolution
in scientific thinking, adapting the sometimes hieratic mathematics to the features of the real world.
So, it produces new fields, such as Fuzzy Measure Theory, which generalizes the classical Measure
Theory of Lebesgue and other authors. It must be very useful as a tool in our own papers and occurs
in every mathematical field. In Fuzzy Modeling we attempt to construct Fuzzy Systems. Many times,
it will be a very difficult task, because it is necessary to identify many parameters. It offers a great
potential for analyzing structures with non-stochastic imprecise input information.

In Fuzzy Optimization [17,21], our objective is to maximize or minimize a fuzzy set submitted to
some fuzzy constraints, but we cannot make this directly with the “value” of a fuzzy set. For this reason,
in areas such as Finance, we wish to maximize/minimize the value of a discrete/continue random
variable, being restricted by a probability mass/density function. So, we change the multi-objective
problem into a single crisp objective subject to the fuzzy constraints and it is possible to generate good
approximate solutions by Genetic Algorithms. Also there are different fuzzy optimization problems,
which include learning a Fuzzy Neural Network, useful to solve fuzzy linear programming problems
(FLP), and fuzzy inventory control, using such Genetic Algorithms.

12. About Negentropy

Negentropy is essential for the axiomatized concept of entropy (denoted by H). Many of its
seminal ideas were derived from Claude E. Shannon [1], and Alfred Renyi [17,22]. It is also related
to the coding length of the random variable. In fact, with some simple assumptions, H is the coding
length of the random variable. Entropy is the basic concept of Information Theory. It can be interpreted,
for a random variable, as the degree of information that the observation of the variable produces.
The more “randomness” presented in the variable, the larger the entropy. It is defined, for a discrete
random variable, Y, as

H(Y) = −ΣP(Y = yi)logP(Y = yi)

where the yi are the possible values of Y.
This may be generalized for the continuous case, being then called Differential Entropy (also named

continuous entropy). It will be defined by

H(y) =  f(y) log f(y) dy 

with f (y) density function, associated with the continuous random variable Y.
There exists a very important result of Information Theory, according to a Gaussian random variable

has the largest entropy, among all random variables of the same variance. So, the Normal, or Gaussian
distribution is the “least structured”, or equivalently, the “most random” among all distributions. But
we have a second and very important measure of non-gaussianity (departure from the Normal). It
is called with distinct names, such as Negentropy, either Negative Entropy or Syntropy, denoted by J.
Actually, it is a slightly modified version of differential entropy, defined by
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J(y) = H(ygauss) - H(y)
being ygauss a Gaussian random variable of the same covariance matrix as y.
Some of its properties are interesting, as

J(y) ≥ 0, for each y ()

That is, Negentropy is always non-negative. And it is null in the case of the Normal distribution:

J = 0 if and only if it is Gaussian ()

According to Schrodinger’s classical book What is Life?
“Negentropy of a living system is the entropy that it exports, to maintain its own entropy low”
And Brillouin [23] says that
“A living system imports negentropy, and stores it”
The Curie Principle of Symmetry, due to Pierre Curie, postulates that the symmetry group of the

cause is a subgroup of the symmetry group of the effect. This idea may produce deep ramifications on
Causality Theory, and also analyzing relationships among the foundations of physical theories.

13. Conclusions

Statistical entropy is a probabilistic measure of uncertainty, or ignorance about data. However,
Information should be the measure of the reduction in that uncertainty. The Entropy of a probability
distribution is just the expected value of the information of such a distribution. All these improved
tools must allow us to advance not only in fields such as Optimization Theory, but also on Generalized
Fuzzy Measures, Economics, modeling in Biology, and so on [17,24,25]. Here, we have shown some
different entropy measures, more or less useful depending on its context and their need of applications,
according to ideas suggested by the Hungarian mathematician Alfred Renyi many years ago [22,26–28].

Acknowledgments: I wish to express my gratefulness to Joe Rosen, Shu-Kun Lin, and Joel Ratsaby, which have
proposed to collaborate newly with this paper in SYMMETRY. And also to my anonymous referees for their very
wise commentaries.

References

1. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423.
2. Wehrl, A. General properties of entropy. Rev. Mod. Phys. 1978, 50, 221–260.
3. Yager, R. On the Measure of Fuzziness and Negation. Int. J. General Syst. 1979, 5, 221–229.
4. Higashi, M. , and Klir, G.J. Measures of Uncertainty and Information based on possibility distributions. Int. J.

General Syst. 1982, 9, 43–58.
5. Lewis, G. N. The Entropy of Radiation. Proc. Natl. Acad. Sci. USA 1927, 13, 307–314.
6. Frank, M. P. Approaching Physical Limits of Computing. Multiple-Valued Logic 2005, doi:10.1109/ISMVL.2005.9.

[CrossRef]
7. Simonyi, G. Graph Entropy: A Survey. DIMACS 1995, 20, 399–441.
8. Sinai, G. On the concept of Entropy of a Dynamical System. Dokl. Akad. Nauk SSSR 1959, 124, 768–771.
9. Passarini, F.; Severini, S. The von Neumann Entropy of Networks; University of Munich: Munich, Germany,

2009.
10. Volkenstein, M.V. Entropy and Information (Progress in Mathematical Physics); Birkhauser Verlag: Berlin,

Germany, 2009.
11. Devine, S. The insights of algorithmic entropy. Entropy 2009, 11, 85–110.
12. Dehmer, M. Information processing in Complex Networks: Graph entropy and Information functionals.

Appl. Math. Comput. 2008, 201, 82–94.
13. Jozsa, R. Quantum Information and Its Properties. In Introduction to Quantum Computation and Information;

Lo, H.K., Popescu, S., Spiller, T., Eds.; World Scientific: Singapore, 1998.

50



Symmetry 2011, 3, 487–502

14. Titchener, M.R.; Nicolescu, R.; Staiger, L.; Gulliver, A.; Speidel, U. Deterministic Complexity and Entropy.
J. Fundam. Inf. 2004, Volume 64.

15. Titchener, M.R. A Measure of Information. In Proceedings of Data Compression Conference 2000, Snowbird,
UT, USA; 2000; pp. 353–362.

16. Titchener, M.R. A Deterministic Theory of Complexity, Information and Entropy. In Proceedings of IEEE
Information Theory Workshop, San Diego, CA, USA, February 1998.

17. Preda, V. Balcau, C. Entropy Optimization with Applications; Editura Academiei Romana: Bucuresti, Romania,
2010.

18. Li, M.; Vitanyi, P. An Introduction to Kolmogorov Complexity and Its Applications, 3rd ed.; Springer Verlag:
Berlin, Germany, 2008.

19. Dumitrescu, D. Entropy of a fuzzy process. Fuzzy Sets Syst. 1993, 55, 169–177.
20. Wang, Z.; Klir, G.J. Generalized Measure Theory; Springer Verlag: Berlin, Germany and New York, NY, USA,

2008.
21. Garrido, A.; Postolica, V. Modern Optimization; Editura Matrix-Rom: Bucuresti, Romania, 2011.
22. Renyi, A. On measures of information and entropy. In Proceedings of the 4th Berkeley Symposium on

Mathematics, Statistics and Probability, Berkeley, CA, USA, CA, USA, 20 June–30 July 1960; University of
California Press: Berkeley; pp. 547–561.

23. Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1956, 108, 171–190.
24. Georgescu-Roegen, N. The Entropy Law and the Economic Process; Harvard University Press: Cambridge, MA,

USA, 1971.
25. Liu, X. Entropy, distance and similarity measures of fuzzy sets and their relations. Fuzzy Sets Syst. 1992, 52,

305–318.
26. De Luca, A.; Termini, S. A definition of non-probabilistic entropy, in the setting of fuzzy theory. Inf. Control

1972, 20, 301–312.
27. You, C.; Gao, X. Maximum entropy membership functions for discrete fuzzy variables. Inf. Sci. 2009, 179,

2353–2361.
28. Dumitrescu, D. Fuzzy measures and the entropy of fuzzy partitions. J. Math. Anal. Appl. 1993, 176, 359–373.

© 2011 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

51



symmetryS S

Article

Information Theory of Networks

Matthias Dehmer

UMIT, Institute for Bioinformatics and Translational Research, Eduard Wallnöfer Zentrum 1,
6060, Hall in Tyrol, Austria; E-Mail: Matthias.Dehmer@umit.at; Tel./Fax: +43-050-8648-3851

Received: 26 October 2011; in revised form: 11 November 2011 / Accepted: 16 November 2011 /
Published: 29 November 2011

Abstract: The paper puts the emphasis on surveying information-theoretic network measures for
analyzing the structure of networks. In order to apply the quantities interdisciplinarily, we also
discuss some of their properties such as their structural interpretation and uniqueness..

Keywords: information theory; networks; quantitative graph analysis

1. Introduction

Information theory has been proven useful to solve interdisciplinary problems. For example,
problems in biology, chemistry, computer science, ecology, electrical engineering, and neuroscience
have been tackled by using information-theoretic methods such as entropy and mutual information,
see [1–5]. In particular, advanced information-measures such as the Jensen–Shannon divergence have
also been used for performing biological sequence analysis [6].

In terms of investigating networks, information-theoretic techniques have been applied in an
interdisciplinary manner [7–11]. In this paper, we put the emphasis on reviewing information-theoretic
measures to explore the network structure and shed light on some of their strong and weak points.
But note that the problem of exploring the dynamics of networks by using information theory has also
been tackled, see [12].

Interestingly, the problem of exploring graphs quantitatively emerged in the fifties when
investigating structural aspects of biological and chemical systems [13,14]. In this context, an important
problem is to quantify the structural information content of graphs by using Shannon’s information
measure [14–19]. This groundbreaking work led to numerous measurements of network complexity by
using Shannon’s information measure [15,20–22]. Particularly this task firstly appeared when studying
the complexity of chemical and biological systems [13,23–25]. Besides studying chemical and biological
questions, the structural complexity of networks have been also explored in computer science [1,26],
ecology [10,27–29], information theory [30], linguistics [31,32], sociology [33,34], and mathematical
psychology [33,35]. Also, information-theoretic approaches for investigating networks have been
employed in network physics, see [7,36,37].

As the measures have been explored interdisciplinarily, it is particularly important to understand
their strong and weak points. Otherwise, the results of applications involving the measures can not
be understood properly. Besides surveying the most important measures, the main contribution is to
highlight some of their strong and weak points. In this paper, this relates to better understand their
structural interpretation and to gain insights about their uniqueness. The uniqueness, often called the
discrimination power or degeneracy of an information-theoretic graph measure (and of course of any
graph measure) relates to the property how well it can discriminate non-isomorphic graphs by its
values, see [38–40]. An important problem is to evaluate the degree of degeneracy of a measure by
several quantities such as the sensitivity measure due to Konstantinova [40]. Note that the discrimination
power of a measure clearly depends on the graph class in question, see [38,41].
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2. Graph Entropies

2.1. Measures Based on Equivalence Criteria and Graph Invariants

To find such measures, seminal work was done by Bonchev [8,42], Mowshowitz [15–18],
Rashevsky [19] and Trucco [14]. Chronologically, Rashevsky [19], MacArthur [27] and Trucco [14] were
the first who applied Shannon’s information measure to derive an entropy of a graph characterizing its
topology. Then, Mowshowitz [15–18] called it structural information content of a graph and developed a
theory to study the properties of such graph entropies under certain graph operations such as product,
join etc. So far, numerous related quantities have been defined by applying the general approach
of deriving partitions based on a graph invariant which is due to Mowshowitz [15]. As a result of
these developments, Bertz [43], Basak et al. [44,45] and Bonchev [8,42,46] contributed various related
measures which are all based on the idea of deriving partitions by using a graph invariant, e.g., vertices,
edges, degrees, and distances.

Let G = (V, E) be a graph, X be a graph invariant, and τ be an equivalence criterion. Then, G
can be partitioned with respect to the elements of the graph invariant under consideration. From this
procedure, one also obtains probability values for each partition [8,15] given by pi := |Xi |

|X| . By applying
Shannon’s information measure [5], we yield the graph entropies as follows [8]:

It(G, τ) := |X| log(|X|)−
k

∑
i=1

|Xi| log(|Xi|) (1)

Im(G, τ) := −
k

∑
i=1

|Xi|
|X| log

( |Xi|
|X|

)
(2)

where k equals the number of different partitions. It is called total information content and Im is called
the mean information content of G, respectively.

In the following, we survey graph entropy measures exemplarily by applying this principle.
Besides well-known quantities, we also mention more recently developed indices.

1. Topological information content due to Rashevsky [19]:

Ia(G) := −
k

∑
i=1

|Ni|
|V| log

( |Ni|
|V|

)
(3)

|Ni| denotes the number of topologically equivalent vertices in the i-th vertex orbit of G. k is
the number of different orbits. This measure is based on symmetry in a graph as it relies on
its automorphism group and vertex orbits. It can be easily shown that Ia vanishes for vertex
transitive graphs. Also, it attains maximum entropy for asymmetric graphs. However, it has
been shown [41] that these symmetry-based measures possess little discrimination power. The
reason for this is that many non-isomorphic graphs have the same orbit structure and, hence,
they can not be distinguished by this index. Historically seen, the term topological information
content was proposed by Rashevski [19]. Then, Trucco [14] redefined the measure in terms of
graph orbits. Finally, Mowshowitz [15] studied extensively mathematical properties of this
information measure for graphs (e.g., the behavior of Ia under graph operations) and generalized
it by considering infinite graphs [18].

2. Symmetry index for graphs due to Mowshowitz et al. [47]:

S(G) := (log(|V|)− Ia(G)) + log (|Aut(G)|) (4)
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In [47], extremal values of this index and formulas for special graph classes such as wheels,
stars and path graphs have been studied. As conjectured, the discrimination power of S turned
out to be higher than by using Ia as a discriminating term log (|Aut(G)|) has been added, see
Equation (4). In particular, we obtained this result by calculating S on a set of 2265 chemical
graphs whose order range from four to nineteen. A detailed explanation of the dataset can be
found in [48].

3. Chromatic information content due to Mowshowitz [15,16]:

Ic(G) := min
V̂

{
−

h

∑
i=1

ni(V̂)

|V| log
(

ni(V̂)

|V|
)}

(5)

where V̂ := {Vi|1 ≤ i ≤ h}, |Vi| := ni(V̂) denotes an arbitrary chromatic decomposition
of a graph G. h = χ(G) is the chromatic number of G. Graph-theoretic properties of Ic and
its behavior on several graph classes have been explored by Mowshowitz [15,16]. To our
knowledge, the structural interpretation of this measure as well as the uniqueness has not
yet been explored extensively.

4. Magnitude-based information indices due to Bonchev et al. [49]:

ID(G) := − 1
|V| log

(
1
|V|
)
−

ρ(G)

∑
i=1

2ki
|V|2 log

(
2ki
|V|2

)
(6)

IW
D (G) := W(G) log(W(G))−

ρ(G)

∑
i=1

iki log(i) (7)

where ki is the occurrence of a distance possessing value i in the distance matrix of G.
The motivation to introduce these measures was to find quantities which detect branching
well, see [49]. In this context, branching of a graph correlates with the number of terminal vertices.
By using this model, Bonchev et al. [49] showed numerically and by means of inequalities that
these indices detect branching meaningfully. Also, it turned out that magnitude-based information
indices possess high discrimination power for trees. But recent studies [50] have shown that the
uniqueness of the magnitude-based information indices deteriorate tremendously when being
applied to large sets of graphs containing cycles. More precisely, Dehmer et al. [50] evaluated
the uniqueness of several graph entropy measures and other topological indices by using almost
12 million non-isomorphic, connected and unweighted graphs possessing ten vertices.

5. Vertex degree equality-based information index found by Bonchev [8]:

Ideg(G) :=
k̄

∑
i=1

|Nkv
i |

|V| log

(
|Nkv

i |
|V|

)
(8)

where |Nkv
i | is the number of vertices with degree equal to i and k̄ := maxv∈V kv. Note that this

quantity is easy to determine as the time complexity of the calculation of the degrees is clearly
polynomial. But it is intuitive that a simple comparison of the degree distribution of graphs is not
meaningful to discriminate their structure. In [50], it has been shown that this measure possesses
little discrimination power when applying the quantity to several sets of graphs.

6. Overall information indices found by Bonchev [46,51]:

OX(G) :=
|E|
∑
k=0

kX; {X} := {0X, 1X, . . . , |E|X} (9)

I(G, OX) := OX log(OX)−
|E|
∑
k=0

kX log
(

kX
)

(10)
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The index calculates the overall value OX of a certain graph invariant X by summing up its
values in all subgraphs, and partitioning them into terms of increasing orders (increasing number
of subgraph edges k). In the simplest case, we have OX = SC, i.e., it is equal to the subgraph
count [51]. Several more overall indices and their informational functionals have been calculated,
such as overall connectivity (the sum of total adjacency of all subgraphs), overall Wiener index
(the sum of total distances of all subgraphs), the overall Zagreb indices, and the overall Hosoya
index [51]. They all share (with some inessential variations) the property to increase in value with
the increase in graph complexity. The properties of most of these information functionals will not
be studied here in detail.

Clearly, we only surveyed a subset of existing graph entropy measures. Further measures
which are based on the same criterion can be found in [51–53]. Also, we would like to mention that
information measures for graphs based on other entropy measures have been studied [54]. For instance,
Passerini and Severini [54] explored the von Neumann entropy of networks in the context of network
physics. Altogether, the variety of existing network measures bears great potential for analyzing
complex networks quantitatively. But in the future, the usefulness and ability of these measures must
be investigated more extensively to gain further theoretical insights in terms of their properties.

2.2. Körner Entropy

The definition of the Körner entropy is rooted in information theory and has been introduced
to solve a particular coding problem, see [30,55]. Simony [55] discussed several definitions of this
quantity which have been proven to be equivalent. One definition thereof is

H(G, P) := lim
t−→∞

min
U⊆Vt ,Pt(U)>1−ε

1
t

log(χ(Gt(U))) (11)

For V′ ⊆ V(G), the induced subgraph on V′ is denoted by G(V′) and χ(G) is the chromatic
number [56] of G, Gt the t-th co-normal power [30] of G and

Pt(U) := ∑
x∈U

Pt(x) (12)

Note that Pt(x) is the probability of the string x, see [55]. Examples and the interpretation of this graph
entropy measure can be found in [30,55]. Due to the fact that its calculation relies on the stable set
problem, its computational complexity may be insufficient. To our knowledge, the Körner entropy
has not been used as a graph complexity measure in the sense of the quantities described in the
previous section. That means, it does not express the structural information content of a graph (as the
previously mentioned graph entropies) as it has been used in a different context, see [30,55]. Also, its
computational complexity makes it impossible to apply this quantity on a large scale and to investigate
properties such as correlation and uniqueness.

2.3. Entropy Measures Using Information Functionals

Information-theoretic complexity measures for graphs can also be inferred by assigning a
probability value to each vertex of a graph in question [9,21]. Such probability values have been
defined by using information functionals [9,21,48]. In order to define these information functionals,
some key questions must be answered:

• What kind of structural features (e.g., vertices, edges, degrees, distances etc.) should be used to
derive meaningful information functionals?

• In this context, what does “meaningful” mean?
• In case the functional is parametric, how can the parameters be optimized?
• What kind of structural information does the functional as well as the resulting entropy detect?
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To discuss the first item, see [9,21,48] and note that metrical properties have been used to derive
such information functionals. In order to prove whether a functional as well as the resulting entropy
measures captures structural information meaningfully, an optimality criterion is needed. For example,
suppose there exists a data set where the class labels of its entities (graphs) are known. By employing
supervised machine learning techniques, the classification error can be optimized. Note that the last
item relates to investigate the structural interpretation of the graph entropy measure. Indeed, this
question could be raised for any topological index.

In order to reproduce some of these measures, we start with a graph G = (V, E) and let f be an
information functional representing a positive function that maps vertices to the positive reals. Note
that f captures structural information of G. If we define the vertex probabilities as [9,21]

p(vi) :=
f (vi)

∑
|V|
j=1 f (vj)

(13)

we yield the families of information-theoretic graph complexity measures [9,48]:

I f (G) := −
|V|
∑
i=1

f (vi)

∑
|V|
j=1 f (vj)

log

⎛
⎝ f (vi)

∑
|V|
j=1 f (vj)

⎞
⎠ (14)

Iλ
f (G) := λ

⎛
⎝log(|V|) +

|V|
∑
i=1

f (vi)

∑
|V|
j=1 f (vj)

log

⎛
⎝ f (vi)

∑
|V|
j=1 f (vj)

⎞
⎠
⎞
⎠ (15)

λ > 0 is a scaling constant. Typical information functionals are [9,21,48]

f1(vi) := αc1|S1(vi ,G)|+c2|S2(vi ,G)|+···+cρ(G) |Sρ(G)(vi ,G)|, ck > 0, 1 ≤ k ≤ ρ(G), α > 0 (16)

and

f2(vi) := c1|S1(vi, G)|+ c2|S2(vi, G)|+ · · ·+ cρ(G)|Sρ(G)(vi, G)|, ck > 0, 1 ≤ k ≤ ρ(G) (17)

The parameters ck > 0 to weight structural characteristics or differences of G in each sphere have to be
chosen such that at least ci �= cj holds. Otherwise the probabilities become 1

|V| leading to maximum
entropy log(|V|). For instance, the setting c1 > c2 > · · · > cρ(G) have often been used, see [9,21,48].
Also, other schemes for the coefficients can be chosen but need to be interpreted in terms of the
structural interpretation of the resulting entropy measure. As the measures are parametric (when using
a parametric information functional), they can be interpreted as generalizations of the aforementioned
partition-based measures.

By applying Equation (15), concrete information measures to characterize the structural
complexity chemical structures have been derived in [48]. For example, if we choose the coefficients
linearly decreasing, e.g.,

c1 := ρ(G), c2 := ρ(G)− 1, . . . , cρ(G) := 1 (18)

or exponentially decreasing, e.g.,

c1 := ρ(G), c2 := ρ(G)e−1, . . . , cρ(G) := ρ(G)e−ρ(G)+1 (19)

the resulting measures are called Iλ
f V
lin

and Iλ
f V
exp

, respectively. Importantly, it turned out that Iλ
f V
lin

and

Iλ
f V
exp

possess high discrimination power when applying them to real and synthetic chemical graphs,

see [48].
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To obtain more advanced information functionals, the concept outlined above has been extended
in [57]. The main idea for deriving these information functionals is based on the assumption that
starting from an arbitrary vertex vi ∈ V, information spreads out via shortest paths in the graph which
can be determined by using Dijkstra’s algorithm [58]. Then, more sophisticated information functionals
as well as complexity measures have been defined [57] by using local property measures, e.g., vertex
centrality measures [59]. In particular, some of them turned out to be highly unique when applying
the measures to almost 12 million non-isomorphic, connected and unweighted graphs possessing ten
vertices [50]. Interestingly, the just mentioned information-theoretic complexity measures showed a
constantly high uniqueness that does not depend much on the cardinality of the underlying graph set.
This property is desirable as we found that the uniqueness of the most existing measures deteriorates
dramatically if the cardinality of the underlying graph set increases.

2.4. Information-Theoretic Measures for Trees

In this section, we sketch a few entropic measures which have been developed to characterize
trees structurally. For example, Emmert-Streib et al. [60] developed an approach to determine the
structural information content of rooted trees by using the natural partitioning of the vertices in such a
tree. That means the number of vertices can be counted on each tree level which leads to a probability
distribution and, thus, to an entropy characterizing the topology of a rooted tree. Dehmer [57] used
this idea to calculate the entropy of arbitrary undirected graphs by applying a decomposition approach.
Mehler [31] also employed entropic measures as balance and imbalance measures of tree-like graphs
in the context of social network analysis. Other aspects of tree entropy have been tackled by Lions [61].

2.5. Other Information-Theoretic Network Measures

Apart from information-theoretic measures mostly used in mathematical and structural chemistry,
several other entropic networks measures for measuring disorder relations in complex networks have
been explored in the context of network physics, see [62]. If P(kv) denotes the probability of a vertex v
possessing degree k, the distribution of the so-called remaining degree was defined by [62]

q(kv) :=
(k + 1)Pkv+1

< k >
(20)

< k>:= ∑k kP(kv). By applying Shannon’s information measure, the following graph entropy measure
has been obtained [62]:

I(G) :=
|V|
∑
i=1

q(i) log(q(i)) (21)

It can be interpreted as a measure for determining the heterogeneity of a complex network [62]. In order
to develop information indices for weighted directed networks, Wilhelm et al. [63] defined the measure
called Medium Articulation that obtains its maximum for networks with a medium number of edges.
It has been defined by [63]

MA(G) := R(G) · I(G) (22)

where

R(G) := −∑
i,j

Tvivj log

(
T2

vivj

∑k Tvkvj ∑l Tvivl

)
(23)

represents the redundancy and [63]

I(G) := ∑
i,j

Tvivj log

(
Tvivj

∑k Tvkvj ∑l Tvivl

)
(24)

the mutual information.
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Finally, the normalized flux from vi to vj is

Tvivj :=
tvivj

∑k,l tvkvl

(25)

tvivj is the flux (edge weight) between vi and vj. It can be easily shown that R vanishes for a directed ring
but attains its maximum for the complete graph [63]. The behavior of I is just converse. This implies that
MA vanishes for extremal graphs and attains its maximum in between [63]. We remark that a critical
discussion of MA and modified measures have been recently contributed by Ulanowicz et al. [64].

For finalizing this section, we also reproduce the so-called offdiagonal complexity (OdC) [65] that
is based on determining the entropy of the offdiagonal elements of the vertex-vertex link correlation
matrix [65,66]. Let G = (V, E) be a graph and let (cij)ij be the vertex-vertex link correlation matrix,
see [65]. Here cij denotes the number of all neighbors possessing degree j > i of all vertices with
degree i [66]. k̄ := maxv∈V kv stands for the maximum degree of G. If one defines [66]

a|V| :=
k̄−|V|
∑
i=1

ci,i+|V| (26)

and
b|V| :=

a|V|
∑k̄−1
|V|=0 a|V|

(27)

OdC can be defined by [66]

OdC :=
−
(

∑k̄−1
|V|=0 b|V| log(b|V|)

)
log(|V| − 1)

∈ [0, 1] (28)

As the measure depends on correlations between degrees of pairs of vertices [65], it is not surprising
that its discrimination power is low, see [41].

3. Structural Interpretation of Graph Measures

We already mentioned the problem of exploring the structural interpretation of topological graph
measures exemplarily in the preceding sections. In general, this relates to explore what kind of
structural complexity a particular measure does detect. The following listing shows a few such types of
structural complexity of measures which have already been explored:

• Branching in trees [49,67,68]. Examples for branching measures are the Wiener index [69], the
magnitude-based measures also known as Bonchev–Trinajstić indices [49] and others outlined by
Janežić et al. [68].

• Linear tree complexity depending on their size and symmetry [68]. Examples for such measures
are the MI and MB indices, TC and TC1 Indices etc., see [68].

• Balance and imbalance of tree-like graphs [31]. For examples, see [31].
• Cyclicity in graphs [23,38,68,70,71]. Note that in the context of mathematical chemistry, this

graph property has been introduced and studied by Bonchev et al. [38]. Examples for branching
measures are the BT and BI Indices, and the F index, see [70].

• Inner symmetry and symmetry in graphs [15,47,48,72]. Examples for such measures are Ia, S
(see Section (2.1)) and I f2 (see Section (2.3)).

In view of the vast amount of topological measures developed so far, determining their structural
interpretation is a daunting problem. Evidently, it is important to contribute to this problem as
measures could be then classified by this property. This might be useful when designing new measures
or finding topological indices for solving a particular problem.
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4. Summary and Conclusion

In this paper, we surveyed information-theoretic measures for analyzing networks quantitatively.
Also, we discussed some of their properties, namely the structural interpretation and uniqueness.
Because a vast number of measures have been developed, the former problem has been somewhat
overlooked when analyzing topological network measures. Also, the uniqueness of information-theoretic
and non-information-theoretic measures is a crucial property. Applications thereof might be interesting
for applications such as problems in combinatorial chemistry [73]. In fact, many papers exist to tackle
this problem [40,74–76] but not on a large scale. Interestingly, a statistical analysis has been recently
shown [50] that the uniqueness of many topological indices strongly depends on the cardinality of
a graph set in question. Also, it is clear that the uniqueness property depends on a particular graph
class. This implies that results may not be generalized when the measure gives feasible results for a
special class only, e.g., trees, isomers etc.
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1. Introduction

Switching theory has developed in the 1950s and the 1960s as a common effort of the
mathematicians and the engineers of studying the switching circuits (a.k.a. asynchronous circuits)
from digital electrical engineering. We are unaware of any existent mathematical work published
after 1970 on what we call switching theory. The published works are written by engineers and their
approach is always descriptive and unacceptable for the mathematicians. The label of switching theory
has changed to asynchronous systems (or circuits) theory. One of the possible motivations of the situation
consists in the fact that the important producers of digital equipments have stopped the dissemination
of such researches.

Our interest in asynchronous systems had bibliography coming from the 1950s and the 1960s,
as well as engineering works giving intuition, as well as mathematical works giving analogies.
An interesting rendez-vous has happened when the asynchronous systems theory has met the dynamical
systems theory, resulting in the so-called regular autonomous systems (a.k.a Boolean dynamical
systems) where the vector field is Φ : {0, 1}n → {0, 1}n and time is discrete or real, and we obtain the
unbounded delay model of computation of Φ suggested by the engineers. The synchronous iterations of
Φ : Φ ◦ Φ, Φ ◦ Φ ◦ Φ, . . . of the dynamical systems are replaced by asynchronous iterations in which
each coordinate Φ1, . . . , Φn is iterated independently on the others, in arbitrary finite time.

We denote with B = {0, 1} the binary Boolean algebra, together with the discrete topology and
with the usual algebraic laws:

0 1
1 0

,
· 0 1
0 0 0
1 0 1

,
∪ 0 1
0 0 1
1 1 1

,
⊕ 0 1
0 0 1
1 1 0

(1)
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We use the same notations for the laws that are induced from B on other sets, for example ∀x ∈ Bn,
∀y ∈ Bn,

x = (x1, . . . , xn)

x ∪ y = (x1 ∪ y1, . . . , xn ∪ yn)

etc. In Figure 1, we have drawn at (a) the logical gate NOT, i.e., the circuit that computes the logical
complement and at (b) a circuit that makes use of logical gates NOT. The asynchronous system that
models the circuit from (b) has the state portrait drawn at (c). In the state portraits, the arrows show
the increase of (the discrete or continuous) time. The underlined coordinates μi are these coordinates
for which Φi(μi) �= μi and they are called excited, or enabled, or unstable. The coordinates μi that are
not underlined fulfill by definition Φi(μi) = μi and they are called not excited, or not enabled, or stable.
The existence of two underlined coordinates in (0, 0) shows that Φ1(0, 0) = 1 may be computed first,
Φ2(0, 0) = 1 may be computed first, or Φ1(0, 0), Φ2(0, 0) may be computed simultaneously, thus when
the system is in (0, 0), it may run in three different directions, which results in non-determinism.

Our present purpose is to define the symmetry of these systems.

Figure 1. (a) the logical gate NOT; (b) circuit with logical gates NOT; (c) state portrait.

2. Semi-Regular Systems

Notation 1. We denote N_ = {−1, 0, 1, 2, . . .}.

Notation 2. χA : R → B is the notation of the characteristic function of the set A ⊂ R: ∀t ∈ R,

χA(t) =

{
0, i f t /∈ A
1, i f t ∈ A

.

Notation 3. We denote with Πn the set of the sequences α = α0, α1, . . . , αk, . . . ∈ Bn.

Notation 4. The set of the real sequences t0 < t1 < . . . < tk < . . . that are unbounded from above is denoted
with Seq.

Notation 5. We use the notation Pn for the set of the functions ρ : R → Bn having the property that α ∈ Πn

and (tk) ∈ Seq exist with ∀t ∈ R,

ρ(t) = α0χ{t0}(t)⊕ α1χ{t1}(t)⊕ . . . ⊕ αkχ{tk}(t)⊕ . . . (2)

Definition 1. Let Φ : Bn → Bn be a function. For ν ∈ Bn, ν = (ν1, . . . , νn) we define the function
Φν : Bn → Bn by ∀μ ∈ Bn,

Φν(μ) = (ν1μ1 ⊕ ν1Φ1(μ), . . . , νnμn ⊕ νnΦn(μ))

64



Symmetry 2012, 4, 116–128

Remark 1. For any μ ∈ Bn, ν ∈ Bn and i ∈ {1, . . . , n}, if νi = 0, then Φν
i (μ) = μi i.e., Φi(μ) is not

computed and if νi = 1, then Φν
i (μ) = Φi(μ) i.e., Φi(μ) is computed. This is the meaning of asynchronicity.

Definition 2. Let α ∈ Πn. The function Φ̂α : Bn × N_ → Bn defined by ∀μ ∈ Bn, ∀k ∈ N_,

{
Φ̂α(μ,−1) = μ,
Φ̂α(μ, k + 1) = Φαk+1

(Φ̂α(μ, k))
(3)

is called discrete time α−semi-orbit of μ. We consider also the sequence (tk) ∈ Seq and the function ρ ∈ Pn

from Equation (2), for which the function Φρ : Bn × R → Bn is defined by: ∀μ ∈ Bn, ∀t ∈ R,

Φρ(μ, t) = Φ̂α(μ,−1)χ(−∞,t0)
(t)⊕ Φ̂α(μ, 0)χ[t0,t1)

(t)⊕
⊕ Φ̂α(μ, 1)χ[t1,t2)

(t)⊕ . . . ⊕ Φ̂α(μ, k)χ[tk ,tk+1)
(t)⊕ . . .

(4)

Φρ is called continuous time ρ−semi-orbit of μ.

Definition 3. The discrete time and the continuous time universal semi-regular autonomous
asynchronous systems associated to Φ are defined by

Ξ̂Φ = {Φ̂α(μ, ·)|μ ∈ Bn, α ∈ Πn}
ΞΦ = {Φρ(μ, ·)|μ ∈ Bn, ρ ∈ Pn}

Remark 2. Ξ̂Φ, ΞΦ and Φ are usually identified.

Example 1. In Figure 2 we have drawn at (a) the AND gate that computes the logical intersection, at (b)
a circuit with two gates and at (c) the state portrait of Φ : B2 → B2, ∀(μ1, μ2) ∈ B2, Φ(μ1, μ2) = (0, 1).
We conclude that

ΞΦ = {(μ1, μ2)χ(−∞,t0)
⊕ (μ1λ1, μ2 ∪ λ2)χ[t0,t1)

⊕
⊕ (μ1λ1ν1, μ2 ∪ λ2 ∪ ν2)χ[t1,∞)|μ, λ, ν ∈ B2, t0, t1 ∈ R, t0 < t1}

since the first coordinate might finally decrease its value and the second coordinate might finally increase its
value, but the order and the time instant when these things happen are arbitrary.

Figure 2. The semi-regular system ΞΦ from Example 1.
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3. Anti-Semi-Regular Systems

Definition 4. Let Φ : Bn → Bn, α ∈ Πn, (tk) ∈ Seq and ρ ∈ Pn from Equation (2). The function
∗Φ̂α : Bn × N_ → Bn that satisfies ∀μ ∈ Bn, ∀k ∈ N_,

{ ∗Φ̂α(μ,−1) = μ

Φαk+1
(∗Φ̂α(μ, k + 1)) = ∗Φ̂α(μ, k)

(5)

is called discrete time α−anti-semi-orbit of μ and the function ∗Φρ : Bn × R → Bn that satisfies ∀μ ∈
Bn, ∀t ∈ R,

∗Φρ(μ, t) = ∗Φ̂α(μ,−1)χ(−∞,t0)
(t)⊕ ∗Φ̂α(μ, 0)χ[t0,t1)

(t)⊕
⊕ ∗Φ̂α(μ, 1)χ[t1,t2)

(t)⊕ . . . ⊕ ∗Φ̂α(μ, k)χ[tk ,tk+1)
(t)⊕ . . .

(6)

is called continuous time ρ−anti-semi-orbit of μ.

Remark 3. We compare the semi-orbits and the anti-semi-orbits now and see that they run both from the past
to the future, but the cause-effect relation is different: in Φ̂α, Φρ the cause is in the past and the effect is in the
future, while in ∗Φ̂α, ∗Φρ the cause is in the future and the effect is in the past.

Definition 5. The discrete time and the continuous time universal anti-semi-regular autonomous
asynchronous systems associated to Φ are defined by

∗Ξ̂Φ = {∗Φ̂α(μ, ·)|μ ∈ Bn, α ∈ Πn}
∗ΞΦ = {∗Φρ(μ, ·)|μ ∈ Bn, ρ ∈ Pn}

Example 2. In Figure 3 we have drawn at (a) the circuit and at (b) the state portrait of Ψ : B2 → B2,
∀(μ1, μ2) ∈ B2, Ψ(μ1, μ2) = (1, 0) for which

ΞΨ = {(μ1, μ2)χ(−∞,t0)
⊕ (μ1 ∪ λ1, μ2λ2)χ[t0,t1)

⊕
⊕ (μ1 ∪ λ1 ∪ ν1, μ2λ2ν2)χ[t1,∞)|μ, λ, ν ∈ B2, t0, t1 ∈ R, t0 < t1}

The arrows in Figures 2(c) and 3(b) are the same, but with a different sense and we note that ΞΨ = ∗ΞΦ, where
Φ is the one from Example 1.

Figure 3. The semi-regular system ΞΨ from Example 2.

4. Isomorphisms and Anti-Isomorphisms

Definition 6. Let g : Bn → Bn. It defines the functions ĝ : Πn → Πn, ∀α ∈ Πn, ∀k ∈ N,

ĝ(α)(k) = g(αk)
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g̃ : Pn → Pn, ∀ρ ∈ Pn, ∀t ∈ R,

g̃(ρ)(t) =

{
(0, . . . , 0), if ρ(t) = (0, . . . , 0)
g(ρ(t)), otherwise

and g : (Bn)R → (Bn)R, ∀x ∈ (Bn)R, ∀t ∈ R,

g(x)(t) = g(x(t))

Theorem 1. Let Φ, Ψ, g, g′ : Bn → Bn. The following statements are equivalent:
(a) ∀ν ∈ Bn, the diagram

Bn Φν→ Bn

g ↓ ↓ g

Bn Ψg′(ν)→ Bn

is commutative;
(b) ∀μ ∈ Bn, ∀α ∈ Πn, ∀k ∈ N_,

g(Φ̂α(μ, k)) = Ψ̂ĝ′(α)(g(μ), k)

(c) ∀μ ∈ Bn,
g(μ) = Ψg′(0,...,0)(g(μ))

and ∀μ ∈ Bn, ∀ρ ∈ Pn, ∀t ∈ R,

g(Φρ(μ, t)) = Ψg̃′(ρ)(g(μ), t)

Proof. (a)=⇒(b): We fix arbitrarily μ ∈ Bn, α ∈ Πn and we use the induction on k ≥ −1. For k = −1,
(b) becomes g(μ) = g(μ), thus we suppose that it is true for k and we prove it for k + 1:

g(Φ̂α(μ, k + 1)) = g(Φαk+1
(Φ̂α(μ, k))) = Ψg′(αk+1)(g(Φ̂α(μ, k)))

= Ψg′(αk+1)(Ψ̂ĝ′(α)(g(μ), k)) = Ψ̂ĝ′(α)(g(μ), k + 1)

(b)=⇒(c): The first statement results from (b) if we take α0 = (0, . . . , 0) and k = 0. In order
to prove the second statement, let μ ∈ Bn and ρ ∈ Pn be arbitrary, thus Equation (2) holds with
(tk) ∈ Seq, ρ(t0), . . . , ρ(tk), . . . ∈ Πn. If ∀t ∈ R, ρ(t) = (0, . . . , 0) the statement to prove takes the form
g(μ) = g(μ) so that we can suppose now that a finite or an infinite number of ρ(tk) are �= (0, . . . , 0).
In the case ∀k ∈ N, ρ(tk) �= (0, . . . , 0) that does not restrict the generality of the proof, we have that

g̃′(ρ)(t) = g′(ρ(t0))χ{t0}(t)⊕ . . . ⊕ g′(ρ(tk))χ{tk}(t)⊕ . . . (7)

is an element of Pn and

g(Φρ(μ, t)) = g(μχ(−∞,t0)
(t)⊕ Φ̂α(μ, 0)χ[t0,t1)

(t)⊕ . . . ⊕ Φ̂α(μ, k)χ[tk ,tk+1)
(t)⊕ . . .)

= g(μ)χ(−∞,t0)
(t)⊕ g(Φ̂α(μ, 0))χ[t0,t1)

(t)⊕ . . . ⊕ g(Φ̂α(μ, k))χ[tk ,tk+1)
(t)⊕ . . .

= g(μ)χ(−∞,t0)
(t)⊕ Ψ̂ĝ′(α)(g(μ), 0)χ[t0,t1)

(t)⊕ . . . ⊕ Ψ̂ĝ′(α)(g(μ), k)χ[tk ,tk+1)
(t)⊕ . . .

= Ψg̃′(ρ)(g(μ), t)
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(c)=⇒(a): Let ν, μ ∈ Bn be arbitrary and fixed and we consider ρ ∈ Pn given by Equation (2), with
(tk) ∈ Seq fixed, ρ(t0) = ν and ∀k ≥ 1, ρ(tk) �= (0, . . . , 0). We have

g(Φρ(μ, t)) = g(μχ(−∞,t0)
(t)⊕ Φν(μ)χ[t0,t1)

(t)⊕ Φ̂α(μ, 1)χ[t1,t2)
(t)⊕ . . .)

= g(μ)χ(−∞,t0)
(t)⊕ g(Φν(μ))χ[t0,t1)

(t)⊕ g(Φ̂α(μ, 1))χ[t1,t2)
(t)⊕ . . .

(8)

Case (i) ν = (0, . . . , 0), the commutativity of the diagram is equivalent with the first statement of
(c).

Case(ii) ν �= (0, . . . , 0),

g̃′(ρ)(t) = g′(ρ(t))
= g′(ν)χ{t0}(t)⊕ g′(ρ(t1))χ{t1}(t)⊕ . . .

Ψg̃′(ρ)(g(μ), t) = g(μ)χ(−∞,t0)
(t)⊕ Ψg′(ν)(g(μ))χ[t0,t1)

(t)⊕ Ψ̂ĝ′(α)(g(μ), 1)χ[t1,t2)
(t)⊕ . . .

and from Equation (8), for t ∈ [t0, t1), we obtain

g(Φν(μ)) = Ψg′(ν)(g(μ))

Definition 7. We consider the functions Φ, Ψ : Bn → Bn. If g, g′ : Bn → Bn bijective exist such that one of
the equivalent properties (a), (b) or (c) from Theorem 1 is satisfied, then we say that the couple (g, g′) defines an
isomorphism from Ξ̂Φ to Ξ̂Ψ, or from ΞΦ to ΞΨ, or from Φ to Ψ. We use the notation Iso(Φ, Ψ) for the set of
these couples and we also denote with Aut(Φ) = Iso(Φ, Φ) the set of the automorphisms of Ξ̂Φ, ΞΦ, or Φ.

Theorem 2. For Φ, Ψ, g, g′ : Bn → Bn, the following statements are equivalent:
(a) ∀ν ∈ Bn, the diagram is commutative;

Bn Φν→ Bn

g ↓ ↓ g

Bn Ψg′(ν)←− Bn

(b) ∀μ ∈ Bn, ∀α ∈ Πn, ∀k ∈ N_,

g(μ) = ∗Ψ̂ĝ′(α)(g(Φ̂α(μ, k)), k)

(c) ∀μ ∈ Bn,
g(μ) = Ψg′(0,...,0)(g(μ))

and ∀μ ∈ Bn, ∀ρ ∈ Pn, ∀t ∈ R,

g(μ) = ∗Ψg̃′(ρ)(g(Φρ(μ, t)), t)

Proof. (a)=⇒(b): We fix arbitrarily μ ∈ Bn, α ∈ Πn and we use the induction on k ≥ −1. In the case
k = −1 the equality to be proved is satisfied

g(μ) = g(Φ̂α(μ,−1)) = Ψ̂ĝ′(α)(g(Φ̂α(μ,−1)),−1)

thus we presume that the statement is true for k and we prove it for k + 1. We have:
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g(μ) = ∗Ψ̂ĝ′(α)(g(Φ̂α(μ, k)), k)

= ∗Ψ̂ĝ′(α)(Ψg′(αk+1)(g(Φαk+1
(Φ̂α(μ, k)))), k)

= ∗Ψ̂ĝ′(α)(g(Φ̂α(μ, k + 1)), k + 1)

The proof is similar with the proof of Theorem 1.

Definition 8. Let Φ, Ψ : Bn → Bn. If g, g′ : Bn → Bn bijective exist such that one of the
equivalent properties (a), (b) or (c) from Theorem 2 is fulfilled, we say that the couple (g, g′) defines an
anti-isomorphism from Ξ̂Φ to ∗Ξ̂Ψ, or from ΞΦ to ∗ΞΨ, or from Φ to Ψ. We use the notation ∗ Iso(Φ, Ψ) for
these couples and we also denote with ∗Aut(Φ) = ∗ Iso(Φ, Φ) the set of the anti-automorphisms of Ξ̂Φ, ΞΦ

or Φ.

5. Symmetry and Anti-Symmetry

Remark 4. The fact that (1Bn , 1Bn) ∈ Aut(Φ) implies Aut(Φ) �= ∅, but all of Iso(Φ, Ψ),∗ Iso(Φ, Ψ) and
∗Aut(Φ) may be empty.

Definition 9. Let Φ, Ψ : Bn → Bn, Φ �= Ψ. If Iso(Φ, Ψ) �= ∅, then Ξ̂Φ, Ξ̂Ψ; ΞΦ, ΞΨ; Φ, Ψ
are called symmetrical, or conjugated; if ∗ Iso(Φ, Ψ) �= ∅, then Ξ̂Φ, ∗Ξ̂Ψ; ΞΦ,∗ ΞΨ; Φ, Ψ are called
anti-symmetrical, or anti-conjugated.

If card(Aut(Φ)) > 1, then Ξ̂Φ, ΞΦ and Φ are called symmetrical and if ∗Aut(Φ) �= ∅, then Ξ̂Φ, ΞΦ

and Φ are called anti-symmetrical.

Remark 5. The symmetry of Φ, Ψ means that (g, g′) ∈ Iso(Φ, Ψ) maps the transfers μ → Φν(μ) in
transfers g(μ) → g(Φν(μ)) = Ψg′(ν)(g(μ)); the situation when Φ is symmetrical and (g, g′) ∈ Aut(Φ) is
similar. Anti-symmetry may be understood as mirroring: (g, g′) ∈ ∗ Iso(Φ, Ψ) maps the transfers (or arrows)
μ → Φν(μ) in transfers g(μ) ←− g(Φν(μ)) = Ψg′(ν)(g(μ)) and similarly for (g, g′) ∈ ∗Aut(Φ).

Theorem 3. Let Φ, Ψ : Bn → Bn.
(a) If (g, g′) ∈ Iso(Φ, Ψ), then (g−1, g′−1) ∈ Iso(Ψ, Φ).
(b) If (g, g′) ∈ ∗ Iso(Φ, Ψ), then (g−1, g′−1) ∈ ∗ Iso(Ψ, Φ).

Proof. (a): The hypothesis states that ∀ν ∈ Bn, the diagram

Bn Φν→ Bn

g ↓ ↓ g

Bn Ψg′(ν)→ Bn

commutes, with g, g′ bijective. We fix arbitrarily ν ∈ Bn, μ ∈ Bn. We denote μ′ = g(μ), ν′ = g′(ν) and
we note that

g−1(Ψν′(μ′)) = Φg′−1(ν′)(g−1(μ′)) (9)

As ν, μ were chosen arbitrarily and on the other hand, when ν runs in Bn, ν′ runs in Bn and when
μ runs in Bn, μ′ runs in Bn, we infer that Equation (9) is equivalent with the commutativity of the
diagram

Bn Ψν′→ Bn

g−1 ↓ ↓ g−1

Bn Φg′−1(ν′)→ Bn
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for any ν′ ∈ Bn. We have proved that (g−1, g′−1) ∈ Iso(Ψ, Φ).
(b): By hypothesis ∀ν ∈ Bn, the diagram

Bn Φν→ Bn

g ↓ ↓ g

Bn Ψg′(ν)←− Bn

is commutative, g, g′ bijective and we prove that ∀ν′ ∈ Bn, the diagram

Bn Ψν′→ Bn

g−1 ↓ ↓ g−1

Bn Φg′−1(ν′)←− Bn

is commutative.

Theorem 4. Aut(Φ) is a group relative to the law: ∀(g, g′) ∈ Aut(Φ), ∀(h, h′) ∈ Aut(Φ),

(h, h′) ◦ (g, g′) = (h ◦ g, h′ ◦ g′)

Proof. The fact that ∀(g, g′) ∈ Aut(Φ), ∀(h, h′) ∈ Aut(Φ), (h ◦ g, h′ ◦ g′) ∈ Aut(Φ) is proved like this:
∀ν ∈ Bn,

(h ◦ g) ◦ Φν = h ◦ (g ◦ Φν) = h ◦ (Φg′(ν) ◦ g) = (h ◦ Φg′(ν)) ◦ g

= (Φh′(g′(ν)) ◦ h) ◦ g = Φ(h′◦g′)(ν) ◦ (h ◦ g)

the fact that (1Bn , 1Bn) ∈ Aut(Φ) was mentioned before; and the fact that ∀(g, g′) ∈ Aut(Φ),
(g−1, g′−1) ∈ Aut(Φ) was shown at Theorem 3(a).

Definition 10. Any subgroup G ⊂ Aut(Φ) with card(G) > 1 is called a group of symmetry of Ξ̂Φ, of ΞΦ

or of Φ.

6. Examples

Example 3. Φ, Ψ : B2 → B2 are given by, see Figure 4

∀(μ1, μ2) ∈ B2, Φ(μ1, μ2) = (μ1 ⊕ μ2, μ2)

∀(μ1, μ2) ∈ B2, Ψ(μ1, μ2) = (μ1, μ1 μ2 ∪ μ1μ2)

and the bijections g, g′ : B2 → B2 are ∀(μ1, μ2) ∈ B2,

g(μ1, μ2) = (μ2, μ1)

g′(μ1, μ2) = (μ2, μ1)

(in order to understand the choice of g′, to be remarked in Figure 4 the positions of the underlined coordinates for
Φ and Ψ). Φ and Ψ are conjugated.
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Figure 4. Symmetrical systems, Example 3.

Example 4. The system from Figure 5 is symmetrical and a group of symmetry is generated by the couples
(g, 1B3), (u, 1B3), (v, 1B3), see Equation (10); g, u, v are transpositions that permute the isolated fixed points
(1, 0, 0), (1, 0, 1), (1, 1, 1).

(μ1, μ2, μ3) 1B3 g u v
(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
(0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
(0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)
(0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 1) (1, 1, 1)
(1, 0, 1) (1, 0, 1) (1, 1, 1) (1, 0, 0) (1, 0, 1)
(1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0)
(1, 1, 1) (1, 1, 1) (1, 0, 1) (1, 1, 1) (1, 0, 0)

(10)

Figure 5. Symmetrical system, Example 4.

Example 5. The function Φ : B2 → B2 defined by ∀μ ∈ B2, Φ(μ1, μ2) = (μ1, μ2) fulfills for ν ∈ B2 :

Φν(μ1, μ2) = (ν1μ1 ⊕ ν1μ1, ν2μ2 ⊕ ν2μ2)

(Φν ◦ Φν)(μ1, μ2) = (ν1Φν1
1 (μ1, μ2)⊕ ν1Φν1

1 (μ1, μ2)), ν2Φν2
2 (μ1, μ2)⊕ ν2Φν2

2 (μ1, μ2))

= (ν1(ν1μ1 ⊕ ν1μ1)⊕ ν1(ν1μ1 ⊕ ν1μ1 ⊕ 1), ν2(ν2μ2 ⊕ ν2μ2)⊕ ν2(ν2μ2 ⊕ ν2μ2 ⊕ 1))

= ((ν1 ⊕ 1)μ1 ⊕ ν1(μ1 ⊕ 1)⊕ ν1, (ν2 ⊕ 1)μ2 ⊕ ν2(μ2 ⊕ 1)⊕ ν2)

= (ν1μ1 ⊕ μ1 ⊕ ν1μ1 ⊕ ν1 ⊕ ν1, ν2μ2 ⊕ μ2 ⊕ ν2μ2 ⊕ ν2 ⊕ ν2)

= (μ1, μ2)

thus (1B2 , 1B2) ∈ ∗Aut(Φ) and Φ is anti-symmetrical. The state portrait of Φ was drawn in Figure 1(c).

Notation 6. Let σ : {1, . . . , n} → {1, . . . , n} be a bijection. We use the notation πσ : Bn → Bn for the
bijection given by ∀μ ∈ Bn,

πσ(μ1, . . . , μn) = (μσ(1), . . . , μσ(n))

Definition 11. Any of Ξ̂Φ, ΞΦ and Φ : Bn → Bn is called symmetrical relative to the coordinates if the
bijection σ exists, σ �= 1{1,...,n} such that (πσ, πσ) ∈ Aut(Φ).

71



Symmetry 2012, 4, 116–128

Example 6. We consider the function Φ : B3 → B3 defined by ∀μ ∈ B3, Φ(μ1, μ2, μ3) = (μ2μ3 ⊕
μ1 ⊕ μ2, μ1μ3 ⊕ μ2 ⊕ μ3, μ1μ2 ⊕ μ1 ⊕ μ3) and the permutation σ : {1, 2, 3} → {1, 2, 3}, σ =(

1 2 3
σ(1) σ(2) σ(3)

)
=

(
1 2 3
3 1 2

)
. A group of symmetry of ΞΦ is represented by G = {(1B3 , 1B3),

(πσ, πσ), (πσ◦σ, πσ◦σ)}. We have given in Figure 6 the state portrait of Φ.

Figure 6. System that is symmetrical relative to the coordinates, Example 6.

Notation 7. For λ ∈ Bn, we denote by θλ : Bn → Bn the translation of vector λ : ∀μ ∈ Bn,

θλ(μ) = μ ⊕ λ

Definition 12. If (θλ, g′) ∈ Aut(Φ) holds for some (θλ, g′) �= (1Bn , 1Bn), we say that any of Ξ̂Φ, ΞΦ and Φ
is symmetrical relative to translations.

Example 7. In Figure 7

Figure 7. Φ has the automorphism (θ(0,0,1), 1B3 ), Example 7.

we have the system with Φ given by Equation (11)

(μ1, μ2, μ3) Φ
(0, 0, 0) (0, 0, 0)
(0, 0, 1) (0, 0, 1)
(0, 1, 0) (0, 1, 1)
(0, 1, 1) (0, 1, 0)
(1, 0, 0) (0, 1, 1)
(1, 0, 1) (0, 1, 0)
(1, 1, 0) (1, 0, 0)
(1, 1, 1) (1, 0, 1)

(11)

and (θ(0,0,1), 1B3) ∈ Aut(Φ), as resulting from the state portrait.

Example 8. In Equation (12) we have a function Φ : B2 → B2 for which four functions g′1, g′2, g′3, g′4 :
B2 → B2 exist:
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(μ1, μ2) Φ g′1 g′2 g′3 g′4
(0, 0) (0, 0) (0, 0) (1, 0) (0, 0) (1, 0)
(0, 1) (0, 1) (0, 1) (0, 1) (1, 1) (1, 1)
(1, 0) (1, 1) (1, 0) (0, 0) (1, 0) (0, 0)
(1, 1) (1, 0) (1, 1) (1, 1) (0, 1) (0, 1)

(12)

such that (1B2 , g′1), (1B2 , g′2), (1B2 , g′3), (1B2 , g′4) ∈ Aut(Φ). The state portrait of Φ is drawn Figure 8.

Figure 8. Φ is symmetrical relative to translations with (0, 0), Example 8.

Example 9. The system from Figure 9 is symmetrical relative to translations, since it has the group of symmetry
G = {(1B2 , 1B2), (θ(1,1), 1B2)}. Φ is self-dual Φ = Φ∗, where the dual Φ∗ of Φ is defined by Φ∗(μ) = Φ(μ).

Figure 9. Function Φ that is self dual, (θ(1,1), 1B2 ) ∈ Aut(Φ), Example 9.

Example 10. Functions Φ : B2 → B2 exist, see Figure 10, that are symmetrical relative to the translations with
any λ ∈ B2, thus their group of symmetry is G = {(1B2 , 1B2), (θ(0,1), 1B2), (θ(1,0), 1B2), (θ(1,1), 1B2)}. The fact
that (θ(1,1), 1B2) ∈ G shows that all these functions: Φ(μ) = (μ1, μ2), Φ(μ) = (μ1, μ2), Φ(μ) = (μ1, μ2),
Φ(μ) = (μ1, μ2) are self-dual, Φ = Φ∗.

Figure 10. Functions Φ that are self dual, (θ(1,1), 1B2 ) ∈ Aut(Φ), Example 10.
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Example 11. The group of symmetry G of the system from Figure 11 has four elements given by Equation (13)

(μ1, μ2) 1B2 g h θ(1,1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (1, 1) (0, 0) (1, 0)
(1, 0) (1, 0) (0, 0) (1, 1) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

(13)

and we remark that h = g−1, θ(1,1) = (θ(1,1))−1 hold, see also Equation (14).

(ν1, ν2) (1B2 )
′ g′ h′ (θ(1,1))′

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 1) (0, 1) (1, 0) (1, 0) (0, 1)
(1, 0) (1, 0) (0, 1) (0, 1) (1, 0)
(1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

(14)

We have Φ = Φ∗ like previously.

Figure 11. Symmetry including symmetry relative to translations, Example 11.

7. Conclusions

The paper defines the universal semi-regular autonomous asynchronous systems and the
universal anti-semi-regular autonomous asynchronous systems. It also defines and characterizes
the isomorphisms (automorphisms) and the anti-isomorphisms (anti-automorphisms) of these systems.
Symmetry is defined as the existence of such isomorphisms (automorphisms), while anti-symmetry is
defined as the existence of such anti-isomorphisms (anti-automorphisms). Many examples are given.
A by-pass product in this study is anti-symmetry, which is related with systems having the cause
in the future and the effect in the past. Another by-pass product consists in semi-regularity, since
important examples of isomorphisms (automorphisms) are of semi-regular systems only and do not
keep progressiveness and regularity [2,3].
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Abstract: Frequent graph mining has been proposed to find interesting patterns (i.e., frequent
sub-graphs) from databases composed of graph transaction data, which can effectively express
complex and large data in the real world. In addition, various applications for graph mining have
been suggested. Traditional graph pattern mining methods use a single minimum support threshold
factor in order to check whether or not mined patterns are interesting. However, it is not a sufficient
factor that can consider valuable characteristics of graphs such as graph sizes and features of graph
elements. That is, previous methods cannot consider such important characteristics in their mining
operations since they only use a fixed minimum support threshold in the mining process. For this
reason, in this paper, we propose a novel graph mining algorithm that can consider various multiple,
minimum support constraints according to the types of graph elements and changeable minimum
support conditions, depending on lengths of graph patterns. In addition, the proposed algorithm
performs in mining operations more efficiently because it can minimize duplicated operations and
computational overheads by considering symmetry features of graphs. Experimental results provided
in this paper demonstrate that the proposed algorithm outperforms previous mining approaches in
terms of pattern generation, runtime and memory usage.

Keywords: data mining; graph mining; graph symmetry; length-decreasing support; rare item problem

1. Introduction

Since the concept of data mining was proposed to find useful knowledge or information hidden
in complicated large-scale data (also called big data), various approaches and applications for data
mining have been researched [1–6]. After that, frequent pattern mining was proposed to find useful,
hidden pattern information from such data and various mining techniques and applications have
been developed [7–12]. Frequent graph mining approaches [13–17] have been proposed to satisfy the
needs of users wanting to obtain mining results from large and complex graph data in the real world.
It is hard to express recent data as simple structures, such as itemsets because of their complicated
and multidimensional features. However, this data can easily be expressed in graph form since
almost all data can be described as such. Previous traditional frequent pattern mining methods faced
limitations that did not deal with such complicated databases because they were algorithms, focusing
on processing item-based simple databases. For this reason, the concept of frequent graph pattern
mining was suggested and studies for frequent graph mining have been increased dramatically. Since

Symmetry 2016, 8, 32 77 www.mdpi.com/journal/symmetry



Symmetry 2016, 8, 32

recent real world databases have become larger and more complicated, it is essential to deal with the
modern data, rather than old. Due to the usefulness of graph data, a variety of relevant graph theories
and applications have been studied [18–20]. Moreover, since graph pattern mining can draw useful
data analysis results for various complicated graph databases, a variety of graph mining applications
have been developed such as discovering objects based on graph mining [21], finding combinatorial
splicing regulatory elements using graph mining [22], exploiting document information contents on
graph mining [23], detecting intelligent malware based on graph mining [24] and analyzing market
data using graph pattern mining [25].

However, previous frequent graph mining researches applied only support information for
generated graph patterns (or sub-graphs) but did not consider the other valuable factors that could
utilize various characteristics of graphs such as graph sizes and features of graph elements. In frequent
graph mining, extracted sub-graphs have the following characteristics. Small sub-graphs with a few
elements (vertices and edges) tend to be interesting if their supports are relatively high, while large
sub-graphs with a large number of the elements can be interesting, although they have relatively
low supports. However, previous graph mining methods cannot apply the above characteristics
to mining processes since they use only one minimum support threshold, regardless of the graphs’
sizes. Moreover, if we find large sub-graphs having many elements and low supports through
existing methods, we have no choice but to lower a minimum support threshold more than required,
causing generations of meaningless sub-graph patterns. In addition, each element composing a
graph pattern can have its own support feature. However, traditional methods always use a single
threshold regardless of the element characteristics. Hence, they cannot effectively consider the rare
item problem [26–28], which means that not only do items or patterns have large supports but also ones
with small values can contain useful knowledge or information. Accordingly, traditional approaches
may fail to find rare but valuable patterns depending on settings of the minimum support threshold.
If we lower the threshold more than needed in order to extract such pattern results, an enormous
number of useless patterns may also be mined.

In contrast to traditional pattern mining methods that deal with item-based simple databases,
graph pattern mining need more complicated mining operations to discover graph patterns. Especially,
in order to prevent duplicated graph patterns from being mined, graph pattern mining has to perform
works for deciding graph isomorphism, which is also known as a NP-hard problem that can cause
enormous computational overheads. However, we can effectively solve such problems by applying a
pattern growth technique based on graph symmetry features into our mining process. The symmetry
features have been used to improve mining efficiency of various approaches [29–31]

Motivated by the aforementioned issues, we propose an efficient algorithm for Smallest Valid
Extension-based Rare Graph pattern Mining considering length-decreasing support constraints and
symmetry characteristics of graphs (called SVE-RGM), where we also propose and apply techniques
for improving graph mining efficiency: symmetry feature-based graph pattern growth, a smallest
valid extension (SVE) method for graphs and a SVE-based pruning strategy. Through the proposed
algorithm, we can obtain a set of SVE-based Rare Graph patterns, called SRGs. By using the graph
symmetry features, we can prevent duplicated graph patterns from being generated and reduce
computational overheads for useless operations. We can also improve mining efficiency of the proposed
method by employing the SVE-based pre-pruning technique, which does not cause any pattern loss.
Experimental results in this paper show that SVE-RGM outperforms state-of-the-art algorithms.

The remainder of this paper is organized as follows. In Section 2, we provide related work
regarding graph mining and in Sections 3 and 4 details of the proposed algorithm, SVE-RGM and
performance analysis results are described, respectively. In Section 5, discussion for the proposed
method is introduced. Finally in Section 6, we conclude this paper.
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2. Related Work

2.1. Frequent Pattern Mining and Frequent Graph Pattern Mining

Since the Apriori algorithm [7] was developed, various works regarding frequent pattern mining
have been suggested. The main goal of frequent pattern mining is to find all of frequent patterns from
databases. If a frequency (or support) of a given pattern is higher than or equal to a minimum support
threshold set by a user, it is considered as a frequent pattern. In the frequent pattern mining area, there is
an important factor, called the anti-monotone property or the downward closure property. It contributes
to improving mining efficiency by preventing invalid patterns from being generated. This property
guarantees the following relation: if a pattern is an infrequent one, all the super patterns created from
the pattern are also infrequent ones. Meanwhile, in order to overcome the drawbacks of the Apriori
algorithm such as generating an enormous number of useless candidate patterns and database scanning
works, a tree-based algorithm, FP-growth, was devised [32]. This algorithm mines frequent patterns
without any candidate pattern generation, employing its own tree structure, called FP-tree. In addition,
its mining process does not require excessive database scans, it needs only two database scans.

As in frequent pattern mining methods, frequent graph mining has also advanced through a
similar process. Early studies have been researched on the basis of BFS (Breadth First Search) and
subsequent researches have been conducted on the basis of DFS (Depth First Search). In addition, graph
mining is also applied to extract a variety of valid patterns such as weighted frequent sub-graphs [33],
closed and maximal frequent ones [13,15,33], approximate frequent ones [16,17], and so on. Similarly
to frequent pattern mining, the main purpose of frequent graph pattern mining is to search for all the
graph patterns satisfying a minimum support threshold from complicated databases composed of
graph data. One of the major differences between them is that graph pattern mining has to consider
extra conditions such as vertices, edges and graph isomorphism, in comparison to traditional pattern
mining which deals only with simple items. There are several well-known fundamental graph mining
algorithms such as Gaston, gSpan, FFSM, etc., where the Gaston algorithm [34,35] is most suitable for
comparing the proposed algorithm, SVE-RGM, since as a state-of-the-art algorithm, Gaston, has the
fastest runtime performance among these algorithms. The algorithm extracts frequent sub-graphs
more efficiently by dividing mining process into three parts: path, free tree and cyclic graph steps,
as well as by performing appropriate operations according to each step. In addition, an additional data
structure used in the algorithm, named embedding list, makes it faster to conduct mining operations.
However, such fundamental graph mining algorithms have limitations that only consider a single
minimum support condition, regardless of various graph characteristics such as element types and
lengths of graph patterns.

2.2. Pattern Mining On Multiple Minimum Support Constraints

In order to solve the rare item problem in the frequent pattern mining area, researchers have
proposed various pattern mining algorithms based on multiple minimum support constraints [26–28].
Since MSApriori [28], an initial algorithm based on the framework of Apriori, was proposed, various
methods have been developed. CFP-growth [26] is a tree-based algorithm that follows the basic process
of FP-growth and CFP-growth++ [27] is an enhanced version of CFP-growth. Although the above
approaches have found solutions of the rare item problem by applying multiple minimum support
constraints, they are item-based traditional algorithms that cannot deal with various characteristics of
complicated graph data.

To solve the above problem, FGM-MMS [36] and WRG-Miner [37] were proposed. They are
methods that consider multiple minimum support constraints in graph pattern mining processes.
In contrast to traditional graph pattern mining that uses a single minimum support threshold regardless
of characteristics of elements composing graphs, they employ different minimum support threshold
values for the elements in a given graph database in order to overcome the rare item problem [26–28]
in their graph mining processes. Recall that meaningful patterns with low support values cannot be
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mined if a given minimum support threshold is high. Meanwhile an enormous number of invalid
patterns have to be extracted, if the threshold value becomes lower to find such pattern results.
However, such approaches cannot consider important length or size characteristics of mined graph
patterns. On the other hand, since the proposed algorithm can set various minimum support thresholds
according to the lengths or sizes of graph patterns, it can mine graph pattern results with more
practically useful information.

2.3. Pattern Mining on Length-Decreasing Support Constraints

In the frequent pattern mining area, LPMiner/SLPMiner [38] is the first algorithm applying different
multiple support constraints for each length of patterns. After that, advanced algorithms applying
weight conditions, WLPMiner [39] and WSLPMiner [40] were suggested. LPMiner and WLPMiner
find frequent and weighted frequent patterns composed of itemsets, respectively and SLPMiner
and WSLPMiner discover sequential frequent and weighted sequential frequent ones. However,
the above algorithms are only limited to the general frequent pattern mining area dealing with simple
itemset-based databases.

FGM-LDSC [41] is an algorithm applying length-decreasing support constraints on graph mining
environments. Recall that Small graph patterns having a few vertices and edges tend to be interesting
if their supports are relatively high, while large ones having many vertices and edges can be interesting
even though their supports are relatively low. FGM-LDSC solves the above problem by applying a
different minimum support for each length factor of found graph patterns (length-decreasing minimum
supports). However, such an approach cannot consider characteristics of extracted graph elements.
On the other hand, the proposed algorithm can set different minimum support threshold values
according to the types of elements composing graph patterns. Such an advantage also leads to mining
graph patterns with more meaningful information or knowledge.

3. Smallest Valid Extension-Based Rare Graph Pattern Mining, Considering Length-Decreasing
Support Constraints and Symmetry Characteristics of Graphs

In this section, we introduce the basic concept and preliminaries of graph pattern mining that
can help understanding of the proposed algorithm, SVE-RGM. Thereafter, we describe details of
our method including an overall architecture, a graph pattern growth technique and various pattern
pruning techniques. We also propose techniques for effectively applying multiple minimum support
and length-decreasing support constraints into graph mining environments without any unintended
errors such as pattern losses. In addition, we show how the proposed method, SVE-RGM, operates
through an overall mining procedure of the algorithm.

3.1. Preliminaries

Graph data are a structural format that can effectively express various data such as network data,
chemical data and genome data. There are various definitions and theories for explaining such graph
data in a mathematical manner [34,35,42,43], where we introduce essential preliminaries related to the
proposed algorithm, including the definitions of graph patterns and the concept of frequent graph
patterns (further information on graph theories refer to the literature cited in this paper [18,20,42,43]).
We first describe a fundamental concept and several important definitions of graph pattern mining for
better understanding of the proposed method. A graph pattern consists of multiple vertices and edges.
In addition, graph types are classified as directed or undirected graphs depending on whether or not
there are directions of edges in graphs. They can also be classified as simple or multi graphs on the
basis of the number of edges between any two vertices in graphs. Moreover, other graph types can be
created through numerous factors such as labels and self-edges (or loops). In this paper, we explain
the proposed contents on the basis of undirected and labeled simple graph forms. However, it is trivial
to consider other graph forms into our graph mining operations since we only have to consider a few
additional characteristics. Figure 1 shows an example of various graph types. Figure 1a is a simple,
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labeled and undirected graph without any self-edges, where each vertex and edge has its own name
or label. Figure 1b is a multiple graph that has two or more edges between vertices. As shown in
Figure 1b, edges labels may not be expressed if they do not need to be distinguished from one another
or have the same label. Figure 1c is a directed graph having a self-edge.

Figure 1. Example of various graph pattern forms. (a) A simple, labeled and undirected graph without
any self-edges; (b) A multiple graph with multiple edges between vertices; (c) A directed graph with
a self-edge.

Definition 1. (Sub-graph) Let P be a sub-graph (or a graph pattern) composed of one or more elements
(vertices and edges). Then, P can be denoted as two element groups. The first one is a set of vertices, V(P) = {v1,
v2, . . . , vi}, and a set of edges, E(P) = {e1, e2, . . . , ej}.

Definition 2. (Graph isomorphism) Given a simple, labeled, and undirected graph pattern, P, its vertex and
edge sets, V(P) and E(P) can also be denoted as follows:

VpPq “ tv|v P VpPqu,
EpPq “ tpv1, v2q|v1, v2 P VpPq and v1 ‰ v2u (1)

Given two graph patterns, X and Y, we can say that X and Y are isomorphic, if their own V(P)
and E(P) results are the same as each other on the basis of Equation (1) although the shapes of X and Y
seem to be different from each other. Note that since all the edges in P have no directions, (v1, v2) and
(v2, v1) are equal to each other.

All of the possible graph patterns have one of the following graph types: path, free tree, and cyclic
graph. In addition, paths and free trees can be included in cyclic graphs and paths can be contained
in free trees. In other words, the coverage of graph pattern types is denoted as path Ď free-tree Ď
cyclic graph.

Definition 3. (Degree of graph forms) all vertices except for both ends in a path have degree 2; meanwhile the end
vertices have degree 1. Let X be a graph pattern. If X is a path with k vertices, X satisfies the following formula:

D pvlq “ 2 p2 ď l ď k ´ 1q ,
D pv1q “ 1, D pvkq “ 1,
|V pXq| “ |E pXq| ` 1

(2)

In Equation (2), D signifies a function that returns a degree number for an inputted vertex. v1, vn,
|V(P)| and |E(P)| are the first and last vertices and the number of vertices and edges comprising P,
respectively. A free tree should have at least one vertex of which the degree is 3 or more. In addition,
there is no cyclic relation in all of its edges. If P is a free-tree with k vertices, the following conditions
are satisfied:

D pvlq ě 3 pDvl P V pXqq ,
|V pXq| “ |E pXq| ` 1

(3)

81



Symmetry 2016, 8, 32

If X has one or more cyclic edges, X becomes a cyclic graph. Then, X has the following relation
between the numbers of vertices and edges.

|V pXq| ď |E pXq| (4)

By using Equations (2)–(4), we can easily distinguish what type every graph pattern is.

Definition 4. (Frequent graph pattern) Let DBG = {Tr1, Tr2, . . . , Trn} be a given database storing n graph data
records (also called graph transactions), where each graph transaction, Tr, is composed of multiple vertices and
edges. Given a graph pattern, P, we can calculate the support of P, S(P), as follows:

Exist pP, Trkq “
#

1, if P P Trk
0, otherwise

,

S pPq “ ř
Trkp1ďkďnq PDBG

Exist pP, Trkq
(5)

In Equation (5), function Exist returns 1 if P is included in the corresponding Tr; otherwise, 0.
Therefore, S(P) is to add all the results of Exist with respect to every Tr in DBG. In other words, the
result of S(P) signifies how many times P appears in DBG. If S(P) is not smaller than a user-given
minimum support threshold, we regard P as a frequent sub-graph or a frequent graph pattern. Thus,
the final goal of traditional frequent graph pattern mining is to extract all the possible graph patterns
of which the support values are higher than or equal to this single minimum support threshold.

3.2. Overall Architecture of the Proposed Method

Figure 2 shows an overall architecture and flows of the proposed algorithm, SVE-RGM. It first
scans a give graph database and then performs a series of works for mining SRGs. SVE-RGM conducts
preprocessing works by reading the information of length-decreasing support and multiple minimum
support constraints. After that, it computes a Least Minimum Support (LMS) factor for pre-pruning
operations. Thereafter, the algorithm performs SVE-RGM growth for finding SRGs in a recursive
manner. In this process, candidate patterns are generated and the algorithm checks whether or not
they are valid by using the results of the proposed inverse function and the real rarity information
corresponding to the candidates. These processes are conducted until we obtain all of the possible
SRGs from the given graph database. When such recursive works are finished, we can have a complete
set of SRGs.

Figure 2. Overall architecture of SVE-RGM.

3.3. Mining SRGs from Graph Databases

Figure 3 is an example of a simple graph database. Graph pattern mining approaches including
the proposed method find interesting graph pattern information from such types of graph data.
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As shown in the procedure of Figure 2, we first scan a given graph database to calculate support
values of the elements within the graph transactions, composing the database. Note that we assume
that edge elements in the example database have the same edge label, for better understanding of
the proposed method as shown in Figure 3. Therefore, support values for edges are not counted.
Vertices that occur multiple times in a graph transaction are counted once [34,35,44]. After the database
scanning work is finished, the proposed algorithm scans information of length-decreasing support
constraints corresponding to the given graph database and multiple minimum support constraints for
the elements composing the database.

Figure 3. Example of a simple graph database.

3.3.1. Length-Decreasing Support Constraints and Smallest Valid Extension on Graph Mining

Recall that small sub-graphs having a few elements tend to be interesting if they have relatively
high support values and large sub-graphs with many of elements can be interesting even though
their support values are relatively low. It becomes important features supporting the reason why
length-decreasing support constraints need to be applied into the graph mining operations. The easiest
method for mining sub-graphs according to length-decreasing support constraints [41], tried to
perform all of the possible pattern expansions, in order to confirm whether sub-graphs generated
through the expansions satisfy each minimum support threshold, corresponding to their lengths.
Therefore, this method causes fatal problems in terms of mining efficiency although correct results can
be generated. To solve the problem, we define a length-decreasing support constraint function and its
inverse function, and propose an SVE technique using these functions.

Definition 5. (Length of graph) Let l be a length of a graph pattern, S. When S is a path or a free tree, l is the
number of vertices in S. Meanwhile, if S is a cyclic graph, we consider l as follows. Let Sprev be a sub-graph
pattern just before S becomes a cyclic graph, lprev be a length of Sprev, and k be the number of cyclic edges inserted
into S. Then, l becomes an addition of lprev and k, where l can be denoted as l = L(S).

Figure 4 shows an example of length-decreasing support constraints. As shown in Figure 4a,
there are various minimum support threshold values in the proposed algorithm, and one threshold
value is set for each length factor. Especially, threshold settings become gradually lower according to
the increase of graph pattern lengths.

Figure 4. Example of length-decreasing support constraints. (a) A table with length and support
information; (b) A graph corresponding to the length-decreasing support constraints in Figure 4a.

83



Symmetry 2016, 8, 32

Definition 6. (Length-decreasing support constraint (LDSC) function) For the length of graph pattern
S, l, length-decreasing support constraint function, denoted as f(l) returns a minimum support threshold
corresponding to l’s current value. Since f(l) is constant or becomes lower as l comes to be larger, the inequality,
0 ď f(l + 1) ď f(l) ď 1 is satisfied.

Definition 7. (Inverse function of LDSC) Given a support of graph pattern S, S(S), an inverse function of
Definition 6 is denoted as f´1 (S(S)) and returns the minimum length that S must have in order to become a
potentially frequent sub-graph pattern. Such a condition is also denoted as f´1 (S(S)) = min(l|f(l) ď S(S)).

Example 1. Given length-decreasing support constraint information in Figure 4a, the corresponding LDSC
function, f(l) is denoted as shown in Figure 4b. Since f(1) = 9% (=0.09), f(2) = 9% (=0.09), f(3) = 7% (=0.07)
. . . and f(10) = 1% (=0.01), it is certain that the function satisfies the inequality, 0 ď f(l + 1) ď f(l) ď 1. Let us
assume that a sub-graph S has a support of 4% and a length of 5 respectively. Then, f´1(S(S)) returns 7 since
the minimum value is 7 among the lengths corresponding to the supports lower than or equal to 4%. Therefore,
S must have more than length of 7 to be frequent. However, it is eventually infrequent since its length is 5.

We can determine that certain sub-graphs included in the “infrequent” area as shown in Figure 4b
are invalid while ones contained in the “frequent” area become valid, where f (l) plays a role in
distinguishing whether or not sub-graphs are frequent.

Through Definitions 5–7, we can draw the following SVE property for graph pattern mining
based on length-decreasing support constraints, which helps perform the graph mining processes
more efficiently by reducing the number of needless graph pattern expansions.

Definition 8. (Smallest Valid Extension (SVE) property for graph mining) Given an infrequent graph pattern
S, any super pattern of S, S’ must have a length larger than the result of f´1(S(S)) before it becomes a potentially
frequent sub-graph pattern.

Unlike traditional graph pattern mining, we need to consider the following additional
characteristics in length-decreasing support constraint-based graph pattern mining. If a graph pattern
is not valid in traditional graph pattern mining, we can omit the pattern and all of the corresponding
operations related to the pattern because it and all of its possible super patterns become useless by
the anti-monotone property. This property means that, if a certain pattern is infrequent, all the super
patterns generated from the pattern are also infrequent. However, because the proposed algorithm
applies different minimum support thresholds according to the length characteristics of generated
graph patterns, the anti-monotone property cannot be maintained. In other words, although a certain
sub-graph is infrequent in the current state, any of its super patterns may become frequent again as
we conduct the graph pattern growth process. The previous approach [41] solved such a problem by
applying an overestimation technique into its pattern pre-pruning factor. This technique can perform
LDSC-based frequent graph pattern mining operations without any pattern loss, but it is a naïve
technique that wastes computing resources in generating useless candidate patterns. However, based
on the SVE property, we can find permanently invalid patterns. The following lemma supports such
an advantage.

Lemma 1. Let S and S’ be a certain sub-graph pattern and a super pattern of S and L(S) and L(S’) be the lengths
of S and S’ respectively. If L(S’) < f´1(S(S)) such that S(S) < f(L(S)), then S’ is always an infrequent pattern.

Proof. Depending on the characteristics of frequent graph mining, it is always true that
S(S) ě S(S’), and S(S) is in inverse proportion to f´1(S(S)). Therefore, we can induce the inequality,
f´1(S(S)) ď f´1(S(S’)). In order that S’ expanded from the infrequent sub-graph S becomes frequent,
these two conditions, S(S) < f (L(S)) and S(S’) ě f (L(S’)) must be satisfied. After we multiply the inverse
function by the conditions, the result can be denoted as follows: L(S) ď f´1(S(S)) ď f´1(S(S’)) ď L(S’).
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Therefore, S’ becomes infrequent if it does not satisfy these conditions. Because the current mining
step performed up to S, S’ has not yet been expanded. Therefore, we can determine the values of L(S),
L(S’), and f´1(S(S)) but cannot know the value of f´1(S(S’)) (L(S’) can be inferred from L(S)). Therefore,
if L(S’) ě f´1(S(S)) is false, i.e., L(S’) < f´1(S(S)) is true, S’ becomes an infrequent graph pattern. For this
reason, we can know whether or not S’ is valid in advance even though any actual expansion process
for S’ is not performed.

Note that the proposed overestimation technique is not an approximation method. Therefore,
unlike the statistical approximation approach [45], our method does not mine any false positives.
Our overestimation technique is employed to check and discard permanently meaningless graph
patterns without any pattern loss during the mining process. However, since every pattern satisfying
the overestimated condition is not the finally valid result (called a candidate pattern), we check
the actual support of each candidate in order to mine actually meaningful graph patterns selectively.
By doing this, we can obtain a complete set of frequent graph patterns considering the length-deceasing
support constraints and rarity of graphs.

3.3.2. Pre-Pruning Infrequent Sub-Graphs by the SVE Property without Any Pattern Loss

Using the defined SVE property, we can determine information regarding what sub-graphs
cause needless pattern expansions in advance. However, if they are directly pruned, fatal problems
such as pattern losses can occur since applying the length-decreasing support constraints into graph
mining generally breaks the anti-monotone property. That is, any infrequent sub-graphs can become
frequent ones as their pattern expansion works are conducted. To solve the problems and maintain the
anti-monotone property, we additionally consider the length information for graph transactions in
graph databases as well as the SVE property.

Lemma 2. Let S and S’ be invalid graph patterns (S’ Ą Ş
S) and SETS’ = {Tr1, Tr2, . . . , Trn} be a set of graph

transactions including S’. Then, if there is any element satisfying L(Tri) < f´1(S(S)) among the elements of
SETS’ (1 ď I ď n), S’ can permanently be pruned.

Proof. In SETS’ = {Tr1, Tr2, . . . , Trn}, each Tr is a graph transaction with S’ in DBG, and n becomes the
support of S’. If there is any Tri such that L(Tri) < f´1(S(S)) (1 ď iď n), it means that lengths of all super
patterns generated from S’ are also smaller than f´1(S(S)) because the super patterns cannot have more
lengths than L(Tri). Furthermore, since S’ and the super patterns of S’ do not satisfy the minimum
length by the inverse function, neither of them naturally satisfies minimum support constraints. As a
result, pruning S’ does not have any negative effect on maintenance of the anti-monotone property.
That is, we can obtain intended mining results without any problem.

Example 2. Let us consider the example in Figure 4 and assume that a certain sub-graph, S, has a length
of 2 and a support of 5%, a super pattern of S, S’, has a length of 3 and a support of 4% and a set of graph
transactions for S’, SETS’ includes 4 graph transactions (denoted as SETS’ = {Tr1, Tr2, Tr3, Tr4}), where the
length for each Tr is set to 7, 4, 10, and 5 respectively. Then, S’ becomes an invalid pattern according to the SVE
property and Lemma 1. Furthermore, since L(Tr2) is smaller than f´1(S(S)), any super patterns of S’ also become
useless ones and therefore, S’ can directly be pruned.

Based on Lemma 2, we can prune all of the permanently useless patterns and omit the
corresponding mining operations in advance without any pattern loss.

3.3.3. Multiple Minimum Supports of Vertex and Edge Elements on Graph Mining

In addition to the length-decreasing support constraints, we additionally consider multiple
minimum supports of graph elements (vertices and edges) in this paper. Recall that meaningful
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graph patterns with low supports may not be extracted if a given minimum support threshold is high
in traditional graph pattern mining, otherwise an enormous number of useless patterns should be
mined if we lower the threshold to find such useful ones. By considering multiple, minimum support
constraints of vertex and edge elements, as well as the length-decreasing support constraints, we can
obtain a smaller number of more meaningful pattern results. In contrast to traditional graph pattern
mining that has a single minimum support threshold, the proposed method has a different threshold
for each element to consider the multiple minimum support constraints on graph pattern mining.

Definition 9. (Minimum support constraints of vertices and edges) Given a graph database with multiple
graph transactions Tr, DBG = {Tr1, Tr2, . . . , Trn}, a set of x vertices and y edges comprising DBG can be denoted
as V(DBG) = {v1, v2, . . . , vx} and E(DBG) = {e1, e2, . . . , ey}, respectively. Then, each of minimum support
threshold, δ, is set for each element as shown in Table 1, where they are assigned by a user, respectively.

Table 1. Multiple minimum supports of graph elements (vertices and edges).

Element v1 v2 . . . vx e1 e2 . . . ey

Threshold δ1 δ2 . . . δx δx+1 δx+2 . . . δx+y

In traditional graph pattern mining, there is only one factor for deciding whether or not a found
graph pattern is frequent without the characteristics of its elements. Meanwhile, we need to consider a
different way to apply the multiple minimum support constraints into our method.

Definition 10. (Minimum support constraints of graph patterns) Let P be a graph pattern extracted from
DBG. Then, a set of vertices and edges can be denoted as V(P) = {v1, v2, . . . , vi} and E(P) = {e1, e2, . . . , ej},
respectively. According to Definition 9, we know that each element has its own minimum support threshold
set by a user, and P is composed of multiple elements. Hence, the minimum support threshold for P, T(P),
is computed as the minimum value among the threshold values of P’s elements.

If S(P) is not lower than T(P), we can say that P is a valid graph pattern satisfying the rarity of
graph elements based on the multiple minimum support constraints. The reason why we compute
and use the minimum support threshold for each mined graph pattern is that we can consider the
different rarity of each pattern in this way.

Definition 11. (SVE-based Rare Graph pattern (SRG)) Given a graph pattern, X, we call X an SRG if
S(X) ě f(L(X)) and S(X) ě T(X). In other words, SRGs mean sub-graph patterns that satisfy both the
length-decreasing support and multiple minimum support constraints.

Consequently, the main goal of the proposed algorithm, SVE-RGM, is to mine all of the possible
SRGs from a given graph database without any pattern loss.

3.3.4. Pre-Pruning Invalid Graph Patterns Based on Multiple Minimum Support Constraints

Recall that fatal pattern losses can be caused if we do not apply the additional considerations
mentioned in Section 3.3.2. Similarly, we can also suffer from such a pattern loss problem if we
directly prune graph patterns that do not satisfy their own multiple minimum support constraints.
As mentioned above, elements of a graph pattern have their own threshold values set by a user.
Therefore, the anti-monotone property is not satisfied with this situation. In other words, although a
certain graph pattern has a support that does not satisfy the corresponding multiple minimum support
constraint in the current state, any super pattern of it may become a valid result again in the process of
graph pattern expansion. Hence, if we pre-prune such patterns without any additional consideration,
fatal pattern losses can occur. Moreover, an enormous number of interesting patterns can be lost
by unintended pruning of a few elements or graph patterns. Satisfying the anti-monotone property
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during the mining process is one of the most important rules to improve mining efficiency without
any negative effect such as pattern losses. For this reason, we employ an overestimation method for
maintaining the anti-monotone property without any pattern loss on the proposed algorithm.

Definition 12. (Overestimated minimum support constraint) DBG has multiple graph transactions and
the corresponding elements as mentioned in Definition 9. Then, the overestimated minimum support
constraint for DBG, O(DBG), is computed as the smallest value among the valid minimum support constraints
of all the elements comprising DBG (it is also called Least Minimum Support (LMS)). In other words,
let SETT(DBG) = {δ1, δ2, . . . , δx+y} (δ1 ěδ2 ě . . . ě δx+y) be a sorted set of minimum support constraints for
all the elements in DBG (x and y are the numbers of vertices and edges, respectively). Then, we start comparing
the smallest threshold δx+y with the real support of the element corresponding to δx+y. After that, δ(x+y)´1 is
compared to the corresponding element support. Such a comparison is performed until we find the first element of
which the support is higher than or equal to the corresponding minimum support constraint, δk (1 ď k ď x + y).
Then, we consider δk as O(DBG).

Consequently, SRGs extracted from the proposed algorithm are graph patterns that satisfy
Lemmas 1 and 2 and the condition of Definition 12.

3.4. Improving Efficiency of Graph Mining Performance Based on Symmetry Features of Graphs

From the suggested definitions and constraints, we allowed the proposed method to mine
a smaller number of meaningful graph pattern results, called SRGs. As mentioned above,
the length-decreasing minimum support and multiple minimum support constraints also increase
the mining efficiency of the proposed algorithm, SVE-RGM, by reducing the search space effectively.
In addition, we can also raise the mining efficiency with the correctness of the algorithm maintained.
Recall that the proposed method performs its own mining operations in a depth-first search manner.
This also means that a few useless graph patterns may cause the proposed algorithm to generate an
enormous number of invalid or duplicated pattern results. In contrast to the case of traditional frequent
pattern mining that considers only an item-based simple format, a numerous number of duplicated
graph patterns can be generated in graph pattern mining because of the complicated structures of
graph data. In particular, we have to conduct graph isomorphism tests for the mined patterns in order
to prevent duplicated ones from being extracted.

In order to perform the mining operations more efficiently, our algorithm applies the following
order types of graph pattern growth: (1) path Ñ cyclic graph and (2) path Ñ free tree Ñ cyclic graph.
In other words, a certain vertex is selected as a prefix at first and a path is generated by adding another
vertex and edge that can be attached to the prefix. Then, we can obtain a graph pattern in a path form.
After that, there are three options for the next step. That is, it can be extracted as a longer path, a free
tree, or a cyclic graph according to the attached vertex and edge types. Recall that a few useless graph
patterns can cause an enormous number of invalid or duplicated pattern results. From the above
features, we can determine that removing duplicated path creations has a large effect on reducing the
number of useless pattern creations. In this regard, symmetry features of paths can be used as effective
factors that can lead to correct choices not to cause any duplicated path result. Let P = {v1, e1, v2, e2, . . . ,
ek-1, vk} be a given path and N = {v,e’} be a pair of one vertex and edge that are supposed to be attached
to P. Then, when expanding P with N, we have two choices; the first one is to add N to the front of P
and the second one is to add N to the rear of P because of the characteristics of paths. If we add N to P
without any consideration, an enormous number of duplicated graph patterns can be generated as the
graph pattern growth works are conducted during the mining process. Meanwhile, if we set a specific
constraint for limiting expansion directions of paths, we can effectively prevent such a problem.

A path has at least two vertices and one edge. Then, we can determine whether or not the path
is symmetric. In other words, given a path, P = {v1, e1, v2, e2, . . . , ek-1, vk}, we can extract two strings
from P as follows: v1-e1-v2-e2- . . . -ek-1-vk (original string) and vk-ek-1-vk-1-ek-2- . . . -e1-v1 (inverse string).
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Then, if they are equal to each other, we consider P as a symmetric path. In this case, we do not need
to consider what direction we have to choose because any selection leads to the same result. If the
first string is lower than the second one in terms of a lexicographical order, we expand P by attaching
new elements to the front of P. Meanwhile, if the first string is higher than the second one, we add the
new ones to the rear of P. From the above path expansion technique based on the symmetry features
of paths, we can omit any path expansion causing duplicated path creation. In addition, once the
symmetry result of P is calculated, we can easily determine the symmetry result of its expanded path
in a few additional computations. Let Symtotal(P), Symfront(P), and Symrear(P) be symmetry functions for
the entire part of P ({v1, e1, v2, e2, . . . , ek-1, vk}), the front part of P ({v1, e1, v2, e2, . . . , ek-2, vk-1}) and the
rear part of P ({v2, e2, v3, e3, . . . , ek-1, vk}), where each function returns 0 when the corresponding string
is symmetric, 1 when the corresponding original string is lower than the inverse one and ´1 when
the original one is higher than the inverse one. Using this method, we can easily know the symmetry
result of super patterns of P. Let P’ be a longer path that adds a new vertex and edge to P. Then, if the
new elements have been attached to the front of P’, we can determine that Symtotal(P) = Symrear(P’).
Meanwhile, if the new ones have been added to the rear of P’, it is true that Symtotal(P) = Symfront(P’).
Therefore, based on these characteristics, we can efficiently determine the symmetry results of mined
patterns. By restricting directions of graph expansion based on the symmetry features of paths, we can
improve the mining efficiency of the proposed method.

One of the most important considerations in frequent graph pattern mining is to enumerate all
of the possible graph patterns without any redundancy. In contrast to the itemset format traditional
frequent pattern mining focuses on, a graph pattern is composed of multiple vertices and edges, where
the vertices can be ordered in many ways. Therefore, one graph pattern can also be denoted as a large
number of topologically equivalent copies. Hence, it is essential to check graph isomorphism whenever
a graph pattern is mined. Especially, checking graph isomorphism is a well-known NP-hard problem
that can cause enormous computational overheads. However, as mentioned above, we do not have to
check graph isomorphism for the path format because we established the symmetry-based constraint
for paths in advance and allow paths to be enumerated on the constraint. When any path is expanded
as a free-tree, we employ the backbone strategy of Gaston, which is different from the canonical
representation used in gSpan. By using the technique, we can prevent any duplication of free-trees
from being caused in the mining process without performing any works for graph isomorphism
(the correctness of the backbone strategy was proved by showing that the Gaston algorithm extracted
the same results as those of other approaches like gSpan [34,35]). When a path or a free-tree is expanded
as a cyclic graph, we have no choice but to conduct graph isomorphism operations. However, we can
reduce computational overheads by using the minimum spanning tree format when comparing cyclic
graphs. A cyclic graph can be expressed as a minimum spanning tree, which is simpler than its original
one. Therefore, we can compare graphs more quickly than doing in a naïve manner.

3.5. Algorithm Description: SVE-RGM

Figure 5 represents overall mining steps of the proposed algorithm, SVE-RGM. In the main
procedure, SVE-RGM, the lowest value in LDSC is set as a minimum support threshold, δ and
the algorithm computes LMS from the MMS data (lines 1–3). After that, it finds valid vertices
and edges from DBG through the calculated minimum support and LMS value (lines 3–6). Then,
for each frequent vertex, the algorithm extracts valid sub-graph patterns according to length-decreasing
support constraints and multiple minimum support thresholds as it performs a series of graph pattern
expansion works (lines 7–11). When function Expand_subgraphs is called, SVE-RGM determines
whether G is frequent or not and then assigns a flag, true or false, into the isFrequent variable (lines 1–4),
where G is entered to P if G is frequent (line 3). Thereafter, for each edge in E, appropriate pattern
expansion works are selectively conducted according to the state of G such as a path, a free tree, and a
cyclic graph (lines 6–8). After that, if the support of the expanded pattern, G’, is not smaller than LMS,
the algorithm conducts the subsequent works (line 9). If isFrequent is false, then the algorithm decides
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whether to prune G’ (lines 10–13). If G’ is not pruned, SVE-RGM calls Expand_subgraphs recursively to
perform the next pattern expanding operations (lines 14–16). After all of mining operations terminate,
we can gain a complete set of SRGs considering the length-decreasing support constraints and the
multiple minimum support constraints for rarity of graph patterns.

Figure 5. SVE-RGM algorithm.

4. Performance Evaluation

4.1. Experimental Environment

To evaluate performance of the proposed algorithm, SVE-RGM, precisely and reasonably,
the algorithm is compared with the following state-of-the-art algorithms, Gaston [34,35],
FGM-LDSC [41], and WRG-Miner [37]. Gaston is a famous fundamental frequent graph pattern mining
algorithm that features fast mining speed. FGM-LDSC is a Gaston-based approach that can consider
length-decreasing support constraints into graph mining processes. WRG-Miner is an algorithm that
extracts frequent graph patterns considering multiple minimum support constraints and different
element weight factors. Note that we optimized WRG-Miner in order to compare it with ours fairly.
They were written in C++ and performed in 4.0 GHz CPU, 16GB RAM, and WINDOWS 7 OS. We used
real and synthetic datasets, PTE composed of chemical graph data, DTP composed of compound
graph data and SYN100K composed of 100K synthetic graph data. Detailed characteristics of these
two real graph datasets are available at the literature [34,35]. Figure 6 shows distributions regarding
length-decreasing support constraints for the PTE, DTP, and SYN100K datasets.
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Figure 6. (a) Length-decreasing support constraints of PTE; (b) Length-decreasing support constraints
of SYN100K; (c) Length-decreasing support constraints of DTP.

Each implementation of the algorithms receives a graph dataset and returns its own mining result
as a file. The input format of a graph dataset is as follows. Let us express the example database shown
in Figure 3 as the input format for the implementations. This graph dataset is composed of 4 graph
transaction data, where they consist of 4 different vertex types and 1 edge type. Then, we denote each
graph transaction as a set of relations among the links of vertices and edges. For example, the first
graph transaction has 4 vertices, A, B, A and C and 1 edge (let us denote it as “a“). We first assign
an index for each vertex. That is, the index of the first vertex A becomes 0 and that of the last one C
becomes 3. A relation among vertices and an edge is denoted as follows. The relation corresponding
to vertices A and B and edge a is denoted as 0 1 a. Table 2 is the result of changing the example
dataset of Figure 3 to the input format. Note that labels of vertices and edges are expressed as integer
values in real datasets. Based on the format shown in Table 2, each algorithm performs its own mining
operations, where additional data for length-decreasing support constraints or multiple minimum
support constraints are inputted according to the characteristics of the algorithms. Mining results
are also stored like the format shown in Table 2 and the support information corresponding to each
pattern is additionally stored.

Table 2. Input format of the graph dataset transformed from Table 1.

Tr1 Tr2 Tr3 Tr4

v 0 A v 0 A v 0 D v 0 B
v 1 B v 1 B v 1 A v 1 A
v 2 A v 2 A v 2 C v 2 A
v 3 C v 3 C v 3 A e 0 1 a
e 0 1 a e 0 1 a e 0 1 a e 0 2 a
e 0 2 a e 1 2 a e 0 2 a e 1 2 a
e 1 2 a e 2 3 a e 1 3 a -
e 2 3 a - e 2 3 a -

In order to assign δ values for the elements of given graph datasets, the following methodology
used in the literature [26–28,36,37] was employed. Let ei be an element within a given graph dataset.
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Then, the corresponding δ value for each ei is calculated as follows: δi = MAXIMUM(β ˆ S(ei), LS)
(LS: the smallest δ value in all the δ values). Note that the threshold of Gaston and FGM-LDSC is
set to the same value as LS for fair comparisons. In the equation, β (=1/α (0 < β ď 1, 1 ď α)) is a
variable showing how closely the actual support value of each element is related to the corresponding
δ value. In other words, each δ is more likely to have a value more similar to the real support of the
corresponding element rather than LS, if β becomes closer to 1.

4.2. Analysis of Runtime Performance

Figure 7 shows runtime results of the PTE, DTP and SYN100K datasets on changing minimum
support threshold settings, where the α values of WRG-Miner and SVE-RGM are fixed as 1. In Figure 7a,
all the algorithms require more runtime resources as the given minimum support threshold becomes
lower. However, the proposed algorithm guarantees the fastest runtime performance in all cases, while
Gaston shows the slowest performance. Especially when the threshold is 1.5%, we can observe that
there are large gaps among the compared algorithms. Since the proposed algorithm employs both the
length-decreasing support constraints and the multiple minimum support constraints, it extracts a
smaller number of interesting patterns compared to those of the others. From the result of Figure 7a,
we can determine that the length-decreasing support constraints have a better effect on improving the
runtime performance compared to the multiple minimum support constraints because FGM-LDSC
is faster than WRG-Miner in this case. On the other hand, the SYN100K dataset shows a different
tendency. In the case of Figure 7a, the proposed method shows the best result in every case, and Gaston
is the worst among the compared ones. However, in this case, we can see that WRG-Miner is better than
FGM-LDSC. From these different results, we can know that the multiple minimum support constraints
are more effective on this synthetic dataset. In the case of the DTP dataset, we can see that the proposed
method and Gaston have similar tendencies with those of the PTE dataset. However, the other
algorithms have different results. In the DTP dataset, WRG-Miner has better runtime performance than
that of FGM-LDSC, which means that the multiple minimum support constraints are more effective
on reducing the execution time with respect to this dataset. The proposed method also has the best
runtime results in this case. Meanwhile, the Gaston algorithm is slowest in almost all cases.

Figure 7. (a) Runtime results of PTE on changing minimum support threshold; (b) Runtime results of
SYN100K on changing minimum support threshold; (c) Runtime results of DTP on changing minimum
support threshold
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Figure 8 is the results of runtime performance on settings of the changing α value while the
minimum support threshold is fixed. Recall that β is inversely proportional to α (β = 1/α (0 < β ď 1,
1 ď α)) and if β becomes closer to 1, δ is more likely to have a value more similar to the real support
of the corresponding element rather than LS. Therefore, as α becomes lower, multiple minimum
support constraint-based approaches extract a less number of pattern results. In Figure 8a,b, we can
observe that all the algorithms spend stable runtime in mining their own graph patterns. However,
the Gaston algorithm has the worst performance regardless of minimum support threshold or α

settings. Meanwhile, the proposed method guarantees the best result in every case. The reason why
the compared algorithms show such stable performance results is that PTE is not a dataset affected
by the changes of the α value. For this reason, WRG-Miner does not show good performance in
this case because it is a rare graph pattern mining algorithm based on multiple minimum support
constraints. Meanwhile, the results of performance evaluation in SYN100K have a different tendency.
In this case, FGM-LDSC outperforms WRG-Miner in almost all cases. As in the previous case, our
algorithm, SVE-RGM, shows the best performance. Especially, the proposed method guarantees stable
runtime performance regardless of α, while WRG-Miner becomes gradually slower as the α value
becomes higher.

Figure 8. (a) Runtime results of PTE on changing α (minsup = 1.5%); (b) Runtime results of PTE
on changing α (minsup = 2%); (c) Runtime results of SYN100K on changing α (minsup = 1.5%);
(d) Runtime results of SYN100K on changing α (minsup = 2%); (e) Runtime results of DTP on changing
α (minsup = 5.5%); (f) Runtime results of DTP on changing α (minsup = 6%).
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In contrast to the results of the above two datasets, the proposed algorithm, SVE-RGM and the
compared rare graph pattern mining algorithm, WRG-Miner, show noticeable changes depending on
the settings of α. They are faster than the others at lower settings of α since they can better reflect the
rarity features of graph elements into their own mining processes and reduce the number of mined
patterns. In addition, the proposed algorithm also guarantees better runtime efficiency than that of
WRG-Miner because our approach can selectively extract a smaller number of graph patterns than
those of the competitor by considering the length-decreasing support constraints additionally. As α

becomes larger, the performance of WRG-Miner and ours becomes similar to the other non-rare pattern
mining algorithms.

4.3. Analysis of Memory Usage Performance

The next test is memory usage performance shown in Figure 9, where the basic parameter settings
are equal to the previous test. When the threshold is relatively low in Figure 9a, the algorithms have
similar memory consumption. However, as the threshold becomes lower, the gaps of their memory
usage results become larger. In this case, all the algorithms except for ours have similar memory usage,
regardless of threshold settings. Meanwhile, our algorithm has the most efficient memory usage in
all the cases. In the case of Figure 9b, the proposed method guarantees the best performance. Gaston
and FGM-LDSC have similar results, while WRG-Miner has relatively good performance compared to
the tendency of Figure 9a because the multiple minimum support constraints of the algorithm have a
positive effect on reducing memory usage in the SYN100K dataset. Nevertheless, WRG-Miner falls
behind our method in every case. That is, the proposed algorithm SVE-RGM, shows the most efficient
memory usage regardless of any environmental settings. As shown in Figure 9c, all the algorithms
except for WRG-Miner have similar tendencies with those of the PTE dataset. Recall that the multiple
minimum support constraints are more effective on the runtime performance with respect to this
dataset. This advantage also leads the algorithm to save more memory resources as shown in the figure.

Figure 9. (a) Memory usage results of PTE on changing minimum support threshold; (b) Memory
usage results of SYN100K on changing minimum support threshold; (c) Memory usage results of DTP
on changing minimum support threshold.
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Figure 10 shows memory usage results of the PTE and SYN100K datasets on changing α values
while the threshold is fixed. As in the cases of Figure 9, the compared algorithms have similar
tendencies. In the PTE dataset shown in Figure 10a,b, the first three algorithms, Gaston, FGM-LDSC,
and WRG-Miner, consume similar memory in all cases, while the proposed one spends the smallest
memory because of its own mining techniques and constraints. On the other hand, WRG-Miner has
better performance than those of Gaston and FGM-LDSC in the SYN100K dataset because of its own
constraints, multiple minimum supports for graph elements. However, its performance is still worse
than our method as shown in the figure. In addition, all the algorithms show stable memory usage
regardless of the α settings. This signifies that the SYN100K dataset has few effect on the α settings.
Similarly to the runtime results shown in Figure 8e,f, memory usage of the rare graph pattern mining
algorithms is changed according to the settings of α. However, the memory efficiency of the proposed
algorithm is best among the compared ones in general. Meanwhile, since Gaston and FGM-LDSC do
not consider the rarity of graph elements, they show the same results regardless of changes of α.

Figure 10. (a) Memory usage results of PTE on changing α (minsup = 1.5%); (b) Memory usage results of
PTE on changing α (minsup = 2%); (c) Memory usage results of SYN100K on changing α (minsup = 1.5%);
(d) Memory usage results of SYN100K on changing α (minsup = 2%); (e) Memory usage results of DTP
on changing α (minsup = 5.5%); (f) Memory usage results of DTP on changing α (minsup = 6%).
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4.4. Analysis of Pattern Generation Performance

Figure 11 shows results of graph pattern generation for the compared algorithms in a log-scale,
where the basic settings of parameters are also the same as those of the previous tests. These figures
support the results of the above runtime and memory usage performance evaluation. As mentioned
above, the proposed algorithm can reduce an enormous number of less meaningful graph patterns
by employing both the length-decreasing support constraints and the multiple minimum support
constraints. As a result, we can obtain a smaller number of interesting patterns compared to the
others. In the case of Figure 11b, WRG-Miner and our SVE-RGM generate the same pattern results
since the multiple minimum support constraints have a less effect on the resulting patterns. However,
the mining performance of the proposed method is better than that of WRG-Miner in spite of this
pattern generation result. In the case of the DTP dataset, the proposed algorithm also mines the
smallest number of frequent graph patterns.

Figure 11. (a) Pattern generation results of PTE on changing minimum support threshold; (b) Pattern
generation results of SYN100K on changing minimum support threshold; (c) Pattern generation results
of DTP on changing minimum support threshold.

Figure 12 shows results of graph pattern generation on changing value α settings. In Figure 12a,b,
the results of Gaston and FGM-LDSC are not changeable since they do not apply the multiple minimum
support constraints for considering the rare item problem. Meanwhile, the other two algorithms,
WRG-Miner and SVE-RGM, also show stable pattern generation results because this dataset has a less
effect on the changes of α. On the other hand, we can see that the number of graph patterns mined
from WRG-Miner is increased as the α value becomes higher. Meanwhile, SVE-RGM shows stable
results regardless of the α value settings. In contrast to the cases of PTE and SYN100K, the algorithms
considering the rarity of graph elements, WRG-Miner and our SVE-RGM, mine a different number of
mining results as shown in the figure. As α becomes lower, they extract a smaller number of patterns
because they can selectively mine patterns considering the rarity of graph elements.
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Figure 12. (a) Pattern generation results of PTE on changing α (minsup = 1.5%); (b) Pattern generation
results of PTE on changing α (minsup = 2%); (c) Pattern generation results of SYN100K on changing α

(minsup = 0.1%); (d) Pattern generation results of SYN100K on changing α (minsup = 0.2%); (e) Pattern
generation results of DTP on changing α (minsup = 5.5%); (f) Pattern generation results of DTP on
changing α (minsup = 6%).

4.5. Analysis of Algorithm Performance on Changing Length-Decreasing Support Constraints

Next, we test the mining performance of each algorithm on changing length-decreasing support
constraints. Figures 13–15 show the results of the tests for each dataset, where α is fixed to 1 in order
to reflect the rarity features into the mining processes of the rare graph pattern mining algorithms.
Figure 13a shows the different settings of length-decreasing support constraints for the PTE dataset
in this test, where the minimum support threshold is fixed to 1.5%. We show how the results of
performance evaluation for the algorithms change according to these constraint settings. As shown
in Figure 13b, Gaston and WRG-Miner have the same result regardless of the changing settings since
they are algorithms not considering any length-decreasing support constraint. Meanwhile, the other
algorithms have different runtime results depending on the constraint settings. As the condition is
changed from cond. 1 to cond. 5, FGM-LDSC and SVE-RGM operate faster because they can mine a
smaller number of pattern results as shown in Figure 13d. Meanwhile, memory consumption of the
algorithms is different from the tendency of the runtime test. Gaston and WRG-Miner also spend the
same memory regardless of the constraint settings.
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Figure 13. (a) Different settings of length-decreasing support constraints for PTE (α = 1); (b) Runtime
result for PTE (α = 1); (c) Memory usage result for PTE (α = 1); (d) Pattern generation result for PTE
(α = 1).

Figure 14. (a) Different settings of length-decreasing support constraints for DTP (α = 1); (b) Runtime
result for DTP (α = 1); (c) Memory usage result for DTP (α = 1); (d) Pattern generation result for DTP
(α = 1).
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Figure 15. (a) Different settings of length-decreasing support constraints for SYN100K (α = 1);
(b) Runtime result for SYN100K (α = 1); (c) Memory usage result for SYN100K (α = 1); (d) Pattern
generation result for SYN100K (α = 1).

While the runtime results of FGM-LDSC are differently shown in Figure 13b, its memory usage
results are not changeable as shown in Figure 13c. Meanwhile, the memory consumption of the
proposed algorithm becomes lower as the condition is changed from cond. 1 to cond. 5.

Figure 14 is the results of the DTP dataset, where the minimum support threshold is fixed to
5.5%. As in the case of Figure 13, the performance evaluation results of Gaston and WRG-Miner are
not changeable. The runtime results of FGM-LDSC and SVE-RGM are also changeable according
to the different settings of the length-decreasing support constraints. In the case of memory usage
performance, they also have better results compared to Gaston and WRG-Miner. Moreover, as α becomes
lower, the corresponding memory performance of the proposed algorithm also becomes better.

Figure 15 shows the experimental results for the SYN100K dataset, where the minimum support
threshold is fixed to 0.1%. In this test, all the compared algorithms have stable runtime, memory usage,
and pattern generation results as shown in the figure. However, the proposed algorithm guarantees
the best results in all cases. As shown in Figures 13–15 we can freely set the length-decreasing support
constraints according to the use of given data and obtain the corresponding various results.

From the results of the above performance evaluation tests, we can determine that the proposed
algorithm outperforms the state-of-the-art approaches in terms of runtime, memory usage, and pattern
generation aspects.

5. Discussion

Since the concept of frequent pattern mining was considered, enormous approaches have been
proposed in order to improve algorithm performance or discover more meaningful information
and knowledge compared to previous methods. Since types of data are less and they have simple
characteristics in the past, traditional frequent pattern mining methods were sufficiently able to
analyze such data. However, as accumulated data become more complicated, the traditional ones faced
technical limitations. Frequent graph pattern mining is a concept for dealing with various, complicated
data that can be expressed as graph forms, and a variety of relevant works have been studied actively.
We can consider a simple application example for frequent graph pattern mining. Let us assume that
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we are the marketing manager in a certain web-site for selling books. Then, we have to consider how
to establish strategies for raising the sales more effectively. We can obtain information of web-site
visits by various customers. In other words, if user A visits the main page, the book sales page and the
e-book device sales page in sequence, we can regard this information as a graph pattern (each page
becomes a vertex and each movement between the pages becomes an edge). Once such graph data are
collected by various customers, we can construct a graph database and determine the characteristics
of customer visits frequently occurring in the database by employing frequent graph pattern mining
algorithms. By analyzing such mining results, we can also suggest and apply various, effective sales
strategies such as exposing certain advertisements suitable for the relations of frequently occurring
visits (i.e., interval between the pages) and providing customers with special offers suitable for the
analyzed results.

Meanwhile, the proposed method focuses on static graph database formats. However, in recent
years, it has been important to deal with dynamic data on data streams as well as static data. Moreover,
there are various environments of data accumulations and different purposes of them in the pattern
mining area. Traditional pattern mining approaches were designed to process normal data (also called
certain or precise data). However, there is another type of data called uncertain data, which mean
each element composing data cannot be expressed clearly as presence or absence; instead, they have
their own existential probabilities. By considering the above issues, we can expand the proposed
method in order to operate on data streams and process uncertain graph data on the length-decreasing
support constraints and multiple minimum support constraints. In addition, we can also consider
how to find proper threshold settings in the proposed algorithm. In practice, it is hard to find and set
appropriate threshold settings because of different characteristics of given data and purposes of users.
However, if we employ the concept of top-k pattern mining, we do not need to consider how to find
and set reasonable thresholds. Moreover, this technique can also be integrated effectively with the
length-decreasing support constraints. By considering these issues, we can mine top-k graph patterns
for each graph length.

6. Conclusions

In this paper, we proposed a new graph pattern mining algorithm for mining frequent sub-graph
patterns on the basis of length-decreasing support constraints for considering different characteristics of
graph pattern sizes and multiple minimum support constraints for considering rarity of graph elements.
In addition, the SVE property for graph mining was suggested and applied into the proposed algorithm
in order to improve the mining efficiency of the proposed algorithm. The suggested graph pattern
pruning strategy based on the SVE property contributed to removing meaningless sub-graph patterns
in advance with the anti-monotone property maintained. Moreover, an efficient overestimation method
was devised to prevent unintended pattern losses from being caused. One of the fatal problems in
traditional frequent graph pattern mining was that this approach only used a single minimum support
threshold without any consideration of additional meaningful factors, such as pattern lengths and
characteristics of graph elements. Thus, traditional methods were unable to find meaningful frequent
graph patterns, or they had to generate a huge amount of unessential graph patterns according to
threshold settings. In contrast, the proposed algorithm could prevent meaningless graph patterns from
being generated and it also guaranteed efficient mining performance by using the length-decreasing
support constraints and the multiple minimum supports constraints for considering the characteristics
of graph pattern lengths and the rarity of graph patterns, respectively. The experimental results in
this paper also supported that the proposed algorithm outperformed the state-of-the-art methods in
various aspects such as runtime, memory usage and pattern generation. Moreover, as future work,
it is also possible to expand the proposed techniques and algorithm by considering other interesting
pattern mining areas that can be effectively integrated with graph pattern mining such as real time
pattern mining on data streams, uncertain pattern mining, and top-k pattern mining.

99



Symmetry 2016, 8, 32

Acknowledgments: This research was supported by the National Research Foundation of Korea (NRF) funded
by the Ministry of Education, Science and Technology (NRF No. 20152062051, and NRF No. 20155054624),
the Business for Academic-industrial Cooperative establishments funded Korea Small and Medium Business
Administration in 2015 (Grants No. C0261068), and the Railway Technology Research Project of Korea Agency for
Infrastructure Technology Advancement (No. 15RTRP-B082515-02).

Author Contributions: Unil Yun provided the main idea of this paper, designed the overall architecture of the
proposed algorithm, and wrote the core contents of this paper. Gangin Lee implemented the proposed algorithm
and wrote the main contents of this paper. Chul-Hong Kim investigated and reviewed references for graph
theories and graph pattern mining applications to contribute to enhance the introduction and related work parts.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, J.; Yun, U.; Pyun, G.; Ryang, H.; Lee, G.; Yoon, E.; Ryu, K. A blog ranking algorithm using analysis of
both blog influence and characteristics of blog posts. Cluster Comput. 2015, 18, 157–164. [CrossRef]

2. Lee, G.; Yun, U.; Ryang, H. Mining weighted erasable patterns by using underestimated constraint-based
pruning technique. J. Intell. Fuzzy Syst. 2015, 28, 1145–1157.

3. Ryang, H.; Yun, U.; Pyun, G.; Lee, G.; Kim, J. Ranking algorithm for book reviews with user tendency and
collective intelligence. Multimedia Tools Appl. 2015, 74, 6209–6227. [CrossRef]

4. Ryang, H.; Yun, U.; Ryu, K. Discovering high utility itemsets with multiple minimum supports.
Intell. Data Anal. 2014, 18, 1027–1047.

5. Yun, U.; Lee, G. Sliding window based weighted erasable stream pattern mining for stream data applications.
Future Gener. Comp. Syst. 2016, 59, 1–20. [CrossRef]

6. Yun, U.; Pyun, G.; Yoon, E. Efficient Mining of Robust Closed Weighted Sequential Patterns Without
Information Loss. Int. J. Artif. Intell. Tools 2015, 24, 1550007. [CrossRef]

7. Agrawal, R.; Srikant, R. Fast Algorithms for Mining Association Rules. In Proceedings of the 20th
International Conference on Very Large Data Bases, Santiago de Chile, Chile, 12–15 September 1994.

8. Ryang, H.; Yun, U.; Ryu, K. Fast algorithm for high utility pattern mining with the sum of item quantities.
Intell. Data Anal. 2016, 20, 395–415. [CrossRef]

9. Ryang, H.; Yun, U. Top-k high utility pattern mining with effective threshold raising strategies.
Knowl. Based Syst. 2015, 76, 109–126. [CrossRef]

10. Yun, U.; Lee, G. Incremental mining of weighted maximal frequent itemsets from dynamic databases.
Expert Syst. Appl. 2016, 54, 304–327. [CrossRef]

11. Yun, U.; Ryang, H. Incremental high utility pattern mining with static and dynamic databases. Appl. Intell.
2015, 42, 323–352. [CrossRef]

12. Yun, U.; Kim, J. A fast perturbation algorithm using tree structure for privacy preserving utility mining.
Expert Syst. Appl. 2015, 42, 1149–1165. [CrossRef]

13. Bifet, A.; Holmes, G.; Pfahringer, B.; Gavaldà, R. Mining frequent closed graphs on evolving data streams.
In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Diego, CA, USA, 21–24 August 2011; pp. 591–599.

14. Hintsanen, P.; Toivonen, H. Finding reliable subgraphs from large probabilistic graphs. Data Min.
Knowl. Discov. 2008, 17, 3–23. [CrossRef]

15. Thomas, L.T.; Valluri, S.R.; Karlapalem, K. MARGIN: Maximal Frequent Subgraph Mining. In Proceedings
of the 6th IEEE International Conference on Data Mining, Hong Kong, China, 18–22 December 2006.

16. Zhang, S.; Yang, J.; Cheedella, V. Monkey: Approximate Graph Mining Based on Spanning Trees.
In Proceedings of the 23rd International Conference on Data Engineering, Istanbul, Turkey, 11–15 April 2007.

17. Zou, Z.; Li, J. Mining Frequent Subgraph Patterns from Uncertain Graph Data. IEEE Trans. Knowl. Data Eng.
2010, 22, 1203–1218.

18. Dehmer, M.; Emmert-Streib, F. Quantitative Graph Theory: Mathematical Foundations and Applications;
CRC Press: Boca Raton, FL, USA, 2014; pp. 1–34.

19. Dehmer, M.; Sivakumar, L; Varmuza, K. Uniquely Discriminating Molecular Structures Using Novel
Eigenvalue—Based Descriptors. Match-Commun. Math. Comput. Chem. 2012, 67, 147–172.

100



Symmetry 2016, 8, 32

20. Emmert-Streib, F.; Dehmer, M. Information Theory and Statistical Learning; Springer: New York, NY, USA,
2009; pp. 1–24.

21. Zhang, Q.; Song, X.; Shao, X.; Zhao, H.; Srikant, R. Object Discovery: Soft Attributed Graph Mining.
IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 532–545. [CrossRef] [PubMed]

22. Badr, E.; Heath, L.S. CoSREM: A graph mining algorithm for the discovery of combinatorial splicing
regulatory elements. BMC Bioinform. 2015, 16, 1–15. [CrossRef] [PubMed]

23. Santosh, K.C. g-DICE: Graph mining-based document information content exploitation. Int. J. Doc.
Anal. Recognit. 2015, 18, 337–355. [CrossRef]

24. Eskandari, M.; Raesi, H. Frequent sub-graph mining for intelligent malware detection. Secur. Commun. Netw.
2014, 7, 1872–1886. [CrossRef]

25. Videla-Cavieres, I.F.; Rios, S.A. Extending market basket analysis with graph mining techniques: A real case.
Expert Syst. Appl. 2014, 41, 1928–1936. [CrossRef]

26. Hu, Y.H.; Chen, Y.L. Mining association rules with multiple minimum supports: A new mining algorithm
and a support tuning mechanism. Decis. Support Syst. 2006, 42, 1–24. [CrossRef]

27. Kiran, R.U.; Reddy, P.K. Novel techniques to reduce search space in multiple minimum supports-based
frequent pattern mining algorithms. In Proceedings of the 14th International Conference on Extending
Database Technology, Uppsala, Sweden, 21–25 March 2011.

28. Liu, B.; Hsu, W.; Ma, Y. Mining association rules with multiple minimum supports. In Proceedings of the
5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA,
USA, 15–18 August 1999.

29. Benhamou, B.; Jabbour, S.; Sais, L.; Salhi, Y. Symmetry Breaking in Itemset Mining. In Proceedings
of the International Conference on Knowledge Discovery and Information Retrieval, Rome, Italy,
21–24 October 2014.

30. Desrosiers, C.; Galinier, P.; Hansen, P.; Hertz, A. Improving Frequent Subgraph Mining in the Presence of
Symmetry. In Proceedings of the MLG Workshops, Firenze, Italy, 1–3 August 2007.

31. Vanetik, N. Mining Graphs with Constraints on Symmetry and Diameter. In Proceedings of the WAIM
Workshops, Jiuzhaigou Valley, China, 15–17 July 2010.

32. Han, J.; Pei, J.; Yin, Y.; Mao, R. Mining frequent patterns without candidate generation: A frequent-pattern
tree approach. Data Min. Knowl. Discov. 2004, 8, 53–87. [CrossRef]

33. Ozaki, T.; Etoh, M. Closed and Maximal Subgraph Mining in Internally and Externally Weighted Graph
Databases. In Proceedings of the 25th IEEE International Conference on Advanced Information Networking
and Applications Workshops, Singapore, Singapore, 22–25 March 2011.

34. Nijssen, S.; Kok, J.N. The Gaston Tool for Frequent Subgraph Mining. Electr. Notes Theor. Comput. Sci. 2005,
127, 77–87. [CrossRef]

35. Nijssen, S.; Kok, J.N. A quickstart in frequent structure mining can make a difference. In Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA,
USA, 22–25 August 2004.

36. Lee, G.; Yun, U. Frequent Graph Mining Based on Multiple Minimum Support Constraints. In Proceedings
of the 4th International Conference on Mobile, Ubiquitous, and Intelligent Computing, Gwangju, Korea,
4–6 September 2013.

37. Lee, G.; Yun, U.; Ryang, H.; Kim, D. Multiple Minimum Support-Based Rare Graph Pattern Mining
Considering Symmetry Feature-Based Growth Technique and the Differing Importance of Graph Elements.
Symmetry 2015, 7, 1151–1163. [CrossRef]

38. Seno, M.; Karypis, G. Finding frequent patterns using length-decreasing support constraints.
Data Min. Knowl. Discov. 2005, 10, 197–228. [CrossRef]

39. Yun, U. An efficient mining of weighted frequent patterns with length decreasing support constraints.
Knowl. Based Syst. 2008, 21, 741–752. [CrossRef]

40. Yun, U.; Ryu, K.H. Discovering Important Sequential Patterns with Length-Decreasing Weighted Support
Constraints. Int. J. Inf. Technol. Decis. Mak. 2010, 9, 575–599. [CrossRef]

41. Lee, G.; Yun, U. Frequent Graph Pattern Mining with Length-Decreasing Support Constraints. In Proceedings
of the Multimedia and Ubiquitous Engineering, Seoul, Korea, 9–11 May 2013.

101



Symmetry 2016, 8, 32

42. Dehmer, M.; Sivakumar, L. Recent Developments in Quantitative Graph Theory: Information Inequalities
for Networks. PLoS ONE 2012, 7, e31395. [CrossRef] [PubMed]

43. Kraus, V.; Dehmer, M.; Emmert-Sreib, F. Probabilistic Inequalities for Evaluating Structural Network
Measures. Inf. Sci. 2014, 288, 220–245. [CrossRef]

44. Samiullah, M.; Ahmed, C.F.; Fariha, A.; Islam, M.R.; Lachiche, N. Mining frequent correlated graphs with a
new measure. Expert Syst. Appl. 2014, 41, 1847–1863. [CrossRef]

45. Sugiyama, M.; Llinares-López, F.; Kasenburg, N.; Borgwardt, K.M. Significant Subgraph Mining with
Multiple Testing Correction. In Proceedings of the 2015 SIAM International Conference on Data Mining,
Vancouver, BC, Canada, 30 April–2 May 2015.

© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

102



symmetryS S

Article

Optimal Face-Iris Multimodal Fusion Scheme

Omid Sharifi and Maryam Eskandari *

Department of Computer and Software Engineering, Toros University, Mersin 33140, Turkey;
omid.sharifi@toros.edu.tr
* Correspondence: maryam.eskandari@toros.edu.tr; Tel.: +90-324-325-3300

Academic Editor: Angel Garrido
Received: 9 May 2016; Accepted: 7 June 2016; Published: 15 June 2016

Abstract: Multimodal biometric systems are considered a way to minimize the limitations raised by
single traits. This paper proposes new schemes based on score level, feature level and decision level
fusion to efficiently fuse face and iris modalities. Log-Gabor transformation is applied as the feature
extraction method on face and iris modalities. At each level of fusion, different schemes are proposed
to improve the recognition performance and, finally, a combination of schemes at different fusion
levels constructs an optimized and robust scheme. In this study, CASIA Iris Distance database is used
to examine the robustness of all unimodal and multimodal schemes. In addition, Backtracking Search
Algorithm (BSA), a novel population-based iterative evolutionary algorithm, is applied to improve
the recognition accuracy of schemes by reducing the number of features and selecting the optimized
weights for feature level and score level fusion, respectively. Experimental results on verification rates
demonstrate a significant improvement of proposed fusion schemes over unimodal and multimodal
fusion methods.

Keywords: multimodal biometrics; Backtracking Search Algorithm; match score level fusion; feature
level fusion; decision level fusion; optimization

1. Introduction

The recognition of human beings based on physical and/or behavioral characteristics is a trend
in places with high security needs. Unimodal biometric systems, which use single-source biometric
traits, usually suffer due to several factors such as a lack of uniqueness, non-universality and noisy
data [1]. In this respect, multimodality can be employed as a remedy in order to solve the limitations of
unimodal systems and improve the system performance by extracting the information from multiple
biometric traits.

The present work involves the consideration of face and iris biometric traits due to many similar
characteristics of face and iris modalities. Face recognition performance may be affected by variations
in terms of illumination, pose and expression [1]; on the other hand, non-cooperative situations
lead to degradation of iris recognition performance [2]. In this study, we investigate the effect
of information fusion on face- iris modalities at different levels of fusion in order to improve the
recognition performance and solve the problems raised by unimodal face and iris traits.

The common biometric systems modules can be categorized as signal acquisition, feature
extraction, and matching scores production. Generally, multimodal biometric systems fuse the
information at four different fusion levels such as: sensor level; match score level; feature level,
and; decision level fusion [1]. Match score level fusion is the most popular among all fusion
levels due to the ease in accessing and fusing the scores. It general, three different categories are
considered for match score level fusion, namely Transformation-based score fusion, Classifier-based
score fusion, and Density-based score fusion. In Transformation-based score fusion, prior to fusion,
the normalization of matching scores into a common domain and range is needed because of
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incompatibility of several biometric traits. In Classifier-based score fusion, the concatenated scores
from different classifiers are treated as a feature vector and each matching score is seen as an
element of feature vector. Density-based score fusion considers an explicit estimation of genuine
and impostor score densities that causes increasing implementation complexity [3]. In feature level
fusion, the original feature sets of different modalities are considered to involve richer information
about the raw biometric data compared to matching score level fusion.

On the other hand, concatenating the feature sets leads to high dimensionality and redundant
data, thus affecting the recognition performance [4]. Feature transformation and feature selection are
usually applied as a remedy to reduce the effect of dimensionality and redundancy of feature level
fusion [4]. Feature selection attempts to solve the problem by choosing an optimal subset of original
feature sets based on a certain objective function. Several feature selection methods such as Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), and Sequential Forward Floating Selection (SFFS),
have been implemented in different biometric systems for the purpose of optimization [1,5–8]. On the
other hand, feature transformation attempts to represent the feature vector in another vector space
by preserving the significant information and, subsequently, the dimension reduction. Principal
Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component
Analysis (KPCA), and Independent Component Analysis (ICA) have been applied in different biometric
recognition systems as feature transformation methods [9].

In decision level fusion, each biometric matcher individually decides on the best match based
on the provided input. In fact, the final decision is achieved by fusing the outputs of multiple
matchers [10]. In general, a decision is represented by a logical number d ε t1, 0u, where 1 means
“accept” and 0 means “reject”. From the classifiers’ perspective, making any decision di is performed
by comparing the matching scores si with a certain threshold Ti. Majority voting, behavior knowledge
space, weighted voting based on the Dempster-Shafer theory of evidence, AND rule and OR rule, etc.,
can be considered as decision level fusion techniques [11–14]. Mostly, this level of fusion is less studied
in literature due to providing less information content compared to matching scores and features.

This study aims to investigate different fusion schemes at score level, feature level, decision
level fusion and at a combination of aforementioned fusion levels using face and iris modalities.
The face and iris can be considered as complementary biometric traits in which iris patterns are easily
extracted from face images. They both can be acquired using a same camera simultaneously and
can be considered as independent biometric traits. Face and iris fusion techniques involve specific
feature extractors such as Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) and
Gabor filters, the investigation of local and global feature extractors on the face and iris with the
concentration on score and feature level fusion or combination of these two modalities, [1,6,15–17].
In [8,15,18], authors improve the recognition accuracy of face and iris modalities with different local
and global feature extractors at score level and feature level fusion. Well-known techniques such as
Weighted Sum Rule, Product Rule, Min Rule and Support Vector Machine (SVM) have been applied for
face-iris combination at score level fusion and Particle Swarm Optimization (PSO) is used to explore
the effect of feature selection on face and iris multimodal system performance. The authors of [17]
proposed an intelligent 2v-support vector machine-based match score fusion algorithm. The proposed
method integrates the quality of images in order to improve the recognition performance of face
and iris modalities. A face-iris multimodal biometric system based on matching score level fusion
using support vector machine (SVM) is applied in [1]. The authors implemented Discrete Cosine
Transformation (DCT) to extract facial features and log-Gabor filter for extracting the iris pattern.
The article improves the performance of multimodal face and iris biometrics through the selection
of optimal features using the Particle Swarm Optimization (PSO) algorithm and the use of SVM for
classification. A SVM-based fusion rule is also proposed in [16] to fuse two matching scores of face
and iris modalities. Authors of [6] proposed an appropriate pattern representation strategy to extract
the information using an over-complete global feature combination and, subsequently, the selection
of the most useful features has been performed by Sequential Forward Floating Selection (SFFS).
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In [19], an identification scheme has been proposed for improving the performance of face and iris
multimodal biometric systems. The scheme is based on RBF (radial basis function) neural network
fusion rules and applies both transformation-based score and classifier-based score fusion strategies.
A new method has been proposed in [20] to fuse face and iris biometric traits with the weighted score
level fusion technique to flexibly fuse the matching scores from these two modalities based on their
weights availability. A more recent scheme has been proposed by [21], which uses matching score
level and feature level fusion combination to improve the face and iris multimodal biometric systems.
Optimized Weighted Sum Rule fusion has been applied in their work for score level fusion along with
feature selection techniques such as Particle Swarm Optimization (PSO) and the Backtracking Search
Algorithm (BSA) at feature level fusion.

The state-of-the-art literature review on face-iris multimodal biometric systems involves score
level, feature level and/or a combination of these two levels of fusion. Therefore, this study
investigates the effect of decision level fusion on a face-iris multimodal biometric system; in particular,
the performance of the system is explored when considering threshold-optimized decision level fusion.
We also aim to design a scheme to involve the consideration of matching score level, feature level,
along with decision level fusion in order to investigate the effect of combining different fusion levels
in designing robust fusion schemes for face and iris multimodal system. In this study, the facial and
iris features are extracted using Log Gabor transform [22–24]. The Backtracking Search Algorithm
(BSA) [25] as a feature selection method is applied to select the optimal set of facial and iris features
at feature level fusion. At match score level fusion, the Weighted Sum Rule (WS) [26] is employed to
combine the face and iris scores; additionally, BSA is applied to select the set of optimized weights for
scores. Finally, at decision level fusion a threshold-optimized decision level fusion [27] is applied for
improving the recognition performance of the multimodal system. The state-of-the-art performance
of unimodal and multimodal schemes is reported on the CASIA Iris Distance [28] database in the
verification context using Receiver Operator Characteristics (ROC) curves, Total Error Rate (TER) and
Genuine Acceptance Rate (GAR) at a False Acceptance Rate (FAR) = 0.01%.

The contribution of the present work is to design a robust multimodal face-iris biometric system
by combining the advantages of score level, feature level and decision level fusion. Human faces
and irises can be considered as significant biometric traits in several surveillance, access control and
forensic investigations applications such as airport control boards, criminal investigations, sexual
dimorphism, and identity obfuscation applications. In addition, since the face and iris modalities are
acquired simultaneously using the same camera, the proposed scheme is motivated to construct a
robust multimodal biometric system. Therefore the proposed scheme can be applied practically in
individual and multimodal face-iris recognition systems by extracting left and right iris patterns and
then fusing them with facial features. The use of BSA as a robust feature and weight selection method
in the proposed scheme is of interest for the performance enhancement of the system and overcoming
the high computational time. On the other hand, the idea of using threshold-optimized points in the
multimodal system is useful in the presence of outliers. Additionally, this work proposes to use the
advantages of employing both irises with the face that provides higher verification performance while
combining with facial information. In fact, the main difference between this work and prior work done
on face and iris fusion is that it applies a hybrid scheme using score, feature and decision levels on
the faces and irises of the same subjects, which can be applied practically in any surveillance, access
control and forensic investigation applications.

The paper is organized as follows: Section 2 describes unimodal biometric systems, and the
detailed implementation of different fusion levels. This section presents the architecture of the
proposed scheme and the structure of implemented feature selection algorithm, as well. The detail
of experimental results, including the database description and assessment protocols, is presented in
Section 3, while Section 4 concludes this study.
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2. Materials and Methods

2.1. Unimodal Biometric Systems

Face and iris as complementary biometric traits form the general structure of unimodal system
in this study. They are considered as the most attractive areas for biometric schemes [29–35].
The unimodal face and iris system processing steps include preprocessing, feature extraction and
producing matching scores. For face recognition systems, in the preprocessing step, Active Appearance
Modeling (AAM toolbox) [36,37] is applied to detect face images based on the center position of the
left and right irises. In fact, the precise center position of both irises is obtained by the toolbox to
measure the angle of head roll that may happen during acquisition of face images. By using the center
positions and the measured angle, both eyes are aligned in the face image. In addition, each image is
resized to 60 ˆ 60, and following this step the resized image undergoes histogram equalization (HE)
and mean-variance normalization (MVN) [38] to reduce the effect of illumination. The facial features
are then extracted using Log-Gabor transform. Generally, on the linear frequency scale, the structure
of transfer function of the Log-Gabor transform is presented as [39]:
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should be held constant for varying values of ω0. In this work, the Log-Gabor transform includes
four different scales and eight orientations. The values are fixed based on the different trial results.
The produced Log-Gabor transformed image is then down-sampled by a fixed ratio on the trials as six.
Therefore, the final size of Log-Gabor transformed image is reduced to 40 ˆ 80. Finally, match scores
are produced using the Manhattan distance measurement.

On the other hand, common processing steps of an iris recognition system are segmentation,
normalization, feature extraction, and feature matching [39–41]. In this work, the Hough transform is
applied in the segmentation stage of the iris recognition system for localizing the circular iris and pupil
region, occluding eyelids and eyelashes, and reflections. The extracted iris region is then normalized
into a fixed rectangular block. In feature extraction step, the unique pattern of irises is extracted using
Log-Gabor transform with the same strategy as in face recognition. Therefore, the final size of the
Log-Gabor transformed iris image is set to 40 ˆ 80. Manhattan distance measurement is employed in
feature matching step to produce the match scores.

2.2. Fusion Techniques on Face and Iris Biometrics

Multimodal face-iris biometric system development is one of the most significant steps in the
present work. In this section, our aim is to describe the details of different fusion techniques for face
and iris modalities. Since the proposed scheme involves the consideration of score level, feature level
and decision level fusion, we describe each fusion technique separately at different subsections.

2.2.1. Feature Level Fusion

Feature level fusion concatenates the original feature sets of different modalities and, therefore,
this level of fusion involves richer information about the raw biometric data. In this study, Log-Gabor
transform is applied to face and iris biometric in order to extract rich and complex information on these
two modalities. Indeed, the complementary details of face and iris biometrics, especially when both
are acquired simultaneously with a same device, encourage us to fuse them using feature level fusion.
On the other hand, the concatenation of face and iris Log-Gabor feature sets leads to high dimension
vectors, resulting in the decrease of multimodal biometric system performance. Therefore, designing a
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scheme to retain the complementary information of the fused features of modalities with the capability
to solve the dimensionality and redundancy problems is motivated. Designing a robust scheme needs
the consideration of an effective feature selection method to select the optimized set of features by
removing the redundant and irrelevant data. Several feature selection methods have been applied
in the field of biometrics on fusion of face and iris modalities such as PSO. Recently, Backtracking
Search Algorithm (BSA), a novel population-based iterative evolutionary algorithm, has been applied
successfully on many numerical optimization benchmark problems [25]. BSA is compared with six
widely used optimization methods, including PSO. The result of this comparison shows that BSA
is more successful than the others [25]. Figure 1 depicts the block diagram of feature selection and
fusion of face and iris modalities. The proposed scheme includes BSA optimization algorithm in order
to select the optimized feature sets. The extracted texture features of face using Log-Gabor can be
concatenated with extracted Log-Gabor features of the left or right iris as in Figure 1a, and then the
best set of features is selected using BSA. In addition, we investigate the effect of considering both
irises (left and right) feature sets while they are combined with face features and optimized using the
BSA feature selection method, as in Figure 1b on recognition performance of the system. The final size
of the face and iris Log-Gabor vector for each image after concatenating the corresponding filtered
images is 32000 ˆ 1. Thus, in this paper we project the Log-Gabor vector of face and iris modalities
separately onto a linear discriminant space using Linear Discriminant Analysis (LDA) in order to
reduce the dimensionality and computational cost prior to feature concatenation, as shown in Figure 1.
In LDA, the eigenvectors used for projection is constrained by L-1, where L is number of subjects.
We then perform BSA on the concatenated features to further reduce the dimension of each fused
sample. Finally, the matching step is performed as depicted in the figure.

Figure 1. The block diagram of face-iris feature level fusion. LDA: Linear Discriminant Analysis; BSA:
Backtracking Search Algorithm.

2.2.2. Match Score Level Fusion

Matching score level fusion techniques include different rules that combine the produced scores
between the pattern vectors of different modalities. Generally, different matchers may produce
different scores such as distances or similarity measures with different probability distributions or
accuracies [3]. This kind of fusion technique covers several simple or complicated algorithms in order
to fuse the scores such as Sum Rule, Weighted Sum Rule, Product Rule, classification using SVM and
the estimation of scores density. Recent studies have shown similar and equivalent performance from
the aforementioned fusion techniques [3,4,8,15,18]. Match score level fusion for this study involves
the combination of left and/or right irises of a certain person with the same individual face scores.
Figure 2 depicts the structure of match score level fusion scheme when face scores are fused with only
one of the irises, as shown in Figure 2a, and when face scores are fused with both irises, as in Figure 2b.
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Figure 2. The block diagram of face-iris score level fusion. W1, W2 and W3: assigned weights for
different modalities.

In this study, the Weighted Sum Rule technique is used in order to combine face and iris scores.
Finding appropriate weights for different modalities is considered as an important issue to perform
efficient fusion and, subsequently, for performance enhancement. In this respect, in [26], a user-specific
weight strategy is used to compute the weighted sum of scores from different modalities. In general,
the computation of weights is done based on the Equal Error Rate (EER), the distribution of scores,
the quality of the individual biometrics or empirical schemes [5]. The Weighted Sum Rule (ws) of
different score matchers can be calculated as:

ws “ w1 ˆ s1 ` w2 ˆ s2 ` ¨ ¨ ¨ ` wn ˆ sn (2)

where w1, w2, . . . , wn are the assigned weights for different modalities, and s1, s2, . . . , sn are the
computed scores using individual biometric systems. The present work assigns optimized weights to
individual biometric systems using BSA feature selection algorithm.

2.2.3. Decision Level Fusion

In decision level fusion, each biometric matcher individually decides on the best match based on
the provided input. In fact, the final decision is achieved by fusing the outputs of multiple matchers [10].
In general, a decision is represented by a logical number d ε {1,0}, where 1 means “accept” and 0
means “reject”. From the classifiers’ perspective, making any decision di is performed by comparing
the matching scores si with a certain threshold Ti. Generally, this level of fusion is less studied in
the literature and is not popular practically due to providing less information content compared to
matching scores of different classifiers and the risk of performance degradation compared to score
level fusion. Majority voting, weighted majority voting, Bayesian decision fusion, Dempster-Shafer
theory of evidence, as well as the AND rule and OR rule can be considered as common decision level
fusion techniques.

In this study, we apply the idea of threshold-optimized decision level fusion proposed in [27] to
implement an optimized face-iris multimodal decision level fusion scheme. The threshold-optimized
decision level fusion combines the decisions by AND and OR rules in an optimal way in which it
guaranties to improve the fused classifiers in terms of error rates. The scheme is specifically useful
in the presence of outliers when the proposed OR rule is applied [27]. In face and iris recognition
systems, outliers can be caused by extraordinary expressions, poses, mis-registration, occlusions,
reflections, contrast, luminosity, off angles, rotation, blurring and focus problems. Therefore in this
work, we applied the threshold-optimized scheme using OR rule decision level fusion to combine face
and iris modalities as depicted in Figure 3. In fact, the optimal operation points of face ROC can be
fused with the optimal operation points of only one of the irises, as in Figure 3a, and also with the
optimal operation points of both irises, as in Figure 3b.
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Figure 3. The block diagram of face-iris decision level fusion. ROC: Receiver Operator Characteristics;
FRR: False Accept Rate; CRR: Correct Reject Rate

Generally, each biometric system is described by a ROC (Receiver Operator Characteristics), i.e.,
the Genuine Accept Rate (GAR = 1 – False Reject Rate (FRR)) as a function of False Accept Rate (FAR),
represented by GAR (FAR). The ROC is achieved by varying the threshold that discriminates the
genuine and impostor matching scores, thus generating different GAR and FAR. Each point on the
ROC, a certain pair (FAR, GAR) is called an operation point, corresponding to a specific threshold T
of the matching scores. The threshold-optimized scheme fuses multiple ROCs together simply using
the OR rule for performance enhancement. Therefore, the thresholds of matching scores are achieved
when the optimal operation points on ROC are calculated.

Given N independent biometric systems, each characterized by its ROC, (FARi, GARi), i = 1, ..., N.
In fact, the independency assumption is realistic in practice for fusion of different biometric modalities
such as the face and iris. The optimized OR rule decision fusion under the independent assumption
when the Correct Reject Rate for the impostors is defined as CRR = 1 ´ FAR can be described by:

max
FRRi| ś

FRRi“FRR

Nź
i“1

CRRi pFRRiq
(3)

That is the maximal value of the product of the correct rejection rates at a certain optimal
combination of FRRi, i = 1, ..., N, which satisfies

śN
i“1 FRRi “ FRR. In other words, at a fixed

FRR the optimal operation points of the component ROCs are achieved by optimizing Equation (3).
In fact, the optimization problem defined in Equation (3) is solved in a recursive manner by fusing
two arbitrary ROCs in order to generate a new optimal ROC. Then the computed threshold-optimized
ROC is fused with the next arbitrary component ROC, and so on. Therefore, each operation point on
the final fused ROC corresponds to N-optimized thresholds from N classifiers.

2.2.4. Architecture of the Proposed Scheme

This section describes the general structure of optimal proposed scheme for the fusion of face and
iris biometrics. The scheme combines score level, feature level and decision level fusion to investigate
the effect of combining different fusion levels in designing robust fusion schemes for a face and iris
multimodal system. The block diagram of proposed scheme is depicted in Figure 4. In fact, our aim
here is to design an optimal scheme by taking advantage of three aforementioned fusion modes,
and eventually obtain a more reliable and robust biometric system. Therefore, the proposed scheme
considers the combination of the face and left and right irises due to their complementary information.
Our investigation on feature level fusion clarifies that combining facial features with both irises and
then selecting an optimal set of features by using an appropriate feature selection method such as
BSA leads to the involvement of rich and complex information of biometric data, and thus improves
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the recognition performance. Therefore, as shown in the block diagram of the proposed scheme in
Figure 4, we first extract the optimal subset of face and both iris features at feature level fusion.

Figure 4. The block diagram of face-iris Proposed Scheme.

On the other hand, score level fusion contains rich information about the biometric input and
is easy to process. In many applications, score-level fusion is able to achieve optimal performance.
Therefore, the scheme attempts to fuse the complementary details of both irises with the face as shown
in Figure 4. The Weighted Sum Rule fusion technique (WS) is applied to fuse the left and right iris
scores separately with the face scores to achieve two optimal set of fused scores.

Decision level fusion schemes are simple and clear from a mathematical perspective. The proposed
scheme in this study combines the decisions using the OR rule in an optimal way, and guaranties an
improvement in the fused classifiers in terms of error rates. The produced scores from each modality
separately, the produced scores after combining and selecting the optimized features at feature level
fusion, along with the produced scores at match score level fusion using WS are considered as six
different sets of scores to fuse threshold-optimized ROCs. Therefore, in a recursive manner, two
arbitrary ROCs are fused to generate a new optimal ROC. Then the computed threshold-optimized
ROC is fused with the next arbitrary component ROC, and so on.

2.2.5. BSA Feature Selection Algorithm

BSA has been introduced by Civicioglu [25] to solve numerical optimization problems. BSA tries
to reduce the effect of problems faced in Evolutionary Algorithms such as excessive sensitivity to
control parameters, premature convergence and slow computation. This algorithm aims to search local
and global optimum in an optimization problem. It contains a single parameter, a simple, effective and
fast structure that is capable of solving multimodal problems with the ability to adapt itself to different
numerical optimization problems. BSA memory uses previous-generation experiences to generate trial
populations. The algorithm includes five processes that include initialization, selection-I, mutation,
crossover and selection-II. Algorithm 1 shows the general structure of BSA algorithm.

Algorithm 1 General Structure of Backtracking Search Algorithm [25].

1. Initialization
Repeat
2. Selection-I
Generation of Trial Population
3. Mutation
4. Crossover
End
5. Selection-II
Until stopping conditions are met
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The Initialization step of the BSA algorithm initializes the population P of size n and dimension
d randomly. The initial fitness value for each individual in P is calculated according to the fitness
function. The direction of search is calculated in the Selection-I step and is called historical population.
In fact, historical population is swarm-memory of BSA in which, initially, it is determined randomly
and at the beginning of each iteration is updated through advantages of P based on two random
numbers and randomly changing the order of individuals in historical population. BSA generates a
trial population T using crossover and mutation strategies in order to recombine the crossover and
mutation steps. The initial form of T is generated in the Mutation step that derives partial benefit from
its experiences from former generations. The final form of T is generated in the Crossover step using
a binary matrix (map) of size n ˆ d and a recombination of the crossover and mutation steps. BSA
considers a boundary control mechanism to regenerate the individuals beyond the search-space limit.
In the Selection-II step, the fitness value for each individual in T is calculated according to the fitness
function and, if the fitness values of T are better than fitness values in P, then P is updated by T to form
new individuals. Besides exploring local optimum, BSA finds the global optimum by selecting the
best individual and fitness value among all individuals in the current iteration. Therefore, the global
optimum is updated to be Pbest and the global optimum value is updated to be fitnessPbest.

Indeed, above-mentioned explanations show the relatively simple structure of BSA and, according
to its simple principle, it can be used in the implementation of different optimization problems. We use
BSA at feature level and score level fusion in this study to select the optimized subset of features and
weights. In score level fusion, we consider the idea of using BSA to select the optimized weights for
Weighted Sum Rule fusion technique in order to have a better evaluation on the face-iris multimodal
system. Basically, assigning appropriate weights in an efficient way to the scores produced using
different individuals biometric systems may guarantee the performance improvement of multimodal
biometric system.

BSA initialization step initializes population (P) and historical population (oldp) randomly between
0 and 1. The size of P and oldp is considered as the number of weights needed for fusing the scores
of different modalities. The initialized weights are then normalized using the constraint

řk
i“1 wi “ 1,

where k is the number of weights and w is the weights. The fitness function is defined as follows
for minimization:

F

˜
kÿ

i“1

wiEERi

¸
(4)

where wi is the set of optimized weights for different modalities and EERi is a set of Equal Error Rates
computed from the corresponding modalities scores.

The trial population T is considered as the original equation in [25] based on the following formula:

T “ P ` pmap ˆ Fq ˆ poldp ´ Pq (5)

where F controls the amplitude of search direction matrix poldp ´ Pq and it is set experimentally.
In feature level fusion, the selection of features is based on a binary bit string of length M consisting

of “0” and “1”. The value of M indicates the number of features, “0” means the feature is not selected
and “1” means the feature is selected. Therefore the dimension of initial population (P) and historical
population (oldp) is equal to M, and both are randomly initialized using binary numbers. In this study,
we compute the distance between reference and testing samples to find the match scores using the
Manhattan distance measurement and then evaluate the lowest distance values. Therefore, the fitness
function is defined to maximize GAR at FAR = 0.01%.

The original trial population T of BSA is modified in this study in order to generate binary
numbers based on the following formula:

T “ P < pmap > Fq > |poldp ´ Pq| (6)

where F controls the amplitude of search direction matrix |poldp ´ Pq| and it is set experimentally,

< and > are logical OR and AND operators.
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The stopping condition for both binary and weight selection BSA is set to maximum number of
iteration, or obtaining the optimal fitness value or failing to update the last best solution after 300
evaluations. If one of these three conditions is satisfied, the algorithm stops.

3. Results and Discussion

This section presents the detailed description of experimental setup, including database and
assessment protocol applied in the current work for evaluating the proposed combined level fusion.

The experiments are carried out on a publicly available database called CASIA-Iris-Distance.
The images in this database have been captured by a high-resolution camera, so both dual-eye iris
and face patterns are available in the image region with detailed facial features that is appropriate for
multimodal biometric information fusion [28]. Some samples of this database images are available in
Figure 5.

Figure 5. Sample of CASIA-Iris-Distance images.

The full database contains the total number of 2567 images of 142 subjects and the images have
been acquired at a distance of ~3 m from the camera [28]. The average size of extracted iris in this
work is 170 ˆ 150, and the average number of pixels between irises is 760. The availability of different
variations on CASIA-Iris-Distance database is summarized in Table 1.

Table 1. Availability of Different Variations for Face and Irises in CASIA-Iris-Distance Database.

Face Iris

Pose variations
‘

Occlusion-eyelash
‘

Facial expressions
‘

Occlusion-eyelid
‘

Occlusion-glasses
‘

Occlusion-glasses
‘

Occlusion-mustache
‘ Different noise factors (reflections, contrast,

luminosity, off angle, rotation, blurring and
focus problems)

‘
Distance images

‘
Distance images

‘

In this work, we extract both irises of each subject from the corresponding face image to fuse the
face and iris modalities. In order to validate the performance of unimodal and multimodal schemes in
this study, the whole database is divided into two independent sets called Set-I and Set-II. The first set
is used as the validation set to fix the parameters of feature level, score level and decision level fusion.
BSA parameters (population size, iteration, F and mix-rate) to find optimized features and weights,
and also estimation of the optimized thresholds, have been set using the validation set. This set (Set-I)
consists of 52 subjects, and each subject possesses 10 samples. In this study, F = 1, mix-rate-rate = 1,
population size and iteration are both set to 30 for binary BSA. On the other hand, for the weight
selection BSA, F = 1, mix-rate-rate = 1, population size and iteration are set to 20 and 100, respectively.
The dimension of search space for the binary BSA is the number of extracted features and for the
weight selection BSA, it is number of weights needed for performing weighted sum in the range of
[0.00, 1.00] with two-digit precision.
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In addition, we consider 90 subjects for Set-II, and each subject possesses 10 samples. This set is
divided into two equal partitions presenting five reference and five testing data for all the subjects
in the database. The partitioning of these two subsets (reference and testing) is performed 10 times
without any overlapping. Accordingly, in each trial 450 reference samples (90 ˆ 5) and 450 testing
samples (90 ˆ 5) are considered. Therefore, 450 genuine scores and 40,050 (90 ˆ 89 ˆ 5) imposter
matching scores are used to validate the verification performance analysis in this study. The results are
averaged over 10 different runs and reported as mean and standard deviations runs in the verification
context using ROC curves, Total Error Rate (TER) and Genuine Acceptance Rate (GAR) at False
Acceptance Rate (FAR) = 0.01%. Generally, TER is the sum of FAR and FRR, which is equal to twice
the value of EER. The implementation of all unimodal and multimodal biometric systems is done
using Matlab.

The first set of experiments analyzes the results of the implementation of different unimodal
recognition systems such as the left iris, right iris, and face. The experimental results are demonstrated
in Table 2 using Log-Gabor.

Table 2. Verification Performance and Minimum Total Error Rates of Unimodal Systems. TER: Total
Error Rate; GAR: Genuine Acceptance Rate; FAR: False Acceptance Rate.

Left Iris Right Iris Face

Minimum TER
(%)

GAR
(at 0.01% FAR)

Minimum TER
(%)

GAR
(at 0.01% FAR)

Minimum TER
(%)

GAR
(at 0.01% FAR)

6.93 ˘ 1.24 69.67 ˘ 4.10 6.24 ˘ 1.01 71.55 ˘ 3.35 2.88 ˘ 0.75 83.22 ˘ 1.63

In Table 2, the best verification performance belongs to the face unimodal system at 83.22%.
On the other hand, for the iris unimodal system, as shown in the table, the right iris achieves a better
verification and TER compared to the left iris. We consider the fusion of face and iris modalities using
different levels of fusion in order to observe the effect of fusion on the recognition performance. Thus,
as shown in Table 3, we continue the experiments at feature level fusion of face and iris biometrics.
Firstly, we perform the feature fusion of face and iris biometrics implemented in Figure 1 without
applying BSA, and then BSA as a feature selection strategy is used to investigate the effect of an
optimal feature selection algorithm on the verification performance.

Table 3. Verification Performance and Minimum Total Error Rates of Multimodal Biometric Systems at
Feature Level Fusion.

Scheme Minimum TER (%) GAR (at 0.01% FAR)

Feature fusion scheme implemented in Figure 1a
using left iris without BSA 2.15 ˘ 0.64 87.56 ˘ 2.94

Feature fusion scheme implemented in Figure 1a
using left iris with BSA 2.06 ˘ 0.71 88.37 ˘ 2.68

Feature fusion scheme implemented in Figure 1a
using right iris without BSA 2.06 ˘ 0.98 88.44 ˘ 3.05

Feature fusion scheme implemented in Figure 1a
using right iris with BSA 1.84 ˘ 0.73 90.16 ˘ 2.88

Feature fusion scheme implemented in Figure 1b
using both irises without BSA 1.03 ˘ 0.46 92.87 ˘ 1.65

Feature fusion scheme implemented in Figure 1b
using both irises with BSA 0.86 ˘ 0.34 94.91 ˘ 1.83

It can be observed from Table 3 that the performance of BSA-based schemes is superior to the
schemes without the BSA feature selection. The best performance in terms of TER and GAR is,
respectively, 0.86% and 94.91%, and it is achieved using the feature level fusion scheme presented in
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Figure 1b with BSA. In order to examine the effectiveness of score level fusion on combining face and
iris modalities, the experiments are carried out for this level of fusion and the results are reported in
Table 4. Comparing Tables 3 and 4 demonstrates that feature level fusion including optimal set of
feature sets achieves a slightly better performance in terms of TER and verification when one of the
irises is fused with facial features. However, as Table 4 indicates, match score level fusion outperforms
feature level fusion when both irises are combined with the face. The best performance of match score
level fusion in terms of TER and GAR is, respectively, 0.81% and 95.00%.

Table 4. Verification Performance and Minimum Total Error Rates of Multimodal Biometric Systems at
Score Level Fusion.

Scheme Minimum TER (%) GAR (at 0.01% FAR)

Score fusion scheme implemented in Figure 2a
using left iris 2.10 ˘ 0.63 88.17 ˘ 1.75

Score fusion scheme implemented in Figure 2a
using right iris 2.01 ˘ 0.77 88.76 ˘ 2.18

Score fusion scheme implemented in Figure 2b
using both irises 0.81 ˘ 0.48 95.00 ˘ 2.03

Table 5 shows the set of experiments at decision level fusion using the OR rule threshold-optimized
scheme implemented in Figure 3. The best TER and GAR is obtained using Figure 3b when the
face and both irises involved are at 0.58% and 96.87%. The optimized scheme achieves 1.87% and
1.96% improvement compared to the best verification performance of score level and feature level
fusion schemes. Finally, the last set of experiment in Table 6 evaluates the proposed combined level
fusion scheme and compares the corresponding result with achieved GAR and TER of each level of
fusion separately.

Table 5. Verification Performance and Minimum Total Error Rates of Multimodal Biometric Systems at
Decision Level Fusion.

Scheme Minimum TER (%) GAR (at 0.01% FAR)

Decision fusion scheme implemented in Figure 3a
using left iris 0.96 ˘ 0.28 91.15 ˘ 2.38

Decision fusion scheme implemented in Figure 3a
using right iris 0.94 ˘ 0.71 92.92 ˘ 3.01

Decision fusion scheme implemented in Figure 3b
using both irises 0.58 ˘ 0.32 96.87 ˘ 1.83

Table 6. Verification Performance and Minimum Total Error Rates of Proposed Multimodal Biometric
Systems and Different Levels of Fusions.

Scheme Minimum TER (%) GAR (at 0.01% FAR)

Feature fusion scheme implemented in Figure 1b
using both irises-with BSA 0.86 ˘ 0.34 94.91 ˘ 1.83

Score fusion scheme implemented in Figure 2b
using both irises 0.81 ˘ 0.48 95.00 ˘ 2.03

Decision fusion scheme implemented in Figure 3b
using both irises 0.58 ˘ 0.32 96.87 ˘ 1.83

Proposed Scheme 0.27 ˘ 0.41 98.93 ˘ 1.11

As the table demonstrates, the best performance is achieved using the proposed scheme since
it involves the consideration of each level of fusion advantage for performing the fusion of face and
iris biometrics. Specifically, as it is described in [27], the OR Rule threshold-optimized scheme is
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useful in the presence of outliers. Thus, involving this significant characteristic of the decision level
fusion scheme in our proposed scheme, along with consideration of optimized features and weights at
feature level and score level fusion, leads to a robust multimodal biometric system. Comparing the
results obtained from different levels of fusion with our combined level fusion shows the superiority
of the proposed scheme over all unimodal and multimodal schemes implemented in this study.
The proposed scheme performance improvement in terms of GAR and TER is obtained as 98.93% and
0.27%, respectively.

On the other hand, in order to compare our proposed scheme with state-of-the-art face-iris fusion
methods, we performed the fusion of face and iris using different fusion techniques on the CASIA-Iris
Distance database in Table 7. The experimental results performed in Table 7 show the superiority of
the proposed scheme over other face-iris multimodal biometric systems implemented in this study.
Recently, the Support Vector Machine (SVM), mainly as a popular method for classification, is used
in the area of statistics learning theory. Generally, SVM is targeted based on structural minimization
principle and maps the training data into a higher dimensional feature using the kernel trick to
construct an optimal hyperplane with large separating margin between two classes of the labeled
data. In this work, the radial basis function (RBF) has been applied as the basic kernel function by
iterative trials.

Table 7. Verification Performance and Minimum Total Error Rates of Different Multimodal Biometric
Systems and Proposed Scheme. PSO: Particle Swarm Optimization; SVM: Support Vector Machine.

State-of-the-Art Fusion Methods on Face and Iris Minimum TER (%) GAR (at 0.01% FAR)

Weighted Sum Rule [15] 2.01 ˘ 0.77 88.76 ˘ 2.18
Score concatenation [18] 1.49 ˘ 0.48 89.53 ˘ 1.67

SVM [16] 1.56 ˘ 0.71 91.92 ˘ 2.03
PSO and SVM [1] 1.06 ˘ 0.39 94.22 ˘ 1.48
Proposed scheme 0.27 ˘ 0.41 98.93 ˘ 1.11

The ROC analysis of the face unimodal system and multimodal biometric systems, including the
proposed scheme, is demonstrated in Figure 6. The ROC analysis covers part (b) of the implemented
schemes for each level of fusion.

Figure 6. ROC curves of face unimodal and multimodal systems of different schemes.
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On the other hand, Figure 7 compares the ROC analysis of proposed scheme and the OR rule
threshold-optimized decision level fusion.

Figure 7. ROC curves of threshold-optimized and proposed schemes.

As observed from the ROC curves, the proposed scheme outperforms unimodal and all
multimodal schemes implemented in this study.

4. Conclusions

In this paper, we have investigated the problem of combining different levels of fusion in a
face-iris multimodal biometric system framework. Our aim here was to implement different fusion
schemes and then compare them with a scheme, including their complementary advantages, in terms
of performance. Therefore, we have designed a robust multimodal face-iris biometric system by
combining the advantages of score level, feature level and decision level fusion. The proposed scheme
has applied Log-Gabor transform as the feature extraction method on face and iris modalities and,
subsequently, the corresponding features and scores have been employed to construct different fusion
schemes. We specifically have applied a threshold-optimized scheme at the decision level fusion step
of the proposed scheme that is useful in the presence of outliers. In addition, BSA as an effective and
recent feature selection method has been used with feature and score level fusion of the proposed
scheme to construct a more robust biometric system; this has been done by reducing the number
of features and improving the performance, and also optimizing the weights. In fact, based on the
experimental results provided in this study, we can attract the attention of new perspectives for face-iris
multimodal biometric systems that consider the combination of different levels of fusion, in particular
decision level fusion, to efficiently represent a robust system.
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7. Gökberk, B.; Okan İrfanoğlu, M.; Akarun, L.; Alpaydın, E. Learning the best subset of local features for face

recognition. Pattern Recognit. 2007, 40, 1520–1532. [CrossRef]
8. Eskandari, M.; Toygar, Ö.; Demirel, H. Feature Extractor Selection for Face-Iris Multimodal Recognition.

Signal Image Video Process. 2014, 8, 1189–1198. [CrossRef]
9. Zhang, D.; Jing, X.; Yang, J. Biometric Image Discrimination (BID) Technologies; IGI Global: Hershey, PA,

USA, 2006.
10. Nandakumar, K. Integration of Multiple Cues in Biometric Systems. Master’s Thesis, Michigan State

University, East Lansing, MI, USA, 2005.
11. Lam, L.; Suen, C.Y. Application of Majority Voting to Pattern Recognition: An Analysis of Its Behavior and

Performance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 1997, 27, 553–568. [CrossRef]
12. Lam, L.; Suen, C.Y. Optimal Combination of Pattern Classifiers. Pattern Recognit. Lett. 1995, 16, 945–954.

[CrossRef]
13. Xu, L.; Krzyzak, A.; Suen, C.Y. Methods for Combining Multiple Classifiers and their Applications to

Handwriting Recognition. IEEE Trans. Syst. Man Cybernet. 1992, 22, 418–435. [CrossRef]
14. Daugman, J. Combining Multiple Biometrics. Available online: http://www.cl.cam.ac.uk/users/jgd1000/

combine/combine.html (assessed on 28 October 2016).
15. Eskandari, M.; Toygar, Ö. Fusion of face and iris biometrics using local and global feature extraction methods.

Signal Image Video Process. 2014, 8, 995–1006. [CrossRef]
16. Wang, F.; Han, J. Multimodal biometric authentication based on score level fusion using support vector

machine. Opto Electron. Rev. 2009, 17, 59–64. [CrossRef]
17. Vasta, M.; Singh, R.; Noore, A. Integrating image quality in 2v-SVM biometric match score fusion. Int. J.

Neural Syst. 2007, 17, 343–351.
18. Eskandari, M.; Toygar, Ö.; Demirel, H. A new approach for Face-Iris multimodal biometric recognition using

score fusion. Int. J. Pattern Recognit. Artif. Intell. 2013, 27. [CrossRef]
19. Wang, Y.; Tan, T.; Wang, Y.; Zhang, D. Combining face and iris biometric for identity verification.

In Proceedinmgs of the 4th International Conference on Audio and Video Based Biometric Person
Authentication, Guildford, UK, 9–11 June 2003; pp. 805–813.

20. Sim, H.M.; Asmunia, H.; Hassan, R.; Othman, R.M. Multimodal biometrics: Weighted score level fusion
based on non-ideal iris and face images. Expert Syst. Appl. 2014, 41, 5390–5404. [CrossRef]

21. Eskandari, M.; Toygar, Ö. Selection of Optimized features and weights on face-iris fusion using distance
images. Comput. Vis. Image Underst. 2015, 137, 63–75. [CrossRef]

22. Jing, X.Y.; Yao, Y.F.; Yang, J.Y.; Li, M.; Zhang, D. Face and palmprint pixel level fusion and kernel DCV-RBF
classifier for small sample biometric recognition. Pattern Recognit. 2007, 40, 3209–3224. [CrossRef]

23. Yao, Y.; Jing, X.; Wong, H. Face and palmprint feature level fusion for single sample biometric recognition.
Neurocomputing 2007, 70, 1582–1586. [CrossRef]

24. Xiao, Z.; Guo, C.; Yu, M.; Li, Q. Research on log gabor wavelet and its application in image edge detection.
In Proceedings of 6th International Conference on Signal Processing (ICSP-2002), Beijing, China, 26–30
August 2002; pp. 592–595.

25. Civicioglu, P. Backtracking Search Optimization Algorithm for numerical optimization problems.
Appl. Math. Comput. 2013, 219, 8121–8144. [CrossRef]

117



Symmetry 2016, 8, 48

26. Jain, A.K.; Ross, A. Learning User-specific Parameters in a Multibiometric System. In Proceedings of
International Conference on Image Processing, New York, NY, USA, 22–25 September 2002; pp. 57–60.

27. Tao, Q.; Veldhuis, R. Threshold-Optimized decision-level fusion and its application to biometrics.
Pattern Recognit. 2009, 42, 823–836. [CrossRef]

28. Biometrics Ideal Test. Available online: http://biometrics.idealtest.org/dbDetailForUser.do?id=4 (assessed
on 30 August 2013).

29. Patil, H.; Kothari, A.; Bhurchandi, K. 3-D face recognition: Features, databases, algorithms and challenges.
Artif. Intell. Rev. 2015, 44, 393–441. [CrossRef]

30. Subburaman, V.B.; Marcel, S. Alternative search techniques for face detection using location estimation and
binary features. Comput. Vis. Image Underst. 2013, 117, 551–570. [CrossRef]

31. Gul, G.; Hou, Z.; Chen, C.; Zhao, Y. A dimensionality reduction method based on structured sparse
representation for face recognition. Artif. Intell. Rev. 2016. [CrossRef]

32. Bowyer, K.W.; Hollingsworth, K.; Flynn, P.J. Image understanding for iris biometrics: A survey. Comput. Vis.
Image Underst. 2008, 110, 281–307. [CrossRef]

33. Matey, J.R.; Broussard, R.; Kennell, L. Iris image segmentation and sub-optimal images. Image Vis. Comput.
2010, 28, 215–222. [CrossRef]

34. Galbally, J.; Ross, A.; Gomez-Barrero, M.; Fierrez, J.; Ortega-Garcia, J. Iris image reconstruction from binary
templates: An efficient probabilistic approach based on genetic algorithms. Comput. Vis. Image Underst. 2013,
117, 1512–1525. [CrossRef]

35. Neves, J.; Narducci, F.; Barra, S.; Proença, H. Biometric recognition in surveillance scenarios: A survey.
Artif. Intell. Rev. 2016. [CrossRef]

36. Huang, C.; Ding, X.; Fang, C. Pose robust face tracking by combining view-based AAMs and temporal filters.
Comput. Vis. Image Underst. 2012, 116, 777–792. [CrossRef]

37. Active Appearance Modeling. Available online: http://cvsp.cs.ntua.gr/software/AAMtools/ (accessed on
20 April 2013).

38. Pujol, P.; Macho, D.; Nadeu, C. On real-time mean-and- variance normalization of speech recognition
features. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP2006), Toulouse, France, 14–19 May 2006; pp. 773–776.

39. Arora, S.; Londhe, N.D.; Acharya, A.K. Human Identification based on Iris Recognition for Distance Images.
Int. J. Comput. Appl. 2012, 45, 32–39.

40. Masek, L.; Kovesi, P. MATLAB Source Code for a Biometric Identification System Based on Iris Patterns.
Bachelor’s thesis, the School of Computer Science and Software Engineering, The University of Western
Australia, Crawley, Australia, 2003.

41. Tan, C.W.; Kumar, A. A Unified Framework for Automated Iris Segmentation Using Distantly Acquired
Face Images. IEEE Trans. Image Process. 2012, 21, 4068–4079. [CrossRef] [PubMed]

© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

118



symmetryS S

Article

A Modified GrabCut Using a Clustering Technique to
Reduce Image Noise

GangSeong Lee 1, SangHun Lee 1,*, GaOn Kim 2,*, JongHun Park 2 and YoungSoo Park 1

1 Ingenium college of liberal arts, Kwangwoon university, Seoul 01897, Korea; gslee@kw.ac.kr (G.L.);
yspark@kw.ac.kr (Y.P.)

2 Department of plasmadiodisplay, Kwangwoon university, Seoul 01897, Korea; qwerty@kw.ac.kr
* Correspondence: leesh58@kw.ac.kr (S.L.); gaon@kw.ac.kr (G.K.); Tel.: +82-2-940-5287 (S.L.)

Academic Editor: Angel Garrido
Received: 31 March 2016; Accepted: 29 June 2016; Published: 14 July 2016

Abstract: In this paper, a modified GrabCut algorithm is proposed using a clustering technique to
reduce image noise. GrabCut is an image segmentation method based on GraphCut starting with
a user-specified bounding box around the object to be segmented. In the modified version, the
original image is filtered using the median filter to reduce noise and then the quantized image using
K-means algorithm is used for the normal GrabCut method for object segmentation. This new process
showed that it improved the object segmentation performance a lot and the extract segmentation
result compared to the standard method.

Keywords: median filter; K-means, image clustering; GraphCut; GrabCut; object segmentation

1. Introduction

Digital image processing deals with a wide variety of applications ranging from biology, military,
medical, space science, art, games and movie industries.

The object segmentation is an important step in image processing and analysis [1]. In computer
vision, segmentation divides the input image into background and objects. The purpose of the
segmentation is to simplify and make it easy to interpret or convert to more meaningful representation
of an image. Segmentation is one of the most difficult subjects in an digital image processing, and
many studies on this subject have been done to get more accurate results.

GrabCut method is based on object segmentation algorithm called GraphCut [2,3]. While GraphCut
algorithm segments an image without user intervention, GrabCut accepts an interest area defined by a
user and extracts objects using the clues given to get better results. Many studies have been done to
improve performance of GrabCut detecting objects in unknown regions [4,5].

In the proposed method, the image is smoothed using median filter and the quantized using
k-means clustering technique. Then, GrabCut extracts objects from the quantized image [6]. In this
way, we got improved performance.

2. Related Work

In general, object segmentation is one of the most fundamental tasks in image processing. Image
segmentation is to divide an image into a number of pixel sets on the basis of shape or area. In this work,
we following image filters and a clustering technique is applied for an efficient object segmentation.

2.1. Image Filter

Filtering is one of the main tasks of signal processing. Filtering is used to remove noise in the
image, to extract visual characteristics of interest, and to resample the image. Representative filters are
Gaussian filter, Mean, etc.
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Gaussian filter is used to remove the noise using the following equations:

Gpxq “ 1
σ

?
2π

exp
„´x2

2σ

j
(1)

Gpx, yq “ 1
2πσ2 exp

„´px2 ` y2q
2σ2

j
(2)

where σ is the standard deviation.
Mean filter is the representative noise removing filter and is defined as follows:

Opx, yq “ 1
MˆM

Mř
i,j

I px ` i, y ` jq
M P W
M “ 2N ` 1

(3)

where Ipx ` i, y ` jq is a neighbor pixel and W is a mask of size p2N ` 1q ˆ p2N ` 1q.

2.2. Image Segmentation

Segmentation is the process of dividing the digital image into a set of multiple pixels to simplify
the image representation. Typical methods of image clustering are Mean Shift (MS), Fuzzy C-Means
(FCM), etc. [7].

Mean shift (MS) is a procedure for locating the maxima of a given window area by selecting a
pixel (mode) most close to the averaged color, then moving the center of the window to the mode to
find local maxima repeatedly until it is converged [8,9]. The result of MS is good in low frequency areas,
but it has some difficulties to group high frequency areas. The following Figure 1 show the example.

Figure 1. MS clustering. (a) Original image; (b) Result image.

FCM is to overcome the difficulty of MS by considering belonging or membership degree into the
distance. Data-points close to a cluster center have a high belonging degree [10,11].

Let X “ x1, ¨ ¨ ¨ , xN Ď Rp a data set to be clustered, where p is feature dimension, Rp is a real
vector space, and N is the number of pixels. Each pixel of color image is expressed as feature vectors
like xk “ xk1, ¨ ¨ ¨ , xkp and center of cluster is V “ pv1, ¨ ¨ ¨ , vCq, where p is feature dimension and C is
the number of clusters. FCM calculates matrix U minimizing the target function JFCMpU, V|Xq .

JFCMpU, V |X q “
Cÿ

i“1

Nÿ
k“1

puikq
m

||xk ´ vi||2 (4)
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where
Cř

i“1
uik “ 1, and uik is membership degree that data k belongs to cluster i. Vj is the center of

cluster i, defined using Equation (5).

vi “ 1
Nř

k“1
uik

Nÿ
k“1

puikq
m

xk, my1 (5)

where uik is the mean value of xk using fuzzy constant m. One disadvantage of FCM is that the number
of clusters should be provided in advance. Figure 2 is the class membership map applying FCM
algorithm and Figure 3 is result of FCM clustering.

Figure 2. FCM class membership map. (a) Class 1; (b) Class 2; (c) Class 3.

Figure 3. FCM clustering. (a) Original image; (b) Result image.

Image segmentation can be accomplished also by using GraphCut. Boykov proposed GraphCut
to get optimized interactive image segmentation:

E pαq “ U pαq ` V pαq (6)

where α is a vector of either 0 or 1. 0 means background and 1 means object. Upαq is continuity
between adjacent pixels and Vpαq is a data term representing how much the data belongs to object
or background. Data term requires prior information about object and background, and provided
probability density function, data term calculated using Equation (7).

V pαq “
$’&
’%

ř
pPP

´logp
`

Ip |Hb
˘

i f αP “ 0ř
pPP

´logppIp |Ho q otherwise
(7)

where Hb and Ho are histograms of background and object, p is a pixel and P is a pixel set of an image.
Ip is the intensity of pixel P. Figure 4 is result of GraphCut algorithm that is another typical method of
image segmentation.
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Figure 4. GraphCut algorithm. (a) Original image; (b) Result image.

3. The proposed Method

The flow of proposed method is show in Figure 5.

Figure 5. A flowchart of the proposed method.

3.1. Clustering to Reduce Noise

Digital image can be contaminated during data transmission.

Nÿ
i“1

|Xmed ´ E| ď
Nÿ

i“1

|Y ´ Xi| (8)

where N is the size of data set. K-means clustering method is applied to the output of the filter.
K-means classifies the data set to the predefined number of classes. Let μi be the center of i-th cluster
and Si be the set of pixels belongs to cluster i. The variance of all the data set is defined as Equation (9).

V “
kÿ

i“1

ÿ
jPSi

ˇ̌
xj ´ μi

ˇ̌2 (9)

The goal is to find Si minimizing V. K-means starts with arbitrary initial values μi. Allocating
pixels to close μi and recalculating μi is repeated until it is converged.

JMSE “
Kř

i“1

ř
x«ωi

|x ´ μi|2

where μi “ 1
n

ř
x«ωi

x
(10)

Equation (10) is the simplest clustering method minimizing JMSE repeatedly. Figure 6 shows
applied the median filter in image.
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Figure 6. An image applied the median filter image. (a) Original image; (b) Result image.

3.2. Object Segmentation Using Improved GrabCut

GrabCut accepts an interest area defined by a user and extracts objects using the clue given.
Figure 7 shows trimap of foreground of GrabCut algorithm.

Figure 7. Composition of trimap; shows trimap of foreground (TF), background (TB) and unknown
region (TU).

Object and background is mixed in unknown region. Background TB is defined as Equation (11).

TB “ TF X rpTU Y Γ pzqq ‘ Ss (11)

where Γ pzq “
#

zn

ˇ̌̌
ˇ̌ ř
pPNpziq

∇g ppq y t

+
is the area greater than gradient. Symbol ‘ is a dilation operator

and S is a structure element for it.
A Gaussian mixture model is a probabilistic model that assumes all the data points are generated

from a mixture of a finite number of Gaussian distributions with unknown parameters and is given by:

p px |θ q “
Nÿ

i“1

p px |ωi, θi qP pωiq (12)

where i-th vector component is characterized by normal distributions with weights αi and a pair of
mean and covariance θi. ωi represents relative importance. αi is defined as follows:

0 ď αi ď 1 and
Mÿ

i“1

αi “ 1 (13)
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Parameters for GMM (Gaussian Mixture Model) of M components is expressed as Equation (14):

θ “ pμ1,μ2, . . . ,μM, . . . , θ2
1, θ2

2,
. . . ,θ2

M,α1,α2, . . . ,αMq (14)

TU is defined as follows:
TU “ TF ´ TB (15)

Figure 8 shows a result of the improved GrabCut algorithm.

Figure 8. Improved GrabCut algorithm. (a) Original image; (b) Result image.

4. Experiment and Discussion

The experiments were performed using about 400 photos such as figures, plants, food, etc.
Performance of GraphCut, standard GrabCut and proposed method is compared. Figure 9 shows

some results. GrabCut is better than GraphCut and, the proposed method shows better results than
GrabCut in most cases by detecting background in unknown area [12,13].

Evaluation is performed using precision and recall. Precision is the fraction of retrieved instances
that are relevant, while recall (also known as sensitivity) is the fraction of relevant instances that are
retrieved:

precision “ N pObjEX X ObjGTq
N pObjEXq (16)

recall “ N pObjEX X ObjGTq
N pObjGTq (17)

where N p¨ q is the number of pixels, ObjEX is the object and ObjGT is ground truth objects. Figure 10
shows the precision and recall of three methods. The proposed method gives the best result.

Experiments are performed using PSNR (Peak Signal to Noise Ratio). PSNR is the ratio between
the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of
its representation.

PSNR “ 10 ¨ log10

´
MAX2

MSE

¯
“ 20 ¨ log10

´
MAXI?

MSE

¯ (18)

MSE (Mean Squared Error) is the difference between the estimator and what is estimated. Where MSE
is defined as follows:

MSE “ 1
mn

m´1ÿ
i“0

n´1ÿ
j“0

||Ipi, jq ´ Kpi, jq||2 (19)
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Figure 9. (a) Original image; (b) GraphCut Algorithm; (c) GrabCut Algorithm; (d) Ref. [12]; (e) Ref. [13];
(f) Proposed Method.

Figure 10. Precision-recall result.

Table 1 shows the quantitative comparison of result experiments.
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Table 1. Result of experiment.as quantitative comparison.

Comparision Method Ref. [2] Ref. [13] Proposed Method

MSE 2748.65 2374.43 1308.17
PSNR 29.39 dB 34.17 dB 38.94 dB

5. Conclusions

In this paper, a modified GrabCut method is proposed using median filter and k-means clustering
technique to reduce image noise and to extract objects better. An image is preprocessed and then
used for the input of standard GrabCut. This method showed better performance than GraphCut
or standard GrabCut from the various and complex pictures like medical images, traffic images and
people images. This research should be extended further to detect objects in video, and this can be
used in many industrial applications.
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Abstract: An efficient surface area evaluation method is introduced by using smooth surface
reconstruction for three-dimensional scanned human body data. Surface area evaluations for various
body parts are compared with the results from the traditional alginate-based method, and quite high
similarity between the two results is obtained. We expect that our surface area evaluation method
can be an alternative to measuring surface area by the cumbersome alginate method.

Keywords: 3D scanner; 3D human model; surface area; surface reconstruction; alginate

1. Introduction

The surface area of human body parts provides important information in medical and medicinal
fields, and surface area computation of human body parts is generally a difficult problem. For example,
we need to know the accurate surface area when we have to determine the adequate amount of
ointment to apply. So far, alginate [1] is generally used to measure surface area. The surface areas of
body parts are modeled with alginate, and the models are cut into small pieces. These pieces are spread
onto a two-dimensional (2D) plane, and their areas are then measured on the plane, and the total
area of the surface is computed by summing the areas of all the pieces. Figure 1 illustrates the overall
process for measuring surface area by using alginate. Error is inevitably included in the process of
projecting a three-dimensional (3D) surface onto a 2D plane. Moreover, errors by human operators can
also accumulate in this process since it requires numerous manual operations.

Figure 1. Measuring the surface area of a hand by using alginate [1].

Recently, the rapid advances in 3D shape scanning technology have enabled us to easily obtain
geometric information of real 3D models. Three-dimensional shapes from 3D scanners are already
used in ergonomic design, e.g., in the garment, furniture, and automobile industries, as well as in
the digital content industry such as movies and animations. In this paper, we further extend the usage
of 3D scanned human data to medical and medicinal fields. It would be quite useful to utilize 3D
scanned human data to avoid the onerousness of the alginate method.
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Three-dimensional scanners usually generate polygonal approximation to human model, and its
polygon areas are summed to compute the desired surface area. However, this discrete method does
not consider the smooth surface property of human skin and the resulting surface area tends to be
smaller than the exact one. We prove this fact with some geometric objects whose exact area values are
known. Furthermore, we propose an effective area computation method to overcome the limitation of
the polygonal approximation. We reconstruct a smooth surface from the polygonal approximation to
reflect the smooth surface property of human body parts, thus reducing the error of area measurement.
A local part of the scanned data is selected by a user and reconstructed as a smooth surface; the surface
area is then accurately computed by using an analytic method.

We compared the surface areas measured by our method with the ones obtained by using alginate.
We set up 15 local parts of a human body, and we measured the areas of the local parts of eight people
by using alginate. Three-dimensional human models of the same eight people were also generated by
3D scanning. We selected 15 local parts of the 3D models using an intuitive sketch-based user interface
that we developed. We reconstructed smooth surfaces for the selected parts and computed the surface
areas from the reconstructed surfaces. We analyzes the similarity and the correlation between the area
measured by using alginate and the area computed from our reconstruction method, and found a
similarity of >95%. Therefore, we expect that our surface area measuring method can be an effective
alternative to measuring surface area, replacing the cumbersome alginate method.

The main contributions of this paper can be summarized as follows:

• We propose a simple and effective area computation method based on surface reconstruction for
the body parts of 3D scanned human models.

• The area computed using the surface reconstruction method has a 95% similarity with that
obtained by using the traditional alginate method.

• Our area computation method proves to be a possible substitute for the cumbersome
alginate method.

The rest of this paper is organized as follows. In Section 2 we briefly review some related
recent work on scanning technology and surface reconstruction, and in Section 3 we explain how
to reconstruct a smooth surface from polygonal meshes and how to compute the surface area from
the reconstructed surfaces. In Section 4 we compare the surface areas of various body parts measured
by our method with ones obtained by using the traditional alginate method and derive statistical
information. In Section 5 we conclude the paper and suggest some future research.

2. Related Work

Recent advances in 3D scanning technology have made it quite easy to achieve 3D shapes of
complex objects. Depending on the specific sensors such as lasers, patten lights, optical cameras,
and depth cameras, various types of 3D scanners have been developed. In general, 3D scanners can
be classified into three types [2]: Contact types, non-contact active types, and non-contact passive
types. Contact 3D scanners contact an object with a tiny, thin needle-like sensor and scan the surface
of the object. They can scan the front side of the object, but they hardly scan the side portions or
concave parts. Non-contact active 3D scanners use a laser to illuminate the object surface to measure
the distances or to recognize surficial curves. Non-contact passive 3D scanners use reflective visible
light or infrared light from the object to scan the surface of the object, instead of using laser light or
sonic waves.

Depending on the specific application, different types of 3D scanners can be used. For example,
whole-body 3D scanners [3,4] are widely used for ergonomic design in the garment, furniture,
and automobile industries. These whole-body 3D scanners are equipped with four wide-view,
high-resolution scanners, which rotate around the person to scan every angle. This high-powered
precision scan is able to capture even the smallest details, such as hair, wrinkles on clothes, and
buttons. The scanning process generates millions of triangulated surfaces, which are automatically
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merged and stitched together. A hand-held 3D scanner is similar to a video camera but captures in
three dimensions. It is extremely portable and can be used for medical and biomechanical research.
For example, portable oral scanners [5,6] are essential for implant surgical guidance and prosthetic
design in dentistry.

Even though 3D scanners provide accurate and detailed geometric data from real-world objects,
they are restricted to producing a discrete representation such as unorganized point clouds or
polygonal meshes. Moreover, these models can have serious problems for many practical applications;
these include irregularity, discontinuity, huge dataset size, and missing areas.

Body surface area (BSA) represents the whole area of a human body, and it is an important
quantity in the fields of medicine, pharmacy, and ergonomics. Direct BSA measurement uses paper
wrapping, bandage, alginate method and so on, but it is very burdensome work. BSA estimation
formula is generally determined by one’s height and weight, and many efforts have been made to find
more accurate estimation. Recently, new BSA estimation formulas have been proposed by using 3D
scanned human data [7–9]. Lee and Choi [10] compared alginate method and 3D body scanning in
measuring BSA. They reported that BSA measured by the 3D scanning method tended to be smaller
than that by the alginate method.

In this paper, we aim to measure the surface area of a selected region of 3D scanned human data.
Summing the polygonal area of the selected region can be one of the simplest ways of measuring
surface area. However, we take a different approach to obtain a more accurate result than from
a polygonal approximation. We reconstruct a smooth surface from the selected region and compute its
surface area based on analytic methods rather than on a simple polygonal approximation. Since smooth
surface reconstruction is highly important in our method, we briefly review the related techniques for
reconstructing a smooth surface from a polygonal mesh.

Vlachos et al. [11] introduced point-normal (PN) triangles for surfacing a triangular mesh. On each
triangle of a mesh, they created a cubic Bézier triangle using vertices and normals from the mesh.
However, this method is restricted to generating a G0-continuous surface across the triangle boundaries,
which is not suitable for measuring surface area.

Blending techniques are widely used for reconstructing a smooth surface in geometric modeling.
Vida et al. [12] surveyed the parametric blending of curves and surfaces. Depending on the number of
surfaces to be blended, various approaches have been proposed. Choi and Ju [13] used a rolling ball to
generate a tubular surface with G1-continuous contact to the adjacent surfaces. This technique can
be made more flexible by varying the radius of the ball [14]. Hartmann [15] showed how to generate
Gn parametric blending surfaces by specifying a blending region on each surface to be blended,
and reparameterizing the region with common parameters. A univariate blending function is then
defined using one of three common parameters to create a smooth surface. This method was extended
to re-parameterize the blending regions automatically in [16].

A more general blending scheme was introduced by Grim and Hughes [17]. They derived manifold
structures such as charts and transition functions from a control mesh and reconstructed a smooth surface
by blending geometries on overlapping charts using a blending function. Cotrina and Pla [18] generalized
this method to construct Ck-continuous surfaces with B-spline boundary curves. This approach
was subsequently generalized by Cotrina et al. [19] to produce three different types of surfaces.
However, these techniques require complicated transition functions between overlapping charts.

Ying and Zorin [20] created smooth surfaces of arbitrary topology using charts and simple
transition functions on the complex plane. This approach provides both C∞ continuity and local
control of the surface. However, the resulting surfaces are not piecewise polynomial or rational.
Recently, Yoon [21] extended this technique to reconstruct a smooth surface using displacement
functions. Compared to other methods [20,22,23], this method produces a smooth surface that
interpolates the vertices of a control mesh, which is an essential condition for measuring the surface
area from a smooth surface rather than a polygonal mesh. Therefore, we employ this method to
reconstruct a smooth surface and measure its surface area.
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3. Computing the Surface Area of 3D Scanned Human Data

In this section we propose a method for computing the surface area of 3D scanned human data.
We reconstruct a smooth surface representing the selected region of 3D scanned human data. We then
compute the surface area of the selected region from the smooth surface rather than from the triangular
mesh, which gives us more accurate results.

3.1. Natural User Interface for Selecting the Region of Interest

Our system provides a user with a sketch-based interface for specifying the region on the 3D
scanned human data. A user marks a closed curve on a 2D screen using the sketch interface.
We determine the screen coordinates of the vertices of 3D human data using a graphics pipeline
and select only vertices with coordinates inside the marked curve [24]. Figure 2 shows a selected
region of 3D human data using the sketch-based user interface.

Figure 2. Selected region (in red) from the user’s 2D sketch (in blue).

3.2. Smooth Surface Reconstruction

We employ a method proposed by Yoon [21] to reconstruct a smooth surface from the selected
region of 3D human data. This section briefly introduces how to reconstruct a smooth surface for
the selected region.

Chart and transition function: For each vertex of the selected region, we define a chart in the 2D
complex plane. The chart shape is determined by the degree of a vertex. Figure 3 shows the charts
Ui and Uj of two vertices with different degrees 6 and 3, respectively. As shown in Figure 3, adjacent
charts share two regions and their correspondence is defined by a transition function θij(z) as follows:

z′ = θij(z) = zki/kj , (1)

where ki and kj represent the degrees of vertices vi and vj, respectively. For instance, let z = u+ iv = (u, v)
be the coordinates of z in the chart Ui, then the corresponding coordinates z′ in Uj can be computed by
z′ = z6/3 in Figure 3. For more information, refer to [21].

Local Surface Patches: For each chart Ui of a vertex vi, we construct a 3D surface patch Pi(u, v)
approximating the 1-ring neighborhood of vi. We employ a biquadratic surface patch Pi(u, v) defined
as follows:

Pi(u, v) =
[

1 u u2
]
⎡
⎢⎣

c1 c2 c3

c4 c5 c6

c7 c8 c9

⎤
⎥⎦
⎡
⎢⎣

1
v
v2

⎤
⎥⎦ , (2)

where c1 is set to vi for Pi(0, 0) = vi and other coefficient vectors are determined by approximating
1-ring neighboring vertices of vi in a least-squares sense. Figure 4 shows a local surface patch Pi(u, v)
of vi defined on chart Ui.
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Figure 3. Charts Ui and Uj and their transition function θij(z).

(a) (b)

Figure 4. (a) Chart Ui; (b) Pi(u, v) of vi defined on Ui.

Blending Surface: We reconstruct a smooth surface by blending the local surface patches. For this,
we need a blending function wi(u, v) on each chart Ui. To construct a blending function wi(u, v), we first
construct a piece of blending function η(u)η(v) on the unit square [0, 1]× [0, 1], where η(t) = 2t3 − 3t2 + 1.
We then apply conformal mapping to η(u)η(v), followed by rotating and copying. Figure 5 shows
the example of a blending function wi(u, v) on a chart of degree k = 6. Note that blending functions
wi(u, v) satisfy the partition of unit, ∑∀i wi(u, v) = 1, on overlapping charts.

k
zz
/4

=)()( vu ηη rotate & copy 

1

132)( 23
+−= tttη

1

1

1

Figure 5. Construction of a blending function.

Finally, our blending surface Si(u, v) on a chart Ui is defined by a weighted blending of local
patches Pj as follows:

Si(u, v) = ∑
j∈Iz

wj
(
θij(z)

)
Pj

(
θij(z)

)
, (3)

where Iz is a set of chart indices containing z = (u, v). Figure 6a shows polygon meshes of different
resolutions, generated from a sphere of radius = 5 cm and Figure 6b shows the corresponding blending
surfaces generated by using our method.
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(a)

(b)

Figure 6. (a) Polygon approximations to a sphere of radius = 5 cm; (b) blending surfaces reconstructed
from (a).

Measuring Surface Area: Now we can measure the surface area on a smooth blending surface
rather than a polygon mesh as follows:

A =
∫ ∫ √

|I| dudv, (4)

where |I| is the determinant of the first fundamental form matrix [25]. In general, a polygon mesh
generates a surface area smaller than that of a smooth surface. To compare and analyze the accuracy
of the proposed method, we measure the surface areas of three geometric objects with different
distributions of Gaussian curvature. All 3D shapes, including a human body, can locally be classified
into the following cases in terms of Gaussian curvature distributions.

Our first example is a sphere with positive Gaussian curvature (K > 0) everywhere. Figure 6a,b show
the polygon spheres with the different resolutions and the reconstructed smooth surfaces, respectively.
Table 1 compares two surface areas of polygon meshes and reconstructed surfaces in Figure 6.
The third column lists the surface areas and computation times measured from polygon meshes
and the fourth column lists those from reconstructed surfaces. The next two columns show errors
between measured areas and the exact one (π ≈ 314.15926535897), and their ratios are shown in the
last column.

Table 1. Comparison of surface areas (in cm2) and computation time (in ms) in Figure 6.

Cases # of Triangles Area (time) (a) Area (time) (b) Error (1) Error (2) (1)/(2)

1 60 272.46179 (0.03) 293.46164 (3) 41.69747 20.69763 2.01460
2 180 299.35513 (0.05) 308.94577 (9) 14.80413 5.21349 2.83958
3 420 307.64926 (0.06) 312.20694 (22) 6.510004 1.95233 3.33449
4 760 310.52105 (0.11) 313.14139 (40) 3.638208 1.01788 3.57431
5 1740 312.55352 (0.18) 313.73544 (92) 1.605738 0.42382 3.78871

We employ a hyperboloid as the second example, which has negative Gaussian curvature
(K < 0) everywhere. Figure 7a,b show the polygon approximations to a hyperboloid with different
resolutions and the reconstructed smooth surfaces, respectively. Table 2 compares two surface areas
of polygon meshes and reconstructed surfaces in Figure 7. The third column lists the surface areas
and computation times measured from polygon meshes and the fourth column lists those from
the reconstructed surfaces. The next two columns show errors between measured areas and the exact
one (π(2

√
6 +

√
2 sinh−1(

√
2)) ≈ 20.01532), and their ratios are shown in the last column.
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(a)

(b)

Figure 7. (a) Polygon approximations to a hyperboloid x2 + y2 − z2 = 1; (b) blending surfaces
reconstructed from (a).

Table 2. Comparison of surface areas (in cm2) and computation time (in ms) in Figure 7.

Cases # of Triangles Area (time) (a) Area (time) (b) Error (1) Error (2) (1)/(2)

1 32 17.19809 (0.03) 18.06601 (2) 2.81723 1.94931 1.44524
2 162 19.39459 (0.05) 19.68971 (8) 0.62073 0.32561 1.90636
3 722 19.87309 (0.09) 19.95923 (37) 0.14223 0.05609 2.53575
4 1682 19.95392 (0.17) 19.99632 (89) 0.0614 0.019 3.23158

Our last example is a torus which has various distributions of Gaussian curvature as shown in
Figure 8a. Table 3 compares two surface areas of polygon meshes and the reconstructed surfaces in
Figure 8. The third column lists the surface areas and computation times measured from polygon
meshes and the fourth column lists those from the reconstructed surfaces. The next two columns show
errors between measured areas and the exact one (8π2 ≈ 78.9568352), and their ratios are shown in the
last column.

(a)

(b)

Figure 8. (a) Polygon approximations to a torus of radii r = 1 cm and R = 2 cm; (b) smooth blending
surfaces reconstructed from (a).
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Table 3. Comparison of surface areas (in cm2) and computation time (in ms) in Figure 8.

Cases # of Triangles Area (time) (a) Area (time) (b) Error (1) Error (2) (1)/(2)

1 50 62.64104 (0.04) 71.86401 (3) 16.31580 7.09283 2.30032
2 200 74.53550 (0.05) 78.27505 (12) 4.42134 0.68179 6.48495
3 800 77.82805 (0.1) 78.87682 (45) 1.12879 0.08002 14.10562
4 1800 78.45343 (0.18) 78.92898 (98) 0.50341 0.02786 18.06795

Figure 9 shows graphical illustrations of Tables 1–3. Compared with a sphere (K > 0) and a
hyperboloid (K < 0), the surface reconstruction of a torus gives much smaller errors as shown in
Figure 9d, which means our method gives more accurate results for the objects with various curvature
distributions such as human body skin. Therefore, the surface reconstruction can be an effective
method for measuring surface areas on 3D scanned human data.
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Figure 9. Comparison of errors of (a) a sphere; (b) a hyperboloid and (c) a torus; (d) ratios of polygon
error to surface error.

4. Experimental Results

We implemented our technique in C++ (Microsoft Visual C++ 2015) on a PC with an Intel Core i7
2.00 GHz CPU with 8GB of main memory and an Intel R© Iris Pro Graphics 5200. In this section, we
explain our experiment results of area computation and compare the results with those obtained by
using alginate. We measure areas using alginate and compute areas using the proposed method from
8 subjects. Figure 10 shows a 3D scanned human model with different rendering options. We select 15
regions of interest to measure area: upper arms, lower arms, upper legs, lower legs, abdomen, back,
pelvis, hips, head, face, and neck. Figure 11 shows examples of the selected regions of interest.
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(a) (b) (c) (d) (e)

Figure 10. A 3D scanned human model with different rendering options: (a) skin texture; (b) front
view; (c) back view; (d) side view; (e) wireframe.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 11. Selected regions of interest: (a) left upper arm; (b) left lower arm; (c) left upper leg;
(d) left lower leg; (e) abdomen; (f) back; (g) pelvis; (h) hips; (i) head; (j) face; (k) neck.

We use the ratio of the difference to the average value to evaluate similarity as follows:

similarity = 1 − Ad f

Aav
, (5)

where Aag is the area value measured by using alginate, As f is the area value computed by surface
reconstruction, and Aav is the average value of Aag and As f . Ad f is the difference from the average and
Ad f = |As f − Aav| = |Aag − Aav|. We get the final similarity value for each body part by averaging
eight similarity values of eight pairs of area values for each body part.

Figure 12 shows eight pairs of area values of various body parts, which are used in the similarity
computation. The similarity values of upper arms, lower arms, upper legs, and lower legs are very
high, ranging from 97% to 99% (see Figure 12a–h). The correlations between two area values in
those body parts are >0.82. The similarity values in the pelvis and hips are slightly low, being about
95%. Sharp foldings in these parts bring in error in area measurement. Table 4 lists all similarity and
correlation values of local body parts.
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Table 4. Similarity and correlation between the results of alginate and the proposed surface
reconstruction methods.

Region Similarity Correlation

left upper arm 0.99232920 0.98651408
right upper arm 0.99050425 0.97836923
left lower arm 0.97442492 0.94239832

right lower arm 0.97565553 0.88847152
left upper leg 0.96904881 0.82351873

right upper leg 0.97294687 0.91311208
left lower leg 0.98809628 0.97643038

right lower leg 0.99031974 0.98423465
abdomen 0.98108957 0.97599424

back 0.97219378 0.89756368
pelvis 0.94844035 0.50870081
hips 0.95367837 0.64129904
head 0.96274736 0.63287971
neck 0.97341437 0.88813431
face 0.97505372 0.87872788

average 0.94925100 0.75430084
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Figure 12. Areas of body parts of eight people. The red broken line shows eight values of area obtained
by using alginate and the blue line shows those obtained by surface reconstruction; (a) areas of left
upper arms; (b) areas of right upper arms; (c) areas of left lower arms; (d) areas of right lower arms;
(e) areas of left upper legs; (f) areas of right upper legs; (g) areas of left lower legs; (h) areas of right
lower legs; (i) areas of abdomens; (j) areas of backs; (k) areas of pelvises; (l) areas of hips; (m) areas of
heads; (n) areas of faces; (o) areas of necks.

Finally, we should recall that both area values from alginate and from the proposed surface
reconstruction method are not true values. As mentioned before, error is inevitably included in
the process of projecting 3D surface onto a 2D plane and it is also attributable to human operators
who model surfaces and measure surface area by using alginate. In using surface reconstruction,
selected regions are different for different operators. Error is expected to be reduced when expert
operators measure the areas with both methods repeatedly. We concentrate on the similarity and
correlation between the two results in this work.

We have also measured the computation time of our method that includes surface reconstruction
and area computation. Compared to the simplest polygon area computation method, our method
takes more time as reported in Section 3. However, the absolute time is sufficiently short to be called
real-time. In our work, a 3D scanned human model has 250,000 triangles averagely, a face part with
3000 triangles and a back with 25,000 triangles took 24 ms and 206 ms to compute their surface
areas, respectively.

5. Conclusions

In this paper, we developed an analytic area computation method by reconstructing a smooth surface
from polygonal meshes. We applied this method to measure the areas of local body parts of 3D scanned
human models. We also measured areas of the same body parts using the traditional alginate method to
compare area computation results. The results showed 95% similarity between the two methods, and we
expect our area computation method can be an efficient alternative to using alginate.

In future work, we plan to extend our technique to measure the volume of volumetric data
obtained from computed tomography or magnetic resonance imaging, which can be expected to be
a useful diagnostic technique in the medical industry.
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Abstract: As face recognition technology has developed, it has become widely used in various
applications such as door access control, intelligent surveillance, and mobile phone security. One of
its applications is its adoption in TV environments to supply viewers with intelligent services and
high convenience. In a TV environment, the in-plane rotation of a viewer’s face frequently occurs
because he or she may decide to watch the TV from a lying position, which degrades the accuracy of
the face recognition. Nevertheless, there has been little previous research to deal with this problem.
Therefore, we propose a new fuzzy system–based face detection algorithm that is robust to in-plane
rotation based on the symmetrical characteristics of a face. Experimental results on two databases
with one open database show that our method outperforms previous methods.

Keywords: TV environment; Face recognition; In-plane rotation of the face; Fuzzy systems;
Symmetrical characteristics of a face

1. Introduction

With the rapid development of face recognition technology, it has been widely used in various
applications such as authentication for financial transactions, access control, border control, and
intelligent surveillance systems. Many studies on 2 dimensional (2D) face recognition have been
performed [1–6] with 2D face detection [7,8], and there have been also previous studies on 3D
face recognition [9,10]. They proposed fuzzy system–based facial feature fusion [1], convolutional
neural network (CNN)-based face recognition [2,4,6], CNN-based pose-aware face recognition [3],
and performance benchmarking of face recognition [5]. In addition, CNN-based face detection [7]
with performance benchmarking of face detection [8] was also introduced. Three-dimensional face
recognition based on geometrical descriptors and 17 soft-tissue landmarks [9] and the 3D data acquired
with structured light [10] were performed as well. However, most of these previous studies were done
with face images or data of high pixel resolution which are captured at a close distance from camera.

Along with the recent development of digital TV, studies have analyzed the viewers that use
intelligent TV technologies such as smart TV and Internet protocol TV [11–15]. An intelligent TV
provides a personalized service to the viewer. It includes a camera to obtain identity information in
order to receive consumer feedback [11–15]. In order to obtain the information of the viewer using this
camera, a face analysis system is used that includes the functionalities of face detection, recognition,
and expression recognition [11–15]. However, different from previous research on face detection and
recognition [1–10], because the camera is attached to the TV and the distance between the TV and
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viewer is far within the environment of watching TV, the input images are usually captured at a far
distance from the camera. Consequently, the image pixel resolution of a face area is low quality with
blurring of the face image. In addition, it is often the case that people watch TV while lying on their
sides. Therefore, the in-plane rotation of a face more frequently happens in images compared to the
out-of-plane rotation (yaw and pitch) of a face because the face image is captured while people are
watching TV, including the camera.

In previous research, An et al. adopted the methods of face detection and recognition in order
to determine the identity of a TV viewer [11]. However, this method is only available for frontal
face detection [11,13,16], and cannot be used for face recognition of in-plane or out-of-plane rotated
faces [11]. In order to build a smart home environment, Zuo et al. proposed a method for face and
facial expression recognition using a smart TV and home server, but this method did not deal with face
rotation either [13]. In order to recognize a rotated face, previous methods for multi-view face detection
have been based on the adaptive boosting (Adaboost) method [17–19]. However, an intensive training
procedure is required to build the multi-view face detector, and these studies did not deal with the
face recognition of rotated faces.

There are face detection and recognition studies that consider yaw, pitch, and in-plane face
rotations [20–32]. Liu proposed a face recognition method that considers head rotation (yaw and
pitch rotation) using Gabor-based kernels and principal component analysis (PCA), but this system
does not deal with in-plane rotation [20] although the in-plane rotation of a face frequently occurs
when a viewer watches TV while lying on his or her side. Mekuz et al. proposed face recognition
that considers in-plane rotation using locally linear embedding (LLE) and PCA [26]. They also
proposed face recognition methods that consider the in-plane rotation of a face using complex wavelet
transforms [27] and Gabor wavelets [28]. However, they only considered in-plane rotations at small
angles [26–28]. Anvar et al. proposed a method for estimating the in-plane rotation angle of a face
based on scale invariant feature transforms (SIFTs), but they did not deal with face recognition [30].
In other research [31], Du et al. proposed a face recognition method based on speeded-up robust
features (SURF). Their method can cope with in-plane rotated face images because of the characteristics
of the scale and the in-plane rotation invariance of SURF. However, they did not show the specific
experimental recognition results of in-plane rotated faces. In previous research [32], Lee et al. proposed
a method of detecting the correct face box from in-plane rotated faces in a TV environment, but
multiple face candidates are obtained by their method. Because all these candidates are used for face
recognition, the processing time and recognition error are high.

Recently, there have been studies conducted on keypoint detection of a face image in
References [33–35]. Using the results of the keypoint detection of a face image, the compensation of the
in-plane rotation of a face can be possible. However, in most previous studies including References [33–35],
keypoint detection has been done with face images of high pixel resolution which are captured at a
close distance to the camera. In contrast, the input images captured at a far distance from the camera
(maximum 2.5 m) are used in our research because our study aims at face recognition at far distances
in the environment of watching TV. Consequently, the image pixel resolution of a face area is so low in
addition to the blurring of a face image that the previous methods of keypoint detection are difficult to
apply to the face images used in our research.

Therefore, in order to address the shortcomings of previous research, we propose a new face
recognition algorithm that is robust to in-plane rotation based on symmetrical characteristics of a face
in the TV environment. Compared to previous work, our research is novel in the following three ways,
which are the main differences between our research and previous research [32].

‚ Multiple face region candidates for a face are detected by image rotation and an Adaboost face
detector in order to cope with the in-plane rotation of a face.

‚ The credibility scores for each candidate are calculated using a fuzzy system. We use four input
features. In general, the more symmetrical the left and right halves of the candidate face box
are, the sharper the gray-level difference histogram (GLDH) (which is calculated by the pixel
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difference between the symmetrical positions based on the vertical axis that evenly bisects the
face box) is. Therefore, we define the degree of sharpness of the GLDH as the Y score in this
research. Then, the differences in the Y score, pixels, average, and histogram between the left
and right halves of the candidate face box are used as the four features based on the symmetrical
characteristics of a face.

‚ The accuracy of face recognition is increased by selecting the face region whose credibility score is
the highest for recognition.

The remainder of this paper is organized as follows. In Section 2, we explain the proposed
fuzzy-based face recognition system. The experimental results with discussions and conclusions are
described in Sections 3 and 4, respectively.

2. Proposed Face Recognition System

2.1. Overview of the Proposed Method

Figure 1 shows the overall procedure of our face recognition system. Using an image captured by
the web camera connected to the set-top box (STB) for the smart TV camera (see the detail explanations
in Section 3.1), the region of interest (ROI) of the face is determined by image differences between
the captured and (pre-stored) background images, morphological operations, and color filtering [32].
The face region is detected within the face ROI by the Adaboost method and image rotation.

Figure 1. Flowchart of the proposed method.

Incorrect face regions can be removed using verification based on GLDH. With the face candidates,
four features are extracted. Using these four features and the fuzzy system, one correct face region
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is selected from among the candidates. This selected face region is recognized using a multi-level
local binary pattern (MLBP). In previous research [32], steps (1)–(4) and (7) of Figure 1 are used, and
steps (5) and (6) are newly proposed in our research. Through steps (5) and (6), one correct (upright)
face candidate can be selected among multiple candidates, which can reduce the processing time and
recognition error.

2.2. Detection and Verification of the Face Region

Using the image captured by the smart TV camera, the face ROIs are detected using image
differencing (between the pre-stored background and current captured images), morphological
operations, and color filtering [32]. The main goal of our research is face detection robust to in-plane
rotation (not facial feature extraction or face recognition). Therefore, we use the simple method of
using image differences in order to detect the rough ROI of the human body because this is not the
core part of our research. Because the final goal of our research is to detect the correct face region
(not the human body) from the roughly detected ROI of the human body, more accurate face ROI can
be located by morphological operation, color filtering, and the Adaboost face detector with image
rotation, which can reduce the error in the difference image caused by background change. That is,
after the difference image is obtained by differencing (between the pre-stored background and current
captured images), the area of the human body shows large difference values because the pixels within
this area are different between the background and current captured image. Then, the rough area of
the human body can be separated from other regions by image binarization. However, small holes
inside the area of the human body in the binarized image still exist because some pixel values within
this area can be similar between the background and current captured image. These holes give a bad
effect on the correct detection of a face, and they can be removed by morphological operation. Because
the area of the human body includes the hair, face, and body, the rough candidate region of a face can
be separated by color filtering. Then, within the remaining area, more accurate face regions can be
detected by the Adaboost face detector. To handle the in-plane rotation of a face, the multiple face
regions are located by the face detector according to the in-plane rotation of the image.

The resulting image is shown in Figure 2a. Using the face ROIs, the face regions are detected
by Adaboost and image rotation. The Adaboost algorithm is based on a strong classifier that is a
combination of weak classifiers [17]. In a TV environment, the in-plane rotation of a viewer’s face
frequently occurs because he or she can watch the TV from a lying position, which degrades the
accuracy of face detection. Therefore, we detected faces using Adaboost with the original image and
six (in-plane rotated) images (at ´45˝, ´30˝, ´15˝, 15˝, 30˝ and 45˝). Because Adaboost detection is
performed on the original image and six (in-plane rotated) images, multiple face boxes are detected
even for areas that contain a single face, as shown in Figure 2b.

Figure 2. Cont.
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Figure 2. Detection of the face regions. (a) Detected face ROIs; (b) Multiple detected face boxes;
(c) Results of the face detection using GLDH.

From the multiple detected face boxes, as shown in Figure 2b, we select candidates for correct
face boxes using GLDH, as shown in Figure 2c. We use the GLDH method to select the correct box
because it uses the characteristics of face symmetry to find a vertical axis that optimally bisects the face
region [32]. The GLDH is calculated by the pixel difference between the symmetrical positions based
on the vertical axis that evenly bisects the face box. Therefore, in general, the more symmetrical the left
and right halves of the candidate face box are, the sharper the GLDH is. The GLDHs are shown at the
bottom of Figure 3. The horizontal and vertical axes of the graphs respectively represent the gray-level
difference (GLD) and number of occurrences [36].

Figure 3. Y scores calculated using GLDH.

It is often the case that the face is originally rotated horizontally (yaw). Therefore, if we vertically
bisect the detected face box into two equal areas, the left and right areas are not inevitably symmetrical.
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Therefore, if the horizontal position of the vertical axis that evenly bisects the face box is defined as m,
our system calculates the GLDHs at five (horizontal) positions (m ´ 10, m ´ 5, m, m + 5, and m + 10).
If one of the five positions is the optimal vertical axis, the GLDH distribution at this position becomes a
sharp shape with little variation. In an environment where a user is watching TV, severe rotation (yaw)
of the user’s head does not occur because he or she is looking at the TV. Therefore, the calculation of
GLDH at these five positions can cope with all cases of head rotation (yaw). To measure the sharpness
of the GLDH distribution, the Y score is calculated as follows [32,37]:

Y score “ MEAN
σ2 (1)

where MEAN is the number of pixel pairs whose GLD falls within a specified range (which we set at
˘5) based on the mean of the GLDH distribution. A high MEAN represents a sharp GLDH distribution,
which indicates that the corresponding bisected left and right face boxes are symmetrical. In addition,
σ is the standard deviation of the distribution. Therefore, the higher the Y score, the more symmetrical
the left and right halves of the face box are with respect to the vertical axis (the sharper the GLDH is).

The number of the face candidates is reduced using the Y score, as shown in Figure 2c. However,
more than two face boxes still exist, even for a single face area, as shown in Figure 2c. Therefore,
if multiple face candidates are used for face recognition, the processing time and face recognition error
(false matches) will inevitably increase. In order to solve this problem, we propose a fuzzy-based
method to select one correct face candidate. Details are given in Sections 2.3 and 2.4.

2.3. Obtaining Four Features Based on Symmetrical Characteristics of a Face for the Fuzzy System

In previous research [38,39], the characteristics of frontal face symmetry were used for face
recognition. We also use four facial symmetry features as inputs for the fuzzy system. The four features
(F1, F2, F3, and F4) are shown below.

F1 “ 1 ´ Y score (2)

F2 “
H´1ÿ
y“0

W{2´1ÿ
x“0

|I px, yq ´ I pW ´ x ´ 1, yq|
W ˆ H

(3)

F3 “ |
H´1ÿ
y“0

W{2´1ÿ
x“0

I px, yq ´ I pW ´ x ´ 1, yq
W ˆ H

| (4)

F4 “ Chi ´ square distance between HistoL and HistoR (5)

In Equation (2), F1 is calculated from the Y score of Equation (1) after normalizing it to the range
of 0–1. In Equations (3)–(5), I(x, y) is the pixel value at position (x, y), and W and H are the width and
height of the detected face box, respectively. Equations (3)–(5) represent the differences between the
left and right halves of the candidate face box based on the vertical axis that evenly bisects the face box.
Equations (3) and (4) show the exemplary case where the vertical axis is positioned at the half of W.

In Equation (5), HistoL and HistoR respectively represent the histograms of the left-half and
right-half regions of a face box.

Features F2–F4 are normalized to the range of 0–1. As explained before, the higher the Y score,
the more symmetrical the left and right halves of the face box are with respect to the vertical axis.
In addition, F2–F4 show the dissimilarity between the left and right halves of the face box. Therefore,
the more symmetrical the left and right halves of the face box are with respect to the vertical axis, the
smaller F1, F2, F3, and F4 become. To prove this, we show the F1–F4 values according to the in-plane
rotation of a face as shown in Figure 4. As shown in Figure 4, the greater the amount of in-plane
rotation of a face region is, the larger the F1–F4 values. That is, the more symmetrical the left and right
halves of the face box are with respect to the vertical axis (the smaller the amount of in-plane rotation
of a face region is), the smaller F1, F2, F3, and F4 become. From that, we can confirm that the F1–F4

146



Symmetry 2016, 8, 75

values can be used as inputs for the fuzzy system to select one correct (upright) face candidate among
multiple candidates.

Figure 4. F1–F4 values according to in-plane rotation of a face. (a,c) Examples of detected face regions
including in-plane rotation; (b) F1–F4 values of (1)–(3) face regions of (a); (d) F1–F4 values of (1)–(3)
face regions of (c).

2.4. Determining a Single Correct Face Region Using a Fuzzy System

2.4.1. Definition of Fuzzy Membership Functions and Fuzzy Rule Tables

The four features F1, F2, F3, and F4 are used as inputs for the fuzzy system, and a single correct
face box is its output. To achieve this, we define the input and output membership functions as shown
in Figure 5a,b. Two linear functions respectively representing low (L) and high (H) are used as the
input membership function. Three linear functions respectively representing low (L), medium (M),
and high (H) are used as the output membership function. We acquire fuzzy output values using the
input and output membership functions and the defuzzification method [40–44].
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Figure 5. Input (a) and output (b) fuzzy membership functions.

As explained in Section 2.3, the more symmetrical the left and right halves of the face box are
with respect to the vertical axis, the smaller F1, F2, F3, and F4 become. Based on this fact, we designed
the fuzzy rule table shown in Table 1. The fuzzy output values of L and H respectively represent
smaller and larger amounts of symmetry of the left and right halves of the face box with respect to the
vertical axis.

Table 1. Fuzzy rule table for obtaining the fuzzy system output.

Input 1 (F1 of
Equation (2))

Input 2 (F2 of
Equation (3))

Input 3 (F3 of
Equation (4))

Input 4 (F4 of
Equation (5)) Fuzzy Output Value

L

L

L
L H

H H

H
L H

H M

H

L
L H

H M

H
L M

H L

148



Symmetry 2016, 8, 75

Table 1. Cont.

Input 1 (F1 of
Equation (2))

Input 2 (F2 of
Equation (3))

Input 3 (F3 of
Equation (4))

Input 4 (F4 of
Equation (5)) Fuzzy Output Value

H

L

L
L H

H M

H
L M

H L

H

L
L M

H L

H
L L

H L

2.4.2. Determining a Single Correct Face Region by Defuzzification

In this section, we explain the method for determining a single correct face region based on the
output value of the fuzzy system. With one input feature from F1–F4 of Equations (2)–(5), we can
obtain two outputs using two input membership functions, as shown in Figure 6.

Figure 6. Obtaining two output values from a single input feature (Fi) using two input
membership functions.

For example, if we assume that F1 (of (1) face box of Figure 5a) is 0.9, 0.1 (L) and 0.9 (H) can be
obtained from the L and H membership functions, respectively, as shown in Figure 6. Similarly, if F2,
F3, and F4 (of (1) face box of Figure 5a) are assumed to be 0.9, three pairs of 0.1 (L) and 0.9 (H) can
be obtained. Consequently, the four pairs of 0.1 (L) and 0.9 (H) are obtained from F1, F2, F3, and F4

using two input membership functions. Based on these four pairs of 0.1 (L) and 0.9 (H), we obtain
the combined set as {(0.1 (L), 0.1 (L), 0.1 (L), 0.1 (L)), (0.1 (L), 0.1 (L), 0.1 (L), 0.9 (H)), (0.1 (L), 0.1 (L),
0.9 (H), 0.1 (L)), ..., (0.9 (H), 0.9 (H), 0.9 (H), 0.1 (L) , (0.9 (H), 0.9 (H), 0.9 (H), 0.9 (H))}. With one subset,
we can determine a single value (0.1 or 0.9) and a single symbol (L or H) based on the MIN or MAX
methods [45,46] and the fuzzy rule table of Table 1.

For example, we can select 0.9 based on the MAX method with one subset (0.1 (L), 0.9 (H),
0.1 (L), 0.1 (L)). In addition, from the input of (L), (H), (L), and (L), we obtain (H) from Table 1.
Consequently, we obtain 0.9 (H), which we call the inference value (IV) in this paper. Because the
number of components in the combined set of {(0.1 (L), 0.1 (L), 0.1 (L), 0.1 (L)), (0.1 (L), 0.1 (L), 0.1 (L),
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0.9 (H)), (0.1 (L), 0.1 (L), 0.9 (H), 0.1 (L)), ..., (0.9 (H), 0.9 (H), 0.9 (H), 0.1 (L) , (0.9 (H), 0.9 (H), 0.9 (H),
0.9 (H))} is 16, we obtain 16 IVs.

We compared the performances of five defuzzification methods, the first of maxima (FOM),
last of maxima (LOM), middle of maxima (MOM), mean of maxima (MeOM), and center of gravity
(COG) [40–44]. FOM, LOM, MOM, and MeOM select one output value from the outputs determined
by the maximum IV (0.9 (M) of Figure 7a). That is, FOM selects the first output value (S2 of Figure 7a),
and LOM selects the last output value (S3 of Figure 7a). MOM selects the middle output ((S2 + S3)/2).
MeOM selects the mean of all the outputs. In Figure 7a, MeOM also selects the (S2 + S3)/2.

Different from FOM, LOM, MOM, and MeOM which are based on the maximum IV, COG selects
the center for the output based on the weighted average (S5 of Figure 7c) of all the regions defined by
all the IVs (the combined area of three regions R1, R2, and R3 of Figure 7b). The method for calculating
the weighted average by COG [42–44] is as follows:

S5 “
�

V rFpSq ˆ S dS�
V rFpSq dS

(6)

Here, V and S respectively represent the variables for the vertical and horizontal axes of Figure 7b,c
and rF is the combined area of three regions, R1, R2, and R3, of Figure 7b.

Finally, we select one correct face box whose calculated output value by the defuzzification
method is the largest. For example, if the output values of (1), (2), and (3) face boxes of Figure 5a are
respectively 0.51, 0.38, and 0.79, the (3) face box is finally selected as the correct one which is used for
face recognition.

Figure 7. Cont.
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Figure 7. Obtaining the final fuzzy output value by various defuzzification methods: (a) by the first
of maxima (FOM), last of maxima (LOM), middle of maxima (MOM), and mean of maxima (MeOM);
(b) by the combined area of three regions of R1, R2, and R3; and (c) by center of gravity (COG).

Figure 8 shows an example of the face boxes selected by the previous [32] and proposed methods.
As shown in this figure, a more correct face box (where the left and right halves of the face box are
more symmetrical) can be obtained using our method. Our system then recognizes faces using MLBP
on the selected face box [32]. A more detailed explanation of the face recognition method can be found
in [32].

Figure 8. Examples of the final selected face boxes by (a) the previous method and (b) our method.
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2.5. Face Recognition Using MLBP

The detected face regions are used for MLBP face recognition. MLBP is based on the local binary
pattern (LBP) method, which assigns a binary code to each pixel based on a comparison between the
center and its neighboring pixels [47]. MLBP is presented as a histogram-based LBP (concatenation of
many histograms), and the LBP is a particular case of MLBP. If the center value is equal to (or greater
than) the neighboring pixel, 1 is assigned; if it is less than the neighboring pixel, 0 is assigned. This
basic LBP is extended to a multi-resolution method that considers various numbers P of neighboring
pixels and distances R between the center and neighboring pixels as follows [32]:

LBPP,R “
P´1ÿ
p“0

spgp ´ gcq2p, where spxq “
#

1, x ě 0
0, x ă 0

(7)

where gc is the gray value of the center pixel, gp (p = 1, . . . , P–1) are the gray values of the p that has
equally spaced pixels on a circle of radius R, and spxq is the threshold function for x. The obtained LBP
codes are classified into uniform and non-uniform patterns. Uniform patterns include the number of
transitions between 0 and 1 and are 0, 1, or 2. Other patterns are non-uniform patterns. The uniform
patterns usually represent edges, corners, and spots, whereas the non-uniform patterns do not contain
sufficient texture information. The histograms of uniform and non-uniform patterns are obtained and
extracted from various sub-block levels, as shown in Figure 9 [32].

Figure 9. Example of histogram feature extraction using multi-level local binary pattern (MLBP)
at three levels. (a) Face image divided into various sub-blocks; (b) Examples of sub-block regions;
(c) Histograms for (b) obtained using local binary pattern (LBP); (d) Final facial feature histogram
obtained by concatenating the histograms of (c).

In order to extract the histogram features globally and locally, sub-blocks of the faces are defined
at three levels (the upper (6 ˆ 6), middle (7 ˆ 7), and lower (8 ˆ 8) face of Figure 9). Because the
larger-sized sub-blocks are used in the first level (upper face), the global (rough texture) features can
be obtained from this sub-block. That is because the histogram information is extracted from the larger
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area of a face. On the other hand, because the smaller-sized sub-blocks are used in the third level
(lower face), the local (fine texture) features can be obtained from this sub-block. That is because the
histogram information is extracted from the smaller area of a face.

As shown in Figure 9d, all of the histograms for each sub-block are concatenated in order to form
the final feature vector for face recognition. The dissimilarity between the registered and input face
histogram features is measured by the chi-square distance

χ2pE, Iq “
ÿ

i

pEi ´ Iiq2

Ei ` Ii
(8)

where Ei is the histogram of the registered face, and Ii is the histogram of the input face. By using the
histogram-based distance, a small amount of misalignment between two face images from the same
person can be compensated for. In order to deal with faces in various poses (horizontal (yaw) and
vertical (pitch) rotation), the histogram feature of the input face is compared with the five registered
ones (which were obtained when each user looked at five positions (left-upper, right-upper, center,
left-lower, and right-lower positions) on the TV during the initial registration stage) using Equation (8).
If the distance calculated by Equation (8) is less than a predetermined threshold, the input face is
determined to be a registered person.

3. Experimental Results and Discussions

3.1. Descriptions of Our Databases

Our algorithm is executed in the environment of a server-client-based intelligent TV. We aim to
adopt our algorithm into an intelligent TV that can be used in underdeveloped countries where people
cannot afford to buy smart TVs with high performance and cost. Therefore, most functionalities of the
intelligent TV are provided by a low-cost STB. Additional functionalities requiring a high processing
time are provided by a high-performance server, which is connected to the STB by a network. In this
environment, our algorithm is executed on a STB (microprocessor without interlocked pipeline stages
(MIPS)-based dual core 1.5 GHz, 1 GB double data rate 3 (DDR3) memory, 256/512 MB negative-and
(NAND) memory) and server (3.5 GHz CPU and 8 GB of RAM). The STP is attached to a 60 in TV.
Steps (1) and (2) of Figure 1 are performed on the STP, and steps (3) to (7) are performed on the server.

There are many face databases, e.g., FEI [48], PAL [49], AR [50], JAFFE [51], YouTube Faces [52],
the Honda/UCSD video database [53], and the IIT-NRC facial video database [54]. However, most of
them were not collected when a user was watching TV, and face images with in-plane rotation are not
included. Therefore, we constructed our own database, which consists of images of users watching
TV in natural poses, including face images with in-plane rotation. The database was collected using
15 people by separating them into five groups of three people for the experiments [32]. In order to
capture images of users looking at the TV screen naturally, each participant was instructed to watch TV
without any restrictions. As a result, we captured a total of 1350 frames (database I) (15 persons ˆ two
quantities of participants (one person or three persons) ˆ three seating positions (left, middle, and
right) ˆ three Z distances (1.5, 2, and 2.5 m) ˆ five trials (looking naturally)). In addition, a total
of 300 images (database II) (five persons ˆ three Z distances (1.5 m, 2 m, and 2.5 m) ˆ two lying
directions (left and right) ˆ 10 images) were collected for experiments when each person is lying on
his or her side [32]. For face registration for recognition, a total of 75 frames (15 people ˆ five TV gaze
points) were obtained at the Z distance of 2 m. Consequently, a total 1725 images were used for the
experiments. We make our all databases (used in our research) [55] available for others to use in their
own evaluations.

Figure 10 shows examples of the experimental images. For registration, five images were acquired,
as shown in Figure 10a, when each user looked at five positions on the TV. Figure 10b shows examples
of the images for recognition, which were obtained at various Z-distances, seating positions, and lying
directions. Figure 10c shows examples of database II.

153



Symmetry 2016, 8, 75

Figure 10. Cont.
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Figure 10. Examples of experimental images. (a) Images for face registration; (b) Images for recognition
test (database I); (c) Images for recognition test (database II).

3.2. Experimental Results of the Face Detection and Recognition with Our Databases I and II

For the first experiment, we measured the accuracy of the face detection using database I.
Accuracies were measured based on recall and precision, respectively, calculated as follows [32]:

Recall “ #TP
m

(9)

Precision “ #TP
#TP ` #FP

(10)

where m is the total number of faces in the images; #FP and #TP are the number of false positives and
true positives, respectively. False positives are cases where non-faces are incorrectly detected as faces.
True positives are faces that are detected correctly. If the recall value is close to 1, the accuracy of the
face detection is regarded as high. If the precision value is 1, all of the detected face regions are correct
with an #FP of 0. As explained before, we measured the accuracies of the face detection according to
the participant groups as shown in Table 2. In Table 2, recall and precision in the case of equal error
rate (EER) are shown in bold type. EER means the error rate when the difference between the recall
and precision is minimized in the trade-off relations between recall and precision. The reason why the
recall at the EER point for Group 2 was lower than those for the other groups is that the face detection
was not successful for the female who had hair occluding part her face and a small face. The reason
why the precision at the EER point for Groups 2 and 3 is lower than those for other groups is that the
colors of the subjects’ clothes were similar to those of the facial skin, which caused false positives.

In Table 3, we measured the face detection accuracies according to the Z distances of the subjects
in order to evaluate the effect of the change of image size (resolution). In Table 3, recall and precision
in the case of equal error rate (EER) are shown in bold type as well. The recall at the EER point at a Z
distance of 2.5 m is lower than for other cases because the face sizes are small, which caused the face
detection to fail.
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Table 2. Experimental results of the face detection according to participant groups (who have different
gaze directions).

Group Recall (%) Precision (%)

1

94.94 99.91
96.85 98.87
97.35 97.13
98.44 96.03
99.87 94.83

2

80.38 99.28
84.23 95.87
89.44 91.15
94.67 87.06
99.45 82.11

3

90.38 99.38
94.27 95.58
97.78 93.92
98.38 91.76
99.89 90.89

4

93.09 99.94
94.18 99.04
95.74 98.86
97.43 96.24
99.91 94.03

5

96.87 99.95
97.05 99.87
98.7 99.26

99.01 98.07
99.87 97.16

Average

91.132 99.692
93.316 97.846
95.802 96.064
97.586 93.832
99.798 91.804

Table 3. Experimental results of the face detection according to Z distance.

Z Distance (m) Recall (%) Precision (%)

1.5

96.54 99.99
97.42 99.02
98.06 98.34
99.13 97.24
99.53 96.92

2

91.08 99.97
93.12 97.67
95.78 96.59
97.59 93.33
99.93 91.87

2.5

86.98 99.58
90.98 96.71
93.34 93.72
96.26 90.17
99.42 86.32

Average

91.53 99.85
93.84 97.8
95.73 96.22
97.66 93.58
99.63 91.70
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The rows in each group (or Z distance) in Tables 2 and 3 show the changes of recall according to
the decreases of precision. Because the recall and precision usually have a trade-off relationship (with
a larger recall, a smaller precision is obtained, and vice versa), the changes of recall according to the
decrease of precision are presented in our paper in order to show the accuracies of our face detection
method more clearly through the various combinations of recall and precision.

In Tables 4 and 5, we respectively measured the accuracies of the face detection according to the
seating positions and the number of participants in each image. As shown in Tables 4 and 5, the face
detection accuracy is similar, irrespective of the seating position and number of people in each image.

Table 4. Experimental results of the face detection according to seating position.

Seating Position Recall (%) Precision (%)

Left 97.11 95.36
Middle 94.22 96.94
Right 95.78 96.15

Table 5. Experimental results of the face detection according to the number of people in each image.

Number of People Recall (%) Precision (%)

1 95.79 96.17
3 95.70 96.13

For the second experiment, we measured the accuracy of the face recognition with database I for
various defuzzification methods. As explained in Section 2.5, the MLBP histogram of the incoming
face is compared (using the chi-squared distance) to the five images of three individuals used to train
it and the nearest is chosen as the identity, provided the calculated matching distance is less than the
threshold. That is, it is a nearest neighbor classifier and only three identities are included in the tests.
We measured the accuracy of the face recognition using the genuine acceptance rate (GAR). As shown
in Table 6, the GAR by MOM with the MAX rule is higher than the GARs for other defuzzification
methods. Using the MOM with the MAX rule, we compared the GAR of the proposed method to that
of the previous one, as shown in Table 7, where it is clear that the GAR of our method is higher than
that of the previous method for all cases.

Table 6. Experimental results (genuine acceptance rate (GAR)) of the face recognition using the
proposed method and various defuzzification methods (%).

Method GAR (%)

MIN rule

FOM 83.34
MOM 90.65
LOM 90.86

MEOM 90.78
COG 90.73

MAX rule

FOM 92.10
MOM 92.93
LOM 91.70

MEOM 91.78
COG 91.92
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Table 7. Comparison of GARs of our method and the previous method according to participant group.

Group
GAR (%)

Previous Method [32] Proposed Method

1 90.76 92.02
2 93.2 94.09
3 82.89 90.53
4 96.98 98.08
5 87.33 89.93

Average 90.23 92.93

In Tables 8–10, we compared the face recognition accuracy (GAR) of our method to that of the
previous method with respect to the Z distance, sitting position, and number of people in each image,
respectively. The GAR for various Z distances was measured in order to evaluate the effect of the
change of the image size (resolution). The reason why the GAR at a Z distance of 2 m is higher than
those at other Z distances is that the registration for face recognition was done with the face images
captured at a Z distance of 2 m. The reason why the GAR at a Z distance of 2.5 m is lower than for
other cases is that the face sizes in the images are smaller. As shown in Tables 8–10, we confirm that
the GARs of our method are higher than those of the previous method in all cases, and the GARs of
our method are not affected by the Z distance, sitting position, or the number of people in each image.

Table 8. Comparison of GARs for our method and the previous method for various Z distances.

Z Distance (m)
GAR (%)

Previous Method [32] Proposed Method

1.5 89.11 92.22
2 92.97 96.35

2.5 88.61 90.49

Table 9. Comparison of GARs for our method and the previous method for various seating positions.

Seating Position
GAR (%)

Previous Method [32] Proposed Method

Left 91.46 94.53
Middle 93.55 94.53
Right 85.64 89.42

Table 10. Comparison GARs for our method and the previous method for various number of people in
each image.

Number of People
GAR (%)

Previous Method [32] Proposed Method

1 90.12 92.19
3 90.57 93.67

For the next experiments, we compared the GARs of various face recognition methods [47,56–60]
with our face detection method. In previous research [47], Ahonen et al. proposed LBP-based feature
extraction for face recognition. PCA has been widely used to represent facial features based on
eigenfaces [56,57]. Li et al. proposed a local non-negative matrix factorization (LNMF)-based method
for the part-based representation of facial features [58]. In a previous study [59], they proposed support
vector machine-discriminant analysis (SVM-DA)-based feature extraction for face recognition in order
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to overcome the limitations of the linear discriminant analysis method that assumes that all classes
have Gaussian density functions. Froba et al. proposed the modified census transform (MCT)-based
facial feature extraction method which uses the average value of a 3 ˆ 3 pixel mask, in contrast to the
LBP method which uses the center value of a 3 ˆ 3 pixel neighborhood [60]. As shown in Table 11, the
GAR of our MLBP-based recognition method with our face detection method is higher than those of
other methods. By using the MLBP histogram features of three levels, as shown in Figure 9, both local
and global features can be efficiently used for face recognition, which improves the accuracy of the
face recognition.

Table 11. Comparison of GARs of various face recognition methods with our face detection method
according to groups in the database.

Group
GAR (%)

LBP [47] PCA [56,57] LNMF [58] SVM-D [59] MCT [60] Previous Method [32] MLBP

1 63.03 61.03 50.53 72.44 61.01 90.76 92.02
2 57.02 45.99 42.1 77.59 53.79 93.2 94.09
3 50.47 43.11 48.45 62.61 47.13 82.89 90.53
4 68.08 67.25 61.51 79.63 68.53 96.98 98.08
5 68.4 66.45 65.46 77.76 65.11 87.33 89.93

Average 61.4 56.77 53.61 74.01 59.11 90.23 92.93

As shown in Table 12, the GARs of our MLBP-based recognition method with our face detection
method are higher than others irrespective of the change of image resolution which is caused by the
change of Z distance. As explained before, because the MLBP-based method can use both local and
global features for face recognition, the change of image resolution affects the facial features less using
MLBP compared to other methods. In Tables 11 and 12, all the methods were applied to the same data
of the face ROI detected by our face detection method for fair comparisons.

Table 12. Comparisons of GARs of various face recognition methods with our face detection method
for various Z distances.

Z Distance (m)
GAR (%)

LBP [47] PCA [56,57] LNMF [58] SVM-DA [59] MCT [60] Previous Method [32] MLBP

1.5 63.06 53.51 52.71 76.55 58.59 89.11 92.22
2 64.96 57.16 56.02 79.29 63.78 92.97 96.35

2.5 56.18 59.4 52.1 66.17 54.98 88.61 90.49

Our research is mainly focused on selecting one correct (upright) face image among multiple
(in-plane-rotated) face candidates (without the procedure of detecting eye positions or keypoints)
based on a fuzzy system, and on enhancing the performance of face recognition by using only the
selected face image. That is, the main goal of our research is face detection robust to in-plane rotation
(not facial feature extraction or face recognition). In all the methods of Tables 11 and 12, our face
detection method is also commonly used. That is, PCA means PCA-based face recognition with our
face detection method. In the same manner, LBP means LBP-based face recognition with our face
detection method. Therefore, Tables 11 and 12 just show the accuracies of various face recognition
methods with our face detection method. PCA, LBP and MCT are not originally designed to be robust
to in-plane rotation. Nevertheless, the reason why we selected PCA, LBP and MCT, etc. (instead
of state-of-the-art methods such as deep learning-based face recognition, etc.), for comparisons in
Tables 11 and 12 is to show that our face detection method can be used with any kind of traditional
or even old-fashioned method whose accuracies are lower than the state-of-the-art methods for face
recognition. If we use a recognition method showing high accuracies such as the deep learning-based
method in Tables 11 and 12, it is difficult to analyze whether the high accuracies of recognition are
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caused by our face detection method or the recognition method itself. Therefore, we include only the
comparisons with traditional methods in Tables 11 and 12.

For the next test, we performed an additional experiment with database II, which includes
extremely rotated faces, as shown in Figure 10c. The recall and precision of the face detection are,
respectively, 96.67% and 99.39%, which are similar to those of database I in Tables 2–5. As shown
in Table 13, the GAR of our method is 95.15%, which is higher than that of the previous method. In
addition, the GAR of our method is similar to those of Tables 6–10. This result confirms that our
method can be applied to highly rotated face images.

Table 13. Face recognition accuracy for images of highly rotated faces (database II).

Method GAR (%)

Previous method [32] 93.10
Proposed method 95.15

Figure 11 shows the examples for which our face recognition method is successful. Figure 12
shows the examples where the face recognition failed. The failures (left person of the left figure of
Figure 12 and right person of the right figure of Figure 12) are caused by false matching by the MLBP
method, although the correct face boxes are selected by our method.

Figure 11. Examples of the success of the face recognition.

Figure 12. Examples of the failure of the face recognition.

Our method (including fuzzy system–based face detection and MLBP-based face recognition)
does not require any training procedure. Even for face candidate detection, we used the original
Adaboost face detector provided by the OpenCV library (version 2.4.9 [61]) without additional training.
Therefore, all the experimental data were used for testing.

For the next experiment, we measured the processing time of our method. Experimental results
show that the processing time per each image is approximately 152 ms. Therefore, our system can
be operated at a speed of approximately six or seven frames per second. The processing time of our
method is smaller than that of the previous method (185 ms) [32] because only a single face region is
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selected per individual for recognition. The target applications for TV of our method are the systems
for automatic audience rating surveys, program recommendation services, personalized advertising,
and TV child locks. Face detection and recognition do not necessary need to be executed at every
frame (real-time speed) in these applications. Therefore, our system at the current processing speed of
approximately six or seven frames per second can be used for these applications.

Previous research on rotation-invariant face detection exists [62,63]. Their method can detect
the correct face region from the face images including various rotations of a face based on the real
Adaboost method [62]. However, the processing time of their method is so high (about 250 ms for
a 320 ˆ 240 image on a Pentium 4 2.4 GHz PC) that their method cannot be used in our system.
In previous research [63], they show that their method can also locate the correct face region from face
images including various rotations of a face by a neural network. However, the processing time of
their method is so high (about six seconds to process a 160 ˆ 120 pixel image on an SGI O2 workstation
(Silicon Graphics Inc., Sunnyvale, CA, USA) with a 174 MHz R10000 processor (Silicon Graphics Inc.,
Sunnyvale, CA, USA)) that their method cannot be used in our system, either. In our system, the total
processing time per one input image (1280 ˆ 720 pixels) by our method is taken as 152 ms on a desktop
computer (3.5 GHz CPU and 8 GB of RAM) including the processing time of steps (1) and (2) of Figure 1
on a set-top box (STB) (MIPS-based dual core 1.5 GHz, 1 GB DDR3 memory, 256/512 MB NAND
memory). Although the processing time of the previous methods [62,63] includes only the procedure of
face detection, our processing time of 152 ms includes both face detection and recognition. In addition,
the face images in our research are considerably blurred as shown in Figure 13c,d compared to those
in their research because our face images are acquired at far distance of a maximum of 2.5 m (from
the camera to the user). Therefore, their methods for face detection based on the training of the real
Adaboost or a neural network are difficult to apply to face images in our research.

Figure 13. Comparisons of the face images in our research with those in previous studies. (a,b) Input
images in our research; (c) Face images of (a); (d) Face images of (b).

In addition, we include the comparative experiments by our method with other rotation-invariant
face detection methods [63]. Because our fuzzy-based method is applied to both databases I and II
without any parameter tuning or training according to the type of database, the neural network of their
method [63] is trained with all the images of databases I and II for fair comparison, and the testing
performance are shown with databases I and II, separately.
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As shown in Table 14, the accuracy of face detection by our method is higher than that by the
previous method with database I. The reason why the accuracy of the previous method is lower than
that of our method is that the face images in database I are blurred and the pixel resolution of the face
images in database I is very low, as shown in Figure 13c. As shown in Table 15, the accuracy of face
detection by our method is also higher than that of the previous method with database II. The reason
why the accuracy of the previous method is lower than that of our method is that the pixel resolution
of face images in database II is very low and there also exist many variations of in-plane rotation of the
face images in addition to the blurring effect as shown in Figure 13d.

Table 14. Comparisons of the face detection accuracy of our method with previous method (database I).

Method Recall (%) Precision (%)

Previous method [63] 92.21 92.87
Proposed method 95.80 96.06

Table 15. Comparisons of the face detection accuracy of our method with previous method (database II).

Method Recall (%) Precision (%)

Previous method [63] 92.94 93.26
Proposed method 96.67 99.39

3.3. Experimental Results with Labeled Faces in the Wild (LFW) Open Database

As the next experiment, we measured the accuracies of the face detection with the LFW
database [64]. Because our research is mainly focused on face detection robust to the in-plane rotation
of a face, face images including other factors such as severe out-of-plane rotation and occlusion, etc.,
are excluded by manual selection for experiments among the images of the LFW database. This manual
selection was performed by four people (two males and two females). Two people are in their twenties
and the other two people are in their thirties. All four people are not the developers of our system and
did not take part in our experiments for unbiased selection. We gave instructions (to the four people)
to manually select the face images by comparing the images of the LFW database with those of our
databases I and II. Then, only the images (selected by the consensus of all four people) are excluded in
our experiments.

In addition, we included the comparative results of our method and the previous method [64]. As
shown in Table 16, the accuracies of face detection by our method with the LFW database are similar
to those with databases I and II of Tables 14 and 15. In addition, our method outperforms the previous
method [63] with the LFW database.

Table 16. Comparisons of the face detection accuracy of our method with the previous method
(LFW database).

Method Recall (%) Precision (%)

Previous method [63] 91.89 91.92
Proposed method 95.21 95.53

3.4. Discussions

There has been a great deal of previous researches on keypoint detection of a face image in
References [33–35]. However, in most previous research including References [33–35], keypoint
detection has been done with face images of high pixel resolution which are captured at close distance
to the camera. In contrast, the input images captured at a far distance from the camera (maximum
2.5 m) are used in our research because our study aims at face recognition at far distances in the
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environment of watching TV. Consequently, the image pixel resolution of a face area is so low (less
than 40 ˆ 50 pixels), in addition to the blurring of the face image as shown in Figure 13c,d, that the
previous methods of keypoint detection or eye detection are difficult to apply to the face images used
in our research.

As an experiment, we measured the accuracies of eye detection by the conventional Adaboost eye
detector [17] and subblock-based template matching [65]. Experimental results showed that the recall
and precision of eye detection by the Adaboost eye detector within the detected face region were about
10.2% and 12.3%, respectively. In addition, the recall and precision of eye detection by subblock-based
template matching within the detected face region were about 12.4% and 13.7%, respectively. These
results show that reliable eye positions or keypoints are difficult to detect in our blurred face images of
low pixel resolution. Therefore, the procedures of detecting keypoints, alignment (removing in-plane
rotation), and face recognition cannot be used in our research.

To overcome these problems, we propose the method of selecting one correct (upright) face image
among multiple (in-plane-rotated) face candidates (without the procedure of detecting eye positions or
keypoints) based on a fuzzy system, and enhancing the performance of the face recognition by using
only the selected face image.

If we synthetically modify (manually rotate) the images of the open dataset, the discontinuous
region (between the face and its surrounding areas) occurs in the image as shown in Figure 14b (from
the YouTube dataset) and Figure 14e (from the Honda/UCSD dataset), which causes a problem in
face detection and the correct accuracy of face detection is difficult to measure with these images.
In order to prevent the discontinuous region, we can rotate the whole image. However, the background
is also rotated as shown in Figure 14c,f, where an unrealistic background (which does not exist in
the real world) is produced in the rotated image, which affects the correct measurement of the face
detection accuracy.

As explained before, as shown in Figure 13c,d, the pixel resolution of images used in our research
of face recognition is very low in addition to the blurring effect of a face image compared to images
in open databases such as the LFPW [33], BioID [34], HELEN [35], YouTube Faces (Figure 14a), and
Honda/UCSD (Figure 14d) datasets. These kinds of focused images of high pixel resolution cannot
be acquired in our research environment of watching TV where the user’s face is captured by a
low-cost web camera at the Z distance of a maximum of 2.5 m between the camera and user (as
shown in Figure 13c,d). Therefore, the experiments with these open databases cannot reflect the
correct measurement of the face recognition accuracy in the environment of watching TV. There is no
other open database (acquired at the Z distance of a maximum of 2.5 m) that includes large areas of
background and face images of in-plane rotation like our dataset includes, as shown in Figure 13c,d.

Our method cannot deal with occluded or profiled faces. However, the cases of occluded or
profiled faces do not occur in our research environment where the use is usually watching TV, as
shown in Figure 10. That is because more than two people do not occlude their faces and a profiled
face caused by the severe out-of-plane rotation of a face cannot happen when watching TV. Therefore,
we do not consider the cases of occluded or profiled faces in our research.
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Figure 14. Example of images of YouTube and Honda/UCSD databases. (a) Original image of YouTube
database [66]; (b) Image where cropped face area is rotated and discontinuous region around face area
exists with (a); (c) Rotated image of YouTube dataset; (d) Original image of Honda/UCSD database [67];
(e) Image where cropped face is rotated and discontinuous region around face area exists with (d);
(f) Rotated image of (d).
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4. Conclusions

In this paper, we proposed a new fuzzy-based face recognition algorithm that is robust to
in-plane rotation. Among the multiple candidate face regions detected by image rotation and
the Adaboost face detector, a single correct face region is selected by a fuzzy system and used for
recognition. Experimental results using two databases show that our method outperformed previous
ones. Furthermore, the performance of our method was not affected by changes in the Z distance,
sitting position, or number of people in each image. By using a non-training-based fuzzy system, our
method does not require a time-consuming training procedure, and the performance of our method is
less affected by the kinds of databases on which it is tested.

As future work, we plan to research a way to combine our fuzzy-based method with a
training-based one such as neural networks, SVMs, or deep learning. In addition, we would research
a method of enhancing the accuracy of face recognition based on other similarity metrics (such as
human vs. machine d-prime) instead of the chi-square distance. In addition, the metric validity would
be also checked based on spatial-taxon contours instead of precision and recall when measuring the
accuracies of face detection.
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Abstract: As an increasing number of people purchase goods and services online, micropayment
systems are becoming particularly important for mobile and electronic commerce. We have designed
and developed such a system called M&E-NetPay (Mobile and Electronic NetPay). With open
interoperability and mobility, M&E-NetPay uses web services to connect brokers and vendors,
providing secure, flexible and reliable credit services over the Internet. In particular, M&E-NetPay
makes use of a secure, inexpensive and debit-based off-line protocol that allows vendors to
interact only with customers, after validating coins. The design of the architecture and protocol of
M&E-NetPay are presented, together with the implementation of its prototype in ringtone and
wallpaper sites. To validate our system, we have conducted its evaluations on performance,
usability and heuristics. Furthermore, we compare our system to the CORBA-based (Common
Object Request Broker Architecture) off-line micro-payment systems. The results have demonstrated
that M&E-NetPay outperforms the .NET-based M&E-NetPay system in terms of performance and
user satisfaction.

Keywords: mobile and electronic commerce; micro-payment; web services; electronic wallet;
mobile networks

1. Introduction

Mobile commerce is concerned with conducting business transactions and providing services
on portable, wireless devices over the Internet [1]. Due to the exponential growth of the number of
the Internet users and the maturation of wireless communication technologies, mobile commerce has
rapidly attained the interest of the business vanguard [2].

M-commerce benefits not only consumers, but also business. It is convenient for consumers to
purchase goods and services by using their mobiles. M-commerce enables transactions to be conducted
in a high-volume, low-cost per-item way. It is obvious that m-commerce has enormous potentials.
However, the current micro-payment systems for m-commerce have the following three main problems.

A desirable protocol of micro-payment should support high-volume, low-cost per-item
transactions from vendors [3–10]. Several micro-payment protocols have been proposed for electronic
payment in m-commerce recently. The examples of such protocols include MPS (multiparty payment
scheme) [11], CMP (chaotic micro-payment protocol) [12], NetPay [13] and the recent ones for wearable
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devices and clouds [14–16]. Many of the proposed protocols, however, suffer the problems of the
dependence on online brokers and a lack of scalability and coin transferability. The interaction
between a client and a server in a CORBA-based NetPay system, for example, is mediated by
object request brokers (ORBs) on both sides. A problem of this technique is that each node of
CORBA has to run ORBs from the same product. In reality, it is difficult for ORBs provided by
different vendors to interoperate. In addition, the interoperability does not extend into higher-level
services, such as security and transaction management. Furthermore, specific advantages of particular
vendors would be lost in this situation. Because this protocol depends on a closely-administered
environment, it is unlikely that two random computers can successfully make Distributed Component
Object Model (DCOM) or Internet Inter-ORB Protocol (IIOP) calls [17]. As a reasonable protocol
for server-to-server communications, CORBA, however, has severe weaknesses in client-to-server
communications, especially when client machines are scattered across the Internet.

Middleware interfaces: The recently-developed NetPay makes use of an off-line micro-payment
model with a CORBA interface as a middleware that interconnects broker and vendor sites [18].
This prototype is suitable for ecommerce applications. In mobile environments where clients (and
possibly servers) keep moving, this requires, however, dealing with the changing network addresses
and unreliable connections. As a result, this mobility requirement adds additional constraints to the
system. Due to its tight coupling between clients and servers, it is obvious that CORBA is not well
suited for this environment. In order to overcome this barrier, in this paper, we present an off-line
micropayment model that uses web services rather than CORBA as the middleware. By using the
Simple Object Access Protocol (SOAP Web service protocol), the mobility requirement is dealt with by
proxies that route messages accordingly. Moreover, the sender of a message and the final recipient do
not have to be aware of the proxies. Web services offer greater advantages over CORBA, particularly
for developing mobile applications. They cater to a large number of users who use either browsers
or mobile devices. Web services add in a new functionality of interoperability, which is independent
of the development platforms and programming languages used. In particular, Web Services on the
.NET framework are widely available in object-oriented and distributed systems. As such, small and
enterprise applications enable connecting to each other over the Internet.

Evaluations: Rowley [19] and Sumak et al. [20] present comprehensive reviews on e-service
evaluation frameworks. The evaluations on specific and particular types of e-services, e-shops
and e-business include Barnes and Vidgen [21], Behkamal et al. [22], Parasuraman et al. [23],
Schubert et al. [24], and Janda et al. [25], In this work, we evaluate our system by using three types of
evaluations, which include not only user perceptions, but also system performance.

One of the big challenges for micro-payment systems is that e-coins should be allowed to be
spent at a wide range of vendors. Micro-payment systems should enable mobile users to leverage
buy-once-spend (almost)-anywhere behaviour. In this work, we extend NetPay into M&E-NetPay.
M&E-NetPay uses Web Service interfaces as a middleware for interconnecting the sites of brokers
and vendors. Web Service interfaces make it simple to transfer e-coins among vendors. E-coins
in M&E-NetPay are easily transferred between multiple vendors, so that M&E users can make
multiple purchases. Another challenge in the design of micro-payment systems is the minimization
of overheads on the servers of the sites of brokers and vendors. As a fully-distributed multi-tier
system deployed over several servers, M&E-NetPay is able to achieve the minimal downtime and
maximal competence. As reported in performance evaluations, the .NET framework architecture
4.0 [26] with Web Services in M&E-NetPay improves client-to-server communications. This leads to
greatly improving system performance. The architecture with Web Services provides fast, secure
and inexpensive communications amongst mobile users and vendor systems. In addition, the
M&E-NetPay architecture also supports servers running on different platforms and vendor applications
developed by using different programming languages. This allows an M&E-NetPay-enabled vendor
to act as a purchasing portal for existing non-M&E-NetPay supporting vendors. In particular, an
M&E-NetPay-enabled vendor redirects page accesses to these vendors and manages the debit of user
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e-coins. As such, existing vendors are encouraged to temporally use M&E-NetPay micropayment
services for dynamic registration.

In summary, we design and develop M&E-NetPay in a way that attempts to address the
three above-mentioned problems.

The major contributions of this paper are as follows:

‚ We present a novel micro-payment model of M&E-NetPay and its architecture.
‚ A new way for the deployment model with a thin-client architecture and Web service interfaces is

proposed, i.e., HTML and Wireless Markup Language (WML)-based interfaces for customers.
‚ We have implemented the prototype of M&E NetPay including one broker and two vendor

sites, which are based on the .NET framework using C# and Active Server Pages (ASP.NET).
In particular, two vendor sites of ringtones and wallpaper are implemented.

‚ The three types of evaluations have been performed on the M&E-NetPay prototype. We
compare micro-payment with non-micro-payment in terms of usability, performance and
heuristic assessment.

The rest of this paper is organized as follows. Section 2 describes the architecture of M&E-NetPay.
The protocol and interactions of M&E-NetPay are given in Section 3. Section 4 presents the
implementation of the M&E-NetPay prototype. Section 5 reports the evaluations on the system,
followed by related work and comparisons in Section 6. We conclude this paper in Section 7.

2. M&E-NetPay Architecture

In this section, we outline the architecture of M&E-NetPay, including the hardware and
software architectures.

2.1. M&E-NetPay Software Deployment Architecture

Taking into account the general requirements on performance, security, availability and
serviceability, we designed the deployment architecture of M&E-NetPay as shown in Figure 1.

Figure 1. The basic deployment architecture of M&E-NetPay.

171



Symmetry 2016, 8, 74

As a thin client n-tier application, M&E-NetPay is deployed over three servers: web servers,
application servers and database servers. Web servers deploy broker and vendor web/mobile
applications. Application servers publish Web services of the broker and vendor. Database servers
store required information.

M&E-NetPay is maintainable and serviceable in that any changes result in re-configuring of only
part of the application. If the ringtone vendor wants to update its site, for example, then only the
web/mobile application on its Web server is re-configured.

2.2. M&E-NetPay Software Architecture

The software architecture of the M&E NetPay micro-payment system is shown in Figure 2.
The architecture is designed for Microsoft.NET applications. It consists of the following components.

Figure 2. M&E-NetPay basic software application architecture.

Browser: two types of users can access a broker site using their mobile phones or PCs with
Internet access. By using a Wireless Markup Language (WML)-based Web browser in their mobile
phones, mobile users run the Broker Mobile application with its interface for the small screen of a
mobile phone. Internet users can access the Broker Web application through a popular web browser.

Web services: These host the presentation layer. It is much easier to connect remote sites by using
web services.
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The web service is only available to vendors for accessing certain information from the broker’s
database. User queries are issued to broker data entities from the client end, and the results are
retrieved by data layers. Mobile and Web applications invoke the same Web services hosted on the
broker’s application server. The broker Web services pass information in an XML-based message to
the business logic layer. In our applications, this means that data are retrieved from a database into an
entity or entity collection and then updated data are written from an entity back to the database.

Application servers: These mainly accommodate Web services, the business logic layer and
the data adapter layer. The business logic layer implements all business rules for the application.
The business logic layer passes information to the data adapter layer, the broker database, and executes
necessary queries. The data adapters exchange data between a data source and a dataset.

Database servers: These host relational databases, including the ringtone database, the broker
database and the wallpaper database. The database in the broker server records account information
and transaction histories of all registered users.

The e-wallet of a user resides on the broker’s database until she or he logs on to a vendor site using
a given e-coin id [18]. Upon login, her or his e-wallet is transferred to the visiting vendor. The broker
helps the vendor to verify e-coins, when she or he purchases items from its site. The broker also allows
the vendor to redeem e-coins spent on its site and to request touchstones. These functionalities are
provided by the “BrokerVendor” Web service of the broker, as shown in Figure 2.

Similarly, vendor sites also provide their interfaces to both mobile and Internet users. The vendor
sites allow users to browse their websites and purchase items. When a user logs in to the ringtone
site in our system, the ringtone vendor requests her or his e-wallet from the broker. This function
is provided by the Web service of “BrokerVendor” of the broker. If the ringtone vendor finds that
the e-wallet of this particular user resides on another vendor site, it then requests her or his e-wallet
from the vendor that contains e-coin indexes and touchstones. Each vendor has a Web service called
“OutsideVendor”, which allows other vendors to retrieve e-wallets of their own users. The e-wallet is
then stored on the current vendor’s site. Once the user purchases an item, her or his e-wallet is debited.

3. Protocol and Interactions of M&E-NetPay

In this section, we describe the protocol and interactions of M&E-NetPay.

3.1. NetPay and M&E-NetPay Micropayment Protocol

M&E-NetPay is evolved from NetPay. Therefore, we start with describing NetPay. It is an off-line
micro-payment system by using a secure, inexpensive and debit-based protocol [13]. The NetPay
micropayment system has three models of “e-wallets” that manage e-coins. Like other models,
e-wallets in the first model are hosted by vendor servers. An e-wallet is passed from one vendor
to another, as a customer visits different sites for e-commerce transactions. The second model is
a stand-alone client-side application on a client’s PC. The third model is a hybrid one that caches
E-coins in a Web browser cookie for debiting, if a customer makes a purchase. The NetPay-based
system is developed for the CORBA-based broker, vendor and customer networks. By using a set of
CORBA interfaces, the broker application server communicates with the vendor application servers
for requesting touchstones and redeeming e-coins [18]. CORBA enables clients to invoke methods on
remote objects at a server, regardless of by which language objects are programed and where they
are located.

M&E-NetPay replaces the CORBA middleware with Web Services, which provide the
interoperability (i.e., platform-independent and language-independent). Using a simple XML-based
protocol and SOAP, a Web service is an emerging distributed middleware technique that allows
applications to exchange data over the Web. It is a new programming model for building distributed
applications by open Internet standards. This new technique manoeuvres the openness of specific
Internet technologies to address many interoperability issues of CORBA. Web services use Hyper Text
Transfer Protocol (HTTP) to transmit messages. This is a major advantage for building an Internet-scale
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application like the M&E-NetPay system, since most of the Internet proxies and firewalls do not
have trouble with HTTP traffic. In contrast, CORBA usually has difficulties with firewalls. Moreover,
Web Services are platform-independent and language-independent (i.e., a client program can be
programmed in C# and running under Windows, while the Web Service is programmed in Java and
running under Linux.). Web Services support different interfaces of client-side application programs.
Client code may work by constructing “call” objects that are dispatched to a server or may use a higher
level interface that hides the communication level entirely through the use of client-side stub objects
with an operational interface that imitates the server [27]. The mechanisms for generating client and
server components for Web Services and CORBA are illustrated in Figure 3.

Figure 3. Basic client and server components from the interface for Web Services and CORBA.

M&E-NetPay uses a secure, inexpensive widely-available and debit-based protocol. The
M&E-NetPay protocol differs from the previous protocols in that running on the .NET platform,
it uses Web service interfaces as its middleware.

3.2. M&E-NetPay Micropayment Interaction

Based on the NetPay protocol of the server-side e-wallet [13,28,29], we extend it into the
M&E-NetPay protocol in a way that is suitable for mobile and Internet environments. The M&E-NetPay
protocol uses touchstones signed by a broker, as well as e-coin indexes signed by requesting peers.
The signed touchstone is used by a vendor to verify the electronic currency: paywords. A signed index
prevents customers from double spending and resolves disputes between customers and vendors.
We assume that an honest broker is trusted by both customers and vendors. The broker manages
the bank accounts of all mobile and Internet users. A bank transfers money to a broker on an online
request. The mobile/Internet users access the mobile/web application through Web browsers on
mobile phones or PCs. In order to purchase items from vendor sites, a mobile or Internet user needs to
register with a broker. Upon successful registration, the user’s account is created. She or he then needs
to buy e-coins from the broker by using her or his credit card. She or he is issued a unique e-coin id
each time once having bought e-coins from the broker. She or he can log onto a vendor site using the
e-coin id and password. In our system, two vendor sites of ringtones and wallpapers are implemented.
A user browses the site and selects the ringtone or wallpaper. A small cost is assigned to each ringtone
and wallpaper, depending on their demand and ratings. After the user clicks on the download button
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in the ringtone site, the broker debits the user account for the cost of the ringtone, e.g., if the user is
downloading a ring tone costing “10 c”, then the user’s account is debited by “10 c”.

A user e-wallet is saved on the vendor site last visited. Once the user logs on to the other vendor
site for browsing other ringtones, her or his e-wallet is transferred from her or his last visited vendor
to the current one. If her or his e-coins are run out, she or he is directed to the broker site to buy
more e-coins. At the end of each day, all of the vendors collect the money from the broker in return
for e-coins.

As an example, we describe the procedure of macro-payment in M&E-NetPay in the following.
Figure 4 also illustrates some key interactions.

Figure 4. M&E-NetPay component interactions.

Initially, a mobile user registers on a broker’s Web site and buys a number of e-coins.

1. The broker may provide credits as “virtual money”, which is specific to the network only. The P2P
network may require peers to use real money to subscribe and/or to use services. In this case, the
broker uses a macro-payment, e.g., credit card transactions with a conventional payment party to
buy credits.

2. The broker generates an e-coin chain and stores it in an “e-wallet”.
3. When the mobile user selects ringtones to be downloaded from Vendor 1 site, Vendor 1

obtains e-coins from the e-wallet and verifies the e-coins. The mobile user then can download
the ringtones.

4. The mobile user may download other ringtones, and her or his coins are debited. If her or his
coins run out, she or he is directed to the broker site for buying more. When the mobile user
browses Vendor 2, Vendor 2 contacts Vendor 1 in order to obtain the touchstone and index (T & I)
and then debits e-coins for this user to download more wallpapers.

5. At the end of each day, the vendors send all of their received e-coins to the broker for
redeeming them.

6. For their own credits, vendors may be able to cash them in for real money, again via a conventional
macro-payment approach.
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As a summary, a mobile user downloads ringtones from Vendor 1. Vendor 1 requests the
touchstone, index and e-coins from the broker. After verification, the mobile user is allowed to
download ringtones. Vendor 1 sends T & I to the broker. After browsing other vendors, the mobile
user wants to download wallpapers from Vendor 2, which contacts Vendor 1 for T & I. If Vendor 1 is
off-line, then Vendor 2 requests T & I from the broker.

4. Implementation of M&E-NetPay Prototype

In this section, we present the implementation of the M&E-NetPay prototype.
Our system has implemented one broker and two vendor sites. All applications are developed on

the Microsoft.NET platform framework 4.0 [26]. We choose Microsoft Visual Studio 2010 ASP.NET
and the C# programming language for frontend implementations and Microsoft SQL Server 2005 for
database storage. We use HTML with ASP controls for Web pages and the C# programming language
for the back end of the application. The broker and vendors provide access to both mobile and Internet
users published on the web servers’ IIS. Web service interfaces are implemented on the application
servers’ IIS, which provides access to the Internet, as well as to remote sites. Vendors and the broker
can choose programming languages and operating systems for implementing their systems. A vendor
application implemented by the C# programming language on the Windows operating system, for
example, can easily communicate with another implemented by the C++ programming language on
the UNIX operating system.

To make it more effective and efficient, M&E-NetPay consists of three components: the
presentation logic, which presents information to the M&E users; business components, which controls
the relationship between inputs and determines business rules; and the data adapter layer, which
connects to the database, executes relevant queries and returns the results back to the upper layers.
The presentation and business components are communicated only via Web Services, no matter
whether they are within a system or between the systems.

Web Services are used as the middleware for M&E-NetPay. Figure 5 shows Web service references
on the broker site referenced from the broker Web Service.

Figure 5. Code for Web Service references on the broker Web application.

4.1. Broker

A broker manages customer and vendor accounts, e-coin creation, e-coin redemption, touchstone
supply for e-coin verification and macro-payment handling for e-coin purchase and payment to
vendors for spent e-coins [13]. The broker database holds user and vendor information. The application
server provides business functions. Web service interfaces are for application servers of the broker
and vendor. WML interfaces, implemented by using Active Server Pages (ASP.NET) with the ASPX
extension, are for mobile users, while HTML interfaces are for Internet users. The Web service interface
allows vendors to request e-coin touchstone information, verify e-coins and redeem spent e-coins by
other vendors.
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Figure 6 shows the screenshots of a customer purchasing e-coins from a broker: (1) registering
with the broker to create her or his account; (2) logging in by using the provided customer id and
password; (3) authorizing macro-payment by the broker in order to buy e-coins; and (4) debiting the
M&E user account for paying e-coins by the bank.

Figure 6. M&E users purchasing e-coins from a broker. (a) Wireless Markup Language (WML)
interfaces for mobile phone users; (b) HTML interfaces for Internet users.
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4.2. Customer

The WML/HTML interfaces of our system are provided for both mobile and Internet users,
so that a wide range of customers is allowed to access broker and vendor sites by using a standard Web
browser. The use of the thin client technology omits the need to install separate browser software on
the client site. The customers use WML/HTML-based ASP.NET pages to browse broker and vendor
sites. Being hosted on the server side, the e-wallet of a customer can be transferred from one vendor
to another, as the customer makes purchases from those vendors. The e-wallet is held on the vendor
server from which the customer is currently buying items.

4.3. Vendor

The site of a vendor displays ASP.NET pages for M&E users to browse. Search functions in sites
of the ringtone and wallpaper are provided for users to search for ringtones or wallpapers. The search
results are listed as a brief summary of the ringtone or wallpaper with its download cost, as shown
in Figure 7a. After downloading an item, the refreshed ASP.NET pages indicate that the amount of
e-coins is left with the current vendor in the e-wallet of the user, as shown in Figure 7b.

Figure 7. M&E user spending e-coins at the ringtone site. (a) WML interfaces for mobile phone users;
(b) HTML interfaces for Internet users.
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5. Evaluation

In this section, we compare M&E-NetPay to non-micro-payment systems. From different
perspectives of end users, we evaluate the M&E-NetPay based micro-payment system by collecting
and analysing customer views.

5.1. Experimental Design

Three types of evaluations on the M&E-NetPay micro-payment are carried out:

‚ Performance evaluation [30], which compares the performance of the M&E-NetPay prototype
with that of the CORBA-based NetPay system in terms of response time. This evaluation aims to
assess the potential scalability of the system under heavy loading conditions.

‚ Usability evaluation, which assesses whether M&E-NetPay is useful as far as end users are
concerned. Their opinions about our prototype are surveyed, after potential end users purchase
items by using the micro-payment, M&E-NetPay and the alternative CORBA-based NetPay
system, respectively.

‚ Heuristic evaluation, which assesses the overall quality of the user interface. Potential design
problems of the user interface of the M&E-NetPay prototype are identified by using a range of
common HCI design heuristics.

Experiment prototypes and materials: The evaluations are conducted on two prototypes of
M&E-NetPay and CORBA-based NetPay. M&E-NetPay is deployed over three servers:

‚ Web server, which hosts the presentation layer
‚ Application server, which hosts Web Services, business logic components and data adapter layer
‚ Database server, which hosts the relational database

The CORBA-based NetPay system is deployed over three servers:

‚ Web server, which hosts JSP pages as the presentation layer
‚ CORBA application server, which hosts business logic components
‚ Database server, which hosts the relational database

A number of PCs connected to the network is used by the participants. Both prototypes are
deployed over multiple machines connected via a high speed LAN.

5.2. Performance Evaluation

We carry out experiments on measuring client response time with ten tests. This evaluation aims
to compare how long it takes to download wallpapers in the two different payment systems.

Subject: Ten users are a mixture of non-IT specialists, graduate students and college students who
volunteer to conduct the evaluation.

Experimental tasks: The users are required to download the same file from both M&E-NetPay
and CORBA-based NetPay systems.

The response times of searching for wallpapers, buying e-coins and redeeming e-coins are
recorded. They give an indication of the likely scalability of the prototype systems under heavy
loading conditions.

Results: As reported in Table 1 and illustrated in Figure 8, we compare M&E-NetPay to
CORBA-based NetPay against the response time of downloading wallpapers. The response time
delay is the time for downloading a wallpaper. All ten users download the same wallpaper with the
size of 38.4 KB.
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Table 1. Times for downloading wallpapers.

Test Response Delay Time
with M&E-NetPay (ms)

Response Delay Time with
CORBA-Based NetPay (ms)

1 2149 2410
2 2390 2509
3 1734 2294
4 3065 2354
5 2012 2432
6 1976 2091
7 2190 2256
8 1734 2168
9 1637 2005

10 1815 2344
Average 1976 2286

Figure 8. Response delay time of downloading wallpaper.

The result of the t-test on the data in the two columns of Table 1 rejects the null hypothesis at the
default 5% significance level. That is, the two response delay times of downloading the wallpaper
from the two systems have a statistically-significant difference. The test parameters are given below:
the p-value: 0.0033; confidence interval for the difference in population means of the response time in
M&E-NetPay and CORBA-based NetPay: ´502.5709 and ´117.8291; the test statistic: ´3.3878; degrees
of freedom (df): 18; and the estimate of the population standard deviation: 204.7455.
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It is obvious that the above statistical test result is limited by the size of sample tests. Despite this,
the average response delay time for downloading a wallpaper from CORBA-based NetPay is slightly
higher than that from M&E-NetPay. On average, the clients take 1976 milliseconds from M&E-NetPay
and 2286 milliseconds from CORBA-based NetPay to download the same wallpaper. The time
difference is 310 milliseconds. Except for downloading time, we also compare the two systems against
the response times of the respective operations of searching for wallpapers, buying and redeeming
e-coins in Table 2.

Table 2. Results of searching wallpapers, buying and redeeming e-coins.

Tasks Average Response Delay Time
by M&E-NetPay (ms)

Average Response Delay Time
by CORBA-Based NetPay (ms)

Search wallpapers 1501 1703
Buy e-coins 895 920

Redeem e-coins 1990 2110

As listed in Table 2, the searching for wallpapers in M&E-NetPay is 202 milliseconds faster than
that in CORBA-based NetPay. Buying and redeeming e-coins also take less time in M&E-NetPay.

There may be other factors that affect the response time of the systems. However, the experiment
results still indicate that M&E-NetPay may respond to user interactions faster than NetPay. This
observation results from CORBA’s limitation in client-to-server communications. In contrast,
.NET framework architecture 4.0 with Web Services in M&E-NetPay improves client-to-server
communications. It provides relatively fast communications amongst the vendor and broker.
In addition, M&E-NetPay, built on a stable, secure and simple architecture, is deployed over multiple
servers to share the workload among them.

5.3. Usability Evaluation

We survey the satisfaction levels of the participant users, after they download and purchase items.
Furthermore, we ask their preferences for the two systems in general: a CORBA-based NetPay system
or M&E-NetPay. As we know, usability evaluation involves testing of the usability of an interface by
having a group of individuals performing tasks specific to a system, under the general guidance from
a facilitator. It is important to realize that it has multiple components with five attributes associated
with an interface [29,31,32]. Specifically, efficiency in our evaluation is measured in terms of how easily
one can buy items and the speed of downloading them. Errors are regarded as any actions that prevent
the successful occurrence of the expected results. Since some errors escalate the users’ transaction
time, their effect is measured by the efficiency of use. Learnability and satisfaction are a subjective
measure provided by each participant in the experiment. Interface memorability is rarely tested as
thoroughly as other attributes. However, it is feasible, to some extent, to conduct comparisons and
post-test questionnaires of both systems.

The experiments use pre-test and post-test questionaries. The questions of the pre-test
questionnaire are about participants’ experience in using mobiles or PCs to download files from
the Internet. The post-test questionnaire has the number of questions with scale ratings ranging from
one to five, where one is “least favourable” and five “most favourable”. The post-test questionnaire
also contains open questions for collecting user comments.

Subjects: Fourteen participants are randomly selected with a mixture of non-IT specialists,
graduate students and college students. The participants are four non-IT adults, five non-IT graduate
students, and the rest are college students. It should be noted that although it is tempting to recruit
more participants, it is the general practice to have around 15 participants for usability testing [32].

Experimental tasks: Participants are required to complete the following tasks on M&E-NetPay
and CORBA-based NetPay systems, respectively:
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‚ Create an account with the broker;
‚ Search for a wallpaper on the wallpaper vendor site;
‚ Download the wallpaper from the wallpaper vendor site;
‚ Download a ringtone from the ringtone vendor;
‚ Buy e-coins from the broker; and
‚ Redeem e-coins with the broker.

Procedure: Before starting the test, participants need to fill out a pre-test questionnaire.
Participants are required to carry out all of the tasks listed in a given sheet for the two systems. After
finishing the tasks, they then fill out the post-test questionnaire to answer the questions by ticking
one level of the rating. One of the questions asks the participants to rank the overall performance of
the systems in order of their preference.

Results: From the answers to pre-test questions, we know that all of that participants have used
mobiles or PCs to download files from the web weekly or monthly for free. Only two of them use the
online credit-card payment systems to purchase goods online. Fortunately, all participants have had
such experiences before. This implies that participants’ prior knowledge has the least effect on the
experiment results.

We survey the participants’ satisfaction with buying e-coins, downloading wallpapers and their
preference for the two systems. We analyse the post-test questionnaire outcomes and plot the results in
Figure 9.

Figure 9. Usability test results with respect to usability features.

Figure 9 shows that the participants significantly favour all of the usability features of
M&E-NetPay. With the user friendly interface, M&E-Pay is easy to learn, providing clear instructions
on how to accomplish tasks. M&E-NetPay also receives high ratings on its efficiency. The participants
comment that the speeds of downloading files (i.e., wallpaper and ringtone) are quite fast with
M&E-NetPay in that with a few clicks, they are able to download the file. They also comment that
appropriate pop-up error messages prevent them from going off of the right track. The overall average
ratings of M&E-NetPay and CORBA-based NetPay are 4.5 and 3.8, respectively. They indicate that the
participants prefer M&E-NetPay to CORBA-based NetPay. This fact results from employing new and
emerging distributed middleware technique (i.e., Web Services) in M&E-NetPay.
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For the open question, some participants write that since M&E-NetPay is available via both
mobiles and the web, they will be able to access the system from anywhere at any time with barely any
downtime. Twelve participants favour M&E-NetPay.

5.4. Heuristic Evaluation

As the most widely-used inspection method, the heuristic evaluation technique is about
identifying usability issues in a user interface by a small number of evaluators (usually one to five) who
examine the interface and judge its compliance with usability principles (heuristics) [33–35]. While
heuristic reviews are inexpensive and less time consuming, good ideas for improving a user interface
may be produced.

Subjects: The evaluators include two IT specialists, one accountant and two graduates. They are
experts in either software engineering or applied software fields.

Experimental tasks and procedure: the evaluators are requested to judge the compliance of the
M&E-NetPay interface with usability principles (“the heuristic”). Each individual evaluator examines
the interface independently. To aid the evaluators in discovering usability problems, a list of heuristics,
as shown in Table 3 [35], is provided, which could facilitate the generation of ideas on how to improve
the system.

Table 3. Details of the heuristics employed.

Number Heuristic

1 Visibility
2 Functionality
3 User control and freedom
4 Consistency
5 Help recover from errors
6 Error prevention
7 Memorability
8 Flexibility
9 Aesthetic

10 Help and documentation

With a system checklist provided as a guide, the evaluators are required to first identify the
heuristic problems of the interface and then to determine the levels of their seriousness by using
the severity ratings as defined in Table 4 [35,36]. The evaluators are also requested to provide
recommendations based on their assigned severity ratings.

Table 4. Severity of the heuristic evaluation.

Rank Interpretation

1 Cosmetic problem only: need not be fixed unless extra time is available on a project
2 Minor usability problem: fixing this should be given a low priority
3 Major usability problem: important to fix, so should be given a high priority
4 Usability catastrophe: imperative to fix this before a product can be released

Results: The five evaluators evaluate M&E-NetPay by relying on the ten heuristics. The results of
the heuristic evaluation are given in Table 5.
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Table 5. Summary of the findings.

Number Problem Heuristic
Number

No. of
Evaluators

Severity
Ranking

1 No sharp colour contrast between
product information and its background. 1 2 2

2 No error message is displayed for
invalid entries. 5 3 3

3 Multiple options cannot be selected in a
menu or dialog box. 2, 8 1 2

4 Insufficient keyboard shortcuts for
navigating the activity, function or action. 2 2 2

5 Exit button not provided to exit
application from any screen. 2, 3 3 3

6 Not all integers and decimals
right-justified. 4 2 1

7 The price associated with the product
does not show the currency. 4 4 2

8 No sound used to signal an error. 5 2 1

9 No help topics provided. 10 2 3

10 Borders not used to identify
meaningful groups. 1, 7 2 2

11 Titles are not provided on every page. 1, 4 3 2

12 On the login screen, the cursor is not
active in the customer id field. 4 2 2

A rating has four levels of severity. The levels of one and two are regarded as minor, which
is easily fixed. The levels of three and four should be given high priorities, which have to be fixed.
After the evaluation, three major problems have been identified, with each having a severity rating
of three. The identified problems, together with their fixing recommendations, are listed in Table 6.
We have implemented all recommendations listed in the table.

Table 6. Summary of the findings.

Number Problem Recommendation Severity
Ranking

Heuristic
Number

1 No error message is
displayed for invalid entries

Appropriate error messages should
be displayed for invalid entries 3 5

2
An exit button not provided
to exit the application from
any screen.

An exit button should be
implemented on every screen 3 2, 3

3 No help topics provided
Implement help topics, as users may
not be aware of the function of the
menu or command button

3 10

We have described three kinds of evaluations on the M&E-NetPay prototype to assess performance
impact, usability and heuristic evaluations. Usability and performance evaluation have been done
on two prototypes of CORBA-based NetPay and M&E-NetPay. Even though heuristic evaluation
identifies a few errors, M&E-NetPay is successfully implemented in general. The overall result of the
evaluations demonstrates that most participants prefer M&E-NetPay. Participants and evaluators are
satisfied very much with M&E-NetPay, recommending the system for wide use.
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6. Related Work and Comparisons

In this section, we review related work and compare relevant systems to our system.
As a micro-payment for an ad hoc network, MPS [11] enables a node to join an existing ad hoc

network and allows it to pay each node that relays packets on its behalf in real time. Being a lightweight
payment scheme based on hash chains, MPS is flexible in route changes without involving a third party
(a bank or a broker), in order to pay the nodes in a new path. MPS supports multiple brokers. Off-line
verification makes the protocol more efficient and scalable.

Using a micro-payment protocol, CMP [12] is built on symmetry encryption techniques and
chaotic double hash chains. The protocol constructs two PayWord chains: one for the merchant and
another for users by using the iteration process of the Henon-like chaotic system. The chaotic hash
function generates a payment chain. The use of the symmetric algorithm that encrypts transaction
information improves the security and efficiency of CMP. CMP is an off-line system with three
stakeholders, users, vendors and a broker.

As an off-line micro-payment system, NetPay [13] is a new micro-payment model in e-commerce.
It uses CORBA interfaces to support communication between broker and vendor applications. NetPay
improves its performance and security by using fast hashing functions. This prototype is quite suitable
for e-commerce applications. In a mobile environment where a client (and possibly the server) keeps
moving, which results in changing network addresses and unreliable connections, CORBA, however, is
not well suited for this scenario. This is because of CORBA’s tight coupling between clients and servers.

We compare our M&E-NetPay protocol to other micro-payment protocols. We have analysed the
results from the three types of evaluations of M&E-NetPay prototypes to demonstrate their usability,
performance and overall satisfaction of the requirements.

It is generally agreed that the key requirements for a mobile micro-payment system are as
follows [3,8,11–13,29,30,37–39]:

‚ Security: The e-coins must be well encrypted to prevent peers from double spending and fraud.
‚ Anonymity: Peer users and peer vendors should not reveal their identities to each other or to any

other third party.
‚ Ease of use: This is the ability of M&E users who are able to use the system easily without

familiarizing themselves with the M&E user interfaces or being involved in any type of
authentication at all times.

‚ Scalability: The load of communication and transaction of any entity must not grow to an
unmanageable size. The load should be distributed among the vendors rather than the broker.
Payment systems should be able to cater to the rapidly growing number of users without showing
a negative impact on the performance.

‚ Transferability: The e-coins used for payments should be transferable between multiple vendors.
This allows the users to use the same e-coins to make payments across multiple vendors.

‚ Interoperability: This is the ability of a system that operates in conjunction with other supporting
protocols, hardware, software, applications and data layers. Interoperability minimizes the
complexity of software development by reusing components and performing inter-component
communication. Interoperable systems are language and platform independent.

In the following, we compare M&E-NetPay to several well-known micro-payment systems and
also to some more recent micro-payment systems in M&E networks. The comparison criteria are the
set of the key requirements: the need for an easy-to-use micro-payment system; the need for secure
electronic coins and no double spending; ensuring anonymity for customers; supporting transferable
e-coins between vendors; a robust, low performance impact, off-line micro-payment-supported,
scalable architecture for a very large number of end users; and the ability of the system to be language
and platform independent. Table 7 summarises the comparisons of the M&E-NetPay protocol with
other systems.
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The above comparisons show that the M&E-NetPay system has advantages over other
micro-payment systems.

The security of M&E-NetPay is achieved by using existing security technologies. First, it uses a
thin client n-tier architecture. With this deployment architecture, users logging on broker or vendor
systems can access only Web servers. From there, transaction information is transferred through
a secure channel in an XML message, which cannot be intercepted by a third party. Moreover,
Web services on application servers are only available upon the request of mobile/web applications on
Web servers. The vendors and broker in M&E-NetPay rely on Web service interfaces of the other party
to exchange M&E user information. It is impossible for third parties to log directly or indirectly on to
application servers. In addition, application servers are inaccessible from outside the network.

Second, M&E-NetPay relies on the security of Web services. As we know, Web services’ security
includes three aspects: authentication, which verifies that M&E users and vendors are who they claim to
be; confidentiality and privacy, which keep information secret by encrypting the content of a message
and obfuscating the sending and receiving parties’ identities; and integrity and non-repudiation,
which make sure that a message remains unaltered during transit by having the sender digitally sign
the message. A digital signature is used to validate the signature and provides non-repudiation.

Finally, M&E-NetPay uses one-way hash functions to generate paywords and prevents M&E users
and vendors from over spending and forging paywords from a payword chain. It employs 128-bit
encryption of the messages. Since only the broker knows the mapping between the pseudonyms (IDc)
and the true identity of an M&E user, M&E user privacy is protected.

In a word, M&E-NetPay has high security features. As an off-line fully-distributed system, the
M&E-NetPay is mostly suitable for micro-payments over the WWW. In terms of transferability, e-coins
are able to be transferred freely between vendors for multiple purchases. CMP is primarily designed
for low value mobile commerce items. The protocol has greater security and faster operation efficiency,
but CMP does not support multiple platforms and languages. MPS’s design supports multiple
brokers. Off-line verification has made the protocol more efficient and scalable. The system, however,
still cannot avoid a limited amount of fraud. There may be a wastage of the broker endorsement,
which is distributed to the previous path, if the topology of the ad hoc network changes.

M&E-NetPay has greater scalability and performance features, as it supports the rapidly growing
number of M&E users. NetPay uses CORBA middleware interfaces to support several programming
languages (e.g., Java® and C++®) and platforms (e.g., Windows®, Linux®). Vendor systems have
to be “hard-coded” with CORBA by communicating with the NetPay broker to exchange messages.
In comparison with M&E-NetPay, NetPay has a lesser ability due to the tight coupling between clients
and servers as a result of its use of CORBA. M&E-NetPay is the solution to the above problem, as it
can support any languages and platforms. Hence, it has a very high rating of interoperability.

7. Conclusions

In this paper, we have presented the design and implementation of the M&E-NetPay
micro-payment system on the .NET platform and its comprehensive evaluations. Interconnecting
broker and vendor sites through XML-based interactions, Web services are used to provide greater
interoperability than the CORBA middleware. Apart from generating, redeeming and verifying
e-coins, the broker in M&E-NetPay provides e-wallets to customers. Through their interfaces, vendor
applications allow users to browse their sites, download items and obtain the valid touchstone and
index from a broker or the previous vendor. M&E-NetPay uses a secure, inexpensive and debit-based
off-line protocol that allows vendors to interact only with customers after an initial validation of coins.
M&E-NetPay achieves a secure and high transaction volume per item by using fast hashing functions
that validate e-coin unspent indexes. The results of two types of comparison evaluations on the usability
and performance of two systems have demonstrated that the users, as their preference, would adopt
M&E-NetPay for widespread use. In the future, we will take further advantage of Web services [40] to
generalize the proposed architecture as components of a wider range of M&E-commerce applications.
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Abstract: User interactions in online social networks (OSNs) enable the spread of information and
enhance the information dissemination process, but at the same time they exacerbate the information
overload problem. In this paper, we propose a social content recommendation method based on
spatial-temporal aware controlled information diffusion modeling in OSNs. Users interact more
frequently when they are close to each other geographically, have similar behaviors, and fall into
similar demographic categories. Considering these facts, we propose multicriteria-based social
ties relationship and temporal-aware probabilistic information diffusion modeling for controlled
information spread maximization in OSNs. The proposed social ties relationship modeling takes into
account user spatial information, content trust, opinion similarity, and demographics. We suggest a
ranking algorithm that considers the user ties strength with friends and friends-of-friends to rank
users in OSNs and select highly influential injection nodes. These nodes are able to improve social
content recommendations, minimize information diffusion time, and maximize information spread.
Furthermore, the proposed temporal-aware probabilistic diffusion process categorizes the nodes and
diffuses the recommended content to only those users who are highly influential and can enhance
information dissemination. The experimental results show the effectiveness of the proposed scheme.

Keywords: spatial; temporal; information diffusion; probabilistic diffusion model; recommender
system; online social networks

1. Introduction

Recommender systems are web-based applications, tools, techniques, and programs that are used
to provide suggestions for items and products of interest; they do this by analyzing user interactions
and consumed content histories [1,2]. Social content recommendations use social networks and
user interactions to model recommendation processes. At present, online social networks (OSNs)
are increasing in importance and have become a fundamental medium to diffuse information to a
large number of people. The surge of social networking sites (SNSs) has enabled user interactions
from anywhere and has opened a new era of social interaction, collaboration, preference collection,
and tagging for personalization. Information exchange is the keystone of a structured society, and
OSNs play important roles in propagating information and enabling users to receive information of
interest across many areas, including interest-based community detection [3], political influence [4,5],
and economic networks [5–7]. SNSs such as Facebook, Twitter, and LinkedIn enable users to share
opinions and status updates (newsfeeds) effortlessly with masses of people on any topic. A recent
Facebook study [8] showed that the average separation between users was 4.7 hops. Increasing friends,
followers, and acquaintances provides constant information updates, which increases the information
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overload problem. Koroleva et al. regarded constant information updates as a double-edged sword [9].
On the one hand, the increasing number of users helped to maximize the contagion process to
spread information to a large number of OSN users. On the other hand, a user receives hundreds
or even thousands of newsfeeds, and most of them are non-newsworthy. User frustration increases
when receiving the same newsfeed with non-newsworthy updates at the top of their SNSs walls.
Figure 1 shows a newsfeed with updates at different times on a Facebook wall. Figure 1a shows
the updated newsfeed after 2 h, and Figure 1b is the same newsfeed with updates after 8 h on
the top of the wall. However, there is not much newsworthy information. As a user’s network of
friends expands, their continuous newsfeed updates increase the probability that a user will miss
important newsfeeds. This paper proposes a selective diffusion based recommendation technique that
incorporates spatial-temporal information and user specific information to identify whether or not to
recommend specific information to a user.

Figure 1. The same newsfeed with updates at the top of a Facebook wall at different times: (a) status of
newsfeed after 2 h; and (b) same newsfeed after 8 h with some non-newsworthy updates.

A social network (SN) is modeled as a graph of people (nodes) connected by friendship or mutual
interests (links/edges). OSNs not only provide a meeting point and facilitate the building of social
relations among a large number of people, they also play important roles in spreading information,
news, ideas, and innovations. The link between nodes may be directed or undirected and provides a
“word-of-mouth” communication channel [10,11]. The Oxford dictionary [12] defines diffusion as the
spreading of something more widely. Connected nodes spread information in OSNs, and a network
with high connectivity maximizes the information spread. In 1969, Milgram [13] requested 240 people
to write a letter to a stockbroker in Boston. The participants did not know the stockbroker or his
address. Nevertheless, 60 letters reached the target destination. It took an average of 6.2 hops for
this to happen, creating the six-degrees-of-separation adage. Cheng [14] analyzed 5.2 billion Twitter
friendships and discovered five degrees of separation within the Twitter network. These studies only
provided a degree of separation for the diffusion of information. They did not determine which pieces
of information diffused more frequently, or how and through which path they diffused. Typically, it is
unnecessary to diffuse messages to an entire network. Groups such as service providers, politicians,
security analysts, and crime prevention services are keenly interested in identifying people in society
that are effective at spreading information. This knowledge helps these groups to maximize their own
information dissemination.

Influence is the capacity to have an effect on the character, development, or behavior of someone
or something, or the effect itself [12]. Social influence is a phenomenon in which an individual impels
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his connection to behave in a similar way [15]. The flow of information in OSNs is only possible
if individuals can influence one another. Teo [16] analyzed demographic and motivation variables
associated with Internet usage activities and showed that individuals with similar demographics
and behaviors tended to engage in similar activities. Social influence involves a three steps process:
(i) a set of nodes that can exert influence; (ii) the method of contagion of the influence; and (iii) the
set of nodes that can adapt the influence. In social influence maximization, a small set of nodes is
considered that can maximize information diffusion. However, selecting these in a large network is
an NP-hard problem [5]. In this work, we model the social ties relationship considering multicriteria
information. There are four categories of information—user spatial information, user interactions and
activity history for social trust, user opinions on similar items, and user demographics. We rank the
nodes considering friends and friends-of-friends to select the most influential nodes for diffusion.

The ubiquity of smart devices, communication technologies, and online social media enables
people to be connected all the time, and this in turn makes it possible for information to be diffused at
anytime from anywhere. Spatial and temporal circumstances no longer constrain information diffusion.
Individuals receive information in a continuous stream over time, merging small pieces of information
at different spatial locations and then conveying them to the masses over OSNs. Several mathematical
models have been proposed to model the distribution of information in OSNs, but none of them is
comprehensive [17]. The heterogeneity of user interactions and mobility concerning links, the dynamic
structure of OSNs, and the merging of information over time and space have opened a new era of
research on information diffusion and user behaviors in OSNs. This article explores how a piece of
information diffuses temporally and provides a mathematical model to control the diffusion process
in OSNs.

The rest of the paper is organized as follows. Section 2 explains the related work and background
knowledge regarding social networks and information diffusion. Section 3 introduces the proposed
scheme, which incorporates a spatial-temporal approach with selective diffusion-based social content
recommendations. In Section 4, our approaches are compared to various state-of-the-art ranking and
diffusion techniques using simulation results. Finally, the conclusion is presented in Section 5.

2. Background and Related Literature Review

The scope of this paper is closely related to SNS dynamics, social influence, and information
diffusion. This section presents the background and related work regarding OSN structures, user
interactions and information flows, user influence on direct friends and other users, and information
diffusion processes in OSNs.

Web-based SNSs have become a popular socialization-based medium that enables users to provide
opinions about various products and items. In sociology, Georg Simmel [18] helped pioneer structural
theories such as triad dynamics. Mereno [19] depicted “sociograms” for interpersonal relationships,
preferences, and choices within groups. The concept of social networks was first coined by Barnes [20]
in his article Class and Committees in a Norwegian Island Parish. In web-based SNSs, individuals:
(i) make a public or semi-public profile within a bounded system; (ii) maintain a list of users with whom
they want to share a connection; and (iii) view and traverse the shared content by direct connections or
by others in the system [21]. OSNs are represented by a graph G (V, E), where V is the set of nodes
and E is the set of edges showing a relationship among members of V [22]. Mostly, the large-scale
OSNs are scale-free graph means that their degree distribution follows the power law [23]. The main
feature of the scale-free network is that they have higher degree node called hub. Haythornthwaite [24]
stated that SNs were initially introduced to connect families and friends.

User interest in the SNSs has opened a new wave of SNS development in the last decade. The first
recognizable SNS was SixDegrees.com, which was launched in 1997. This was followed by LiveJournal,
AsianAvenue, and BlackPlanet in 1999; LunarStorm and MinGente in 2000; Cyworld and Ryze in 2001;
Fotolog, Friendster and Skyblog in 2002; LinkedIn and Last.FM in 2003; and Flicker and Facebook in
2004 [21]. OSNs have been studied and utilized in many fields. Jaeger et al. [25] and Zappen et al. [26]
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explored the potential use of SN platforms in E-Government to deliver and improve services. Viral
marketing is a marketing technique using word-of-mouth effects to achieve marketing objectives and
increase brand awareness. SNSs can play a vital role in viral marketing. A mechanism to select a node
in viral marketing based on its motivation to forward online content is proposed in [27]. Richardson
and Domingos [28] used a probabilistic approach to model the customer’s network value, and this
value showed the expected sales profit gained from some other customers with whom this customer
was directly or indirectly connected to in the network. Recommender systems [1,2,29] also collect user
opinions and personalize content for them. Lada Adamic and Glance [4] analyzed political blogs prior
to the US Presidential election of 2004 and revealed two well-separated clusters. Coleman et al. [30]
modeled a network for physicians and found that physicians with more academic citations had their
prescriptions of new drugs accepted more frequently than physicians with fewer academic citations.

In OSNs, information disseminates where users influence one another. Social influence determines
in particular: (i) who are the most popular and influential users in the OSN; (ii) which user influences
whom; (iii) why they are influenced; and (iv) why users are attracted to particular services [31]. A novel
social influence model is proposed based on bounded rationality of agents in SNs [32]. Influence is
modeled as an influence game, where the players are, influencers and followers. The follower is
following the influencers considering the measure of bounded rationality. Higher the rationality of
a follower with respect to a seed, higher the probability that the follower will follow the state of the
influencer. Influence has a long history of study in social sciences, marketing, communication, and
political sciences. Katona et al. [33] found that a user who is connected to many users (user degree)
have a higher adoption probability. In addition, the density of connections in a group who already
adopted has the strong influence on the adaptation of individuals connected to this group. Influence is
node specific, and local links between nodes are more important than global links. In addition, links
between two users may be multi-aspect, i.e., they can work in opposite directions between two users
depending on the topics [34]. Identifying important nodes is a key problem when determining social
influence in an SN analysis. Degree, betweenness, and closeness centrality are measures of determining
the criticality and importance of nodes [7,35,36]. Piraveenan et al. [37] introduced a new centrality
measure (percolation centrality) to analyze the importance of nodes during percolation in networks.
They found that the average of percolation centrality overall possible single contagion source reduces
to betweenness centrality. In addition, the percolation centrality reduces to betweenness centrality
if all the nodes are infected or partially percolated to some extent. Node centrality ranks nodes
based on their central positions in SNs considering either edges, shortest paths, or the nodes passing
through a node. Google introduced PageRank algorithm [38,39] to rank a web page. The PageRank
algorithm ranked solely based on their location in the Web’s graph structure regardless of the web
page content. A Webpage has a higher rank that is linked to important WebPages. Zhu et al. [40]
suggested a SpreadRank algorithm based on the random walk theory and the spreading ability of
the node. Xiang et al. [41] discussed the understanding of PageRank and the relationship between
the PageRank and social influence analysis. They developed a linear influence model by introducing
the prior knowledge which generalizes the authority computation of PageRank. In this work,
Luarn et al. [42] showed that dissemination information frequency was highly affected by the network
degree. The social transmission of information and decision-making is highly influenced by the
behavior of others [43]. OSN structures and topology affect information diffusion on a large scale [6,44].
In influence diffusion, the node may be either active or inactive. Kempe et al. [45] derived a formula for
influence maximization as a discrete optimization problem and suggested two diffusion models—linear
threshold (LT) and independent cascade (IC). Suppose u and v are two nodes in an SNS, and E (u, v)
is an edge between these nodes. The LT model [5,40,45–47] assigns random weight w (u, v) from
interval [0, 1] to edge E (u, v) and represents the influence of user u over v. The LT model then sums
the influence weights of active neighbors N of node (∑i∈N wi) and uses a threshold value to determine
whether the node will be switched from inactive to active. The IC model [5,15,40,45] uses a probabilistic
approach, and an inactive node is given one chance with a certain probability to activate its inactive
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neighbors. An extension of IC model is proposed in [48] called independent cascade model with
negative opinion (IC-N). They incorporated users’ negativity and stated that negative opinions are
more dominant over positive opinion. The IC-N model introduced a quality factor. IC-N first selects
a set of nodes and activated them. With certain probability (q) the seed node becomes positive if he
experienced good quality and with 1 − q becomes negative. Bakshy et al. [49] analyzed 250 million
Facebook users and examined the role of information diffusion. The main findings of the analysis
were that: (i) an exposed user was more likely to spread information and propagate messages more
quickly; and (ii) stronger ties were more influential, but weak ties were of greater help in spreading
recent information. Kim et al. [50] introduced a conceptual framework for information diffusion across
heterogeneous OSNs and provided a macro-level information diffusion model.

OSN structures and topologies, user positions in an SN, and user interactions play important
roles in influence maximization and information diffusion. Kasthurirathna et al. [51] simulated a
coordination game on four different classes of complex networks. In the study, they found that in all
four types of networks that slightly less connected people first adopt the coordination compared to the
highest connected people. However, there are two other important factors with respect to OSNs—the
spatial awareness to diffuse information to individuals in the same region who are likely to be more
interested in the diffused information, and the temporal awareness to consider the diffused message
importance with the passage of time. Temporal- and spatial awareness-based diffusion was studied
in [7,52–56], but there is still a great deal of research required in the field of OSNs. Nicosia et al. [53]
stated that complex networks were time-varying graphs, and interactions among the users were time
varying. In OSNs, most edges are active for a short period. Holme et al. discussed several systems that
could benefit from a temporal network infrastructure [54]. Contacts and social networks, telephone
networks, and the Internet and mobile networks are all examples where the use of only the network
topology does not provide full information. Space (location) is one of the most relevant factors to be
considered when attempting to acquire complete information [55]. Spatial information is one of the
most important factors for location aware services such as advertisements and entertainment.

The contributions of this paper to the aforementioned literature can be summarized as follows:
(i) it proposes social content recommendations based on spatial-temporal aware diffusion in SNs; (ii) it
models social ties relationships considering multicriteria such as user spatial information, content trust,
opinion similarity and demographics; (iii) it provides a ranking algorithm (SocNodeRank) considering
a user’s direct friends and friends-of-friends to select the most influential nodes; (iv) it offers a temporal
aware probabilistic diffusion model to maximize information diffusion and minimize contagion time;
and (vii) the proposed scheme scales well with a large number of nodes and links, minimizes the
contagion time needed to diffuse a message, and controls recommendations based on social diffusion.

3. Social Content Recommendations Based on Spatial-Temporal Aware Diffusion in
Social Networks

This section presents the proposed spatial-temporal aware selective flooding-based information
diffusion in OSNs. Focus is placed on algorithms that are able to model the multicriteria-based social
ties relationships between users, rank nodes to find the most influential individuals from whom
the users can accept information, and provide temporal aware probabilistic diffusion-based content
recommendations. In OSNs, spatial and temporal information are two important factors along with
network topology and user interactions when attempting to understand information dissemination
in SNs. We model multicriteria-based social ties relationships between users considering each user’s
spatial information, their interactions with respect to content sharing, the extent to which friends
share the same content with other users in the SNS, opinions on various items and products, and user
demographics. We rank the nodes using the proposed SocNodeRank ranking algorithm to select the
Top K nodes as seeds to maximize the information distribution in the SNs. The diffusion process is
modeled as a temporal aware probabilistic diffusion model that maximizes the information distribution
(i.e., recommendations).
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3.1. Multicriteria-Based Social Ties Relationship (Influence) Modeling

The SNS graph will be either directed or undirected. In an undirected network, edges do not
have direction and the relationship from either of the nodes remains the same (symmetric). In reality,
the heterogeneous nature of user interactions causes OSNs to be directed networks in nature, and the
two neighboring users have different levels of influence (asymmetric) on one another. Figure 2 gives
a pictorial representation of the proposed social ties relationship modeling considering two direct
neighbor users, u and v.

Figure 2. Pictorial overview of multicriteria-based social ties relationship (influence) modeling.

An SNS provides the location of a user, and we use each user’s position (GPS coordinates) to
determine spatial similarity. Equation (1) finds the spatial similarity of two users using the cosine
similarity normalized by the geo-distance between the users.

spSim (u, v) =
1[

1 + dist(u,v)
1000

] ( Cu.Cv

||Cu|| ||Cv||
)

(1)

where dist (u, v) is the geo-distance between the users and can be found by Equation (2) using the
Haversine formula [57,58].
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c = 2arctan
( √

a√
1−a

)
dist (u, v) = R × c; where R is the radius of the Earth

(2)

where Cu and Cv are the GPS coordinates of users u and v, respectively. Each GPS point has latitude (∅)

and longitude (ϕ) coordinates. ∅Cu and ϕCu are the latitude and longitude of user u GPS coordinate
(Cu), and ∅Cv and ϕCv are the latitude and longitude of user v GPS coordinate (Cv). R is the radius of
earth, 6371 km.

In OSNs, social relationships vary based on the acceptance and adoption of content by other users.
Users like to recommend and share message with people who easily accept that information and share
it with other users. In this paper, we consider that users only accept and adopt content from individuals
who shared that content with other users. Figure 3 shows the overview of content acceptance by a user,
and that content being shared to the walls of other users. Figure 3a shows content being shared by
user u to user v, and v shares part of that content to his directly neighboring users. Content acceptance
(contentTrust) between users u and v in Figure 4a will be contentTrust (u, v) = 1

3

(
(2+0+1)

3

)
= 1

3 .

In Figure 3b, it will be contentTrust (u, v) = 1
3
( 3+3+3

3
)
= 1. Mathematically, the contentTrust between

any two users such as u and v can be found by Equation (3).

contentTrust (u, v) =
1

|CSet|
∑c∈CSet|nv,c|

|Nv| (3)

where |CSet| is the set of content user u shared to user v, |Nv| is the number of neighbors of user v and
|nv,c| are the users from Nv diffused by content c.
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Figure 3. Content sharing by friends and friends-of-friends in an SNS: (a) content sharing by user u
to v and v share partial content to his friends; and (b) content sharing by user u to w and w share all
content to his friends.

In OSNs, users easily adopt content from users who experienced content in the past.
Recommender systems mostly recommend user content to active users with similar content histories.
In this paper, we consider experienced content similarity as a factor to find the influence between users.
The content similarity between users u and v can be found by Equation (4)

opinionSim (u, v) = 1 − ∑i∈(CSetu∩CSetv) |Ru,i − Rv,i|
Rmax |CSetu ∩ CSetv| (4)

where CSetu and CSetv are the sets of content experienced by users u and v, respectively; Rmax is the
maximum rating; and i is the content experienced by both users u and v.

Users with similar demographic characteristics in OSNs are most likely to connect with each
other. In reality, most businesses and service providers treat service consumers unequally, and they
segment consumers based on demographics such as age, gender, and income for various smart services.
This paper considers age, gender, and occupation to find similarities between users using the cosine
similarity technique in Equation (5).

demoSim (u, v) =
∑D

i=1 uivi√
∑D

i=1 u2
i

√
∑D

i=1 v2
i

(5)

where i are the demographic attributes of users u and v, and D is the total of the demographics
attributes. The influence, I (u, v), of user u on v, is depicted in Figure 3, and it can be calculated using
Equation (6).

I (u, v) = α spSim (u, v) + β contentTrust (u, v) + γ opinionSim (u, v) + ω demoSim (u, v) (6)

where α, β, γ, and ω are the real numbers from interval [0, 1] such that α + β + γ + ω = 1. We adjust
the coefficients by considering the contributions and importance of the criteria in Equation (6).

3.2. Ranking Algorithm for the Selection of the Most Influential Nodes to Initialize the Diffusion Process in
an OSN

In this subsection, we introduce the proposed social node ranking algorithm, which is called
SocNodeRank, to select the most influential nodes to initialize the information dissemination process.
The proposed algorithm considers the user’s direct friends and friends-of-friends to compute the node
rank. Numerous ranking algorithms have been proposed, including degree centrality, betweenness
centrality and closeness centrality [59,60]. Degree centrality considers the number of edges; a user will
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be more central if he is more connected. Degree centrality ignores network structure information and
instead only considers the ties to direct neighbors. Closeness centrality measures how close a node is
to other nodes in the network. The betweenness of a node refers to the number of node pairs passing
through a node with the minimum number of edges. Closeness and betweenness consider the network
structure, but they lack efficiency in large scale networks.

The SocNodeRank algorithm considers user directed friends and friends-of-friends to determine a
ranking value. A network can be directed or undirected, but this paper focuses on directed graph-based
social networks. However, we also provide a mechanism to rank the nodes in an undirected network.
SocNodeRank considers the direct friends and friends-of-friends. However, if a node is common
between the user and his friends, then it will be considered only once, as depicted in Figure 4.
Equation (7) finds the rank of the node in an undirected SNS graph.

SocNodeRankundirected (w) = ∑
x∈W

ewx + ∑
x∈W

∑
z∈X ∩ z/∈W

exz (7)

where W is a neighbor set of w, x is one of the neighbors of w, and X is a neighbor set of x. e is the edge
between two users, which is 1 if present and 0 otherwise. Figure 4 shows the SocNodeRank algorithm,
and Figure 4a is the ranking mechanism of an undirected graph (SNS).

Figure 4. Overview of proposed social node rank (SocNodeRank): (a) SocNodeRank in an undirected
network; and (b) SocNodeRank in the directed network.

A social relationship between friends is asymmetric in directed networks. In Section 3.1, we
introduced the influence modeling and the multicriteria factors that affect influence. We consider the
weighted out degree (outgoing edge) to rank nodes in directed networks. The rank of the node in the
directed SNS is given by Equation (8), where I (w, x) is the influence of user w on user x.

SocNodeRankdirected (w) = ∑
x∈W

I (w, x) + ∑
x∈W

∑
z∈X∩z/∈W

I (w, x) I (x, z) (8)

We consider the direct influence of the user on his friends and the propagation of influence to his
friends-of-friends. Figure 4b depicts the ranking mechanism of the proposed scheme in the directed
graph. The proposed scheme needs less time to rank the nodes in an SNS because it considers only
2-hops neighbors of user compared to most ranking algorithms such as betweenness, closeness and
PageRank except the degree centrality. The proposed algorithm also captures the properties of the
betweenness centrality- and degree centrality-based schemes.
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3.3. Temporal Aware Probabilistic Diffusion-Based Social Content Recommendations in OSNs

The growth of SNSs and user interactions helps disseminate information. However, the density
of users creates an information overload problem. In this subsection, we introduce the probabilistic
diffusion model to model the social content recommendation process. This model operates in a
controlled manner that considers the recommended message temporal information, network topology,
and user multicriteria influence. In SNSs, users can receive the same diffused messages from many
users or with minor information updates, which does not happen with biological diffusion. We place
diffusing messages into two categories—one in which the user accepts the message and the other
in which the user does not accept the message. We model the influence between users based on
multicriteria, and then we rank the nodes and select the most influential (initial spreader) K-nodes to
initialize the diffusion process. We extend the concept of the continuous-time Markov chain model
in [40] and the social influence diffusion model presented in [61] to control the diffusion process and
overcome the information overload problem.

In the diffusion process, a node can be inactive or active. At time t = 1, K influential nodes are
selected to start the diffusion process. At t = 2, neighbors of the diffusing nodes only become active
when the incoming influence from the diffusing node is greater than the outgoing influence and the
recommendation (diffusion acceptance threshold). Suppose u is the diffusing node and v might be the
accepting (diffusion adopting) node. The activation state of v at t = 2 is given by Equation (9).

PDi f f t=2 (v) =

{
I (u, v) ; where I (u, v) ≥ I (v, u) and I (u, v) ≥ RAT1

0; otherwise
(9)

where PDi f f t=2 (v) determines whether node v at time t = 2 will be diffused or not. RAT1 is the
acceptance threshold of diffusion (recommendation) from direct friends. In this paper, we consider
two different thresholds—RAT1 is the threshold of the content recommendation acceptance from the
direct friends at t = 2, and RAT2 is the threshold for friends-of-friends and so on for t > 2.

At t = 1 in Figure 5a, the highest value of K (influential nodes) is selected using the mechanism
of Section 3.2, and for simplicity, K = 1 is considered to explain the procedure. At t = 2 of
Figure 5b, the neighboring nodes {2, 4, 6, 7, 8} of {1} are selected for diffusion, but according to
Equation (9), only nodes {2, 6, 8} are diffused because node {1} has a higher influence on them and
the diffusion acceptance threshold RAT1 = 0.4. The active node continues to diffuse if the outgoing
influence is greater than the incoming influence. The diffusing node accepts only the diffused message
if the diffusion contagion probability is greater than the diffusion acceptance threshold. Suppose
the threshold of diffusion acceptance is RAT2 ≥ 0.5 for t > 2 in Figure 5c. Nodes {3} and {5}
are diffused because (0.8 × 0.74) ≥ RAT2 and (0.65 × 0.8) ≥ RAT2, while node {9} is not diffused
because (0.55 × 0.35 + 0.8 × 0.2) < RAT2. Similarly, at t = 4 in Figure 5d, node {7} is diffused
because (0.8 × 0.74 × 0.85) ≥ RAT2. Mathematically, the nodes activation probability for (t + 1) ≥ 3
can be given by Equation (10).

PDi f f t+1 (w; V) =

⎧⎨
⎩

V
∑

v=1
I (v, w) PDi f f t (v|V) ; I (v, w) ≥ I (w, v) and PDi f f t+1 (w; V) ≥ RAT2

0; otherwise
(10)

where V is the set of neighboring nodes of node w that can diffuse u at time t where (t + 1) ≥ 3.
The equation shows that users accept recommendations when a large number of higher similarity
friends and friends-of-friends recommend the content.
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Figure 5. Overview of the proposed temporal aware probabilistic information diffusion process:
(a) diffusion process start (t = 1); (b) diffused node at (t = 2); (c) diffusion status at (t = 3); and
(d) Information Diffusion at (t = 4).

4. Simulation Results and Discussion

In this section, different real-world publicly available datasets used for this paper are introduced,
and a comparison of the proposed schemes with various previous rankings and diffusion algorithms
is provided.

4.1. Experimental Results for Social Ties Relationship (Influence) Factors

To the best of our knowledge, there is no single dataset network that contains all of the required
attributes to determine influence among users and evaluate the proposed influence modeling scheme.
To build a single compilation of network data, we extract user spatial information from [62], Advotago
user social trust data from [63], and demographics and user ratings from MovieLens [64].
tab:symmetry-08-00089-t001 shows the attributes of the dataset used for the evaluation of influence
scheme. Finally, the dataset used for the multicriteria relationship modeling has an average degree of
3.345 and network diameter of 9.
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Table 1. Description of dataset for multicriteria-based influence modeling.

Dataset Attributes Description/Values of Attributes

Number of users 133
Number of edges 450

Trust value between users {0.6, 0.8, 1.0}
User demographics Sex, Age

Minimum times same content evaluated by friends 10

In order to evaluate the different influential factors,
tab:symmetry-08-00089-t002 shows the Top − 10 most influential nodes in the multicriteria dataset of
tab:symmetry-08-00089-t001. Extensive simulations are carried out to determine the optimal values of
α, β, γ, and ω to calculate the actual influence between users using the multicriteria. The nodes are
ranked using weighted out-degree for each attribute separately and also for combined using the various
coefficient criteria in Equation (6). Selecting the coefficient values, the precision is used to compare
the node rankings by individual attribute-based influence with node rankings by multicriteria-based
influence. Figure 6 shows the precision comparison of the single attribute and the multicriteria
influence-based ranked nodes. The coefficients {α = 0.20, β = 0.45, γ = 0.20, ω = 0.15} are selected
because they extract most of the influential nodes of each single attribute.

Table 2. Top-10 influential nodes in the multicriteria influential dataset using weighted out degree.

Spatial
Similarity

Content
Trust

Opinion
Similarity

Demographics
Similarity

{
α = 0.2, β = 0.45,
γ = 0.2, ω = 0.15

} {
α = 0.4, β = 0.4,
γ = 0.1, ω = 0.1

}

70 70 70 70 70 70
29 113 50 109 58 58
58 114 71 58 114 64
27 58 114 85 113 27
64 64 6 114 64 114

102 71 4 61 27 113
78 27 48 32 71 29
32 32 102 55 29 71
4 127 89 1 109 32
99 1 113 127 32 4

 
(a) 

Figure 6. Cont.
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(b)

Figure 6. Precision comparison for the selection of multicriteria influence coefficients: (a) precision
comparison of the individual attribute based influential node selection with multicriteria
consider coefficients {α = 0.4, β = 0.4, γ = 0.1, ω = 0.1}; and (b) precision comparison of the
individual attribute based influential node selection with multicriteria consider coefficients
{α = 0.2, β = 0.45, γ = 0.2, ω = 0.15}.

4.2. Results of Proposed Social Node Ranking Algorithm (Selection of Highest Influential Nodes)

The results of the proposed SocNodeRank are compared with three state-of-art ranking
algorithms—weighted out-degree centrality, closeness centrality, and betweenness centrality. We
used the directed weighted networks publicly available datasets for results comparison. The details of
the datasets are as follows.

Zachary’s Karate Network [65]: The small-sized karate network is used as a directed network,
but the edge weight (1) is the same between users. The dataset consists of 34 members and 78 friend
relationships. The karate club was started at an American university in the late 1970s.

Coauthorships in Network Science [66]: This is a weighted directed coauthors network with
1589 nodes and 2742 edges.

Political Blogs of US Elections [4]: This is a directed network of hyperlinks between 2004 US
election weblogs. The dataset consists of 1490 nodes and 19,025 edges.

Coappearance network of characters [67]: The co appearance network of characters in the novel
Les Miserables is a weighted network with 77 nodes and 254 edges.

To compare the proposed SocNodeRank with other schemes, the ranking similarity metric
from [68] is employed. The ranking similarity F(r) of two schemes at rank r can be given by
Equation (11).

F (r) =
|L (r) ∩ L′ (r)|

|r| (11)

where L (r) and L′ (r) are the two sets of nodes of two different ranking schemes at rank r.
Figure 7 shows the simulation and comparison results of ranking similarity F (r) for the above

specified networks at various r ranking. The figure clearly depicts that the proposed algorithm has
higher ranking similarity with the weighted out degree and betweenness. We used Gephi [69] as
open source software for most of the ranking algorithm simulation. In the simulation setting for
PageRank, we considered (probability = 0.5, Epsilon = 0.1 and use edge weights) and for Eignvector
centrality directed and 100 number of iterations. The experimental results show that as the network
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becomes denser in term of nodes and especially edges (interactions), the proposed SocNodeRank
differs from the other schemes. The ranking similarities in Figure 7a (the karate network) and Figure 7b
(the coappearance of characters in Les Miserables) are quite alike, whereas the network size increases
in Figure 7c (coauthors in Network Science) and Figure 7d (the political blogs of the 2004 US election).
SocNodeRank extracts some important potential nodes that can maximize the information diffusion.
In addition, it extracts nodes that for the most part have the highest values of betweenness for the
1-edge neighbor friends.

Figure 7. Ranking similarity of the proposed SocNodeRank with weighted out degree, betweenness,
and closeness: (a) Zachary’s Karate Network; (b) coappearance network of characters in the novel
Les Miserables; (c) coauthorships in Network Science; and (d) political blogs.

Tables 3 and 4 show the Top-10 highly influential nodes from the coauthorships in Network Science
and the 2004 US election political blogs, respectively. In the Top-10 rankings of the coauthorships
network, SocNodeRank extracts nodes such as {1087, 132, 133}, which is not extracted by other
schemes. Crucially, these nodes for the most part have the highest degree of betweenness and edge
centrality for the direct neighbors. Similarly, in the Top-10 rankings of the 2004 US election political
blogs, it extracts nodes {1047, 980, 1384, 615}. Node {980} has a high level of betweenness nodes
{1051, 1041, 1101, 1479} in the direct friends. Therefore, the proposed SocNodeRank scheme captures
the properties of edge centrality and betweenness simultaneously, but it takes less time to rank the
nodes as compared to the betweenness-only scheme because it considers only the direct friends
and friends-of-friends.
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Table 3. Top-10 ranked influential nodes (Nodes IDs) in the directed network of coauthorships in
network science.

Rank Weighted Out Degree Closeness Betweenness PageRank Eign Vector Centrality Propose SocNodeRank

1 517 1027 78 33 645 517
2 151 492 150 78 1429 54
3 97 866 301 30 1430 516
4 516 867 516 46 1431 151
5 309 986 281 62 1432 34
6 34 450 46 216 1433 132
7 54 1182 151 294 33 1087
8 744 640 307 150 1434 133
9 377 1026 216 34 30 744
10 655 499 71 69 1435 309

Table 4. Top-10 ranked influential nodes (Nodes IDs) in the political blogs of 2004 US election.

Rank Weighted Out Degree Closeness Betweenness PageRank Eign Vector Centrality Propose SocNodeRank

1 855 1490 855 155 55 855
2 454 1405 55 963 155 1047
3 512 1397 1051 855 641 1000
4 387 1247 155 55 729 980
5 880 230 454 641 1051 524
6 363 216 387 1051 642 880
7 1101 1340 1479 1153 756 387
8 1000 1279 1101 1245 535 1384
9 524 926 1041 729 323 615
10 144 833 729 798 1245 1101

4.3. Results of the Temporal Aware Probabilistic Diffusion-Based Social Content Recommendations in OSNs

In this subsection, the simulation results are introduced for users influenced with the diffusion
time and number of Top-K (rank-r) initially diffused nodes for the multicriteria dataset introduced
in Section 4.1. The proposed SocNodeRank algorithm is used to select highly influential users
that can increase the diffusion process. Figure 8 shows the number of influenced users over the
simulation (diffusion) time, and it shows that the diffusion rate is higher at the start, but slows as
time progresses. The suggested temporal aware probabilistic diffusion model controls the diffusion
process and diffuses only those nodes with high levels of similarity. It is able to diffuse the information
further. The recommendation acceptance thresholds (RAT1 and RAT2) have a greater impact on the
nodes activation process. If the threshold values are higher, then most of the nodes are excluded
from diffusion.

Figure 8. Effect of diffusion time on number of influenced (recommendation accepted) users.
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Figure 9 shows the effects of the Top-K influential users and the RAT1 on the number of influenced
(recommended) users. The Top-K influential users help to diffuse and increase the number of diffused
nodes. However, after a certain value of K, the influence of the Top-K users decreases, and it does not
improve the diffusion process.

Figure 9. Effect on #number of influenced users by various Top-K influential users and RAT1.

5. Conclusions

In this paper, we have presented a method of providing social content recommendations using
multicriteria-based relationship modeling between social ties and temporal aware probabilistic
diffusion model. We modeled the relationship between social ties to identify users with higher
levels of relationship similarity based on multicriteria incorporating user spatial information, content
trust, opinion similarity, and demographics. We assigned different weights to each attribute of the
multicriteria. We suggested a ranking algorithm for selection of the Top-K most influential nodes
considering the influence of friends and friends-of-friends to maximize the information spread.
The proposed ranking algorithm has higher ranking similarity with the weight out degree and
betweenness. However, it needs less processing time to rank the nodes because it only considers
the two hops neighbors of a user compared to betweenness which considers the entire network.
Furthermore, the suggested temporal-aware probabilistic diffusion process categorized the nodes
based on whether or not they were able to recommend and diffuse content. This enabled the process to
overcome the information overload problem. We used different publically available datasets to verify
the effectiveness of the proposed social content recommendation scheme. We introduced different
thresholds in the proposed probabilistic diffusion model, so the inactive node will be activated if
it has highest influential diffused nodes and the higher number of diffused nodes. The proposed
scheme scaled well with a large number of nodes and links, and it controlled the diffusion process to
recommend content to users with high levels of relationship similarity to overcome the information
overload problem.
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Abstract: In order to address the problem of the uncertainty of existing noise models and of the
complexity and changeability of the edges and textures of low-resolution document images, this
paper presents a projection onto convex sets (POCS) algorithm based on text features. The current
method preserves the edge details and smooths the noise in text images by adding text features as
constraints to original POCS algorithms and converting the fixed threshold to an adaptive one. In this
paper, the optimized scale invariant feature transform (SIFT) algorithm was used for the registration
of continuous frames, and finally the image was reconstructed under the improved POCS theoretical
framework. Experimental results showed that the algorithm can significantly smooth the noise and
eliminate noise caused by the shadows of the lines. The lines of the reconstructed text are smoother
and the stroke contours of the reconstructed text are clearer, and this largely eliminates the text edge
vibration to enhance the resolution of the document image text.

Keywords: super-resolution reconstruction; document image; scale invariant feature transform
algorithm; text feature; projection onto convex sets algorithm

1. Introduction

In the early 1980s, Tsai and Huang were the first to use the Fourier-transform method for satellite
image reconstruction [1]. Since then, super-resolution image reconstruction has been a hot topic in the
field of image processing.

Recently, the use of super-resolution techniques has also drawn many researchers’ attention.
Domestic and foreign scholars have performed a great deal of research on image super-resolution
reconstruction. For instance, Chen et al. used the iterative gradient algorithm combined with the
bilateral total variation algorithm to estimate motion for the subpixel level of target images based on the
Taylor expansion, and they achieved good results [2]. Kato et al. estimated the relative displacement
of the observed image using subpixel block matching and reconstructed super-resolution images
based on sparse representation [3]. Panda et al. used the iterative adaptive regularization method
and genetic algorithm for image super-resolution [4]. However, these algorithms are not specific
to document images, they do not take the characteristics of the document image into account, and
the performance of the application on document images is poor. Scholars have also put forward
some super-resolution algorithms for document images. For example, Fan et al. found that regions
with highly similar characters can self-register and reconstruct themselves using local consistency [5].
Kumar et al., on the basis of sparse representation, pointed out that, although the shapes of the
characters were not consistent, their edges and stroke curves were similar [6]. Finally, they found the
ideal high-resolution (HR) image block by training the dictionary. Abed et al. proposed a total variation
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regularization method based on the directions of the text strokes, and it has achieved good results [7].
However, the algorithms mentioned above have several disadvantages. They are highly complex,
require a single noise model, and cannot fully reconstruct the text edge information. For document
images, the high-frequency details of the edges of the image are very important, and restoring the
edge details is a preferred factor in document image reconstruction. The projection onto convex
sets (POCS) algorithm is very inclusive of prior information, and it can restore the details of the text
boundaries to a considerable extent, but it requires a large amount of computation and the solution is
not unique. Consequently, a POCS algorithm is here proposed for super-resolution of text document
images based on text features—which improves the original POCS algorithm over the degraded model
and threshold—and optimizes the scale invariant feature transform (SIFT) algorithm at the registration
stage to enhance the effect of document image reconstruction and ensure its efficiency.

2. Methodology

2.1. Classical Image Super-Resolution Reconstruction Algorithm

2.1.1. Establishment of Degraded Model

The HR image degradation process usually serves as the observation model, and the relationship
between HR and low-resolution (LR) is established through the reduced quality model. Finally, the
HR equation is generated. The image degradation model is as follows:

gk = DkBkWk f + nk, k = 1, 2, 3 . . . L (1)

Among these, Dk is the geometric distortion matrix, Bk is the fuzzy matrix, Wk is the
down-sampling matrix, k is the number of sequence image frames, and the range is from 1 to L.
f and gk refer to the collected HR original image and LR observation sequence after reducing mass. nk
is the additive Gauss noise.

Let Hk = DkBkWk; Formula (1) can be written as follows:

gk = Hk f + nk (2)

As shown in Formula (2), the image reconstruction process involves estimating the process of
reverse f by regression model. In this paper, the process is divided into two steps: image registration
and then super-resolution reconstruction using POCS algorithm.

2.1.2. Image Registration Based on SIFT Algorithm

Image registration involves estimating the location of each pixel using the tiny differences in
information between different image sequences, thus providing the registration parameters.

The document image is distinguished from the words and the background, and the texture
features, which must be extracted during the feature extraction stage, are very visible. However, image
rotation, translation, and scaling deformation can affect text considerably, especially small text. It is
therefore necessary to find an algorithm suitable for image deformation in the registration. The SIFT
algorithm proposed by Lowe in 1999 can reduce the influence of deformation in the registration of
the document image and extract more accurate features [8]. Accordingly, this paper uses the SIFT
algorithm for image registration.

Steps in the implementation of the SIFT algorithm:

1. Construct a scale space
2. Detect extreme points in the scale space
3. Locate the extreme points accurately
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4. Determine the main direction of key points
5. Find the descriptors of key points

Step 5 involves taking the key-point-centered 16 × 16 pixel neighborhood and then dividing it
into 4 × 4 image sub-blocks. Each pixel defines vector information in 8 directions. Then we generate
4 × 4 × 8 = 128-dimensional feature vectors. After generating the SIFT feature vectors of two images,
the Euclidean distance of the feature vectors of key points is used to assess the similarity of the key
points in the two images.

2.1.3. Image Reconstruction Based on the POCS Algorithm

As shown above, the image degradation model can be expressed as follows:

gk = Hk f + nk (3)

Let (m1, m2) be the arbitrary point of LR image, and the corresponding point in HR image is
(n1, n2). g(m1, m2, l) is a pixel of the LR image of coordinates m1, m2, and frame l. f (n1, n2) is a pixel of
the HR image. n(m1, m2, l) is the noise carried by the frame l of LR image, which is generally considered
additive noise. The corresponding point of (m1, m2) in reference frame is (m′

1, m′
2). H(n1, n2; m′

1, m′
2, l)

is the point spread function of the observation image at point (m′
1, m′

2). Formula (3) can be expressed
as follows:

g(m1, m2, l) = ∑
n1,n2

H(n1, n2; m′
1, m′

2, l) f (n1, n2) + n(m1, m2, l) (4)

According to the data consistency constraint requirements, HR images and any LR image should
maintain the same pixel value at the corresponding points under ideal conditions. That is, each
observed LR image sequence g(m1, m2, l) can be represented by a convex set C [9], such as Formula (5):

C(m1,m2,l) =
{

f (n1, n2, k) :
∣∣∣ r( f )(m1, m2, l)

∣∣∣ ≤ δ0(m1, m2, l)
}

(5)

Among (5), C(m1,m2,l) is the collection of pixels in the LR image, f (n1, n2, k) is the current frame
HR image estimate, δ0(m1, m2, l) is the threshold, which is determined by noise standard deviation
and credibility boundary. r( f )(m1, m2, l) is the residual of any point in a convex set.

r( f )(m1, m2, l) = g(m1, m2, l)− ∑
n1,n2

f (n1, n2, k) · H(n1, n2; m′
1, m′

2, l) (6)

Among (6), k is the frame number of the HR image. The operator that the pixel f (n1, n2, k) mapped
to convex set, with Pm1,m2,l [ f (n1, n2, k)].

The basic idea of POCS is to iterate the initial estimation
∧
f
(0)

(n1, n2, k) of high-resolution images
with POCS operator P and finally produce the high-resolution image [10]. Interpolation is usually

used to perform the initial estimation
∧
f
(0)

(n1, n2, k) of high-resolution images, and the constraint set

of observation sequences is used to correct the
∧
f
(0)

(n1, n2, k), until the iteration conditions are met.
Assuming that there are t iterations, the basic expression used to reconstruct the high-resolution image
f with the POCS algorithm is as follows:

∧
f
(t+1)

(n1, n2, k) = PmPm−1 · · · P1
∧
f
(t)
(n1, n2, k) (7)
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2.2. A POCS Algorithm Based on Text Feature

2.2.1. Features of Document Images

Common document images are based on black and white images. Black represents text and white
is background. The gray curve of image is distinguished from text and background and its envelope is
a bimodal curve. The bimodal characteristics of document image are shown in Figure 1.

Figure 1. Bimodal distribution of document image.

As shown above, the abscissa represents gray value, the ordinate represents the number of
corresponding pixels, and μ0 and μ1 represent the positions of the two peaks of the curve. In the ideal
gray image, there should be only two gray values, μ0 and μ1. If μ0 = 0, this indicates that the pixel
value of black text area is 0; μ1 = 255 means that the pixel value of the white area is 255. However, the
image no longer shows the two value image in the actual document because of the noise. This should
be done to reduce the number of pixels between μ0 and μ1 infinitely close to zero because they may
include noise pixels that can blur the image. Bimodal envelope of document image can be expressed
as follows:

Vel(H′) = (H′ − μ0)
2 · (H′ − μ1)

2 (8)

Among (8), Vel(H′) is the number of corresponding pixels and H′ is the gray value. The closer
the number of pixels near the bimodal comes to μ0 or μ1, the closer the envelope comes to the ideal
situation, and the better the quality of the document image.

2.2.2. Text Features Based on the POCS Algorithm

This section describes the optimization of the traditional POCS algorithm from the following
two aspects.

In POCS steps, building the convex set of low-resolution images is a key step in the introduction
of high-frequency information. For document images, because its details are mostly words, the edges
are more difficult to discern. The original algorithm is not ideal, especially not for some of the grayer
document images. As a consequence, features of the document image were added to the original POCS
algorithm in this paper as a priori constraint. These features were then used to repeatedly correct
estimation until the results converged.

The original algorithm installs the initial threshold on the basis of noise n(m1, m2, l) characteristics
in the degradation model. However, in real life, it is difficult to determine the noise characteristics, so
a fixed threshold can cause the algorithm to lack flexibility.

In this paper, the fixed threshold was changed to an adaptive threshold, which improved the
inclusivity of the algorithm and the quality of the reconstructed image.
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1. Formula (8) is added to the constraint conditions as an a priori function. The initial estimation is
repeatedly revised based on it until the results meet the reconstruction conditions.

2. In the original POCS algorithm, the image reduction formula is as follows:

g(m1, m2, l) = ∑
n1,n2

∧
H(n1, n2; m′

1, m′
2, l) f (n1, n2) + n(m1, m2, l) (9)

There are uncertainty factors in the estimation of the point spread function (PSF)
H(n1, n2; m′

1, m′
2, l) of the image that collected in reality at point (m′

1, m′
2). In this paper, the error was

taken into account. Set H(n1, n2; m′
1, m′

2, l) was considered an accurate estimation, ΔH(n1, n2; m′
1, m′

2, l)

was considered an error estimation, so the actual estimation
∧
H(n1, n2; m′

1, m′
2, l) was as follows:

∧
H(n1, n2; m′

1, m′
2, l) = H(n1, n2; m′

1, m′
2, l) + ΔH(n1, n2; m′

1, m′
2, l) (10)

Formula (9) can be written as follows:

g(m1, m2, l) = ∑
n1,n2

f (n1, n2)
∧
H(n1, n2; m′

1, m′
2, l) + n(m1, m2, l)

= ∑
n1,n2

f (n1, n2)[
(

H(n1, n2; m′
1, m′

2, l) + ΔH(n1, n2; m′
1, m′

2, l)] + n(m1, m2, l)

= ∑
n1,n2

f (n1, n2) (H + ΔH) (n1, n2; m′
1, m′

2, l) + n(m1, m2, l)

(11)

This can be deformed into the following:

g(m1, m2, l)− ∑
n1,n2

f (n1, n2)H(n1, n2; m′
1, m′

2, l)

= ∑
n1,n2

f (n1, n2)ΔH(n1, n2; m′
1, m′

2, l) + n(m1, m2, l)
(12)

The left side of the formula is the residual r( f )(m1, m2, l). At this time, the residual
value is determined using the original noise n(m1, m2, l) and the added uncertainty factors
f (n1, n2)ΔH(n1, n2; m′

1, m′
2, l). The threshold value is then determined using the mixed noise, which

contains added error factors.
After introducing the mixed noise, the new residual was calculated automatically while correcting

the projection. Then, the standard variance is counted as the modified threshold. The threshold does
not need to be set in advance at the start of the algorithm. It can be given automatically based on the
new residual during revision of the LR image.

2.2.3. Algorithm Implementation

When reconstructing the super-resolution (SR) image in this paper, an LR image of the observed
sequences must first be set as a reference frame and interpolated, and a motion estimation must be made
between the LR image and the reference frame to produce the image offset. Then, a low-resolution
image is projected using the improved degradation model, and the modified residual and the modified
threshold value are then calculated. The reference frame is then corrected based on the threshold.
Finally, the current high-resolution estimation was iteratively modified according to the prior constraint
condition of the document image until the acceptable reconstruction results were achieved. The specific
flow chart is shown in Figure 2:
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Figure 2. Algorithm flow chart.

As shown in Figure 2, we can see that the implementation of the POCS algorithm can be divided
into five steps:

1. Read an LR image and make a bilinear interpolation of it. The interpolation multiplier is a
multiple of the desired improved resolution, then this interpolated image was selected as a
reference frame. Let the initial estimate be f0 and the threshold value be δ0.

2. Read the remaining LR frames to register with the reference frame after bilinear interpolation,
and estimate the motion between each frame and the reference frame to produce the registration
mapping parameters.

3. Define the convex set C of the sequences and calculate the residual r values to correct the
reference frame.

4. According to the data consistency constraint, the operator P was calculated, and the relationship
between r and δ0 was assessed to correct f .

5. The cycle end condition was set to || f (t+1)− f (t)||
f (t)

≤ ε. If the conditions are met, then
∧

f (t) = f (t),

and the loop ends. Otherwise, let t = t + 1, and return to the step 3 until f (t+1) meets the

convergence conditions. Then
∧

f (t) is the eligible solution of the algorithm.
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3. Analysis of Experimental Results

In this paper, under the support of a 64 bit Windows 8 operating system and a 2nd generation
Intel Core i5-3210M processor, 2.50 GHz CPU, 4 GB RAM, 500 GB HDD, MATLAB R2013b software is
used to perform the experiment. In the experiment, there are three sets of LR sequences, one generated
by simulation and the others taken with a camera. The reconstruction of image sequences is evaluated
using the peak signal to noise ratio (PSNR), the real images using the mean opinion score (MOS), the
execution times, and the memory occupations.

3.1. Registration with the Optimized SIFT Operator

Here, text features were added to the document image during the preprocessing stage of
registration to improve the matching accuracy, and the feature descriptors were reduced to the fifth
step of the original algorithm SIFT, reducing the dimensions from 128 to 48 to improve the matching
speed. The results of registration and analysis are as follows.

Figure 3 is the reference image. Figure 4 is the image to be registered. Figure 5 shows the matching
results of the original SIFT algorithm, and Figure 6 is the result of the improved SIFT algorithm.

Figure 3. Reference image.

Figure 4. Image to be registered.

Figure 5. Effective feature point matching results of the original scale invariant feature transform
(SIFT) algorithm.
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Figure 6. Effective feature point matching results of the improved SIFT algorithm.

The results in Table 1 show that there were fewer matched and mismatched points associated with
the improved algorithm, which indicates that the algorithm can quickly produce the best registration
parameters with high precision. At the same time, the memory space is released due to the reductions
in dimensions.

Table 1. Analysis of the results.

Algorithm Types
Characteristic Points Matching

Points
Matching

Points
Time Spent on

Matching (s)
The Correct

Matching Rate (%)n1 n2

Original algorithm 220 227 184 7 1.795 96
Improved algorithm 220 227 180 1 1.763 99

3.2. Reconstructed Results and Analysis

3.2.1. The Reconstructed Result of an LR Image Which Is Generated by Simulation

The original HR image is an image of calligraphy copybook 490 × 391 in size, shown in Figure 7a.
The LR image sequences are obtained by down-sampling, panning, blurring, and adding noise to the
original HR image, shown in Figure 7b. In these images, down-sampling was performed with a rank
sampling of 1/2, and the length of the panning involved selecting parameters randomly between [0, 1].
The size of the blur function window was 3 × 3, and the type of noise added was Gauss noise, of which
the standard deviation was 1.

The reconstruction of the original POCS is shown in Figure 7d, and the edges of the words appear
ghost in Figure 7d. We compared the performance of the proposed algorithm with the approach in [11],
the method in [12], and the improved POCS in this paper. The results are presented in Figure 7e–g,
respectively. By comparison, the original POCS algorithm adds high-frequency image details and at
the same time introduces a lot of noise. The text edges of the reconstructed document image can gain
fuzzy ghosts caused by this noise due to the fixed threshold, which is set by the original algorithm to
mix in more noise, so the image quality is affected. There are also some noticeable ringing artifacts
in the reconstruction image showed in Figure 7e. The result in Figure 7f shows that the approach
in [12] can retain lots of details, but the reconstruction was still unsatisfactory. It can be seen from
the Figure 7g that the overall sharpness of the image has been recovered and a significant amount of
details has also been restored. Comparison reveals that our approach is superior, as it is able to recover
more visual clarity from the LR images, particularly near the textual region.
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Figure 7. Cont.
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Figure 7. (a) Original high-resolution (HR) image; (b) low-resolution (LR) image sequences;
(c) reference image after registration using the improved SIFT; (d) reconstruction of the original
projection onto convex sets (POCS); (e) reconstruction using the method in [11]; (f) reconstruction using
the method in [12]; (g) reconstruction of the improved POCS.

3.2.2. Reconstruction of Ancient Books and Ancient Inscriptions Taken by Camera

First, the experiment uses a set of LR image sequences of ancient books, four document images
with low quality where the words on the images are difficult to identify; the size of the images is
476 × 356, as shown in Figure 8a. Each image shown in Figure 8a was produced using bilinear
interpolation, and an interpolated image was selected to register with other LR images one-by-one to
produce the reference frame using the improved SIFT algorithm, as shown in Figure 8b. The result
of the reconstruction using the original POCS is shown in Figure 8c. As shown in Figure 8c, the area
surrounding the document text in the reconstructed image has an obvious procrastination phenomenon,
which can be attributed to the incorporation of noise into the reconstruction process. Next, the
methods in [11,12] were performed to obtain HR images. It is observed that the obtained results were
unsatisfactory as shown in the Figure 8d,e. The reconstructed HR image using the improved POCS
method is given in Figure 8f. The Figure 8f demonstrates that the improved POCS algorithm can
rebuild the text clearly and the results are visibly improved. This is because our proposed method
utilizes the improved SIFT, hence resulting in better registration. The effectiveness of the registration
in turn leads to the satisfactory image quality.
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Figure 8. (a) LR image sequences of ancient books; (b) reference image after registration using the
improved SIFT; (c) reconstruction of the original POCS; (d) reconstruction using the method in [11];
(e) reconstruction using the method in [12]; (f) reconstruction of the improved POCS.
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A set of LR image sequences of three ancient inscriptions was used here. The images are 449 × 729
in size, as shown in Figure 9a. Because the words were inscribed many years ago, many are illegible in
these inscriptions and the defect of the image quality is obvious. Figure 9b shows the reference image.
As shown in Figure 9c, the reconstructed image of the inscription as processed using the original
algorithm has apparent noise and a ringing effect in edge of the text. The result of implementing the
method described in [11] is shown in Figure 9d. The super-resolution method which is proposed
in [12] resulted in Figure 9e. Figure 9f shows the implementation of the improved method described
in this paper. Comparing Figure 9f to Figure 9c–e, we notice not only has our method removed the
outliers more efficiently than other methods, but it has also resulted in sharper edges without any
ringing effects.

Figure 9. Cont.
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Figure 9. Cont.
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Figure 9. (a) LR image sequences of ancient inscriptions; (b) reference image after registration using
the improved SIFT; (c) reconstruction of the original POCS; (d) reconstruction using the method in [11];
(e) reconstruction using the method in [12]; (f) reconstruction of the improved POCS.

3.2.3. Reconstruction Quality Evaluation

In the experiment, there were three sets of low-resolution sequences, the first group was generated
by simulation and the others were taken with a camera. To ensure fairness in comparison, the
simulation environments are given as follows: Windows 8, MATLAB R2013b, 2.50 GHz CPU, and 4 GB
RAM. We used the peak signal to noise ratio (PSNR) and the mean opinion score (MOS) to compare
the performance of image sequences of each of these methods. The value of MOS ranges from [0, 5],
in which larger value of MOS indicates better image quality and smaller ones indicate poorer quality.
The various visual feelings generated by 10 observers for the same image are referenced here. Then
a reasonable evaluation score was determined using to the clarity of the image and whether there is
any blurring or noise. The MOS value, which is the final result of the assessment, was then calculated.
Also, we provide an analysis on the computational complexity of the methods using the execution
times and the memory occupations.

(a) Evaluation of the first group
As shown in Table 2, the PSNR and MOS values of the improved POCS are higher than the

previous three algorithms, which show the reconstruction of this improved algorithm to be more
similar to the original HR image. The evaluation results show that the improved approach gains a
better performance both on reconstruction quality and computational time.
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Table 2. Quantitative comparison of the performance of the copybook experiments.

Algorithm Types PSNR/dB MOS The Execution Time/s The Memory Occupation/KB

Original POCS 23.29 3.302 7.319 2464.00
the method in [11] 23.57 3.534 7.434 2934.00
the method in [12] 24.31 3.708 7.327 2585.00
Improved POCS 24.68 4.149 7.323 2324.00

(b) Evaluation of the second group
In order to illustrate the experimental performance of the ancient books using the improved POCS

approach, Table 3 shows the quantitative comparison of the four methods. It is clear that the resulting
image (Figure 8f) has a better quality than other reconstruction methods.

Table 3. Quantitative comparison of the performance of the ancient books experiments.

Algorithm Types PSNR/dB MOS The Execution Time/s The Memory Occupation/KB

Original POCS 36.97 3.452 10.371 3173.00
the method in [11] 37.34 3.598 11.453 3528.00
the method in [12] 38.16 3.974 11.185 3259.00
Improved POCS 38.23 4.079 10.548 3194.00

Table 4 shows that the improved POCS method has highest values of PSNR and MOS.
The execution time and memory occupation are a little higher than other algorithms, but this is
acceptable with respect to its image quality. This means that the algorithm in this paper reduces noise
more effectively than other algorithms, and the edges of the reconstructed image are much smoother.
These objective performance measures illustrate the improved POCS method has the best visual quality
and further reconfirm our subjective evaluation of the reconstructed image.

Table 4. Quantitative comparison of the performance of the ancient inscriptions experiments.

Algorithm Types PSNR/dB MOS The Execution Time/s The Memory Occupation/KB

Original POCS 37.98 3.548 11.079 3279.00
the method in [11] 38.03 3.746 11.855 3371.00
the method in [12] 38.74 4.032 11.273 3284.00
Improved POCS 38.82 4.214 11.143 3281.00

4. Conclusions

An improved super-resolution algorithm for document images based on the optimization of the
classical SIFT algorithm and traditional POCS algorithm is proposed in this paper. By enhancing
the contrast and reducing the dimensions, the improved SIFT algorithm improved the efficiency in
the registration section. The text feature information was added as a prior condition to correct the
estimated value, and an uncertain factor was added to the degenerate formula to calculate residue to
produce the threshold automatically in the POCS model.

The improved super-resolution scheme provides better results on a wide class of document
images. The results of the simulation showed that the method can be used to suppress a great deal of
noise pollution, and properly preserve the edge details with good reconstruction effects. As a result,
its recognition rate is higher and the operation time is shorter than in the original algorithm.

There are still many factors that the algorithm does not cover. They provide direction for future
work. First, this algorithm is applicable to the document image under simple background. If the
background is a mixture image of text and natural scenery, the reconstruction will be of poorer quality.
It may be possible to combine some image segmentation technology in future works to render the
reconstruction more specific. Second, in the reconstruction phase, all of the initial extracted images are
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grayscale ones, and this article does not involve color images. The next work will include experiments
addressing the reconstruction of color document images to render the algorithm more efficient and
more widely applicable.
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Abstract: Quality function deployment (QFD) is a widely used quality system tool for translating
customer requirements (CRs) into the engineering design requirements (DRs) of products or services.
The conventional QFD analysis, however, has been criticized as having some limitations such as
in the assessment of relationships between CRs and DRs, the determination of CR weights and the
prioritization of DRs. This paper aims to develop a new hybrid group decision-making model based
on hesitant 2-tuple linguistic term sets and an extended QUALIFLEX (qualitative flexible multiple
criteria method) approach for handling QFD problems with incomplete weight information. First,
hesitant linguistic term sets are combined with interval 2-tuple linguistic variables to express various
uncertainties in the assessment information of QFD team members. Borrowing the idea of grey
relational analysis (GRA), a multiple objective optimization model is constructed to determine the
relative weights of CRs. Then, an extended QUALIFLEX approach with an inclusion comparison
method is suggested to determine the ranking of the DRs identified in QFD. Finally, an analysis
of a market segment selection problem is conducted to demonstrate and validate the proposed
QFD approach.

Keywords: quality function deployment; hesitant 2-tuples; QUALIFLEX approach; multiple criteria
decision-making

1. Introduction

Quality function deployment (QFD) is a systematic, cross-functional team-based product planning
technique used to ensure that customer requirements (CRs) are deployed throughout the research and
development (R&D), engineering, and manufacturing stages of products [1]. The QFD methodology
originated in the late 1960s and early 1970s in Japan, and first used at the Kobe Shipyards of
Mitsubishi Heavy Industries [2]. Later, QFD has become a standard practice in most leading
companies such as General Motors, Ford, Xerox, IBM, Procter & Gamble, and Hewlett-Packard [3].
QFD is a customer-driven methodology that supports engineers to efficiently translate CRs into
relevant design requirements (DRs) or engineering characteristics (ECs), and subsequently into parts
characteristics, process plans and production requirements in the new product development. Generally,
the implementation of QFD in an organization can improve engineering knowledge, productivity and
quality, and reduce product costs, development cycle time and engineering changes [4]. Due to its
visibility and easiness, the QFD method has been successfully introduced in diverse industries as a
quality tool to achieve higher product performance and customer satisfaction [5–7].

In the application of QFD, a matrix configuration called house of quality (HoQ) is of fundamental
and strategic importance, which is used to translate CRs (WHATs) into appropriate DRs (HOWs)
graphically [8]. Generally, constructing the HoQ comprises determining the weights of CRs, the relationship
matrix between WHATs and HOWs, the interrelationship matrix among HOWs and the importance
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of DRs. Besides, QFD is a group decision behavior and often involves a group of cross-functional
team members from marketing, design, quality, production, as well as a group of customers [4].
The customers of a product or service in a targeted market are first selected for determining the
importance weights of CRs. Then a QFD team is established for assessing the relationships between
CRs and DRs and the interrelationships between DRs. The prioritization of DRs is a critical output of
the QFD planning process, which guides engineering designers in resource allocation, decision-making
and the subsequent QFD analysis [9].

In the real-life world, there are many QFD problems with imperfect, vague and imprecise
information due to the existence of conflicting goals, time press, lack of knowledge, etc. It is common
for QFD team members to use linguistic terms to express their judgments [4,10]. Moreover, because
of uncertainty and incompleteness in the early stage of new product development, a single linguistic
term may not suitable or adequate for QFD team members to give their assessments in constructing
the HoQ. The experts of a QFD team may prefer to use multiple linguistic terms for expressing their
judgment information sufficiently. Therefore, QFD problems could use the linguistic modeling and
computational methods in its solving process. Hesitant fuzzy linguistic term sets (HFLTSs) [11] were
proposed and used to deal with the situations in which decision makers may hesitate among several
possible linguistic values or think of richer expressions for assessing an alternative. Compared with
other fuzzy linguistic approaches, HFLTSs are more convenient and flexible to manage the hesitancy
and uncertainty of decision makers in practical applications [12]. Recently, HFLTSs have attracted
more concerns of researchers and have been widely applied to many fields [13–15]. Additionally,
to calculate linguistic information without loss of information, the 2-tuple linguistic representation
model was introduced by Herrera and Martínez [16]. A well-known extension of the 2-tuple linguistic
model is the interval 2-tuple linguistic model [17], which uses uncertain linguistic variables called
interval 2-tuples for computing with words. Due to its characteristics and capabilities, numerous
studies have reported decision-making models and methods within the interval 2-tuple linguistic
environment [18–20].

On the other hand, prioritizing DRs in QFD can be viewed as a complex multiple criteria
decision-making (MCDM) problem and MCDM methods have been found to be a useful tool to
solve this kind of problem [21]. The QUALIFLEX (qualitative flexible multiple criteria method),
a variation of Jacquet-Lagreze’s permutation method, is a very useful outranking method proposed
by Paelinck [22] for MCDM in view of its simple logic, full utilization of information contained in
the decision analysis, and easy computational procedure [23]. The methodology of QUALIFLEX is
based on a metric procedure that evaluates all possible permutations of the considered alternatives and
identifies the optimal permutation that exhibits the greatest comprehensive concordance/discordance
index [24]. In recent years, the QUALIFLEX has been successfully applied to address different
MCDM problems. For example, Chen et al. [25] developed an extended QUALIFLEX method for
dealing with MCDM problems in the context of interval type-2 fuzzy sets and applied it for medical
decision-making. Chen [26] presented an interval-valued intuitionistic fuzzy QUALIFLEX method with
a likelihood-based comparison approach for multiple criteria decision analysis within the environment
of interval-valued intuitionistic fuzzy sets. Based on the type-2 fuzzy framework, Wang et al. [23]
developed a likelihood-based QUALIFLEX method for multiple criteria group decision-making
within the interval type-2 fuzzy decision setting. Zhang and Xu [24] proposed a hesitant fuzzy
QUALIFLEX with a signed distance-based comparison method for solving MCDM problems in
which the assessments of alternatives and the weights of criteria are both expressed by hesitant
fuzzy elements.

Based on the above discussions, this paper attempts to propose an extended QUALIFLEX approach
based on hesitant 2-tuple linguistic term sets to capture imprecise or uncertain assessment information
in constructing the HoQ and to enhance the analysis capability of the traditional QFD. Although
a considerable number of MCDM methods have been adopted by previous QFD models for the
prioritization of DRs, to the best of our knowledge, no study has been conducted on applying

226



Symmetry 2016, 8, 119

the QUALIFLEX approach in QFD problems. Therefore, we extend the QUALIFLEX algorithm
within the hesitant 2-tuple linguistic environment to determine the priorities of DRs. In addition,
the existing approaches proposed to improve QFD analysis only consider the situations where the
information about CR weights is completely known; no or little attention has been paid to the QFD
problems in which the CR weight information is incompletely known. In response, we propose a linear
programming model to determine the weights of CRs for the QFD problem with incomplete weight
information. Finally, the computational procedure of the new QFD model is illustrated by an illustrate
example concerning market segment evaluation and selection.

The rest of this paper is organized as follows. Section 2 briefly reviews the related work of
QFD improvements. In Section 3, we introduce some basic concepts concerning HFLTSs and interval
2-tuples. It is followed by a description of the proposed QFD framework using hesitant 2-tuple
linguistic term sets and a modified QUALIFLEX approach. Next, a case study is presented in Section 5
to illustrate the proposed QFD methodology, and a comparative analysis with other relevant QFD
methods is also provided in this section. Finally, this article is concluded with discussion of key
findings and future research suggestions in Section 6.

2. Literature Review

Over the last two decades, a number of improvements have been developed to eliminate the
restrictions and enhance the performance of the traditional QFD. Critical reviews have summarized
the concepts and decision methods employed in the QFD process, see, for example, [5,27,28]. In the
sequel, we briefly review the existing QFD methodologies from the perspectives of CR weighting,
vague assessments, and DR ranking in the HoQ construction.

Determining correct importance weights of CRs is essential in QFD since they significantly affect
the target values set for DRs. Therefore, Armacost et al. [29] first integrated analytic hierarchy process
(AHP) with QFD to establish a framework for prioritizing CRs and applied it to the manufacture of
industrialized housing. Kwong and Bai [1] employed a fuzzy AHP with an extent analysis approach to
determine the importance weights for the CRs in QFD. Aye Ho et al. [3] proposed an integrated group
decision-making approach to QFD, which first modifies the nominal group technique to obtain CRs
and then integrates the agreed and individual criteria approaches to assign customers’ importance
levels. Lam and Lai [30] proposed an analytical network process (ANP)-QFD model for designing
environmental sustainability, which makes use of the ANP to determine the importance degrees of
CRs and DRs and to incorporate the inter-dependence between CRs and DRs in the HoQ. Liu et al. [31]
developed a fuzzy non-linear regression model using the minimum fuzziness criterion to identify the
degree of compensation among CRs in QFD. Ji et al. [32] developed a novel approach that integrates
Kano model quantitatively into QFD to optimize product design to maximize customer satisfaction
under cost and technical constraints.

In addition, the QFD team members or consumers participating the construction of HoQ
may have vague assessments and cannot provide their opinions with exact numerical values.
Therefore, to effectively capture inevitable vagueness and uncertainty in the QFD planning process,
Chin et al. [4] presented an evidential reasoning (ER)-based methodology for synthesizing various
types of assessment information provided by customers and QFD team members. Chan and Wu [8]
suggested a systematic approach to QFD on the basis of symmetrical triangular fuzzy numbers (STFNs)
to capture the vagueness in linguistic assessments from both customers and technicians. Zhang and
Chu [10] proposed a fuzzy group decision-making approach incorporating with two optimization
models (i.e., logarithmic least squares model and weighted least squares model) to aggregate the
multi-format and multi-granularity linguistic judgments of decision makers for constructing the
HoQ. Yan and Ma [33] proposed a two-stage group decision-making approach to tackle with human
subjective perception and customer heterogeneity underlying QFD, in which the order-based semantics
of linguistic information is used to derive the fuzzy preference relations of different DRs with respect to
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each customer and the fuzzy majority is used to synthesize all customers’ individual fuzzy preference
relations to determine the prioritization of DRs.

As another key issue of QFD, the prioritization of DRs have been extensively researched and
various methods have been suggested in the QFD literature. For example, Luo et al. [34] proposed a
new QFD-based product planning approach to determine the optimal target levels of DRs for a product
market with heterogeneous CRs by integrating consumer choice behavior analysis. Zhong et al. [35]
constructed a fuzzy chance-constrained programming model to determine the target values of DRs
in QFD and designed a hybrid intelligent algorithm by integrating fuzzy simulation and genetic
algorithm to solve the proposed model. Jia et al. [9] presented a method for quantifying the importance
degree of DRs with a multi-level hierarchical structure in QFD, in which fuzzy ER algorithm is adopted
to deal with the fuzziness and incompleteness during the evaluation process and fuzzy discrete
Choquet integral is used to characterize the interactions among DRs during the aggregation process.
Hosseini Motlagh et al. [36] provided a fuzzy preference ranking organization method for enrichment
evaluation (PROMETHEE) approach to rank DRs for the QFD process in multi-criteria product design.
Song et al. [21] proposed a group decision approach based on rough set theory and grey relational
analysis (GRA) approach for prioritizing DRs in QFD under vague environment.

3. Preliminaries

3.1. Hesitant Fuzzy Linguistic Term Sets

As an extended form of HFSs [37–39], the concept of hesitant fuzzy linguistic term sets (HFLTSs)
was introduced by Rodriguez et al. [11] to deal with the linguistic decision-making situations where
decision makers hesitate to give appropriate linguistic terms as the assessment expressions. In the
following, some basic definitions related to HFLTSs are given [11,40].

Definition 1. Let S =
{

s0, s1, ..., sg
}

be a fixed set of linguistic term set. An HFLTS associated with S, HS is
an ordered finite subset of the consecutive linguistic terms of S. The empty and full HFLTSs for a linguistic
variable ϑ are defined as HS (ϑ) = ∅ and HS (ϑ) = S, respectively.

Definition 2. Let S =
{

s0, s1, ..., sg
}

be a linguistic term set, a context-free grammar is a 4-tuple GH = (VN,
VT, I, P), where VN indicates a set of nonterminal symbols, VT is a set of terminal symbols, I is the starting
symbol, and P denotes the production rules. The elements of GH are defined as follows:

VN = {〈primary term〉 , 〈composite term〉 , 〈unary relation〉 , 〈binary relation〉 ,
〈conjunction〉} ;

VT =
{

lower than, greater than, at least, at most, between, and, s0, s1, ..., sg
}

;

I ∈ VN ;

P = {I ::= 〈primary term〉|〈composite term〉
〈composite term〉 ::= 〈unary relation〉 〈primary term〉|〈binary relation〉

〈primary term〉 〈conjunction〉 〈primary term〉
〈primary term〉 ::= s0

∣∣s1
∣∣...∣∣sg

〈unary relation〉 ::= lower than|greater than|at least| at most
〈binary relation〉 ::= between
〈conjunction〉 ::= and} .

Definition 3. Let EGH be a function that transforms the comparative linguistic expressions obtained by the
context-free grammar GH into an HFLTS HS of the linguistic term set S. The linguistic expressions generated by
GH using the production rules can be converted into HFLTSs according to the following ways:
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a. EGH (lower than si) = {sk|sk ∈ S and sk < si} ;
b. EGH (greater than si) = {sk|sk ∈ S and sk > si} ;
c. EGH (at least si) = {sk|sk ∈ S and sk ≥ si} ;
d. EGH (at most si) = {sk|sk ∈ S and sk ≤ si} ;
e. EGH

(
between si and sj

)
=
{

sk
∣∣sk ∈ S and si ≤ sk ≤ sj

}
.

Definition 4. Let S =
{

s0, s1, ..., sg
}

be a linguistic term set. The envelope of an HFLTS, denoted by env(HS), is
a linguistic interval whose limits are determined by its upper bound H+

S and lower bound H−
S , shown as follows:

env (HS) =
[
HS, HS

]
, HS ≤ HS, (1)

where
HS = max (si) = sj, si ≤ sj and si ∈ HS, ∀i, (2)

HS = min (si) = sj, si ≥ sj and si ∈ HS, ∀i. (3)

3.2. Interval 2-Tuple Linguistic Model

The 2-tuple linguistic model was developed by Herrera and Martínez [16] to avoid information
loss and to increase the accuracy in carrying out linguistic computing [20,41]. A generalized 2-tuple
linguistic model, the interval 2-tuple linguistic model was initiated by Zhang [17] for better expressing
uncertain linguistic assessments. It can be defined as follows.

Definition 5. Let S =
{

s0, s1, ..., sg
}

be a linguistic term set, an interval 2-tuple linguistic variable is composed
of two 2-tuples, denoted by [(sk, α1) , (sl , α2)], where (sk, α1) ≤ (sl , α2), sk (sl) and α1 (α2) represent the
linguistic label of S and symbolic translation, respectively. An interval 2-tuple can be transformed into an
interval value

[
βL, βU](βL, βU ∈ [0, 1] , βL ≤ βU) by the following function [17]:

Δ
[

βL, βU
]
= [(sk, α1) , (sl , α2)] with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sk, k = round

(
βL · g

)
sl , l = round

(
βU · g

)
α1 = βL − k

g , α1 ∈
[
− 1

2g , 1
2g

)
α2 = βU − l

g , α2 ∈
[
− 1

2g , 1
2g

)
.

(4)

where round (·) is the usual round operation. On the contrary, there exists an inverse function Δ−1 that
can convert an interval 2-tuple [(sk, α1) , (sl , α2)] into an interval value

[
βL, βU] (βL, βU ∈ [0, 1] , βL ≤ βU)

as follows:

Δ−1 [(sk, α1) , (sl , α2)] =

[
k
g
+ α1,

l
g
+ α2

]
=
[

βL, βU
]

. (5)

Specifically, the interval 2-tuple linguistic variable reduces to a 2-tuple linguistic variable when
sk = sl and α1 = α2. Besides, motivated by [16], a linguistic interval [sk, sl ] can be converted into an
interval 2-tuple [(sk, 0) , (sl , 0)] by adding a value 0 as symbolic translation.

Definition 6. Consider any three interval 2-tuples ã = [(r, α) , (t, ε)], ã1 = [(r1, α1) , (t1, ε1)] and
ã2 = [(r2, α2) , (t2, ε2)], and let λ ∈ [0, 1], their operational laws are expressed as follows [42,43]:

a ã1 ⊗ ã2 = [(r1, α1) , (t1, ε1)]⊗ [(r2, α2) , (t2, ε2)] = Δ
[
Δ−1 (r1, α1) · Δ−1 (r2, α2) , Δ−1 (t1, ε1) · Δ−1 (t2, ε2)

]
;

b ã1 ⊕ ã2 = [(r1, α1) , (t1, ε1)]⊕ [(r2, α2) , (t2, ε2)] = Δ
[
Δ−1 (r1, α1) + Δ−1 (r2, α2) , Δ−1 (t1, ε1) + Δ−1 (t2, ε2)

]
;

c ãλ = ([(r, α) , (t, ε)])λ = Δ
[(

Δ−1 (r, α)
)λ ,

(
Δ−1 (t, ε)

)λ
]

;

d λã = λ [(r, α) , (t, ε)] = Δ
[
λΔ−1 (r, α) , λΔ−1 (t, ε)

]
.
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Definition 7. Let ãi = [(ri, αi) , (ti, εi)] (i = 1, 2, ..., n) be a set of interval 2-tuples and ω = (ω1, ω2, ..., ωn)
T

be an associated weight vector, with ωj ∈ [0, 1] , ∑n
j=1 ωj = 1. The interval 2-tuple ordered weighted average

(ITOWA) operator is defined as [17]:

ITOWAω (ã1, ã2, ..., ãn) =
n⊕

j=1

(
ωj ãσ(j)

)
= Δ

[
n
∑

j=1
ωjΔ−1

(
rσ(j), ασ(j)

)
,

n
∑

j=1
ωjΔ−1

(
tσ(j), εσ(j)

)]
,

(6)

where (σ (1) , σ (2) , ..., σ (n)) is a permutation of (1, 2, ..., n), such that ãσ(j−1) ≥ ãσ(j) for all j= 2, ..., n.

Definition 8. Let ã1 = [(r1, α1) , (t1, ε1)] and ã2 = [(r2, α2) , (t2, ε2)] be any two interval 2-tuples defined on
the linguistic term set S =

{
s0, s1, ..., sg

}
, then the inclusion comparison possibility of ã1 and ã2 is defined as

follows [19]:

p (ã1 ⊇ ã2) = max
{

1 − max
(

δ2 − β1

h (ã1) + h (ã2)
, 0
)

, 0
}

, (7)

where h (ã1) = Δ−1 (t1, ε1)− Δ−1 (r1, α1) = δ1 − β1, h (ã2) = Δ−1 (t2, ε2)− Δ−1 (r2, α2)= δ2 − β2 and
p (ã1 ⊇ ã2) is the degree to which ã1 is not smaller than ã2. The inclusion comparison possibility, p (ã1 ⊇ ã2),
satisfies the properties that 0 ≤ p (ã1 ⊇ ã2) ≤ 1; p (ã1 ⊇ ã2) = 0 if (t1, ε1) ≤ (r2, α2); p (ã1 ⊇ ã2) = 1 if
(r1, α1) ≥ (t2, ε2); p (ã1 ⊇ ã2) + p (ã2 ⊇ ã1) = 1, and p (ã1 ⊇ ã2) = p (ã2 ⊇ ã1) = 0.5 if p (ã1 ⊇ ã2) =

p (ã2 ⊇ ã1).

Based on the inclusion comparison possibility, a comparison between interval 2-tuple linguistic
arguments can be obtained. For a set of interval 2-tuples ãi = [(ri, αi) , (ti, εi)] (i = 1, 2, ..., n), we first
compute the inclusion comparison possibilities of the pairwise interval 2-tuples using Equation (7),
and let pij = p

(
ãi ⊇ ãj

)
(i, j = 1, 2, ..., n), we can construct the inclusion comparison matrix

P =
[
pij
]

n×n. Then, the optimal degrees of membership for the interval 2-tuples ãi (i = 1, 2, ..., n)
are determined by

p (ãi) =
1

n (n − 1)

(
n

∑
j=1

pij +
n
2
− 1

)
. (8)

As a result, the ranking order of all the interval 2-tuples can be produced in terms of the descending
order of the p (ãi) values.

Definition 9. Let ã1 = [(r1, α1) , (t1, ε1)] and ã2 = [(r2, α2) , (t2, ε2)] be two interval 2-tuples, then

DH (ã1, ã2) = Δ
[

1
2

(∣∣∣Δ−1 (r1, α1)− Δ−1 (r2, α2)
∣∣∣+ ∣∣∣Δ−1 (t1, ε1)− Δ−1 (t2, ε2)

∣∣∣)] (9)

is called the Hamming distance between ã1 and ã2 [42],

DE (ã1, ã2) = Δ

√
1
2

(
(Δ−1 (r1, α1)− Δ−1 (r2, α2))

2
+ (Δ−1 (t1, ε1)− Δ−1 (t2, ε2))

2
)

(10)

is called the Euclidean distance between ã1 and ã2 [43].

4. QFD Using Hesitant 2-Tuples and QUALIFLEX Method

In this section, we propose a hybrid analytical model combining hesitant 2-tuple linguistic
term sets and an extended QUALIFLEX approach for handling QFD problems with incomplete
weight information. The flowchart of the proposed QFD algorithm is depicted in Figure 1. In short,
the proposed QFD approach is composed of three key stages: assessing relationships between CRs and
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DRs, determining importance weights of CRs, and determining the ranking order of DRs. In the
first stage, the relationships between WHATs and HOWs are rated by integrating HFLTSs and
interval 2-tuples to form the QFD problem within the hesitant 2-tuple linguistic environment. Then,
an optimization model is established based on the GRA method, by which the importance degrees of
CRs can be determined. Finally, a modified QUALIFLEX approach is developed for the determination
of priority of each DR. In the following subsections, the procedure of the proposed group analytical
approach for QFD is described in further detail.

Figure 1. Flowchart of the proposed QFD (Quality function deployment) model.

4.1. Assess the Relationships between WHATs and HOWs

Assume that there are K team members TMk (k = 1, 2, ..., K) in a QFD expert group responsible
for the assessment of relationships between a set of WHATs CRi (i = 1, 2, ..., m) and a set of HOWs
DRj (j = 1, 2, ..., n) using the linguistic term set S =

{
s0, s1, ..., sg

}
. In our proposal, the QFD team

members give their judgments on the relationships between CRs and DRs by means of the context-free
grammar approach. Let Hk =

[
hk

ij

]
m×n

be the linguistic assessment matrix of the kth team member,

where hk
ij indicates the hesitant linguistic expression provided by TMk over the relationship between

CRi and DRj. Based on these assumptions and notations, the steps of dealing with the uncertain CR-DR
relationship assessments are presented as follows:

Step 1: Transformation the hesitant linguistic expressions into interval 2-tuples

To homogenize all the judgments for the relationships between WHATs and HOWs, hesitant
linguistic assessment matrices are provided by QFD team members by using linguistic expressions
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based on the context-free grammar GH. After converting into corresponding HFLTSs according to
the transformation function EGH, every QFD team member’s hesitant linguistic expressions hk

ij can

be transformed into linguistic intervals env
(

hk
ij

)
=
[

hk
ij, h

k
ij

]
by calculating the envelope of each

HFLTS (as in Definition 4). Then, the linguistic intervals are represented using the interval 2-tuple
linguistic approach and translated into

[(
rk

ij, 0
)

,
(

tk
ij, 0

)]
. As a result, the hesitant linguistic assessment

information of QFD team members can be expressed by interval 2-tuple assessments as follows:

R̃k =

⎡⎢⎢⎢⎢⎣
r̃k

11 r̃k
12 · · · r̃k

1n
r̃k

21 r̃k
22 · · · r̃k

2n
...

... · · · ...
r̃k

m1 r̃k
m2 · · · r̃k

mn

⎤⎥⎥⎥⎥⎦ , k = 1, 2, ..., K. (11)

Step 2: Construct the collective interval 2-tuple relationship matrix

In this step, to relieve the influence of unfair arguments on the QFD results, the ITOWA operator
is utilized to aggregate the QFD team members’ subjective assessments. That is, the collective
interval 2-tuple assessments r̃ij =

[(
rij, αij

)
,
(
tij, εij

)]
for i = 1, 2, ..., m and j = 1, 2, ..., n are computed

as follows:

r̃ij = ITOWAω

(
r̃1

ij, r̃2
ij, ..., r̃K

ij

)
=

K⊕
k=1

(
ωkr̃σ(k)

ij

)
= Δ

[
K
∑

k=1
ωkΔ−1

(
rσ(k)

ij , α
σ(k)
ij

)
,

K
∑

k=1
ωjΔ−1

(
tσ(k)
ij , ε

σ(k)
ij

)]
,

(12)

where r̃σ(k)
ij is the kth largest of the interval 2-tuples r̃k

ij (k = 1, 2, ..., L), ω = (ω1, ω2, ..., ωL)
T is

the ITOWA weight vector with ωk ∈ [0, 1] and ∑K
k=1 ωk = 1, which can be obtained via the

argument-dependent approach developed by Wu et al. [44].
As a result, a collective interval 2-tuple relationship matrix R̃ can be produced based on the

individual assessments of multiple QFD team members.

R̃ =

⎡⎢⎢⎢⎢⎣
r̃11 r̃12 · · · r̃1n
r̃21 r̃22 · · · r̃2n
...

... · · · ...
r̃m1 r̃m2 · · · r̃mn

⎤⎥⎥⎥⎥⎦ . (13)

Note that the HOWs (DRs) are assumed to be independent in the above computations, which
may not the case in some circumstances. Thus, for the QFD problems characterized by interdependent
HOWs, the relationship matrix R̃ between WHATs and HOWs is adjusted by [33]:

R̃′ = R̃ ⊗ C̃, (14)

where C̃ =
[
c̃ij
]

m×n is the correlation matrix of HOWs. Therefore, the correlations among HOWs
can be incorporated into our QFD model with the adjusted collective interval 2-tuple relationship
matrix R̃′.

4.2. Determine the Importance Weights of CRs

In practical QFD circumstances, the information concerning relative importance of CRs is
usually incompletely known due to time pressure, lack of knowledge or customer’s limited expertise.
The management of incomplete information has been studied by many researchers [45,46], and lots of
methods have been developed for the determination of criteria weights with incomplete information,
such as those based on technique for order preference by similarity to an ideal solution (TOPSIS) [19],
distance measure [47] and entropy method [48]. In the QFD literature, however, little research has
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been conducted to estimate the weights of CRs when the weight information is incompletely known.
The GRA, proposed by Deng [49], is a kind of method for solving MCDM problems, which aims at
choosing the alternative with the highest grey relational grade to the reference sequence. Therefore, in
this part, we establish a multiple objective optimization model based on the GRA to determine the
relative importance of CRs with partly known weight information.

Let w = (w1, w2, ..., wm)
T be the weight vector of CRs collected from the customer representatives

in a targeted market, where wi ∈ [0, 1] and ∑m
i=1 wi = 1, the known weight information on CRs can be

usually constructed using the following basic ranking forms [26,50], for i �= l:

a. A weak ranking: H1 = {wi ≥ wl};
b. A strict ranking: H2 = {wi − wl ≥ γl} (γl > 0);
c. A ranking of differences: H3 =

{
wi − wl ≥ wp − wq

}
(l �= p �= q);

d. A ranking with multiples: H4 = {wi ≥ γlwl} (0 ≤ γl ≤ 1);
e. An interval form: H5 = {γi ≤ wi ≤ γi + εi} (0 ≤ γi ≤ γi + εi ≤ 1).

Let H denote the set of the known weight information of CRs given by a group of customers and
H = H1 ∪ H2 ∪ H3 ∪ H4 ∪ H5, the specific steps to compute the CR weights are given below:

Step 3: Determine the weight vector of CRs

According to the basic principle of the GRA method, the most critical DR for customer satisfaction
should have the “greatest relation grade” to the reference sequence (the vector of ideal relevance value
of each DR with respect to CRs). Under the interval 2-tuple linguistic environment, the reference
sequence denoted as r̃∗ =

(
r̃∗1 , r̃∗2 , ..., r̃∗m

)T can be defined as follows [43]:

r̃∗i = [(r∗i , α∗i ) , (t∗i , ε∗i )] = Δ [1.0, 1.0] , i = 1, 2, ..., m. (15)

For each CR of the associated DRs in QFD, the grey relation coefficient between r̃ij and r̃∗i , i.e.,
ξ
(
r̃ij, r̃∗i

)
, is calculated using the following equation:

ξ
(
r̃ij, r̃∗i

)
=

δmin + ζδmax

δij + ζδmax
, i = 1, 2, ..., m, j = 1, 2, ..., n, (16)

where δij = D
(
r̃ij, r̃∗i

)
, δmin = min

{
δij
}

, δmax = max
{

δij
}

for i = 1, 2, ..., m; j = 1, 2, ..., n, ζ is the
distinguishing coefficient, ζ ∈ [0, 1]. Normally, the value of ζ is taken as 0.5 since it offers moderate
distinguishing effects and good stability. Then the grey relational grade ξ

(
r̃j, r̃∗

)
between the reference

sequence r̃∗ and the comparative sequences r̃j corresponding to DRj can be acquired by

ξ
(
r̃j, r̃∗

)
=

m

∑
i=1

wiξ
(
r̃ij, r̃∗i

)
, j = 1, 2, ..., n. (17)

In general, for the given weight vector of CRs, the larger ξ
(
r̃j, r̃∗

)
, the more important the DRj will

be. Thus, a reasonable weight vector of CRs should be determined so as to make all the grey relational
grades ξ

(
r̃j, r̃∗

)
(j = 1, 2, ..., n) as larger as possible, which means to maximize the grey relational

grade vector Γ (w) = (ξ (r̃1, r̃∗) , ξ (r̃2, r̃∗) , ..., ξ (r̃n, r̃∗)) under the condition w ∈ H. As a result, we can
reasonably form the following multiple objective optimization model:

(M − 1)

maxΓ (w) = (ξ (r̃1, r̃∗) , ξ (r̃2, r̃∗) , ..., ξ (r̃n, r̃∗))

s.t.

⎧⎨⎩ w ∈ H,
n
∑

i=1
wi = 1, wi ≥ 0, i = 1, 2, ..., m.
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Several approaches have been proposed to solve linear programming problems with multiple
objectives. In this paper, the max-min operator [26] is applied to integrate all the grey relational grades
ξ
(
r̃j, r̃∗

)
(j = 1, 2, ..., n) into a single objective optimization model:

(M − 2)

maxλ

s.t.

⎧⎨⎩ ξ
(
r̃j, r̃∗

) ≥ λ1, (j = 1, 2, ..., n) ,

w ∈ H,
m
∑

i=1
wi = 1, wi ≥ 0, i = 1, 2, ..., m.

By solving Model (M−2), its optimal solution w∗ =
(
w∗

1, w∗
2, ..., w∗

m
)T can be used as the weight

vector of CRs.

4.3. Determine the Ranking Order of DRs

To prioritize DRs, in this subsection we develop a hesitant 2-tuple linguistic QUALIFLEX
(HTL-QUALIFLEX) approach with the inclusion comparison method. Since the relationship
assessments between WHATs and HOWs are transformed into interval 2-tuples in the first stage,
this study utilizes the comparison approach of interval 2-tuples based on the inclusion comparison
possibility to recognize the corresponding concordance/discordance index. The best priority order
of DRs is generated based on the level of concordance and the most critical DRs can be identified for
subsequent QFD analysis. Next, the algorithm of the HTL-QUALIFLEX approach for the ranking of
DRs is summarized.

Step 4: List all possible permutation of DRs

Given the set of identified design requirements, i.e., DRj (j = 1, 2, ..., n), and assume that there
exist n! permutations of the ranking of the DRs. Let Pρ denote the ρth permutation as:

Pρ =
(
. . . , DRχ, . . . , DRη , . . .

)
, ρ = 1, 2, ..., n!, (18)

where DRξ and DRζ , ξ, ζ = 1, 2, ..., n, are the DRs listed in QFD and DRξ is ranked higher than or
equal to DRζ .

Step 5: Compute the concordance/discordance index

The concordance/discordance index φ
ρ
i
(
DRξ , DRζ

)
for each pair of design requirements(

DRξ , DRζ

)
at the level of preorder with respect to the ith customer requirement and the ranking

corresponding to the ρth permutation is defined as follows:

φ
ρ
i
(
DRξ , DRζ

)
= p

(
r̃ξi
)− p

(
r̃ζi
)

, i = 1, 2, ..., m. (19)

Based on the inclusion comparison possibility comparison method of interval 2-tuples,
there are concordance, ex aequo and discordance if p

(
r̃ξi
) − p

(
r̃ζi
)

> 0, p
(
r̃ξi
) − p

(
r̃ζi
)

= 0,
and p

(
r̃ξi
)− p

(
r̃ζi
)
< 0, respectively.

Step 6: Calculate the weighted concordance/discordance index

By incorporating the weights of CRs w = (w1, w2, ..., wm)
T derived via Model (M−2), we can

calculate the weighted concordance/discordance index φρ
(
DRξ , DRζ

)
for each pair of design

requirements
(
DRξ , DRζ

)
at the level of preorder with respect to the m CRs and the ranking

corresponding to the permutation Pρ is determined by

φρ
(
DRξ , DRζ

)
=

m

∑
i=1

φ
ρ
i
(
DRξ , DRζ

)
wi. (20)
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Step 7: Determine the final ranking order of DRs

Finally, the comprehensive concordance/discordance index φρ for the ρth permutation is
computed as follows:

φρ = ∑
ξ,ζ=1,2,...,n

m

∑
i=1

φ
ρ
i
(
DRξ , DRζ

)
wi. (21)

It is easily seen that the bigger the comprehensive concordance/discordance index value, the better
the ranking order of the DRs. Therefore, the final ranking result of DRs should be the permutation
with the greatest comprehensive concordance/discordance index φρ, i.e., P∗ = max

ρ=1,2,...,n!
{φρ}.

5. Illustrative Example

In this section, we provide a numerical example to illustrate the applicability and implementation
process of the proposed QFD approach. This case study involves a QFD analysis for market segment
evaluation and selection [51].

5.1. Implementation

Market segment selection is an important marketing activity of a company in the highly
competitive market. It can be regarded as a complex decision-making problem because many potential
criteria and decision makers must be involved during the selection procedure and the outcomes of
any choice are uncertain. QFD provides an effective framework for market segment evaluation and
selection due to the multi-dimensional characteristics of market segments. Thuan Yen JSC is a trading
service and transportation company located in northern Vietnam, which has more than 50 different
sizes of trucks. This company has built a customer network in both domestic and international markets
with ten years’ experience in providing trading and transportation services. To further expand the
company’s business in the domestic and international markets, managers of this company have to
select the most suitable segment to maximize its profit. Thus, the proposed QFD approach is applied
to the first part of the entire market segment selection procedure for this company, i.e., determining
the company’s business strengths (HOWs) based on market segment features (WHATs).

First, an expert team including five company decision makers, TMk (k = 1, 2, ..., 5), is set up to
carry out the QFD analysis. Based on a survey of related literature and interviews with the company’s
top managers and head of departments, the market segment features (CRs) are determined as segment
growth rate (CR1), expected profit (CR2), competitive intensity (CR3), capital required (CR4), and level
of technology utilization (CR5), and the company business strengths (DRs) are selected as relative cost
position (DR1), delivery reliability (DR2), technological position (DR3), and management strength and
depth (DR4). Each member of the QFD team analyzes the match between the market segment features
and the company’s business strengths (WHATs–HOWs), and judges the relationships between them
by means of grammar-free expressions over a seven-point linguistic term set S:

S =

{
s0 = Very Low (VL) , s1 = Low (L) , s2 = Medium Low (ML) , s3 = Medium (M) ,
s4 = Medium High (MH) , s5 = High (H) , s6 = Very High (VH)

}

Table 1 shows the linguistic relationship assessments of the four DRs with respect to each CR
provided by the five QFD team members.
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Table 1. Linguistic assessments on relationships between CRs and DRs by the QFD team.

WHATs
(CRs) Team Members

HOWs (DRs)

DR1 DR2 DR3 DR4

CR1

TM1 Greater than MH ML Between L and M M
TM2 H M M At least ML
TM3 Between H and VH M ML M
TM4 H MH Less than M M
TM5 H At most MH M Between ML and MH

CR2

TM1 At least H Greater than MH Between MH and VH H
TM2 VH H H Greater than H
TM3 Greater than H VH VH Between MH and VH
TM4 H At least H Greater than MH H
TM5 Between MH and VH H H At least H

CR3

TM1 Greater than M H At least H Between MH and VH
TM2 MH Between MH and VH VH H
TM3 H H Greater than H H
TM4 At least H VH VH At most H
TM5 VH Greater than MH VH VH

CR4

TM1 Less than H M Greater than MH MH
TM2 H Between ML and MH H H
TM3 MH M H Less than H
TM4 M At most MH MH At most MH
TM5 At most H Less than MH Between MH and VH M

CR5

TM1 Between MH and VH MH At most H Between L and ML
TM2 H H MH ML
TM3 H Less than H H L
TM4 At least MH M M At most M
TM5 H MH Between MH and VH ML

CR: Customer requirement; DR: Design requirement; QFD: Quality function deployment.

In what follows, the proposed QFD approach is used to help the company obtain the ranking
of HOWs for selecting market segments. First, the hesitant linguistic expressions of the QFD team
members are converted into HFLTSs by applying the transformation function EGH. Then, the linguistic
intervals are yielded by calculating the envelope of each obtained HFLTS and the interval 2-tuple
relationship matrix R̃k (k = 1, 2, ..., 5) of every QFD team member is subsequently constructed. For
instance, the interval 2-tuple relationship matrix of TM1 R̃1 is presented in Table 2. By implementing
the ITOWA operator, the collective assessments regarding the relationship judgements between CRs
and DRs are taken as the collective interval 2-tuple relationship matrix R̃ =

[
r̃ij
]

5×4, as shown in Table 3.
Note that the ITOWA operator weights are derived using the argument-dependent approach [44].

Table 2. Interval 2-tuple relationship matrix of TM1.

WHATs
HOWs

DR1 DR2 DR3 DR4

CR1 [(s5, 0), (s6, 0)] [(s2, 0), (s2, 0)] [(s1, 0), (s3, 0)] [(s3, 0), (s3, 0)]
CR2 [(s5, 0), (s6, 0)] [(s5, 0), (s6, 0)] [(s4, 0), (s6, 0)] [(s5, 0), (s5, 0)]
CR3 [(s4, 0), (s6, 0)] [(s5, 0), (s5, 0)] [(s5, 0), (s6, 0)] [(s4, 0), (s6, 0)]
CR4 [(s0, 0), (s4, 0)] [(s3, 0), (s3, 0)] [(s5, 0), (s6, 0)] [(s4, 0), (s4, 0)]
CR5 [(s4, 0), (s6, 0)] [(s4, 0), (s4, 0)] [(s0, 0), (s5, 0)] [(s1, 0), (s2, 0)]
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Table 3. Collective interval 2-tuple relationship matrix.

WHATs
HOWs

DR1 DR2 DR3 DR4

CR1 Δ[0.833, 0.884] Δ[0.884, 0.448] Δ[0.448, 0.543] Δ[0.543, 0.322]
CR2 Δ[0.876, 0.994] Δ[0.994, 0.839] Δ[0.839, 0.949] Δ[0.949, 0.833]
CR3 Δ[0.791, 0.935] Δ[0.935, 0.833] Δ[0.833, 0.949] Δ[0.949, 0.994]
CR4 Δ[0.426, 0.709] Δ[0.709, 0.29] Δ[0.290, 0.551] Δ[0.551, 0.782]
CR5 Δ[0.782, 0.884] Δ[0.884, 0.614] Δ[0.614, 0.667] Δ[0.667, 0.614]

In the second stage, it is assumed that the company’s managers can only provide their partial
information for the CR weights using the basic ranking forms introduced in Section 3.2, and the set of
known weight information H is shown as follows:

H = {w1 ≥ 1.20w4, 0.15 ≤ w2 ≤ 0.26, 0.03 ≤ w3 − w5 ≤ 0.10, w2 − w3 ≥ w3 − w4, w5 ≥ 0.17} .

Because the weight information is incompletely known, we employ Model (M−2) to construct
the following linear programming model to determine the weights of CRs.

maxλ

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.727w1 + 0.816w2 + 0.711w3 + 0.452w4 + 0.685w5 ≥ λ,
0.425w1 + 0.764w2 + 0.757w3 + 0.386w4 + 0.51w5 ≥ λ,
0.377w1 + 0.757w2 + w3 + 0.682w4 + 0.546w5 ≥ λ,
0.431w1 + 0.757w2 + 0.683w3 + 0.444w4 + 0.337w5 ≥ λ,

w ∈ H,
5
∑

i=1
wi = 1, wi ≥ 0, i = 1, 2, ..., 5.

By solving the above linear programming model, the weight vector of the five CRs is derived as
w = (0.196, 0.260, 0.211, 0.163, 0.170)T .

In the third stage, there are 24 (=4!) permutations of the rankings for all the DRs that must be
tested, which are expressed as follows:

P1 = (DR1, DR2, DR3, DR4), P2 = (DR1, DR2, DR4, DR3), P3 = (DR1, DR3, DR2, DR4),
P4 = (DR1, DR3, DR4, DR2), P5 = (DR1, DR4, DR2, DR3), P6 = (DR1, DR4, DR3, DR2),
P7 = (DR2, DR1, DR3, DR4), P8 = (DR2, DR1, DR4, DR3), P9 = (DR2, DR3, DR1, DR4),
P10 = (DR2, DR3, DR4, DR1), P11 = (DR2, DR4, DR1, DR3), P12 = (DR2, DR4, DR3, DR1),
P13 = (DR3, DR1, DR2, DR4), P14 = (DR3, DR1, DR4, DR2), P15 = (DR3, DR2, DR1, DR4),
P16 = (DR3, DR2, DR4, DR1), P17 = (DR3, DR4, DR1, DR2), P18 = (DR3, DR4, DR2, DR1),
P19 = (DR4, DR1, DR2, DR3), P20 = (DR4, DR1, DR3, DR2), P21 = (DR4, DR2, DR1, DR3),
P22 = (DR4, DR2, DR3, DR1), P23 = (DR4, DR3, DR1, DR2), P24 = (DR4, DR3, DR2, DR1).

In Step 5, we calculated the concordance/discordance index φ
ρ
i
(
DRφ, DRη

)
using Equation (19) for

each pair of DRs
(
DRφ, DRη

)
(φ, η = 1, 2, 3, 4) in the permutation Pρ in relation with CRi (i = 1, 2, ..., 5).

Considering the first permutation P1 for example, the results of the concordance/discordance index are
shown in Table 4. In Step 6, we utilize Equation (20) to compute the weighted concordance/discordance
index φρ

(
DRξ , DRζ

)
for each pair of

(
DRφ, DRη

)
in the permutation Pρ, and the results are indicated in
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Table 5. In Step 7, the comprehensive concordance/discordance index φρ (ρ = 1, 2, ..., 24) is calculated
by applying Equation (21) for each permutation Pρ. The computation results are given as follows:

φ1 = 0.2266, φ2 = 0.0949, φ3 = 0.3183, φ4 = 0.2783, φ5 = 0.0549, φ6 = 0.1465,
φ7 = 0.0850, φ8 = −0.0467, φ9 = 0.0351, φ10 = −0.1465, φ11 = −0.2284, φ12 = −0.2783,
φ13 = 0.2684, φ14 = 0.2284, φ15 = 0.1268, φ16 = −0.0549, φ17 = 0.0467, φ18 = −0.0949,
φ19 = −0.1268, φ20 = −0.0351, φ21 = −0.2684, φ22 = −0.3183, φ23 = −0.0850, φ24 = −0.2266.

Table 4. Results of the concordance/discordance index for P1.

P1 CR1 CR2 CR3 CR4 CR5

φ1
i (FM1, FM2) 0.131 0.059 −0.030 0.069 0.147

φ1
i (FM1, FM3) 0.250 0.063 −0.165 −0.141 0.103

φ1
i (FM1, FM4) 0.119 0.063 0.034 0.008 0.250

φ1
i (FM2, FM3) 0.119 0.004 −0.135 −0.210 −0.044

φ1
i (FM2, FM4) −0.012 0.004 0.065 −0.061 0.103

φ1
i (FM3, FM4) −0.130 0.000 0.200 0.149 0.147

Table 5. Results of the weighted concordance/discordance index.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

0.0708 0.0708 0.0250 0.0250 0.0908 0.0908 −0.0708 −0.0708 −0.0458 −0.0458 0.0200 0.0200
0.0250 0.0908 0.0708 0.0908 0.0708 0.0250 −0.0458 0.0200 −0.0708 0.0200 −0.0708 −0.0458
0.0908 0.0250 0.0908 0.0708 0.0250 0.0708 0.0200 −0.0458 0.0200 −0.0708 −0.0458 −0.0708
−0.0458 0.0200 0.0458 0.0659 −0.0200 −0.0659 0.0250 0.0908 −0.0250 0.0659 −0.0908 −0.0659
0.0200 −0.0458 0.0659 0.0458 −0.0659 −0.0200 0.0908 0.0250 0.0659 −0.0250 −0.0659 −0.0908
0.0659 −0.0659 0.0200 −0.0200 −0.0458 0.0458 0.0659 −0.0659 0.0908 −0.0908 0.0250 −0.0250
0.0708 0.0708 0.0250 0.0250 0.0908 0.0908 −0.0708 −0.0708 −0.0458 −0.0458 0.0200 0.0200
0.0250 0.0908 0.0708 0.0908 0.0708 0.0250 −0.0458 0.0200 −0.0708 0.0200 −0.0708 −0.0458

P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24

−0.0250 −0.0250 0.0458 0.0458 0.0659 0.0659 −0.0908 −0.0908 −0.0200 −0.0200 −0.0659 −0.0659
0.0458 0.0659 −0.0250 0.0659 −0.0250 0.0458 −0.0200 −0.0659 −0.0908 −0.0659 −0.0908 −0.0200
0.0659 0.0458 0.0659 −0.0250 0.0458 −0.0250 −0.0659 −0.0200 −0.0659 −0.0908 −0.0200 −0.0908
0.0708 0.0908 −0.0708 0.0200 −0.0908 −0.0200 0.0708 0.0250 −0.0708 −0.0458 −0.0250 0.0458
0.0908 0.0708 0.0200 −0.0708 −0.0200 −0.0908 0.0250 0.0708 −0.0458 −0.0708 0.0458 −0.0250
0.0200 −0.0200 0.0908 −0.0908 0.0708 −0.0708 −0.0458 0.0458 0.0250 −0.0250 0.0708 −0.0708
−0.0250 −0.0250 0.0458 0.0458 0.0659 0.0659 −0.0908 −0.0908 −0.0200 −0.0200 −0.0659 −0.0659
0.0458 0.0659 −0.0250 0.0659 −0.0250 0.0458 −0.0200 −0.0659 −0.0908 −0.0659 −0.0908 −0.0200

Based on the comprehensive concordance/discordance indexes φρ (ρ = 1, 2, ..., 24) produced, it is
easily seen that the best permutation is P3 because φ3 = 0.3183 gives the maximum value, and the final
priory order of the four DRs is DR1 � DR3 � DR2 � DR4. Therefore, the most important company
business strength for the considered case study is “relative cost position (DR1)”, which should be
given the highest priority for selecting the optimal market segment, followed by DR3, DR2, and DR4.

5.2. Comparisons and Discussions

To validate the effectiveness of the proposed QFD, a comparative analysis with the conventional
QFD and the fuzzy QFD [51] methods is conducted on the same problem of market segments evaluation.
In addition, an extended linguistic QFD approach based on discrete numbers [52] is chosen to facilitate
the comparative analysis. By applying these methods, the ranking results of the four DRs are generated
as shown in Table 6.

With respect to the proposed QFD approach, Table 6 shows that our prioritization of the DRs is
in accordance with the rankings yielded by the conventional QFD, the fuzzy QFD, and the linguistic
QFD methods. Thus, the potential of the proposed QFD is validated through the comparative study.
However, compared with the conventional QFD method and its various improvements, the QFD
approach here proposed offers some additional advantages as follows:
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• Different types of uncertainties in the implementation of QFD, such as imprecision, uncertainty
and hesitation, can be well modeled via the hesitant 2-tuple linguistic term sets. The QFD team
members can use more flexible and richer expressions to express their subjective judgments.

• By using the ITOWA operator, the proposed method can relieve the influence of unfair judgments
concerning the relationships between CRs and DRs on the QFD analysis results, through assigning
very low weights to those “false” or “biased” opinions.

• The proposed approach is able to deal with QFD problems in which the information about CR
weights is incompletely known. Under the condition of incomplete weight information, a multiple
objective programming model can be established to solve the optimal weights of CRs.

• The proposed methodology can get a more reasonable and credible ranking of DRs by using the
modified QUALIFLEX approach, which makes the QFD analysis results certain and facilitates
product planning decision-making.

• The proposed model is suitable to solve complicated QFD problems with comprehensive CRs
and limited DRs, since the number of CRs has little effect upon the implementation efficiency of
the proposed method.

Table 6. Ranking results of HOWs by the listed methods.

HOWs
QFD Fuzzy QFD Linguistic QFD Proposed Approach

Wj Ranking W̃j Ranking Ŵj Ranking

DR1 7.221 1 (0.267, 0.475, 0.724) 1 s5.06 1 1
DR2 6.303 3 (0.231, 0.415, 0.659) 3 s4.32 3 3
DR3 7.035 2 (0.253, 0.448, 0.689) 2 s4.60 2 2
DR4 5.919 4 (0.217, 0.400, 0.641) 4 s4.05 4 4

6. Conclusions

In this paper, we developed a hybrid group decision-making model using hesitant 2-tuple
linguistic term sets and an extended QUALIFLEX method for handling QFD problems with incomplete
weight information. The HFLTSs, a new effective tool to express human’s hesitancy in decision-making,
was used to represent the diversity and uncertainty of subjective assessments given by QFD team
members, and the interval 2-tuple linguistic model was employed to process the acquired linguistic
assessment information, which can effectively avoid information loss and distortion in the linguistic
computing. As a result, the hesitant 2-tuple linguistic approach for the expression of assessment
information better reflects the deep-seated uncertainty in the implementation process of QFD. As the
weight information of CRs is usually incomplete because additionally complex and abstract, a linear
programming model was suggested to determine the optimal weight vector for CRs. Finally, the normal
QUALIFLEX method has been modified to obtain the priority order of DRs and to detect the most
important ones for the following design stages. The real-world efficacy of the proposed QFD approach
was illustrated by using a market segment evaluation and selection problem.

In the future, the following research directions are recommended. First, the linguistic term sets that
are uniformly and symmetrically distributed were used in the proposed analytical approach to model
and manage QFD team members’ linguistic expressions. However, in some situations, the unbalanced
linguistic term sets [53] or the linguistic term sets with different granularity of uncertainty [54,55] may
be employed by experts to express their opinions. Therefore, in future work, extending the proposed
QFD approach to unbalanced linguistic or multi-granular linguistic context should be explored. Second,
to obtain a more accurate DR ranking, complex computations are required in applying the QFD model
being proposed. Thus, another direction for future research is to develop a computer-based application
system using programming languages such as R to facilitate the implementation of the proposed
QFD algorithm. Third, a market segment selection example was used in this paper to illustrate
the effectiveness of the proposed QFD. In future research, other complex case studies of product
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development can be applied to further verify the feasibility and practicality of the proposed hybrid
group decision-making model.
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Abstract: This paper first analyzes the one-dimensional Gabor function and expands it to a
two-dimensional one. The two-dimensional Gabor function generates the two-dimensional Gabor
wavelet through measure stretching and rotation. At last, the two-dimensional Gabor wavelet
transform is employed to extract the image feature information. Based on the back propagation (BP)
neural network model, the image intelligent test model based on the Gabor wavelet and the neural
network model is built. The human face image detection is adopted as an example. Results suggest
that, although there are complex textures and illumination variations on the images of the face
database named AT&T, the detection accuracy rate of the proposed method can reach above 0.93.
In addition, extensive simulations based on the Yale and extended Yale B datasets further verify the
effectiveness of the proposed method.

Keywords: Gabor wavelet; feature information; neural network; face recognition

1. Introduction

Wavelet theory has been increasingly popular and has quickly developed since its appearance
in the 1980s [1]. Scholars generally thought that the wavelet transform is a breakthrough of Fourier
transform. In addition, the Gabor filter shows a strong robustness towards the luminance and contrast
of images and the human facial expressions, and it reflects the most helpful local features for human
face recognition [2,3], so the Gabor wavelet has been widely applied to the extraction of human face
features. Currently, scholars have deepened their study of neural network theories. The artificial
neural network [4,5] is an intelligent system simulated by humans according to information processing
of the human brain nerve system, and a new-type structural computing system generated based on a
preliminary understanding of the human brain organization structure and activity mechanism. Since it
can simulate the human brain nerve system and endow the machine with the perception, learning,
and deduction capability of the human brain, it has been widely applied to the model recognition in
various fields.

However, how to combine the neural network with the nonlinear theories, such as wavelet theory,
fuzzy set, and chaos theory, is a new research direction [6,7]. The neural network boasts a collection
of favorable characteristics, including fault tolerance, self-adaption, self-learning and generalization
capability, and robustness, and the wavelet transform has the temporal frequency local and zooming
characteristics, so the Gabor wavelet transform can be employed to reduce the number of input nodes in
the neural network and increase the convergence speed on the one hand, and sufficiently and efficiently
express the human face characteristics and improve the neural network recognition capability on
the other. However, it has been an issue of great concern to both experts and scholars as to how to
combine advantages of the two and apply them to the human face recognition technique. The work [8]
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proposed a method for detecting facial regions by combining a Gabor filter and a convolutional neural
network and obtained a detection rate of 87.5%. Kaushal et al. [9] used the feature vector based on
Gabor filters as the input of a feed forward neural network (FFNN). A similar work presented in [10]
was implemented using Java environment, aiming to object localization and classification.

Therefore, the research focus of this paper is about the image feature extraction based on the Gabor
wavelet transform. Combining the intelligent recognition of the back propagation (BP) neural network,
this paper puts forward the image intelligent detection based on the Gabor wavelet transform and the
neural network model. The human face image detection is taken as an example. First, the model is
tested based on the human face database “Yale” [11] with illumination variation and complex texture.
Then, using the human face database “AT&T” [12], the detection accuracy rate of the model is given to
evaluate the detection performance. Finally, based on the human face database “extended Yale B” [13],
the effectiveness of the method is proved by the performance comparison between our proposal and
several state-of-the-art methods.

2. Methodology

2.1. Gabor Wavelet Theory and Feature Transformation

In order to introduce the Gabor wavelet and apply it to the image feature extraction, this paper
first introduces the analysis deduction of the one-dimensional Gabor wavelet so as to introduce the
two-dimensional Gabor wavelet.

Among them, the one-dimensional Gabor wavelet [14] is constituted by a trigonometric function
multiplied by a Gaussian function shown in Equation (1):

W(t, t0,ω) = e−σ(t−t0)
2
eiω(t−t0) (1)

Conduct integration of the product of Equation (1) and the signal frequency, and the
one-dimensional Gabor wavelet transform can be expressed below:

C(x(t))(t0,ω) =
∞�

−∞

x(t)W(t, t0,ω)dt (2)

The left of the equation stands for the frequency information of the signal, x(t), when the
frequency is ω and the time is t0. Put Equation (1) into Equation (2), and expand the mixed one into
the following one:

C(x(t))(t0,ω) =
∞�

−∞

x(t)e−σ(t−t0)
2
cos(ω(t − t0))dt + i

∞�
−∞

x(t)e−σ(t−t0)
2
sin(ω(t − t0))dt (3)

The real and imaginary part of Equation (3) expressed in the form of complex number is shown in
Equation (4) below.

The two-dimensional Gabor wavelet can be generated by expanding the one-dimensional
Gabor function into a two-dimensional one, and through measure stretching and rotation [15].
The two-dimensional Gabor wavelet can acquire the image information in terms of any measure
and any orientation. Through the one-dimensional Gabor wavelet function, it can be seen that the
two-dimensional Gabor wavelet function is unique and can be adopted as the primary function for the
image extraction and analysis. In other words, the description completeness of images in terms of space
and frequency domain can be realized. The wavelet transform reflects a relatively intuitive concept:
when the textures are relatively meticulous, the sampling scope of the sample domain is relatively
small, while the sampling scope of the opposite frequency domain is relatively large. However,
when the textures are relatively coarse, the sampling scope of the space domain is relatively large
and the sampling scope of the frequency domain is relatively small. Therefore, the two-dimensional
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Gabor wavelet can capture features including the selectivity of space position, orientation and space
frequency, and the quadrature phase relationship.

The two-dimensional Gabor wavelet core [16] is defined in Equation (4):

Gu,v =
||ku,v||2

σ2 e(−
||ku,v||2||z||2

2σ2 )
[e(iku,vz) − e(−

σ2
2 )] (4)

where u and v stand for orientation and measure, respectively; z stands for the coordinate point of the

fixed position; ||ku,v||2

σ2 is used to compensate the weakening of the energy spectrum; e(−
||ku,v||2||z||2

2σ2 )

stands for the Gaussian envelop function; e(iku,vz) stands for the vibration function, the real part of

which is the cosine function and the imaginary part of which is the sine function; e(−σ2
2 ) stands for

the DC component; σ stands for the size of the two-dimensional Gabor wavelet, namely the radius of
the Gaussian function; ku,v stands for the central frequency of the filter, describing the response of the
Gabor filter in terms of different orientations and measures. Therefore, when ku,v is different, a group
of Gabor filters can be obtained. The real and imaginary part of Gabor filters based on five frequencies
(0.2, 0.22, 0.24, 0.26, and 0.28) and eight orientations (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦) are
shown in Figure 1 below.

Figure 1. Gabor filter template based on five frequencies and eight orientations: (a) the template of the
real part; and (b) the template of the imaginary part.

Wavelet transform has the following advantages [17] when being applied to image processing:
(1) wavelet decomposition can cover the whole frequency domain; (2) by choosing the proper filter,
the wavelet filter can largely reduce or even remove the relevance between different characteristics
extracted; (3) the wavelet transform has a “zooming” characteristic and can adopt the wide analysis
window in the low-frequency section and the narrow analysis window in the high-frequency section.

Therefore, to the image feature extraction process, the Gabor image feature extraction is to conduct
the convolution of input images and the Gabor wavelet described in Equation (4). It is assumed that
the input image grey scale is I(x, y) and the convolution between I and the Gabor core, Gu,v, is shown
in Equation (5) below:

Ou,v(x, y) = I(x, y) ∗ Gu,v(x, y) (5)

where ∗ stands for the convolution factor; Ou,v(x, y) stands for the convolution image in the
corresponding measure of u and the corresponding orientation of v.
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2.2. Neural Network Model Structure and Its Algorithm

2.2.1. Back Propagation Neural Network Structure

The neural network is a highly nonlinear system. In terms of different functions and research,
there are different neural network models. The BP neural network is a feedforward network adopted
by the neural network model as the learning algorithm through the error BP algorithm [18]. It is
mainly constituted of the input layer, the output layer, and the hidden layer. The nerve cell between
layers adopts the fully-interlinked connection style and builds connections through the corresponding
network weight coefficient, w. In addition, there is no connection between nerve cells within every
layer. The basic idea of the BP algorithm is that the learning process is made up of two processes,
namely the signal forward-propagation and the error backward-propagation. Figure 2 shows the
specific structure.

Figure 2. Back propagation (BP) neural network model structure.

xj stands for the input of the j node in the input layer (j = 1, . . . , M); wij stands for the weight
value from the i node in the hidden layer to the j node in the input layer; θi stands for the threshold of
the i node in the hidden layer; φ(x) stands for the excitation function of the hidden layer; wki stands
for the weight value from the k node in the output layer to the i node in the hidden layer (i = 1, . . . , q);
ak stands for the threshold value of the k node in the output layer (k = 1, . . . , L); ψ(x) stands for the
excitation function of the output layer; ok stands for the output of the k node in the output layer.

2.2.2. Back Propagation Neural Network Model Algorithm Steps

When the signal enters the BP neural network through the signal forward-propagation, the input
samples are input through the input layer and are transmitted to the output layer through the
processing in the hidden layer. If the practical output of the output layer fails to coincide with
the expected output, it will move into the error backward-propagation period. The essence of the
above signal forward-propagation and the error backward-propagation is a network iterative process.
During the network iterative process, the weight value keeps on adjusting. The process endures until
the output network error is reduced below the set error value or until the process reaches the pre-set
iterations. Thus, it can be seen that the input and output relationship of the BP neural network is a
highly linear system featuring “more input–more output,” which is applicable to the prediction and
recognition process system.

According to the weight value of the input nodes and the output nodes, the weight value between
the input nodes and the hidden nodes, and the weight value between the hidden nodes and the output
nodes, the relationship iteration between nodes of various layers is shown below:
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(1) Signal forward-propagation process:

The input, neti, of the i node in the hidden layer:

neti =
M

∑
j=1

wijxj + θi (6)

The output, yi, of the i node in the hidden layer:

yi = φ(neti) = φ(
M

∑
j=1

wijxj + θi) (7)

The input, netk, of the k node in the output layer:

netk =
q

∑
i=1

wkiyi + ak =
q

∑
i=1

wkiφ(
M

∑
j=1

wijxj + θi) + ak (8)

The output, ok, of the k node in the output layer:

ok = ψ(netk) = ψ(
q

∑
i=1

wkiyi + ak) = ψ(
q

∑
i=1

wkiφ(
M

∑
j=1

wijxj + θi) + ak) (9)

(2) Error backward-propagation process:

The error backward-propagation first starts from the output layer to calculate the output error
of the nerve cells in various layers step by step. Then, the weight value and the threshold of various
layers are adjusted according to the error gradient descent to make the final modified network output
to approximate the expected value. The quadric form error criterion function of every sample, EP,
is shown in Equation (10):

Ep =
1
2

L

∑
k=1

(Tk − ok)
2 (10)

All in all, the major idea of the BP neural network is to modify the threshold and the weight
value to make the error function to descend along the gradient orientation. The input layer obtains the
practical output by processing the input information in the hidden layer. If the practical output is not in
conformity with the sample output, the error will be sent back layer by layer. The weight value of every
layer is modified according to the learning rules regulated by the algorithm. Through the repetition
of the step, convergence or homeostasis can be achieved. In other words, the step keeps on until the
total error between the practical output and the target output reaches the minimum error as required.
The BP neural network model structure schematic diagram established is shown in Figure 3 below.

Figure 3. BP neural network structure schematic diagram.

Endow the BP neural network already built with relevant training parameters for model training.
The relevant model parameters during network training and network convergence are shown in Table 1
below. The number of neurons takes 100 in the first layer of the network. The number of neurons
in output layer, which is also named as the last layer, depends on the need of practical application.
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Moreover, we only need to distinguish between faces and non-faces, so one neuron is sufficient to
finish the work. Thus, the number of nodes in the output layer takes 1. In this network, we do not have
any hidden layers called between the output layer and the input layer. This indicates that the second
layer is the output layer. Through experiences, we have found that the training function “trainscg”,
which is suitable for nonlinear studies, has a good advantage in terms of memory consumption.

Table 1. Key parameters of network training setting and the network convergence results.

Network Training Parameters Network Convergence Parameters

Number of nodes in the first layer 100 Network training times 342
Number of nodes in the second layer 1 Network training duration(s) 10

Network target error 1 × 10−5 Network convergence error 9.86 × 10−6

Network training function trainscg Network goodness-of-fit 0.99999

A sample of dynamic error changes during the network training process is shown in Figure 4
below. Mean squared error (mse) is used as the performance function, namely the network target
error. In this network, we set 1 × 10−5 as the target error. It involves that, when the mse value reaches
1 × 10−5, the training stops. The maximum number of epochs (also called training times) sets 400,
after that the training phase stops. Experimentally, we realized that the larger the number, the faster
the training will be.

Figure 4. A sample of dynamic error variations during the network training process.

The BP neural network human face detection steps based on the Gabor feature extraction are
shown as follows:

(1) Conduct convolution between the image to be recognized and the standard template image and
improve the resistance against the image luminosity variation. The standard template image is
shown in Figure 5 below:

(2) Generate Gabor filters in terms of n frequencies and m orientations. Here, n = 5 and m = 8.
(3) Upload the human-face and the non-human-face images as the training samples, extract features

of filters generated in Step 1, and adopt the extracted feature data as the input information of the
BP neural network model.

(4) Build the BP neural network model and refer to the core network parameters in the following part.
(5) Input the extracted feature data into the BP neural network already built according to Step 3,

and train the network. Conduct human face detection of the trained network and draw the
human face area on the image.
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Figure 5. Standard template images.

3. Results and Discussion

Performance evaluation is one of most important aspects in face recognition applications. For
the sake of verifying the effectiveness and stability of the proposed method, experiments were
conducted on several public face databases, including Yale, AT&T, and extended Yale B, on images
in which contain different poses, different expressions, and various illumination conditions. At last,
the proposed method is compared with some other state-of-the-art methods.

3.1. Experiments and Analysis on the Yale Face Database

For the purpose of verifying the performance, we experiment on the Yale face database consisted
of 165 images (137 × 147) with different variations such as facial expressions, luminance changes,
and configuration, which includes 15 individuals and 11 grayscale images per individual. A preview
image of the database is shown as Figure 6.

Figure 6. A preview image of the database of faces in the Yale face database.

In the experiments, all images are converted, cropped, and down-sampled to 25 × 30 pixels with
grayscale. The training set consisted of partial images per subject from the database, and the rest
consisted of the testing set. The images with facial expressions, luminance changes, and configuration
each underwent the recognition test. From the experimental results, it can be seen that the neural
network based on the Gabor feature extraction can accurately recognize the human face. The test
results are shown in Figure 7 below.
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Figure 7. Qualitative results of our method on the Yale face database with illumination variation,
complex texture, and facial expressions: (a) the recognition results of the face images labeled s1 in the
Yale database; and (b) the recognition results of the face images labeled s7 in the Yale database.

3.2. Experiments and Analysis on the AT&T Database

Nowadays, the performance of the face recognition system is evaluated by various metrics,
in which the recognition rate is commonly used. In order to comprehensively analyze the
proposed method’s recognition accuracy rate, it was tested in the publicly available AT&T database.
This database contains 40 different persons, and every person has 10 different human face images
(92 × 112) with 256 grey levels per pixel. For some subjects, the images were taken at different times
with illumination variation, different facial expressions, and different facial details. A preview image
of the database is shown as Figure 8.

Figure 8. A preview image of the database of faces in the AT&T database.

As in the previous experiment, we converted, cropped, and down-sampled all images to 25 × 30.
Then, we selected partial images randomly from each person's images as the training set and others
as the testing set. The recognition accuracy results are shown in Table 2 below when we randomly
selected four images of each person and performed five experiments. Results suggest that the accuracy
rate of human face recognition reaches above 0.93. The recognition accuracy rate is relatively high.
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Table 2. Neural network human face recognition accuracy rate based on the Gabor feature extraction.

Test
Times

Number of
Training Samples

Number of
Test Samples

Recognition
Accuracy Rate of
Training Samples

Recognition
Accuracy Rate of

Test Samples

Comprehensive
Recognition

Accuracy Rate

1 160 240 0.965 0.922 0.9392
2 160 240 0.975 0.935 0.9510
3 160 240 0.952 0.922 0.9340
4 160 240 0.961 0.920 0.9364
5 160 240 0.962 0.925 0.9398

3.3. Experiments and Analysis on the Extended Yale B Face Database

In addition to the recognition accuracy rate, there are several other important and critical metrics
available for performance evaluation. The following metrics are also introduced: false accept rate
(FAR), false reject rate (FRR), and receiver operating characteristics (ROCs). FAR indicates the percent
of the individuals that are incorrectly accepted; FRR measures the percent of valid inputs that are
incorrectly rejected; ROC graphs are increasingly used in machine learning and data processing
research for organizing and visualizing the performance of a system in recent years [19]. It is a
graphical representation for visualizing characterization change between FAR and FRR. In the ROC
graph, the points on the top left have high FFR and low FAR; thus, the ROC represents smart classifiers.

Furthermore, experiments were carried out using face images from the face database named the
extended Yale B face database to analyze the performances of the face recognition using these metrics,
and comparative analysis of the experimental results with existing methods is provided precisely in
this section. The dataset contains 16,128 grayscale images in GIF format of 28 human subjects under
nine poses and 64 illumination conditions. A preview image of the database of faces in the extended
Yale B face database is shown as Figure 9. For this database, we simply use the cropped images and
resize them to 32 × 32 pixels.

Figure 9. A preview image of the database of faces in the extended Yale B face database.

In this experiment, we selected a total of 28 individuals’ facial images in the database, and each
individual has 64 images with different poses and different illuminations. Moreover, 2, 4, 8, 16,
and 32 images were randomly chosen from each group as training set; meanwhile, the remaining
images were selected as a testing set. Comparison results of recognition rates of the proposed method,
Local Gabor (LG, method proposed in [20]) and local gabor binary pattern (LGBP, method proposed
in [21]) are shown in Table 3, and the ROC graph is shown as Figure 10. From Table 3, it can be seen that,
as the training sample numbers increase, recognition rates of all methods also increase. In addition,
when the training sample number is 32, the recognition rate of the proposed method outperforms LG
and LGBP by an interval of 6.87% and 3.91%, respectively. Therefore, under the environment with
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different poses and different illuminations, the proposed method is better than the LG and LGBP face
recognition method.

Table 3. Recognition rates of methods on the extended Yale B with different training sample numbers.

Methods
Training Sample Numbers

2 4 6 8 16 32

LG, Loris et al.’s method in [20] 50.49% 53.29% 54.32% 65.77% 75.32% 79.36%
LGBP, Xie et al.’s method in [21] 53.65% 59.35% 65.89% 74.49% 78.96% 82.32%

Our method 54.76% 60.78% 76.44% 79.53% 83.56% 86.23%

Figure 10. The receiver operating characteristic (ROC) curves of the various face recognition methods.

4. Conclusions

This paper first analyzes the Gabor wavelet theory with relatively strong resistance against image
luminance and texture changes and its transform features, puts forward the idea to extract image
feature information based on the Gabor wavelet transform, and then builds the image intelligent
detection model based on the Gabor wavelet and neural network model. The human face detection
experiments based on three datasets are conducted to analyze the validity of the model algorithm.
When Gabor wavelet transform and the neural network are combined to test human face, the AT&T
human face database is adopted to test the accuracy of the model algorithm, finding out that its
accuracy rate is above 0.93, despite the complex texture and luminance changes. Based on the Yale and
the extended Yale B face databases, and through the comparison with other state-of-the-art methods,
the results illustrate that the method we proposed has an improved performance in face recognition.

Face recognition technology, which attracts an increasing amount of scientific research workers to
it, has been vigorously developed and has been applied to many fields. However, there are still some
gaps between the actual application and the ideal situation. In future work, we will test our proposed
method on real world databases to further validate its effectiveness, such as the face detection data set
and benchmark (FDDB) database, the labeled faces in the wild (LFW) database, and so on. At present,
the technology has reached a bottleneck, and the research of it has very limited space for improvement.
As a result, other techniques based on face recognition have become more challenging and more
market-oriented topics, such as age estimation and gender estimation. This provides a good direction
for our future research.
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Abstract: Topological indices and polynomials are predicting properties like boiling points, fracture
toughness, heat of formation, etc., of different materials, and thus save us from extra experimental
burden. In this article we compute many topological indices for the family of circulant graphs.
At first, we give a general closed form of M-polynomial of this family and recover many degree-based
topological indices out of it. We also compute Zagreb indices and Zagreb polynomials of this family.
Our results extend many existing results.

Keywords: circulant graphs; topological indices; polynomials

1. Introduction

A number, polynomial or a matrix can uniquely identify a graph. A topological index is a numeric
number associated to a graph which completely describes the topology of the graph, and this quantity
is invariant under the isomorphism of graphs. The degree-based topological indices are derived from
degrees of vertices in the graph. These indices have many correlations to chemical properties. In other
words, a topological index remains invariant under graph isomorphism.

The study of topological indices, based on distance in a graph, was effectively employed in 1947 in
chemistry by Weiner [1]. He introduced a distance-based topological index called the “Wiener index”
to correlate properties of alkenes and the structures of their molecular graphs. Recent progress in
nano-technology is attracting attention to the topological indices of molecular graphs, such as
nanotubes, nanocones, and fullerenes to cut short experimental labor. Since their introduction, more
than 140 topological indices have been developed, and experiments reveal that these indices, in
combination, determine the material properties such as melting point, boiling point, heat of formation,
toxicity, toughness, and stability [2]. These indices play a vital role in computational and theoretical
aspects of chemistry in predicting material properties [3–8].

Several algebraic polynomials have useful applications in chemistry, such as the Hosoya
Polynomial (also called the Wiener polynomial) [9]. It plays a vital role in determining distance-based
topological indices. Among other algebraic polynomials, the M-polynomial—introduced recently
in 2015 [10]—plays the same role in determining the closed form of many degree-based topological
indices. Other famous polynomials are the first Zagreb polynomial and the second Zagreb polynomial.

A graph G is an ordered pair (V, E), where V is the set of vertices and E is the set of edges. A path
from a vertex v to a vertex w is a sequence of vertices and edges that starts from v and stops at w.
The number of edges in a path is called the length of that path. A graph is said to be connected if there
is a path between any two of its vertices. The distance d(u, v) between two vertices u, v of a connected
graph G is the length of a shortest path between them. Graph theory is contributing a lion’s share in
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many areas such as chemistry, physics, pharmacy, as well as in industry [11]. We will start with some
preliminary facts.

Let G be a simple connected graph and let uv represent the edge between the vertices u and
v. The number of vertices of G, adjacent to a given vertex v, is the “degree” of this vertex, and
will be denoted by dv. We define Vk = {vεV(G)|dv = k}, Ei,j = {uvεE(G)|du = j and dv = i},
δ = Min{dv|vεV(G)}, � = Max{dv|vεV(G)}, and mij as the number of edges uv of G such that
{dv, du} = {i, j}. The M-polynomial of G is defined as:

M(G, x, y) = ∑
δ≤i≤j≤�

mijxiyj (1)

Active research is in progress, and many authors computed M-polynomials for different types of
nonmaterial, for example see [12–16] and the references therein.

The Wiener index of G is defined as:

W(G) =
1
2 ∑

(u,v)
d(u, v) (2)

where (u, v) is any ordered pair of vertices in G. Gutman and Trinajstić [11] introduces important
topological index called first Zagreb index, denoted by M1(G), and is defined as:

M1(G) = ∑
uv∈E(G)

(du + dv) (3)

The second Zagreb index M2(G) and the second modified Zagreb index m M2(G) are defined as:

M2(G) = ∑
uv∈E(G)

(du × dv) (4)

and:
m M2(G) = ∑

uv∈E(G)

1
du.dv

(5)

Results obtained in the theory of Zagreb indices are summarized in the review [17].
In 1998, working independently, Bollobas and Erdos [18] and Amic et al. [19] proposed general

Randić index. It has been extensively studied by both mathematicians and theoretical chemists
(see, for example, [20,21]). The Randić index denoted by Rα(G) is the sum of (dudv)α; i.e.:

Rα(G) = ∑
uv∈E(G)

(dudv)
α (6)

where α is any constant.
The symmetric division index is defined by:

SDD(G) = ∑
uvεE(G)

(
min{du, dv}
max{du, dv} +

max{du, dv}
min{du, dv} ) (7)

These indices can help to characterize the chemical and physical properties of molecules (see [9]).
Table 1 enlists some standard degree-based topological indices and their derivation from

M-polynomial [10].
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Table 1. Derivation of topological indices from M-polynomial.

Topological Index f (x, y) Derivation from M(G, x, y)

First Zagreb x + y (Dx + Dy)(M(G; x, y))|x=y=1
Second Zagreb xy (DxDy)(M(G; x, y))|x=y=1

m M2(G) 1
xy (SxDy)(M(G; x, y))|x=y=1

General Randić αεN (xy)α (Dα
x Dα

y )(M(G; x, y))|x=y=1

General Randić αεN 1
xy

α
(Sα

x Sα
y )(M(G; x, y))|x=y=1

Symmetric Division Index x2+y2

xy (DxSy + DySx)(M(G; x, y))|x=y=1

Where Dx( f (x, y)) = x ∂ f (x,y)
∂x , Dy( f (x, y)) = y ∂ f (x,y)

∂y , Sx( f (x, y)) =
∫ x

0
f (t,y)

t dt, Sy( f (x, y)) =
∫ y

0
f (x,t)

t dt.
For a simple connected graph, the first Zagreb polynomial is defined as:

M1(G, x) = ∑
uc∈E(G)

x[du+dv ] (8)

and the second Zagreb polynomial is defined as:

M2(G, x) = ∑
uc∈E(G)

x[du×dv ] (9)

In 2013, Shirdel et al. in [22] proposed the hyper-Zagreb index, which is also degree-based,
given as:

HM(G) = ∑
uc∈E(G)

[du + dv]
2 (10)

In 2012, Ghorbani and Azimi [23] proposed two new variants of Zagreb indices; namely, the first
multiple Zagreb index PM1(G) and the second multiple Zagreb index PM2(G), which are defined as:

PM1(G) = ∏
uv∈E(G)

[du + dv] (11)

PM2(G) = ∏
uv∈E(G)

[du × dv] (12)

In this paper, we address the family of circulant graphs. We give closed forms of M-polynomial
and Zagreb Polynomials for this family. We also compute many degree-based topological indices.

Definition 1. Let n, m, and a1, . . . , am be positive integers, where 1 ≤ ai ≤ � n
2 � and ai �= aj for all

1 ≤ i < j ≤ m. An undirected graph with the set of vertices V = {v1, . . . , vn} and the set of edges
E = {vivi+aj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}, where the indices being taken modulo n, is called the circulant graph,
and is denoted by Cn(a1, . . . , am).

The graph of C11(1, 2, 3) is shown in Figure 1.

Figure 1. C11(1, 2, 3).
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This is one of the most comprehensive families, as its specializations give some important families.
Classes of graphs that are circulant include the Andrásfai graphs, antiprism graphs, cocktail party
graphs, complete graphs, complete bipartite graphs, crown graphs, empty graphs, rook graphs,
Möbius ladders, Paley graphs of prime order, prism graphs, and torus grid graphs. Special cases are
summarized in the Table 2.

Table 2. Special cases of circulant graphs.

Graph Symbol Graph Symbol

2-path graph Ci2 (1) triangle graph Ci3 (1)
square graph Ci4 (1) tetrahedral graph Ci4 (1, 2)
5-cycle graph Ci5 (1) pentatope graph Ci5 (1, 2)
6-cycle graph Ci6 (1) octahedral graph Ci6 (1, 2)
utility graph Ci6 (1, 3) 3-prism graph Ci6 (2, 3)

6-complete graph Ci6 (1, 2, 3) 7-cycle graph Ci7 (1)
7-complete graph Ci7 (1, 2, 3) 8-cycle graph Ci8 (1)
4-antiprism graph Ci8 (1, 2) (4,4)-complete bipartite graph Ci8 (1, 3)

4-Möbius ladder graph Ci8 (1, 4) 16-cell graph Ci8 (1, 2, 3)
8-complete graph Ci8 (1, 2, 3, 4) 9-cycle graph Ci9 (1)
9-complete graph Ci9 (1, 2, 3, 4) 10-cycle graph Ci10 (1)
5-antiprism graph Ci10 (1, 2) 5-crown graph Ci10 (1, 3)

5-Möbius ladder graph Ci10 (1, 5) 5-prism graph Ci10 (2, 5)
5-cocktail party graph Ci10 (1, 2, 3, 4) (5,5)-complete bipartite graph Ci10 (1, 3, 5)

Because of this somewhat universality, circulant graphs have been the subject of much
investigation; for example, the chromatic index for circulant graphs is computed in [24]. Connectivity is
discussed in [25], and the Weiner index is computed in [26]. Exact values of the domination number
of some families of circulant graphs are given in [27]. Habibi et. al. computed the revised Szeged
spectrum of circulant graphs [28]. Multi-level and antipodal labelings for circulant graphs is discussed
in [29,30].

2. Main Theorem

We divided our main results into two parts.

2.1. Polynomials

In this section, we computed the closed forms of some polynomials.

Theorem 1. Let Cn(a1, a2, ..., am) be a circulant graph. Then, the M-Polynomial is:

M((Cn(a1, a2, ..., am), x, y) = nxn−1yn−1

Proof. Let Cn(a1, a2, ..., am), where n = 3, 4...n. and 1 ≤ ai ≤ � n
2 � and ai �= aj when n = even and when

1 ≤ ai ≤ � n
2 � and ai < aj when n = odd be the circulant graph. From the structure of Cn(a1, a2, ..., am),

we can see that there is one partition V{1} = {vεV(Cn(a1, a2, ..., am))|dv = n}. We see that the edge set
of Cn(a1, a2, ..., am) partitions as follows:

E{n−1,n−1} = {e = uvεE(Cn(a1, a2, ..., am))|du = n − 1&dv = n − 1} → |E{n−1,n−1}| = n
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Thus, the M-Polynomial of (Cn(a1, a2, ..., am), x, y) is:

M(Cn(a1, a2, ..., am), x, y) = ∑
i≤j

mij(Cn(a1, a2, ..., am))xiyj

= ∑
n−1≤n−1

mn−1×n−1(Cn(a1, a2, ..., am))xn−1yn−1

= ∑
uvεE{n−1,n−1}

mn−1×n−1(Cn(a1, a2, ..., am))xn−1yn−1

= |E{n−1,n−1}|xn−1yn−1

= nxn−1yn−1

In the following theorem, we computed first and second Zagreb polynomials.

Theorem 2. Let Cn(a1, a2, ..., am) be a circulant graph. Then:

(1) M1(Cn(a1, a2, ..., am), x) = nx2(n−1)

(2) M2(Cn(a1, a2, ..., am), x) = nx(n−1)2

Proof. Let Cn(a1, a2, ..., am) be a complete circulant graph. The edge set of Cn(a1, a2, ..., am) has one
partition based on degree of vertices. The edge partition has n edges uv, where du = dv = n − 1.
It is easy to see that |E1(Cn(a1, a2, ..., am)| = dn−1×n−1. Now we have:

(1)

M1(Cn(a1, a2, ..., am) = ∑
uvεE(Cn(a1,a2,...,am)

x[du+dv ],

= ∑
uvεE1(Cn(a1,a2,...,am)

x[du+dv ]

= |E1(Cn(a1, a2, ..., am)|x2(n−1)

= nx2(n−1)

(2)

M2(Cn(a1, a2, ..., am) = ∑
uvεE(Cn(a1,a2,...,am)

x[du×dv ]

= ∑
uvεE1(Cn(a1,a2,...,am)

x[du×dv ]

= |E1(Cn(a1, a2, ..., am)|x(n−1)2

= nx(n−1)2

2.2. Topological Indices

In this section, we will recover some topological indices from polynomials computed in the
above section.

Theorem 3. For the circulant graph Cn(a1, a2, ..., am), we have:

(1) M1(Cn(a1, a2, ..., am)) = 2n(n − 1)
(2) M2(Cn(a1, a2, ..., am)) = n(n − 1)2

(3) m M2(Cn(a1, a2, ..., am)) =
n

(n−1)2
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(4) Rα(Cn(a1, a2, ..., am)) = n{(n − 1)2}α
(5) Rα(Cn(a1, a2, ..., am)) =

n
(n−1)α

(6) SDD(Cn(a1, a2, ..., am)) = 2n

Proof. Let f (x, y) = M((Cn(a1, a2, ..., am), x, y) = nxn−1yn−1. Then:

Dx( f (x, y)) = n(n − 1)xn−1yn−1

(Dx f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 = n(n − 1)

Dy( f (x, y)) = n(n − 1)xn−1yn−1

(Dx f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 = n(n − 1)

Sx f (x, y) =
n

n − 1
xn−1yn−1

(Sx f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 =
n

n − 1

Sy f (x, y) =
n

n − 1
xn−1yn−1

(Sy f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 =
n

n − 1

(1) M1(Cn(a1, a2, ..., am)):

(Dx + Dy) f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 = 2n(n − 1)

(2) M2(Cn(a1, a2, ..., am)):

(DxDy) f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 = n(n − 1)2

(3) m M2(Cn(a1, a2, ..., am)):

(SxSy) f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 =
n

(n − 1)2

(4) Rα(Cn(a1, a2, ..., am)):

(Dα
x Dα

y ) f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 = n(n − 1)2α

(5) Rα(Cn(a1, a2, ..., am)):

(Sα
x Sα

y ) f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 =
n

(n − 1)α

(6) SDD(Cn(a1, a2, ..., am)):

(DxSy + DySx)(M(Cn(a1, a2, ..., am); x, y))|x=y=1 = 2n

Theorem 4. Let (Cn(a1, a2, ..., am) be a circulant graph. Then:

(1) PM1(Mn) = 2(n − 1)n

(2) PM2(Mn) = {(n − 1)2}n

(3) HM(Mn) = {2(n − 1)}2(n)
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Proof. Let Cn(a1, a2, ..., am) be a complete circulant graph. The edge set of Cn(a1, a2, ..., am) has one
partition based on degree of vertices.The edge partition has n edges uv, where du = dv = n − 1. It is
easy to see that |E1(Mn)| = d(n−1)×(n−1). Now, we have:

(1)

PM1(Cn(a1, a2, ..., am) = ∏
uvεE(Cn(a1,a2,...,am)

[du + dv]

= ∏
uvεE1(Cn(Si

)[du + dv]

= {2(n − 1)}|E1(Cn(a1,a2,...,am)|

= 2(n − 1)n

(2)

PM2(Cn(a1, a2, ..., am) = ∏
uvεE(Cn(Si

[du × dv]

= ∏
uvεE1(Cn(a1,a2,...,am)

[du × dv]

= {(n − 1)2}|E1(Cn(a1,a2,...,am)|

= {(n − 1)2}n

(3)

HM(Cn(a1, a2, ..., am) = ∑
uvεE(Cn(a1,a2,...,am)

[du + dv]
2

= ∑
uvεE1(Cn(a1,a2,...,am)

[du + dv]
2

= {2(n − 1)}2|E1(Cn(a1, a2, ..., am)|
= {2(n − 1)}2(n)

3. Conclusions

In this article, we computed many topological indices for the family of circulant graphs. At first we
give a general closed form of M-polynomial of this family and recover many degree-based topological
indices out of it. We also compute Zagreb indices and Zagreb polynomials of this family. Our results
actually extend many existing results about crown graphs, Paley graphs, complete bipartite, Möbius
Ladders, any many other families; see Table 2.

Acknowledgments: This research is supported by Gyeongsang National University, Jinju 52828, Korea. We are
thankful to the reviewers for suggestions that really improve this paper.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved
the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20.
2. Katritzky, A.R.; Jain, R.; Lomaka, A.; Petrukhin, R.; Maran, U.; Karelson, M. Perspective on the Relationship

between Melting Points and Chemical Structure. Cryst. Growth Design 2001, 1, 261–265.
3. Rucker, G.; Rucker, C. On topological indices, boiling points, and cycloalkanes. J. Chem. Inf. Comput. Sci.

1991, 39, 788.

260



Symmetry 2016, 8, 134

4. Dobrynin, A.A.; Entringer, R.; Gutman, I. Wiener index of trees: Theory and applications. Acta Appl. Math.
2001, 66, 211–249.

5. Du, W.; Li, X.; Shi, Y. Algorithms and extremal problem on Wiener polarity index. MATCH Commun. Math.
Comput. Chem. 2009, 62, 235–244.

6. Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry; Springer: New York, NY, USA, 1986.
7. Ma, J.; Shi, Y.; Yue, J. The wiener polarity index of graph products. Ars Combin. 2014, 116, 235–244.
8. Ma, J.; Shi, Y.; Wang, Z.; Yue, J. On wiener polarity index of bicyclic networks. Sci. Rep. 2016, 6, 19066.
9. Gutman, I. Some Properties of the Wiener Polynomial; Graph Theory Notes: New York, NY, USA, 1993;

Volume 125, pp. 13–18.
10. Klavzar, S.; Deutsch, E. M-Polynomial and Degree-Based Topological Indices. Iran. J. Math. Chem. 2015, 6,

93–102.
11. Gutman, I.; Trinajstic, N. Graph theory and molecular orbitals total φ-electron energy of alternant

hydrocarbons. Chem. Phys. Lett. 1972, 17, 535–538.
12. Munir, M.; Nazeer, W.; Rafique, S.; Kang, S.M. M-polynomial and degree-based topological indices of Nano

star dendrimers. Symmetry 2016, 8, 97.
13. Munir, M.; Nazeer, W.; Rafique, S.; Nizami, A.R.; Kang, S.M. M-polynomial and degree-based topological

indices of Titania Nanotubes. Symmetry 2016, 8, 117.
14. Munir, M.; Nazeer, W.; Rafique, S.; Kang, S.M. M-polynomial and degree-based topological indices of

Buckytubes. Symmetry 2016, submitted.
15. Kang, S.; Munir, M.; Nizami, A.; Shahzadi, Z.; Nazeer, W. Some Topological Invariants of the Möbius Ladder.

Preprints 2016, 2016110040, doi:10.20944/preprints201611.0040.v1.
16. Munir, M.; Nazeer, W.; Rafique, S.; Nizami, A.; Kang, S.M. Some Computational Aspects of Triangular Boron

Nanotubes. Symmetry 2016, doi:10.20944/preprints201611.0041.v1.
17. Gutman, I.; Das, K.C. The first Zagreb indices 30 years after. MATCH Commun. Math. Comput. Chem. 2004,

50, 83–92.
18. Bollobas, B.; Erdös, P. Graphs of extremal weights. Ars Combin. 1998, 50, 225–233.
19. Amic, D.; Beslo, D.; Lucic, B.; Nikolic, S.; Trinajstić, N. The Vertex-Connectivity Index Revisited. J. Chem. Inf
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Abstract: Brain tumor segmentation in magnetic resonance imaging (MRI) is considered a complex
procedure because of the variability of tumor shapes and the complexity of determining the tumor
location, size, and texture. Manual tumor segmentation is a time-consuming task highly prone to
human error. Hence, this study proposes an automated method that can identify tumor slices and
segment the tumor across all image slices in volumetric MRI brain scans. First, a set of algorithms in
the pre-processing stage is used to clean and standardize the collected data. A modified gray-level
co-occurrence matrix and Analysis of Variance (ANOVA) are employed for feature extraction and
feature selection, respectively. A multi-layer perceptron neural network is adopted as a classifier, and
a bounding 3D-box-based genetic algorithm is used to identify the location of pathological tissues in
the MRI slices. Finally, the 3D active contour without edge is applied to segment the brain tumors in
volumetric MRI scans. The experimental dataset consists of 165 patient images collected from the
MRI Unit of Al-Kadhimiya Teaching Hospital in Iraq. Results of the tumor segmentation achieved an
accuracy of 89% ± 4.7% compared with manual processes.

Keywords: magnetic resonance imaging; modified gray level co-occurrence matrix; three-dimensional
active contour without edge; two-dimensional active contour without edge

1. Introduction

Brain tumors are relatively less common than other neoplasms, such as those of the lung and
breast, but are considered highly important because of prognostic effects and high morbidity [1].
Clinical diagnosis, predicted prognosis, and treatment are significantly affected by the accurate
detection and segmentation of brain tumors and stroke lesions [2].

The Iraqi Ministry of Health reported that the use of depleted uranium and other toxic substances
in the first and second Gulf Wars had increased the average annual number of registered cancerous
brain tumor cases and birth defects since 1990 [3]. This study was conducted in collaboration
with MRI units in Iraqi hospitals that have witnessed the high numbers of these cases. The role
of image processing in medicine has expanded with the progress of medical imaging technologies, and
additional images are obtained using an increased number of acquisition modalities. Therefore, image
processing was embedded in medical systems and used widely in medicine, from diagnosis to therapy.
To date, diagnostic imaging is an invaluable tool in medicine. Standard medical imaging techniques,
such as ultrasonography, computed tomography, and magnetic resonance imaging (MRI), have
significantly increased knowledge on anatomy and disease diagnosis in medical research. Among these
medical technologies, MRI is considered a more useful and appropriate imaging technique for brain
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tumors than other modalities. MRI presents detailed information on the type, position, and size of
tumors in a noninvasive manner. Additionally, MRI is more sensitive to local changes in tissue density.
Spatial resolution, which represents the digitization process of assigning a number to each pixel in
the original image, has increased significantly in recent years. Standard MRI protocols are commonly
used to produce multiple images of the same tissue with different contrast after the administration
of parametric agents, including T1-weighted (T1-w), T2-weighted (T2-w), fluid-attenuated inversion
recovery (FLAIR), and T1-weighted images with contrast enhancement (T1c-w). T1-w images are
obtained during the T1 relaxation time of the excited net magnetization or protons to recover 63%
of the original net magnetization after the radiofrequency pulse of the MRI scanner is switched off.
By contrast, T2-w images are obtained during T2 relaxation time, which represents the required time
for the decline of net magnetization to 37% of the original net magnetization [4]. FLAIR is a special
protocol in MRI scanners and produces adaptive T2-w images by removing the signal of brain edema
and other structures with high water content, such as cerebrospinal fluid (CSF) [5].

Most brain tumors appear as hypo-intense relative to normal brain tissue on T1-w images and
hyper-intense on T2-w images. Therefore, T2-w images are commonly used for providing an initial
assessment, identifying tumor types, and distinguishing tumors from non-tumor tissues [6]. A contrast
material is commonly used to enhance the tumor boundary against the surrounding normal brain
tissue on T1-w images. This technique enables tumor detection that cannot be distinguished and
recognized from T2-w and T1-w images because of similarity with adjacent normal brain tissue [7].
In clinical routine, a T2-w scan is performed immediately after patient positioning to identify the
tumor location. T1-w scan is used before and after contrast administration for tumors showing contrast
enhancement. The T2-w scan in axial viewing with FLAIR is used to show non-enhanced tumors [6].

As scanner resolutions improved and slice thickness decreased, an increasing number of slices
were produced and clinicians required increasing time to diagnose each patient from image sets.
Therefore, automated tumor detection and segmentation have attracted considerable attention in the
past two decades [8].

One particular challenge in imaging features is the similarity between tumors located inside the
brain white matter and those that overlap intensity distributions with the gray matter. This pattern is
particularly evident at the boundary between a tumor and the surrounding tissue. Partial volumes
(PVs) are considered as boundary features containing a mixture of different tissue types [9].
The thicknesses of the image slices (5–7 mm) produce significant PV effects, in which individual
image pixels describe more than one tissue type. As a result, peripheral tumor regions are misclassified.
This occurrence is common in T2-w images. A similar problem occurs toward the outer brain edge,
where the CSF and gray matter overlap with the image sample. This circumstance may generate image
intensities that erroneously indicate tumor presence.

In the past few decades, the number of studies devoted to automated brain tumor segmentation
has grown rapidly because of the progress in the medical imaging field [8]. Active contour
models, or snakes, are highly important applications for brain tumor segmentation. These tools
are strongly suitable for determining the boundary between the tumor and the surrounding tissue [10].
This approach enables segmentation, matching, and tracking of anatomical areas by exploiting
conditions derived from the anatomical and biological knowledge regarding location, size, and shape
of anatomical areas [11]. Active contour models are defined as curves or surfaces that move under the
influence of weighted internal and external forces. Internal forces are responsible for curve smoothness,
whereas external forces are responsible for the pushing and pulling of curves toward the anatomical
area boundaries.

Generally, the active contour models suffer from the problem of initial contour determination and
leakage in imprecise edges. The majority of the proposed approaches in brain abnormality detection
and segmentation are limited by (i) computational complexity; the (ii) absence of full automation
because of brain tumor diversity; and (iii) the problem of contour initialization and imprecise edges.
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To overcome these problems, we developed a fully automated method for locating the initial
contour and segmentation of brain tumors by using a three-dimensional active contour without edge
(3DACWE). Moreover, we compared the resulting accuracies of 2D and 3D segmentations.

Our system is based on the use of a single MRI modality (T2-w images) in axial viewing for
detecting brain abnormality instead of multi-modal MRI (e.g., sagittal and coronal images). The system
searches in parallel for dissimilar regions corresponding to its reflection on the opposite hemisphere of
the brain by exploiting normal brain structural symmetry. This method would help commence the
segmentation process automatically. Consequently, the proposed system becomes fully automated
and is independent from atlas registration to avoid any inaccurate registration process that may
directly affect the precision of tumor segmentation. Such a strategy also does not require a prior
skull-removing step.

The remaining sections of this paper are organized as follows: in Section 2, the proposed method
is explained; in Section 3, experimental results are discussed while describing how to locate and
identify the tumor; and in Section 3, the conclusions are given.

2. Proposed Method

This research aimed to develop an automated method that can locate the initial contour of brain
tumor segmentation across all axial slices of volumetric MRI brain scans. The overall flow chart of the
proposed method is shown in Figure 1.

2.1. Data Collection

The clinical image dataset consists of 165 MRI brain scans acquired during routine diagnostic
procedure at the MRI Unit in Al-Kadhimiya Teaching Hospital in Baghdad, Iraq. This dataset was
diagnosed and classified into normal and abnormal by the clinicians of this unit. The MRI slice sets
were obtained using a SIEMENS MAGNETOM Avanto 1.5 Tesla scanner (Malvern, PA, USA) and
PHILIPS Achieva 1.5 Tesla scanner (Best, Netherlands). The provided dataset consisted of tumors
with different sizes, shapes, locations, orientations, and types. A total of 88 patients in this dataset
exhibited different brain abnormalities with tumor sizes, shapes, locations, orientations, and types.
The remaining patient images exhibited no detectable pathology. The dataset included the four MRI
image modalities, namely, T2-w, T1-w, T1c-w, and FLAIR images, under axial viewing and 3–5 mm
slice thickness. An additional enhanced dataset of 50 pathological patients was prepared, although
the brain tumors were manually segmented and labeled by an expert in this unit who evaluates
segmentation algorithm accuracy.

The standard benchmark Multimodal Brain Tumor Segmentation dataset (BRATS 2013)
obtained from the International Conference on Medical Image Computing and Computer-Assisted
Interventions [8] was adopted to evaluate the proposed method.

2.2. Image Preprocessing

The preprocessing step involved the performance of a set of algorithms on MRI brain scan slices
as a preparation for the feature extraction step. This step included dimension resizing of the MRI
slices, image enhancement by Gaussian filter, and normalization of MRI image intensity because
of image intensity variation. Finally, mid-sagittal plane (MSP) detection and correction algorithm
were implemented.
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Figure 1. Flowchart of the proposed algorithm.

2.2.1. Resizing the Dimensions of MRI (Magnetic Resonance Imaging) Slices

The provided MRI brain slices were collected from two scanners with different spatial resolutions.
To enable the use of the full set without bias, the MRI scans were resized to 512 × 512 pixels.
All algorithms developed in this study were implemented on squared slices. When the dimensions of
the given MRI slices were changed to a square ratio, care was taken to maintain the ratio of voxels to
pixels (e.g., pixel spacing). The MRI slices were then resized by adding additional columns from the
left and right and additional rows from the top and bottom portions of the MRI slice until the slice size
became 512 × 512 pixels in resolution (Figure 2).
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Figure 2. Padding of MRI brain image margins by zeros.

2.2.2. MRI Enhancement Algorithm

The typical noise in MRI images appeared as a small random modification of the intensity
in an individual or a small groups of pixels. These differences can be sufficiently large to lead to
erroneous segmentation. A spatial domain low-pass filter (Gaussian filter, The Math Works, Natick,
MA, USA) was used and contributed a negative effect to the responses of noise smoothing linear image
enhancement. Consequently, the performance of the Gaussian filter was evaluated visually because of
its preferably low value for σ [11,12].

2.2.3. Intensity Normalization

The pixel intensity values of each MRI slice were normalized to the same intensity interval
to achieve dynamic range consistency. Histogram normalization was then applied to stretch
and shift the original histogram of the image and cover all the grayscale levels in the image.
The resulting normalized image achieved a higher contrast than that of the original image because the
histogram normalization method enhanced image contrast and provided a wider range of intensity
transformation. This approach demonstrated an enhanced classification of pathological tissues that
can be achieved using the unmodified image [13].

2.2.4. Background Segmentation

Prior knowledge suggests that the background intensity values of MRI brain slices often
approaches zero to enable background segmentation. The ability to eliminate and exclude the
background from the region of interest is important because the background normally contains
a much higher number of pixels than that of the brain region but without meaningful information [13].
In this study, histogram thresholding was used as a segmentation method to isolate the background.
This approach is based on the thresholding of intensity values by a specific T value. Subsequently,
the application employs a set of morphological operators to remove any hole appearing in the region.
Notably, the T2-w MR image histograms attained almost identical distribution shapes [14]. Therefore,
the T value was selected experimentally and set to 0.1 after the effects of a range of threshold values
(0.05, 0.1, 0.2, and 0.3) were manually observed. Hence, if an intensity value of a pixel is less than 0.1,
the pixel is considered as a background.

2.2.5. Mid-Sagittal Plane Detection and Correction

Mid-sagittal plane identification is an important initial step in brain image analysis because
this method provides an initial estimation of the brain’s pathology assessment and tumor detection.
The human brain is divided into two hemispheres with an approximately bilateral symmetry around
the MSP. The two hemispheres are separated by the longitudinal fissure, which represents a membrane
between the left and right hemisphere. MSP extraction methods can be divided into two groups as
follows. Content-based methods find a plane that maximizes a symmetrical measure between both
sides of the brain. By contrast, shape-based methods use the inter-hemispheric fissure as a simple
landmark to extract and detect the MSP. In this study, we focused on determining the orientation of
the patient’s head instead of measuring the symmetry to identify the brain MSP [3].
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2.3. Feature Extraction

The fundamental objective of any diagnostic medical imaging investigation is tissue
characterization. Texture analysis is commonly used to provide unique information on the intensity
variation of spatially related pixels in medical images [2]. The choice of an appropriate technique
for feature extraction depends on the particular image and application [4]. Texture features are
extracted from MRI brain slices to encode clinically valuable information by using modified gray-level
co-occurrence matrix (MGLCM). This method is a second-order statistical method proposed by Hasan
and Meziane [3] to generate textural features and provide information about the patterning of MRI
brain scan textures. These features are used to measure statistically the degree of symmetry between
the two brain hemispheres. Symmetry is an important indicator that can be used to detect the
normality and abnormality of the human brain. MGLCM generates texture features by computing the
spatial relationship of the joint frequencies of all pairwise combinations of gray-level configuration
of each pixel in the left hemisphere. These pixels are considered as reference pixels, with one of nine
opposite pixels existing in the right hemisphere under nine offsets and one distance. Therefore, nine
co-occurrence matrices are generated for each MRI brain scanning image.

To reduce the dimensionality of the feature space, we added the resultant MGLCM matrices of
all the MRI slices at all orientations. The maximum number of gray levels considered for each image
was typically scaled down to 256 gray levels (8 bits/pixel), rather than using the full dynamic range of
65,536 gray levels (16 bits/pixel) before computing the MGLCM. This quantization step was essential
to reduce a large number of zero-valued entries in the co-occurrence matrix [15,16]. The computing
time for implementing MGLCM for each slice was about 2.3 min by using an HP workstation Z820
(Natick, MA, USA) with Xeon E5-3.8 GHz (Quad-Core) and 16 GB of RAM (random access memory).

2.3.1. Feature Aggregation

The MGLCM method determines nine co-occurrence matrices. For each matrix, 21 statistical
descriptors are determined, generating 189 descriptors for each MRI brain scan [3]. The cross correlation
descriptor is also determined for the original MRI brain scan. Accordingly, 190 descriptors are attained
for each MRI brain scan image. These features are used by the subsequent classification to differentiate
between normal and abnormal brain images.

2.3.2. Feature Selection

High-dimensional feature sets can negatively affect the classification results because high numbers
of features may reduce the classification accuracy owing to the redundancy or irrelevance of some
features. Feature-selection techniques aim to identify a small subset of features that minimizes
redundancy and maximizes relevancy. Therefore, feature selection is an important step in exposing
the most informative features and for optimally tuning the classifier’s performance to reliably classify
unknown data. In this study, ANOVA was employed to measure feature significance and relevance [3].

2.4. Classification

Classification is the process of sorting objects in images into separate classes and plays
an important role in medical imaging, especially in tumor detection and classification. This step is also
a common process employed in many other applications, such as robotic and speech recognition [4].
In the present study, a multi-layer perceptron neural network (MLP) was adopted to classify MRI brain
scans into normal and abnormal images. MLP is used in different applications, such as optimization,
classification, and feature extraction [3].

2.5. Brain Tumors Location Identification

Many tumor-segmentation methods are not fully automated. These approaches require user
involvement in selecting a seed point. Usually, the MRI slices of a patient are interpreted visually
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and subjectively by radiologists, in which tumors are segmented by hand or by semi-automatic tools.
Both manual and semiautomatic approaches are considered as tedious, time-consuming, error-prone
processes. Tumors are more condensed than the surrounding material and present as brighter pixels
than the surrounding brain tissue. Therefore, the basic concept of brain tumor detection algorithms is
finding pixel clusters with a different or higher intensity than that of their surroundings. In this study,
a bounding 3D-box-based genetic algorithm (BBBGA) method was proposed by Hasan [17] to search
and identify the location of most dissimilar regions between the left and right hemispheres of the brain
automatically without the need for user interaction. The input was a set of MR slices belonging to the
scans of a single patient, and its output was a subset of slices covering and circumscribing the tumor
with a 3D box. The BBBGA method exploits the symmetry feature of axial viewing of MRI brain slices
to search for the most dissimilar region between the left and right brain hemispheres. This dissimilarity
is detected using genetic algorithm (GA) and an objective-function-based mean intensity computation.
The process involves randomly generating hundreds of 3D boxes with different sizes and locations in
the left brain hemisphere. Such boxes are then compared with the corresponding 3D boxes in the right
brain hemisphere through the objective function. These 3D boxes are moved and updated during the
iterations of the GA toward the region that maximized the objective function value. An advantage
of the BBBGA method is its lack of necessity for image registration or intensity standardization in
MR slices. The approach is an unsupervised method; hence, the problems on observer variability in
supervised techniques are ignored.

Prior to BBBGA, exponential transformation is implemented to compress the low-contrast regions
in MRI brain images and expand the high-contrast regions in a nonlinear manner. This action would
increase the intensity difference between the brain tumor and the surrounding soft tissue [17,18].
Figure 3 illustrates the pseudo-code for BBBGA.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1. read Img  MRI slices 
2. Img  exp(Img) 
3. // Initialization 
4. generate N feasible individuals ind randomly in current population 

, which is set experimentally to 100. 
5. compute mean(Img(ind i)) for each i  N 
6. // loop until termination condition is achieved 
7. for i = 1 to N 
8. // Selection 
9. select the best two individual from current population (ind 1, ind 2) 
10. // Crossover 
11. newind 1, newind 2  with crossover-probability crossover ind 1, ind 2 
12. // Mutation 
13. newind 1  with mutation-probability mutate ind 1 
14. newind 2  with mutation-probability mutate ind 2 
15. // Evaluation newind 1, newind 2 
16. compute mean(Img(newind 1)) 
17. compute mean(Img(newind 2))  
18. new population  newind1, newind2 
19. endfor 

Figure 3. Pseudo-code for BBBGA.

For additional details on how each individual in the GA population is mapped into binary form,
we use the following scenario. Suppose we have a MRI brain scan (dimensions 512 × 512 × 32 pixels)
of a pathological patient, each individual in the GA population is denoted by the binary representation
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of the coordinates of one 3D box (x1, x2, y1, y2, z1, and z2). In this case, x1 and x2 represent the height
of the 3D box and are subject to the constraints 1 ≤ x1 < 512 and x1 < x2 ≤ 512. Meanwhile, y1 and
y2 signify the width of the 3D box and are subject to the constraints 1 ≤ y1 < 256 and y1 < y2 ≤ 256.
Finally, z1 and z2 represent the depth of the 3D box and are subject to the constraints 1 ≤ z1 < 32
and z1 < z2 ≤ 32. Herein, we assume that the maximum number of MRI slices is 32. Figure 4 shows
an example of how the coordinates of 3D box (x1, x2, y1, y2, z1, z2) are mapped to the individual of GA
in a binary form.

Figure 4. Individual structure.

2.6. Three-Dimensional Brain Tumors Segmentation

The principal goal of the segmentation process is partitioning an image into meaningful
and homogeneous regions with respect to one or more characteristics [4]. Subdivision levels of
segmentation depend on the problem being solved. Segmentation in medical imaging is normally
used to classify pixels to different anatomical regions, such as bones, muscles, and blood vessels.
Furthermore, this function is used to classify the pixels of pathological regions, such as malignancies
and necrotic and fibrotic areas.

Brain tumor segmentation is difficult to achieve using conventional methods (e.g., pixel-based,
region-based, and edge-based methods) [10,19]. Additionally, given the appearance of volumetric 3D
medical imaging data, the segmentation of these data for extracting boundary elements belonging to
the same structure offers an additional challenge. Therefore, the deformable model was proposed to
improve this concern by combining constraints derived from the image and a priori knowledge of the
object, such as location, shape, and orientation. The deformable model was originally developed to
solve a set of problems in computer vision and medical image analysis. Both 2D and 3D deformable
model variants have been applied to segment, visualize, track, and quantify various anatomic
structures, such as brain tumors, heart, face, cerebral, coronary and retinal arteries, kidney, and lungs.

2.6.1. Level Set Method

The level set method is a powerful tool for implementing contour evolution and managing
topology changes. This approach simply defines an evolving contour C implicitly. This contour is
represented by the zero-level set of a Lipschitz continuous function as given in Equation (1):

∅ : Ω → R

where
C = [(x, y) ∈ Ω; ∅ (x, y) = 0]

Cinside = [(x, y) ∈ Ω; ∅ (x, y) > 0]
Coutside = [(x, y) ∈ Ω; ∅ (x, y) < 0]

(1)

where x and y are coordinates in the image plane. The level set function simultaneously defines both
an edge contour and a segmentation of the image.

A crucial step is determining the set function level that segments the image to different important
regions. This step is achieved by defining the level set function through subtracting the threshold from
each pixel gray-level value. This action results in a level set function positive in regions where the gray
level exceeds the threshold (Figure 5) [20].
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Figure 5. Evolving of contour C.

2.6.2. 3DACWE (Three-Dimensional Active Contour without Edge)

The 3DACWE method, also known as Chan–Vese model, is an example of a geometrically active
contour model [21]. The initial contour is evolved using a level set method and does not rely on
the gradient of the image for the stopping process. The stopping process of the contour is based on
minimizing the Mumford–Shah function [20,21]. Therefore, the 3DACWE method can detect object
boundaries not necessarily defined by the gradient, even if the object boundaries are highly smooth
or discontinuous.

The 3DACWE algorithm evolves the 3D level set function and minimizes the Mumford–Shah
function by setting the value of piecewise smooth function u. Moreover, the function u approximates
the original image I besides smoothing the connected components in the image domain Ω.

Mumford and Shah proposed the energy function given in Equation (2), which can be used for
segmenting an image I into non-overlapping regions [21–24]:

FMS (u, C) =
∫

Ω

(u − I)2 dxdydz + μ

∫
Ω/C

|∇u|2 dxdydz + v |C| (2)

where the first term encourages u to be close to I, the second term ensures that u is differentiable
on Ω/C, and the third term ensures regularity on C. To overcome the time complexity of solving the
general Mumford and Shah function, it is required to suppose u to be constant on each connected
component . An active contour approach was proposed by Chan and Vese [21] based on minimizing
Mumford and Shah functional by penalizing the enclosed area assuming that u is supposed to have
only the two values which are given in Equation (3) [24]:

u (x, y) =

{
c1 where x, y, z are inside C

c2 where x, y, z are outside C
(3)

where C is the boundary of a contour, and c1 and c2 are the values of u inside and outside the contour,
respectively. The Chan–Vese energy function is given by Equation (4) [21,22,24]:

FCV (C, c1, c2) = μ Length (C) + v Area (inside (C)) + λ1

∫
inside(C)

|I (x, y, z)− c1|2 dxdydz

+ λ2

∫
outside(C)

|I (x, y, z)− c2|2 dxdydz
(4)

The regularity is controlled by penalizing the length in the first term, and the size is controlled by
penalizing the enclosed area of C.

These terms are called regularizing terms and are given in Equations (5) and (6), and encourage
the contour C to be smooth and short, and can be written by using 3D-level set form ∅ as [21,25]
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length (∅ (x, y, z)) =
∫

Ω
δo (∅ (x, y, z)) |∇∅ (x, y, z)| dxdydz (5)

area (∅ (x, y, z)) =
∫

Ω
H (∅ (x, y, z)) dxdydz (6)

λ1, λ2, μ ≥ 0, and v ≥ 0 are fixed parameters controlling selectivity, where the energy function is
minimized by fixing these parameters optimally. Meanwhile, λ1, λ2 control the internal and external
forces, respectively. These terms usually hold the same constant and hence cause a fair competition
between these two regions [24]. Generally, λ1 = λ2 = 1 [21,26]. Meanwhile, μ controls the smoothness
of contour C and assumes a scaling role. However, the parameter is not constant across all experiments.
If μ is large, only larger objects with smooth boundaries are segmented. If μ is small, objects of
smaller size are segmented accurately [21,23,27]. Typically, μ depends on image resolution, where
μ = 0.1 × 2552 [26]. Meanwhile, v sets the penalty for the area inside the contour C. This parameter
is essential only when two sides of boundaries (internal and external boundaries) are present in the
desired object [23]. δo is a 2D Dirac function that represents d

d∅ H (∅ (x, y)). ∇ (Equation (5)) is the
gradient operator, and H is the Heaviside function [20–22,25]. Accordingly, by using the 3D-level set
function, we can rewrite the Chan–Vese energy function in Equation (7) [28] as follows:

FCV (∅ (x, y, z)) = μ

∫
Ω

δo (∅ (x, y, z)) |∇∅ (x, y, z)| dxdydz+

v
∫

Ω
H (∅ (x, y, z)) dxdydz + λ1

∫
inside(C)

|I (x, y, z)− c1|2 H(∅ (x, y, z) dxdydz+

λ2

∫
outside(C)

|I (x, y, z)− c2|2 (1 − H (∅ (x, y, z)) dxdydz

(7)

The minimization is solved by alternatively updating c1, c2, and ∅, keeping ∅ fixed, and
minimizing the energy function FCV with respect to the optimal values c1 and c2. Consequently,
Equations (8) and (9) are attained for c1 and c2 as functions of ∅:

c1 (∅ (x, y, z)) =

∫
Ω I (x, y, z) . H (∅ (x, y, z)) dx dy dz∫

Ω H (∅ (x, y, z)) dx dy dz
(8)

c2 (∅ (x, y, z)) =

∫
Ω I (x, y, z) . (1 − H (∅ (x, y, z))) dx dy dz∫

Ω (1 − H (∅ (x, y, z))) dx dy dz
(9)

To minimize the energy function FCV with respect to ∅ and fix the c1 and c2, a gradient descent
method is adopted and has yielded the associated Euler-Lagrange equation for ∅, which is given by
Equation (10) (parameterizing the descent direction by an artificial time) [21,22,27,29,30]:

⎧⎨
⎩

∂∅
∂t = δ (∅)

[
μ div

(
∇∅

|∇∅|
)
− v − λ1 (I (x, y)− c1)

2 + λ2 (I (x, y)− c2)
2
]

in Ω
δ(∅)
|∇∅|

∂∅

∂
→
n
= 0 on ∂

(10)

where,
→
n represents the exterior normal to the boundary of ∂Ω, and ∂∅

∂
→
n

represents the normal derivative
of ∅ at the boundary.

2.6.3. Evaluation of the Segmentation

Image segmentation evaluation can be categorized into subjective and objective evaluation.
The subjective evaluation method requires to compare visually the result of the image [31]. While the
objective evaluation is divided into supervised and unsupervised techniques. Supervised evaluation methods
evaluate segmentation algorithms by comparing segmentation results with manually-segmented
reference images which are segmented by experts. It is also known as ground truth reference images or
gold standard. While unsupervised evaluation methods do not require to compare with any additional
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reference images but it just relies on the degree of matching among the characteristics of segmented
images as desired by humans. The main advantage of unsupervised evaluation method is that it
does not need to compare against a manual segmented reference image. This merit makes it more
suitable for real-time application where a large number of images with unknown content and no
ground truth need.

In this study supervised evaluation is preferred because of the complexity of the brain tissue and
variety of brain tumors. It measures the degree of similarity between the segmented MRI brain tumors
and those that are segmented manually or with ground truth dataset. A set of statistical measures
have been used to evaluate the segmentation outcomes. They are True Positive (TP), False Positive
(FP), True Negative (TN), and False Negative (FN). Such that the TP denotes number of pixels that are
correctly segmented as part of a tumor, FP denotes number of pixels that are incorrectly segmented as
part of a tumor, FN denotes number of pixels that are incorrectly segmented as healthy pixels, and TN
denotes number of pixels that are correctly segmented as healthy pixels. These measures are used to
evaluate the segmentation process; accuracy, sensitivity, and specificity. Accuracy is defined as the
ratio of numbers of pixels that are correctly segmented to the total number of pixels in MRI slices
(Equation (11)). Sensitivity considers the proportion of the tumor that is correctly segmented (Equation
(12)). Specificity refers to the proportion of the non-tumor region that is correctly segmented and is
given in Equation (13) [8].

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (11)

Sensitivity =
TP

TP + FN
× 100% (12)

Speci f icity =
TN

TN + FP
× 100% (13)

In the evaluation of segmentation, both accuracy and specificity are not highly relevant because
these two measures adopt the TN, which depends on the relative size of the MRI image and the object
of interest. Therefore, the following additional metrics are used to evaluate the segmentation results:
Dice, Jaccard, and matching coefficients [32,33].

3. Experimental Results

Experiments were performed using MATLAB R2015a (The Math Works, Natick, MA, USA), on
Windows 10. The collected dataset is initially classified into normal and pathological cases to train the
algorithms and evaluate the classification and tumor identification accuracy by cross-validation.
The standard (BRATS 2013) dataset is then used to evaluate the accuracy of the proposed 3D
segmentation system.

3.1. Classification Results

For each MRI image, 190 features were extracted using the MGLCM method. The highest
classification accuracy with the optimum performance was achieved by the MLP network at 91%
accuracy for correctly classifying the collected dataset by cross validation.

In this study, ANOVA was used for relevance analysis. The critical value α was set to 0.001 to
obtain highly significant features [34]. The assessment of predictors depends on both F-statistic value
and p-value because a p-value less than 0.001 is insufficient for a predictor. Instead, the predictor must
also hold a high F-statistic value. The high F-statistic value indicates that the classes significantly
separated from one another [17]. The differences between the features of normal and abnormal MRI
brain scan groups of the co-occurrence matrix at θ1 = 0 and θ2 = 0 is shown in Table 1. All features
seemed acceptable except the weighted mean predictor. Nevertheless, significant variation existed
in the F-statistic values between features, indicating a degree of significant difference between the
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selected features. The p-value does not actually signify the degree of separation of each group from
others and ignores feature redundancy [35]. This drawback is overcome by the F-statistic to determine
the power of feature discrimination through thresholding, in which different threshold values are
taken to ignore the redundant features and evaluate the selected features at each time by observing the
performance of the classifier. When the F-statistic threshold value increases, the numbers of selected
predictors and the vector of the features decrease. The optimal threshold value that can provide
the highest accuracy is 35 (Figure 6). Under this condition, only one normal patient was classified
incorrectly as pathological, and three pathological patients were classified incorrectly as normal. Thus,
some patients may be misclassified in both ways, but the high classification accuracy (97.8%) reduces
these cases to a very small number. These cases are not treated and are passed to the segmentation
phase as “erroneous cases.”

Consequently, 11 relevant and significant features for each angle of the MGLCM are selected
by ANOVA, namely, contrast, correlation, dissimilarity, sum of square variance, sum average, sum
variance, difference entropy, information measure of correlation I, inverse difference normalized (IDN),
inverse difference moment normalized, and weighted distance, in addition to the cross correlation.

Table 1. Comparison of MRI brain scan features (mean ± standard deviation (SD)) between normal
and abnormal patients.

Features Abnormal
MRI Scans

Normal
MRI Scans F-Statistic p-Value

Auto correlation (×103) 5.62 ± 1.2 4.92 ± 1.24 13.67 <0.001
Contrast (×103) 1.89 ± 0.618 0.918 ± 0.22 166.2 <0.001
Correlation (÷10) 7.1 ± 0.91 8.07 ± 0.72 291.5 <0.001
Cluster Prominence (×108) 3.6 ± 1.87 2.7 ± 1.09 14.62 <0.001
Cluster Shade (×105) 7.6 ± 4.26 5.5 ± 2.9 13.14 <0.001
Dissimilarity (×10) 2.42 ± 0.47 1.58 ± 0.21 209 <0.001
Energy (÷10) 1.02 ± 0.2 1.05 ± 0.18 368.15 <0.001
Entropy 7.07 ± 0.336 6.87 ± 0.25 15.21 <0.001
Homogeneity (÷10) 3.55 ± 0.34 3.76 ± 0.26 451.3 <0.001
Max. Probability (÷10) 3.17 ± 0.33 3.23 ± 0.28 444.96 <0.001
Sum of Square Variance (×103) 6.5 ± 1.6 5.38 ± 1.23 24.36 <0.001
Sum Average (×102) 1.15 ± 0.112 1.06 ± 0.15 20.84 <0.001
Sum Variance (×104) 2.33 ± 0.47 1.97 ± 0.48 24.25 <0.001
Sum Entropy 4.46 ± 0.177 4.16 ± 0.147 35.98 <0.001
Difference Entropy 3.64 ± 0.2 3.34 ± 0.124 132.2 <0.001
Information Measure of Correlation I (÷10) −2.24 ± 0.3 −2.53 ± 0.26 430.15 <0.001
Information Measure of Correlation II (÷10) 9.11 ± 0.2 9.26 ± 0.18 355.48 <0.001
Inverse difference Normalized (÷10) 9.25 ± 0.12 9.48 ± 0.06 407.8 <0.001
Inverse difference Moment Normalized (÷10) 9.78 ± 0.07 9.87 ± 0.028 316.89 <0.001
Weighted Mean (÷10) −8.73 ± 84 0.53 ± 18.7 0.92 0.339
Weighted Distance 3.05 ± 2.91 0.77 ± 0.52 46.1 <0.001
Cross Correlation (÷10) 7.1 ± 0.91 8.07 ± 0.72 291.5 <0.001

Figure 6. Optimal F-statistic threshold value. The achievable accuracy was 97.8% ± 0.1% for the
classification of the collected dataset into normal and abnormal brain scans with sensitivity and
specificity rates of 98.1% ± 0.3% and 97.6% ± 0.4%, respectively.

273



Symmetry 2016, 8, 132

3.2. Tumor Identification Results

The main factor that differentiates tumor from healthy tissue is tumor brightness relative to the
surrounding brain tissue. Therefore, brain tumor detection algorithms are based mainly on finding
pixel clusters with a different intensity from that of their surroundings on the basis of brain symmetry.

After the MRI brain scans are classified into normal and pathological images, the BBBGA method
was applied on those identified as pathological cases as shown in the pathological patient in Figure 7.
The red rectangles denoting the optimized 3D box refer to the pathological area in slices 6–9 where the
tumor appears.

Figure 7. MRI brain scanning slices, the red rectangles denote the optimized location of 3D-box.

The BBBGA method was implemented on MRI brain slices of pathological patients with
population size (N) equal to 100. The individuals were selected using the roulette wheel selection
method because this approach is more popular and efficient in different applications [36]. The selected
individuals were then mated using a multi-point crossover with probability of 0.5 [37]. Finally,
a single-point mutation was implemented with a probability of 0.05.

Evidence extracted from previous studies [18,38] indicates the lack of a standard method for
evaluating the BBBGA approach. Saha, et al. [38] used an example to observe and measure the noise
sensitivity of this approach by adding Gaussian noise with different amounts of σ = 0, 0.1, 0.2, 0.3,
and 0.4 although this addition is not important and irrelevant to evaluation. We measure the noise
sensitivity of our approach after the addition of Gaussian noise of the same noise amounts. Figure 8
shows that FP is proportional to the amount of noise in the MRI scan. Hence, our approach was
evaluated using the collected dataset that included 88 pathological cases. Among 84 pathological
cases, an abnormality was successfully located. Only four cases remained undetected because of the
method’s inability to detect hardly visible tumors of size less than 1 cm3. Moreover, tiny tumors hold
a spatial scale relatively similar to normal anatomic variability [39].
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Figure 8. FP increase with increasing noise amount in the MRI scan.

3.3. Tumor Segmentation Results

After the brain tumor location was recognized and identified by BBBDG, the 3DACWE approach
was initialized and applied to the T2-w MRI brain scan images of 12 MRI slices from the collected
dataset (Figure 9). The ground truth provided by the clinician are marked in green, and the tumor
boundaries extracted by 3DACWE are marked in red. This patient holds a brain tumor in the left brain
hemisphere. The 3DACWE was initialized by the following initial parameters: λ1 = λ2 = 1 and length
penalty μ = 106.

Figure 9. Comparative segmentation results on MRI T2-w (normalized) scan (matching images in
Figure 7) by 3DACWE. The ground truth is marked in green, and the output of 3DACWE is marked
in red.
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The Chan–Vese energy function was minimized within the iterations of 3DACWE and reached
a steady state in 1250 iterations (Figure 10). This patient’s MRI scan was segmented with a Dice score
of 88.4% by comparing with manual segmentation.

Figure 10. The Chan–Vese energy function convergence to steady state.

Under this segmentation process, some brain tumor parts in the MRI slices were incorrectly
segmented as healthy tissues, and some healthy brain tissues were incorrectly segmented as
pathological tissues. To eliminate these ambiguities and reduce the FPs and FNs, a consistency
verification algorithm was applied for post-processing [11,40]. The majority filter was adopted to
remove the FPs and FNs by replacing the segmented pixels inconsistent with their neighboring
segmented pixels in a certain neighborhood. For example, if the center pixel of a window is segmented
as a tumor but the majority of the neighboring pixels were segmented as healthy, then the center pixel
is changed to healthy. Otherwise, if a pixel within the tumor area is segmented incorrectly as healthy
and is surrounded by pixels that are segmented as tumor, then the pixel is changed to a pathological
pixel. If the window size of the applied filter is increased, the quality of the output image significantly
augments at the expense of complexity increase [40]. Herein, consistency verification was applied in
a 5 × 5 neighborhood window [11].

For instance, the MRI brain slices in Figure 11A include some MRI slices with incorrectly
segmented pixels (Figure 11B). The consistency verification algorithm results are shown in Figure 11C.
Tables 2 and 3 demonstrate the average results of segmentation for both collected and BRATS 2013
datasets, respectively, in which the collected dataset was manually segmented by experts.

Figure 11. Results after applying the consistency verification algorithm. (A) original MRI slices;
(B) segmented MRI brain slices by 3DACWE; (C) output of consistency verification algorithm.
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Table 2. Segmentation results for each patient in the collected dataset.

Results Sensitivity Specificity Accuracy Dice Index Jaccard Matching

Average 0.854 0.999 0.998 0.890 0.804 0.854
STD 0.069 0.001 0.002 0.047 0.075 0.069
Min 0.690 0.996 0.994 0.764 0.619 0.690
Max 0.971 1.000 1.000 0.956 0.915 0.971

Table 3. Segmentation results for each patient in the BRATS 2013 dataset.

Results Sensitivity Specificity Accuracy Dice Index Jaccard Matching

Average 0.909 1.000 0.999 0.893 0.809 0.909
STD 0.076 0.000 0.000 0.043 0.068 0.076
Min 0.736 0.998 0.998 0.768 0.624 0.736
Max 0.999 1.000 1.000 0.947 0.899 0.999

The overall results of the segmentation of the four MRI modalities (T1-w, T2-w, T1c-w, and
FLAIR) for the collected dataset with the four most common metrics reported in previous studies
(accuracy, Dice, Jaccard, and matching methods) are summarized in Figure 12. The T1c-w-based
segmentation attained the highest average metric rates because of contrast enhancement of the
pathological tissues. The T2-w-based segmentation was rated as the lowest among all metrics because
of highly inhomogeneous intensity distribution despite the sharp edges and high intensity of brain
tumor with respect to the surrounding tissues.

Figure 12. Average score with SD obtained from segmentation score rates by the four metrics.

Table 4 shows a comparison between the achieved mean Dice score and SD of 2DACWE and
3DACWE methods in segmenting images obtained under the four MRI modalities T2-w, T1-w, T1c-w,
and FLAIR (Figure 13).

Table 4. Comparison of tumor segmentation accuracy (mean ± SD) using 2DACWE and 3DACWE.

Method T2-w T1-w T1c-w FLAIR

2DACWE 83.73% ± 4.6% 84.43% ± 5.3% 86.6% ± 3.4% 82% ± 4.5%
3DACWE 88.11% ± 4.4% 89.92% ± 4.9% 90.3% ± 3.6% 88.8% ± 6.9%
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Figure 13. Comparison of tumor segmentation of the average Dice scores of four MRI modalities under
2DACWE and 3DACWE.

Figure 14 compares between the 3DACWE and 2DACWE segmentation results of the collected
dataset. Notably, 3DACWE outweighs the 2DACWE method for all patients in the given dataset.

Figure 15 shows a comparison of the clinical and experimental identifications of the most relevant
slices for the 20 pathological patients by measuring the means and SD between the two groups. Notably,
the means and SD of the clinical and experimental tests are similar.

Figure 14. Comparison between 3DACWE and 2DACWE segmentation results for the given dataset.

Figure 15. Comparison between clinical and experimental MRI slice identification features (mean ± SD).
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3.4. Discussion

The 3DACWE method was successfully applied to both the collected and standard datasets of
BRATS 2013. The achieved Dice score of the collected dataset was 89% ± 4.7%, whereas the achieved
Dice score of BRATS 2013 was 89.3% ± 4.2%. A major difficulty was encountered during white matter
tumor segmentation because of the overlapping white and gray matter intensity distributions in such
case. Some parts of the tumors in the gray matter were not distinguished because of restricted image
resolution and the complex network of brain tissue with various shapes and sizes. These factors
significantly affected a large number of voxels located on the tissue borders. Moreover, central tumor
image intensity slightly differed from the peripheral tumor intensity. As such, the intensity near the
borders can be considered similar to that of the gray matter. Consequently, the tumor and gray matter
may be confused, and the peripheral tumor regions may be misclassified.

Tumor size affects segmentation accuracy, and errors usually occur at the tumor boundaries.
Large brain tumors contain a high number of image pixels that can be misclassified. Moreover, large
tumors likely ingress into the brain boundary and CSF fluid and render the precise determination
of tumor boundary challenging. With regard to the overall executive processing time, the proposed
system handled volumetric MRI data with different characteristics, such as number of slices and tumor
size, type, boundary, and location. These characteristics make the overall segmentation process time
consuming. Hence, the processing time of the proposed system was measured by second per MRI slice.
Our proposed system required 243 s/MRI slice to run the segmentation.

Segmentation accuracy decreased significantly with increasing slice thickness as shown in the
scatter plot of the segmentation accuracy to the summation of slice thickness and space between slices
(Figure 16).

Figure 16. Scatterplot of segmentation accuracy to the summation of slice thickness and space between
slices, showing the mean accuracy (R-squared) as the dotted brown line.

The scatter plot in Figure 16 shows a negative correlation between the Dice score and the
summation of the slice thickness and space between slices. Therefore, to achieve high segmentation
accuracy, a reduction of the slice thickness and space between slices to a minimum is essential and
diminishes the PV effect.

Table 5 contains an overview of the segmentation methods demonstrated in [8].
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Table 5. Overview of the segmentation methods compared with the proposed system.

Reference MRI
Modalities Approach No. of

Patients
Accuracy

(100%)
Match
(100%)

Jaccard
(100%)

Dice
(100%)

[33] T1, T2, and PD Fuzzy clustering 6 - 53–91 - -

[41] T1
Template-moderated

classification 20 95 - - -

[42] T1, and T1-c Level-sets 5 - - 85–93 -
[43] T2 Generative model 3 - - 59–89 -

[44] T1, T1-C, T2,
and FLAIR

Weighted
aggregation 20 - - 62–69 -

[12] T1, T1-c, T2,
and FLAIR SVM 14 34–93 - - -

[45] T1, T1-c, T2,
and FLAIR Generative model 25 - - - 40–70

Proposed
System

T1, T1-c, T2,
and FLAIR

3D-ACWE
50

(collected) 99.8 ± 0.2 85.4 ± 6.9 80.4 ± 7.4 89 ± 4.7

25
(BRATS 2013) 99.9 91 ± 7.6 81 ± 6.8 89.3 ± 4.2

4. Conclusions

Visual diagnosis of MRI scan images is subjective and highly dependent on clinician expertise.
The proposed method offers a reduction of clinician evaluation time from 3–5 h to 5–10 min without
significant reduction in the accuracy of the diagnosis. Indeed, the proposed method can recognize and
segment MRI brain abnormality (tumor) on T2-w, T1-w, T1c-w, and FLAIR images. The 3DACWE
segmentation technique reduces manual input, offers a rapid operation, and exhibits high accuracy
compared with manual segmentation as evaluated using both the Al-Kadhimiya and BRATS 2013
datasets. We conclude that the 3DACWE method is effective in brain tumor segmentation because the
approach does not only consider local tumor properties, such as gradients, but also relies on global
properties, such as intensity, contour length, and region length. Although the achieved accuracy was
high relative to those of other segmentation techniques, the 3DACWE was relatively slow for brain
tumor segmentation. Such a slow pace was ascribed to the processing of a massive number of MRI
slices of 512 × 512 pixel resolution with a high number of iterations used to attain the required accuracy.
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Abstract: There is much uncertainty and fuzziness in product quality attributes or quality parameters
of a manufacturing process, so the traditional quality control chart can be difficult to apply. This paper
proposes a fuzzy control chart. The plotted data was obtained by transforming expert scores into
fuzzy numbers. Two types of nonconformity judgment rules—necessity and possibility measurement
rules—are proposed. Through graphical analysis, the nonconformity judging method (i.e., assessing
directly based on the shape feature of a fuzzy control chart) is proposed. For four different widely
used membership functions, control levels were analyzed and compared by observing gaps between
the upper and lower control limits. The result of the case study validates the feasibility and reliability
of the proposed approach.

Keywords: fuzzy scores; fuzzy attribute control chart; membership function
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1. Introduction

International quality management expert Dr. Juran pointed out that, for users, quality is the
fitness for use, and not conformance to specification. End users rarely know what the specifications
are—they evaluate the product mostly based on the applicability and the durability of its applicability.
From the quality viewpoint of fitness for use, the conformance to specifications is downplayed and the
users’ evaluation is strengthened. Due to the emphasis on the user’s feelings and psychological factors,
there are many fuzzy attributes of quality from the fitness-for-use viewpoint. As a result, there are not
only two distinct judgments (applicative or inapplicable) when evaluating the quality from a fitness
point of view. In this sense, considering the fuzzy property of fitness-for-use quality is more practical.

As one of the main tools of SPC (statistical process control), the control chart is widely used for
monitoring the state of a process. However, for the aforementioned fitness quality, the conventional
continuous control chart or attributes control charts cannot be applied directly.

In recent years, many researchers have applied fuzzy set theory to solve the problems that arise
during the construction of uncertain quality control charts. Gülbay and Kahraman put forward a direct
fuzzy approach in [1–3]. They represented the linguistic variables and control limits of sample quality
evaluation with a fuzzy set, without any defuzzification operation, and judged the process control
state by the degree of overlap of α-cut set of sample fuzzy set and the control limits’ fuzzy set. In their
approach, the control level can be adjusted by the parameter α. Taleb and Sorooshian used fuzzy
set to depict linguistic data, defuzzified the fuzzy set to crisp values by use of the weighted average
method, and then built the control chart in [4,5]. By describing the magnitude of the process shift and
the occurrence rate of an assignable cause as fuzzy numbers, the fuzziness was modeled using both
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minimax and maximin approaches, and a control chart suitable for processes with fuzzy parameters
was presented by Morabi et al. in [6]. Grzegorzewski et al. [7] proposed a fuzzy control chart based
on a necessity coefficient. Hsieh et al. constructed a c-chart of wafer defects in an integrated circuit
manufacturing process by using fuzzy theory in [8]. Tannock [9] proposed an approach to construct a
fuzzy individual control chart.

Some indirect approaches were also proposed to build different types of control charts,
for example, Shu et al. [10] constructed fuzzy and R control charts based on the fuzzy dominance
between the fuzzy averages and variances, and Gildeh et al. [11] used Dp,q-distance between fuzzy
numbers to calculate their variance, covariance, and autocorrelation coefficient, and then used the
autocorrelation coefficient to modify the limits of the control chart. Zarandi et al. [12] constructed
a fuzzy control chart for different process shifts by adjusting the membership function parameters.
In order to detect small shifts represented by fuzzy numbers, fuzzy exponentially weighted moving
average (EWMA) control charts for univariate variable was developed by Sentürk et al. in [13].
Faraz et al. [14] constructed a fuzzy control chart to treat two uncertainties of fuzziness and randomness
in data.

Product quality is often measured by various characteristics that are generally correlated.
Multivariate control charts are necessary for quality control in such situations. Attribute quality
characteristics are sometimes defined by linguistic variables, or product units are classified into several
categories with linguistic forms. Fernandez et al. developed a method to control these fuzzy quality
evaluations with fuzzy multivariate control charts in [15]. In order to simultaneously monitor the
quality characteristics of a product or process measured by linguistic or fuzzy data, Ghobadi et al. [16]
developed a fuzzy multivariate cumulative sum (F-MCUSUM) control chart by means of fuzzy set
theory. In [17], Alipour et al. combined multivariate statistical quality control with fuzzy set theory to
develop a fuzzy multivariate exponentially weighted moving average (F-MEWMA) control chart.

The aforementioned literatures have provided good ideas to deal with the fitness quality attributes.
However, their common feature is that they constructed fuzzy control charts by fuzzy operation and
defuzzification based on fuzzy set membership functions given in advance. When there is some
deviation of a priori information, the control chart based on such a priori information can produce
distorted signals, and the application effect can be discounted greatly. Literature that describes the
construction of the fuzzy membership functions by use of rating scores, and subsequent creation of a
corresponding fuzzy-number-based control chart, is still rare.

This paper proposes a method to build a control chart based on fuzzy score number, and describes
the design of nonconformity judging criteria and analysis of the type selection of fuzzy numbers.
The rest of this paper is organized as follows. Section 2 analyzes the data acquisition and transformation
method. Possibility and necessity rules for nonconformity judgment are presented in Section 3.
The basic form of a control chart based on fuzzy score number is described in Section 4, and an
application case study is given in Section 5. Section 6 quantitatively analyzes the influence of different
types of fuzzy numbers to the control chart. Section 7 ends the paper with a summary and conclusions.

2. The Plotted Data of a Control Chart Based on Fuzzy Number

Fuzzy number-based control chart has a similar working principle of Shewhart control chart.
It plots the fuzzy number data of sample mean, and takes fuzzy number data of process mean to
construct the control limits, including central line and upper and lower limit. The state of the control
chart is judged according the relationship between the fuzzy number characteristic value of sample
mean and control limits.
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In order to acquire the process information used to construct a fuzzy control chart, this paper
adopted sample mean to evaluate the process mean when the process was in steady state. Suppose
a triangular fuzzy number sample, whose size is n, S1(L1, m1, R1), S2(L2, m2, R2), . . . ,Sn(Ln, mn, Rn),
and the fuzzy number estimator of process mean S(L, m, R) is as follows:

∧
S =

∑n
i=1 Si

n
(1)

The parameters of process fuzzy number take the mean of corresponding parameters of sample

fuzzy number (i.e.,
∧
S(

∧
L,

∧
m,

∧
R)):

∧
L =

∑n
i=1 Li

n
,

∧
m =

∑n
i=1 mi

n
,
∧
R =

∑n
i=1 Ri

n
(2)

After determining the fuzzy number of process mean, plotted data of the control chart is obtained
by transforming the expert score of sample evaluation into a fuzzy number.

3. Control Limits of a Fuzzy Number-Based Control Chart and Its Nonconformity Judgment

3.1. Possibility and Necessity Measures

A fuzzy score number-based control chart indicates the status of a process according to the
matching degree between the fuzzy number of sample mean and the fuzzy number of process mean.
A degree of matching higher than a predefined value between the two means indicates that the process
is in a better control state. This is on the basis of two measures of fuzzy events: possibility (Pos) and
necessity (Nec) measures,.

Suppose fuzzy set A, B∈F(X), then we have the following definition (as mentioned by Jamison et al.
in [18] and Zadeh in [19]):

Pos(B|A) = sup
x∈X

min {μA(x), μB(x)} (3)

Nec(B|A) = inf
x∈X

max {1 − μA(x), μB(x)} (4)

The above two formulas will be called possibility measure and necessity measure of fuzzy set B
under the given fuzzy set A, respectively, where x∈A, B, and μA and μB are the membership functions
of fuzzy sets A and B, respectively. The former is an optimistic estimation of the possibility of fuzzy
events, and the latter is a conservative estimation of the possibility of fuzzy event, satisfying the
following relations:

Nec(B|A) = 1 − Pos(B|A)

= 1 − Pos(B|A) = 1 − sup
x∈X

min {μA(x), 1 − μB(x)} = inf
x∈X

max {1 − μA(x), μB(x)} (5)

Formula (5) shows that the necessity measure of some fuzzy event is the possibility measure of its
opposite event.

Taking triangular fuzzy number as an example, the possibility measure is shown in Figure 1a;
its value is the highest point of the shadowed area and denotes the matching degree of possibility
between fuzzy numbers A and B. However, for a given Pos, there are no constraints on the vertex of B,
and in Figure 1a, a and a′ all satisfy the given Pos.
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Figure 1. Schematic diagram of two fuzzy measures. (a) Possibility measure (Pos); (b) necessity
measure (Nec).

The necessity measure is shown in Figure 1b, whose value is the lowest point of the shadowed
area, and denotes the matching degree of necessity between fuzzy numbers A and B. The given Nec can
limit the value range of elements in B for known A. As shown by the symbol 4© in Figure 1b, when the
vertex of B moves from a to a′, the value of Nec decease from b to b′, although the value of Pos remains
the same, shown by the symbol 2© in Figure 1a. So, the matching degree between fuzzy numbers A and
B can be judged synthetically by selecting the appropriate combination of Pos values and Nec values.

Let fuzzy number S be the estimation of current process level. For known fuzzy number of sample

mean
∼
S and its possibility distribution, the matching degree between

∼
S and S can be decided by the

possibility measure and necessity measure as follows:

Pos(S|
∼
S) = sup

z∈U
[min{μS(z), μ∼

S
(z)}] (6)

Nec(S|
∼
S) = inf

z∈U
[max{μS(z), 1 − μ∼

S
(z)}] (7)

The above two formulas can be used to judge the abnormal status of control chart.

3.2. Control Chart Nonconformity Judgment Rules

Suppose S(L, m, R) and
∼
S(

∼
L,

∼
m,

∼
R) are the triangular fuzzy numbers of process mean and sample

mean, respectively. The in-control fuzzy control chart must satisfy the following two conditions:

(1) The possibility measure of
∼
S under known S must be no less than the preset α(0 < α ≤ 1)

(i.e., Pos(S|
∼
S) ≥ α (See [20]));

(2) The necessity measure of
∼
S under known S must be no less than the preset β(0 < β ≤ 1)

(i.e., Nec(S|
∼
S) ≥ β).

By analyzing the graphical characteristics of these two measures, it was found that the fuzzy set S

and
∼
S, meeting conditions of Pos(S|

∼
S) ≥ α and Nec(S|

∼
S) ≥ β, has the following features, as shown in

Figures 2 and 3:

If Pos(S|
∼
S) ≥ α, then Sα ∩

∼
Sα 
= ∅; (8)

If Nec(S|
∼
S) ≥ β, then Sβ ⊃

∼
S1−β (9)

For trapezoidal fuzzy numbers, graphical analysis results show that the above two features are
still true (as shown in Figures 4 and 5). So, the above two features regarding probability measure and
necessity measure can be used as the criteria for judging the fuzzy control chart’s abnormal state.
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Figure 2. Probability measure (Pos) of triangular fuzzy number.

Figure 3. Necessity measure (Nec) of triangular fuzzy number.

Figure 4. Pos of trapezoidal fuzzy number.

Figure 5. Nec of trapezoidal fuzzy number.
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3.3. Parameters of Threshold for Nonconformity Judgment

In the aforementioned two rules, the value of parameters α and β are not uniformly set and
depend on the specific process mean fuzzy number and sample mean fuzzy number.

For example, let
∧
S(

∧
L,

∧
m,

∧
R) and S̃i(Li, mi, Ri) be the fuzzy numbers of process mean and sample

mean, respectively. If there is no abnormity in the control chart during a certain sampling period,

the values of parameters α and β can be taken as the minimum of Pos and Nec of
∧
S under different S̃

as follows:
α = min(Pos(Ŝ|

∼
Si)) = minsup

z∈U
[min{μ

Ŝ
(z), μ∼

Si
(z)}] (10)

β = min(Nec(Ŝ|
∼
Si)) = min inf

z∈U
[max{μ

Ŝ
(z), 1 − μ∼

Si
(z)}] (11)

Figure 6 illustrates the above process.

Figure 6. Determination of parameters. (a) Determination of parameter α; (b) determination of
parameter β.

4. Basic Form of a Fuzzy Control Chart

The plotted data of fuzzy control chart is the supremum Sup(S̃i)α and infimum In f (S̃i)α of α-cut
of quality characteristic-scoring sample fuzzy number, which is denoted as a line segment connecting
Sup(S̃i)α and In f (S̃i)α. The upper and lower control limits are supremum Sup(Sα) and infimum
In f (Sα) of mean scoring fuzzy number, respectively. The fuzzy control chart is judged abnormal when
the α-cut set of sample fuzzy number and process mean fuzzy number do not meet the two criteria.

Taking triangular fuzzy number as example, Sup(S̃i)α and In f (S̃i)α can be defined as follows,
also shown in Figure 7.

Sup(S̃i)α = max(S̃i)α = max{z|μ(z) > α} (12)

In f (S̃i)α = min(S̃i)α = min{z|μ(z) > α} (13)

Figure 7. Supremum (Sup(Si)a) and infimum (Inf(Si)a) of fuzzy number α-cut.
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Figure 8 shows the basic form of fuzzy score number-based control chat.

Figure 8. Basic form of a fuzzy score number-based fuzzy control chart.

5. Case Study

5.1. Construction of a Fuzzy Control Chart Based on Triangular Fuzzy Number

In the outer packaging inspection station of a certain workshop, the outer packaging quality was
evaluated by a professional quality inspector. The process of monitoring packaging quality using a
fuzzy control chart was as follows.

Step 1: Obtain the statistics of process mean. When process was in steady status, the quality inspector
evaluated the cases by random sampling, and the triangular fuzzy number of the process mean was
calculated as S (5, 6, 7).

Step 2: Determine the parameters of nonconformity judgment. In this case study, the parameters were
set as α = 0.8 and β = 0.3 in terms of Formulas (10) and (11). The upper and lower control limits, 6.2,
5.8 and 6.7, 5.3, were the right and left endpoints of α-cut and β-cut of process mean fuzzy number
S (5, 6, 7), respectively, according to Formulas (12) and (13).

Step 3: Prepare the plotted data. A sample size of 5 was taken randomly and the scoring triangular
fuzzy numbers were S̃1(5.5, 6.3, 6.8), S̃2 (4.6, 5.6, 6.6), S̃3 (3, 6, 9), S̃4 (3, 7, 8.5), and S̃5 (6.5, 7.5, 8.5).
According to Formulas (6), (7), (11), and (12), we obtain the results shown in Table 1.

Table 1. The calculation results of sample fuzzy number parameters.

Sample No. Pos Sup(S̃i)ff Inf(S̃i)ff Nec Sup(S̃i)1−fi Inf(S̃i)1−fi

1 0.83 6.4 6.14 0.47 6.45 6.06
2 0.8 5.8 5.4 0.3 5.9 5.3
3 1 6.6 5.4 0.25 6.9 5.1
4 0.8 7.3 6.2 0 7.45 5.8
5 0.25 7.7 7.3 0 7.8 7.2

Step 4: Build a fuzzy control chart for control. A fuzzy control chart can be built by using the data in
Table 1. In Figures 9 and 10, the vertical segments were drawn in the chart by connecting the left and
right endpoints of a complementary set of sample fuzzy number α-cut S̃α, and the control chart state
can be determined by the cross-relationship between the limit lines and vertical segments according to
Formulas (8) and (9).
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Figure 9. Possibility measure of control chart.

Figure 10. Necessity measure of control chart.

5.2. Analysis of Control Chart

For the fifth sample in Figure 9, the intersection of S̃α and Sα was empty. It did not satisfy the
criterion of possibility measure, thus the process was judged as abnormal. For the second, third, fourth,
and fifth samples in Figure 10, S̃β did not include S1−β. This did not satisfy the criterion of necessity
measure, and the process was judged as abnormal. So, the process was in control only for Sample 1.
The control level can be adjusted by parameters α and β.

For the same sample data, the following control chart (Figure 11) can be built by the commonly
used method. The plotted data was the α-level fuzzy median of fuzzy number of each sample.

The α-level fuzzy median of ith sample was obtained by Sup(S̃i)α+In f (S̃i)α
2 . If the fuzzy median is

between the upper limit Sup(Sα) and the lower limit In f (Sα), the process can be judged as being in a
controlled state. We can see from Figure 11 that, except for the third sample, the other four samples
were all nonconformities. This method has higher sensitivity than the control chart proposed by this
paper, but this also limits actual application for its excessive alarms. In contrast, the proposed control
chart is more suitable for practical application.
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Figure 11. Fuzzy control chart based on α-level fuzzy median.

6. Influence of the of Membership Function Type on a Fuzzy Control Chart

The membership function of a fuzzy number plotted in a control chart can be any curve with a
domain of [0,1]. In addition to the triangular membership function, trapezoidal-type, Gauss-type, and
π-type functions are also used in fuzzy system.

In order to compare the impact of different types of membership functions on a fuzzy control
chart, we designed the corresponding algorithm to calculate the parameters of other membership
function by use of the parameters R, L, and m of the triangular membership function.

Suppose a triangular membership function Tri (x, L, m, R) is:

Tri (x, L, m, R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x ≤ L
x−L
m−L L < x ≤ m
R−x
R−m m < x ≤ c
0 x > cc

(1) For π-type membership function,

Pi (x, a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ a

2
(

x−a
b−a

)2
, a ≤ x ≤ a+b

2

1 − 2
(

x−a
b−a

)2
, a+b

2 ≤ x ≤ b

1 b ≤ x ≤ c

1 − 2
(

x−c
d−c

)2
, c ≤ x ≤ c+d

2

2
(

d − x
d−c

)2
, c+d

2 ≤ x ≤ d

0, d ≤ x

, (14)

and trapezoidal-type membership function,

Trap (x, a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ a
x−a
b−a a ≤ x ≤ b

1 b ≤ x ≤ c
d−x
d−c c ≤ x ≤ d

0 x ≥ d

, (15)
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then the parameters a, b, c, and d can be obtained by the following formulas:

a = 2 × [k × (m − L) + L]− [p × (m − L) + L] (16)

b = p × (m − L) + L (17)

c = (1 − p)× (R − m) + m (18)

d = 2 × [(1 − k)× (R − m) + m]− [(1 − p)× (R − m) + m] (19)

where k, p are shape parameters valued between 0 and 1.

(2) For a Gauss-type membership function,

G(x, σ, n) = e
−(x−n)2

2σ2 , (20)

where the parameters n and σ can be obtained by the following formulas:

n = k × m +
1
2
× p × (L + R) (21)

σ = [p × (R − m) + (m − c)]/
√

2ln2 (22)

Taking the triangular fuzzy number data set shown in Table 1 as an example, the respective
parameters of a fuzzy control chart for trapezoidal-type, Gauss-type, and π-type functions are shown
in Table 2.

Table 2. Calculated results of fuzzy number parameters for different membership functions.

Type Sample Fuzzy Number Pos Sup(S̃i)a Inf(S̃i)ff Nec Sup(S̃i)1−fi Inf(S̃i)1−fi

T

S̃1 (5.58, 6.22, 6.35, 6.75) 0.9162 6.43 6.092 0.4588 6.47 6.03
S̃2 (4.70, 5.50, 5.70, 6.50) 0.8750 5.86 5.34 0.2500 5.94 5.26
S̃3 (3.30, 5.70, 6.30, 8.70) 1.0000 6.78 5.22 0.1875 7.02 4.98
S̃4 (3.40, 6.60, 7.15, 8.35) 0.8750 7.39 5.96 0 7.51 5.64

S̃5 (6.6, 7.4, 7.6, 8.4) 0.1875 7.76 7.24 0 7.84 7.16
S (5.10, 5.90, 6.10, 6.90) - 6.26 5.74 - 6.66 5.34

G

S̃1 (0.2251, 6.285) 0.9078 6.44 6.13 0.4550 6.48 6.09
S̃2 (0.4247, 5.6) 0.895 5.88 5.32 0.2418 5.96 5.24

S̃3 (1.274, 6) 1 6.85 5.15 0.1757 7.08 4.93
S̃4 (0.7432, 6.875) 0.7551 7.37 6.38 0.0387 7.50 6.25
S̃5 (0.4247, 7.5) 0.2103 7.78 7.22 0.0016 7.86 7.14

S (5.10, 5.90, 6.10, 6.90) - 6.28 5.72 - 6.66 5.34

P

S̃1 (5.58, 6.22, 6.35, 6.75) 0.986 6.47 6.02 0.4209 6.51 5.97
S̃2 (4.7, 5.5, 5.7, 6.5) 0.9687 5.96 5.25 0.1250 6.01 5.19
S̃3 (3.3, 5.7, 6.3, 8.7) 1 7.05 4.94 0.0703 7.23 4.77

S̃4 (3.4, 6.6, 7.15, 8.35) 0.9688 7.53 5.59 0 7.62 5.36
S̃5 (6.6, 7.4, 7.6, 8.4) 0.0703 7.85 7.15 0 7.91 7.09

S (5.10, 5.90, 6.10, 6.90) - 6.36 5.65 - 6.59 5.41

Note: T—trapezoidal, G—Gauss, P—π.

Figures 12 and 13 show the difference between possibility and necessity measures of a fuzzy
control chart constructed by four types of fuzzy numbers.
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Figure 12. Possibility measure of a control chart built by different fuzzy numbers.

Figure 13. Necessity measure of a control chart built by different fuzzy numbers.

The following conclusions can be drawn:

(1) As for the possibility measure, triangular membership function has the narrowest control limit
(i.e., the highest control level), trapezoid type takes second place, and π-type function is last.

(2) As for the necessity measure, π-type function has the narrowest control limit (i.e., the highest
control level), trapezoid type takes second place, and triangular-type function is last; there is no
distinct difference between the trapezoid-type and Gauss-type function, and their control limits
are almost overlapping. Furthermore, the control interval of each sample has little difference.

Considering the product features and quality control level, we can adopt different membership
functions to construct the fuzzy number and build the control chart. Correspondingly, different
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combinations of functions can be used to carry out the possibility and necessity measures in order to
satisfy the quality control requirement of given applications.

7. Conclusions

Focusing on the fuzzy uncertain and immeasurable product attributes, this paper proposed an
approach to construct a control chart based on fuzzy score number obtained from experts’ quality
scores. This approach uses actual score values to calculate the statistical parameters of a fuzzy number,
and can effectively avoid the influence of a prior distortion of a predefined membership function.

Two kinds of nonconformity judging rules were proposed, and their mathematical and graphical
features were also analyzed. By use of the graphical features, the process state can be judged by the
distribution of the plotted data in the control chart directly, and this facilitates the popularization and
application of the proposed control chart.

The influence of membership function on the control chart was analyzed. According to the results
of this analysis, for quality attributes needing strict control, the triangular membership function should
be selected; however, for quality attributes more loosely controlled, π-type function should be selected.

The parameters have a great influence on the effectiveness of proposed control chart. Therefore,
determining the appropriate values of these two parameters for different process conditions is worth
studying further.
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Abstract: Several factors may influence children’s lifestyle. The main purpose of this study is to
introduce a children’s lifestyle index framework and model it based on structural equation modeling
(SEM) with Maximum likelihood (ML) and Bayesian predictors. This framework includes parental
socioeconomic status, household food security, parental lifestyle, and children’s lifestyle. The sample
for this study involves 452 volunteer Chinese families with children 7–12 years old. The experimental
results are compared in terms of root mean square error, coefficient of determination, mean absolute
error, and mean absolute percentage error metrics. An analysis of the proposed causal model suggests
there are multiple significant interconnections among the variables of interest. According to both
Bayesian and ML techniques, the proposed framework illustrates that parental socioeconomic status
and parental lifestyle strongly impact children’s lifestyle. The impact of household food security on
children’s lifestyle is rejected. However, there is a strong relationship between household food security
and both parental socioeconomic status and parental lifestyle. Moreover, the outputs illustrate that
the Bayesian prediction model has a good fit with the data, unlike the ML approach. The reasons
for this discrepancy between ML and Bayesian prediction are debated and potential advantages and
caveats with the application of the Bayesian approach in future studies are discussed.

Keywords: Bayesian structural equation modeling; public health; maximum likelihood structural
equation modeling; Gibbs sampler algorithm

1. Introduction

Children’s lifestyle behaviors, such as technology usage time, home studying, physical activity,
and sleep duration tend to change in non-favorable directions. Some studies indicate that the family
environment is an important determinant of children’s lifestyle [1]. Therefore, information on children’s
lifestyle is often gathered based on household environment surveys. Decision-makers can use such
data to allocate resources prudently when planning activities aimed at improving the overall lifestyle of
children in a particular community. For ease of interpretation, this type of information is summarized
in a single value called the children’s lifestyle index. It is also important to identify factors potentially
affecting this index. Various studies have indicated that many factors are related to the lifestyle index
of children, including parental socioeconomic status [2–4] and parental lifestyle [5]. However, there are
insufficient studies on the impact of household food security on children’s lifestyle. Moreover, there are
links between parental socioeconomic situation and household food security [6]. Nevertheless, research
on the simultaneous integration of the interrelationships among the four well-known concepts into
one model remains scarce. These influential factors are interrelated and latent because they cannot be
measured directly, and it is thus quite complicated to determine the lifestyle index.
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Figure 1 shows the hypothesized model involving measurement and structural components used
to illustrate the children’s lifestyle index. Six important relationships are examined in the current
research framework. The influence of socioeconomic status as an independent variable of behavior
further complicates our understanding of children’s lifestyle and related behaviors.

Figure 1. Research framework.

First, the direct relationships between parental socioeconomic status and children’s lifestyle,
as well between parental socioeconomic status and both parental lifestyle and household food security,
are considered. Second, as Ishida [7] confirmed, there is an interconnection between household food
security and lifestyle behavior. Therefore, these two latent variables with their relationships are
included in the research model as mediators. The third relationship considers the direct impact of both
household food security and parental lifestyle on children’s lifestyle. The goal is to distinguish how
these two family environment indicators influence children’s lifestyle.

Since it is also reasonable to hypothesize that parental socioeconomic status, household food
security, and parental lifestyle are correlated, the interrelationships among these three latent variables
are indicated in Figure 1 by dashed lines with double-headed arrows connecting the latent variables.

The six hypotheses considered in the research model are:

H1: Parental socioeconomic status has a significant impact on children’s lifestyle.
H2: Household food security has a significant impact on children’s lifestyle.
H3: Parental lifestyle has a significant impact on children’s lifestyle.
H4: There is a significant relationship between parental socioeconomic status and parental lifestyle in
the research model.
H5: There is a significant relationship between parental socioeconomic status and household food
security in the research model.
H6: There is a significant relationship between household food security and parental lifestyle in the
research model.

Linear and nonlinear regression analyses have become bases of modeling techniques in statistics.
However, individual regression analysis for each dependent variable is hardly challenged as a realistic
approach in situations where the outcomes are naturally related. Additionally, it is difficult to
analyze some research frameworks using regression models when an outcome is determined not
only by the direct impacts of the predictor variables but also by their unobserved common causes.
Structural equation modeling (SEM) is a suitable technique that can address the above limitations by
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providing a robust means of studying interdependencies among a set of correlated variables. Maximum
likelihood SEM (ML-SEM) has been used by many researchers to analyze a complex phenomenon
involving hypothesized relationships between independent and dependent latent variables. Classical
methods based on the covariance structure approach encounter serious difficulties when dealing with
complicated models and/or data structures. ML-SEM is applied to analyze the proper amount of
hidden indicators (constructs or latent variable) to determine the observed indicators. ML-SEM is
capable of performing concurrent analysis to illustrate the connections among observed indicators and
corresponding latent variables as well as the connection among latent variables (Ullman [8]).

A computational algorithm in ML-SEM is developed based on the sample covariance matrix.
ML-SEM employs the assumption that the observations are independent and identically distributed
according to multivariate normal distribution [9]. If this assumption is not fulfilled, the sample
covariance matrix cannot be determined in the usual way and is difficult to obtain [10]. Therefore,
a number of researchers, such as Bashir and Schilizzi [11], Radzi and Jenatabadi [12], and Scheines
and Hoijtink [13] have proposed using the Bayesian approach in SEM to overcome these problems.
The Bayesian approach is attractive as users are able to employ prior information to update current
information pertaining to the parameters of interest.

In his book Structural Equation Modeling: A Bayesian Approach, Lee [9] presents some advantages
of Bayesian SEM (B-SEM) prediction:

• First moment properties of raw individual observations are mainly used in statistical techniques,
thus making the techniques much simpler than second moment properties of the sample
covariance matrix. Hence, B-SEM is easier to apply in more complex states.

• Direct latent variable estimation is possible, which simplifies the process of obtaining factor score
estimates compared to classical regression methods.

• As manifest variables are directly modeled with their latent variables using familiar regression
functions, B-SEM provides a more direct interpretation. It can also use common methods of
regression modeling, such as residual and outlier analyses in conducting statistical analysis.

As pointed out by Scheines and Hoijtink [13], Lee and Song [14], and Dunson [15], the Bayesian
predictor technique allows researchers to use prior experts’ theories in addition to the sample
information to produce better outputs and deliver valuable statistics and indices, including the
mean and percentiles of the posterior distribution of unknown parameters. In conclusion, more
reliable results can be achieved for small samples. In contrast, the Bayesian approach has much more
flexibility in handling complex situations. Even though many studies have been done on determining
the lifestyle index, not much has been done on modeling this index using SEM, particularly when
considering information on parental socioeconomic status, household food security, and parental
lifestyle. Therefore, the main purpose of this study is to illustrate the worth of ML-SEM and Bayesian
SEM (B-SEM) in developing a model that describes the lifestyle index of children.

2. Theoretical Background of Maximum Likelihood-Structural Equation Modeling (ML-SEM)
and Bayesian-SEM (B-SEM)

In the field of SEM, new techniques and statistical prediction analyses have been developed to
better evaluate more complex data structures. These contain but are not limited to: linear/nonlinear
SEM with covariates [16,17], SEM with multilevel dimensions [18,19], SEM with multi-samples [20,21],
SEM analysis with categorical data [22,23], SEM with exponential indicators [24], and SEM with
nonlinear correlations [25,26]. The above research works endeavor not only to prepare theoretical
results but also to produce significant practical values. Indeed, the B-SEM technique is developed
based on a Bayesian approach as the second generation of ML-SEM, which involves a much wider
class of models [9].
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2.1. ML-SEM

SEM is strongly capable of hypothesizing any types of relations and interactions among research
variables in a single causal framework. This technique is helpful for researchers to better understand
the concept of latent variables and their action within the model. Based on Bollen ’s [27] study, “latent
variables provide a degree of abstraction that permits us to describe relations among a class of events
or variables that share something in common”. For instance, with this ability of latent variables of SEM,
we were able to combine indicators that are related to children’s behavior in a household environment
and named it the “children’s lifestyle” latent variable. Another capability of SEM is determining the
interconnection between three predictors (parental socioeconomic status, household food security, and
parental lifestyle) and the impact of them on children’s lifestyle (see Figure 2).

Figure 2. Interconnection among family environment variables and impact on children’s lifestyle.

For predicting and estimating the research parameters in ML-SEM, measurements and structural
models are the main procedures. The measurement model is defined by a p × 1 vector yi that is
given by:

yi = μΩi + εi; i = 1, 2, . . . , n (1)

where

Y =

⎡
⎢⎢⎢⎢⎣

y1
y2
...

yn

⎤
⎥⎥⎥⎥⎦ ; Ω =

⎡
⎢⎢⎢⎢⎣

Ω1

Ω2
...

Ωn

⎤
⎥⎥⎥⎥⎦ ; μ =

⎡
⎢⎢⎢⎢⎣

μ11 μ12 · · · μ1n

μ21 μ22 · · · μ2n
...

...
. . .

...
μm1 μm2 · · · μmn

⎤
⎥⎥⎥⎥⎦ ; ε =

⎡
⎢⎢⎢⎢⎣

ε1

ε2
...

εn

⎤
⎥⎥⎥⎥⎦ .

In the research model Y includes five indicators: technology use, hours of study at home, child’s
physical exercise, child’s sleep amount, and school grade (see Section 3.1).

In Equation (1):

(a) μ is a (m × n) matrix that represents factor loadings from modeling the regressions of yi on Ωi.
(b) Ωi is a (n × 1) vector with normal distribution N (0, Φ) and is representative of the constructs

(latent variables). Ωi i = 1, . . . , n, are identically independent, have no correlation with εi, and
have normal distribution N (0, Φ). To modify the exogenous and endogenous latent variables’
association, Ωi is partitioned into (λi, ωi), where λi and ωi are r × 1 and s × 1 vector variables,
respectively, with latent structures.

(c) εi is a (m × 1) random vector with N (0, ψε) distribution that represents the error measurement.

Equation (2) presents the structural function elements:

λi = Σλi + γωi + πi; i = 1, 2, . . . , n, (2)
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Σ =

⎡
⎢⎢⎢⎢⎣

Σ11 Σ12 · · · Σ1r

Σ21 Σ22 · · · Σ2r
...

...
. . .

...
Σr1 Σr2 · · · Σrr

⎤
⎥⎥⎥⎥⎦ ; γ =

⎡
⎢⎢⎢⎢⎣

γ11 γ12 · · · γ1s

γ21 γ22 · · · γ2s
...

...
. . .

...
γr1 γr2 · · · γrs

⎤
⎥⎥⎥⎥⎦ ,

where

(a) Σ is an r × r matrix of structural parameters representing the relationships among endogenous
latent variables. This matrix is assumed to have zeroes in the diagonal elements.

(b) γ is an r × s matrix of regression parameters relating both exogenous and endogenous latent
variables, and πi is a r × 1 vector of disturbances.

(c) πi is an error term presumed to have N (0, ψπ) distribution, where ψπ is a diagonal covariance
matrix and this vector is uncorrelated with ωi.

In this paper children’s lifestyle is the endogenous latent variable and parental socioeconomic
status, household food security, and parental lifestyle are exogenous latent variables for dependent
variable. However, parental lifestyle and household food security are endogenous latent variables for
parental socioeconomic status. Therefore, in the research model parental socioeconomic status acts as
exogenous, children’s lifestyle acts as endogenous, and household food security and parental lifestyle
act both endogenous and exogenous.

To estimate the research parameters with ML-SEM, the robust-weighted least-squares (RWLS)
procedure is used. RWLS incurs standard errors, estimates the research parameter coefficients,
calculates χ2 and fit indices created by applying the diagonal weight matrix components produced
based on the thresholds’ asymptotic variances, and estimates the latent correlation [28]. Model
evaluation is the next step in ML-SEM. In this respect, the model goodness-of-fit can be checked
through the related Chi-square statistic (CMIN), normed fit index (NFI), comparative fit index (CFI),
Tucker Lewis index (TLI), incremental fit index (IFI), relative fit index (RFI), goodness-of-fit index
(GFI), and root mean square error of approximation (RMSEA) [8].

2.2. B-SEM

The ML method finds estimates by maximizing the likelihood function, assuming observed data.
Specifically, if x = (x1, . . . , xn) is the observed value of a random sample X = (X1, . . . , Xn) from
distribution f (·), f ∈ F = { f (x|θ) : x ∈ χ, θ ∈ Ω}, then the likelihood function of θ has the form

L (θ) = f (x1, . . . , xn|θ) = ∏n
i=1 f (xi|θ). (3)

The ML estimate of θ is given by
θ̂ = argmin

θ
L (θ) (4)

Before observing the data in Bayesian analysis, the practitioner/expert has an idea/belief/
information about the unknown parameter θ ∈ Ω. This prior information is updated with information
obtained from the sample, forming the posterior distribution of θ, which will be used to estimate θ.
This procedure is shown in Figure 3, where the distributions for a prior and its respective posterior
for a given parameter, together with the likelihood, are illustrated. Note that the likelihood can be
considered the distribution of the data given the parameter values. Based on Figure 3, the major portion
of the prior distribution has lower parameter values than the likelihood distribution. The posterior is
obtained as a compromise between the prior and the likelihood.

From Figure 3, it is apparent that the prior does not allocate sufficient probability where the
likelihood is high, and there exists prior-data conflict. See Evans and Moshonov [29] for more details.

300



Symmetry 2016, 8, 141

 
Figure 3. Likelihood, posterior, and prior for a parameter (source: [30]).

Priors can be non-informative or informative. A non-informative prior, also named a diffuse
prior, can, for instance, have a normal or uniform distribution with large variance. In statistical
modeling, a large uncertainty in the parameter value is reflected by a large variance. Consequently,
with a large prior variance, the likelihood contributes relatively more information to the construction
of the posterior, and the estimate is closer to an ML estimate. Evans [31] cautioned that using a large
variance prior may lead to the Jeffreys-Lindley paradox.

Formally, the formation of a posterior draws on Bayes’s theorem. Consider the probabilities
of events C and D, Pr (C) and Pr (D). Based on probability theory, the joint event C and D can be
expressed in terms of conditional and marginal probabilities:

Pr (C, D) = Pr (C|D) Pr (D) = Pr (D|C) Pr (C) (5)

In Equation (5), if we divide every side by Pr (C) then we get:

Pr (D|C) = Pr (C|D) Pr (D)

Pr (C)
(6)

which is known as Bayes’s theorem. By applying this theorem in modeling, it lets the data x take
the role of C and the parameter value takes the role of D. Thus, the posterior can be symbolically
illustrated as

posterior = parameter given data = data | parameters ×parameters
data = likelihood ×prior

data ∝ likelihood × prior (7)

In the above formula “∝” means “proportional to”. More specifically, we have

P (θ|x) = L (θ)π (θ)

m (x)
(8)

where π (θ) is the prior distribution (probability) of θ ∈ Ω and m (x) is called the prior predictive
distribution of x obtained as (for a continuous case):

m (x) =
∫

Ω
L (θ)π (θ) dθ (9)

In this study, the variables gathered are in the form of ordered categories. Yanuar and Ibrahim [32]
believe that, before conducting Bayesian analysis, a threshold specification must be identified in order
to treat the ordered categorical data as manifestations of a hidden continuous normal distribution.
A brief explanation of the threshold specification is given below.
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Suppose X and Y are defined as:

X =

⎡
⎢⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎥⎦ ; Y =

⎡
⎢⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎥⎦,

which can be considered as the ordered categorical data matrix and latent continuous variables,
respectively. Moreover, the relationship between X and Y is described by applying the threshold
specification. The procedure for x1 is described as an instant. More precisely, let

x1 = c i f τc − 1 < y1 < τc (10)

• c is the number of categories for x1;
• τc − 1 and τc represent the threshold levels associated with y1.

For example, in the current study we assumed c = 3, which leads to τ0 = −∞ and τ3 = ∞.
Meanwhile, the values of τ1 and τ2 are calculated based on the proportion of cases in each category of
x1 using

τk = Φ−1

(
2

∑
r=1

Nr

N

)
, k = 1, 2, (11)

We assumed that Y is distributed as a multivariate normal. Therefore, in Equation (10) we have:

• Φ−1 (·) is the inverse standardized normal distribution;
• N is the total number of cases;
• Nr is the number of cases in the rth category.

Under the Bayesian SEM, X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) are the ordered categorical
data matrix and latent continuous variables, respectively, and Ω = (ω1, ω2, . . . , ωn) is the matrix of
latent variables. The observed data X are augmented with the latent data (Y, Ω) in the posterior
analysis. The parameter space is denoted by Θ = (τ, θ, Ω), where θ = (Φ, Λ, Λω, Ψδ, Ψ ε) is the
structural parameter. In line with Lee (2007), the prior model is given by

π (Θ) = π (τ)π (θ)π(Ω|τ, θ) (12)

where, due to the ordinal nature of thresholds, a diffuse prior can be adopted. Specifically, for some
constant c,

π (τ) = c (13)

Further, to accommodate a subjective viewpoint, a natural conjugate prior can be adopted for θ

with the conditional representation π (θ) = π (Λ |Ψε )π (Ψε). More specifically, let

ψ−1
εk ∼ Γ (α0εk, β0εk) (14)

(
Λk

∣∣∣ψ−1
εk

)
∼ N

(
Λ0k, ψεkH0yk

)
(15)

where ψεk is the kth diagonal element of ψε, Λk is the kth row of Λ, and Γ denotes the gamma
distribution. Finally, an inverse-Wishart distribution is adopted for Φ as follows:

Φ−1 ∼ Wq (R0, ρ0) (16)

It is further supposed that all hyperparameters are known. Posterior distribution can be found by
normalizing the product L (Θ |X = x )π (Θ).
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In order to sample from the posterior distribution Θ|X = x , the Markov Chain Monte Carlo
(MCMC) technique is used to handle the computational complexity.

2.3. Modeling Description

The model hypothesized in this study consists of 16 indicator variables with one exogenous latent
variable and three endogenous latent variables. The following measurement model is then formulated:

yi = Λωi + εi, i = 1, 2, . . . , n (17)

where ωi = (ηi, ξi1, ξi2, ξi3)
T . The structural part of the current SEM model has the form

ηi = γ1 ξi1 + γ2ξi2 + γ3ξi3 + δi (18)

where (ξi1, ξi2, ξi3)
T is distributed as N (0, Φ) and independent of δi, which is distributed as N (0, ψδ).

In data analysis, we applied AMOS 18 to estimate research parameters for ML-SEM, while
WinBUGS 1.4 was used for B-SEM analysis. The hierarchical structure is employed by choosing the
prior information for parameters involved in the hypothesized model, as defined in Equations (14)–(16).

3. Materials and Methods

3.1. Data Structure

The information gathered in this survey includes information about parental socioeconomic status,
household food security, parental lifestyle, and children’s lifestyle of individuals living in Urumqi,
Xinjiang, China. The parental socioeconomic situation was measured as the initial independent
variable, including nine indicators. Eight of the indicators are the mother’s age, father’s age, mother’s
education level, father’s education level, mother’s income level, father’s income level, mother’s
work experience, and father’s work experience. The added question is “How long have the parents
been married? The parents’ ages were classified into four groups, namely “30 years old or below”,
“31 to 40 years old”, “41 to 50 years old” and “over 50 years old”, which were coded as 1, 2, 3,
and 4, respectively. With respect to education level, the responses obtained were coded as 1 for “Less
than High School”, 2 for “High school”, 3 for “Diploma”, 4 for “Bachelor’s”, and 5 for “Master’s
or PhD”. The respondents were asked about the parental income status, and the responses were
denoted by 1, 2, 3, 4, and 5 for “less than RMB2,000 per month”, “RMB2,001–RMB3,000 per month”,
“RMB3,001–RMB4,000 per month”, “RMB4,001–RMB5,000 per month”, and “more than RMB5,000
per month”, respectively. The respondents were asked about the parental work experience and the
responses were coded as 1, 2, 3, 4, and 5, denoting “less than 5 years”, “5–10 years”, “11–15 years”,
“16–20 years”, and “more than 20 years”, respectively. The last question in the socioeconomic part is
related to the duration of the parents’ marriage, and responses were labeled 1, 2, 3, 4, and 5 for “less
than 2 years”, “2–4 years”, “5–7 years”, “8–10 years”, and “more than 10 years”. Family food security
status was the first mediator, based on a study by Bickel, Nord [33], which included 18 standard
questions. We extracted nine questions that are representative of the food security indicators, which
were measured on a Likert scale from 1 to 9. The third variable is parental lifestyle and in the research
model it acts as the second mediator. Several authors have proposed lists of health-related behaviors
for measuring parental lifestyle. Nakayama and Yamaguchi [34] suggested a list of health-related
behaviors including physical exercise, smoking habits, average sleeping hours, and average working
hours per day. In our study, we added drinking alcohol to Nakayama’s list and measured all factors
for fathers and mothers separately. Therefore, parental lifestyle was measured based on 10 indicators,
namely alcohol drinking, smoking habits, physical exercise, working hours, and average sleeping
hours per day, for the mother and father. The respondents were asked about their alcohol drinking
habits and the responses were coded as 1, 2, 3, 4, 5, 6, and 7, denoting “less than 1 time per month”,
“1 time per month”, “2 to 3 times per month”, “1 time per week”, “2 to 3 times per week”, “4 to
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6 times per week”, and “every day”. The respondents were asked about their smoking habits and
the responses were coded as 1, 2, and 3, denoting “smoker”, “quit”, and “non-smoker”, respectively.
Regarding the frequency of physical exercise, respondents were asked “how many times a week on
average do you do physical exercise?” The responses for this question were placed into four categories
coded as 1, 2, 3, and 4, indicating “none”, “1 or 2 times per week”, “3 or 4 times per week”, and
“more than 4 times per week”, respectively. Working hours per day were coded as 1 for “more than
14 h”, 2 for “9–14 h”, and 3 for “less than 9 h”. The average sleeping hours per day were grouped
as 1 referring to “less than 7 h per day”, 2 for “more than 8 h per day”, and 3 for “between 7 and
8 h per day”. Children’s lifestyle was the fourth latent variable and acted as the dependent variable.
Five indicators were considered in measuring the children’s lifestyle index. These are hours of study at
home, child’s sleep amount, technology use, school grade, and child’s physical exercise. The average
hours of study at home per day were grouped into four categories: 1 referring to “less than 1 h per
day”, 2 for “1 to 2 h per day”, 3 for “3 to 4 h per day”, and 4 for “more than 4 h per day”. The child’s
average sleeping hours per day were grouped into 1 referring to “less than 7 h per day”, 2 for “between
7 and 8 h per day”, 3 for “between 8 and 9 h per day”, and 4 for “more than 9 h per day”. Respondents
were asked “how many hours on average does your child use technology per day?” The responses
for this question consist of four categories that were coded as 1, 2, 3, and 4, indicating “less than 1 h
per day”, “1 to 2 h per day”, “3 to 4 h per day”, and “more than 4 h per day”, respectively. Children’s
school levels were coded from 1 to 6, denoting grades 1 to 6. Children’s physical activity per week was
coded as 1 for “none”, 2 for “1 or 2 times per week”, 3 for “3 or 4 times per week”, and 4 for “more
than 4 times per week”.

3.2. Ethics Statement

For this research, the questionnaires were self-administered/reported. These surveys were
collected anonymously, with no way of identifying the participants. Therefore, based on the Health
Research Ethics Authority [35], the research does not require an ethics review “based solely on the
researcher’s personal reflections and self-observation”.

3.3. Sampling

Five primary schools were selected from Urumqi City, Xinjiang Province, China and
120 questionnaires were delivered to every school. Every primary school includes six grades, and
20 questionnaires were distributed to each grade. Therefore, 5 × 6 × 20 = 600 questionnaires were
distributed in 2014 to five schools. Every questionnaire was for one family including a father, a mother,
and a child between seven and 12 years old. The sample comprised parents who joined school parent
meetings that take place four times per year. For each of the six grades, 20 volunteers were selected
and trained on filling out the questionnaire. The survey was conducted with University of Malaya
funding. A parent was retained in the sample if they had a child between seven (grade 1) and 12
(grade 6) years of age.

Of 600 distributed questionnaires, 483 were returned. The rest of the families refused to continue
their cooperation. Among 483 questionnaires, 22 were eliminated based on missing data. Mahalanobis
distance is an extremely general measure that is utilized for the measurement of multivariate
outliers [36]. Based on Mahalanobis Distance testing, nine observations (observation number; 36, 88,
92, 134, 228, 256, 372, 411, and 444) were eliminated from the list because they were considered outliers
that could affect the model fit, R2, and the size and direction of parameter estimates (see Table 1).
Therefore, (483 − 22 − 9 = 452) 452 observations were considered as the final data of the study.
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Table 1. Mahalanobis distance.

Observation Number Mahalanobis D-Squared p1 p2

36 22.56 0.0016 0.0084
88 20.31 0.0067 0.0091
92 18.92 0.0092 0.0104

134 36.58 0.0116 0.0124
228 32.71 0.0231 0.0178
256 30.08 0.0854 0.0364
372 28.19 0.0932 0.0392
411 25.44 0.1589 0.0421
444 19.76 0.2876 0.0482

If p1 or p2 is less than 0.05 then the observation is an outlier.

4. Results

Tables 2 and 3 show a descriptive analysis of the child and parental characteristics.

Table 2. Descriptive analysis of child characteristics.

Characteristics Percentage Characteristics Percentage

Gender: Average hours per day of using technology:

Boy 45.60% Less than one hour per day 13.20%
Girl 54.40% 1 to 2 h per day 15.70%

School grades: 3 to 4 h per day 40.70%

Grade 1 14.20% More than 4 h per day 30.70%

Grade 2 16.80% Physical activities in a week:

Grade 3 16.60% None 44.20%
Grade 4 16.30% 1 or 2 times per week 28.40%
Grade 5 17.30% 3 or 4 times per week 19.70%
Grade 6 18.80% More than 4 times per week 7.70%

Study at home: Average sleeping hours in a day:

Less than one hour per day 21.10% Less than 7 h per day 5.80%
1 to 2 h per day 29.40% Between 7 and 8 h per day 22.20%
3 to 4 h per day 33.10% Between 8 and 9 h per day 56.30%

More than 4 h per day 16.40% More than 9 h per day 15.70%

Only the essential factors of each latent variable were sustained in the research model by applying
factor loading. Table 4 presents the indicators’ factor loadings on three latent variables. According to
Argyris and Schön [37], the standardized factor loading must be over 0.5. As illustrated in Table 4, some
factor loadings of four latent variables are below 0.5; therefore, these indicators must be excluded from
the measurement model. For the parental socioeconomic latent variable, six indicators were excluded
from the research model. These are the mother’s age, father’s age, father’s education, mother’s income,
mother’s work experience, and father’s work experience. For the parental lifestyle latent variable,
five indicators were excluded from the research model. These are the mother’s alcohol drinking
habit, mother’s smoking habit, father’s smoking habit, mother’s physical exercise habit, and father’s
physical exercise habit. Among nine indicators of household food security, four were excluded from
the research model. Finally, two indicators of children’s lifestyle were excluded from the research
model, the child’s physical exercise habit and school grade.
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Table 3. Descriptive analysis of parental characteristics

Characteristics Father (%) Mother (%) Characteristics Father (%) Mother (%)

Age: Smoking Habit:

Less than or equal 30 years old 18.5% 21.6% Smoker 66.6% 23.8%
Between 31and 40 years old 36.2% 25.1% Quitted 15.7% 13.7%
Between 41 and 50 years old 22.1% 28.4% Non-smoker 17.7% 62.5%

More than 50 years old 23.2% 24.9% Physical exercise:

Education: None 54.4% 33.6%

Less than High School 11.3% 9.5% 1 or 2 times in a week 27.7% 38.7%
High school 19.8% 6.7% 3 or 4 times per week 14.8% 11.2%
Diploma 37.7% 41.9% More than 4 times in a week 3.1% 16.5%

Bachelor 29.1% 33.1% Working hours in a day:

Master or PhD 2.1% 8.8% More than 14 hours per day 26.7% 8.2%

Income: 9–14 hours per day 62.8% 73.5%

Less than RMB2000 per month 11.7% 20.6% Less than 9 hours per day 10.5% 18.3%

RMB2001-RMB3000 per month 22.6% 24.5% Average sleeping hours in a day:

RMB3001-RMB4000 per month 33.9% 22.1% Less than 7 hours per day 55.4% 61.9%
RMB4001-RMB5000 per month 19.9% 17.3% Between 7 to 8 hours per day 27.9% 30.0%
More than RMB5000 per month 11.9% 15.5% More than 8 hours per day 16.7% 8.1%

Work experience: Drinking Alcohol Habit:

No work experience 0.00% 0.00% Less than one time per month 3.2% 10.6%
Less than 5 years 7.4% 19.2% 1 time per month 4.5% 22.7%
5-10 years 12.9% 21.7% 2 to 3 times per month 16.1% 32.1%
11-15 years 36.6% 26.6% 1 time per week 16.7% 28.2%
16-20 years 32.8% 23.6% 2 to 3 times per week 39.5% 6.4%
More than 20 years 10.3% 8.9% 4 to 6 times per week 18.7% 0.00%

Every day 1.3% 0.00%

Table 4. Factor loading analysis of research latent variables.

Parameter Description Factor Loading

Parental Socioeconomic

Mother’s age 0.43
Father’s age 0.38

Mother’s education 0.74
Father’s education 0.39
Mother’s income 0.43
Father’s income 0.68

Mother’s work experience 0.06
Father’s work experience 0.05
Parents’ marriage length 0.82

Parental Lifestyle

Mother’s drinking alcohol 0.36
Father’s drinking alcohol 0.73
Mother’s smoking habit 0.48
Father’s smoking habit 0.41

Mother’s physical exercises 0.21
Father’s physical exercises 0.09
Mother’s working hours 0.76
Father’s working hours 0.88

Mother’s average sleeping hours 0.83
Father’s average sleeping hours 0.71
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Table 4. Cont.

Parameter Description Factor Loading

Household Food Security

Worry about running out of food 0.73
Do not have money: household 0.82

Cannot afford to eat balanced meals: household 0.93
Cut down food portions: household 0.12

Do not eat the whole day: adults 0.98
Do not have money: children 0.04

Cannot afford to eat balanced meals: children 0.25
Cannot afford enough food: children 0.82

Skip a meal: children 0.24

Children’s Lifestyle

Technology use 0.92
Hours of study at home 0.73
Child’s physical exercise 0.49

Child’s sleep amount 0.68
School grade 0.46

Figure 4 represents the results of model fitting based on the SEM approach. In this respect,
the model’s goodness-of-fit can be checked with normed fit index (NFI), comparative fit index (CFI),
Tucker Lewis index (TLI), incremental fit index (IFI), relative fit index (RFI), and goodness-of-fit index
(GFI). The values of GFI, IFI, RFI, TLI, and NFI are within the acceptable range. Therefore, the current
model is fitted for our data at the 5% significance level.

Figure 4. Model fitting analysis.

For some particular Bayesians, priors can come from any source, objective or otherwise [38].
The issue just described is referred to as the “elicitation problem” and has been discussed by
Van Wesel [39] and Rietbergen and Klugkist [40]. Moreover, elicitation procedure is a time-consuming
task, and even experts are often mistaken and prone to overstating their certainty [41]. Therefore,
instead of depending fully on expert decisions, research scholars engaging Bayesian analysis often
attempt to select the priors such that they are informative enough to yield B-SEM’s advantages,
while not being so informative as to bias the results [42]. By the end if one is unsure about the prior
distribution, a sensitivity analysis is suggested [43]. In such an analysis, the outcomes of different prior
specifications are compared to inspect the influence of the prior. To achieve this goal, models with
four types of prior inputs were compared. In assigning hyperparameter values, a small variance was
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taken for each parameter. Fixed values of α = 5 and β = 5 were evaluated for four inputs. Furthermore,
values corresponding to Φ were measured with ρ0 = 25 and R0

−1 = 6.5I.
Accordingly, the four prior inputs calculated are:

1. Prior I: Unknown loadings in Λ are all made equal to 0.35, and the measures corresponding to
{θ1, θ2, θ3} are {0.6, 0.5, 0.2}.

2. Prior II: The hyperparameter values are considered half of the values in prior I.
3. Prior III: The hyperparameter values are considered a quarter of the values in prior I.
4. Prior IV: The hyperparameter values are considered double the values in prior I.

Table 5 presents the outputs based on four types of prior inputs. This table indicates that the
parameter estimates and standard errors obtained for various prior inputs are reasonably close. It can
be concluded that the statistics found based on B-SEM are not sensitive to these four prior inputs.
Therefore, our approach is only valid with the adopted prior and B-SEM applied here is quite robust
against the different prior inputs. Accordingly, for the purpose of discussing the results obtained using
B-SEM, the results obtained using type I prior are used.

Table 5. Parameter estimation and standard error for four types of prior in B-SEM analysis.

Prior I Prior II Prior III Prior IV

Parameter Estimate STD Estimate STD Estimate STD Estimate STD

θ1 0.561 0.021 0.555 0.033 0.549 0.069 0.584 0.121
θ2 0.493 0.088 0.461 0.097 0.452 0.102 0.503 0.201
θ3 0.203 0.096 0.192 0.051 0.180 0.091 0.221 0.138
θ13 0.739 0.108 0.721 0.101 0.598 0.027 0.751 0.102
θ16 0.683 0.112 0.677 0.109 0.655 0.111 0.686 0.138
θ19 0.822 0.087 0.816 0.078 0.801 0.098 0.852 0.203
θ22 0.733 0.039 0.730 0.035 0.722 0.069 0.763 0.093
θ27 0.763 0.109 0.755 0.099 0.743 0.106 0.771 0.126
θ28 0.883 0.119 0.844 0.081 0.822 0.077 0.896 0.119
θ29 0.827 0.044 0.814 0.041 0.759 0.036 0.834 0.66
θ210 0.711 0.066 0.697 0.057 0.666 0.051 0.723 0.107
θ31 0.734 0.029 0.726 0.026 0.669 0.039 0.742 0.127
θ32 0.822 0.071 0.816 0.064 0.798 0.061 0.831 0.104
θ33 0.928 0.191 0.909 0.161 0.852 0.170 0.832 0.206
θ35 0.981 0.058 0.921 0.052 0.832 0.048 0.883 0.067
θ38 0.816 0.161 0.799 0.152 0.764 0.143 0.802 0.188

Based on Figures 5 and 6, the estimated structural equations that address the relationships
between the children’s lifestyle index and parental socioeconomic status, household food security, and
parental lifestyle for ML-SEM and B-SEM are given by:

ϕ̂ (ML − SEM) = 0.549θ1 + 0.198 θ2 + 0.488 θ3 (19)

and
ϕ̂ (B − SEM) = 0.561θ1 + 0.203 θ2 + 0.493 θ3 (20)

respectively, where

θ1 is the coefficient of parental socioeconomic status indicator;
θ2 is the coefficient of household food security indicator;
θ3 is the coefficient of parental lifestyle indicator.
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Figure 5. ML-SEM output.

Figure 6. B-SEM output.

Table 6 presents the outputs of the research hypotheses regarding the relationships among
variables in this study. In both models, the impact of parental socioeconomic status and parental
lifestyle on children’s lifestyle is significant. However, the impact of household food security on
children’s lifestyle is not significant. Moreover, the relationships between parental socioeconomic
status and parental lifestyle, parental socioeconomic status and household food security, and household
food security and parental lifestyle are significant and positive.

Table 6. Estimated parameters estimation of SEM using ML and Bayesian predictors.

Relation
Estimated Coefficients

ML-SEM B-SEM

Parental socioeconomic → Children’s life style 0.549 * 0.561 *
Household food security → Children’s life style 0.198 0.203

Parental lifestyle → Children’s life style 0.488 * 0.493 *
Parental socioeconomic ↔ Parental lifestyle 0.508 * 0.513 *

Parental socioeconomic ↔ Household food security 0.519 * 0.521 *
Household food security ↔ Parental lifestyle 0.611 * 0.637 *

* Presents a significant relationship with 95% confidence.

This part of the study presents an analysis of the comparison between the ML-SEM and B-SEM
techniques in predicting the children’s lifestyle index. Two main stages were considered in the
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comparison. In the first stage, four indices were used to compare ML-SEM with B-SEM, which
are representative of the strength and correctness of the predictions. Among various prediction
techniques, the root mean square error (RMSE), coefficient of determination (R2), mean absolute
error (MSE), and mean absolute percentage error (MAPE) are the most familiar statistical indices
for comparison purposes. Table 7 presents the formulas of these indices and outputs of the ML and
Bayesian approaches.

Table 7. Comparative outputs of ML-SEM and B-SEM.

Name of Index Formula ML-SEM Value B-SEM Value

MAPE MAPE = 1
n ∑n

i=1

∣∣∣ y′i−yi
yi

∣∣∣ 0.094 0.088

RMSE RMSE =
2

√
∑n

i=1(y′i−yi)
2

n
0.091 0.051

MSE MSE = ∑n
i=1|y′i−yi |

n
0.128 0.105

R2 R2 =
[∑n

i=1(y′i− y′i). (yi− yi)]
2

∑n
i=1(y′i− y′i). ∑n

i=1(yi− yi)
0.601 0.761

In the above indices, yi is the ith actual value of the dependent variable and y′i is the ith predicted
value. The R2 value for the B-SEM model was greater than for the ML-SEM model, and the RMSE,
MSE, and MAPE values for the B-SEM model were lower than for ML-SEM. Therefore, according
to the performance indices, B-SEM predicted children’s lifestyle better than the ML-SEM model.
The main reason B-SEM performed better is the ML framework defined, which permits simultaneous
self-adjustment of parameters and effective learning of the association between inputs and outputs in
causal and complex models.

The present comparative analysis illustrates that the B-SEM has superior evaluation capability
over ML-SEM in children’s lifestyle index prediction. This conclusion is only made for this empirical
analysis and it does not prove that B-SEM is always superior to ML-SEM.

5. Discussion

The main purpose of the present study was to demonstrate the potential of the maximum
likelihood SEM and Bayesian SEM approaches in modeling the children’s lifestyle index. The strength
of SEM is its ability to perform a simultaneous test to describe the relationship between the observed
variables and the respective unobserved variables as well as the connection among the unobserved
variables. AMOS version 18 was used to analyze the data in this study, which is a flexible tool that
enables researchers to examine relationships that violate the normal assumption of the variables
considered in a model. Additionally, the outputs were compared by applying Bayesian SEM using
winBUGS version 1.4.

In the current study, ML-SEM served as a representative parametric analysis method and B-SEM
as a representative semi-parametric technique for predicting the children’s lifestyle index. Based on the
R2, RMSE, MSE, and MPEA indices, SEM with the Bayesian approach was more effective at predicting
children’s lifestyle with the dataset obtained from Urumqi, Xinjiang, China.

Although much work has focused on determining the children’s lifestyle index, not much has been
done on modeling this index using SEM, particularly with Bayesian approaches. This is especially true
when information on parental socioeconomic status, household food security, and parental lifestyle is
concerned. The indicators that were found to be significant in explaining the latent factors considered
in this study are as follows. The socioeconomic indicators are age, income, work experience, education
level, and length of parents’ marriage. Parental lifestyle is explained by smoking habit, frequency
of engaging in physical exercise, alcohol drinking habit, number of working hours, and number of
sleeping hours per day. Worry about running out of food, not having money (household), inability
to afford eating balanced meals (household), cutting down food portions (household), not eating the
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whole day (adults), not having money (children), inability to afford to eat balanced meals (children),
inability to afford enough food (children), and skipping a meal (children) served as indicators to
measure household food security.

Therefore, the research model includes three predictors, which are parental socioeconomic status,
parental lifestyle, and household food security. Among these, parental socioeconomic status and
parental lifestyle have a significant impact on predicting children’s lifestyle. However, household
food security does not have a direct impact on children’s lifestyle. Parental socioeconomic status was
the main and first predictor in the study, as it has the highest impact on children’s lifestyle. Parental
socioeconomic status is a combination of nine indicators (Table 4), only three of which have acceptable
factor loadings in the research model. These are the mother’s education, father’s income, and parents’
marriage length. This means that helping a family with a longer marriage by improving the mother’s
education and father’s income can provide better children’s lifestyle quality. The second predictor
was parental lifestyle, which was measured based on 10 indicators. Among these indicators, five had
significant factor loadings and remained in the final research model. The five indicators are father’s
alcohol drinking habit, mother’s working hours, father’s working hours, mother’s average sleeping
hours, and father’s average sleeping hours. This means that, in Urumqi, Xinjiang, China, controlling
the father’s alcohol drinking habit and optimizing both parents’ working hours and average sleeping
hours can lead to higher children’s lifestyle quality. The third predictor was household food security,
which was measured with nine indicators. Among these, five indicators had significant factor loadings
(Table 4) and were considered in the final research model. Household food security does not have
a direct impact on children’s lifestyle. However, it has a strong significant relationship with parental
socioeconomic status and parental lifestyle. Therefore, this predictor cannot be eliminated from the
research model. In other words, household food security has an indirect impact on children’s lifestyle
with relations to parental socioeconomic status and parental lifestyle.

We proposed a Bayesian approach to analyze useful structural equations for children’s lifestyle
index modeling. In formulating ML-SEM and developing the Bayesian method, emphasis was placed
on raw individual random observations rather than on the sample covariance matrix.

Through this study it was found that parental socioeconomic status and parental lifestyle have
a significant effect on the children’s lifestyle index, but household food security does not. The concept
of modeling the children’s lifestyle index by considering various indicators that describe latent factors
can be explored further by incorporating new survey data. This idea is particularly suitable with
the sequential Bayesian approach by considering the results from this study as prior input for future
studies. The research framework introduced (Figure 1) can be used in any area. Hence, another
suggestion for future studies is a comparison analysis modeling children’s lifestyle in China and
Malaysia. It is worth noting that there is a lack of evidence to indicate a connection between children’s
calorie intake and energy expenditure and overall lifestyle. Clinical causes and effects were not
examined in the present research, so it is recommended to study them in future investigations.
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Abstract: Collaborative spectrum sensing (CSS) was envisioned to improve the reliability of spectrum
sensing in centralized cognitive radio networks (CRNs). However, secondary users (SUs)’ changeable
environment and ease of compromise make CSS vulnerable to security threats, which further mislead
the global decision making and degrade the overall performance. A popular attack in CSS is the
called spectrum sensing data falsification (SSDF) attack. In the SSDF attack, malicious cognitive
users (MUs) send false sensing results to the fusion center, which significantly degrades detection
accuracy. In this paper, a comprehensive reputation-based security mechanism against dynamic
SSDF attack for CRNs is proposed. In the mechanism, the reliability of SUs in collaborative sensing is
measured with comprehensive reputation values in accordance with the SUs’ current and historical
sensing behaviors. Meanwhile a punishment strategy is presented to revise the reputation, in which a
reward factor and a penalty factor are introduced to encourage SUs to engage in positive and honest
sensing activities. The whole mechanism focuses on ensuring the correctness of the global decision
continuously. Specifically, the proposed security scheme can effectively alleviate the effect of users’
malicious behaviors on network decision making, which contributes greatly to enhancing the fairness
and robustness of CRNs. Considering that the attack strategy adopted by MUs has been gradually
transforming from simplicity, fixedness and singleness into complexity, dynamic and crypticity, we
introduce two dynamic behavior patterns (true to false and then to true (TFT) and false to true
and then to false (FTF)) to further validate the effectiveness of our proposed defense mechanism.
Abundant simulation results verify the rationality and validity of our proposed mechanism.

Keywords: cognitive radio networks; collaborative spectrum sensing; dynamic spectrum sensing
data falsification attack; comprehensive reputation

1. Introduction

With the rapid development of wireless services and applications, the conventional static spectrum
management policy inevitably causes scarcity in specific spectrum bands. Moreover, a large portion of
the allocated spectrum is unused occasionally, leading to underutilization and wastage of valuable
spectrum resources [1]. As the most promising solution to the spectrum scarcity problem, cognitive
radio networks (CRNs) have attracted widespread attention recently. With this new communication
paradigm, unlicensed users (also referred to as secondary users, SUs) can opportunistically utilize
the spectrum for licensed users (also referred to as primary or incumbent users, PUs). When the
primary user is detected back to the band, SUs in the band must forsake the spectrum immediately.
Therefore, as an initial step, SUs must accurately sense the spectrum occupancy conditions for available
opportunities to avoid any interference with the licensed users [2].
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However, due to SUs’ changeable environment and ease of compromise, the open characteristic
of CRNs produces various security threats in the reliability of sensing data in CRNs [3]. For example,
channel impairment, such as shadowing and multipath fading, lead to the fact that local spectrum
sensing conducted by the individual user is often incorrect. Although the participation of multiple
SUs in collaborative spectrum sensing (CSS) contributes to the improvement of detection accuracy, the
global decision making may be misguided when SUs intentionally or unintentionally send falsified
sensing information to the fusion center (FC) during coopesration. This sort of attack in CSS, called the
spectrum sensing data falsification (SSDF) attack (also referred to as Byzantine attacks), significantly
degrades collaborative detection correctness [4].

To address the above issues, various secure CSS schemes have been proposed [5–13]. When simple
attack patterns are adopted by only a few malicious users (MUs) in CRNs, the schemes presented
in [5–7] can work well enough. The concept of applying the trust and reputation model in CRNs has
also attracted interest recently [8–12]. A reputation-based secure CSS algorithm with trusted node
assistance based on [5–7] was proposed in [8], which started with trusted SUs merely to assure the
inerrability of global decision making. In [9], a soft reputation-based sensing scheme was presented by
modeling the operative mode of PU as a renewal process. These two schemes can still work availably
even in the presence of a large number of malicious users. Qingqi Pei exploited the cognitive cycle to
build the trust model, thus ensuring the security of CSS [10]. The authors in [11] considered the number
of false sensing as the attenuation factor of trust to punish MUs; however, they ignored the dynamic
characteristics of SSDF attack behavior. In [12], the OGKmethod was employed to mitigate the effect
of MUs and improve sensing robustness. A novel trust scheme called SensingGuardis proposed in [13]
to mitigate the harmful effect of SSDF attackers and enhance the performance of CSS.

Nevertheless, all of the existing methods mentioned above possess respective limitations.
The schemes proposed in [5–7] become defective either by the increasing proportion of malicious
users or in the face of complex attack strategies. Others in [8–10] have no ability to maintain robustness
under the presence of a high proportion of MUs, while the rest of the methods, as in [11–13], cannot
cope with complicated attack patterns.

To target the aforementioned problems in the CSS, this paper establishes a comprehensive
reputation-based security mechanism against dynamic SSDF attack patterns for CRNs. Specifically,
each SU is assigned one comprehensive reputation by the FC, and the reliability of SUs in collaborative
sensing is measured with comprehensive reputation in accordance with SUs’ historical sensing
behaviors. Meanwhile, a punishment strategy is presented to revise the reputation, among which a
reward factor and a penalty factor are introduced to encourage SUs to engage in positive and honest
sensing activities. The whole mechanism focuses on mitigating the threat of dynamic malicious
behaviors on network decisions and ensuring the correctness of the global decision continuously.
Simulation results verify the robustness and effectiveness of the proposed security mechanism.
Our scheme maintains a satisfactory sensing performance even under the circumstance that a large
portion of malicious cognitive users exists in the network and employs complex attack behavior
patterns. The improvements and novelties of our proposed scheme are presented clearly in Table 1,
which concerns the main characteristics of the above defense schemes and compares them with the
characteristics of our proposed scheme.

The rest of the paper is organized as follows. The system model and dynamic malicious attack
behavior patterns are described in detail in Section 2. The proposed comprehensive reputation-based
security mechanism and data fusion solution are respectively discussed in Sections 3 and 4. The
simulation results are presented in Section 5. Finally, Section 6 concludes this paper.
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Table 1. Performance enhancements achieved by the advanced SSDF defense mechanisms in CRNs.

Performance Enhancement
Compared with Existing Approaches

Counter a Small
Number of Attackers

Counter a High
Proportion of Attackers

Counter Simple
Attack Patterns

Counter Complex
Attack Patterns

Chen et al. [5] × ×
Zhao and Zhao [6] × ×

Kaligineedi et al. [7] × ×
Zeng et al. [8] × × ×

Du [9] × × ×
Pei et al. [10] × × ×

Feng et al. [11] × × ×
Lu et al. [12] × × ×

FENG et al. [13] × × ×
Our’s × × × ×

2. Application Scenario

In this section, we give a brief introduction of the cognitive radio network model adopted in this
paper and establish the security problems against Byzantine attacks.

2.1. Network Architecture

The problem of spectrum sensing is to decide whether a particular slice of the spectrum is available
or not. Consider a cognitive radio network where K secondary users are collaborating in the spectrum
sensing process in the presence of one primary user, as shown in Figure 1. Without loss of generality,
the energy detection [14–16] method is applied by each SU for individual spectrum sensing. Based on
its observations, each SU solves a hypothesis testing problem and discriminates between the two
hypotheses during the t-th sensing slot.

H0 : xi(t) = vi(t)

H1 : xi(t) = hisi(t) + vi(t)
(1)

where xi(t) represents the received signal at the i-th SU, hi is the complex channel gain between the PU
and SUi, and the sensing channel is assumed to be time-invariant during the sensing process. The PU’s
transmitted signal, si(t), is assumed to be a BPSK modulated signal. The noise vi(t) is additive white
Gaussian noise (AWGN) with zero mean and variance σ2

v . si(t) and vi(t) are mutually independent.
The hypotheses H0 and H1 represent the absence and presence of the PU, respectively.

Figure 1. The sketch map of the network scene model.
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In our system model, the test statistics for the energy detector for the i-th cognitive user is
computed as the sum of the received signal energy over an interval of N samples and is given by:

Yi ∼
{

χ2
2m, H0

χ2
2m(2γi), H1

(2)

Under hypothesis H0, the test statistic Yi is a random variable whose probability density function
is a chi-square distribution χ2

2m with N = 2m degrees of freedom, and m = TW is the time-bandwidth
product; otherwise, Yi follows a non-central chi-square distribution χ2

2m(2γi) with N degrees of
freedom and non-central parameter 2γi. The instantaneous signal-to-noise ratio (SNR) at the i-th SU
is γi.

We consider the case in which each individual SU makes a one-bit hard decision, di(t), on the
absence or presence of the PU based on the sensing information, such that:

di(t) =

{
0, decisionH0 i f Yi < λi

1, decisionH1 i f Yi ≥ λi
(3)

where λi is the decision threshold of SUi. Then, the detection probability and false alarm probability of
SUi can be respectively expressed as:

P(i)
d = P{di(t) = 1 | H1}

P(i)
f = P{di(t) = 1 | H0}

(4)

In this model, each SU in the network forwards its processed binary local decision ui(t) to the
central entity, then the fusion center makes the final decision u0(t) about the state of the spectrum
based on all of the information received from the participating SUs. The communication channels
between SUs and the FC are assumed to be error-free in this paper.

In collaborative spectrum sensing, the global probabilities of false alarm, detection and
misdetection for evaluating the performance of final joint decisions are expressed as Q f , Qd and
Qm, respectively, which can be written as follows [1]:

Q f =
K

∑
l=n

(
K
l

) l

∏
j=1

P(j)
f

K

∏
i=l+1

(1 − P(i)
f ) (5)

Qd =
K

∑
l=n

(
K
l

) l

∏
j=1

P(j)
d

K

∏
i=l+1

(1 − P(i)
d ) (6)

Qm = 1 − Qd (7)

where P(i)
d and P(i)

f respectively denote the local detection probability and false alarm probability of
the i-th SU. It can be seen that the OR fusion rule corresponds to the case of n = 1; the AND fusion
rule corresponds to the case of n = K; and the majority fusion rule corresponds to the case of n ≥ K/2.

2.2. Dynamic Attack Behavior Patterns

As the input data of the cognition cycle’s follow-up processes, sensing information sent by SUs
is essential to network decision. Therefore, at the sensing information reporting stage, the system’s
expectation is that SUs can actively report true sensing data to the FC. However, the FC may
receive wrong or dishonest sensing data due to channel shading, shadowing and SSDF attack [17,18].
In particular, the SSDF attack is caused by two reasons: (1) SUs with cognition ability are compromised,
and their reports are falsified; (2) the malfunction or fault of SUs leads to sensing reports contrary to
the fact.
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Although dishonest manners appear in different patterns, their common goal is to mislead the
FC to make wrong decisions on current channel states. To be specific, the common attack models
include [19,20]:

• Always present (AP): the attacker asserts the channel is busy in any case, i.e., ui(t) = 1;
• Always absent (AA): the attacker asserts the channel is idle in any case, i.e., ui(t) = 0;
• Always opposite (AO): the attacker with strong sensing ability always sends sensing reports

contrary to its local spectrum sensing results, i.e., ui(t) = 1 − di(t).

With the booming growth of artificial intelligence, the attack patterns adopted by malicious users
become increasingly complicated, which should be carefully taken into consideration. The attack
strategy adopted by malicious cognitive users has been gradually transforming from simplicity,
fixedness and singleness into complexity, dynamic and crypticity. They are inclined to achieve the
goal of gaining additional spectrum access opportunities by cheating, undermining the licensed
user and cognitive systems or other purposes to a larger extent. Besides, in an actual network, an
individual SU can change between the true and false state back and forth due to both objective and
artificial causes. Particularly, in a hostile environment, an honest SU may be manipulated by its
adversary, thus suffering severe performance degradation (even turning into a malicious user) during
a certain period. However, the adversary may evacuate from the battlefield after a while, and the
behavior of the SU will transform again. Still another condition is, when the block that shelters an SU
no longer exists, or the SU leaves the shadow zone, a better performance may be achieved.

Based on the above argumentation, we introduce two dynamic behavior patterns in this paper,
which are the behavior of changing from true to false and then to true (TFT) and the behavior of
changing from false to true and then to false (FTF); the details of the patterns are as follows.

2.2.1. TFT Behavior Pattern

Specifically, in the TFT behavior pattern, cognitive users with a virtuous nature report correct and
true sensing results to the fusion center according to its normal working condition in the first period of
time; due to some uncontrollable factors, such as being controlled by the enemy or sheltered from the
shadow block, the SU reports false decisions for the next period; when it gets rid of the enemy or leaves
the shadow zone, the user resubmits normal sensing data. The “true” and “false” respectively denote
the normal working status (NWS) and temporary working status (TWS) of cognitive users. This kind
of malicious dynamic behavior occurs under the unconsciousness and passiveness of cognitive users.

In the TFT behavior pattern, the detection probability and false alarm probability of SUi in NWS
are denoted by P(i)

d1 (TFT), P(i)
d3 (TFT) and P(i)

f 1 (TFT), P(i)
f 3 (TFT), respectively.

P(i)
d1 (TFT) = P(i)

d3 (TFT) = P{ui(t) = 1 | H1} = P{di(t) = 1 | H1} = P(i)
d (8)

P(i)
f 1 (TFT) = P(i)

f 3 (TFT) = P{ui(t) = 1 | H0} = P{di(t) = 1 | H0} = P(i)
f (9)

We use P(i)
d2 (TFT) and P(i)

f 2 (TFT) to indicate the detection and false alarm probability of SUi in TWS:

P(i)
d2 (TFT) = P{ui(t) = 1 | H1} = P{di(t) = 0 | H1} = 1 − P(i)

d (10)

P(i)
f 2 (TFT) = P{ui(t) = 1 | H0} = P{di(t) = 0 | H0} = 1 − P(i)

f (11)

2.2.2. FTF Behavior Pattern

In the FTF behavior pattern, cognitive users with a vicious nature report incorrect and false
sensing results to the fusion center according to its normal attacking condition in the first period
of time; in order to avoid exposing their own malicious identity, malicious users will temporarily
disguise themselves as normal SUs and submit true local decision results within the next period of
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time; after successfully achieving the purpose of deception, malicious users immediately expose their
harsh nature and resubmit the reversed local decision results. “False” and “true” denote the NWS
and TWS of SUs, respectively. This kind of malicious dynamic behavior arises when cognitive users
possess deliberate and proactive motivation.

In the FTF behavior pattern, the detection and false alarm probability of SUi in NWS are denoted
by P(i)

d1 (FTF), P(i)
d3 (FTF) and P(i)

f 1 (FTF), P(i)
f 3 (FTF), respectively.

P(i)
d1 (FTF) = P(i)

d3 (FTF) = P{ui(t) = 1 | H1} = P{di(t) = 0 | H1} = 1 − P(i)
d (12)

P(i)
f 1 (FTF) = P(i)

f 3 (FTF) = P{ui(t) = 1 | H0} = P{di(t) = 0 | H0} = 1 − P(i)
f (13)

P(i)
d2 (FTF) and P(i)

f 2 (FTF) are employed to indicate the detection and false alarm probability of SUi
in TWS.

P(i)
d2 (FTF) = P{ui(t) = 1 | H1} = P{di(t) = 1 | H1} = P(i)

d (14)

P(i)
f 2 (FTF) = P{ui(t) = 1 | H0} = P{di(t) = 1 | H0} = P(i)

f (15)

Precisely speaking, both behavior patterns possess a sensing performance similar to normal SUs
within a certain period and the performance similar to AO attackers in the other period. It can be seen
from the difference of their respective detection and false alarm probability that these two generalized
behavior patterns exert distinct effects on CSS, which will be shown later. For the convenience of
expression, the cognitive users described by both of these behavior patterns are referred to as malicious
secondary users in this paper.

3. Comprehensive Reputation-Based Security Mechanism

In order to identify and defend against the complicated attack behavior of malicious users more
effectively and rapidly, this paper proposes a novel reputation-based security mechanism. In the
mechanism, each SU is allocated a continuously updated comprehensive reputation (CR) value by the
FC in accordance with its reported sensing data. The CR value evaluates the reliability and correctness
of the individual user’s sensing data sent to the FC. Higher reputation means that the user’s sensing
data in the past are more beneficial for the FC to make the right global decisions. The CR value is an
important reference in the next sensing round.

The comprehensive reputation integrally considers four influencing factors of user reliability,
including current reliability, historical reputation, reward factor and punishment factor. A malicious
user obtains low reputation and fusion weight due to submitting falsified sensing data, and the
FC weakens its harmful effect in the process of data fusion or directly ignores its sensing results.
The comprehensive reputation adequately measures and reflects the reliability of individual sensing
results for cognitive users in an appropriate time scale and is constantly changed and updated.

3.1. Current and Historical Reputation

3.1.1. Current Reliability

In CSS, the global decision is usually more reliable than local decisions [21,22]. Therefore, the
global decision can be treated as a reference to determine whether the sensing result of a single user is
errorless or not at one certain slot.

The current reliability is the consistency check between the local decision of SUs and the final
decision of the FC. The setting principle is to slow down the ascending rate and speed up the
descending rate to improve the reliability of reputation; SSDF attackers can be availably restrained in
this way. Considering that the comprehensive reputation will be updated at the end of each sensing
round with higher calculation frequency, thus this requires the reputation quantization algorithm to be
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simple and efficient. In view of the above analysis, the current reliability value of the i-th SU at the t-th
sensing slot is as follows:

CurRi(t) = (−1)ui(t)+u0(t) × τθ , t = 1, 2, · · · (16)

where ui(t) and u0(t) respectively represent the local report and global decision made by the i-th SU
and FC. The current reputation will be incremented by one if ui(t) is consistent with u0(t); otherwise,
it will be decremented by τθ . The constant τ acts on accelerating descent velocity and decelerating
increased velocity, τ > 1. The specific size of τ can be adjusted according to the actual situation to
achieve the compromise of weighted efficiency and correctness. When τ = 2, the cumulative rate of
consistency accuracy is only half of the decay rate. The calculation method of θ is as follows:

θ =

{
1, ui(t) �= u0(t)

0, ui(t) = u0(t)
(17)

3.1.2. Historical Reputation

The reputation is the subjective probability prediction of the subject concerning whether the object
can complete a certain collaborative activity correctly and non-devastatingly, and historical sensing
behavior reflects the reliability variation of cognitive users. In order to highlight the historical behavior
of SUs in the role of reputation evaluation, we introduce the historical reputation variable denoted as
HisRi(t) to describe and evaluate the reliability of the i-th SU at the t-th slot.

If all of the historical reputation of cognitive users is taken into account, that would require much
storage space occupation and high computing complexity. Hence, we consider employing an observing
window to assess the detection stability of SUs in the most recent period. The observation window
calculates the weighted sum of the corresponding CR value in up-to-date L sensing events and moves
forward along with the occurrence of a new sensing event.

Historical sensing information has a near-far effect on the update process of reputation; in reality,
recent sensing events in historical sensing behaviors play a more significant role than long-term
sensing events in real-time reputation calculation. Therefore, the reputation of different slots should be
endowed with distinct time weights, called the time attenuation factor (TAF) in this paper. The TAF of
the comprehensive reputation for the i-th SU at the (t − k)-th time slot is represented as αi,k.

αi,k =
L − k
L(L+1)

2

=
2(L − k)
L(L + 1)

(18)

With sensing time increasing, even if a misbehaving user wins high trust in a certain slot,
during the period of its opportunistic attack, the reputation of the attacker will gradually decay
over time. Time attenuation factor contributes greatly to supervising and urging cognitive users to
submit genuine sensing results continuously.

The historical reputation HisRi(t) of the i-th SU at the t-th sensing slot is evaluated as the
following rule:

HisRi(t) =
L

∑
k=1

αi,kComUpRi(t − k), k = 1, 2, · · · , L t = 1, 2, · · · (19)

where ComUpRi(t − k) denotes the CR value of SUi at the (t − k)-th slot; L is the length of the
observation window.

In the calculation of historical reputation, the observation window length should not be set too
small; otherwise, the decay rate of the reputation value is too fast to fully assess the reliability of
the cognitive users, and the historical behavior information cannot be brought into sufficient usage;
on the other hand, remaining sensitive to the potential behavior change of SUs requires that L should
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not be set too large, either. In actual spectrum sensing, the length of the observation window can be
reasonably selected according to the computation time length of the reputation value and the change
of the sensing performance of the cognitive users.

Instead of only considering the influence of SUs afterone sensing round is exerted on the current
CR value, the design regulation of historical reputation conducts distributed processing for the
instantaneous growth or decline of the reputation value via choosing appropriate observation lengths
of the window according to specific demand; thus, the adverse effects of the burst fluctuation of the
reputation value on the reliability of the cognitive users can be avoided.

3.2. Punishment Strategy

Since security has played a major role in CRNs, numerous research works have mainly focused
on attack detection based on detection probability, but few of them took the penalty of attacks
into consideration and neglected how to implement effective punitive strategies against attackers.
In addition, in the dynamic SSDF attacks; behavior pattern, malicious users alternately submit
authentic and spurious sensing data; general reputation mechanisms cannot effectively identify
this sort of attack, and MUs may always be in a believable state, while a well-built reputation update
mechanism should be sensitive to changes in users’ behaviors and able to punish their villainy.

Aiming at this issue, this paper introduces a reward and punishment strategy to modify the CR
value in line with the behavior characteristics of cognitive users, in which a reward factor and a
penalty factor are introduced to encourage SUs to engage in positive and honest sensing activities.
On the one hand, the reputation of users who continuously report false sensing results ought to be
attenuated in a timely manner, making them unable to participate in cooperative sensing; on the
other, users who conduct persistent honest sensing are supposed to be rewarded appropriately, thus
encouraging them to continue to submit real detection outcomes.

3.2.1. Reward Factor

Assuming the i-th SU performed true sensing at the (t − k)-th round and continuous honest
sensing behaviors occur in the next (t − h + 1, t − h + 2, · · · , t − 1)-th sensing round, then the reward
factor has a positive effect on modifying the CR value of the cognitive user. The calculation of the
reward factor is according to the following method:

RewFi(t) = | 1
h − 1

(
t−1

∑
l=t−h

ComUpRi(l)− maxComUpRi(l))| (20)

where ComUpRi(t) is the CR value of SUi at the t-th sensing round and h denotes the times of
continuous honest sensing events.

h sensing reputation values are employed during the computational process of the reward factor.
The reward dynamics is constantly adjusted with the cumulative reputation. However, MUs may
accumulate relatively high reputation through continuously providing honest decision results inside
a shorter time; in view of this kind of speculation, the calculation of the reward factor removes the
maximum reputation value maxComUpRi(l) of SUi in h successive true sensing slots, thus reducing
the reward intensity for honest sensing efforts. Only by ceaselessly submitting real local results can
SUs establish a favorable credit status for themselves; thus the reward factor can motivate cognitive
users to make a positive contribution to collaborative sensing.

3.2.2. Penalty Factor

Supposing SUi conducted false sensing at the (t − g)-th slot and continuous false sensing
behaviors emerge in the following (t − g + 1, t − g + 2, · · · , t − 1) sensing round, then the penalty
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factor has influence on inhibiting malicious attack behavior. The calculation method of penalty factor
is as follows:

PenFi(t) = | 1
g − 1

(
t−1

∑
l=t−g

ComUpRi(l)− minComUpRi(l))| (21)

where ComUpRi(t) is the CR value of SUi at the t-th sensing round and g denotes the times of
continuous false sensing events.

The punishment scheme follows a habit of human society, that is the initial criminal punishment is
light, and the cumulative crime will be punished heavily. Therefore, the greater the threat is, the more
serious of a punishment should be imposed. The penalty factor removes the minimum value in g; CR
values are removed in the penalty factor computing; in this way, the influence of accidental behavior
on reputation in spectrum sensing is weakened; moreover, cognitive users will pay a great price for
short-term opportunistic behavior caused by their unlikely mind, so as to achieve the purpose of
restraining malicious attacks.

3.3. Calculation of the CR Value

In the proposed security mechanism, four influential elements for evaluating sensing reliability are
generally considered, including current reliability, historical reputation, reward factor and punishment
factor. We utilize ComUpRi(t) to represent the comprehensive reputation value of the i-th SU at the
t-th sensing slot:

ComUpRi(t) = ρ0 · HisRi(t) + ρ1 · CurRi(t) + β · RewFi(t) + γ · PenFi(t) (22)

where ρ0 and ρ1 respectively are the proportion coefficients of historical reputation and current
reliability, 0 < ρ0, ρ1 < 1 and ρ0 + ρ1 = 1. Their values can be appropriately adjusted according
to the demand of network security. When demand for the sensitivity of the security mechanism is
higher, increase ρ1, which means raising the weight of current trust evidence; then, it can be detected
immediately once any untrustworthy behavior appears; when the long-term influence of reputation
plays an important role, increase ρ0, which signifies raising the weight of historical reputation to
encourage the SUs to be legitimate in the long run. In fact, ρ1 is a kind of response speed; a high speed
of response means that cognitive users can make more effective and rapid response to changes in their
CR value. The determination method of β and γ is as follows:

β =

{
1, continuous honest sensing events exist

0, else
(23)

γ =

{
−1, continuous f alse sensing events exist

0, else
(24)

The literature [23] has pointed out that data fusion schemes become completely incapable, and
no reputation-based fusion scheme can achieve any performance gain when the number of attackers
exceeds a certain fraction in the CRN. If the number of independent attackers is greater than half of the
total users, the FC will be rendered “blind”. To tackle this problem and ensure the correctness of the
global decision, we assume only some reliable nodes (RN), instead of all SUs, are trustworthy initially.
In reality, the RNs can be a base station, access point, cluster head, etc. Since they share the generality
as foundations of the cognitive system, it is reasonable to grant the position of these RNs exceeding
that of the remaining SUs.
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In the first instance, only RNs participate in the deciding procedure, meaning the global decision
is made merely based on their sensing results. Though the remaining SUs are not contained in the step
of cooperative sensing, their CRs are accumulated continuously. A SU can be considered as a reliable
one only when its CR value exceeds the predetermined reputation threshold ηr.

Employ C to describe the set of RNs, and A(t) represents the set of cognitive users that can
participate in the fusion decision, which are given by:

C = {i|SUi is a CN} (25)

A(t) = {j|ComUpRi(t) ≥ ηr, j ∈ {1, 2, · · · , N}}, t = 1, 2, · · · (26)

where C is determined on the basis of the specific circumstance, while A(t) varies with the results of
identifying procedure each sensing round.

The initial CR values are ComUpRi∈C(0) = ηr + Δ and ComUpRi/∈C(0) = ηr − Δ for RNs
and remaining nodes, respectively. The setting of margin Δ is to distinguish RNs from other SUs,
namely the degree of tolerance for potentially sensing errors. Consequently, only SUs belonging to C
make contributions to the global decision making for the first round, then the range enlarges to A(t).

Unlike the existing mechanisms, the proposed security mechanism does not abandon any user,
and their identification is conducted all the way. This is more equitable and reasonable particularly
when the complicated behavior patterns are taken into account, noticing that one FTF user that behaves
poorly at the intermediate stage may obtain a better performance eventually.

3.4. Reliable Nodes’ Credibility Verification

This step is conducted within the RNs by inspecting the variances of their CR values.
After the identifying step completed at each round, we compare the real-time CR value of each
RN ComUpRi(t), i ∈ C with its highest CR value in previous sensing slots, which is denoted by
ComUpRimax(t − 1). Initially, ComUpRimax(0) = ηr + Δ, i∈C. If the real-time CR value ComUpRi(t)
is higher than ComUpRimax(t − 1), then the new highest CR value is updated as the current one,
otherwise ComUpRimax(t) remains unchanged. Accordingly, the highest CR value update mode can
be presented as:

ComUpRimax(t) =

{
ComUpRi(t), ComUpRi(t) > ComUpRimax(t − 1)

ComUpRimax(t − 1), ComUpRi(t) < ComUpRimax(t − 1)
i ∈ C, t = 1, 2, · · · (27)

Then, the following inequality set is verified immediately:

ComUpRimax(t)− ComUpRi(t) < Δ i ∈ C, t = 1, 2, · · · (28)

where Δ denotes the degree of tolerance for potentially sensing errors as discussed earlier. If all RNs
satisfy the above inequalities, the deciding procedure can be performed directly; otherwise, it means
that the local results sent by the corresponding RN have been inconsistent with the global decision
many times. Under such a circumstance, we conclude that the global decision is incorrect (which may
be caused by various reasons), considering that these RNs are trusted all of the time. This verification
process is called sustained credible node assistance (SCNA). In order to ensure the correctness of the
final decision in the future, resetting is performed before center fusion, which is to clear all of the
accumulated CR and weight values via setting them to the initial state. The accumulation restarts
hereafter. In this step, the inequality set Equation (25) serves as a trigger and decides whether the
resetting is required.
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4. Comprehensive Reputation-Based Data Fusion Solution

4.1. Weight Allocation

The center data fusion is ultimately implemented after the above steps are accomplished, in
which all of the elected trusted users will participate. Distinct fusion weights are allocated to SUs
corresponding to their comprehensive reputation values. Users with greater reputation have stronger
impact on the final decision making; hence, the sensing accuracy of CSS can be improved.

The fusion weight value for the i-th SU at the t-th sensing slot can be calculated as:

wi(t) =

⎧⎨
⎩

0, i /∈ A(t)
ComUpRi(t−1)
ComUpRi(t−1)

, i ∈ A(t)
t = 1, 2, · · · (29)

where:

ComUpRi(t − 1) =
ComUpRi(t − 1)

∑i∈A(t) ComUpRi(t − 1)
, t = 1, 2, · · · (30)

denotes the average CR value of reliable nodes. The initial weight is wi∈C(0) = 1, wi/∈C(0) = 0.

4.2. Measurement Combining Stage

Evidently, the idea of comprehensive reputation updating and sustained credible node assistance
are not restricted to specific designated fusion techniques and can be widely applied. For simplicity,
we employ the majority fusion rule as an example in this paper, which is proven to be relatively ideal
in both detection accuracy and energy efficiency [23].

Majority rule implies that the final decision is in accord with the decision of the majority of
the received local decisions. Assuming M SUs are qualified to participate in the collaboration,
mathematically, the final decision is made according to the majority rule as follows:

Final Decision

{
1 ≡ occupied, i f ∑M

i=1 wiui ≥ M
2

0 ≡ unoccupied, else
(31)

Similar to the local decision, the accuracy and reliability of the final decision is measured and
evaluated by two acknowledged metrics, the global false alarm probability (Q f ) and the global
misdetection probability (Qm). Both depend on the final decision rather than the local decision.

4.3. The Mechanism Flow

Based on the above discussions, the operation process of the comprehensive reputation-based
security mechanism is shown in Figure 2. The CSS system starts working with the step of reputation
initialization; all SUs conduct individual sensing to obtain the one-bit decision result. If the CR
value ComUpRi(t) of SUi exceeds reputation threshold ηr, then FC would allow this user to join the
cooperation. Different fusion weights are assigned to qualified cognitive users for center decision
fusion. After obtaining the global decision u0(t), credibility verification is performed for reliable users
to ensure that the whole CSS system has not been held hostage by malicious users. If all RNs pass
the verification, then the CR values can be updated in accordance with users’ sensing behaviors,
which comprises the current reliability, historical reputation, reward factor and penalty factor.
Consequently, the proposed security mechanism gives a system-wide view of the satisfaction of
a cognitive user.
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Figure 2. The flow chart of the proposed security mechanism.

5. Numerical and Simulation Results

In this section, we present the numerical results for the proposed reputation mechanism.
The simulations are conducted with K = 50 cognitive users in a centralized CRN, among which
N1 = 10 reliable nodes exist. In the numerical simulation, the sensing performance is given as the
reference curve when malicious users employ the AO attack strategy. We investigate the impact
of malicious users exerted on the collaborative sensing when the two dynamic behavior patterns
introduced in Section 2.2 are used. The number of MUs is expressed as N0, and the proportion of MUs
is set to [0, 0.8]. That is, from no malicious users exist in the network (the proportion is 0%), till 40
cognitive nodes, all are misbehaving users except the 10 reliable nodes (the proportion is 80%).

Without loss of generality, the primary signal is assumed to be the BPSK signal with P(H1) = 0.3,
and all SUs experience independently and identically distributed (i.i.d.) fading or shadowing with
the same average SNR γ = −10dB to simplify the implementation. The time-band product m is five,
and the same energy detection threshold λ = 12 is utilized. The entire simulation runs 100,000 rounds,
and we assume that the moment of behavior changes respectively occurs at the 40,000 and 70,000
round in both the TFT and FTF patterns. For the sake of taking advantage of the user’s historical
sensing results, the observation window length L is set to three. The margin Δ = 50 is set to evidently
distinguish RNs from other SUs in the initial sensing stage, namely the degree of tolerance for
potentially sensing errors. To avoid mistaking normal SUs as MUs, h and g should not be too small,
meanwhile the proposed punishment strategy should be sensitive enough to punish misbehaving
users or reward honest users; thus, h and g should not be too large. Hence, we set the times of
continuous/false sensing events h = g = 3. The reputation threshold ηr = 100 is set to effectively
identify MUs and prevent them from participating in the collaboration in each sensing slot. We set the
variable τ to two to ensure that the cumulative consistency accuracy rate of current reliability in the
comprehensive reputation value is only half of the decay rate, which is also a compromise of weighted
efficiency and correctness. The proportion coefficients of historical reputation and current reliability in
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the CR value calculation ρ0 and ρ1 are set to 0.5 to balance current trust evidence and the long-term
influence of reputation. All simulations are conducted in the MATLAB R2015a environment.

The following six scenarios are carefully considered in this section:

• Scenario 1 there are N1 RNs in the CRN, performing CSS with no reputation mechanism;
• Scenario 2 there are K RNs in the CRN, performing CSS with no reputation mechanism;
• Scenario 3 there are N0 misbehaving SUs and K − N0 RNs in the CRN, performing CSS with the

proposed scheme in this paper;
• Scenario 4 there are N0 MUs in the CRN, performing CSS with the security scheme in [13];
• Scenario 5 there are N0 MUs in the CRN, performing CSS with the security scheme in [12];
• Scenario 6 there are N0 MUs and N1 RNs in the CRN, performing CSS with the proposed security

scheme in this paper to counter diverse SSDF attacks.

The purpose of considering Scenarios 1–3 is to provide the simulation experiments with clear
contrast reference curves. Specifically, we consider Scenario 1 to explore when all SUs are reliable
cognitive nodes; what the performance of the non-reputation-based sensing scheme is like under
diverse SSDF attacks. Scenario 2 is set to experiment on the performance of the non-reputation-based
method in the presence of partial reliable users. In Scenario 3, there are only two kinds of cognitive
users, i.e., RNs and MUs, and we test the detection performance under this circumstance when
suffering different types of SSDF attack. Scenarios 4 and 5 are two contrast algorithms to further verify
and evaluate the effectiveness of the proposed mechanism in this paper.

5.1. The Sensing Performance under AO Attack

As mentioned above, the always opposite attack strategy refers to the attack mode that MUs report
after reversing the local decision result. Figures 3 and 4 present the cooperative sensing performance
under AO attack. The horizontal axis accounts for the proportion of malicious users. The vertical axis
in Figure 3 represents the global false alarm probability Q f , and the vertical axis in Figure 4 represents
the global misdetection probability Qm.
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Figure 3. The misdetection probability under the always opposite (AO) attack.

It can be seen from the Figures 3 and 4, when there is no malicious users in the network (Scenario 2),
the optimal sensing performance can be achieved if K cognitive users are reliable nodes.
Additionally, the detection performance under Scenario 3, in which K − N0 RNs participate in the
collaboration, is inferior to that in Scenario 2. The detection performance of the scheme with no
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reputation mechanism in Scenario 1 dropped dramatically under the AO attack pattern, which means
it is indispensable for CRNs to adopt a necessary and effective security mechanism to defend against
various types of spiteful attack behaviors. When the number of MUs exceeds half of all cognitive users,
the sensing performance is even worse than that of random guessing. Besides the proposed reputation
mechanism (Scenario 6), the scheme in [12] (Scenario 5) and [13] (Scenario 4) can achieve the equivalent
performance of K − N0 reliable nodes, meaning that they can availably identify the malicious SUs and
eliminate their harmful effects via only using reliable reported results for fusion decision making.
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Figure 4. The false alarm probability under AO attack.

5.2. The Sensing Performance under TFT Attack

As introduced in Section 2.2, in the TFT behavior pattern, cognitive users report true sensing
results in the first period of time; the SU reports false decisions for the next period; the user finally
resubmits the normal sensing data. Figures 5 and 6 show the collaborative sensing performance of the
above several scenarios under the TFT attack.

Percentage of Malicious SUs
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
al

se
 A

la
rm

 P
ro

ba
bi

lit
y 

Q
f

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5
Scenario 6

Figure 5. The false alarm probability under the true to false and then to true (TFT) attack.
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Figure 6. The misdetection probability under the TFT attack.

Through the observation, we can learn that the sensing performance of Scenarios 1 and 2 are
identical to that in Section 5.1, which is attributed to the non-participation of misbehaving cognitive
users. Scenario 5 still can achieve the sensing performance when K− N0 reliable nodes are collaborating;
the performance in Scenario 4. It is worth noting that the proposed mechanism in this paper can
achieve better performance than the schemes in [12,13]. When MUs occupy 80% of all of the SUs,
specifically, the false alarm probability of the proposed mechanism in this paper, [12,13] respectively, is
0.0690, 0.0965 and 0.1233, and the misdetection probability, respectively, is 0.1020, 0.1506 and 0.1748.
The proposed mechanism in this paper possesses an obvious performance advantage both in false
alarm probability and misdetection probability compared to the contrasted algorithms.

The reason for the performance advantage is that the cognitive users with poor performance at
the initial stage will be permanently abandoned in the literature [12,13], which does not consider that
the SUs’ behavior may be dynamically changed, and a better individual user’s sensing performance
may be obtained after a period of time. In this paper, the mechanism is proposed to continuously
evaluate the reliability of each cognitive user through the calculation of the comprehensive reputation.
Our scheme forgives the repentance behavior (change from poor performance to good performance) of
cognitive users, that is continually mitigating the effect of the correctness of reported results in earlier
time slots exerted on assessing the reliable degree of cognitive users. SUs are allowed to continue to
participate in the fusion decision of cooperative spectrum sensing when the comprehensive reputation
value exceeds the reputation threshold. This way is equivalent to increasing the user number of
participation cooperative sensing, thus obtaining an obvious gain of the sensing performance.

5.3. The Sensing Performance under FTF Attack

As presented in Section 2.2, in the FTF behavior pattern, SUs report false sensing results to the FC
in the first period of time and then report true decisions for the next period; the user finally resubmits
reversed local decision results. Figures 7 and 8 show the collaborative sensing performance of the
above several scenarios under the FTF attack.
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Figure 7. The false alarm probability under the false to true and then to false (FTF) attack.
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Figure 8. The misdetection probability under the FTF attack.

Similarly, the sensing performances of Scenarios 1 and 2 are identical to that in Section 5.1.
However, the performance of Scenarios 4 and 5 deteriorated significantly when malicious SUs adopt
the FTF attack mode. In Figure 7, when the proportion of MUs is greater than 40%, the performance
of the algorithms in Scenarios 4 and 5 sharply declines. The false alarm probability of the proposed
mechanism in this paper, [12,13] respectively, is 0.0524, 0.4516 and 0.4876 when the percentage of
MUs is 80%, meaning that while the ratio of MUs continues to increase (account for the majority), the
algorithms in [12,13] become completely ineffective.

This phenomenon can be explained as follows: in the stage of temporary working status in FTF
attack, malicious cognitive users, together with normal SUs, obtain a higher level of reputation through
accumulation and are identified as cognitive users that can participate in the fusion decision. When the
working state of MU changes from TWS to NWS and it resubmits reversed local decision results, it
affects the fusion decision process, which makes the false alarm probability and detection probability
of the global decision increase simultaneously because of its higher reputation level. Especially when
they occupy a higher proportion, these malicious users are enough to control the global decision
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making process of the fusion center; at this moment, the entire collaborative sensing system is hijacked
by malicious users.

In Figure 8, the misdetection probability of the proposed mechanism in this paper, [12,13]
respectively, is 0.0138, 0.1693 and 0.2291 when MUs occupy 80% of all SUs, which means that the
proposed method can effectively reduce the misdetection probability of CSS, meanwhile protecting
the system from complex SSDF attacks. In other words, even if the malicious cognitive user accounts
for a high proportion, as 80%, the CSS algorithm based on the reputation mechanism in this paper
still possesses higher robustness. The obvious performance advantage profits from reliable nodes’
credibility verification. If the declining range of some reliable user’s CR value is greater than Δ, the
global decision fusion of the FC is identified as occurring persistent errors and triggers the resetting
mechanism to clean the comprehensive reputation value for each cognitive user. This method avoids
the global decision of the FC being controlled by MUs and reduces the adverse effects of MUs on the
global decision results, ultimately achieving better performance than K − N0 users cooperating.

6. Conclusions

In order to effectively resist malicious cognitive users’ attack behaviors in cognitive radio networks,
the security mechanism for CSS is studied in this paper. We first introduce two new cognitive
user dynamic behavior patterns to describe the changing behavior strategies of SUs. On this basis,
a comprehensive reputation-based security mechanism against dynamic SSDF attack is proposed.
In the mechanism, current and historical sensing behaviors of cognitive users are utilized to integrally
evaluate sensing reliability; moreover, a punishment strategy is presented to encourage SUs to engage
in positive and honest sensing activities. In addition, the sustained verification of reliable nodes
ensures the correctness of the global decision of the fusion center and prevents collaborative sensing
from being hijacked by misbehaving cognitive users. Simulation results verify that the proposed
security mechanism can effectively alleviate the effect of SUs’ malicious behaviors, which guarantees
the effectiveness and robustness of CRNs.
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Abstract: This paper presents a segmentation-based stereo matching algorithm using an adaptive
multi-cost approach, which is exploited for obtaining accuracy disparity maps. The main contribution
is to integrate the appealing properties of multi-cost approach into the segmentation-based framework.
Firstly, the reference image is segmented by using the mean-shift algorithm. Secondly, the initial
disparity of each segment is estimated by an adaptive multi-cost method, which consists of a novel
multi-cost function and an adaptive support window cost aggregation strategy. The multi-cost function
increases the robustness of the initial raw matching costs calculation and the adaptive window reduces
the matching ambiguity effectively. Thirdly, an iterative outlier suppression and disparity plane
parameters fitting algorithm is designed to estimate the disparity plane parameters. Lastly, an energy
function is formulated in segment domain, and the optimal plane label is approximated by belief
propagation. The experimental results with the Middlebury stereo datasets, along with synthesized
and real-world stereo images, demonstrate the effectiveness of the proposed approach.

Keywords: stereo matching; multi-cost; image segmentation; disparity plane fitting; belief propagation

1. Introduction

Stereo matching is one of the most widely studied topics in computer vision. The aim of stereo
matching is to estimate the disparity map between two or more images taken from different views
for the same scene, and then extract the 3D information from the estimated disparity [1]. Intuitively,
the disparity represents the displacement vectors between corresponding pixels that horizontally shift
from the left image to the right image [2]. Stereo matching serves an important role in a wide range
of applications, such as robot navigation, virtual reality, photogrammetry, people/object tracking,
autonomous vehicles, and free-view video [3]. A large number of techniques have been invented
for stereo matching, and a valuable taxonomy and categorization scheme of dense stereo matching
algorithms can be found in the Middlebury stereo evaluation [1,4,5]. According to the taxonomy, most
dense stereo algorithms perform the following four steps: (1) initial raw matching cost calculation;
(2) cost aggregation; (3) disparity computation/optimization; and (4) disparity refinement. Due to
the ill-posed nature of the stereo matching problem, the recovery of accurate disparity still remains
challenging due to textureless areas, occlusion, perspective distortion, repetitive patterns, reflections,
shadows, illumination variations and poor image quality, sensory noise, and high computing load.
Thus, the robust stereo matching algorithm has become a research hotspot recently [6].

By using a combination of multiple single similarity measures into composite similarity
measure, itmulti-cost has been proven to be an effective method for calculating the matching
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cost [7–10]. Stentoumis et al. proposed a multi-cost approach and obtained excellent results for
disparity estimation [7]. This is the most well-known multi-cost approach method and represents a
state-of-the-art multi-cost algorithm. On the other hand, segmentation-based approaches have attracted
attention due to their excellent performance for occlusion, textureless areas in stereo matching [3,11–16].
Our work is directly motivated by the multi-cost approach and the segmentation-based framework
therefore, the image segmentation-based framework and an adaptive multi-cost approach are both
utilized in our algorithm. The stereo matching problem can be formalized as an energy minimization
problem in the segment domain, which ensures our method will correctly estimate large textureless
areas and precisely localize depth boundaries. For each segment region, the initial disparity is estimated
using an adaptive multi-cost approach, which consists of a multi-cost function and an adaptive support
window cost aggregation strategy. An improved census transformation and illumination normal vector
are utilized for the multi-cost function, which increases the robustness of the initial raw matching
cost calculation. The shape and size of the adaptive support window based on the cross-shaped
skeleton can be adjusted according to the color information of the image, which ensures that all pixels
belonging to the same support window have the same disparity. In order to estimate the disparity
plane parameters precisely, an iterative outlier suppression and disparity plane parameters fitting
algorithm is designed after the initial disparity estimation. The main contribution of this work is to
integrate the appealing properties of multi-cost approach into the segmentation-based framework.
The adaptive multi-cost approach, which consists of a multi-cost function and an adaptive support
window, improves the accuracy of the disparity map. This ensures our algorithm works well with the
Middlebury stereo datasets, as well as synthesized and real-world stereo image pairs. This paper is
organized as follows: In Section 2, related works are reviewed. In Section 3, the proposed approach
is described in detail. In Section 4, experimental results and analysis are given using an extensive
evaluation dataset, which includes Middlebury standard data, synthesized images, and real-world
images. Finally, the paper is concluded in Section 5.

2. Related Works

The stereo matching technique is widely used in computer vision for 3D reconstruction.
A large number of algorithms have been developed for estimating disparity maps from stereo image
pairs. According to the analysis and taxonomy scheme, stereo algorithms can be categorized into two
groups: local algorithms and global algorithms [1].

Local algorithms utilize a finite neighboring support window that surrounds the given pixel
to aggregate the cost volume and generate the disparity by winner takes all (WTA) optimization.
It implicitly models the assumption that the scene is piecewise smooth and all the pixels of the support
window have similar disparities. These methods have simple structure and high efficiency, and could
easily capture accurate disparity in ideal conditions. However, local algorithms cannot work well due
to the image noise and local ambiguities like occlusion or textureless areas. In general, there are two
major research topics for local methods: similarity measure function and cost aggregation [17]. Typical
functions are color- or intensity-based (such as sum of absolute difference, sum of squared difference,
normalized cross-correlation) and non-parametric transform-based (such as rank and census).
The non-parametric transform-based similarity measure function is more robust to radiometric
distortion and noise than the intensity based. For cost aggregation aspect, the adaptive window [18–20]
and adaptive weight [17,21,22] are two principal methods. Adaptive window methods try to assign an
appropriate size and shape support region for the given pixel to aggregate the raw costs. However,
adaptive weight methods inspired by the Gestalt principles adopt the fixed-size square window and
assign appropriate weights to all pixels within the support window of the given pixel.

Global algorithms are formulated in an energy minimization framework, which makes explicit
smoothness assumptions and solves global optimization by minimizing the energy function.
This kind of method has achieved excellent results, with examples such as dynamic programming
(DP), belief propagation (BP), graph cuts (GC), and simulated annealing (SA). The DP approach is an
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efficient solution since the global optimization can be performed in one dimension [23]. Generally,
DP is the first choice for numerous real-time stereo applications. Due to smoothness consistency,
inter-scanlines cannot be well enforced; the major problem of computed disparity maps-based DP
presents the well-known horizontal “streaks” artifacts. The BP and GC approaches are formulated
in a two-dimensional Markov random field energy function, which consists of a data term and a
smoothness term [24,25]. The data term measures the dissimilarity of correspondence pixels in stereo
image pairs, and the smoothness term penalizes adjacent pixels that are assigned to different disparities.
The optimization of the energy function is considered to be NP-complete problem. Although a number
of excellent results have been obtained, both the BP and the GC approaches are typically expensive
in terms of computation and storage. Another disadvantage of these approaches is that there are so
many parameters that need to be determined. The semi-global method proposed by Hirschmüller is a
compromise between one-dimensional optimization and two-dimensional optimization. It employs
the ”mutual information” cost function in a semi-global context [26]. While this strategy allows higher
execution efficiency, it sacrifices some disparity accuracy.

Recently, segmentation-based approaches have attracted attention due to their excellent
performance for stereo correspondence [3,11–16]. This kind of method performs well in reducing the
ambiguity associated with textureless or depth discontinuity areas, and enhancing noise tolerance.
It is based on two assumptions: The scene structure of the image captured can be approximated by a
group of non-overlapping planes in the disparity space, and each plane is coincident with at least one
homogeneous color segment region in the reference image. Generally, a segmentation-based stereo
matching algorithm can be concluded in four steps as follows: (1) segment the reference image into
regions of homogeneous color by applying a robust segmentation method (usually the mean-shift
image segmentation technique); (2) estimate initial disparities of reliable pixels using the local matching
approach; (3) a plane fitting technique is employed to obtain disparity plane parameters, which are
considered as a label set; and (4) an optimal disparity plane assignment is approximated utilizing a
global optimization approach.

We mainly contribute to Steps (2) and (3) in this work, and Steps (1) and (4) are commonly
used techniques in the context of stereo matching. The key idea behind our disparity estimation
scheme is utilizing the multi-cost approach that is usually adopted in local methods to achieve a more
accurate initial disparity map, and then utilizing the iterative outlier suppression and disparity plane
parameters fitting approach to achieve a more reliable disparity plane. For Step (2), the accurate and
reliable initial disparity map can improve the accuracy of the final result; however, this step is usually
performed utilizing some simple local algorithm [11,13]. A lot of false matching exists, and these
matching errors will reduce the accuracy of the final result. Stentoumis et al. have demonstrated
that the multi-cost approach can effectively improve the accuracy of the disparity [7]. In order to
estimate an accurate initial disparity map, an adaptive multi-cost approach that consists of a multi-cost
function and an adaptive support window cost aggregation strategy is employed. For Step (3), for most
segmentation-based algorithms, the RANDom Sample Consensus (RANSAC) algorithm is usually used
to filter out outliers and fit the disparity plane. RANSAC algorithm is a classical efficient algorithm;
the principle of RANSAC is used to estimate the optimal parameter model in a set of data that contains
“outliers” using the iteration method. However, the result of the RANSAC algorithm relies on the
selection of initial points. Since the selection is random, the result obtained is not satisfying in some
cases [13]. Furthermore, in a disparity estimation scheme, the outliers could be determined by a
variety of criteria, e.g., mutual consistency criterion, correlation confidence criterion, disparity distance
criterion, and convergence criterion. The different outliers will be obtained from different criteria.
In order to combine multiple outlier filtering criteria to filter out the outliers and obtain accurate plane
fitting parameters, an iterative outlier suppression and disparity plane parameters fitting algorithm
is developed.

334



Symmetry 2016, 8, 159

3. Stereo Matching Algorithm

In this section, the proposed stereo matching algorithm is described in detail. The entire
algorithm is shown in the block diagram representation in Figure 1, which involves four steps: image
segmentation, initial disparity estimation, disparity plane fitting, and disparity plane optimization.

 

Figure 1. Block diagram representation of the proposed stereo algorithm.

3.1. Image Segmentation

Due to the proposed algorithm being based on the segmentation framework, the first step is that
the reference image is divided into a group of non-overlapping, homogeneous color segment regions.
The segmentation-based framework implicitly assumes that the disparity varies smoothly in the same
segment region, and depth discontinuities coincide with the boundaries of those segment regions.
Generally, over-segmentation of the image is preferred, which ensures the above assumptions can be
met for most natural scenes. The mean-shift color segmentation algorithm is employed to decompose
the reference image into different regions [27]. The mean-shift algorithm is based on the kernel density
estimation theory, and takes account of the relationship between color information and distribution
characteristics of the pixels. The main advantage of the mean-shift technique is that edge information
is incorporated as well, which ensures our approach will obtain disparity in textureless regions and
depth discontinuities precisely. The segmentation results of partial images in the Middlebury stereo
datasets are shown in Figure 2, and pixels belonging to the same segment region are assigned the
same color.

 

Figure 2. The image segmentation results. (a) Jade plant image and corresponding segmentation results;
(b) motorcycle image and corresponding segmentation results; (c) playroom image and corresponding
segmentation results; (d) play table image and corresponding segmentation results; and (e) shelves
image and corresponding segmentation results.

3.2. Initial Disparity Map Estimation

The initial disparity map is estimated by an adaptive multi-cost approach, which is shown in
the block diagram representation in Figure 3. By using the combination of multiple single similarity
measures into a composite similarity measure, it has been proven to be an effective method to calculate
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the matching cost [7–10]. The adaptive multi-cost approach proposed in this work defines a novel
multi-cost function to calculate the raw matching score and employs an adaptive window aggregation
strategy to filter the cost volume. The main advantage of the adaptive multi-cost approach is that it
improves the robustness of raw initial matching costs calculation and reduces the matching ambiguity,
thus the matching accuracy is enhanced.

 

Figure 3. Block diagram representation of the initial disparity map estimation.

The multi-cost function is formulated by combining four individual similarity functions.
Two of them are traditional similarity functions, which are absolute difference similarity functions that
take into account information from RGB (Red, Green, Blue) channels, and the similarity function based
on the principal image gradients. The other two similarity functions are improved census transform [7]
and illumination normal vector [22]. An efficient adaptive method of aggregating initial matching cost
for each pixel is then applied, which relies on a linearly expanded cross skeleton support window.
Some similarity cost functions used here and the shape of the adaptive support window are shown in
Figure 4. Finally, the initial disparity map of each segment region is estimated by the “winner takes all”
(WTA) strategy.

 

Figure 4. The similarity cost functions and the shape of the adaptive support window. (a) Jade plant;
(b) motorcycle; (c) playroom; (d) play table; and (e) shelves. From top to bottom: the reference images;
the modulus images of the illumination normal vector; the gradient maps along horizontal direction;
the gradient maps along vertical direction; and the examples of the adaptive support window.
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3.2.1. The Multi-Cost Function

The multi-cost function is formulated by combining four individual similarity functions.
The improved census transform (ICT) is the first similarity function of multi-cost function. It extends
the original census transform approaches; the transform is performed here not only on grayscale image
intensity, but also on its gradients in the horizontal and vertical directions. The census transform is a
high robustness stereo measure to illuminate variations or noise, and the image gradients have a close
relationship with characteristic image features, i.e., edges or corners. The similarity function based
on improved census transform exploits the abovementioned advantages. In the preparation phase,
we use the mean value over the census block instead of the center pixel value, and calculate the
gradient images in the x and y directions using the Sobel operator. Consequently, the ICT over the
intensity images I as well as the gradient images Ix (x directions) and Iy (y directions) are shown as:

TICT(x, y) = ⊗
[m,n]∈W

ξ[I(x, y), I(x + m, y + n)] ⊗
[m,n]∈W

ξ[Ix(x, y), Ix(x + m, y + n)]

⊗
[m,n]∈W

ξ[Iy(x, y), Iy(x + m, y + n)]
, (1)

where the operator ⊗ denotes a bit-wise catenation, and the auxiliary function ξ is defined as:

ξ(x, y) =

{
0 i f x ≤ y
1 i f x > y

, (2)

The matching cost between two pixels by applying ICT are calculated via the Hamming distance
of the two bit strings in Equation (3):

CICT(x, y, d) = Hamming(Tre f erence
GCT (x, y), Ttarget

GCT (x + d, y)), (3)

Illumination normal vector (INV) is the second similarity function of multi-cost function. INV
reflects the high-frequency information of the image, which generally exists at the boundaries of objects
and fine texture area. Consequently, the high-frequency information reflects some small-scale details
of the image, which is very useful for stereo correspondence [22]. Denote a pixel of the image as a
point in 3D space P[x, y, f (x, y)], where x and y are the horizontal and vertical coordinates, and f (x,y)
is the intensity value of position (x,y). The INV of point P is calculated by the cross-product of its
horizontal vector Vhorizonal and vertical vector Vvertical. Define V(P) as the INV of point P.

V(P) = Vhorizonal × Vvertical = [Vi(P), Vj(P), Vk(P)], (4)

where the horizontal vector Vhorizonal and vertical vector Vvertical are defined as follows:
{

Vhorizonal = P[x + 1, y, f (x + 1, y)]− P[x, y, f (x, y)]
Vvertical = P[x, y + 1, f (x, y + 1)]− P[x, y, f (x, y)]

, (5)

Consequently, Equation (4) can be rewritten as:

V(P) = Vhorizonal × Vvertical

=

∣∣∣∣∣∣∣
i j k
1 0 f (x + 1, y)− f (x, y)
0 1 f (x, y + 1)− f (x, y)

∣∣∣∣∣∣∣
= ( f (x, y)− f (x + 1, y))i + ( f (x, y)− f (x, y + 1))j + k

, (6)

The modulus images of the illumination normal vector of images are shown in the second line of
Figure 4. The matching cost between two pixels based on INV measure is calculated via the Euclidean
distance of the two vectors as:

CINV(x, y, d) = ‖Vre f erence(x, y)− Vtarget(x + d, y)‖2, (7)
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The next two similarity functions are the traditional similarity functions, truncated absolute
difference on RGB color channels (TADc) and truncated absolute difference on the image principal
gradient (TADg). TADc is a simple and easily implementable measure, widely used in image matching.
Although sensitive to radiometric differences, it has been proven to be an effective measure when
flexible aggregation areas and multiple color layers are involved. For each pixel, the cost term is
intuitively computed as the minimum value between the absolute difference from RGB vector space
and the user-defined truncation value T. It is formally expressed as:

CTADc(x, y, d) =
1
3 ∑

i∈(r,g,b)
min

∣∣∣Ire f erence
i (x, y)− Itarget

i (x + d, y), T
∣∣∣, (8)

In the TADg, the gradients of image in the two principal directions are extracted, and the sum
of absolute differences of each gradient value in the x and y directions are used as a cost measure.
The use of directional gradients separately, i.e., before summing them up to the single measure,
introduces the directional information for each gradient into the cost measure. The gradients in the
horizontal and vertical directions are shown in the third and fourth lines of Figure 4, respectively.
The cost based on TADg can be expressed as Equation (9) with a truncated value T:

CTADg(x, y, d) = min
∣∣∣∇x Ire f erence(x, y)−∇x Itarget(x + d, y), T

∣∣∣
+ min

∣∣∣∇y Ire f erence(x, y)−∇y Itarget(x + d, y), T
∣∣∣ , (9)

Total matching cost CRAW(x, y, d) is derived by merging the four individual similarity functions.
A robust exponential function that resembles a Laplacian kernel is employed for cost combination:

CRAW(x, y, d) = exp(−CINV (x,y,d)
γINV

) + exp(−CGCT(x,y,d)
γICT

)

+ exp(−CTADC(x,y,d)
γTADC

) + exp(−CTADG(x,y,d)
γTADG

)
, (10)

Each individual matching cost score is normalized by its corresponding constant γINV, γICT,
γTADC, and γTADG, to ensure equal contribution to the final cost score, or tuned differently to adjust their
impact on the matching cost accordingly. Tests of multi-cost function performed on the Middlebury
stereo datasets for stereo matching are presented in Figures 5 and 6. The test results show that the
matching precision is increased by combining the individual similarity functions. In Figure 5, disparity
maps are estimated with different combinations of similarity functions after the aggregation step.
From top to bottom: the reference images; the ground truth; the disparity maps estimated by ICT;
ICT+TADc; ICT+TADc+TADg; ICT+TADc+TADg+INV; the corresponding bad 2.0 error maps for
ICT; ICT+TADc; ICT+TADc+TADg; and ICT+TADc+TADg+INV. The same region of the error maps
is marked by red rectangles. The marked regions show that the error is reduced through combining
the individual similarity functions. The disparity plane fitting and optimization steps described in
Sections 3.3 and 3.4 have not been used here, in order to illustrate individual results and the
improvement achieved by fusing the four similarity functions. Figure 6 shows the visualized
quantitative performance of similarity functions (in % of erroneous disparities at 2 error threshold) by
comparing different combinations of similarity functions against the ground truth. From left to right,
the charts correspond to the error matching rate of (a) non-occluded pixels and (b) all image pixels.
On the horizontal axis, A: ICT; B: ICT+TADc; C: ICT+TADc+TADg; and D: ICT+TADc+TADg+INV.
Following that, the matching cost CRAW(x, y, d) is stored in a 3D matrix known as the disparity space
image (DSI).
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Figure 5. Comparison of different ways of similarity functions combination for Middlebury stereo
datasets. (a) Jade plant; (b) motorcycle; (c) playroom; (d) play table; and (e) shelves. Disparity maps
are estimated by different combinations of similarity functions after the aggregation step. From top
to bottom: the reference images; the ground truth; the disparity maps estimated by ICT; ICT+TADc;
ICT+TADc+TADg; ICT+TADc+TADg+INV; the corresponding bad 2.0 error maps for ICT; ICT+TADc;
ICT+TADc+TADg; and ICT+TADc+TADg+INV. The same region of the error maps is marked by
red rectangles.
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Figure 6. The visualized quantitative performance of similarity functions (in % of erroneous disparities
at 2 error threshold) by comparing different combinations of similarity functions against the ground
truth. From left to right, the charts correspond to the error matching rate of (a) non-occluded pixels
and (b) all image pixels. On the horizontal axis, A: ICT; B: ICT+TADc; C: ICT+TADc+TADg; and D:
ICT+TADc+TADg+INV.

3.2.2. Cost Aggregation

As mentioned above, matching cost CRAW(x, y, d) is called raw DSI since it is always accompanied
with aliasing and noise. Cost aggregation can decrease the aliasing and noise by averaging or summing
up the DSI over a support window. This implicitly assumes that the support window is a front
parallel surface and all pixels in the window have similar disparities. In order to obtain accurate
disparity results at near depth discontinuities, an appropriate support window should be constructed.
An adaptive cross-based window that relies on a linearly expanded cross skeleton support region
for cost aggregation is adopted [7,10,18,28]. The shape of the adaptive support window is visually
presented in the fifth line of Figure 4. The cross-based region consists of multiple horizontal line
segments spanning several neighboring rows. This aggregation strategy has two main advantages:
firstly, the support window can vary adaptively, with arbitrary size and shape according to the scene
color similarity; secondly, the aggregation over irregularly shaped support windows can be performed
quickly by utilizing the integral image technique.

The construction of cross-based support regions is achieved by expanding around each pixel a
cross-shaped skeleton to create four segments

{
h−p , h+p , v−p , v+p

}
defining the corresponding sets of

pixels H(p) and V(p) in the horizontal and vertical directions, as seen in Figure 7a [7].
⎧⎨
⎩

H(p) =
{
(x, y)

∣∣∣x ∈ [xp − h−p , xp + h+p ], y = yp

}
V(p) =

{
(x, y)

∣∣∣x = xp, y ∈ [yp − v−p , yp + v+p ]
} , (11)

In our approach, the linear threshold proposed in [7] is used to expand the skeleton around each
pixel: T(Lq) = −(Tmax/Lmax) × Lq + Tmax. This linear threshold T(Lq) in color similarity involves the
maximum semi-dimension Lmax of the support window size, the maximum color dissimilarity Tmax

between pixels p and q, and the spatial closeness Lq. According to [7], the values of Tmax and Lmax are
20 and 35, respectively. The final support window U(p) for p is formulated as a union of horizontal
segment H(q), in which q traverses the vertical segment V(p). A symmetric support window is also
adopted to avoid distortion by the outliers in the reference image [7]. This is shown in Figure 7b.

U(p) = ∪
q∈V(p)

H(q), (12)
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The final aggregation cost for each pixel is calculated by aggregating the matching cost over the
support window. This process can be quickly realized by integrating image technology, as shown in
Figure 7c.

Caggregation(xp, yp, d) =
1

|U(p)| ∑
(xi ,yi)∈U(p)

CRAW(xi, yi, d), (13)

 

Figure 7. The illustration of the adaptive cross-based aggregation algorithm. (a) The upright cross skeleton.

The upright cross consists of a horizontal segment H(p) =
{
(x, y)

∣∣∣x ∈ [xp − h−p , xp + h+p ], y = yp

}

and a vertical segment V(p) =
{
(x, y)

∣∣∣x = xp, y ∈ [yp − v−p , yp + v+p ]
}

; (b) the support region U(P)
is a combination of each horizontal segment H(q), where q traverses the vertical segment V(p) of p;
(c) a schematic of a 1D integral image technique.

Subsequently, the initial disparity dx,y at coordinates (x,y) is estimated by using the WTA strategy
where the lowest matching cost is selected:

dx,y = argmin
Dmin≤d≤Dmax

Caggregation(x, y, d), (14)

3.3. Disparity Plane Fitting

Although the RANSAC algorithm has been widely used for rejecting outliers fitting data, it is
usually not suitable for the segmentation-based framework of stereo matching [13]. That is because
the outliers are caused by many different factors, like textureless areas, occlusion, etc. If the filtering
criteria are different, that produces different outliers. In this section, an iterative outlier suppression
and disparity plane parameters fitting algorithm is designed for plane fitting. The disparity of each
segment region can be modeled as:

d(x, y) = ax + by + c, (15)

where d is the corresponding disparity of pixel (x,y), and a, b, c are the plane parameters of the arbitrary
segment region. In order to solve the plane parameters, a linear system for the arbitrary segment
region can be formulated as follows:

A[a, b, c]T = B, (16)

where the i′th row of the matrix A is [xi, yi, 1], and the i′th element of the vector B is d(xi, yi).
Then the linear system can be transformed into the form of AT A[a, b, c]T = AT B; the detailed function
is expressed as follows:

⎡
⎢⎣

∑m
i=1 x2

i ∑m
i=1 xiyi ∑m

i=1 xi

∑m
i=1 xiyi ∑m

i=1 y2
i ∑m

i=1 yi

∑m
i=1 xi ∑m

i=1 yi 1

⎤
⎥⎦

⎡
⎢⎣

a
b
c

⎤
⎥⎦ =

⎡
⎢⎣

∑m
i=1 xidi

∑m
i=1 yidi

∑m
i=1 di

⎤
⎥⎦, (17)
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where m is the number of pixels inside the corresponding segment region. After that, the Singular
Value Decomposition (SVD) approach is employed to solve the least square equation to obtain the
disparity plane parameters:

[a, b, c]T = (AT A)
+

AT B, (18)

where (AT A)
+ is the pseudo-inverse of AT A and can be solved through SVD.

However, as is well known, the least square solution is extremely sensitive to outliers. The outliers
in this stage are usually generated at the last stage due to the matching error inevitable in initial
disparity map estimation. In order to filter out these outliers and obtain accurate plane parameters,
four filters are combined.

The first filter is mutual consistency check (often called left-right check). The principle of mutual
consistency check is that the same point of the stereo image pair should have the same disparity.
Thus, the occluded pixels in the scene can be filtered out. Let Dreference be the disparity map from
reference image to target image, and Dtarget be the disparity map from target image to reference image.
The mutual consistency check is formulated as:

∣∣∣Dre f erence(x, y)− Dtarget(x − Dre f erence(x, y), y)
∣∣∣ ≤ tconsistency, (19)

where tconsistency is a constant threshold (typically 1). If the pixels of the reference image satisfy
Equation (19), these pixels are marked as non-occluded pixels; otherwise these pixels are marked as
occluded pixels, which should be filtered out as outliers.

Afterwards, correlation confidence filter is established to judge whether the non-occluded pixels
are reliable. Generally, some of the disparity in the textureless areas may be incorrect but will be
consistent for both views. Thus, the correlation confidence filter is adopted to overcome this difficulty
and obtain reliable pixels. Let C f irst

aggregation(x, y) be the best cost score of a pixel in the non-occluded

pixels set, and Csecond
aggregation(x, y) be the second best cost score of this pixel. The correlation confidence

filter is formulated as:
∣∣∣∣∣∣
C f irst

aggregation(x, y)− Csecond
aggregation(x, y)

Csecond
aggregation(x, y)

∣∣∣∣∣∣ ≥ tcon f idence, (20)

where tconfidence is a threshold to adjust the confidence level. If the cost score of the pixels in the reference
image satisfies Equation (20), these pixels are considered reliable. If the ratio between the number of
the reliable pixels and the total number of the pixels in arbitrary segment region is equal to or greater
than 0.5, this segment region is considered a reliable segment region. Otherwise segment regions
are marked as unreliable regions, which lack sufficient data to provide reliable plane estimations.
The disparity plane of the unreliable region is stuffed through its nearest reliable segment region.

Followed by the above filters, the initial disparity plane parameters of each reliable segment
region can be estimated through the reliable pixels. The disparity distance filter is adopted to measure
the Euclidean distance between initial disparity and the estimated disparity plane:

|d(x, y)− (ax + by + c)| ≤ toutlier, (21)

where toutlier is a constant threshold (typically 1). If the pixel does not satisfy Equation (21), it would
be an outlier. Then we can exclude the outliers, update the reliable pixels of the segment region,
and re-estimate the disparity plane parameters of the segment region.

After the abovementioned three filters, the convergence filter is utilized to judge whether disparity
plane is convergent. The new disparity plane parameters will be estimated until:

∣∣a′ − a
∣∣+∣∣b′ − b

∣∣+∣∣c′ − c
∣∣≤ tconvergence , (22)
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where (a’,b’,c’) are the parameters of the new disparity plane, (a,b,c) are the parameters of the plane
obtained in the previous iteration, and tconvergence is the convergence threshold of the iterative and is
usually set as (typically 10−6).

The flow chart of the iterative outlier suppression and disparity plane parameters fitting
algorithm is shown in Figure 8. The detailed implementation of the algorithm is presented as follows,
from Step (1) to Step (6):

 

Figure 8. The flow chart of the iterative outlier suppression and disparity plane parameters
fitting algorithm.

Step (1): Input segmented reference image, disparity map of stereo image pair, and the DSI of the
reference image.

Step (2): Mutual consistency filter is utilized to check the initial disparity of each pixel as in
Equation (19); the pixels are detected as non-occluded or occluded pixels.
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Step (3): The reliable pixels and reliable segment region are determined by a correlation confidence
filter, as in Equation (20).

Step (4): The initial disparity plane parameters of each reliable segment region are estimated
through the reliable pixels, and the disparity distance filter described in Equation (21) is utilized to
update the reliable pixels.

Step (5): Iterate Step (4) until the convergence filter is satisfied.
Step (6): The algorithm will be terminated when the disparity plane parameters of all segment

regions have been estimated. Otherwise, return to Step (3) to process the remainder of the reliable
segment regions.

3.4. Disparity Plane Optimization by Belief Propagation

The last step of the segmentation-based stereo matching algorithm is usually global optimization.
The stereo matching is formulated as an energy minimization problem in the segment domain.
We label each segment region with its corresponding disparity plane by using the BP algorithm [25].
Assume that each segment region s ∈ R, R is the reference image, its corresponding plane f (s) ∈ D,
and D is the disparity plane set. The energy function for labeling f can be formulated as:

ETOTAL( f ) = EDATA( f ) + ESMOOTH( f ) + EOCCLUSION( f ), (23)

where ETOTAL( f ) is the whole energy function, EDATA( f ) is the data term, ESMOOTH( f ) is the
smoothness penalty term, and EOCCLUSION( f ) is the occlusion penalty term.

The data term EDATA( f ) is formulated for each segment region and its corresponding disparity
plane assignment. It is calculated by summing up the matching cost of each segment region:

EDATA( f ) = ∑
s∈R

CSEG(s, f (s)), (24)

where CSEG(s, f (s)) is the summation of matching cost, which is defined in Section 3.2 for all the
reliable pixels inside the segment:

CSEG(s, f (s)) = ∑
(x,y)∈s

C(x, y, d), (25)

The smoothness penalty term ESMOOTH( f ) is used to punish the adjacent segment regions with
different disparity plane:

ESMOOTH( f ) = ∑
(∀(si ,sj)∈SN | f (si) �= f (sj))

λdisc(si, sj), (26)

where SN is a set of all adjacent segment regions, Si, Sj are neighboring segment regions, and λdisc(x, y)
is a discontinuity penalty function.

The occlusion penalty term EOCCLUSION( f ) is used to punish the occlusion pixels of each
segment region:

EOCCLUSION( f ) = ∑
s∈R

ωoccNocc, (27)

where ωocc is a coefficient for occlusion penalty and Nocc is the number of occluded pixels of the
segment region. The energy function ETOTAL( f ) is minimized by a BP algorithm, and the final
disparity map can be obtained.

4. Experimental Results

The proposed stereo matching algorithm has been implemented by VS2010, and the performance
of the algorithm is evaluated using the 2014 Middlebury stereo datasets [29], 2006 [30], 2005 [4],
the synthesized stereo image pairs [31], and the real-world stereo image pairs. The set of parameter
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values used in this paper are shown in Table 1, and the results are shown in Figure 9. The average error
rate of the stereo pairs for each evaluation area (all, non-occlusion) are displayed. The percentage of
erroneous pixels in the complete image (all) and no-nocclusion areas (nonocc) for the 2 pixels threshold
is counted. Figure 9 illustrates the stability of the algorithm to parameter tuning. The test results
show that the algorithm is stable within a wide range of values for each parameter. We choose the
parameters corresponding to the minimum error rate for all the tested stereo image datasets.

Table 1. Parameters values used for all stereo image pairs.

Parameter Name Purpose Algorithm Steps Parameter Value

Spatial bandwidth hs Image segmentation Step (1) 10
Spectral bandwidth hr 7

Gamma γINV
Matching cost
computation

Step (2)

40
Gamma γICT 20

Gamma γTADC 40
Gamma γTADG 20

Threshold tconsistency Outliers filter and
disparity plane

parameters fitting
Step (3)

1
Threshold tcon f idence 0.04

Threshold toutlier 1
Threshold tconvergence 10−6

Smoothness penalty λdisc Smoothness and
occlusion penalty

Step (4) 5
Occlusion penalty ωocc 5

 

Figure 9. Diagrams presenting the response of the algorithm to the tuning parameters with the
rest of the parameter set remaining constant. The average error rate of the stereo pairs for each
evaluation area (all, nonocc) is displayed. (a) Spatial bandwidth and (b) spectral bandwidth used
for image segmentation in Step 1 of the algorithm; (c) Gamma INV(Illumination Normal Vector);
(d) Gamma ICT(Improved Census Transform); (e) Gamma TADC(Truncated Absolute Difference
on Color); and (f) Gamma TADG(Truncated Absolute Difference on Gradient) used for matching
cost computation in Step (2) of the algorithm. (g) Threshold consistency; (h) threshold confidence;
(i) threshold outlier; and (j) threshold convergence used for outliers filter and disparity plane
parameters fitting in Step (3) of the algorithm; (k) smoothness penalty and (l) occlusion penalty
used for smoothness and occlusion penalty in Step (4) of the algorithm.
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Tables 2 and 3 show the performance evaluation on the training set and test set of the
Middlebury stereo datasets from 2014. Error rates in the table are calculated by setting the threshold
value to a two-pixel disparity. The best results for each test column are highlighted in bold.
In Table 2, APAP-Stereo [32], PMSC [33], MeshStereoExt [34], NTDE [35], MC-CNN-acrt [36],
and MC-CNN+RBS [37] are the state-of-the-art stereo matching methods of Middlebury Stereo
Evaluation Version 3, and the MCCNN_Layout and LPU methods are anonymously published.
SGM is a classical algorithm based on semi-global matching and mutual information [26]. TSGO is
an accurate global stereo matching algorithm based on energy minimization [38]. The results of the
2014 Middlebury stereo datasets show that our method is comparable to these excellent algorithms.
Some disparity maps of these stereo pairs are presented in Figure 10. The reference images and ground
truth maps are shown in Figure 10a,b, respectively; the final disparity maps are given in Figure 10c;
and the bad matching pixels are marked in Figure 10d, where a disparity absolute difference greater
than 2 is counted as error. Figure 10d indicates that our proposed approach has excellent performance,
especially in textureless regions, disparity discontinuous boundaries, and occluded regions.

 

Figure 10. Results of Middlebury stereo datasets “Jade plant”, “Motorcycle”, “Playroom”, “Play table”
and “Shelves” (from top to bottom). (a) Reference images; (b) ground truth images; (c) results of the
proposed method; and (d) error maps (bad estimates with absolute disparity error >2.0 are marked
in black).

In order to verify the effect and importance of the four similarity functions during the
minimization stage, different combinations of similarity functions and different fitting algorithms
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are utilized to evaluate the 2014 Middlebury stereo datasets. The statistical results are shown
in Figure 11. Firstly, the initial disparity is estimated by ICT, ICT+TADc, ICT+TADc+TADg,
and ICT+TADc+TADg+INV, respectively. Secondly, the disparity plane fitting for initial disparity is
performed by RANSAC and our fitting algorithm, respectively. Finally, the corresponding disparity
plane is optimized by BP. The effect and importance of the four similarity functions during the disparity
plane fitting stage and minimization stage can be observed through the histogram. The results illustrate
that the most accurate initial disparity can be estimated by ICT+TADc+TADg+INV, and the most
accurate final disparity map can be obtained by optimizing the most accurate initial disparity.

 

Figure 11. The statistical results of different combinations of similarity functions and different fitting
algorithms. (a) The average error rates of the non-occlusion areas (nonocc) and (b) of the complete
image (all). A: initial disparity; B: disparity plane fitting by RANSAC; C: disparity plane optimization
of B; D: disparity plane fitting by our iterative outlier suppression and disparity plane parameters
fitting algorithm; E: disparity plane optimization of D.

The degree to which each step of the algorithm contributes to the reduction of the disparity error
with respect to ground truth is shown in Figure 12. The disparity results are evaluated on the 2014
Middlebury stereo datasets. The charts in Figure 12 present the improvement obtained at each step for
the 0.5, 1.0, 2.0, and 4.0 pixel thresholds. The errors refer to non-occlusion areas (nonocc) and to the
whole image (all). The contribution of each step to disparity improvement is seen at the nonocc and all
curves. One may observe that the error rate is reduced by adding the algorithm steps.

The results of some representative data of the Middlebury stereo data are presented in Figure 13.
They are: Moebius and Laundry choose from 2005 Middlebury stereo datasets [4]; Bowling 2 and
Plastic choose from 2006 Middlebury stereo datasets [30]. These stereo pairs are captured by high-end
cameras in a controlled laboratory environment. The produced disparity maps are accurate, and the
error rates of the four Middlebury stereo data with reference to the whole image are given as follows:
Moebius, 8.28%; Laundry, 12.65%; Bowling 2, 8.5%; and Plastic, 13.49%. Data Moebius presents an
indoor scene with many stacking objects. Our method can generate accurate disparity for most parts
of the scene, and the disparity of small toys on the floor is correctly recovered. For data Laundry,
a relatively good disparity map is generated for a laundry basket with repeated textures. In Bowling 2,
objects with curved surfaces are presented, e.g., ball and Bowling. Disparities of these objects are both
accurate and smooth. The disparity of the background (map) is also obtained with few mismatches.
In Plastic, the texture information is much weaker; nevertheless, our method can still generate an
accurate and smooth disparity map that is close to the ground truth. These examples demonstrate the
ability of our approach to produce promising results.
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Figure 12. Performance of each step of the algorithm regarding disparity map accuracy. (a) The average
error rates of the complete image (all) and non-occlusion areas (nonocc) for the 0.75 pixel threshold;
(b) the average error rates of the complete image (all) and non-occlusion areas (nonocc) for the 1.0 pixel
threshold; (c) the average error rates of the complete image (all) and non-occlusion areas (nonocc) for
the 2.0 pixel threshold; and (d) the average error rates of the complete image (all) and non-occlusion
areas (nonocc) for the 4.0 pixel threshold. A: initial disparity estimation, B: disparity plane fitting, and
C: disparity plane optimization.

 
Figure 13. Results of representative data on the Middlebury website. From top to bottom: Moebius,
Laundry, Bowling 2 and Plastic. (a) Reference image; (b) ground truth images; (c) results of the
proposed method; and (d) error maps (bad estimates with absolute disparity error >1.0 are marked
in black).

Apart from the Middlebury benchmark images, we also tested the proposed method on both
synthesized [31] and real-world stereo pairs. Figure 14 presents the results of the proposed algorithm
on three synthesized stereo pairs: Tanks, Temple, and Street. High-quality disparity maps are generated
and compared with the ground truth in the second column. The produced disparity maps are accurate,
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and the error rates of the three synthesized stereo pairs with reference to the whole image are given as
follows: Tanks, 4.42%; Temple, 2.66%; and Street, 7.93%. It is clear that our algorithm performs well
for details, e.g., the gun barrels of the tanks, as well as for large textureless background regions and
repetitive patterns.

 
Figure 14. Results of synthesized stereo pairs. From top to bottom: Tanks, Temple, and Street.
(a) Reference image; (b) ground truth images; (c) results of the proposed method; and (d) error maps
(bad estimates with absolute disparity error >1.0 are marked in black).

The proposed algorithm also performs well on publicly available, real-world stereo video datasets:
a “Book Arrival” sequence from FhG-HHI database and an “Ilkay” sequence from Microsoft i2i
database. The snapshots for the two video sequences and corresponding disparity maps are presented
in Figure 15. For both examples, our system performs reasonably well. In this experiment, we did
not give the error maps and the error rate, due to there being no ground truth disparity map for the
real-world stereo video datasets. However, in terms of the visual effect, the proposed algorithm can be
applied to this dataset very well.

 
Figure 15. Results of real-world stereo data. (a) Frames of ”Book Arrival” stereo video sequence;
(b) estimated disparity maps of ”Book Arrival”; (c) frames of ”Ilkay” stereo video sequence;
and (d) estimated disparity maps of ”Ilkay”.

Runtime. The algorithm implementation is written in VS2010 and uses the OpenCV core library
for basic matrix operations. The runtime is measured on a desktop with Core i7-6700HQ 2.60 GHz
CPU and 16 GB RAM, and no parallelism technique is utilized. All operations are carried out with
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floating point precision. Our algorithm require 0.59 s/megapixels (s/mp) for image segmentation,
3.4 s/mp for initial disparity estimation, 15.8 s/mp for disparity plane fitting, and 7.6 s/mp for
disparity plane optimization.

5. Discussion and Conclusions

In summary, we present a highly accurate solution to the stereo correspondence problem.
The main contribution of this work is to integrate the appealing properties of the multi-cost approach
into the segmentation-based framework. Our algorithm has two advantages. Firstly, an adaptive
multi-cost method for disparity evaluation is designed to ensure the accuracy of the initial disparity
map. The combined similarity function increases the robustness of the initial raw matching costs
calculation and the adaptive support window effectively reduces the matching ambiguity. Secondly,
an iterative outlier suppression and disparity plane parameters fitting algorithm is developed to ensure
a reliable pixel set for each segment region and obtain accurate disparity plane parameters. The ability
to deal with textureless areas and occlusion is enhanced by segment constraint. The experimental
results demonstrated that the proposed algorithm can generate state-of-the-art disparity results.
The ideas introduced in this paper could be used or extended in future stereo algorithms in order to
boost their accuracy.
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Abstract: The Zagreb eccentricity indices are the eccentricity reformulation of the Zagreb indices.
Let H be a simple graph. The first Zagreb eccentricity index (E1(H)) is defined to be the summation
of squares of the eccentricity of vertices, i.e., E1(H) = ∑u∈V(H)

2
H(u). The second Zagreb

eccentricity index (E2(H)) is the summation of product of the eccentricities of the adjacent vertices,
i.e., E2(H) = ∑uv∈E(H) H(u) H(v). We obtain the thorny graph of a graph H by attaching thorns
i.e., vertices of degree one to every vertex of H. In this paper, we will find closed formulation for the
first Zagreb eccentricity index and second Zagreb eccentricity index of different well known classes
of thorny graphs.

Keywords: graphs; vertices; complete graph; path; star; cycle

1. Introduction

In theoretical chemistry, molecular descriptors or topological indices are utilized to configure
properties of chemical compounds. A topological index is a real number connected with chemical
structure indicating relationships of chemical configuration with different physical properties,
chemical reactivity or biological activity, which is utilized to understand properties of chemical
compounds in theoretical chemistry. Topological indices have been observed to be helpful in chemical
documentation, isomer discrimination, structure-property relations, structure-activity (SAR) relations
and pharmaceutical medication plans. All through the paper, all graphs are considered to be simple
and connected.

Let H = (V, E) be a simple graph with m = |V| vertices and n = |E| edges. For u ∈ V, degree of
u, denoted by d(u), is number of vertices attached to u in the graph. The maximum distance from a
vertex to any other vertex in the graph H is called eccentricity of the vertex and is denoted by H(u)
i.e., H(u) = max{d(u, v)|v ∈ V}, where d(u, v) denotes the distance between u and v in H. The first
Zagreb index (M1) and second Zagreb index (M2) are the oldest known indices introduced by Gutman
and Trinajstić [1] defined as

M1 = M1(H) = ∑
u∈V(H)

d2
u,

M2 = M2(H) = ∑
uv∈E(H)

dudv.
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Several topological indices depend upon the eccentricity of the vertices and are very effective in
drug design. Sharma, Goswami and Madan [2] proposed the eccentric connectivity index of the graph
H, which is defined as

Cξ(H) = ∑
w∈V(H)

dH(w)

εH(w)
.

In 2000, Gupta, Singh and Madan [3] introduced another distance-cum-degree based topological
descriptor termed the connective eccentricity index:

ξC(H) = ∑
w∈V(H)

dH(w)εH(w).

Other eccentricity related indices include the eccentric distance sum [4], augmented and super
augmented eccentric connectivity indices [5–7], and adjacent eccentric distance sum index [8,9].

Recently, the first Zagreb eccentricity index and second Zagreb eccentricity index E1 and E2 have
been proposed as the revised versions of the Zagreb indices M1 and M2, respectively, by Ghorbani and
Hosseinzadeh [10]. The first Zagreb eccentricity index (E1) and the second Zagreb eccentricity index
(E2) of a graph H are defined as

E1 = E1(H) = ∑
u∈V(H)

2
H(u),

E2 = E2(H) = ∑
uv∈E(H)

H(u) H(v),

respectively. Das et al. [11] gave a few lower and upper bounds on the first Zagreb eccentricity index
and the second Zagreb eccentricity index of trees and graphs, and also characterized the extremal
graphs. Nilanjan [12] computed a few new lower and upper bounds on the first Zagreb eccentricity
index and the second Zagreb eccentricity index. Zhaoyang and Jianliang [13] computed Zagreb
eccentricity indices under different graph operations. Farahani [14] computed precise equations for
the First Zagreb Eccentricity index of Polycyclic Aromatic Hydrocarbons. Evidently, Zagreb indices
and the family of all connectivity indices express mathematically attractive invariants. In this manner,
we expect numerous more studies on these indices and anticipate further development of this area of
mathematical chemistry.

2. Results and Discussion

Consider a graph H with vertex set {u1, u2, . . . , um} and a set of positive integers {p1, p2, . . . , pm}.
The thorn graph of H, denoted by H∗(p1, p2, . . . , pn), is obtained by attaching pj pendant vertices
to uj for each j. The idea of a thorn graph was presented by Gutman [15], and various studies
on thorn graphs and different topological indices have been conducted by some researchers in the
recent past [16–19]. In this paper, we will derive explicit expressions for computing the first Zagreb
eccentricity index and the second Zagreb eccentricity index of thorny graphs of some well-known
classes of graphs like complete graphs, complete bipartite graphs, star graphs, cycles and paths.

2.1. The Thorny Complete Graph

Suppose that we take the complete graph Km with m vertices. Obviously, E1(Km) = m and
E2(Km) =

m(m−1)
2 . The thorny complete graph K∗

m is obtained from Km by attaching pj thorns at each
vertex of Km, j = 1, 2, . . . , m. Suppose that the total number of thorns attached to Km are denoted by T.

Theorem 1. The first Zagreb eccentricity index and the second Zagreb eccentricity index of K∗
m are given by:

E1(K∗
m) = 4E1(Km) + 9T and E2(K∗

m) = 4E2(Km) + 6T, respectively.
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Proof. Let Km be a compete graph. Suppose that vj, j = 1, 2, . . . , m are the vertices of Km, and
vjk, j = 1, 2, . . . , m; k = 1, 2, . . . , pj are the newly attached pendant vertices. Then, K∗

m

(
vj
)
= 2,

K∗
m

(
vjk

)
= 3 for j = 1, 2, . . . , m; k = 1, 2, . . . , pj are the eccentricities of the vertices of K∗

m. Thus, the
first Zagreb eccentricity index and the second Zagreb eccentricity index of K∗

m are given by

E1(K∗
m) =

m
∑

j=1
ε2

K∗
m
(vj) +

m
∑

j=1

pj

∑
k=1

ε2
K∗

m
(vjk)

=
m
∑

j=1
(2)2 +

m
∑

j=1

pj

∑
k=1

(3)2

= 4m + 9T= 4E1(Km) + 9T, and

M∗
2(K

∗
m) = ∑

vjvk∈E(K∗
m)

εK∗
m(vj)εK∗

m(vk) +
pj

∑
k=1

∑
vjvjk∈E(K∗

m)
εK∗

m(vj)εK∗
m(vjk)

= ∑
vjvk∈E(K∗

m)
4 +

pj

∑
k=1

∑
vjvjk∈E(K∗

m)
6

= 4 m(m−1)
2 + 6T

= 4E2(K∗
m) + 6T.

2.2. The Thorny Complete Bipartite Graph

Assume that we take the complete bipartite graph Kn,m having (n + m) vertices. Obviously,
the eccentricities are equal to two for all the vertices of Kn,m. Then, E1(Kn,m) = 4(n + m) and
E2(Kn,m) = 4nm. The thorny complete bipartite graph K∗

n,m is attained by attaching pendant vertices
to each vertex of Kn,m. Let T be the total number of pendent vertices.

Theorem 2. The first Zagreb eccentricity index and the second Zagreb eccentricity index of K∗
n,m are given by:

E1
(
K∗

n,m
)
= 9(n + m) + 16T and E2

(
K∗

n,m
)
= 9nm + 12T, respectively.

Proof. Suppose that {v1, v2, . . . , vn, u1, u2, . . . , um} is the vertex set of Kn,m, and let vik be the newly
attached pendant vertices to vi, i = 1, 2, . . . , n; k = 1, 2, . . . , pi and ujl be the pendant vertices
of uj, j = 1, 2, . . . , m; k = 1, 2, . . . , pl . Then, the eccentricity of the vertices of K∗

n,m is given by

K∗
n,m(vi) = 3, K∗

n,m(vik) = 4, for i = 1, 2, . . . n; k = 1, 2, . . . , pi and K∗
n,m

(
uj
)
= 3, K∗

n,m

(
ujl

)
= 4,

for j = 1, 2, . . . , m; l = 1, 2, . . . , p′j. Thus, the Zagreb eccentricity indices of K∗
n,m are given by:

E1
(
K∗

n,m
)
=

n
∑

i=1
ε2

K∗
n,m

(vi) +
m
∑

j=1
ε2

K∗
n,m

(uj) +
n
∑

i=1

pi
∑

k=1
ε2

K∗
n,m

(vik) +
m
∑

j=1

pj

∑
l=1

ε2
K∗

n,m
(ujl)

=
n
∑

i=1
(3)2 +

m
∑

j=1
(3)2 +

n
∑

i=1

pi
∑

k=1
(4)2 +

m
∑

j=1

pj

∑
l=1

(4)2

= 9n + 9m + 16
n
∑

i=1
pi + 16

m
∑

j=1
pj

= 9(n + m) + 16(
n
∑

i=1
pi +

m
∑

j=1
pj).
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The second Zagreb eccentricity index is computed as:

E2(K∗
n,m) = ∑

uivj∈E(K∗
n,m)

εK∗
n,m(ui)εK∗

n,m(vj)+
n
∑

i=1

pi
∑

k=1
εK∗

n,m(vi)εK∗
n,m(vik) +

m
∑

j=1

pj

∑
l=1

εK∗
n,m(uj)εK∗

n,m(ujl)

= ∑
uivj∈E(K∗

n,m)
9 +

n
∑

i=1

pi
∑

k=1
12 +

m
∑

j=1

pj

∑
l=1

12

= 9|E(Kn,m)|+ 12
n
∑

i=1
pi + 12

m
∑

j=1
pj.

2.3. The Thorny Star Graph

Suppose that we have the star graph Sm = K1,(m−1) of m vertices. Obviously, E1(Sm) = 4m − 3
and E2(Sm) = 2(m − 1). Let the thorny star graph S∗

m be obtained by joining pj pendant vertices to
every vertex vj, j = 2, 3, . . . , m and p1 pendant vertices to the central vertex v1 of Sm.

Theorem 3. The first Zagreb eccentricity index and the second Zagreb eccentricity index of S∗
m are given by:

E1(S∗
m) = 9m − 5 + 16T − 7p1 and E2(S∗

m) = 6(m − 1)− 6p1 + 12T, respectively.

Proof. Assume v1k, k = 1, 2, . . . , p1 and vjk, for j = 2, 3, . . . , m; k = 1, 2, . . . , pj are the newly attached
pendant vertices. Then, the eccentricities of the vertices of S∗

m are given by S∗
m(v1) = 2, S∗

m

(
vj
)
= 3,

for j = 2, 3, . . . , m, S∗
m

(
vjk

)
= 4, for j = 2, 3, . . . , m; k = 1, 2, . . . , pj, S∗

m(v1k) = 3, for k = 1, 2, . . . , p1.
Thus, the Zagreb eccentricity indices of S∗

m are

E1(S∗
m) =

m
∑

j=1
ε2

S∗
m
(vj) +

m
∑

j=1

pj

∑
k=1

ε2
S∗

m
(vjk)

= ε2
S∗

m
(v1) +

m
∑

j=2
ε2

S∗
m
(vj) +

p1

∑
k=1

ε2
S∗

m
(v1k) +

m
∑

j=2

pj

∑
k=1

ε2
S∗

m
(vjk)

= (2)2 +
m
∑

j=2
(3)2 +

p1

∑
k=1

(3)2 +
m
∑

j=2

pj

∑
k=1

ε2
S∗

m
(4)2

= 4 + 9(m − 1) + 9p1 + 16
m
∑

j=2
pj

= 9m − 5 + 9p1 + 16
m
∑

j=1
pj − 16p1,

from which we get the desired result. Now,

E2(S∗
m) =

m
∑

j=2
εS∗

m(v1)εS∗
m(vj) +

m
∑

j=1

pj

∑
k=1

εS∗
m(vj)εS∗

m(vjk)

=
m
∑

j=2
6 +

p1

∑
k=1

6 +
m
∑

j=2

pj

∑
k=1

12

= 6(m − 1) + 6p1 + 12
m
∑

j=2
pj

= 6(m − 1) + 6p1 + 12
m
∑

j=1
pj − 12p1,

and the result follows.
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2.4. The Thorny Cycle

Let Cm be a cycle having m vertices and m edges. Clearly, E1(Cm) = E2(Cm) =
m(m−1)2

4 , if m is
odd and E1(Cm) = E2(Cm) =

m3

4 , if m is even. Let C∗
m be the thorny cycle of Cm obtained by joining pj

thorns vjk to each vertex vj, j = 1, 2, . . . , m of Cm.

Theorem 4. The first Zagreb eccentricity index and the second Zagreb eccentricity index of C∗
m are given by

E1(C∗
m) =

⎧⎨
⎩

m(m+1)2+T(m+3)2

4 , i f m is odd
m(m+2)2+T(m+4)2

4 , i f m is even

and

E2(C∗
m) =

{
(m+1)[m(m+1)+(m+3)T]

4 , i f m is odd
(m+2)[m(m+2)+(m+4)T]

4 , i f m is even
,

respectively.

Proof. The vertex eccentricities of C∗
m are given as εC∗

m(vj) =
m+1

2 and εC∗
m(vjk) =

m+3
2 , if m is odd;

εC∗
m(vj) =

m+2
2 and εC∗

m(vjk) =
m+4

2 , if m is even; for j = 1, 2, . . . , m; k = 1, 2, . . . , pj.

Thus, when m is an odd number, the first Zagreb eccentricity index of C∗
m is

E1(C∗
m) =

m
∑

j=1
ε2

C∗
m
(vj) +

m
∑

j=1

pj

∑
k=1

ε2
C∗

m
(vjk)

=
m
∑

j=1

(
m+1

2

)2
+

m
∑

j=1

pj

∑
k=1

(m+3
2

)2

= m(m+1)2

4 + (m+3)2

4

m
∑

j=1
pj,

and the second Zagreb eccentricity index of C∗
m is

E2(C∗
m) = ∑

vjvk∈E(C∗
m)

εC∗
m(vj)εC∗

m(vk) +
m
∑

j=1

pj

∑
k=1

εC∗
m(vj)εC∗

m(vjk)

= ∑
vjvk∈E(C∗

m)

(
m+1

2

)2
+

m
∑

j=1

pj

∑
k=1

(
m+1

2

)(m+3
2

)

=
(

m+1
2

)2|E(Cm)|+
(

m+1
2

)(m+3
2

) m
∑

j=1
pj

= m(m+1)2

4 + (m+1)(m+3)
4 T.

Now, when m is an even number, the first Zagreb eccentricity index of C∗
m is given by

E1(C∗
m) =

m
∑

j=1
ε2

C∗
m
(vj) +

m
∑

j=1

pj

∑
k=1

ε2
C∗

m
(vjk)

=
m
∑

j=1

(m+2
2

)2
+

m
∑

j=1

pj

∑
k=1

(
m+4

2

)2

= m(m+2)2

4 + (m+4)2

4

m
∑

j=1
pj.
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Next, we proceed for the second Zagreb eccentricity index as

E2(C∗
m) = ∑

vjvk∈E(C∗
m)

εC∗
m(vj)εC∗

m(vk) +
m
∑

j=1

pj

∑
k=1

εC∗
m(vj)εC∗

m(vjk)

= ∑
vjvk∈E(C∗

m)

(m+2
2

)2
+

m
∑

j=1

pj

∑
k=1

(m+2
2

)(m+4
2

)

=
(m+2

2
)2|E(Cm)|+

(m+2
2

)(m+4
2

) m
∑

j=1
pj

= m(m+2)2

4 + (m+2)(m+4)
4 T.

2.5. The Thorny Path Graph

Consider the path graph Pm with m vertices. If m is even, then we write m = 2n + 2, and suppose
that the vertices of Pm are serially indicated by v′n, v′n−1, . . . , v′2, v′1, v′0, v0, v1, v2, . . . , vn−1, vn, where the
centers of the path P2n+2 are v′0 and v0 having eccentricity n + 1. If m is odd, then we write m = 2n + 1,
and we suppose that we have v′n, v′n−1, . . . , v′2, v′1, v0, v1, v2, . . . , vn−1, vn as the consecutive vertices of
Pm, where the center of the path P2n+1 is v0 having the eccentricity n. Then, the thorny path graph
P∗

m is obtained from Pm by attaching pj and p′j pendant vertices to each vj and v′j (j = 1, 2, . . . , n),
respectively. We define p′0 = 0. Now, we will find the first Zagreb eccentricity index and the second
Zagreb eccentricity index of P∗

m.

Theorem 5. The first Zagreb eccentricity index and the second Zagreb eccentricity index of P∗
m are given by

E1(P∗
m) =

⎧⎪⎪⎨
⎪⎪⎩

2
n
∑

j=0
(n + j + 2)2 +

n
∑

j=0
(pj + p′j)(n + j + 3)2, i f m is even

2
n
∑

j=0
(n + j + 1)2 +

n
∑

j=0
(pj + p′j)(n + j + 2)2, i f m is odd

,

and

E2(P∗
m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
n−1
∑

j=0
(n + j + 2)(n + j + 3) +

n
∑

j=0
(pj + p′j)(n + j + 2)(n + j + 3)(n + 2)2, i f m is even

2
n−1
∑

j=0
(n + j + 1)(n + j + 2) +

n
∑

j=0
(pj + p′j)(n + j + 1)(n + j + 2), i f m is odd

,

respectively.

Proof. If m = 2n + 2, then all the vertices of P∗
m have eccentricities εP∗

m(vj) = n + j + 2 = εP∗
m(v

′
j), for

j = 0, 1, . . . , n; εP∗
m(vjk) = n + j + 3 = εP∗

m(v
′
jk), for j = 0, 1, . . . , n; k = 1, 2, . . . , pj. Thus, the Zagreb

eccentricity indices of P∗
m are given by

E1(P∗
m) =

n
∑

j=0
ε2

P∗
m
(vj) +

n
∑

j=0
ε2

P∗
m
(v′j) +

n
∑

j=0

pj

∑
k=1

ε2
P∗

m
(vjk) +

n
∑

j=0

p′j
∑

k=1
ε2

P∗
m
(v′jk)

=
n
∑

j=0
2(n + j + 2)2 +

n
∑

j=0
pj(n + j + 3)2 +

n
∑

j=0
p′j(n + j + 3)2

= 2
n
∑

j=0
(n + j + 2)2 +

n
∑

j=0
(pj + p′j)(n + j + 3)2,

359



Symmetry 2017, 9, 7

and
E2(P∗

m) = E′
2(P∗

m) + E′′
2 (P∗

m)

E′
2(P∗

m) =
n−1
∑

j=0
εP∗

m(vj)εP∗
m(vj+1) + εP∗

m(v0)εP∗
m(v

′
0) +

n−1
∑

j=0
εP∗

m(v
′
j)εP∗

m(v
′
j+1)

=
n−1
∑

j=0
(n + j + 2)(n + j + 3) + (n + 2)2 +

n−1
∑

j=0
(n + j + 2)(n + j + 3)

= 2
n−1
∑

j=0
(n + j + 2)(n + j + 3) + (n + 2)2.

In addition,

E′′
2 (P∗

m) =
n
∑

j=0

pj

∑
k=1

εP∗
m(vj)εP∗

m(vjk) +
n
∑

j=0

p′j
∑

k=1
εP∗

m(v
′
j)εP∗

m(v
′
jk)

=
n
∑

j=0

pj

∑
k=1

(n + j + 2)(n + j + 3) +
n
∑

j=0

p′j
∑

k=1
(n + j + 2)(n + j + 3)

=
n
∑

j=0
pj(n + j + 2)(n + j + 3) +

n
∑

j=0
p′j(n + j + 2)(n + j + 3)

=
n
∑

j=0
(pj + p′j)(n + j + 2)(n + j + 3),

and the result follows.
If m is odd, then the vertices of P∗

m have the eccentricities, εP∗
m(vj) = n + j + 1 = εP∗

m(v
′
j), for

j = 0, 1, . . . , n; εP∗
m(v0) = n + 1, εP∗

m(vjk) = n + j + 2 = εP∗
m(v

′
jk), for j = 0, 1, . . . , n; k = 1, 2, . . . , pj

(the equalities do not apply for v′0 and v′0j). Now, the Zagreb eccentricity indices of P∗
2n+1 are given as

E1(P∗
m) = E′

1(P∗
m) + E′′

1 (P∗
m)

E′
1(P∗

m) =
n−1
∑

j=1
ε2

P∗
m
(vj) + ε2

P∗
m
(vn) + ε2

P∗
m
(v0) +

n−1
∑

j=1
ε2

P∗
m
(v′j) + ε2

P∗
m
(v′n)

=
n−1
∑

j=1
(n + j + 1)2 + (2n + 1)2 + (n + 1)2 +

n−1
∑

j=1
(n + j + 1)2 + (2n + 1)2

= 2
n
∑

j=1
(n + j + 1)2 + (n + 1)2.

In addition,

E′′
1 (P∗

m) =
n
∑

j=1

pj

∑
k=1

ε2
P∗

m
(vjk) +

n
∑

j=1

p′j
∑

k=1
ε2

P∗
m
(v′jk) +

p0

∑
k=1

ε2
P∗

m
(v0k)

=
n
∑

j=1

pj

∑
k=1

(n + j + 2)2 +
n
∑

j=1

p′j
∑

k=1
(n + j + 2)2 +

p0

∑
k=1

(n + 2)2

=
n
∑

j=1
(pj + p′j)(n + j + 2)2 + p0(n + 2)2

=
n
∑

j=0
(pj + p′j)(n + j + 2)2,

and we get the desired result.
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Now, E2(P∗
m) = E′

2(P∗
m) + E′′

2 (P∗
m)

E′
2(P∗

m) =
n−1
∑

j=0
εP∗

m(vj)εP∗
m(vj+1) + εP∗

m(v0)εP∗
m(v

′
1) +

n−1
∑

j=1
εP∗

m(v
′
j)εP∗

m(v
′
j+1)

=
n−1
∑

j=1
(n + j + 1)(n + j + 2) + (n + 1)(n + 2) +

n−1
∑

j=1
(n + j + 1)(n + j + 2)

= 2
n−1
∑

j=0
(n + j + 1)(n + j + 2).

In addition,

E′′
2 (P∗

m) =
n
∑

j=0

pj

∑
k=1

εP∗
m(vj)εP∗

m(vjk) +
n
∑

j=1

p′j
∑

k=1
εP∗

m(v
′
j)εP∗

m(v
′
jk)

=
p0

∑
k=1

εP∗
m(v0)εP∗

m(v0k) +
n
∑

j=1

pj

∑
k=1

εP∗
m(vj)εP∗

m(vjk) +
n
∑

j=1

p′j
∑

k=1
εP∗

m(v
′
j)εP∗

m(v
′
jk)

=
p0

∑
k=1

(n + 1)(n + 2)+
n
∑

j=1

pj

∑
k=1

(n + j + 1)(n + j + 2) +
n
∑

j=1

p′j
∑

k=1
(n + j + 1)(n + j + 2)

= p0(n + 1)(n + 2) +
n
∑

j=1
(pj + p′j)(n + j + 1)(n + j + 2)

=
n
∑

j=0
(pj + p′j)(n + j + 1)(n + j + 2),

and we obtain the equality.

3. Conclusions

In this article we computed closed formulas for computing first Zagreb eccentricity index as well
as second Zagreb eccentricity index for thorny graphs of important families of graphs like complete
graph, complete bipartite graph, cycle, star and path. These relations are given in Theorems 1–4.
Moreover, it can be observed from these formulas that values of these indices increase by increasing
the number of vertices and number of thorns attached to graphs. These invariants have applications in
computational chemistry.
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Abstract: This study proposes gaze-based hand interaction, which is helpful for improving the
user’s immersion in the production process of virtual reality content for the mobile platform,
and analyzes efficiency through an experiment using a questionnaire. First, three-dimensional
interactive content is produced for use in the proposed interaction experiment while presenting
an experiential environment that gives users a high sense of immersion in the mobile virtual
reality environment. This is designed to induce the tension and concentration of users in line
with the immersive virtual reality environment. Additionally, a hand interaction method based
on gaze—which is mainly used for the entry of mobile virtual reality content—is proposed as a
design method for immersive mobile virtual reality environment. The user satisfaction level of
the immersive environment provided by the proposed gaze-based hand interaction is analyzed
through experiments in comparison with the general method that uses gaze only. Furthermore,
detailed analysis is conducted by dividing the effects of the proposed interaction method on user’s
psychology into positive factors such as immersion and interest and negative factors such as virtual
reality (VR) sickness and dizziness. In this process, a new direction is proposed for improving the
immersion of users in the production of mobile platform virtual reality content.

Keywords: mobile virtual reality; hand interface; interaction; immersion; VR sickness; Leap Motion

1. Introduction

With the development of various virtual reality devices and related technologies, an environment
where general users can easily enjoy virtual reality content is being formed. As a result, content that
enables users to feel an experience that is similar to reality is continuously needed, and various
research and technical development related to virtual reality are being carried out to satisfy these
needs. To provide a visual experience with three-dimensional (3D) effects, Sutherland [1] studied the
HMD (Head Mounted Display) system in the 1960s. Since then, input processing techniques based on
virtual reality began to be researched and developed to control physical events in a virtual space while
satisfying the users’ five senses, including auditory and tactile senses.

As the hardware performance of smart phones is increasing and low-priced mobile virtual
reality HMDs are being propagated, a wide variety of mobile platform virtual reality content is being
produced, and many related studies are being conducted. The popularization of mobile HMD is
especially providing an environment where anyone can experience immersive virtual reality content
anywhere. However, mobile HMD requires the attachment of the mobile device inside the HMD,
unlike personal computer (PC) or console platforms such as Oculus Rift.

For this reason, the touch input method of mobile devices cannot be used. Because of this
limitation, mobile virtual reality content generally uses simple input methods using gaze or connects
a game pad for controlling the virtual reality. Recently, dedicated controllers interconnected with
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mobile HMDs such as Samsung Rink are being developed, and studies [2] are being conducted to
develop hardware systems that can process inputs by direct touch of the mobile screen. To provide
a virtual reality environment with a greater sense of immersion for users, hardware devices such as
Leap Motion and data glove have been developed, which reflect the finger movements and motions
of users in real time in the virtual reality environment. As suggested by the above discussion, which
virtual reality technology and devices are used to experience immersive content based on virtual
reality can be an important factor. However, it is also important to check the generation of motion
sickness due to dizziness by the input processing technique while the user is experiencing the content.
Nevertheless, there are few studies that analyze the effects of the interaction methods on the physical
and psychological responses of users in comparison to the studies on the input processing techniques
and interaction methods to improve user immersion.

This study was conducted to design user-oriented interaction to improve immersion in the
production of interactive 3D content for the virtual reality environment and to systematically analyze
the effects of the interaction on the actual immersion of users. For this purpose, interactive 3D content
was designed for a comparative experiment on the suitability and immersion of the proposed input
processing technique and interaction. Furthermore, as the core contribution of this study, an interaction
method that can increase immersion more than gaze—which is the main input method of the existing
mobile virtual reality content—is proposed. To this end, hand interaction that combines Leap Motion
with gaze—which is the beginning of users’ immersion for interaction with objects in the virtual
space—has been included. Lastly, the physical and psychological factors of users that are influenced
by the input processing through the proposed hand interaction are evaluated through a questionnaire,
and input processing techniques and interactions that can increase users’ immersion are analyzed.

Section 2 analyzes various input processing techniques and the psychological factors of users that
are required to develop contents based on virtual reality. Section 3 describes the production process for
immersive 3D interactive contents proposed in this study. Section 4 describes the core technique of
hand interaction using gaze and Leap Motion in this study. Section 5 describes the experiment and
analysis process for the proposed method. Finally, Section 6 outlines the conclusion and presents future
research directions.

2. Related Works

In the early 1900s, studies on virtual reality were conducted to satisfy the visual sense of users
through such devices as head-mounted virtual reality systems [1]. Since then, many researchers have
tried to improve the realism of the virtual reality environment and the immersion of user, which has
led to studies on haptic system and other devices to satisfy various senses such as tactile sense
by improving the physical responses of the virtual world [3,4]. With the development of mobile
devices, many application studies using mobile devices were conducted in the virtual reality arena.
Lopes et al. [5] proposed a mobile force feedback system through muscle simulation using electricity.
Yano et al. [6] conducted research on a handheld haptic device that can touch objects with its fingers.
In addition, GyroTab, which gives feedback of a mobile torque based on a gyroscope, was proposed [7].
Another example is POKE [8], a mobile haptic device that interacts through an air pump and silicon
membranes. These studies were conducted to provide tactile sense as well as vision in mobile virtual
reality, but they were not developed into systems that can be easily accessed and used by anyone.

How to provide input processing for users in a limited environment is as important for virtual
reality content in a mobile environment as the design of hardware devices to satisfy the five senses
of users. Unlike the PC platform, the mobile virtual reality embedded in the HMD has limitations
in users’ input environments due to the impossibility of touch, which is the only input function.
For this reason, many researchers designed interfaces that can process magnetic input for mobile
HMD, such as Google Cardboard. Representative magnetic input devices include Abracadabra [9],
Nenya [10], MagiTact [11], and MagGetz [12]. They processed interactions by wearing or holding
magnetic objects. Later, Smus et al. [13] proposed a wireless, unpowered, and inexpensive mobile
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virtual reality (VR) magnetic input processing method that provides physical feedback with the smart
phone, only without the calibration process. Gugenheimer et al. [2] proposed the facetouch interface,
which processes the interaction of the virtual reality environment by attaching a touch-sensitive surface
on the mobile HMD. This was also difficult to use because a separate magnetic device must be attached
to process input.

Hands are body parts that are often used to interact with objects in both virtual and real
environments. For this reason, controllers are frequently used to indirectly replace the movement of
hands in the interaction process of virtual reality content. For more direct control, however, studies are
being conducted to accurately capture the movements of hands, including joints, and use them for
interaction. For instance, Metcalf et al. [14] conducted a study to capture and control the movements
of hands and fingers through optical motion capture using a surface marker. Zhao et al. [15] also
proposed a high-fidelity measurement method of 3D hand joint information by combining a motion
capture system based on an optical marker and a Kinect camera from Microsoft.

Stollenwerk et al. [16] proposed an optical hand motion capture method based on a marker and
tested whether colored marker detection is correctly performed under various lighting conditions and
applied the detected hand and finger movements to keyboard performance. Oikonomidis et al. [17]
proposed a method of tracking the 3D movements of hands based on the depth information detected by
the Kinect. Arkenbout et al. [18] researched an immersive hand motion control method incorporating
the Kinect-based Nimble VR system using a fifth dimension technologies (5DT) data glove and a
Kalman filter. Furthermore, studies [19–22] on various approaches for analyzing motion by capturing
the human hand have been carried out, including a study on articulated hand motion and graphic
presentation of data generated from the interaction between objects in certain time intervals [23].
These studies enable users to interact more directly in a virtual environment, but research has not yet
been developed into a VR system. In particular, in the case of mobile platform VR, if VR sickness is
considered, many factors other than hand motion detection, such as frames per second (FPS) and the
refresh rate, should be considered together. Therefore, in order for the hand motion capture research to
be used as a VR application, these various technical factors and compatibility with other VR systems
such as HMD should be considered in a comprehensive way.

Recently, studies are being conducted using Leap Motion as a technology for expressing free
motions in 3D space by capturing the finger movement and motions of user. A method of receiving
signature or certificate was researched by detecting hand gestures using Leap Motion, recognizing the
tip of the detected finger and writing along the movement of the fingertip point [24]. In another study,
hand gestures were divided into four motions of circle, swipe, screen tap, and key tap, and the
possibility of accurate perception through matching with predefined templates was tested [25].
Hand gestures were also used with Leap Motions for the training of surgical experiments [26]. Recently,
an interface using Leap Motion was designed, and user reactions were analyzed to use hand motions
as interaction for playing a virtual reality game [27]. However, there are still few cases of applying
Leap Motion to virtual reality content, and in particular, almost no studies have been conducted to
design an interaction applied to mobile virtual reality. More importantly, research on user psychology
is also required to analyze whether or not the proposed interaction method improves user immersion
or causes VR sickness. In relation to this, studies were conducted to analyze whether or not the cue
conflict of the head-mounted virtual reality display causes motion sickness [28,29] or to analyze the
effect of unstable positions on motion sickness [30,31]. However, few studies have been conducted on
the effects of the input processing technique and interaction method of virtual reality on the psychology
of users.

Considering this situation, this study designs interactive content based on mobile platform
virtual reality, and proposes a hand interaction method using gaze and Leap Motion to improve user
immersion. Furthermore, experiments evaluating the suitability of the designed content and proposed
interaction method for the virtual reality environment are conducted, and the results analyzed in terms
of various factors, such as immersion and VR sickness.
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3. Immersive Mobile Virtual Reality Content

The goal of this study is to design an interaction method that can improve immersion through
a convenient control process by a user who experiences virtual reality content on a mobile platform.
To achieve this, immersive mobile virtual reality content must be provided which enables the
experience of a virtual environment through an interaction that is directly proposed by the user.
In this study, new interactive 3D content is produced to objectively analyze the immersion and
efficiency of the proposed hand interaction in a virtual reality environment that can induce tension
and concentration in the user. The interactive structure is designed using gaze, sound, and gesture
evenly to provide various experiences with a high level of user satisfaction.

A method often used in board games is used for the proposed flow of content. The goal of this
content is to change the random five cards given to us by exchanging them for the same cards with
characters beside us, and anyone who collects five identical cards touches the screen quickly. To explain
the detailed flow of the content, four characters are deployed in the virtual space, including the user.
Then, a set of cards with four patterns are randomly mixed, and five cards are distributed to each
character. Users who received the cards take action to collect five cards of one type from the four
types of cards. What they do is to select one of their five cards and give it to the person on the left.
The user also receives one card from the character on the right. The game progresses in this way until
one character has five cards of one type. Then, a 3D virtual object appears at the center of the screen
and anyone who selects it quickly wins the game. Figure 1 shows the flow of the proposed content
using actual cards.

Figure 1. The flow of the proposed interactive content: (a) start the content; (b) select cards; (c) result of
card exchange; (d) card game finish condition and event after finish.

The card selection and delivery of three virtual characters (excluding the user) are implemented
through a simple exchange behavior pattern. Algorithm 1 defines the exchange behavior pattern
representing the card selection and delivery of virtual characters.

The user’s card selection time needs to be limited for the proposed content process to cause
tension and concentration in the user. In this study, sound is used to raise tension as an element of
communicating the limited time to the user. When the user must select a card, the sound “ready-go”
is played. The user must quickly select a card in line with the “go” sound. If the user fails to meet
the timing, he or she loses his/her right of selection, and one of the cards he or she has is randomly
delivered to the character. Interactive content containing sound elements is appropriate for mobile
virtual reality content, and whether or not it gives an experience of high satisfaction level to users is
analyzed through an experiment in Section 5.
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Algorithm 1 Exchange Behavior Pattern of Virtual Characters.

1: Array_Card[3][5] ← Array of five cards that three characters have.
2: l ← Index of the left character from the current character.
3: i ← Index of the current character.
4: procedure SELECT CARD(Array_Card)
5: Analyze the pattern of five cards (Array_Card[i][5]) of the ith character.
6: ptrn_card ← The card that the ith character has the largest number in possession.
7: sel_card ← One card among the cards of different patterns from ptrn_card.
8: Remove sel_card from Array_Card[i][5].
9: return sel_card ← Return one of the cards that has the lowest number.

10: end procedure

11: procedure DELIVERY CARD(Array_Card, sel_card, l, i)
12: Deliver the selected sel_card to the character on the left.
13: Remove sel_card from Array_Card[i][5].
14: Save sel_card in the card array of l character (Array_Card[l][5]).
15: Analyze the card pattern of Array_Card[i][5]
16: cnt_card ← Number of the cards of the highest number in possession.
17: return cnt_card.
18: end procedure

19: procedure FINISH GAME(cnt_card)
20: if cnt_card = 5 then
21: Generate a 3D virtual object at the center of screen.
22: end if
23: end procedure

4. Gaze-Based Hand Interaction

User interaction is required for the smooth progress of the immersive mobile virtual reality
content. The interaction elements of the proposed content consist of a process of selecting one among
the five received cards, and a process of selecting the virtual object that is created when five cards of
the same type are collected. An interaction method that can enhance immersion while not interfering
with the object control must be designed because the content progresses quickly within a limited time.
Gaze-based hand interaction is proposed for this purpose in this study.

Hayhoe et al. [32] proved that people focus on gaze first when controlling virtual objects in a
virtual space. Therefore, the user’s gaze must be considered before designing the interaction using
hands. Then, the hand motion and gesture are recognized based on gaze to design input processing.
Then, input processing is designed by recognizing the hand motions and gestures of users. Figure 2
shows an overview of the gaze-based hand interaction.

Figure 2. Overview of the proposed gaze-based hand interaction. HMD: head-mounted display.

For users who are wearing a mobile HMD, the viewpoint and direction of the camera in the virtual
space correspond to the user’s gaze. When the user’s head moves, the mobile sensor and HMD track it
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and update the changed information on the screen. In this study, the interactive content is configured
in such a way that the user’s gaze is not distributed, and the user can concentrate on the screen where
their card is displayed because, if you miss the screen, you can also miss the fast moving flow with
sound. At this time, the raycasting method is used so that the gaze of the user can accurately select the
desired card. The ray is calculated in the camera direction corresponding to the gaze. Then, the object
selection or not of virtual space is calculated through the collision detection with the calculated ray
and with the virtual object. Figure 3 shows the card selection process of the content proposed through
the gaze of user.

Figure 3. Interaction process of the proposed content using gaze: (a) card browsing; (b) card selection
using gaze.

The user is induced to concentrate on a specific area (location of the arrayed card) on the screen
using gaze. Then, the hand interaction structure is designed to reflect a similar behavior as card selection
in the virtual environment. In this study, Leap Motion is used as an input processing technique to
increase the user’s immersion in the virtual reality content of the mobile environment. The Leap
Motion sensor is a hand motion detection sensor, which consists of two infrared cameras and one
infrared ray (light-emitting diode (LED)). This sensor is a small USB peripheral device with a height
of 12.7 mm and a width of 80 mm. It can be attached to the HMD device, and the hand gestures and
motions are recognized and processed by the infrared sensor. Figure 4 shows the configuration result
of input environment consisting of a Leap Motion device used in this study attached to a mobile HMD.
Leap Motion is not providing software development kit (SDK) for mobile HMD. Therefore, a mobile
virtual reality experiment environment to which hand interaction is applied is constructed in this study
by using Unity 3D (Unity Technologies, San Francisco, CA, USA) to produce mobile virtual reality
content and integrating it with the Leap Motion development tool and remotely sending divided
virtual reality scenes to the mobile phone.

Two hand interactions are proposed: the first is a card selection interaction which checks if the
user’s gaze is looking at the card to select. Then, the user’s finger is perceived at the go timing of the
“ready-go” sound. Next, the gesture is set by a clicking motion with the index finger. The second hand
interaction is the process of selecting a virtual object generated at a random location in the virtual
space when five identical cards are collected and the content finishes. During the progress of the
content, the user’s gaze is concentrated on his/her cards. In this situation, when a card combination is
completed by another character, a virtual object is created instantly, and the user perceives them in the
order of gaze to gesture. In other words, the behavior is recognized when the user first looks at the
generated virtual object, instantly stretches his/her hand and makes a gesture of holding the object.
Algorithm 2 represents the process of these two hand interactions.
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Figure 4. Construction of mobile virtual reality input environment using a Leap Motion device.

Algorithm 2 Hand Interaction Process.

1: Array_UserCard[5] ← Array of the user’s five cards.
2: procedure HAND-BASED CARD SELECTION(Array_UserCard)
3: range_sound ← A certain time range is saved around the time when “go” sound is played.
4: check_gaze ← Checks if the user’s gaze is directed to one element of the Array_UserCard.
5: if check_gaze = true then
6: Save recognized finger information of 0th hand.
7: FingerList OneHand = frame.Hands[0].Fingers .
8: OneHand [1].IsExtended ← Activation of the index finger is tested.
9: time_hand ← Time when the index finger is detected.

10: if OneHand [1].IsExtended = true And time_hand < range_sound then
11: Card selection finished.
12: end if
13: end if
14: end procedure

15: Obj_Finish ← 3D virtual object that is randomly generated when the content finishes.
16: procedure HAND-BASED TOUCH OBJECT(Obj_Finish)
17: check_gaze ← Checks if the user’s gaze is directed to the Obj_Finish.
18: if check_gaze = true then
19: cnt_hands ← Number of activated fingers.
20: for i=0,4 do
21: if frame.Hands[0].Fingers[i].IsExtended = true then
22: cnt_hands++
23: end if
24: end for
25: if cnt_hands = 5 then
26: Perceive object touch.
27: Record the time from object generation to touch.
28: end if
29: end if
30: end procedure

Figure 5 shows the process of perceiving hand motions and controlling the content through the
proposed hand interactions.
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Figure 5. Interaction of content through the proposed gaze-based hand interaction: (a) card selection
process; (b) action event process when the game finishes.

5. Experimental Results and Analysis

The proposed mobile virtual reality content production and virtual reality technique used Unity
3D 5.3.4f1 (Unity Technologies, San Francisco, CA, USA) and a Google virtual reality development
tool (gvr-unity-sdk, Google, Mountain View, CA, USA). The hand interface—which is the core input
technology of this study—was implemented using Leap Motion SDK v4.1.4 (Leap Motion, Inc., San
Francisco, CA, USA). The PC environment used in this environment was IntelR CoreTM i7-4790 (Intel
Corporation, Santa Clara, CA, USA), 8 GB random access memory (RAM), and Geforce GTX 960 GPU
(NVIDIA, Santa Clara, CA, USA). Furthermore, a Samsung Galaxy S5 (Suwan, Korea) was used as the
mobile phone for this experiment, and the Baofeng Mojing 4 (Beijing, China) HMD was used.

The experimental process consists of checking the production result of the proposed content and
the analysis of the physical and psychological effects of the gaze-based hand interaction of this study
on users in the virtual reality environment. First, the virtual reality content of the mobile platform
was produced in accordance with the plan, and the accurate operation of the interaction process was
verified based on the proposed input processing. When the content is started, the main screen is
switched to the content screen. On the content screen, four characters (including the user) are deployed
in the virtual space, five cards are randomly distributed to each character, and the process of selecting
the last finish object by matching the cards of one type is implemented. In this process, an interaction
method was designed by which the user selects cards using his/her hands based on his/her gaze and
touch of the last virtual object. Figure 6 shows this process, and the progress of accurate interaction
can be checked in the smooth flow of the proposed interactive content.

Next, the effect of the proposed hand interaction on the psychological elements of the actual result
are tested and analyzed. For this experiment, 50 participants in their 20 and 40s were randomly chosen,
and they were allowed to experience the produced content before analyzing the results through a
questionnaire. The first part of this experiment is the result for the suitability of the proposed virtual
reality content. If the card-type content proposed in this study is not suitable for virtual reality content,
the later interface has no significance. Therefore, the questionnaire was collected to check this.
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Figure 6. Implementation result of the proposed mobile virtual reality content including our hand
interaction: (a) content starting screen; (b) content initial card setting screen; (c) card selection interaction
using gaze and hand; (d) content finish condition; (e) generation of a virtual object for event in the
event of content’s finish; (f) event object control through hand interaction; (g) delivery of information
by converting the reaction speed of users into their scores.

Figure 7 shows the result: 86% of all participants replied that the proposed content was suitable
for testing the virtual reality environment. Furthermore, the participants were asked to write the
satisfaction score between 1 and 5 to accurately analyze the numerical data. The respondents gave a
high satisfaction score of 3.74 (standard deviation (SD): 0.68) for the experience of the virtual reality
environment of the proposed content. In particular, when the reasons for the positive evaluation of the
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proposed content were analyzed, it was selected because it is an interesting topic for virtual reality
content and provides a high level of immersion and a new experience. The satisfaction score was also
high at approximately 3.7 out of 5.0. Thus, the proposed content was suitable for experimenting and
analyzing mobile virtual reality content in line with the intended purpose.

Figure 7. Analysis results for the suitability and satisfaction of the proposed virtual reality content (left
to right: suitability level of five items, score distribution between 1 and 5, satisfaction factors consisting
of three items).

The second is a comparative experiment for the proposed interaction. This study proposed an
interaction that combines hand gesture and motion with the gaze interaction method that is mainly
used in mobile virtual reality content. Therefore, an experiment was conducted to analyze whether
the proposed interaction can give high immersion and satisfaction to users in comparison with the
conventional general interaction method, which uses gaze only. Four experimental groups were
constructed for this experiment because the experience of users may vary according to the order of the
interaction experiences. In the description of the content, the method of using the gaze only is defined
as “G”, and gaze-based hand interaction is defined as “H”. The first experimental group experienced
G first, followed by H, and the second experimental group experienced H first, followed by G, in the
reverse order. The third and fourth experimental groups experienced only G or H, respectively, to obtain
objective data. The participants in all experimental groups were asked to evaluate their interaction
experiences on a scale of 1 to 5.

Figure 8 shows the results of the four experimental groups. First, 80% of the participants who
experienced the interactions in the order of G and H replied that the hand interaction was more
satisfactory. Their satisfaction scores showed an average difference of 0.85 between G and H (Figure 8a).
Figure 8b shows the results of the experimental group who experienced the interactions in the
reverse order, and 83.34% of the experimental group was more satisfied with the gaze-based hand
interaction. Their satisfaction score difference between G and H was 1.25. There was a slight difference
in satisfaction depending on which interaction was experienced first between the gaze and the hand.
In particular, participants who experienced the hand interaction first were more satisfied with the
gaze-based hand interaction than with the gaze interaction only.

We conducted a Wilcoxon test to prove the alternative hypothesis that assumes that H provides
more advanced interaction than G. First, significance probability (p-value) was approximately
0.0016162 in the case of participants who experienced Leap Motion first (Figure 8a). Since this is
smaller than significance level (0.05), the null hypothesis was rejected. Next, significance probability
was approximately 0.0111225 in the case of participants who experienced the proposed gaze based
hand interaction first (Figure 8b). This is also smaller than the significance level, showing consistent
results of rejecting the null hypothesis. That is, both of the two tests rejected the null hypothesis,
proving that the alternative hypothesis is correct. Finally, computing the significance probability by
combining these two, the statistical test results also proved that the proposed hand interaction gave
stronger satisfaction and immersion to users compared to the method that uses gaze only, with p-value
at 6.4767297 ×10−5.

Next, the responses of the experimental groups who used only one interaction were analyzed.
As shown in Figure 8c, more than 90% of the participants using the gaze-only method were satisfied
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with the interaction and recorded an average score of 3.8 (SD: 0.60). Participants using the gaze-based
hand interaction only scored an average of 4.0 (SD: 0.91) points and more than 83.34% of them
gave positive responses (Figure 8d). Although the difference is small, the proposed hand interaction
was found to result in better satisfaction and immersion for participants in the same conditions
and situations.

Figure 8. Comparison experiment result of the gaze-based hand interaction and the method using
gaze only: (a) results of the experimental group who experienced H followed by G; (b) results of the
experimental group who experienced G followed by H; (c) results of the experimental group who
experienced G only; and (d) results of the experimental group who experienced H only.
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The overall analysis results showed that users are more familiar and satisfied with the gaze
interaction method, which is mainly used in the existing mobile platform virtual reality content. Thus,
we can see that hand interaction can provide greater immersion and satisfaction if it is combined with
the appropriate context for the purpose of the content.

The last is a detailed analytical experiment for psychological factors. The psychological factors of
users for the proposed gaze-based hand interaction were subdivided into the four items of improved
immersion, inducement of interest, provision of new experience, and convenient control for the
analysis of positive factors. Furthermore, the four items of VR sickness, fatigue, difficult operation,
and inconvenience were analyzed as negative factors. The details of the eight psychological factors
presented here referred to the existing studies on immersion in VR [33,34].

The results of the aforementioned experiment showed that the gaze-based hand interaction
was more satisfactory. Therefore, the experiment involving the detailed psychological factors was
conducted with the proposed hand interaction. As shown in Figure 8a,b,d, among the participants in
the experimental groups experiencing the proposed hand interaction, those who gave relatively or
objectively positive responses were asked to select one of the four positive factors and record a score.
In addition, participants who gave negative responses were also asked to select one of the negative
factors and record a score. However, only 4.55% of the respondents gave negative responses below
average, so accurate analysis results could not be derived from them.

Figure 9 shows that 45.24% of the participants who gave positive responses, which constituted
81.28% of all respondents, replied that hand interaction improves their immersion and helps them to
accurately control the virtual objects. The scores were also generally high, at 3.8 or higher out of 5.0.
Therefore, the proposed hand interaction was found to have the greatest influence on the provision of
an experiential environment with high immersion in the virtual reality environment, although it is
also helpful for the inducement of interest and convenient control.

Figure 9. Detailed analysis results for psychological factors of the proposed gaze-based hand interaction:
(a) satisfaction distribution of the proposed hand interaction; (b) distribution of positive factors
and score analysis results; (c) distribution of the positive psychological factors of participants who
experienced the gaze only; (d) distribution of the positive psychological factors of participants who
experienced the gaze-based hand interaction only.
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The analysis of the negative factors showed that many participants selected the difficulty of
manipulation. The information on the participants who gave negative answers revealed that they
had either considerable or no experience with virtual reality content. Their negative responses seem
to be caused by the inconvenience of the new operation method due to their familiarity with the
existing gaze method or their lack of experience with interaction. For reference, the questionnaire
results of participants who only experienced G or H were analyzed (Figure 8c,d). Most participants
experienced only gaze selected convenience, as expected. Participants who experienced the hand
interaction only selected various items, such as immersion, convenience, and novelty. Their satisfaction
score was also found to be higher by at least 0.5. This suggests that, if the gaze and the hand are
combined appropriately in line with the situation, it can provide users with various experiences and
high satisfaction.

In this study, it was analyzed whether the proposed hand interaction can lead to higher immersion
compared to merely gaze, which is mainly used in mobile platform virtual reality content, and also
whether it can cause VR sickness. As a result of various experiments, VR sickness was not found
to be a problem. For the virtual reality content of the mobile platform in general, the FPS and the
polygon count of all objects comprising the content should be considered carefully. In mobile VR,
the recommended number of polygons is 50 to 100 kilobyte (k) and the recommended FPS is 75 or
more. If these recommendations are not followed, the user may experience sickness due to the delay
and distortion of the screen. In the proposed virtual reality content, the number of polygons ranged
from 41.4 to 80.0 k with an average of 56.2 k depending on the camera position, and the FPS ranged
from 82.1 to 84.0 with an average of 82.8. Thus, users experienced no hardware problems. Therefore, if
the technical performance condition is satisfied in the VR environment, the proposed hand interaction
will not cause VR sickness (Table 1).

Table 1. Technical performance analysis results of the proposed mobile virtual reality content.

Minimum Maximum Mean Recommended

Polygon count 41.4 k 80.0 k 56.2 k 50–100 k
Frame per second (FPS) 82.1 84.0 82.8 ≥75

The simulator sickness questionnaire (SSQ) experiment was conducted to analyze the VR sickness
of the proposed hand interaction more systematically and statistically [35,36]. In SSQ, the sickness
that users can feel from the simulator was deduced in 16 items through various experiments.
Participants were asked to select one of four severity levels between none and severe for such items
as general discomfort and fatigue. In this study, the sickness was analyzed using raw data excluding
weight for the absolute analysis of the proposed interaction [37]. Based on the aforementioned four
experimental groups, the questions were designed to compare the values when only gaze was used
and after experiencing the gaze based hand interaction. Table 2 lists the results of the SSQ experiment.
The result of hand interaction increased slightly compared to the method using gaze only. However,
most participants felt almost no VR sickness for both interactions (total mean (mean for each of the 16
items) : 1.05 (0.07), 1.57 (0.1), slight or less). For the detailed factors consisting of nausea, oculomotor,
and disorientation, the highest values (0.67, 1.0) were obtained for oculomotor in both interactions, but
they were not a level that can cause problems in user’s interaction.

Consequently, various new interactions that combine hand motion and movement with gaze
should be researched to provide users with satisfying and diverse experiences as well as immersive
interactions in the virtual reality content of the mobile environment. Therefore, the current environment
where the virtual reality input processing techniques are mostly limited to PCs, consoles, and platforms,
and cannot be extended to the mobile environment must be improved so that users can conveniently
and easily experience virtual reality content. More specifically, we need to think about how to combine
hand gestures and motions with the interaction that handles the movements and controls of objects
based on the user’s gaze in order to increase immersion while reducing the VR sickness of users.
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Table 2. Results of an simulator sickness questionnaire (SSQ) experiment for analysis of the virtual
reality (VR) sickness of the proposed interaction.

Mean Standard Deviation (SD) Minimum Maximum

Total G 1.05 (0.07) 1.43 0.0 5.0
H 1.57 (0.1) 1.68 0.0 6.0

Nausea G 0.33 (0.02) 0.56 0.0 2.0
H 0.52 (0.03) 0.66 0.0 2.0

Oculomotor G 0.67 (0.04) 0.89 0.0 3.0
H 1.0 (0.06) 1.07 0.0 3.0

Disorientation G 0.43 (0.03) 0.73 0.0 3.0
H 0.62 (0.04) 1.0 0.0 4.0

6. Conclusions

This study proposed gaze-based hand interaction considering various psychological factors,
such as immersion and VR sickness in the process of producing mobile platform virtual reality content.
To this end, a card-type interactive content was produced which induces tension and concentration in
users in order to plan an interactive content that is suitable for the virtual reality environment of the
mobile platform. Then, an environment where users can receive and concentrate on scenes with 3D
effects using mobile HMD regardless of the place was provided. A gaze-based hand interaction method
was designed to improve the immersion of users in the process of controlling 3D objects and taking
actions in the virtual space. Furthermore, the interaction method using gaze only and the interaction
method to which hand interface was added were applied with the same content separately, and the
experimental results were derived after asking general users to experience them. In a situation where
the proposed interactive content was suitable for virtual reality content, the method of combining gaze
with hand interaction improved user satisfaction and immersion compared to the interaction method
using gaze only. When the detailed psychological factors were analyzed, a high percentage or 45.24%
of respondents answered that hand interaction provided interaction with high immersion among
the items of improved immersion, inducement of interest, convenient control, and new experience.
Thus, it was found that presenting an environment that enables more direct control in the 3D virtual
space is helpful for improving the immersion of content when producing virtual reality content of the
mobile platform. Finally, it was verified that VR sickness due to hand interaction will not occur if the
system requirements, such as FPS and the polygon count, are observed when producing virtual reality
content in the mobile environment. The results of the survey experiment through SSQ showed that all
respondents felt almost no VR sickness.

The conventional input processing of the mobile platform is providing an interface that mainly
uses gaze, due to the limited environment. In this study, interaction combining the conventional gaze
method with hand gestures and motions was proposed to improve the immersion of content, and the
performance of the proposed method was evaluated. Even though hand interaction is very helpful
when analyzed from the aspect of immersion improvement, a perfect development environment for
the mobile platform has not yet been provided, due to the problem of installing separate devices.
Therefore, it is important to design an interaction method in line with the degree of immersion that the
content to be produced desires. In the future, the efficiency of various input processing techniques
will be analyzed by experimenting with immersion, motion sickness, etc. through the interaction
design as well as using various input devices that support the production of mobile platform virtual
reality content.

Supplementary Materials: The following are available online at www.mdpi.com/2073-8994/9/2/22/s1, Video S1:
The proposed mobile virtual content including our hand interaction demo video.
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Abstract: Deformable objects have changeable shapes and they require a different method of matching
algorithm compared to rigid objects. This paper proposes a fast and robust deformable object
matching algorithm. First, robust feature points are selected using a statistical characteristic to
obtain the feature points with the extraction method. Next, matching pairs are composed by the
feature point matching of two images using the matching method. Rapid clustering is performed
using the BST (Binary Search Tree) method by obtaining the geometric similarity between the
matching pairs. Finally, the matching of the two images is determined after verifying the suitability of
the composed cluster. An experiment with five different image sets with deformable objects confirmed
the superior robustness and independence of the proposed algorithm while demonstrating up to
60 times faster matching speed compared to the conventional deformable object matching algorithms.

Keywords: content-based image retrieval; image matching; deformable object; clustering

1. Introduction

Humans can recognize and determine objects through vision. Human vision is fast and robust,
and it is the most powerful perceptual function to acquire information. Vision is an ability that humans
have from birth, and the human performance is far better than that of a computer. Computers may have
better performance in fields that are difficult to work with human eyes, such as precision measurements.
In a field of recognizing and determining objects, however, their ability is still worse than that
of humans. Therefore, research to provide computers with the visual ability at the human level is
currently active. Such research is called computer vision. Studies of computer vision are being
performed for the recognition of face, object, gesture, from videos or images.

In image recognition, computer vision is divided into the extraction method, which belongs to
low-level vision, and the matching method, which belongs to high-level vision. The typical algorithms
of the extraction method include D. Lowe’s SIFT (Scale-Invariant Feature Transform) [1], which is
robust to size and angle change, H. Bay’s SURF (Speeded Up Robust Features) [2], which is faster than
SIFT, J. Matas’s region-based MSER (Maximally Stable Extremal Regions) [3], and K. Mikolajczyk’s
Harris affine detector [4], which is robust to affine changes. The matching method is divided into
a step for composing matching pairs between all the feature points of two images, and a step for
performing geometric verification between the matching pairs. In particular, the geometric verification
step is the final step in image recognition, and it is very important because, even if many matching
pairs are composed, two images may be determined to be mutually different images if geometric
verification fails. A typical algorithm for geometric verification is RANSAC [5].

In recent years, image recognition using deep learning has become popular [6]. Deep learning
is different from conventional computer vision algorithms (divided into low-and high-level vision).
It enables a computer to learn by itself using neural networks, without image feature extraction
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and matching method, and it is leading to unparalleled levels of accuracy in image recognition.
However, deep learning has not yet been used in various object matching due to the requirement
for a large amount of data. With a small amount of data in a database, it is still difficult to achieve
reasonably good performance for image recognition using deep learning. In addition, to detect
unique objects, neural networks have to become much deeper and deeper networks require high
computational power. Thus, we still need computer vision technology that uses low-level and
high-level vision for image recognition.

A representative technology that uses image recognition is content-based image retrieval,
which was established as the MPEG-7 standard. Recently, at MPEG-7, by constructing the CDVS
(Compact Descriptor Visual Search) [7], a study was performed for content-based image retrieval,
which retrieves an image fast for mobile devices. Content-based image retrieval is a technology
that retrieves an image by extracting robust features even if various deformations in brightness,
rotation, affine, and size, occur in the image. On the other hand, most matching algorithms perform
retrieval by targeting images with rigid objects [8–10]. The object types also include deformable objects;
typical examples include clothes, packs, and bags. For rigid objects, the object shapes do not change,
but for deformable objects, the object shapes can change in various ways. Because of this difference,
the conventional rigid object matching algorithms that are robust to images with rigid objects are not
suitable for matching images with deformable objects. Therefore, developing a matching algorithm
that is robust to images that contain deformable objects has become an important issue.

The three aspects of excellent matching algorithm are robustness, independence, and fast
matching [11]. Robustness is a characteristic that determines that two images with the same object,
even if deformation occurs in the object, must be determined to be identical. Independence is
a characteristic that determines that two images with mutually different objects are different.
Finally, matching is done rapidly in fast matching. If fast matching does not occur, an algorithm may
not be appropriate for applications that require fast image retrieval. The most significant weakness of
conventional deformable object matching algorithms is slow matching.

In this paper, these three aspects are considered to propose an optimal algorithm for the matching
of two images with deformable objects. The remainder of this paper is organized as follows. Section 2
introduces the related works about image matching. In Section 3, the proposed algorithm is described
by dividing it into extraction and matching methods. In Section 4, the experiment is described and its
results are confirmed and analyzed from five image sets with various deformable objects. Section 5
evaluates the proposed algorithm and reports the conclusion.

2. Related Works

This section introduces well-known feature descriptors developed recently. In the past few
years, a number of feature descriptors using binary features were developed. These feature
descriptors which have fast feature extraction and less computational complexity are suitable
for real-time image matching. This section also introduces the conventional deformable object
matching algorithms. Deformable object matching algorithms use different matching methods from
rigid object matching algorithms.

2.1. Recent Feature Descriptors

In recent years, binary feature descriptors such as BRIEF (Binary Robust Independent Elementary
Features) [12], BRISK (Binary Robust Invariant Scalable Keypoints) [13], FREAK (Fast Retina
Keypoint) [14], SYBA (Synthetic Basis) [15], and TreeBASIS [16] have been reported. BRIEF uses
a binary string, which results in intensity comparisons at random pre-determined pixel locations.
The descriptor similarity is evaluated using the Hamming distance. It trades robustness and
independence for fast processing speed, but it is sensitive to image distortions and transformations.
BRISK is a 512 bit binary descriptor using a FAST-based detector. It relies on easily configurable
circular sampling patterns from which it computes a binary descriptor. It uses the distance ratio of
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the two nearest neighbors to improve the accuracy of the detection of corresponding keypoint pairs.
BRISK requires more computational complexity and more storage space than BRIEF. FREAK improves
upon the sampling pattern and method of pair selection that BRISK uses. The features are much more
concentrated near the keypoint.

SYBA uses a number of synthetic basis images to measure the similarity between a small image
region surrounding a detected feature point and the randomly generated synthetic basis images.
The TreeBASIS descriptor uses a binary vocabulary tree that is computed using basis dictionary images
and a test set of feature region images. It provides improvements in descriptor size, computation time,
matching speed, and accuracy.

2.2. The Conventional Deformable Object Matching Algorithms

The feature-based deformable object matching algorithms include transformation model-based [17],
mesh-based [18], cluster-based [19] and graph-based [20] algorithms. The transformation model-based
and mesh-based algorithms require high complexity and are not suitable for various deformations
of objects. The graph-based algorithms have fast processing speed but relatively poor performance.
The conventional deformable object matching algorithm is the ACC (Agglomerative Correspondence
Clustering) algorithm [21], which uses the clustering method. This algorithm calculates the dissimilarity
between clusters using the adaptive partial linkage model in the framework of hierarchical
agglomerative clustering. The IACC (Improved ACC) algorithm [22] includes the feature selection
method for selecting robust features. These two algorithms show good performance for deformable
objects, but high complexity in the clustering process. The matching speed becomes slower with higher
complexity, and it cannot be called a good matching algorithm with slow matching speed.

3. Proposed Algorithm

This section discusses the proposed algorithm. This section is divided into two subsections:
the first discusses the extraction method, and the second discusses the matching method. Figure 1
shows the flow chart of the proposed algorithm, consisting of the extraction part (feature extraction
and feature selection) and the matching part (the rest).

Figure 1. Flowchart of the proposed algorithm.
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3.1. Extraction Method

3.1.1. Feature Extraction

There exist methods for extracting the global features and local features from images. A global
feature is unsuitable for an image with deformable objects because such features are extracted from
the entire image. This is because the various deformations of deformable objects cannot be defined
with a single feature. On the other hand, a local feature is suitable for an image with deformable
objects because the features are defined for each local region. Furthermore, a local feature is suitable
for applying clustering because additional information in terms of position, scale, and orientation
is stored. In this study, a typical algorithm for local features, SIFT [1], was used. The feature F(·) stored
through SIFT is expressed as (1).

F(i) = { pi , si , oi , fi }, (1 ≤ I ≤ N) (1)

where N is the number of extracted feature points, and every feature point has four components.
Here, pi is the feature point’s position, si is the scale, oi is the orientation, and f i is a feature vector with
128 dimensions.

3.1.2. Feature Selection

Non-matching and higher complexity can occur if the extracted features just use matching. This is
because some of the feature points could be the outliers. Therefore, it requires a process that selects
the robust feature points included in the inliers. The feature selection is a process for selecting robust
feature points in composing matching pairs with the extracted features. In general, when the feature
points matched in two images are compared, the statistical characteristic is different between the
feature points included in the outliers and those included in the inliers [23]. Therefore, the use of
the inlier’s statistical characteristic can distinguish the points of the inlier from the outlier. To obtain
the inlier’s statistical characteristics, the position (pi), scale (si), orientation (oi), and distance of the
center (ci) components are learned from various image sets [24,25]. When a large value (ei) is produced
by substituting pi, si, oi, and ci in the learned inlier’s statistical characteristic ISC(·), the probability
of belonging to the inlier region is high. The following pseudocode shows a process for selecting
NS feature points from a total of N feature points using ISC(·). If NS is bigger than N, NS become N.
We use NS = 300. Figure 2b gives an example of using feature selection, and when compared with
Figure 2a, where this is not used, some of the outlier points are removed. When the feature points of
the outlier are removed because the complexity becomes lower, the features become more robust and
the matching speed becomes faster.

Feature selection
E = {ø}, i = 0
repeat
i = i + 1
ei = ISC(pi, si, oi, ci)
Insert ei into E
E, ranked in descending order

until i = = N
E = {e1, e2, e3, . . . , eNS . . . , eN}
Selecting NS feature points from N feature points.
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Figure 2. Example of the feature points in an image: (a) feature points using only SIFT; and (b) the
feature points using feature selection.

3.2. Matching Method

3.2.1. Composing a Matching Pair

To compose a matching pair, the feature points extracted from two images are compared [26].
The formula used here is the Euclidean distance, as expressed in Equation (2).

Euclid
(

FR(i), FQ(j)

)
=

√
∑128

k=1 (Fk
R(i) − Fk

Q(j))
2 (2)

Equation (2) is an equation for finding the Euclidean distance of FR(i), which is the ith feature
vector of the reference image, and FQ(j), which is the jth feature vector of the query image. If Euclid(·) is
smaller than an arbitrary threshold, the feature points R(i) and Q(j) are composed as a matching pair.
One feature point can compose up to the maximum of k matching pairs using the knn method.
NM matching pairs composed in this manner undergo the overlap checking process expressed as
Equation (3).

ovlp[i, j] =

{
1, if mi and mj are overlapping,

0, otherwise.
(1 ≤ i, j ≤ NM) (3)

A matching pair (mk) is composed with two feature points matched in two images. In other words,
mk consists of the respective feature points from the reference and query images. In Equation (3),
mk represents the respective positions of two feature points. Here, mk =

(
pR

k, pQ
k
)
, where pR

k is the
position of the feature point extracted from the reference image, and pQ

k is the position of the feature
point extracted from the query image. When the ith matching pair (mi) and jth matching pair (mj)

are compared, if pR
i matches pR

j, or pQ
i matches pQ

j, they are determined to be overlapped, and the
number one is assigned to ovlp[i, j]. With this equation, one or zero is assigned to every ovlp[i, j],
and finally, an overlap matrix of size NM × NM with ovlp[i, j] for all i, j as its elements is generated.
In Figure 3, the circles mean the feature points and lines mean the matching pairs. In addition,
dotted lines are overlapped matching pairs and the solid-lines are non-overlapped matching pairs.
The generated overlap matrix is used in the clustering process.

Figure 3. Example of matching pairs that overlap or not.
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3.2.2. Making a Symmetric Similarity Matrix

With a deformable object, various deformations may occur because its shape can change.
Therefore, it is difficult to evaluate image matching with deformable objects using conventional
geometric verification. From the matching pairs composed of the typical conventional geometric
verification RANSAC [5], a transform matrix is generated and inliers and outliers are distinguished.
On the other hand, a deformable object cannot be defined with a single transform matrix.

Figure 4a presents two images with rigid objects, one of which has one transform matrix (T1).
The reference image’s rigid object is transformed geometrically to T1 in the query image. On the
other hand, Figure 4b shows two images with deformable objects, and has many transform matrices
(T2, T3, and T4). In this case, a deformable object of the reference image is transformed geometrically
to T2, T3, and T4, in the query image. Therefore, because a deformable object cannot be defined with
one transform matrix, a new method is required for the approach by generating many transform
matrices in a small region. One method used here is to make a symmetric similarity matrix.
The symmetric similarity matrix consists of the similarity between transform matrices composed
in a point unit. In other words, a symmetric similarity matrix is composed of geometric similarity
between all matching pairs.

Figure 4. Comparison example of a transform matrix (Ti): (a) rigid object in the images; and (b)
deformable object in the images.

To find the geometric similarity between a matching pair, first, a transform matrix is
obtained between a matching pair. The transform matrix used here is a homography matrix [27].
Because a homography matrix uses the projective transform method among various transform
matrices, it is suitable for obtaining geometric similarity. To compose a homography matrix, the position
(pi), scale (si), and orientation (oi) of a feature point are used, and the matrix is composed using the
WGC (Weak Geometric Consistency) [28] method. Using the homography matrix (Hk) composed this
way, the geometric similarity (dgs) between a matching pair is found using the Pairwise-WGC [29]
method, as expressed in (4).

dgs
(
mi, mj

)
=

1
2

(∣∣∣pQ
j − Hi pR

j

∣∣∣+
∣∣∣pQ

i − Hj pR
i

∣∣∣), (1 ≤ i, j ≤ NM) (4)

The two matching pairs to be compared are given as mi = (pR
i, pQ

i, Hi) and mj = (pR
j, pQ

j, Hj).
|·| denotes the Euclidean distance, and dgs

(
mi, mj

)
is small if Hi and Hj are similar. If geometric

similarity is obtained between every matching pair, a symmetric similarity matrix of size NM × NM
with dgs

(
mi, mj

)
as the element is composed, as shown in Figure 5. The symmetric similarity matrix

has zero diagonal elements.
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Figure 5. Example of a symmetric similarity matrix (NM = 5).

dgs
(
mi, mj

)
= sim(i, j) (5)

As written in Equation (5), each element of a symmetric similarity matrix represents geometric
similarity (dgs) between a matching pair mi and mj, and means the similarity (sim) between i and j.
Here, the i and j indices become the minimum units for clustering.

Simply composing a symmetric similarity matrix does not mean a new geometric verification.
The new geometric verification intended here refers to everything, from using the composed symmetric
similarity matrix, to finally performing the cluster verification after undergoing the clustering process.

3.2.3. Agglomerative BST (Binary Search Tree) Clustering

For clustering, agglomerating clusters by identifying the similarities between the cluster
hierarchically is common. The methods for identifying the similarity between clusters include
AGNES using the single-link, complete-link, and average-link methods [30]. In the ACC and
IACC algorithm [21,22], clustering is performed adaptively using the adaptive partial link method.
These clustering methods, however, have a large limitation in that the speed decreases with increasing
number of clusters. In general, when the number of initial clusters is n, the hierarchical clustering
method has a complexity of O(n3) because the similarity between clusters needs to be calculated
and updated. Here, updating means obtaining a new similarity between an agglomerated cluster and
the remaining clusters. The complexity of the similarity calculation between clusters can be reduced
using the symmetric similarity matrix obtained earlier, but an additional calculation is essential in the
case of an update. In this paper, an algorithm is proposed to reduce the complexity by simplifying
the conventional agglomerative hierarchical clustering. The update process that comprises a large
proportion of the complexity is omitted, and clustering is performed by constructing a BST (Binary
Search Tree) [31] with the basic clusters obtained from symmetric similarity matrix.

The pseudocode presented earlier shows the BST clustering process in detail. In the initialization
part, Ntree is the number of binary trees (BTt) generated, and BTt represents the tth binary tree. The BST
clustering process that appears hereon is performed the maximum of Nbc times. Nbc is the number
of sim(i, j) in the upper triangular part, excluding the diagonal elements in the symmetric similarity
matrix, and Nbc = NM×NM−NM

2 . When the BST clustering process is examined, first, i and j with
minimum similarity are found in the symmetric similarity matrix (because the symmetric similarity
matrix is a symmetrical matrix, they are found only when i > j). Here, BST clustering is terminated
if the similarity is larger than the given threshold δs (similarity threshold). Next, an element of the
overlap matrix with i and j as the index is confirmed. If the value for ovlp[i, j] is one, clustering is
not formed because the feature point with an overlap between positions cannot be considered as
a robust feature.
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Agglomerative BST Clustering
Ntree = 0, k = 0, BTt = {ø}, sumS = 0 // Initialization
/* BST clustering */
repeat

k = k + 1
// Find i,j {i, j} = argmin

i>j
(symmetric similarity matrix)

if sim(i,j) > δs then {break}
// overlap check
if ovlp[i,j] then {sim(i,j) = ∞, continue}
// Using BST, Searching & Inserting
chk = 0, t = 0

repeat
if {i,j} ∈ BTt then {chk = 1, break}
else if i ∈ BTt then {Insert j into BTt , chk = 1, break}
else if j ∈ BTt then {Insert i into BTt , chk = 1, break}
else {t = t + 1}

until t = = Ntree
// make new BTt
if chk = = 0 and sim(i,j) < thres(δs,sumS) then {

Make BTt and Insert i,j into BTt
Ntree = Ntree + 1

sumS += sim(i,j) }
sim(i,j) = ∞

until k = = Nbc
if any one of the nodes in BTt (0 ≤ t ≤ Ntree) is the same, merges them.
The rest of BTt is cluster Ct (0 ≤ t ≤ Ncluster)

In the next part, searching and inserting i and j is performed using BST. This process is performed
the maximum of Ntree times, and if a node is searched at least once in BTt, it is terminated. In total,
there are three cases of nodes searched from BTt. The first is the case where both i and j are searched.
Here, because all pertinent nodes exist, the process is terminated without insertion. Next is a case
where only i is searched. Here, j is inserted as a new leaf node in BTt, and the process is terminated.
Finally, in the case where only j is searched, i is inserted as a new leaf node, and the process
is terminated. Figure 6 gives an example of the searching and inserting process of BTt. For example,
when the i = 8 and j = 35, Figure 6a shows that the node 8 of BT0 is searched. This is the case where i
is searched. As shown in Figure 6b, j = 35 is inserted as a new leaf node in BT0 because j is not searched
in BT0.

thres(δs, sumS) =
δs

sumS/(Ntree + 1)
(6)

A new BTt is generated when t = 0 or searching is not done. To generate a new BTt, an additional
threshold is required. The root node (first node) is important for generating binary trees. If the root
node is incorrect, binary tree generated from the root node can generate large errors. The additional
threshold makes the root node more robust. As written in Equation (6), it is an adaptive threshold.
Because sim(i, j) increases as BTt is generated, threshold must also increase. The adaptive threshold
is the value that divides similarity threshold (δs) by the mean of the sum of root node’s similarities.
In the BTt generated here, i and j are inserted as new nodes. Next, it finds new i and j with the
minimum similarity value again by providing sim(i, j) = ∞ and clustering is repeated the maximum
of Nbc times. Finally, it checks whether to merge between the generated binary trees. If any one of the
nodes in the generated binary trees is the same, they are merged. To merge or not, all the rest of BTt

generated this way become cluster Ct with the basic clusters. For example, in BT5 of Figure 6, because
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all nodes form a basic cluster, C5 = {7,6,60,42,28,44}. The clusters Ct generated this way finally undergo
cluster verification.

Figure 6. Example of binary search tree (t = 5). The circles in blue indicate the nodes in BTt and the
oval in purple indicate two candidate node {i = 8, j = 35}. (a) Node 8 is searched in BT0 (red dotted
arrow and circle); (b) Node 35 is inserted as a new leaf node in BT0 (red solid arrow and red number in
the circle).

3.2.4. Cluster Verification

Finally, in the matching method, the cluster verification step determines the suitability of the
clusters Ct obtained as described earlier. This step is required because even if a cluster is agglomerated
by the geometric similarity between the basic clusters, there is still the possibility of error. In particular,
this must be considered when the cluster area is too small when the possibility of error is high. Figure 7
gives examples of mismatching results without using cluster verification, where the cluster area is too
small compared to the entire image area.

Figure 7. Examples of mismatching results without using cluster verification.
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Cluster Verification
cluster Ct, t = 0
areaimg1 = entire reference image(=img1) area
areaimg2 = entire query image(=img2) area
repeat
{cvimg1, cvimg2} = find each convex-hull in Ct
ratioimg1 = (calculate area of cvimg1)/areaimg1
ratioimg2 = (calculate area of cvimg2)/areaimg2

qmin = min(ratioimg1, ratioimg2)
qratio = qmin/max(ratioimg1, ratioimg2)
qsize = the number of elements in Ct

if qmin > τmin and qratio > τratio
and qsize > τsize then {Ct is TRUE}
t = t + 1

until t = = Ncluster

The previous pseudocode shows the proposed cluster verification step. Cluster verification
obtains the determination criteria based on the ratio between the entire image area and the cluster area.
The cluster area is calculated by obtaining a convex hull from the positions of the feature points.
Here, the feature points can be obtained from the indices that correspond to each element of cluster Ct.
Using the ratio that can be obtained from both the reference and query images, the minimum value
qmin and ratio qratio of the minimum and maximum values are obtained. As another criterion, qsize,
the number of elements of Ct, is obtained. These three determination criteria and respective thresholds,
τmin, τratio, and τsize, are compared, and when they are all larger than the respective thresholds,
the pertinent cluster Ct is determined to be suitable. If at least one is determined to be suitable from
the clusters, Ct, two images are finally determined to be matching.

4. Experiment

4.1. Experiment Conditions

To evaluate the matching performance, an experiment was performed with five types of
image sets. Among these, two types were image sets that contain actual deformable objects, and the
other three types were image sets where the images become artificially deformable using TPS
(Thin-Plate-Spline). As shown in Figure 8, the image sets that contain actual deformable objects
were composed of clothes and snack packs, which are commonly encountered in real life. For the
image sets that uses TPS, Stanford University’s SMVS standard images [32] and some of the ImageNet’s
Natural images (flowers, trees, leaves,) [33] and Oxford University’s buildings images [34] were used.
In the image set, the reference images were constructed with those images where a feature that could
represent an object appears at the front. In the case of query images, they were constructed with
the images of clothes where a person wears the clothes in various poses; images of snack packs,
where various deformations are applied due to the contents in the snack packs; and SMVS and
IN-N (ImageNet’s Natural), and Oxbuild (Oxford building images), where warping is applied based
on several arbitrary points using TPS. Table 1 lists the composition of the five types of image sets.
The annotations consist of images, matching pairs of images, and non-matching pairs of images.
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Figure 8. Examples of reference and query (deformable) images: (a) clothes; (b) snack packs; (c) SMVS
(using TPS); (d) IN-Natural (using TPS); and (e) Oxbulid (using TPS).

Table 1. Configuration of image set.

Image Set Annotations

Clothes
1250 images

996 matching pairs of images
4233 non-matching pairs of images

Snack packs
400 images

300 matching pairs of images
3000 non-matching pairs of images

SMVS (using TPS)
20,400 images

6576 matching pairs of images
7805 non-matching pairs of images

IN-N (using TPS)
1246 images

623 matching pairs of images
5598 non-matching pairs of images

Oxbuild (using TPS)
5063 images

5063 matching pairs of images
20,252 non-matching pairs of images
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To measure the proposed algorithm performance, TPR (True Positive Rate) in Equation (7) and
FPR (False Positive Rate) in Equation (8) were used. TPR is an equation for finding the robustness
among the algorithm characteristics; a larger value indicates better performance. On the other hand,
FPR is an equation for finding the independence among the algorithm characteristics; a smaller value
indicates better performance. TPR was obtained from the matching pairs of images in Table 1, and FPR
is obtained from the non-matching pairs of images in Table 1. The accuracy defined in Equation (9)
represents the relationship between TPR and FPR for an objective comparison. Finally, the matching
time was measured to determine the fast matching speed.

The proposed algorithm use SIFT [1] for feature extraction like the common comparison
algorithms such as ACC [21], IACC [22], and RANSAC [5]. By doing this, we can compare the
performance of matching method under the same conditions. In addition, SIFT showed better
performance compared with the other feature descriptors such as SURF and BRISK in our experiment
which is consistent with other findings [35,36] for images with various deformations. Although SIFT
has slower speed for extracting features, it was determined to be an appropriate choice for the
feature descriptor.

Here, the experiment was performed by applying all the major parameters required for feature
extraction in SIFT. The thresholds for cluster verification were fixed as τmin= 0.001, τratio= 0.5, τsize= 3.

TPR =
TP

TP + FN
=

TP
P

(7)

FPR =
FP

FP + TN
=

FP
N

(8)

Accuracy =
TP + TN

P + N
(9)

For performance test, we used an Intel Core i5-2500 (quad core) CPU with the clock speed of
3.3 GHz and 8 GB RAM running the Windows 7(64-bit). In addition, all algorithms are implemented
in the C ++ environment.

4.2. Experiment Results

Table 2 presents the average computational time and memory storage required to build and
use binary trees. Compared with non-binary tree case, when δs increases, the algorithm runs faster;
when δs is above 30, it is faster than non-binary tree case. Since average memory storage required
to build binary trees occupies a small part of the whole memory, it is determined to be better to use
binary trees.

Table 2. Requirements of the computational time and memory storage about binary tress.

δs
Non-Binary Tree Use of Binary Trees

Average Time (ms) Average Time (ms) Average Memory (MB)

1 0.004 0.005 0.257
10 0.236 0.266 3.876
20 0.753 0.776 5.935
30 1.501 1.439 7.472
40 2.548 2.366 8.747
50 3.784 3.366 9.784

Figure 9 presents the top three values of accuracy (A1, A2, A3) for each algorithm using
Equation (9). These are the results of experimenting with the image set of clothes, snack packs,
SMVS (using TPS), IN-N (using TPS) and Oxbuild (using TPS). In the case of RANSAC, the accuracies
were very low because it is not an algorithm suitable for images with deformable objects. The other
algorithms showed better performance with the proposed algorithm showing the best performance.
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Figure 10 presents the recall vs. precision curve using similarity threshold (δs) in each image set.
The proposed algorithm outperformed the other algorithms, especially for high recall values.

Figure 9. Accuracy of the proposed and other algorithms.

Figure 10. Cont.
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Figure 10. Recall vs. Precision curve of the proposed and other algorithms.

Tables 3–7 list the matching times for each image set. Here, the matching time means the average
matching time between two images, and the unit is ms (milliseconds). The matching time was obtained
by changing the value of the threshold δs, which is a common parameter of the three algorithms
(δs = 1, 10, 20, 30, 40, and 50). When δs decreases, TPR and FPR become lower. On the other
hand, when δs becomes larger, TPR and FPR become higher. For each algorithm, “match” and
“n_match” are obtained. Here, “match” is the average matching time for the matching pairs of images,
and “n_match” is the average matching time for the non-matching pairs of images. As δs becomes
relatively large, the matching time increases, and the matching time for “match” takes longer than
for “n_match”. “n_match” is faster because there are relatively fewer matching pairs composed from
the feature points, and there are little or no clusters composed. A comparison of the algorithms showed
that the matching time of the proposed algorithm was faster than the other algorithms. In particular,
for “match”, it was approximately 10–70 times faster than the ACC algorithm, and approximately
2–10 times faster than the IACC algorithm. Although there was some difference depending on the
image set, the proposed algorithm’s matching time was the fastest.

Table 8 is a summary of the final results. The values from the table pertain to TPR (Equation (7)),
FPR (Equation (8)), Accuracy (Equation (9)) and time (=matching time) in the case of δs where the
accuracy of each algorithm is highest. Here, “time” is the total average matching time of adding
“match” and “n_match” from Tables 3–7. Comprehensive examination of the results confirms that the
proposed algorithm is superior to the other algorithms.

Table 3. Matching time (ms) on the “clothes” image set.

δs
ACC IACC Proposed

Match n_Match Match n_Match Match n_Match

1 269.60 31.90 57.31 4.39 10.21 4.11
10 777.11 41.78 284.79 6.17 13.08 4.16
20 1113.03 64.06 436.48 8.53 18.80 4.20
30 1227.30 81.64 514.15 10.64 26.52 4.27
40 1334.33 100.00 561.21 12.36 29.65 4.34
50 1365.15 121.29 584.29 13.61 35.32 4.48

Table 4. Matching time (ms) on the “snack packs” image set.

δs
ACC IACC Proposed

Match n_Match Match n_Match Match n_Match

1 62.61 6.03 10.27 5.01 7.64 4.98
10 204.05 6.43 21.05 5.08 8.11 4.97
20 231.66 6.64 23.86 5.17 8.78 4.98
30 244.62 6.80 25.71 5.24 9.38 5.03
40 252.61 6.98 26.74 5.29 10.08 5.01
50 257.75 7.09 27.59 5.32 10.49 4.99
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Table 5. Matching time (ms) on the “SMVS (using TPS)” image set.

δs
ACC IACC Proposed

Match n_Match Match n_Match Match n_Match

1 127.33 10.16 14.43 3.86 6.50 3.38
10 843.84 42.93 105.06 7.53 8.98 3.59
20 1063.17 69.73 142.06 10.68 10.88 3.63
30 1155.25 87.01 157.00 12.99 13.07 3.81
40 1189.76 98.73 164.42 13.53 15.42 3.95
50 1212.29 105.59 170.44 14.31 18.57 4.25

Table 6. Matching time (ms) on the “IN-N (using TPS)” image set.

δs
ACC IACC Proposed

Match n_Match match n_Match Match n_Match

1 62.16 9.26 10.47 3.55 7.77 3.61
10 671.48 31.29 121.12 5.94 10.86 3.66
20 938.00 62.39 198.80 8.75 13.72 3.71
30 1072.40 85.72 240.55 10.60 16.87 3.76
40 1158.80 102.34 261.71 11.59 20.04 3.88
50 1208.94 113.75 280.67 12.63 22.93 3.87

Table 7. Matching time (ms) on the “Oxbuild (using TPS)” image set.

δs
ACC IACC Proposed

Match n_Match match n_Match Match n_Match

1 115.44 22.67 34.61 9.68 21.09 7.14
10 1102.45 96.69 283.84 16.29 28.76 7.37
20 1518.45 177.52 405.74 23.83 32.11 7.42
30 1740.47 241.87 455.43 29.62 37.32 7.66
40 1826.40 278.72 486.04 32.35 44.66 7.85
50 1907.35 309.01 501.31 35.28 52.92 8.09

Table 8. Experiment results (TPR, FPR, Accuracy, and time (ms)).

Image Set Result RANSAC ACC IACC Proposed

clothes

TPR 0.319 0.701 0.689 0.807
FPR 0.401 0.012 0.009 0.010

Accuracy 0.546 0.934 0.933 0.955
time (ms) 71.98 358.22 126.21 14.77

Snack packs

TPR 0.317 0.773 0.777 0.847
FPR 0.436 0.003 0.005 0.004

Accuracy 0.541 0.976 0.975 0.983
time (ms) 28.77 28.89 7.31 5.47

SMVS (using TPS)

TPR 0.983 0.923 0.923 0.948
FPR 0.750 0.034 0.021 0.023

Accuracy 0.585 0.946 0.954 0.963
time (ms) 39.23 611.61 85.70 10.80

IN-N (using TPS)

TPR 0.852 0.669 0.659 0.775
FPR 0.740 0.006 0.004 0.007

Accuracy 0.566 0.961 0.962 0.971
time (ms) 37.06 198.18 34.95 4.71

Oxbuild (using TPS)

TPR 0.832 0.753 0.775 0.830
FPR 0.858 0.012 0.011 0.011

Accuracy 0.494 0.941 0.946 0.957
time (ms) 69.45 539.59 114.79 13.59

Figure 11 presents examples that show the matching results using the proposed algorithm,
where red convex hull indicates a suitable cluster.
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Figure 11. Examples of matching results using proposed algorithm.

5. Conclusions

In this paper, a new matching algorithm between images with deformable objects was proposed.
A matching algorithm can be called a good algorithm if three aspects, i.e., robustness, independence,
and fast matching, are excellent. Among these aspects, slow matching is the most significant weakness
of conventional deformable object matching algorithms. To resolve this weakness, the speed was
dramatically improved by reducing the complexity using the feature selection and BST (Binary Search
Tree) clustering. The matching results were reliable because the suitability of the composed clusters is
determined by the cluster verification step.

The experiment was performed using image sets with various deformable characteristics.
As a result, while showing better TPR and FPR performance, compared to conventional algorithms,
the proposed algorithm achieves 2–60 times faster matching speed than the conventional algorithms.
Fast matching is a very important characteristic because image matching is used for content-based
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image retrieval. Therefore, the algorithm proposed in this paper can be used more effectively than the
conventional algorithms in deformable object-contained image retrieval.
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Abstract: Inspired by the generalized entropies for graphs, a class of generalized degree-based graph
entropies is proposed using the known information-theoretic measures to characterize the structure
of complex networks. The new entropies depend on assigning a probability distribution about the
degrees to a network. In this paper, some extremal properties of the generalized degree-based graph
entropies by using the degree powers are proved. Moreover, the relationships among the entropies
are studied. Finally, numerical results are presented to illustrate the features of the new entropies.

Keywords: network; information theory; entropy measure; graph entropy; generalized degree-based
graph entropy; degree powers

1. Introduction

Nowadays, the research of complex networks has attracted many researchers. One interesting and
important problem is to study the network structure by using different graph and network measures.
Meanwhile, these graph and network measures have been widely applied in many different fields,
such as chemistry, biology, ecology, sociology and computer science [1–7]. From the viewpoint of
information theory, the entropy of graphs was initiated to be applied by Mowshowitz [8] and Trucco [9].
Afterwards, Dehmer introduced graph entropies based on information functionals which capture
structural information and studied their properties [10–12]. The graph entropies have been used as the
complexity measures of networks and measures for symmetry analysis. Recently, so-called generalized
graph entropies have been investigated by Dehmer and Mowshowitz [13] for better analysis and
applications such as machine learning. The generalized graph entropies can characterize the topology
of complex networks more effectively [14].

The degree powers are extremely considerable invariants and studied extensively in graph
theory and network science, so they are commonly used as the information functionals to explore
the networks [15,16]. To study more properties of graph entropies based on the degree powers,
Lu et al. obtained some upper and lower bounds which have different performances to bound
the graph entropies in different kinds of graphs and showed their applications in structural
complexity analysis [17,18]. Inspired by Dehmer and Mowshowitz [13], we focus on the relationships
between degree powers and the parametric complexity measures and then we construct generalized
degree-based graph entropies by using the concept of the mentioned generalized graph entropies. The
structure of this paper is as follows: In Section 2, some definitions and notations of graph theory and
the graph entropies we are going to study are reviewed. In Section 3, we describe the definition of
generalized degree-based graph entropies which are motivated by Dehmer and Mowshowitz [13].
In Section 4, we present some extremal properties of such entropies related to the degree powers.
Moreover, we give some inequalities among the generalized degree-based graph entropies. In Section 5,
numerical results of an exemplary network are shown to demonstrate the new entropies. Finally, a
short summary and conclusion are drawn in the last section.
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2. Preliminaries to Degree-Based Graph Entropy

A graph or network G is an ordered pair (V, E) comprising a set V of vertices together with a set
E of edges. In network science, vertices are called nodes sometimes. The order of a graph means the
number of vertices. The size of a graph means the number of edges. A graph of order n and size m is
recorded as an (n, m)-graph. The degree of a vertex v denoted by d(v) or in short dv means the number
of edges that connect to it, where an edge that connects a vertex to itself (a loop) is counted twice.
The maximum and minimum degree in a graph are often denoted by Δ(G) and δ(G). If every vertex
has the same degree (Δ(G) = δ(G)), then G is called a regular graph, or is called a d-regular graph with
vertices of degree d. An unordered pair of vertices {u, v} is called connected if a path leads from u to
v. A connected graph is a graph in which every unordered pair of vertices is connected. Otherwise,
it is called a disconnected graph. Obviously, in a connected graph, 1 ≤ δ(G) ≤ Δ(G) ≤ n − 1. A tree
is a connected graph in which any two vertices are connected by exactly only one path. So tree is a
connected (n, n − 1)-graph. Pn is denoted a path graph characterized as a tree in which the degree of
all but two vertices is 2 and the degree of the two remaining vertices is 1. Sn is denoted a star graph
characterized as a tree in which the degree of all but one vertex is 1. More details can be seen in [17,18].

Next, we describe the concept of (Shannon’s) entropy [19,20]. The notation “log” means the
logarithm is based 2, and the notation “ln” means the logarithm is based e.

Definition 1. Let p = (p1, p2, · · · , pn) be a probability distribution, namely, 0 ≤ pi ≤ 1 and
n
∑

i=1
pi = 1.

The (Shannon’s) entropy of the probability distribution is defined by

H(p) := −
n

∑
i=1

pi log pi.

In the above definition, we use 0 log 0 = 0 for continuity of corresponding function.

Definition 2. Let G = (V, E) be a graph of order n. For vi ∈ V, we define

p(vi) :=
f (vi)

∑n
j=1 f (vj)

,

where f is a meaningful information functional. According to the information functional f , the vertices are
mapped to the non-negative real numbers.

Because ∑n
i=1 p(vi) = 1, the quantities p(vi) can be seen as probability values. Then the graph

entropy of G has been defined as follows [10,12,17,18].

Definition 3. Let G = (V, E) be a graph of order n and f be a meaningful information functional.
The (Shannon’s) graph entropy of G is defined by

I f (G) := −
n

∑
i=1

f (vi)

∑n
j=1 f (vj)

log
f (vi)

∑n
j=1 f (vj)

.

Definition 4. Let G = (V, E) be a graph of order n. For vi ∈ V, if f (vi) = di, then

p(vi) =
di

∑n
j=1 dj

.

Therefore, the degree-based graph entropy of G is defined as

Id(G) := −
n

∑
i=1

di

∑n
j=1 dj

log
di

∑n
j=1 dj

.
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3. Generalized Degree-Based Graph Entropy

Many generalizations of entropy measure have been proposed based on the definition of
Shannon’s entropy [21,22]. For example, Rényi entropy [23], Daròczy’s entropy [24] and quadratic
entropy [25] are representative generalized entropies. In [13], Dehmer and Mowshowitz introduce
a new class of generalized graph entropies that derive from the generalizations of entropy measure
mentioned above and present two examples.

Definition 5. Let G = (V, E) be a graph of order n. Then

(1). I1
α(G) :=

1
1 − α

log

[
n

∑
i=1

(
f (vi)

∑n
j=1 f (vj)

)α]
, α �= 1;

(2). I2
α(G) :=

1
21−α − 1

[
n

∑
i=1

(
f (vi)

∑n
j=1 f (vj)

)α

− 1

]
, α �= 1;

(3). I3(G) :=
n

∑
i=1

f (vi)

∑n
j=1 f (vj)

[
1 − f (vi)

∑n
j=1 f (vj)

]
.

Definition 6. Let G = (V, E) be a graph of order n and A its adjacency matrix. Denote by λ1, λ2, · · · , λn the
eigenvalues of G. If f (vi) =| λi |, then the generalized graph entropies are as follows:

(1). λI1
α(G) :=

1
1 − α

log

[
n

∑
i=1

(
| λi |

∑n
j=1 | λj |

)α]
, α �= 1;

(2). λI2
α(G) :=

1
21−α − 1

[
n

∑
i=1

(
| λi |

∑n
j=1 | λj |

)α

− 1

]
, α �= 1;

(3). λI3(G) :=
n

∑
i=1

| λi |
∑n

j=1 | λj |

[
1 − | λi |

∑n
j=1 | λj |

]
.

Definition 7. Let G = (V, E) be a graph of order n. Denote the collection of orbits by S = {V1, V2, · · · , Vk}
and their respective probabilities by |V1|

n , |V1|
n , · · · , |Vk |

n , where k is the number of orbits. Then another class of
generalized graph entropies are derived as

(1). oI1
α(G) :=

1
1 − α

log

[
k

∑
i=1

( | Vi |
n

)α
]

, α �= 1;

(2). oI2
α(G) :=

1
21−α − 1

[
k

∑
i=1

( | Vi |
n

)α

− 1

]
, α �= 1;

(3). oI3(G) :=
k

∑
i=1

| Vi |
n

[
1 − | Vi |

n

]
.

Because it is difficult to obtain the eigenvalues or the collection of orbits of graph G for a large-scale
graph, and they may not meet the requirements visually, we focus on the complexity of the graphs
or networks determined by the vertices themselves and the relationship between them in this paper.
For a given graph G, the vertex degree is a significant graph invariant, which is related to structural
properties of the graph. Most other properties of the complex network are based on the degree
distribution, such as the clustering coefficient, the community structure and so on. The vertex degree in
a graph or network is also intuitional and noticeable. The vertices with varying values of degree chosen
as the main construction of the graph or network may decide the complexity of the graph or network.
Hence, we study the generalized graph entropies based on the vertex degree and degree powers.
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According to the above definitions of generalized graph entropies, let f (vi) = di for vi ∈ V,
then we obtain the generalized degree-based graph entropies as follows:

Definition 8.

(1). I1
α,d(G) :=

1
1 − α

log

[
n

∑
i=1

(
di

∑n
j=1 dj

)α]
, α �= 1; (1)

(2). I2
α,d(G) :=

1
21−α − 1

[
n

∑
i=1

(
di

∑n
j=1 dj

)α

− 1

]
, α �= 1; (2)

(3). I3
d(G) :=

n

∑
i=1

di

∑n
j=1 dj

[
1 − di

∑n
j=1 dj

]
. (3)

4. Properties of the Generalized Degree-Based Graph Entropies

In this section, we will show the relationships among the stated generalized degree-based graph
entropies and the degree-based graph entropy. First we will present five simple propositions which
can be inferred from the Rényi entropy and [13].

Proposition 1.

I1
α,d(G) =

1
1 − α

log
[
(21−α − 1)I2

α,d(G) + 1
]

; (4)

I2
α,d(G) =

1
21−α − 1

[
2(1−α)I1

α,d(G) − 1
]

; (5)

I3
d(G) = 1 − 2−I1

2,d(G) =
1
2

I2
2,d(G). (6)

Proof. Noticing that

n

∑
i=1

(
di

∑n
j=1 dj

)α

= 2(1−α)I1
α,d(G) = (21−α − 1)I2

α,d(G) + 1,

we can obtain the Equations (4) and (5). Let α = 2, we have
n
∑

i=1

(
di

∑n
j=1 dj

)2
= 1 − I3

d(G), then the

Equation (6) follows.

Remark 1. Proposition 1 can be seen as a special case of (12) and (16) in [13] when the value of the information
functional is the degree of every vertex.

Proposition 2.
lim
α→1

I1
α,d(G) = lim

α→1
I2
α,d(G) = Id(G) (7)

Proof. Using l’Hôspital’s rule, we can obtain the Equation (7).

Proposition 3. For α ∈ (−∞, 1) ∪ (1,+∞), I1
α,d(G) is monotonically decreasing with respect to α.

Proof. The derivative of the function I1
α,d(G) is

dI1
α,d(G)

dα
= − 1

(1 − α)2

n

∑
i=1

qi log
qi
pi

,
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where qi =
dα

i
∑n

j=1 dα
j
, pi =

di
∑n

j=1 dj
. Then Q = (q1, q2, · · · , qn) and P = (p1, p2, · · · , pn) are also probability

distributions. From the nonnegativity of Kullback-Leibler divergence, we obtain
dI1

α,d(G)

dα ≤ 0.
The inequality implies that I1

α,d(G) is monotonically decreasing with respect to α.

Proposition 4. For α < 1,
I1
α,d(G) ≥ Id(G); (8)

and for α > 1,
I1
α,d(G) ≤ Id(G); (9)

Proof. Using Proposition 2 and Proposition 3, we can obtain the equalities above easily.

Remark 2. Proposition 2, Proposition 3 and Proposition 4 can be seen as the special cases of the Rényi
entropy’s properties.

Proposition 5.
I3
d(G) < ln 2 · Id(G). (10)

Proof. Using the standard inequality ln x < x − 1 when x �= 1, we have
ln di

∑n
j=1 dj

< di
∑n

j=1 dj
− 1. Therefore,

I3
d(G) =

n

∑
i=1

di

∑n
j=1 dj

[
1 − di

∑n
j=1 dj

]
= −

n

∑
i=1

di

∑n
j=1 dj

[
di

∑n
j=1 dj

− 1

]

< −
n

∑
i=1

di

∑n
j=1 dj

ln
di

∑n
j=1 dj

= − ln 2
n

∑
i=1

di

∑n
j=1 dj

log
di

∑n
j=1 dj

= ln 2 · Id(G).

Then the inequality (10) follows.

Next we define the sum of the α-th degree powers as Dα :=
n
∑

i=1
di

α, where α is an arbitrary

real number.

Theorem 1. Let G(n, m) be an (n, m)-graph. Then for α �= 1, we have

(1). I1
α,d(G) =

1
1 − α

log
Dα

(2m)α
; (11)

(2). I2
α,d(G) =

1
21−α − 1

[
Dα

(2m)α
− 1
]

; (12)

(3). I3
d(G) = 1 − D2

(2m)2 . (13)

Proof. By substituting ∑n
i=1 di = 2m into the Equations (1)–(3), we have

I1
α,d(G) =

1
1 − α

log

[
n

∑
i=1

(
di

2m

)α
]
=

1
1 − α

log

[
n

∑
i=1

di
α

(2m)α

]

=
1

1 − α
log

[
1

(2m)α

n

∑
i=1

di
α

]
=

1
1 − α

log
[

Dα

(2m)α

]
;
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I2
α,d(G) =

1
21−α − 1

[
n

∑
i=1

(
di

2m

)α

− 1

]
=

1
21−α − 1

[(
n

∑
i=1

di
α

(2m)α

)
− 1

]

=
1

21−α − 1

[
1

(2m)α

(
n

∑
i=1

di
α

)
− 1

]
=

1
21−α − 1

[
Dα

(2m)α
− 1
]

;

I3
d(G) =

n

∑
i=1

di
2m

[
1 − di

2m

]
=

1
(2m)2

n

∑
i=1

di(2m − di)

=
1

(2m)2

[(
2m

n

∑
i=1

di

)
−

n

∑
i=1

di
2

]
=

1
(2m)2

[
(2m)2 − D2

]

= 1 − D2

(2m)2 .

So the Equations (11)–(13) hold.

From the above theorem, we know that the generalized degree-based graph entropies are closely
related to the sum of the degree powers Dα. Obviously when α = 1, D1 = ∑n

i=1 di = 2m presents the
sum of degrees. The sum of the degree powers as an invariant is called zeroth order general Randić
index [26–29]. For α = 2, D2 is also called first Zagreb index [30–33]. In [34], Chen et al. have reviewed
Dα for different values of α and discussed the relationships with some indices such as Zagreb index,
graph energies, HOMO-LUMO index, Estrada index [35–43].

Corollary 1. Let G(n, m) be an (n, m)-graph. Then we have

1 − 2m + (n − 1)(n − 2)
4m(n − 1)

≤ I3
d(G) ≤ 1 − 1

n
.

Proof. Using Cauchy-Buniakowsky-Schwarz inequality, we obtain

D2 =
n

∑
i=1

di
2 ≥ 1

n

(
n

∑
i=1

di

)2

=
(2m)2

n
.

In [44] de Caen obtains the following inequality

D2 =
n

∑
i=1

di
2 ≤ m

(
2m

n − 1
+ n − 2

)
.

So from Equation (13), we have

1 − m
(2m)2

(
2m

n − 1
+ n − 2

)
≤ 1 − D2

(2m)2 ≤ 1 −
(2m)2

n
(2m)2 ,

or equivalently,

1 − 2m + (n − 1)(n − 2)
4m(n − 1)

≤ I3
d(G) ≤ 1 − 1

n
.

We can also find some conditions for the equalities: If G is a regular graph, then the equality
I3
d(G) = 1 − 1

n holds; If G is a tree of order n, then the equality 1 − 2m+(n−1)(n−2)
4m(n−1) holds.

Corollary 2. Let T be a tree of order n. Then we have

I3
d(Sn) ≤ I3

d(T) ≤ I3
d(Pn),

where Sn and Pn denote the star graph and path graph of order n, respectively.
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Proof. In [45], Li and Zhao present that among all trees of order n, for α > 1 or α < 0, the path
graph and the star graph attain the minimum and maximum value of Dα respectively; while for
0 < α < 1, the star graph and the path graph attain the minimum and maximum value of Dα

respectively. Then using the Equation (13), the result of the corollary is obtained.

Theorem 2. When α < 1, we have I1
α,d(G) < 21−α−1

(1−α) ln 2 I2
α,d(G); and when α > 1, we have I1

α,d(G) >

21−α−1
(1−α) ln 2 I2

α,d(G). Especially, when α = 0, we have I1
α,d(G) =

log n
n−1 I2

α,d(G).

Proof. First we define a new function on α on the set of real numbers R as follows

f (α) =
Dα

(2m)α
=

n
∑

i=1
di

α

(2m)α
.

Because straightforward derivative shows

d
dα

f (α) =
1

(2m)α

[(
n

∑
i=1

di
α ln di

)
− ln(2m)

(
n

∑
i=1

di
α

)]

≤ 1
(2m)α

[
ln(Δ(G))

(
n

∑
i=1

di
α

)
− ln(2m)

(
n

∑
i=1

di
α

)]

=
ln(Δ(G))− ln(2m)

(2m)α

n

∑
i=1

di
α < 0 (by Δ(G) < 2m),

we can claim that f (α) is a strictly decreasing function on α.
For f (1) = 1, we have

Dα

(2m)α
=

n
∑

i=1
di

α

(2m)α
=

{
> 1, α < 1;

< 1, α > 1.

Using the standard inequality ln x < x − 1 when x �= 1, we find ln 2 · log Dα
(2m)α < Dα

(2m)α − 1 when
α �= 1.

Therefore, for α < 1, we have

I1
α,d

I2
α,d

=

1
1−α log Dα

(2m)α

1
21−α−1

[
Dα

(2m)α − 1
] <

1
(1−α) ln 2

[
Dα

(2m)α − 1
]

1
21−α−1

[
Dα

(2m)α − 1
] =

21−α − 1
(1 − α) ln 2

.

For α > 1, we have

I1
α,d

I2
α,d

=

1
1−α log Dα

(2m)α

1
21−α−1

[
Dα

(2m)α − 1
] >

1
(1−α) ln 2

[
Dα

(2m)α − 1
]

1
21−α−1

[
Dα

(2m)α − 1
] =

21−α − 1
(1 − α) ln 2

.

Especially, when α = 0, I1
α,d = log n and I2

α,d = n − 1. So I1
α,d(G) =

log n
n−1 I2

α,d(G) holds in
this case.

Corollary 3. When 0 ≤ α < 1, we have I1
α,d(G) < 1

ln 2 I2
α,d(G).

Proof. First we define a new function on α on the set of real numbers R as follows

g(α) = 21−α − 1 − (1 − α).
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Because the second order derivative shows

d2

dα2 g(α) = 21−α(ln 2)2 > 0,

we can claim that g(α) is a convex function on α. Since g(0) = g(1) = 0, we find 21−α − 1 ≤ 1 − α

for 0 ≤ α < 1, or equivalently 0 < 21−α−1
1−α ≤ 1 for 0 ≤ α < 1. Using Theorem 2, the inequality

I1
α,d(G) < 1

ln 2 I2
α,d(G) holds.

Theorem 3. When α < 1 and 1 < α < 2, we have I3
d(G) > (1 − 21−α)I2

α,d(G); when α > 2, we have
I3
d(G) < (1 − 21−α)I2

α,d(G); and when α = 2, we have I3
d(G) = (1 − 21−α)I2

α,d(G) = 1
2 I2

α,d(G).

Proof. First we have

I2
α,d(G)− I3

d(G) =
1

21−α − 1

[
Dα

(2m)α
− 1
]
−
[

1 − D2

(2m)2

]

=
1

1 − 21−α

[
1 − Dα

(2m)α

]
−
[

1 − D2

(2m)2

]
,

and f (α) = Dα
(2m)α is a strictly decreasing function on α.

Therefore, for α < 1, f (α) > f (2) and 1
1−21−α < 0 are obtained. Then we have

I2
α,d(G)− I3

d(G) >
1

1 − 21−α

[
1 − D2

(2m)2

]
−
[

1 − D2

(2m)2

]

=

(
1

1 − 21−α
− 1
) [

1 − D2

(2m)2

]
=

(
1

1 − 21−α
− 1
)

I3
d(G)

This implies I3
d(G) > (1 − 21−α)I2

α,d(G).
For 1 < α < 2, f (α) > f (2) and 1

1−21−α > 0 are obtained. Then we have

I2
α,d(G)− I3

d(G) <
1

1 − 21−α

[
1 − D2

(2m)2

]
−
[

1 − D2

(2m)2

]

=

(
1

1 − 21−α
− 1
) [

1 − D2

(2m)2

]
=

(
1

1 − 21−α
− 1
)

I3
d(G)

This implies I3
d(G) > (1 − 21−α)I2

α,d(G).
For α = 2, using (6) we have I3

d(G) = (1 − 21−α)I2
α,d(G) = 1

2 I2
α,d(G).

For α > 2, f (α) < f (2) and 1
1−21−α > 0 are obtained. Then we have

I2
α,d(G)− I3

d(G) >
1

1 − 21−α

[
1 − D2

(2m)2

]
−
[

1 − D2

(2m)2

]

=

(
1

1 − 21−α
− 1
) [

1 − D2

(2m)2

]
=

(
1

1 − 21−α
− 1
)

I3
d(G)

This implies I3
d(G) < (1 − 21−α)I2

α,d(G). Thus we complete the proof.

Corollary 4. When α ≥ 2, we have I3
α(G) < I2

α,d(G).

Proof. For 1 − 21−α < 1, we have the result by using Theorem 3 .

Theorem 4. When α < 1, we have I1
α,d(G) > 1

ln 2 · I3
d(G); when 1 < α < 2, we have I1

α,d(G) < 1
(α−1) ln 2 ·

I3
d (G)

1−I3
d (G)

; and when α ≥ 2, we have I1
α,d(G) > 1

(α−1)·ln 2 I3
d(G).
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Proof. For α < 1, using (8) and (10) we have I1
α,d(G) > 1

ln 2 · I3
d(G).

For 1 < α < 2, f (α) > f (2) and 1
α−1 > 0 are obtained. Then we have

I1
α,d(G)

I3
d(G)

=

1
1−α log Dα

(2m)α

1 − D2
(2m)2

<

1
1−α log D2

(2m)2

1 − D2
(2m)2

=
1

(α − 1) ln 2
· ln (2m)2

D2

1 − D2
(2m)2

Using the standard inequality ln x < x − 1 when x �= 1, we find ln (2m)2

D2
< (2m)2

D2
− 1. So

I1
α,d(G)

I3
d(G)

<
1

(α − 1) ln 2
·
(2m)2

D2
− 1

1 − D2
(2m)2

=
1

(α − 1) ln 2
· 1

D2
(2m)2

=
1

(α − 1) ln 2
· 1

1 − I3
d(G)

.

This implies I1
α,d(G) < 1

(α−1) ln 2 · I3
d (G)

1−I3
d (G)

.

For α ≥ 2, using Theorem 2 and Theorem 3 we have I1
α,d(G) > 21−α−1

(1−α) ln 2 I2
α,d(G) and I3

d(G) ≤
(1 − 21−α)I2

α,d(G). This implies I1
α,d(G) > 1

(α−1)·ln 2 I3
d(G). Thus we complete the proof.

5. Numerical Results

In order to illuminate the principle of generalized degree-based graph entropies, we show a
network in Figure 1 as an example.

Figure 1. A simple network for example.

The degree of each node of the example network is shown in Table 1.

Table 1. The degree of each node of the example network.

node number 1 2 3 4 5 6 7 8 9 10 11
degree 3 3 3 2 5 3 5 3 1 4 2

node number 12 13 14 15 16 17 18 19 20 21
degree 3 2 2 6 2 3 4 4 3 3

We can easily calculate I3
d(G) = 0.946. The details of I1

α,d(G) and I2
α,d(G) with different α are

shown in Table 2.

Table 2. The generalized degree-based graph entropies I1
α,d(G) and I2

α,d(G) of the example network.

The Value of α −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

I1
α,d(G) 4.505 4.447 4.392 4.342 4.294 4.249 4.206 4.165 4.127 4.090 4.056

I2
α,d(G) 171.633 55.146 20.000 8.457 4.294 2.631 1.892 1.527 1.329 1.214 1.143

406



Symmetry 2017, 9, 29

In Table 2 that the value of α is equal to 1.0 means α → 1. Then I1
α,d(G) and I2

α,d(G) are degenerated
to the degree-based graph entropy Id(G) = 4.294.

It is clear that following the increase of the value of α, the values of the generalized degree-based
graph entropies I1

α,d(G) and I2
α,d(G) of the complex network are decrease. Based on the concept of the

entropy, the bigger the value of the entropy is, the more complex of the network is. From the definitions
of I1

α,d(G) and I2
α,d(G), the value of the entropic index α can be used to change the construction of the

entropies. In other words, the value of α represents the relationship among the nodes in the complex
network. Combined with the complex network, the influence of each node’s degree on the entropies is
changed by the value of α. The relationship between the value of α and the entropies of the complex
network is shown as follows:

(1) When α < 1, the nodes with small value of degree play an important part in the construction
of I1

α,d(G) and I2
α,d(G), or they are chosen as the main construction of the complex networks.

Especially when the value of α = 0, each node has the same influence on the whole network from
the entropic point of view.

(2) When α → 1, the influence of each node on the network is based on the value of degree for each
node. The generalized degree-based graph entropies I1

α,d(G) and I2
α,d(G) are degenerated to the

degree-based graph entropy Id(G). So the structure property determined by the node’s degree
decides the complexity of the complex network.

(3) When α > 1, the nodes with big value of degree play an important part in the construction
of I1

α,d(G) and I2
α,d(G), or they are chosen as the main construction of the complex networks.

The values of the entropies tend to stabilization. The complex network is tended to orderly.

To sum up, according to the definition of the generalized degree-based graph entropies of the
complex network, the value of the entropic index α is used to describe the different relationship among
the nodes. When the value of α is smaller than 1, the nodes with small value of degree are more
important than the nodes with big value of degree. The edges among those nodes with small value
of degree become the main part of the complex network. As these nodes with small value of degree
are the majority in the complex network, the whole network has greater complexity. When the value
of α is equal to 0, the nodes in the network are equal to each other in terms of influence. When the
value of α tends to 1, I1

α,d(G) and I2
α,d(G) are degenerated to Id(G), the level of complexity for the

complex network is decided by the structure property. In other words, the complexity of the complex
network is decided by the degree sequence and degree distribution. When the value of α is trended
to ∞, the construction of the complex network is decided by the node which has a biggest value of
degree, the values of I1

α,d(G) and I2
α,d(G) decrease to stable values, and the complex network is more

orderly. The complexity of the complex network is not only decided by the structure of the complex
network, but also influenced by the kind of the relationship between each node.

From Figure 2, we can see the plotted values of the generalized degree-based graph entropies
I1
α,d(G), I2

α,d(G) and I3
d(G) relative to α (I1

α,d(G), I2
α,d(G) with a pole at α = 1). The numerical results

can be interpreted as follows: First we observe that the value of I1
α,d(G) is less than that of I2

α,d(G)

for α < 1, while the value of I1
α,d(G) is larger than that of I2

α,d(G) for α > 1. Next, for I1
α,d(G) ,

I2
α,d(G) and I3

d(G), we can have the values of I1
α,d(G) and I2

α,d(G) is always larger than that of I3
d(G).

Actually, using l’Hôspital’s rule we have that the value of I1
α,d(G) tends to 3.459 and the value of I2

α,d(G)

tends to 1 when α tends to +∞. At last, all the curves verify the inequalities in the Section 4.
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Figure 2. I1
α,d(G)(red), I2

α,d(G)(blue) and I3
d (G)(green) versus α. (I1

α,d(G), I2
α,d(G) with a pole at α = 1).

In addition, generalized graph entropy measures with parameters have been presented to be
useful in studying the complexity associated with machine learning. For example, Dehmer et al.
have described that the generalized graph entropies can be applied to the graph classification and
clustering cases in machine learning. The applications involve optimizing particular parameters
associated with graphs or networks in given sets [4,46]. So by applying supervised machine learning
methods, the generalized degree-based entropies can be used for classifying the chemical structures,
developing methods for characterizing predictive models according to optimal values of relevant
parameters in bioinformatics, systems biology, and drug design.

6. Summary and Conclusions

In this paper , we studied the generalized degree-based graph entropies, which are inspired by
Dehmer and Mowshowitz in [13] and derived from the Rényi entropy [23], Daròczy’s entropy [24] and
quadratic entropy [25]. We studied the relationships between the sum of the degree powers and the
new entropies. Then we examined the extremal values of the above stated entropies in terms of the
sum of the degree powers. We also proved some inequalities between these generalized degree-based
graph entropies. Finally, we obtained numerical values for an exemplary complex network for each
of the entropies, and concluded that their parameters can influence which kind of nodes contribute
to the main part of the network in terms of graph entropy theory. The generalized degree-based
graph entropies expand the description methods of the structural complexity of the complex networks.
They would play bigger roles in describing structural symmetry and asymmetry in real networks in
the future.
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Abstract: Background: An accurate and automatic computer-aided multi-class decision support
system to classify the magnetic resonance imaging (MRI) scans of the human brain as normal,
Alzheimer, AIDS, cerebral calcinosis, glioma, or metastatic, which helps the radiologists to diagnose
the disease in brain MRIs is created. Methods: The performance of the proposed system is validated by
using benchmark MRI datasets (OASIS and Harvard) of 310 patients. Master features of the images are
extracted using a fast discrete wavelet transform (DWT), then these discriminative features are further
analysed by principal component analysis (PCA). Different subset sizes of principal feature vectors
are provided to five different decision models. The classification models include the J48 decision tree,
k-nearest neighbour (kNN), random forest (RF), and least-squares support vector machine (LS-SVM)
with polynomial and radial basis kernels. Results: The RF-based classifier outperformed among all
compared decision models and achieved an average accuracy of 96% with 4% standard deviation,
and an area under the receiver operating characteristic (ROC) curve of 99%. LS-SVM (RBF) also
shows promising results (i.e., 89% accuracy) when the least number of principal features was used.
Furthermore, the performance of each classifier on different subset sizes of principal features was
(80%–96%) for most performance metrics. Conclusion: The presented medical decision support
system demonstrates the potential proof for accurate multi-class classification of brain abnormalities;
therefore, it has a potential to use as a diagnostic tool for the medical practitioners.

Keywords: computer aided diagnostic system; neuroimaging; brain magnetic resonance imaging
(MRI); multi-classification; medical imaging

1. Introduction

In this modern era, different advanced imaging modalities (e.g., X-rays, computerized tomography
(CT) scans, positron emission tomography (PET), single-photon emission computerized tomography
(SPECT), and magnetic resonance imaging (MRI)) are used in neurology and basic neuroscience fields.
In X-rays and CT scans, the patients are exposed in ionizing radiation waves which may increase the
risk of developing cancers, whereas PET and SPECT use radioactive tracers, with minimal exposure to
harmful radiation. However, MRI is a non-invasive, dominant, and flexible modality to investigate
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the pathological conditions of the brain and other body parts. The common practice to identify the
brain abnormalities is done by MRI. MRI scans provide high contrast and high spatial resolution
images, which enables to differentiate the characteristics of the soft tissues. Magnetic resonance (MR)
image texture is used to distinguish between the healthy and diseased anatomy. Brain MR images
having any diseased (such as Alzheimer, AIDS dementia, cerebral calcinosis, glioma, or metastatis)
are categorized by large cells and high contrast, which can be identified by abrupt changes in the
images [1,2]. In recent years, machine learning techniques have been widely employed in the medical
domain to support decision-making [3–10]. Moreover, medical decision support systems are in high
demand to automatically detect these abrupt changes properly and classify the brain MRI as normal
or any class of disease [3,5]. The very large amount of MR imaging data generates complexity to
interpret the full pattern of atrophy by the existing visual inspection method. Therefore, it generates the
requirement of computer-aided diagnosis (CAD) system to identify the specific condition of the brain
MRI and enhance the diagnostic capabilities of the medical personnel. The radiologists can use these
automated systems as an instrument for diagnosis, pre-surgical, and post-surgical procedures [4,11–22].

Generally, supervised classification methods are used instead of unsupervised methods, because of
better accuracy, for brain MRI classification. There are, commonly, three phases involved in the
implementation of a classifier for medical images: (1) features extraction; (2) feature reduction;
and (3) training/testing of classification models. In the first step, discriminative features are extracted
from brain MR images. Then, in the second step, these features are processed by some feature reduction
technique to reduce the dimensionality of the features, such as PCA, linear discriminant analysis (LDA),
etc. Finally, the reduced principal features are used to train the classifier model and classify the query
images on the bases of these features. Widely-used decision models include naïve Bayes (NB), J48,
random forest (RF), k-nearest neighbor (kNN), and support vector machine (SVM).

Recently, various feature selection schemes and machine learning decision models for brain MRI
classification have been proposed. In [6,14–19], the authors have used 2D-DWT (two-dimensional
discrete wavelet transform) and principal component analysis (PCA) for a features extraction and
selection, respectively. Zhang et al. [14–17] proposed different advanced decision models based
solutions with DWT and PCA techniques in their research and achieved promising results with
some limitations. They used forward neural networks (FNN) with scaled chaotic artificial bee
colony (SCABC) [14], back propagation with conjugate gradient method [15], kernel support vector
machines (KSVM) with Gaussian radial basis function (GRB) [16] and particle swarm optimization
(PSO) [17] as decision models to improve the efficiency of the brain MRI classifier. The schemes
proposed in [18,19], have used feed-forward back propagation artificial neural networks (FP-ANN),
kNN, feedback pulse-coupled neural network (FBPNN) and achieved an average accuracy of 99%
for binary classification of brain MR images. Recently, [20–22] have proposed numerous complex
feature engineering techniques with SVM- and NB-based decision models to enhance the classifier
performance. In [20,21], the authors proposed Ripplet transform and discrete wavelet packet transform,
respectively, instead of DWT for feature extraction. Whereas, the authors proposed wavelet entropy
method in [22] for feature reduction. Wang et al. [23] proposed a different classification scheme by
using dual-tree complex wavelet transform and twin support vector machine for the classification of
pathological brain detection. In [23], the authors have achieved average accuracy of 99.57%. However,
usage of a small number of cases and limited number of disease categories in their datasets are the main
limitation of these works and also their performance is significantly reduced when large datasets are
used. Regardless, the advanced complex methods are used in [20–23], which increases the complexity
of the classifier and consumed relatively higher computational time, are not able to perform well on
large datasets. Conversely, the technique proposed in [6] achieve accurate results for larger datasets;
when using DWT, PCA, and LS-SVM (RBF) for feature extraction, feature reduction and classification,
respectively. In addition, all these schemes [6,14–23] have proposed for binary classification and only
capable to predict normal and abnormal anatomy of a brain MRI. Furthermore, a multi-class brain
MRI classifier has proposed by Zacharaki et al. [24]. The authors extended the scope of the features
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and included age, tumour shape, and ROI (region of interest) as a part of feature sets. This technique
is semiautomatic because ROIs needs to trace manually. In [24], the authors have tested three different
disease classes (i.e., meningioma, glioma, and metastasis) and achieved a mean accuracy about 90%.
The comparison between linear discriminant analysis (LDA), kNN, and non-linear SVM-based decision
models were shown. The main limitation of this technique is that it needs human intervention for
classification. Therefore, the research gap in the development of fully automatic multi-class classifier
with significant accuracy is generated.

The main motivation behind this study is to develop an accurate multi-class brain MRI classifier,
which is capable to diagnose the diseases class in brain MRIs. The proposed multi-class brain MRI
classifier has a potential to classify five different brain diseases. These brain diseases include Alzheimer,
AIDS dementia, cerebral calcinosis, glioma, and metastatsis. The proposed system technique is
composed of three sub-models; master feature extraction, principal feature analysis and decision
models. Fast discrete wavelet transform (DWT) used for extracting the master features from the brain
MR images. The principal feature analysis was done by PCA and different subsets were used to
calculate the efficiency of the multi-class classifier system. In addition, PCA analysis reduced the
dimension of the master features, which also decreases the classification time and complexity of the
classifier. For a comprehensive comparison of decision models’ performance on the multi-classification
of brain MRIs, the proposed research compared five different decision models (J48, kNN, RF,
and LS-SVM with polynomial (Poly) and radial basis functions (RBF)). For comparative analysis
with the proposed system, some of the other published methods from recent literature [6,18,20,21]
were also tested using the same large datasets.

2. Materials and Methods

The proposed classifier for multi-classification is composed of master feature extraction, principal
feature analysis, and classification model blocks, as shown in Figure 1, which illustrates the
methodology of the proposed system. The classifier is constructed and evaluated using two phases:
(1) a training phase, and (2) a testing phase. In the training phase, the classifier is trained by randomly
selected images from the datasets. Once the classifier is trained, then it is capable to classify the
query images. In the testing phase, the query image(s) is/are fed to the trained classifier to classify
the image(s) as normal, Alzheimer, AIDS, cerebral calcinosis, metastatic, or glioma. Furthermore,
a five-fold cross-validation is used in this work to minimize the generalization error.

Figure 1. Methodology of the proposed classifier.
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2.1. Dataset Collection

The benchmark MRI dataset used in this research was collected from ‘Open Access Series of
Imaging Studies (OASIS)’ and ‘Harvard Medical School’ MRI databases to validate the proposed
classification system. This database consists of human brain MRI images in the axial plane.
These datasets were acquired using the following scan parameters: Voxel res: 1.0 × 1.0 × 1.25 (mm3),
Rect. FOV: 256/256, TR: 9.7 (ms), TE: 4.0 (ms), TI: 20.0 (ms), and flip angle: 10◦. The dimensions of the
image are 256 × 256 in a plane-resolution. Three hundred and ten patients’ (men and women) brain
MRI scans were involved to formulate this database.

The brain MR image dataset is composed of healthy and abnormal images. The abnormal image
database has five types of different brain diseases. The abnormal MRI scan images having the following
diseases: Alzheimer’s disease, AIDS dementia, cerebral calcinosis, glioma and metastatic dementia.
A sample image of each class of the images included in the benchmark dataset is shown in Figure 2.

Figure 2. The sample images of healthy and abnormal magnetic resonance imaging (MRI)
(a) normal/healthy; (b) Alzheimer’s disease; (c) AIDS dementia; (d) cerebral calcinosis; (e) glioma;
and (f) metastatic dementia.

The dataset is comprised of 310 brain MR images having 70 healthy (normal), 70 Alzheimer,
50 AIDS, and 40 each for cerebral calcinosis, glioma, and metastasis. The distribution of training and
testing images is shown in Table 1. The ratio of training and testing images, i.e., 70% of the dataset is
used for training and the remaining 30% of the dataset is used for testing purposes. Training images
were used to construct the classifier, whereas testing images were used to evaluate the performance of
the multi-class classifier. In addition, the testing images were unknown to the constructed classifier for
the sake of unbiased evaluation.
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Table 1. The distribution of training and testing images.

Class Total No. of
Images

Total No. of
Training Images

Total No. of
Testing Images

Distribution
(%)

Normal 70 49 21 22.58
Alzheimer 70 49 21 22.58

Aids 50 35 15 16.13
Cerebral Calcinosis 40 28 12 12.90

Glioma 40 28 12 12.90
Metastasis 40 28 12 12.90

2.2. Master Feature Extraction

A MATLAB (R2013a, The Mathworks, Inc. Natick, MA, United States) script was written,
using discrete wavelet transform, to extract the main features of the brain MR images. To improve
the efficiency of a classifier, the master features in the MRI image is needed to be identified properly.
In recent literature [6,14–22,24–27], there are many different algorithms (such as DWT and Ripplet
transform) used to extract the main features of the images. DWT has some advantages over RT,
being less computationally complex and also due to the characteristics of brain MRIs. The sparse
nature of MRIs provides an opportunity to identify the major contributed features of the MR
image by representing it in some sophisticated domains (such as wavelet domains) [28]. Thus,
DWT provides master features, having rich knowledge of the input MR image pattern with less
complex implementation. The master features extracted from the MRI database using DWT has a
potential to increase the capability of the decision making power and complexity of the classifier.
A three-level “Haar” DWT was used to extract the master features of the images in this paper.

2.3. Preparation of the Principal Feature Vector

The main characteristics of any robust and accurate classifier are a selection of the discriminative
features from the dataset and reduce the dimensions of the dataset. Large databases increase the
feature dimensions, which eventually increase the complexity of the classifier and demands excessive
time to classify. Therefore, different feature reduction schemes are used by the researchers to remove
the curse of dimensionality problems in the classifier system [19,29–31].

In this article, the PCA technique was applied on the discriminative features of MR image to
further reduce the dimension of the master features extracted by DWT. PCA preserved the variance by
extracting the linear lower-dimensional representation of the MR image features [32,33]. Therefore,
it extracts the major components of the image (data) and forms the principal feature vector. This leads
to an increase the efficiency of the classifier system.

2.3.1. Feature Subset Sizes

Principal feature vectors are used for decision modelling. However, subsets of the principal
feature vectors were introduced to check the performance trend of the classifier. Subset sizes of 5, 10,
15, and 20 principal components were used to compute the results of the proposed multi-class classifier.

2.4. Classifier Models

Weka toolkit (Version 3.8, University of Waikato, Hamilton, New Zealand) was used to develop
decision models. Principal feature vectors were exported from MATLAB in comma separated
values (CSV) format. Afterwards the CSV data were loaded into Weka for further analysis.
Five different decision models were constructed for performance measures. These five classifiers
were J48, k-nearest neighbour (kNN), random forest (RF), least-square support vector machine with
polynomial kernel (LS-SVM (Poly)), and least-squares support vector machine with radial basis
function kernel (LS-SVM (RBF)).
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2.4.1. J48 Classifier (J48)

J48 is a kind of decision tree algorithm [34]. J48 utilizes the entropy to compute the homogeneity
of a sample. If entropy is zero, then it means that the sample is completely homogeneous and if the
sample is unequally divided, then it has entropy of one. The relative entropy of a given dataset X
having positive and negative class instances is mathematically defined as:

E (X) = −p (P) log2 p (P)− p (N) log2 p (N) (1)

where p (P) and p (N) are related probabilities of positive and negative class, respectively.

2.4.2. K-Nearest Neighbor (kNN)

kNN is also known as a lazy learning non-parametric algorithm. kNN is the simplest classification
algorithm that stores all training instances and uses a Euclidean distance function to classify new
instances (shown in Equation (2)) [35,36]:

√√√√ k

∑
i = 1

(xi − yi)
2 (2)

where x and y are two vectors (trained instance vector and a query vector for classification),
and k represents the number of attributes.

2.4.3. Random Forest (RF)

RF was proposed by UC Berkeley visionary Leo Breiman in 1999 [37]. This algorithm works as a
large collection of decorrelated decision trees using a bagging technique. The RF creates various
sub-training sets from a super training set. A decision tree classifier is constructed from each
sub-training set. At the time of testing, each input vector of the test set is classified by all of the
decision trees in a forest and, finally, the forest is responsible for choosing the classification results;
using either majority votes or averaging the predictions using the equation given below [38]:

f =
1
B

B

∑
b = 1

fb(x) (3)

where B represents the samples/trees, fb is a predictor, and x corresponds to the test point.

2.4.4. Least Squares-Support Vector Machine (LS-SVM)

The SVM classifier is highly influenced by advances in statistical learning theory [39–41].
SVM plays a vital role in the application of object detection [42], face detection [43], handwriting
recognition [44], medical imaging classification [6], and bioinformatics [45]. SVM learns from training
examples. An improved version of SVM, i.e., LS-SVM, was used in this article because of its robustness
and efficiency. Each training instance consists of n number of attributes (x1, x2, · · · , xn) with a
corresponding class label. The nonlinear function estimation can be mathematically presented as:

y = sign [ W′ϕ (x) + b ] (4)

where the high dimensional feature space is represented by ϕ(x), the weight vector is defined by W,
and the bias term is denoted by b. Then, the LS-SVM solution of such an optimization problem can be
obtained as follows (for a deeper introduction of this method, readers can refer to [46–48]):

y(x) = sign

[
N

∑
i = 1

αi yi K(x, xi) + b

]
(5)
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Table 2 provides some of the choices of kernel functions K(xk, xl).

Table 2. Least squares-support vector machine (LS-SVM) kernel functions.

Kernel Expression

Linear K(x, y) = xTy

Polynomial K(x, y) =
(

1 +
xTy
σ2

)d

RBF K(x, y) = exp

{
−‖x − y‖2

σ2

}

2.5. Performance Measures

Recall (sensitivity), precision, F-measure, accuracy, and area under the receiver operating
characteristic (ROC) curve are widely used metrics to determine the performance of the classifiers [49].
The possible outcomes of the proposed classifier can be described as:

TP (True Positive): Number of images correctly diagnosed under any specific class;
TN (True Negative): Number of images correctly rejected by the classifier;
FP (False Positive): Number of images incorrectly identified by the classifier;
FN (False Negative): Number of images incorrectly discarded by the classifier.

For multi-class classification, macro-averaged recall, macro-averaged precision and
macro-averaged F-measure are used to validate the performance of the classifier [49].

RecallM is the average of the each class recall (i.e., the probability of the test finding the positive cases
among all the positive cases of the respective class):

RecallM =

C
∑

i = 1

TPi
TPi + FNi

C
(6)

PrecisionM is the average of the each class precision (i.e., the probability of the test correctly diagnosed
as positive cases given that the number of cases labelled by the system as positive):

PrecisionM =

C
∑

i = 1

TPi
TPi+FPi

C
(7)

F-MeasureM (macro-averaged F-measure) is a weighted combination of the RecallM and PrecisionM.
Mathematically, it is defined as:

F-MeasureM =

(
β2 + 1

)
RecallM × PrecisionM

β2 PrecisionM + RecallM
(8)

Average Accuracy is the fraction of test results predicted as correct among all the classes:

AccuracyAvg =

C
∑

i = 1

TPi + TNi
TPi + FNi + TNi + FPi

C
(9)
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Area under the ROC curve (AUC) is the area occupied by the receiver operating characteristic curve
of each class. It is used to analyse how good any classification model predicts the specific class versus
all other classes:

AUC =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(10)

where C represents the total number of classes. i.e., C = 6. M index represents to macro-averaging.
β = 1 was used in this research.

2.6. Experimental Setup

Separate experiments were conducted on training and testing datasets. PCA with DWT was
applied to extract the discriminative principal feature vectors with four different subset sizes (5, 10,
15, and 20). Four plus four (total of eight) principal feature vector sets were extracted from training
datasets and testing datasets, respectively. To evaluate the performance of the proposed multi-class
classifier using performance metrics; a total of 40 (8 × 5) analyses were performed by applying each of
these 8 feature sets to five different classifier models (J48, kNN, RF, LS-SVM (Poly), and LS-SVM (RBF)).

3. Results and Discussion

3.1. Feature Reduction

In order to extract discriminative and reduced features, fast DWT with PCA was used in this
research. The fast DWT only computes the approximation component of the wavelet features,
which includes the major information of the MR image pattern. By only computing the approximation
component of DWT decomposition, it decreases the size of the MRI images, which eventually reduces
the computation time and complexity of the classifier. Initially, MRI images were 256 × 256 in size.
After applying DWT with a three-level Haar wavelet decomposition (approximation component only)
it changes to 32 × 32. Then PCA was applied on these reduced master feature sets, which allows a
further decrease in the size of the feature sets by extracting the high variance components. In this
article, four different feature subset sizes (5, 10, 15, and 20) were used. For classification purposes,
the classifier used only 0.076%, 0.015%, 0.023%, and 0.031% of the original MR image in preparation of
principal feature of size 5, 10, 15, and 20, respectively. Therefore, the proposed classification system
achieved approximately 99.969% feature reduction while retains the accuracy of the classifier.

3.2. Performance Evaluation

The performance of the proposed multi-class classifier was evaluated in terms of macro-averaged
recall, macro-averaged precision, macro-averaged F-measure, overall accuracy, and AUC of each class.
Figure 3 shows the comparison of different decision models’ performance against the number of
principal features used.

Figure 3a illustrates the macro-averaged recall for each classifier model with respect to the feature
subset sizes. A majority of the classifier models achieved recallM values greater than 81% for any
number of principal components were used. To observe the effect of the feature subset sizes, the results
indicate that the LS-SVM (RBF) classifier model produced fixed 86% recallM without dependence on
feature subset sizes. However, RF and J48 models increase recallM values as the number of principal
feature subset sizes increase and the attained macro-averaged recall values increase to 96% and 87%,
respectively, whereas the remaining classifier models (kNN and LS-SVM (Poly)) were not able to
increase their performance in terms of recallM.
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Figure 3. Performance measures of the proposed multi-class classifiers: (a) macro-averaged recall;
(b) macro-averaged precision; (c) macro-averaged f-measure; and (d) average accuracy.

Figure 3b shows the performance of each classifier model with respect to the number of principal
feature components in terms of macro-averaged precision. From the results, it is observed that a feature
subset size of 10 or more produced precisionM greater than 90% for all five classifier models. However,
the RF model outperformed and achieved precisionM values up to 96% using a feature subset size of 20.
The lowest precisionM was observed in LS-SVM (Poly) for any number of given principal features.

The performance evaluation in terms of macro-averaged F-measure, with respect to the number
of principal components used by the classifiers, is shown in Figure 3c. The results revealed that
the F-measureM generally exceeded 90% for RF and J48 when feature subset size used 10 or more.
However, LS-SVM (RBF) achieved 90% F-measureM values for any combination of feature subsets.
Furthermore, kNN and LS-SVM (Poly) could not able to improve the efficiency significantly in terms
of F-measureM even the number of features was increased.

The overall accuracy of each classifier model was compared (Figure 3d). The average accuracy
of each classifier model exceeded 84% for maximum number of principal components was used.
However, RF improved the average accuracy with increasing the number of features and achieved the
highest accuracy rate (i.e., 96%, standard deviation = 4%) when a plateau of 20 features was reached.
The results again show that LS-SVM (RBF) overall average accuracy was stable and not associated
with increased feature subset sizes. LS-SVM (RBF) provided the best results when the least number
of principal features was used for classification. Furthermore, we found that no significant accuracy
improvement was achieved, for any feature subset sizes, in the case of kNN and LS-SVM (Poly)
decision models.

In Figure 4, the area under the ROC curve for each class was estimated. The results reveal that
all five classifier models achieved AUC 100% with 0% standard deviation for the “Normal” class as
shown in Figure 4a. RF, LS-SVM (RBF), and kNN produced significant results (i.e., 100% AUC with 0%
standard deviation) for the “Alzheimer” class, as depicted in Figure 4b. However, J48 and LS-SVM
(Poly) has a fluctuating trend of AUC for the “Alzheimer” class. The comparison of AUC for the
“AIDS” class is shown in Figure 4c. Only the RF decision model achieved AUC 100% for the “AIDS”
class when using equal to, and more than, a 15 feature subset. Moreover, the remaining four classifier
models exceeded AUC 78% for different sizes of principal feature sets.
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Figure 4. Area under the receiver operating characteristic (ROC) curve for each class: (a) normal;
(b) Alzheimer; (c) AIDS; (d) cerebral calcinosis; (e) glioma; and (f) metastasis.

In Figure 4d,e, a majority of decision models attained AUC > 96% with < 4% standard deviation
for classes “cerebral calcinosis” and “metastasis”, respectively. However, RF and LS-SVM (RBF)
showed AUC 100% with 0% standard deviation for any feature subset order. Figure 4c shows the
AUC performance of the “glioma” class for all analyses. With the exception of RF and kNN models,
all AUC measures were below 85% for any number of principal features and decision models. However,
the AUC values measured for the RF and kNN models were greater than 95% when keeping the feature
subset size more than equal to 15. The maximum AUC value achieved for “glioma” class by the RF
model was 99% with 1% standard deviation.

The overall comparison results of decision models with different number of principal features
subset showed that RF performed significantly better than other four decision models (J48, kNN,
LS-SVM (Poly), and LS-SVM (RBF)). However, RF has not performed well when the lesser number
of features is used, but its performance gradually increases as the size of the feature sets increased.
It is also notable that increasing the number of principal features may not always be worthy because
the complexity of the machine learning classifier may be increased by using larger feature subset
sizes. Therefore, from the results it is observed that RF required at least 15 features to achieve better
performance in terms of accuracy, precisionM, recallM, F-measureM, and AUC. On the other hand,
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the overall comparison also reveals that LS-SVM (RBF) achieved significant performance regardless
of the feature set size. LS-SVM (RBF) achieved a constant performance trend for any number of
principal features used, which leads to a decrease in the computational time and complexity of the
multi-class classifier.

3.3. Comparison with Existing State-of-the-Art Classification Schemes

Different classification schemes were compared to evaluate the proposed multi-class classifier
performance, which were examined for the same MRI dataset and on the same platform for multi-class
brain MRI classification. Initially, these methods [6,18,20,21] were proposed for binary classification of
brain MR images. The average accuracy results (when using 20 principal features) were gathered for
each scheme, as presented in Table 3.

Table 3. Performance comparison with different classification schemes.

Scheme Proposed in Average Accuracy (%)

DWT + PCA + kNN [18] 83.87
RT + PCA + LS-SVM (RBF) [20] 86.02

DWPT + GEPSVM [21] 88.92
DWT + PCA + LS-SVM (RBF) [6] 89.25

DWT + PCA + RF this paper 95.70

The results reveal that the highest accuracy (i.e., 95.7%) for multi-class brain MRI classification is
achieved by the proposed scheme with RF as a decision model. LS-SVM (RBF) classification scheme
also provided promising results with 89.25% accuracy rate. The scheme proposed by Das et al. [20]
for binary classification attained an average accuracy of 86.02% when applied to multi-class brain
MRI classification, regardless of the complex algorithm used (i.e., Ripplet transform) for feature
extraction. Furthermore, the complex method used in [21] is not able to increase the accuracy rate
up to 90% or more and managed to achieve a correctness rate of 88.92%. The average accuracy of the
kNN-based scheme (i.e., 83.87%) is the worst performance among all of the compared state-of-the-art
schemes examined for multi-class brain MRI classification. In addition, the method proposed in [24]
includes age, tumour shape and ROI as feature sets for multi-class classification of brain MRI diseases.
This scheme needs to trace ROIs manually, which makes this scheme semiautomatic. However, our
proposed multi-class classifier is automatic and has no need of human intervention for decision-making
purposes. In [24], the authors have achieved mean accuracy as 81.1%, 89.8%, and 91.2% for LDA, kNN,
and non-linear SVM based decision models, respectively. Regardless of human intervention involved
in feature extraction scheme, which is an additional cost, the average accuracy claimed in [24] is almost
4% less than our proposed work.

It is observed from the results and comparisons that the proposed classifier performance is quite
remarkable as compared to the existing state-of-the-art techniques. Furthermore, a comprehensive
study of different decision models’ performances on MRI brain multi-class classification is shown.
The comparison of decision models suggests that RF, LS-SVM (RBF), and J48 are more accurate
than kNN and LS-SVM (POLY). RF achieved the highest accuracy rate when 20 features were used.
Moreover, LS-SVM (RBF) maintained its performance for any number of features, which leads to
being more advantageous when the least number of principal features are available. The feature
engineering scheme used in this study proves that it reduced the number of discriminating
features, which eventually reduces the classifier complexity and enhances its accuracy. Furthermore,
the proposed classifier has the potential to classify various disease classes accurately using brain
MRIs. The limitation of this study is that the experiments only involved brain MR images. However,
the proposed approach has the potential to produce accurate results for different body parts’ MR
images as well.
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4. Conclusions

In this article, a multi-class classifier has been developed to classify brain MR slices as
normal, Alzheimer, AIDS, cerebral calcinosis, glioma, or metastatsis. It is composed of fast DWT,
PCA, and five different decision models. The proposed medical decision support system yielded
better performance in terms of macro-averaged recall, macro-averaged precision, macro-averaged
F-measure, overall accuracy and AUC for each class, when compared to the other state-of-the-art
schemes. This study provides a comprehensive comparison of different decision models performance,
which concludes that RF work more accurately than other classification models (J48, kNN,
LS-SVM (POLY), and LS-SVM (RBF)). It is evident from the results that the proposed classifier has the
potential to classify the brain MR images accurately. Furthermore, the promising results indicate that
the general practitioners can use this automated multi-class classifier as a second opinion, which assist
them to reach the final decision more quickly. In future, the proposed method can be extended for
automated classification of different pathological conditions and disease types, which are manually
identified by the MRI scans. Moreover, this work can be employed on other imaging modalities
(such as CT-scan, PET, and SPECT) datasets as well.
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Abstract: Device-to-device (D2D) communications bring significant improvements of spectral
efficiency by underlaying cellular networks. However, they also lead to a more deteriorative
interference environment for cellular users, especially the users in severely deep fading or shadowing.
In this paper, we investigate a relay-based communication scheme in cellular systems, where the
D2D communications are exploited to aid the cellular downlink transmissions by acting as relay
nodes with underlaying cellular networks. We modeled two-antenna infrastructure relays employed
for D2D relay. The D2D transmitter is able to transmit and receive signals simultaneously over the
same frequency band. Then we proposed an efficient power allocation algorithm for the base station
(BS) and D2D relay to reduce the loopback interference which is inherent due to the two-antenna
infrastructure in full-duplex (FD) mode. We derived the optimal power allocation problem in closed
form under the independent power constraint. Simulation results show that the algorithm reduces the
power consumption of D2D relay to the greatest extent and also guarantees cellular users’ minimum
transmit rate. Moreover, it also outperforms the existing half-duplex (HD) relay mode in terms of
achievable rate of D2D.

Keywords: device-to-device (D2D); relay aided; full-duplex (FD); power allocation; independent
power constraint

1. Introduction

Device-to-device (D2D) communication enables users in proximity to exchange information
directly, without traversing to the base station (BS) or core network in two hops and has attracted
increasing attention from both industrial and academic communities [1–7]. Due to the potential
proximity gain, reuse gain, and hop gain, D2D communications can significantly increase system
spectral efficiency and energy efficiency, which has been considered a promising candidate technique
for next generation cellular networks [8].

Accordingly, many researches have focused on a D2D communications scheme that underlayings
the cellular network infrastructure to increase the cellular capacity, improving the users’ throughput,
and extending the battery lifetime of user equipment (UE) [9–11]. However, the existing D2D
communication scheme, such as the underlaying cellular spectrum, bring more complex interference
environment to cellular users which have higher priority than the D2D users, and lead to deteriorative
performance on quality of service for cellular users [12–14]. In particular, for cellular users in the cell
edge who are susceptible to suffered deep fading or shadowing, it would be unadvisable to share an
allocated spectrum with D2D peers [15–17].

To avoid the problem mentioned above, we outline a relay-aided D2D communication scheme to
fulfill the transmission gap that affects cellular users which are in the cell edge or strongly-shadowed
urban environment. Unlike existing works, a D2D transmitter in our scheme is ordered to aid a cellular
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downlink transmission by acting as a relay node between the BS and the cellular UE. In return, the D2D
transmitter is allowed to directly communicate with the intended D2D receiver by underlaying the
cellular downlink spectral resource [18–20].

Few works have been carried out so far to explore relaying-based D2D communication schemes.
By scanning existing research papers, we can classify this relay-aided D2D communication schemes
into two categories in terms of relay mode, namely, half-duplex (HD) and full-duplex (FD). In fact,
few works have been carried out so far to explore HD relaying based scheme to transmit forward
signals from BS to cellular users in two transmission phases. In this scheme, respective reception and
transmission at the relay are allocated to one frame which is divided into double orthogonal time
slots which are equivalent to a time division access way for the D2D relay node [21–26]. Then the
superimposed signal, which is a linear weighted combination of cellular user’s signal and the D2D
signal is generated by the relay. The weight factor represents the power allocation for the cellular user
which is a fraction of the total transmitting power of D2D relay. Therefore, the residual power is used
for broadcasting the D2D signal in the second time slot.

The drawback of HD is lower efficiency in spectrum and energy. Therefore, as a replacer for HD
relay, the FD mode is more applicable in practice to transmit and receive signals simultaneously on
the same frequency resource. For the sake of communication bi-directional for relay, a two-antenna
infrastructure is typically deployed to facilitate spectral efficiency in practice. However, FD relay is
more susceptible to loopback interference which is generated from transmitting antenna to receiving
antenna of relay nodes. Although few works have been done to eliminate the inter-relay interference,
it cannot be ultimately mitigated because even the residual loopback interference is significant when
compared to the white Gaussian noise [27–29]. For this reason, the power split factor should be
adapted cautiously in FD mode. Moreover, it must be made clear that due to the FD mode being enable
relay to forward two components signals simultaneously on the same spectral band, the cellular user’s
signal and D2D signal will treat each other as interference.

Many works have been carried out to explore relaying-based D2D communication schemes.
In [21], the authors outline an HD relaying-based D2D scheme by operating on the same frequency
band as cellular user in frequency domain by splitting a frame into double transmitting phases in the
time domain. In this scheme, because the BS transmit signal to the cellular user takes place in one
half of a frame, the achievable transmission rate is dimidiated in this mode. Then to compensate for
the cellular users’ capacity loss, the D2D relay has to allocate almost all of its transmitting power to
forward cellular signals when the direct link between the BS and cellular users is good. Then this
scheme will degenerate to a conventional relaying mode. In contrast, when the direct link is in deep
fading or shadowing, it also cannot give a significantly increasing transmission rate. Furthermore,
the authors describe explicitly that the BS and the D2D relay should use maximum transmitting power
as they can maintain the transmit capacity of the cellular user, which leads to low energy efficiency for
the system.

Alternatively, the FD mode as explicitly described in [27–29] relays cellular signals and the D2D
component to the respective receiver simultaneously. Unfortunately, the self-interference cannot be
eliminated perfectly and, consequently, the potential existence of residual interference is not negligible.
The work that has been done in [27] advocates a new FD mode, in which the aggregate power of
the system is defined as a constant. That makes the D2D relay much more able to use transmitting
power than one when the power is normalized. By this means, they can get a significant capacity
increase and a closed form of expression of the optimal power at BS and D2D relay by adding a power
equation. However, it is more realistic to consider the BS and D2D relay with their own transmission
power constraint.

In contrast to the aforementioned works, the contributions of this paper are summarized
as follows:

(1) The main contribution of the article is to draft a novel D2D relaying-aided scheme to improve the
transmitting rate of a cellular user who is in deep fading or shadowing. Unlike the works that
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have been done before, our scheme guarantees cellular user’ quality of service in terms of the
minimum rate requirement. This means that the performance of the cellular user is improved
rather than deteriorated or just maintained, as done in [13,21].

(2) We consider an independent power constraint for the BS and D2D relay respectively rather than
under the aggregate power constraint as in [27]. Although we use two inequalities to replace one
equation, we also derived a closed form expression of the optimal allocated power and the power
split factor.

(3) By making comparisons with traditional direct communication of cellular mode and HD relaying
mode, the FD mode we proposed could use the minimum transmitting power to make sure the
cellular’ rate requirement with also achieve the D2D rate as far as possible. It also has been
demonstrated that the approach we proposed is more prominent in terms of spectral efficiency
and power efficiency, in the situation that the residual loopback interference generating the D2D
relay is controlled at a tolerable level.

The rest of the paper is organized as follows: we describe the system model and scheme of the
proposed FD relaying assisted D2D communication by underlaying the downlink frequency resource
of a cellular network in Section 2. The optimal power adaption strategies for guaranteeing the rate
requirement of cellular user versus benchmark HD mode are evaluated in Section 3. Simulations have
been obtained are presented in Section 4. Finally, the conclusions are drawn in Section 5.

2. System Model

In Figure 1 we consider a two-antenna deployment scenario, where a macro BS is intended to
communicate with a cellular user who is in the edge of traditional cell and suffering severe deep
fading or shadowing. This means the direct link between macro BS and cellular is weak and unable to
guarantee the rate requirement of cellular user. Moreover, there is a pair of D2D users located nearby
the cellular user and there is a good channel quality from BS and cellular respectively. We assume that
the transmitter of the D2D pair is equipped with isolated receiving and transmitting antennas and
caches the date that intends to send to the D2D receiver. We can automatically see that the system
performance will be beneficial from deploying D2D transmitter as a relay for BS and the cellular user.
We assume that the D2D communication is allowed to share the downlink spectral resource allocated
to the cellular user while remaining under the control of the BS. We set the D2D relay to operate in FD
mode, suffering from the backhaul interference is inevitable due to the simultaneously receiving and
transmitting signals which is an inherent nature of FD mode. It also should be made clear that this
scenario corresponds to the situation that radio resource management has taken place and spectrum
resources have been allocated for a particular BS to serve a particular cellular user.

Figure 1. Relay-aided device-to-device (D2D) communication model in full-duplex (FD) mode.
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We assume that the system operates in the downlink in frequency division duplex (FDD) mode
with a bandwidth of W Hz. We denote the channel impulse response for the link from BS to cellular
user, BS to the relay, namely, the D2D transmitter, from BS to the D2D receiver, from the relay to
cellular, from the relay to the D2D receiver and the loopback link from the transmitting antenna to the
receiving antenna as hBC, hBR, hBD, hRC, hRD and hL respectively. These are all complex variables. The
system is parametrized with channel gain-to-noise ratios, which are defined as:

γBR = |hBR|2/σ2, γBC = |hBC|2/σ2, γBD = |hBD|2/σ2

γRC = |hRC|2/σ2, γRD = |hRD|2/σ2, γL = |hL|2/σ2
(1)

Where σ2 denotes the variance of the zero-mean additive white Gaussian noise (AWGN). As we
can see, each of these variables actually corresponds to the signal-to-noise ratio (SNR) of one-hop
transmission over the particular channel with maximum transmission power. In other words, we set
pB = 1 and pR = 1. All of the channels we used are modeled to be narrow band quasi-static state and
frequency flat fading. Note that we assume that the nodes in our scenario are generally stationary or
moving at moderate speed to allow channel state information acquisition.

The transmitting power of BS and relay node are denoted by pB and pR respectively. These have
been normalized and are subject to independent constraints by 0 ≤ pB ≤ 1 and 0 ≤ pR ≤ 1 instead of
aggregate transmitting power constraint pB + pR = 2 as does in [27]. We assume that the D2D relay
adapts amplify-and-forward protocol to aid the downlink transmission of a cellular user and the relay
uses a fraction of its transmitting power to forward the cellular user’s signals.

FD Relay-Aided D2D Communication Scheme

Before making an explicit description of the proposed relaying based D2D scheme, we review the
traditional cellular direct transmission (DT) mode. In a traditional cellular network, the cellular users
have no choice but to communicate with the BS even the DT link suffers from severely deep fading or
shadowing. Unfortunately, this situation does not happen in a small probability. When the cellular
users are located in the cell edge or urban environment, it will be a frequent occurrence. Therefore,
DT links from the BS to cellular users in a conventional cellular mode will lead to a poor performance of
the system in this situation, and might even cause high outage probability or call drop for cellular users.
Assume frequency-division multiple-access technology is used for the cellular downlink transmissions
in DT mode. At any time instant, the BS transmits symbols to the cellular user over the allocated
frequency band. Therefore, the achievable rate of direct link is given by:

RDT
BC = W log2(1 + pBγBC) (2)

where W corresponds to the width of the subchannel. Let Rre represent the rate requirement of the
cellular user. When the channel impulse response hBC suffers from deep fading or shadowing, it will
lead to the situation that the achievable rate of the DT link will fall below the rate requirement even
the BS use maximum transmitting power with pB = 1, namely:

Rre > W log2(1 + γBC) (3)

Hence, for the sake of fulfilling the requirement rate of cellular user, we point out that the desired
channel to noise ratio γ should satisfy:

γ ≥
(

2Rqe/W − 1
)

pB
(4)

From the analysis above, we conclude that the conventional DT mode can do nothing to satisfy
the cellular user’s quality of service requirement in terms of transmitting rate when the DT link is
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weak. Therefore, we aim to find a novelty D2D relaying-aided scheme to guarantee the cellular user’s
rate requirement.

In order to improve spectral efficiency, throughput and energy efficiency, BS allows UE who are
in proximity to communicate directly without the help of BS. Moreover, for the sake of improving
the poor performance of conventional cellular mode in which the cellular users suffer severely from
deep fading or shadowing, we outline an FD relaying based D2D communication scheme to allow the
downlink transmission from BS to cellular user via D2D relay and D2D direct communication from
D2D relay to D2D receiver take place at the same instant. In our system model, it is assumed that the
D2D relay is equipped with two isolate antennas.

We now describe the relaying based D2D protocol. Let us denote x(i) and d(i) as the signals
transmitted by BS and D2D relay, namely, D2D transmitter at time instant i. Then we have:

E
{
|x(i)|2

}
= pB (5)

E
{
|d(i)|2

}
= (1 − α)pR (6)

in which E{·} denotes the expectation of variable and α represents the power split factor at relay.
We assume that the D2D relay is willing to share α(0 ≤ α ≤ 1) fraction of its power to assist the
cellular user’s downlink transmission. Then the residual (1 − α) fraction is used for its own signal
transmission. In addition, the system will degrade to a conventional relay forward mode or a D2D
underlaying mode when the power split factor α is equal to zero or one respectively. Furthermore,
considering the loopback interference from the relay transmitting antenna to the receiving antenna, the
signal r(i) received at the D2D relay and the transmitting signal t(i) by D2D relay can be formulated as:

r(i) = hBRx(i) + hLt(i) + n(i) (7)

t(i) = gr(i) +
√
(1 − α)pRd(i) (8)

where n(i) is the AWGN at relay with mean value E
{
|n(i)|2

}
= σ2. From this, we know that the

power of receiving signal at D2D relay is:

E
{
|r(i)|2

}
= pB|hBR|2 + pR|hL|2 + σ2 (9)

g represents the normalized amplify factor by the D2D relay with adopting amplify forward protocol
which means that the relay will amplify the input signal by factor g. It can be given by:

g =

√
αpR

pB|hBR|2 + pR|hL|2 + σ2
(10)

in which αpR is denoted as the power used for forwarding cellular user’ signals. Naturally,
we also have the aggregate power consumption at D2D relay as E

{
|t(i)|2

}
= pR. Thus, the

signal-to-interference and noise ratios (SINR) γR of the first hop at the relay can be formulated as:

γR =
pB|hBR|2

pR|hL|2 + σ2
(11)

Then we let the numerator and denominator be divided by σ2, the SINR can be rewritten as:

γR =
pBγBR

pRγL + 1
(12)
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From the Equation (8), we can see that the transmitting signals of D2D relay are composed by
two portions. The first portion contains the signal x(i) transmitting for cellular user and the second
portion is the signal component sending to the D2D receiver using the remaining (1 − α) fraction
power. When decoding respective signals at the receivers, the cellular user and D2D receiver will treat
the signal component designated for the other as interference. We get the receiver signal at cellular
user and D2D receiver as follows:

yC(i) = hBCx(i) + hRCt(i) + n(i) (13)

yD(i) = hBDx(i) + hRDt(i) + n(i) (14)

In FD mode, the cellular user decodes the relayed signal t(i) from yC(i) and the weak DT link
signal x(i) is treated as interference. Therefore, as above, the SINR of the second hop at the cellular
user γC(i) can be formulated as:

γC =
αpRγRC

pBγBC + (1 − a)pRγRC + 1
(15)

The instantaneous end-to-end SINR of one symbol transmitting from BS to cellular user in FD
mode can be expressed as [28]:

γFD =
γRγD

γR + γD + 1
(16)

In our model, these expressions we deduce are explicitly including the effects of the
self-interference and the overheard direct link. Then to guarantee the rate requirement of the cellular
user with the proposed spectrum sharing protocol, the SINR of the system should be greater or equal
to the requirement of SINR in the conventional DT mode as follows:

γFD ≥ γ (17)

As before, the SINR of D2D receiver can also be formulated as:

γD =
(1 − α)pRγRD

pBγBD + αpRγRD + 1
(18)

Finally, we can get the achievable rates for the cellular and D2D links respectively, as:

RFD
C = W log2(1 + γFD) (19)

RFD
D = W log2(1 + γD) (20)

3. The Optimal Power Adaption Strategies

Let us then define the objective function as:

(p∗B, p∗R,α∗) = arg max
(pB ,pR ,α)

RFD
D (21)

s. t. RFD
C = Rre (21a)

0 ≤ pB ≤ 1 (21b)

0 ≤ pR ≤ 1 (21c)

0 ≤ α ≤ 1 (21d)

Where (p∗B, p∗R,α∗) represents the optimal power allocation for BS and the D2D relay and the
power split factor for the FD relaying D2D.
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Next we propose transmission power adaptation as a technique to mitigate the effect of
self-interference on D2D relay. Without optimal transmit power adaptation at the D2D relay, it implies
that the D2D transmitter simply uses the maximum allowed power, i.e., pR = 1.

Remark 1: For extension of cellular coverage, the BS should always use the maximum transmission
power, i.e., pB = 1. In this way, it will enlarge the SINR for the first relaying hop, namely
γR = pBγBR/(pRγL + 1). Moreover, because typically we have γL � γBC, the worsening effect on
γC = αpRγRC/(pBγBC + (1 − α)pRγRC + 1) will be insignificant with the maximum transmission power
usage for BS. Thus, the best performance under constraint 0 ≤ pB ≤ 1 is achieved when pB = 1 and we may
concentrate on power adaptation for D2D relay individually. Transmission power adaptation in FD relays is
motivated by the observation that the end-to-end performance is limited by the weakest hop. Thus, if the limiting
factor is the first hop due to excessive loop interference, the end-to-end performance can be, in fact, improved by
decreasing the relay transmit power.

To solve the optimal problem, we first obtain γFD = γ from RFD
C = Rre.

Remark 2: from (16), we know that γFD is decided by γR and γC jointly. By getting the first class partial
differential equation of γFD in term of γR, namely, ∂γFD/∂γR, we can get the expression as:

∂γFD
∂γR

=
γ2

C + 1

(γC + γR + 1)2 (22)

The equation above is obviously constant positive. Therefore, γFD is monotonous increasing in
terms of γR. We can derive that this is the case for γC also. It is easy to understand from this result
that the end-to-end SINR of two hops FD relay will be improved by either of any one link with better
channel quality. So, for the sake of fulfilling the rate requirement of cellular, we should enhance one or
both of γR and γC.

Let us then analyze the corresponding received SINR in the D2D relay and in the destination of
the cellular user which are expressed as shown in (12) and (15) respectively. In the first hop between
BS and D2D relay, the SINR will be improved by decreasing the transmitting power of the relay due to
the excessive loopback interference. In contrast, the SINR at the destination of the cellular user is a
monotonous increasing function in terms of the transmitting power of relay. Then we know that there
will be an optimal transmitting power of relay. In terms of power splitting factor of α, the SINR at the
destination of the cellular user will also be improved following α increasing. On the contrary, the SINR
for D2D receiver will decrease as the spilt factor increases.

Now we provide a new insight for the objective function which considers fulfilling the rate
requirement of the cellular user in the primary and improves the D2D transmitting rate in the secondary.
We have observed that an optimal power at the D2D relay exists such that a higher or lower value will
result in the deterioration of the end-to-end SINR of cellular user. Therefore, by getting the optimal
transmitting power of relay, the energy consumption for D2D users who usually handle equipment
such as a mobile phone will decrease. Moreover, our proposed scheme also makes sense of the demand
of power split factor α at the D2D relay. Then the D2D relay can spare more power to transmit its
own signals.

It should be made clear that the optimal transmitting power at the relay is not the global
optimization as the achievable rate of D2D link is monotonously increased as follow pR. We can
demonstrate the first class partial differential of γD in term of pR:

∂γD
∂PR

= (1−α)γRD(γBD+αpRγRD+1)−αγRD(1−α)pRγRD
(γBD+αpRγRD+1)2

= (1−α)γRD(γBD+1)
(γBD+αpRγRD+1)2

(23)
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In the situation that 0 ≤ α ≤ 1, γRD and γBD is a constant greater than zero, so ∂γD/∂PR ≥ 0 is
permanently satisfied. It is obvious that the SINR will be greater as the transmitter power is larger
when the channel to noise ratio is a constant.

Therefore, in order to improve the energy efficiency of D2D relay, we adapt the optimal power for
guaranteeing cellular rate requirement which is equivalent to the minimum transmission power usage
for D2D relay. The optimal FD relay transmission power is:

p∗R = min

{
1,

√
(γBR + 1)(γBC + 1)

γLγRC

}
(24)

Proof: By substituting Equation (12), (15) into (16), the end-to-end SINR for cellular can be given by
(we can convert into the following form):

γFD =
γBRγRD pR

γRDγL p2
R + γRD pR + γBDγL pR + γL pR + γBRγBD + γBR + γBD + 1

(25)

by solving the one class partial differential equation of γFD in terms of pR, we can get the numerator
expression of ∂γFD/∂pR as:

γ2
BRγRCγBC + γ2

BRγRC + γBRγRCγBC + γBRγRC − γBRγLγ
2
RC p2

R = 0 (26)

which is equivalent to the one class partial differential equation ∂γFD/∂pR. The optimal transmission
power can be obtained by solving the equation above.

Consequently, Equation (24) reveals that the maximum transmission power will be chosen, namely
p∗R = 1 when:

γL ≤ (γBR + 1)(γBC + 1)
γRC

(27)

the inequalities above show that the maximum transmit power is optimal only with weak loopback
interference. Otherwise, the performance can be improved by backing off from the maximum power
as reasoned before. In practice, we apply constrained power adaptation for which the SINRs coincide
with those of the unconstrained case given the above whenever the conditions in (27) are not satisfied.

By further substituting p∗R into γFD = γ where the equation guarantees the rate requirement of
cellular we can obtain the optimal power split factor (also the minimum power the cellular share from
the D2D relay) as:

α∗ = min
{

1,
γ(γBC + 1 + γRC p∗R)(γBR + 1 + γL p∗R)

2γBRγRC p∗R

}
(28)

Up to now, we have solved the optimal transmit powers allocated at the BS and at the D2D
transmitter as well as the optimal power splitting factor at the D2D transmitter. The optimal power
allocation could be found at the BS in a centralized manner, but the global channel state information is
required. Via a dedicated feedback channel, e.g., the cognitive pilot channel proposed by the E2R2/E3
consortium in [12], the channel state information and the optimal power allocation can be conveyed
between the BS and the distributed UE reliably.

4. Simulation Results

In this section, we show that the simulation results demonstrate high achievement transmit rate
and power efficiency of the proposed FD relay-based D2D communication scheme and guarantee the
rate requirement for the cellular user in the primary. We choose the HD relaying mode as a benchmark.
It should be made clear that the spectrum band consumed in a traditional cellular system is double
that of our underlaying D2D communication due to one orthogonal subchannel that is needed for the
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cellular user and D2D users respectively. Therefore, the D2D communication we proposed achieves an
improvement of spectral efficiency for cellular system. In this section, we study relaying and transmit
power adaptation in the case of static channels and, thus, exploiting instantaneous channel state
information. Alternatively, the following analysis explains the performance during one instantaneous
snapshot within channel coherence time in a slow-fading environment. The parameter of system as rate
requirement for cellular is set as Rre = 20 kb/s, which represents a typical voice signal characteristic
and the bandwidth W = 0.1 MHz which corresponds to the width of the subchannel allocated to one
cellular user.

In Figure 2, we show the impact of loopback interference on the optimal transmission power of
D2D relay by setting γBR = γRC = 10 dB and γBC = γBD = −10 dB which means that channels from
BS to cellular user and D2D receiver suffer from deep fading or shadowing. In the simulation, we
change the channel gain of the loopback link at the D2D relay γL from 5 dB to 30 dB. It can be seen that
the optimal transmit power is decreasing as the channel gain of loopback link is stronger. We can also
observe that for a particular loopback gain, enlargement of the transmission power of relay is even
harmful for the achievable rate for the cellular user which demonstrates our analysis we mentioned
before. Therefore, in view of this problem, it is desirable to determine the optimal allocation power for
the relay.
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Figure 2. Achievable rate for cellular user with different transmission power usage.

In Figure 3, we observe the impact of power split factor on the system performance when we
set γL = 10 dB. As we can observe from Figure 3, in the range of α ≥ 0.24, the scheme we proposed
could satisfy the rate requirement for the cellular while at the same time the achievable rate for
D2D communication is appropriate. Furthermore, this scheme provides significant performance
improvement in terms of the achievable sum rate of the system. It also can be seen that the choice of
power split factor has a great significance on system performance. The transmit rate of the cellular
user will increase with a large power split factor. However, enlarging power split factor will also lead
to the deterioration of D2D communication performance. Therefore, the selection of power split factor
for the relay node is important.

433



Symmetry 2017, 9, 38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
x 10

5

Power spliting factor α

T
ra

ns
m

it 
ra

te
 /

bp
s

 

 

Rre

Rc

Rd

Rsum

Figure 3. System performance with different power splitting factor.

In Figures 4 and 5, we make a comparison to the HD D2D relay mode in terms of optimal transmit
power p∗R and power splitting factor α. Due to transmitting signals in two orthogonal time slots, D2D
relay in HD mode uses the maximum power as the optimal transmit power. In contrast, the scheme
we proposed uses less power and guarantees the rate requirement for the cellular user which makes it
much better in extending the battery life. It also can be observed that the optimal power is decreasing
as the channel gain between D2D relay and cellular is stronger in our proposed scheme. Figure 5
shows that the power splitting factor gets smaller as the self-interference becomes weaker in FD mode,
which means the D2D relay could share more of its power to support its own communication demand.
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Figure 4. Optimal transmit power of relay.

In Figure 6, with the optimal transmit power and power split factor as we illustrated above, it is
obvious that the D2D link can achieve significant rate gain in our proposed FD relaying-based D2D
communication scheme. The simulation result also shows that the performance of a D2D achievable
rate is significantly improved when γL < 15 dB and it also has a faster increase tendency than the
benchmark of HD mode, even in the presence of γL = 15 dB. The reason for this is that the FD
relaying-based D2D scheme could transmit and receive signal simultaneously rather than occupy one
of two orthogonal time slots for transmitting and receiving signal respectively. For this reason, the
FD relaying based D2D communication scheme inherently has a much higher spectrum efficiency in
comparison to HD mode.
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Figure 5. Optimal power splitting factor of relay.
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Figure 6. Achievable rate for D2D communication.
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Figure 7. Energy efficient of D2D communication.

In contrast to Figure 6, Figure 7 reveals the energy efficiency of our proposed scheme when
compared to the traditional HD mode. We can observe that the proposed scheme improves the energy
efficiency of HD mode greatly. The reason for this is that the relay node of the HD mode forwards
the cellular signal with maximum power usage for D2D relay, namely, p∗R = 1. However, the optimal
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power for the FD mode is always less than the maximum power and decreases as the channel gain
for the loopback link increases. It also can be seen that the performance of energy efficiency does not
improve with the mitigation of the self-interference of the relay. The reason for this result is that, upon
efficient mitigation of self-interference of relay, the optimal power at D2D relay is increasing, and as
we can see from Figure 4, this ultimately decreases the energy efficiency.

5. Conclusions

In this paper, we proposed a FD relaying based D2D communication scheme to assist the cellular
communication by underlaying its downlink spectral resource. To fulfill the rate requirement of the
cellular user by using the least power and to maximize the achievable rates for D2D link at the same
time, we derive the optimal transmit power and power split factor for the D2D relay in a closed form.
The simulation results show that the scheme we proposed brings significant achievable rate gain for
D2D communication. Moreover, the scheme decreases transmit power usage by 80% for the D2D relay
node in comparison to the HD mode, even in the presence of γL = 15 dB in Figure 4, which extends
the lifetime of the battery and improves the energy efficiency of system, as shown in Figure 7.
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Abstract: For passive radar detection system, radar waveform recognition is an important research
area. In this paper, we explore an automatic radar waveform recognition system to detect, track and
locate the low probability of intercept (LPI) radars. The system can classify (but not identify) 12 kinds
of signals, including binary phase shift keying (BPSK) (barker codes modulated), linear frequency
modulation (LFM), Costas codes, Frank code, P1-P4 codesand T1-T4 codeswith a low signal-to-noise
ratio (SNR). It is one of the most extensive classification systems in the open articles. A hybrid classifier
is proposed, which includes two relatively independent subsidiary networks, convolutional neural
network (CNN) and Elman neural network (ENN). We determine the parameters of the architecture
to make networks more effectively. Specifically, we focus on how the networks are designed, what the
best set of features for classification is and what the best classified strategy is. Especially, we propose
several key features for the classifier based on Choi–Williams time-frequency distribution (CWD).
Finally, the recognition system is simulated by experimental data. The experiments show the overall
successful recognition ratio of 94.5% at an SNR of −2 dB.

Keywords: radar countermeasure; waveform recognition; T-F distribution; convolutional neural network

1. Introduction

Modern radars usually have low instantaneous power, called low probability of intercept (LPI)
radars, which are used in electronic warfare (EW). For a radar electronic intelligence (ELINT) system
(anti-radar system), analyzing and classifying the waveforms of LPI radars is one of the most effective
methods to detect, track and locate the LPI radars [1,2]. Therefore, the second order statistics and
power spectral density are utilized in the waveforms’ recognition earlier to classify phase shift keying
(PSK), frequency shift keying (FSK) and amplitude shift keying (ASK) [3]. Dudczyk presents the
parameters (such as pulse repetition interval (PRI), pulse width (PW), etc.) to identify different radar
signals [4–7]. Nandi introduces the decision theoretic approach to classify different types of modulated
signals [8]. Additionally, the ratio of successful recognition (RSR) is over 94% at a signal-to-noise ratio
(SNR) ≥15 dB. The artificial neural network is also utilized in the recognition system. The multi-layer
perceptron (MLP) recognizer reaches more than 99% recognized performance at SNR ≥0 dB [9].
Atomic decomposition (AD) is also addressed in the detection and classification of complex radar
signals. Additionally, the receiver realizes the interception of four signals (including linear frequency
modulation (LFM), PSK, FSK and continuous wave (CW)) [10]. Time-frequency techniques can increase
signal processing gain for the low power signals [11]. In [12], López analyzes the differences among
LFM, PSK and FSK based on the short-time Fourier transform (STFT). Additionally, the RSR ≥90%
at SNR ≥0 dB. Lundén [13] introduces a wide classification system to classify the intercepted pulse
compression waveforms. The system achieves overall RSR ≥98% at SNR ≥6 dB. Ming improves the
system of Lundén and shows the results in [14]. The sparse classification (SC) based on random

Symmetry 2017, 9, 75 438 www.mdpi.com/journal/symmetry



Symmetry 2017, 9, 75

projections is proposed in [15]. The approach improves efficiency, noise robustness and information
completeness. LFM, FSK and PSK are recognized with RSR ≥90% at SNR ≥0 dB.

We investigate the convolutional neural network (CNN) for radar waveform recognition.
CNN has been proposed in image recognition fields [16,17]. Recently, it has been applied for
speech recognition [18–21], computer vision [22,23] and handwritten recognition [24–26], etc.
Abdel-Hamid introduces the approaches to reduce the further error rate by utilizing CNNs in [27].
Experimental results show that CNNs reduce the error rate by 6%–10% compared with deep neural
networks (DNNs) on the speech recognition tasks. In [26], a hybrid model of two superior classifiers
CNN and support vector machine (SVM) is discussed. The RSR of the model achieves more than
99.81%, in which SVM performs as a classifier and CNN works as a feature extractor.

In this paper, we explore a wide radar waveform recognition system to classify, but not identify
In this paper, the meaning of “classify” is that we distinguish the different types of waveforms.
Additionally, “identify” is distinguishing the different individuals of the same type. Twelve types
of waveforms (LFM, BPSK, Costas codes, polyphase codes and polytime codes) by using CNN and
Elman neural network (ENN) are discussed. We propose time-frequency and statistical characteristic
approaches to process detected signals, which transmit in the highly noisy environment. The detected
signals are processed into time-frequency images with the Choi–Williams distribution (CWD).
CWD has few cross terms for signals, which is a member of the Cohen classes [28]. Time-frequency
images show the three main pieces of information of signals: time location, frequency location and
amplitude. In the images, time and frequency information is more robust than amplitude. To make
the images more suitable for the classifier, a thresholding method is investigated. The method
handles the time-frequency images as binary images. After that, binary images are addressed by
noise-removing approaches. The final images are used for classification and feature extraction.
However, polyphase codes (including Frank code and P1-P4 codes) and LFM are similar to each
other. It is difficult to classify them through shapes individually. Therefore, we extract some effective
features for further classification of them. Features extraction is from binary images through digital
image processing (such as skeleton extraction, Zernike moments [29], principal component analysis
(PCA), etc.). The set of features is the input of ENN. Additionally, the output of ENN is the classification
result. The entire structure of the classifier consists of two networks, CNN and ENN. CNN is the
primary cell of the classifier, and ENN is auxiliary. Binary images are resized for CNN to separate
polytime codes (include T1–T4) from the other eight kinds of waveforms. Additionally, we extract
features for ENN, which can indicate the eight remaining codes obviously. Only if “others” are selected
by the CNN, ENN starts to work (see Figure 2). In the experiments, the recognition system has overall
RSR ≥94% at SNR ≥−2 dB.

In this paper, the major contributions can be summarized as follows: (1) build the framework
of signals processing; additionally, establish the label data for testing the system; (2) the proposed
recognition system can classify as many as 12 kinds of waveforms, which are described in the context;
previous articles can seldom reach such a wide range of classification of radar signals; especially,
four kinds of polytime codes are classified together for the first time in the published literature;
(3) almost all interested parameters and all features will be estimated by received data without a priori
knowledge; (4) propose a hybrid classifier that has two different networks (CNN and ENN).

The paper is organized as follows. The structure of the recognition system is exhibited in
Section 2. Section 3 proposes the signal model and preprocessing. Section 4 explores the feature
extraction, including signal features and image features. Additionally, it lists all features that we need.
After that, Section 5 searches the structure of the classifier and describes it in detail. Section 6 shows
the experiments. Section 7 draws the conclusions.

2. System View

The entire classification system mainly consists of three components: preprocessing, feature
estimation and recognition; see Figure 1. It is an automatic process from the preprocessing part to
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the recognition part. In the preprocessing part, the received data are transformed into time-frequency
images by utilizing CWD transformation. Then, the time-frequency images are transformed into the
binary image through image binarization, image opening operation and noise-removing algorithms.
In the feature extraction part, we extract effective features to train and test the classifier. Different kinds
of waveforms have different shapes in the images. After image processing, the differences of shapes
are more significant. CNN has a powerful ability of classification, which distinguishes polytime codes
from others. To classify these similar waveforms (such as polyphase codes), we extract features from
detected signals and binary images. In the recognition part, all of the waveforms are classified via the
proposed classifier based on the extracted features.

Figure 1. The figure shows the systematic components. Received data is processed in the preprocessing
part and feature estimation part to extract features. And the data is classified in the classifier part.

The hybrid classifier consists of two networks, network1 and network2 ; see Figure 2. The entire
classifier can classify 12 different kinds of radar waveforms, which has been mentioned in the writing.
Network1 is the main network composed of CNN. Its input is a binary image after preprocessing.
Additionally, the outputs are five different kinds of classification results. They are four kinds of
polytime codes (T1-T4) and others (do not belong to the polytime class). Network2 is ENN, which is an
auxiliary network. Network2 assists the main network (network1) in classifying the eight remaining
waveforms that do not belong to polytime codes. When the waveform is considered as “others” by
network1, network2 will begin to classify the waveform into one of the eight kinds of waveforms.
The proposed structure of the classifier can improve the classified power.

Figure 2. This figure shows the details of the classifier. Network1 is the main network composed of CNN
and Network2 is ENN. Network2 assists the main network (network1) to complete the classification.
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3. Preprocessing

In this section, detected signals are processed into binary images with the Choi–Williams
time-frequency distribution.

3.1. Signal Model

We assume the signal is contaminated by additive white Gaussian noise (AWGN). Additionally,
the amplitude is constant for time. In summary, the signal model is formulated as follows

y(nT) = s(nT) + m(nT) = Aejφ(nT) + m(nT) (1)

where s(nT) is the n-th sample of complex signals. Additionally, m(nT) is the n-th sample of complex
white Gaussian noise (WGN). The variance of WGN equals σ2

ε . A is the amplitude. However, for the
sake of simplicity, we suppose A = 1. φ is the instantaneous phase of complex signals. To process
detected signals from real to complex, Hilbert transform is applied [30].

3.2. Choi–Williams Distribution

The Choi–Williams distribution is a kind of time-frequency distribution, which expresses the
details of detected signals. It can reduce the cross terms from the signals obviously.

C(t, ω) =
∫∫∫

∞
ej2πξ(s−t) f (ξ, τ)

� x(s + τ/2)x∗(s − τ/2)e−jωτdξdsdτ
(2)

where ω and t are the axes of frequency and time, respectively. f (ξ, τ) is a two-dimensional low-pass
filter to balance cross terms and resolution. The kernel function is formulated as follows:

f (ξ, τ) = exp

[
(πξτ)2

2σ

]
. (3)

σ is the controllable factor. The cross terms will be more obvious with the increase of σ. In this
paper, σ = 1 is applied. In Figure 3, 12 kinds of signals are transformed into time-frequency images
through CWD transformation. The work in [31] proposes a new fast calculation of CWD based on
standard Fourier transformation (FFT). We could recommend that the number of the sampling is the
power of two, such as 256, 512, etc. In this paper, 1024 sampling points are investigated. However,
the length of signals is N < 1024 for most of the time. Therefore, zero padding is utilized in the process.

Figure 3. Cont.
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Figure 3. In this figure, different waveform classes are shown, including Linear Frequency Modulation
(LFM), Binray Phase Shift Keying (BPSK), Frank, Costas codes, P1-P4 codes and T1-T4 codes. There are
significant differences among the Choi-Williams Time-Frequency Distribution (CWD) images.

3.3. Binary Image

In this part, the detected signals are processed into binary images with the global thresholding
algorithm [32]. Before it is done, we need to resize the time-frequency images to reduce the
computational load, in which the resized size is N × N. The algorithm is organized as follows.

a. Normalize the resized images G(x, y) ∈ [0, 1], i.e.,

G(x, y) =
CWDN×N(x, y)− min CWDN×N(x, y)

max(CWDN×N(x, y)− min CWDN×N(x, y))
;

b. Estimate the threshold T of G(x, y), i.e.,

T =
max G(x, y) + min G(x, y)

2
;

c. Separate the image into two pixel groups G1 and G2; G1 includes all pixels that values > T, and G2

includes others;
d. Calculate the average value μ1 and μ2 of two pixel groups G1 and G2, respectively;
e. Update the threshold, i.e.,

T =
μ1 + μ2

2
;

f. Repeat (b)–(e), until the δT is smaller than 0.001, i.e.,

δT = Tnow − Tbe f ore;

g. Compute B(x, y) as follows:

B(x, y) =

{
1 G(x, y) > T

0 others
;

h. Output B(x, y).

3.4. Noise Removed

After the operation of binarization, meanwhile, there are some isolated noises and processed
noises in B(x, y). Isolated noises come from the noisy environment. In the binary image, isolated noises
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are groups of pixels that have no fixed shape. Processed noises are generated from the CWD kernel
especially. In the binary image, they are straight lines, long but thin. The length is more than 50 pixels,
but the width of lines is less than three pixels. Image opening operation (erosion followed by dilation)
algorithms are proposed to remove the processed noises. Additionally, the size of the operational
kernel is 3 × 3. It is effective to remove the shape whose width is less than three pixels. For isolated
noises, we count the number of pixels of signals or noises. In this paper, the groups are removed,
in which sizes are smaller than 10% of the largest one. The content of removing noise is introduced in
Figure 4. The finished binary images are used in CNN and feature extraction.

Figure 4. In this figure, we exhibit the processing with P3 code at an signal-to-noise ratio (SNR) of
−4 dB.

4. Feature Extraction

In this section, we extract some useful features and build a feature vector for ENN in order to
assist the CNN to complete recognition. The section consists of two parts, including signal features
and image features. The features, which we can estimate or calculate from detected signals directly,
belong to signal features. Similarly, image features include the features that are extract from binary
images. Table 1 lists the signal features and image features that are used in network2.
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Table 1. List of the features for network2.

Index Description Symbol

1 Moment (1-order) M̂10
2 Moment (2-order) M̂20
3 Cumulant (2-order) Ĉ20

4 PSD maximum (1-order) γ1
5 PSD maximum (2-order) γ2

6 Std. of phase σ̂φ

7 Std. of frequency σ̂f

8 No. of objects (20%) Nobj1
9 No. of objects (50%) Nobj2
10 CWD time peak location tmax
11 Std. of object width σ̂obj
12 Maximum of PCA degree θ̂max
13 Std. of fn σ̂W f
14 Autocorrelationof fn r
15 FFT of correlation fn âmax
16 Pseudo-Zernike moment (2-order) Ẑ20
17 Pseudo-Zernike moment (3-order) Ẑ30
18 Pseudo-Zernike moment (4-order) Ẑ22
19 Pseudo-Zernike moment (4-order) Ẑ31
20 Pseudo-Zernike moment (5-order) Ẑ32
21 Pseudo-Zernike moment (6-order) Ẑ33
22 Pseudo-Zernike moment (7-order) Ẑ43

PSD: Power Spectral Density. PCA: Principal Component Analysis. FFT: Fast Fourier Transformation.
Std.: Standard Deviation.

4.1. Signal Features

In this part, the features are extracted from signals based on signal processing approaches.

4.1.1. Based on the Statistics

We estimate the n-order moment of complex signals as follows:

M̂nm =

∣∣∣∣∣
1
N

N−1

∑
k=0

yn−m(k)(y∗(k))m

∣∣∣∣∣ (4)

where (∗) is the conjugated symbol and N is the sample number. We utilize absolute values to ensure
that the estimated values are invariant constants when the signal phase rotates. M̂10 and M̂20 are
calculated by Equation (4).

The n-order cumulant is given by [33,34]:

Ĉnm =

∣∣∣∣∣
1
N

N−1

∑
k=0

(y(k)− M̂10)
n−m

(y∗(k)− M̂10)
m
∣∣∣∣∣ (5)

where, the same as context, M̂10 is from Equation (4).

4.1.2. Based on the Power Spectral Density

Before estimation of Power Spectral Density (PSD), the detected signals should be normalized
as follows:
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ỹ(k) =
y(k)√

M̂21 − σ2
ε

(6)

where M̂21 is obtained from Equation (4) and y(k) is the k-th sample. The variance of additive noise σ2
ε

can be obtained in [35].
The PSD are calculated as follows:

γm =
1
N

max
n

⎧⎨
⎩

1
N

∣∣∣∣∣
N−1

∑
k=0

ỹm(k)e−j2πnk/N

∣∣∣∣∣
2
⎫⎬
⎭ (7)

where ỹ(k) is from Equation (6).

4.1.3. Based on the Instantaneous Properties

Instantaneous properties are the essential characteristics of detected signals. They can distinguish
frequency modulated signals from phase modulated signals effectively. In this paper, we estimate
the instantaneous frequency and instantaneous phase from samples. The standard deviation of
instantaneous phase is addressed in [9]. For brevity, φ(k) = tan−1[Im(y(k))/Re(y(k))] is applied;
where, Re and Im are the real and imaginary parts of complex signals, respectively. The standard
deviation of instantaneous phase is given by:

σ̂φ =

√√√√ 1
N

(
N−1

∑
k=0

φ2(k)

)
−

(
1
N

N−1

∑
k=0

|φ(k)|
)2

(8)

where N is the sample number. φ is the instantaneous phase with the range of [−π, π].
Instantaneous frequency estimation is more complex than instantaneous phase. We describe the

method in several steps to make it clear.

a. Calculate φ(k);
b. Calculate φu(k)

� from φ(k);
c. Calculate f (k)��, i.e.,

f (k) = φu(k)− φu(k − 1);

d. Calculate μ f , i.e.,

μ f :=
1
N ∑N−1

k=0 f (k);

e. Normalize the instantaneous frequency f̃ (k),

f̃ (k) = ( f (k)− μ f )/(max | f (k)− μ f |)

f. Output the standard deviation of instantaneous frequency σ̂f ,

σ̂f =

√√√√ 1
N

(
N−1

∑
k=0

f̃ 2(k)

)
−

(
1
N

N−1

∑
k=0

∣∣ f̃ (k)
∣∣
)2

. (9)

� φu(k) is the unwrapped phase of φ(k). When the absolute jumps from φ(k), we can add ±2π to
recover the consecutive phase.

�� In the sequence of f (k), some spikes are created by processing. We use the median filter
algorithm with window size of five to smooth the spikes.
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4.2. Image Features

In this part, we extract the features based on binary images. The number of objects (Nobj) is a key
feature. For instance, Costas codes have more than three objects, but Frank code and P2 have two.
Additionally, P1, P4 and LFM only have one. We estimate two features Nobj1 and Nobj2. Nobj1 is the
number of objects, the sizes of the pixels of which are more than 20% of the size of the largest object.
Likewise, Nobj2 ≥ 50%.

The maximum energy location in time domain is also a feature, i.e.,

tmax =
1

N − 1
arg max

t
{CN×N(t, ω)} (10)

where CN×N(t, ω) is the resized time-frequency image and N is the sample number.
The standard deviation of the width of signal objects (σ̂obj) can describe the concentration of signal

energy. The feature is estimated as follows.

• Repeat for every object, do k = 1, 2, ..., Nobj1;

1. Retain the k-th object and remove others, called Bk(x, y);
2. Estimate the principal components of Bk(x, y);
3. Rotate� the Bk(x, y) until the principal components are vertical; record as Bk′(x, y);
4. Sum the vertical axis, i.e.,

v(x) = ∑N−1
y=0 Bk′(x, y),

x = 0, 1, 2, ..., N − 1;
5. Normalize v(x) as follows

v̂(x) =
v(x)

max{v(x)} ;

6. Estimate the standard deviation of v̂(x), i.e.,

σ̂k,obj1 =
√

1/N ∑x v̂2(x)− (1/N ∑x v̂(x))2,

where N is the sample number;

• Output the rotation degree θ̂max, which performs Step (c) at the maximum object.
• Output the average of the σ̂k,obj1, i.e.,

σ̂obj = (1/Nobj1)∑
Nobj1
k=1 σ̂k,obj1. (11)

� Nearest neighbor interpolation is applied in rotation processing.

P2 has a negative slope in five types of polyphase codes. Therefore, the feature θ̂max can classify
P2 from others easily. The feature shows the angle between the maximum object and the vertical
direction. It can be obtained from the calculation of σ̂obj easily.

Next, we retain the maximum object in the binary image, but others are removed. The skeleton of
the object is extracted by utilizing the image morphology method. Additionally, the linear trend of the
object is also estimated based on minimizing the square errors method at the same time. Subtract the
linear trend from the skeleton to achieve the difference vector fn. The standard deviation of fn is
estimated as:

σ̂W f =

√√√√ 1
M − 1

M

∑
k=1

f 2
n(k)−

(
1

M − 1

M

∑
k=1

fn(k)

)2

(12)

where M is the sample number of fn.
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Some features are extracted by using autocorrelation of fn, i.e., c(m) = ∑k fn(k) fn(k − m),
m = 0, 1, ..., N − 1. The autocorrelation method makes differences more significant among stepped
waveforms (P1, Frank code) and linear waveforms (P3, P4, LFM). See Figure 3 for more details.

The ratio of the maximum value and sidelobe maximum value of c(m) is formulated as:

r =
Nmaxm∈[m0,N−1]c(m)

(N − m1)max c(m)
(13)

where m0 is the value corresponding to the minimum of c(m) and m1 is the value corresponding to the
maximum of c(m) in the location of [m0, N − 1].

We estimate the maximum of the absolute of FFT operation âmax as follows:

âmax = max{abs [FFT(cnormal(m))]} (14)

where cnormal(m) is normalized from c(m) and cnormal(m) ∈ [−1, 1].
Pseudo-Zernike moments are invariant for topological transformation [36], such as rotation,

translation, mirroring and scaling. They are widely applied in pattern recognition [37–39]. The n-order
image geometric moments are calculated as:

mpq = ∑x ∑y B(x, y)xpyq (15)

where B(x, y) is from Section 3.3. The central geometric moments for scale and translation invariant
are given by:

Gpq =
1

m(p+q+2)/2
00

∑
x

∑
y

B(x, y)(x − x̄)p(y − ȳ)q (16)

where x̄ = m10/m00 and ȳ = m01/m00.
The scale and translation invariant radial geometric moments are shown as:

Rpq =
1

m(p+q+3)/2
00

∑
x

∑
y

B(x, y)(x̃2 + ỹ2)
1/2

x̃pỹq (17)

where x̃ = x − x̄ and ỹ = y − ȳ.
Then, the pseudo-Zernike moments can be estimated as follows:

Znm =
n + 1

π

n−|m|
∑
s=0

n−s−m=even

k

∑
a=0

m

∑
b=0

(−j)b

(
k
a

)(
m
b

)
DnmsG2k−2a+m−b,2a+b

+
n + 1

π

n−|m|
∑
s=0

n−s−m=odd

d

∑
a=0

m

∑
b=0

(−j)b

(
d
a

)(
m
b

)
DnmsR2d−2a+m−b,2a+b

(18)

where k = (n − s − m)/2, d = (n − s − m − 1)/2 and:

Dnms = (−1)s (2n + 1 − s)!
s!(n − |m| − s)!(n + |m|+ 1 − s)!

. (19)

At last, Ẑnm is estimated, i.e., Ẑnm = ln|Znm|. The members of pseudo-Zernike moments include
Ẑ20, Ẑ22, Ẑ30, Ẑ31, Ẑ32, Ẑ33 and Ẑ43.
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5. Classifier

In Section 4, we complete the resized binary image labels for CNN and the feature vector extraction
with 22 elements for ENN. In this section, we describe the structure of two networks in detail.

5.1. CNN

CNN is a new neural network, which has a special structure for image feature extraction. Different
from traditional network, the input of CNN is a two-dimensional feature (image). The convolution
layers can extract information, and pooling layers reduce computer load effectively. CNN is not a
full connected network, which is similar to the cerebral cortex. The architecture of the CNN model
is shown in Figure 5. CNN has the hierarchical architecture [40]. Hence, we describe the neural
architecture as follows.

Figure 5. The figure shows the structure of Convolutional Neural Network (CNN). The input image
are processed in the hidden layers and classified in the out layer.

a. The input layer is a binary image, which is from Section 3.4. To reduce the computer load,
we resize the image to 32 × 32 with the nearest neighbor interpolation algorithm.

b. The first hidden layer C1 is a convolutional layer, which has six feature maps. Different feature
maps require a different convolutional kernel. C1 has six convolutional kernels with a size of
5 × 5. We utilize C1(m, n, k) to represent the value of the k-th feature map at position (m, n) in the
C1 layer.

c. The second hidden layer S1 is a down-sampling layer with six feature maps. In S1, every feature
value is the average of four adjacent elements in C1. We denote S1(m, n, k) as the context. Further,
we have:

S1(m, n, k) = mean(C1(2m − 1, 2n − 1, k), C1(2m − 1, 2n,

k), C1(2m, 2n − 1, k), C1(2m, 2n, k)).
(20)

The size of feature maps in S1 reduces to 1/4, compared with feature maps of C1.
d. C2 is a convolutional layer with 16 different kernels. It is not fully connected with the S1 layer [41].

The connection details are described in Table 2. C2(m, n, k) is also utilized to describe the
neurons in this layer. For the α-th column in Table 2, we mark row indices by βα,0, βα,1, ·, βα,p−1.
For instance, if α = 7, then we will get parameters as follows: p = 4, β7,0 = 1, β7,1 = 2,

448



Symmetry 2017, 9, 75

β7,2 = 3, β7,3 = 4. Further, the size of the convolutional kernel is p × 5 × 5. Kα is the α-th kernel.
Additionally, we have:

C2(m, n, α) =
p−1

∑
r=0

4

∑
m0=0

4

∑
n0=0

[ S1(m + m0, n + n0, βα,r)

× Kα(5 − m0, 5 − n0, p − 1 − r) ] .

(21)

For example, for the zeroth column, p = 3, α00 = 0, α01 = 1, α02 = 2, and we also have:

C2(m, n, 0) =
p−1

∑
r=0

4

∑
m0=0

4

∑
n0=0

[ S1(m + m0, n + n0, β0,r)

× K0(5 − m0, 5 − n0, p − 1 − r) ] .

(22)

e. Similar to S1, this layer is a down-sampling layer, called S2. S2 has 16 feature maps. To follow the
context in Equation (20), we donate:

S2(m, n, k) = mean(C2(2m − 1, 2n − 1, k), C2(2m − 1, 2n,

k), C2(2m, 2n − 1, k), C2(2m, 2n, k)).
(23)

f. The connection between S2 and N1 is a full connection. Each kernel in N1 will be connected with
all of the feature maps in S2. There are 120 kernels in this layer. Additionally, the size of the kernel
is 5 × 5, which means the output is a column vector with the size of 120 × 1. We describe N1(λ)

as the λ-th feature map of N1 and Kλ as the λ-th kernel. Then, we have:

N1(λ) =
15

∑
r=0

4

∑
m0=0

4

∑
n0=0

[ S2(m0, n0, r)

× Kλ(5 − m0, 5 − n0, 15 − r) ] .

(24)

g. Finally, the connected style between N1 and output layer is fully connected. There are five neurons
(defined by the classes we want to classify) in the output layer with the sigmoid function.

Table 2. Connection detail about S1 and C2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 � � � � � � � � � �
1 � � � � � � � � � �
2 � � � � � � � � � �
3 � � � � � � � � � �
4 � � � � � � � � � �
5 � � � � � � � � � �

5.2. ENN

The three-layer ENN is utilized in the paper for signal classification. The connections,
which connect different hidden layers or output layers, have different weights [42]. At every time
step, the input is propagated in a feed-forward fashion and the feedback of the output. Additionally,
the error back propagation (BP) learning algorithm is also utilized [43]. The connection results in that
the context units always maintain a copy of the previous values of hidden units. Thus, the network can
keep the past state, which is useful for applications such as sequence prediction [44–46]. In Figure 6,
there are 46 neurons in the hidden layer. For the input and output layer, the number of neurons is
determined by the dimension of input and output vectors. Sigmoid function f (x) = 1/(1 + e−x) is
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proposed in every layer. In [47], Sheela discusses the different methods to fix the neurons number
Hnum of hidden layers. In this paper, a simple formula is given by:

Hnum =
C × X + 0.5 × C × (X2 + X)− 1

C + X
(25)

where X is the dimension of the feature vector. C is the number of categories. The proposed formula
cannot determine the optimal number of hidden layer completely. We may fine-tune the number in
some situations. Forty-six neurons of hidden layers are applied in this paper.

Figure 6. This figure shows the structure of Elman neural network. It is a 3 layers network that has
feedback loops. So, the network can keep the past state, which is useful for waveform classification.

6. Simulation Results and Discussion

In this section, the performance of the proposed recognition system is analyzed by utilizing
simulated data. The section consists of three parts, including creating the simulated data, discussing
the relationship between SNR and RSR, depicting the accurate rate of robustness and summarizing
the experiments.

6.1. Production of Simulated Signals

In this part, simulated signals are created. In addition, the SNR is proposed as SNR =

10 log10(σ
2
s )/(σ2

ε ); where σ2
s and σ2

ε are the variances of the signal and noise, respectively. Every
signal has different parameters that need to be set. We denote a uniform variable U(·) based on the
sample rate. For example, we assume that the original frequency ( f0) is 1000 Hz and the sample
rate ( fs) is 8000 Hz. Then, the uniform result is f0 = U( f0/ fs) = U(1/8). Meanwhile, U(1/8, 1/4)
expresses the random variable that belongs to [U(1/8), U(1/4)]. And in this paragraph, [1, 3] also
represents a set that includes {1, 2, 3}. Table 3 lists the parameters of the waveforms. For LFM,
the sample points change from 500–1000 randomly. Additionally, the range of bandwidth (Δ f ) is
U(1/16, 1/8), so is the initial frequency ( f0). For BPSK, the cycle number per phase code (cpp) and
the code periods’ number (Np) are [1, 5]and [100, 300], respectively. The length of the Barker codes
is selected from {7, 11, 13} randomly. The carrier frequency is U(1/8, 1/4). For the Costas codes,
the fundamental frequency ( fmin) is U(1/24). Additionally, the frequency changed number is [3, 6].
For the Frank code, frequency steps (M) are in the range of [4, 8]. Polyphase codes have the same
types of parameters as the Frank code. For polytime codes, the range of segments number (k) and
overall code duration (T) are [4, 6] and [0.07, 0.1], respectively.
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Table 3. List of the parameters of simulated signals.

Signal Waveforms Parameters Uniform Ranges

- Sampling rate ( fs) U(1)

LFM
Samples number (N) [500, 1000]

Bandwidth (Δ f ) U(1/16, 1/8)

Initial frequency ( f0) U(1/16, 1/8)

BPSK

Cycles per phase code (cpp) [1, 5]

Number of code periods (Np) [100, 300]

Barker codes {7, 11, 13}
Carrier frequency ( fc) U(1/8, 1/4)

Costas codes
N [512, 1024]

Fundamental frequency ( fmin) U(1/24)

Number changed [3, 6]

Frank and P1 codes
fc U(1/8, 1/4)

cpp [1, 5]

Frequency steps (M) [4, 8]

P2 code
fc U(1/8, 1/4)

cpp [1, 5]

M 2 × [2, 4]

P3 and P4 codes
fc U(1/8, 1/4)

cpp [1, 5]

M 2 × [16, 35]

T1-T4 codes
Number of segments (k) [4, 6]
Overall code duration (T) [0.07, 0.1]

6.2. Experiment with SNR

In this part, we depict the relation between SNR and RSR in Figure 7. There are 1000 labels in each
waveform class. Twenty percent of the labels are utilized for testing and 80% for training. The result is
compared with Lundén’s system [13] and our previous work [14], both of which are wide systems in
waveform classification.

Figure 7 plots the experimental results of RSR with different SNR. Twelve kinds of waveforms
and the “overall” are provided. The solid line shows the proposed system, and the dotted lines
represent others. For LFM and P4, the proposed approach provides better performance than Lundén’s,
especially at low SNR, but poorer than the previous work, although the difference is not too much.
For BPSK and Costas codes, the three RSRs almost have similar results, and all of them are at a high
level. For Frank and P2, the results of the proposed method and previous work are alike and higher
than Lundén’s. In the simulation of P1, the proposed method is the best when the SNR is more than
−2 dB. The results of P3 are similar to P1; proposed method performs well at high SNR. For polytime
codes, the proposed approach also has excellent RSRs. It benefits from the outstanding design of
pre-processing and the high RSR of the classifier. Finally, the overall RSR has been raised by 20% in
the proposed approaches, compared to Lundén’s and previous work. At SNR of −2 dB, the overall
probabilities are still more than 90%. Table 4 exhibits the confusion table of 12 kinds of waveforms at
the SNR of −2 dB. As Table 4 shows, the waveforms of P3 and P4 are not “always” classified correctly.
For P3, most of the errors are classified into the Frank code. Meanwhile, most of the errors of P4 are
classified into LFM. However, the two pairs are very similar; see Figure 3.
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Table 4. Confusion matrix for the system at an SNR of −2 dB. The overall Ratio of Successful
Recognition (RSR) is 94.5%.

T1 T2 T3 T4 LFM Costas BPSK Frank P1 P2 P3 P4

T1 99.5 0 0 0 0 0 0 0 0 0 0 0
T2 0 98.5 0 0 0 0 0 0 0 0 0 0
T3 0.5 0 96 0 0 0 0 0 0 0 0 0
T4 0 0 0 98.5 0 1.5 2 0 0 0 0 0

LFM 0 0 0 0 89.5 0 0 0 1 0 2 15.5
Costas 0 0 0 0 0 97.5 0 0 0 1.5 1 0
BPSK 0 0 0.5 0 0 0 98 1 0 0 0 0.5
Frank 0 0 0 0 1 1 0 90 4 7 11 1.5

P1 0 0 0 0 0.5 0 0 0 87.5 0 0 7.5
P2 0 0 0 0 1 0 0 6.5 5.5 90 3 5.5
P3 0 1.5 3.5 1.5 0 0 0 2.5 1 1.5 78.5 0.5
P4 0 0 0 0 8 0 0 0 1 0 4.5 69

Figure 7. Cont.
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Figure 7. This figure depicts the different probabilities of 12 types of radar waveforms with testing data.
SNR: Signal-to-noise ratio.

6.3. Experiment with Robustness

The robustness of proposed approaches is explored in different training samples. There are
900 label samples in each waveform for training and 100 labels for testing. Afterwards, the training
samples will be increased from 100–900 with a step of 200. Meanwhile, the experiment will be repeated
for three times in the condition of SNR = −4 dB, 0 dB and 6 dB.

Figure 8 plots the impact of training samples on successful recognition with three conditions
of SNR. In general, it is positively correlated between training samples and successful recognition.
When the samples are less than 500, the successful recognition increases obviously. However, when the
samples are more than 500, the successful recognition is substantially retained. It means that the
proposed approaches are able to work well in a small number of samples.

Figure 8. The figure shows the successful recognition ratio of different numbers of samples.
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6.4. Experiment with Computational Burden

Computational burden is also an important issue for the classification system. We measure the
time of the proposed method and compare it with [13,14] in the same conditions. Three different SNRs,
−4 dB, −0 dB and 6 dB are tested, and each test repeats 50 times to calculate the average value. Table 5
shows the testing environment, and Table 6 demonstrates the testing results, respectively.

Table 5. The testing environment.

Item Model/Version

CPU E5-1620v2 (Intel)

Memory 16GB (DDR3 @ 1600 MHz)

GPU NVS315 (Quadro)

MATLAB R2012a

CPU: Central Processing Unit. GPU: Graphics Processing Unit. MATLAB is a software produced by the MathWorks,
Inc. that located in Natick, Massachusetts, United States.

Table 6. Computational burden test (this paper/previous work/Lundén; unit: s).

LFM BPSK Costas Frank

−4 dB 54.798/55.302/85.331 51.117/51.132/82.553 54.463/54.798/84.735 56.115/56.221/86.132

0 dB 54.336/55.096/85.152 50.860/50.903/82.094 54.108/54.255/84.113 55.704/55.909/85.754

6 dB 53.983/54.887/84.755 50.378/50.875/81.598 53.766/53.842/83.795 55.368/55.806/85.389

P1 P2 P3 P4

−4 dB 58.887/58.889/88.112 55.559/55.759/86.739 58.386/58.522/87.117 54.105/54.732/85.079

0 dB 58.398/58.519/87.847 55.308/55.431/86.180 58.106/58.310/86.869 53.858/54.338/84.787

6 dB 57.792/58.034/87.106 54.668/55.307/85.848 57.707/57.802/86.478 53.501/54.196/84.503

T1 T2 T3 T4

−4 dB 53.781/54.086/83.308 52.896/53.117/85.401 55.269/55.887/86.249 56.703/56.861/85.322

0 dB 53.266/53.799/83.011 52.715/52.980/85.166 54.523/55.300/86.093 56.359/56.622/85.054

6 dB 52.823/53.201/82.799 52.107/52.741/84.455 54.396/54.916/85.702 55.993/56.279/84.811

In Table 6, the proposed method and previous work spend less than 60 s, while Lundén’s more
than 80 s; because Lundén’s method has more calculations, we do not need to compute, such as the
Wigner–Ville distribution, peak search and data driven, etc. We also improve the effectiveness of
the system and reduce the consumption of time compared with previous work. In the same type of
waveform, the highest SNR has the least time. In the different types of waveforms, BPSK is easiest to
calculate, but P3 code is the opposite. However, overall, the change of cost is not obvious. The proposed
method is stable, and different waveforms or SNR also have little effect on the computational burden
of the classification system.

7. Conclusions

In this paper, an automatic system to realize the recognition of radar signal waveforms is proposed.
We build the processing flow for detected signals by utilizing signal and image processing algorithms.
Using these methods, the signal waveforms are fully represented via sets of feature vectors and binary
images. The vectors and images are classified into 12 types in the classifier. The simulation results show
that the overall RSR is more than 94% at SNR ≥−2 dB. Additionally, the processes of feature extraction
and noise removed make the system robust. When the sample labels are more than 500, the successful
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recognition is substantially retained. At last, the computational burden is tested. The proposed
method is stable in different waveforms or SNR and spends less time than Lundén’s method and our
previous work.
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Abbreviations

The following abbreviations are used in this manuscript:

LPI Low probability of intercept
EW Electronic warfare
ELINT Electronic intelligence
PSK Phase shift keying
FSK Frequency shift keying
ASK Smplitude shift keying
PRI Pulse repetition interval
PW Pulse width
RSR Ratio of successful recognition
SNR Signal to noise ratio
MLP Multi-layer perceptron
AD Atomic decomposition
LFM Linear frequency modulation
CW Continuous wave
STFT Short time Fourier transform
SC Sparse classification
CNN Convolutional neural network
DNN Deep neural network
SVM Support vector machine
BPSK Binary phase shift keying
ENN Elman neural network
CWD Choi–Williams time-frequency distribution
PCA Principal component analysis
AWGN Additive white Gaussian noise
WGN White gaussian noise
FFT Fast Fourier transformation
PSD Power spectral density
CPU Central Processing Unit
GPU Graphics Processing Unit
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Abstract: The balanced hypercube network, which is a novel interconnection network for parallel
computation and data processing, is a newly-invented variant of the hypercube. The particular feature
of the balanced hypercube is that each processor has its own backup processor and they are connected
to the same neighbors. A Hamiltonian bipartite graph with bipartition V0 ∪V1 is Hamiltonian laceable
if there exists a path between any two vertices x ∈ V0 and y ∈ V1. It is known that each edge is on
a Hamiltonian cycle of the balanced hypercube. In this paper, we prove that, for an arbitrary edge
e in the balanced hypercube, there exists a Hamiltonian path between any two vertices x and y in
different partite sets passing through e with e �= xy. This result improves some known results.

Keywords: interconnection network; balanced hypercube; Hamiltonian path; passing prescribed
edge; data processing

1. Introduction

Interconnection networks play an essential role in the performance of parallel and distributed
systems. In the event of practice, large multi-processor systems can also be adopted as tools to address
complex management and big data problems. It is well-known that an interconnection network is
generally modeled by an undirected graph, in which processors are represented by vertices and
communication links between them are represented by edges. The hypercube network is recognized
as one of the most popular interconnection networks, and it has gained great attention and recognition
from researchers both in graph theory and computer science. Nevertheless, the hypercube also has
some shortcomings. For example, its diameter is large. Therefore, many variants of the hypercube
have been put forward [1–10] to improve performance of the hypercube in some aspects. Among these
variants, the balanced hypercube has the following special properties: each vertex of the balanced
has a backup (matching) vertex and they have the same neighborhood. Therefore, the backup vertex
can undertake tasks that originally run on a faulty vertex. It has been proved that the diameter
of an odd-dimensional balanced hypercube BHn is 2n − 1 [10], which is smaller than that of the
hypercube Q2n.

With regard to the special properties discussed above, the balanced hypercube has been
investigated by many researchers. Huang and Wu [11] studied the problem of resource placement
of the balanced hypercube. Xu et al. [12] showed that the balanced hypercube is edge-pancyclic and
Hamiltonian laceable. It is found that the balanced hypercube is bipanconnected for all n ≥ 1 by
Yang [13]. Huang et al. [14] discussed area efficient layout problems of the balanced hypercube.
Yang [15] determined super (edge) connectivity of the balanced hypercube. Lü et al. studied
(conditional) matching preclusion, hyper-Hamiltonian laceability, matching extendability and extra
connectivity of the balanced hypercube in [16–19], respectively. Some symmetric properties of the
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balanced hypercube are presented in [20,21]. As stated above, the balanced hypercube possesses some
desirable properties that the hypercube does not have, so it is interesting to explore other favorable
properties that the balanced hypercube may have.

Since parallel applications such as image and signal processing are originally designed on
array and ring architectures, it is important to have path and cycle embeddings in a network.
Especially, Hamiltonian path and cycle embeddings and other properties of famous networks are
extensively studied by many authors [12,13,22–26]. Xu et al. [12] proved that each edge of the
balanced hypercube is on a cycle of even length from 4 to 4n, that is, the balanced hypercube is
edge-bipancyclic. They also showed that the balanced hypercube is Hamiltonian laceable for all integers
n ≥ 1. Recently, Lü et al. [17] further obtained that the balanced hypercube is hyper-Hamiltonian
laceable for all integers n ≥ 1.

The rest of this paper is organized as follows. Some necessary definitions are presented as
preliminaries in Section 2. The main result of this paper is shown in Section 3. Finally, conclusions are
given in Section 4.

2. Preliminaries

Let G = (V, E) be a simple undirected graph, where V is a vertex-set of G and E is an edge-set
of G. A path P from v0 to vn is a sequence of vertices v0v1 · · · vn from v0 to vn such that every pair of
consecutive vertices are adjacent and all vertices are distinct except for v0 and vn. We also denote the
path P = v0v1 · · · vn by 〈v0, P, vn〉. The length of a path P is the number of edges in P, denoted by l(P).
A cycle is a path with at least three vertices such that the first vertex is the same as the last one. A graph
is bipartite if its vertex-set can be partitioned into two subsets V0 and V1 such that each edge has its ends
in different subsets. A graph is Hamiltonian if it possesses a spanning cycle. A graph is Hamiltonian
connected if there exists a Hamiltonian path joining any two vertices of it. Obviously, any bipartite
graph is not Hamiltonian connected. Simmons [27] proposed Hamiltonian laceability of bipatite
graphs: a bipartite graph G = (V0 ∪ V1, E) is Hamiltonian laceable if there exists a Hamiltonian path
between any two vertices x and y in different partite sets of G. A graph G is hyper-Hamiltonian laceable
if it is Hamiltonian laceable and, for any vertex v ∈ Vi(i ∈ {0, 1}), there exists a Hamiltonian path in
G − v between any pair of vertices in V1−i. For the graph definitions and notations not mentioned
here, we refer the readers to [28,29].

Wu and Huang [10] gave the following definition of BHn as follows.

Definition 1. An n-dimensional balanced hypercube, denoted by BHn, consists of 4n vertices labelled by
(a0, a1, . . . , an−1), where ai ∈ {0, 1, 2, 3} for each 0 ≤ i ≤ n − 1. Any vertex (a0, . . . , ai−1, ai, ai+1, . . . , an−1)

with 1 ≤ i ≤ n − 1 of BHn has the following 2n neighbors:

1. ((a0 + 1) mod 4, a1, . . . , ai−1, ai, ai+1, . . . , an−1),
((a0 − 1) mod 4, a1, . . . , ai−1, ai, ai+1, . . . , an−1), and

2. ((a0 + 1) mod 4, a1, . . . , ai−1, (ai + (−1)a0) mod 4, ai+1, . . . , an−1),
((a0 − 1) mod 4, a1, . . . , ai−1, (ai + (−1)a0) mod 4, ai+1, . . . , an−1).

In BHn, the first coordinate a0 of vertex (a0, . . . , ai, . . . , an−1) is called the inner index and the other
coordinates are known as the ai (1 ≤ i ≤ n − 1) i-dimensional index. Clearly, each vertex in BHn has
two inner neighbors, and 2n − 2 other neighbors. Note that all of the arithmetic operations on indices
of vertices in BHn are four-modulated.

BH1 and BH2 are illustrated in Figures 1 and 2, respectively.
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Figure 1. BH1.
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Figure 2. BH2.

In the following, we give some basic properties of BHn.

Proposition 1. [10] The balanced hypercube is bipartite.

Proposition 2. [10,20] The balanced hypercube is vertex-transitive and edge-transitive.

Proposition 3. [10] The vertices (a0, a1, . . . , an−1) and ((a0 + 2) mod 4, a1, . . . , an−1) of BHn have the
same neighborhood.

3. Main Results

Firstly, we characterize edges of the BHn. Let u and v be two adjacent vertices in BHn. If u and
v differ in only the inner index, then uv is said to be a 0-dimensional edge, and u is a 0-dimensional
neighbor of v. If u and v differ in not only the inner index, but also some i-dimensional index (i �= 0)
of the vertices, then uv is called an i-dimensional edge, and u is an i-dimensional neighbor of v. For
convenience, we denote the set of all i-dimensional edges by ∂Di (0 ≤ i ≤ n − 1). Let BH(i)

n−1
(0 ≤ i ≤ 3) be the subgraph of BHn induced by the vertices of BHn with the (n − 1)-dimensional
index i. That is, the BH(i)

n−1’s can be obtained from BHn by deleting all (n − 1)-dimensional edges.

Therefore, BH(i)
n−1

∼= BHn−1 for each 0 ≤ i ≤ 3.
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By Proposition 1, we know that BHn is bipartite. We can use V0 and V1 to denote the two partite
sets of BHn such that V0 and V1 consist of vertices of BHn with an even inner index and an odd inner
index, respectively. For convenience, the vertices of V0 and V1 are colored white and black, respectively.
Throughout this paper, we use wi and ui (resp. bi and vi) to denote white (resp. black) vertices in
BH(i)

n−1 (i ∈ {0, 1, 2, 3}).

Lemma 1. [16] In BHn, ∂Di(0 ≤ i ≤ n − 1) can be divided into 4n−1 edge-disjoint 4-cycles for n ≥ 1.

Lemma 2. [12] The balanced hypercube BHn is Hamiltonian laceable and edge-bipancyclic for n ≥ 1.

Lemma 3. [17] The balanced hypercube BHn is hyper-Hamiltonian laceable for n ≥ 1.

Lemma 4. [30] Assume u and x are two different vertices in V0, and v and y are two different vertices
in V1. Then, there exist two vertex-disjoint paths P and Q such that P joins x to y, Q joins u to v and
V(P) ∪ V(Q) = V(BHn), where n ≥ 1.

Lemma 5. Let n ≥ 2 be an integer. Suppose that u, v, x and y are four distinct vertices differ only the inner
index in BHn. In addition, u, x ∈ V0 and v, y ∈ V1. Then, there exists a Hamiltonian path from u to v in
BHn − x − y.

Proof. We proceed with the proof by the induction on n. First, we consider n = 2. Clearly, u, v, x and
y are in the same 4-cycle of ∂D0. A Hamiltonian path of BH2 − x − y from u to v is shown in Figure 3.
Thus, we suppose that the lemma holds for all integers n − 1 with n ≥ 3. Next, we consider BHn.
We split BHn into four BHn−1s by deleting (n − 1)-dimensional edges. For convenience, we denote the
four BHn−1s by B0, B1, B2 and B3 according to the last position of vertices in BHn, respectively. Without
loss of generality, we may assume that u, v, x and y are in B0. By an induction hypothesis, there exists
a Hamiltonian path P0 from u to v in B0 − x − y. Let u0v0 ∈ E(P1), where u0 (resp. v0) are neither
end-vertex of P0. We denote the segment of P0 from u to v0 by P00, and the segment of P0 from u0 to v
by P10. By Definition 1, u0 (resp. v0) has an (n − 1)-dimensional neighbor v1 (resp. u3) in B1 (resp. B3).
Moreover, there exist an edge v3u2 from B3 to B2, and an edge v2u1 from B2 to B1. Therefore, there exist
a Hamiltonian path P3 from u3 to v3 in B3, a Hamiltonian path P2 from u2 to v2 in B2, and a Hamiltonian
path P1 from u1 to v1 of B1. Hence, 〈u, P00, v0, u3, P3, v3, u2, P2, v2, u1, P1, v1, u0, P10, v〉 is a Hamiltonian
path of BHn − x − y (see Figure 4).

y

u v

x

Figure 3. A Hamiltonian path of BH2 − x − y.
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Figure 4. A Hamiltonian path of BHn − x − y.

Next, we present the following lemma as a basis of our main theorem.

Lemma 6. Let e be an arbitrary edge in BH2. In addition, let x ∈ V1 and y ∈ V0 be any two vertices in BH2

with e �= xy. Then, there exists a Hamiltonian path between x and y passing through e.

Proof. By Proposition 2, BH2 is vertex-transitive and edge-transitive, and we may suppose that
e = (0, 0)(1, 0). Obviously, if e = xy, then there exists no Hamiltonian path of BH2 from x to y passing
e. Thus, at most, one of x and y is the end-vertex of e. We consider the following two cases:

Case 1: Neither x nor y is incident to e. By the relative positions of x and y, and Proposition 3,
we consider the following: (1) x ∈ V(B0), y ∈ V(B0); (2) x ∈ V(B0), y ∈ V(B1); (3) x ∈ V(B0),
y ∈ V(B2); (4) x ∈ V(B0), y ∈ V(B3); (5) x ∈ V(B1), y ∈ V(B1); (6) x ∈ V(B1), y ∈ V(B2);
(7) x ∈ V(B1), y ∈ V(B3); (8) x ∈ V(B2), y ∈ V(B2); (9) x ∈ V(B2), y ∈ V(B3); (10) x ∈ V(B3),
y ∈ V(B3). For simplicity, we list all Hamiltonian paths of the conditions above in Table 1.

Case 2: Either x or y is incident to e. Without loss of generality, suppose that x is incident to e, that is,
x = (1, 0). By Proposition 3, we need only to consider four conditions of y: (1) y ∈ V(B0); (2) y ∈ V(B1);
(3) y ∈ V(B2); and (4) y ∈ V(B3). Again, we list Hamiltonian paths of the conditions of x and y in this
case in Table 2.

Table 1. Hamiltonian paths passing through e with neither x nor y being incident to e.

x y Hamiltonian Paths Passing through e with Neither x nor y Being Incident to e

(1) (3,0) (2,0) (3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(3,1)(0,1)(1,1)(0,0)(1,0)(2,0)
(2) (3,0) (0,1) (3,0)(0,0)(1,0)(2,3)(3,3)(0,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(3,1)(2,0)(1,1)(0,1)
(3) (3,0) (2,2) (3,0)(0,3)(3,3)(2,3)(1,0)(0,0)(3,1)(2,0)(1,1)(0,1)(1,2)(2,1)(3,2)(0,2)(1,3)(2,2)
(4) (3,0) (0,3) (3,0)(0,0)(1,0)(2,0)(3,1)(0,1)(1,1)(2,1)(1,2)(2,2)(3,2)(0,2)(1,3)(2,3)(3,3)(0,3)
(5) (1,1) (2,1) (1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)
(6) (1,1) (2,2) (1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,1)(1,2)(2,2)
(7) (1,1) (2,3) (1,1)(0,0)(3,1)(0,1)(1,2)(2,1)(3,2)(2,2)(1,3)(0,2)(3,3)(0,3)(1,0)(2,0)(3,0)(2,3)
(8) (1,2) (2,2) (1,2)(2,1)(1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)
(9) (1,2) (2,3) (1,2)(2,1)(1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(1,3)(2,2)(3,2)(0,2)(3,3)(2,3)
(10) (1,3) (2,3) (1,3)(0,3)(3,0)(0,0)(1,0)(2,0)(1,1)(2,1)(3,1)(0,1)(3,2)(2,2)(1,2)(0,2)(3,3)(2,3)
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Table 2. Hamiltonian paths passing through e with x or y being incident to e.

x y Hamiltonian Paths Passing through e with x or y Being Incident to e

(1) (1,0) (2,0) (1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(1,1)(0,1)(3,1)(2,0)
(2) (1,0) (0,1) (1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(1,1)(2,0)(3,1)(0,1)
(3) (1,0) (0,2) (1,0)(0,0)(3,0)(0,3)(1,3)(2,3)(3,3)(2,2)(3,2)(2,1)(1,1)(2,0)(3,1)(0,1)(1,2)(0,2)
(4) (1,0) (0,3) (1,0)(0,0)(3,0)(2,0)(3,1)(0,1)(1,1)(2,1)(1,2)(2,2)(3,2)(0,2)(1,3)(2,3)(3,3)(0,3)

Now, we are ready to state the main theorem of this paper.

Theorem 1. Let n ≥ 2 be an integer and e be an arbitrary edge in BHn. In addition, let x ∈ V1 and y ∈ V0 be
any two vertices in BHn with e �= xy. Then, there exists a Hamiltonian path of BHn between x and y passing
through e.

Proof. We prove this theorem by induction on n. By Lemma 6, we know that the theorem is true
for n = 2. Therefore, we suppose that the theorem holds for n − 1 with n ≥ 3. Next, we consider
BHn. Firstly, we divide BHn into BH(i)

n−1 (0 ≤ i ≤ 3) by deleting all (n − 1)-dimensional edges.

For convenience, we denote BH(i)
n−1 by Bi according to the last position of the vertices in BHn for each

i ∈ {0, 1, 2, 3}. Similarly, suppose that e ∈ E(B0). Let x ∈ V1 and y ∈ V0 be two distinct vertices in BHn.
By relative positions of x and y, we consider the following cases:

Case 1: x ∈ V(B0), y ∈ V(B0). By an induction hypothesis, there exists a Hamiltonian path P0 from
x to y of B0 passing through e. Thus, there is an edge u0v0 on P0 such that u0v0 is not adjacent to e
and u0v0 divides P0 into two sections P00 and P10, where P00 connects x to u0 and P10 connects v0 to y.
Let v1 (resp. u3) be an (n − 1)-dimensional neighbor of u0 (resp. v0). By Definition 1, there exist an
edge u1v2 from B1 to B2, and an edge u2v3 from B2 to B3. Thus, by Lemma 2, there exist a Hamiltonian
path P1 from v1 to u1 in B1, a Hamiltonian path P2 from v2 to u2 in B2, and a Hamiltonian path P3 from
v3 to u3 in B3. Hence, 〈x, P00, u0, v1, P1, u1, v2, P2, u2, v3, P3, u3, v0, P10, y〉 is a Hamiltonian path of BHn

from x to y passing through e (see Figure 5).
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Figure 5. Illustration for Case 1.

Case 2: x ∈ V(B0), y ∈ V(B1). Let u0 ∈ V(B0) be a white vertex such that u0 is not incident to e.
By an induction hypothesis, there exists a Hamiltonian path P0 of B0 from x to u0 passing through e.
Supposing that v0 is a black vertex adjacent to u0 on P0, we denote the segment of the path P0 from x
to v0 by P00. Let the two (n − 1)-dimensional neighbors of u0 be b1 and v1. By Lemma 2, there exists
a Hamiltonian path P1 of B1 from b1 to y. Let u1 be the neighbor of v1 in the section of P1 from b1 to v1.
Then P1 − u1v1 consists of two subpaths P01 and P11, which connect u1 to b1 and v1 to y, respectively.
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Let u3 (resp. v2) be an (n − 1)-dimensional neighbor of v0 (resp. u1). Furthermore, there exists an edge
v3u2 from B3 to B2. Then, there exist a Hamiltonian path P2 from u2 to v2 in B2, and a Hamiltonian path
P3 from u3 to v3 in B3. Hence, 〈x, P00, v0, u3, P3, v3, u2, P2, v2, u1, P01, b1, u0, v1, P11, y〉 is a Hamiltonian
path of BHn from x to y passing through e (see Figure 6).
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Figure 6. Illustration for Case 2.

Case 3: x ∈ V(B0), y ∈ V(B2). Let u0 be a white vertex in B0 not incident to e, and b1 and
v1 be two (n − 1)-dimensional neighbors of u0. In addition, assume that w1 is an arbitrary white
vertex in B1. There exists a Hamiltonian path of B1 from b1 to w1. Thus, there exists an edge
u1v1 ∈ E(P1) whose removal will lead to two disjoint subpaths P01 and P11, where P01 connects
u1 to b1 and P11 connects v1 to w1. Let v2 (resp. b2) be an (n − 1)-dimensional neighbor of u1

(resp. w1). There also exists a Hamiltonian path P2 of B2 from y to b2 via the edge v2u2. Deleting v2u2

results in two disjoint paths P02 and P12, where P02 connects u2 to b2 and P12 connects v2 to y.
By an induction hypothesis, there exists a Hamiltonian path P0 of B0 from x to u0 via the edge
v0u0. For convenience, denote P0 − u0 by P00, that is, P00 connects x to v0. Let u3 (resp. v3) be an
(n − 1)-dimensional neighbor of v0 (resp. u2). Again, there exists a Hamiltonian path P3 of B3 from u3

to v3. Hence, 〈x, P00, v0, u3, P3, v3, u2, P02, b2, w1, P11, v1, u0, b1, P01, u1, v2, P12, y〉 is a Hamiltonian path
of BHn from x to y passing through e (see Figure 7).
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Figure 7. Illustration for Case 3.

Case 4: x ∈ V(B0), y ∈ V(B3). Let u0 (resp. v3) be a white (resp. black) vertex in B0 (resp. B3).
There exist an edge u0v1 from B0 to B1, an edge u1v2 from B1 to B2, and an edge u2v3 from B2 to B3.

464



Symmetry 2017, 9, 79

By Lemma 2, there exist a Hamiltonian path P1 of B1 from v1 to u1, a Hamiltonian path P2 of B2 from
v2 to u2, and a Hamiltonian path P3 of B3 from v3 to u3. By an induction hypothesis, there exists a
Hamiltonian path P0 of B0 from x to u0 passing through e. Hence, 〈x, P0, u0, v1, P1, u1, v2, P2, u2, v3, P3, y〉
is a Hamiltonian path of BHn from x to y passing through e (see Figure 8).
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Figure 8. Illustration for Case 4.

Case 5: x ∈ V(B1), y ∈ V(B1). Let v1 �= x be a black vertex in B1. By Lemma 3, there exists a Hamiltonian
path P1 of B1 − y from x to v1. Furthermore, there exist an edge v1u0 from B1 to B0, an edge v0u3 from B0

to B3, an edge v3u2 from B3 to B2, and an edge v2y from B2 to B1. Moreover, there exist a Hamiltonian path
P0 of B0 from u0 to v0 passing through e, a Hamiltonian path P3 of B3 from u3 to v3, and a Hamiltonian
path P2 of B2 from u2 to v2. Hence, 〈x, P1, v1, u0, P0, v0, u3, P3, v3, u2, P2, v2, y〉 is a Hamiltonian path of
BHn from x to y passing through e (see Figure 9).
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Figure 9. Illustration for Case 5.

Case 6: x ∈ V(B1), y ∈ V(B2). Let v1 �= x (resp. u1) be a black (resp. white) vertex in B1. By Lemma 3,
there exists a Hamiltonian path P1 of B1 − u1 from x to v1. In addition, suppose that v2 and b2 are two
(n − 1)-dimensional neighbors of u1. By Lemma 2, there exists a Hamiltonian P2 of B2 from v2 to y via the
edge u2b2. Thus, P2 can be divided into three sections: P02, u2v2 and P12, where P02 connects u2 to v2 and
P12 connects b2 to y. Furthermore, there exist an edge v1u0 from B1 to B0, an edge v0u3 from B0 to B3, and an
edge v3u2 from B3 to B2. Therefore, there exist a Hamiltonian path P0 of B0 from u0 to v0 passing through e,
and a Hamiltonian path P3 of B3 from u3 to v3. Hence, 〈x, P1, v1, u0, P0, v0, u3, P3, v3, u2, P02, v2, u1, b2, P12, y〉
is a Hamiltonian path of BHn from x to y passing through e (see Figure 10).
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Figure 10. Illustration for Case 6.

Case 7: x ∈ V(B1), y ∈ V(B3). Let v3 and b3 be two black vertices in B3. Suppose that u2 and w2 are
(n− 1)-dimensional neighbors of v2 and b2, respectively. By Lemma 3, there exists a Hamiltonian path P3

of B3 − y from b3 to v3. By Definition 1, there exist two edges v2u1 and b2w1 from B2 to B1, an edge v1u0

from B1 to B0, and an edge v0y from B0 to B3, where x �= v1. By Lemma 4, there exist two vertex-disjoint
paths P01 and P11 such that P01 joins v1 and u1, P11 joins x and w1, and V(P01) ∪ V(P11) = V(B1).
Similarly, there exist two vertex-disjoint paths P02 and P12 such that P02 joins v2 and u2, P12 joins b2 and w2,
and V(P02)∪V(P12) = V(B2). By an induction hypothesis, there exists a Hamiltonian path P0 of B0 from
u0 to v0 passing through e. Hence, 〈x, P11, w1, b2, P12, w2, b3, P3, v3, u2, P02, v2, u1, P01, v1, u0, P0, v0, y〉 is
a Hamiltonian path of BHn from x to y passing through e (see Figure 11).
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Figure 11. Illustration for Case 7.

Case 8: x ∈ V(B2), y ∈ V(B2). Let u2 ∈ V(B2) be an arbitrary white vertex. By Lemma 3, there exists
a Hamiltonian path P2 of B2 − x from u2 to y. By Definition 1, there exist an edge xu1 from B2 to B1,
an edge v1u0 from B1 to B0, an edge v0u3 from B0 to B3, and an edge v3u2 from B3 to B2. Following
Lemma 2, we can obtain a Hamiltonian path P1 of B1 from u1 to v1, and a Hamiltonian path P3 of
B3 from u3 to v3. By an induction hypothesis, there exists a Hamiltonian path P0 of B0 from u0 to v0

passing through e. Therefore, 〈x, u1, P1, v1, u0, P0, v0, u3, P3, v3, u2, P2, y〉 is a Hamiltonian path of BHn

from x to y passing through e (see Figure 12).
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Figure 12. Illustration for Case 8.

Case 9: x ∈ V(B2), y ∈ V(B3). Let u2 and w2 be two distinct white vertices in B2, and v3 and b3 be
(n − 1)-dimensional neighbors of u2 and w2, respectively. By Lemma 3, there exists a Hamiltonian
path P2 of B2 − x from u2 to w2. By Lemma 2, there exists a Hamiltonian path P3 of B3 from v3 to y via
the edge u3b3. By deleting u3b3, we can obtain two disjoint subpaths: P03 and P13, where P03 connects
u3 to v3 and P13 connects b3 to y. Furthermore, there exist an edge xu1 from B2 to B1, an edge v1u0

from B1 to B0, and an edge v0u3 from B0 to B3. By Lemma 2, there exists a Hamiltonian path P1 of
B1 from u1 to v1. By an induction hypothesis, there exists a Hamiltonian path P0 of B0 from u0 to v0

passing through e. Hence, 〈x, u1, P1, v1, u0, P0, v0, u3, P03, v3, u2, P2, w2, b3, P13, y〉 is a Hamiltonian path
of BHn from x to y passing through e (see Figure 13).
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Figure 13. Illustration for Case 9.

Case 10: x ∈ V(B3), y ∈ V(B3). The proof is analogous to that of Case 5, and we omit it.

4. Conclusions

In this paper, we study a type of path embedding of the balanced hypercube, and show that, for an
arbitrary edge e �= xy, there exists a Hamiltonian path between any two vertices x and y in different
partite sets passing through e. This result also implies that each edge is on a Hamiltonian cycle of the
balanced hypercube, which is part of the results of edge bipancyclicity of the balanced hypercube.
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Abstract: This study proposes a fuel consumption estimation system and method with lower cost.
On-board units can report vehicle speed, and user devices can send fuel information to a data
analysis server. Then the data analysis server can use the proposed fuel consumption estimation
method to estimate the fuel consumption based on driver behaviours without fuel sensors for cost
savings. The proposed fuel consumption estimation method is designed based on a genetic algorithm
which can generate gene sequences and use crossover and mutation for retrieving an adaptable gene
sequence. The adaptable gene sequence can be applied as the set of fuel consumption in accordance
with the pattern of driver behaviour. The practical experimental results indicated that the accuracy of
the proposed fuel consumption estimation method was about 95.87%.

Keywords: fuel consumption estimation; driver behavior; genetic algorithm

1. Introduction

With the development of the economic environment and the evolution of mobile communications,
the intelligent transportation system has been more and more popular for obtaining fleet management
services for the logistics industries and bus carriers [1]. A logistics company may have hundreds
or thousands of trucks to provide freight services. However, the fuel cost of these industries is the
most important challenge of fleet management services. For instance, Taiwan Institute of Economic
Research (TIER) reported that the fuel costs of logistics industries and bus carriers were about
35.8 billion dollars [2] and 3.4 billion dollars [3], respectively, in Taiwan in 2015. Therefore, monitoring
and saving fuel consumption efficiently can improve the profits for the logistics industries and bus
carriers and reduce the air pollution from carbon dioxide (i.e., CO2) for city governance [4,5].

For the measurement of fuel consumption, some studies used fuel sensors to detect the remaining
quantity of fuel and calculated the differences among the remaining quantities. Furthermore, the data
from the on-board diagnostics (OBD) could also be retrieved to obtain the fuel system status, vehicle
speed, and engine revolutions per minute (RPM) [6–9]. Although these methods can measure the
fuel consumption, fuel sensors and OBD devices should be equipped to report the fuel quantity data
periodically, albeit with higher cost. For instance, the cost of a fuel level sensor is about 150,000 dollars,
and the cost of data communications is about 13,000 dollars per month in Taiwan for a fleet of
1000 vehicles. Moreover, these methods cannot support estimating fuel consumption in accordance
with driver behaviours.

Symmetry 2017, 9, 105 470 www.mdpi.com/journal/symmetry
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For the estimation of fuel consumption based on driver behaviours, some studies have proposed
using gravity sensors, accelerometers, and OBD devices to collect and analyse the data of azimuth,
acceleration, movement records, and fuel quantities [10–13]. Some studies used a genetic algorithm
(GA) and a neural network to analyse fuel consumption and classify driver behaviours [14–16].
Although the relation between fuel consumption and driver behaviour can be estimated, sensors and
OBD devices are required in these methods. Furthermore, the measurement errors of sensors and OBD
devices have not been discussed, and signal interference may lead to large estimation errors.

Therefore, a lower cost solution for a system is proposed and implemented to estimate the
fuel consumption for the logistics industries. In this system, On-board units (OBUs) can send the
information of movement to a data analysis server, and users can input and send the information of fuel
quantity through user devices. Then the data analysis server can analyse the movement information
and the fuel quantity information to estimate the fuel consumption based on driver behaviours without
fuel sensors for saving costs. The proposed fuel consumption estimation method is designed based
on a GA [17–19] which can generate gene sequences and use crossover and mutation to retrieve an
adaptable gene sequence. The adaptable gene sequence can be applied as the set of fuel consumption
in accordance with the pattern of driver behaviour.

In the next section, the architecture of the proposed consumption estimation system is described
in detail. Section 3 proposes a consumption estimation method based on GA. In Section 4, practical
experiments are designed to evaluate the proposed methods, and the results of these experiments
are also analyzed and discussed in this section. The conclusions and future work of this paper are
presented in Section 5.

2. Fuel Consumption Estimation System

The proposed fuel consumption estimation system includes OBUs, user devices, a data analysis
server, and a database server (shown in Figure 1). The OBU can send the movement information which
includes the timestamp, location (i.e., longitude and latitude), and vehicle speed to the data analysis
server. Furthermore, a user can use his user device to input the fuel quantity after refuelling. The data
analysis server can store these data in the database server and perform a fuel consumption estimation
method to estimate fuel consumption in accordance with the pattern of driver behaviour.

Figure 1. The architecture of the fuel consumption estimation system.
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2.1. On-Board Unit

The OBU includes a position module, a middleware module, and a communication module
as follows.

1. The position module can support a global positioning system (GPS) to receive and analyze
satellite signals for estimating the location (i.e., longitude and latitude) and speed of the vehicle.

2. The communication module can support the techniques of long term evolution (LTE), and
the OBU can connect with the data analysis server through the communication module and
cellular networks.

3. The middleware module can support hypertext transfer protocol (HTTP) and representational
state transfer (REST), and the OBU can periodically call application program interfaces (APIs)
and send the movement information (e.g., OBU ID, car type, driver ID, timestamp, longitude,
latitude, and vehicle speed) to the data analysis server.

In this study, an OBU stores an OBU ID, a car type, and a driver ID. There are CN OBUs, TN
car types, and DN drivers. The OBU can send the movement information to the data analysis server
every 30 s. For instance, Driver 1 drove the car which was equipped with OBU 1 on 1 January 2015,
and the type of this car was Type 1. The position module of OBU 1 was used to estimate the location
(i.e., 120.5423383◦ E and 24.09490167◦ N) and speed (i.e., 44 km/h) at 06:00:00, and the middleware
module was used to call REST APIs of the data analysis server for the transmission of the movement
information (shown in Table 1).

Table 1. Movement information.

OBU ID Car Type Driver ID Time Longitude Latitude Speed (km/h)

OBU 1 Type 1 Driver 1 1 January 2015 06:00:00 120.5423383 24.09490167 44
OBU 1 Type 1 Driver 1 1 January 2015 06:00:30 120.5361317 24.09120167 39
OBU 1 Type 1 Driver 1 1 January 2015 06:01:00 120.5360417 24.09114667 2
OBU 1 Type 1 Driver 1 1 January 2015 06:01:30 120.5360383 24.09115 0
OBU 1 Type 1 Driver 1 1 January 2015 06:02:00 120.536035 24.09113833 0
OBU 1 Type 1 Driver 1 1 January 2015 06:02:30 120.5356167 24.09070333 7
OBU 1 Type 1 Driver 1 1 January 2015 06:03:00 120.53052 24.09449167 48
OBU 1 Type 1 Driver 1 1 January 2015 06:03:30 120.52868 24.09591167 30

. . .
OBU CN Type TN Driver DN 31 December 2015 22:00:00 121.0601083 24.75685833 102

OBU: On-board unit.

2.2. User Device

The user device includes a user interface, a middleware module, and a communication module
as follows.

1. The user interface can be used to input the OBU ID, timestamp, and fuel quantity after refuelling.
2. The communication module can support the techniques of LTE, and the connection between a

user device and the data analysis server can be built through the communication module.
3. The middleware module can support the techniques of HTTP and REST, and the user device can

send the information such as OBD ID, timestamp, and fuel quantity to the data analysis server
through the middleware module.

In this study, a user can input the information of fuel quantity (e.g., OBU ID, timestamp, and
fuel quantity) through the user interface of the user device after refuelling, and the fuel quantity
information can be sent to the data analysis server through the middleware module. For instance,
the car which was equipped with OBU 1 was refueled with 43.04 L of gas at 18:51:00 on 5 January
2015. Then a user inputted the OBU ID (i.e., OBU 1), timestamp (i.e., 5 January 2015 18:51:00), and fuel
quantity (i.e., 43.03 L) through the user interface of the user device, and the middleware module was
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used to send the inputted data (i.e., the fuel quantity information) to the data analysis server (shown
in Table 2).

Table 2. Fuel quantity information.

OBU ID Time Fuel Quantity (L)

OBU 1 5 January 2015 18:51:00 43.04
OBU 1 6 January 2015 21:11:00 47.11
OBU 1 8 January 2015 17:49:00 31.81
OBU 1 10 January 2015 20:35:00 21.50
OBU 1 12 January 2015 19:59:00 41.16
OBU 1 14 January 2015 11:36:00 34.43
OBU 1 15 January 2015 19:18:00 27.75
OBU 1 16 January 2015 19:15:00 38.26

. . .
OBU CN 31 December 2015 23:00:00 51.79

2.3. Data Analysis Server

The data analysis server includes a middleware module, communication module, and an
optimized composition module as follows.

1. The middleware module can obtain several REST APIs to receive the movement information
(e.g., OBU ID, car type, driver ID, timestamp, longitude, latitude, and vehicle speed) and the
fuel quantity information (e.g., OBU ID, timestamp, and fuel quantity) from the OBUs and user
devices through HTTP. These data can be stored in a database server.

2. The communication module can support Ethernet and build the connections among the data
analysis server and other devices (e.g., OBUs, user devices, and a database server).

3. The optimized composition module can use the proposed fuel consumption estimation method
to collect and analyse the movement information and fuel quantity information for generating
the estimated results of fuel consumption.

In this study, the data analysis server can request Google Maps [20] or Chunghwa Telecom
GeoWeb [21] to find the corresponding road type of the location through the middleware module.
For instance, the road type of the location which is positioned at 120.5423383◦ E and 24.09490167◦ N
is an urban road. The data analysis server can add the column of road type into the movement
information (shown in Table 3), and the modified movement information can be stored in a
database server.

Table 3. The modified movement information.

OBU ID Car Type Driver ID Time Longitude Latitude Road Type Speed (km/h)

OBU 1 Type 1 Driver 1 1 January 2015 06:00:00 120.5423383 24.09490167 Urban 44
OBU 1 Type 1 Driver 1 1 January 2015 06:00:30 120.5361317 24.09120167 Urban 39
OBU 1 Type 1 Driver 1 1 January 2015 06:01:00 120.5360417 24.09114667 Urban 2
OBU 1 Type 1 Driver 1 1 January 2015 06:01:30 120.5360383 24.09115 Urban 0
OBU 1 Type 1 Driver 1 1 January 2015 06:02:00 120.536035 24.09113833 Urban 0
OBU 1 Type 1 Driver 1 1 January 2015 06:02:30 120.5356167 24.09070333 Urban 7
OBU 1 Type 1 Driver 1 1 January 2015 06:03:00 120.53052 24.09449167 Urban 48
OBU 1 Type 1 Driver 1 1 January 2015 06:03:30 120.52868 24.09591167 Urban 30

. . .
OBU CN Type TN Driver DN 31 December 2015 22:00:00 121.0601083 24.75685833 Highway 102

2.4. Database Server

The database server includes a storage module, a computation module, and a communication
module as follows.
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1. The communication module can support Ethernet, and the connection between the database
server and the data analysis server can be built by this module.

2. The computation module can receive the requests from the data analysis server through the
communication module and access the storage module in accordance with the requests.

3. The storage module can perform the operations of creation, update, deletion, and query.

3. Fuel Consumption Estimation Method

This study proposes a fuel consumption estimation method which includes a movement
information collection method, a fuel information collection method, and an optimized composition
method. The details of each method are illustrated in the following subsections.

3.1. Movement Information Collection Method

The process of the movement information collection method includes: (1) receiving the movement
information from the OBUs; (2) analyzing and storing the movement information; and (3) calculating
the amount of each vehicle speed interval (i.e., driver behaviour in this study) for each OBU and each
driver during a time interval.

In this study, the movement information collection method can be performed by the optimized
composition module of the data analysis server to retrieve the modified movement information (shown
in Table 3). The vehicle speed (v) of each movement record can be converted into a vehicle speed
interval, and the amount of each vehicle speed interval for each OBU and each driver during a time
interval can be calculated. This study chooses 10 km/h as a vehicle speed interval and one year
as a time interval for the estimation of driver behaviour. For instance, Driver 1 drove a car which
was equipped with OBU 1 during 2015; cC,D

1,1,1 records which include idle speed (i.e., the value of v is

zero) are reported by OBU 1 during 2015; cC,D
1,1,2 records which include the speed between 0 km/h and

10 km/h are reported by OBU 1 during 2015; consequently, cC,D
1,1,14 records which include the speed

higher than 120 km/h are reported by OBU 1 during 2015. Furthermore, Driver DN drove a car which
was equipped OBU CN during 2015; cC,D

CN ,DN ,1 records which include idle speed are reported by OBU CN

during 2015; cC,D
CN ,DN ,2 records which include the speed between 0 km/h and 10 km/h are reported by

OBU CN during 2015; consequently, cC,D
CN,DN ,14 records which include the speed higher than 120 km/h

are reported by OBU CN during 2015 (shown in Table 4).

Table 4. The movement information of each OBU and each driver during 2015 (The unit of v is km/h).

OBU ID and Driver ID

Movement
v = 0 0 < v ≤ 10 10 < v ≤ 20 . . . 110 < v ≤ 120 120 < v

Driver 1 drove OBU 1 cC,D
1,1,1 cC,D

1,1,2 cC,D
1,1,3 . . . cC,D

1,1,13 cC,D
1,1,14

Driver 2 drove OBU 1 cC,D
1,2,1 cC,D

1,2,2 cC,D
1,2,3 . . . cC,D

1,2,13 cC,D
1,2,14

. . . . . . . . . . . . . . . . . . . . .

Driver 1 drove OBU 2 cC,D
2,1,1 cC,D

2,1,2 cC,D
2,1,3 . . . cC,D

2,1,13 cC,D
2,1,14

. . . . . . . . . . . . . . . . . . . . .

Driver DN drove OBU CN cC,D
CN ,DN ,1 cC,D

CN ,DN ,2 cC,D
CN ,DN ,3 . . . cC,D

CN ,DN ,13 cC,D
CN,DN ,14

For precise estimation of driver behaviour, this study also chooses one month as a time interval.
For instance, Driver 1 drove a car which was equipped with OBU 1; c1

C,D
1,1,1 records which include idle

speed are reported by OBU 1 during January 2015; consequently, cM
C,D
1,1,1 records which include idle

speed are reported by OBU 1 during the M-th month of 2015. Therefore, the summary of each monthly

record of 2015 is equal to the yearly record (i.e.,
12
∑

M=1
cM

C,D
1,1,1 = cC,D

1,1,1).
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3.2. Fuel Information Collection Method

The process of the fuel information collection method includes: (1) receiving the fuel quantity
information from the user devices; (2) analyzing and storing the fuel quantity information; and
(3) calculating the amount of fuel quantities for each OBU and each driver during a time interval.

In this study, the fuel information collection method can retrieve the fuel quantity information
(shown in Table 2) and analyse the amount of fuel quantities for each OBU and each driver during a
time interval. This study chooses one month or one year as a time interval. For instance, Driver 1 drove
a car which was equipped with OBU 1 during 2015; the summary of fuel quantities of OBU 1 during
January 2015 is Q1

C,D
1,1 L; the summary of fuel quantities of OBU 1 during the M-th of 2015 is QM

C,D
1,1 L;

consequently, the summary of fuel quantities of OBU 1 during 2015 is QC,D
1,1 L (i.e.,

12
∑

M=1
QM

C,D
1,1 = QC,D

1,1 ).

Furthermore, Driver DN drove a car which was equipped with OBU CN during 2015; the summary of
fuel quantities of OBU CN during January 2015 is Q1

C,D
CN ,DN

L; the summary of fuel quantities of OBU

CN during the M-th of 2015 is QM
C,D
CN ,DN

L; consequently, the summary of fuel quantities of OBU CN

during 2015 is QC,D
CN ,DN

L (i.e.,
12
∑

M=1
QM

C,D
CN ,DN

= QC,D
CN ,DN

).

3.3. Optimized Composition Method

In this subsection, the design of the optimized composition method is presented in Section 3.3.1,
and a case study of this method is given in Section 3.3.2.

3.3.1. The Process of the Method

The process of the optimized composition method includes: (1) receiving the patterns of driver
behaviours from the movement information collection method; (2) receiving the patterns of fuel
consumption from the fuel information collection method; and (3) performing a GA (shown in
Figure 2) to analyse the set of fuel consumption in accordance with the pattern of driver behaviour.
The steps of the optimized composition method are illustrated as follows.

1. The values of the parameters including the amount of initial maternal DNA (deoxyribonucleic
acid) sequences (countg), the number of evolution times (countc), the maximum number of
iterations (counti), crossover rate (α), and mutation rate (β) are initially given in this step.

2. The model of fitness function is designed for finding the cost of each DNA sequence which
includes several chromosomes.

3. The process of the initial population can generate countg maternal DNA sequences.
4. Each DNA sequence can be adopted into the model of fitness function for the cost calculation.
5. The process of the convergence check can be performed to check the values of the number

of evolution times (countc) and the maximum number of iterations (counti). If the number of
evolution times (countc) is equal to the maximum number of iterations (counti), the adaptable
DNA sequence with the lowest cost is outputted as the estimated results of the fuel consumption
based on the driver behaviour; otherwise the number of evolution times (countc) is increased
by one.

6. The process of gene selection can select two of the maternal DNA sequences for crossover
and mutation.

7. The process of gene crossover can generate a child’s DNA sequences in the first generation in
accordance with the crossover rate (α) and the maternal DNA sequences in the first generation.

8. The process of gene mutation can generate a child’s DNA sequences in the second generation in
accordance with the mutation rate (β) and the maternal DNA sequences in the second generation.

9. The process of gene reproduction can support two new generated child’s DNA sequences being
substituted for two original maternal DNA sequences which have the highest cost.
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10. The costs of the two reproduced DNA sequences can be measured by using the model of fitness
function, and the GA is performed repeatedly.

Setting parameters

Initial Population

Finding the cost of each 
gene sequence

Convergence check

Selection

N

Find the adaptable gene 
sequenceY

Fitness function model

Crossover

Mutation

Reproduction

Retrieving two new gene 
sequences

Start

End

 

Figure 2. The process of the fuel consumption estimation method.

3.3.2. A Case Study

The parameters of GA in this study are adopted as follows: the amount of initial maternal DNA
sequences (countg) is 14; the initial number of evolution times (countc) is 0; the maximum number of
iterations (counti) is 1000; the crossover rate (α) is 100%; the mutation rate (β) is 7%. A DNA sequence
qC,D

j,i =
{

qC,D
j,i,1 , qC,D

j,i,2 , ..., qC,D
j,i,14

}
includes 14 chromosomes (i.e.,

∣∣∣qC,D
j,i

∣∣∣ = 14) for the j-th OBU driven by

the i-th driver. Each chromosome is encoded as a float. For instance, the parameter qC,D
j,i,1 can be used

to estimate the quantity of fuel consumption at idle speed during each 30 s period for the j-th OBU

driven by the i-th driver. Furthermore, the model of fitness function s =
∣∣∣∣
[

14
∑

k=1

(
cC,D

j,i,k × qC,D
j,i,k

)]
− QC,D

j,i

∣∣∣∣
(shown in Figure 3) is adopted to estimate the cost of each DNA sequence. The unit of cost is a liter in

this model. The best DNA sequence has the lowest cost (i.e., s =
∣∣∣∣
[

14
∑

k=1

(
cC,D

j,i,k × qC,D
j,i,k

)]
− QC,D

j,i

∣∣∣∣ = 0) in

this study.
For the initial population, 14 maternal DNA sequences are randomly generated, and each DNA

sequence includes 14 chromosomes. For instance, the first maternal DNA sequence is q1
C,D
j,i ={

q1
C,D
j,i,1 , q1

C,D
j,i,2 , ..., q1

C,D
j,i,14

}
for the j-th OBU driven by the i-th driver; the second maternal DNA sequence

is q2
C,D
j,i =

{
q2

C,D
j,i,1 , q2

C,D
j,i,2 , ..., q2

C,D
j,i,14

}
for the j-th OBU driven by the i-th driver; consequently, the

fourteenth maternal DNA sequence is q14
C,D
j,i =

{
q14

C,D
j,i,1 , q14

C,D
j,i,2 , ..., q14

C,D
j,i,14

}
for the j-th OBU driven by

the i-th driver (shown in Table 5).
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Figure 3. The model of the fitness function.

Table 5. Maternal DNA sequences.

DNA Sequences
Chromosome

Chromosome 1 Chromosome 2 . . . Chromosome 14

DNA Sequence 1 (q1
C,D
j,i ) q1

C,D
j,i,1 q1

C,D
j,i,2 . . . q1

C,D
j,i,14

DNA Sequence 2 (q2
C,D
j,i ) q2

C,D
j,i,1 q2

C,D
j,i,2 . . . q2

C,D
j,i,14

. . .
DNA Sequence 14 (q14

C,D
j,i ) q14

C,D
j,i,1 q14

C,D
j,i,2 . . . q14

C,D
j,i,14

This study gives a case study of OBU 1 driven by Driver 1 to explain the process of the optimized
composition method. The set of movement information of OBU 1 driven by Driver 1 during 2015
is recorded as CC,D

1,1 =
{

cC,D
1,1,1, cC,D

1,1,2, ..., cC,D
1,1,14

}
= {103100, 66752, ..., 4}, and the fuel quantity of OBU

1 driven by Driver 1 during 2015 is recorded as 10921.364 L (i.e., QC,D
1,1 = 10921.364). Furthermore,

the 14 maternal DNA sequences are randomly generated as shown in Table 6. For example, the first
maternal DNA sequence is q C,D

11,1 = {0.013249146, 0.018487159, ..., 0.551971137}; the second maternal

DNA sequence is q C,D
21,1 = {0.016574516, 0.02331678, ..., 0.553625064}; consequently, the fourteenth

maternal DNA sequence is qC,D
141,1 = {0.01539256, 0.021892833, ..., 0.555117159}.

For finding the cost of each DNA sequence, the set of chromosomes in a maternal DNA sequence
is adopted into the fitness function. In this study, the cost of the h-th maternal DNA sequence is defined

as sh =

∣∣∣∣
[

14
∑

k=1

(
cC,D

j,i,k × qh
C,D
j,i,k

)]
− QC,D

j,i

∣∣∣∣ for the j-th OBU driven by the i-th driver. For instance, the cost

of the first maternal DNA sequence is calculated by Equation (1) for OBU 1 driven by Driver 1; the cost
of the second maternal DNA sequence is calculated by Equation (2) for OBU 1 driven by Driver 1;
consequently, the cost of the fourteenth maternal DNA sequence is calculated by Equation (3) for
OBU 1 driven by Driver 1.

s1 = |(103100 × 0.013249146 + 66752 × 0.018487159 + ... + 4 × 0.551971137)− 10921.364|
= 260.2534752

(1)

s2 = |(103100 × 0.016574516 + 66752 × 0.02331678 + ... + 4 × 0.553625064)− 10921.364|
= 1062.546744

(2)

s14 = |(103100 × 0.01539256 + 66752 × 0.021892833 + ... + 4 × 0.555117159)− 10921.364|
= 1009.53678

(3)
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Table 6. The maternal DNA sequence for OBU 1 driven by Driver 1.

DNA Sequences
Chromosome

Chromosome 1 Chromosome 2 . . . Chromosome 14

DNA Sequence 1 (q1
C,D
j,i ) 0.013249146 0.018487159 . . . 0.551971137

DNA Sequence 2 (q2
C,D
j,i ) 0.016574516 0.02331678 . . . 0.553625064

. . .
DNA Sequence 14 (q14

C,D
j,i ) 0.01539256 0.021892833 . . . 0.555117159

For the convergence check, the adaptable DNA sequence with the lowest cost is output as the
estimated results of the fuel consumption based on driver behaviour if the number of evolution times
(countc) is equal to the maximum number of iterations (counti); otherwise the number of evolution
times (countc) is increased by one.

For gene selection, this study uses the roulette wheel selection method to select two of the maternal
DNA sequences. For instance, DNA Sequence 1 (q C,D

11,1 = {0.013249146, 0.018487159, ..., 0.551971137})

and DNA Sequence 2 (q C,D
21,1 = {0.016574516, 0.02331678, ..., 0.553625064}) (shown in Table 7) are

selected as the maternal DNA sequences in the first generation for OBU 1 driven by Driver 1.

Table 7. The maternal DNA sequences in the first generation.

DNA Sequences
Chromosome

Chromosome 1 Chromosome 2 . . . Chromosome 14

DNA Sequence 1 (q C,D
11,1 ) 0.013249146 0.018487159 . . . 0.551971137

DNA Sequence 2 (q C,D
21,1 ) 0.016574516 0.02331678 . . . 0.553625064

For gene crossover, the 1-point crossover method is performed in accordance with the crossover
rate (α). For instance, the value of the crossover point is randomly determined as 2. Then the two
child’s DNA sequences (shown in Table 8) are generated as Equations (4) and (5) according to the two
maternal DNA sequences (shown in Table 7). The line in Equations (4) and (5) is the crossover point.

DNA Sequence 1

(
q C,D

11,1

)′
=

{(
q C,D

11,1,1

)′
,
(

q C,D
11,1,2

)′
, ...,

(
q C,D

11,1,14

)′}

= {0.013249146, |0.02331678 , ..., 0.553625064}
(4)

DNA Sequence 2

(
q C,D

21,1

)′
=

{(
q C,D

21,1,1

)′
,
(

q C,D
21,1,2

)′
, ...,

(
q C,D

21,1,14

)′}

= {0.016574516, |0.018487159 , ..., 0.551971137}
(5)

Table 8. The child’s DNA sequences in the first generation.

DNA Sequences
Chromosome

Chromosome 1 Chromosome 2 . . . Chromosome 14

DNA Sequence 1
(

q1
C,D
1,1

)′
0.013249146 0.02331678 . . . 0.553625064

DNA Sequence 2
(

q2
C,D
1,1

)′
0.016574516 0.018487159 . . . 0.551971137

For gene mutation, the set of binary vectors (η = {η1, η2, ..., η14}) is randomly generated in
accordance with the mutation rate (β). If the value of ηn is equal to one, the value of the n-th
chromosome will be changed after the process of gene mutation. For instance, the child’s DNA
sequences in the first generation (shown in Table 8) are selected as the maternal DNA sequences in the
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second generation (shown in Table 9). Furthermore, the set of binary vectors is randomly generated
as η = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}. Then the two child’s DNA sequences (shown in Table 10) are
determined according to the two maternal DNA sequences (shown in Table 9).

Table 9. The maternal DNA sequences in the second generation.

DNA Sequences
Chromosome

Chromosome 1 Chromosome 2 . . . Chromosome 14

DNA Sequence 1
(

q1
C,D
1,1

)
0.013249146 0.02331678 . . . 0.553625064

DNA Sequence 2
(

q2
C,D
1,1

)
0.016574516 0.018487159 . . . 0.551971137

Table 10. The child’s DNA sequences in the second generation.

DNA Sequences
Chromosome

Chromosome 1 Chromosome 2 . . . Chromosome 14

DNA Sequence 1
(

q1
C,D
1,1

)′
0.011241019 0.02331678 . . . 0.553625064

DNA Sequence 2
(

q2
C,D
1,1

)′
0.012500034 0.018487159 . . . 0.551971137

For gene reproduction, the two new generated child’s DNA sequences are substituted for two
of the original maternal DNA sequences which have the highest cost. For instance, the costs of DNA
Sequence 2 (q2

C,D
j,i ) and DNA Sequence 14 (q14

C,D
j,i ) are higher than the costs of the other maternal

DNA sequences in Table 6 for OBU 1 driven by Driver 1. Therefore, the two new generated child’s
DNA sequences in Table 10 are substituted for DNA Sequence 2 (q2

C,D
j,i ) and DNA Sequence 14 (q14

C,D
j,i )

(shown in Table 11). Furthermore, the costs of these two reproduced DNA sequences are determined
by Equations (6) and (7), respectively.

s2 = |(103100 × 0.011241019 + 66752 × 0.02331678 + ... + 4 × 0.553625064)− 10921.364|
= 512.663178

(6)

s14 = |(103100 × 0.01539256 + 66752 × 0.021892833 + ... + 4 × 0.555117159)− 10921.364|
= 183.020039

(7)

Table 11. The maternal DNA sequences after the first iteration.

DNA Sequences
Chromosome

Chromosome 1 Chromosome 2 . . . Chromosome 14

DNA Sequence 1 (q C,D
11,1 ) 0.013249146 0.018487159 . . . 0.551971137

DNA Sequence 2 (q2
C,D
1,1 =

(
q1

C,D
1,1

)′
) 0.011241019 0.02331678 . . . 0.553625064

. . .

DNA Sequence 14 (q14
C,D
1,1 =

(
q2

C,D
1,1

)′
) 0.012500034 0.018487159 . . . 0.551971137

After gene reproduction, the convergence check is performed repeatedly. The adaptable DNA
sequence with the lowest cost is output as the estimated results of the fuel consumption based on
the driver behaviour when the number of evolution times (countc) is equal to the maximum number
of iterations (counti). In the case of OBU 1 driven by Driver 1 in this study, the adaptable DNA
sequence with the lowest cost, DNA Sequence 14 (q14

C,D
j,i ), is output as the estimated results of the fuel

consumption based on the driver behaviour (shown in Equation (8)). Therefore, the parameter qC,D
1,1,1

(i.e., 0.0125003 L) is used to estimate the quantity of fuel consumption at idle speed during each 30 s
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period; consequently, the quantity of fuel consumption at higher speed (>120 km/h) during each 30 s
period is estimated as qC,D

1,1,14 (i.e., 0.551971137 L).

qC,D
1,1 = q14

C,D
1,1

=
{

qC,D
1,1,1, qC,D

1,1,2, ..., qC,D
1,1,14

}

=

⎧⎪⎨
⎪⎩

0.012500034, 0.018487159, 0.035458125, 0.064768478, 0.088150596,
0.036826864, 0.070565879, 0.095323361, 0.154325441, 0.149250046,
0.063605949, 0.045212032, 0.132129733, 0.551971137

⎫⎪⎬
⎪⎭

(8)

4. Practical Experimental Results and Discussions

This section describes the practical experimental environments and data, and some experimental
designs are given to evaluate the proposed method in the following subsections.

4.1. Experimental Environments

The practical experimental data including the movement information and fuel quantity of fifteen
trucks during November and December 2016 were collected from an eFMS (e-Fleet Management
Service) system which was built by Chunghwa Telecom [22] for the evaluation of the proposed method.
This study used the Package ‘GA’ [23] to implement the GA algorithm for fuel consumption estimation.
The movement information and fuel quantity information during November 2016 were used as training
data, and the movement information and fuel quantity information during December 2016 were used
as testing data to evaluate the performance of the proposed fuel consumption estimation system and
method. In the training data, 420,673 movement records were retrieved, and 105,569 km were driven
by the trucks; in the testing data, 414,798 movement records were retrieved, and 107,651 km were
driven by the trucks (shown in Table 12). Table 13 shows that the fuel quantity was about 31,687.786 L
from 280 refuelling times in the training data, and the fuel quantity was about 33,164.136 L from
286 refuelling times in the testing data.

Table 12. The movement information in practical experimental environments.

OBU ID
November 2016 (i.e., Training Data) December 2016 (i.e., Testing Data)

The Number of
Movement Records

Driving Mileage
(km)

The Number of
Movement Records

Driving Mileage
(km)

1 29,115 10,636 33,546 13,548
2 39,957 11,598 39,573 12,500
3 29,289 7897 28,097 6825
4 18,980 2844 15,313 2211
5 23,514 5928 22,015 5418
6 26,422 4880 28,820 5964
7 32,345 9404 34,440 10,258
8 30,859 6707 29,066 6195
9 36,165 10,316 34,445 10,229
10 30,046 6419 28,199 6367
11 26,074 5884 26,301 5917
12 19,258 5340 19,191 5337
13 26,106 5720 26,353 6067
14 24,620 5475 24,252 5066
15 27,923 6520 25,187 5749

Summary 420,673 105,569 414,798 107,651
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Table 13. The fuel quantity information in practical experimental environments.

OBU ID
November 2016 (i.e., Training Data) December 2016 (i.e., Testing Data)

The Number of
Refuelling Times

Fuel Quantity
(L)

The Number of
Refuelling Times

Fuel Quantity
(L)

1 20 3619.020 25 4582.252
2 21 3820.000 24 4180.871
3 16 2704.016 15 2425.483
4 15 581.154 11 479.641
5 23 1031.828 25 975.490
6 26 838.163 30 896.126
7 16 3222.007 18 3578.000
8 14 2440.178 14 2331.264
9 23 3662.796 22 3691.831

10 17 2334.016 18 2350.214
11 11 2100.003 12 2241.000
12 30 897.420 25 874.300
13 15 2166.003 16 2296.017
14 20 1690.028 20 1782.006
15 13 581.154 11 479.641

Summary 280 31,687.786 286 33,164.136

4.2. Experimental Designs

Three cases were designed to evaluate the performances of the fuel consumption estimation with
or without road types. Furthermore, this study compared the performances of the proposed method
and the fuel economy guide [24]. Each case is illustrated as follows.

• Case 1: The fuel consumption estimation method considered the different road types (e.g., urban
road and highway). In this case, each DNA sequence included 28 chromosomes.

• Case 2: The fuel consumption estimation method did not consider the different road types. In this
case, each DNA sequence included 14 chromosomes.

• Case 3: The significant differences between the results of Case 1 and Case 2 were evaluated.

In this study, the mean absolute percentage error (MAPE) was used to measure the accuracy of the
fuel consumption estimation method by Equation (9). Furthermore, the t-test and F-test were adopted
to evaluate the significant differences between the results of Case 1 and Case 2.

accuracy = 100% − MAPE = 100% − |real_value − estimated_value|
real_value

(9)

4.3. Experimental Results and Discussions

This subsection used the records during November 2016 (i.e., training data) with the proposed
method to retrieve the adaptable DNA sequence as the estimated fuel consumption based on the
driver behaviour. Then the records during December 2016 (i.e., testing data) were used to test
the performance of the proposed method. In Case 1 (i.e., 28 chromosomes), the testing results
indicated that the accuracies of the proposed method and fuel economy guide were 95.54% and 24.06%
(shown in Table 14), respectively. Furthermore, Table 15 shows that the accuracy of the proposed
method was 95.87% in Case 2 (i.e., 14 chromosomes). The Bureau of Energy did not consider driver
behaviour, traffic condition, and weather when it performed its experiments, so larger errors of fuel
consumption estimation were generated in accordance with the fuel economy guide [24]. Therefore,
the proposed method can provide precise fuel consumption estimation in practical environments for
the logistics industries.
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Table 14. The accuracy of fuel consumption estimation with road types (i.e., Case 1).

OBU ID
The Proposed Method Fuel Economy Guide [24]

Accuracy of
Training Data

Accuracy of
Testing Data

Accuracy of
Training Data

Accuracy of
Testing Data

1 99.73% 91.55% 16.89% 16.99%
2 99.70% 92.66% 17.45% 17.18%
3 99.28% 93.60% 16.78% 16.17%
4 99.49% 94.90% 28.12% 26.49%
5 99.95% 97.12% 33.02% 31.92%
6 98.76% 95.48% 33.46% 38.25%
7 99.34% 97.29% 16.77% 16.48%
8 99.80% 99.37% 15.80% 15.27%
9 99.62% 97.89% 16.19% 15.92%

10 99.00% 95.30% 15.81% 15.57%
11 99.68% 96.09% 16.10% 15.17%
12 99.47% 97.22% 34.20% 35.08%
13 99.65% 95.41% 15.18% 15.19%
14 94.36% 96.56% 18.62% 16.34%
15 99.39% 92.71% 64.48% 68.89%

Mean 99.15% 95.54% 23.92% 24.06%

Table 15. The accuracy of fuel consumption estimation without road types (i.e., Case 2).

OBU ID
The proposed Method Fuel Economy Guide [24]

Accuracy of
Training Data

Accuracy of
Testing Data

Accuracy of
Training Data

Accuracy of
Testing Data

1 99.54% 92.19% 16.89% 16.99%
2 98.99% 91.59% 17.45% 17.18%
3 98.86% 96.81% 16.78% 16.17%
4 97.26% 97.70% 28.12% 26.49%
5 99.79% 98.71% 33.02% 31.92%
6 98.24% 95.61% 33.46% 38.25%
7 99.77% 95.74% 16.77% 16.48%
8 99.71% 98.44% 15.80% 15.27%
9 98.90% 96.59% 16.19% 15.92%

10 99.02% 97.81% 15.81% 15.57%
11 99.04% 93.26% 16.10% 15.17%
12 99.88% 99.05% 34.20% 35.08%
13 96.85% 89.22% 15.18% 15.19%
14 97.23% 99.28% 18.62% 16.34%
15 98.77% 96.12% 64.48% 68.89%

Mean 98.79% 95.87% 23.92% 24.06%

The practical data were collected from 15 trucks to evaluate the accuracy of the proposed method
in Cases 1 and 2. In Case 3, a two-tailed t-test was performed to determine the differences between
the mean accuracy of the proposed method in Case 1 and Case 2. The p-value of this two-tailed t-test
was measured as 0.6396 which is higher than the alpha level of 0.05, so the H0 (i.e., null hypothesis)
was accepted under 14 degrees of freedom (i.e., 14 = 15 − 1). Furthermore, this study performed a
two-tailed F-test to determine the differences between the variance of the accuracy of the proposed
method in Case 1 and Case 2. The p-value of this two-tailed F-test was measured as 0.1160 which is
higher than the alpha level of 0.05, so the H0 (i.e., null hypothesis) was accepted under 14 degrees of
freedom (i.e., 14 = 15 − 1). There were no significant differences between the results of Case 1 and
Case 2. Therefore, the fuel consumption estimation without road types can be adopted for reducing
the computation costs in the future.
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5. Conclusions and Future Work

As monitoring and reducing fuel costs is the greatest challenge for the logistics industries and bus
carriers, a fuel consumption estimation system and method based on a GA is proposed to collect the
movement information and fuel quantity information for analyzing the relation of fuel consumption
and driver behaviour. This study models the pattern of driver behaviour as a gene sequence, and
the GA including crossover and mutation processes is used to retrieve an adaptable gene sequence.
The adaptable gene sequence can be applied as the set of fuel consumption in accordance with the
pattern of driver behaviour. In practical experimental environments, 835,471 movement records from
15 trucks were collected for the evaluation of the proposed method. The practical results indicated that
the accuracy of the proposed fuel consumption estimation method was 95.87%, which was higher than
the fuel economy guide from the Bureau of Energy in Taiwan.

In the future, the evaluation model of the driver performance can be designed based on the
proposed fuel consumption estimation method. Furthermore, some suggestions and guidelines can be
made based on the driver behaviours for the driver’s reference.
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Abstract: The goal of this paper is to compare and analyze the forecasting performance of two
artificial neural network models (i.e., MLP (multi-layer perceptron) and DNN (deep neural network)),
and to conduct an experimental investigation by data flow, not economic flow. In this paper, we
investigate beyond the scope of simple predictions, and conduct research based on the merits and
data of each model, so that we can predict and forecast the most efficient outcomes based on analytical
methodology with fewer errors. In particular, we focus on identifying two models of neural networks
(NN), a multi-layer perceptron (i.e., MLP) model and an excellent model between the neural network
(i.e., DNN) model. At this time, predictability and accuracy were found to be superior in the DNN
model, and in the MLP model, it was found to be highly correlated and accessible. The major
purpose of this study is to analyze the performance of MLP and DNN through a practical approach
based on an artificial neural network stock forecasting method. Although we do not limit S&P
(i.e., Standard&Poor’s 500 index) to escape other regional exits in order to see the proper flow of
capital, we first measured S&P data for 100 months (i.e., 407 weeks) and found out the following
facts: First, the traditional artificial neural network (ANN) model, according to the specificity of
each model and depending on the depth of the layer, shows the model of the prediction well and
is sensitive to the index data; Second, comparing the two models, the DNN model showed better
accuracy in terms of data accessibility and prediction accuracy than MLP, and the error rate was
also shown in the weekly and monthly data; Third, the difference in the prediction accuracy of each
model is not statistically significant. However, these results are correlated with each other, and
are considered robust because there are few error rates, thanks to the accessibility to various other
prediction accuracy measurement methodologies.

Keywords: data analytics; forecasting; neural network; stock exchange; time-series; econometrics

1. Introduction

The stock market index, which is shaking many capital markets around the world, can be used
as an inflection point in the economy for a measure of important changes [1–4]. There are many
ways of predicting objects as data. However, as a part of traditional supervised learning, we used an
artificial neural network (i.e., ANN) model that uses labels as data. There are many examples [5–7],
based on forecasting purpose data research, which are sometimes correct. However, this approach
is worth investigating even the results are not correct. Numerous model design and performance
analysis studies for stock forecasting have been carried out with various economic and statistical
approaches [8–12]. From the viewpoint of prediction and forecasting, it is most important to establish
each model by identifying the neural networks (NN) model and data learning method.

Therefore, due to the uniqueness and volatility of the stock market, many researchers and
scientists seek prediction using models similar to neural network (NN) models. Since neural networks
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models have a long history of development regarding the number of layers (in this case, x), that is,
deep-learning can occur, we aim to determine how accurately predictions and forecasting can be made
possible through simple model comparisons [13–15].

Although the neural network-based method for stock forecasting has already been
studied [13,16,17], it is necessary to conduct a scientific analysis of the stock forecasting method
by comparing neural network models of single-layer and multi-layer networks. A comparison of the
two above models, multi-layer perceptron (MLP) and deep neural network (DNN), reveals that it is
meaningful to compare the data at the stage of establishing the two models. In addition, the stock
market of a country can be seen as a flow of data rather than as a relation of capital flow. The greatest
difference between MLP and DNN is to avoid overfitting, which includes random error or noise. For
example, when MLP is applied, overfitting occurs and it is difficult to compare performance with
DNN. In order to avoid this statistical error phenomenon, [18–20] studies use dropout, early stopping,
and weights regulation for MLP. In this study, one statistical solution, dropout, is applied as a method
to avoid overfitting. In addition, the MLP assumes that there is one hidden layer (i.e., 1-HL), and that
the DNN has two or more hidden layers (i.e., 3-HL).

To compare the two artificial neural network models for stock forecasting, S&P 500 (i.e.,
Standard&Poor’s 500 index) was selected because it could see data flow for the week, month, and
year according to accessibility and change. We also want to analyze in more detail the success of
forecasting and forecasting in the areas of statistics and econometrics to create basic data for actual
data usage analysis.

The following is a list of the composition of this paper. First, Section 2 will explain the underlying
data and Section 3 will explain the forecasting methodology. Next, Section 4 will show the empirical
measurement results, and in Section 5, the conclusions will be discussed.

2. Data Acquisition

It is difficult to prove the excellence of objective data in the absence of local specificity. However,
in order to collect the most efficient and objective data, S&P 500 data are accessed in this text. However,
these statistical results are based on real measurements and show in the public domain a good
prediction for an individual as well as for a large economic impact on society. In fact, the dataset spans
from 31 May 2009 to 12 March 2017, totaling 100 months (i.e., 407 weeks) of observations. Statistical
analysis for these eight years is a condition that should not be excluded or influenced by other data.

Actual data can be subdivided for viewing and forecasting, and thus divided into several ranges.
As a result of efforts to determine the potential impact and efficiency of a given index data for the
ultimate goal of prediction accuracy, the following results were obtained: 20% of the total number of
observations were in the long-term range, 13–8% were in the intermediate range, and 6% were in the
short-term range. The actual data tends to be grouped by scope, and if they are outside of this range,
they cannot prove to be effective. Of the first long-range predictions, 330 weeks of data were used for
model identification and estimation, and the remaining 77 weeks of data (about 20% of 407 weeks)
were used to evaluate the performance of the MLP and DNN models. The intermediate range and
short range were also defined in a similar way. After obtaining the middle range (31–50 weeks ahead)
and the short range (23 weeks ahead) forecast horizon, it becomes necessary to check once again the
soundness and efficiency of the data.

Once again, we present three predicted horizons (20%: long-term range, 13%: intermediate
range, 8%: short-term range) and acknowledge that all the data used are obtained for the purpose of
prediction and forecasting. At the same time, all results can be viewed in real time in order to see the
flow of data.
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3. Forecasting Methodology

3.1. MLP and DNN Model Methodology

In this section, we discuss the accuracy prediction methodology along with the basics of the
neural network theory that can be found by increasing the number of layers (x) by elements of the
traditional NN model. We also present the prediction efficiency of each model when the NN models
are developed as back-propagation neural networks. The main reason for adopting MLP is because it
is a partial differential of the network error function. Thus, it is an efficient way to develop a network
model that minimizes discrepancies between the actual data and the output from the network model.
In this case, the number of outputs per layer is increased and the output has an important scientific
meaning in terms of efficiency, and it is a factor used to measure the quality of learning. In fact,
MLP and DNN can have more than two hidden layers. However, in this study, we designed a stock
forecasting model based on DNN with one hidden layer, as well as a model with two or more hidden
layers. In the case of MLP, a method of avoiding overfitting is applied.

Figure 1 shows an illustration of the artificial neural network model methodology, in particular a
Back-Propagation Neural Network (MLP and DNN). We designed an artificial neural network based
on MLP and DNN models that predicts the future by using past S&P 500 data as input data. In
addition, input and output data are normalized based on the highest index of S&P 500.

(a) (b)  

Figure 1. Illustration of the MLP and DNN model methodology. (a) MLP with 1-HL; (b) DNN
with 2-HL.

In particular, MLP and DNN can be trained using the historical data of a time series in order
to capture the non-linear characteristics of the specific time series. Each model parameter will be
adjusted iteratively by a process of minimizing the forecasting errors. For time series forecasting, the
relationship between the output (Y) and the inputs (X) can be described by the following mathematical
formula:

yk = ao +
n

∑
j=1

d

∑
l=1

ajh(Wol +
m

∑
i=1

Wilyk−1) + EK, (1)

where aj (j = 0, 1, 2, . . . , n) is a bias on the jth unit; wij (i = 0, 1, 2, . . . , m; j = 0, 1, 2, . . . , n) is the
connection weights between layers of the model; h(·) is the transfer function of the hidden layer; m
is the number of input nodes; and n is the number of hidden nodes. The MLP model performs a
nonlinear functional mapping from past observations (yk−1, yk−2, . . . , yk−p), to future values (yk), i.e.,

yk = ∅

(
yk−1, yk−2, . . . , yk−m

)
+ Ek, (2)

where w is a vector of all parameters and ∅ is a function determined by the network structure and
connection weights.
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In addition, it is necessary to explain the expanded method of neural network theory in order to
increase the number of layers (x) of existing ANN models, and increase the forecast and prediction
by the time series methodology. Therefore, we investigated the DNN model in the same context but
with a different approach. In order to obtain the corresponding estimates of S&P 500, we used the
multi-layer neural network [20] model to find the best fit of a time series model by using past values,
and this method generated the optimal weights in hidden layers.

As these forecasting methodologies are important, there is a need to check for inadequate outlooks
and susceptibility to errors. Therefore, the forecast error (er (k)) of each model is another important
factor. It is mainly expressed as the method of subtracting the forecasted value from the actual value
(price or profit) of our S&P 500 data and subtracting the difference from the absolute value of the actual
data as follows:

er (t) =
ABS(k) – FORECASTING(k)

|ABS(k)| , (3)

where ABS(k) = actual value of S&P 500 in period (k) function, and FORECASTING (k) = forecasted
value of S&P 500 in period (k) function.

3.2. Implementation and Avioding the Overfitting Problem

In this paper, DNN is implemented as shown in Algorithm 1 using Python. Algorithm 1 shows
the implementation method when there are three hidden layers. In Step 1, the values of the input node
and output node are stored in x, y. In addition, layer-1 to layer-n are initialized for n hidden layers. To
calculate the hidden layer, we define two variables: layer and synapse. The layer stores the objective
value of the hidden layer, and the synapse stores the value of the weights. Note that, since layer-0 is
defined as the input layer, the value of x is substituted. It also generates and initializes variables from
synapse_0 to synapse_n. In Step 2, the non-linear sigmoid is used to update the result between layers.
In Step 3, we apply the dropout operation to avoid the overfitting problem. Step 4 calculates the error
rate of the input and output between layers. In Step 5, we update each synapse with an error using
the correction value. The same operation is repeated through 500 iterations from Step 2 to Step 5 to
optimize the synapse values.

In the ANN proposed in this work, the dropout, early stopping, and weight regularization
techniques are applied to avoid the overfitting phenomenon and to ensure good performance and
the best generalization of the implemented model. Since it is already verified that dropout can solve
the problem of overfitting that frequently occurs in the neural network model, we apply the dropout
method between the hidden layer and the final classification layer of MLP and DNN models to apply
the effect of regularization. Also, for every learning process, the epoch for each data is fixed as 500.

Note that we developed the MLP and DNN by using Python programming [21–23], which is
used to train data for model developments and test data for the forecasting accuracy of the models
developed. Here, the stop criteria for the supervised training of the networks are specified as follows.
The maximum epochs specify how many iterations (over the training set) will be done if no other
criterion kicks in. The training terminates when one of the following four conditions is met: (i)
when the mean square error of the validation set begins to rise, indicating that overfitting might be
happening; (ii) when the threshold is less than 0.01, i.e., we are on effectively flat ground; (iii) when the
training time has reached 500 epochs; or (iv) when the goal (the difference between output and target is
less than 0.01) has been met. After the training was completed, its epochs and the simulation procedure
were completed successfully, which indicates that the network was trained and was predicting the
output as desired. This is similar to the predictions we are currently pursuing in the Convolution
Neural Network (CNN) of Artificial Intelligence (AI).

In particular, it is necessary to apply the principle of Ockham’s razor [24], which is one of the many
tools used in the development of philosophical and theoretical models of scientists. It is very important
to identify the fundamental principles at this time. Aristotle's scientific curiosity was conveyed by
Stephen Hawking [25] in a modernized sense as a measure of the path and process theories determined
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by the amount of neural weight delivered, which states that neural network theory is intelligent. The
simplest network topology is used to produce the correct result of the prediction. As you increase the
number of layers, it should be noted that you have to create the layers of the network in the order of
input 2, layer 1, and output 1. In other words, this means that two input layers, one hidden layer, and
one output layer are related to the accuracy of the prediction regardless of the order of propagation.
At the same time, the hidden layer value in the middle, x, can be changed and can be set to various
variables such as 2, 3, 4, and 5. Of course, 1 means simply that the value of the hidden layer is 1, but
sometimes there is a best result when there is a hidden layer. The topology of the propagated network
becomes an important factor.

Algorithm 1. MLP and DNN by using Python Language

Step 1:

x <- Input nodes
y <- Output nodes
INIT(layer1, layer2, layer3) # <- random values with normalized 0 to 1
dropout_percent, do_dropout = (0.2, True)
layer_0 <- x
INIT(synapse_0, synapse_1, synapse_2, synapse_3) # <- random values with normalized 0
to 1
alpha <- 0.1

Step 2:

for j in range(500):
for i in range (len(x)):

layer_0 = x[i]
layer_1 = sigmoid(np.dot(layer_0,synapse_0))
layer_2 = sigmoid(np.dot(layer_1,synapse_1))
layer_3 = sigmoid(np.dot(layer_2,synapse_2))

Step 3:

if(do_dropout):
layer_1*=np.random.binomial([np.ones((len(X),hidden_dim))],

1-dropout_percent)[0] * (1.0/(1-dropout_percent)
layer_2*=np.random.binomial([np.ones((len(H),hidden_dim))],

1-dropout_percent)[0] * (1.0/(1-dropout_percent))

Step 4:

layer_3_error = layer_3 – y[i]
#layer_3_error = y [i]- layer_3
layer_3_delta = layer_3_error * sigmoid_output_to_derivative(layer_3)
layer_2_error = layer_3_delta.dot(synapse_2.T)
layer_2_delta = layer_2_error * sigmoid_output_to_derivative(layer_2)
layer_1_error = layer_2_delta.dot(synapse_1.T)
layer_1_delta = layer_1_error * sigmoid_output_to_derivative(layer_1)

Step 5:

#layer_3_error = layer_3 − y
synapse_2 −= alpha * np.reshape(layer_2,( −1,1))*layer_3_delta
synapse_1 −= alpha * np.reshape(layer_1,( −1,1))*layer_2_delta
synapse_0 −= alpha * np.reshape(layer_0,( −1,1))*layer_1_delta
#layer_3_error = y - layer_3
synapse_2 += alpha * np.reshape(layer_2,(−1,1))*layer_3_delta
synapse_1 += alpha * np.reshape(layer_1,( −1,1))*layer_2_delta
synapse_0 += alpha * np.reshape(layer_0,( −1,1))*layer_1_delta

4. Analysis and Results

4.1. Optimal Paramters

We first experimentally determined the number of hidden nodes to compare the performance of
MLP and DNN by using weekly and monthly data. The number of hidden nodes in MLP is selected as
150%, 100%, 50%, and 25% of the number of input nodes. In addition, the number of hidden nodes
in DNN is three times the number of hidden nodes in MLP. Finally, overfitting was avoided using
dropout, and the epoch was fixed at 500.
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Table 1 shows the results using MLP-based weekly and monthly data. The number of hidden
nodes in the input nodes 77, 50, 31, 23, 17, 11, and 7 is 35, 25, 15, 23, 17, and 11, respectively. In addition,
the results using DNN-based weekly and monthly data are shown in Table 2. In the input nodes 77, 50,
31, 23, 17, 11, and 7, the number of hidden nodes is 105, 36, 21, 33, 24, and 15, respectively.

Table 1. MLP (1-HL) by using weekly and monthly data.

# of Input # of HL Mean Square Error (MSE) # of HL MSE

Weekly

77
115 0.005 35 0.004
77 0.005 19 0.005

50
75 0.007 25 0.005
50 0.006 12 0.006

31
46 0.004 15 0.001
31 0.002 7 0.003

23
34 0.003 11 0.002
23 0.001 5 0.003

Monthly

17
25 0.021 8 0.022
17 0.017 4 0.029

11
16 0.005 5 0.004
11 0.003 2 0.006

7
10 0.003 3 0.018
7 0.006 1 0.222

Table 2. DNN (3-HL) by using weekly and monthly data.

# of Input # of HL Mean Square Error (MSE) # of HL MSE

Weekly

77
345 0.006 105 0.004
231 0.005 57 0.005

50
225 0.007 75 0.005
150 0.006 36 0.005

31
138 0.004 45 0.001
93 0.003 21 0.001

23
102 0.003 33 0.001
69 0.002 15 0.002

Monthly

17
75 0.021 24 0.018
51 0.022 12 0.023

11
48 0.007 15 0.006
33 0.007 6 0.008

7
30 0.002 9 0.018
21 0.001 3 0.022

4.2. Analysis and Results

In this section, descriptive statistics of forecast errors (er) from the MLP model and DNN model
using S&P data are presented in Table 1. Those statistics of forecast errors (FE) for four different
forecasting horizons such as 77 weeks ahead (long range), 50 weeks ahead (upper mid range), 31 weeks
ahead (lower mid range), and 23 weeks ahead (short range) are presented in Table 1. As shown,
statistical results such as average Mean, MAE (mean absolute error), MSE were applied with the
measuring horizons of 77, 50, 31 and 23, respectively. What is unusual is that the DNN model provides
a smaller MAE and MSE than the MLP model does for all forecast horizons, with the exception of the
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short forecast horizon (23 weeks ahead). These results were statistically significant at all predicted
horizon measurement points by nonparametric Wilcoxon test [15]. The point that can be deduced, as
mentioned by Wang et al. [16], is that the DNN model provides a more accurate prediction than the
MLP model.

In particular, in Tables 3 and 4, the hidden nodes of MLP and DNN are set to about half the
number of inputs and outputs. In the case of DNN, the hidden layers are all set to six. Therefore, the
number of hidden nodes is six times larger than that of MLP.

Table 3. Statistical analysis and forecasting accuracy of each model by actual weekly data.

Forecasting
Horizon (Weeks) Model Mean MAE MSE

77
MLP(1-HL) 0.194 0.136 0.021
DNN(3-HL) 0.07 0.053 0.004

50
MLP(1-HL) 0.097 0.529 0.005
DNN(3-HL) 0.046 0.034 0.001

31
MLP(1-HL) 0.055 0.034 0.002
DNN(3-HL) 0.034 0.027 0.001

23
MLP(1-HL) 0.033 0.027 0.001
DNN(3-HL) 0.031 0.023 0.001

Mean = 1/n Σ FE. Forecast errors (FE) are defined as: (A–F)/|A|; MAE = 1/n Σ |FE|; MSE = 1/n Σ (FE)2.

Table 4. Statistical analysis and forecasting accuracy of each model by actual monthly data.

Forecasting
Horizon (Months) Model Mean MAE MSE

17
MLP(1-HL) 0.185 0.130 0.017
DNN(3-HL) 0.064 0.046 0.003

11
MLP(1-HL) 0.096 0.070 0.005
DNN(3-HL) 0.010 0.033 0.001

7
MLP(1-HL) 0.072 0.054 0.003
DNN(3-HL) 0.033 0.025 0.001

Mean = 1/n Σ FE. Forecast errors (FE) are defined as: (A–F)/|A|; MAE = 1/n Σ |FE|; MSE = 1/n Σ (FE)2.

In terms of the prediction horizon, the NN model, which is a time series rather than the MLP
model, has a small MAE and MSE. However, the difference was statistically significant for 11 months
compared to the values initially predicted. Because α < 0.01, the statistical observations were reasonably
judged. In conclusion, the results of the weekly data and monthly data are consistent.

Tables 5 and 6 show the results of MLP and DNN with the number of hidden nodes increased.
Although increasing the number of hidden nodes increases the learning time, it can confirm the relative
increase in the accuracy. The execution time required for the learning time can be reduced through
parallel processing or cloud computing [24–26]. The results of Tables 5 and 6 show that the hidden
nodes are twice as many as the input and output numbers, compared to Tables 3 and 4, in which the
hidden nodes are about half of the input and output counts. As a result, a slight improvement in
the accuracy performance was confirmed as the result of increased hidden nodes in the weekly and
monthly data-based MLP and DNN.

As described above, annual data can be inferred from the data of the week and month taken from
the time series data. As the forecasting horizon changes, it is meaningless in the Neural Network
Perspective. Below, we can see the recent yearly data from 2015 to 2017 for comparison. Figure 2
shows that a comparison of the recent yearly data by layer x = 0, which includes real data, 20%, 13%,
8%, and 6 %, respectively. Each colored line shows five layer-by-layer predictions, and the legend on
the left shows the stock price index of the S&P 500 [27,28] in Figure 3. It can be seen that the main
inflection point and the amount of network applied are very similar to the real data, that is, the actual
measured data.
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Table 5. Statistical analysis and forecasting accuracy of each model by actual weekly data.

Forecasting
Horizon (Weeks) Model Mean MAE MSE

77
MLP(1HL) 0.132 0.132 0.018
DNN(3HL) 0.139 0.139 0.020

50
MLP(1HL) 0.070 0.070 0.005
DNN(3HL) 0.079 0.079 0.006

31
MLP(1HL) 0.044 0.044 0.002
DNN(3HL) 0.040 0.040 0.001

23
MLP(1HL) 0.026 0.026 0.001
DNN(3HL) 0.011 0.012 0.001

Mean = 1/n Σ FE. Forecast errors (FE) are defined as: (A–F)/|A|; MAE = 1/n Σ |FE|; MSE = 1/n Σ (FE)2.

Table 6. Statistical analysis and forecasting accuracy of each model by actual monthly data.

Forecasting
Horizon (Months) Model Mean MAE MSE

17
MLP(1HL) 0.128 0.128 0.017
DNN(3HL) 0.135 0.135 0.018

11
MLP(1HL) 0.071 0.071 0.005
DNN(3HL) 0.081 0.081 0.006

7
MLP(1HL) 0.028 0.028 0.001
DNN(3HL) 0.011 0.011 0.001

Mean = 1/n Σ FE. Forecast errors (FE) are defined as: (A–F)/|A|; MAE = 1/n Σ |FE|; MSE = 1/n Σ (FE)2.

 
(a) 

 
(b) 

Figure 2. Comparison of recent yearly data by x = 0 values from 20%, 10%, 8%, 6%, respectively.
(a) MLP(1-HL); (b) DNN (3-HL).
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Figure 3. Comparison of recent yearly data by x = 0 values from 20%, 13%, 6%, respectively. (a) MLP
(1-HL); (b) DNN (3-HL).

Furthermore, in the case of the real data, that is, the actually measured data, the layer is 6%, and
the reason for this is as follows. First, the error rate tends to be lower than other data. On the other
hand, the higher the percentage of the layer, the more likely it is that the initial value will be the same
as the real data.

5. Conclusions

The ultimate goal of this paper was to compare and analyze the forecasting performance of two
artificial neural network (ANN) models, and to conduct scientific analysis by data flow, not economic
flow. In particular, we investigated which is the better model between the multi-layer perceptron
(MLP) model and the deep neural network (DNN) model by forecasting the Stock Price Index (S&P
500) during a certain time frame. Particularly, forecasting performance was measured by the forecast
accuracy metrics, such as the absolute forecasting errors and square forecasting errors of each model.

As a result, DNN was found to perform better than MLP. In addition, although the method of
input data is limited to the past stock index data in this study, monthly data learning results provided
better prediction performance than weekly data learning results. It should be noted that the use of an
artificial neural network, which is a scientific approach, can grasp the flow of stock trends, though it is
difficult to predict detailed stock changes.

There is a first task of comparing and analyzing the models by limiting the object of S&P 500, as
well as showing the flow of data and the viewpoint of analysis. S&P 500 data and its return data over
a period of 100 months (i.e., 407 weeks), extending from 2009 to 2017, were analyzed. We found the
followings: first, the DNN model generally provided more accurate forecasts for the S&P 500 than
the MLP model. Although the ANN models have evolved continuously, it may be good for a deep
running perspective, but since the approach between the models is different and the utility is different,
it was not statistically reliable to predict on S&P 500 returns. It was observed that these results are
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applicable to both weekly, monthly, and annual data shown in DNN and are useful for accurate
prediction without error rate. Since the accuracy of forecasting values is dependent on the developing
process of forecasting models, the results of this study may also be sensitive to the developing process
of the MLP model and DNN model.
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