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Preface

This book is devoted to recent advances in the theory and applications of Partial Dif-
ferential Equations and energy functionals related to the fractional Laplacian oper-
ator (—A)° and to more general integro-differential operators with singular kernel of
fractional differentiability order 0 < s < 1.

After being investigated firstly in Potential Theory and Harmonic Analysis, frac-
tional operators defined via singular integral are currently attracting great attention in
different research fields related to Partial Differential Equations with nonlocal terms,
since they naturally arise in many different contexts. The literature is really too wide to
attempt any reasonable account here, and the progress achieved in the last few years
has been very important.

For this, we proposed the leading experts in the field to present their community
recent results together with strategy, methods, sketches of the proofs, and related open
problems.

The contributions to this book are the following,

Chapter 1: Heat kernel for nonsymmetric nonlocal operators

Z.-Q. CHEN and X. ZHANG present a survey on the recent progress in the study
of heat kernels for a wide class of nonsymmetric nonlocal operators, by focusing on
the existence and some sharp estimates of the heat kernels and their corresponding
connection to jump diffusions.

Chapter 2: Fractional harmonic maps

F. DA Lio gives an overview of the recent results on the regularity and the com-
pactness of fractional harmonic maps, by mainly focusing on the so-called horizontal
1/2-harmonic maps, which arise from several geometric problems such as for instance
in the study of free boundary manifolds. The author describes the techniques that have
been introduced in a series of very recent important papers in order to investigate the
regularity of these maps. Some natural applications to geometric problems are also
mentioned.

Chapter 3: Obstacle problems involving the fractional Laplacian

D. DANIELLI and S. SALSA investigate fractional obstacle problems, by firstly pre-
senting the very important results concerning the analysis of the solution and the free
boundary of the obstacle for the fractional Laplacian, mainly based on the extension
method. Then, the authors consider the two time-dependent models which can be
seen as the parabolic counterparts of the stationary fractional obstacle problem as
well as the Signorini problem in the cylinder, by discussing some regularity proper-
ties of the solutions and the free boundary.

https://doi.org/10.1515/9783110571561-001
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Chapter 4: Nonlocal minimal surfaces: interior regularity, quantitative esti-
mates and boundary stickiness

S. DIPIERRO and E. VALDINOCI present various important results related to the sur-
faces which minimize the nonlocal perimeter functional. The authors discuss the in-
terior regularity and some rigidity properties (in both a quantitative and a qualitative
way) of these nonlocal minimal surfaces, together with their quite surprising bound-
ary behavior.

Chapter 5: Eigenvalue bounds for the fractional Laplacian: a review

R. L. FRANK reviews some recent developments concerning the eigenvalues of the
fractional Laplacian and fractional Schrédinger operators. In particular, the author
focuses his attention on Lieb—Thirring inequalities and their generalizations, as well
as semi-classical asymptotics.

Chapter 6: A survey on the conformal fractional Laplacian and some geometric
applications

M. D. M. GONZALEZ reports on recent developments on the conformal fractional
Laplacian, both from the analytic and geometric points of view, with a special sight to-
wards the Partial Differential Equations community. Among other investigations, the
author explains the construction of the conformal fractional Laplacian from a purely
analytic point of view, by relating its original definition coming from Scattering Theory
to a Dirichlet-to-Neumann operator for a related elliptic extension problem, thus al-
lowing for an analytic treatment of Yamabe-type problems in the nonlocal framework.
Several examples and related opens problems are presented.

Chapter 7: Jump processes, nonlocal operators and regularity

M. KASSMANN reviews some basic concepts of Probability Theory, by focusing on
the jump processes and their connection to nonlocal operators. Then, the author ex-
plains how to use jump processes for proving regularity results for a very general class
of integro-differential equations.

Chapter 8: Regularity issues involving the fractional p-Laplacian

T. Kuusi, G. MINGIONE, AND Y. SIRE deal with a general class of nonlinear integro-
differential equations involving measure data, mainly focusing on zero order poten-
tial estimates. The nonlocal elliptic operators considered are possibly degenerate or
singular and cover the case of the fractional p-Laplacian operator with measurable
coefficients. The authors report recent related existence and regularity results by pro-
viding different, more streamlined proofs.
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Chapter 9: Boundary regularity, Pohozaev identities, and nonexistence results

X. Ros-OTON surveys some recent results on nonlocal Dirichlet problems driven
by a class of integro-differential operators, whose model case is the fractional Lapla-
cian. The author discusses in detail the fine boundary regularity of the solutions, by
sketching the main proofs and the involved blow-up techniques. Related Pohozaev
identities strongly based on the aforementioned boundary regularity results are also
presented, by showing how they can be used in order to deduce nonexistence and
unique continuation properties.

Chapter 10: Variational and topological methods for nonlocal fractional peri-
odic equations

G. MoLicaA BiscI reports on recent existence and multiplicity results for nonlo-
cal fractional problems under periodic boundary conditions. The abstract approach
is based on variational and topological methods. More precisely, for subcritical equa-
tions, mountain pass and linking-type nontrivial solutions are obtained, as well as
solutions for parametric problems, followed by equations at resonance and the ob-
tention of multiple solutions using pseudo-index theory. Finally, in order to overcome
the difficulties related to the lack of compactness in the critical case, the author per-
forms truncation arguments and the Moser iteration scheme in the fractional Sobolev
framework. Some related open problems are briefly presented.

Chapter 11: Change of scales for crystal dislocation dynamics

S. PATRIZI presents various results for a class of evolutionary equations driven by
fractional operators, naturally arising in Crystallography, whose corresponding so-
lution has the physical meaning of the atom dislocation inside a crystal structure.
Since different scales come into play in such a description, different models have been
adopted in order to deal with phenomena at atomic, microscopic, mesoscopic and
macroscopic scale. By looking at the asymptotic states of the solutions of equations
modeling the dynamics of dislocations at a given scale, it is shown in particular that
one can deduce the model for the motion of dislocations at a larger scale.

For the sake of the reader, these contributions are preceded by an introduction,
Essentials of nonlocal operators, redacted by C. BUCUR, which aims at providing
some basic knowledge of nonlocal operators. Must-know notions on the fractional
Laplacian and on more general nonlocal operators are addressed. The expert users
may completely skip this preliminary chapter.

Finally, we would like to thank all the authors who kindly accepted to write their
contributions for this book. We appreciated very much both their effort in ensuring a
large accessibility of their own chapters to a wide audience, and the fact that each con-
tribution does bring as well new perspectives and proposals, by stimulating the expert
in the field. We would also like to thank all the referees who have contributed with their
constructive reviews on the improvement of the whole book. Special thanks are lastly
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due to Mauro Palatucci who created the cover image, and to Agnieszka Bednarczyk-
Drag who assisted us in preparing this book.

We hope that our readers enjoy the inspiring insights into the variety of the recent
research topics within the nonlocal theory presented in this book.

Parma, 2017, May 4 Tuomo Kuusi, Giampiero Palatucci



Claudia Bucur
Essentials of Nonlocal Operators

Abstract: This preliminary chapter aims at providing some basic knowledge on non-
local operators. Notions which are necessary to know about the fractional Laplacian
and about more general nonlocal operators will be addressed. The expert users may
skip this introduction.

The goal of this preliminary chapter is to bring the non-expert reader closer to the
beautiful world of nonlocal operators. By no means exhaustive, this introduction gives
a glance at some basic definitions, notations and well known results related to a few
aspects of some nonlocal operators. With these premises, we take a look at fractional
Sobolev spaces, at the fractional Laplacian and at a more general class of nonlocal
operators (of which the fractional p-Laplacian is the typical representative).

0.1 Fractional Sobolev Spaces

Fractional Sobolev spaces are a classical argument in harmonic and functional anal-
ysis (see for instance [17, 23]). The last decades have seen a revival of interest in frac-
tional Sobolev spaces, both for their mathematical importance and for their use in the
study of nonlocal operators and nonlocal equations. In this section, we give an intro-
duction to the topic and state some preliminary results, following the approach in [10]
(the interested reader should check this very nice paper for the detailed argument).

To begin with, we recall the definition of a C*% domain. Letke N, a e (0,1] and
let Q = R" be an open bounded set. We define

Q :=={x=0,x)eR""xR st |x|<1, x| <1},
Qi :={x=(,xn) eR""xR st |xX|<1,0<xn<1},
Qo :={xeQ s.it.xn = 1}.

We say the domain ( is of class C® if there exists M > 0 such that for any x € 0Q
there exists a ball B = B;(x) for r > 0 and a isomorphism T: Q — B such that

Te Ch(Q), T=1e cho(B), T(Q+)=Bn Q, T(Qo) =BnoQ and
ITlctagy + 17 lcrage) < M-

We fix the fractional exponent s € (0, 1) and the summability coefficient p €
[1, ). Let Q < R" be an open, possibly non-smooth domain. We define the fractional

Claudia Bucur, School of Mathematics and Statistics, University of Melbourne, 813 Swanston Street,
Parkville VIC 3010, Australia, E-mail: c.bucur@unimelb.edu.au

https://doi.org/10.1515/9783110571561-002

aOpen Access. [C)EEIETN|© 2018 Claudia Bucur, published by De Gruyter. This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.
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Sobolev space WP (Q) as

W*P(Q) := {u e LP(Q)s.t. M eIP(Q x Q)} . (0.1.1)
X —yl»
This space is naturally endowed with the norm
1
1 D P
ooy = ([ P ax)” + | [ BX=uWF 501 (0.1.2)
(@) 0 X — y|n+sp
Qx0
where the second term on the right hand side
v
u(x) —u(y)P
[Wlyer () == J % dx dy (0.1.3)

Qx0

is the so-called Gagliardo semi-norm.
We define Wy (Q) as the closure of C3°(2) in norm | - lws»(q)- Moreover

W5P(R") = WSP(R),

as stated in Theorem 2.4 in [10]. In other words, the space CE (R") of smooth functions
with compact support is dense in WP (R") (actually this happens for any s > 0).
We point out for p = 2 the particular Hilbert spaces

HS(Q) := WS2(Q)

and
Hy(Q) := W5*(Q),

that are related to the fractional Laplacian, that we introduce in the upcoming Section
0.2.

Fractional Sobolev spaces satisfy some of the classical embeddings properties
(see Chapters 2 and 5 in [10] for the proofs and more details on this argument). Let
u: Q ¢ R" — R be a measurable function. Then we have the following.

Proposition 0.1. Let0 < s < s’ < 1 andlet Q < R" be an open set. Then

[ullwsr () < Clulyspq)

for a suitable positive constant C = C(n, s, p) > 1. In other words we have the continu-
ous embedding
WP (Q) c WP (Q).

One may wonder what happens at the limit case, when s’ = 1. If the open set Q is
smooth with bounded boundary, then the embedding is true, as stated in the next
proposition.



Essentials of Nonlocal Operators = 7

Proposition 0.2. Let O = R" be an open set of class C%! with bounded boundary.
Then

[ullwse @y < Clullwrr (o)
for a suitable positive constant C = C(n, s, p) > 1. In other words we have the continu-

ous embedding
whP(Q) = WSP(Q).

Fractional Sobolev spaces enjoy also quite a number of fractional inequalities: the
Sobolev inequality is one of these. Indeed, for p € [1, «) and n > sp we introduce the
fractional Sobolev critical exponent

{ "P_ forsp <n,
pr—{ n-sp

0 for sp = n.

Then we have the fractional counterpart of the Sobolev inequality:
Theorem 0.3. Foranyse (0,1), p € (1,n/s) and u € C{ (R") it holds that
[l gy < ClUT s (en)-
Consequently, we have the continuous embedding
W*P(R") < LYR") forany qe[p,p’].

Proof. We give here a short proof, that can be found in [21] (or in [5], Theorem 3.2.1).
We have that

U] < [u(x) —u)| + [uy)l-

For a fixed R (that will be given later on), we integrate over the ball Bg(x) and have
that

wmmwuﬂ<f

BRX

|wm—uwww+f w)ldy =T + L. (014)

BR X)

We apply the Hélder inequality for the exponents p and p/(p — 1) in the first integral
and obtain that

ulx)—u n+sp
Il — f LYH_(S);)‘P(_)A I dy
B Jx—y| "5

p—1

1 p—1

ntsp [u(x) —u)P ! J' "
<R » J L M q d
<BR(X) x—yprese Y Br(%) Y

< CR"*S(J‘nl“X)—-HOOV’dy>§.

=y
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The Hélder inequality for n"’;p and (pfﬁ +5p 8ives in the second integral

n(p=1)+sp

np n;pSp np
L < f u(y)| ™5 dy f dy
BR (X) BR (X)

n—sp

< CRn(%;HSP (J \u(y)|% dy) " .
Rn

Dividing by R" in (0.1.4) and renaiming the constants, it follows that

Gl < CR° [U \ % dy); LR} (jR u(y)|= dy) } .

We take now R such that

n—sp

U"W‘iy); R ([ P ay) "

and we obtain

s(n—sp)

Raising to the power n"’;p and integrating over R", we get that

ps
" |u() —u(y)” 2 )"

This leads to the conclusion, namely
p

np p
(fRn|u(x)|mdx) ﬂ o yl"“p‘ dxdy

Using this fractional Sobolev inequality, one can prove the embedding W57 (Q) <
Li(Q) for any q € [p, p*], for particular domains Q for which a W*?(Q) function can
be extended to the whole of R". These are the extension domains, defined as follows.

O

Definition 0.4. Foranys € (0, 1) and p € [1, ), we say that Q = R" is an extension
domain for W*P if there exists a positive constant C = C(n, s, p, Q) such that for any
u € WP (Q) there exists it ¢ WP (R") such that it = u in Q and

|l ws.r mry < Cliullwsr(q)-

A nice example of an extension domain is any open set of class C%! with bounded
boundary.
We state this continuous embedding in the following theorem.
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Theorem 0.5. Lets € (0,1) and p € [1, ) such that n > sp. Let Q = R" be an
extension domain for WP, Then there exists a positive constant C = C(n, s, p, Q) such
that for any u € WS?(Q) it holds

|ullzaq) < Clulws»@) forany qelp,p’].
In other words, we have the continuous embedding
WP (Q)c LY(Q) forany qe[p,p*]-
Moreover, if Q is bounded, the embedding holds for any q € [1, p*].

In the case n < sp, we have the following embedding (see Theorem 8.2 in [10]) :

Theorem 0.6. Let Q = R" be an extension domain for WP with no external cups.
Then for any p € [1, ), s € (0, 1) such that sp > n there exists a positive constant
C = C(n, s, p, Q) such that

S

fleoacay < € (112 ) + [Wlyena))

for any u € LP (Q) with a := *E7%.

0.2 The Fractional Laplacian

The fractional Laplace operator has a long history in mathematics, in particular it is
well known in probability as an infinitesimal generator of Lévy processes (A detailed
presentation of this aspect can be found in Chapter 7). Furthermore, this operator has
numerous applications in real life models that describe a nonlocal behaviour, such
as in phase transitions, anomalous diffusion, crystal dislocation, minimal surfaces,
materials science, water waves and many more. As a matter of fact, Chapter 11 presents
some very nice results on a nonlocal model related to crystal dislocation.

Hence, there is a rich literature on the mathematical models involving the frac-
tional Laplacian, and different aspects of this operator can be studied. In this book,
Chapters 3, 5, 6 present in a self-contained manner some very interesting aspects of
the fractional Laplacian. This section gives some basic definitions and makes some
preliminary observations on the fractional Laplacian. For more detailed information,
the reader can see the above mentioned chapters, and i.e. [5, 22] and other references
therein.

We introduce at first some useful notations. Let n € N, we denote by S the
Schwartz space of rapidly decaying functions

8= {fe C*(R") s.t. forall a, B € N§, sup |x*D%f(x)| < oo} .

xeRn
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Endowed with the family of semi-norms

[FEY = sup(1+ XDV D] IDf(x)

xeR" la]<N

where N = 1,2,..., the Schwartz space is a locally convex topological space. We
denote the space of tempered distributions, namely the topological dual of 8, by &'
and use (-, -) for the dual pairing between § and §'.

Let s € (0,1). For any u € 8 we define the fractional Laplacian as the singular
integral

s . u(x) — u(y)
(=AY’ u(x) := C(n, s)PV. o T~y dy

u(x) —u(y)
= cn, S);E% RM\B.(x) X —y[n+2s

(0.2.1)
dy,

where C(n, s) is a dimensional constant. The PV. stands for “in the principal value
sense” and is defined as above. The integral needs to be considered in principle values

. 1 1 .. . . .
since, fors e 5 1 | the kernel m is singular in a neighborhood of x and this

singularity is not integrable near x.
With a change of variables, one can also write the fractional Laplacian as

—M’u(x) = C(n, s) lim u(x) —u(x—y) dy. 0.2.2

( ) ( ) ( )S 0 R"\BE(O) |y|n+25 y ( )
By putting y = —y we have that

—MA’u(x) = C(n, s) lim —u(x)~u(x+)7)d

( ) ( ) ( )E 0 R"\Bg(o) ‘y|n+25 y

and summing this with (0.2.2), we obtain the following equivalent representation

(—AYu(x) = C(n,s) 2u(x) —u(x—y) —u(x+y) d

s y. (0.2.3)

2 RH
Notice that this latter formula does not require the PV. formulation, since for u smooth
enough®!, taking a second order Taylor expansion near the origin, the first order term
vanishes by symmetry, and we are left only with the second order reminder, that makes
the kernel integrable. More precisely, we have that

2u(x) —u(x —y) —u(x + —n—
[ [2u(x) (‘y|n+yz)s OV gy < CIDul ey | 17"+ dy <o and
1 1

[u(x) —u(x—y)—u(x+y)] j _n—2s
d < C U1 (0 d < 0.
JR"\Bl [+ 2s y [ullpoo (mrmy Re\ vl y

1

0.1 For instance, one can take u € L® (R") and locally C2.
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The fractional Laplacian is well defined for a wider class of functions. Indeed, as
one may find in [22], it is enough to require that u belongs to a weighted L' space and
is locally Lipschitz. More precisely, we define

1/mny ._ 1 n |u(x)\
LYR") := {u e LL.(R") sit. JRH T s < oo}
(notice that that L9(R") < L1(R™) for any q € [1, «0)). Let € > 0 be sufficiently small.
Then, if u belongs to L1(R") and to C%25*¢ (or C1'257¢~1 for s > 1/2) in a neighbor-

hood of x € R", the fractional Laplacian is well defined in x as in (0.2.3). Indeed, while
the fact that u € L1 (R") assures that

[ w0l y) utrl g
R™\B; ’

|y‘n+25

if, taking for instance s € (0, 1/2) and u that is CO25+¢€ jn g neighborhood of x, one
has that

2u(x) —u(x +y) —u(x — -
L1| (x) (|y|nﬁ/2)s ( y)|dy<2fl|y|‘E "dy < c(e).

For u € 8, the fractional Laplacian can be expressed as a pseudo-differential op-
erator, as stated in the following identity:

(=aru(x) =57 (|EP°0(9) (). (0.2.4)

Here, we set the usual notation for the Fourier transform and its inverse, using x, & €
R™ as the space, respectively as the frequency variable,

TF(&) = F(£) == jRﬂx)e—fo dx

and

5 () = F(x) = j f(&)e' az.
R

We point out that we do not account for the normalization constants in this definition.
We notice here that this expression returns the classical Laplace operator for s = 1
(and the identity operator, for s = 0).

The expressions in (0.2.3) and (0.2.4) are equivalent (see [10], Proposition 3.3 for the
proof of this statement). There, the dimensional constant C(n, s) introduced in (0.2.1),

is defined as L
. 1—cos(ni) , \~
cns) o= ([, et an)

where 1 is the first component of n € R™. The explicit value of C(n, s) is given by

225sT (% +5)

Cn.s) = nilr(1—s)
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as it is very nicely proved in the Appendix A of Chapter 11. The interested reader can
also see formula (3.1.15) and Appendix B in [5] (and other references therein) for dif-
ferent approaches to the computation of the constant.

At this point, relating to Section 0.1, there is an alternative definition of the frac-
tional Hilbert space H*(R") via Fourier transform. Let

HY(R™) := {u e L*(R") s.t. fRna + [EP|U&)1* d¢ < oo} .

Then (see Proposition 3.4 in [10]) the two spaces are equivalent, indeed
2 2 25155 112
Wl = Gy ., 7 1BE) 4.

Moreover, the connection between the fractional Laplacian and the fractional Hilbert
space is clarified in Proposition 3.6 in [10], as in the next identity

2 s
[ulf ) = gy () ulia e

We point out that for u € 8, the fractional Laplacian (—A4)°u belongs to C*(R"),
but (—A)%u ¢ 8 (it is not true that it decays faster than any power of x). In particular,
we define the linear space

Ps 1= {f e C*(R")s. t.foralla e N§, sup (1 + |x|""2%)|D*f(x)| < +oo} , (0.2.5)

xeR"

which endowed with the family of semi-norms

[f]15, = sup (1 + [x|"***)[D*f (x)|,

xeR"

where a € Ny, is a locally convex topological space; we denote by P; its topological
dual and by ¢, -)s their pairing. Then one has for u ¢ § that (—A)Su ¢ Ps (see for
instance, the bound (1.10) in [3]). The symmetry of the operator (—A)* allows to define
the fractional Laplacian in a distributional sense: for any u € L} (R") c P; one defines

{(=D)%u, @) :=(u, (-A)°@)s forany ¢ €S8.

These spaces are used in the definition of distributional solutions. Indeed, we say
that u € L!(R") is a distributional solution of

(-0u=f, forfe§
if
u, (—A)°vys = {f,v) foranyveS.

Other type of solutions are defined for more general kernels in Section 0.3.
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0.2.1 The harmonic extension

The fractional Laplacian can be obtained from a local operator acting in a space with
an extra-dimension, via an extension procedure. This extension procedure was first
introduced by Mol¢anov and Ostrovskii in [20], where symmetric stable-processes are
seen as traces of degenerate diffusion processes. We will follow here the approach of
Caffarelli and Silvestre (see [6]), that relies on considering a local Neumann to Dirichlet
operator in the half-space R'}fl := R" x (0, o0). Consider for any s € (0, 1) the number

a:=1-2s,

the function u: R" — R and the problem in the non-divergence form

a 2 : n+1
AxU‘f’*(‘}yU“ra UZO IHR
y 7 i (0.2.6)
U(x,0) = u(x) inR".
The problem (0.2.6) can equivalently be written in the divergence form as
div(y*vU) =0 inR%
Vo) * (0.2.7)
U(x,0) =u(x) inR".
Then one has for any x € R", up to constants, that
- lim y*9U(x,y) = (~4)*u(x). (0.2.8)

y—0+

Also, by using the change of variables z = (%)2S the problem (0.2.6) is equivalent to

AU +2%;U=0 inRY™!
(0.2.9)

U(x,0) = u(x) inR"

fora = —2a/(1 — a) = (2s — 1)/s. In this case also, for any x € R" and with the right
choice of constants, one has that

—0:U(x,0) = (—A)°u(x). (0.2.10)

One way to prove (0.2.8) (see [6] for more details on this and for alternative proofs) is
by means of the Poisson kernel

yl—a
Px,y) =ks————>
(Ix|2 +y2) 2

that by convolution with u gives an explicit solution of the problem (0.2.6) as

Uty) = | Px—§.y)u(§)ds.
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Notice that ks is chosen such that

P(x,y)dx =1.
R)’l

One can compute then (up to constants)

m VO = UG0) o . .
Jim yrZON OO iyt [ poc £, yyu(6) df - u(x)
1—a
~ tim y | s () —uo) d§
y—0 R (Ix — &2 +y2) 2
= im [ MO g

=0 e (g 4yt

[ u® - u
J, %

n |X _ é“nJrlfa
— — (~A) T u(),

for u smooth enough. Recalling that s = 154, this proves formula (0.2.8).

This extension procedure is useful when one solves an equation with the frac-
tional Laplacian on the whole R": it overcomes the difficulty of dealing with a non-
local operator, by replacing it with a local (possibly degenerate) one. For instance, a
nonlinear problem of the type

(~A)u(x) = f(u) in R"

is translated into the system

{ div(y*vU) = 0
(0.2.11)

—lim y*s,U = f (u),
y—0
where one identifies u(x) = U(x, 0) in a trace sense. At this point, one works with

a local operator, which is of variational type. Indeed, the equation in (0.2.11) is the
Euler-Lagrange equation of the functional

1(U) = J Y4 VU dX.
R+

Here we denoted X = (x,y) € ]R'frl. See, for instance [11, 4], where a nonlinear, non-
local elliptic problem in the whole space R" is dealt with using variational techniques
related to the local extended operator.

0.2.2 Maximum Principle and Harnack inequality

In this subsection, we introduce some natural tools for the study of equations involv-
ing the fractional Laplacian: Maximum Principles and the Harnack inequality. We
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point out that these two type of instruments fail if one wants to apply them in the
classical fashion. More precisely, we need to take into account the nonlocal character
of the operator and have to require some global information on the function.

First of all, a function is s-harmonicin x € R"if (—~A)u(x) = 0. Of course, the class
of s-harmonic functions is not trivial, one example is the one-dimensional function
u(x) = (x+)° = max{0, x}*°, that satisfies (—A)°u(x) = 0 on the half line x > 0 (see
Theorem 3.4.1in [5]). See also [12] for some other interesting examples of functions for
which one can explicitly compute the fractional Laplacian.

We notice now that, if u has a global maximum at xq, then by definition (0.2.3)
it is easy to check that (—A)®u(xo) > 0. On the other hand, this is no longer true if u
merely has a local maximum at xy. The Maximum Principle goes as follows:

Theorem 0.7. If (—A)°u > 0inBg and u > 0inR™\Bg, thenu > 0in Bg. Furthermore,
eitheru > 0inBg,oru=0inR".

Proof. Suppose by contradiction that there exists X € Bg such that u(x) < 0 is a min-
imum in Bg. Since u is positive outside Bg, this is a global minimum. Hence for any
y € Byg we have that 2u(X) — u(x —y) — u(x + y) < 0, while for y € R™\Bsp, the
inequality |X + y| > |y| — |X| = R assures that u(x +y) > 0. It yields that

0 < (-A)°u(x)

B 2u(x) —u(x—y)—u(x+y)
-1, yfies o

+J 2uxX) —u(x—y) —ux+y) dy
R™\Bag

|y|n+25
2u(x)
< d
fR"\BZR [y|n+2s

= Cu(X)R™* <o.

This gives a contradiction, hence u(x) > 0.
Now, suppose that u is not strictly positive in Bz and there exists xo € Bg such
that u(xg) = 0. Then

(arutn) = [ 0T ay <o

hence (—A4)%u(xp) = 0. Since u > 0 in R", this happens only if u = 0 in R", and this
concludes the proof. O

As said before, if a function is s-harmonic and positive only on the ball, this does not
assure that the infimum and supremum on the half-ball are comparable (see [15] for
a counter-example of this type). One needs some global information on the function.
One simple assumption is to take the function nonnegative on the whole of R". Then
the Harnack inequality holds, as stated in the next Theorem.
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Theorem 0.8. Let u: R" — R be nonnegative in R" such that (—A)*u = 0 in By. Then
there exists a constant C = C(n, s) > 0 such that

supu < Cinf u.
Bi), By

One way to prove this Theorem is to use the harmonic extension defined in the previ-
ous Subsection 0.2.1. Namely, this result follows as the trace inequality on R" x {y = 0}
of the Harnack inequality holding for the extended local (weighted) operator. See [6]
for all the details of this proof.

Another formulation that loses the strong assumption that u should be nonnega-
tive in R" is given in the following theorem (see Theorem 2.3 in [16]):

Theorem 0.9. There exists a positive constant ¢ such that for any functionu: R" — R
which is s-harmonic function in By, the following bound holds for any x, y € By

u_(z)
u(x) < C (u(y) 4 JRH\Bl (EEEE dz) .

Moreover, if the function u is nonnegative in By, then one has

uix)<C (u(y) + JR"\B |z|—nizz)s dz) .

Here, u_ is the negative part of u, i.e. u_(x) = max{—u(x), 0}.

A Harnack inequality for more generals kernels is also stated further on in Subsec-
tion 0.3.1.

0.3 More General Nonlocal Operators

It is natural to continue the study of nonlocal phenomena by introducing more general
type of operators. In particular, one can introduce the fractional p-Laplacian

s . u(x) —u)PP~? (u(x) — uy))
(—A)pu(x) := PV. . Xy dy

(notice that for p = 2, one gets the fractional Laplacian defined in (0.2.1)). As a further
topic, on can generalise this formula by taking instead of |x — y|~"~? a different ker-
nel. So, in this section we introduce briefly nonlocal operators obtained by means of
more general kernels and make some remarks on the well-posedness of the definition.
Moreover, we shortly define weak solutions and viscosity solutions, and provide a few
known results on these type of solutions.
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In this book, Chapter 9 present in detail some arguments related to these nonlocal
operators (references therein are of guidance for the interested reader).

We define a general nonlocal operator of fractional parameter s € (0, 1) and
summability coefficient p € (1, 0). Let K: R" x R" — [0, «0) be a kernel that satisfies

(i) K is a measurable function
(ii) K is symmetric, i.e.
K(x,y) = K(y, x) for almost any (x, y) € R" x R";
(iii) there exists A, A > 1 such that
A< K(x,y)|x —y|""*P < A for almost any (x, y) € R" x R"
for some p > 1.

(0.3.1)
Then formally one defines for any x ¢ R"

n

S 1= BV, | ju(x) ~ u) P (wbo) - uy) Kx, ) dy
(0.3.2)
= lim u(x) — u@)P~? (u(x) — u(y)) K(x, y) dy
e—0 R™\B; (x)
where by PV. we intend “in the principal value sense”, as defined in the last line of
(0.3.2).
Let us take as an example the case p = 2 and a general kernel K satisfying (0.3.1)
and see when £ gu(x) is pointwise defined. If the kernel K satisfies an additional con-
dition of weak translation invariance, i.e.

K(x,x 4+ z) = K(x,x — z) fora.e. (x,z) e R" x R" (0.3.3)

and the function u for v > 0 islocally C%25*7 (or C1'>**7~1if s > 1/2) and integrable
at infinity respect to the kernel K, then £ gu(x) is well defined for any x € R". Indeed,
forr > 0 and € € (0, r) we have that

f (u(x) —u(y))K(x,y)dy = (u(x) —u(x+2))K(x, x + z) dz.
By (x)\Be (x) B,(0)\B:(0)

By the symmetry of the domain of integration and the additional property (0.3.3), we
obtain

| (u(x) — u(y)K(x, ) dy

By (x)\B: (x)

:%f (ux) —u(x+2)Kx,x+z)dz
B, (0)\B:(0)

1

2 f (u(x)—u(x — z)) K(x, x — z) dz
B, (0)\B¢(0)

%J Qu(x) —u(x +z) —u(x — z)) K(x,x — z) dz.
Br(0)\B:(0)
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Now, if u is in C1:2577~1(B,(x)), we have that

Ru(x) —u(x+z)—u(x—z)| = fl(Vu(x +tz) — Vu(x — tz)) - zdt

0

1
< [u]Cl,Zer'yfl(Br(X)) ‘Z‘ZS+’YJ;) (2t)28+"/71 dt

225+7-1 25t
< sty Mot A7

Therefore we obtain

| (u(x) — u(y)K(x, ) dy
By (x)\Be(x)

2?25+t —n+vy C(n) Y
< 25+ [ll]c1,25+~,—1(Br(X)) A fBr(o)\Bs(o) ‘Z| dz < 5 [u]c1,25+—y—1(3y(x)) r'.

Hence, for such v > 0, the principal value exists and, moreover,

< clulgrassr 1,00 T -

0.3.1 Some remarks on weak and viscosity solutions

We give now an idea of different concepts of solutions and give some introductory
properties on solutions of linear equations of the type

Lrux)=0 inQcR"
{ k() (0.3.4)

u satisfies some “boundary condition” inRMQ,

where Q < R" is an open bounded set. Notice at first that the boundary condition is
given in the whole of the complement of Q. This depends on the nonlocal character of
the operator.

We have seen that, in the case p = 2, adding the weak translation invariance on
K and proving sufficient regularity on u, then Lxu is pointwise defined. In this case,
pointwise solutions of problem (0.3.4) can be considered.

The concept of pointwise solution is however reductive; in general, the boundary
data is given in a trace sense or one can guarantee less regularity on the solution. We
introduce two other concepts of solution, the weak and the viscosity notions.

Wefixs € (0, 1)and p € (1, ). We consider the following Dirichlet problem, with
given boundary data g ¢ W57 (R")

{LKu(x) =0 inQcR 035)

u(x) = g(x) inRMQ.



Essentials of Nonlocal Operators = 19

We recall the definition of W*? (R") as in (0.1.1)

WP (R") := {ve LP(R") st. 7” (%) _|n‘/’152| e LP(R" x R")}

and we say that v e W;*(Q) if v e WSP(R") and v = 0 almost everywhere in R"\Q.
In principle, this is a different way of defining the space W(S)’p (Q) when Q is not a
bounded Lipschitz open set (see for example the observations in Appendix B in [2]).
We define the convex spaces

£ = {ve WYP(RY) st (g—v)+ € WP (Q)}

and
Kg := x; NnKg ={ve WPR")st.v—ge WS”’(Q)}.

The problem has a variational structure, and we introduce a functional whose mini-
mization leads to the solution of the problem (0.3.5). For u € X we define the func-
tional

Ex(u Jn J ) W)PK(x,y)dxdy. (0.3.6)

We have the following definition:

Definition 0.10. Let Q be an open set of R". We say that u is a weak subsolution (su-
persolution) of the problem (0.3.5) ifu € K (%g) and it satisfies

L | 100 = )P0 ~ ) @00 - oKy dxdy < (2)0

for every nonnegative ¢ € Wg’p (Q). Moreover, a function u is a weak solution if u € Kg
is both a super and a subsolution of the problem (0.3.5), i.e. if

JJ WP~2 @) — u(y) (@) — @(y)K(x,y) dxdy = 0
for every nonnegative p € Wg'¥ (Q).

Using the notion of weak solution introduced in definition (0.10), we have the follow-
ing existence theorem.

Theorem 0.11 (Existence). Lets € (0,1), p € (1,0) and g € W5P(R"). Then there
exists a unique minimizer u of £ over Kq. Moreover, a function u € Kg is a minimizer
of &k over K if and only if it is a weak solution to the problem (0.3.5).

One can prove the existence of a unique minimizer by standard variational techniques
(see Theorem 2.3 in [9] for details). We give here a sketch of the proof that a minimizer
of the energy is a solution of the problem (0.3.5) and vice-versa.
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Sketch of the proof. Let u be a minimizer of the functional €. Consider u + t¢ to be a
perturbation of u with ¢ € Wg* (Q). We compute formally

0= ;t (u+t<p)‘
N ff X) + tp(x) — uly) — tp(y)PK(x,y) dxdy|

N ff VP72 u(x) —u)) (p(x) — p(y)) dxdy.

This proves that u is a weak solution of (0.3.5), as introduced in Definition (0.10).
On the other hand, if u is a weak solution of (0.3.5), letve Kgantletp =u—ve
W5? (Q). Then we have that

0= || 10— uP 7 (0~ u) (9x) - p() Kix. y) dxdy
f f VIPK(x,y) dx dy
-1 f " P2 () — u())(v(x) — v(y)K(x, y) dx dy.
Using the Young inequality, we continue
0> 7[ f ) —u(y)|PK(x, y)dxdy——f J —v(y)IPK(x,y) dxdy
= Ex(u) — Ex(v).
Hence &y (u) < € (v) forany v € K¢ and therefore the weak solution u € K¢ minimizes
the functional &,. O

In order to obtain some boundedness and regularity results, we introduce the impor-
tant concept of nonlocal tail (given in [9]). The nonlocal tail takes into account the
contribution of a function “coming from far”, namely it allows to have a quantitative
control of the “nonlocality” of the operator. The definition goes as follows:

1
p—1 p—1
Tail(v; X, R) := | R f _vOOP— . (0.3.7)
R"\Bg(xo) 1X — Xo|" TSP
Notice that this quantity is finite when v € LY(R"), withg > p — 1 and R > O.
With this in hand, we have the following local boundedness result (see Theorem
1.1in [9] for the proof and details).

Lemma 0.12 (Local boundedness). Lets € (0, 1), p € (1,0) and let u € W5P(R") be
a weak solution of the problem (0.3.5). Let r > 0 such that B;(xo) < Q. Then
1

r _ =D b
sup u < 8Tail (u+;xo, 7) +cd 2 J[ ub dx |,
B> (x0) 2 B, (xo0)

where u, = max{u, 0} is the positive part of u and c = c(n, p, s, A, A).
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Here, § € (0, 1] behaves as an interpolation parameter between local and nonlocal
terms.

Using the nonlocal tail, one can state also the Harnack inequality in this general
case (see Theorem 1.1 in [8] for the proof of the statement).

Theorem 0.13. Let u ¢ WP (R") be a weak solution of (0.3.5) and u > 0 in Bg(xo) <
Q. Then for any By := By(xg) < Bg (x0) we have that

. F\PT oo
sgrpu < Cllralyfu +C (ﬁ) Tail(u—; xo, R),
where u_ = max{—u, O} is the negative part of u and C = C(n, s, p, A, A).

We point out that a Harnack inequality for nonlocal general operators in the case p =
2 is obtained in [1].

Viscosity solutions take into account solutions which are only continuous. The
idea is to “trap” the solution, which needs to be only continuous, between two func-
tions which are C? (or at least C*7). We introduce here the notion of viscosity solution
for the problem (0.3.5), as given in [7].

Definition 0.14. Let u: R" — R be an upper (lower) semi-continuous function on Q.
The function u is said to be a subsolution (supersolution) of Lxu = 0 and we write
Lxu < 0 (Lgu = 0) if the following happens. If:

— Xxis any pointin Q

— N := N(x) c Qis a neighborhood of x

@ is some C%(N) function

@(y) > u(y) forany y € N\{x}

then, setting
@, inN
Vi= ]
u, inR™\N
we have that Lxv < 0 (Lgv > 0). Moreover, u is a viscosity solution if it is both a
subsolution and a supersolution.

Existence and uniqueness of viscosity solutions of problems such as (0.3.5) are estab-
lished in [14]. We introduce here a Holder regularity result for viscosity solutions of
the problem (0.3.5) (see [18] for more details and Theorem 1 therein for the proof).
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Theorem 0.15. Lets € (0, 1) and p € (1, o) (in the case p < 2 we require additionally
that p > 1/(1 — s)). Assume that K satisfies K(x,y) = K(x, —y) and there exist A >
A > 0,M > 0 and ~ > O such that

A

W < K(x,y) < W forye By, xe B,

and I
0<K(xy) < Iy forye R"\Bl/4,x € B,

Let u € L (R"™) be a viscosity solution of Lxu = 0 in B,. Then u is Holder continuous
in By and in particular there exist a« = a(A, A, M, ~,p,s)and C = C(A,A,M,~,p,Ss)
such that

lullcacm,y < Cllulzes rny-

Of course, much remains to be said about the arguments we presented in this intro-
duction, and about the nonlocal setting in general. The fractional Laplace operator
and operators of a more general type introduced here will be studied and beautifully
presented in the following Chapters 3, 5, 6, 7, 8, 9, 11. Other very interesting topics are
dealt with in upcoming chapters. In Chapter 1 some bounds on heat kernels for non-
symmetric nonlocal equations are obtained. Chapter 2 deals with fractional harmonic
maps. In Chapter 4, nonlocal minimal surfaces are discussed. Furthermore, Chapter 10
deals with the existence of a weak solution of some fractional nonlinear problems with
periodic boundary conditions.
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Abstract: We survey some recent progress in the study of heat kernels for a class of
non-symmetric non-local operators. We focus on the existence and sharp two-sided
estimates of the heat kernels and their connection to jump diffusions.
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1.1 Introduction

Second order elliptic differential operators and diffusion processes take up, respec-
tively, a central place in the theory of partial differential equations (PDE) and the the-
ory of probability. There are close relationships between these two subjects. For a large
class of second order elliptic differential operators £ on RY, there is a diffusion pro-
cess X on R? associated with it so that £ is the infinitesimal generator of X, and vice
versa. The connection between £ and X can also be seen as follows. The fundamen-
tal solution (also called heat kernel) for £ is the transition density function of X. For

example, when
d

1 ¢ &2 0
= 5 ’}Z:l axlax, + I=Z:1 bi(X)aiXi,
where (a;;(x))1<; j<q is @ d x d symmetric matrix-valued continuous function on R4
that is uniformly elliptic and bounded, and b(x) = (b1 (x), ..., bs(x)) is a bounded
R%-valued function, there is a unique diffusion X = {X;,t > 0;Px,x € ]Rd} on R4
that solves the martingale problem for (£, C2(R)). That is, for every x € R, there is
a unique probability measure Py on the space C([0, «0); R?) of continuous R%-valued
functions on [0, o) so that Px(Xo = x) = 1 and for every f € C2(RY),

t
ML i F(X0) — F(Xo) ~ [ £f(ks)ds

is a Py-martingale. Here X;(w) = w(t) is the coordinate map on C([0, o0); RY). Itis also
known that (X, Py) is the unique weak solution to the following stochastic differential
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equation
aX: = O'(Xt)th + b(Xt)dt, Xo = X,

where W is a d-dimensional Brownian motion and o(x) = a(x)'/? is the symmetric
square root matrix of a(x) = (a;;(x))1<i j<d-

When a is Holder continuous, it is known that £ has a jointly continuous heat
kernel p(¢, x, y) with respect to the Lebesgue measure on R4 that enj oys the following
Aronson’s estimate (see Theorem 1.8 below): there are constants ¢y, > 0,k =1, --- , 4,
so that

dj2

cit™ Y exp(—ca|x — y|2/t) <p(tx,y) < C3t_d/2 exp(—cy4lx — y|2/t) (1.1.1)

forall t > 0 and x,y € R%. The kernel p(t, x, y) is the transition density function of
the diffusion X.

As many physical and economic systems exhibit discontinuity or jumps, in-depth
study on non-Gaussian jump processes are called for. See for example, [6, 31, 37, 43]
and the references therein. The infinitesimal generator of a discontinuous Markov
process in R is no longer a differential operator but rather a non-local (or, integro-
differential) operator. For instance, the infinitesimal generator of an isotropically sym-
metric a-stable process in RY with a € (0, 2) is up to a constant multiple a fractional
Laplacian operator A%? ;= — (—A)”‘/ 2. During the past several years there is also a lot
of interest from the theory of PDE (such as singular obstacle problems) to study non-
local operators; see, for example, [9, 45] and the references therein. A lot of progress
has been made in the last fifteen years on the development of the De Giorgi-Nash-
Moser-Aronson type theory for non-local operators. For example, Kolokoltsov [38] ob-
tained two-sided heat kernel estimates for certain stable-like processes in ]Rd, whose
infinitesimal generators are a class of pseudo-differential operators having smooth
symbols. Bass and Levin [4] used a completely different approach to obtain similar es-
timates for discrete time Markov chain on Z¢, where the conductance between x and
y is comparable to |x — y|7"~% for @ € (0, 2). In Chen and Kumagai [18], two-sided
heat kernel estimates and a scale-invariant parabolic Harnack inequality (PHI in ab-
breviation) for symmetric a-stable-like processes on d-sets are obtained. Recently in
[19], two-sided heat kernel estimates and PHI are established for symmetric non-local
operators of variable order. The De Giorgi-Nash-Moser-Aronson type theory is studied
very recently in [20] for symmetric diffusions with jumps. We refer the reader to the
survey articles [11, 30] and the references therein on the study of heat kernels for sym-
metric non-local operators. However, for non-symmetric non-local operators, much
less is known. In this article, we will survey the recent development in the study of
heat kernels for non-symmetric non-local operators. We will concentrate on the re-
cent progress made in [26, 27] and [14]. In Section 1.5 of this paper, we summarize
some other recent work on heat kernels for non-symmetric non-local operators. We
also take this opportunity to fill a gap in the proof of [26, (3.20)], which is (1.3.23) of
this paper. The proof in [26] works for the case |x| > ¢}/, In Section 3, a proof is sup-



26 =—— Zhen-Qing Chen and Xicheng Zhang

plied for the case |x| < ¢/, In fact, a slight modification of the original proof for [26,
Theorem 2.5] gives a better estimate (1.3.20) than (1.3.23).

In this survey, we concentrate on heat kernel on the whole Euclidean spaces and
on the work that the authors are involved. We will not discuss Dirichlet heat kernels
in this article.

1.2 Lévy Process

A Lévy process on R is a right continuous process X = {X;; t > 0} having left limits
that has independent stationary increments. It is uniquely characterized by its Lévy
exponenent i:

Eo exp(i¢ - X;) = exp(~t9(§)), §eR% (1.2.1)

Here for x € RY, the subscript x in the mathematical expectation E and the probabil-
ity Px means that the process X; starts from x. The Lévy exponent 1) admits a unique
decomposition:

d

Y& =ib-£+ Y ai,-g,-.,r,.+fd (1- €% 1 ig 21y Td2),  (122)

ij=1 R

where b € R? is a constant vector, (aj;) is a non-negative definite symmetric constant
matrix, and II(dz) is a positive measure on R?\{0} so that Sra(1 A |z|*)I(dz) < .
The Lévy measure II(dz) has a strong probabilistic meaning. It describes the jumping
intensity of X making a jump of size z. Denote by {P;; t > 0} the transition semigroup
of X; thatis, P¢f(x) = Exf (Xe) = Eof (x + X¢). For an integrable function f, its Fourier

transform is defined to be f(¢) = (. e!$*f(x)dx. Then we have by (1.2.1) and Fubini’s
theorem,

Pif(¢) = JRd e Eof (x + X;)dx = Eo [e*"‘f'xf (fuz
=e_“/}(_‘f)f(%‘).

el X (x4 Xt)dx)]

d

If we denote the infinitesimal generator of {P¢; t > 0} (or X) by £, then

~

Lf ) = L] ) = w7, (123)

t’t:o

Hence —(—¢) is the Fourier multiplier (or symbol) for the infinitesimal generator £
of X. One can derive a more explicit expression for the generator £: for f € C2 (Rd),

d 2

o = aiij(x)+b-Vf(x)+f

0X;0X; e (f(x +2) —f(x0) = Vf(x) 'Z]l{\z|<1}) 1(dz).
i,j=1 l

(1.2.4)
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When b = 0, II = 0 and (a;;) = I344 the identity matrix, that is when () =
|€|2, X is a Brownian motion in R? with variance 2t and infinitesimal generator A :=
>4 a‘?—;. When b = 0, a;; = Oforall 1 < i,j < d and [1(dz) = A(d, —a)|z|~4+¥dz
for0 < a < 2, where A(d, —a) is a normalizing constant so that (&) = |£|%, X is
a rotationally symmetric a-stable process in RY, whose infinitesimal generator is the
fractional Laplacian A%/? := —(—A)%/2,

Unlike in case of Brownian motion, explicit formula for the transition density
function of symmetric a-stable processes is not known except for a very few cases.
However we can get its two-sided estimates as follows. It follows from (1.2.1) that un-
der Py, (i) AX; has the same distribution as X; for every t > 0 and rotation A (an
orthogonal matrix); (ii) for every A > 0, X, has the same distribution as A'/%X;. Let
p(t, x) be the density function of X; under Py; that is,

p(t, X) — (Zﬂ)_dJ- e—ix‘fe—ﬂé’ludé'_
Rd

Then p(t, x) is a function of t and |x| and p(t, x) = t~4/%p(1, t~/%x). Using Fourier’s
inversion, one gets
lim [x|“%p(1, x) = a2% 7424V sin(an/2)I((d + a)/2)T(a/2).

|x]—>00

(See Pdlya [42] when d = 1 and Blumenthal-Getoor [7, Theorem 2.1) when d > 2.) It
follows that p(1, x) = 1 A 1. Consequently,

Ix|4

_ ,—d/a t t
pt,x) =t A @ = (7 pdra (1.2.5)

Here for a, b € R, a A b := min{a, b}, and for two functions f, g, f = g means that
f/g is bounded between two positive constants.

In real world, almost every media we encounter has impurities so we need to con-
sider state-dependent stochastic processes and state-dependent local and non-local
operators. Intuitively speaking, we need to consider processes and operators where
P (¢) is dependent on x; that is, P(x, &). If one uses Fourier multiplier approach (1.2.3),
one gets pseudo differential operators. The connection between pseudo differential
operators and Markov processes has been nicely exposited in N. Jacob [32]. In this sur-
vey, we take (1.2.4) as a starting point but with a;;(x), b(x) and II(x, dz) being func-
tions of x € R?. That is,

d

Lf(x) = > a(x)

ij=1

T de (FOc+2) = 0 = V() - 21 1y ) Hx, ).

7f
aXian

() +b(x) - VF(x)

K(x,2)
Iz‘d+a

We will concentrate on the case where II(x, dz) = dz for some a € (0, 2)
and a measurable function x(x, z) on R? x R satisfying for any x, y, z € R,

0 < ko < k(x,2) < x1 < 0, K(x,z) = k(x, —2), (1.2.6)
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and for some f8 € (0, 1),

Ik(x, 2) — k(y, 2)| < K2)x — yIP. 1.2.7)

1.3 Stable-Like Processes and their Heat Kernels

In this section, we consider the case where a;; = 0, b = 0 and II(x, dz) = rz(l’fifz dz;
that is,

LF(X) = pov. J (Fox+2) — f(x) "‘Z(";fj dz, (13.0)

R4

where k(x, z) is a function on RY x R satisfying (1.2.6) and (1.2.7). Here p.v. stands for
the Cauchy principal value, that is,

K(X, 2)
|Z‘d+a

Lf(x) = lim (Fx+2) —f(x)

=0 J{zeRd:|x|>¢}
Since k(x, z) is symmetric in z, when f € C; (R%), we can rewrite £f(x) as

K(x, 2)

LF(x) = Jw (Foc+2) = £ = VF(0) - 21211y Siads (32
The non-local operator £ of (1.3.1) typically is not symmetric, as oppose to non-local
operator given by

TF(x) = li c(x,y)

Lf(x) := glg% (yeRly—x|ze} (fly) —f(x)) mdz (133)
in the distributional sense. Here c(x, y) is a symmetric function that is bounded be-
tween two positive constants. The operator £ is the infinitesimal generator of the sym-
metric a-stable-like process studied in Chen and Kumagai [18], where it is shown that
£ hasa jointly Holder continuous heat kernel that admits two-sided estimates in the
same form as (1.2.5).

The following result is recently established in [26].

Theorem 1.1. ([26, Theorem 1.1]) Under (1.2.6) and (1.2.7), there exists a unique non-
negative jointly continuous function p(t, x, y) in (t, x,y) € (0, 1] x R x R? solving

Sp(t %) = Lot V)0, X+, (134)

and enjoying the following four properties:
(i) (Upper bound) There is a constant ¢, > 0 so that for all t € (0, 1] and x, y € R4,

p(t,x,y) < cat(tY* 4+ |x —y|)~4 e, (1.3.5)



Heat Kernels for Non-symmetric Non-local Operators = 29

(ii) (Holder’s estimate) For every vy € (0, a A 1), there is a constant ¢; > 0 so that
foreveryte (0,1]andx,y,z € R4,

—d—
P(t,%,2) ~ p(t,y, 2)| < Calx —y[ =0/ (/% 4 x|y —2)
(1.3.6)

(iii) (Fractional derivative estimate) For all x + y e R, the mapping t —
Lp(t, -, y)(x) is continuous on (0, 1], and

1Ep(t, - ) (0)] < e3(* + [x —y]) "4 (1.3.7)

(iv) (Continuity) For any bounded and uniformly continuous function f : R? L R,

de(t’ X, Y)f(y)dy —f(X) =0. (138)

lim sup
tl0 yerd

Moreover, we have the following conclusions.
(v) The constants c1, c; and c3 in (i)-(iii) above can be chosen so that they de-
pend only on (d, a, B, xo, K1, K2), (d, a, B, 7, Ko, K1, K2), and (d, a, B, ko, K1, K2),
respectively.
(vi) (Conservativeness) For all (t, x, y) € (0, 1] x RY x ]Rd,p(t, x,y) = 0and

pr(t, x,y)dy = 1. (1.3.9)

(vii) (C-K equation) For all s, t € (0, 1]witht+s € (0, 1]andx,y € RY, the following
Chapman-Kolmogorov equation holds:

f p(t,x,2)p(s,z,y)dz = p(t + s, X,Y). (1.3.10)
Rd

(viii) (Lower bound) There exists ¢, = c4(d, a, B, Ko, K1, k2) > O so that for all
te(0,1]andx,y € R,

Pty X, y) = cat (1Y + |x —y|) 97, (1.3.11)

(ix) (Gradient estimate) For a € [1, 2), there exists ¢s = c¢5(d, a, B, Ko, K1, K2) > 0
so that forall x + yinR% and t € (0, 1],

|Vxlogp(t, x, y)| < cst— /%, (1.3.12)

1.3.1 Approach

We now sketch the main idea behind the proof of Theorem 1.1.
To emphasize the dependence of £ in (1.3.1) on x, we write it as £*. For each fixed
y € R4, we consider a symmetric Lévy process (starting from 0) with Lévy measure
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IIy(dz) = r(‘ﬁ fa dz, and denote its marginal probability density function and infinites-

imal generator by py (¢, x) and £* )| respectively. Then we have

0

2Py (tx) = L*py(t, x). (1.3.13)

We use Levi’s idea and search for heat kernel p(¢, x, y) for £* with the following form:

p(t,x,y) =py(t,x—y) f f pz(t —s,x —z)q(s, z,y)dzdy (1.3.14)
with function q(s, z, y) to be determined below. We want

SP(tx,Y) = £l Y)(X) = LOpt, (o).

Formally,

Zptx,y) ~Epytx—y) +attxn) + [ [ apat - sox-2)a(s.zy)dzds

=y (x =)+ a(toxny) + [ [ £ pales.x - 2)ats.z.y)dzds,
while
LOp(t, x,y) =L"Opy(t,x —y) f J LD p,(t —s,x — 2)q(s, z, y)dzds
=Lp(t,x —y) + fo fRd qo(t —s,x,2)q(s, z, y)dzds
+ fRd L"(z)pz(t -8, x —2)q(s, z,y)dzds,

where
go(t, X, z) = (L% — £¥E\p (¢, x — 2).

It follows from (1.3.13) that ¢(t, x, y) should satisfy

q(t,x,y) = qo(t,x,y) J J qo(t —s,x,2)q(s,z,y)dzds. (1.3.15)

Thus for the construction and the upper bound heat kernel estimates of p(t, x, y), the
main task is to solve g(t, x, y), and to make the above argument rigorous. We use Pi-
card’s iteration to solve (1.3.15). For n > 1, define

qn(t,x,y) J J qo(t —s,%,2)qn_1(s, z,y)dzds. (1.3.16)

Then it can be shown that

18

q(t,x,y) = qn(t,x,y) (13-17)

n=0
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converges absolutely and locally uniformly on (0, 1] x R? x R4, Moreover, q(t, x,y)
is jointly continuous in (¢, x, y) and has the following upper bound estimate

la(t, %, y) < € (e + o) (t.x ~y),

where
/(x| A 1)
(tl/a ¥ |X|)d+a :

We then need to address the following issues.

b (t,x) =

(i) Show that p(t, x, y) constructed through (1.3.14) and (1.3.17) is non-negative,
has the property (. p(t,x,y)dy = 1 and satisfies the Chapman-Kolmogorov
equation.

(ii) The kernel p(t, x, y) has the claimed two-sided estimates, and derivative es-
timates.

(iii) Uniqueness of p(t, x, y).

This requires detailed studies on the kernel pj(t, x — y) for the symmetric Lévy
process with Lévy measure ‘zx‘(% dz, including its fractional derivative estimates, and
its continuous dependence on x(z), which will be outlined in the next two subsections.

1.3.2 Upper bound estimates

Key observation: For any symmetric function x(z) with xo < k(2) < k1, let k(z) :=
k(z) — %. Since the Lévy process with Lévy measure l;g?a dz can be decomposed as

the independent sum of Lévy processes having respectively Lévy measures lz‘g +)a dz

and I;(\O"/ . dz, we have

@ (¢, x) J PR, xfy)pﬁ(z)(t, y)dy.

Thus the gradient and fractional derivative estimates on pﬁ(z) (t, x) can be obtained
from those on pko/ 2 (t, x). On the other hand, it follows from [18] that there is a constant
¢ = c(d, xo, x1) = 1 so that

¢ 10t x) < X9 (t, x) < cod(t, x) forallt > 0and x e RY. (1.3.18)

First one can establish that for v1, 72, 81, 82 = Owith 1 ++; > Oand 8, +~,2 > 0,

JJ Q (t—s,x— z)gw(s z)dzds

0
< ‘B(%ﬁl’ %ﬁz) (0’71+’Yz+ﬁ1+ﬂ2 + in +72+B2 + Qgi +’Yz+ﬁ1) (t’ X)’(1'3'19)

where B denotes the usual S-function.
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Next we establish the continuous dependence of pZ(Z) (t,y) on the symmetric
function x(z). Let x(z) and ¥(z) be two symmetric functions that are bounded between
Ko and k1. Then for every 0 < v < a/4, there is a constant ¢ > 0 so that the following
estimates hold forall t € (0, 1] and x € R,

PP () - PPt x| < clx— Rl 0d(t ), (1.3.20)
|vxpx(z)(t X) — prﬁ(z)(t, X)| < c|x— %H 1/a O(t X), (1.3.21)
dz ~
fRd Bpe(tixi2) = 8y (txi 2y < ek =Rl 0d(t, x). (13.22)

Here |k — K| := SUppa [K(2) — K(2)| and 6f(t, x;2) := f(t,x + 2) + f(t,x — 2) —
2f (¢, x). The above estimates are established in [26, Theorem 2.5], but with an extra
term on their right hand sides. For example, (1.3.20) corresponds to [26, (2.30)] where
the estimate is

PE? (6, x) ~ e (60| < el — Rl (00 + 03—, ) (). (1323)

We take this opportunity to fill a gap in the proof of [26, (3.20)]. The proof there works
only for |x| > tY%and t e (0, 1], as in this case, by [26, (2.2)],

t t
JJ 03 (t —$,X — ¥)a—~(s,x)dyds < Clgg—'y(t’X)JJ 04(s,y)dyds
0 JR4 0 Jrd
< 00— (t, 0" = c200(t, %),

which gives (1.3.23) by line 8 on p.284 of [26]. On the other hand, one deduces by the
inverse Fourier transform that

sup
yeRd

i (t,y) - i ()| < 2m* fw le=® — em®ag < 3k — Koot~V

Thus when |x| < t'/¢,

i) (6, %) = P (6,3)] < 30K = Rleot ™% < culx — Rlo0§ (£, ).

In fact, by a slight modification of the original proof given in [26] for (1.3.23), we
can get estimate (1.3.20). Indeed, by the symmetry of LX) and £X@)

_pi(z)( )
K(Z) K(z) B B
f ds (f Pa (t=sx y)dy) ds
:f (f (& pE? (5, )P (¢ = 5,x )
0 R4
D5 (5, ) EEOPE -5, ) x— y) dy) ds

=1 ([, P 5 (859 59 e, vy ) s

(0]

PE@ (t, x)
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t . -
([P sx-y) (689 - £50) P s, )00y ) ds.
t/2 \JRd4

Hence by (1.3.18) and [26, (2.28)],

i ¢/2
P60 - piP (0] < ele—Rlo [ [ ob(s.v)e8(t—s.x~y)dyds
t
elK — Ko f j 03(s, Y)03(t — s, x — y)dyds
t/2JRd
clx — k| [F
< WJJ 0%(s,y)0%(t — s, x — y)dyds
0 JR4
< ¢k — &|w 0a(t, X).

The same proof as that for [26, Theorem 2.5] but using (1.3.20) instead of (1.3.23) then
gives (1.3.21)-(1.3.22).
Since

XOf) —pv. [ o2 — o) X az = X [ 5,062 X E) gz,
Ra

Rd |Z|d+a 2 ‘Z‘dﬂx

estimate (1.3.22) implies that
|CXEPEE (£, x) — 5O pEE) (1, )] < i — K]0 03(t, X).

From these estimates, one can establish the first part ((i)-(iv)) of the Theorem 1.1 as
well as
p(t,x,y)=>ct™¥%  forte (0,1]and |x —y| < 3t%. (1.3.24)

1.3.3 Lower bound estimates

The upper bound estimates in Theorem 1.1 are established using analytic method,
while the lower bound estimate in Theorem 1.1 are obtained mainly by probabilistic
argument.

From (i)-(iv) of Theorem 1.1, we see that P¢f(x) := {4 p(t, x,y)f (y)dy is a Feller
semigroup. Hence, it determines a Feller process (2, F, (Px),cra> (X¢)t=0) having
strong Feller property on R9.

We first claim the following.

Theorem 1.2. Let F; := 0{Xs,s < t}. Then for each x ¢ R% and every f € C3(R%),
under Py,

M’; = f(Xy) — f(Xo) — Jt Lf(Xs)ds is an F-martingale. (1.3.25)
0

In other words, Px solves the martingale problem for (L, Cf, (Rd)). Thus Py in particular
solves the martingale problem for (£, CZ (R?)).
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Sketch of Proof. For f Clz,(Rd), define u(t, x) = f(x) + Sf) PsLf(x)ds. Then we have
by (1.3.4) in Theorem 1.1 that

Lu(t,x) = f LPsLf(x)ds = Lf(x J 0s(PsLf)(x) = PtLf(x) = dru(t, x).

Since P;f also satisfies the equation 0;P:f = L(P¢f) with Pof = f, we have

Pf ) J PsLf(x (13.26)

The desired property (1.3.25) now follows from (1.3.26) and the Markov property of
X. O

Theorem 1.2 allows us to derive a Lévy system of X by following an approach from
[16]. It is easy to see from (1.3.25) that X; = (X},..., Xf) is a semi-martingale. For any
f e CX(RY), we have by Itd’s formula that

f(Xo) — f(Xo) = 2j oof (X )dX, + S + 2l (13.27)
where
ns(f) = F(Xs) = f(Xs=) — i Of (Xs—) (Xs — Xi2) (13.28)
and -
Z f 0i0if (Xs ) (X, X, (13.29)
i

Here X“¢ is the continuous local martingale part of the semimartingale X' and
(X"¢, X)€Y is the covariational process of X"*¢ and X-°,

Now suppose that A and B are two bounded closed subsets of R? having a positive
distance from each other. Let f € CZ (]Rd )withf =0on A and f = 1 on B. Let M be
defined as in (1.3.25). Clearly, N{ = Sf) 1 A(Xs_)dMé is a martingale. Define

J(x,y) = k(x,y — x)/ly — x|, (1.3.30)

so £ can be rewritten as

Lf(x) = lim (Fy) = FO))I(x, y)dy. (1.3.31)

20 J{jy—x|>¢}
We get by (1.3.25)-(1.3.29) and (1.3.31),

t
= ¥ LaKe ) (F0K) ~ FKe) — | 1a(Ke)£F (K ds

s<t

t
— 3 1K )f(Xs) - fo LX) | FO)I(Xs, y)dyds.

s<t
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By taking a sequence of functions f, € C¥ (]Rd) with f, = Oon A, fn = 1 on B and
fn | 15, we get that, for any x € RY,

t
5 LX) Lp(Ke) — [ 14(Xo) [ TKery)dyds
< 0 B
is a martingale with respect to Px. Thus,
|:Z JlA Xs )]lB Xs :| Ex |:Jv f ]lA Xs ]lB ](Xs,y)dyd3:| .
s<t

Using this and a routine measure theoretic argument, we get

= UJ fXs, V) (Xs, )dyds}

for any non-negative measurable function f on R? x R? vanishing on {(x, y) € RY x
RY: x = y}. Finally, following the same arguments as in [18, Lemma 4.7] and [19,
Appendix A], we get

Ex | > f(Xs—, Xs)

s<t

Theorem 1.3. X has a Lévy system (J, t) with ] given by (1.3.3); that is, for any x € R¢
and any non-negative measurable function f on Ry x R? x R? vanishing on {(s, x, y) €
R, x RY x R?: x = y} and (F)-stopping time T,

Ex [Z £(5) Xs_, Xs) LT ( fRd £(s, X, )] (Xs, y)dy) ds] . 133

s<T

=[Eyx

For a set K = R4, denote
og:=inf{t >0:X; e K}, ¢ :=inf{t > 0: X; ¢ K}.

Denote by B(x, r) the open ball with radius r and center x. We need the following
lemma (see [3, 18]).

Lemma 1.4. For each v € (0, 1), there exists Ry > O such that for every R > Ry and
€ (0,1),

Px(Tpx,rr) < ) < 7- (1.3.33)

Proof. Without loss of generality, we assume that x = 0. Given f € C3 (R?) with f(0) =
Oand f(x) = 1 for |x| > 1, we set

fr(x) :==f(x/r), r>0.
By the definition of f;, we have
1.3.25 TBORN AT
Po(Tp(o,rr < 1) <Eo [ RT(XTB(o,Ry)/\ra)} (329 g, <J Ler(XS)dS> .

(1.3.34)
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On the other hand, by the definition of £, we have for A > 0,

(efar0] = | [ U+ 2) + i (x = 2) = 2 (e, 2) 7

A\ —a- a

<alVule [ p-teds s ol [ Ja
|z|<Ar |z|=Ar

o IVl

(Rr)2 2(2—a)

_ IV2floe A2 AP
_K1$1< R2 2(2—a)+2HfH°Oa r o,

Ar)—®
S1+ 2K Hf“da( ; 51

where s, is the sphere area of the unit ball. Substituting this into (1.3.34), we get

vZf ‘AZ(thx) A @
Po(Tp(o,rr) < 1) < K151 <| RZHOC o 2[f]eo r

Choosing first A large enough and then R large enough yield the desired estimate. [

We can now proceed to establish the lower bound heat kernel estimate (1.3.11). By
Lemma 1.4, there is a constant A € (O, %) such that forall t € (0, 1),

Px(Tpx,pa/2) > AL) = 3. (1.3.35)

In view of the estimate (1.3.24), it remains to consider the case that [x — y| > 3t/
Using (1.3.35) and the Lévy system of X,

Px(Xy € B(y, /%))

> Py (X hits B(y, t*/%/2) before At and then travels less than
distance ¢/ /2 for at least At units of time)
> Px(0p(y,a/m/y <A ZeB(}iEf/a/z) Pz(Tp(,a/2) > AL)
> Px(Xuynry ) € BOH179/2))
(At) /\TB(x,tl/“)
= E"J J J(Xs, u)duds
0 B(y,ti/2/2)
> Ex [(At) A Tp(x tl/a)] J %du
: B(y,tt/e/2) |X — y[4ta

tld+a)/a
R Ix —y|d+a’

Thus

p(t,x,y) = f p(At,x,z)p((1 = M)t,z,y)dz
B(y,t1/a)
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> Px(Xp By, tY/%) inf  p((1-At,z,y)
z€B(y,t1/)

> ot dra)a 1

‘X _ y|d+ﬂ
. cyt
\x _ y|d+a :
This proves that
p(t,x,y)=c (tid/“ A W) forevery x,y e Rlandt < 1.

1.3.4 Strong stability

In real world applications and modeling, state-dependent parameter k(x, z) of (1.3.1)
is an approximation of real data. So a natural question is how reliable the conclusion
is when using such an approximation. The following strong stability result is recently
obtained in [27].

Theorem 1.5. Suppose f8 € (0, a/4], and k and K are two functions satisfying (1.2.6) and
(1.2.7). Denote the corresponding fundamental solution of £¥ and £¥ by p*(t, x,y) and
p%(t, X, y), respectively. Then for every v € (0, ) and n € (0, 1), there exists a constant
C=C(d,a,p,xo0,K1,K2,7,1) > 0sothatforallte (0,1]andx,y € R4,

t
(7% x = ypare.
(1.3.36)

P&t %, Y) =Pt x, )| < Cle=RIT (14 6% (x =y A 1)

Here [k — K| oo := SUP, zepae [K(X, 2) — K(X, 2)|.

Observe that by (1.3.5) and (1.3.11), the term W

pa(t, x,y)and to pﬁ(t, X, ¥). So the error bound (1.3.36) is also a relative error bound,
which is good even in the region when |x — y| is large.

Let {P;¢t > 0} and {P¥; ¢t > 0} be the semigroups generated by £¥ and £¥, re-
spectively. For p > 1, denote by |P¥ — P¥|, , the operator norm of P¥ — P¥ in Banach
space LP (R%; dx).

in (1.3.36) is comparable to

Corrolary 1.1. Suppose B € (0, a/4], and x and X are two functions satisfying (1.2.6)
and (1.2.7). Then for every v € (0,B) and n € (0, 1), there exists a constant C =
C(d,a, B, xo, K1, K2,7,1) > 05so that foreveryp > 1and t € (0, 1],

|P¥ — P¥lpp < CE 7%k — &) 57 (1.3.37)

Theorem 1.5 is derived by estimating each |gy(t, x, y) — qﬁ(t, x,y)| for gx(t, x,y) and
qr(t, x,y) of (1.3.16). Corollary 1.1 is a direct consequence of Theorem 1.5.
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For uniformly elliptic divergence form operators £ and £ on RY, pointwise esti-
mate on |p(t, x, y) — p(t, x, y)| and the L?-operator norm estimates on P; — P; are ob-
tained in Chen, Hu, Qian and Zheng [15] in terms of the local L2-distance between the
diffusion matrix of £ and L. Recently, Bass and Ren [5] obtained strong stability result
for symmetric a-stable-like non-local operators of (1.3.3), with error bound expressed
in terms of the L7-norm on the function ¢(x) := supcga [c(x, y) — ¢(x, y)|.

1.3.5 Applications to SDE driven by stable processes

Suppose that o(x) = (03j(X))1<i,j<q is @ bounded continuous d x d-matrix-valued
function on R? that is non-degenerate at every x € R, and Y is a (rotationally) sym-
metric a-stable process on RY for some 0 < a < 2. It is shown in Bass and Chen [2,
Theorem 7.1] that for every x € R4, SDE

dXt = O'(Xt,)dYt, XO =X, (1338)

has a unique weak solution. (Although in [2] it is assumed d > 2, the results there are
valid for d = 1 as well.) The family of these weak solutions forms a strong Markov
process {X, Px, x € Rd}. Using It6’s formula, one deduces (see the display above (7.2)
in [2]) that X has generator

LF(x) = pov. L@ (Fx + 000y) — () %dy. (13.39)
A change of variable formula z = o(x)y yields
LF(X) = pov. JW (Fix+2) — f(x) "‘Z(";f) dz, (1.3.40)
where
02) = a0 <|o<5|—1z|>d+a' (1341

Here det(o(x)) is the determinant of the matrix ¢(x) and o(x) ! is the inverse of o(x).
As an application of Theorem 1.1, we have

Corrolary 1.2. ([2, Corollary 1.2]) Suppose that o(x) = (0j(x)) is a d x d matrix-valued
function on R? such that there are positive constants Ay, A1, A, and B € (0, 1) so that

Aolgsa < 0(x) < 441344 foreveryx e RY, (1.3.42)

and
;%) — 03 (V)| < Dalx —ylP for1<i,j<d. (1.3.43)

Then the strong Markov process X formed by the unique weak solution to SDE (1.3.38) has
a jointly continuous transition density function p(t, x, y) with respect to the Lebesgue
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measure on ]Rd, and there is a constant C > 1 that depends only on (d, a, B, Ag, A1) SO

that
1 t t

<plt,xy)<C
(W e < PO S RSy

forevery t € (0, 1] and x, y € RY. Moreover, p(t, x, y) enjoys all the properties stated in
the conclusions of Theorem 1.1 with ko = A(d, —a)Adt%A7%, k1 = A(d, —a)Ay A+
and Ky = Kz(d, /10, /11, Az)

The following strong stability result for SDE (1.3.38) is a direct consequence of Corol-
lary 1.1 and (1.3.41).

Corrolary 1.3. Suppose that o(x) = (03(x)) and o(x) = (03;(x)) are d x d matrix-
valued functions on RY satisfying conditions (1.3.42) and (1.3.43). Let p(t,x,y) and
D(t, x,y) be the transition density functions of the corresponding strong Markov pro-
cesses X and X that solve SDE (1.3.38), respectively. Then for every v € (0, B) and
n € (0, 1), there exists a constant C = C(d, a, 8, Ao, A1,42,7v,n) > 0 so that for all
te (0,1 andx,y € R4,

t
tl/a 4 |x — y|)d+a ’
(1.3.44)

p(txy) = Bt xy)] < Clo =81 (L4 7/ (x=y" n 1)) ¢

~ d ~
where 0 — 0| 1= X ;1 SUPy epa |04j(X) — 03j(x)[.

1.4 Diffusion with Jumps

In this section, we consider non-local operators that have both elliptic differential op-
erator part and pure non-local part:

Lf(x) := LU (x) + b - Vf(x) + L*f (%), (1.4.1)

where

d
LOf(x) = ai;(x0)Ff(x), b Vf(x 2

HM“-

1
5
Lf(x) = j (X +2) = f(x) = Lqz<132 Vf(x)) TZ(‘);jr) dz.

Here a(x) := (aj;(x))1<i j<a is @ d x d-symmetric matrix-valued measurable function
on R4, b(x) : R? - R? and K(x,z) : R? x RY — R are measurable functions, and
€ (0, 2).
For convenience, we assume d > 2. Throughout this section, we impose the fol-
lowing assumptions on a and k:
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(H?) There are ¢c; > O and 8 € (0, 1) such that for any x, y € RY,
la(x) - a(y)| < calx =yl (14.2)
and for some ¢, > 1,
5 Maxa < a(x) < c2lgnq. (1.4.3)
(H*) x(x, z) is a bounded measurable function and if & = 1, we require

J K(x,2)|z| “ 'dz =0 forany0 <r <R < . (1.4.4)
r<|z|<R

Note that when x(x, z) is a positive constant function,
L=L%+b-V+cAY?

for some constant ¢ > 0. A function f defined on R¢ is said to be in Kato class K if
felLl (R and

lim sup J j 2f )] dydt = 0. (1.4.5)
6—>0xeRd Re (t1/2 + |x — y|)d+2

Let q(t, x, y) be the fundamental solution of £¢; see Theorem 1.8 below for more
information. Since £ can be viewed as a perturbation of £ by LhK .= bV + LK,
heuristically the fundamental solution (or heat kernel) p(t, x, y) of £ should satisfy
the following Duhamel’s formula: forall ¢t > Oand x,y € Rd,

t
p(t,x,y) =q(t,x,y) + f p(r, x, z)Lb’Kq(t —1,-,Y)(z)dzdr (1.4.6)
Rd

or
t
p(t,x,y) =q(t,x,y) + J q(r, x, z)Lb’Kp(t -1, y)(2)dzdr. (1.4.7)
Rd

The following is a special case of the main results in [14], where the corresponding
results are also obtained for time-inhomogeneous operators.

Theorem 1.6. ([14, Theorem 1.1]) Let a € (0, 2). Under (H?), (H*) and b € K, there is
a unique continuous function p(t, x; y) that satisfies (1.4.6), and
(i) (Upper-bound estimate) For any T > 0, there exist constants Cy, A9 > 0 such

that fort e (0, T]and x,y € R4,

_ —Aolx— t
t,x,y)| < Co (¢~ 4/2e~MobylP/e lilo ) 14.8
Ip(t, x, )| 0( (t1/2 4 |x — y|)d+a ( )

(i) (C-K equation) For all s, t > 0 and x, y € R?, we have
y

J dp(s, x,2)p(t,z,y)dz = p(s + t, x,y). (1.4.9)
R
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(iii) (Gradient estimate) For any T > 0, there exist constants C1, A; > 0 such that
forte (0, T]and x,y € RY,

Ko ¢
(O + = y)ie

IVxp(t, X, y)| < Ct™ /2 (t*d/ze*Al""”|z/[ + ) . (14.10)

(iv) (Conservativeness) For any t > 0 and x € R9, Srap(t,x,y)dy = 1.
(v) (Generator) Define P¢f (x) = §za p(t, X, y)f (v)dy. Then for any f € Cj (RY), we
have

¢
Pif(x) — f(x) :J PsLf(x)ds. (1.4.11)
0
(vi) (Continuity) For any bounded and uniformly continuous function f,
lim¢ 0 |Pef — flloo = 0.

Define my = inf, _ga essinf, pak(x, z).

Theorem 1.7. ([14, Theorem 1.3]) If k is a bounded function satisfying (H) and that for
eachx e ]Rd,
K(x,z) >0 forae.ze R4, (1.4.12)

then p(t,x,y) = 0. Furthermore, if my > O, then for any T > 0, there are constants
C1,A; > Osuch thatforany te (0, T|and x,y € R4,

_ o lx—yl? my t
p(t,x,y) = Cq (t /2 g=halx—yl"/t | e |xK— y|)d+a) . (1.4.13)

We have by Theorems 1.6 and 1.7 that when k > 0, then there is a conservative Feller
process X = {X;, t = 0; Py, x € ]Rd} having p(t, x, y) as its transition density function
with respect to the Lebesgue measure. It follows from (1.4.11) that X is a solution to the
martingale problem for (£, C ,z,(Rd)).

When a is the identity matrix, b = 0 and x(x, z) is a positive constant, £ =
A + cA%Y? for some positive constant ¢ > 0. In this case, the corresponding Markov
process X is a symmetric Lévy process that is the sum of a Brownian motion W and an
independent rotationally symmetric a-stable process Y. Thus the heat kernel p(¢, x, y)
for £ is the convolution of the transition density function of W and Y. In this case, its
two-sided bounds can be obtained through a direct calculation. Indeed such a com-
putation is carried out in Song and Vondracek [46] by dividing into four cases with
different expressions for each cases. The two-sided estimates (1.4.8) and (1.4.13) first
appeared in Chen and Kumagai [20] for symmetric diffusions with jumps, including
the symmetry Lévy process case.

Symmetric diffusions with jumps corresponding to symmetric non-local operators
on R? with variable coefficients of the the following form have been studied in [20]:

o0 = 35 2 (e Z) wim [ 00 o SNy, uane

e £—0 |X_y‘d+0(
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where a(x) := (a(x))1<i,j<a 18 @ d x d-symmetric matrix-valued measurable function
onRY, c(x, y) is a symmetric measurable function on R4 xR that is bounded between
two positive constants, and a € (0, 2). Clearly, when a(x) is the identity matrix and
c(x, y) is a positive constant, the above non-local operator is A + coA%/? for some co >
0. Among other things, it is established in Chen and Kumagai [20] that the symmetric
non-local operator £ of (1.4.14) has a jointly Holder continuous heat kernel p(t, x, y)
and there are positive constants ¢;, 1 < i < 4 so that

C1 (tid/z A tid/“) A <t*d/ze*52|xfy|2/t ygda W)

<p(t,x,y) < 5 (t—d/z R t—d/a) R (t—d/ze_c4|x_y|z/t e, W)

(1.4.15)

forall t > 0 and x,y € R It is easy to see that for each fixed T > 0, the two-sided
estimates (1.4.15) on (0, T] x RY x R is equivalent to

= (472 ;—calx—y|/t t
C1 (t e @ + (t1/2+|x—y|)d+”‘> <p(t,x,y)
= —d/2 —cilx—yPt t )
<c3 |t e + .
’ ( (E172 4 x — y)d+e

When a is the identity matrix and b = 0, the results in Theorems 1.6 and 1.7 have
been obtained recently in [50] for x(x, z) that is symmetric in z.

1.4.1 Approach

The approach in [14] is to treat £ as £? under lower order perturbation b - V + £¥,
and thus one can construct the fundamental solution for £ from that of £? through
Duhamel’s formula.

The following result is essentially known in literature; see [29] (see also [14, The-
orem 2.3]).

Theorem 1.8. Under (H?), there exists a nonnegative continuous function q(t, x, y),
called the fundamental solution or heat kernel of L%, with the following properties:
(i) (Two-sided estimates) For any T > 0, there exist constants C,A > 0 such that

orte (0, T|and x,y € R,
forte (0, T]and x,y e R?
C 2o NIV gt x,y) < Ct Y2 AP (1.4.16)

(ii) (Gradient estimate) Forj = 1,2 and T > 0, there exist constants C, A > 0 such
that for t € (0, T] and x, y € RY,

IVhq(t, x,y)| < Ct~(@HD/2 =M=y /t, (1.4.17)
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(iii) (Holder estimate iny) Forj = 0,1, n € (0, 8) and T > 0, there exist constants
C,A > Osuchthatforte (0,T], x,y,z€ R4,

IViq(t, x,y) — Viq(t, x, z)| < Cly — 2|1 t~@+I+n)/2 (e*’ll"*ylz/[ + e*’”"*z‘z/t) .
(1.4.18)

Moreover, for bounded measurable f : R? — R, let Q¢f(x) := Sra a(t, X, Y)f (y)dy.
We have

(iv) (Continuity) For any bounded and uniformly continuous function f,

lim¢ 0 |Q¢f — fllw = 0.

(V) (C-K equation) Forall 0 < t <r <s < o0, Q¢Qs = Q¢ys.
(vi) (Conservativeness) Forall0 < t < s < o0, Q¢1 = 1.
(vii) (Generator) For any f € Ci(Rd), we have

t t
Qief (x) — f(x) = L QsLf (x)dr = L L£2Qsf (x)ds.

As mentioned earlier, it is expected that the fundamental solution p(¢, x,y) of £
should satisfy Duhamel’s formula (1.4.6). We construct p(t, x,y) recursively. Let
po(t,x,y) = q(t, x,y), and define for n > 1,

t
pn(t,x,y) := L J]Rd Proi(t —s,x,2)LP%q(s, -, y)(z)dzds.

Using Theorem 1.8, one can show that pn(¢, x,y) is well defined and that
Z;,‘io pn(t, x,y) converges locally uniformly to some function p(t, x, y), and that
p(t, x,y) is the unique solution stated in Theorem 1.6. The positivity (1.4.12) of The-
orem 1.7 can be established by using Hille-Yosida-Ray theorem and Courrége’s first
theorem.

The Gaussian part in the lower bound estimate on p(¢, x, y) in Theorem 1.7 is ob-
tained from the near diagonal lower bound estimate on p(t, x, y) and a chaining ball
argument, while the pure jump part in the lower bound estimate on p(t, x, y) is ob-
tained by using a probabilistic argument through the Lévy system, similar to that in
Section 3.

1.4.2 Application to SDE

Let o(x) be a d x d-matrix valued function on R? that is uniformly elliptic and
bounded, and each entry o;; is f-Holder continuous on RY b e K, and ¢ a bounded
d x d-matrix valued measurable function on R%. Suppose X solves the following
stochastic differential equation:

dX; = U(Xt)dB[ + b(X[)dt + 5'(X[7)dY[,

where B is a Brownian motion on R and Y is a rotationally symmetric a-stable process
onRY, By It6’s formula, the infinitesimal generator £ of X is of the form £ + b -V + L¥
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with a(x) = o(x)o(x)* and

d+a
"2 = oo (porm)

"~ |deta(x)] X)~iz]

So by Theorems 1.6 and 1.7, X has a transition density function p(t, x, y) satisfying the
properties there. If in addition, & is uniformly elliptic, then for any T > 0,

—d/2 —A|x—y[2/t t )
c1|t e + < p(t, x,
1( (E2 + [x — y|)d+a pxy)

—df2 ,— Ay |x—y|?/t t )
<Ccy |t e +
2( (12 + [x —y|)dta

forte (0, T]and x,y € R4,

1.5 Other Related Work

In this section, we briefly mention some other recent work on heat kernels of non-
symmetric non-local operators.

Using a perturbation argument, Bogdan and Jakubowski [8] constructed a par-
ticular heat kernel (also called fundamental solution) g®(t, x, y) for operator £? :=
A%?2 1 p.vVonRY whered > 1,a e (1,2) and b is a function on R? that is in a suit-
able Kato class. It is based on the following heuristics: g”(t, x, y) of £ can be related
to the fundamental solution p(t, x, y) of L0 = A%/ 2 which is the transition density of
the rotationally symmetric a-stable process Y, by the following Duhamel’s formula:

t
qb(t,x,y)zp(t,x,y)-s—j Jdqb(s,x,z)b(z)~Vzp(t—s,z,y)dzds. (1.5.1)
0 JR

Applying the above formula recursively, one expects that

a"(t,x,y) = Y qr(t,x,y) (1.5.2)

18

k=0

is a fundamental solution for £?, where qg(t, x,y):=p(t,x,y)and for k > 1,

t
qf(t, X,y) = L fRd qffl(s, X,2)b(z) - Vyp(t—s,z,y)dz.

It is shown in [8] that the series in (1.5.2) converges absolutely and, for every T > 0,
such defined qb(t, X, y) is a conservative transition density function and is compa-
rable to p(t, x,y) on (0, T] x R? x R?. Recall that p(t, x, y) has two-sided estimate
(1.2.5). In [23], Chen and Wang showed that the Markov process X; having g (¢, x, y)
as its transition density function is the unique solution to the martingale problem
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(Lb s Cf, (Rd) ; moreover, it is the unique weak solution to the following stochastic dif-
ferential equation:
dX¢ = dY: + b(X)dt,

where Y; is the rotationally symmetric a-stable process on R?. Dirichlet heat kernel
estimate for £? in a bounded C»! open set has been obtained in [16]. In [34, 35], Kim
and Song extended results in [1, 8, 17] to A%? + - v, where y = (u, ..., 4q) are
signed measures in suitable Kato class. These can be regarded as heat kernels for frac-
tional Laplacian under gradient perturbation. Heat kernel estimates for relativistic sta-
ble processes and for mixed Brownian motions and stable processes with drifts have
recently been studied in [24] and [13], respectively. See [12] for drift perturbation of
subordinate Brownian motion of pure jump type and its heat kernel estimate. While
in [52], Xie and Zhang considered the critical operator £h o= aA'? 4 p. V, where
for some 0 < ¢o < ¢1, a : R? — [co,c1]and b : R? — R4 are two Holder continu-
ous functions. They established two-sided estimates for the heat kernel of £? by using
Levi’s method as described in Subsection 3.1.

In the same spirit, Wang and Zhang in [48] considered more general fractional
diffusion operators over a complete Riemannian manifold perturbed by a time-
dependent gradient term, and showed two-sided estimates and gradient estimate of
the heat kernel. More precisely, let M be a d-dimensional connected complete Rieman-
nian manifold with Riemannian distance p. Let AM be the Laplace-Beltrami operator.
Suppose that the heat kernel p(t, x, y) of AM with respect to the Riemannian volume
dx exists and has the following two-sided estimates:

crt™ V2= PO I < pit x,y) < o3t V2PNt S0 x,ye M,  (1.5.3)
and gradient estimate
IVxp(t, x, y)| < cst™(@HD2g=cplon)/t (1.5.4)

where Vy denotes the covariant derivative. Let P; be the corresponding semigroup,
that is,

fptxy Ydx, fe Cyp(M).
For 0 < a < 2, consider the (a/2)-stable subordination of P;

%) :f Pyl (ds), t=o0,
0

(a/2)

where u,”'*’ is a probability measure on [0, o) with Laplace transform

0 Qa
J ey tx/2 (ds) = e~ 2 aso.
0

Then Pﬁ“) is a Cy-contraction semigroup on C;(M). Let £(®) be the infinitesimal gen-
erator of P(“). In [48], Wang and Zhang considered the following operator

OF(t,x) 1= £OF(x) + (b(t, x), Vf (X)) + c(t, )f (X), f € CE(M),
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where b : Ry x M - TMand c : Ry x M — R are measurable. For a € (0, 2), one
says that a measurable function f : R1 x M — R belongs to Kato’s class Kg if

sl— l/a —1/a
lim sup JJ 1 |f(2+ S ¥l dyds =0
£-0 (t,)e[0 /e +p(x y))dte

Notice that when a = 2 and f is time-independent, K is the same as in (1.4.5).
The following result is shown in [48].

Theorem 1.9. Assume (1.5.3), (1.54) and a € (1, 2).If |b|, ¢ € Kq, then there is a unique
continuous function p(“) (t, x; s, y) having the following properties:
(i) (Two-sided estlmates) There is a constant ¢c; > O such that forallt — s €
(0,1],x,ye M,

! t=s <pW(t,x;s,y) < 1 t=s .
((t =)@+ p(x,y))d+a = btz ((t—s)V + p(x,y))d+a

(ii) (Gradient estimate) There is a constant c; > O such that forall t — s ¢
(0,1],x,ye M,

c1

(t _ S)lfl/a
((t—s)Ve+ p(x, y))d+a’

(iii) (C-K equation) Forany0 <s<r <tandx,y e M,

Vi (6 x:8,)| < 2

pg"‘g(t X;s,¥) J py t X, z)pg’j‘g(r, z;s,y)dz.

(iv) (Generator) If b € C([0, 0); L}, (M, dx; TM)) and ¢ €
C([0, 0); L}, (M, dx; R)), then for any ¢, € C5(M),

lim 7J l/) P?s ¢ — (P dX = J l/)Lgag(S, -)(pdx, s>0,
M ’
where P{¥ g := §, P (t, 55, V)@ (y)dy.

The above results indicate that, under suitable Kato class condition, heat kernel esti-
mates are stable under gradient perturbation.

In [21], Chen and Wang studied heat kernels for fractional Laplacian under non-
local perturbation of high intensity; that is, heat kernels for

LXf(x) = A%2f(x) + 8"F(x), fe Cp(RY), (1.5.5)
where

K(

8 f(x) := A(d, —B) JRd (f(x +2z) — f(x) — Vf(x) -z]l{|z|<1}> z |d+ﬁ) dz  (1.5.6)
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for some 0 < B < a < 2 and a real-valued bounded function k(x, z) on R? x R4
satisfying
K(x,z) = k(x, —2) forevery x,z € R4,

Uniqueness and existence of fundamental solution ¢g*(t, x, y) is established in [21].
The approach is also a perturbation argument by viewing £* = A%? + $¥ as a lower
order perturbation of £° = A%2 by $¥. So heuristically, the fundamental solution (or
heat kernel) g (¢, x, y) of £L* should satisfy the following Duhamel’s formula:

t
q“(t,x,y) = p(t,x,y) + fo JRd q“(t —s, x,2)85p(s, z, y)dzds (1.5.7)

fort > Oand x,y € R4, Here the notation Sip(s, z,y) means that the non-local
operator S* is applied to the function z — p(s, z, y). Similar notation will also be
used for other operators, for example, Ag/ 2 Applying (1.5.7) recursively, it is reason-
able to conjecture that anzo qr(t, x,y), if convergent, is a solution to (1.5.7), where

q5(t, x,y) := p(t, x,y) and
t
an(t,x,y) := J J qn_1(t —s,x,2)85p(s, z,y)dzds forn > 1. (1.5.8)
0 Jrd

The hard part is the estimates on 85p (s, z, y) and on each g (t, x, y). In contrast to the
gradient perturbation case, the fundamental solution to the non-local perturbation
(1.5.5) does not need to be positive, and when the kernel is positive, it does not need
to be comparable to p(t, x, y). One can rewrite £* of (1.5.5) as follows:

£5F00) = [ (Flx+2) = F0) = (T, D 1)) (D),

where Ad, —a) A(d, —B)
sK _ , —& s T lX—ﬁ
J(x,z) = PET (1 + A —a) K(x,z) |z| ) . (1.5.9)
It is shown in [21] that the fundamental solution g* > 0 if j*(x, z) > 0; that is, if
A(d, ) |5 a
kK(x,z2) > -1z for a.e. z e R“. (1.5.10)
%2> " ha,p ”

When «(x, z) is continuous in x, the above condition is also necessary for the non-
negativity of g*(t, x, y). Under condition (1.5.10), various sharp heat kernel estimates
have been obtained in [21]. In particular, it is shown in [21] that if there are constants
0 < c1 < ¢3 so that

C1 K &) d
Zjd+a <j(x,2) < ZjdTa for x, z e R%,

then forevery T > 0, ¢*(t, x, y) = p(t, x,y) on (0, T] x R4 x R4, Dirichlet heat kernel
estimates for £* of (1.5.5) has recently been studied in Chen and Yang [25].
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In a subsequent work [50], Wang studied fundamental solution for A + 8* and its
two-sided heat kernel estimates. In [17], Chen, Kim and Song established stability of
heat kernel estimates under (local and non-local) Feynman-Kac transforms for a class
of jump processes; see also C. Wang [47] on a related work. Very recently, stability of
heat kernel estimates for diffusions with jumps (both symmetric and non-symmetric)
under Feynman-Kac transform has been studied in Chen and Wang [22]. On the other
hand, by employing the strategy and road map from Chen and Zhang [26] as outlined
in Section 3 of this paper, Kim, Song and Vondracek [36] has extended Theorem 1.1 to
more general non-local operator £ of (1.3.1) with IZ\% being replaced by the density
of Lévy measure of certain subordinate Brownian motions. In a recent work [10], X.
Chen, Z.-Q. Chen and J. Wang have used Levi’s freezing coefficient method to obtain
upper and lower bound estimates for heat kernels of the following type of non-local
operators of variable order:

800 1= | (0 +2) =00 = 9700 - 1 aen)) oy 4 e CERY,

where a(x) is a Holder continuous function on R? such that
O<a;<ax)<ay<?2 forall x e RY,

and x(x, z) satisfies conditions (1.2.6)-(1.2.7).

Very recently Chen and Zhang [28] have improved the results of Theorem 1.3.1 by
dropping the symmetry assumption on k(x, z) in z from (1.2.6). See also [33].

In this survey, we mainly concentrate on the quantitive estimates of the heat ker-
nels of non-symmetric nonlocal operators. For derivative formula of the heat kernel
associated with stochastic differential equations with jumps, we refer the interested
reader to [53, 51, 49]. For other results on the existence and smoothness of heat kernels
or fundamental solutions for non-symmetric jump processes or non-local operators
under Hormander’s type conditions, see [44, 40] for the studies of linear Ornstein-
Uhlenbeck processes with jumps, and [54, 55, 56] and the references therein for the
studies of general stochastic differential equations with jumps. We do not survey these
results in this article since the arguments in the above references are mainly based on
the Malliavin calculus and thus belong to another topic.

Acknowledgment: We thank the referee for helpful comments, in particular for point-
ing out a gap in the proof of (2.30) in [26].

Research partially supported by NSF Grant DMS-1206276 and by NNSFC grant of
China (Nos. 11731009).
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Francesca Da Lio
Fractional Harmonic Maps

Abstract: The theory of a-harmonic maps has been initiated some years ago by the au-
thor and Tristan Riviére in [8]. These maps are critical points of the following nonlocal
energy

£%u) = ka (=) u(0)2dxk, 2.0.1)

where u e H”‘(]Rk ,N), N « R™ is an at least C? closed (compact without boundary)
n-dimensional smooth manifold. In a recent paper [10] we also introduce the notion
of horizontal a-harmonic maps. Precisely, given a C! plane distribution P; on all R™,
these are maps u € H*(RX, R™), a > 1/2, satisfying

Pr(w)Vu=vu inD'(RF)
Pr(u)(=A)%u =0 in D'(RK).

If the distribution of planes is integrable, then we recover the case of a-harmonic maps
with values into a manifold. We will concentrate here to the case a = 1/2 and k =
1 which corresponds to a critical situation. Such maps arise from several geometric
problems such as for instance in the study of free boundary manifolds. After giving an
overview of the recent results on the regularity and the compactness of horizontal 1,/2-
harmonic maps, we will describe the techniques that have been introduced in [8, 9]
to investigate the regularity of such maps and mention some relevant applications to
geometric problems.

2.1 Overview

Since the early 50’s the analysis of critical points to conformal invariant Lagrangians
has raised a special interest, due to the important role they play in physics and geom-
etry.

The most elementary example of a 2-dimensional conformal invariant Lagrangian
is the Dirichlet Energy

L(u) = JD |Vu(x,y)|*dxdy, (2.1.0)

where D c R% is an open set, u: D — R™ and Vu is the gradient of u .

We can define the Lagrangian (2.1.1) in the set of maps taking values in an at
least C? closed n- dimensional submanifold N < R™. In this case critical points
u e WH2(D, N) of £ satisfy in a weak sense the equation
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—Au L TN, (21.2)

where TN is the tangent plane a N at the point £ € N, or in a equivalent way
—Au = A(u)(Vu, Vu) := A(u)(dxu, oxu) + A(u)(dyu, dyu), (2.1.3)

where A () is the second fundamental form at the point & € N (see for instance [17]).
The equation (2.1.3) is called the harmonic map equation into N .
In the case when N is an oriented hypersurface of R™ the harmonic map equation
reads as
—Au = v(u)Vv(u), Vu), (2.1.4)

where v is the unit normal vector field to N.

The key point to get the regularity of the harmonic maps with values into the
sphere S™~! was to rewrite the r.h.s of the equations as a sum of a Jacobians. More
precisely Hélein in [17] wrote the equation (2.1.4) in the form

—Au=V*'B vy, (2.1.5)

where VB = (V*Bjy;) with V*B;; = u;Vu; — u;jVu;, (for every vector field v: R* —
R™, Vv denotes the 7/2 rotation of the gradient Vv, namely Vv = (—=dyv, éxv)).
The r.h.s of (2.1.5) can be written actually as a sum of Jacobians:

VLBUVU]' = axujayB,-j — ayu]'axB,'j .
This particular structure permitted to apply to the equation (2.1.5) the following result

Theorem 2.1. [28] Let D be a smooth bounded domain of R%. Let a and b be two mea-
surable functions in D whose gradients are in L? (D). Then there exists a unique solution
@ e WH2(D) to
oaob odaodb .
A=y Ty P 2.16)
=0 ondD.

Moreover there exists a constant C > 0 independent of a and b such that
l@llo + [IVellr2 < ClIVall2||VD]|L .
In particular ¢ is a continuousin D .

In the case of an oriented hypersurface N of R™ by using the fact that Vu is orthogonal
to v(u) the equation (2.1.4) can be reformulated as follows

— i = Y (v(w) V), - v, VW) ) v @17
j=1
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Unlike the sphere case there is no reason for which the vector field
v(w)' V(r(u)); — v(w); V(rw)
is divergence-free. What remains true is the anti-symmetry of the matrix

Q:= (l/(u)i V(v(u)); — v(u); V(V(u))i) : (2.1.8)

i,j=1---m

Actually Riviére in [20] identified the anti-symmetry of the 1-form in (2.1.8) as the es-
sential structure of equation (2.1.4) and he succeeded in writing the harmonic map
system in the form of a conservation law whose constituents satisfy elliptic equations
with a Jacobian structure to which Wente’s regularity result (Theorem 2.1) could be
applied.

Let us now introduce P7(z), Py(z) the orthogonal projections respectively to the
tangent space T, N and to the normal space (T;N)= . Then the equation (2.1.2) can be
re-formulated as follows

Pr(u)Au = 0, inD’(D). (2.1.9)

We are going to release the assumption that the field of orthogonal projections is
associated to a sub-manifold N and to consider the equation (2.1.9) for a general field
of orthogonal projections Pt and for horizontal maps u satisfying

Py(u)Vu =0, inD'(D). (2.1.10)
We will assume that Py € C1(R™, Mn(R)) and Py € C1(R™, M (R)) satisfy
ProPy—P; PyoPy—Py
Pr+ Py = Inm

(2.1.11)
VzeR™ vU,VeT,R" <Pp(2)U,Py(z)V>=0

HazPTHLoo(Rm) < 400

where < -, - > denotes the standard scalar product in R™. In other words Py is a C!
map into the orthogonal projections of R™. For such a distribution of projections Py
we denote by

n := rank(Py).

Such a distribution identifies naturally with the distribution of n-planes given by the
images of Py (or the Kernel of P7) and conversely, any C! distribution of n-dimensional
planes defines uniquely Py satisfying (2.1.11).

Forany a > 1/2 and for k > 1 we define the space of H*-Sobolev horizontal maps

HYRK) := {ueH“(Rk,Rm); Py(u)Vu =0 inD’(Rk)}.

Observe that this definition makes sense since we have respectively Py o u €
H*(RK, Mm(R)) and Vu € H¥1(R¥, R™). Next we give the following definition.



Fractional Harmonic Maps =—— 55

Definition 2.2. Given a C! plane distribution Py in R™ satisfying (2.1.11), a map u in
the space $*(R¥) is called horizontal a-harmonic with respect to Py if

m .s
Vi=1.-m > PJu)(-4)"u=0 inD' (R (2.1.12)
j=1

and we shall use the following notation

Pr(u) (-4)%u =0  inD'(RY).

When the plane distribution Py is integrable that is to say when
VX,YeCY(R™R™) Py[PrX,PrY]=0, (21.13)

where [, -] denotes the Lie Bracket of vector-fields, using Frobenius theorem the plane
distribution corresponds to the tangent plane distribution of a n—dimensional folia-
tion F. A smooth map u in $H%(R™) takes values everywhere into a leaf of F that we
denote N" and we are back to the classical theory of harmonic maps into manifolds.
Observe that our definition includes the case of a-harmonic maps with values into
a sub-manifold of the euclidean space and horizontal with respect to a plane distri-
bution in this sub-manifold. Indeed it is sufficient to add to such a distribution the
projection to the sub-manifold and extend the all to a tubular neighborhood of the
sub-manifold.
In [10] we have proved the following result

Theorem 2.3 (Theorem 2.1, [10]). Let Pr be a C! distribution of planes (or projections)
satisfying (2.1.11). Any map u € $H*(D)

Pr(u)Au=0 inD'(D) (2.1.14)

isin ng1 CO(D).

The main idea to prove Theorem 2.3 is to show that u satisfies an elliptic Schrodinger
type system with an antisymmetric potential Q ¢ L?(R¥, R¥ ® so(m)) (whose con-
struction depends on P7) of the form

—Au =0 -vu. (2.1.15)

Hence, following the analysis in [20] the authors deduced in dimension 2 the local ex-
istenceonadisk Dof A € L nW?(D, Glim(R))and B € W'2(D, Mm(R)), depending
both on P7(u), such that

div(AVu) = V1B - Vu (2.1.16)

from which the regularity of u can be deduced using Wente’s Theorem 2.1.%!

2.1 We denote by so(m) the space of antisymmetric matrices of order m and by GLy, the space of
invertible matrices of order m.
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Now we turn our attention to an analogous fractional problem in dimension 1. We
consider the following Lagrangian that we will call L—energy (L stands for “Line”)

L2y J |(—=A) Y u)? dx (2.1.17)
within
HY2(R,N) := {u e HY2(R,R™); u(x) e N fora.e.x e R} .

The operator (—A)“ on R is defined by means of the Fourier transform as follows

(=A)%u = &>,

(given a function f, bothf and F[f] denote the Fourier transform of f).
The Lagrangian (2.1.17) is invariant with respect to the M&bius group and it satis-
fies the following identity

f [(=2)Y u(x)| dx—mf{f |Vit]2dx : &te WH(RE,R™), traceﬂ—u} .
RY

In [8] we introduced the following Definition:

Definition 2.4. A map u € H'/?(R, N) is called a weak 1/2-harmonic map into N if for
any @ € H'/?(R,R™) A L®(R, R™) there holds

d .1p
75 (e (u + tg))

where I is the orthogonal projection on N .

-0,

le=0

In short we say that a weak 1/2-harmonic map is a critical point of £'/2 in HY/? (R, N)
for perturbations in the target.
Weak 1/2-harmonic maps satisfy the Euler-Lagrange equation

vu) A (=DY?u =0 inD'(R). (2.1.18)

Let IT_;: SM\{—i} - R, IT_;(§ + in) = 1+n be the stereographic projection from
the south pole, then the following relation between the 1/2 Laplacian in R and in S!
holds:

Proposition 2.5 (Proposition 4.1, [7]). Givenu : R — R™, wesetv:=uoll_;:S' —
R™. Thenu e Ly (R)?? if and only if v e L*(S1). In this case

in D' (S1\{~1}), (2.1.19)

(R) : §, Ml dx < oo
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Observe that (1 + sin(9)) ! = |IT"_;(9)|, and hence we have
| Cotvie o ds - [ (-atue oUI=l()dx forevery g e CF(S\(-1).
st R

From (2.1.19) and the invariance of the Lagrangian (2.1.17) with respect to the trace of
conformal maps in C it follows that a map u € H'/?(R, N) is weak 1/2-harmonic in R
if and only if v = u o IT_; € HY/?(S', N) is weak 1/2-harmonic in S.

Indeed v € HY/?(S', N) satisfies

vV) A (=0)Y2v =0 inD/(SN\{-i}). (2.1.20)

Consider now the stereographic projection from the north pole IT; : S'\{i} — R, IT;({ +
in) = 15 and it — voIl7* —uo % Since % : C\{0} — C\{0} is a conformal map,
it € HY?(R, N) is weak 1/2-harmonic in R\{0}. By applying Proposition 2.2 in [5] (a
singular point removability type result on R) we deduce that i is weak 1/2-harmonic

in R and in particular continuous in R. Therefore not only v is weak 1/2-harmonic in
S! but we deduce that

xEToo u(x) = xEToo u(x) and lerini+ v(z) = lerinl_ v(z).

zeS? zeS§?
Fractional harmonic maps appear in several geometric problems and we mention
some of them below.
1. The first application is the connection between weak 1/2-harmonic maps and
free boundary minimal disks. The following characterization of weak 1/2-harmonic
maps of S! into sub-manifolds of R" holds, (see [7] and [18]).

Theorem 2.6. Let u ¢ H'/?(S',N), where N is a n-dimensional closed smooth sub-
manifold of R™. If u is a nontrivial weak 1/2-harmonic map, then its harmonic extension
it e WH2(D,R™) is conformal and

ol .ol
— =0 inD'(S). (2.1.21)

v(u) A o

From Theorem 2.6 it follows that i is a minimal disk whose boundary lies in N and
meets N orthogonally, namely its outward normal vector %’3 is othogonal to N at each
point of ii(St). Moreover we can deduce the following two characterizations of 1,/2-
harmonic maps in the case where N = S* and N = S2.

Theorem 2.7. i) Weak 1/2-harmonic maps u: S* — S with deg(u) = 1 coincide with
the trace of Mobius transformations of the disk B>(0,1) < R? .

ii) Ifu: S — S? is aweak 1/2-harmonic map then u(S') is an equatorial plane and
it is the composition of weak 1/2-harmonic map u: S* — S* with an isometry t: S* —
S%.
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2. Another geometrical application concerns the so-called Steklov eigenvalue problem
that is the first eigenvalue o0, of the Dirichlet-to-Neumann map on some Riemannian
surfaces (M, g) with boundary oM. In [14] the authors show the following

Theorem 2.8 ( Proposition 2.8, [14]). If M is a surface with boundary, and gy is a metric
on M with
01(80)Lgo (2M) = max o1 (8)Lg (2M),

where Lg(0M) is the lenght of M, the max is over all smooth metrics on M in the confor-
mal class of go. Then there exist independent eigenfunctions uy, ..., un corresponding
to the eigenvalue 01(8o) which give a conformal minimal immersion u = (U, ..., Un)
of M into the unit ball B" and u(M) is a free boundary solution. That is, u: (M, M) —
(B", 0B™) is a harmonic map such that u(oM) meets 0B" orthogonally. Hence u|yy is
1/2-harmonic.

3.1/2-harmonic maps appear in the asymptotics of fractional Ginzburg-Landau equa-
tion, (see [18]) and in connections with regularity of critical knots of M&bius energy
(see [2]).

The theory of weak 1/2 harmonic maps with values into a closed n-dimensional
sub-manifold N has been initiated some years ago by the author and Tristan Riviére
in [8]. Since then several extensions have been considered (see [4, 12, 9]). The main
novelty in the regularity of 1/2-harmonic was the re-formulation of the Euler-Lagrange
equation in terms of special algebraic quantities called 3-terms commutators which are
roughly speaking bilinear pseudo-differential operators satisfying some integrability
by compensation properties.

As in the local case we can consider a plane distribution Py satisfying (2.1.11) and
solutions of

Pr(u) (-4)?u=0 inD'(R) (2.1.22)

under the constraint Py(u) Vu = 0 in D’(R). Maps u € £/ (R) satisfying (2.1.22) are
called horizontal 1/2-harmonic maps. One of the main result in [10] is the following
Theorem.

Theorem 2.9. Let Py be a C! distribution of planes satisfying (2.1.11). Any map u e
H2(R)
Pr(u) (-M)Y?u =0 inD'(R) (2.1.23)

isin nso1CR2(R).

In [10] conservation laws corresponding to horizontal 1/2-harmonic maps have been
discovered: locally, modulo some smoother terms coming from the application of
non-local operators on cut-off functions, we construct out of Pr(u) A € L n
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HY2(R, Gln(R)) and B € HY/2(R, Mm(R)) such that
(—4)Y*(Av) = §(B,v) + cut-off, (2.1.24)

where v := (P (=A)"*u, R(Py(—A)*u))!, R denotes the Riesz operator defined by
Rf(E) =1 % f and g is a bilinear pseudo-differential operator satisfying

8B, V)l -2y < €= Bl gy V2 ey - (21.25)

As we will see later, the conservation law (2.1.24) will be crucial in the quantization
analysis of sequences of horizontal 1/2-harmonic maps.

By assuming that Py € C2(R™) and by bootstrapping arguments one gets that
every horizontal 1/2-harmonic map u € $'/?(R) is Cllt;‘c"(R), for every a < 1 (see [11]).

We would like to mention that in the non-integrable case it seems not feasible to
get the regularity of the horizontal 1/2-harmonic maps by the techniques in [23] or [18]
which consist in transforming the a-priori non-local PDE (2.1.18) into a local one and
in performing ad-hoc extensions and reflections.

Also in the nonintegrable case the following geometric characterization holds.

Proposition 2.10. An element in §l/2 satisfying (2.1.22) has a harmonic extension ii
in B2(0, 1) which is conformal and hence it is the boundary of a minimal disk whose
exterior normal derivative oii is orthogonal to the plane distribution given by Pr.

Example : We consider the following field of non-integrable projections in C?\{0}.
Pr(2)Z:=Z—|z|7? [Z-(z1,22) (21, 22) + Z - (iz1, iz3) (i1, i22)] . (2.1.26)

An example of u satisfying (2.1.23) is given by solutions to the system

%AuAiu:O in D’(Sh)

ou o avol
U- =g = 0 inD’'(ShH an at least (2.1.27)
iu-% =0 inD/(S

where i1 denotes the harmonic extension of u which happens to be conformal due to
Proposition 2.10 and define a minimal disk. An example of such maps is given by

. s - _ 1 _
u(9) := — (%, ey where ii(z,z) = —(z,2). 2.1.28
(9) ( ) (2:2) = 522 (21.28)
Observe that the solution in (2.1.28) is also a 1/2-harmonic map into S? and it would
be interesting to investigate whether this is the unique solution.
From a geometrical point of view to find a solution to (2.1.23) means to find a min-
imal disk whose boundary is horizontal and the normal direction is vertical.
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One natural question is to see if this problem is variational. A priori if i1 is a crit-
ical point of the Dirichlet energy whose boundary is horizontal, then its exterior nor-
mal derivative o,it does not belong necessarily to Im(Py). Despite the geometric rel-
evance of equations (2.1.12) in the non-integrable case, it is however a-priori not the
Euler-Lagrange equation of the variational problem consisting in finding the critical
points of |(—A)%?u|?, within $* when Py is not satisfying (2.1.13). This can be seen
in the particular case where @ = 1 where the critical points to the Dirichlet Energy
have been extensively studied in relation with the computation of normal geodesics in
sub-riemannian geometry. We then introduce the following definition:

Definition 2.11. A map u in $* is called variational a—harmonic into the plane dis-
tribution Py ifit is a critical point of the || (—A)“/zuﬂiz within variations in $% i.e. for any
ug e C1((-1,1), 5% we have
4 I(=8)%ug%|  =o. (2.1.29)
dt t=0
Example of variational harmonic maps from S! into a plane distribution is given by
the sub-riemannian geodesics.

A priori the equation (2.1.22) is not the Euler-Lagrange equation associated to
(2.1.29). The main difficulty is that we have not a pointwise constraint but a constraint
on the gradient. In order to study critical points of (2.1.29) we use a convexification
of the above variational problem following the spirit of the approach introduced by
Strichartz in [27] for normal geodesics in sub-riemannian geometry. We prove in par-
ticular for the case a = 1/2 that the smooth critical points of

—1/4
Ll/z(u,f) o J ‘(_A)O 2(PT(u)§)|2 dL9
S1

_Ll <(—A)51/4(Pr(u)<f), (—4)51/4 (PT(u)%)> dg (2.1.30)

[ (Capt enwe. cagt (Puw s ) ) as

in the co-dimension m Hilbert subspace of H/?(S', R™) x H~Y/2(S!, R™) given by*>

(u, &) e HY2(SY, R™) x H~Y2(SY, R™) s.t.
du
€= <PN(H)’ d9>yl/z,y—1/z -
(a5 P e LS and (-a)5 " (Pr(w g ) € 135"

2.3 Given f € H'/2, g € H=/2 we denote by (f, ) /2 -1/ the duality between f and g.
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at the point where the constraint (PN(u), %) = 0 is non-degenerate

Hl/Z’H—l/Z
are “variational 1/2-harmonic" into the plane distribution Py in the sense of defini-
tion 2.11. It remains open the regularity of critical points of (2.1.30) or even of the 1/2

energy (2.1.17) in $'/? in the case when the constraint (PN(u) du = 0is

> dS)Hl/Z’H—l/Z
degenerate.

In a joint paper with P. Laurain and T. Riviére we investigate compactness and
quantization properties of sequences of horizontal 1/2 harmonic maps u; € §l2 (R)
by extending the results obtained by the author in [5] in the case of 1/2-harmonic maps

with values into a sphere. Our first main result is the following:

Theorem 2.12. [Theorem 1.2 in [6]] Let uy € $/%(R) be a sequence of horizontal
1/2-harmonic maps such that

lugl e < € 1(=D)ur|p < €. (21.31)

Then it holds:
1. There exist us, € $'/%(R) and a possibly empty set {ay, ..., a;}, £ > 1, such
that up to subsequence

U — U in WP ([R\{ay, ..., ar}), p>2ask— +o (2.1.32)

and
Pr(uxs)(—M)Y?uyp =0, inD'(R). (2.1.33)
2. There is a family ﬁloé € .61/ 2(]R) of horizontal 1/2-harmonic maps (i €
{1,...,4},je{1,...,N;}), such that up to subsequence

—0, ask - +w0.

l(—[\)l/4 (uk — U — Z ﬁloé((x - Xf})/rﬁ})>

i,j

L (B)
(2.1.34)

for some sequences rl’-" j— Oand x{{ ;R
As we have already remarked in [6] the condition | (—A)2uy||;: < Cisalways satisfied
in the case the maps uy, take values into a closed manifold of R™ (case of sequences
of 1/2 harmonic maps) as soon as |[uy| ;. < C. This follows from the fact that if uisa
1/2-harmonic maps with values into a closed manifold of N of R™ then the following

inequality holds (see Proposition 5.1 in [6])
[(=2)? | gy < Cll(=2) gy, (2.1.35)

Hence in the case of 1/2-harmonic maps defined in S* we have the following corollary.

Corollary 2.13. [Corollary 1.1in [6]] Let N be a closed C? submanifold of R™ and let
uy € HY2(S', N) be a sequence of 1/2-harmonic maps such that

”ukHH1/2(51) <C (2.1.36)



62 —— FrancescaDa Lio

then the conclusions of Ttheseheorem 2.12 hold. In particular up to subsequence we have
the following energy identity

k—+o0 Js1

im [ (=4) 4w d9 = f (=2) 4 ucg|? d9 +ZJ (=) Y45H12 9 (2.1.37)

where agg are the bubbles associated to the weak convergence.

For the moment it remains open whether the bound (2.1.35) holds or not in the general
case of horizontal 1/2-harmonic maps.

The compactness issue (first part of Theorem 2.12) is quite standard. The most del-
icate part is the quantization analysis consisting in verifying that there is no dissipa-
tion of the energy in the region between u« and the bubbles ﬁ’oé and between the
bubbles themselves (the so-called neck-regions). Such an analysis has been achieved
in [6] by performing a precise asymptotic development of horizontal 1/2-harmonic
maps in these neck-regions, that was possible thanks to the conservation law (2.1.24)
and an application of new Pohozaev-type identities in 1-D discovered in [6]. We refer
the reader to [6] for a complete description of compactness and quantization issues of
horizontal 1/2-harmonic maps.

We conclude this section by mentioning that the partial regularity of 1/2-
harmonic map in dimension k > 2 with values into a sphere has been been deduced in
[18] from existing regularity results of harmonic maps with free boundary. Schikorra
[25] has also studied the partial regularity of weak solutions to nonlocal linear systems
with an antisymmetric potential in the supercritical case under a crucial monotonicity
assumption on the solutions which allows us to reduce it to the critical case.

It still remains open a direct proof of the partial regularity without an ad-hoc
monotonicity assumption.

2.2 3-Commutators Estimates

As we have already mentioned in the previous section, when the notion of 1/2-
harmonic map was introduced in [8], one of the main novelty was the re-formulation of
the Euler-Lagrange equation in terms of three-terms-commutators which have played
a key role in all the results that have been obtained later.

In this section we will introduce such commutators and recall some important
estimates and properties. Such properties will be crucial to get regularity results of
1/2-harmonic maps and to re-write the system (satisfied by a horizontal 1/2-harmonic
map)

Pru)(-M)Y?u =0
(2.2.1)
Py(u)Vu=0
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in term of a conservation law.

We first introduce some functional spaces.

H(R™) denotes the Hardy space which is the space of L! functions f on
RM"satisfying

J sup | = f|(x) dx < +o0
Rm teR

where @¢(x) := t~" @(t"1x) and where ¢ is some function in the Schwartz space
8(R™) satisfying {,, ¢ (x) dx = 1. For more properties on the Hardy space H ! we refer
to [15, 16, 26].

The L?*® (R) is the space of measurable functions f such that

supA|{x e R : [f(x)| = A}Y? < 0.
A>0

L*!(R) is the Lorentz space of measurable functions satisfying
+00
f X eR : [f(x)| = A}V2dA < +o0 .
0
In [8] the following two three-terms commutators have been introduced:

T(Q,V) := (—A)Y*(Qv) — Q(=A)V*v + (-A)Y*Qv (2.2.2)

and
S(Q,v) := (~4)*[Qv] - R(QR(~2)*v) + R((~4)V*QRv), 2.23)

where R is the Riesz operator.
In [8] the authors obtained the following estimates.

Theorem 2.14. Letv e L>(R), Q € H/?(R). Then T(Q, v), S(Q,v) € H~'/*(R) and
IT(Q V) -12r) < C Q2 gy VL2 ) 5 (2.2.4)
15(Q, )lg-112(r) < ClQlgas2 gy VIIL2ee (w) - (2.2.5)

We observe that under our assumptions u € H2(R, R™) and Q € HY/?(R, Myym(R))
each term individually in T and S - like for instance (—4)Y*(Q(—A4)"*u) or Q(—A)"/?u
... - are not in H~ /2 but the special linear combination of them constituting T and S
are in H~'/2. In a similar way, in dimension 2, J(a, b) := 2226 _ 2a b gatisfies, as a

ox oy oy 0x
direct consequence of Wente’s theorem 2.1

J(a, b)|g-. < Clalg bl (2.2.6)

s i da db da ob : —1
whereas, individually, the terms ooy and 5y ox are notin H™ .

Actually in [5] we improve the estimates on the operators T, S.
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Theorem 2.15. Letv € L2(R), Q € HY?(R). Then T(Q, v), S(Q, v) € H*(R) and
IT(Q: V)31 ®) < ClQl 2 gy VL2 (R) - 2.2.7)
1S(Q, V)liser ) < ClQlgs2 gy VL2 (w) - (2.2.8)

We refer the reader to [8] and [5] for the proof of respectively Theorem 2.14 and The-
orem 2.15. We just mention that the above estimates is based on a well-known tool
in harmonic analysis, the Littlewood-Paley dyadic decomposition of unity that we
briefly recall here. Such a decomposition can be obtained as follows. Let ¢ (&) be a
radial Schwartz function supported in {£ € R" : [£] < 2}, which is equal to 1 in
{£eR": |&] < 1}.Let (&) be the function given by

P(&) := 9(8) — 9(28)
i is then a "bump function” supported in the annulus {§ e R" : 1/2 < |&] < 2}.

Let o = @, (&) = P(277&) forj # 0. The functions Y;, for j € Z, are supported
in{£eR": 271 < |¢] < 2*1} and they realize a dyadic decomposition of the unity:

D) =
jezZ

We further denote

j
PIRAC3)

k=—o0

The function ¢; is supported on {¢, |£| < 2+,
For every j € Z and f € 8'(R) we define the Littlewood-Paley projection operators
P; and P; by

Pf = yif Poif = oif .

Informally P; is a frequency projection to the annulus {2/~ < |£| < 2/}, while P; is
a frequency projection to the ball {|&] < 2/} . We will set fj = Pjf and = Pf.

We observe that f/ = Z’ e oo frand f = Z;LOO,OO fi (where the convergence is in
8'(R)).

Given f, g € 8'(R) we can split the product in the following way

fe =1IL(f,g) +IL:(f, 8) + II5(f, 8), (2.2.9)

where

m(f,g) = Zf, > gk—Zf, I~

— 00 k<] 4

ZE > gk—zg,f’ 4

-0 k=j+4

HZ(f’g)
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+00
H3(f’g) = Zf] Z 8k -

-0 |k—j|<4
We observe that for every j we have
suppF[f~*g;] = {27% < |§| < 2%}

suppF(3>  figel < (|€] < 275}

The three pieces of the decomposition (2.2.9) are examples of paraproducts. Informally
the first paraproduct IT; is an operator which allows high frequences of f (~ 2/) mul-
tiplied by low frequences of g (« 2) to produce high frequences in the output. The
second paraproduct IT, multiplies low fequences of f with high frequences of g to
produce high fequences in the output. The third paraproduct IT3 multiply high fre-
quences of f with high frequences of g to produce comparable or lower frequences in
the output. For a presentation of these paraproducts we refer to the reader for instance
to the book [16] .

The compensations of the 3 different terms in T(Q, v) will be clear just from the
Littlewood-Paley decomposition of the different products. With this regards to get for
instance the estimate (2.2.7) we shall need the following groupings

— i) For I1; (T(Q, v)) we proceed to the following decomposition

M(T(Q, V) = I ((-8)Y*(Qv)) + T Q(—2) v + (-4)"Qv) .

— ii) For II; (R(Q, u)) we decompose as follows

,(T(Q, V) = IL((-0)Y*(Qv) — Q(~4)Y*v) + I, ((-4)"*Qv) .

— ii) Finally, for II5(R(Q, u)) we decompose as follows

I5(T(Q, v)) = M3((—4)Y4(Qv)) — I3(Q(—A)"4v) + I3((-4)"4Qv) .

The following 2-terms commutators have also been used in [9, 10]:
F(Q,v) := R[Q]R[v] — Qv. (2.2.10)
A(Q,v) := Qv + R[QR[V]]. (2.2.11)
Theorem 2.16. [Theorem 3.6 in [10]] For f, v € L? it holds
IFFs VIg-12m)y < CIflz @) IVIIL2= (r)> (2.212)

and
IFF gy < Clflzwy VI - O (2213)
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Theorem 2.17. [Theorem 3.7 in [10]] For Q € HY/?(R), v € L?(R) it holds

[(=2)"*(AQ, v))lser ) < CIQU sz () V12 ) - (2.2.14)

Actually the estimate (2.2.13) is a consequence of the Coifman-Rochberg-Weiss esti-
mate [3].
From Theorem 2.17 we deduce that under the same assumptions it holds A(Q, v) €
L>1(R) with
1A(Q, V)2 2y < CIQlg2 2y Vlz2(e) -

We finally remark that we can simply write the operator S as follows:
S(Q,v) = RT(Q, Rv) — R(—4)*[A(Q, RV)]. 2.2.15)

Therefore the estimate (2.2.8) for S can be deduced from the estimate (2.2.8) for the
operator T and Theorem 2.17.

In [10] we have proved a sort of stability of of the operators T, S with respect to the
multiplication by a function P € H/?(R) ~n L®(R). Roughly speaking if we multiply
T(Q, v) or S(Q, v) by a function P ¢ HY/?(R) n L*(R) we get a decomposition into the
sum of a function in the Hardy Space and a term which is the product of function in
L*>!byonein L.

Theorem 2.18. [Multiplication of T by P ¢ H'/2(R) ~ L(R)] Let P, Q € HY?(R) ~
L®(R) and v € L?>(R). Then

PT(Q,v) = Jz(P,Q,v) + Ar(P, Q)v, (2.2.16)
where
Ar(P, Q) = P(-4)*[Q] + (-4)*[P]Q - (—-4)"/*[PQ] € L*!
with
JAT(P, Q)21 < Cl(—=A)Y*[P| 2 (~2)4[Q] 2, (2.217)
and
Jr(P,Q,v) := T(PQ,v) — T(P, Qv) € H}(R)
with

(P, QV)llac 2y < CUPL= + 1Qle=) (1(=4) [Pl + 1(~4)*[QUlz2 ) V]2-
(2.2.18)

Proof of Theorem 2.18. We have

P(—0)Y*[Qv] — PQ(-4)""[v] + P(~4)"/*[Q]v
(P(=0)Y4[Q] = (-0)Y*[PQ] + (-4)Y*[P]Q}v
(—A)V4[PQv] — PQ(~4)*v + (—A)V*[PQ]v

PT(Q,v)

+
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- ((=0)"*[PQv] + P(=)"(@v) - (-)*[PlQv)
= [P-0)Y*[Q] + (-4)V4[P1Q — (~4)*[PQ]lv
+ T(PQ,v)— T(P,Qv).

Finally the estimates (2.2.17), (11.5.4) follow from Theorems 3.2 and 3.3 in [10].

An analogous property holds for the operator RS. We just state the Theorem and we
refer for proof to Theorem 3.10 in [10].

Theorem 2.19. [Multiplication of RS by a rotation P ¢ H'/?>(R) ~L*(R)] Let P, Q €
HY?2(R) A L®(R) and v € L*(R). Then

PR[S(Q,v)] = As(P,Qv+]Js(P,Q,v) (2.2.19)
where Ag(P, Q) € L>1, J5(P, Q,v) € H*(R) with
[As(P, Q)lg2x < Cl(=A) [P 12l (=8)*[Q] 12,

and

Us(P, QV)lscrzy < CUPILe + Qo) (1(=8)“PIlze + 1(~4)*[Qlz2 ) V1 -

We just mention that the operators Ag(P, Q), Js(P, Q,v)and A7 (P, Q), J7(P, Q, v) can
be expressed in turn as a combinations of the operators F, T, S.

Remark 2.1. We remark without going into detail that in 2-D the Jacobian J(a, b) =
V(a) V*(b) satisfies a stability property enjoyed by the operators (2.2.2), (2.2.3),
(2.2.10) with respect to the multiplication by P ¢ W'2(R?) n L®(R?) as well. More
precisely we may define the following two zero-order pseudo-differential operators:
Grad(X) := vdiv(—A)"1(X), Rot(Y) = V*tcurl(=4)"}(Y). If a,b € WH2(R?) and
P e W12(R?) A L®(R?) then

J(a,b) = V(a)Vi(b) (2.2.20)
= Grad(V(a))Rot(V* (b)) — Rot(V(a)) Grad(V"(b));

and

PJ(a,b) = PV(a)V*(b) (2.2.21)
[PGrad(V(a)) — Grad(PV(a))] Rot(VL(b))

€L21(R2)
Grad(PV(a)) Rot(V* (b)) — Rot(PV(a)) Grad(V* (b)).

€T1(R2)

+
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2.3 Regularity of Horizontal 1/2-harmonic Maps and
Applications

In this section we describe the regularity results we have obtained respectively in [8,
9, 10].

2.3.1 Case of 1/2-harmonic maps with values into a sphere

In [8] we started the investigation of weak 1/2-harmonic maps u € H'/?(R, S™~!) with
values into the sphere S™~! which are critical points of the Lagrangian

L2 () = J |(—=A)Y*u(x)|?dx. 2.3.0)
R

The main novelty in [8] is the rewriting of the Euler-Lagrange equation. To this
purpose we recall the following equivalent relations.

Theorem 2.20. All weak 1/2-harmonic maps u € H'Y?(R, S™1) satisfy in a weak
sense
i) the equation

J (—=M)Y?u . vdx =0, (2.3.2)
R

foreveryv e H/2(R,R™) A L*(R,R™) and v € T,,,,S™ " almost everywhere, or in a
u(x)
equivalent way
ii) the equation

(M2 uru=0in7D, (2.3.3)
or
iii) the equation
(=MY4u A (=D)Y*u) = T(Q, u) in D', (2.34)
withQ=un .
Proof of Theorem 2.20

i) The proof of (2.3.2) is analogous of Lemma 1.4.10 in [17].
Letve HY2(R,R™) A L*(R,R™) and v € Ty, S™*. We have

Hgn1(u + tv) = u + twy,

where ITgn1 is the orthogonal projection onto S™~! and

1 .
we = J M(u + tsv)Vds.
o %
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Hence
LY (Dgnos (u + tv)) = f [(=A)Y*u?dx + ZtJ (—M)Y?u - wedx + o(t),
R R

ast — 0.
Thus to be a critical point of (11.2.1) is equivalent to

lim (fA)l/zu -wedx = 0.

t—0 Jr
Since ITgn—: is smooth it follows that w;, — wo = dgn—1(u)(v) in H/?(R,R™)
L® (R, R™) and therefore

f (—2)4u AT gn 1 (u)(v)dx = O .
R

Since v € Tu(x)S’"_1 a.e., we have dlIgn—1(u)(v) = v a.e. and thus equation (2.3.2)
follows immediately.
ii) We prove (2.3.3). We take ¢ € C§° (R, A,,,_,(R™)). The following holds

JR(p AU A (—A)l/zu dx = (JR #( AU - (—A)l/zu dx) e1An...Arem. (23.5)

Claim: v = #(¢ A u) € HY/2(R,R™) ** and v(x) € Ty, S™ " a.e.

Proof of the claim.

The fact that v € H/?(R, R™) ~n L*(R, R™) follows form the fact that its compo-
nents are the product of two functions which are in H/2(R, R™) ~ L* (R, R™), which
is an algebra.

We have

vV-u=+xuUnr@)-u=+xuUr@ru)=0. (2.3.6)

It follows from (2.3.2) and (2.3.5) that

J @ Aun(-8)V?udx=0.
R

This shows that (—A)/?u A u = 0in D', and we can conclude.
iii) As far as equation (2.3.4) is concerned it is enough to observe that (—4)"/?u A
u=0and (—A)Y*u A (-D)Y*u=0. O

The Euler Lagrange equation (2.3.4) will often be completed by the following
“structure equation” which is a consequence of the fact that u € S™~! almost every-
where:

2.4 the symbol * we denote the Hodge-star operator, : A,(R™) — A, _,(R™), defined by *f =
(e1 A ... A en) o B, the symbol e is the first order contraction between multivectors, for every p =
1,...,m, /\p (R™) is the vector space of p-vectors.
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Proposition 2.21. All maps in HY/?(R, S™~1) satisfy the following identity
(=Y - (=DM u) = S(u-, u) — R((—=A)V*u - R(—A) V), (2.3.7)

where, in general for an arbitrary integer n, for every Q € HY?(R", Mexm@®)), £ =1

and u € HY?(R", R™), S is the operator defined by (2.2.3).

\Y

Proof of Proposition 2.21. We observe that if u € H/?(R, R™ 1) then the Leibniz’s
rule holds. Thus
Viu> =2u-Vu in D’. (2.3.8)

Indeed the equality (2.3.8) trivially holds if u € CX (R, R™ ). Let u ¢ HY/?(R, R™ 1)
and y; € C (R, R™) be such that u; — uasj — +ooin HY?(R,R™). Then Vu; — Vu
asj — +ooin H-Y3(R,R™~1). Thus u; - Vu; — u - Vuin D’ and (2.3.8) follows.

Ifu e HY/?(R, S™ 1), then V|u|> = 0 and thus u- Vu = 0in D’ as well. Thus u satisfies
equation (2.3.7) and this conclude the proof. O

We remark that in the sphere case the term R((—A)Y*u - R(—A)"/*u) is in the
Hardy-Space 3! (R) as well (see Corollary 3.1 in [8]). The estimates (2.2.4) and (2.2.5)
imply in particular that if u ¢ HY/2(R, 8™ 1) is a 1/2-harmonic map then

[(=8) U] 2y < Cl(=2)"*u|F2(gy - (2.3.9)

where the constant C is independent of u.
From the inequality (2.3.9) it follows that if £ := [(~4)*u] 12 () is small enough
so that
Cep <1 (2.3.10)

then the solution is constant. This the so-called bootstrap test and it is the key observa-
tion to prove Morrey-type estimates and to deduce Holder regularity of 1/2-harmonic
maps.

Indeed by combining Theorem 2.20, Proposition 2.21 and suitable localization es-
timates obtained in Section 4 in [8] we get the local Holder regularity of weak 1,/2-
harmonic maps.

Theorem 2.22. [Theorem 5.2, [8]] Let u ¢ HY*(R, S™ ') be a weak 1/2-harmonic
map. Thenu € C;%(R, S™ 1), forall a € (0, 1).

lo

Sketch of Proof of 2.22. The strategy of proof is to show some decrease energy es-
timates. From Proposition 4.1 and 4.2 in [8] by using the fact that u A (—A)Y“u and
u- (—A)l/ “u satisfy respectively (2.3.4) and (2.3.7) one deduces that there exist C > 0
depending on | (—4)"“u|2 gy, k € Z depending on & in (2.3.10), such that that for
every xo € R, for all k < k the following estimate holds

& k=h
=) ullfaz, ) < € 354 ullF 4, (2311)
h=k
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where B,i = B(Xo, 2X), A, = By11\Byn-1. On the other hand one has

k—1 k—1
270 3 M gy < HEO g, < Y 1Y 2312
h=—w h=—00

By combining (2.3.11) and (2.3.12) we get

k—1

(o0
S8 u[F2 4y Z —0 U149

h=—o0

This implies by an iteration argument (see Proposition A.1in [8], or Lemma A.1 in [24])

sup r -k J 1/ “u\ dx<C, (2.3.13)
X€B(Xo,p) B(x, r)
0<r<p/8

for p small enough, for some 0 < < 1 independent on xy and C > 0 depending only
on the dimension and on H(—A)l/“uH%z(R).

Condition (2.3.13) yields that u e C?&f/ 2 (R), (see for instance [1] or [11] for the details).
By bootstrapping into the equations (2.3.4) and (2.3.7) we can deduce that u € C?(;?(]R)
foralla e (0,1). O

We mention that Schikorra in [24] and the author and Schikorra in [12] extended
the local the Holder continuity of respectively k/2-harmonic maps (k > 1 odd) and
k/p-harmonic maps (p € (1, x0), k/p € (0, k)) from subsets of R¥ into a sphere.

k/p-harmonic maps with values into a sphere are defined as critical points of the
following nonlocal Lagrangian

f (—A) s uf? dx,
Rk

where u(x) € S™ 1, a.e. and {p, (=) ulP dxk < +oo.

2.3.2 Case of 1/2-harmonic maps into a closed manifold

We consider the case of 1/2-harmonic maps with values into a closed C?> n
dimensional manifold N = R™. Let IT) be the orthogonal projection on N . We denote
by Pr and Py respectively the tangent and the normal projection to the manifold N.
They verify the following properties: (P7)! = Pr, (Py)! = Py (namely they are
symmetric operators), (Py)? = Pr, (Py)? = Py, Pr + Py = Id, PyPy = PrPy = 0
In this case the Euler-Lagrange equation associated to the energy (11.2.1) and the
structural equation can be expressed as follows:

{ Pr(u)(-A)Y2u =0 inD'(R)

2.3.14
PyVu=0 in D' (R). ( )
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The second step is to reformulate the two equations in (2.3.14) by using the commu-
tators introduced in the previous section. The Euler equation (2.3.4) and structural
equation (2.3.7) become in this case respectively

(=Y PT(=M)Y*u) = T(PT, u) — (-2)Y*PT)(-2)V*u . (2.3.15)
(1

and

(YA RPY(~8)Y*u)) = RSPV, w)) — (—4)*PVY(R(-2)Y*u) . (2.3.16)
(2)

Unlike the sphere case the term (1) in (2.3.15) is not zero and term (2) in (2.3.16) is not
in the Hardy Space.

The main idea in Proposition 1.1in [9] is the re-writing of the terms (1) and (2) and
to show that v = (Pp(—A)"*u, RPy(—A)"*u)! satisfies a nonlocal Schrédinger type
system with a antisymmetric potential. Precisely, we obtained the following result.

Proposition 2.23. [Proposition 1.1, [9]] Let u € H'/?(R, N) be a weak 1/2-harmonic
map. Then the following equation holds

LA an1/4 Pr(~A)"*u
(=7 v=(=4) (RPN(—A)l/“u

- Pr(—A)"u
0+0 D317
i ( RPy (—A) )

0 Pr(—M)*u
RPy(-M)V*u |’

where Q = Q € L%(R, so(2m)), Q; = Q1 € L>Y (R, Mmxm) with

+

2
1Q] 25 [Qall22 < CUIPrl a2 + 1PTl /)5

o
( —2F (w1, (PyAY*u)) + T(Pr, (—4)"*u)

—2F(R((—8)V*Py), R((—A)Y*u)) — 2F(wy, Py ((—A)V*u) + R(S(Py, (—4)"*u))
w1, w3 € L*(R, Mmxm) and
5

22
lwil2s |w2lrz < CUPTl g2 + [Prlg)-

We would like to make some comments on Proposition 2.23.

2.5 The matrices Q, Q;, w; and w; are constructed out of the projection Pr.
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In [20] and [21] the author proved the sub-criticality of local a-priori critical
Schodinger systems of the form

m
Vi=1---m - =) 0V, (2.3.18)
j=1

whereu = (u!,--- ,u™) e W-2(D,R™) and Q € L?(D, R? ® so(m)), or of the form

m
Vi=1---m —MV =0V, (2.3.19)
j=1

where v e L/ ("=2)(B", R™) and Q € L"/?(B", so(m)). In each of these two situations
the antisymmetry of Q was responsible for the regularity of the solutions or for the
stability of the system under weak convergence.

One of the main result in the paper [9] was to establish the sub-criticality of non-
local Schrodinger systems of the form

()Y = Qv+ Q1v + 2(Q,v) + g(x) (2.3.20)

where v e L2(R), Q € HY/?(R), Z: HY?(R) x L*(R) — H'(R) is a linear combination
of the operators (2.2.10), (2.2.2) and (2.2.3) introduced in the previous section, Q €
L*(R,so(m)), Q1 € L*»1(R). Precisely we prove the following theorem which extends
to a non-local setting the phenomena observed in [20] and [21] for the above local
systems.

Theorem 2.24. [Theorem 1.1, [9]] Let v € L*(R) be a weak solution of (2.3.20). Then
ve Ll (R)foreveryl<p < +oo.

From Theorem 2.24 it follows that (—A)Y/“u e L?

loc
Proposition 2.23). This implies that u ¢ C?O"C" forall0 < a < 1, since Wl1 O/CZ,p (R) —
CY(R) if p > 2 (see for instance [1]).

The main technique to prove Theorem 2.24 is to perform a change of gauge by
rewriting the system after having multiplied v by a well chosen rotation valued map
P € H'?(R, SO(m)). *° In [20] the choice of P for systems of the form (2.3.18) was

given by the geometrically relevant Coulomb Gauge satisfying

(R), forall p > 1 as well, (u as in

div [P_1VP + P—lop] —0. (2.3.21)

In this context there is not hope to solve an equation of the form (2.3.21) with the op-
erator V replaced by (—A4)/*, since for P ¢ SO(m) the matrix P~(—A)"/*P is not in
general antisymmetric. The novelty in [9] was to choose the gauge P satisfying the

2.6 SO(m) is the space of m x m matrices R satisying R‘'R = RR! = Id and det(R) = +1
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following (maybe less geometrically relevant) equation which involves the antisym-
metric part of P~1(—A)/4 P27

Asymm (P’l(—A)l/“P) =271 [P’l(—A)l/“P - (—A)l/“P’lP} 0. (2322
The local existence of such P is given by the following theorem.

Theorem 2.25. There exists € > 0 and C > O such that for every Q € L*(R;so(m))
satisfying { |Q|>dx < &, there exists P € H'/?(R, SO(m)) such that
(i) P l=a)Yip— (—a)Y4P P =20;
(2.3.23)
(i) f (—A)V4PPdx < cf 10/2dx.
R R
U

The proof of this theorem is established by following an approach introduced by
K.Uhlenbeck in [29] to construct Coulomb Gauges for L? curvatures in 4 dimension.
The construction does not provide the continuity of the map which to Q € L? assigns
P € HY?, This illustrates the difficulty of the proof of Theorem 10.4.5 which is not a
direct consequence of an application of the local inversion theorem but requires more
elaborated arguments.

Thus if the L? norm of Q is small, Theorem 10.4.5 gives a P for which w := Pv
satisfies

(=) = — [P.QP_l _ (_A)1/4pp—1} w+ T(P,P~'w) + PQ; P~ 'w
+ PZ(Q, P~ w) = —Symm (((~4)"/*P)P™") w + T(P, P"'w)

+PQP'w + PZ(Q, P tw). (2.3.24)

The matrix Symm (((—A)l/‘*P) P’l) belongs to L?'!(R) and this fact comes from
the combination of the following lemma according to which

(=) (Symm (((-4)"/*P) P~1)) € 3C'(R)

and the sharp Sobolev embedding >® which says that f e JH!(R) implies that
(=A)"V4f e L>1, Precisely we have

2.7 Given a m x m matrix M, we denote by Asymm (M) and by Symm (M) respectively the antisym-
metric and the symmetric part of M, namely Asymm (M) := M*ZM' and Symm(M) := M%Mr, Mtis the
transpose of M.

2.8 Thefactthatv e H! implies (—A)~V*v € L?! is deduced by duality from the fact that (—4)1/4v €
L2 implies that v € BMO(R). This last embedding has been proved by Adams in [1]
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Lemma 2.26. Let P € HY2(R, SO(m)) then (—A)Y/*(Symm ((—A)l/‘*P P—l)) is in the
Hardy space 3(*(R) and the following estimates hold

[(=)4[(=)Y*P P71 + P (=8)V*P 501 < CIPIFps
where C > 0 is a constant independent of P. This implies in particular that
|Symm (((_4)1/41:) p—l) 21 < CIPIZ0 - (2.3.25)

The proof of Lemma 2.26 is a consequence of the Theorem 1.5 in [9].

By combining the different properties of the commutators (2.2.2), (2.2.3), (2.2.10)
mentioned in section 2.2, in [10] we proved that the system (2.3.20) is “equivalent" to
a conservation law.

Theorem 2.27. Let v e L*(R, R™) be a solution of (2.3.20), where Q € L*(R, so(m)),
Q; € L>»Y(R), Z is a linear combination of the operators (2.2.10), (2.2.2) and (2.2.3),
2(Q,v) € H forevery Q € HY2, v e L? with

12(Q, V))lsr < ClQ g lVli2-
There exists £g > 0 such that if
(1202 + [Q1llz22 + [Ql g12) < €05

then there exist A € H/?(R, GLm(R))) and an operator B € H'/?(R) (both constructed
out of (Q, Q1, Q)) such that

Al + 1Bl < COQI + [Qallr21 +1Qlp12) (23.26)
dist({A,A7'},50(m)) < C(|Ql2 + 12122 +1Qlp112) (23.27)

and
(—8)Y“[Av] = 3(B,v) + Ag, (2.3.28)

where J is a linear operator in B, v, J(B, v) € Kl (R) and

13(B, V)| a¢1(ry < CIBgaplVii2 - (2.3.29)
We mention that the case of k/2-harmonic maps (k > 3 odd) with values into a closed
manifold has been considered in [4].
2.3.3 Case of horizontal 1/2-harmonic maps

We release the assumption that the field of orthogonal projection Pr is integrable and
associated to a sub-manifold N and to consider the equation (2.3.14) for a general field



76 —— FrancescaDa Lio

of orthogonal projections P7 defined on the whole of R™ and for horizontal maps u
satisfying Pr(u)Vu = Vu.

Precisely we consider Py € C1(R™, Mm(R)) and Py € C1(R™, Mm(R)) such that
PTOPT:PT PNOPN:PN

Pr + Py = In
(2.3.30)
VzeR™ YU, VeT(R™) < Pr(z)U,Py(z)V>=0

HazPT”Loo(]Rm) < +00
For such a distribution of projections Py we denote by
n := rank(Pr).

Such a distribution identifies naturally with the distribution of n—planes given
by the images of Pr (or the Kernel of Py) and conversely, any C! distribution of
n—dimensional planes defines uniquely Py satisfying (2.3.30).

We will present here the proof of the Cf, . of horizontal 1/2-harmonic maps which
directly uses the conservation law (2.3.28) and which is a refinement of the arguments
used in Theorem 2.24 (Theorem 1.1 in [9]). We premise the following result.

Theorem 2.28. Let m € N¥, then there exists 6 > 0 such that for any Pr,Py €
HY?(R, M) satisfying

ProPp=Pp, Py=In—Pr
(2.3.31)
VX, YeR™, foraexe R < Pr(x)X,Py(x)Y >=0
and
f (M) V4P d9 < 6 (2:332)
R
then for any f € H-Y/?(R)
(PT + Py R) f=0 = f=0. (2.3.33)
Proof of Theorem 2.28.
We first set f := (—A)'/?u. From (2.3.33) it follows that
Pr(-M)Y?u =0
(2.3.34)

PyR(-0)Y?u =0

Thensetv = (Pp(—A4)Y*u, R(Py(—A)Y*u))!. Therefore v satisfies a system of the form
(2.3.20) with Q € L?(R, so(R™)) Q1 € L*1, (Q and Q; depend on P7), Z(Pr, V) is a
linear operator in Pr, v, Z(Pr, v) € H! with

1Ql2 = Q2 < ClIPr] g
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(@12 = Q122 < C[Prg
2P V))lser < ClPrlpplVipe

From Theorem 2.27 it follows that if § is small enough then there exist A ¢ L* n
HY?(R, GLm(R)) and B € H/?(R, Mmxm(R)) such that

(—A)Y4[Av] = 3(B, v) (2.3.35)
and

1Al + 1Bl < ClIPrlipe
dist({A,A7'},S0(m)) < < C|Prly (2.3.36)
13B, V)lscrry < CIBlgs|Vilg2-

From (2.3.35) and (2.3.36) it follows that

VI = AT AV|2 < CIA™ e |AV] (2.337)
< CI(=2)"*I(B, V)| 2a < CIBl i llvi e
< ClPrlgplviee < Co|v]pa.

Again if 6 is small enough then (2.3.37) yields v = 0 a.e. and therefore f = 0 a.e. as
well. [

Proof of Theorem 2.9. The proof of Theorem 2.9 follows by combining Theorem
2.28 and localization arguments used in [9]. ]

2.3.4 Applications

In this section we mention two geometric applications related to 1/2-harmonic maps.
We start by proving Theorem 2.7 .

Proof of Theorem 2.7 . 1) (see [5, 14, 18] ). If N = S!, then its harmonic extension
i1, which is conformal thanks to Theorem 2.6, maps the unit disk B?(0, 1) into itsself
because of the maximum principle. On the other hand it turns out that every conformal
transformation with finite energy from B2(0, 1) into B%(0, 1) and sending S* into S?
has to be a finite Blaschke product, namely there exist d > 0,9, € R, a3,...,a4 €
B?(0, 1) such that

Since deg(u) = 1 then d = 1 and i coincides with a Mobius transformation of the
disk.

2) We are going to use the following result by Nitsche [19]: if X is a regular minimal
immersion in B?(0, 1) ¢ R> that meets B>(0, 1) orthogonally then 02 is a great circle.
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Let i1: B%(0,1) — B3(0, 1) be the harmonic extension of u. In [11] it has been
shown that u € C1%(S1), therefore it ¢ C*%(B”). Moreover i is conformal in B~ (0, 1)
(see Proposition 2.29 below)?® and by Maximum Principle ii takes values in B>(0, 1).
We set h = |i1|?>. We have —Ah < 0, and h = 1 on S?. By Hopf Boundary Lemma we
have % # 0 on S'. Since i is conformal up to the boundary, this implies in particular
Vit # 0 on S! and therefore il is a minimal immersion up to the boundary. Since it
meets B> (0, 1) orthogonally then by Nitsche’s result [19] &t(S') = u(S?) is an equato-
rial circle. Let T: S?> — S? be an isometry,>!° ¢ := {az + by + cx = 0,a,b,c € R}
be a plane in R? such that u(S') = o ~ S%. Define 7 = T|y.5:: 0 n S — SI. Let
v:=T1ou: S — S and we show that it is 1/2-harmonic in S*.

A(tou)=0 inB?
. 2.3.38
{Tou=Tou in B> ( )
Since 7 can be identified with a rotation in R3, we have
oTou . o
o ov.
It follows that
12 _ oTou _ @
(=4)"“(tou) Ew T Em
= ‘r(fA)l/zu tTou.
We can conclude the proof. O
Proposition 2.29. [Proposition 1.1, [10]] An element in Hl/2 satisfying
Pr(u) (-M)Y?u =0 inD'(SYH (2.3.39)

has a harmonic extension it in B>(0, 1) which is conformal in EZ(O, 1) and hence it is
the boundary of a minimal disk whose exterior normal derivative o,ii is orthogonal to
the plane distribution given by Pr.

Proof of Proposition 2.29. We prove the result by assuming that Py € C>(R™). In
that case we have that u e C1'%(S?), (see [11]). Denote ii the harmonic extension of u.
It is well known that the Hopf differential of i

|0, 8% — |0, > = 21 (0x, 1, O 1) = f(2)

is holomorphic. Considering on S = 0B?

2 (8rit, dgil) = — sin 29 (\axlfqz - \6X2ﬂ|2>—c0323(— 2 (0n 11, O, 1)) = — Im (zzf(z)) .

2.9 We refer to the book [22] for an overview of the the regularity of minimal disks up to the boundary
(solution of the Plateau problem)
2.10 The isometry group of the sphere S? is isomorphic to the group SO(3) of orthogonal matrices.
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Since 0 = Pr(u) (—A)Y?u = Pr(u) it and O = Py(u) dgu = Py(u) dgit on S* we have
that
Im <zzf(z)) =0 onS'.

Hence the holomorphic function z2 f(z) is equal to a real constant. Since f(z) cannot
have a pole at the origin we have that z2f(z) is identically equal to zero and thus i is
conformal. O
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Donatella Danielli and Sandro Salsa
Obstacle Problems Involving the Fractional
Laplacian

3.1 Introduction

Obstacle problems involving a fractional power of the Laplace operator appear in many
contexts, such as in pricing of American options governed by assets evolving accord-
ing to jump processes [26], or in the study of local minimizers of some nonlocal ener-
gies [24].

In the first part of this expository paper we are concerned with the stationary case,
which can be stated in several ways. Given a smooth function ¢ : R" — R, n > 1, with
bounded support (or at least rapidly decaying at infinity), we look for a continuous
function u satisfying the following system:

uz= g in R"
(-A®°u=0 inR"
(-A°u=0 whenu> ¢
u(x)—0 as |x| —» +oo.

(3.1.1)

Here we consider only the case s € (0, 1). The set A (u) = {u = ¢} is called the contact
or coincidence set. The free boundary is the set

F(u) =0A(u).

The main theoretical issues in a constrained minimization problem are optimal
regularity of the solution and the analysis of the free boundary.

If s = 1 and R" is replaced by a bounded domain Q our problem corresponds to
the usual obstacle problem for the Laplace operator. The existence of a unique solu-
tion satisfying some given boundary condition u = g can be obtained by minimizing
the Dirichlet integral in H! (Q) under the constraint u > ¢. The solution is the least
superharmonic function greater or equal to ¢ in Q, with u > g on 0Q, and inherits up
to a certain level the regularity of ¢ ([33]). In fact, even if ¢ is smooth, u is only C;;1,
which is the optimal regularity. A classical reference for the obstacle problem, includ-
ing the regularity and the complete analysis of the free boundary is [18]. See also the
recent book [56].
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Analogously, the existence of a solution u for problem (3.1.1) can be obtained by
variational methods as the unique minimizer of the functional

v —vy?
V 7Jan ‘X y|n+25 dx dy

over a suitable set of functions v > ¢. We can also obtain u via a Perron type method,
as the least supersolution of (—A)°® such that u > ¢. By analogy (see also later the
Signorini problem), when ¢ is smooth, we expect the optimal regularity for u to be
C1S. Thisis indeed true, as it is shown by Silvestre in [63] when the contact set {u = ¢}
is convex and by Caffarelli, Salsa, Silvestre in [22] in the general case.

The case s = 1/2 is strongly related to the so called thin (or lower dimensional) ob-
stacle problem for the Laplace operator. To keep a connection with the obstacle prob-
lem for (—A)®, it is better to work in R"*!, writing X = (x,y) € R" x R. The thin
obstacle problem concerns the case in which the obstacle is not anymore n + 1 dimen-
sional, but supported instead on a smooth n—dimensional manifold M in R"*?. This
problem and variations of it also arise in many applied contexts, such as flow through
semi-permeable membranes, elasticity (known as the Signorini problem, see below),
boundary control temperature or heat problems (see [29]).

More precisely, let Q be a domain in R"*! divided into two parts 2+ and Q~ by
M. Let ¢ : M —R be the (thin) obstacle and g be a given function on 0Q satisfying
g> @ onMnoQ.

The problem consists in the minimization of the Dirichlet integral

Jw) = | v
Q
over the closed convex set
K:{veHl(Q) v=gondQandv > (poanaQ}

Since we can perturb the solution u upwards and freely away from M, it is apparent
that u is superharmonic in Q and harmonic in Q\M. One expects the continuity of the
first derivatives along the directions tangential to M, and the one sided continuity of
normal derivatives ([33]). In fact (see [16]), on M, u satisfies the following complemen-
tary conditions

uz@,u,+ +u,- <0,(u—¢@)Wu,+ +u,-)=0

where % are the interior unit normals to M from the Q% side. The free boundary

here is given by the boundary of the set Q\A (u) in the relative topology of M, and in
general, we expect it is a (n — 1)—dimensional manifold.

As mentioned above, a related problem is the Signorini problem>! (or boundary
thin obstacle problem), in which the manifold M is part of /Q and one has to minimize

3.1 After Fichera, see ([31]), 1963.
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the Dirichlet integral over the closed convex set
K:{veH1 (Q):v=gonoQ\Mandv > <ponM}.
In this case, u is harmonic in Q and on M it satisfies the complementary conditions
Uz e, u,+ <0,(u—@)u,+ =0.

If M is a hyperplane (say {y = 0}) and Q is symmetric with respect to M, then the thin
obstacle in Q and the boundary obstacle problems in Q% or Q~ are equivalent.
Let us see how these problems are related to the obstacle problem for the (fA)l/ 2,

This is explained through the following remarks.
(a) Reduction to a global problem. Let Q = B, be the unit ball in R"*! and B} =

Bi n{y=0}.Let ¢ : R" — R be a smooth obstacle, ¢ < 0 on ¢B) and positive
somewhere inside B} . Consider the following Signorini problemin Bf = B;n{y > 0}:

—Au=0 in B

u=0 ondB; n {y > 0}

u(x,0)=> ¢ (x) inB; (3.1.2)
uy (x,0)<0 in B}

uy (x,0)=0 when u (x,0) > ¢ (x).

We want to convert the above problem in B; into a global one, that is in R" x (0, +0).
To do this, let 7 be a radially symmetric cut-off function in B} such that

{¢ >0} € {n =1} and supp (1) c B.

Extending nu by zero outside By, we have n (x) u (x, 0) > ¢ (x) and also (nu),, (x, 0) <
0 for every x € R". Moreover, (nu), (x,0) =0ifn (x)u (x,0) > ¢ (x).

Let now v be the unique solution of the following Neumann problem in the upper
half space, vanishing at infinity:

Av=A(nu) inR"x{y>0}
vy (x,0) =0 inR".

Then w = nu — v is a solution of a global Signorini problem with ¢ — v as the obstacle.
Thus, the regularity of u in the local setting can be inferred from the regularity for the
global problem.

The opposite statement is obvious.

(b) Realization of (—A)l/ 2 as a Dirichlet-Neumann map. Consider a smooth func-
tion up : R" — R with rapid decay at infinity. Let u : R" x (0, +o0) — R be the
unique solution of the Dirichlet problem

Au=0 inR" x (0, +0)
u(x,0)=up(x) inR"
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vanishing at infinity. We call u the harmonic extension of ug to the upper half space.
Consider the Dirichlet-Neumann map T : ugy (x) — —uy (x, 0). We have:

(Tuo, uo) f —uy (x,0) u (x,0) dx

J (B (X)u (X) + |Vu (X)) dx
R"x (0,40)

f IVu (X)]?dX =0
R"x (0,4+00)
so that T is a positive operator. Moreover, since ug is smooth and uy is harmonic, we
can write:
T o Tug = —dy(—0y)u (x,0) = uyy (x,0) = —Aup.

We conclude that
T = (-4)2.

As a consequence:

1.Ifu = u (X) is a solution of the Signorini problem in R" x (0, +c0), thatis Au = 0
inR"", u (x,0) = @, uy (x,0) <0,and (u — @) uy (x,0) = 0inR", thenup = u (-, 0)
solves the obstacle problem for (—4)*/2.

2. If ug is a solution of the obstacle problem for (—A)*“, then its harmonic exten-
sion to R" x (0, +o0) solves the corresponding Signorini problem.

1/2

Therefore, the two problems are equivalent and any regularity result for one of
them can be carried to the other one. More precisely, consider the optimal regularity
for the solution ug of the obstacle problem for (—A)*/? , which is C1»'/2. If we can prove
a CY1/2 regularity of the solution u of the Signorini problem up toy = 0, then the same
is true for ug.

On the other hand, the C% regularity of u, extends to u, via boundary estimates
for the Neumann problem. Similarly, the analysis of the free boundary in the Signorini
problem carries to the obstacle problem for (—A)l/ 2 as well and vice versa.

Although the two problem are equivalent, there is a clear advantage in favor of
the Signorini type formulation. This is due to the possibility of avoiding the direct use
of the non local pseudodifferential operator (fA)l/ 2, by localizing the problem and
using local PDE methods, such as monotonicity formulas and classification of blow-
up profiles.

At this point it is a natural question to ask whether there exists a PDE realization
of (—A)® foreverys e (0,1), s # 3.

The answer is positive as it is shown by Caffarelli and Silvestre in [23]. Indeed in a
weak sense we have that

(=4)° uo (x) = —Ka_lim y“uy (x,y)
y—0+
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for a suitable constant x4, where u is the solution of the problem

Lou =div(y*Vu) =0 inR" x (0, +0)
u(x,0) = ug (x) in R"

vanishing at infinity, where a = 2s — 1. Coherently, we call u the L,—harmonic exten-
sion of uo.

Thus problem (3.1.1) is equivalent to the following Signorini problem for the oper-
ator L = div(y*V),

u(x,0)=>¢ inR" (3.1.3)

Lqu =div (y*Vu) =0 inR" x (0, +0) (3.1.4)
limy_,o4 y®uy (x,y) =0 whenu(x,0) > ¢ (x) (3.1.5)
limy 04 y%uy (x,y) <0 inR™. (3.1.6)

Fory > 0, uis smooth so that (3.1.4) is understood in the classical sense. The equations
at the boundary (3.1.5) and (3.1.6) should be understood in a weak sense. Since in [63]
it is shown that u (x, 0) € C1* for every a < s, for the range of values 2s — 1 < a < s,
limy 0+ y“uy (x, y) can be understood in the classical sense too.

The solution u of the above Signorini problem can be extended to the whole space
by symmetrization, setting u (x, —y) = u (x, y). Then, by the results in [23], condition
(3.1.5) holds if and only if the extended u is a solution of Lau = 0 across y = 0, where
u (x,0) > @ (x). On the other hand, condition (3.1.6) is equivalent to Lsu < 0 in the
sense of distributions. Thus, for the extended u, the Signorini problem translates into
the following system:

u(x,0) =9 (x) inR"
u(x,—y)=u(x,y) inR"!
Lqu=0 in R™ 1\ {(x,0): u(x,0)=¢ (x)}
Lqu<0 in R"*1, in the sense of distributions.

with u vanishing at infinity. Again, we can exploit the advantages to analyze the ob-
stacle problem for a nonlocal operator in PDE form by considering a local version of
it. Indeed, to study the optimal regularity properties of the solution we will focus on
the following local version, where ¢ : B" — R:

u(x,0)=¢(x) in B
u(x,-y)=u(xy) inB;
Lqu=0 in B1\ {(x,0) : u(x,0) = ¢ (x)}
Lau<0 in By, in the sense of distributions.

The above problem can be thought of as the minimization of the weighted Dirichlet
integral

Ja (v) = f y|®[Vu (X)[2 dX

B,
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over the set
Kq = {v e W2 (By, y|%) : u (x,0) > <p(x)} .

In a certain sense, this corresponds to an obstacle problem, where the obstacle is de-
fined in a set of codimension 1 + a, where a is not necessarily an integer.

The operator L, is degenerate elliptic, with a degeneracy given by the weight |y|“.
This weight belongs to the Muckenhoupt class A, (R"“). We recall that a positive

weight function w = w (X) belongs to A, (]RN ) if

g ) (af, )
— | w]l= | w <C
(\B | Ja |B| Jp
for every ball B = RY. For the class of degenerate elliptic operators of the form
Lu =div(A (X) Vu), where

Aw(X)|EP <AX)E-E<Aw(X) |7,

there is a well established potential theory for solutions in the weighted Sobolev space
W2 (2, w) (Q bounded domain in RV), defined as the closure of C* <§> in the norm

1/2
U v2w+j |Vv|2w]
Q Q

(see [30]). Since w € A,, the gradient of a function in W2 (Q, w) is well defined in
the sense of distributions and belongs to the weighted space L? (Q, w).

The outline of the first part. We intend here to give a brief review of the results
concerning the analysis of the solution and the free boundary of the obstacle for the
fractional Laplacian, mainly based on the extension method.

For the thin obstacle problem, Caffarelli in [16] proves that u is C** uptoy = 0,
for some a < 1/2. Subsequently Athanasopoulos and Caffarelli achieve the optimal
regularity of the solution in [7]. In the case of zero obstacle, the regularity of the free
boundary around a so called nondegenerate (or stable or regular) point is analyzed by
Athanasopoulos, Caffarelli and Salsa in [10]. Indeed these last two papers opened the
door to all subsequent developments.

In [37], Garofalo and Petrosyan start the analysis of F (u) around non regular
points (also for non zero obstacles). They obtain a stratification result for singular
points, i.e. points of F (u) of vanishing density for A (1), in terms of homogeneity of
suitable blow-ups of the solution.

The analysis of the obstacle problem for the operator (—A4)*,0 < s < 1, starts with
Silvestre in ([63]), which shows C!** estimates for the solution for any a < s and also
a = s if the interior of the coincidence set is convex. Notably, Silvestre does not use
any extension properties; his methods are purely nonlocal. A few years later, Caffarelli,
Salsa and Silvestre ([22]) extend to the fractional Laplacian case the results in [10] on
the optimal regularity and the analysis of the regular part of the free boundary.
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Recently, in [12], Barrios, Figalli and Ros-Oton continued the work of [37], giving
a complete picture of the free boundary under two basic assumptions. The first one
is a strict concavity of the obstacle, the same assumption needed in the case of the
classical obstacle problem. The second one prescribes zero boundary values of the
solution and it turns out to be crucial.

Here, we shall focus mainly on the optimal regularity of the solution and on the
analysis and structure of the free boundary, only mentioning, for brevity reasons, re-
cent important results on higher regularity and extension to more general operators.
In particular, we will give here an outline of the strategy used in the papers ([22]) and
[12].

A few comments on the key concepts and tools that will repeatedly appear are in
order.

Semi-convexity: it is a peculiarity of solutions of the obstacle problem. More pre-
cisely, semi-convexity along tangential directions 7 (i.e. parallel to the plane y = 0)
and semiconcavity along the y—direction consistently play a key role. It is noteworthy
that, for global solution of the zero thin obstacle case, the tangential semi-convexity
of u comes for free, since u (X + ht) and u (X — ht) are admissible nonnegative su-
perharmonic functions, and therefore

S WX+ ht) U (X~ ho) > u(X).

Asymptotic profiles. From semi-convexity, one deduces that suitable global asymp-
totic profiles coming from blow-ups of u around a free boundary point (say, the origin)
are tangentially convex and can be classified according to their homogeneity degree.
From this it is an easy matter to deduce optimal regularity.

Frequency and monotonicity formulas. Frequency formulas of Almgren type, first
introduced in the case s = 1/2 in ([10]) are key tools in carrying optimal regularity
from global to local solutions. Other types of monotonicity formulas, such as Weiss or
Monneau-types, first introduced in ([37]) for s = 1/2, play a crucial role in the analysis
of non-regular points of the free boundary.

Carleson estimates and boundary Harnack principles are by now standard tools
in the study of the optimal regularity of the free boundary, in our case around the so
called regular points. Due to the non homogeneous right hand side in the equation, the
Carleson estimate and boundary Harnack principle proved here are somewhat weaker
than the usual ones. More recently, De Silva and Savin ([28]) have applied these prin-
ciples to prove higher regularity of the free boundary.

We will always assume that the origin belongs to the free boundary.

The outline of the second part. In Section 3 we consider two time-dependent
models, which can be thought of as parabolic counterparts of the systems (3.1.1)
and (3.1.2). In the first part, Section 3.1, we discuss the regularity of solutions to the
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parabolic fractional obstacle problem

min{—v¢ + (-A4)’v,v -3} =0 on [0, T] x R"
v(T)=1y onR",

following [19]. In particular, under some assumptions on the obstacle ), the solution
v is shown to be globally Lipschitz continuous in space-time. Moreover, v¢ and (—4)°v
belong to suitable Holder and logLipschitz spaces. The regularity in space is optimal,
whereas the regularity in time is almost optimal in the cases s = 1/2ands — 1~.

In Section 3.2 we give an overview of the parabolic Signorini problem

Av—0,v=0 inQr:=Qx (0, T],
vz, ovz=0, (v—@)ov=0 on Mr :=M x (0, T],
v=g on87:=8 x (0, T],
v(-,0) = ¢o on Qo := Q x {0}.

Here § = 0Q\M. Similarly to the elliptic case, we are interested in the regu-
larity properties of v, and the structure and regularity of the free boundary I'(v) =
On,{(x,t) € Mr | v(x, t) > @(x, t)}, where 0, indicates the boundary in the relative
topology of M7. Following [27], the analysis comprises the monotonicity of a general-
ized frequency function, the study of blow-ups and the ensuing regularity of solutions,
the classification of free boundary points, and the regularity of the free boundary at
so-called regular points.

3.2 The Obstacle Problem for the Fractional
Laplacian

This section is devoted to the study of the fractional Laplacian obstacle problem that
we recall below.

Given a smooth function ¢ : R" — R, with bounded support (or rapidly vanishing
at infinity), we look for a continuous function u satisfying the following conditions:

- uz¢@ inR"
(-4)’u>0 inR"

- (=A)°u=0 whenu>g¢
- u(x)—>0 as|x| > +oo.

We list below the main steps in the analysis of the problem that we are going to
describe.

1. Construction of the solution and basic properties.
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Lipschitz continuity, semiconvexity and C1% estimates.
Reduction to the thin obstacle for the operator L.
Optimal regularity for tangentially convex global solution.
Classification of asymptotic blow-up profiles around a free boundary point.
Optimal regularity of the solution.
Analysis of the free boundary at stable points: Lipschitz continuity.
8. Boundary Harnack Principles and C'** regularity of the free boundary at sta-
ble points.
9. Structure of the free boundary.

N SR W

Steps 1 and 2 are covered in [63]. In particular from [63] we borrow the C1¢ esti-
mates without proof, for brevity. The steps 3-8 follow basically the paper [22], except
for step 2 and part of 5. In particular, the optimal regularity of global solutions follows
a different approach, similar to the corresponding proof for the zero obstacle problem
in [10]. Step 8 is taken from [12]. Finally, step 9 comes from [10] (Carleson estimate)
and [22] (Boundary Harnack).

3.2.1 Construction of the solution and basic properties

We start by proving the existence of a solution. Observe that the proof fails for n = 1
and s > 1/2, because in this case it is impossible to have (—4)° u > 0 in R with u
vanishing at infinity.

Let 8 be the set of rapidly decreasing C* functions in R". We denote by H® the
completion of 8§ in the norm

|2 Zs 2
= [, J,, T e axay ~ [ o] e
Equipped with the inner product
y) (&) —gy))
8y = J . f . y‘n+25 dxdy

- 2 j £ (%) (~4)° g (x) dx ~ f 12 F (&3 (@)de,
Rn Rn

H? is a Hilbert space. Since we are considering n > 2 and s < 1 < n/2, it turns out
that H® coincides with the set of functions in L2 ("=25)_ for which the H*—norm is
finite.

The solution ug of the obstacle problem is constructed as the unique minimizer of
the strictly convex functional

J ) = VI

over the closed, convexset Ks = {ve HS : v > <p}.
In the following proposition we gather some basic properties of u.
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Proposition 3.1. Let ugy be the minimizer of the functional J over Ks. Then:

(a) The function ug is a supersolution, that is (—A)° ug > 0 in R" in the sense of mea-
sures. Thus, it is lower semicontinuous and, in particular, the set {uy > @} is open.

(b) ug is actually continuous in R".

(¢) If up (x) > ¢ (x) in some ball B then (—A)® ug = 0 in B.

Proof. (a)Let h > 0 be any smooth function with compact support. If ¢t > 0, ug +th >
¢ so that
(U0, Uo) s < (Uo + th, Uug + th)y,

or
0 <2t (uo, h), + £ (h,h)g = ((=8)°h) o + £ (h, ),

from which
(“0’ (=4)° h)Lz = <(*A)S Uo, h)Lz = 0.

Therefore (—A)® ug is a nonnegative measure and therefore is lower semicontinuous
by Proposition Al. O

(b) The continuity follows from Proposition A2.

(c) For any test function h > 0, supported in B the proof in (a) holds also for ¢ < 0.
Therefore (—A)*ug = 0in B. o

Corrolary 3.2. The minimizer ug of the functional J over K is a solution of the obstacle
problem. o

3.2.2 Lipschitz continuity and semiconvexity and C** estimates

Following our strategy, we first show that, if ¢ is smooth enough, then the solution
of our obstacle problem is Lipschitz continuous and semiconvex. We are mostly inter-
ested in the case ¢ € C''. When ¢ has weaker regularity, u, inherits corresponding
weaker regularity (see [63]). We emphasize that the proof in this subsection depends
only on the maximum principle and translation invariance.

Lemma 3.3. The function uy is the least supersolution of (—A)* such that uy > ¢ and
lim 11'1f|x|4,oO Up (X) > 0.

Proof. Let v such that (-4)’v > 0, v > ¢ and liminf),,,v(x) > 0. Letw =
min {up, v}. Then w is lower-semicontinuous in R" and is another supersolution
above ¢ (by Propositions Al and A4). We show that w > ug.

Since ¢ < w < ug, we have w (x) = ug (x) for every x in the contact set A (ugp) =
{up = @}.In Q = {up > @}, up solves (—A)°ug = 0 and w is a supersolution. By
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Proposition 3.1 (b) , ug is continuous. Then w — ug is lower-semicontinuous and w >
uo from comparison. O

Corrolary 3.4. The function uy is bounded and sup ug < sup ¢. If the obstacle ¢ has
a modulus of continuity w, then ug has the same modulus of continuity. In particular, if
@ is Lipschitz, then ug is Lipschitz and Lip(ug) <Lip(¢p).

Proof. By hypothesis up > ¢. The constant function v (x) = sup ¢ is a supersolution
that is above ¢. By Lemma 3.3, ug < vin R".
Moreover, since w is a modulus of continuity for ¢, for any h € R",

¢ (x+h)+w(h) =9

for all x € R". Then, the function up (x + h) + w (|h|) is a supersolution above ¢ (x).
Thus ug (x + h) + w (|h|) > up (x) for all x, h € R™. Therefore uy has a modulus of
continuity not larger than w. O

Lemma3.5. Let ¢ € C*! and assume that inf dr¢ > —C, for any unit vector t. Then
Orrug = —C too. In particular, ug is semiconvex.

Proof. Since d:r¢ > —C, we have

@ (x+ht)+ ¢ (x — hT1)

5 +Ch? = ¢ (x)

for every x e R" and h > 0. Therefore:

V(x) = uO(X+hT);u°(X_hT)+Ch2>(p(x)

and V is also a supersolution: (—A)® V > 0. Thus, by Lemma 3.3, V > u so that:

Uo (x + ht) + up (x — ht)
2

+ Ch? = ug (x)

for every x e R" and h > 0. This implies érrug = —C. O

From the results in [63] we can prove a partial regularity result, under the hypothesis
that ¢ is smooth.

Theorem 3.6. Let ¢ € C2. Then uo € CH% for every a < s and (—A)° ug € CP for every
B<1-s.

The proof is long and very technical, so we refer to the original paper [63]. However,
an idea of the proof in the case of the zero thin obstacle problem can be given without
much effort. Indeed, from tangential semi-convexity we deduce (here u is harmonic
outside A (u))

uyy < C inBi\A (u).
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In particular, the function uy — Cy is monotone and bounded. Thus we are allowed to
define in B} : 0 (x) = lim,_,o4 uy (x,y) . Since, in this case

0 > Au = Zij{‘nA(u)

in the sense of measures, we have o (x) < 0in A (u) and by symmetry, o (x) = 0
in B{\A (u). We may summarize the properties of the solution of a zero thin obstacle
problem in complementary form as follows:

Au<0, uAu=0 in Bq
Au=0 in B1\A (u)
u(x,0)=0, 0(x)<0, u(x,0)a(x)=0 in B}
og(x)=0 in B)\A (u)

Now, let u be a solution of the zero thin obstacle problem in B;, normalized by
|ullz>(p,y = 1. To prove local C'* estimates, it is enough to show that o € C%% near
the free boundary F (u).

In fact, in the interior of A (u), u (x, 0) is smooth and so is 0. On the other hand, on
Q' = B\A’ (u), 0 = 0. Thus, if we show that ¢ is C>** in a neighborhood of F (u), then
u € C1% from both sides of the free boundary by standard estimates for the Neumann
problem.

In particular it is enough to show uniform estimates around a free boundary point,
say the origin. This can be achieved by a typical iteration procedure, in the De Giorgi
style. We distinguish two steps:

Step 1: To show that near the free boundary we can locate large regions where —o
grows at most linearly (estimates in measure of the oscillation of —a).

Step 2: Using Poisson representation formula and semi-concavity, we convert the
estimate in average of the oscillation of —ag, done in step 1, into pointwise estimates,
suitable for a dyadic iteration of the type

uy (X) = —B*  inBly (xo) x [0,7"] (xo € F (u))

forsome0 <~y < 1,0 <fB < 1,andany k > 0.
The details can be found in the paper of Caffarelli [16] (see also the review paper

[61]).

3.2.3 Thin obstacle for the operator L,. Local C** estimates

To achieve optimal regularity we now switch to the equivalent thin obstacle problem
for the operator L, as mentioned in the introduction and that we restate here:

u(x,0) =@ (x) in B}
u(x,—y)=u(x,y) inB (3.2.1)
Lau=0 in B1\A (u) B

Lqau<O in By, in the sense of distributions.
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In the global setting (i.e. with B; replaced by R"), ug (x) = u (x, 0) is the solution of
the global obstacle problem for (—A)* and

(=4)°up = Ka Jim, yiuy (x,y).

The estimates in Corollary 3.4 and Lemma 3.5 translate, after an appropriate lo-
calization argument and the use of boundary estimates for the operator L, into cor-
responding estimates for the solution of u. Namely:

Lemma3.7. Let ¢ € C>' (B}) and u be the solution of (3.2.1). Then

L Vxu(X) e C%By,) forevery a <s;
2. [y|“uy (X) € C*(By),) foreverya <1 —s;
3. Urr(X) > —CinBy 5.

Proof. From Corollary 3.4 and Lemma 3.5 we have that the above estimates holds on
y = 0. Since 0x;u and u¢r also solve the equation Low = 0 in B1\A (u), the estimates
1 and 3 extend to the interior. On the other hand w (x, y) = |y|* uy (X) solves the con-
jugate equation div(|y|~% Vw (X)) and we obtain 2. O

Remark 3.8. Observe that u can only be C*** in both variables up toy = O only ifa < 0.
Ifa > 0, since y*uy (X) has a non-zero limit for some x in the contact set, it follows that
uy cannot be bounded.

We close this subsection with a compactness result, useful in dealing with blow-up
sequences.

Lemma3.9. Let {v;} be a bounded sequence of functions in wt? (B1, [y|*). Assume
that there exists a constant C such that, in B1:

|Vxv; (X)| < C and |oyv; (X)| < Cly|™® (3.2.2

and that, for each small 6 > 0, v; is uniformly CY%inB;_sn{ly| > 6}.

Then, there exists a subsequence {v;, } strongly convergent in W' (31 /25 |y|“) .

Proof. From the results in [43], there is a subsequence, that we still call {v]-}, that con-
verges strongly in L? (Bl /29 |y|“). Since for each § > 0, v; is uniformly bounded in
C1% in the set B;_s n {|y| > 8}, we can extract a subsequence so that Vv; converges
uniformly in B;_5 n {|y| > 8} . Thus, Vv; converges pointwise in B;\ {y = 0}.

Now, from (3.2.2) and the fact that C and |y|~* both belong to L2 (31/2, |y\") , the

convergence of each partial derivative of v; in L? (Bl /25| y\“) follows from the domi-
nated convergence theorem. O
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3.2.4 Minimizers of the weighted Rayleigh quotient and
a monotonicity formula

The next step towards optimal regularity is to consider tangentially convex global so-
lutions.

Lemma 3.10. Let V4 denote the surface gradient on the unit sphere 0B . Set, for —1 <
a<l1,

[ops [Vowl?yodS .
Aog=inf{ 21—~ we W2 (0Bf,y%dS) :w=0o0n (0B
SRR e (651,y745) - 0on ()
where ((?B’l)+ = {(x', xn) € 0B}, xn > O} . Then the first eigenfunction, up to a multi-
plicative factor, is given by

w(x,y) = («/X%erz—xn)s s=(1-a)/2

and 3.2
1-—a

4

Ao,a = 2n+a-1).

The following lemma gives a first monotonicity result.

Lemma 3.11. Let w be continuous in By, w(0) = 0, w(x,0) < 0, w(x,0) = O on
A c {y =0}, Lqw = 0 in B;\A. Assume that the set

{xeB§ :w(x,0) <O}
is non empty and convex. Set

a 2
By =Briw) = = [ L IVW gy

r Bj_ ‘X‘YH-(I—I

Then, f (r) is bounded and increasing for r € (0, 1/2].

Proof. We have Law? = 2wLow + 2y? [Vw|? = 2y% |[Vw/|?, so that

2
By - L[ YATWP 1 La (w?)
rl—a B,Jr |X|n+a—l Zrl—a B,Jr |X‘n+a—1 *

Now:

B (r) = a—lf L“(Wz)d

1 a 2
= 2 e e X + m aBjy [Vw|” dS.

3.2 Formally, the first eigenvalue can be obtained plugging «a = s = (1 — a) /2 and n + a instead of
n into the formula a (a — 1) + na.
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Sincew (0, 0) = 0 and y?wy (x,y) w (x,y) — Oasy — OV, after simple computations,
we obtain:

2n+a-1 1
B (1 =—(1-a) % LW yiwrds + LW V@ [Vgw|? dS.

The convexity of {x € By : w (x,0) < 0} implies that the Rayleigh quotient must be
greater than Ag , and therefore we conclude f’ (r) > 0 and, in particular, 8 (r) <

B(1/2). O

3.2.5 Optimal regularity for tangentially convex global solutions

In this section we consider global solutions that represent possible asymptotic pro-
files, obtained by a suitable blow-up of the solution at a free boundary point.

First of all we consider functions u : R" x R — R, homogeneous of degree k,
solutions of the following problem:

u(x,0)=0 in R"

ux,-y)=u(x,y) inR"xR

Lqu=0 in (R" x R)\A (3.23)
Lqu<O in the sense of distributions in R" x R

Urr =0 in R" x R, for every tangential unit vector T

where A = A (u) = {(x,0) : u(x,0) = 0}. The following proposition gives a lower
bound for the degree k, which implies the optimal regularity of the solution.

Lemma 3.12. Ifthere exists a solution u of problem (3.2.3), thenk > 1+s = (3 — a) /2.

Proof. Apply the monotonicity formula in Lemma 3.11 to w = ur. Then, Lsw = 0 in
(R™ x R)\A and, by symmetry, w (x, 0) wy (x, 0) = 0. Moreover, the contact set where
w = 01is convex, since urr > 0.Therefore w satisfies all the hypotheses of that lemma.
Recall that we always assume that (0, 0) € F (u) so that w (0, 0) = 0. Thus

1 Y vw (X))
rl—a B’Jr |X|n+a—1

B(r;w) = ax < p(1,w).

On the other hand, since Vw is homogeneous of degree k — 2, we have

2%k—2 a 2 2%k—2
o ye IVw (X)]| o
B(r;w) = i a " \X|”+"_1 dX = a B(1,w).
This implies r?* 2 < r'~* = r®ork > 1 +s. O

From Lemma 3.12 it would be possible to deduce the optimal regularity of the solution
u to (3.2.1). However, to study the free boundary regularity we need to classify pre-
cisely the solutions to problem (3.2.3). For the operator L,, we need to introduce the



96 —— Donatella Danielli and Sandro Salsa

following subset of the coincidence set. Let
Ay = {(x, 0)eR™: lim y%uy (x,y) < O}.
y—0+

Notice that A4 is the support of Lsu and since Lau = Oin (R" X R) \A, we have A, c A
(A is closed).

The analysis depend on whether A has positive H" measure or not. First examine
the case H"(A4) = 0.

Lemma 3.13. Let u be a solution of problem (3.2.3). If H"(A4) = 0, then u is a polyno-
mial of degree k.

Proof. We know from Lemma 3.7 that |y|* uy (x, y) is locally bounded. If H"(Ax) = 0,
then

lin%J ly|%uy (x,y) = 0ae. x e R".

y—)

Thus lim,_,o |y|* uy (x,y) = 0 weak* in L* and from [23] we infer that u is a global
solution of Lyu = 0in R" x R. Using Lemma A3 we conclude the proof. O

Lemma 3.14. Let u be a solution of problem (3.2.3). If H"(A) # O then, either u = 0 or
k =1+ s and A is a half n—dimensional space.

Proof (sketch). First observe that if H"(A4) = 0, then u = 0, otherwise, from Lemma
3.13, u (x, 0) would be a polynomial vanishing on a set of positive measure and there-
fore identically zero. Thus, the polynomial u must have the form

u(x,y) =p1 ()Y + .. + 0 () Y7
and iterating the computation of Lsu one deduce p; = p> = ... = p; = 0.

Consider now the case H"(A+) # 0. Then Ay is a thick convex cone. Assume that
en is a direction inside A4 such that a neighborhood of e, is contained in A. Using
the convexity in the e, direction, we infer that w = uy, cannot be positive at any point
X. Moreover, w = Oon A and

Law (X) = 0in (R" x R)\Ax 2 (R" x R)\A.

Thus w must coincide with the first eigenfunction of the weighted spherical Laplacian,
minimizer of {g |Vgv|? y|® dS over all v vanishing on A and such that §s, v2|y|?dS =
1.

Since A is convex, A n B; is contained in half of the sphere B; n {y = 0}. If it were
exactly half of the sphere then it would be given by the first eigenfunction defined in
Lemma 3.10, up to a multiplicative constant, by the explicit expression

W(x,y)=(q/x%+y2—xn)s s=(1-a)/2.
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On the other hand, the above function is not a solution across {y = 0, xn > 0}. There-
fore, if A n Bj is strictly contained in half of the sphere B; n {y = 0}, there must be
another eigenfunction corresponding to a smaller eigenvalue and consequently to a
degree of homogeneity smaller than s. This would imply k < 1 + s, contradicting
Lemma 3.12. The only possibility is therefore k = 1 + s, withA = {y = 0,x, > 0}. ©

The next theorem gives the classification of asymptotic profiles.

Theorem 3.15. Let u be a non trivial solution of problem (3.2.3). There are only two
possibilities:

(1) k = 1 + s, Ais a half n—dimensional space and u depends only on two variables.
Up to rotations and multiplicative constants u is unique and there is a unit vector T such
that A = {(x,0) : x - T > 0} and

S
e () = (Voo m?+y2 - 0 m)
(2) k is an integer greater than equal to 2, u is a polynomial and H" (A) = 0.

Proof. If H"(A) # 0, from Lemma 3.14 we deduce that, up to rotations and multiplica-
tive constants, there is a unique solution of problem (3.2.3), homogeneous of degree
k = 1 + s. Moreover, for this solution the free boundary F (u) is flat, that is there is a
unit vector (say) e, such that

A ={(x,0):xn >0}

S
ux, (x,y) = («/x% + y2 —xn) .

Integrating uy, from F (u) along segments parallel to e, we uniquely determine
u (x,0) = u (xn, 0). If we had another solution v, homogeneous of degree 1 + s, with
v (x,0) = u (x, 0), then necessarily (see the proof of the Liouville-type Lemma A3), for
some constant c and y # 0, we have

and

v, y)—u(x,y) =clyf’y.

But the constant ¢ must be zero, otherwise v — u cannot be solution across {y = 0} \A.
As a consequence, if u is a solution homogeneous of degree 1 + s, with e, normal
to F (u), then u = u (xn, y). Indeed, translating in any direction orthogonal to x, and
y we get another global solution with the same free boundary. By uniqueness, u must
be invariant in those directions.
If H"(A) = 0O, then H"(Ax) = O and from Lemma 3.13 we conclude that u is a
polynomial and k > 2. O
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3.2.6 Frequency formula

As we have already stated, a crucial tool in order to achieve optimal regularity is a fre-
quency formula of Almgren type. If the obstacle were zero, then the frequency formula
states that the quantity

Da (riwy — T8 Vul? dX
U g, Iy[Tu2ds

is bounded and monotonically increasing. The conclusion is the following.

Theorem 3.16. Let u be a solution of the zero thin obstacle for the operator L, in B;.
Then Dq (r; u) is monotone nondecreasing in r for r < 1. Moreover, D, (r; u) is constant
if and only if u is homogeneous.

When the obstacle ¢ is non zero we cannot reduce to that case. Instead, assuming that

@ e C>1, welet
N Ao (0
0(x,y)=u(,y) —ex) + Z((fifrc)z)yz
so that Lqii (0) = 0. Moreover A = A (u) = {it = 0}. The function i is a solution of the

following system:

it(x,0)>0 in B}
i(x,—y) =1iu(x, in B
(~ y) (a y) n By (3.24)
Latt (x,y) = |y|"g(x) inBi\A
Lait (x,y) < |y|*g (x) in By, in the sense of distributions

where
§(x) =A4¢ (x) - A¢ (0)
is Lipschitz. Notice that |y|* g (x) — 0 as x — 0 and in B;\A

ILait (x,y)| < Cly|“ |x].

What we expect is a small variation of Almgren’s formula. Since u—iiisa C 2.1 function,
it is enough to prove any regularity result for i instead of u. In order to simplify the
notation we will still write u for ii. Define

A

0b1

F(r)=F(r;u) = LB u’ly|“do = " JB (u(rX))? |y|* ds.

We have:
F (r) =

= (n+a) r"+“*1f (u(rx))? \y|adS+r"+“J 2u (rX) Vu (rX) - X |y|* dS
(‘7131 aBl
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~ (n+a) r_lf (u (X)) |y|“dS+J 2u (X) u, (X) |y| dS
0B, 0B,
Thus log F (r) is differentiable for r > 0 and:

' 2uu, |y|® dS
ilogp(r)zF(r)=n+a+SaB, : I);\ '
F() =~ 1 7 [u2y%ds

dr

Note that the monotonicity of D, (r; u) when ¢ = 0 amounts to say that the function

r»—>r%logF(r):2D(r;u)+n+a

is increasing, since in this case

J 2uu, y|*dS J La(u f(|y| |Vul® + 2uLqu)dX
8B,

f 2|y|* |Vul* dX.
Br

Due to presence of a nonzero right hand side, we need to prevent the possibility that
F (r) become too small under rescaling when compared to the terms involving Lau. It
turns out that this can be realized by introducing the following modified formula:

D(r)=D(r;u) = (r + corz) % log max [F(r) , r"+a+4] . (3.2.5)

Then:

Theorem 3.17. (Monotonicity formula). Let u be a solution of problem (3.2.4). Then,
there exists a small ro and a large co, both depending only on a, n, H(pl\cz,l) such that
@ (r; u) is monotone nondecreasing for r < ry.

For the proof, we need a Poincaré type estimate and a Rellich type identity. Recall that
u (0, 0) = 0 since the origin belongs to the free boundary.

Lemma 3.18. Let u be a solution of problem (3.2.4), u (0, 0) = 0. Then

LB (u (X)) |y|* dS < CrJB Vu (X) |y dX + ¢ (@, n) r5FatT
and by integrating inr,
f (u (X))? [y|* dX < Cr? L VU (X)2 |y[9 dX + c (a, ) r/ e

r

where c, C depend only on a, n and |@||c2.1.

Proof. See [22]. O
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Lemma 3.19. The following identity holds for any r < 1.

Pl (Voul - ud) yitds = | [+ a - 1)U @) - 20 Yw g ()] 1" dX,
0B, B,
(3.2.6)
where V gu denotes the tangential gradient.

Proof. Consider the vector field
F :%y“ VU2 X — y X, Vs Vu  (y > 0).

We have:

divF =%(n +a—1)y% |Vul? — (X, Vi) Lo,

Since (X, Vu) is a continuous function on B; that vanishes on A = {u = 0}, we have
that (X, Vu) Lqu has no singular part and coincides with (X, Vu)|y|* g (x). An appli-
cation of the divergence theorem gives (3.2.6). O

Proof of Theorem 3.17. First we observe that by taking the maximum in (3.2.5) it may
happen that we get a non differentiable functions. However, max [F (), r"*““‘] isab-

solutely continuous (it belongs to Wllo’c1 (0, 1)) and in any case, the jump in the deriva-

tive will be in the positive direction.
When F (r) < r"t9** we have

D (r) = (r + corz) % log r"tat4

and @' (r) = (n+ a + 4)co > 0.
Thus we can concentrate on the case F (r) > r"**4+% where

D(r) = (r+ corz) %logF(r).

We have:
o\ Sop, 2uuy |y|* dS
r+cort) “r———-——
( 0 ) §op u21y|*dS

= 29+ (1+cor)(n+a).

D(r)

+ (14 cor) (n+ a)

We show that the first term is increasing, by computing its logarithmic derivative. We
find:
d 1 o @ lSopuurly®dS .5 2uunly®dS nia

L logw(r) =
ar %% () r 1y cor (g uuyly|*ds So, U2 ly|“dS r

We estimate % SaB, uu, |y|* dS from below. Since

f uuy |y|* dS =f (Iy|*|Vul?® + uLqu)dX
0B, B,
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we can write, recalling that [Lqu| < c|y|* |x|,

ij oy |y|“ds>f V|9 [Vuf? dS — erTHar /2 [F (]2 |
dr Jop, OB,

We now use Lemma 3.19 to estimate §, B, | y|% |Vu|? dS from below. We find
[t ivulds = [ (jusl? +u?) yi” ds -
0B, 0B,

:zj 2 \y|“d5+1f [(n+a—1)|VuX)P - 2¢X, Vuy g (X)] |y|* dX =
0B, r

r

- zj u,%|y\“d8+wf uuy |y|2 dS
0B, 0B,

| 1 e nu - 2 vwig 0 y1° ax.

r

Therefore

if uuy [y|°ds > 2 u,%\y|”d5+wf ui, |y|° dS
, OB, r 0B,

dr OB
—cr"tatl [\/G(r) +r/H (1) + \/rF(r)}

where
G(r):f u’|y|®dX and H(r):J \Vul® |y|® dX.
Br Br

Collecting all the above estimates, we can write:

4 1ogw (r) = P(r) + Q1)
dr
with o .
B 25, ui lyl*dS  §,p 2uuy|y|*dsS

P(r) = -
SaB, uuy |y|“ dS SaB, u?|y|*ds

and

Q (r) _ Co _ Cr(n+a+1)/2 \/G (r) + \/rF (r) + r\/H (r)
1+ cor Sop, Uty [y|“ do

Co ntat1)2 VG (1) ++/TF (1) + r\/H(r).

1+ cor H (r) — r(nta+2)/2, /G (r)

=

n+4+a

First we estimate F, G, H. Since F(r) > r , from the Poincaré Lemma 3.17 we

have:
r"TAta — F(r) < CrH (1) + ¢ (a, n) 1T,

Integrating the above inequalities in r, we get:

G(r)= Lrp(s) ds < CrH (r) + ¢ (a, n) r’ =+,
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This means that, for small enough rgand r < rg :
F(ry<crH(r) and G(r) < Cr*H(r)

so that:

Co cr(nta+1)/2 ry/H(r)

Q) =7 +er H(r) — rinta+4)/2/H,"
Since r" T4t < F (r) < CrH (r), we also have H (r) > cr"*93 and for r, small:
QN > 2 _ et = irr(m“)/z
Co mhaflyg nmbads  Co
1+ cor 1+cr
which is positive if cq is large and ry small. o

3.2.7 Blow-up sequences and optimal regularity

The optimal regularity of the solution can be obtained by a careful analysis of
the possible values of @ (0+). When @ is constant and the obstacle is zero,
[@ (0+) — n — a] /2 represents the degree of homogeneity at the origin. Thus, by a
suitable blow-up of the solution, we will be able to classify the possible asymptotic
behaviors at the origin, using the results of Section 2.5. The first result is the follow-
ing.

Theorem 3.20. Let u be a solution of problem (3.2.4), u(0,0) = 0. Then either
DO0+;u)=n+a+2(1+s)or®O0+;u)=n+a-+h4.

To prove the theorem, guided by the zero obstacle case in [10], a key point is to intro-

duce the following rescaling:
u (rX)
dr

ur (X) = (3.2.7)

where
1/2

1/2
dy = (r—(n-&-a)f u? Iyl dU) / _ (r—(n+a)F(r))
2B,

Notice that the "natural" rescaling u (rX) /r*, where p = @ (0+;u) — n — a, would
not be appropriate, because on this kind of rescaling we have precise control of its
behavior as r — 0 merely from one-side. Rescaling by an average over smaller and
smaller balls provides the necessary adjustments for controlling the oscillations of u
around the origin.Two things can occur:

(3.2.8)

dr | =4 first case
r—0 r?

lim inf =
< 40 second case.

The next lemma takes care of the first case.
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Lemma 3.21. Let u be as in Theorem 3.20. Assume that

... d
lim inf — = +oo.
r—0r

Then, there is a sequence r; — 0 and a function Uy : R"1 _ R, non identically zero,

such that:
Ur, — U() in V‘r’l’2 (B1/25 ya|)
ur, — Up uniformly in B, ,.
Vxur, — VxUo uniformly in B ;.
ly|* oyur, — |y|“ dyUo uniformly in B ;.

PN e

Moreover, Uy is a solution of system (3.2.3) and its degree of homogeneity is
[@(0+;u) —n—a]/2.

Proof. First of all, observe that |u;| 12(oBy, o) = 1 for every r. Using the frequency
formula, the Poincaré type Lemma A5 below and the semiconvexity of ur, one can
show that u, is bounded in W2 (31/2, |y“|).

Now, u;" and u; are subsolutions of the equation
Law > —cr|y|® |x|

and therefore (see [30]) ur is bounded in L® (B3 /4> .
The semiconvexity of u in the x variable gives, for every tangential direction t,

r r
arTUr = —Urr (rX) = —C—. (32.9)
dr dr
From Lemma 3.9 we obtain a subsequence u;, strongly convergentin W12 (B1 J25 [¥° |)
to some function Uy as r; \, 0. On the other hand (Theorem 3.17) we know that @ (r; u)
is monotone and converges to @ (0-+; u) as r N\, 0. We have:

Jp, [Vu(OP Iyl dx
SaB,S u?ly|“ds

§p. |Vus (X)I” [y|* dX
+(n+a)=r—
S?;B, u% |Y‘a ds

D(rs;u) ~ +((n+a).

We want to set s = r; \, 0 and pass to the limit in the above expression to obtain:

§p VU, (X)|* |y|* dX

2,10
Top, U2 VI dS (3210)

DO0+;u)—(n+a)=r

This is possible since one can show that SaB, u? ly|*dsS = ¢ > 0. From (3.2.9), we have

2

r
Ortur, = —C — 0

Tic
dr,
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and therefore U is tangentially convex. On the other hand, each u, satisfies the fol-
lowing conditions:
(a)
ur (x,0) >0 inBj.

(b)

rzfa T2
Lour = ——Laqu (rX) = — |y|*g (rx) in B;\A (u;)
dr dr
(c)

2
r ,
|Laur| < dj|)’|a |g (rx)| inBj.

Since
2

rz r
—y|*I1g(rx)| <c5|y|“rjx| -0 asr—0
dr dr

it follows that Uy is a solution of the homogeneous problem

Up (x,0) =0 in B}

Uo (x,—y) =Uo (x,y) inB;

LaUp=0 in Bj\A

LaUp <0 in B, in the sense of distributions

For this problem, the frequency formula holds without any error correction. Thus we
conclude that Uy is homogeneous in B, /, and its degree of homogeneity is exactly
(@ (0+; u) — (n + a)) /2. Since it is homogeneous, then it can be extended to R"*! as
a global solution of the homogeneous problem.

Finally, from the a priori estimates in Lemma 3.7, it follows that we can choose ry,
so that the sequences uy,, Vur, and |y|? ouy, converge uniformly in B, /2- O

Proof of Theorem 3.20. In the first case of (3.2.8), we use Lemma 3.21 and Theorem
3.15 to find the blow-up profile Uy and to obtain that the degree of homogeneity of Uy,
is 1 + s or at least 2. Therefore

@ (0+;u) =@ (0+;Up) =n+a+2(1+s) or @(0+;u) =D (0+;Up) =n+a+4.

Consider now the second case of (3.2.8).

If F (ry; u) < rit@+* for some sequence ry — 0, then, for these values of ry,
D(rsu)=(m+a+4)(1+corg)

so that @ (0+; Up) = n+ a + 4.
On the other hand, assume that F (r; u) > y"+a+4 for r small. Since we are in the
second case, for some sequence r; \, 0 we have d;,/ rj2 < C so that

r]{1+a+4 <F (rj;u) < Cr]{l+a+4.
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Taking logs in the last inequality, we get
(n+a+4)logr; <logF (rj;u) < C+ (n+a+ 4)logr;.

We want to show that @ (0+; u) > n + a + 4. By contradiction, assume that for small
rjwe have @ (rj;u) < n+ a+ 4 — go. Take rm < r; « 1 and write:

(n+a+4)(logrj —logrm) — C < logF (rj; u) —1og F (rm;u)

Tj Tj

2\ 1 1
(r+c0r) (D(s;u)dséf r @ (rj;u)ds

'm

= ) log F d
— il . <
er dr 08 (S, u)ds < J

'm

< (n+a+4—¢o)(logrj—logrm)

which gives a contradiction if we make (log r; —log rm) — +oc0. o

From the classification of the homogeneity of a global profile, we may proceed to
identify the unique limiting profile Uy, along the whole sequence u,, modulus rota-
tions. precisely, we have:

Proposition 3.22. Let u be as in Theorem 3.20. Assume that @ (0+;u) = n+a +
2 (1 +s). Thereis a family of rotations Ay, with respect to x, such that u, o A, converges
to the unique profile Uy of homogeneity degree 1 + s. More precisely:

U0 Ay — Ug in W2 <B1/2, y“}) .

ur o Ay — Up uniformly in By .

Vx(ur o Ar) — VxUp uniformly in By .

ly|* oy (ur o Ar) — |y|“ dyUo uniformly in By ;.

PN e

We are now ready to prove the optimal 1 + s—decay of u at (0, 0). This is done in
two steps. First, we control the decay of u in terms of the decay of F (r; u). In turn, the
frequency formula provides the precise control of F (r) from above. This is the content
of the next two lemmas.

Lemma 3.23. If
F(r;u) < crttatr20+a) (3.211)

foreveryr < 1, thenu (0,0) = 0, |Vu (0, 0)| = 0 and u is C** at the origin in the sense
that
Ju(X)| < €y |X|'™*°

for|X| <1/2and C; = C1 (C, n, a).
Proof. Consider ut and u™, the positive and negative parts of u. We have already no-

ticed that
Laut,Lau™ = —Cly|* |x|.
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For some r > 0, let h be the L,—harmonic replacement of u™ in B;. Note that

_ + |X|2—r2
0=Lsh<L, (u +C2(n+a+1) .

Hence, by comparison principle
h>ut—Cr’.
From (3.2.11) we have:

h* |y|* do = J h)?y|* do < cr"tat2ra),
0B, 0B,

Since w (X) = |y|“ is a A, weight, from the local L estimates (see [30]) we conclude

sup |h (X)| < Cy [r]**7.
Br/Z

Then u™ < h +r* < Cr'*®in B, . A similar estimate holds for u™~ and the proof is
complete. O

Lemma 3.24. If @ (0+;u) = uthen
F(r;u) <cr’

foranyr <1landc = c(F(1;u),co).
Proof. Let f (r) = max {F (r), r”*“*“} > F (r). Since @ is nondecreasing:
U=00+)<P(r) = (r + corz) %logf(r)
and then p
a4 K
dr logf(r) = (r+cor?)’

An integration gives:

1
J7i
logf (1) —1 > —Fr ___d
ogf (1) —logf () fr(s-l-CoSz) s
14 U
> —plogr—Cip

so that
logf (r) <logf (1) + ulogr + Cip.
Taking the exponential of the two sides we infer

Fn<f(r<crt
with C = f (1) e“¥, O
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The optimal decay of a solution u of (3.2.4) follows easily. Precisely:

Theorem 3.25. Let u be a solution of (3.2.4), with u (0, 0) = 0. Then

lu(X)| < C|X|***sup |ul,

By

where C = C (n, a, HgHLip) .

Proof. From Theorem3.20, u = @ (0+) > n+a+2 (1 + s) and the conclusion follows
from Lemmas 3.23 and 3.24. O

The optimal regularity of the solution of the obstacle problem for the fractional lapla-
cian is now a simple corollary.

Corrolary 3.26. (Optimal regularity of solutions) Let ¢ € C*1. Then the solution u of
the obstacle problem for the operator (—A)* belongs to C*$ (R™).

Proof. Using the equivalence between the obstacle problem for (—A)° and the thin
obstacle for Lq, Theorem 3.25 shows that u — ¢ has the right decay at free boundary
points. This is enough to prove that u e C>* (R"). O

Remark 3.27. Observe that it is not true that the solution of the thin obstacle problem
for Lq is CS in both variables x and y. It is quite interesting however, that the optimal
decay takes place in both variables at a free boundary point. In any case, we have that
a solution u of one of the systems (3.2.1) or (3.2.4) belongs to C** (B] /2), for every yg €
(0,1/2).

3.2.8 Nondegenerate case. Lipschitz continuity of the free
boundary

In analogy with what happens in the zero obstacle problem, the regularity of the free
boundary can be inferred for points around which u has an asymptotic profile corre-
sponding to the optimal homogeneity degree @ (0+;u) = n+ a + 2 (1 + s). Accord-
ingly, we say that Xy € F (u) is regular or stable if

U(Xp) =P O+;u)=n+a+2(1+s).

As always, we refer to the origin (Xy = (0, 0)). The strategy to prove regularity of F (u)
follows the well known pattern first introduced by Athanasopoulos and Caffarelli in
[6] and further developed by Caffarelli in [18]. The first step is to prove that in a neigh-
borhood of (0, 0) there is a cone of tangential directions (cone of monotonicity) along
which the derivatives of u are nonnegative and have nontrivial growth. In particular,
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the free boundary is the graph xn = f (x4, ..., X4,—1) of a Lipschitz function f.The sec-
ond step is to prove a boundary Harnack principle assuring the Hélder continuity of
the quotient of two nonnegative tangential derivatives. This implies that F (u) is lo-
cally a (n — 2)—dimensional manifold of class C1:“.

The following theorem establishes the existence of a cone of monotonicity.

Theorem 3.28. Assume p < n + a + 4. Then, there exists a neighborhood B, of the
origin and a tangential cone I (9, en) = R" x {0} such that, forevery T € I’ (9, en), we
have éru > 0 in By. In particular, the free boundary is the graph xn = f (X1, ..., Xn—1)
of a Lipschitz function f.

To prove the theorem we apply the following lemma to a tangential derivative h =
Orur, where u;, is the blow-up family (3.2.7) that defines the limiting profile Uy, for r
small.

Lemma 3.29. Let A be a subset of R" x {0} . Assume h is a continuous function with
the following properties:

. Lgh < v|y|* in B;\A.
>0forlyl]>0>0,h=00nA.
co for |yl =1+ a/8n.

—w (0) for |y| < 0, where w is the modulus of continuity of h.

W N =

. h
. h
. h

=

=
There exist oy = 09 (n, a, co, w) and vo = o (n, a, ¢y, W) such that, if o < 09 and

Yy < Y0s then h = O in Bl/z.

Proof. Suppose by contradiction Xo = (xo, o) € By, and h (Xo) < 0. Let

v1+a}

1
= Lx — 0 Y =
9 = {ooy)six—xol < 5.1 = Y7

and P (x,y) = |[x — xo|> — zZ;y*. Observe that L,P = 0. Define

v(X) =h(X)+6P(X) — ﬁyz.
Then:

- V(Xo) = h(Xo) + 6P (Xo) — ﬁyé <0
- v(X)=0o0onA
— Lqv = Lgh + 8LqP — ~v]y|* < 0 outside A.

Thus, v must have a negative minimum on ¢Q. On the other hand, if §, v are small
enough, then v > 0 on ¢Q and we have a contradiction. Therefore h > 0in By ,. [
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Proof of Theorem 3.28. Since uy = @ (0; u) < n + a + 4, Theorem 3.20 gives y = n +
a+ 2 (1 + s). Moreover, the blow-up sequence u, converges (modulus subsequences)
to the global profile Uy, whose homogeneity degree is 1 + s and whose free boundary
is flat.

Let us assume that ey, is the normal to the free boundary of Uy. Then

S
onUp (x,y) = ¢ («/xﬁ +y2 —xn) .

For some 9y > 0, let o any vector orthogonal to y and x5 such that |o| < 99. From
Theorem 3.16 we know that Uy is constant in the direction of ¢ and therefore, if 7 =
en + 0, 0rUy = onUp.

On the other hand, Vyur — VxUp uniformly in every compact subset of R"*1,
Thus, for every 6, there is an r for which

|0rUg — Orur| < 6o

where T = e + 0. If we differentiate the equation

2
Laur (X) = 7 1“8 (rX)

we get
2
Lq [6rur (X)] = ;— ly|“rérg (rX) < Crly|* inBi\A (ur) (3.212)
r

and the right hand side tends to zero as r — 0.

Thus, for r small enough, o-u, satisfies all the hypotheses of Lemma 3.29 and
therefore is nonnegative in B, /,. This implies that near the origin, the free boundary
is a Lipschitz graph. o

3.2.9 Boundary Harnack principles and C%® regularity of the free
boundary

3.2.9.1 Growth control for tangential derivatives

We continue to examine the regularity of F (u) at stable points. As we have seen, at
these point we have an exact asymptotic picture and this fact allows us to get a mini-
mal growth for any tangential derivative when u, is close to the blow-up limit ug. This
is needed in extending the Carleson estimate and the Boundary Harnack principle in
our non-homogeneous setting.

First, we need to refine Lemma 3.29.

Lemma 3.30. Let §y = (12n)*1/25. There exists g = €9 (n, a) > 0 such thatif vis a
function satisfying the following properties:
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1. Lqv(X) < &g for X € B) x (0, 8o),
2. v(X) = 0forXe B} x (0,80),
3. v(x, 80) = 7 forx e By,

then
v(x,y) = Cly|* inBj, x[0,80].

Proof. Compare v with

2
wx,y) = (1+%°)yz—w+yzs.

Inside B} x (0, 8¢), to show that w < vin B} x (0, 8p). O

Corrolary 3.31. Let u be a solution of (3.2.4) with |g|,|Vg| < &o. Let ug the usual
asymptotic nondegenerate profile and assume that |Vxu — Vug| < &o.

Then, if g is small enough, there exists ¢ = c (n, a) such that
ur (X) > cdist (X, A)*
for every X € By, and every tangential direction T such that |t — en| < 1/2.

Proof. From (3.2.12) and Theorem 3.28, we know that ur is positive in B; ,. Applying
Lemma 3.30 we get
ur =cly/® in By 4

Letnow X = (x,y) € By s and d =dist(X, A) . Consider the ball B/, (X). At the top
point of this ball, say (x7, y7) we have yr > d/2. Therefore

ur (xg,y7) = cd”.
By Harnack’s inequality,

ur (X,y) > cur (xg,yr) > cd”.

3.2.9.2 Boundary Harnack

Using the growth control from below provided by Lemma 3.30 it is easy to extend the
Carleson estimate to our nonhomogeneous setting.

Lemma 3.32. (Carleson estimate). Let D = B;\A where A < {y = 0}. Assume that
0A n B is given by a Lipschitz (n — 2)—manifold with Lipschitz constant L. Let w > 0
in D, vanishing on A. Assume in addition that:
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1. |Law|< c|y|*in D;
2. nondegeneracy:
w(X) > Cdb

for some 8 € (0, 2), where dx =dist(X, A).
Then, for every Q € A n By, and r small:

sup w<C(n,a,L)w(Ar(Q)),
B,(Q)~D

where A; (Q) is a point such that By, (Ar (Q)) = By (Q) n D for some 1 depending only
onnandL.

Proof. Let w* be the harmonic replacement of w in By, (Q) ~ D, r small. Standard
arguments (see e.g. [21]) give

w* (X) < Cw* (A, (Q)) inBy(Q) n D.

On the other hand, comparing w with the function w* (X) + C <|X - Q)P - rz) we get

w* —w| <cr’ inBy (Q)nD.

Thus
w(X)<C [w (Ar (Q)) + crz} in B, (Q) ~ D.

From the nondegeneracy condition we infer w (4, (Q)) > cr? and since § < 2, the
theorem follows. O

The following theorem expresses a boundary Harnack principle valid in our nonho-
mogeneous setting.

Theorem 3.33. (Boundary Harnack principle). Let D = B;\A where A c {y = 0}. Let
v, w positive functions in D satisfying the hypotheses 1 and 2 of Lemma 3.32 and sym-
metric in y. Then there is a constant ¢ = ¢ (n, a, L) such that

vy _ v(03)
w(X) <CW<O 1)

' 2

in B1/2.
Moreover, the ratio v/w is Holder continuous in B, ,, uniformly up to A.

Proof. Let us normalize v, w setting v (0, %) =w <O, %) = 1. From the Carleson esti-
mate and Harnack inequality, for any 6 > 0 we get:

v(X)<C inByy,
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and
w(X)>c inBs,n{lyl>6}.
This implies that, for a constant s small enough, v—sw fulfills the conditions of Lemma
3.28. Therefore v — sw > 0 in By, or, in other words:
v (X)
w (X)
At this point, the rest of proof follows by standard iteration. O

< S inBl/Z'

3.2.9.3 C"“ regularity of the free boundary

As in the case of the thin-obstacle for the Laplace operator, the C** regularity of the
free boundary follows by applying Theorem 3.33 to the quotient of two positive tan-
gential derivatives. Precisely we have:

Theorem 3.34. Let u be a solution of (3.2.4). Assume ¢ € C>! and @ (0) < n + a + 4.
Then the free boundary is a C1** (n — 1) —dimensional surface around the origin.

Remark 3.35. As we have already noted, the boundary Harnack principle in Theorem
3.33is somewhat weaker than the usual one. Notice the less than quadratic decay to zero
of the solution at the boundary, necessary to control the effect of the right hand side.

3.2.10 Non regular points on the free boundary

As we have seen, the regularity of the free boundary can be achieved
around regular or stable points, corresponding to the optimal homogeneity
[@(O0+;u)—n—(a+4)]/2=1+s.

On the other hand, there are solutions of the zero-thin obstacle problem like

k+1/2 (og 2k+1

p TS or ka cos2k9, k = 2,
vanishing of higher order at the origin. In these cases we cannot expect any regularity
of the free boundary.

The non regular points of the free boundary can be divided in two classes: the set
2 (u) at which A (u) has a vanishing density (singular points), that is

£ (u) - {(xO,0> e tim J0 AW 0B (o)) —0},

r—0t rn

and the set of non regular, non singular points. The following example (see [37]), given
by the harmonic polynomial

1
b (XI’XZ) ,V) = X%X% — (X% + X%)yz + §y4
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shows that the entire free boundary of the zero-thin obstacle problem (2) could be
composed by singular points. In fact F (p) = A (p) is given by the union of the lines
x;=y=0andx; =y =0.

We shall see that, as in this example, the singular set is contained in the union of
C!—manifold of suitable dimension ([37]).

3.2.10.1 Structure of the singular set (zero thin obstacle)
In this section we describe the main results and ideas from ([37]). Their techniques

works also for the fractional Laplacian but, for the sake of simplicity, we present them
in the (important case) of the thin obstacle problem. Consider the following problem:

u—@=0 in B}
Au=0 in B1\ {(x,0) : u(x,0) =¢ (x)}
(U — @)ux, =0,ux, <0 inBj
u(x,-y)=u(x,y) in B;.

where ¢ : B — R. For better clarity we outline the proofs in the special case ¢ = 0.

As we shall see, around the singular points a precise analysis of the behavior of
u and the structure of the free boundary can be carried out. The analysis of the free
boundary around the other kind of points is still an open question in general. However,
in some important special cases, complete information can be given, as we shall see
in the sequel.

It is convenient to classify a point on F (u) according to the degree of homogeneity
of u, given by the frequency formula centered at that point. In other words, set

2
g0 [Vl

@ (rsu) = u2ds

§ 8B, (Xo)
and define

Fe(u) = {XO e F(u): &% (0+;u) = x} ,
2y (u) 2 (u) nFx(u).

According to these notations, Xy is a regular point if it belongs to F3 , (u) . Since r —
@%° (r; u) is nondecreasing, it follows that the mapping

Xo — @% (0+;u)

is upper-semicontinuous. Moreover, since o (0+; u) misses all the values in the in-
terval (3/2, 2), it follows that F3 , (u) is a relatively open subset of F (u).

Before stating the structure theorems of X (u), it is necessary to examine the
asymptotic profiles obtained at a singular point from the rescalings v, (X) =
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v (rX) /(r™" Sap, (xo) u?)Y/?; indeed, saying that X, = (Xo,y) € X (u) is equivalent to
state that
lim " (A (vr) " B} (x0)> - 0. (3.213)

r—0+
Aswe see immediately, this implies that any blow-up v* at a singular point is harmonic
in By (Xo). Moreover, it is possible to give a complete characterization of these blow-
ups in terms of the value k = @*° (r; u) . In particular

Zx(u) =Fx(u) fork=2m,meN.

Theorem 3.36. (Blow-ups at singular points). Let (0, 0) € Fx (u). The following state-
ments are equivalent:

(1) (0,0) € Xx (u).
(i) Any blow-up of u at the origin is a non zero homogeneous polynomial pi of
degree k satisfying

Apx =0, px(x,0)=0, px(x,—y)=px(X,Yy).
(iii) x = 2m for some m € N.
Proof. (i) = (ii). Since u is harmonic in B}, we have:
Avr = 2(0yvr)H]y(,,) inD'(B1). (3.2.14)
Then v, is equibounded in Hllo . (B1), and (3.2.13) says that
" (A Vr) A B’1> -0

asr — 0. Thus (3.2.14) implies that Av, — 0in D’ (B;), and therefore any blow-up v*
must be harmonic in B;.

From Section 2.7 we know that v* is homogeneous and non trivial, and thus it
can be extended to a harmonic function in all of R**!. Being homogeneous, v* has
at most a polynomial growth at infinity, hence Liouville Theorem implies that v* is a
non trivial homogeneous harmonic polynomial px of integer degree k. The properties
of u imply that px (x, 0) = 0, and px (X, —y) = px (x, y) in R"*1,

(ii) = (iii). We must show that k is an even integer. If k is odd, the nonnegativity
of px on y = 0 implies that p, vanishes on the hyperplane y = 0. On the other hand,
from the even symmetry in y we infer that dyp« (x, 0) = 0 in R". Since py is harmonic,
the Cauchy-Kowaleskaya Theorem implies that px = 0 in R"*!. Thus k = 2m, for
some m € N.

(ii) = (i) . Suppose (0, 0) is not a singular point. Then, there exists a sequence
r; — O such that

" (A (vr) mB'l) > 6> 0.
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We may assume that vy, converges to a blow-up p*. We claim that
H" (A (p*) n B’l) >8> 0.

Indeed, otherwise, there exists an openset U ¢ R" with H" (U) < §suchthatA (p*)n
B} < U. Then, for jlarge, we must have A (v;) ~ By = U which is a contradiction, since
H(A (vr,) A By) = 8 > 3" (U).

This implies that p* (x, 0) = 0 in R" and consequently in R"*1, by the Cauchy-
Kowaleskaya theorem. Contradiction to (ii).

(iii) = (ii) . From Almgren’s formula, any blow-up is a k—homogeneous solu-
tion of the zero thin obstacle problem in R"*'. Then Av = 2vy ¥}y ) in R"**, with
vy < 0ony = 0. Since x = 2m, the following auxiliary lemma implies that Av = 0 in
R™*! and therefore v is a polynomial. O

Lemma3.37. Letv e HL . (R"" 1) satisfy Av < 0inR""! and Av = 0 in R"*1\ {y = 0}.
If v is homogeneous of degree k = 2m then Av = 0 in R"*1,

Proof. By assumption, y = Av is a nonpositive measure, supported on {y = 0} . We
have to show that y = 0.

Let ¢ be a 2m—homogeneous harmonic polynomial, which is positive on
{y = 0}\ (0, 0). For instance:

n

Z e(x; + iy)”™

Take ¢ € C& (0, +o0) such that i > 0 and let ¥ (X) = ¥ (|X|). Then, we have:

- <H! ‘FQ>

—{Av, ¥q) = f (YVv-Vqg+qVv-VV¥)dX
R”+1

= J (—-¥YvAq —vVq-VY¥Y + qVv-VY¥)dX
R”+1

= J [f‘I’qufv¢/(|X|)(X~Vq)+qlpl(|X|)(X-Vv)]dX
Rn+1 |X| |X]

= 0

sinceAq = 0, X-Vq = 2mgq, X - Vv = 2mv. This implies that y is supported at X = 0,
thatis u = ¢§g,0y. On the otherhand, 6 ¢ ishomogeneous of degree — (n + 1) while
u is homogeneous of degree 2m — 2 and therefore u = 0. O

Definition 3.38. We denote by Py the class of homogeneous harmonic polynomials of
degree x = 2m defined in Theorem 3.36, that is:

Pi = {px : Apx = 0, Vpx - X = KPx, P (X, 0) = 0, px (X, —y) = px (%, ¥)}. (3.2.15)
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Via the Cauchy-Kovaleskaya Theorem, it is easily shown that the polynomials in Py
can be uniquely determined from their restriction to the hyperplane y = 0. Thus, if
Px € Py is not trivial, then also its restriction to y = 0 must be non trivial.

The next theorem gives an exact asymptotic behavior of u near a point Xy € X (u) .

Theorem 3.39. (k— differentiability at singular points) Let Xy € X (u), with x = 2m,
m € N. Then there exists a non trivial pX° € Py such that

u(X) = pr® (X — Xo) + o (|X — Xol") . (3.2.16)
Moreover, the mapping X — p,}fo is continuous on Xy (u) .
The proof is given in Subsection 3.2.10.3. Note that, since Py is a convex subset of the
finite dimensional space of the homogeneous polynomial of degree k, all the norms
on Py are equivalent. Thus, the continuity in Theorem 3.39 can be understood, for
instance, in the L? (9B;) norm.

The structure of F (u) around a singular point Xy depends on the dimension of the
singular set at that point, as defined below in terms of the polynomial pf‘):

Definition 3.40. (Dimension at a singular point) Let Xo € Xx (u) . The dimension of
2 (u) at Xy is defined as the integer

d% = dim {fe R : & - VypX° (x,0) = Oforallx € R”} .
Since pff" (x, 0) is not identically zero on R", we have
o<dl<n-—1.
Ford =0,1,...,n — 1 we define

s () = {XO €S (u): d¥o = d} .
Here is the structure theorem:

Theorem 3.41. (Structure of the singular set) Every set xd (u),x =2m,me N,d =
0,1,...,n— 1, is contained in a countable union of d— dimensional ct manifolds.

For the harmonic polynomial

1
p(x1,X2,y) = X%X% — (X% + x%)yz + §y4

considered above, it is easy to check that (0, 0) € 29 (u) and the rest of the points on
F (u) belongs to 23 (u) (see Figure 3.1).
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X2
1
DX

Z% (0,0) Z% X1

5

Fig. 3.1: Free boundary for u(xi, X2, y) = x3x3 — (x? + x3) y* + %y“ in R3 with zero thin obstacle on
R? x {0}. (Credit: Garofalo-Petrosyan, 2009)

As in the classical obstacle problem, the main difficulty in the analysis consists in
establishing the uniqueness of the Taylor expansion (3.2.16), which in turn is equiv-
alent to establish the uniqueness of the limiting profile obtained by the sequence of
rescalings u;.

A couple of monotonicity formulas, strictly related to Almgren’s formula and to
formulas in [66] and [54], play a crucial role in circumventing these difficulties.

3.2.10.2 Monotonicity formulas

We introduce here two main tools. We start with a one-parameter family of monotonic-
ity formulas (see also citeW) based on the functional:

1 2 K 2
W (r;u :7J vVu deij u-dsS
K ( ) rn—1+2k B, (Xo) ‘ | rn+2x 0B, (Xo)
1 K
= mH(r) - mK(r) .

where x > 0. If Xy = (0, 0) we simply write Wy (r; u).
The functionals WX° (r; u) and @*° (r; u) are strictly related. Indeed, taking for
brevity Xy = (0, 0), we have:

K(r)

Wi (rsu) = fax

[@ (r;u) — x] . (3.2.17)

This formula shows that WX° (r; u) is particularly suited for the analysis of asymp-
totic profiles at points Xy € Fx (u). Moreover, for these points, since from Almgren’s
frequency formula we have @*° (r; u) > @*° (0+;u) = x, we deduce that

w (r;u) > 0. (3.218)
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The next theorem shows the main properties of Wy (r; u) .

Theorem 3.42. (W—type monotonicity formula) Let u be a solution of our zero obstacle
problemin By. Then, forO <r < 1,

iWK (rsu) =

2
ar J (X-Vu—xu)-ds.

n+2k
2K Jop,

As a consequence, the function r — W,y (r; u) is nondecreasing in (0, 1) . Moreover,
Wy (+; u) is constant if and only if u is homogeneous of degree k.

Proof. Using the identities
H (1) :j Vuds and K'(1)= "k () +zf ui, dS (3.2.19)
0 OB,

and 1
f IVu? ds = L_)f IVl + 2f (uy)2dS. (3.2.20)
o r B, B,

r

we get:

d
EW" (r;u)

1 _n71+2K

T et {H/ (n- "=V - 2K (1) + @K(n}

1 5 4x 2K 5
= — = 2 ds — 2% ol
rn—1+2k{ JaB, u;dS . LBruudeJr 2 LB,M ds

2

2

The next one is a generalization of a formula in [54], based on the functional

1
MY (r;u, = 71 u — px)2ds.
K ( Px) K aB,(Xo)( Px)

We set My (r;u, px) = M,((O’O) (r;u, px). Here xk = 2m and py is a polynomial in the
class Py defined in (3.2.15). Since it measures the distance of u from an homogeneous
polynomial of even degree, it is apparent that MX° (r; u, py) is particularly suited for
the analysis of blow-up profiles at points Xy € X« (u). We have:

Theorem 3.43. (M—type monotonicity formula) Let u be a solution of our zero obstacle
problemin B;. Assume (0, 0) € Xx (u), k = 2m,m € N. Then, forO < r < 1, the function
r — My (1; u, px) is nondecreasing in (0, 1) .



Obstacle Problems Involving the Fractional Laplacian = 119

Proof. We show that

d 2
EMK (T;U,px) = ?WK (r;u) = 0.

Let w = u — px. We have:

d 1 2,c_d 1 2
EWL&W ds - Erz—KLBlw(rY) ds

= )’2"% LB [w(rY) [Vw (rY) - rY — kw(rY)]dS

2
= mj w(X - Vw — xkw)dS
OB,

On the other hand, since @ (r; px) = k, it follows that

Wi (r;px) =0

and we can write:
Wi (r;u) = Wy (r;u) — Wi (15 px)

2 K
= mj (IVW|® + 2Vw - Vpy)dX — i LB (W? + 2wpy)dS

=mf VWi dX — J wzdS+LB w(X - Vpx — kpx)dS

2 2 2
J v dx - o [ wids
OB,

= yn—1+2x
1
= mj wAwdX + T LB w(X - Vw — xkw)dS

1 rd
< f/B’ WX w —xw)ds = 2L ur (5w, )
since wAw = (u — px) (Au — Apx) = —pxAu > 0. O

3.2.10.3 Proofs of Theorems 3.39 and 3.41

With the above monotonicity formulas at hands we are ready to prove Theorems 3.39
and 3.41. Recall that, from the frequency formula, we have the estimate

u(X)| <c|X|* inB,; (3.2.21)

for any solution of our free boundary problem. At a singular point, we have also a
control from below.

Lemma 3.44. Let u be a solution of our zero obstacle problem in B;. Assume (0, 0) €
Zx (u). Then,
sup |ul = cr*  (0<r<2/3). (3.2.22)

“Dr
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Proof. Suppose that (3.2.22) does not hold. Then, for a sequence r; — 0 we have

1/2
h; = (ﬁ u2d8> =o(r).
2B,

We may also assume that (see Lemma 3.36)

v (X) = “(,:jx) S g (X)

uniformly on 0By, for some gx € Px. Since }aBl q2dS = 1, it follows that gy is non
trivial.
Under our hypotheses, we have

. 1 2 2 1 2
My (0+; u, :hmif u— das = dSzif ds.
K ( qx) j—c0 r](z-q-zx (73,)-( qx) a8, dx r](1+2K o, dx
Hence,
J (u — qx)*dS > f qxdS
8 4
or
f (u* — 2uqy)dS > 0
2By,
Rescaling, we obtain
hi 2
hjrf LB,.(r}(vj — 2vjqx)dS > 0.
J
Dividing by h; r}‘ and letting j — oo we get
2
ff qxdS =0
2By,
which gives a contradiction, since gy is non trivial. O

Given the estimates (3.2.21) and (3.2.22) around a point Xy € X« (u), it is natural to
introduce the family of homogeneous rescalings given by
rX + Xo)

u
ul (x) = urX +Xo) = .

From the estimate (3.2.21) we have that, along a sequencer = r;, uy — upinC llog (R™).
We call up homogeneous blow-up. Lemma 3.44 assures that ug is non trivial. The next
results establishes the uniqueness of these asymptotic profiles and proves the first

part of Theorem 3.39.
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Theorem 3.45. (Uniqueness of homogeneous blow-up at singular points) Assume
(0,0) € X (u) . Then there exists a unique non trivial px € Py such that

uf® (x) = Y00 pex).

As a consequence, (3.2.16) holds.

Proof. Consider a homogeneous blow-up ug. For any r > 0 we have:

Wi (13 o) = lim Wie(r;uf¥) = lim Wi(rrj;u) = lim Wie(0+;u).
rj—

r,'4>0 r;*)O

From Theorem 3.39 we infer that ug is homogeneous of degree x. The same arguments
in the proof of Lemma 3.37 give that 1y must be a polynomial px € Px.
To prove the uniqueness of ug, apply the M—monotonicity formula to u and ug.
We have:
My (0+3u,u0) = cn lim | (uf® — up)*dS = 0.

]/ JoBy

In particular, by monotonicity, we obtain also that
cnf W™ — up)2dS = My (r;u, ug) — 0
0B,

as r — 0, and not just over a subsequence r;. Thus, if uy is a homogeneous blow-up,
obtained over another sequence r; — 0, we deduce that

J (uh — up)*ds = 0.
0B

Since uo and uj, are both homogeneous of degree k, they must coincide in R"*!, O

The next lemma gives the second part of Theorem 3.39.

Lemma 3.46. (Continuous dependence of the blow-ups) For X, € X (u) denote by p,’f"
the blow-up of u obtained in Theorem 3.45 so that:

u(X) = pr° (X — Xo) + 0 (|X — Xo[") .

Then, the mapping Xo — p° from Zx (u) to Px is continuous. Moreover, for any com-
pact K < X (u) n By, there exists a modulus of continuity oy, g (0+) = 0, such that

u (X) = PX° (X = Xo)| < 0k (IX — Xol) |X = Xol*

forevery X, € K.
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Proof. As we have already observed, we endow Py with the L? (¢B1) norm. The first
part of the lemma follows as in Theorem 3.45. Indeed, fix € > 0 and r¢ such that

1

M (re; s i) = i LB (u(X + Xo) — pi*)*dS < e.
£ ODre

There exists 8¢ such that if Xj € X (u) and [Xo — Xp| < 8¢, then

MY (re;u, p©) = W% LB (u (X +Xp) — pi°)°dS < 2e.
& re

By monotonicity, we deduce that, for0 < r < re,

X

MK()(r; u,p,}fo) = ’Wr% LB (u (X + X6) —pf((o)zds < 2¢.

Letting r — 0 we obtain

MO, p) = cn [ (o - pi)2ds < 26
B
and therefore the first part of the lemma is proved.

To show the second part, note that if | Xy — Xj| < 8e and O < r < e, we have:

) AN X0 ) 1\ %o Xo . Xo
Hu ( +X°) Px 12(8By) S Hu ( +X°> Px 12(8By) + ‘p,{ Px L2(3B,)
< 228212,
This is equivalent to
U X/
HW,O 22 o, <2 (2¢)'/2 (3.2.23)
where
X, u (rX + Xp)
Wi (X) = =0

Covering K with a finite number of balls B (x1) (Xp) for some Xj € K, we obtain that

(3.2.23) holds for all X}, € K with r < rX.
We claim that, if X € Kand O < r < r¥ then

< Ce withC: - 0ase — 0. (3.2.24)

o _ %o
W J—
H ro—Px L*(By5)

To prove the claim, observe that the two functions wfz’ and pfz’ are both solution of
our zero thin obstacle problem, uniformly bounded in C 1’“(3%). If (3.2.24) were not
true, by compactness, we can construct a sequence of solutions converging to a non
trivial zero trace solutions (from (3.2.23)). The uniqueness of the solution of the thin
obstacle problem with Dirichlet data implies a contradiction.

It is easy to check that the claim implies the second part of the lemma. O



Obstacle Problems Involving the Fractional Laplacian = 123

We are now in position to prove Theorem 3.41. The proof uses Whitney’s Extension
Theorem (see [67] or [68]) and the implicit function theorem. We recall that the exten-
sion theorem prescribes the compatibility conditions under which there exists a C*
function f in RN having prescribed derivatives up to the order k on a given closed set.

Since our reference set is Xy (u), we first need to show that X (u) is a countable
union of closed sets (an Fy set). This is done in the next Lemma.

Lemma 3.47. (Topological structure of Xy (u)) Xx (u) is a Fo set.

Proof. Let E; be the set of points Xo € Zx (u) n B;_,; such that

K

l.p < sup |u(X)| <jp* (3.2.25)
J [X—Xo|=p

for 0 < p <1 — |Xo|. By non degeneracy and (3.2.21) we know that
X% (u) c UiZlEj'

We want to show that E; is a closed set. Indeed, if X € fj then X, satisfies (3.2.25), and
we only need to show that X, € X (1), i.e., from Theorem 2.9.1, that @%o (0+;u) = k.

Since the function X — @* (0+;u) is upper-semicontinuous we deduce that
@% (0+;u) = ' = k. If we had k¥’ > k, we would have

[u(X)| < 1X = Xo[* inBy_x, (Xo),

which contradicts the estimate from below in (3.2.25). Thus k¥’ = k and X € Zx (u). o
We are now in position for the proof of Theorem 3.41.
Proof of Theorem 3.41. We divide the proof into two steps. Recall that X (u) =
Fy (u) ifx = 2m.

Step 1. Whitney’s extension. For simplicity it is better to make a slight change of
notations, letting y = xp41 and X = (xq, ..., Xn, Xp41) . Let K = E; be one of the
compact subsets of X (u) constructed in Lemma 3.47. We can write

o (X)

The coefficients aq (X) are continuous on Xy (u) by Theorem 3.39. Since u = 0 on
2 (u) we have

X (X — Xo)| < 0 (X - Xol) X — X XeK.

For every multi-index a, 0 < |a| < k, define:

fa (X) =

{0 ifo<|al <x Xe S ).

aqg (X) if |a|=x
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We want to construct a function f € C¥ (R"*1), whose derivatives o*f up to the order
x are prescribed and equal to fy on K. The Whitney extension theorem states that this
is possible if, for all X, Xy € K, the following coherence conditions hold for every
multi-index a, 0 < |a| < Kk :

faX) = Y %(x — Xo)P + Ra (X, Xo) (3.2.26)
|Bl<k—|a] )
with
Ra (X, Xo)| < 0k (IX — Xol) |X — Xo* 1%, (3.2.27)

where 0¥ is a modulus of continuity.
Claim: (3.2.26) and (3.2.27) hold in our case.

Proof. Case |a| = k. Then we have
Ra (X, Xo0) = aa (X) — aa (Xo)

and therefore |Rq (X, Xo)| < 0a (|X — Xo|) by the continuity on K of the map X — p% .
Case 0 < |a| < k. We have

ay (Xo)

('7 — a)[ (X - XO)V_a = _aﬂpfgo (X - XO) .

Rg (X’XO) == Z

r>a,|v[=K

Now, suppose that there exists no modulus of continuity o, such that (3.2.27)
holds for all X, X, € K. Then, there is § > 0 and sequences X', X, € K with

X' —Xo|=p;i >0
and such that ”
. . | K—|&
o%p%o (X — XO)‘ > 8|x' - X}, (3.2.28)
Consider the rescalings
. u (Xé, + piX) C xi_xi
wX)=————7~, U
) pf d pi

We may assume that X)) — X, € K and &' — & € 9B;. From Lemma 3.46 we have that

]wf (X) - p* (X>' < o (pi |X) |X*

and therefore w! (X) converges to pfé’ (X) , uniformly in every compact subset of R"*1.
Note that, since X!, Xf) € K, the inequalities (3.2.25) are satisfied there. Moreover,
we also have that similar inequalities are satisfied for the rescaled function w' at 0 and

é'.
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Thus, passing to the limit, we deduce that

1 5
—p < sup
J IX—Xo|=p

pi (X)| <jp", 0<p<+o0.
This implies that &; is a point of frequency x = 2m for the polynomial pX° so that,
from Theorem 3.39, we infer that &, € Zx (pi"). In particular,
p =0 for |a| < k.
However, dividing both sides of (3.2.28) by pfflal and passing to the limit, we obtain

°p¥| > 6,

a contradiction.
This ends the proof of the claim.

Step 2. Implicit function theorem. Applying Whitney’s Theorem we deduce the ex-
istence of a function f € C* (R”“) such that

f =fa ONE;
for every |a| < k. Suppose now X, € £¢ (u). This means that
d= dim{feR” & Vpo (x,0) Eo}.
Then there are n — d linearly independent unit vectors v; € R", such that

Vi - Vyxpo (x, 0) is not identically zero.

This implies that there exist multi-indices 8 of order |8!| = x — 1 such that
ou(@ P (Xo)) # 0.
This can be written as
0 (P F (X)) £0, i=1,...,n—d. (3.2.29)

On the other hand, we have

W) < vim,na {7F = 0.
From (3.2.29) and the implicit function theorem, we deduce that ¢ (u) A E ; is con-
tained in a d—dimensional C' manifold in a neighborhood of Xo. Since Zx (u) = UE;
we conclude the proof. o
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3.2.11 Non zero obstacle

The above differentiability and the structure theorems can be extended to the non zero
obstacle case, if p € C©1 (B} ) for some integer k > 2 ([37]). A crucial tool is once more
a frequency formula which generalizes the one in Theorem 3.17. First, we introduce a
useful change of variable to reduce to the case in which the Laplacian is very small
outside the coincidence set. Let u be a solution of the obstacle problem and set:

vGYy) =u(y) — Q(x,y) — (@ (0 — Qi (%)),
where Qj, is the k-th Taylor polynomial of ¢ at the origin and Qy is its even harmonic
extension to all of R"*1. Now v can be evenly extended to y < 0 and then

|Av] < M |x|*"1 4+ 2 |uy| 3y, inD'(By).

The generalized frequency formula takes the following form: If ||v| ct (§+) < M/2, then
1

there exists ry; and Cyy such that the function
r— @ (r;u) = (r + CMr2> % log max {K (r), r"*zk}
is nondecreasing for O < r < ry.
Also the Weiss and Monneau monotonicity formulas have to be modified accord-
ingly to take into account the perturbation introduced by the non-zero obstacle. In-
deed we have: Fork < k, 0 <r < 1y, Cjy > 0,

d
EWK(YZM) = _C§VI

andforx =2m <k, 0<r<rp, Ciyy >0,

d "
7 Mx (11, px) = —Cy (1 + ”pKHLZ(B1)> .

Coherently, the Differentiability Theorem 3.39 and the Structure Theorem 3.41 hold for
kK = 2m < k. This limitation is due to the fact that for points in Fy (1) even the blow-
ups are not properly defined.

Thus, the analysis of the free boundary around a singular point is rather satisfac-
tory. It remains open the study of the nonregular, nonsingular points, i.e. the set

E(u) = u{FK(u) TK > %,K;ﬁ 2m,m =1, integer}.

It should be noted that = (u) could in principle be a large part of F (u) . Another im-
portant issue that remains open is whether F (u) has Hausdorff dimension n — 1.
Further analysis of F (u) clearly depends on the possible values that the frequency
K may attain. A partial classification of convex global solutions excludes the interval
(3/2, 2) from the range of possible values of k.
As observed in ([37]) it is plausible that the only possible values are

K= me% orxk =2m, m > 1, integer.

This is indeed true in dimension 2 (n = 1), see remark 1.2.8. in [37].
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3.2.12 A global regularity result (fractional Laplacian)

In ([12]), Barrios, Figalli and Ros-Oton consider both the global and the local version of
the Signorini problem for the operator L4, thus covering also the case of the obstacle
problem for the fractional Laplacian. We limit ourselves to briefly describe their main
results and ideas in the case of the local Signorini problem.

Under basically two main assumptions the authors can give a complete picture
of the free boundary, recovering a result completely analogous to the classical case
(s = 1). The first assumption is a strict concavity of the obstacle, the same assumption
needed in the case of the classical obstacle problem. The second one prescribes zero
boundary values of the solution and it turns out to be a crucial assumption. Precisely
their main result in the case of the Signorini problem is the following. As in Section
2.7 we define the blow-ups of v at X by

12
Vo (x) = M d, - (r"—“J u? |y|“d0) . (3.2.30)
r 0B (Xo)

Theorem 3.48. Let ¢ : B} — Rwith P|op, <0,andu: By < R™1 _ R be a solution
of the following problem:

u(x,0)>¢(x) onBj

Lqu=0 inB1\ ({y = 0} n {u = ¢})
u=20 on 0B

with u (x, —y) = u (x, y). Assume that
pe (BI1) ,Ap < —co <0 in {p >0}, & # {p >0} cc B} (3.2.31)

for some ¢y > 0 and v > 0. Then, at every singular point the blow-up of u is a homoge-
neous polynomial of degree 2, and the free boundary can be decomposed as

F(u) = Fyys (u) u Fa (u)

where F1.¢(u) (resp. F, (u)) is an open (resp. closed) subset of F(u). Moreover,

F1.s (u) is a (n — 1)-dimensional manifold of class C***, while F, (u) can be stratified

as the union of sets {F’z‘ (u)}k o1 v where FX (u) is contained in a k-dimensional
- n—

=0,1,...,

manifold of class C'.

The regularity of F; ¢ (u) comes from [22]. Here the main points are that the nonregu-
lar points are only singular points, that the blow-up at these points has homogeneity
2, that F, (u) can be stratified into C* manifolds and that each FX (u) is completely
contained in a k-dimensional C! —manifold.
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The key lemma is the following nondegeneracy result. It says that u detaches
quadratically from the obstacle putting out of game all possible frequencies greater
than 2.

Lemma 3.49. Let u be as in Theorem 3.48. Then there exists constants c1, r1 > O such
that the following holds: for any X, € F (u) we have

sup (u(x,0)— @ (X)) =cir’, O<r<ry.
X€eB!(xo0)

Proof. Since u > 0 on the contact set, compactly contained in B;, we deduce that
@=>hy>0 on {u=gp}.
For r; > 0 small, from the properties of ¢, in the set
U; = {x:u(x,0) > ¢(x),dist (x, F (u)) < 2r,} cc B},

we have ¢ > 0.Take x; € Uy, withdist(x, F (u)) < r; and consider the barrier function
given by

Co

w(x,y) =u(x,y)—¢(X)—m

(|X —x1| + yz)

where ¢y is as in (3.2.31). Note that w (x1,0) > Oand w < Oon {u = ¢} n {y = 0} . We
want to apply the maximum principle in the set

U =B (x1,0)\ ({ = ¢} n {y = 0}) << By.
Since Lou = 0 and A¢ (x) < —cp, we have
Law (x,y) = Lau (x,y) = |y|* (4 (x) + co) = O.

Noticing that oU = 0By (x1,0) u {u = ¢} n {y = 0}, by the maximum principle we
infer that

0 < w(x1,0) <supw=supw= sup w
U ou 9B, (x1,0)
Co 2
= sup U—¢@)—=————T
aB,(xl,O)( ¢ 2n+2(1+a)

Letting x; — xo we get

Co 2
sup (Uu—¢@)=> sup U—@)> — T, (3.2.32)
B, (x0,0) 2B, (xo,0) 2n+2(1+a)

To conclude the proof we must show that the above supremum is attained ony = 0. To
prove it we show that uy < 0in B . Here comes into play the zero boundary condition.
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Since Lsu > 0 and Lqu = O outside the contact set {u = ¢}, by the maximum
principle it follows that u > 0 in B; and u attains its maximum on {u = ¢} . Using
again that u = O on 0B, and that u (x, —y) = u (x, y) , we deduce that

ly“uy <0 and ylir(r)1+ ly|“uy (x,y) <0 on {u=¢}.

Moreover
lim |y|*uy (x,y) =0 on {u > ¢}.
y—0+

Now, by direct computation, one can check that L_4(y%uy) = 0 in Bf. By the maxi-
mum principle we infer that y?u, < 0in Bf. Thus, u (x, y) is decreasing with respect
to y in B . Since u is even in y, this yields

u(x,y)<u(x,0) in By

and (3.2.32) finally gives
Co 2
sup (u(x,0)—¢@(x))= sup (u-— > I
XeB;(XO)(( ) — ¢ (%) B,(xo,O)( ®) M1+

O

Having the above nondegeneracy at hands, to proceed further once again the main
tools are frequency and monotonicity formulas, adapted to take into account the ho-
mogeneity of the solution. For a free boundary point x( € F (u), the change of variable

VO () = u(6Y) = @00+ 5

ST a) 140 (0)Y + VAg (x0) - (x ~ x0) |

reduces to the case
ILav™| < Cly|* |x — xo|* 7 (3.2.33)

outside the coincidence set and takes care of the errors in the frequency/monotonicity
formulas, due to the presence of a non-zero obstacle. Note that

V¥ (X0,0) = u(x,0) — ¢ (x)

and that v¥ depends continuously on xg since ¢ € C>7. The non-degeneracy of u
translates into

sup v (x,0) > cr’.
Bi(xo)

Moreover, exploiting (3.2.33) and a weak Harnack inequality (see [30]) one also gets,
for small r,

JB o) YoV (x, ) dxdy = et (3.2.34)
r(Xo,

Setting xo = 0, v = v® and

Ko=[ v
2B,(0,0)
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the function

re—@(rv)= (r + C072> % log max {K (r, rn+a+4+2»y}

is monotone non-decreasing for small r, and a suitable constant Cy > 0. Let
D (0+;v)=n+a-+2m.

Now, the above non-degeneracy estimates implies that eitherm = 1 +sorm = 2.1tis
clearly enough to show that m < 2. Indeed, the monotonicity of @ gives n+ a + 2m <
@ (r;v) and integrating we get

K(r) < Crn+a+2m.

A further integration gives

J ’ya‘ |on (x,y)\z dxdy < Clrn+a+2m+1
B,(0,0)
that together with (3.2.34) implies m < 2. At this point, following the strategy in [22],
it is possible to show that, up to a subsequence, the blow-ups v, in (3.2.30) converge
asr — 07 to a function, which is nonnegative on y = 0 and homogeneous of degree
m. Moreover:

a) either there exist ¢ > 0 and a unit vector » such that

m=1+s and vo(x,0)=c(x-v)}**

b) or
m=2 and vq(x,0) is a polynomial of degree 2
and the origin is a singular point.

Uniqueness of the blow-ups can be proved by a suitable modification of the Weiss
and Monneau monotonicity formulas. As consequence, there exists a modulus of con-
tinuity w : RT™ — R such that, for all xo belonging to the singular set F, (u) of the free
boundary, we have

u(x)— @ (x) =p3 (x —x0) + w (]x — xo|) ‘x — x(z)’ (3.2.35)
for some polynomial p3° (x) = (A*°x, x), A € R™", symmetric and nonnegative, A + 0.
In addition, the mapping F, (u) 3 xo — p3° is continuous with

LB y|* (p5' —p3°) < w (Jx1 — Xo|)  Vx1,X0 € F5 (u).
0By

Concerning the regularity of F, (u), given any point x; in this set, from (3.2.35), the
blow-up of u — ¢ coincides with the polynomial p3° (x) = (A*x, x) . We stratify F, (u)
according to the dimension of ker A :

F5(u) = {xo € F> (u) : dim ker A =k} k=0,1,....,n— 1.

Then, reasoning as in the classical obstacle case (see [18]), one can show that for any
Xo € F& (u) there exists r = ry, > 0 such that F§ (u) n By (xo) is contained in a con-
nected k—dimensional C! manifold. This concludes the proof of Theorem 3.48.
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3.3 Comments and Further Reading

In recent times and while we were writing this survey several important results have
been established. We briefly mention some of the more strictly related to our presen-
tation.

o Different approaches to the regularity of the free boundary. When the thin man-
ifold is non-flat, by a standard procedure one is lead to a Signorini problem, but for
a divergence form operator with variable coefficient matrix A(x) = [a;j(x)]. For in-
stance, when M satisfies the minimal smoothness assumption C**! = W?%, then
A(x)is C>! = W1, i.e., Lipschitz continuous.

The approach described above in the case A(x) = I, to establish the C** regular-
ity of the regular free boundary, based on differentiating the equation for the solution
v in tangential directions e € R"~! and establishing directional monotonicity, does
not work well for variable coefficients, particularly when the obstacle ¢ +# 0. For co-
efficients A(x) € W®, and the obstacle ¢ € W>®, the optimal Cllo’cl/2 Q1 UM)
regularity of the solutions was established by Garofalo and Smit Vega Garcia in [40]
by means of monotonicity formulas of Almgren’s type. The C1** smoothness of the reg-
ular free boundary has been obtained by Garofalo, Petrosyan and Smit Vega Garcia in
[38]. The two central tools are a Weiss type monotonicity formula and an epiperimetric
inequality, which allow to control the homogeneous blow-ups. The latter results, in the
special case A(x) = In, have also been established by Focardi and Spadaro ([32]). One
should also see the recent paper by Colombo, Spolaor and Velichkov [25], where they
introduce a logarithmic epiperimetric inequality for the 2m-Weiss energy. A different
approach, based on Carleman estimates, to the optimal regularity of the solutions and
C1% regularity of the free boundary for A(x) e WP, p > 2n, and vanishing obstacle
is used by Koch, Riiland and Shi in [45] and [46] (more recently the authors were able
to extend these results to non-zero obstacles in WP, p > 2n).

o Higher regularity. Real analyticity of the regular part of the free boundary for the
thin obstacle (Signorini) problem has been proved by Koch, Petrosyan and Shi in [44]
via a partial hodograph-Legendre transformation, subsequently extended by Koch,
Riiland and Shi to the fractional Laplacian operator in ([47]). The lack of regularity
of this map can be overcome by providing a precise asymptotic behavior at a regular
free boundary point. The Legendre transforms (on which one reads the regularity of
the free boundary) satisfies a subelliptic equation of Baouendi-Grushin type and its
analyticity is achieved by using the L? theory available for this kind of operator. A
different approach to higher regularity for the thin obstacle and also to one-phase free
boundary problems is due to De Silva and Savin in [28] and is based on a higher order
Boundary Harnack principle. Jhaveri and Neumayer in [42] extend this approach to
the fractional Laplacian obstacle problem. The higher regularity of the free boundary
in the variable coefficient case has been established in [48].
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e More general problems and operators. Allen, Lindgren and Petrosyan in [1] con-
sider the two phase problem for the fractional Laplacian and prove optimal regularity
of the solution and separation of the positive and negative phase.

Operators with drift in the subcritical regime s € (1/2, 1) are considered by Pet-
rosyan and Pop in [55] where optimal regularity of the solution is proved. The regular-
ity of the free boundary is addressed by Garofalo et al. in [39]. We emphasize that the
presence of the drift the extension operator exhibits some singularities and makes the
problem quite delicate.

The results in [22] have been extended to obstacle problem for integro-differential
operators by Caffarelli, Ros-Oton and Serra in [20]. Here the authors develop an en-
tirely non local powerful approach, independent of any monotonicity formulas.

Korvenpdd, Kuusi and Palatucci in [49] consider the obstacle problem for a class
of nonlinear integro-differential operators including the fractional p—Laplacian. The
solution exists, it is unique and inherits regularity properties (such as Holder conti-
nuity) from the obstacle.

3.4 Parabolic Obstacle Problems

In this section we will focus on time-dependent models, which can be thought of as
parabolic counterparts of the systems (3.1.1) and (3.1.2). We emphasize that, although
their time-independent versions are locally equivalent (for s = 1/2), the problems we
are about to describe are very different from each other.

3.4.1 The parabolic fractional obstacle problem

As mentioned above, one of the motivations behind the recent increased interest in
studying constrained variational problems with a fractional diffusion comes from
mathematical finance. Jump-diffusion processes allow, in fact, to take into account
large price changes, and appear to be better suited to model market fluctuations. An
American option gives its holder the right to buy a stock or basket of stocks at a given
price prior to, but not later than, a given time T > 0 from the time of inception of the
contract. If v(x, t) denotes the price of an American option with a payoff ¢ at time T,
then v will be a viscosity solution to the obstacle problem

{min{Lv, v—}=0 (34.1)

v(T) = 1.
Here £ is a backward parabolic integro-differential operator of the form

Lv=—vi—rv—b-Vv+ (-A4)°v +Hv, se(0,1),
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wherer > 0, b ¢ R", and K is a non-local operator of lower order with respect to
(-4

This problem was studied by Caffarelli and Figalli in the paper [19], where regu-
larity properties are established for the model equation

{min{_v‘ +(=4)°v,v—1p} =0 on[0, T] x R” (34.2)

v(T) =19 onR".

The advantage of considering (3.4.2) is twofold. On the one hand, the absence of
the transport term allows to prove that solutions have the same regularity as in the
stationary case for all values of s € (0, 1), even if, when s € (0, 1/2), the time deriva-
tive is of higher order with respect to the elliptic term (—A)’v. In addition, it is feasible
that the regularity theory established for the model equation (3.4.2) could be adapted
to the solutions to (3.4.1) when s > 1/2. It should be noted that when s < 1/2, the
leading term becomes b - Vv, and there is no expectation of a regularity theory.

In order to proceed, we need to introduce the relevant function spaces.

Definition 3.50. Givena, € (0, 1) and [a, b] = R, we say that
- we CF([a, b] x RY) if

IWlees (b xzn) = IWIe (a.byczn) + W]eat a5y )
/ /
Wl (apgrny - sup  MEX ZWEXL
' [a,p]xRn [t —t'|% + |x — x|

- welogLip,C2([a, b] x R") if

HWHlogLipth([a,b] xIR7) ::HWHLOO([a,b] xR")
w(t, x) — w(t', x')|

+ sup < 0.
[a,b] xR [t —t'][(1+ |log|t —t'||) + |x —x'|P
We will also say that
~ we 0 P (la, b x RY) ifwe 5P ([a, b] x R") forall & > 0;

- we Cf”f((a, b] x R")ifwe Cﬁ’f([a + &, b] x R") foralle > 0.

In what follows, i : R"* — R* will be a globally Lipschitz function of class C? satisfy-
ing (. W < oand (—A)*P € L*(R™).Fors € (0, 1) weletu : [0, T| x R" - R
be a continuous viscosity solution to the obstacle problem

{min{ut +(—Afu,u—P} =0 on[0, T] x R" (34.3)

u(0) =1y onR".
Existence and uniqueness of solutions can be shown either by probabilistic tech-

niques, or by approximating the equation via a penalization method.
We are now ready to state the main result from [19].
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Theorem 3.51. Assume that ) € C*(R") satisfies

IVl o) + D2l () + 1 (=8 W] g1 gy < 0

and that u solves (3.4.3). Then u is globally Lipschitz in space-time on [0, T| x R", and
satisfies
u; € logLip,C1=5((0, T] x R"),
(—=A)Su € logLip,CL~5((0, T] x R™) ifs<1/3,

1-s o+
uee C% 0 ((0,T] x R"),

(~A)Yue C% ((0,T] x R") ifs > 1/3.

Some remarks are in order. First of all, comparison with Corollary 3.26 shows that,
at least in terms of spacial regularity, this result is optimal. Secondly, the criticality of
s = 1/3 is a consequence of the invariance of the operator o + (—A4)° under the scaling
(t,x) — (/\zst Ax). Hence, the spacial regularity C.~* naturally corresponds to time

regularity C, = when 255 < 1, or s > 1/3. In addition, the time regularity is almost
optimal in the case s = 1/2 (as it is possible to construct traveling waves which are
C*+1/2 poth in space and time), as well as in the limit s — 1 (since, when s = 1, itis
well known that solutions are C1'! in space and C! in time).

Several basic properties of the solution u, such as global regularity in space-time,
semi-convexity in space, and the boundedness of (—A4)%u, follow from a comparison
principle, which in turn is established using a penalization method. Combining the
semi-convexity of u(t) with the L™ bound on (—A4)%u(t), it is possible then to deduce
the C! regularity in time of solutions when s > 1/2. The next step toward the proof of
Theorem 3.51 is to prove a C**25-regularity result in space, which, roughly speaking,
says the following. Let v : R" — R be a semiconvex function touching from above an
obstacle i : R" — R of class C2. If (—A)®v is non-positive outside the contact set and
non-negative on it, then v detaches from i in a C**2¢ fashion, with « > 0 depending
exclusively on s. More precisely, assume that v, i) : R" — R are two globally Lipschitz
functions with v > y satisfying the following conditions:

AL [D*Y||p(rny = Co < 03

A2, |(~8) W] g1 gy < 03

A3. v -1, (-4)°ve L®R");

A4. The function v + Co|x?|/2 is convex (we say that v is Co-semiconvex);
A5. vis smooth and (—A)°v < 0 inside the open set {v > 1};

A6. [[(=4)*Y|| L= @y = (—=4)°v = 0on {v = P}

One has then the following:
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Theorem 3.52. There exist C > 0 and a € (0,1), depending only on Co,
(=AY Pl g1-s (gnys IV = Wlree ), and | (=A)°V|| o @), such that

sup |v — | < Cr*+2s, sup |(—=A) vy y—yy| < Cr* (3.4.4)

B (x) B (x)

forallr < 1 and for every x € o{u = }.

The strategy of the proof is analogous to the one used in [7]. It is based on growth
estimates for the L,-harmonic extension of v, i.e. the solution to (3.1.4), satisfying (with
slight abuse of notation) v(x, 0) = v(x), with v(x) as above.

Having shown that (—4)°vy,_y; grows at most as r* near any free boundary
point, it is not difficult to show that (—4)%vxy,_y, € Cx(R"):

Corrolary 3.53. There exist C' > 0 and a« € (0,1 — s], depending only on Co,
(=AY Pl g1=s (gnys [V = W0 mny» and [(=A)*V|px ), such that

(=) vX =y lcoqrmy < C'.

At this point we consider the function w : R® x Rt — R, which solves the Dirichlet
problem

L_qw=0 onR" x RY,

W(x,0) = (=A)°v(X)X{y—yy(Xx) onR".

Since w(x, 0) > 0, the maximum principle implies w > 0 everywhere. Assume
now that 0 is a free boundary point. Given that (—A4)*v(x) is globally bounded by (A3)
above, it follows from the Poisson representation formula for w (see [23]) and Corollary
3.53 that

sup  w(x,y) < Crf,
|x[2+y2<r?
for some uniform constant C and some a € (0, 1 — s]. Our next goal is to establish the
following sharp growth estimate:

Proposition 3.54. There exists C > 0 depending only on Co, [(—A)%Y| =5 (RnY?
[v — ¥le@ny, and [ (=A)*V| g mny, such that

sup  w(x,y) < Cr'=s.
X2 4y2sr

A crucial ingredient in the proof of Proposition 3.54 is the following monotonicity for-
mula (compare with Lemma 3.11).

Lemma 3.55. Let w be as above and define

1 y 4 vw X))
r2(1—s) B |X|Yl—a—1

@)= dx.
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Then there exists a constant C”, depending only on Co, H(—A)Sl/)Hles(Rn), lv —
Yl (ny> and |[(—=A)*v|| e (gn), Such that

QD(T) //[1 + r2a+6a—a—l]

<C
forallr < 1. Here, 8a = % (ﬁ - %) .

Proof of Proposition 3.54. Using an approximation argument, it is possible to show
that the function

0y = (woo ) = 40T (1 15 )

1+a

is globally L_,-subharmonic. Moreover, because of Lemma 3.55, it vanishes on more
than half of the n-dimensional disc By x {0}. One can then apply the weighted Poincaré
inequality established in [30] to show

f (W)2y~% dX < Cr"2[o(r) + 1]
B

for all r < 1. Combining this estimate with the L_,-subharmonicity of W, and Lemma
3.55 again, we infer

sup(#)? < o JB+(W)2y—“ dX < C[ri+e 4 r2a+0a],

i
Br/Z

But1 + a = 2(1 — s), and therefore

+ +
Br/Z Br/Z

supw < C [suva 4ty r1+“] < C[rt=s 4 rotoe/2),
Arguments similar to the ones in the proof of Corollary 3.53 yield

w] <G

ci ()
with o = min{a + 84/2, 1 — s}. An iteration gives the desired conclusion. o
Arguing as in the proof of Corollary 3.53, we obtain
[(=2)° VX v=py s emy < C"- (3.4.5)
Next, we apply (3.4.5) to v = u(t), obtaining the following result.

Proposition 3.56. Let u be a solution to (3.4.3), with 1 € C*(R™) satisfying (A1) and
(A2) above. Then there exists a constant Ct > 0, depending on T, |[D*y| Lo (rn)> and
H(*A)slpHCl—S(Rn), such that

sup |(—A)Su(t _ Zsom < CT.
S I(=A)"u(OX u(ty=p} lc1—s (wny < Cr
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Finally, to conclude the proof of Theorem 3.51 one exploits the fact that u is a solution
of the parabolic equation

ur + (=4)°u = ((=4)°u)X pu—yy on (0, T] x R". (3.4.6)

Proposition 3.56 ensures that the right-hand side of (3.4.6) is in L% ((0, T]; C+5(R™)).
By parabolic regularity theory we infer

ug, (—A)*u e L((0, T}; CL57°7 (R™).
The desired Holder regularity in time follows from a bootstrap argument which uses
equation (3.4.6) again.
3.4.2 The parabolic Signorini problem
In this section we will give an overview of the time-dependent analogue of (3.1.2), i.e.,
the parabolic Signorini problem, following the ideas in [27].
3.4.2.1 Statement of the problem
Given a domain Q in R", n > 2, with a sufficiently regular boundary 0, let M be a

relatively open subset of 6Q (in its relative topology), and set § = 0Q\M. We consider
the solution of the problem

Av—0iv =0 inQr:=0Qx (0,T], (3.4.7)

vz, owv=20, (v-@)o,v=0 onMr:=Mx (0,T], (3.4.8)
v=g on8g:=8x (0,T], (3.4.9)

v(-,0) = g on Qg := Q x {0}, (3.4.10)

where 0, is the outer normal derivative on 0Q, and ¢ : My — R, ¢o : Qp — R, and
g : 8t — R are prescribed functions satisfying the compatibility conditions: ¢¢ > ¢
onM x {0},8 = @ondSx (0, T],and g = ¢ on 8 x {0}, see Fig. 3.2. Classical examples
where Signorini-type boundary conditions appear are the problems with unilateral
constraints in elastostatics (including the original Signorini problem [62, 31]), prob-
lems with semipermeable membranes in fluid mechanics (including the phenomenon
of osmosis and osmotic pressure in biochemistry), and the problems on the temper-
ature control on the boundary in thermics. We refer to the book of Duvaut and Lions
[29] for further details.

Another historical importance of the parabolic Signorini problem is that it serves
as one of the prototypical examples of evolutionary variational inequalities. We thus
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Fig. 3.2: The parabolic Signorini problem

say that a function v € W;’O(Q ) solves (3.4.7)—-(3.4.10) if

VvV(w —v)+orviw—v) >0 foreveryw e R,
Qr

ve R, 0dwelyQr), v(,0)= o,

where 8 = {w € W;’O(QT) | w> @ on My, w = gon S8z} (please see below for the
definitions of the relevant parabolic functional classes). The existence and uniqueness
of such v, under some natural assumptions on @, ¢, and g can be found in [14, 29, 3,
4].

Similarly to the elliptic case, we are interested in:

— the regularity properties of v;
— the structure and regularity of the free boundary

I'(v) = on {(x, t) e My [ v(x, £) > @(x, 1)},
where 0y, indicates the boundary in the relative topology of Mry.

Concerning the regularity of v, it has long been known that the spatial deriva-
tives ox,v,i = 1,...,n, are a-Holder continuous on compact subsets of Qr v My, for
some unspecified a € (0, 1). In the parabolic case, this was first proved by Athana-
sopoulos [5], and subsequently by Uraltseva [65] (see also [3]), under certain regular-
ity assumptions on the boundary data, which were further relaxed by Arkhipova and
Uraltseva [4].

One of the main objectives of this section is to establish, in the parabolic Signorini
problem, and for a flat thin manifold M, that v € H130/ c2’3/ 4 (Qr uMr), see Theorem 3.69
below. The proof, which we only sketch here, is inspired by the works [10] and [22]
described in Section 3.2. For further details, we refer to [27].
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Before proceeding, we introduce the relevant parabolic function spaces and nota-
tions. We use notations similar to those in the classical book of Ladyzhenskaya, Solon-
nikov, and Uraltseva [50]. The class C(Q7) = C%°(Qr) is the class of functions contin-
uous in Q7 with respect to parabolic (or Euclidean) distance. Further, given form € Z
we say u € C2™™(Qy) if for |a| + 2j < 2m é%dlu e C*°(Qr), and define the norm

lulcmmary = D, sup |y ou(x, )|
la|+2j<2m (x,t)eQr

The parabolic Holder classes H”/Z(QT), fore =m+~,me Z4+,0 < v < 1aredefined
as follows. First, we let

) = uly) = sup |u(x, 1),
(X,l’)E.QT
gt = > jakauly),
la|+2j=m
<u>XQT: sup w 0<ﬁ<1

(x,t),(y,t)eQr |X - y|ﬁ
0<|x—y|<bo

[ux, t) — u(x, s)|

<u> = sup , 0<p
Lo (x,1),(x,5)€QT |t —s|B
0<|t—s|<83
<u>x 0r = Z <(9)‘f(9£u>)((7!)h’
la|+2j=m
<u>t£/2) _ Z (" a]u>ti la|— 2])/2)

m—1<|a|+2j<m

ay) =l + iy

Then, we define H%2(Q7) as the space of functions u for which the following
norm is finite:

m
k 4
[ulgeengay = 3@ + )
k=0

The parabolic Lebesgue space Lqy(Q7) indicates the Banach space of those mea-
surable functions on Q7 for which the norm

1/q
Iz, (0 = ( L u(x, )| %dxdt)
T

is finite. The parabolic Sobolev spaces Wﬁm”"(QT), m e Z., denote the spaces of
those functions in Lq(Q7), whose distributional derivative a;’a{u belongs to Lq(Q7),
for |a| + 2j < 2m

For x, xo € R", to € R we let

X'= (X1, X2, o Xnm1), X = (X, X2, 0o Xnm2), X = (X xn), X = (X, xn—1),
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and
Br(x0) = {x e R" | |x| <1} (Euclidean ball)
B (xo) = Br(xo) n R% (Euclidean halfball)
Bj(xo) = Br(x) nR"1 (“thin” ball)
Qr(xo, to) = Br(xo) x (to — 1%, to] (parabolic cylinder)

Q) (xo, to) = Bj(xo) x (to — r*, to] (“thin” parabolic cylinder)
Qi (xo, to) = B (xo) x (to — *, to] (parabolic halfcylinders)
QY (xo, to) = Bf (xo) x (to — 1*, to]

Sy =R" x (1%, 0] (parabolic strip)
SF =RL x (—1%,0] (parabolic halfstrip)
Sy =R x (=12, 0] (“thin” parabolic strip)

When xo = 0 and tp = 0, we omit the centers xy and (xg, o) in the above nota-
tions.

Since we are mostly interested in local properties of the solution v of the parabolic
Signorini problem and of its free boundary, we focus our attention on solutions in
parabolic (half-)cylinders.

Definition 3.57. Given ¢ € H>'(Q}), we say that v € G,(Q7) ifv e W' (QF) n
Lo(Qf), Vve H""‘)‘/Z(QIr u Q}) for some 0 < a < 1, and v satisfies

Av— v =0 inQf, (3.4.11)
V—p=0, —0v=0, (v—@)d,v=0 onQj, (3.4.12)

and
(0,0) € I'x(v) := dg {(X', t) € Q1 | v(X', 0,8) = (X', ), Ox,v(X, 0, ) = 0}, (34.13)
where dg is the boundary in the relative topology of Q.

Our very first step is the reduction to vanishing obstacle. The difference
v(x,t) — p(x', t) satisfies the Signorini conditions on Q) with zero obstacle, but
at an expense of solving a nonhomogeneous heat equation instead of the homoge-
neous one. This difference may then be extended to the strip S by multiplying it by
a suitable cutoff function . The resulting function will satisfy

Au —oiu = f(x,t) in Sf,
with

fx,t) = —px)[A @ — orp] + [v(x, t) — (X', )]AY + 2VVVh. (3.4.14)
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Remark 3.58. It is important to observe that, for smooth enough ¢, the function f is
bounded in S} .

With this process, we arrive at the following notion of solution.

Definition 3.59. A function u is in the class &' (S7), for f € Lo (ST), if u e W21(S7),
Vu e H»%/ 2(S§ U SY), u has compact support and solves

Au—ou=f inSy, (3.4.15)
u=>0, —dxu=0, udxu=0 onSy, (3.4.16)
(0,0) e I'(u) = o{(X', t) e Sy : u(x, 0,t) > 0}. (3.4.17)

3.4.2.2 Monotonicity of the generalized frequency function

Similarly to the elliptic case, one of the central results towards the study of regularity
properties (both of the solution and of the free boundary) is a generalization of Alm-
gren’s frequency formula, see Theorem 3.61 below. As it is well known, the parabolic
counterpart of Almgren’s formula was established by Poon [59], for functions which
are caloric in an infinite strip S, = R" x (—p?, 0]. Poon’s parabolic frequency function
is given by

iy(—1%)
hu(—r2)’

Ny(r) = (3.4.18)

where
hu ()= J u(x, 2G(x, t)dx,
RY
(€)= —tJ Vu(x, £)2G(x, t)dx,
R%
for any function u in the parabolic half-strip S{ for which the integrals involved are
finite. Here G denotes the backward heat kernel on R" x R

X

n 2
—4mt) 2ew, t<O,
Gix, t) = ( ) 4t <
o, t>0.

We explicitly remark that Poon’s monotonicity formula cannot be directly applied
in the present context, since functions in the class & (S]) (see Definition 3.59) are not
caloric functions. It should also be noted that the time dependent case of the Signorini
problem presents substantial novel challenges with respect to the stationary setting.
These are mainly due to the lack of regularity of the solution in the ¢-variable, a fact
which makes the justification of differentiation formulas and the control of error terms
quite difficult. To overcome these obstructions, (Steklov-type) averaged versions of the
quantities involved are introduced in the main monotonicity formulas. This basic idea



142 — Donatella Danielli and Sandro Salsa

allows to successfully control the error terms. More precisely, we introduce the quan-
tities
Hu (T) =

1 (© 1 ,
2 Lz hu(H)dt = o u(x, £)2G(x, t)dxdt,
1 0

. 1
Lu(r)= TZJ ()t = o | 1HIuCx, 06, Odxt,
—r

r

One further obstruction is represented by the fact that the above integrals may
become unbounded near the endpoint t = 0, where G becomes singular. To remedy
this problem we introduce truncated versions of H, and I,:

_§2?
8 1 1 2
HY(n) = Lz hu(tydt = L . u(x, £)2G(x, t)dxdt,

_§2p2
() = riz Lz i (6)dt = riz Lr\s; 11V u(x, O12G(x, )dxdt
for0 <6 < 1.

The idea at this point is to obtain differentiation formulas for H3(r) and I5(r),
which - by means of a delicate limiting process - will yield corresponding ones for
Hy(r) and I (r). In turn, such formulas will allow to establish almost-monotonicity
of a suitably defined frequency function. To state this result we need the following

notion.

Definition 3.60. We say that a positive function u(r) is a log-convex function of log r
on R iflog pu(e) is a convex function of t. In other words

y(e(l—A)S-‘y—At) <y(e5)1—ﬂy(et)ﬂ’ 0 <A< 1.

This is equivalent to saying that p is locally absolutely continuous on R; and
r’ (r)/u(r) is nondecreasing. For instance, u(r) = r* is a log-convex function of log
for any x. The importance of this notion in our context is that Almgren’s and Poon’s
frequency formulas can be regarded as log-convexity statements in log r for the ap-
propriately defined quantities Hy(r).

Theorem 3.61. (Monotonicity of the truncated frequency) Let u € < (Sf) with f sat-
isfying the following condition: there is a positive monotone nondecreasing log-convex
function u(r) of log r, and constants o > 0 and Cy, > 0, such that

W > Cur 2 [ fl -6, ) dx.
Rn

Then, there exists C > 0, depending only on g, Cy and n, such that the function

Dy(r) = %recro% log max{Hy(r), u(r)} + 2(e*" — 1)

is nondecreasing forr € (0, 1).
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Remark 3.62. On the open set where Hy(r) > u(r) we have @y(r) ~ ArH;(r)/Hu(r),
which coincides, when f = 0, with 2Ny (Ny as in (3.4.18)). The purpose of the “trunca-
tion” of Hy(r) with u(r) is to control the error terms in computations that appear from
the right-hand-side f.

Proof of Theorem 3.61. First, we observe that the functions Hy(r) and u(r) are abso-
lutely continuous and therefore so is max{Hy(r), u(r)}. It follows that @, is uniquely
identified only up to a set of measure zero. The monotonicity of @, should be under-
stood in the sense that there exists a monotone increasing function which equals @,
almost everywhere. Therefore, without loss of generality we may assume that

0 4 o
Du(r) = Lret K oot 1)

27 un
on 3 = {Hu(r) < p(r)} and

in O = {Hy(r) > pu(r)}. Following an idea introduced in [34, 35] we now note that it
will be enough to check that @, (r) > 0 in O. Indeed, from the assumption on p, it
is clear that @, is monotone on ¥F. Next, if (rg, r1) is @ maximal open interval in O,
then Hy(ro) = u(ro) and Hy(r1) = u(r1) unless r; = 1. Besides, if @, is monotone in
(ro, r1), it is easy to see that the limits Hy,(ro+) and Hj,(r;—) will exist and satisfy

W (ro+) < Hy(ro+), Hy(ri—) <p'(ri—) (unlessry =1)
and therefore we will have
Du(rg) < Du(ro+) < Pu(r1—) < du(r1),

with the latter inequality holding when r; < 1. This will imply the monotonicity of
@y in (0, 1).

Therefore, we will concentrate only on the set O = {Hy(r) > u(r)}, where the
monotonicity of @y (r) is equivalent to that of

(rg{‘g:; + 4)eC’” = 20y(r) + 4.

The latter will follow, once we show that
d [ Hy(r) Hy(r) 140
E(’Hu(r)) Z _C(rHu(r) Ha)r

in O. Now, one can show that

(), Tu(r) 4 35 WG
Hy(r) Hyu(r) r2 Hy(r)
The desired result will be obtained by direct differentiation of this expression, and
using the aforementioned formulas for the derivatives of Hy (r) and I (r). We omit the
details. O




144 — Donatella Danielli and Sandro Salsa

3.4.2.3 Blow-ups and regularity of solutions

Similarly to the elliptic case, the generalized frequency formula in Theorem 3.61 can
be used to study the behavior of the solution u near the origin. The central idea is
again to consider some appropriately normalized rescalings of u, indicated with u,
(see Definition 3.64), and then pass to the limit as r — 0+ (see Theorem 3.65).

Henceforth, we assume that u ¢ &' (S7), and that u(r) be such that the conditions
of Theorem 3.61 are satisfied. In particular, we assume that

| e =G, —r?)dx <
]Rn

Consequently, Theorem 3.61 implies that the function

Dyu(r) = %recro% log max{Hy(r), u(r)} + 2(e“" — 1)

is nondecreasing for r € (0, 1). Hence, there exists the limit

K:= @yu(0+) = rl—i>%1+ Dy(r). (3.4.19)

It is possible to show that k is independent of the choice of the cut-off i introduced in
the extension procedure. Since we assume that rp’(r)/u(r) is nondecreasing, the limit

1 ()
K i= 5 rlﬁn&r e (3.4.20)

also exists. We then have the following basic proposition concerning the values of x
and k.

Lemma3.63. Letu c & (S7) and p satisfy the conditions of Theorem 3.61. With K, ky
as above, we have
K < Ky.

Moreover, if k < ky, then there exists ry > 0 such that Hy(r) = u(r) forO <r < ry.In
particular,

1 rHu ()
= e T mey

We now define the appropriate notion of rescalings that works well with the general-
ized frequency formula.

Definition 3.64. Forue & (S]) and r > 0 define the rescalings

u(rx, r’t
Ur(X, t) = W, (X,l’)GSIr/r:]Rﬁ_ X (71/)’2,0].
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It is easy to see that the function u, solves the nonhomogeneous Signorini problem
Aur—a[Ur =fr(X, t) in Sr/r,

/
Ur 2 0, —axnur 2 0, uraxnur = 0 on Sl/l”

with
r’f(rx, r’t)

frix, t) = Hu(r)1/2

In other words, u; € eh (S I’/r). We next show that, unless we are in the borderline case
K = Ky, we will be able to study the blowups of u at the origin. The condition k < ky
below can be understood, in a sense, that we can “detect” the growth of u near the
origin.

Theorem 3.65. (Existence and homogeneity of blowups) Let u € & (S 1), u satisfy the
conditions of Theorem 3.61, and

1 !
K:=@yu(0+) < ky = 5 an& rl;((:)).

Then, we have:
i) Forany R > 0, thereis rg , > O such that

J+(u$ + [t Vur? + [t |D*ur|? + |t* (6eur)*)G < C(R), 0 <71 <rpy.

SR

ii) There is a sequence rj — 0+, and a function ug in S, = R’} x (—o0, 0], such
that

.. = w0l 111V, w0) )G — 0.

R
We call any such uy a blowup of u at the origin.
iii) ug is a nonzero global solution of Signorini problem:

Auo — a[uo =0 in S;;

Up >0, —ox,Uo =0, Udx,Up=0 onS,,

in the sense that it solves the Signorini problem in every Ql‘{.
iv) ug is parabolically homogeneous of degree k:

uo(Ax, A%t) = Xup(x, t), (x,t)eSH, 1>0

In addition to Theorem 3.61 and Lemma 3.63, the main ingredients in the proof of The-
orem 3.65 are growth estimates for Hy, (p) and log-Sobolev inequalities.

Remark 3.66. Using growth estimates for Hy(r) (where u € e (S1)), it is possible to
show that necessarily k > 1.
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In addition, we have the following:

Proposition 3.67. Let ug be a nonzero k-parabolically homogeneous solution of the
Signorini problem in ST, = R". x (—o0, 0] with 1 < k < 2. Then, k = 3/2 and

Uo(x, t) = CRe(x' - e + ixn)>/? inSH
for some tangential direction e € 0B).
Proof. Extend ug by even symmetry in x, to the strip S, i.e., by putting
uo(x’, xn, t) = ug(x’, —xn, t).

Take any e € 0B}, and consider the positive and negative parts of the directional
derivative deug
v} = max{+tdely, 0}.

It can be shown that they satisfy the following conditions
(A—0)vE >0, vE>0, vi-vo =0 inSx.

Hence, we can apply Caffarelli’s monotonicity formula [17] to the pair vZ, obtaining
that the functional

1 _
o) = = | 1vvir6 [ Ivve .
Sy Sy

is monotone nondecreasing in r. On the other hand, from the homogeneity of u, it is
easy to see that
o) =r"*2pa), r>o.

Since x < 2, ¢(r) can be monotone increasing if and only if ¢(1) = 0 and conse-
quently @(r) = 0 for all r > 0. It follows that one of the functions vZ is identically
zero, which is equivalent to deug being either nonnegative or nonpositive on the en-
tire R" x (—o0, 0]. Since this is true for any tangential direction e € 0B, it thus follows
that up depends only on one tangential direction, and is monotone in that direction.
Without loss of generality, we may thus assume that n = 2 and that the coincidence
set at t = —1 is an infinite interval A_; = {(x/,0) € R? | up(x’,0,—-1) = 0} =
(—oo, a] x {0} =: X . Repeating the monotonicity formula argument above for the
pair of functions max{+w, 0}, where

w(x, t) = —OxUo(X1,X2,t), X220
s Ox, Uo(X1, X2, t), X <0

we obtain that also w does not change sign. Hence, we get

Ol =0, —dnUo(X1,X2,t) >0 inR2 x (—a0, 0].
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Let g1(x) = Ox,up(x, —1), and g»(x) = —0dx,Up(X1,X2,—1)in x, > 0 and g,(x) =
Ox,Up (X1, X2, —1) for x, < 0. Exploiting the fact that g; and g, are the ground states
for the Ornstein-Uhlenbeck operator in R?\X; and R?\ZJ, (with X := [a, o) x {0})
respectively, one reaches the conclusion that k = 3/2 and that g; (x) must be a multi-
ple of Re(x; + i|x,|)*/2. From this, the desired conclusion easily follows. O

From Remark 3.66 and Proposition 3.67, we immediately obtain the following

Theorem 3.68. Letu ¢ & (ST) and p satisfies the conditions of Theorem 3.61. Assume
also ky = 3 lim,_,o 1/ (r)/u(r) = 3/2. Then

K= @y (0+) = 3/2.
More precisely, we must have
either k=3/2 or k=2.

We are now ready to state the optimal regularity of solutions of the parabolic Signorini
problem with sufficiently smooth obstacles.

Theorem 3.69. Let ¢ € H**(Q;), f € Loo(QF). Assume that v e W31 (Q]) be such
that Vv e H%%2(Qf U Q}) for some 0 < a < 1, and satisfy

Av—owv=Ff inQf, (3.4.21)
V—g=0, —0,v=0, (V—@)i,v=0 onQi. (3.4.22)

Then,v e H/*?/%(Qf , u Q} ;) with

HVHHS/Z'B/A(QT/ZUQQ/Z) < Cn (HVHWééO(Qf) + HfHLOO(Q;r) + H§0HH2’1(Q’1)) .

The proof of Theorem 3.69 will follow from the interior parabolic estimates and the
following growth bound of u away from the free boundary I'(v) (which, in turn, can
be deduced from Theorem 3.61 by fixing ¢ = 1/4 and choosing u(r) = M?r*=2%).

Lemma 3.70. Let u ¢ &/ (S}) with [ull,, s+ IFl, s+) < M. Then,

Hy(u) < CaM?r°.

3.4.2.4 Regular free boundary points

At this point we turn our attention to the study of points on the free boundary having
minimal frequency k = 3/2.
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Fig. 3.3: The regular set R(v) in Q}, given by the graph x,—1 = g(x”) withg € H“¥/2(Q}) and
V".a/2(Q) by Theorems 3.73 and 3.75

Definition 3.71. Let v € Gy (Q;) with ¢ € H*Y2(Q}), ¢ > 2. We say that (xo, to) €
I'y(v) is a regular free boundary point if it has a minimal homogeneity k = 3/2. The
collection R(v) of regular free boundary points will be called the regular set of v.

The following basic property about R(v) is a consequence of the fact that x does not
take any values between 3/2 and 2 .

Proposition 3.72. The regular set R(v) is a relatively open subset of I'(v). In particular,
for any (xo, to) € R(v) there exists 6y > O such that

I (v) n Qg (x0, to) = R(v) n Qg, (o, to)-

Our goal is to show that, if the thin obstacle ¢ is sufficiently smooth, then the regular
set can be represented locally as a (n — 2)-dimensional graph of a parabolically Lips-
chitz function. Further, such function can be shown to have Hélder continuous spatial
derivatives. We begin with the following basic result.

Theorem 3.73. (Lipschitz regularity of R(v)) Let v € Gy(Q7) with ¢ ¢ H**2(Q}),
¢ > 3 andthat (0, 0) € R(v). Then, there exist § = 8, > 0,and g e H-Y/2(Q}) (i.e., g is
a parabolically Lipschitz function), such that possibly after a rotation in R"~1, one has

NQs={(x,t)e Q5| xp—1 =g(x", 1)},
AWV)n Qs ={(X,t) e Q5 | xn—1 < g(x", 1)},

The proof of the space regularity follows the same circle of ideas illustrated, for the
elliptic case, in Section 3.2.8. To show the 1/2-Hélder regularity in ¢ (actually better
than that), we will use the fact that the 3/2-homogeneous solutions of the parabolic
Signorini problem are t-independent (see Proposition 3.67).
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However, in order to carry out the program outlined above, in addition to (i) and
(ii) in Theorem 3.65 above, we will need a stronger convergence of the rescalings u; to
the blowups ugp. This will be achieved by assuming a slight increase in the regularity
assumptions on the thin obstacle ¢, and, consequently, on the regularity of the right-
hand side f in (3.4.14).

Lemma3.74. Letuec & (S}), and suppose that for some (o > 2
fx, 0] < M|(x, )] inST,
3t .
IVFOG Ol < Lo, )] inaf),,

and

240

Hy(r)=r"°, for0O<r<ry.

\Y

Then, for the family of rescalings {ur}o<r<r, we have the uniform bounds
lurlgsrsmqr ooy < Cus O <T <TRu-

In particular, if the sequence of rescalings u;; converges to ug as in Theorem 3.65, then
over a subsequence

U, — U, Vuy — Vg in H*2(Qf L QR),

foranyO0 <a < 1/2andR > 0.

Proof of Theorem 3.73. We only sketch the main ideas of the proof, beginning with the
space regularity. For u ¢ &' (S7) and r > 0 define the rescalings

u(rx, r’t)

ur(X, t) = W’

(x,t) € S5, =R} x (=1/r%,0].
Theorem 3.65 guarantees the existence of ug such that

.. (= ol 1119, wo) P2 — 0.

R

Since k = 3/2, Proposition 3.67 ensures that ug(x, t) = CRe(x" - e + ixn)i/zin S*. For

given n > 0, define now the thin cone
C'(n) = {x' = (X", xn—1) e R" | xpq = X"}
A direct computation shows that for any unit vector e € C’'(n)
dello = 0in Qf, ety = Bn,y > 0in Qf A {xn > cn}.

Thanks to Lemma 3.74, we know that deur; > 0 in QI’/Z, and thus, undoing the scaling,
deu > 0in Q?;l for any unit vector e € C’(1). The Lipschitz continuity in space follows

in a standard fashion.
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As for the regularity in time, our goal is to show

806, ) = 806, 5)| = o(lt — 5/"/%).
uniformly in ;’n /»+ Arguing by contradiction, we assume

18X, t) — g(x], s))| = Clt; — s;| 2.

Letx; = (x{, (], ), yj= (xj,8(xj,s;))and
8 = max{|g(x], tj) — g0, )|, |t; — ;%)
We consider the rescalings of u at (x;, t;) by the factor of §;:

u(x; + 6;x, t; + 671)
H, oy (6))1/2

wij(x, t) = (3.4.23)
The sequence w; converges to a homogeneous global solution in S, time-
independent, of homogeneity 3/2. Combining this information with the fact that
Jdeu > 0in a thin cone, we obtain a contradiction. O

We next observe that the regularity of the function g can be improved with an appli-
cation of a boundary Harnack principle.

Theorem 3.75. (Hélder regularity of V'g)
In the conclusion of Theorem 3.73, one can take § > 0 so that V"g € H%1 (Qj) for
some a > 0.

The proof of this result relies on two crucial ingredients. The first one is the following
non-degeneracy of deu:
deu > cd(x, t) in Qy,
where d(x, t) denotes the parabolic distance from coincidence set A(v) n Qj. This
property, in turn, relies on a suitable parabolic version of Lemma 3.48. The second in-
gredient in the proof of Theorem 3.75 is the following version of the parabolic bound-
ary Harnack principle for domains with thin Lipschitz complements established in
[57]*Section 7. To state the result, we will need the following notations. For a given
L > 1andr > 0 denote

O ={(x", ) eR" > xR ||xj] <r,i=1,...,n—2,—r* <t <0},
0, ={(xX,t) eR" P xR | (X", t) € O, |xn_1| < 4nLr},
Or={(x, ) eR" xR | (x", t) € O, |xn| < T}.

Lemma 3.76. (Boundary Harnack principle) Let

A={(X,t)e 01| xn1 <g(x", 1)}
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for a parabolically Lipschitz function g in ' with Lipschitz constant L > 1 such that
g(0,0) = 0. Let uy, uy be two continuous nonnegative functions in 0, such that for
some positive constants co, Co, M, andi = 1, 2,
i) 0<ui<Min®;andu; =0onA,

ii) |(A - dr)u;| < Coin O1\A,

iii) u;(x, t) = cod(x, t) in ©1\A, where d(x, t) = sup{r | O:(x, t) n A = &}.
Assume additionally that u; and u, are symmetric in xn. Then, there exists a € (0, 1)
such that

uz a,a/2
uz € H (@1/2).

Furthermore, a and the bound on the corresponding norm |uy/us||gas/2 (g, ) depend
onlyonn, L, co, Co, and M.

Remark 3.77. Lemma 3.76 is the parabolic version of Theorem 3.33. Unlike the elliptic
case, it cannot be reduced to the other known results in the parabolic setting. We also
note that this version of the boundary Harnack is for functions with nonzero right-hand
side and therefore the nondegeneracy condition as in iii) is necessary.

3.4.2.5 Singular free boundary points

The main goal of this section is to establish a structural theorem for the set of the
so-called singular points, i.e. the points where the coincidence set {v = ¢} has zero
H"-density in the thin manifold with respect to the thin parabolic cylinders. This cor-
responds to free boundary points with frequency k = 2m, m € N. We will show that
the blowups at those points are parabolically k-homogeneous polynomials.

As in the approach in [37], described in Sections 3.2.10.1-3.2.10.3, the main tools
are parabolic versions of monotonicity formulas of Weiss and Monneau type. These
are instrumental in proving the uniqueness of the blowups at singular free boundary
points (xo, to), and consequently obtain a Taylor expansion of the type

v(x,t) — go(x’, t) = qx(x — xo, t — to) + o(||(x — x0, t — to)|*), t< to,

where gy is a polynomial of parabolic degree x that depends continuously on the sin-
gular point (xg, tp) with frequency k. We note explicitely that such expansion holds
only for t < to and may fail for t > tq (see Remark 3.81 below). Nevertheless, this ex-
pansion essentially holds when restricted to singular points (x, t), even for t > ty. This
is necessary in order to verify the compatibility condition in a parabolic version of the
Whitney’s extension theorem. Using the latter we are then ready to prove a structural
theorem for the singular set. It should be mentioned at this moment that one differ-
ence between the parabolic case treated in this section and its elliptic counterpart is
the presence of new types of singular points, which we call time-like. At such points
the blowup may become independent of the space variables x’. We show that such
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singular points are contained in a countable union of graphs of the type

t= g(X1’ e ’anl)’

where g is a C! function. The other singular points, which we call space-like, are con-
tained in countable union of d-dimensional C'*° manifolds (d < n — 1). After a possi-
ble rotation of coordinates in R"~1, such manifolds are locally representable as graphs
of the type

(Xg41severXn—1) = 8(X1,...,Xg, 1),

with gand d,g,1=1,..., d, continuous.

We now proceed to make these statements more precise. Since the overall strategy
is similar to the one described in Sections 3.2.10.1-3.2.10.3, we will omit the proofs and
focus only on the main differences between the elliptic and parabolic cases. For futher
details, we refer the interested reader to [27].

Definition 3.78. Let v € G, (Q7) with ¢ € H**/2(Q}), ¢ > 2. We say that (xo, to) €
I'y(v) is singular if
. HY(AW) n Qi (X0, to))
i, Q)
We will denote the set of singular points by X(u) and call it the singular set. We can
further classify singular points according to the homogeneity of their blowup, by defining

=0.

W) i=EW) A TOW), k<.

The following proposition gives a complete characterization of the singular points in
terms of the blowups and the generalized frequency. In particular, it establishes that

Zx(u) =Ty(u) fork=2m< ¢, meN.

Proposition3.79. Let u ¢ & (ST) with [f(x, t)] < M|(x, t)|*"2 in ST, |Vf(x, t)| <
L|(x, )3 in Q. ¢ >3and0e 'Y (u) with x < ¢. Then, the following statements
are equivalent:
(i) 0€e Zk(uw).
(ii) any blowup of u at the origin is a nonzero parabolically x-homogeneous poly-
nomial py in S« satisfying

Apx — 0px =0, px(X',0,t) >0, px(X', —Xn,t) = px(x’, Xn, t).

We denote this class by P.
(iii) x = 2m, m e N.

We now state the two main results of this section.
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Theorem 3.80. Let u ¢ & (S7) with |f(x,t)] < M|(x,t)|* % in S}, |Vf(x, )| <

Li(x, t)]“3 in Qf/z, ¢ > 3,and 0 € Zx(u) forx = 2m < ¢, m € N. Then, there ex-

ists a nonzero pyx € Py such that
u(x, t) = px(x, ) + o(|(x, ), t<o.

Moreover, if v € G,(Q)) with ¢ € HM/Z(Q’l), (X0, to) € Zx(v) and we let y*Xoto) —

(x0,to

v(xo + -, to + -), then the mapping (xo, to) — Py ) from X (v) to Py is continuous.

Remark 3.81. We want to emphasize here that the asymptotic development, as stated in
Theorem 3.80, does not generally hold for t > 0. Indeed, consider the following example.
Letu : R" x R — R be a continuous function such that
—u(x,t) = —t—x3/2forxe R"and t < 0.
— In{xn = 0, t > 0}, u solves the Dirichlet problem
Au — oiu =0, xn>0,t>0,
u(x,0) = —xf,, Xn =0,
u(x',0,t)=0 t>0.

— In{xn < 0, t > 0}, we extend the function by even symmetry in xn:
u(x', xn, t) = u(x’', —xn, t).

Itis easy to see that u solves the parabolic Signorini problem with zero obstacle and zero
right-hand side in all of R" x R. Moreover, u is homogeneous of degree two and clearly
0 € Z5(u). Now, if p(x, t) = —t—x3/2, then p € P, and we have the following equalities:
u(x, t) =px,t), fort <0,
u(x',0,t)=0, p(,0,t)=—t fort=0.

So for t > O the difference u(x, t) — p(x, t) is not o(||(x, t)|?), despite being zero for
t<O.

In order to state the aforementioned structural theorem, we need the following defi-
nitions.

Definition 3.82. For a singular point (xo, to) € Zx(v) we define

al>® —dim{§ e R™1 [ £ Vol djpl™™ =0

foranya’ = (aq,...,ay_1) andj > O such that || + 2j = x — 1},

which we call the spatial dimension of Xx(v) at (xo, to). Clearly, d,((x‘)’t‘)) is an integer
between 0 and n — 1. Then, foranyd = 0, 1,...,n — 1 define

54(v) 1= {(x0, to) € Zx(v) | ™) = a}.
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Fig. 3.4: Structure of the singular set X(v) < R? x (—oo, 0] for the solution v with v(x1, X2, 0, ) =
—t(t 4+ x2)%, t < 0 with zero thin obstacle. Note that the points on £} and £}, are space-like, and the
points on 52 are time-like.

Definition 3.83. We say that a (d + 1)-dimensional manifold 8 c R""! x R, d =
0,...,n — 2, is space-like of class cho, if locally, after a rotation of coordinate axes in
R"~! one can represent it as a graph

(Xg41severXn—1) = 8(X1,...,Xg, 1),

where g is of class C1°, i.e., g and dx,g,1 = 1, ..., d are continuous.
We say that (n — 1)-dimensional manifold $ — R"~! x R is time-like of class C' if
it can be represented locally as

t= g(Xl, e ’anl)a

where g is of class C1.

Theorem 3.84. (Structure of the singular set) Let v € Gy (Q7) with ¢ € H**/2(Q}),
¢ > 3. Then, forany x = 2m < ¢, m € N, we have I'c(v) = Zx(v). Moreover, for
everyd = 0,1,...,n — 2, the set Zﬁ(v) is contained in a countable union of (d + 1)-
dimensional space-like C*° manifolds and X%~ (v) is contained in a countable union
of (n — 1)-dimensional time-like C* manifolds.

For a small illustration, see Fig. 3.4.

The following two monotonicity formulas of Weiss and Monneau type play a cru-
cial role in the proofs of Theorems 3.80 and 3.84.
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Theorem 3.85. (Weiss-type monotonicity formula) Let u ¢ & (S7) with |f(x, t)] <
M||(x, t)| 2 in ST, ¢=2.Foranyx € (0, (), define the Weiss energy functional

1 K
WE(r) = r2K+2J (1dIvul? - %u?)6

1 K
:rziK<Iu(r)7§Hu(r)), 0<r<1.

Then, for any o < ¢ — x there exists C > 0 depending only on o, ¢, M, and n, such that

%W" —Ccr*° !, forae.re(0,1).

In particular, the function

r— Wi(r) + Cr*°

is monotonically nondecreasing for r € (0, 1).

The proof is by direct computation. Note that in Theorem 3.85 we do not require O €
T ,(f) (u). However, if we do so, then we will have the following fact.

Lemma 3.86. Let u be as in Theorem 3.85, and assume additionally that O € T, ,(f) (u),
Kk < (. Then,
W (0+) = 0.

The proof of this result uses the following growth estimate.

Lemma3.87. Letu e Gf(Sf) with |f(x, t)| < M| (x, t)["2,¢> 2,and 0 € F )( ) with
Kk < fandleto < ¢ — x. Then

Hu)<C +MHr*, 0<r<1,

2
(lelz, (s,

with C depending only on o, ¢, n.

Theorem 3.88. (Monneau-type monotonicity formula) Let u € & (ST) with |f(x, t)| <
M|(x, )| 2in S, |VF(x, )| < L|(x, )| in Qf),» ¢ > 3. Suppose that O € Zx(u) with
K=2m</{,me N. Further, let px be any parabolically x-homogeneous caloric polyno-
mial from class Py as in Proposition 3.79. For any such px, define Monneau’s functional
as

1
My p, (1) : = T ) L+ (u *px)zG, 0<r<1,

_ Hy(r)

rZK ’

where w = u — p.

Then, for any o < ¢ — x there exists a constant C, depending only on g, £, M, and n, such

that
d
M (1) > —C(1+ [l 5t ) + 1Pxl s 6) )T

o—1
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In particular, the function
re— My, (r)+ Cr°

is monotonically nondecreasing for r € (0, 1) for a constant C depending o, ¢, M, n,

HuHLz(srryg)’ and |‘pKHL2(51+,G)-

The proof of Theorem 3.88 relies on Theorem 3.85, and Lemmas 3.86 and 3.87. To pro-
ceed with the proofs of Theorems 3.80 and 3.84, we observe that, similarly to the ellip-
tic case, it will be more convenient to work with a slightly different type of rescalings
and blowups than the ones used up to now. Namely, we will work with the following
x-homogeneous rescalings
u(rx, r’t)

rK
and their limits as r — 0-+. The nextlemma, which is the parabolic analogue of Lemma
3.44, shows the viability of this approach.

ul (x, t) 1=

Lemma3.89. Let u € 6"(8{) with |[f(x,t)] < M|(x,t)|*% in S{, |[Vf(x,t)| <
L|(x, t)|* in Qf/z, ¢ = 3,and 0 € Xx(u) for k < {. Then, there exists c = cy > 0
such that

Hy(r)=cr’®, forany0 <r<1.

We explicitely observe that, by combining Lemmas 3.87 and 3.89, we obtain that the
x-homogeoneous rescalings are essentially equivalent to the ones introduced in Defi-
nition 3.64. Using this fact and Theorem 3.88, it is possible to show the uniqueness of
the homogeneous blow-ups. The proofs of Theorems 3.80 and 3.84, at this point, pro-
ceed along the lines of their elliptic counterparts (see Section 3.2.10.3), and therefore
we omit them. We only point out that, in the first step of the proof of Theorem 3.84,
one needs the following parabolic version of Whitney’s extension theorem.

Theorem 3.90. Let {fy j}|4|+2j<m e a family of functions on E, with fo,0 = f, satisfy-
ing the following compatibility conditions: there exists a family of moduli of continuity
{wa’j}‘a|+2}'<2m, such that

BIk!

faj(x,t) = (x — x0)P(t = to)* + Reyj(x, t5 X0, to)

|Bl+2k<2m—|a|—2j
and

Ra,j(X, £ X0, to)] < Wa, (| (X — Xo, t — to) )| (x — X0, t — to) ™~ 1417,

Then, there exists a function F € C*™™(R" x R) such that F = f on E and moreover
0% 0[F = fq; ONE, for |a| + 2j < 2m.

Finally, in the second step of the proof of Theorem 3.84, some care needs to be applied
in the use of the implicit function theorem, as two cases need to be considered. When
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de {0,1,...,n— 2}, Zﬁ(v) is contained in the countable union of d-dimensional
space-like C**° manifolds. When instead d = n — 1, £¢(v) is contained in a time-like
(n — 1)-dimensional C! manifold, as required.

Comments and further readings

— The continuity of the temperature, in space and time variables, in boundary
heat control problems (both of Stefan and porous media type) has been estab-
lished by Athanasopoulos and Caffarelli in [8]. In addition, the authors extend
this result to the fractional order case. The proof is based on a combination of
penalization and De Giorgi’s method.

— Higher regularity of the time derivative in the parabolic thin obstacle problem
has recently been established by Petrosyan and Zeller in [58] and Athanasopou-
los, Caffarelli and Milakis in [9]. It was already known from Arkhipova A,
Uraltseva ([4]) that if the initial data ¢ € W2, (B ), then the time derivative o;v
of the solution to (3.4.7)-(3.4.10) is locally bounded in Qf ~ Q). This assumption
on the initial data, however, is rather restrictive and excludes time-independent
solutions as in Proposition 3.67. The first main result in [58] shows that J;v is in
fact bounded, without any extra assumptions on the initial data, even though
some more regularity on the thin obstacle ¢ is required. The key observation in
the proof is that incremental quotients of the solution in the time variable satisfy
a differential inequality. In addition, the authors prove the Holder continuity of
o¢v at regular free boundary points, which in turn allows them to show that the
free boundary, at regular points, is a C1** surface both in space and time. The
Hoélder continuity in time for solutions (and the ensuing C*** regularity of the free
boundary) has also been established in [9], with a different approach based on
quasi-convexity properties of the solution. The regularity of the time derivative
plays also a crucial role in [11], where Banerjee, Smit Vega Garcia and Zeller show
that the free boundary near a regular point is C* in space and time when the
obstacle is zero.

Some auxiliary tools

In this section we collect some results on the fractional Laplacian and the extension
operator L4 from [23] and [22]. Standard reference for the fractional Laplacian is Land-
kof’s book [51]. See also the recent book by Molica Bisci, Radulescu and Servadei [53].
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Supersolutions and comparison for the fractional Laplacian
The definition of supersolution is given for u € P the dual of

Ps = {f e C*(R"): (1 + |x|”+25> D¥f is bounded, vk > 0} ,
endowed with the topology induced by the seminorms

flis = sup‘(l + |x|”+25> Dkf‘ .

and the meaning is that it is a nonnegative measure:

Letu € Ps. We say that (—A)° u > Oinan openset Qif ((—4)° u, ¢) > 0, for every
nonnegative test function ¢ € C* (R") , rapidly decreasing at infinity.

Every supersolution shares some properties of superharmonic functions. For in-
stance, u is lower-semicontinuous.

Proposition Al. Let (—4)° u > 0inanopen set Q, then u is lower-semicontinuous
in Q.

Moreover, if the restriction of u on supp((—A4)° u) is continuous then, u is contin-
uous everywhere. Precisely, we have:

Proposition A2. Let v be a bounded function in R" such that (—-4)*v > 0. If
E =supp((—4)°v) and v|g is continuous, then v is continuous in R™,

Due to the nonlocal nature of (—A)®, a comparison theorem in a domain Q must
take into account what happens outside Q. Indeed we have:

Proposition A3. (Comparison) Let Q € R" be an open set. Let (—A4)°u > 0 and
(—=A)*v < 0in Q, such that u > vin R"™\Q and u — v is lower-semicontinuous in Q.
Then u > v in R". Moreover, if x € Q and u (x) = v (x) then u = vin R".

Also, the set of supersolutions is a directed set, as indicated by the following
proposition.

Proposition A4. Let Q € R" be an open set. Let (—4)°u; > Oand (—-4)°u; > 0
in Q, such that u > v in R™\Q. Then u = min {uy, u,} is a supersolution in Q.

Estimates for the operator L,

Aswe have already noted, the operator L, is a particular case of the class of degenerate
elliptic operators considered in [30]. For the following result see Theorems 2.3.8 and
2.3.12 in that paper.

(2)ve o (B,/z) forsomea < 1landif f =0
4] < £osc:v
CD'“(B,/Z) x ra B .

Using the translational invariance of the equation in the x variable, we obtain the fol-
lowing result.



Obstacle Problems Involving the Fractional Laplacian =—— 159

Lemma Al. (Schauder type estimates) Assume Lqv = Qin B;.Then, forevery k > 1,
integer:

C
< —oscv

k
Dxv
H e (s,,) ~ kB,

and3.3
kV < c oscv
x o (Br/z) = rk+a B, .

Using the above Theorem and the equation in the form
a
Axv = 7Vyy - yVy

we get:

Lemma A2. Assume Lqv = 0 in By.Then, for every r < 1:

The next is a Liouville type result.

Lemma A3. Let v a solution of Lqv (X) = 0in R"*!, Assume that
vi,y)=v(x,—y) and |[v(X)|<C(1+|X|"),yv=0.

Then v is a polynomial.

We now state a mean value property for supersolution of a nonhomogeneous so-
lution:
Lemma A4. (Mean value property) Let v be a solution of

Lav (X) < C|y*||X[* inB.
Then, foreveryr <1,

O E— JV(X)M“dS—Crk”

Wniat e Jop

where
Wn+a = f ly|“ds.
8B,

3.3 |w|CM( D) denotes the seminorm

lw(x) —wy)l.
x,yeD |X_Y|a
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Poincaré type inequalities in the context of weighted Sobolev spaces can be found
in [30]. In our case, letting v = m §,5, v (X) ly|* do,we have>*:
Lemma A5. (Poincaré inequalities) Let v e W2 (By, |y|?) . Then, forr < 1:

j (v(X) - ) ly|°do < C(a,n)r f Vv (X)] ly|* dX.
OB, B,

and
J (v (X) — v (rX)) [y|" do < C(a, n, r)J Vv (X)) [y|” dX. (.0.24)
0B1 B,

The first inequality is standard, The second one can be proved by integrating Vv along
the lines sX withs e (r, 1) .
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Nonlocal Minimal Surfaces: Interior Regularity,
Quantitative Estimates and Boundary
Stickiness

Abstract: We consider surfaces which minimize a nonlocal perimeter functional and
we discuss their interior regularity and rigidity properties, in a quantitative and qual-
itative way, and their (perhaps rather surprising) boundary behavior. We present at
least a sketch of the proofs of these results, in a way that aims to be as elementary
and self contained as possible, referring to the papers [8, 27, 10, 3, 20, 19, 12] for full
details.

...taurino quantum possent circumdare tergo...

4.1 Introduction

The study of surfaces which minimize the perimeter is a classical topic in analysis and
geometry and probably one of the oldest problems in the mathematical literature: ac-
cording to the first book of Virgil’s Aeneid, Dido, the legendary queen of Carthage,
needed to study problems of geometric minimization in order to found her reign in
814 B.C. (in spite of the great mathematical talent of Dido and of her vivid geometric
intuition, Aeneas broke his betrothal with her after a short time to sail the Mediter-
ranean towards the coasts of Italy, but this is another story).
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The first problem in the study of these surfaces of minimal perimeter (minimal
surfaces, for short) lies in proving that minimizers do exist. Indeed “nice” sets, for
which one can compute the perimeter using an intuitive notion known from elemen-
tary school, turn out to be a “non compact” family (roughly speaking, for instance, an
“ugly” set can be approximated by a sequence of “nice” sets, thus the limit point of the
sequence may end up outside the family). To overcome this difficulty, a classical tool
of the Calculus of Variations is to look for minimizers in a wider family of candidates:
this larger family has to be chosen to satisfy the desired compactness property to en-
sure the existence of a minimum, and then the regularity of the minimal candidate
can be (hopefully) proved a posteriori.

To this end, one needs to set up an appropriate notion of perimeter for the sets in
the enlarged family of candidates, since no intuitive notion of perimeter is available, in
principle, in this generality. The classical approach of Caccioppoli (see e.g. [7]) to this
question lies in the observation that if Q and E are*! smooth sets and v is the external
normal of E, then, for any vector field T € C§(Q, R") with |T(x)| < 1 forany x € Q, we
have that

T v<|T|lv| <1.

Consequently, the perimeter of E in Q, i.e. the measure of the boundary of E inside Q
(thatis, the (n—1)-dimensional Hausdorff measure of /E in Q), satisfies the inequality

Per (E, Q) = H" ' ((9E) n Q) > ; T-vdH" ! = f div T(x) dx, (4.1.1)
’E E
for every vector field T € C(Q,R") with ||T| ro(®n,rry < 1, where the Divergence
Theorem has been used in the last identity.

Viceversa, if E is a smooth set, its normal vector can be extended near JE, and then
to the whole of R", to a vector field v« € C1(R", R"), with |v4(x)| < 1 for any x € R™.
Then, if n € C3(Q, [0, 1]), with n = 1 in an interior e-neighborhood of Q, one can
take T := nu« and find that T € C3(Q, R"), |T(x)| < 1 for any x € R" and

f div T(x) dx =J T.vdH"
E OE
= J Nus - vdH" ! = J ndHx" !
OE OE
> H""'((9E) n Q) — O(¢) = Per (E, Q) — O(¢).

By taking € as small as we wish and recalling (4.1.1), we obtain that

TeCh (Q,R"
ITlpeo (gn gny <

Per (E, Q) = sup f div T(x) dx. (4.1.2)
) E
1

4.1 From now on, we reserve the name of Q to an open set, possibly with smooth boundary, which
can be seen as the “ambient space” for our problem.
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While (4.1.2) was obtained for smooth sets E, the classical approach for minimal sur-
faces is in fact to take (4.1.2) as definition of perimeter of a (not necessarily smooth)
set E'in Q. The class of sets obtained in this way indeed has the necessary compactness
property (and the associated functional has the desired lower semicontinuity proper-
ties) to give the existence of minimizers: that is, one finds (at least) one set E < R"
satisfying
Per (E, Q) < Per (F, Q) (4.1.3)

for any F € R" such that F coincides with E in a neighborhood of Q€.

The boundary of this minimal set E satisfies, a posteriori, a bunch of additional
regularity properties — just to recall the principal ones:

If n < 7 then (9E) n Q is smooth; (4.1.4)
If n > 8 then ((0E) n Q)\X is smooth, (4.1.5)
being X' a closed set of Hausdorff dimension at most n — 8;
The statement in (4.1.5) is sharp, since there exist (4.1.6)
examples in which the singular set X
has Hausdorff dimension n — 8.

We refer to [21] for complete statements and proofs (in particular, the claim in (4.1.4)

here corresponds to Theorem 10.11 in [21], the claim in (4.1.5) here to Theorem 11.8
there, and the claim in (4.1.6) here to Theorem 16.4 there).

A natural problem that is closely related to these regularity results is the com-
plete description of classical minimal surfaces in the whole of the space which are
also graphs in some direction (the so-called minimal graphs). These questions, that
go under the name of Bernstein’s problem, have, in the classical case, the following
positive answer:

If n < 8 and E is a minimal graph, then E is a halfspace; (4.1.7)
The statement in (4.1.7) is sharp, since there exist (4.1.8)
examples of minimal graphs in dimension 9 and higher

that are not halfspaces.

We refer to Theorems 17.8 and 1710 in [21] for further details on the claims in (4.1.7)
and (4.1.8), respectively.

It is also worth recalling that
surfaces minimizing perimeters have zero mean curvature, (4.1.9)
see e.g. Chapter 10 in [21].

Recently, and especially in light of the seminal paper [8], some attention has been
devoted to a variation of the classical notion of perimeters which takes into account
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also long-range interactions between sets, as well as the corresponding minimization
problem. This type of nonlocal minimal surfaces arises naturally, for instance, in the
study of fractals [28], cellular automata [22, 11] and phase transitions [26] (see also [6]
for a detailed introduction to the topic).

A simple idea for defining a notion of nonlocal perimeter may be described as
follows. First of all, such nonlocal perimeter should compute the interaction I of all
the points of E against all the points of the complement of E, which we denote by E€.

On the other hand, if we want to localize these contributions inside the domain Q,
itis convenient to split E into E~ Q and E\Q, as well as the set E€ into E n Q and E\Q,
and so consider the four possibilities of interaction between E and E° given by

IEnQ,EnQ), IEnQE\Q),
I(E\Q,E°~Q), and I(E\Q,E\Q). (4.1.10)

Among these interactions, we observe that the latter one only depends on the config-
uration of the set outside 2, and so

I(E\Q, E\Q) = I(F\Q, F'\Q)

for any F = R" such that F\Q = E\Q. Therefore, in a minimization process with fixed
data outside Q, the term I(E\Q, E°\Q) does not change the minimizers. It is therefore
natural to omit this term in the energy functional (and, as a matter of fact, omitting
this term may turn out to be important from the mathematical point of view, since this
term may provide an infinite contribution to the energy). For this reason, the nonlo-
cal perimeter considered in [8] is given by the sum of the first three terms in (4.1.10),
namely one defines

Pers (E, Q) := I(En Q,ES Q) + I(En Q, E\Q) + I(E\Q, E€ ~ Q).

As for the interaction I(, -), of course some freedom is possible, and basically any
interaction for which Pers (E, Q) is finite, say, for smooth sets E makes perfect sense.
A natural choice performed in [8] is to take the interaction as a weighted Lebesgue
measure, where the weight is translation invariant, isotropic and homogeneous: more
precisely, for any disjoint sets S; and S,, one defines*?

dx dy
I(51,57) : H Ty (4.1.11)

S$1x8>

with s € (O, %) With this choice of the fractional parameter s, one sees that

IXe(0) = xe)IP
[X WUP(]RH . ff ‘X y|n+pU dX dy

RexR?

4.2 We remark that (4.1.11) gives that the “natural scaling” of the interaction I is “meters to the power
n — 2s” (where 2n comes from dx dy and —n — 2s comes from |x — y|~"~2%). When s = 1/2, this
scaling boils down to the one of the classical perimeter.
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H r d’; ﬁ{pg — 2I(E, E°) = 2 Per; (E, R")

as long as po = 2s, that is the fractional perimeter of a set coincides (up to normal-
ization constants) to a fractional Sobolev norm of the corresponding characteristic
function (see e.g. [16] for a simple introduction to fractional Sobolev spaces).

Moreover, for any fixed y € R",

. X—-y 2s
divy TETLE=E =— Xy (4.1.12)

Also, for any fixed x € R",

=(n+2s—2)7y(x)'(x_)/)

. v(x)
ley| oy

X — y‘n+2572
Accordingly, by the Divergence Theorem*3
Pers (E, R™)

1 . X —
75 Lc dy U divy w dx}

:*iEﬁﬁﬁ(”” Wwwwﬂ

E |X y|n+25

_ 1 n—1 . l/(X)
2s (n+ 25 -2 f aH () Ucdlvy X — y[nt2s—2 dy]

= ) n—1 n—1
~2s(n+2s-2) 2s— H |X y|n+25 7 A3 () dHT(y)- (4.1.13)
(9E)>< (GE)

That is,

Pers (E,R") =

- V(y)|2 n—1 n—1
4s(n+2s—2) 25 - H \x y|n+25 2~ AT X dIC),
(OE) % (OE)

which suggests that the fractional perimeter is a weighted measure of the variation
of the normal vector around the boundary of a set. As a matter of fact,as s  1/2,
the s-perimeter recovers the classical perimeter from many point of views (a sketchy
discussion about this will be given in Appendix A).

Also, in Appendix C, we briefly discuss the second variation of the s-perimeter on
surfaces of vanishing nonlocal mean curvature and we show that graphs with vanish-
ing nonlocal mean curvature cannot have horizontal normals.

4.3 We will often use the Divergence Theorem here in a rather formal way, by neglecting the possi-
ble singularity of the kernel — for a rigorous formulation one has to check that the possible singular
contributions average out, at least for smooth sets.
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Let us now recall (among the others) an elementary, but useful, application of this
notion of fractional perimeter in the framework of digital image reconstruction. Sup-
pose that we have a black and white digitalized image, say a bitmap, in which each
pixel is either colored in black or in white. We call E the “black set” and we are inter-
ested in measuring its perimeter (the reason for that may be, for instance, that noises
or impurities could be distinguished by having “more perimeter” than the “real” pic-
ture, since they may present irregular or fractal boundaries). In doing that, we need to
be able to compute such perimeter with a very good precision. Of course, numerical
errors could affect the computation, since the digital process replaced the real picture
by a pixel representation of it, but we would like that our computation becomes more
and more reliable if the resolution of the image is sufficiently high, i.e. if the size of the
pixels is sufficiently small.

Unfortunately, we see that, in general, an accurate computation of the perimeter
is not possible, not even for simple sets, since the numerical error produced by the
pixel may not become negligible, even when the pixels are small. To observe this phe-
nomenon (see e.g. [12]) we can consider a grid of square pixels of small side ¢ and a
black square E of side 1, with the black square rotated by 45 degrees with respect to
the orientation of the pixels. Now, the digitalization of the square will produce a nu-
merical error, since, say, the pixels that intersect the square are taken as black, and so
each side of the square is replaced by a “sawtooth” curve (see Figure 4.1).

Fig. 4.1: Numerical error in computing the perimeter.

Notice that the length of each of these sawtooth curves is v/2 (independently on
how small each teeth is, that is independently on the size of ). As a consequence,
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the perimeter of the digitalized image is 4+/2, instead of 4, which was the original
perimeter of the square.

This shows the rather unpleasant fact that the perimeter may be poorly approxi-
mated numerically, even in case of high precision digitalization processes. It is a rather
remarkable fact that fractional perimeters do not present the same inconvenience and
indeed the numerical error in computing the fractional perimeter becomes small when
the pixels are small enough. Indeed, the number of pixels which intersect the sides of
the original square is O(e~!) (recall that the side of the square is 1 and the side of each
pixel is of size £). Also, the s-perimeter of each pixel is O(g?~2%) (since this is the nat-
ural scale factor of the interaction in (4.1.11), with n = 2). Then, the numerical error
in the fractional perimeter comes from the contributions of all these pixels** and it is
therefore O(e~ 1) - 0(e272%) = 0(e'~2%%), which tends to zero for small &, thus show-
ing that the nonlocal perimeters are more efficient than classical ones in this type of
digitalization process.

Fig. 4.2: Pixel interactions and numerical errors.

Thus, given its mathematical interest and its importance in concrete applications,
it is desirable to reach a better understanding of the surfaces which minimize the s-

4.4 More precisely, when the computer changes the “real” square with the discretized one and pro-
duces a staircase border, the only interactions changed are the ones affecting the union of the trian-
gles (that are “half pixels”) that are added to the square in this procedure. In the “real” picture, these
triangles interact with the square, while in the digitalized picture they interact with the exterior. To
compute the error obtained one takes the signed superposition of these effects, therefore, to estimate
the error in absolute value, one can just sum up these contributions, which in turn are bounded by
the sum of the interactions of each triangle with its complement, see Figure 4.2.
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perimeter (that one can call s-minimal surfaces). To start with, let us remark that an
analogue of (4.1.9) holds true, in the sense that s-minimal surfaces have vanishing
s-mean curvature in a sense that we now briefly describe. Given a set E with smooth
boundary and p € JE, we define
sooyv . [ XEe(X) —XE(X)

HE(p) = R W dX. (4.1.14)
The expression*” in (4.1.14) is intended in the principal value sense, namely the sin-
gularity is taken in an averaged limit, such as

Hi(p) = lim Xe<(X) — XE(X) d

X.
PO JRmB,(p) X — p["T2S

For simplicity, we omit the principal value from the notation. It is also useful to re-
call (4.1.12) and to remark that H; can be computed as a weighted boundary integral
of the normal, namely

Hip) -~ 55 | (e 0) — xe0) dliv 2 e d
_ 1 v -(p=X) g1
_ LE s 9000, (4.1.15)

This quantity H}, is what we call the nonlocal mean curvature of E at the point p, and
the name is justified by the following observation:

Lemma 4.1.1. If E is a set with smooth boundary that minimizes the s-perimeter in Q,
then Hy(p) = O forany p € (GE) n Q.

The proof of Lemma 4.1.1 will be given in Section 4.2. We refer to [8] for a version of
Lemma 4.1.1 that holds true (in the viscosity sense) without assuming that the set has

4.5 The definition of fractional mean curvature in (4.1.14) may look a bit awkward at a first glance. To
make it appear more friendly, we point out that the classical mean curvature of 0F at a point x € JE,
up to normalizing constants, can be computed via the average procedure

lim <(y) — dy.

i L,m Xee(¥) — xe(y) dy

To see this, up to rigid motions, one can assume that x is the origin and E, in a small neighborhood of
the origin, is the subgraph of a function u : R"~! — R with u(0) = 0 and Vu(0) = 0. Then, we have
that

j(\y’lgr} Xee(y) — xe(y) dy
{me[—rr]}
2 2

= —lim J u(y'Ydy' = —lim J D*u(0)y -y +o(ly'|*) dy’
P en ') dy M T ) e ©O)y"-y" +o(ly'|") dy
= —cAu(0).

r\o pntt j Xee(y) = Xe(v) dy = 11\0 1
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smooth boundary. See also [1] for further comments on this notion of nonlocal mean
curvature.

Let us now briefly discuss the fractional analogue of the regularity results in (4.1.4)
and (4.1.5). At the moment, a complete regularity theory in the fractional case is still
not available. At best, one can obtain regularity results either in low dimension or
when s is sufficiently close to % (see [27, 10] and also [3] for higher regularity results):
namely, the analogue of (4.1.4) is:

Theorem 4.1.2 (Interior regularity results for s-minimal surfaces - I). Let E = R" be
a minimizer for the s-perimeter in Q. Assume that

— eithern = 2,

—orn<7and % — S < &y, for some &4 > 0 sufficiently small.
Then, (OE) n Q is smooth.

Similarly, a fractional analogue of (4.1.5) is known, by now, only when s is sufficiently
close to 3:

Theorem 4.1.3 (Interior regularity results for s-minimal surfaces - II). Let E = R" be
a minimizer for the s-perimeter in Q. Assume that n > 8 and % — S < &p, for some €y >
0 sufficiently small. Then, ((0E) n Q)\X is smooth, being X a closed set of Hausdorff
dimension at most n — 8.

In contrast with the statement in (4.1.6), it is not known if Theorems 4.1.2 and 4.1.3 are
sharp, and in fact there are no known examples of s-minimal surfaces with singular
sets: and, as a matter of fact, in dimension n < 6, these pathological examples — if
they exist — cannot be built by symmetric cones (which means that they either do not
exist or are pretty hard to find!), see [15].

In [12], several quantitative regularity estimates for local minimizers are given (as
a matter of fact, these estimates are valid in a much more general setting, but, for
simplicity, we focus here on the most basic statements and proofs). For instance, min-
imizers of the s-perimeter have locally finite perimeter (that is, classical perimeter, not
only fractional perimeter), as stated in the next result:

Theorem 4.1.4. Let E — R" be a minimizer for the s-perimeter in Bg. Then
Per (E, By ;) < CR" ',
for a suitable constant C > 0.

We stress that Theorem 4.1.4 presents several novelties with respect to the existing
literature. First of all, it provides a scaling invariant regularity estimate that goes be-
yond the natural scaling of the s-perimeter, that is valid in any dimension and without
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any topological restriction on the s-minimal surface (analogous results for the classi-
cal perimeter are not known in this generality). Also, in spite of the fact that, for the
sake of simplicity, we state and prove Theorem 4.1.4 only in the case of minimizers of
the s-perimeter, more general versions of this result hold true for stable solutions and
for more general interaction kernels (even for kernels without any regularizing effect).
This type of results also leads to new compactness and existence theorems, see [12] for
full details on this topic.

As a matter of fact, we stress that the analogue of Theorem 4.1.4 for stable surfaces
which are critical points of the classical perimeter is only known, up to now, for two-
dimensional surfaces that are simply connected and immersed in R> (hence, this is a
case in which the nonlocal theory can go beyond the local one).

Now, we briefly discuss the fractional analogue of the Bernstein’s problem. Let
us start by pointing out that, by combining (4.1.4) and (4.1.7), we have an “abstract”
version of the Bernstein’s problem, which states that if E is a minimal graph in R"+!
and the minimal surfaces in R" are smooth, then E is a halfspace.

Of course, for the way we have written (4.1.4) and (4.1.7), this abstract statement
seems only to say that 8 = 7 + 1: nevertheless this abstract version of the Bernstein’s
problem is very useful in the classical case, since it admits a nice fractional counter-
part, which is:

Theorem 4.1.5 (Bernstein result for s-minimal surfaces - I). IfE is an s-minimal graph
in R"*! and the s-minimal surfaces in R" are smooth, then E is a halfspace.

This result was proved in [20]. By combining it with Theorem 4.1.2 (using the nota-
tion N := n + 1), we obtain:

Theorem 4.1.6 (Bernstein result for s-minimal surfaces - II). Let E = RN be an s-
minimal graph. Assume that

— either N = 3,

— orN < 8and % — 5 < €4, for some €4 > 0 sufficiently small.
Then, E is a halfspace.

This is, at the moment, the fractional counterpart of (4.1.7) (we stress, however, that
any improvement in the fractional regularity theory would give for free an improve-
ment in the fractional Bernstein’s problem, via Theorem 4.1.5).

We remark again that, differently from the claim in (4.1.8), it is not known if the
statement in Theorem 4.1.6 is sharp, since there are no known examples of s-minimal
graphs other than the hyperplanes.
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It is worth recalling that, by a blow-down procedure, one can deduce from The-
orem 4.1.2 that global s-minimal surfaces are hyperplanes, as stated in the following
result:

Theorem 4.1.7 (Flatness of s-minimal surfaces). Let E = R" be a minimizer for the
s-perimeter in any domain of R". Assume that

— eithern = 2,

—orn<7and % — 5 < €, for some €4 > O sufficiently small.
Then, E is a halfspace.

Of course, a very interesting spin-off of the regularity theory in Theorem 4.1.7 lies
in finding quantitative flatness estimates: namely, if we know that a set E is an s-
minimizer in a large domain, can we say that it is sufficiently close to be a halfspace,
and if so, how close, and in which sense?

This question has been recently addressed in [12]. As a matter of fact, the results
in [12] are richer than the ones we present here, and they are valid for a very general
class of interaction kernels and of perimeters of nonlocal type. Nevertheless we think
it is interesting to give a flavor of them even in their simpler form, to underline their
connection with the regularity theory that we discussed till now.

In this setting, we present here the following result when n = 2 (see indeed [12]
for more general statements):

Theorem 4.1.8. Let R > 2. Let E — R? be a minimizer for the s-perimeter in Bg. Then
there exists a halfplane h such that

C

RS’ (4.1.16)

|(EAh) ~ By| <
where A is here the symmetric difference of the two sets (i.e. EAh := (E\h) u (h\E))
and C > O is a constant.

We stress that Theorem 4.1.8 may be seen as a quantitative version of Theorem 4.1.7
when n = 2: indeed if E = R" is a minimizer for the s-perimeter in any domain of R"
we can send R 7 +0 in (4.1.16) and obtain that E is a halfplane.

We observe that, untill now, we have presented and discussed a series of results
which are somehow in accordance, as much as possible, with the classical case. Now
we present something that differs strikingly from the classical case. The minimizers of
the classical perimeter in a convex domain reach continuously the boundary data (see
e.g. Theorem 15.9 in [21]). Quite surprisingly, the minimizers of the fractional perimeter
have the tendency to stick at the boundary. This phenomenon has been discovered
in [19], where several explicit stickiness examples have been given (see also [5] for
other examples in more general settings).
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Roughly speaking, the stickiness phenomenon may be described as follows. We
know from Lemma 4.1.1 that nonlocal minimal surfaces in a domain Q need to adjust
their shape in order to make the nonlocal minimal curvature vanish inside Q. This is
arather strong condition, since the nonlocal minimal curvature “sees” the set all over
the space. As a consequence, in many cases in which the boundary data are “not favor-
able” for this condition to hold, the nonlocal minimal surfaces may prefer to modify
their shape by sticking at the boundary, where the condition is not prescribed, in order
to compensate the values of the nonlocal mean curvature inside Q.

In many cases, for instance, the nonlocal minimal set may even prefer to “disap-
pear”, i.e. its contribution inside Q becomes empty and its boundary sticks completely
to the boundary of Q. In concrete cases, the fact that the nonlocal minimal set disap-
pears may be induced by a suitable choice of the data outside Q or by an appropriate
choice of the fractional parameter. As a prototype example of these two phenomena,
we recall here the following results given in [19]:

Theorem 4.1.9 (Stickiness for small data). For any § > 0, let
th = (Bl+5\B1) N {Xn < 0}

Let Eg be an s-minimal set in By among all the sets E such that E\B, = Kj.
Then, there exists §, > 0, depending on s and n, such that for any 6 € (0, §o] we
have that
E6 == K&.

Theorem 4.1.10 (Stickiness for small s). Ass — O, the s-minimal setin By = R? that
agrees with a sector outside B sticks to the sector.
More precisely: let Es be the s-minimizer among all the sets E such that

E\B; = 2 :={(x,y) e R*\By s.t. x > O and y > 0}.
Then, there exists s, > 0 such that for any s € (0, so| we have that Es = X.

We stress the sharp difference between the local and the nonlocal cases exposed in
Theorems 4.1.9 and 4.1.10: indeed, in the local framework, in both cases the minimal
surface is a segment inside the ball B, while in the nonlocal case it coincides with a
piece of the circumference 0B;.

The stickiness phenomenon of nonlocal minimal surfaces may also be caused by
a sufficiently high oscillation of the data outside Q. This concept is exposed in the
following result:

Theorem 4.1.11 (Stickiness coming from large oscillations of the data). Let M > 1
and let E); ¢ R? be s-minimal in (—1, 1) x R with datum outside (—1, 1) x R given
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by Ju :=Jy; © I3, where
T i= (=0, =1] x (=0, =M) and Jj; :=[1, +©) x (—c0, M).

Then, if M is large enough, E) sticks at the boundary. Moreover, the stickiness region
gets close to the origin, up to a power of M.

More precisely: there exist M, > 0 and C, > C, > 0, depending on s, such that
if M > M, then

[~1,1) x [CoMZ, M] < ES
and  (~1,1] x [-M, —CoM+%] C Ey. (4.117)

It is worth remarking that the stickiness phenomenon in Theorem 4.1.11 becomes
“more and more visible” as the oscillation of the data increase, since, referring
to (4.1.17), we have that

lim =0,

hence the sticked portion of Ey; on 6Q becomes, proportionally to M, larger and larger
when M — +c0.

Also, the exponent %ﬁj in (4.1.17) is optimal, see again [19]. The stickiness phe-
nomenon detected in Theorem 4.1.11 is described in Figure 4.3.

Fig. 4.3: Stickiness coming from large oscillations of the data with the oscillation progressively
larger.
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We believe that the stickiness phenomenon is rather common among nonlocal
minimal surfaces. Indeed, it may occur even under small modifications of boundary
data for which the nonlocal minimal surfaces cut the boundary in a transversal way.

A typical, and rather striking, example of this situation happens for perturbation
of halfplanes in R?. That is, an arbitrarily small perturbation of the data correspond-
ing to halfplanes is sufficient for the stickiness phenomenon to occur. Of course, the
smaller the perturbation, the smaller the stickiness: nevertheless, small perturbations
are enough to cause the fact that the boundary data of nonlocal minimal surfaces are
not attained in a continuous way, and indeed they may exhibit jumps (notice that this
lack of boundary regularity for s-minimal surfaces is rather surprising, especially after
the interior regularity results discussed in Theorem 4.1.2 and 4.1.3 and it shows that
the boundary behavior of the halfplanes is rather unstable).

A detailed result goes as follows:

Theorem 4.1.12 (Stickiness arising from perturbation of halfplanes). There ex-
ists 6o > 0 such that for any 6 in(0, 8] the following statement holds true.
Let Q :=(—1,1) x R. Let also

F_:=[-3,-2] x [0, 6], Fy:=12,3] x][0,46], H:=R x (-, 0).

Assume that F < R?, with
FoHUF_ UF;.

Let E be an s-minimal set in Q among all the sets which coincide with F outside Q.
Then,
E2>(-1,1) x [0,87],

for a suitable v > 1.

The result of Theorem 4.1.12 is depicted in Figure 4.4.

Let us briefly give some further comments on the stickiness phenomena discussed
above. First of all, we would like to convince the reader (as well as ourselves) that these
type of behaviors indeed occurs in the nonlocal case.

To this end, let us make an investigation to find how the s-minimal set E, in Q :=
(-1,1) x R c R? with datum

Ca:={(x,y) e R?st.y < ax|}

looks like.

When a = 0, then Eq = Cq is the halfplane, so the interesting case is when a # 0;
say, up to symmetries, a > 0. Now, we know how an investigation works: we need to
place all the usual suspects in a row and try to find the culprit.

The line of suspect is on Figure 4.5 (remember that we have to find the s-minimal
set among them). Some of the suspects resemble our prejudices on how the culprit
should look like. For instance, for what we saw on TV, we have the prejudice that serial
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Fig. 4.4: Stickiness arising from perturbation of halfplanes, with the perturbation progressively
larger.

killers always wear black gloves and raincoats. Similarly, for what we learnt from the
hyperplanes, we may have the prejudice that s-minimal surfaces meet the boundary
data in a smooth fashion (this prejudice will turn out to be wrong, as we will see). In
this sense, the usual suspects number 1 and 2 in Figure 4.5 are the ones who look like
the serial killers.

Then, we have the regular guys with some strange hobbies, we know from TV that
they are also quite plausible candidates for being guilty; in our analogy, these are the
usual suspects number 3 and 4, which meet the boundary data in a Lipschitz or Holder
fashion (and one may also observe that number 3 is the minimal set in the local case).

Then, we have the candidates which look above suspicion, the ones to which no-
body ever consider to be guilty, usually the postman or the butler. In our analogy, these
are the suspects number 5 and 6, which are discontinuous at the boundary.

Now, we know from TV how we should proceed: if a suspect has a strong and
verified alibi, we can rule him or her out of the list. In our case, an alibi can be offered
by the necessary condition for s-minimality given in Lemma 4.1.1. Indeed, if one of our
suspects E does not satisfy that Hy = 0 along (0E) n Q, then E cannot be s-minimal
and we can cross out E from our list of suspects (E has an alibi!).

Now, it is easily seen that all the suspects number 1, 2, 3, 4 and 5 have an alibi:
indeed, from Figure 4.6 we see that Hy(p) # O, since the set E occupies (in mea-
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#5

Fig. 4.5: Confrontation between the suspects.

sure, weighted by the kernel in (4.1.14)) more than a halfplane*® passing through p:
in Figure 4.6 the point p is the big dot and the halfplane is marked by the line passing
throughit, so a quick inspection confirms that the alibis of number 1, 2, 3, 4 and 5 check
out, hence their nonlocal mean curvature does not vanish at p and consequently they
are not s-minimal sets.

On the other hand, the alibi of number 6 doesn’t hold water. Indeed, near p, the
set E is confined below the horizontal line, but at infinity the set E go well beyond
such line: these effects might compensate each other and produce a vanishing mean
curvature.

4.6 Indeed, in view of (4.1.14), we know that an s-minimal set, seen from any point of the boundary,
satisfies a perfect balance between the weighted measure of the set itself and the weighted measure
of its complement (here, weighted is intended with respect to the kernel in (4.1.14)). Since a halfplane
also satisfies such perfect balance when seen from any point of its boundary (due to odd symmetry),
one can say that a set is s-minimal when, at any point of its boundary, the weighted contributions
of the set and its complement produce the same result as the ones of a hyperplane passing through
such point. This geometric trick often allows us to “subtract the tangent halfplane” from a set without
modifying its fractional curvature (and this is often convenient to observe cancellations).
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#5

Fig. 4.6: The alibis of the suspects.

So, having ruled out all the suspects but number 6, we have only to remember
what the old investigators have taught us (e.g., “When you have eliminated the im-
possible, whatever remains, however improbable, must be the truth”), to find that the
only possible (though, in principle, rather improbable) culprit is number 6.

Of course, once that we know that the butler did it, i.e. that number 6 is s-minimal,
it is our duty to prove it beyond any reasonable doubt. Many pieces of evidence, and a
complete proof, is given in [19] (where indeed the more general version given in The-
orem 4.1.12 is established). Here, we provide some ideas towards the proof of Theo-
rem 4.1.12 in Section 4.5.

This set of notes is organized as follows. In Section 4.2 we present the proof of
Lemma 4.1.1. Sections 4.3 and 4.4 are devoted to the proofs of the quantitative esti-
mates in Theorems 4.1.4 and 4.1.8, respectively. Then, Section 4.5 is dedicated to a
sketch of the proof of Theorem 4.1.12. We also provide Appendix A to discuss briefly
the asymptotics of the s-perimeter as s ,” 1/2 and as s \, 0 and Appendix B to dis-
cuss the asymptotic expansion of the nonlocal mean curvature as s \, 0. Finally, in
Appendix C we discuss the second variation of the fractional perimeter functional.
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4.2 Proof of Lemma 4.1.1

Proof of Lemma 4.1.1. We consider a diffeomorphism Te(x) := x + ev(x), with v €
CF(Q,R™) and we take E; := T¢(E). By minimality, we know that Pers (E¢, Q) >
Pers (E, Q) for every € € (—&o, £9), With g9 > 0 sufficiently small, hence

Pers (E¢, Q) — Pers (E, Q) = o(¢). (4.2.1)
Suppose, for simplicity, that I(E\Q, E\Q) < +o0, so that we can write
Pers (Eg, Q) — Pers (E, Q) = I(Ee, E¢) — I(E, E°).
Moreover, if we use the notation X := T, 1 (x), we have that
dx = |det DT¢(X)|dX = (1 + edivv(X) + o(¢)) dX.

Similarly, if Y := T; 1(y), we find that

—n—2s

Ix—y|
= |Te(X) = Te(Y)| "%
= |X-Y+e(vX) —v(Y) "
= | X-Y " - (n+28)eX - Y|TTETAX - Y) - (v(X) - v(Y)) + o(e).

Asa consequence,

Pers (E¢, Q) — Pers (E, Q)
dx dy dx dy
|X y|n+2$ |X y|n+25

ﬂ X - Y|*"*25 —(n+28)elX - Y| TTEITHX —Y) - (v(X) — v(Y))]
ExE¢
(1 +edivv(X))(1 + edivv(Y)) dXdY

dx dy
H x—ypez T

= —(n+2s)¢ Jf X) —v(y)) dx dy

|X y’n+25+2

d1vv +divv(y
+€ f |)£—)y|"+25( )dxdy+o(s).
EXEc¢

Now we point out that

. 140,

v(x)- (x—=1y) divy v(x)
\X _ y|n+25+2 |X _ y‘n+25
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and so, interchanging the names of the variables,

v(y) vy)- (x—y) | divy v(y)
_ y|n+25 | y|n+23+2 |X _ y|n+25 *

divy X = (n+ 2s)
Consequently,

Pers (E¢, Q) — PerS (E Q)

. v
Jf [lex ‘n+25 + divy %] dxdy + o(¢).
Now, using the Divergence Theorem and changing the names of the variables we have
that
v(x) - v(X) 1
JJ ey axar = [, av| [ SRR a0 )
EXE¢
_ v(y) - v(y) sqmn-1
B Jc dx UaE |x — y[n+2s G
and

JJ e =y = - [ ], i o)

ExEc
Accordingly, we find that

Pers (E¢, Q) — Pers (E, Q)

n—1 dx dx
e [ @ tovw) ) [ | T | - ywnm] Tole)

¢ f v(y) - wy) Hy(y) 31 (y) + o(e).
OE

Comparing with (4.2.1), we see that
|, v ) By a0 ) = 0

and so, since v is an arbitrary vector field supported in Q, the desired result follows.
O

4.3 Proof of Theorem 4.1.4

The basic idea goes as follows. One uses the appropriate combination of two general
facts: on the one hand, one can perturb a given set by a smooth flow and compare the
energy at time ¢ with the one at time —t, thus obtaining a second order estimate; on the
other hand, the nonlocal interaction always charges a mass on points that are suffi-
ciently close, thus providing a natural measure for the discrepancy between the origi-
nal set and its flow. One can appropriately combine these two facts with the minimality
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(or more generally, the stability) property of a set. Indeed, by choosing as smooth flow
a translation near the origin, the above arguments lead to an integral estimate of the
discrepancy between the set and its translations, which in turn implies a perimeter
estimate.

We now give the details of the proof of Theorem 4.1.4. To do this, we fixR > 1, a
direction v € $"~1, a function ¢ € CT (Bg/10) with ¢ = 1 in B3 ,, and a small scalar
quantity t e (— 1659 ﬁ), and we consider the diffeomorphism @ € C§°(By 1) given
by @'(x) := x + te(x/R) v. Notice that

@'(x) = x + tv for any x € Bsg . (4.3.0)

We also define E; := @!(E). We have the following useful auxiliary estimates (that will
be used in the proofs of both Theorem 4.1.4 and Theorem 4.1.8):

Lemma 4.3.1. Let E be a minimizer for the s-perimeter in Bg. Then

Pers (E¢, Bg) + Pers (E_, Bg) — 2Pers (E, Bg) < CR" 2572 £2, (4.3.2)
2I(E(\E, E\E;) < CR" 722, (4.3.3)

n—2:

min {|((E + tv)\E)  Brya|, [(E\E + tv)) ~ Brpal} < CR e, (43.4)

and

min {J (Xe(x + tv) f)(E(x))Jr dx, f (Xe(x + tv) — xg(x)) _ dx}
Bg)» Brya

<CRZ |t], (4.3.5)

forsome C > 0.

Proof. First we observe that

2

Ct
Pers (Et, Bg) + Pers (E_¢, Bg) — 2Pers (E, Bg) < ﬁPers (E, Br), (4.3.6)

for some C > 0. This is indeed a general estimate, which does not use minimality,
and which follows by changing variable in the integrals of the fractional perimeter
(and noticing that the linear term in ¢ simplifies). We provide some details of the proof
of (4.3.6) for the facility of the reader. To this aim, we observe that

|det DO'(X)| = |det(1 + tR™*V@(X/R)QV)| = 1 + tR"'V(X/R) - v + O(t*R™?).
Moreover, if, for any ¢, n € R", we set

(@) —em)v

g(é”’l) = |§_rl| ’
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we have that g is bounded and

@'(X) - D(Y)| = |X—Y+t(p(X/R)—p(Y/R))V|
- nen[f e
= |X-Y] ’|X i +tR 'g(X/R, y/R)‘_
Therefore
[@(X) = DY) = X - YT I;(: ; CRGXR YR
VXY

= X—y v <1 — (n+ 2s)tR™ g(X/R,Y/R) + O(tzR_z)) .

XY

Now we observe that @' is the identity outside By and therefore if A € {Bg, B%, R"}
then E; n A = @Y(E ~ A). Accordingly, for any A, B € {Bg, B%,R™}, a change of
variables x := @!(X) and y := @'(Y) gives that

I(Et n A,Ef n B)

Lo ey dxdy
O (EnA) Jot(EAB)

=J J |D'(X) — @(Y)| 7" | det D' (X)| | det DD'(Y)| dX dY
EnA JENB

= _ y|—n—2s . 1 X-Y S
B LmA JEr\B ‘X Y| (1 (n + 25) tR™ |X Y| (X/R; Y/R) + O(t R ))

: (1 +tR™'Vo(X/R) v + O(tZR*Z)) (1 +tR™'Vo(Y/R) v + O(tzR’z)) dxdy

_ f J X~ Y72 (1 (n+ 25)R"'E(X/R, Y/R) + O(*R?)) dX Y,
EnA JENB

for a suitable scalar function g.
Then, replacing t with —t and summing up, the linear term in ¢ simplifies and we
obtain

dxay
C C
I(E¢t nAEf nB)+ I(E_t nA,ES; n B) = (2 + O( t’R™ fEmA L(\B Xy

This, choosing A and B appropriately, establishes (4.3.6).

On the other hand, the s-minimality of E gives that Pers (E, Bg) < Pers (E u
Bg, Bg), which, in turn, is bounded from above by the interaction between Bg and B,
namely I(Bg, By), which is a constant (only depending on n and s) times R"25 due
to scale invariance of the fractional perimeter. That is, we have that Pers (E, Bg) <
CR™" %3, for some C > 0, and then we can make the right hand side of (4.3.6) uniform
in E and obtain (4.3.2), up to renaming C > 0.

The next step is to charge mass in a ball. Namely, one defines Ey := E u E;
and Ef" := E n E;. By counting the interactions of the different sets, one sees that

Pers (E, Bg) + Pers (E¢, Bg) —Pers (Ef’, Bg) — Pers (Ef', Br) = 2I(E\E, E\E;). (4.3.7)
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To check this, one observes indeed that the set E;\E interacts with E\E; in the com-
putations of Pers (E, Bg) and Pers (E¢, Bg), while these two sets do not interact in the
computations of Pers (E;’, Bg) and Pers (Ef”, Bg) (the interactions of the other sets
simplify). This proves (4.3.7). We remark that, again, formula (4.3.7) is a general fact
and is not based on minimality. Changing t with —¢, we also obtain from (4.3.7) that

Pers (E, BR) + Pers (E_¢, Bg) — Pers (EY¢, Br) — Pers (E”, Bg) = 2I(E_{\E, E\E_¢).
This and (4.3.7) give that

Pers (E¢, Bg) + Pers (E_¢, Bg) — 2Pers (E, Bg)
= Pers (Ef’, BR) + Pers (Ef', Bg) + Pers (EY;, Bg) + Pers (EC, B)
—4Pers (E, BR) + 2I(E(\E, E\E¢) + 2I(E_{\E, E\E_¢)
> 2I(E/\E, E\E¢) + 2I(E_{\E, E\E_),

thanks to the s-minimality of E. In particular,
Pers (E[, BR) + Pers (E,t, BR) — 2Perg (E, BR) = ZI(Et\E, E\Et)

This and (4.3.2) imply (4.3.3).
Now, the interaction kernel is bounded away from zero in By ,, and so

I(E{\E, E\E¢) > |(E{\E) ~ Bg| - |(E\Et) n Bgs|-

This is again a general fact, not depending on minimality. By plugging this into (4.3.3),
we conclude that

CR"72t > |(E\E) nBgp|-|(E\Et) N Bg)s|

%, |(E\E) ~ Brpol*}

> min {|(Et\E) A Bg)s

and so, again up to renaming C,

min {!(Et\E) N Bgyals [(E\E¢) N BR/2|} <CR" Tt (4.3.8)

Now, we recall (4.3.1) and we observe that Et n By, = (E + tv) n Bg/,. Hence, the
estimate in (4.3.8) becomes

2s

(E\(E+tv)) ~ Bgpo} < CR™ ¢ (4.3.9)

B

min {|((E + tV)\E) " By,

Since this is valid for any v € S*~!, we may also switch the sign of v and obtain that

min{|((Ef tV)\E)  Bg)>

(E\E - tv)) ~ By} < CR™7t. (4.3.10)

)

From (4.3.9) and (4.3.10) we obtain (4.3.4).
Now we observe that, for any sets A and B,

Xa\B(X) = xa(x) — xp(x). (4.3.11)
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Indeed, this formula is clearly true if x € B, since in this case the right hand side is
nonpositive. The formula is also true if x € A\B, since in this case the left hand side
is 1 and the right hand side is less or equal than 1. It remains to consider the case in
which x ¢ A U B. In this case, y4(x) = 0, hence the right hand side is nonpositive,
which gives that (4.3.11) holds true.
By (4.3.11),
Xas(0) = (Xa(x) — xp(x)) -

Asa consequence,

((E— tv)\E) ~ Bgja| = jB X(5—oy () dx
R/2

\%

| om0 xe00) = [ (este+ )~ xe) , dx

Bg)> Br)2

and  |(E\(E - tv)) ~ By = jB X5ty () dx
R/2

\%

| w0 ~xe-0), dx = [ (xe0 ~xelx+ ), dx

BR/Z BR/Z

= J (Xe(x + tv) — xg(x)) _ dx.
Bg)>

This and (4.3.10) give that

CR™% ¢ > min {f (Xe(x + tv) — xe(x)) , dx, f (Xe(x + tv) — xg(x)) _ dx} ,
Br/2 Br2

which is (4.3.5). This ends the proof of Lemma 4.3.1. O

With the preliminary work done in Lemma 4.3.1 (to be used here with R = 1), we can
now complete the proof of Theorem 4.1.4. To this end, we observe that

f (XE(xX + tv) — Xe()) , dx— j (XE(x + tv) — xp(x))_ dx
Bi) By

- j (XE(X + tv) — xE(x)) dx
Bi

J Xe()dx— | xe(o dx
Byjp—tv B,

S |(B1/2 - tV)ABl/z‘
< Ct, (4.3.12)
for some C > 0.

Also, we observe that, for any a, b € R,

a+b < |a-b|+2min{a, b}. (4.3.13)
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Indeed, up to exchanging a and b, we may suppose that a > b; thus
a+b=a-b+2b=|a-b|+2min{a, b},

which proves (4.3.13).
Using (4.3.5), (4.3.12) and (4.3.13), we obtain that

jB IXE(X+ tv) — xp(x)] dx
1/2

= [ e ) xe00) e [ (et ) - xe0)_ax
By, By,

N

| et ev) = xe0a) dx— [ (xae+ )~ xs(0)
By By,

+2 min {JB (Xe(x + tv) —xe(0), dx, f (Xe(x + tv) — xe(x))_ dx}
1/2

1/2

< Ct

up to renaming C. Dividing by t and sending ¢ \, O (up to subsequences), one finds
that

| 1oaseorax<c,
By

forany v e S$"1. in the bounded variation sense. Since the direction v is arbitrary,
this proves that

Per (E, By);) = f [Vxe(x)| dx < C.
B

1/2

This proves Theorem 4.1.4 with R = 1, and the general case follows from scaling.

4.4 Proof of Theorem 4.1.8

In this part, we will make use of some integral geometric formulas which compute the
perimeter of a set by averaging the number of intersections of straight lines with the
boundary of a set.

For this, we recall the notation of the positive and negative part of a function u,
namely

U4 (x) := max{u(x), 0} and u_(x) := max{—u(x), 0}.

Notice that u+ > 0, that |u| = u4+ + u_ and thatu = uy —u_.
Also, if v e 6B and p € R", we define

vii={yeR"sty v=0}
and p+Rv:={p+tvst.teR}.
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That is, v is the orthogonal linear space to v and p + Rv is the line passing through p
with direction v.

Now, given a Caccioppoli set E = R" with exterior normal v (and reduced bound-
ary denoted by 0*E), and v € 0B, we set

Iyt (y) i= sup T f Xe00 @ (x) dF (x), (44.)
y+Ry

with the sup taken over all smooth ¢ supported in the segment B; n (y + Rv) with

image in [0, 1]. We have (see e.g. Proposition 4.4 in [12]) that one can compute the

directional derivative in the sense of bounded variation by the formula

| @awsdx= | Remaeiy) (44.2)
B yevt
and we also have that I, + (y) is the number of points x that lie in By n (6*E) n (y +
Rv) and such that Fv - v(x) > 0. That is, the quantity I, 4 (y) (resp., I,,—(y)) counts
the number of intersections in the ball B; between the line y + Rv and the (reduced)
boundary of E that occur at points x in which v - v(x) is negative (resp., positive). In
particular,

L+(y)eZA[0,+x) =1{0,1,2,3,...}. (4.4.3)

Furthermore, the vanishing of I, 1 (y) (resp., I,— (y)) is related to the fact that, moving
along the segment B; n (y + Rv), one can only exit (resp., enter) the set E, according
to the following result:

Lemma 4.4.1. IfI, 4 (y) = O, then the map B1 n (y +Rv) 5 x — xg(x) is nonincreasing.

Proof. For any smooth ¢ supported in the segment B1 n (y + Rv) with image in [0, 1],

0=1I.(y)> - f Xe(X) @' (x) d3 (x),

y+Rv
that is
J,, . xe09 war >0,
which gives the desired result. O
Now we define
O1()i= | Fex(n) A" (y). (44.4)
yev+
By (4.4.2),
Dy (v) = Ll (Ovxe) < (x) dx. (4.4.5)

We observe that
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Lemma 4.4.2. LetPer (E, B1) < +ooandn > 2. Then the functions @+ are continuous
on S"1. Moreover, there exists v, such that

Dy (va) = D_(va). (4.4.6)

Proof. Letv, w e S""1. By (4.4.5),

@ (v) — Dy (W) < jB |(BuxE) + (%) — (Buxe)+ ()] dx

1

< j |ovXE(X) — owxe(x)| dx < |[v— w| J |[Vxe(x)| dx = |[v — w|Per (E, By).
B, B

This shows that @ is continuous. Similarly, one sees that @_ is continuous.
Now we prove (4.4.6). For this, let ¥(v) := @ (v) — @_(v). By (4.4.5),

Therefore
V()= DL (—V) —D_(—V) = D_(v) — D4 (v) = —=¥(v). (4.4.7)

Now, if ¥(e;) = 0, we can take v, := e; and (4.4.6) is proved. So we can assume
that ¥(e;) > 0 (the case ¥(e;) < Ois analogous). By (4.4.7), we obtain that ¥(—e;) <
0. Hence, since ¥ is continuous, it must have a zero on any path joining e, to —e, and
this proves (4.4.6). O

A control on the function @+ implies a quantitative flatness bound on the set E, as
stated here below:

Lemma 4.4.3. Letn = 2. There exists po > O such that for any y € (0, uo] the following
statement holds.
Assume that
D_(e2) < (4.4.8)

and that
max{®d(e1), P_(e1)} <M. (4.4.9)

Then, there exists a horizontal halfplane h — R? such that
|(E\h) ~ B1| + |(R\E) n B4| < C, (4.4.10)
forsome C > 0.

Proof. Given v € 0B;, we take into account the sets of y € v which give a positive
contribution to Iy, + (y). For this, we define

B (v) = {yevst. I, +(y) # 0}
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From (4.4.3), we know that if y € B4 (v), then I, +(y) > 1. As a consequence of this
and of (4.4.4), we have that

DL(v) > j L.+ (y) 3 (y) = H (B (v).

Bi(v)
Accordingly, by (4.4.8) and (4.4.9), we see that
HYB_(e3)) < (4.4.11)
and
HY(Bs(e1)) < . (4.4.12)

Furthermore, for any y € v\B, (v) (resp. y € v\B_(v)), we have that I, . (y) = 0
(resp., I,,— (y) = 0) and thus, by Lemma 4.4.1, the map B, n (y + Rv) 3 x — xg(x) is
nonincreasing (resp., nondecreasing).

Therefore, by (4.4.12), we have that for any vertical coordinate y € ef outside the
small set B_(e;) u B+ (eq) (which has total length of size 2), the vertical line y + Re;
is either all contained in E or in its complement (see Figure 4.7).

Fig. 4.7: Horizontal lines do not meet the boundary of E, with the exception of a small set Bt (e1).

That is, we can denote by S the set of vertical coordinates y for which the portion
in By of the horizontal line passing through y lies in E and, similarly, by G- the set
of vertical coordinates y for which the portion in B; of the horizontal line passing
through y lies in E€ and we obtain that G U Gg exhaust the whole of (-1, 1), uptoa
set of size at most 2.

We also remark that G lies below Ggc: indeed, by (4.4.11), we have that vertical
lines can only exit the set E (possibly with the exception of a small set of size u). The
situation is depicted in Figure 4.8.
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Fig. 4.8: Vertical lines do not meet the boundary of E, with the exception of a small set B_(e>).

Hence, if we take h to be a horizontal halfplane which separates G and Ggc, we
obtain (4.4.10). O

With this, we can now complete the proof of Theorem 4.1.8. The main tool for this
goal is Lemma 4.4.3. In order to apply it, we need to check that (4.4.8) and (4.4.9) are
satisfied. To this end, we argue as follows. First of all, fixed a large R > 2, we consider,
as in Section 4.3, a diffeomorphism @' such that @'(x) = x for any x € R™\Bgg /10> and
@'(x) = x + tv for any x € Bsg,, and we set E; := @'(E). From (4.3.5) (recall that
here n = 2), we have that

Ct

(Xe(x + tv) — xg(x))_ dx} < B
Br)»

min {L (Xe(x + tv) = xe(x)) , dx, f
R/2

for some C > 0. Thus, dividing by ¢ and sending ¢ \, 0,

min {L (ovxe()) . dx, JB (ovxe(x)) _ dx} < s
R/2 R/2

That is, recalling (4.4.5),

min {®4 (v), D_(v)} < R—Cs (4.4.13)

We also observe that E has finite perimeter in By, thanks to Theorem 4.1.4, and so we
can make use of Lemma 4.4.2. In particular, by (4.4.6), after a rotation of coordinates,
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we may assume that @, (e;) = @_(e;). Hence (4.4.13) says that
. C
max {®(e1), P_(e1)} = min{D4(e1), P_(e1)} < R (4.4.14)
Also, up to a change of orientation, we may suppose that @_(e,) < @ (e,), hence in
this case (4.4.13) says that

C
(D_(ez) < ﬁ.

From this and (4.4.14), we see that (4.4.8) and (4.4.9) are satisfied (with u = C/R®) and
so by Lemma 4.4.3 we conclude that

C
Rs’
for some halfplane h. This completes the proof of Theorem 4.1.8: as a matter of fact, the
result proven is even stronger, since it says that, after removing horizontal and vertical
slabs of size C/R®, we have that JF in B; is a graph of oscillation bounded by C/RS,
see Figure 4.8 (in fact, more general statements and proofs can be find in [12]).

|(E\h) ~ By| + |(h\E) ~ By| <

4.5 Sketch of the Proof of Theorem 4.1.12

The core of the proof of Theorem 4.1.12 consists in constructing a suitable barrier that
can be slided “from below” and which exhibits the desired stickiness phenomenon:
if this is possible, since the s-minimal surface cannot touch the barrier, it has to stay
above the barrier and stick at the boundary as well.

So, the barrier we are looking for should have negative fractional mean curvature,
coincide with F outside (—1, 1) x R and contain (-1, 1) x (—o0, §7).

Such barrier is constructed in [19] in an iterative way, that we now try to describe.

Step 1. Let us start by looking at the subgraph of the function y = ’%, given ¢ > 0.
Then, at all the boundary points X = (x, y) with positive abscissa x > 0, the fractional

mean curvature is at most
c

© max{1, } [X|>s’
for some ¢ > 0. The full computation is given in Lemma 5.1 of [19], but we can give a
heuristic justification of it, by saying that for small X the boundary point gets close to
the origin, where there is a corner and the curvature blows up (with a negative sign,
since there is “more than a hyperplane” contained in the set), see Figure 4.9. Also, the
power 2s in (4.5.1) follows by scaling.
In addition, if ¢ is close to 0, this first barrier is close to a ninety degree angle,
while if /is large it is close to a flat line, and these considerations are also in agreement
with (4.5.1).

(4.5.0)

Step 2. Having understood in Step 1 what happens for the “angles”, now we would like
to “shift iteratively in a smooth way from one slope to another”, see Figure 4.10.
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Fig. 4.9: Description of Step 1.

Fig. 4.10: Description of Step 2.

The detailed statement is given in Proposition 5.3 in [19], but the idea is as follows.
Forany K € N, K > 1, one looks at the subgraph of a nonnegative function vg such
that

vg(x) =0ifx <0,

vk(x) = ag if x > 0, for some ag > O,

vg(x) = X7 for any x > ¢k — g, for some ¢x > K and g € |0, ¢ |,
at all the boundary points X = (x, y) with positive abscissa x > 0, the frac-
tional mean curvature is at most for some ¢ > 0.

- c
Ok |X|2$,

Step 3. If K is sufficiently large in Step 2, the final slope is almost horizontal. In this
case, one can smoothly glue such barrier with a power like function like x3+steo, Here,
£p is any fixed positive exponent (the power ~ in the statement of Theorem 4.1.12 is
related to &g, since y := %). The details of the barrier constructed in this way are
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given in Proposition 6.3 of [19]. In this case, one can still control the fractional mean
curvature at all the boundary points X = (x, y) with positive abscissa x > 0, but the
estimate is of the type either |X| =25, for small |X], or |X| ™~ 1S+ for large | X|. A sketch
of such barrier is given in Figure 4.11.

Fig. 4.11: Description of Step 3.

Step 4. Now we use the barrier of Step 3 to construct a compactly supported object.
The idea is to take such barrier, to reflect it and to glue it at a “horizontal level”, see
Figure 4.12.

Fig. 4.12: Description of Step 4.

We remark that such barrier has a vertical portion at the origin and one can control
its fractional mean curvature from above with a negative quantity for the boundary
points X = (x, y) with positive, but not too large, abscissa.

Of course, this type of estimate cannot hold at the maximal point of the barrier,
where “more than a hyperplane” is contained in the complement of the set, and there-
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fore the fractional mean curvature is positive (the precise quantitative estimate is given
in Proposition 7.1. of [19]).

Step 5. Nevertheless, we can now compensate this error in the fractional mean curva-
ture near the maximal point of the barrier by adding two suitably large domains on
the sides of the barriers, see Figure 4.13.

Fig. 4.13: Description of Step 5.

The barrier constructed in this way is described in details in Proposition 7.3 of [19]
and its basic feature is to possess a vertical portion near the origin and to possess
negative fractional mean curvature.

By keeping good track of the quantitative estimates on the bumps of the barriers
and on their fractional mean curvatures, one can now scale the latter barrier and slide
it from below, in order to prove Theorem 4.1.12. The full details are given in Section 8
of [19].

A A Short Discussion on the Asymptotics of the
s-perimeter

In this appendix, we would like to emphasize the fact that,ass ' 1/2, the s-perimeter
recovers (under different perspectives) the classical perimeter, while, as s \, 0, the
nonlocal features become predominant and the problem produces the Lebesgue mea-
sure - or, better to say, convex combinations of Lebesgue measures by interpolation
parameters of nonlocal type.

First of all, we show that if E is a bounded set with smooth boundary, then

lim (1 — 2s)Pers (E,R") = k,,_; Per (E, R™), Al
5/1132( ) Pers ( ) = Kkn—1 Per ( ) (A1)

where we denoted by ky the n-dimensional volume of the n-dimensional unit ball.
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For further convenience, we also use the notation
on = HTHS"TY).

Notice that, by polar coordinates,

. . @n
Kn = Lnil UO p" 1 dp] dH" " (x) = o (A2)

We point out that formula (A.1) is indeed a simple version of more general approxima-
tion results, for which we refer to [4, 14, 2, 25, 9] and to [10] for the regularity results
that can be achieved by approximation methods. See also [17] for further comments
and examples.

The proof of (A.1) can be performed by different methods; here we give a simple
argument which uses formula (4.1.13). To this aim, we fix x ¢ )Eand § > 0.If y €
(0E) n Bg(x) and § is sufficiently small, then v(y) = v(x) + O(6§). Moreover, for any
0 € (0, 8], the (n—2)-dimensional contribution of 0E in 0B, (x) coincides, up to higher
orders in 8§, with the one of the (n — 2)-dimensional sphere, that is @, g”*Z, see
Figure 4.14.

OF

Fig. 4.14: H"~2((0E) n 0By (x)) (in the picture, n = 3).

As a consequence of these observations, we have that

v(x) -v(y) n—1 J 1+ 0(6) -
PO VY gg¢ _ _140@) g,
‘LaE)ﬁBg(X) |X - y|n+2572 (y) (aE)ﬁBﬁ(x) |X _ y|n+2572 (y)

8 H"=2((0E) n (0Bp))
0n+25—2

- (1+00) |

0

do

) n—2
— (14 0(8)) Dn_s L do
(1+ 0(6)) Dn_y 62

1-2s

Qn+25—2
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On the other hand,

_ H"1(9E)
= gnt2s—2

V(X) ) V(y) n—1
— == dH
J(E’E)\Bs(x) X — y|n+2s—2 )

Therefore

v(x)-v(y) -1 (1+0(8)) Wp_1 6" n—2s42
LEWCKH" V)= 1-2s +0(6 e )-

Accordingly, recalling (4.1.13),

lim (1 — 2s)Pers (E,R")

5,/1/2
. 1-2s v(x)-v(y) n—1 ] n—1
51/1111}2 2s(n+2s-2) LE U“E |x —y|n+2s=2 BE) | )

o

L 1-2s (1+0(8) @n16"% 2542 n-1
[ [B010 ]
1-2s o —n—2s+2
i (15008 @187 4 (1-25)0(8 ) 401 o)
s,1/2 n-1

Hence, by taking § arbitrarily small,

Wn— _
lim (1 — 2s)Pers (E,R") = —*—L 3"~ 1(0E),
8/1/2( ) Pers ( )="7 (CE)

which gives (A.1), in view of (A.2).
Now we show that, if n > 3 and E is a bounded set with smooth boundary,

lim s Pers (E, R") = 2" |E|. (A3)
s\0 2

Once again, more general (and subtle) statements hold true, see [23, 18] for details.

To prove (A.3), we denote by

1
(n—2)wn |x|"2

I'(x):=
the fundamental solution*” of the Laplace operator when n > 3, that is

—AT'(x) = 8o(x),

4.7 1t is interesting to understand how the fundamental solution of the Laplacian also occurs when

n = 2.In this case, we observe that if ¢z := §,, v(y) dH"~'(y), then of course

v(x) - v(y) dH"H(x) dH" " H(y) = f v(x) - cpdH" " (x) = j divycg dx = j 0dx = 0.
(9E) % (OF) o £ g
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where 6 is the Dirac’s Delta centered at the origin. Then, from (4.1.13),

Yim 5 Pers (E, R") = ﬁ J UaE % dﬂ{"_l(J/)] dH" " (x)
=2 [ [ weore-y aset| ase
= % . L divy (v ()T (x — y)) dy] dH" " (x)
=2 [ ][0 vere-yay] aset
-2 ) [LE v(x) - VyT(x — y) d:}c"*l(x)] dy
=2 [ [[[awe o) ax] ay
—— E”E AT(x — y) dx dy
=2 [[ sox -y dxay

ExE
-2 Ll dy
= ZHiEL

that is (A.3).
We remark that formula (A.3) is actually a particular case of a more general phe-
nomenon, described in [18]. For instance, if the following limit exists

a(E) := li ﬁj dx

= lim —
s\0 Wn E\B: ‘X‘n+25
then 5
lim = Pers (E, Q) = (1 —a(E)) |En Q|+ a(E) |Q\E|. (A4)
S\O wn
Hence, we write
R = exp (—2slog|x —y|) = 1 — 2slog |x — y| + O(s?),
thus
1 V(X) ) V(Y) n—1 n—1
s 7|x s dH"H(x) dH" " (y)
(PE) x (3E)
- v(x) - v(y) log|x — y| d3" " (x) dH" " (y) + O(s)
(9E) x (9E)

and one can use the same fundamental solution trick as in the case n > 3.
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Notice indeed that (A.3) is a particular case of (A.4), since when E is bounded, then
a(E) = 0. Equation (A.4) has also a suggestive interpretation, since it says that, in a
sense, as s \, 0, the fractional perimeter is a convex interpolation of measure con-
tributions inside the reference set Q: namely it weights the measures of two contri-
butions of E and the complement of E inside Q by a convex parameter a(E) € [0, 1]
which in turn takes into account the behavior of E at infinity.

B A Short Discussion on the Asymptotics of the
s-mean Curvature

As's  1/2, the s-mean curvature recovers the classical mean curvature (see [1] for
details).

A very natural question raised to us by Jun-Cheng Wei dealt with the asymptotics
as s \, O of the s-mean curvature. Notice that, by (A.3), we know that 2s times the
s-perimeter approaches m, times the volume. Since the variation of the volume along
normal deformations is 1, if one is allowed to “exchange the limits” (i.e. to identify the
limit of the variation with the variation of the limit), then she or he may guess that 2s
times the s-mean curvature should approach @n.

This is indeed the case, and higher orders can be computed as well, according to
the following observation: if E has smooth boundary, p € JE and E < Bg(p) for some
R > 0, then

25 H}(p) = @n + 25 f XesX) “XEX) gy, logR) +o0(s),  (B)
Br(p) |X7p|

as s \, 0. To prove this, we first observe that, up to a translation, we can take p = 0.
Moreover, since E lies inside Bp,

j Xee(X) —XE(X) o _ J dx
Re\By  |X|"T2S Rr\By |X|MF28

Wn Wn

= % (1 —2s1logR +o(s)). (B.2)

In addition, since JF is smooth, we have that (possibly after a rotation) there exists
8o € (0, min{1, R}) such that, for any § € (0, 8], E n B contains {x, < —M|x'|*}
and is contained in {x, < M|x’|?}. Here, M > 0 only depends on the curvatures of
E and we are using the notation x = (X', x,) € R"! x R (notice also that since we
took p = 0, the ball By is actually centered at p).

Therefore, we have that yzc(x) — xg(x) = —1 forany x € Bs n {xn < —M|x’|*} and
Xge(x) — xg(x) = 1 forany x € Bs ~ {xn = M|x'|*}. In this way, a cancellation gives
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that
f XEe (X) _Q(E(X) dx — 0.
Bsn{lxal=Mlx2y  [X[MF2S

As a consequence, for any o € [0, s], if s € (0, 1/4),

1
< ax’ | dxn —
J{\x'\@} <My X720

|X/|2 ' 2Mwn 5120
(<o) XH20 70 1 =20

XEe(X) — XE(X)
|X|n+20 dx

Bs

<2M < 4Mwon 62,

Therefore, we use this inequality with ¢ := 0 and ¢ := s and the Dominated Conver-
gence Theorem, to find that

; Xee () —Xe(X) [ XE<(X) —XE(X)
T

< lim J Xee () — Xe(X) dx—f Xee(X) —XE(X) + 8M @y, 612
s\ |JBg\B; |x|™ Br\Bs |x|n+2s

= 8MZDn 61/2.

Hence, since we can now take § arbitrarily small, we conclude that

: Xee () —Xe(X) 5 [ Xee(X) —xe(0) , |
1 e M
In view of this, and recalling (4.1.14) and (B.2), we find that
1 SN Xee(X) —Xe(x) .
81{1})3 2s Hy(0) — @n 25( 5 MR dx — @n logR
L1 Xee() —Xe(x) . XEc(O) —Xe(X) ,
<3{r3)5 2s N s dx —wn — 2s N s dx — wn logR
XEe(X) — XE(X) XEe(X) — XE(X)
+2 ar ) ARV dx — Az L LBV dx
Be x| By |X|"t2s
o1
= 51{% S [@n (1 —2s1ogR + 0(s)) — @n + 25@n logR‘
=0.
This proves (B.1).

C Second Variation Formulas and Graphs of Zero
Nonlocal Mean Curvature

In this appendix, we show that the second variation (say, with respect to a normal
perturbation 1) of the fractional perimeter of surfaces with vanishing mean curvature



202 —— Serena Dipierro and Enrico Valdinoci

is given by

o[ M =100 gyeneryy [ AL -r0) )],

HL(y).
og X~y Y »)

A rigorous statement for this claim will be given in the forthcoming Lemma C.1: for the
moment, we remark that the expression above is related with the Jacobi field along
surfaces of vanishing nonlocal mean curvature. We refer to [15] for full details about
this type of formulas. See in particular formula (1.6) there, which gives the details of
this formula, Lemma A.2 there, which shows that, as s ~ 1/2, the first integral ap-
proaches the Laplace-Beltrami operator and Lemma A.4 there, which shows that the
latter integral produces, as s ' 1/2, the norm squared of the second fundamental
form, in agreement with the classical case.

Here, for simplicity, we reduce to the case in which E is a graph and we consider a
small normal deformation of its boundary, plus an additional small translation, and
we write the resulting manifold as an appropriate normal deformation. The details go
as follows:

Lemma C.1. Let > < R" beagraph of class C2, and let E be the corresponding epigraph.
Letv = (v1,...,vn) be the exterior normal of ¥ = JE.
Givene > 0 and X € X, we set

={x+en(x)v(x) —en(x)v(x), x € X}. (cy)

Then, if € is sufficiently small, ¥ is a graph, with epigraph a suitable E¥, with X € 0EZ,
and

lim 5 (30 — Hy ) f WM aser )

NY) =10 ggen-1(y)

5 |X— ‘n+25
nx) [1-vx) vy _
J \x y[n+2s ).

Proof. We denote by  : R"~! — R the graph of class C? that describes . In this way,
we can write E = {xn < y(x')} and

/ ’ )= (_V’Y(X/)’l)
1+ V()2

We also write k = (k/, kn) := n(X) v(X). Then

= {(X’, (X)) + en(x', ~(x)) m —ex, X' e Rnl}

_ {(X/£K/en(X’,v(X’))Vv(X’), ) ey _E1X0) ),X,eRnl}_

1+ V(X)) T V1H V()P
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So we define

en(x',v(x")) vy (x) .

=y (X)) i=x —ex — (C.2)
oy T+ [V 00 2
Notice that, if € is sufficiently small
/ /
det oy X) # 0.

ox!
Moreover, |Vy(x')| < 1 + |V~ (x')|* and therefore
Y ()| = |X'| — e’ — & — +0 as |x| — +o0.

Hence, by the Global Inverse Function Theorem (see e.g. Corollary 4.3 in [24]), we
have that y’ is a global diffeomorphism of class C? of R"~!, with inverse diffeomor-
phism x’ = x’(y’). Thus, we obtain

Z;k = { ()’l, 'Y(Xl(yl)) — EKn + £n<X/(yl)”y<Xl(yl))))’ y/ c Rnl} .

1+ |V (o))

This is clearly a graph, whose corresponding epigraph can be written as EX = {yn <
V& (y')}, with

- EU(X'()”),V(X'()"))).
1+ |V7(x’(y’))\2

7% (V) = (X(y)) —ex

By (C.2), we have that y’(x{,) = x{, therefore v¥(X') = ~v(x') and so X € 0E¥. We also
notice that
/ /
gn(y,—’Y(YE)z + g2 R(y’ )
1+ [Vy(y)l

L N o ENY YYDV eny’, 7)) 2p0s
=70) + V() (€K+ T v ) €Kn + 1+|V7(y’)|2+£ R(Y)

VW) =v)+ V) - (X () —Y) —exn +

o / oy — . 001 Y ap
=) + &1+ V()2 (n(ym(y)) K 1+|V’Y()’/)|2>+8 R(y)

for a suitable remainder functions R (possibly varying from line to line), that are
bounded if so is |[D?~|.
Accordingly,

/

EXNE = {7(/) <yn <%0}
= {40 <yn <0 +e(E0) + RO T,

where

B0 ==\ 1+ V301 (0070 = x-2(/))
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(VA(y'), -1)

o / [ pp—
S AV 2T

Notice that &(y") = v(y', y(y')). Similarly,

EEf < {1(/) = e(E0/) + £RY) ™ <yn <10}

Therefore
lim J _ A gyl JWWHS(E(V’)“R(V’»* _dyn | Gy
£—-0 € E*\E ‘X )’|n+25 e—0 &€ Jpn-1 (') |Y_y‘n+25
_ f EHy) i
nt2s
Rn—1 (W/ _ y/‘z + |Yn _ ’Y()’/)|2) 2

and, similarly

1 dy B 50 /
31—13(1)8 BB X — y|n+2s - JR" 1 (| ni2s dy'.

As a consequence,

lim i(HE( X) — Hs (9))

c—0
o1 dy dy
- M [JE;"\E X —y|n+2s JE\E;" X - )’"“S]
_ E) )
B J]R"*l *’ / 2 ¥ 7\|2 %ZS d)/
(‘ =y |Xn—’Y(J’)\ )

N jRn1V1+W’Y |2 v) U(y)ﬂdy/

Y\2+|Xn— YY)12) 2
'1 ) 1
that is the desired result. O

Aninteresting consequence of Lemma C.1is that graphs with vanishing nonlocal mean
curvature cannot have horizontal normals, as given by the following result:

Theorem C.2. Let E c R". Suppose that E is globally of class C* and that H}(x) = 0
forany x € OE.

Letv = (v1(x), ..., vn(X)) be the exterior normal of E at x € JE.

Then vn(x) # 0, for any x € JE.

To prove Theorem C.2, we first compare deformations and translations of a graph.
Namely, we show that a normal deformation of size v, of a graph with normal v =
(v1,...,vn) coincides with a vertical translation of the graph itself, up to order of €.
The precise result goes as follows:
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Lemma C.3. Let X — R" be a graph of class C? globally, and let E be the corresponding
epigraph. Let v = (v1, ..., vn) be the exterior normal of ¥ = OE.
Given € > 0, let
Yei={x+evm(x)v(x), xeX}. (C.3)

Then, if € is sufficiently small, X is a graph, for some epigraph E¢, and there exists a
C?-diffeomorphism ¥ of R" that is Ce?-close to the identity in C*>(R™), for some C > 0,
such that

¥(Ee) = E + gen.

Proof. We denote by v : R*~! — R the graph that describes 2. In this way, we can
write E = {xn < v(x’)} and

(—Vy(x), 1)

VI+ [V

v(x) = v(X',7(x)) =
Accordingly,

T = {(X/’V(X/))’LSHV’Y(X’)IZ’

;o V’Y(Xl) / & ’ n—1
{(X £1+\Vv<x'>|2’”(“+1+|wx'>\2)’XER }

To write 2, as a graph, we take as new coordinate

( — V’y(X/), 1) X e Rn—l}

yV=yx):=x - s%. (C.4)

Notice that, if € is sufficiently small

/ !
det V- (X)

o # 0.

Moreovet, |Vy(x')| < 1 + |[V~(x')|? and therefore
Y (x)| = x| — & - 40 as x| » +o.

As a consequence, by the Global Inverse Function Theorem (see e.g. Corollary 4.3
in [24]), we have that )’ is a global diffeomorphism of class C? of R" 1, we write x’ =
x'(y") the inverse diffeomorphism and we have that
S = {(y’, XY+ 2) Ve R”‘l} :
1+ [Vy(x'(y))]

So we can write the epigraph of X¢ as

1+ [V (x ()|
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Now we define

P — (C.5)
1+ V(X0

andz = ¥(y) = Y(y/, yn) := y + @(y')en. By construction, we have that
Y(Ee) = {zn < y(Z') + €} = E + €en.
To complete the proof of Lemma C.3, we need to show that
|®]|c2 gy < CE?, (C.6)
for some C > 0. To this aim, we use (C.4) to see that

v !
X=y +e W))P + 010/,

1+ [V (Y
with |91 c2(gny < Ce?. Accordingly, by (C.5), we have that

() =10 = (y’ + e#g’(y),)‘z + <p1(y’))

€
R I

VA0 £
1+ VA0 & 1+ vy

+e—

=10/") =20) o He0)

= @20y,
with [@2c2(rny < Ce?. This proves (C.6), as desired. O
From Lemma C.3 here and Theorem 1.1 in [13], we obtain:

Corollary C.4. In the setting of Lemma C.3, for any p € X¢ = 0E¢ we have that
|H2, () — Hsee, (P(D))] < C€2,
for some C > 0.
Now we complete the proof of Theorem C.2. To this aim, we observe that
vn(x) = 0 for any x € OE, (C7)
since E is a graph. Suppose that, by contradiction,
vn(X) = 0 for some x € JE. (C.8)

We use this and Lemma C.1 with  := v, and we find that

lim 5o (HER) — Hyy () = [ 0 a6 (9). 9)
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Also, comparing (C.1) (with n := v,) and (C.3), and using again (C.8), we see that
E} = E¢ and so Corollary C.4 gives that

Hys (X) = Hi 4o, (V) + O(€?),

for some y € 0 + ey. Since Hj, vanishes, we can use the translation invariance to see

that also Hg , ., vanishes. So we conclude that

B () = 0(e?).

These observations and (C.9) imply that

J Vn(y) dg{n—l(y) - 0.
z

X =y

Hence, in view of (C.7), we see that v, must vanish identically along . This says that
2 is a vertical hyperplane, in contradiction with the graph assumption. This ends the
proof of Theorem C.2.
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Online lectures

There are a few videotaped lectures online which collect some of the material pre-
sented in this set of notes. The interest reader may look at

- http://www.birs.ca/events/2014/5-day-workshops/14w5017/videos/watch/
201405271048-Valdinoci.html

— https://www.youtube.com/watch?v=2j2rlykoyuE
— https://www.youtube.com/watch?v=EDJ8uBpYpB4

- https://www.youtube.com/watch?v=s_RRzgZ7VcM&list=PLj6jTBBj-
5B_Vx5qA-HelhGUnGrCu7SdW&index=7

— https://www.youtube.com/watch?v=0kXncmRbCZc&index=14&list=
PLj6jTBBj-5B_Vx5qA-HelhGUnGrCu7Sdw


http://www.birs.ca/events/2014/5-day-workshops/14w5017/videos/watch/201405271048-Valdinoci.html
http://www.birs.ca/events/2014/5-day-workshops/14w5017/videos/watch/201405271048-Valdinoci.html
https://www.youtube.com/watch?v=2j2r1ykoyuE
https://www.youtube.com/watch?v=EDJ8uBpYpB4
https://www.youtube.com/watch?v=s_RRzgZ7VcM&list=PLj6jTBBj-5B_Vx5qA-HelhGUnGrCu7SdW&index=7
https://www.youtube.com/watch?v=s_RRzgZ7VcM&list=PLj6jTBBj-5B_Vx5qA-HelhGUnGrCu7SdW&index=7
https://www.youtube.com/watch?v=okXncmRbCZc&index=14&list=PLj6jTBBj-5B_Vx5qA-HelhGUnGrCu7SdW
https://www.youtube.com/watch?v=okXncmRbCZc&index=14&list=PLj6jTBBj-5B_Vx5qA-HelhGUnGrCu7SdW
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- http://www.fields.utoronto.ca/video-archive/2016/06/2022-15336

— http://www.mathtube.org/lecture/video/nonlocal-equations-various-
perspectives-lecture-1

- http://www.mathtube.org/lecture/video/nonlocal-equations-various-
perspectives-lecture-2

— http://www.mathtube.org/lecture/video/nonlocal-equations-various-
perspectives-lecture-3

- http://www.birs.ca/events/2016/5-day-workshops/16w5065/videos/watch/
201609291100-Dipierro.html
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Rupert L. Frank
Eigenvalue Bounds for the Fractional
Laplacian: A Review

Abstract: We review some recent results on eigenvalues of fractional Laplacians and
fractional Schrédinger operators. We discuss, in particular, Lieb-Thirring inequalities
and their generalizations, as well as semi-classical asymptotics.

5.1 Introduction

An attempt is made, at the request of the editors of this volume to whom the author
is grateful, to review some recent developments concerning eigenvalues of fractional
Laplacians and fractional Schrédinger operators. Such review is necessarily incom-
plete and biased towards the author’s interests. It is hoped, however, that this collec-
tion of results will provide a useful snapshot of a certain line of research and that the
open questions mentioned here stimulate some further research.

As is well known, the fractional Laplacian appears in many different areas in con-
nection with non-local phenomena. Here we are particularly interested in problems
related to quantum mechanics, where the square root of the Laplacian is used to model
relativistic effects. Early works on the one-body and many-body theory include [64, 30]
and [36, 83, 84, 44, 85], respectively, and we refer to these for further physical motiva-
tions.

Let us define the operators in question. For an open set Q = R? we denote by
H*(Q) the set of all functions in the Sobolev space H®(R?) which vanish almost every-
where in R%\Q. We denote the Fourier transform of i by

7 1 —ip-x
JRde X () dx .

Y(p) = 2
The non-negative quadratic form
[ e, weir@),

(note that 1 is zero almost everywhere on R%\() is closed in the Hilbert space L?(Q)
and therefore generates a self-adjoint, non-negative operator

HY  inL*Q).
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For0 < s < 1wecall HS) the fractional Laplacianin Q. When s = 1, this construction
gives the usual Dirichlet Laplacian, which we denote by -4, = Hg). When Q =
RY, then H]gd) coincides with the fractional power s (in the sense of the functional
calculus) of the operator —Ag+ and we will simplify notation by writing (—A4)° = H]%Sd).
It is important to note that, if Q » R9 (up to sets of capacity zero), then H S ) does not
coincide with the fractional power of the operator —A( and, in fact, the comparison
of these two operators is one of the recurring themes in this review.
There is a useful alternative expression for the fractional Laplacian, namely,

[, 1P b dp = aq, ﬂ b0 yd+23'2 dx dy

for all i € H*(RY) with
25-1_—ap T(HE)
=2 s —_—s .
IT(—s)]
This is a classical computation, which we recall in Appendix A.
Besides the fractional Laplacian on an open set we will also be interested in the
fractional Schrédinger operator (—A)® + V. Heuristically, the connection between the
two operators is that the fractional Laplacian in Q is the special case of the fractional
Schrédinger operator with the potential V which equals 0 on Q and + o0 on its comple-
ment. This intuition can be made precise as a limiting theorem, at least in the case of
a not too irregular boundary, but we will not make use of this here. Nevertheless, it is
useful to keep this connection in mind when comparing the results for both operators.
As we said, our main concern here are eigenvalue bounds for H S ) and (=4)° + V.
It is technically convenient to consider, instead of eigenvalues, the numbers given by
the variational principle. Namely, for a general self-adjoint operator A with quadratic
form a in a Hilbert space and for n € N we define

aq,s (5.1.1)

En(A) := M) .

su mn
Yrooes ¢n 1(0¢wlw1 ,,,,, Y [P

According to the variational principle (see, e.g., [93, Theorem XIIL1]), if En(A) <
inf ess-spec(A), then En(A) is the n-th eigenvalue of A, counting multiplicities. In
general, however, E,(A) need not be an eigenvalue. Since our tools in this paper are
of variational nature, they lead naturally to inequalities for E,(A), independently of
whether or not it actually is an eigenvalue.

Let us briefly outline the structure this review. In Section 5.2 we begin with lower
bounds on the ground state energies E; (H (S)) and E1((—A)® + V). These lower bounds
come naturally from the shape optimization problems of minimizing E1 (H (s )) among
all Q with given measure and minimizing E; ((—A4)® + V) among all V with given L?
norm. The (classical) answers are given in Theorems 5.2.1 and 5.2.2. We then turn to
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comparing the eigenvalues of the operators H g ) and (—Agq)® and recall a theorem from
[32].

In Section 5.3 we discuss the asymptotics of Ej (Hg)) asn — oo and of #{n :
En((-=A4)° + aV) < 0} as @ — 0. Both questions are closely related, because studying
the asymptotics of Ey (HS)) as n — oo is the same as studying #{n : Ej (HS)) < u}
as u4 — oo, which is the same as studying #{n : En(hstg) —1) < 0tash — 0.
Clearly, studying #{n : En((—A4)° + aV) < 0} as a — oo is the same as studying
#{n:En (hZSHS) —V) < 0}ash — 0, soboth questions correspond to a semi-classical
limit with an effective Planck constant h tending to zero. While the leading term in
the asymptotics is well known and given by a Weyl-type formula, there are still open
questions corresponding to subleading corrections.

In Section 5.4 we supplement the asymptotic results on the number and sums of
eigenvalues by ‘uniform’ inequalities which hold not only in the asymptotic regimes
considered in the previous section. The important feature of these inequalities is, how-
ever, that they have a form reminiscent of the asymptotics. We present such eigen-
value bounds not only for H!()S) and (—A)° + V, but also for operators of the form
(—A4)° — W + V, where W is an explicit ‘Hardy weight’.

We conclude with a short Section 5.5 on (some of) the topics that we have not
treated in this paper.

5.2 Bounds on Single Eigenvalues

5.2.1 The fractional Faber-Krahn inequality

We recall that E; (H S)) denotes the ground state energy of the fractional Laplacian on
an open set Q = R%. Using Sobolev interpolation inequalities on R? (see, for instance,
(5.2.4) below) and Holder’s inequality it is easy to prove that

Ev(HY)) > Cy 0724

for some positive constant C, ; depending only on d and s. The fractional Faber—
Krahn inequality in the following theorem says that the optimal value of the constant
C,,s is attained when Q is a ball. We recall that for any measurable set E R4 of fi-
nite measure, E* denotes the centered, open ball with radius determined such that
[E*| = |E].

Theorem 5.2.1. Let Q = R? be open with finite measure. Then
Ey(HY)) > Er(Hy))

with equality if and only if Q is a ball.
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This theorem follows easily using symmetric decreasing rearrangement (see, e.g., [80]
for a textbook presentation). We know [6] that

I(=2) 2|2 = [(~4) 2 p*|?, (5.2.1)

where y* denotes the symmetric decreasing rearrangement of 1, and since |i*|?
[y|? and * is supported in Q*, we obtain the inequality in the theorem. The unique-
ness of the ball follows from the strictness statement for (5.2.1), see [27, 56]. (We also
mention that a version of (5.2.1) for functions on a interval appears in [59].) An alterna-
tive proof of Theorem 5.2.1, based on a comparison result for the corresponding heat
equations, can be found in [98]. For results related to and generalizing Theorem 5.2.1,
see [15].

It would be interesting to supplement Theorem 5.2.1 with a stability result analo-
gous to [58, 24], namely to show that E; (HS)) - E; (Hgi,)< ) is bounded from below by a
constant (depending only on s and d) times |Q|~2/9~2 inf{|BAQ|? : Bball with |B| =
Q13-

Theorem 5.2.1 corresponds to minimizing E; (HS)) among all sets Q with given

measure. Another interesting problem is to minimize E1 (H, S) ) among all convex sets Q
with given inner radius ry, (Q) := sup,q dist(x, Q). Optimal results for this question
appear in [8, 87].

5.2.2 The fractional Keller inequality

We recall that E;((—A4)° + V) denotes the ground state energy of the fractional
Schrédinger operator. In [70] Keller asked for s = 1 how small the ground state en-
ergy can be for a given LP norm of the potential; see also [82]. The following theorem
generalizes this result to the fractional case.

Theorem 5.2.2. Letd > 1,0 <s < landvy > 0.Ifd = 1 and s > 1/2 we assume in
addition that v > 1 — 1/(2s). Then

Ei((=4)° +V)

1+d/(2s7)
4 HVHVer/(ZsA)/

K5 = —

Moreover, there is a positive, radial, symmetric decreasing function W such that the in-
equality

d 1/~
Ei((=A)Y° + V) = Ky 45 ( f |V |7 +a/(2s) dx) (5.2.2)
R4
is strict unless V = —b~2W((x — a)/b) for some a ¢ R% and b > 0.

Let us briefly sketch the proof. The key idea (essentially contained in [82] for s = 1)
is that the inequality K, 4 s < co is equivalent to a Sobolev interpolation inequality.
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According to the variational definition of E; ((—4)% + V) we have

Koy infing LAY ¢ i VIYP ax
PY’ Ysi

d
B T 1t

Since the quotient in this formula remains invariant if we replace both V(x) by
b2V (bx) and ¥ (x) by cy(bx) for arbitrary b, c > 0, we can restrict the infimum to
potentials V with |V, 4/25) = 1 and to functions ¥ with || = 1. Moreover, since
the quotient does not increase if we replace V by —|V| we can restrict the infimum to
potentials V < 0. We summarize these findings as

K, .5 = inf {€g[] + Hg[, U] : U= 0, ] = [Ulg/q-2) = 1}

with g > 2 such that 1/(y + d/(2s)) + 2/q = 1,

EqlY] = | (=2 2Y|* — |92

and

b, U) = 113 — | UIP dx.

By Holder’s inequality we have 34, U] > 0 for U > 0 with ||U|4/4—2) = 1, and
equality holds if and only if U = (|y|/||4)9 2. Thus, K, 4 < oo is equivalent to

inf {Eq[Y] : ] = 1} > —0, (5.2.3)

and there is a bijective correspondence between V’s realizing equality in (5.2.2) and
Y’s realizing the infimum in (5.2.3). The statement (5.2.3) is, by scaling, equivalent to
the Sobolev interpolation inequality

(=822 P = 84 4 51l (5.2.4)

with a constant 84 , ¢ > 0 (and some 9 € (0, 1) uniquely determined by scaling). This
inequality is well known to hold for 2 < g < 2d/(d — 2s) ifd > 2s,for 2 < g < wif
d = 2sand for 2 < g < wif d < 2s. Therefore, we deduce that K, 5 ; < co under the
assumptions on v in the theorem. Moreover, if 84 , ; denotes the optimal constant in
(5.2.4), then it is also well-known that there is a minimizer i for which equality holds
(see, for instance, [29] for a proof for s = 1; the necessary modifications for s < 1 are,
for instance, in [19]). By the rearrangement inequality (5.2.1), this i can be chosen
positive, radial and symmetric decreasing. It was recently proved in [49, 50] that there
is a unique function Q such that any function achieving equality in (5.2.4) coincides
with Q after translation, dilation and multiplication by a constant, which leads to the
uniqueness statement in Theorem 5.2.2. This completes our sketch of the proof of the
theorem.

We expect that the method from [29], together with the non-degeneracy results
from [49, 50], leads to a stability version of (5.2.2).
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5.2.3 Comparing eigenvalues of Hg) and (—4p)°

It is important to distinguish between H (S), the fractional Laplacian on Q, and the
fractional power (—A4g)® of the Dirichlet Laplacian. These two operators are different,
but, as shown in the following theorem, the first one is always less or equal than the
second one. We recall that for two operators A, B, which are bounded from below, we
write A < B if their quadratic forms a, b with form domains D[a], D[b] satisfy D[a] >
D[b] and a[u] < b[u] for every u € D[b]. Note that A < B implies Ex(A) < En(B) for
allne N.

Theorem 5.2.3. Let Q « RY be openand 0 < s < 1. Then
HY) < (-49)° (5.2.5)
In particular,
En(HY)) < En((~40)°) = (En(~4g))*  forallne N. (5.2.6)

Moreover, unless R4\Q has zero capacity, the operators HS) and (—-Agq)? do not coin-
cide.

The first part of the theorem is due to Chen-Song [32] (see also [39] and its general-
ization in [33]), which extends earlier results in [9] for s = 1/2 and in [38] for s ir-
rational. The second part concerning strictness is from [47], where it is also shown
that, in a certain sense, Ej (HS)) and En((—A4q)°) have the same leading term as
n — oo, but a different subleading term; see Corollary 5.3.4 below for a precise state-
ment. An alternative proof of Theorem 5.2.3, which yields strict inequality in (5.2.6)
for any n for bounded Q, is in [88] and is based on the Caffarelli-Silvestre extension
technique [31]. In fact, it was recently shown in [75], using Jensen’s inequality, that
(0,1)3s—E n(HS))l/ $ is strictly increasing for any n if Q is bounded.

Let us sketch the idea of the proof of Theorem 5.2.3 in [47]. It is based on the ob-
servation that, if A is a non-negative operator in a Hilbert space with trivial kernel, P
an orthogonal projection and ¢ an operator monotone function on (0, o), then

P@(PAP)P > Pp(A)P. (5.2.7)

(This is closely related to the Sherman-Davis inequality, see, e.g., [28, Theorem 4.19].)
Using Loewner’s integral representation of operator monotone functions (see, for in-
stance, [18] or [97, Theorem 1.6]), (5.2.7) follows from

P(PAP)"'P < PA"'P, (5.2.8)

which, in turn, can be proved using a variational characterization of the inverse op-
erator in the spirit of Dirichlet’s principle. Inequality (5.2.5) follows immediately from
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(5.2.7) with the choice A = —A in L?(R9), P = multiplication by the characteristic func-
tion of Q (note that HS) = PASPin the quadratic form sense) and ¢ (E) = E® (which is
operator monotone for 0 < s < 1). Note that this argument gives an analogue of (5.2.5)
for any operator monotone function. If we only want (5.2.5), we do not need Loewner’s
theorem, but only the integral representation

. 0
Es:%nﬂs)f tS(%_HLE)dt ifo<s<1.
0

Analyzing the cases of equality in (5.2.8) shows that, under the assumption that
@ is not affine linear, equality in (5.2.7) holds iff ran P is a reducing subspace of A.
(This is stated in [47] only for positive definite A, which is needed for (5.2.8), but when
passing from (5.2.8) to (5.2.7) one always has a positive definite operator.) Since L?(Q)
is not a reducing subspace for —A in L?(R?) unless R?\Q has capacity zero, we obtain
the second part of the theorem.

While Theorem 5.2.3 gives an upper bound on E,(H g )) in terms of En(—A43,), the
following theorem, also due to Chen—Song [32], yields a lower bound.

Theorem 5.2.4. Let Q — R? be bounded and satisfy the exterior cone condition and
let 0 < s < 1. Thenthereis a cq s > O such that

En(HS)) = cos En((—40)°) = cas (En(=4g))°  forallne N. (5.2.9)
If Q is convex, (5.2.9) holds with cq s = 1/2.

We note that Theorem 5.2.4 allows one to obtain lower bounds on En(H S)) from lower

bounds on En(—A4g). For instance, one can show that for convex domains E; (HS)) is
bounded from below by a constant times r;, () ~2° [32]. This gives weaker inequalities,
however, than the direct approach in [8, 87].

5.3 Eigenvalue Asymptotics

5.3.1 Eigenvalue asymptotics for the fractional Laplacian

From a (fractional analogue) of Rellich’s compactness lemma we know that Hg) has
purely discrete spectrum when Q R4 has finite measure. In this subsection we dis-
cuss the asymptotics of the eigenvalues Ey, (HS)) as n — oo. The basic result is due to
Blumenthal and Getour [22] (see also [12, Rem. 2.2] and [61]).

Theorem 5.3.1. Let Q — R? be open with finite measure. Then

En(HY))

_ 2s, —2s/d| ~|—2s/d
n—oo n25/d - (27'[) wd |Q| (5.3.1)
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withwg = [{£ e R : |&] < 1}).

Alternatively, one can write (5.3.1) as

d/(2s) (s)y _ —d
ylergloy N(u,Hy’) = 2m) " “wq|Q|, (5.3.2)
where for an arbitrary self-adjoint operator A, which is bounded from below, we set
N(u,A) = #{n : En(A) < pu}.If A has discrete spectrum in (—oo, u), then N(u, A)
denotes the total number of eigenvalues below u, counting multiplicities.
For later purposes we record that (5.3.1) implies

N

. —1— d - _

NILH;ON 1-2s/d Z En(HS)) _ d+2s(2ﬂ)zswd ZS/d‘Q| 2s/d (5.3.3)
n=1

We also note that (5.3.2) and integration in u shows that, for any v > 0,

d/(2 (s)
Jim /( S>Tr(H —y) - 19,40, (5.3.4)
where
() g * (s) 1
Tr(H T =3 (En(HS) )_:wfo N(u, HY '~ d
n
and
1 v w; T(y+1)I(L +1)
Ld, = 7J %_1) dp=—4 2s : 5.3.5
7ds T (Qyd <|p| >— P= Fv+ £ +1) 63

A classical result of Weyl states that

lim p~9N(u, ~4q) = 1) w,|0Q|,

H—0
and therefore, by the spectral theorem,

lim y= YNy, (~49)°) = lim ()" ’N(', -Ag) = (2m) ‘w4 |Q].
H—00 p—o0
Comparing this with (5.3.1) we see that En(HS) and En(~4%) = (En(—Ag))* coin-
cide to leading order as n — oo. In the following we will be interested in subleading
corrections to the asymptotics in Theorem 5.3.1.
We begin with the case d = 1. After a translation and a dilation we can assume
without loss of generality that Q = (-1, 1).

Theorem 5.3.2. Let Q = (—1,1) c R. Then

2s
En(HY) - (% _ w) +omY (536)
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This theorem is due to Kwa$nicki [74] and generalizes an earlier result [72] for s = 1/2.
A key role is played by a detailed analysis of the half line problem [73].

Asymptotics (5.3.6) are remarkably precise. For s > 1/2 they give the first three
terms as n — oo. We also see that the liminf and the limsup of N(y,HgS)) -
nHQu'/ %) as y — oo are finite, but do not coincide. (In fact, the lim sup is pos-
itive for s € (0, 1), which shows that the analogue of Pélya’s conjecture fails in the
fractional case. This was first observed in [75].)

We now turn to the higher-dimensional case. The authors of [14] posed the prob-
lem to prove that, under suitable assumptions on Q, the quantity

n—(Zs—l)/d (EH(HS)) _ nZS/d(zn,)st;Zs/d|Q‘—Zs/d)

has a limit. For s = 1 this is a celebrated result by Ivrii [66] which holds under the
assumption that the set of periodic billiards has measure zero. In fact, after the first
version of this review was submitted, Ivrii [67] announced a solution of the above prob-
lem for s € (0, 1) under the same assumption.

The following theorem from [47] verifies the existence of a limit in the Cesaro
sense, that is, the quantity

N
(25— - d - -
N (2s—1)/d <N 1 Z En(HS)) _ i ZSNZS/d(Zﬂ)ZSwd ZS/d‘-Ql 25/d> (5.3.7)

n=1

has a limit. Just like (5.3.1) is equivalent to (5.3.2) and (5.3.3) is equivalent to (5.3.4) with
~ = 1, the existence of the limit of (5.3.7) is equivalent to the existence of the limit of

@Y (T — ) - I 1)) (53.8)

(These equivalences are elementary facts about sequences; see, e.g., [47, Lemma 21].)
The advantage of (5.3.2), (5.3.4) and (5.3.8) over (5.3.1), (5.3.3) and (5.3.7), respectively,
is that disjoint subsets of Q have asymptotically an additive influence on the asymp-
totics, which allows for localization techniques.

The main result from [47] is

Theorem 5.3.3. Foranyd > 1and 0 < s < 1 thereis a constant Bgl’s > 0 such that
for any bounded domain Q = R? with C* boundary,

Hli_)nolcyflf(dfl)/(ZS) (TI‘(HS) —u)_ — lerd/(ZS)Lil’d’S |_Q‘) _ _Bfil,s 0(00Q). (5.3.9)
Here 0(0Q) denotes the surface measure of 0Q. In [47] this is stated for domains with
C%boundary, 0 < a < 1, and a quantitative remainder whose order depends on a.
The same argument as in [48], however, yields the result for C! boundaries witha o (1)
remainder.

In [47] we obtain an expression for B‘(}]’ s Which is explicit enough to deduce that
it is different (in fact, smaller) than the corresponding expression for the fractional
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power of the Dirichlet Laplacian. In order to state this precisely, we recall that there is
a constant Bfil, < > 0 such that for any bounded domain Q c R? with C! boundary,

U0
see, e.g., [46] for a proof for domains with C1*% boundary, 0 < a < 1, which again can
be modified to yield the result for C! boundaries. We prove [47, Sec. 6.4]

cl Bcl
Bd,s < Bd,s
and deduce

Corollary 5.3.4. For any bounded domain Q  R? with C' boundary,

lim p '~V (Tr(H — p)- — Tr((~40)° - ¥)-)

H—0
= 7(33{5 - Bg{s) 0(0Q) > 0

Theorem 5.3.3 implies via integration that

s ra+4
lim ¢(4-1/(29) (Tr e tHs t*d/<25>% IQ|> — —T(2+ %) By 0(09) .

(5.3.10)

(This is essentially the argument that convergence in Cesaro sense implies conver-
gence in Abel sense.) Asymptotics (5.3.10) are, in fact, even true for Q with Lipschitz
boundary, as had earlier been shown in [14]. This extends the result from [26] for s = 1
to the fractional case. See also [12] for remainder terms in (5.3.10) under stronger reg-
ularity assumptions on the boundary.

It seems to be unknown whether Theorem 5.3.3 remains true for Lipschitz do-
mains.

Asymptotics like (5.3.10) have been shown for more general non-local operators,
see, e.g., [16, 92, 23, 62].

5.3.2 Eigenvalue asymptotics for fractional Schrédinger
operators

The analogue of Theorem 5.3.1 for fractional Schrodinger operators is

Theorem 5.3.5. Let O < s < 1 and let V be a continuous function on R? with compact
support. Then

lim aY@IN((—4)° + aV) = 2m) w, | VY ax. (5.3.11)

a—o0 R4
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Similarly to (5.3.11) one can show that for any v > 0,

lim a7~ Tr((—)° +av)? = L9, f ARRAC (5.3.12)
a—00 77 rd
with Lfyl’ 4,5 from (5.3.5). The assumptions on V for (5.3.11) and (5.3.12) to hold can be

relaxed. In particular, for d > 2,aswellasford = 1and 0 < s < 1/2, one can
show that the asymptotics hold under the sole assumption V_ € LY+4/(25) This will
be explained after Theorem 5.4.2. The case d = 1 and 1/2 < s < 1 is more subtle.
In analogy with [21, 89] one might wonder whether there are V e LY/(?%) for which
N((—A)° +aV) grows faster than a'/ (%) or like a'/(?) but with an asymptotic constant
strictly larger than { Vi/ 25) gx. Apparently this question has not been studied.

We are also not aware of sharp remainder estimates or subleading terms in (5.3.11)
and (5.3.12). Note that, due to the non-smoothness of p — |p|?® at p = 0, the operator
(—h?A)® + V is not an admissible operator in the sense of [63]. For a remainder bound
for the massive analogue of (5.3.12) with v = 1/2 we refer to [99].

5.4 Bounds on Sums of Eigenvalues

5.4.1 Berezin-Li-Yau inequalities

In this subsection we discuss bounds on sums of eigenvalues of H g ). The bounds in
the following theorem are called Berezin-Li-Yau inequalities since they generalize
the corresponding bounds for s = 1 [20, 79] to the fractional case.

Theorem 5.4.1. Let Q — RY be an open set of finite measure. Then for any u > 0,

3 (En(HS) 1) <@L 10) (54.1)

n

and, equivalently, for any N € N,

N
n;l En(HS)) > 7 fZS(2n)25w;25/"|m—Zs/dN“zs/d . (5.4.2)
Inequality (5.4.1) is a special case of a result in [76]. To see that (5.4.1) and (5.4.2) are
equivalent, denote the left and right side of (5.4.1) by f;(u) and f;(u), respectively, by
g1(v) the piecewise linear function which coincides with the left side of (5.4.2) for v =
N e N and by g;(v) the right side of (5.4.2) with N replaced by a continuous variable
v. Note that (5.4.2) is equivalent to g;(v) > gr(v) for all v > 0. We have defined four
convex functions and we note that f; and gs are Legendre transforms of each other
with # = [, r. Thus, the equivalence follows from the fact that the Legendre transform
reverses inequalities.
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The important feature of (5.4.1) and (5.4.2) is that the constant on the right side
coincides with the asymptotic value as u or N tend to infinity; see (5.3.3) and (5.3.4).
For remainder terms in (5.4.2) we refer to [101].

Bounding the left side of (5.4.2) from above by NE N(Hgs)) or the left side of (5.4.1)

from below by (A — u)_-N(A, H S )) and optimizing in A < u we obtain

d 2m)2S s g
Tiz gl N
wd

d
d+25)§ wq

d
d myd 12 En(Hp) >

N(A,HY) < (

(5.4.3)
It is a challenging open question (the fractional analogue of Pélya’s conjecture)
whether the factors ((d + 2s)/d)%(?*) and d/(d + 2s) can be removed in these bounds.
It was recently shown [75] that Pélya’s conjecture fails in d = 1 for s € (0, 1) and in
d = 2 at least for all sufficiently small values of s. (As an aside, we mention that
Polya’s conjecture also fails for the Laplacian in two-dimensions with a constant mag-
netic field and that in this case the factors ((d + 2s)/d)% (%) = 2 and d/(d + 2s) = 2
are optimal [55].)

We finally mention a well known inequality for the heat kernel. From the maxi-
mum principle for the heat equation we know that the heat kernel k(x, x") for H S )
satisfies

0 < ke(x,x') < J e~ tIpI” gip-(x=x)) dp forallx,x € Q.
Rd (2m)d

(The right side is the heat kernel of (—A)*.) We evaluate this inequality for x = x’. If

H g ) has discrete spectrum (which is the case, for instance, if |Q| < o) and Y, denote

the normalized eigenfunctions corresponding to the E, (HS) ), then we obtain

> e~ En(HE") [Yn(X)|* < %ﬁ/@s)) = /2s) forallxe Q. (5.4.4)
n

By integration over x € Q we obtain

Z e*fEn(Hg(f)) < waI'(1 +d/(2s)) 10| ta/(25)
- (2m)d

which, in turn, could have been obtained directly by integrating (5.4.1) against t*>e %
over u € R . However, in some applications the local information in (5.4.4) is crucial.
For example, one useful consequence of (5.4.4) comes by bounded the left side from
below by e Y En(HS) ) <p |n(x)|%. Optimizing the resulting inequality over t > O
yields !

S pa(a)f < el d/25) (256)“25) W) (545

2m)d d
En(H)<p (o)

While yielding a worse constant than (5.4.3) when integrated over x € Q, this a-priori
bound on the ‘local number of eigenvalues’ is useful when proving y — oo asymp-
totics.
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5.4.2 Lieb-Thirring inequalities

Lieb-Thirring inequalities [82] provide bounds of sums of powers of negative eigenval-
ues of Schrodinger operators in terms of integrals of the potential. They play an impor-
tant role in the proof of stability of matter by Lieb and Thirring; see [81] for a textbook
presentation. For further background and references about Lieb-Thirring inequalities
we also refer to the reviews [77, 65].

The following theorem summarizes Lieb-Thirring inequalities for fractional
Schrodinger operators.

Theorem 5.4.2. Letd > 1,0 <s < 1and

v=>1-1/(2s) ifd=1ands>1/2,
>0 ifd=1ands=1/2,
v=0 ifd=2ord=1ands <1/2.

Thenthereisa L., 4 such that forall V,

Te ((-0)"+ V) < Loas |

s +A/(29) gy (5.4.6)
R

This theorem, with the additional assumption v > 1 — 1/(2s) ifd = 1,s > 1/2,
appears in [36], which also has explicit values for L., 4 s in the physically most relevant
cases. Since we have not found the case v = 1 — 1/(2s)ifd = 1, s > 1/2, in the
literature, we provide a proof in Appendix B.

To appreciate the strength of Theorem 5.4.2, we note that by bounding the sum
over all eigenvalues by a single one, we deduce from (5.4.6) that

1/v
Ei((-4)° +V) > — (L%d,s fRd yrraes) dx) :

which is the bound from Theorem 5.2.2 and which we have seen to be equivalent to the
Sobolev inequality (5.2.4). Moreover, replacing V by aV and comparing with Theorem
5.3.5 we see that the right side of (5.4.6) has the correct order of growth in the large
coupling limit a — co. Thus, Theorem 5.4.2 shows that the semi-classical approxima-
tion is, up to a multiplicative constant, a uniform upper bound. This observation and
a density argument based on Ky-Fan’s eigenvalue inequality (see, e.g., [96, Theorem
1.7]) can be used to show that for  as in Theorem 5.4.2 the asymptotics (5.3.11) and
(5.3.12) hold for all V with V_ e L7+4/(2s)(Rrd),

Let us comment on the case v = 0if d = 1 and s = 1/2. In this case it is easy to
see that

inf (H(—A)l/“zpqu V|1/)|2dx> <0 ifj Vdx <0,
[¥]=1 R R
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and so inequality (5.4.6) necessarily fails for v+ = 0. Remarkably, in this case one can
show a reverse bound,

0
T (-0 2+ v) = cj V_dx  ifV<o0. (5.4.7)
- R

(This is contained in [94] up to a conformal transformation.)

While there has been substantial progress concerning the sharp constants in the
s = 1 analogue of Theorem 5.4.2, no sharp constant seems to be known in the case
s<1.

Our final topic are Hardy-Lieb-Thirring inequalities. We recall [64] that Hardy’s
inequality states that for 0 < s < d/2 and i € H%(R?), the homogeneous Soholev
space,

fRd PI*W@)*dp > Csa | X" WP dx
with the sharp constant
I'((d+2s)/4)°
r((d—-2s)/4)?"
As a consequence, (—A4)° — G, 4|x|~* is a non-negative operator. The following the-
orem says that, up to avoiding the endpoint v = 0 and modifying the constant, the
Lieb-Thirring inequalities from Theorem 5.4.2 remain valid when (—A4)? is replaced
by (—4)° — €5 alx| 2.

es’d _ 228

S

Theorem 5.4.3. Letd > 1,0 < s < d/2 and v > 0. Then there is a constant LE’L;’S
such that 3
Tr ((74)5 — Cyglx|7E + V) <M J VRS gy (5.4.8)
_ ”

We emphasize that the assumption s < 1 is not needed here. Moreover, arguing as
before (5.4.7) one can show that the inequality does not hold for v = 0.

Theorem 5.4.3 was initially proved for s = 1 in [42] and then extended in [52] to
0<s<1(with0 <s < 1/2ifd = 1). The full result is from [45] and uses an idea
from [99].

The proof in [52] (for 0 < s < 1) allows for the inclusion of a magnetic field. This
leads to the proof of stability of relativistic matter with magnetic fields for nuclear
charges up to and including the critical value; see also [51].

Let us briefly comment on the proof of Theorem 5.4.3 in [52], since this will also be
relevant in the following. Similarly as after Theorem 5.4.2 we observe that by bounding
the sum over all eigenvalues by a single one, we deduce from (5.4.8) that

1/~
Eu(-)" ~ Cogld ™ 4 V) > - (I [ v @ ax)
RrRd

which in turn, by the argument in the proof of Theorem 5.2.2, is equivalent to the
Hardy—-Sobolev inequality

9
(122917 = Csalld=91?) " 1$IP* 2 = Caq 113 (5.49)
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with 1/(y + d/(2s)) + 2/q = 1 (and some 9 € (0, 1) uniquely determined by scal-
ing). The proof in [52] proceeds by first showing the latter inequality (at this point the
assumption s < 1 enters through the use of the rearrangement inequality (5.2.1) for
|(=A)%/?1|?) and then by proving, in an abstract set-up (see also [53]), that a Sobolev
inequality, in fact, implies a Lieb—Thirring inequality. (To be more precise, there is an
arbitrarily small loss in the exponent. For instance, (5.4.9) for a given g implies (5.4.8)
for any v with 1/(y+ d/(2s)) + 2/q < 1. But since we want to prove (5.4.8) for an open
set of exponents v, this loss is irrelevant for us.) This concludes our discussion of the
proof of Theorem 5.4.3.

The Hardy inequalities discussed so far involve the function |x with a singu-
larity at the origin. For convex domains there are also Hardy inequalities with the func-
tion dist(x, Qc)_zs, or more generally, for arbitrary domains with the function

. 2T r(L2s) % dw \ %
Mmys(X) := (F(d'gzs)z> (Ld—l W) ’

where dy (x) := inf{|t| : x+tw ¢ Q}. (We say ‘more generally’ since one can show that
mas(x) < dist(x, Q°) for convex Q; see [86].) The sharp Hardy inequality of Loss and
Sloane [86] states that for d > 2, 1/2 < s < 1, any open Q  R? and any € C}(Q),

f P2 D) dp > e;f Mas ()2 ()2 dx
R4 o)

with the sharp constant

|—2$

(2 B2, 1—5) - 2%
~ (=)l 2sy/m ‘
This inequality is the fractional analogue of Davies’ inequality [37]. The fractional in-
equality in the special case of a half space is due to [25].
The analogue of Theorem 5.4.3 is

Cs

HLT

Theorem 5.4.4. Letd > 2,1/2 < s < 1 and~ > 0. Then there is a constant L%d’s

such that for all open Q@ < R% and all V,

Tr (Y - eimy 2 + V) < L9 J VARRASN S (5.4.10)
- Q

We emphasize that, in contrast to Theorem 5.4.3, now v = 0 is allowed.

Theorem 5.4.4 is the analogue of a result for s = 1, d > 3 in [54]. Since it ap-
pears here for the first time, we comment briefly on its proof. Adapting an argument
of Aizenman and Lieb [5] to our setting we see that it suffices to prove the inequality
for v = 0. As in the proof of Theorem 5.4.3 from [52] the first step is the ‘single function
result’, that is, the analogue of (5.4.9), which reads

1(=8)*29|> — e5lma P> = CaslWl3a)(a-29) (5.4.11)

for 1 e CL(Q). This inequality is proved in [40]. With (5.4.11) at hand one can apply
the abstract machinery from [53] in the same way as in [54] to obtain the theorem.
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5.5 Some Further Topics

We conclude with some brief comments on further topics in the spectral theory of frac-
tional Laplacians which are not included in the main part of this text.

(1) Positivity and uniqueness of the ground state. This is a classical result which
can be derived using Perron-Frobenius arguments and the positivity of the heat kernel
or by the maximum principle.

(2) Simplicity of excited states for radial fractional Schrédinger operators opera-
tors. This question has some relevance in non-linear problems and has recently been
investigated in [49, 50] for Schrodinger operators with radially increasing potentials.

(3) Decay of eigenfunctions. In contrast to the local case s = 1, the decay of eigen-
functions of Schrédinger operators with potentials tending to zero at infinity is only
algebraic; see [30]. (Earlier bounds in the massive case are in [90, 91].) For bounds for
growing potentials see, e.g., [69].

(4) Shape of the ground state and of some excited states for the fractional Lapla-
cian on a (convex) set. See [9, 13] for some results in d = 1 and [71] for a related result
in d = 2. For superharmonicity in any d for some s, see [7]. For antisymmetry of the
first excited state on a ball, see [41]. (This has also numerical methods for upper and
lower bounds on the eigenvalues on a ball).

(5) Number of nodal domains. Is Sturm’s bound in d = 1 valid? Is Courant’s bound
in d > 2 valid? For some partial results, see [9, 49, 50].

(6) Regularity of eigenfunctions. Despite the non-locality of the fractional Lapla-
cian, eigenfunctions of (—A)°® + V can be shown to be regular where V is regular
[34, 35]. For improved Holder continuity results for radial potentials, see [78].

(7) Bounds on the gap E, (H!()s)) —E(H (s)) for convex Q. See [10, 11, 68]; there are
some conjectures in [10].

(8) Heat trace asymptotics for fractional Schriodinger operators and heat content
asymptotics. See [17, 2, 3, 4].

(9) Many-body Coulomb systems. Stability of matter [36, 83, 84, 44, 85, 52, 51].
Proof of the Scott correction without [57, 99] and with (self-generated) magnetic field
[43].

A Proof of (5.1.1)

The following computation of as 4 is a slight simplification of [52, Lemma 3.1]. It fol-
lows from Plancherel’s theorem that

([ L=V eay - H 0O axan— [ ebp) do
R4 x R4

\X y|d+25 Rd
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with -
B |1 — e _ 1 —cos(p - h)
tp) = fRd |h|d+2s dh =2 Rd |h|d+2s dh.

By homogeneity and rotation invariance we have

t(p) = ag . |pl*
with
asl—> 1—cos(hq) dh
ds — R |h|d+25 '

It remains to compute this integral. We begin with the case d = 1, which is an exercise
in complex analysis. Firstlet 0 < s < 1/2, so

0 ih
-1 1—e
a;s =4Re , RITE dh.

Since (1—e%?)/z'*2S is analytic in the upper right quadrant and sufficiently fast decay-
ing as |z| — oo, we can move the integration from the positive real axis to the positive
imaginary axis and obtain

0 1 _ pih 0 9 _ ,—t 0 1 _ ,—t
| e dh= i i de = [ RS de
o h o (it) o t
The integral here can be recognized as a gamma function. Indeed, we haveif Re z > 0,

I'(z) — % = ffl (1 - e*t) - hdt + J;OO e 't tadt.

0

Since the right side is analytic in {Rez > —1}, the formula extends to this region and,
in particular,

0]
F(Z)=—f (1—eft>tzfldt if —1<Rez<0O.
0

Thus, we have shown that
al_j = 4Rei *I'(—2s) = 4cos(ns)I(—2s) .

Using the duplication formula I'(—2s) = 7~ /222~ (—s)I'((1 — 2s)/2) and the re-
flection formula I'((1 + 2s)/2)I'((1 — 2s)/2) = —m/cos(nts) we obtain the claimed
formula for a;,s. When 1/2 < s < 1, we start from

1+ ih — eth
_4R J h1+25 dh

and argue similarly using

o0
F(Z)=—J (1—t—e‘f>tz—1dt if —2<Rez<—1.
(0]
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Finally, the formula for s = 1/2 follows by continuity. This concludes the proof of
(5.1.1) ford = 1.
Now let d > 2 and write h = (h’, hy) € R%~! x R and compute for fixed h; € R

J dh’ by

RA—1 (h’2 +h§)<d+25)/2 - |hd|1+zs

with J

bd s = J —n .
’ Rra-1 (1 + ,12)(d+2s)/2

Thus,

-1 1 —cos hd -1
a = 2b J — 5 dh = b a
d, d,s d d,sU1,s»
s ‘h I|1+25 s

and it remains to compute bd s- To do so we use [1, (6.2.1), (6.2.2)] and obtain
d 5 d 24y ‘Sd 2| t(d 3)/2dt
| (1+712) (d+2s)/2 — (d+23 /2

\Sd 2| I( ( - 1)/2)I((1 +2s)/2) _ n(d—l)/z F((1 +25)/2)

2 I'((d+2s)/2) r{(d+2s)/2)"
This concludes the proof of (5.1.1) for d > 2

B Lieb-Thirring Inequality in the Critical Case

Our goal in this appendix is to prove Theorem 5.4.2 in the critical case d = 1, 1/2 <
s <land~ = 1-— 1/(2s). Our argument will be a modification of Weidl’s argument
[100] in the s = 1 case (see also the unpublished manuscript [95]).

For 1/2 < s < 1, any bounded interval Q = R and any i € H*(Q), we define

(O[] = as J W) =P 4y

oy
QxQ

where a; ¢ is the constant from (5.1.1). We shall need the following Poincaré—Sobolev
inequality for this quadratic form.

LemmaB.1. Letd = 1and 1/2 < s < 1. Then there is a constant Cs such that for any
bounded interval Q = R and any Y € H%(Q) with S dx =

sgpw)\z < Cs|Q* S [

Proof. By a density argument we may assume that i is continuous. We know from
[60] (with ¥(x) = x? and p(x) = |x|**+1/?) and a simple scaling argument that for any
a < b and any continuous function ¢ on [a, b],

lo(a) — p(b)* P lpx) — o)
(b— 2s T <Ds JJ |x y‘1+25 dxdy
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with Ds = (16(2s+1)/(2s—1))?. Since SQ Y dx = Othereisac € Qsuchthaty(c) = 0.
Moreover, let d € Q be such that [1p(d)| = sup [|. We apply the above inequality with
a = min{c, d} and b = max{c, d} and note that b — a < |Q| to obtain the lemma. O

The quadratic form tg) [1] is non-negative and closed in L?(Q) and therefore gener-

ates a self-adjoint operator, which we denote by T ((;)

to imposing Neumann boundary conditions on 4Q.

. In some sense this corresponds

LemmaB.2. Letd = 1,1/2 < s < 1 and let Cs be the constant from Lemma B.1. Let
Q c R be a bounded interval and assume that V e L*(Q) satisfies

o \Q|25—1J V_dx<Cil.
Q

Then T + V has at most one negative eigenvalue E and this eigenvalue satisfies, if it
Q
exists,

2s/(2s—1)
E>—a Y@ V(1 - csa)™? (f V_ dx) .
Q

Proof. 1f € H*(Q) satisfies {, p dx = 0, then by Lemma B.1
£ [y +f VIpP dx > €)1y —f V- dx sup |2 > £ [y] (1_CS|Q|2S‘1J v_ dx)
Q Q Q Q
=t (1 - Csa) > 0.
Thus, E>(Ty) + V) > 0.

For general ) € H%(Q) we set g := |Q|™* SQ Y dx and bound similarly, for any
B >0,

2
(1) + jQ VI dx > €§)[p) - fQ V_ dx (sgpw — ol + ¢Q|>
2
> w1 - [ voax((clom ) o)
> (5[] (1 (14 B)Csl jQ v dx)

—@phie | Vo x|y’
Q

= 1§ Y11 - (1 + B)Csa)

2s/(2s—1)
— (e p e VY ([ v ax) i
With the choice § = (1 — Csa)/(Csa) we finally obtain
t(S) [,’b] +J V\'I’|2 dx > _#a—l/(zs_n J‘ V. dx 2s/(2s—1) HlpHZ
Q Q = 1-— Csa Q ’
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which implies the lower bound on E; (T és) + V) in the lemma. O

Proof of Theorem 5.4.2ford =1,1/2 <s <1,y =1—-1/(2s). Let Cs be the constant
from Lemma B.1 and fix 0 < a < Cs to be chosen later. We claim that there are disjoint
open intervals Qn whose closed union covers supp V_ and such that

Iinzsflf V_dx=a foralln.
er

In fact, pick x¢ € R arbitrary and define x;, ; inductively, given x;, as follows: If V_ =
0 on (x4, o) we stop the procedure. Otherwise, since ¢ — ¢25~1 Sxk” V_ dx is non-
decreasing and unbounded, we can find x;,; > x; such that

Xk+1
(X1 — x>t J Vodx=a.
Xk
Since (xi 4.1 —x3)**~! = @/ V_ dx, we will eventually cover supp V_ n [xo, o). Now
we repeat the same argument to the left of x,. The Qn’s are all the intervals (x, xj, 1).

We have

-0y = ays [[ BB gy > i)
RxR n

|X _ y‘ 1+2s n
which, by the variational principle, implies that
(<87 + V=Y (1) + V).
n

where V;, denotes the restriction of V to Qy, and therefore

Zsl

2s—1

Tr((—4)° +V)'F <Tr (Z (Tgn) + VQH)> - ZTr( + VQH) =

n —

According to Lemma B.2,

2s—1
T (T4) + Vo,) ™ <a B(1-Cea)  ® | V_dx.
- Qn

Summing over n, we obtain
2s—1
Tr ((-4)° +V) * <a~ 25(1—C5a JV dx.

We can optimize this in a by choosing « = 1/(25Cs) and obtain

Tr (—4)° + V)% <c25 JV_dx

This proves the theorem. O
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Maria del Mar Gonzalez
Recent Progress on the Fractional Laplacian in
Conformal Geometry

6.1 Introduction

The aim of this paper is to report on recent development on the conformal fractional
Laplacian, both from the analytic and geometric points of view, but especially towards
the PDE community.

The basic tool in conformal geometry is to understand the geometry of a space
by studying the transformations on such space. More precisely, let M" be a smooth
Riemannian manifold of dimension n > 2 with a Riemannian metric h. A conformal
change of metric is such that it preserves angles so, mathematically, two metrics h, h
are conformally related if

h = fh for some function f > 0.

We say that an operator A(= Aj) on M is conformally covariant if under the change of
metric hw = e2"h, then A satisfies the transformation (sometimes called intertwining)
law

Ap, o = e "MAp(e™p) forall ¢eC®(M), (6.1.1)

for some a, b € R. One may associate to such A a notion of curvature with interesting
conformal properties defined by

Qh = A,(1).
The intertwining rule (6.1.1) then yields the Q4-curvature equation
Ap(e™) = e’V Qhv.

The most well known example of a conformally covariant operator is the confor-
mal Laplacian

Lh = 7Ah + 4(r’ln:21)Rh, (6.1.2)
and its associated curvature is precisely the scalar curvature Ry, (modulo a multiplica-

tive constant). The conformal transformation law is usually written as

Ly, () =u" "2 Ly(u-) (6.1.3)
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for a change of metric
4
hy =un2h, u>0,

and it gives rise to interesting semilinear equations with reaction term of power type,
such as the constant scalar curvature (or Yamabe) equation

n+2

— Apu + cun—2, (6.1.4)

4(n 1) 4(n 1)

The Yamabe problem (see [93, 69] for a general background) has been one of the mul-
tiple examples of the interaction between analysis and geometry.

A higher order example of a conformally covariant operator is the Paneitz operator
([88]), which is defined as the bi-Laplacian (—A)? plus lower order curvature terms.
Its associated curvature, known as Q-curvature, a is fourth-order geometric object that
has received a lot of attention (see [22] and the references therein). The generalizaton
to all even orders 2k was investigated by Graham, Jenne, Mason and Sparling (G/MS)
in [51] and is based on the ambient metric construction of [36].

These operators belong to a general framework in which on the manifold (M, h)
there exists a meromorphic family of conformally covariant pseudodifferential opera-
tors of fractional order

P —(-Ay)S+.. forany se(0,n/2).

P! will be called the conformal fractional Laplacian. The main goal of this discussion
is to describe and to give some examples, applications and open problems for this
non-local object. The uniqueness issue will be postponed to Section 6.7.

To each of these operators there exists an associated curvature Q!, that general-
izes the scalar curvature, the Q-curvature and the mean curvature. The Qé’ constitute
a one-parameter family of non-local curvatures on M; the objective is to understand
the geometric and topological information they contain, together with the study of the
new non-local fractional order PDE that arise.

The conformal fractional Laplacian is defined on the boundary of a Poincaré-
Einstein manifold in terms of scattering theory (all the necessary background will
be explained in Section 6.2). Research on Poincaré-Einstein metrics has its origins
in the work of Newman, Penrose and LeBrun [67] on four dimensional space-time
Physics. The subsequent work of Fefferman and Graham [36] provided the mathemat-
ical framework for the study of conformally invariant (o covariant) operators on the
boundary (denoted as the conformal infinity) of a Poincaré-Einstein manifold (the am-
bient) through this approach, through the study of the asymptotics of an eigenvalue
problem in the spirit of Maldacena’s AdS/CFT correspondence.

The celebrated AdS/CFT correspondence in string theory [74, 2, 97] establishes a
connection between conformal field theories in n dimensions and gravity fields on
a (n + 1)-dimensional spacetime of anti-de Sitter type, to the effect that correlation
functions in conformal field theory are given by the asymptotic behavior at infinity of
the supergravity action. Mathematically, this involves describing the solution to the
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gravitational field equations in (n + 1) dimensions (which, in the simplest case of a
scalar field reduces to the Klein—Gordon equation) in terms of a conformal field, which
plays the role of the boundary data imposed on the (timelike) conformal boundary.

An equivalent construction for P! has been recently proposed [21] in the setting
of metric measure spaces in relation to Perelman’s W-functional [89]. This point of
view has the advantage that it justifies the notion of a harmonic function in fractional
dimensions that was sketched in the classical paper of Caffarelli and Silvestre for the
usual fractional Laplacian [18].

In Section 6.3 we will explain the construction of the conformal fractional Lapla-
cian from a purely analytical point of view. Caffarelli and Silvestre [18] gave a construc-
tion for the standard fractional Laplacian (—Ag»)* as a Dirichlet-to-Neumann opera-
tor of a uniformly degenerate elliptic boundary value problem. In the manifold case,
Chang and the author [23] related the original definition of the conformal fractional
Laplacian coming from scattering theory to a Dirichlet-to-Neumann operator for a re-
lated elliptic extension problem, thus allowing for an analytic treatment of Yamabe-
type problems in the non-local setting ([42]).

The fractional Yamabe problem, proposed in [42] poses the question of finding a
constant fractional curvature metric in a given conformal class. In the simplest case,
the resulting (non-local) PDE is

(—A)Pu = cum% inR", u>o0. (6.1.5)

The underlying idea is to pass to the extension, looking for a solution of a (possibly
degenerate) elliptic equation with a nonlinear boundary reaction term, which can be
handled through a variational argument where the main difficulty is the lack of com-
pactness. As in the usual Yamabe problem, the proof is divided into several cases;
some of them still remain open.

From the geometric point of view, the fractional Yamabe problem is a general-
ization of Escobar’s classical problem [33] on the construction of a constant mean
curvature metric on the boundary of a given manifold, and in the particular case
s = 1/2 it reduces to it modulo some lower order error terms.

We turn to examples in Sections 6.4 and 6.5. As the standard fractional Laplacian
(—Agn)®, that can be characterized in terms of a Fourier symbol or, equivalently, as a
singular integral with a convolution kernel, the conformal fractional Laplacian on the
sphere S™ and on the cylinder R x S"~! may be defined in both ways.

Thus we first review the classical construction for the conformal fractional Lapla-
cian on the sphere coming from representation theory, which yields its Fourier symbol,
and then prove some new results on the characterization of this operator using only
stereographic projection from R". We show, in particular, a singular integral formula-
tion for PS" that resembles the classical formula for the standard fractional Laplacian.
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Next we follow a parallel construction for the cylinder, recalling the results of [28,
29]. More precisely, we give the explicit formula for the conformal fractional Laplacian
on the cylinder in terms of its Fourier symbol, and then, a singular integral formula
for a convolution kernel.

This second example is interesting because it is the natural geometric characteri-
zation of an isolated singularity for the fractional Laplacian

(—=A)°u = cuns in R™{0}, u>0,

u(x) — was |x| — 0.

(6.1.6)

Radially symmetric solutions for (6.1.6) have been constructed in [29] and are known
as Delaunay solutions for the fractional curvature, since they generalize the classi-
cal construction of radially symmetric constant mean curvature surfaces [30, 31], or
radially symmetric constant scalar curvature surfaces [65, 91].

In addition, the cylinder is the simplest example of a non-compact manifold
where the conformal fractional Laplacian may be constructed. However, being a
non-local operator, it may not be well defined in the presence of general singularities.
In Section 6.6 we give the latest development on this issue. This raises challenging
questions in the area of nonlocal PDE and removability of singularities, with implica-
tions both in harmonic analysis and pseudo-differential operators.

Then, in Section 6.7, we consider the issue of uniqueness. Since the conformal
fractional Laplacian is defined on the boundary of a Poincaré-Einstein manifold, it
will depend on this filling. We will review here the well known construction of two
different Poincaré-Einstein fillings for the same boundary manifold [57]. Unfortu-
nately, we have not been able to find an explicit expression for the corresponding
operators PL,i =1, 2.

Our last Section 6.8 is of independent interest. It is motivated by the following
question: given a smooth domain Q in R"**!, is there a canonical way to define the
conformal fractional Laplacian on M = 0Q using only the information on the Eu-
clidean metric in Q? More generally, what are the (extrinsic) conformal invariants for
a hypersurface M" of X"*1? Some invariants have been very recently constructed in
[50, 45, 46]; these resemble the conformal non-local quantities we have defined on the
boundary of a Poincaré-Einstein manifold but the new approach is much more general
and applies to any embedded hypersurface.

In particular, when M is a surface in Euclidean 3-space, one recovers the Willmore
invariant with this construction (the interested reader may look at the survey [77]
for the latest development on the Willmore conjecture), so an interesting conse-
quence of this approach is that one produces new (extrinsic) conformal invariants
for hypersurfaces in higher dimensions that generalize the Willmore invariant of a
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two-dimensional surface.

We conclude this introduction with some remarks on further generalizations to
other geometries. First, note that the formulas for the conformal fractional Laplacian
in the sphere case as the boundary of the Poincaré ball have been long known in the
representation theory community. They arise from the theory of joint eigenspaces in
symmetric spaces, since the Poincaré model for hyperbolic space is the simplest ex-
ample of a non-compact symmetric space of rank one. But there are other examples
of rank one symmetric spaces: the complex hyperbolic space, that yields the CR frac-
tional Laplacian on the Heisenberg group or the quaternionic hyperbolic space [11, 38].

On the contrary, the picture is more complex in the higher rank case, and it is
related to the theory of quantum N-body scattering (see [85] and related references). In
the paper [43] we aim to provide an analytical formulation for this problem without the
represention theory machinery, when possible. The idea is to construct conformally
covariant non-local operators on the boundary M of a higher rank symmetric space
X"+* which is a submanifold of codimension k > 1. Analytically, the difficulties come
from considering boundary value problems for systems of (possibly degenerate) linear
partial differential equations with regular singularities ([61]).

Many of the ideas above still hold if one switches from Riemannian to Lorentzian
geometry. In particular, the conformal fractional Laplacian becomes the conformal
wave operator, and one needs to move from elliptic to dispersive machinery. The pa-
pers [96, 32] provide a first approach to this setting, but many open questions still
remain.

6.2 Scattering Theory and the Conformal Fractional
Laplacian

We first provide the general geometric setting for our construction and, in particular,
the definition of a Poincaré-Einstein filling.

Let X"+ be (the interior of) a smooth Riemannian manifold of dimension n + 1
with compact boundary 6X = M". A function p is a defining function of M in X if

p>0inX, p=0ondX, dp=+#O0onodX.
We say that a metric g™ is conformally compact if the new metric
g:=p°g"
extends smoothly to X for a defining function p so that (X, g) is a compact Riemannian
manifold. This induces a conformal class of metrics [h] on M for h = g|ry as the

defining function varies. (M", [h]) is called the conformal infinity and (X"*1, g*) the
ambient manifold or filling.
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A metric g* is said to be asymptotically hyperbolic if it is conformally compact and
the sectional curvature approaches to —1 at the conformal infinity, which is equiva-
lent to saying that [dp|z — 1. A more restrictive condition is to demand that gtis
conformally compact Einstein (Poincaré-Einstein), i.e., it is conformally compact and
its Ricci tensor satisfies

Ricg: = —ng™.

Given a representative h of the conformal infinity (M, [h]), there is a unique
geodesic defining function p such that, on a neighborhood M x (0, §) in X, g* has
the normal form

gt =p 2(dp* + hp) (6.2.1)

where h is a one parameter family of metrics on M such that hy|,—o = h ([47]). In
the following, we will always assume that the defining function for the problem is
chosen so that the metric g* is written in normal form once the representative h of
the conformal infinity is fixed. g will be always defined with respect to this defining
function.

Let (X, g™) be Poincaré-Einstein manifold with conformal infinity (M, [h]). The
conformal fractional Laplacian P is a nonlocal operator on M which is constructed as
the Dirichlet-to-Neumann operator for a generalized eigenvalue problem on (X, g*),
that we describe next. Classical references are [82, 52, 60, 53], for instance.

The spectrum of the Laplacian —A,+ of an asymptotically hyperbolic manifold is
well known ([82, 81]). More precisely, it consists of the interval [n?/4, o) and a finite
set of L?-eigenvalues contained in (0, n?/4). Traditionally one writes the spectral pa-
rameter as o(n — 0); in the rest of the paper we will always assume that this value it
is not an L2-eigenvalue. Then, for o € C with Re(c) > n/2 and such that o ¢ n/2 + N,
for each Dirichlet-type data u € C*° (M), the generalized eigenvalue problem

—Agiw—0on—-o)jw=0 inX (6.2.2)
has a solution of the form
w=Up"" +Up? U, UeCPX), Ulp—o=u. (6.2.3)

Fixeds € (0,n/2),s ¢ N,and 0 = n/2 + s as above, the conformal fractional Laplacian
on M with respect to the metric h is defined as the normalized scattering operator

Plu = ds | p—o, (6.2.4)
for the constant I(s)
__92s
ds =2 T(—s)’ (6.2.5)

where I is the ordinary Gamma function.



242 — Maria del Mar Gonzélez

Remark here that the operator P! is non-local, since it depends on the extension
metric g™ even if we do not indicate it explicitly. For the rest of this paper we will
always assume that a background metric g™ has been fixed.

The main properties of the conformal fractional Laplacian are summarized in the
following:

i. PIis a self-adjoint pseudo-differential operator on M with principal symbol
the same as (—4)%, i.e.,
Py e (=0p)° + W5 1,

where Y, is the set of pseudo-differential operators of loss 1.
ii. In the case that M = R" with the Euclidean metric |dx|? and its canonical
extension to R’}r“, all the curvature terms vanish and

PY' = (),

i.e., we recover the classical fractional Laplacian.
iii. P!is a conformally covariant operator, in the sense that under the conformal
change of metric

hy=u = h, u>0,

it satisfies the transformation law

__ n+2s

Phu(y =u=n> Plu.). (6.2.6)

The fractional order curvature of the metric h on M associated to the conformal
fractional Laplacian P! is defined as

Q= Pi(1),

although note that other authors use a different normalization constant. From the
above relation (6.2.6) we obtain the curvature equation

Phw) = QM uis  in M, (6.2.7)

which is a non-local semilinear equation with critical power nonlinearity generalizing
(6.1.5) to the curved case.

One of the main observations is that the P! constitute a one-parameter meromor-
phic family of conformally covariant operators on M, for s € (0, n/2), s ¢ N. At the
integer powers, the conformal s-Laplacian can be constructed by a residue formula
thanks to the normalization constant (6.2.5) (see [52]). In addition, when s is a posi-
tive integer, P! is a local operator that coincides with the classical GJMS operator from
[51, 36]. In particular:

— For s = 1, P, is precisely the conformal Laplacian defined in (6.1.2), i.e.,

Ph—L,— A, + %Rh’ (6.2.8)
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and the associated curvature is a multiple of the scalar curvature

Qi = 4(nn_—21)Rh'

— For s = 2, the conformal fractional Laplacian coincides with the well known
Paneitz operator ([88])

Pg = (—Ah)z + 6(anRy + bnRicy)d + HTJ* an

and Q, is (up to multiplicative constant) the so-called fourth order Q-curvature.

For any other powers s ¢ N, P! is a non-local operator on M and reflects the geometry
of the filling (X, g™). Some explicit examples will be considered in Sections 6.4 and
6.5.

We also remark that the same construction is true for a general asymptotically
hyperbolic manifold, except for values s € N/2, unless the expansion of the term h,
in the normal form (6.2.1) is even up to a suitable order [52, 53]. In this exposition we
will explain in detail only the case s € (0, 1), where we will explain the role played by
mean curvature (see Theorem 6.3.2 below).

6.3 The Extension and the s-Yamabe Problem

It was observed in [23] (see also [21] for the most recent development) that the gener-
alized eigenvalue problem (6.2.2)-(6.2.3) on (X, g™¥) is equivalent to a linear degener-
ate elliptic problem on the compactified manifold (X, g). Hence they reconciled the
definition of the conformal fractional Laplacian P! given in the previous section as
the normalized scattering operator and the one given in the spirit of the Dirichlet-to-
Neumann operators by Caffarelli and Silvestre in [18].

In this section we will assume that s € (0, 1). For higher powers s > 1 we refer to
[21], [98] and [27]. As in the introduction chapter, we set a = 1 — 2s. W2 (X, p%) will
denote the weighted Sobolev space W2 on X with weight p?.

Theorem 6.3.1 ([23]). Let (X, g*) be a Poincaré-Einstein manifold with conformal infin-
ity (M, [h]). Then, given u € C* (M), the generalized eigenvalue problem (6.2.2)-(6.2.3)
is equivalent to the degenerate elliptic equation

—div (p’VU) +E(p)U=0 in(X,g),
(p“VU) + E(p) (X,8) 631)
Up—o=u onM,
where the derivatives are taken with respect to the original metric g, and U = p”/ 2=y,

The zero-th order term is

E(p) =p~' "7 (~4g- —0(n— ) p""".
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Notice that, in a neighborhood M x (0, §) where the metric g™ is in normal form (6.2.1),
this expression simplifies to
E(p) = "L Rep”. (6.3.2)

Such U is the unique minimizer of the energy
FIVI = [ p*IV VI dvg + [ E)IVI* dvg

among all the functions V. e W?(X, p®) with fixed trace V|,—o = u. Moreover, we
recover the conformal fractional Laplacian on M as

h .
Plu = —d¥ l}l_r)%p“apU,

where
225—1T(S)

* —
ds = sT'(-s)

Before we continue with the exposition, let us illustrate these concepts with the sim-
plest example of a Poincaré-Einstein manifold: the hyperbolic space H"*1. It can be
characterized as the upper half-space R’}r“ (with coordinates x € R", y € R), en-
dowed with the metric X X
gt = Al
y

In this case, y is a defining function and the conformal infinity {y = 0} is just the
Euclidean space R" with its flat metric |dx|?. Then problem (6.3.1) with Dirichlet con-
dition u reduces to

—div (y*VU) =0 inR""!,
Vo) * (6.3.3)
Uy—o=u onR",
and the fractional Laplacian at the boundary R" is just
P u = (—Agn)*u = —d* lim (y*&,U),
y—}

which is precisely the usual construction for the fractional Laplacian as a Dirichlet-to-
Neumann operator from [18]. We note that it is possible to write U = P =x u, where P
is the Poisson kernel for this extension problem as given in section 0.2.1 of chapter 0.
If the background manifold (X, g*) is not Poincaré-Einstein, but only asymptoti-
cally hyperbolic, we have a similar extension problem but here the mean curvature of
the boundary M respect to the metric g in X, denoted by H, plays an essential role:

Theorem 6.3.2 ([23]). Let (X", g") be an asymptotically hyperbolic manifold with a
geodesic defining function p and conformal infinity (M", [h]), with the metric written in
normal form (6.2.1). Then the conformal fractional Laplacian can be constructed through
the following extension problem: for each given smooth function u on M, consider

—div(p?VU) +E(p)U=0 in(X,3),
U=u onM,
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where

E(p) = n=k=a [R§ —{n(n+1) + Ry} p*z] p%. (6.3.4)
Then there exists a unique solution U and moreover,
1. Forse (0,1/2),
Plu = —d lim p%pU, (6.3.5)

2. Fors = 1/2, we have an extra term
P"u = lim ,U + "51Hu.
2 p—0

3. Ifs e (1/2, 1), the limit in the right hand side of (6.3.5) exists if and only if the
the mean curvature H vanishes identically, in which case, (6.3.5) holds too.

Remark 6.1. Note that, in the particular case that s = 1/2, the fractional curvature
Q4 , reduces to the mean curvature of M (up to multiplicative constant).

This dichotomy in Theorem 6.3.2 due to the presence of mean curvature also appears
in many other non-local problems such as [19, 40, 90]. The underlying idea is that,
for s € (0, 1/2), non-local curvature is the essential term, but for s € (1/2, 1), mean
curvature takes over.

Our next objective is, in the Poincaré-Einstein case, to compare the geometric ex-
tension (6.3.1) to the Euclidean one (6.3.3). It was observed in [23] that it is possible to
find a special defining function p* such that when we rewrite the scattering equation
(6.3.1) for the new metric g* = (p”‘)2 g™, the lower order term E(p*) vanishes; thus
making the extension as close as possible to the Euclidean one. This construction was
inspired in the special defining function of [68] and is also an essential ingredient in
the formulation of the scattering problem in the metric measure space setting of [21],
which is a very interesting development for which we do not have space here. It is also
crucially used in the construction of a Hamiltonian quantity for a non-local ODE [5].

As it was pointed out in [21], it is necessary to assume, here and in the rest of this
exposition, that the first eigenvalue for —A, satisfies A;(-4g+) > %2 — 52, We arrive
at the following improvement of Theorem 6.3.1:

Proposition 6.3.3 ([23, 21]). Let w* be the solution to (6.2.2)-(6.2.3) with Dirichlet data
1

u = 1, and set p* = (w*)"2=s. The function p* is a defining function of M in X such

that E(p*) = 0. Moreover, it has the asymptotic expansion near the conformal infinity

h
* _ Qs 2s 2
pr(p)=p [1 Yy o) |-
By construction, if U* is the solution to
—div ((p*)*VU*) =0 in(X,g8%),
U*=u onM,
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with respect to the metric g* = (p*)?g™, then

Plu=—d} lim (") 05 U™ + u Q.

Next, we give an interpretation of the fractional curvature as a variation of weighted
volume, in analogy to the usual mean curvature situation. The notion of renormalized
volume was first investigated by the physicists in relation to the AdS/CFT correspon-
dence, and was considered by [37, 25]. Given (X"*!, g*) a Poincaré-Einstein manifold
with boundary M" and defining function p, one may compute the asymptotic expan-
sion of the volume of the region {p > &}; the renormalized volume is defined as one
very specific term in this asymptotic expansion. When the dimension n is odd, the
renormalized volume is a conformal invariant of the conformally compact structure,
and it can be calculated as the conformal primitive of the Q-curvature coming from the
scattering operator (this is the case s = n/2). In that case that n is even, the picture
is more complex, and one can show that the renormalized volume is one term of the
Chern-Gauss-Bonnet formula in higher dimensions.

When s € (0, 1) one can also give a weighted version for volume (see [39]), and to
obtain the fractional curvature Qs as its first variation. More precisely, for each € > 0
we set

voly. ({p > £))i= | (P dvge, 636)
{p>¢}

where p* is the special defining function from Proposition 6.3.3.

Proposition 6.3.4 ([39]). Let (X, g") be a Poincaré-Einstein manifold with conformal
infinity (M, [h]). The weighted volume (6.3.6) has an asymptotic expansion in € when
€ — 0 given by

volg: ({p > €}) = g2 [(g + s)_1 vol(M) + e**V! + higher order terms]

where
h 1 1

e = h
Vs = ds n/2—s JMQS th.

Finally, and as an application of the extension Theorems 6.3.1 and 6.3.2, we give a
summary of the recent development on the fractional Yamabe problem.

The resolution of the classical Yamabe problem by Aubin, Schoen, Trudinger, has
been one of the most significant advances in geometric analysis (see [69, 93], and the
references therein). Given a smooth background metric, the problem is to find a con-
formal one that has constant scalar curvature. In PDE language, this is (6.1.4).

One may pose then the analogous question of finding a constant Qs-curvature in
the same conformal class as a given one. This study was initiated by the author and
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Qing in [42], and it amounts to, given a background metric (M", h), solve the following
non-local semilinear geometric equation with critical exponent (recall (6.2.7)),

n+2s

Pg’(u) =curzs, u>0, (6.3.7)

for some constant ¢ on M.
Theorem 6.3.1 allows to write (6.3.7) as a local elliptic equation in the extension
with a non-linear boundary reaction term:

—div(p?U) + E(p)U =0 in (X"*1,3),

—d¥ gii%p“&pU —cut onM", u> 0, 638)
where we have written u = U(, 0).

Even though (6.3.7) is a non-local equation, the resolution to the fractional Yam-
abe problem follows the same scheme as in the original Yamabe problem for the scalar
curvature, using a variational method. In addition, the s = 1/2 case is deeply related
to the prescribing constant mean curvature problem (also known as the boundary
Yamabe problem) considered by Escobar [33], Brendle-Chen [14], Li-Zhu [70], Marques
[75, 76], Almaraz [3], Mayer-Ndiaye [78] and others, and which corresponds to the fol-
lowing Dirichlet-to-Neumann operator

{ —Agu+ 'ElRgu =0 in (X", g),

n+1 (6-3.9)
n—1 e n
ovu + *5~Hu = cu=1 onM".

This connection will be made precise right below (6.3.14). However, there is a subtle
issue: in the proof one will need to find particular background metric (X, g) with very
precise asymptotic behavior near a point p € M in a good coordinate system. However,
in contrast to the study of (6.3.9), where they are free to choose conformal Fermi co-
ordinates on the filling (X, g), our freedom of choice of metrics for (6.3.8) is restricted
to the boundary. Once a metric h; € [h] is chosen, the corresponding defining func-
tion p; is determined and the extension metric g, written in normal form (6.2.1) for
g, = (p1)%g", is unique and cannot be simplified.

Let us set up the notation for (6.3.7). We consider a scale-free functional on metrics
in the class [h] on M given by

hd
Is[h] = SML&

(SM dvh) n

Or, if we set a base metric h and write a conformal metric h, = U h, then
Io[u, h] = Sur uP?(u) dvy,
’ - 2 9

(§a u?* dvp)

where
% 2n

n-—2s’
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We will call Is the s-Yamabe functional.

Our objective is to find a metric in the conformal class [h] that minimizes the func-
tional Is. It is clear that a metric hy, where u is a minimizer of Is[u, h], is an admissible
solution for (6.3.7) (positivity will be guaranteed by an application of a suitable maxi-
mum principle). This suggests that we define the s-Yamabe constant

As(M, [h]) = inf {Is[hy] : hy € [h]} .

It is then apparent that As(M, [h]) is an invariant on the conformal class [h] when g*
is fixed. In addition, it is proved in [42] that the sign of As(M, [h]) governs the sign of
the possible constants ¢ in (6.3.7), and the sign of the first eigenvalue for PZ.

In the mean time, based on Theorem 6.3.1, we set

_ §xp? |VUIZ dvg + §y E(p) U* dvg

TS[Uyg] 2
(SM U2 dvy)*

(6.3.10)

Note then
As(X, [h]) = inf {TS[U, g): Ue WH(X, p“)} . (6.3.11)

As a consequence, fixing the integral §,, u?* dvy = 1, if U is a minimizer of the func-
tional I -, g], then its trace u = U(-, 0) is a solution for (6.3.7).
This minimization procedure is related to the trace Sobolev embedding

Wh2(X, p?) — HS (M) — L2" (M),

which is continuous, but not compact. Hence the difficulty comes from this lack of
compactness, which is well understood in the Euclidean case below:

Theorem 6.3.5 ([71]). There exists a positive constant Cn,s such that for every function
Uin WH2(R"+, y9) we have that

2 a 2
||uHL2* (]R") < Cn,S JR'r'l y ‘VU| dX dy,

where u is the trace u := U(-, 0). Moreover equality holds if and only if u is a “bubble”,
ie.,

n—2s

u(x):C(") , xeR", (6.3.12)

2
X — Xol|” + p?

for Ce R, u > 0 and xo € R" fixed, and U = P x4 u its Poisson extension.

We also remark that all entire positive solutions to

s n+2s
(=4)’u=ur2, u>0,

have been completely classified (see [59], for instance, for an account of references).
In particular, they must be the standard “bubbles" (6.3.12). Other non-linearities for
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fractional Laplacian equations have been considered, for instance in [16, 15, 95, 9],
although by no means this list is exhaustive.

Going back to the minimization problem (6.3.11), we observe that the variational
method that was used in the resolution of the classical Yamabe problem can still be ap-
plied, but the difficulty comes from the specific structure of metric in the filling (X, g).
In any case, one starts by comparing the Yamabe constant on M to the Yamabe con-
stant on the sphere.

Using stereographic projection, from Theorem 6.3.5 it is easily seen that

1
Cn,s’

As(S", [hsn])

where [hgn] is the canonical conformal class of metrics on the sphere S" understood
as the conformal infinity of the Poincaré ball.

Suppose that (X", g™ is an asymptotically hyperbolic manifold with a geodesic
defining function p and set g = p®g ™. Let (M", [h]) be its conformal infinity. One can
show that ([42, 20]) the fractional Yamabe constant satisfies

—oo < As(M, [h]) < As(S", [hgn]).
Theorem 6.3.6 ([42]). In the setting above, if
As(M, [h]) < As(S™, [hsn]), (6.3.13)
then the s-Yamabe problem is solvable for s € (0, 1).

Therefore, it suffices to find a suitable test function in the functional (6.3.10) that at-
tains this strict inequality. As we have mentioned, one needs to construct suitable con-
formal normal coordinates on M by conformal change, and then deal with the corre-
sponding extension metric. Hence one needs to make some assumptions on the be-
havior of the asymptotically hyperbolic manifold g* . The underlying idea here is to
have g% as close as possible as a Poincaré-Einstein manifold. The first one of these
assumptions is
Rev +n(n+1) = o(pz) as p—0,

which looks very reasonable in the light of (6.3.4). In particular, under this condition
one has that
E(p) = "L Rp% + 0(p®) as p — 0. (6.3.14)

(compare to (6.3.2)). Another consequence of this expression is that the 1/2-Yamabe
problem coincides to the prescribing constant mean curvature problem (6.3.9), up to
a small error. In general one needs a higher order of vanishing for g* (see [62] for
the precise statements), which is automatically true if g* is Poincaré-Einstein and not
just asymptotically hyperbolic. This also shows that the natural geometric setting for
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an asymptotically hyperbolic g is to demand that g* has constant scalar curvature
Rgr = —n(n+1).

The first attempt to prove (6.3.13) was [42] in the non-umbilic case, where the au-
thors use a bubble as a test function. The umbilic, non-locally conformally flat case in
high dimensions was considered in [44]. Finally, Kim, Musso and Wei [62] have pro-
vided an unified development, covering all the cases that do not need a positive mass
theorem for the conformal fractional Laplacian. Their test function is not a “bubble"
but instead it has a more complicated geometry. Summarizing, some hypothesis under
which the fractional Yamabe problem for s € (0, 1) is solvable (in addition to those on
g T above) are:

- n>2,s€e(0,1/2), M has a point of negative mean curvature.
- n>=4,s¢e(0,1), Misnot umbilic.

- n > 4+ 2s, M is umbilic but not locally conformally flat.

— M is locally conformally flat or n = 2, and the fractional positive mass theo-
rem holds.

However, we see from this last point that to cover all the cases with this method one
still needs to develop a positive mass theorem for the Green’s function of the confor-
mal fractional Laplacian, which is at this time a puzzling open question. From another
point of view, we mention the work [79], where they use the the barycenter technique
of Bahri-Coron to bypass the positive mass issue for the locally flat and umbilic con-
formal infinity.

Finally, one may look at the lack of compactness phenomenon. In general, Palais-
Smale sequences can be decomposed into the solution of the limit equation plus a fi-
nite number of bubbles. Moreover, the multi-bubbles are non-interfering even though
the operator is non-local (see, for instance, [35, 87, 63, 64]).

6.4 The Conformal Fractional Laplacian on the
Sphere

In this section we look at the sphere S™ with the round metric hg», understood as the
conformal infinity of the Poincaré ball model for hyperbolic space H"*!. Note that
hyperbolic space is the simplest example of a Poincaré-Einstein manifold, and the
model for the general development.

On S™ one explicitly knows ([12], see also the lecture notes [13], for instance) that
the conformal fractional Laplacian (or intertwining operator) has the explicit expres-
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sion
o T(Ap+s+3)
Cr (A -s+d)
forall s € (0, n/2). From here one easily calculates that the fractional curvature of the
sphere is a positive constant

s Ay = + (” 1)2, (6.4.1)

r(3+s)

S opd1)y =2
=Ty

(6.4.2)
Formula (6.4.1) may be easily derived from the scattering problem (6.2.2)-(6.2.3). A
proof can be found in the book [10], which also makes the link to the representa-
tion theory community. Note, however, a different factor of 2, which is always an issue
when passing from representation theory to geometry. For convenience of the reader
not familiar with this subject we provide a direct proof below.

Consider the Poincaré metric for hyperbolic space H"*1, written in normal form
(6.2.1) as

tp 7 (dp?+ (1-5) her),

for p € (0, 2]. Remark that p = 2 corresponds to the origin of the Poincaré ball and
thus the apparent singularity is just a consequence of the expression for the metric in
polar-like coordinates.

Calculating the Laplace-Beltrami operator with respect to g* we obtain, recalling
that 0 = £ + s, that the eigenvalue equation (6.2.2) is equivalent to the following:

pnt (1 - %2) " o [p‘"“ (1 - %)n 6pw] +p? (1 - ’;) 2ASnW+(% - sz) w=0.

(6.4.3)
We will show that the operator PS" diagonalizes in the spherical harmonic decompo-
sition for S". With some abuse of notation, let ym = m(m+n - 1), m = 0,1, 2,...
be the eigenvalues of —Agn, repeated according to multiplicity, and {E} be the corre-
sponding basis of eigenfunctions. The projection of (6.4.3) onto each eigenspace (Em)
yields

2

—n n -2
Pt (1) "o o7 (1) o] <0 (1)
+ (%Z —52>Wm :0.
This is a hypergeometric ODE with general solution
wm(p) = c1p? *@1(p) + C2p? T @a(p), c1,C2€R, (6.4.4)

for

_ _ 2
P1(p) = (P> —4) "7 2F1( ’3“, B _s,1-5,5),

2
2F1< 5 +S,1+S,%>,

P2(p) = (P2 —4) 7
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where we have defined
Bi=4/(n—1)2 + 4un

and ,F; is the usual Hypergeometric function.

In order to calculate the conformal fractional Laplacian, first one needs to obtain
an asymptotic expansion of the form (6.2.3) for U, 1l smooth up to X. Since w must be
smooth at the central point p = 2, one should choose the constants c1, ¢, such that
in (6.4.4) the singularities of ¢; and ¢, at p = 2 cancel out. This is,

c12875,F, ( Bl Bl g1, 1)+c222+52F1 < Bl ZBrl s, 14, 1) —o.
(6.4.5)

In order to simplify this expression, recall the following property of the Hypergeomet-

ric function from [1]: if a + b < c, then

I'c)[(c—a-Db)

@b D= Fe =gt by

After some calculation, (6.4.5) yields

o yal(htse §>r<—s>

o F(% - ) ® . (6.4.6)

Next, looking at the definition of the conformal fractional Laplacian from (6.2.4),
and noting that both ¢1, ¢, are smooth at p = 0, we conclude from (6.4.6) that
_TG+s+d)

S" C
P; |<Em>um = ds?jum = mum-
2 2

This concludes the proof of (6.4.1) when s € (0, n/2) is not an integer.

For integer powers k € N, it can be shown that (6.4.1) also yields the factorization
formula for the GJMS operators on the sphere

k
P = H {(~Agn + (B +j—1) (2 —))}. (6.4.7)

The paper [48] by Graham independently derives this expression just by using the
formula for the corresponding operator on Euclidean space R" and then stereographic
projection to translate it back to the sphere S™.

Here we show that Graham’s method using stereographic projection also works for
non-integer s, yielding a factorization formula in the spirit of (6.4.7). The advantage
of this formulation is that it does not require the extension, but only the conformal
property (6.2.6) from Euclidean space to the sphere.
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Proposition 6.4.1. Let sy € (0, 1), k € N. Then
S" L " "
Pk+50 = H (Pl + C]') PSO.
j=1
forc; = —(so+j—1)(so +J).
Here P?n is the usual conformal Laplacian (6.2.8) on S", i.e.,
Py = —Ag + M2 (6.4.8)

Before we give a proof of this result we set up we set up the notation for the
stereographic projection from South pole. S" is parameterized by coordinates z’ =
(215 ++52n)s Zny1 such that ]z’]z + zf,H = 1, and R" by coordinates x € R". Let
@ : S"\{S} — R" be the map given by

/
/ zZ
x:=¢(z,z =—.
o( nt1) 1+ Znm1

The push forward map is just

* 2
% ) =14zn
(p <1+|X|2 n+

and, by conformality, it transforms the metric as
@*heg = (1 + zn41) *hgn, (6.4.9)

where heq = |dx|? is the Euclidean metric. For simplicity, we denote the conformal
factor as
BPf = (1 +zni1)Pf, Bpf =2°(1 + [x|*) P,
and note that the change of variable between them is simply
B?¢* = 9By,

which will be used repeatedly in the following.
Let —A be the standard Laplacian on R". It is related to the conformal Laplacian
on the sphere (6.4.8) by the transformation law (6.1.3), written as

PS B2 p* — B2 p% (g, (6.4.10)

The conformal fractional Laplacian also satisfies the conformal covariance property
(6.2.6), which is
PS"BS 2% — BTS2 % (—A)S, (6.4.11)

where (—A)?* is the standard fractional Laplacian on R" with respect to the Euclidean
metric.

We show some preliminary commutator identities on R":
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Lemma 6.4.2. Let X = ) x;0x;. Then
[-4, X] = 2(-4),
X, Bp] = —px? Byi1,
[-4, Bp] PBp(2X + n— (p — 1)By |x|*)By,
[(=A)5,B_1] = —s (2X + n+ 2(s — 1)) (—A)* L. (6.4.12)

Proof. The first three are direct calculations and can be found in [48], while the last
one is proved by Fourier transform. Indeed, compute

[(~4)°, B_y]u(x) = [ (=2)"{xPu(0} — x> (~4)*u(x)| (64.13)

Fourier transform, with the multiplicative constants normalized to one, yields
F{Ix? (—40)°u(x)} = —Ag{|€170(&)}
= —2s(n+2(s — )P V@) — 4Py 2 &0 0(§) — |§17°0¢0(8)

i=1
= 2s(n+2(s — D)EPEVaE) — 4s Y o {GIEPETV @)} - 1817°4a(8).
i=1

Taking the inverse Fourier transform we obtain
1X|2 (= Ax)Su(x) = 2s(n + 2(s — 1)) (=Ax)¥ tu(x) + 4sXu(x) + (—Ax){|x|*u(x)}

which, in view of (6.4.13), immediately yields the fourth identity in (6.4.12).

Proof of theorem 6.4.1: By induction, it is clear that it is enough to show that

Py = (P? + Cs) Py, for cs=—s(s+1).

Let? := (P?rl + cs) PS". We claim that P is conformally covariant of order 1 + s in the
sense of (6.2.6), which, by uniqueness, will imply the proof of the theorem. Thus it is
enough to show that P satisfies the conformal covariance identity

:PBS+1—H/2(p* _ B—s—l—n/z(p*(_A)s-H. (6.4.14)

For this, we first expand the left hand side of (6.4.14). The idea is to use both the confor-
mal invariance for the fractional Laplacian of exponent s (6.4.11) and for the standard
conformal Laplacian (6.4.10), in order to relate the operator on S” to the equivalent
one on R". We have

(LHS) =

s) B 2p*B_1_¢(~A)°B;. (6.4.15)
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Recalling again the conformal invariance for the conformal Laplacian P?n from
(6.4.10),

(LHS) = [B717"/2¢ (—4) + c531*"/2<p*} B_1_s(~A)°B;
= @*B_1_nj2 [(—4) + csB2] B_1-5(~A)°By. (6.4.16)
We next claim that
[(—A4) + csBy] B_1_s(~A)*By = B_s(—A)**1, (6.4.17)

whose proof is presented below. Therefore, when we substitute the previous expres-
sion into (6.4.16) we obtain

(LHS) = 9*B_;_,/p_s(—4)°*, (6.4.18)

which indeed implies (6.4.14) as we wished.

Now we give a proof for (6.4.17). First note that
(=A)B_1-5(~4)°By = {(~A)B_s} B_1(~4)*By
= B_s(—A)B_1(—A)°By + [(—A), B_s]B_1(—A)°B;
and
(=A)B_1(-4)° = (=4) {(=4)’B_1 + [B_1, (-4)°]}
= (=8)""*B_y + (~4)[B_1, (-4)°],
so putting both expressions together yields
[(~4) + csB2] B_1—s(~A)*By = B_s(~A)**1 + Fs,
where
Fs := B_g(~A)[B_1, (~A)*]B1 + [(~A), B_s]B_1(~4)°By + csB1_s(~4)°Bi.

A straightforward computation using the properties of the commutator from Lemma
6.4.2 gives that Fs = 0, and thus (6.4.17) is proved.
This concludes the proof of the Theorem.
O
From another point of view, on R" with the Euclidean metric, the fractional Lapla-
cian for s € (0, 1) can be computed as the principal value of the integral

(=A)’u(x) = C(n, s) j}R up) — u(¢) dé. (6.4.19)

n |X _ €|H+ZS

Our next objective is to give an analogous expression for P5" in terms of a singular
integral operator, using stereographic projection in expression (6.4.19):
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Proposition 6.4.3. Let s € (0, 1). Given u(z) in C*(S"), it holds

Pu(z) = [ [u(@) - u()] Ks(z,§) 4G + Ansu(@),

where the kernel K is given by

s+n/2 s+n/2
_ 5s+n/2 1—2zpyq 1— st 1
Ks(z,{) =2 C(n,s) (71 +Zn+1> (71 o Az e

and the (positive) constant

Ans =

Proof. We recall the conformal covariance property for P’ from (6.2.6)
Py B 2% = BT 20% (A,
that for u € €*(S") is equivalent to
PS"u = BSTM2p* (_p) [¢*B—S+”/2u] .
From (6.4.19) we have

(*A)S [B—s+n/2(p*u]

" 2\s—n/2 -1 o 2\s—n/2 -1
“retiom [ (LR ue |<;c>_)€lﬁg|s> w9 §) g

We pull back to S", with coordinates

x=9(), {=¢@¢),

recalling the Jacobian of the transformation from (6.4.9). Also note that

I e sy n?
Therefore
P u(z) =C(n, )25 (1 + zyyq) 52
[ [+ 2™ ) — (14 G u)]
A .
Writing

+u(z) |1- At ) (”“)Hm} ,

(1 + Zn+1)*s+"/2

(1 + Cﬂ+1)7s+n/2

M O
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we can arrive at
anu(z) = J [u(z) — u(O)]Ks(z, {) d¢ + u(z)Ks(2), (6.4.20)
for

Ks(z) =2275C(n, s)

J (1+2Zng1) 572 — (L4 Guyn) 572 (1= 2001)5 2 (1= §ugn)ST2 ¢
" (1+2z-Q)5*: (T +zny)" (1 + Guy1)" )

On the other hand, it is possible to show that K; is constant in z. We have not attempted
a direct proof; instead, we compare (6.4.2) and (6.4.20) applied to u = 1. As a conse-
quence,
. rs+s)
Ks(z) = =2—=.
(3 —s)

This yields the proof of the Proposition. O

6.5 The Conformal Fractional Laplacian on the
Cylinder

Up to now, we have just considered conformally compact manifolds, for which the

conformal infinity (M, [h]) is compact. But one could also look at the non-compact

case. This is, perhaps, one of the most interesting issues since the definition on of the

fractional conformal Laplacian, being a non-local operator, is not clear when M has

singularities. In this section we consider the particular case when M is a cylinder.
Let M = R™\{0} with the cylindrical metric given by

1 2
hO = ﬁ |dX|
for r = |x|. Use the Emden-Fowler change of variable r = e~ !, t € R, and remark that
the Euclidean metric may be written as

|dx|? = dr* + r*hge—1 = e 2 [dt? + hgu1] =: e~ *'ho. (6.5.1)

Thus, in these new coordinates, M may be identified with the cylinder R x s™1 with
the metric hy = dt* + hgn—1.

The conformal covariance property (6.2.6) allows to formally write the conformal
fractional Laplacian on the cylinder from the standard fractional Laplacian on Eu-
clidean space. Indeed,

n+2s n—2s n+2s
2

Plo(v) = v Pl (") = 1 Loy,
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where we have set
n—2s
u=r_2 v. (6.5.2)
This relation also allows to calculate the fractional curvature of a cylinder. It is the

(positive) constant
2
n+2s n—2s r ln
Cns 1= ng _ P?O(l) - r%z (7A)S(r*TZ) — 22 (W) , (6.5.3)

where the last equality is shown taking into account the Fourier transform of a homo-
geneous distribution.

In [28] the authors compute the principal symbol of the operator P2 on R x §"~1
using the spherical harmonic decomposition for S"~1. This proof is close in spirit to
the calculation we presented in the previous section for the sphere case, once we un-
derstand the underlying geometry. In fact, the standard cylinder (R x S"~1, ho) is the
conformal infinity of the Riemannian AdS space, which is another simple example of
a Poincaré-Einstein manifold. AdS space may be described as the (n + 1)-dimensional
manifold with metric

o p2 (dp2 + (1 + %)2 dt’ + (1 — %)2 hSnfl) ,
wherep € (0, 2] and t € R. As in the sphere case, the calculation of the Fourier symbol
of PQO goes by reducing the scattering problem (6.2.2)-(6.2.3) to an ODE in the variable
p and then looking at its asymptotic behavior at p = 0 and p = 2. We will not present
the proof of Theorem 6.5.1 below but refer to the original paper [28], since the new
difficulties are of technical nature only.

With some abuse of notation, let ym = m(m + n —2), m = 0,1, 2, ... be the
eigenvalues of —Ag.—1, repeated according to multiplicity. Then, any function v on
R x S"~! may be decomposed as 3", in(t)Em, where {En} is a basis of eigenfunctions.
Let

= 71{[‘ dt
- 7om .

be our normalization for the one-dimensional Fourier transform. Then the operator
PQ" diagonalizes under such eigenspace decomposition, and moreover, it is possible
to calculate the Fourier symbol of each projection. More precisely:

Theorem 6.5.1 ([28]). Fix s € (0, %5) and let P{* be the projection of the operator pho
over each eigenspace {Em). Then

P{'(vm) = 05 (§) Vm,

and this Fourier symbol is given by

I(z+5+ 2

(3-Dpm g2
r(g - g+ YEP gy

n_ 41y 2

om (&) =2 (6.5.4)
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Let us restrict to the space of radial functions v = v(t), which corresponds to the
eigenspace with m = 0, and denote £s := PS. Then the Fourier symbol of £ is given
by

I
i

S
+5+

N3

¢

2
65(8) = 2% p
— 5+ 31)

™

Again, in parallel to Proposition 6.4.3 in the sphere case, it is possible to give a
singular integral formulation for the pseudodifferential operator £s acting on (Eg):

Proposition 6.5.2 ([29]). Givenv = v(t) smooth, t € R, we have for Ls:
o0
Lsv(t) = C(n, s)P.V. f W(t) = v(T)K(t — T) dT + CnsV(t), (6.5.5)
—o0

for the kernel
n+2s
K(t) = knse” 2 oF (%52, 1+5555e7%),

fort > 0, extended evenly for t < O. kn,s iS a constant and the value of cn,s is given in
(6.5.3).

It can be shown ([29]) that the asymptotic behavior of this kernel K is

K& ~ [§77% as [§ -0,

n+2
K(&) ~ e 14l e as |&] — oo.

This shows that, at the origin, its singular behavior corresponds to that of the one-
dimensional fractional Laplacian but, at infinity, it has a much faster decay. Levy pro-
cesses arising from this type of generators are known as tempered stable processes;
they combine both a-stable (in the short range) and Gaussian (in the long range)
trends. In addition, invertibility properties of the operator with symbol 8, (¢)—A have
been considered in [5]. In particular, they construct the Green’s function for a Hardy
type operator with fractional Laplacian.

Before we continue with this exposition let us mention a related problem: to con-
struct solutions to the fractional Yamabe problem on R", s € (0, 1), with an isolated
singularity at the origin. This means that one seeks positive solutions of

(—A)*u = cpsur== in R™ {0}, (6.5.6)
where cy,s is any positive constant that will be normalized as in (6.5.3), and such that
u(x) - oo as |x| — 0.

For technical reasons, one needs to assume here that n > 2 + 2s. Because of the
well known extension theorem for the fractional Laplacian (6.5.6) is equivalent to the



260 —— Maria del Mar Gonzalez

boundary reaction problem
—div(y?vU) = 0in R%*1,
U =uon Rn\{O}, (6.5.7)

—d¥ lirr(l)y“ayu = cn,su%Z on R™{0}.
y—)

Our model for an isolated singularity is the cylindrical solution, given by U; =
n—2s
P sy uy with uy(r) = r~ 2 . In the recent paper [17] the authors characterize all the

nonnegative solutions to (6.5.7). Indeed, if the origin is not a removable singularity,
then u(x) is radial in the x variable and, if u = U(:, 0), then near the origin one must
have that

_n—2s _n-—2s
cirm 2 <ux)<crt 2,

where ¢, ¢, are positive constants.

Positive radial solutions for (6.5.6) have been studied in the papers [28, 29]. It is
clear from the above that one should look for solutions of the form (6.5.2) for some
function v = v(r) satisfying 0 < ¢; < v < c;. In the classical case s = 1, equa-
tion (6.5.6) reduces to a standard second order ODE. However, in the fractional case it
becomes a fractional order ODE and, as a consequence, classical methods cannot be
directly applied here.

One possible point of view is to rewrite (6.5.6) in the new metric hg. Since the met-
rics |dx\2 and h are conformally related by (6.5.1), we prefer to use hg as a background
metric and thus any conformal change may be rewritten as

_4_ _4_
hV = Yyn—2s |dX|2 = yn—2s ho’

where u and v are related by (6.5.2). Then the original problem (6.5.6) is equivalent
to the fractional Yamabe problem on R x S"1: fixed hg as a background metric on
R x S"1, find a conformal metric hy, of positive constant fractional curvature Q?V,
i.e., find a positive smooth solution v for

n+2s

Pg"’(v) =cnsvi> on RxS"L (6.5.8)

A complete study of radial solutions v = v(¢t), 0 < ¢; < v < ¢, for this equation is
not available since is not an ODE. The local case s = 1, however, is well known since
it reduces to understanding the phase-portrait of a Hamiltonian ODE (see the lecture
notes [91], for instance), and periodic solutions constructed in this way are known as
Delaunay solutions for the scalar curvature.

Fractional Delaunay solutions v; to equation (6.5.8), i.e., radially symmetric peri-
odic solutions in the variable t € R for a given period L, are constructed in [29] using
a variational method that we sketch here: if v is radial, then (6.5.8) is equivalent to

n+2s
LsV = Cn,sV"’ZS N te R,
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where L is given in (6.5.5). For periodic functions v(t + L) = v(t) it can be rewritten

as
n+2s

Lly = cpsvis,  teo,L], (6.5.9)
for

Lév(t) = C(n,s)P.V. JL(v(t) — V(1)K (t — T)dT + Cn,sv(t),
0

and K| is a periodic singular kernel given by Ky (§) = >};c;, K(§ —jL).

We find a bifurcation behavior at the value of L, denoted by Ly, where the first
eigenvalue for the linearization of problem (6.5.9) crosses zero. Moreover, for each pe-
riod L > Lg there exists a periodic solution v; :

Theorem 6.5.3 ([29]). Consider the variational formulation for equation (6.5.9), written
as
b(L) = inf {F(v) : ve H*(0, L), vis L-periodic}

where

C(n, s) §& §E(v(t) — v(1))2Kp(t — T) dt dT + cn,s § v(t)? dt
(15 v(t)2* dt)*** '

FLv) =

Then there is a unique Lo > O such that b(L) is attained by a nonconstant (positive)
minimizer v when L > Ly and when L < Ly b(L) is attained by the constant only.

Such vy for L > L, are known as the Delaunay solutions for the fractional curvature,
and they can be characterized almost explicitly. We remark that, geometrically, the
constant solution vy, corresponds to the standard cylinder, while v; — v, as L — o,
where v (t) = c(cosh(t))_"%h corresponds to a standard sphere (i.e., the bubble
solution (6.3.12), normalized accordingly). For other values of L we have a characteri-
zation as a bubble tower; in fact:

Proposition 6.5.4 ([6]). We have that

vp = Y Vool —jL) + @y,
JEZ

where
loclgso,y >0 as L — 0. (6.5.10)

Moreover, for L large we have the following Holder estimates on ¢ :

s
loLlex(o,)) < Ce 7 1+8)

forsome a € (0, 1) and ¢ > O independent of L.
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Finally, Delaunay-type solutions can be used in gluing problems since they model
isolated singularities. In [6] the authors modify the methods in [92, 84] to construct
complete metrics on the sphere of constant scalar curvature with a finite number of
isolated singularities:

Theorem 6.5.5 ([6]). Let A = {p1,...,pn} be a set of N points in R". There exists a
smooth positive solution u for the problem

_AYu=uis  inR™NA,
{( Ju=ur=inRE (6.5.11)

u(x) - o asx — A.

The proof of this theorem consists of a Lyapunov-Schmidt reduction involving a differ-
ent perturbation of each bubble in the bubble tower (6.5.4), in the spirit of [73]. Note
that the compatibility conditions that arise come from an infinite-dimensional Toda-
type system; in addition, they do not impose any restriction on the location of the
singular points, only on the neck sizes L at each singularity.

6.6 The Non-compact Case

Once the isolated singularities case has been reasonably well understood, we turn to
the study of higher dimensional singularities. From the analysis point of view, one
wishes to understand the semilinear problem

(—A)%u = cur> in RMA
’ (6.6.1)

u(x) »mwasx — A,

where A is a closed set of Hausdorff dimension 0 < k < n and ¢ € R. The first
difficulty one encounters is precisely how to define the fractional Laplacian (—A4)° on
0 := R™A since it is a non-local operator. Nevertheless, as in the cylinder case, this
is better understood from the conformal geometry point of view.

In order to put (6.6.1) into a broader context, let us give a brief review of the clas-
sical singular Yamabe problem (s = 1). Let (M, h) be a compact n-dimensional Rie-
mannian manifold, n > 3, and A — M is any closed set as above. We are concerned
with the existence and geometric properties of complete (non-compact) metrics of the
form hy, = w2 h with constant scalar curvature. This corresponds to solving the par-
tial differential equation (recall (6.1.4))

—Apu + 4(”n:21)Rhu = 4(”;21)Ruﬁ, u>o,

where R;,, = R is constant and with a boundary condition that u — oo sufficiently
quickly at A so that hy is complete. It is known that solutions with R < 0 exist quite
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generally if A is large in a capacitary sense ([72, 66]), whereas for R > 0 existence is
only known when A is a smooth submanifold (possibly with boundary) of dimension
k < (n—2)/2([83,34]).

There are both analytic and geometric motivations for studying this problem. For
example, in the positive case (R > 0), solutions to this problem are actually weak so-
lutions across the singular set ([94]), so these results fit into the broader investigation
of possible singular sets of weak solutions of semilinear elliptic equations.

On the geometric side, a well-known theorem by Schoen and Yau ([94, 93]) states
that if (M, h) is a compact manifold with a locally conformally flat metric & of positive
scalar curvature, then the developing map D from the universal cover M to S”, which
by definition is conformal, is injective, and moreover, A := S”\D(]VI ) has Hausdorft
dimension less than or equal to (n — 2)/2. Regarding the lifted metric h on Masa
metric on Q, this provides an interesting class of solutions of the singular Yamabe
problem which are periodic with respect to a Kleinian group, and for which the
singular set A is typically nonrectifiable. More generally, they also show that if hgn
is the canonical metric on the sphere and if h = unz'TZhSn is a complete metric with
positive scalar curvature and bounded Ricci curvature on a domain Q = S™\A, then
dimA < (n - 2)/2.

_ Going back to the non-local case, although it is not at all clear how to define Pé’ and
Q! on a general complete (non-compact) manifold (€, fz), in the paper [41] the authors
give areasonable definition when Q is an open dense set in a compact manifold M and
the metric h is conformally related to a smooth metric h on M. Namely, one can define
them by demanding that the conformal property (6.2.6) holds (as usual, we assume
that a Poincaré-Einstein filling (X, g*) has been fixed). Note, however, thag this is not
as simple as it first appears since, because of the nonlocal character of P!, we must
extend u as a distribution on all of M. There is no difficulty in using the relationship
(6.2.6) to define P! when ¢ € Cy’(Q). From here one can use an abstract functional
analytic argument to extend P! to act on any ¢ € L*(Q, dv;). Indeed, it is straight-
forward to check that the operator Pé defined in this way is essentially self-adjoint
on L?(Q, dvy) when s is real. However, observe that ph = (—=4;)° + X, where KX is a
pseudo-differential operator of order 2s — 1. Furthermore, (—A;)* is self-adjoint. Since
X is a lower order symmetric perturbation, then Pé’ is also essentially self-adjoint.

Another interesting development is [55], where they give a sharp spectral charac-
terization of Poincaré-Einstein manifolds with conformal infinity of positive Yamabe
type.

The singular fractional Yamabe problem on (M, [h]) is then formulated as

(6.6.2)

Plu—curs  in M\A,
u(x) - asx—A,
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forc = Qi’ constant. A separate, but also very interesting issue, is whether ¢ > 0
implies that the conformal factor u is actually a weak solution of (6.6.2) on all of M.

The first result in [41] partially generalizes Schoen-Yau’s theorem:

Theorem 6.6.1 ([41]). Suppose that (M", h) is compact and hy, = uTEhisa complete
metric on Q = M\A, where A is a smooth k-dimensional submanifold in M. Assume
furthermore that u is polyhomogeneous along A with leading exponent —n/2 + s.If s €
(0, %), and if Q! > 0 everywhere for any choice of asymptotically Poincaré-Einstein
extension (X, g*) then n, k and s are restricted by the inequality

r(%—§+§)/r<%—§—§)>o. (6.6.3)

This inequality holds in particular when

n-—2s

k < 5> (6.6.4)

and in this case then there is a unique distributional extension of u on all of M which is
still a solution of (6.6.2) on all of M.

As we have noted, inequality (6.6.3) is satisfied whenever k < (n — 2s)/2, and in fact
is equivalent to this simpler inequality when s = 1. When s = 2, i.e. for the standard
Q—curvature, this result is already known: [24] shows that complete metrics with Q, >
0 and positive scalar curvature must have singular set with dimension less than (n —
4)/2, which again agrees with (6.6.3).

Of course, the main open question is to remove the smoothness assumption on
the singular set A. Recent results of [99] show that, under a positive scalar curvature
assumption, if Qs > O for s € (1, 2), then (6.6.4) holds for any A.

We also remark that a dimension estimate of the type (6.6.3) implies some
topological restrictions on M: on the homotopy ([93], chapter VI), on the cohomology
([86]), or even classification results in the low dimensional case ([58]).

On the contrary, to give conditions for sufficience is a delicate issue, and only
partial results exist when the singular set is a smooth submanifold of dimension
k< (n-2s)/217,5].

6.7 Uniqueness

One of the main questions that arises is, given a manifold (M", h), is there a canonical
way to define the conformal fractional Laplacian on M? this question is equivalent to
ask how many Poincaré-Einstein fillings (X", g*) one can find. The answer is, in
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general, not unique, unless the conformal infinity is the round sphere (or equivalently,
R™) (see the survey [26], for instance).

In this section we would like to describe two Poincaré-Einstein fillings on the topo-
logically same 4-manifold with the same conformal infinity. This construction comes
from the study of thermodynamics of black holes in Anti-de Sitter Space [57], is well
known and it is explained in [26] and [49], for instance, but we repeat it here for com-
pleteness.

The AdS-Schwarzchild manifold is an Einstein 4-manifold described as R? x S?
with the metric [57] (see also the survey [26])

gh=vdt? + v 'dr + r*hy, for V=1+1"— 2Tm

We call rn the positive root for 1 + r2— 27’” = 0, and we restrict r € [rm, +o0). m > 0
is known as the mass parameter, to be chosen later.

Even though this metric seems singular ar rp,, we will prove that this is not the
case if we make the t variable periodic, i.e., t € SI(L). To see this, define a function
p: (rp, ) — (0, 0) by :

pn = [ v
T,

m

One can check that for r near rp,
/ 2
g ~dp® + szdt2 + ’he,

so the singularity at r = rp, is of the same type as the origin in standard polar coordi-
nates. Thus thus we need to make the t variable periodic, i.e, 0 < t < 27L, for

V'(rm) _ 2rm
2 3rh, +1°

L:=L(m)= (6.7.1)
To show that g;} is conformally compact, we change to the defining function ¥ =
1.Since V(r) ~ # when 7 — 0, then

gt ~ %[d?z +df? +he] as 7 oO.
Therefore, for each m > 0, g}, is Poincaré-Einstein and its conformal infinity is st (L) x
S? with the metric hy := dt? + hg.

But we could ask the reverse question of, given L, how many Poincaré-Einstein
fillings one can find for S*(L) x S%. Looking at (9.1.2), rm = % is a critical point for
L(rm), actually a maximum with value

L(L) =

w
S
w

There holds
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- For0 < L < 1/+/3, we can find two different masses m; and m, with the same
L(m).

— For L = 1/+/3, there exist only one mass m which gives L(m).

- IfL > 1/+/3, there does not exist any mass which gives L(m).

Thus for the same conformal infinity S'(L) x S?, when 0 < L < \% there are two non-

isometric AdS-Schwarzschild spaces with metrics g;;, and g;5,. The natural question
now is to calculate the symbol of the conformal fractional Laplacian PY' on the confor-
mal infinity for each model. This calculation is similar to that of (6.4.1) for the sphere
and (6.5.4) for the cylinder. But, unfortunately, the spherical harmonic decomposition
yields a more complicated ODE that we have not been able to solve analytically.

6.8 An Introduction to Hypersurface Conformal
Geometry

Let (Ynﬂ, g) be any smooth compact manifold with boundary (M", h), where h =
g|m., for instance, a domain in R"*1 with the Euclidean metric. One would like to un-
derstand the conformal geometry of M as an embedded hypersurface with respect to
the given filling metric g, and to produce new extrinsic conformal invariants on this
hypersurface.

In this discussion we are mostly interested in the construction of non-local objects
on M, in particular, the conformal fractional Laplacian, and to understand how this
new P! depends on the geometry of the background metric g. A good starting reference
is the recent paper [50], although there the author is more interested in renormalized
volume rather than scattering (see also the parallel development by [45, 46] in the
language of tractor calculus).

Let p be a geodesic defining function for M. This means, in particular, that g§ =
dp? + hp, where hy, is a one parameter family of metrics on M with hy|,—o = h. We
would like to produce a suitable asymptotically hyperbolic filling metric g* for which
the scattering problem (6.2.2)-(6.2.3) can be solved in terms of information from g only.
Looking at (6.3.4), the reasonable assumption is to ask that g™ has constant scalar
curvature

Rgi = —n(n+1). (6.8.1)

Thus we seek a new defining function p = p(p) such that if we define

then this g% is asymptotically hyperbolic and satisfies (6.8.1). Remark that sometimes
a_n=1

it will be more convenient to write g+ = u1g for u — pT.
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This problem for g* reduces to the singular Yamabe problem of Loewner-
Nirenberg ([72]) for constant negative scalar curvature and it has been well studied
([80, 8, 4], for instance). In PDE language, looking at the conformal transformation
law for the usual conformal Laplacian (6.1.4), it amounts to find a positive solution u

in X to the equation
n—1 n?—1, 243
_Afg-u + Wngu = - 4 un-1

that has the asymptotic behavior
u-~ p_n%1 near 0X

(recall that we are working on an (n + 1)-dimensional manifold). It has been shown
that such solution exists and it has a very specific polyhomogeneous expansion near
0X, so that
+_ 81 +pa+p™tip)
= o ,

where a € €*(X) and 8 € €*(X) has a polyhomogeneous expansion with log terms.
This type of expansions often appears in geometric problems, such as in the related
[56], and each of the terms in the expansion has a precise geometric meaning (some
are local, others non-local).

In this general setting, scattering for g™ can be considered ([53]), and one is able
to construct the conformal fractional Laplacian on M with respect to the starting g
once the log terms in the expansion are controlled. For s € (0, 1) these log terms do
not affect the asymptotic expansions at the boundary and one has:

g

Theorem 6.8.1 ([54] for s = 1/2, [23] in general). Fix s € (0, 1). Let (Xnﬂ,g) be a
smooth compact manifold with boundary M™ and set h := g|y. Let p be a geodesic
defining function. Then there exists a defining function p as in the above construction.
Moreover, if U is a solution to the following extension problem

—div(p*VU)+E@)U=0 in(X,3),
U=u onM,
for E(p) given in (6.3.2), then the conformal fractional Laplacian P on M with respect
to the metric h may be constructed as in Theorem 6.3.2.

One could also look at higher values of s € (0, n/2). For example, when M is a sur-
face in Euclidean 3-space, one recovers the Willmore invariant with this construction,
so an interesting consequence of this approach is that it produces new (extrinsic) con-
formal invariants for hypersurfaces in higher dimensions that generalize the Willmore
invariant for a two-dimensional surface. Many open questions still remain since this
is a growing subject.
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Jump Processes and Nonlocal Operators

Abstract: The aim of these notes is to present basic material on jump processes and
their connection to nonlocal operators. We discuss the martingale problem and show
how the existence of Markov jump processes follows from well-posedness of the de-
terministic Cauchy problem for integrodifferential operators. Furthermore, we explain
how to use jump processes for proving regularity results for integrodifferential equa-
tions. The notes do not contain any original new result.

Introduction

Many results about harmonic functions can be proved making use of Brownian Mo-
tion. The same is true for solutions to linear partial differential equations of second
order, if one uses general Markov diffusion processes. In these notes, we discuss sev-
eral connections between solutions to integrodifferential equations and properties of
corresponding Markov jump processes.

The role of the fractional Laplace operator as the generator of the semigroup
generated by the rotationally symmetric stable process has been known for a long
time. The corresponding connection between the more general nonlocal operators
and jump processes has recently led to interesting studies such as regularity results in
Holder spaces. We provide details of the approach to such results which is based on
properties of the underlying stochastic process.

In Section 7.1 we review fundamental concepts of probability theory. Section 7.2 is
devoted to Lévy processes. Their translation invariant generators are studied in Sec-
tion 7.3. In Section 7.4 we explain the notion of the martingale problem and discuss
its well-posedness. We provide a detailed list of references in this framework. We omit
overviews of the literature in the other sections because they can easily be found else-
where. In Section 7.5 we formulate and prove regularity estimates for solutions to in-
tegrodifferential equations under minimal regularity assumptions.

7.1 Prerequisites and Lévy Processes

In this section, we review some basic concepts of probability theory and we define
Lévy processes.
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Definition 7.1.1. Let (Q, F, IP) be a probability space.
(i) AmeasurablemapX : Q — R4 is called random variable. Measurable subsets
E € F are sometimes called events. Given A € B(R?), we write (X € A) instead
of {w € Q|X(w) € A} or X~ 1(A). Thus, P(X € A) denotes the probability that
X takes value in A.
(i) IfX: Q > R, X e LY(Q, dP), then

E[X] = J X(w)dP(w)
o
is called expectation of X.
(iii) Every random variable X induces a measure Px on B(R?) via
Px(B) = f 1dPy = P(X € B).
B

Py is called distribution of X.
(iv) A family {X1,...,Xn} of random variables X; is independent if for all
Bi,...,Bne B(RY)

P(X,€By,...,Xn€Bn) =P(X;€By) - ... - P(Xn € By).
The following facts are important properties on distributions.
(i) If X is a random variable and f € C}, (]Rid), then

EIF0) - | fX(@)dP(@) = | @) dPs(2).
(ii) If X, Y are independent random variables, then

Px+y = IPX * ]Py.

We proceed with the definition of two concepts of convergence for random vari-
ables.

Definition 7.1.2. Let Xn, n € N, be a sequence of random variables. We say Xn con-
verges to a random variable X in probability if for any € > 0

lim P(|Xn — X| > &) — 0.

n—aoo

Note, that every sequence of random variables converging in probability possesses a
subsequence that convergences almost surely.

Definition 7.1.3. Let Xn, n € N, be a sequence of random variables. We say that X»
convergences in distribution to a random variable X, if the sequence of distributions Py,
convergences weakly to Py, that is

n—oo

lim [ fdPy — f fdPy forallf e Cy(RY).
R4 R4
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The next proposition relates the two concepts of convergence in the following way.

Proposition 7.1.4. Assume Xn, n € N is a sequence of random variables that converges
to a random variable X in probability. Then X, converges to X in distribution.

Proof. Since X, convergences to X in probability, there is a subsequence (n;); such
that Xy, (w) convergences to X(w) for almost every w € Q.
For f € C,(RY), we obtain by the dominated convergence theorem

E[f (Xn)] = E[f(X)]. (7.1.1)

The same reasoning can be applied to any subsequence of (Xy). Thus, (7.1.1) holds
for the whole sequence, which finishes the proof. O

Let un, n € N be a sequence of distributions and y a distribution. For abbreviation, we
simply write un — u for convergence in distribution, when no confusion can arise.

Afamily {X; : Q — R9| t > 0} of random variables is called stochastic process and
is denoted by (X¢)¢>0, (X¢) or simply by X. It can be interpreted as a time-ordered se-
quence of random events. Given w € Q, the map t — X;(w) is called path. A stochastic
process Y is called modification of a given stochastic process X if

P(X;=Y;) =1 forallt>o0.

Definition 7.1.5. Let X be a stochastic process. Given t{,...,tn > 0, the measure

......

IP(th ,,,,, th)(Bl X Bz X+ X Bn) = P(th € Bl,th € Bz,... ,th € Bn)

Using the notion of finite dimensional distributions, we can define equality in law for
two stochastic processes.

Definition 7.1.6. Two stochastic processes are said to be equal in law if all of their finite
dimensional distributions coincide.

We now define a class of stochastic processes, which play an important role in many
fields like population models or financial stock prices.

Definition 7.1.7. A stochastic process X is called Lévy process if the following holds.
(i) P(Xo=0)=1.
(ii)) Foreveryt > 0, the increments X+ — Xs do not depend on s > 0.
(iii) Forevery n € N and every choice0 < t; < t; < --- < tn, the family of random
variables {Xt, — Xt,, ..., Xt, — X, ,} is independent.
(iv) Foreveryt > 0, Xs converges to X; in probability for s — t.
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(v) Thereis Qg € FwithP(Qg) = 1such that for every w € Qg the path t — X(w)
is continuous from the right and has left limits.

Let us comment on the foregoing definition.

Remark 7.1. The first property tells us that for almost all w € Q the paths t — X:(w)
Start in zero.

Condition (ii) is the so-called stationarity of increments and is a homogeneity prop-
erty on the time.

The third property tells us that all increments of the process are independent.

Condition (iv) describes some continuity in measure but not continuity of the paths.
A stochastic process satisfying (i)—(iv) is called Lévy process in law. Several authors call
such a process Lévy process.

Property (v) is known as “continue a droite limite a gauche” (cadlag) and means
right continuous, left limits. Sometimes, in English it is abbreviated by RCLL.

Let us give an important example of a Lévy process.

Example 7.1.8. A Lévy process X with values in R resp. in N is called Poisson process
with parameter A > O if for every t > 0

(A
k!
Px,(B)=0 forBn Ny = .

Py, ({k}) = e (k € No),

Given a Poisson process, its distribution can be represented in the following way.

Proposition 7.1.9. Let X be a Poisson process with parameter A > 0. Then there are
real valued random variables Wy, W5, ... such that T, = Wy, — W,_1 has exponential
distribution with parameter A, i.e. for everyn € N

P(TheB) =1 e ™da,
B~ (0,00)
and
Xi(w)=n<e Wh(w) <t < Wypi(w).

Let M(d x d) denote the set of all d x d matrices with entriesin R and let A € M(d x d).
To shorten notation, we write A > 0 if the matrix is positive definite.

Definition 7.1.10. A random variable X is said to have a nondegenerate Gaussian dis-
tribution with mean v € R? and covariance A € M(d x d), A > 0, if for every B € B(R?)

Py (B) =3 (AT =) gy,

1
~ J/(2n)d(detA) Le
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Definition 7.1.11. A Lévy process X is called Brownian motion or Wiener process if
(i) X; has Gaussian distribution withy = 0, A = tId,
(ii) thereisa Qg € FwithP(Qo) = 1such that the paths t — X(w) are continuous
forevery w € Qy.

7.2 Lévy-Khintchine Representation

Lévy processes have the unique feature that, once you know Py, , then you know all
distributions IPx,. Moreover, every Lévy process can be described by a single function
R? — C. The aim of this section is to understand this function. All results and proofs
from this section can be found in [45].

Definition 7.2.1. Let u be a probability measure on B(R?). Then i : R? — C,
() = | eI uan
R4
is called the characteristic function of u.
Remark 7.2. Note that [i is just the Fourier transformation of the measure .

For a random variable X, we can assign a characteristic function by the characteristic
function of its distribution Py.
The following proposition gives some properties of the characteristic function.

Proposition 7.2.2. Let un, n € N be a sequence of distributions on R¢ and u a distri-
bution on RY. Then
(i)  is uniformly continuous,
(i) 7i(0) = 1andforallze RY : |ji(z)| < 1.
(iii) If iy = U, then py = py.
(iv) Ifu = p1 * po, then fi = fiy - ia.
If X, Y are independent random variables then

Py.y = Py Py.

(v) IfXq,...,Xn are random variables and X = (X1,...,Xn)isa R random
variable, then X1, ..., Xn are independent iff for every z = (z1,...,zn) €
]Rdxn

Px(z) = Px,(z1) - ... - Px, (zn).

(vi) If pn — M, then jin — J uniformly on compact subsets.
Furthermore, if jin(z) — ji(z) for all z € R, then pn — .

(vii) Let ¢ : R? — C be continuous at zero. If jin — @, then ¢ itself is a character-
istic function.
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(viit) If § |fi(z)|dz < oo, then u is absolutely continuous w.r.t. the Lebesgue measure
with density g € C,(R?) satisfying

g(x) = (2m) j e (2 dz.

In the following steps, the connection between the characteristic function of a Lévy
processes and a special class of probability measures is studied. This is the class of in-
finitely divisible distributions. By the Lévy-Khintchine formula the characteristic func-
tions of Lévy processes and infinitely divisible distributions will be set into a one-to-
one correspondence.

Definition 7.2.3. A probability measure u on B(]Rd) is infinitely divisible if, for any n €
N, there is a probability measure pin on B(R9) with

U= Un %% pdn = (Un)". (72.1)

Note, that by 7.2.2 the convolution of two distributions is expressed by the product of
the corresponding characteristic functions, which can be characterized again by the
sum of independent random variables. Hence a random variable X has an infinitely
divisible distribution if for each n € N there arei.i.d. random variables X; , ..., Xnn
such that

X2X 04+ Xnn.

We proceed by showing that the characteristic function of an infinitely divisible
distribution has no zero. For z € C, we write z for the complex conjugate.

Lemma 7.2.4. If u is an infinitely divisible distribution, then ji # 0 on RY.

Proof. For each n € N there is yn such that
(An(2))" = Ji(z)  forallze RY, (72.2)

Define fi by ji(B) = u(—B) and y* by yu* = y « fi. Then u# = [fi|>. Thus |fin|? is a
characteristic function and |jin|? = |fi|*/". By 7.2.2i(0) = 1 and i is continuous.
Define
¢(z) = lim |fin(z)|?

and observe

1 if p(z)#0
0 if p(z)=0

7.2.2 (vii) ensures that ¢ is a characteristic function, thus ¢ is continuous. Since
#(0) = 1 and j is continuous, it follows that ¢ = 1 on B¢(0) for some € > 0. Since ¢
is continuous and ¢ € {0, 1}, we conclude ¢ = 1. Hence ji # 0 on R¢. O
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Remark 7.3. In general, i # O on R4 does not imply that u is an infinitely divisible
distribution.

Lemma 7.2.5. Suppose ¢ : R? — C is continuous with ¢(0) = 1, ¢ # 0 on RY. Then
there is a unique continuous function f : R¢ — C, with f (0) = 0and

@ —pz)  forallzeRC. (7.2.3)

We write log ¢(z) instead of f(z). Note that in general ¢(z1) = ¢(z,) does not im-
ply log ¢(z1) = log ¢(z>). The following results provide useful properties of this new
function.

Lemma 7.2.6. Assume ¢ : RY — Cand for any n € N let ¢, : R? — C such that
@, @n are continuous with @ (0) = @n(0) = 1and @ # 0, pn # O onR% foralln € N.
Assume @n — @ uniformly on compact sets as n — co. Then log ¢n — log ¢ uniformly
on compact sets as n — oo.

Corollary 7.2.7. Let (un) be a sequence of infinitely divisible distributions. Let u be an
arbitrary distribution with yun, — u. Then u is an infinitely divisible distribution itself.

Lemma 7.2.8. Let X be a Lévy process. Then for every t > 0 the measure Py, is infinitely
divisible. Moreover, Px, = (Px, ){, where the power is defined appropriately.

Proof. Assume X = (X;)isaLévy process.Letn € N.Set y = Px, and un = Py, —x, >
where t; = L. kforke {0,1,...,n}.

By the stationary of increments of the Lévy process X, the choice of u, does not
depend on k. Note

Xe= (X, — Xe, )+ + (Xe, — Xp,)- (7.2.4)

Thus, X; equals the sum of n independent random variables with equal distributions

Hn.

Hence u = (un)". From Py, = (IPXI)%, we deduce Py, = (IPXI)%. Ift e Q, we
are done. If t e R\Q, choose (rn)" c Qsuch that r, — t for n'— o.

By definition of Lévy processes, we know Xy, — X; in probability, hence Px, —
Py, forn — co. Setvn = Py, and v = P, . Then for every z € R? the characteristic
function 9, (z) converges to ef°87(?) — (5(z)), where © is continuous. Thus (7(-))’ is
the characteristic function of some distribution, which we define as (Py, )". O

Let’s summarize:

Theorem 7.2.9. Let X be a Lévy process on R%. Then IP x, is infinitely divisible for every
t > 0. The corresponding characteristic function satisfies

Py, (z) = e!'8Px () (72.5)
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The measures (P, )¢~ form a convolution semigroup, i.e. for u¢ = Px, we have
— Ut * Us = Utys vt,s >0
- Mo =0bo
- Ug— 6pfort -0

Definition 7.2.10. The function
z — log ]lgxl (2) = Y(2) (7.2.6)
is called symbol of the Lévy process X.

Let us look at examples of Lévy processes and symbols.

1. Assume X is a Poisson process, i.e., Py, ({k}) = e"“}(—f. Then (z) = A(e”? —
1) = log Py, (2).

2. Assume X is a Gaussian process with parameters A € M(d x d), A > 0, and
veRY. Then§p(z) = —1(z, Az) + i(r, 2).

Theorem 7.2.11 (Lévy-Khintchine).
(i) Let u be an infinitely divisible probability measure. There exist a symmetric
A e M(d x d)with A > 0,~ € RY and a measure v on B(R?) with v({0}) = 0
and (p, min(1, |h|?)v(dh) < oo, such that the characteristic function ji of u is
given by

i(z) =exp | — %(z, Az) +i(v,2) + J ('™ _1—i(x,2)1p, (x) )V(dx)}.
R4

(7.2.7)
(ii) The representation of Ji in terms of (4, , v) is unique.
(iii) The reverse direction of (i) is true. Given (A, -y, v) and ji with the representation
as in (7.2.7), there is an infinitely divisible distribution u with i as in (7.2.7).

The matrix A is called Gaussian variance and v € R? is the so-called drift parame-
ter. The measure v is called the Lévy measure. It is a Radon measure which describes
the jump of underlying Lévy process. (4, v, v) is called Lévy triplet. Since the charac-
teristic function of any R?-valued random variable completely defined its probability
distribution, the corresponding Lévy process is fully determined by (4, v, v).

Example 7.2.12. Let A = 0, = 0 and v(dh) = Ca,d|h|‘d_“ dh for a € (0, 2) and an
appropriate constant C, 4, chosen such that

1 —cos(hy) B
ca,ded S an =1,

By 7.2.11 this yields to
H(z) = exp(—|z|%).
The associated Lévy process is the so-called isotropic a-stable Lévy process.
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Another important class of jump processes is given by the compound Poisson distri-
bution.

Definition 7.2.13. A distribution on R is called compound Poisson if ji(z) = eMo@)-1)
for some A > 0 and some distribution o with o({0}) = 0.

Example 7.2.14. Letd = 1 and 0 = 6. Then

Q)

(z) = fR e g(dh) — e,

Hence
logji(z) = A(G(z) — 1) = A(e” — 1).

Remark 7.4.
1. The integral expression in the representation of the characteristic function in
the Lévy-Khintchine formula is well-defined by the properties on the Lévy mea-
sure v. Note that

e'®M 1 —i(z, h)1p,(h) = O(h) at |h| — O

and is bounded for |h| > 1.

2. The concrete form of the ,,cutoff” term 1p, in the integral in (7.2.7) is not impor-
tant. One option to replace it is given by y : R? — R with the following two
properties

x(h) =1+ o([h]) for || — 0O,
1

x(h) = O(m)forlhl — .

If one replaces 1, (h) in (7.2.7) by x(h), then one also needs to replace the drift
term -y by

=7+ JW h(x(h) — L, (R))v(dh). (72.8)

Some possible examples for x are:
- x(h) =1, ., (h)
1
= X(h) = 5y
- x(h) = 1p,(h) + (2 - |h])1p,/B,

Let us comment on the proof of the Lévy-Khintchine theorem. We select some impor-
tant steps of the proof provided in [45] and refer to this book for the important details.

Idea of the proof of (ii) in 7.2.11: First, one shows

I S |
Slingo s “logu(sz) = 2(z,Az) (72.9)
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so u determines A. Second, one determines v. Last, the uniqueness of - follows.

Proof of (iii) in 7.2.11: Define ¢ : R?  C and Qn : R? — C,n e N, as follows.
Let ¢(z) be the right-hand side of (7.2.7) and let ¢, equal the right-hand side of (7.2.7),
where the area of integration in the integral is not over R¢ but R%\B; /n-

Then ¢n = exp(—%(z, Az) + 0n(z)) with some appropriate compound Poisson
distribution on. @n is a characteristic function of an infinitely divisible distribution
and ¢n(z) — @(z). Since @ is continuous, ¢ itself turns out to be the characteristic
function of an infinitely divisible distribution.

Idea of the proof of (i) in 7.2.11. Let u be an infinitely divisible distribution. For
ne N, let ty € (0, 0) with limp—o tn = 0 and define u, through

(A(z)" — 1
tn )

— exp (t# f (el®h _ 1yt (dh))
R4\ {0}

fin(z) = exp (

Thus by 7.2.2, un — p. The proof is completed, once one characterizes the conver-
gence of infinitely divisible distributions by the convergence of Lévy triplets as in the
following theorem:

Theorem 7.2.15. Assume y is a bounded continuous cutoff function. Let (un) be a se-
quence of infinitely divisible distributions with Lévy triplet (An, vn, yn)X. Let u be any
distribution on RY. Then un — u holds true if and only if the following two conditions
are satisfied:
(i) pis aninfinitely divisible distribution.
(ii) u has Lévy triplet (A, v, v)X with
glim limsup|(z, An,ez) — (2, Az)| = 0,

—0 n—oowo

f £ dvn — f fdv forf e Cy(RY) A {f — 0 in some Br(0)},
Rd Rd

and yn — .

where An,¢ is defined as follows:
(2, An,e2) = (2, An2) + §p_ (o) |(2, )| *va(dh).
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7.3 Generators of Lévy Processes

In this section, we study infinitesimal generators of strongly continuous semigroups
related to Lévy processes. The material is standard and there are several good sources,
e.g., [45] or [22]. Suppose X = (X¢)¢>0 is a Lévy process on R? with u=Px .Fort>0
and B € B(R?) we define the corresponding transition function by

Pi(x,B) = u*(B —x).

We define P; : L°(R?) — L®(RY) for t > O by
Pef(x) = j F@)Pe(x, dy) = j Fx+ Wyt (dh) = E[f(x + X0)].
R4 R

Further let Co (RY) be the space of all continuous functions vanishing at infinity,
that is

Co(RY) = {ve Cy(RY): | llim v(x) = 0} (73.0)
and
CL(R? = {ve Con(RY) : V]a| < 2 0%F € Con(RY)}. (73.2)

Proposition 7.3.1. The family (P;) forms a strongly continuous semigroup on C(R9),
ie.

Py =1Id, Ptis=P¢Ps forallt,s >0 (7.3.3)
and
|Pf — | — O fort — O. (73.4)
Furthermore, ||P¢| = 1 forall t > 0.

Proof. The properties Py = Id and P, s = P¢P; are easy to see.
Let’s prove | P¢f — f| — 0. Let f € Cop(R9). Note, f is uniformly continuous. Given
€ > 0, choose § = §(¢) with

|h| < 6 = |f(x + h) — f(x)| < e forall x e RY, (7.3.5)

Forxe R?and t > 0

Pf(X) = fOOI < | | (Fx+h) = F())p' (dh)]

Bs

+| (f(x +h) = f(x)u' (dh)|

R4\B;
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<+ 2|f|op (RY\Bs)
< €4 2|f|we for t < ty(e),
where we used the stochastic continuity. The estimate |P¢| < 1 is evident. To show

|P¢] =1, let fn : R? R be a sequence in C@(Rd) with 0 < f, < 1and fy = 1 on By.
Then limy—.« Pfn = 1 and therefore ||P¢|| = 1. O

A strongly continuous semigroup is called a strongly continuous contraction semi-
group if | P¢| < 1 holds for every ¢ > 0.

Given a strongly continuous contraction semigroup, one can define the infinites-
imal generator as follows:

Definition 7.3.2. The infinitesimal generator L of a strongly continuous contraction
semigroup (P;) on a Banach space X is defined by

Lf = lim Pif t_f (7.3.6)

t—0+
forf e D(L) = {f € X : lim;o 2L~ exists }.

In the following proposition we study the Fourier transform of the semigroup and its
generator.

Proposition 7.3.3.
(i) Forfe L*(RY) A L®@RY),t>0

Pf(&) = "I () (73.7)
(i) Forf e D(L),Lf € L*(RY)
LF (&) = Y(~&)F (&), (73.8)

where (L, D(L)) is the infinitesimal generator of (P¢).
Proof.
()
PF) = | SR+ X)dx = B [ ¢ p(y)dy]

R4 R4

_ E[el(-6X0] f &V F(y)dy

(ii) follows from (i).
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It is a reasonable question to ask about a relation between the Lévy measure v and .
Assume v(dh) = k(h)dh with K(h) = K(—h). Assume that for some R, € (0, +o0) and
some/A > 1

—1£(|h[) ¢([h)
A i <k(h) <A i for|h| < Ro, (7.39)
where ¢ : (0, Rg) — (0, +o0) satisfies
Ro
f é(s)ﬁ =+ (7.3.10)
o S
plus some weak scaling condition.
Proposition 7.3.4 ([26]). Set L(r) = SR" o(s ds . Then there are ¢ > 1 and ro > 0 such
that
cTML(ETH < P(&) < e foré e R[] = 10 (7.3.11)

Let us give some examples for the function ¢ and £ for 7.3.4.

Example 7.3.5.
(i) £(s) =s% L(s) = “for0<a<2
(ii) ¢(s) =1n(2), £(s) = In*(2)
(iii) ¢(s) = 1, L(s) = In( )

(I

Theorem 7.3.6. Let (L, D(L)) denote the infinitesimal generator of (P;) on Cs(R9).
Then CZX (RY) is a core for L. Moreover C%(R9) = D(L) and for f € C% (RY)

= % IZ]: a;;0;0if + Zi:%@if
# [ JFc 1) = 00 = (h, SO 1 (W), (312)

where (A, ~, v) is the Lévy triplet of X.

If A and ~ equal zero, then L becomes an integrodifferential operator or, if u(R?) is
finite, an integral operator. Let us assume that y is an isotropic a-stable measure for
some « € (0, 2), i.e.,

u(dh) = Cq g |h|~*“dh,

where C, 4 is a specific constant, cf. 7.2.12. Then

Lf(x) = Caa | [FOx+ ) = f(x) = 1p, (R)(VF(x), W)]|h| =4~ dh

R4
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= Cqq lim [f(x +h) = f(0)]1h| =4 *dh

e—0+
R4\Be
— %Ca,d [f(X +h) = 2f(x) + f(x — h)]|h|_d—“ dn.
R

It is important to note that, again for f € C (R?), the following identity

Caa m [ [0+ h) = FOO] A~ dh = —(-0)"*F(x)
Rd\B,

holds true. Here, the operator (—A)%?f is defined as follows:

(—8)2f (&) = 1€1°F(&)  (EeR fe CPRY)

In this sense, the fractional Laplace operator appears as the generator of the
isotropic a-stable process. Of course, the precise value of C, 4 is important for the
equality above. However, for most applications, the asymptotic behavior C, 4 = a(2 -
a) is sufficient.

7.4 Nonlocal Operators and Jump Processes

In Section 7.3 we have studied generators of strongly continuous semigroups, which
correspond to Lévy processes. As shown in 7.3.6, these generators can be represented
as translation invariant integrodifferential operators. In this section, we comment on
the relation between more general jump processes and more general integrodifferen-
tial operators. A possibility to link these objects is given by the martingale problem.

The aim of this section is to explain how solvability of the deterministic Cauchy
problem for an integrodifferential operator of the form o; — L implies well-posedness
of the martingale problem for L. We restrict ourselves to purely nonlocal operators of
the form

Lf(x) = f [f(x+h) = f(x) = (hVf(x))1p, (h)| n(x, h) dh, (74.1)

R4
where n : R x R4\ {0} — [0, o] satisfies
sup j(1 A [hP)n(x, h) dh < .
xeR4

Solvability of the Cauchy problem requires some additional conditions, which we dis-
cuss further below. Note that Lf(x) is well defined for bounded functions f : RY & R,
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which are sufficiently regular in a neighborhood of x € R?. The material of this section
closely follows the presentation in the preprint [1]. Note that is has not been published
in [2]. Since there seems to be no survey article on the material of this chapter, we give
many references.

Let us state the martingale problem. By D([0, «0); RY) we denote the space
of all cadlag paths. Below we give a precise definition and a short discussion of
D([0, 0); RY).

Definition 7.4.1. A probability measure P* on D([0, o0); R?) is a solution to the mar-
tingale problem for (L, D(L)) with domain D(L) being contained in the set of bounded
functions f: R? — R, L defined as in (74.1) and u a probability measure on R if, for
every ¢ € D(L),

t

(o(1) - p(To) ~ [ (o)) ds)_,
0

is a P*-martingale with respect to the filtration (o(Ils; s < t))t>0 and P*(Ily = p) = 1.

Here II is the usual coordinate process, i.e., IT: [0, ) x D([0, 0); R?) — R, IT;(w) =

w(t). If for every u there is a unique solution P* of the martingale problem, we say that

the martingale problem for (L, D(L)) is well-posed.

The well-posedness of the martingale problem is closely related to weak uniqueness
for the corresponding stochastic differential equation. In these notes, we mainly omit
related questions of stochastic analysis. A very good source for this is [5].

7.4.1 References for the martingale problem for nonlocal
operators

Let us mention some important results concerning the martingale problem for nonlo-
cal operators. Note that the case where n(x, h) does not depend on x is very special
because, in this case, L is translation invariant and generates a Lévy process, cf. [9],
[45]. One could say that L has constant coefficients in this case.

The martingale problem for an operator of the form A + L where A is a non-
degenerate elliptic operator and L is an operator of our type has been studied in
[31, 48, 37]. Since A is a second order operator, L is a lower order perturbation of A.
[32, 33] treat the martingale problem for pure jump processes generated by operators
like L, i.e., A = 0. See also [42].

Using pseudodifferential operators and anisotropic Sobolev spaces [19] proves the
well-posedness of the martingale problem under assumptions like x — n(x, h) €
C34(R9). [19] allows for a rather general dependence of n(x, h) on h. More general
cases are treated in [30]. In the setting of [19], a parametrix for the pseudodifferential
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operator is constructed in [13]. The parametrix methods is also applied in [29], [36],
[35] and [12].

The, by now classical, method to prove uniqueness for the martingale problem
was established in [49]. The main idea is to solve the deterministic Cauchy problem for
the operator L in sufficiently regular function spaces. This approach has been carried
out in [40, 39, 41, 2].

The uniqueness for the martingale problem is closely related to the uniqueness
in law for stochastic differential equations, see [51, 4, 6]. Recent results on stochastic
differential equations driven by jump processes can be found in [43, 38, 18, 44, 15,
16]. Systems of such stochastic differential equations often lead to nonlocal operators
with singular measures. The martingale problem for such operators has been studied
in [7]. We also draw the readers attention to the interesting recent work [25] where
counterexamples and sufficient criteria for uniqueness of the martingale problem are
presented.

A particular case of nonlocal operators arises if n(x, h) is bounded from above and
below by |h| =42, where a : R? — (0, 2) is a function. [21] provides a nice intro-
duction into this framework including existence results. Well-posedness of the mar-
tingale problem is proved in one spatial dimension in [3] when a(-) is Dini-continuous.
Uniqueness problems for stochastic differential equations in similar situations in-
cluding higher dimensions and diffusion coefficients are considered in [50]. The tech-
niques of [3] can be extended to higher dimensions and to a larger class of problems.
[23], [28], and [34] provide sufficient conditions for L to extend to a generator of a Feller
processes in this framework. [20] provides such a result together with well-posedness
of the martingale problem when x — a(x) is smooth.

7.4.2 The path space of cadlag paths

The standard reference for the martingale problem for diffusion operators is [49]. Since
the paths of jump processes are not continuous by nature we have to set up the mar-
tingale problem for the path space D([0, c0); R?) of all cadlag paths. Good sources for
this space are [11], [17], [24], but the first edition [10] is sufficient for many purposes. A
good reference for the martingale problem on D([0, «0); R?) is [17].

We denote by D([0, 0); RY) the set of all functions w : [0, o) — R¥ satisfying for
allt >0

lim w(s) = w(t), Jw(t—) = lim w(s).
S—t+ S—t—

A basic fact about D([0, o0); RY) is that any w € D([0, c0); R?) has at most countably
many points of discontinuity. As on the space of continuous functions the mapping
duc defined by

duc(w, w2) = > 27¥min {1, sup w1 (t) — w2 (1)}
keN t<k
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defines a metric. The space (D([O, oo);]Rd), duc) is a complete metric space but, in
contrast to the case of continuous functions, it is not separable. To see this, consider

M:= {ws e D([0, 0); RY); ws(t) = 15 00) (1), 5 € [0, 1)} )

There cannot exist a countable dense subset A of the uncountable set M since
duc(ws, wt) = 3 asalong ass # t. The set A would need to be uncountable right
away.

Nevertheless, there exists a metrizable topology on D([0, o0); R?) such that it be-
comes a complete, separable metric space. We summarize the main results on this
space in the following theorem. Since the space D([0, «0); R?) is not too well known
among analysts we include many details in this theorem. It is almost identical to The-
orem VI.1.14 in [24].

Proposition 7.4.2. (1) There exists a metrizable topology on D([0, c0); R?), called the
Skohorod topology for which the space is complete and separable. Denote this metric by
d. Then d(wn, w) — 0 is equivalent to the existence of a sequence of strictly increasing
functions Ay : [0, 0) — [0, ), satisfying An(0) = 0, An(t) / o for t — oo and at the
same time

sup|An(s)—s| >0 asn— o,

s=0

(sup |wn(An(S)) — w(s)| — 0 asn— oo) VkeN.

s<k

(2) Aset M = D([0, «0); RY) is relatively compact for the Skohorod topology if and only
if

supsup|w(s)| <o VkeN,

weM s<k

lim supy(w,p)=0 VkeN.
=0+ weM

where vy (w, t) is a generalized modulus of continuity, defined via

(®, p) = inf { maxy(@; [ti_1,)) : 0

i<L

=ty <...<tg =k,inf(tl~—t,~,1)>p},
i<L

where v(w; I) is the usual modulus of continuity for w on the interval I c R.

(3) For given t > 0 let us denote by II; the projection D([0, «0); RY) — R, w — w(t) =
I¢(w). With this notation the Borel o-field B(D([0, »0); R?), d) equals o(IT; t > 0).
(4) The vector space (D([0, 0); R?), d) is not a topological vector space since addition
of two elements is not continuous with respect to this topology.

A stochastic process X with paths in D([0, c0); R?) can be interpreted as a random
variable
X: (Q,3,P) - D([0, 0); RY)
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with X¢(w) = w(t) where (Q,F,P) is an abstract probability space. Given a fam-
ily (X*)4en of such processes we say that (X%),c4 is relatively compact if the family
(Px«)qen Of image measures Py« = IP o (X%)~1 is relatively compact which, due to
Prokhorov’s theorem, amounts to saying that (IPxa) ¢ 4 is tight.

7.4.3 Uniqueness of the martingale problem

As explained above, it is much more difficult to prove the well-posedness of the martin-
gale problem than mere solvability. The following lemma provides an essential tool for
proving uniqueness. It says that finite-dimensional distributions form a convergence
determining class, see Theorem 3.7.8. in [17].

Lemma 7.4.3. Suppose that Xo, (X™)nen i a relative compact family of stochastic pro-
cesses X" : (Q,F,P) — D([0, oo);Rd) and there is a dense subset ] — [0, o) such
that

(X"(t1), ... X" (ty)) 2 (X(t1), ... X(ty))

or, equivalently, IP( weakly

X)), X0 (ty)) IP(X(tl),...X(tN))
for all finite subsets {t1, ..., ty} < J. Then X" :d> X or, equivalently Px» — Py weakly.

The situation turns out to be even better for solutions to the martingale problem. The
following universal result says that even one-dimensional distributions determine the
measure provided they agree for all initial distributions y, see Theorem 4.4.2 in [17].

Lemma 7.4.4. Consider the linear operator (L, D(L)) with L defined as in (7.4.1). Assume
that for any initial distribution pu and any two corresponding solutions P*, Q¥ to the
martingale problem

Py, =Qf vt=0,

then there exists at most one solution to the martingale problem for any initial distribu-
tion p.

The key to the proof of the previous lemma is to show that regular conditional prob-
abilities solve the martingale problem. Finally, we can prove uniqueness for the mar-
tingale problem. In order to have well-posedness, one also needs to prove solvability
i.e. one needs to prove that, given a distribution y, there exists a solution IP*. This is
much easier ans such results have been established under very mild assumptions, cf.
Theorem 2.2 in [48], Theorem IX.2.41 in [24] and Theorem 3.2. in [19].

We will now explain how uniqueness for the martingale problem follows from
solvability of the corresponding deterministic Cauchy problem. For s > 0 we denote by
@5 (RY) the Holder-Zygmund space and by € (R¢) the closure of C* (RY) with respect
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to the norm of C* (]Rd). Given a Banach space X, we say that f belongs to the space
cY3([0, T); X) if f : [0, T] — X is continuously differentiable with onzf e C5([0, T]; X).
Let L be as in Section 7.4.1.

Theorem 7.4.5. Assumea € (0,2),s€(0,1),9€ (0,1),and T > 0. Assume that
(i) L is a bounded operator from C5"%(R%) to C§(RY),
(ii) for every f e CY([0, T); C5(R?)) there is a unique solution u e
ct¥([o, Tl €*(RY) ~ C°([0, T]; €5+ (RY)
Then the martingale problem for (L, C?(]Rd)) is well posed.

Obviously condition (ii) is a very strong assumption. It is a challenging task to find
sufficient conditions on n(x, h) such that (ii) holds true, cf. [2].

Proof. Assume that there are two solutions P¥, Q* to the martingale problem for a
given distribution u. A key step is to show that, for any T > 0 the stochastic process
M = (M¢)e[o, 1) defined via
t
M =v(t, 1) — J(

0

+ L)v(s,II5) ds (74.2)

Xl

is a PY-martingale and thus also a Q*-martingale for any function v €

ct¥([o, T; 5 (RY)) ~ C¥([0, T); C5T4(RY)) with s, 9 € (0, 1). This is proved exactly

as in Theorem 4.2.1, part “(i)=(ii)” of [49]. Note that L is a bounded operator from

Cé*“(]Rd ) to @5 (R?) which is what we need. The conclusion “(i)=(ii)” does not de-

pend on the local structure of the differential operator or another specific property.
The main result follows once the following equality

T
J 0(5)Eps (W(ITs)) ds = J (s)Eqx (W(ITs)) ds (74.3)
0

is established for any T > 0 and any choice of ¢ € C¥((0, T)), ¥ € CF (RY). Here, Epx
and Eqx denote the expectation with respect to P* and Q¥ respectively. Assertion
(7.4.3) proves the equality of one-dimensional distributions, i.e. P* = Q};L forall t >
0, which in light of 7.4.4 proves the desired uniqueness result. Equality (7.4.3) is proved
as follows.

Setting f(t, x) = @(t)(x). Condition (ii) ensures that there is a function v belong-
ing to c¥([0, T]; €5 (RY)) n CI([0, T]; C5T4(R?)) and solving

ov+Lv=f in (0, T) x R",
v(T,)=0  inR".
Thus

T
f(p E]py Hs)) ds = 7Epu ff S Hs) ds = E]py (MT) ]E]Pu (Mo)
0
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— Epr (v(0, ITo)) = J Y(0, My (w))PH (dw) — Jv(O,x)y(dx).
D([0,00);RD) R4

Since the same line with the same right-hand side holds true when P* is replaced by
QH equality (7.4.3) is established. The theorem is proved. O

7.5 Regularity Estimates in Holder Spaces

In this final section, we explain how to prove Hélder estimates for solutions u : R? —
R to the equation Lu = f in Q, where Q = R? is open and L is an operator of the
form (7.4.1). We offer two approaches, one direct approach using the integrodifferential
representation of L and one approach using the Markov process that is associated to L
via the martingale problem. The material of the section in based on [8], [47] and [26].
We refer to [27, Section 2] and [46, Section 1A] for a detailed discussion of the literature
and further results.

Before we can formulate the main result, we need to impose some condition on
n(x, h). The main assumption for this section is

AR  <n(x, h) < AJh747% (h,xeRL0< bl < 1), (7.5.1)

for some A > 1, a € (0, 2). We will prove the main two results under this condition.
The results of this section go back to [8] in the framework given by (7.5.1). Recently,
the result of [8] was extended to a much wider class of problems. As explained in [26],
Holder-type regularity estimates can be proved if (7.5.1) is replaced by

A71€(|h|) < n(x, h) <Aé(‘h‘)

i < <A (h,xeR%,0<|h <1), (75.2)

where ¢ : (0,1) — (0, o0) is locally bounded and varies regularly at zero with index
—a € (=2, 0]. Possible choices for ¢ include ¢(s) = s~ for some a € (0, 2), £(s) = 1
and ¢(s) = In(2/s)*!. Note that condition (7.5.2) equals (7.3.9) if n(x, h) is independent
of x.

The main regularity result of this section is the following.
Theorem 7.5.1 ([26]). Assume (7.5.2) is satisfied. There exist constants ¢ > 1, 8 € (0, 1)

such that for f € L*(B;),0 <r < 1/2,and u ¢ C}Z,(Rd) satisfying Lu = f in By, the
following holds true:

|u(X)_u(y)‘ B p—1
sup ————— g < cL(r u + cL(r f 0 . (7.5.3)
x,yeB,, L(Ix =y~ ()" l[ufloo (M f e s,

S

1
Here L(r) = Sﬁ ds.
r
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Corollary 7.5.2 ([8], [47]). Assume (7.5.1) holds true. Then (7.5.3) becomes

sup 1100 —u(y)

<cr uloo + cr* Y |f e (B » (7.5.4)
X,Y€B, /4 Ix —y|7 (Br)

wherey = aff € (0, 1).

Remark 7.5. Note that the constant c in the above estimates depends on the value of
a. In fact, from the proofs one can see that c is unbounded for &« — 2—. It is possible to
prove (7.5.4) with a constant that is independent of « for a away from zero, cf. [14].

The significance of these two results lies in the fact that they require almost no regu-
larity assumption on the dependence of n(x, h) on x € R9. Note that 7.5.1 generalizes
7.5.2to alarge extent. The operators resp. stochastic processes that are covered by 7.5.1
allow for a rich structure with respect to scaling, see the examples mentioned above.

For the sequel of this section, we concentrate on the case that corresponds to (7.5.1)
and f = 0. Let us begin with the more probabilistic approach.

7.5.1 Probabilistic approach

We assume that the martingale problem for (L, C¥(R?)) is well-posed, i.e., there ex-
ists a strong Markov process X associated to L. Implicitly, the assumption that the
martingale problem for (L, C¥(R9)) is well-posed, imposes some (weak) restriction
on n(x, h). Let us first clarify how we are going to understand the equality Lu = 0 in
Q.

Definition 7.5.3. A bounded function u : RY — R is said to be harmonic with respect
to L in an open subset Q = R, if for every bounded open set B € Q and every x € R4
the process (U(Xt, at)) =0 IS a Px-martingale. In this case we say Lu = 0 in Q.

Here 75 denotes the random exit time for X leaving B. X denotes the standard coordi-
nate process, which is denoted by II in Section 7.4.

The main auxiliary result is the following.

Proposition 7.5.4. Assume (7.5.1). Let Px be the solution to the martingale problem for
(L, CZ(R?)) with Px(Xo = x) = 1. There is a constant ¢ > 0 such that for every R > 0,
every measurable set A = Byg\Bg with |(Bog\Br) nA| = 3|Bag\Bg|, and every x e Bg),

IP)((TA < TBZR) > IPX(XTBR EA) 2 C.

Here T4 resp. T, denote the hitting resp. exit time for a mb. set A = R9. 7.5.4 says that,
independent of the scale R > 0 and the starting point x from the inner ball B, there is
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(P
\ “

Fig. 7.1: Sets A — B, \Bg for different radii R, cf. 7.5.4

at least a fixed portion of paths that hit the set A — B,g\By before they exit the larger
ball Byg.

Let us explain how to prove 7.5.4. First of all, one uses the martingale problem in
order to establish some fundamental properties of the corresponding stochastic pro-
cess.

Proposition 7.5.5. (i) There exists a constant C; > 1 such that for xo € R4, r € (0,1)
andt >0

PXO(TB,(XO) < t) < Cltr_“ .

(ii) There is a constant C, > 1 such that for xo € R?

sup Extp, (x,) < C2r*, 1€ (0,1/2).

xeR4

(iii) There is a constant C3 > 1 such that for xo € R¢ and

inf Ext >Csr", re(0,1).
X€B, > (xo0) X" Br(xo) ’ © ( )
This result allows to establish an estimate on the probability that paths perform a very
large jump given that they perform a jump of fixed size.

Proposition 7.5.6. There is a constant C; > 1 such that for all xo € R4 andr, s € (0,1)
satisfying 2r < s
r
sup Pu(Xry, ., ¢ Bs(x0)) < C4 (2)*.
X€Br(xo) S

Proof. Letxo € RY, r,s € (0,1) and x € By(xo). Set By := By(xo). By the Lévy system
formula, for t > 0
Px(Xry, nt ¢ Bs) = Ex > 1ix, e, x,eB}
V<Tg, At
Tp, At
= ]Ex f jn(Xv,Z—Xv) dZdV.
0 B¢

s
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Lety € By. Since s > 2r, it follows that B, (y) = Bs and hence

Jn(y,z—y)dz < J ny,z—y)dz <cys “.
B¢ Bs/2(y)°
These considerations together with 7.5.5 imply
Px(Xep, nt ¢ Bs) < €25 "ExTp, < c3(£)a.
Letting t — oo we obtain the desired estimate.

Finally, we can establish 7.5.4.

Proof. Assume R > 0. Let A ¢ B,\Bp satisfy |(Bog\Bgr) n 4| > %\BzR\BR\- Set Bs :=
Bs(0) for s > O andlet xo € Bg/,. The first inequality follows from {Xr, € A} = {T4 <

Tg,, } since A c B,g\Bg.
By the Lévy system formula, for ¢t > 0,

Pxo (XTBR At € A) = EXO Z 11{XS,GBR,XSEA}

s<TBR At

TBR/\t

:]EXO J fn(Xs,Z—Xs)dZdS.
0 A
Since |z — x| < |z| + |x] < |z| + R < 2|z| for x € Bg and z € B,

TBR/\t

Ex, J Jn(Xs,z—Xs)dzds = ¢1Ex[TB, A t]f |z\*d*"‘ dz
A

0 A

_ C _
> 1Ex [T, A tIR™YA| = %EXO[TBR A t]JR™%|Byg\Bg| .

We conclude
Pyo(Ty < TBZR) = C3RiaExo[TBR A t] .

Letting t — oo and using the lower bound in 7.5.5 we get

Pxo(Ta < Tg,,) = €3R *Ex,Tp, = c3C3R™“R* =¢4.

(7.5.5)

(7.5.6)

(7.5.7)

(7.5.8)

O

We omit the details of the proof that derives 7.5.2 from 7.5.4. This step is very similar
to the proof of 7.5.2, which we explain below. In the probabilistic framework, one uses

optimal stopping and the following decomposition

u(z2) —u(z1) = Ez [u(Xr,) — u(z1)]
= Ez, [u(Xr,) — u(z1); Xr, € Bn_1]
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Z Ez, [u(Xz,) — u(z1); Xz, € Bp_i—1\Bn—i]
+ Bz, [u(Xr,) —u(z1); Xr, € Bl = I + I + I5.

for Bn = Br,(xo), where r, is a sequence of radii with r, — 0 and z1, z, are points
in B, 1. The previous quantitative assertions on the stochastic process, in particular
7.5.2 are then uses in order to control the different terms.

7.5.2 Analytic approach
The main tool in the analytic approach is provided by the following result.

Lemma 7.5.7 ([47]). Assume (7.5.1) holds true. Thereisn > 0, 9 € (0, 1) such that, if
u: RY - R satisfies
—Lu(x) <0 forx e By,
uix)<1 forx e By,
u(x) <2)2x|" =1 forxe RO\By,
1
By {u <0} = SIBil,

thenu < 1 fSinB%.

From a probabilistic point of view, the lemma can easily be motivated: The condition
—Lu(x) < 0 for x € B; means that the function u is subharmonic in B;. If {u < 0} is
denoted by M, then one can use optional stopping to obtain an estimate of the form

uix)<1 'IP)X(TBl > Ty) (XEB%) ,

where X denotes the corresponding strong Markov process. Since we know by 7.5.4
that a positive portion of all paths hits M before leaving B;, the expression P*(rp, >
Tyy) turns out to be strictly less than 1.

We omit the analytic proof of 7.5.7. Instead, we show how it implies the estimate
that is asserted in 7.5.2.

Proof 75.2. We prove the result for r = 1, the general case follows from scaling. As-
sume u € C,z,(Rd) satisfies Lu = 0 in B;. Without loss of generality we can assume
u # 0and |ule < 1/2. Let xo € By/,. We may and we do assume that u(xo) > 0. Our
aim is to show

lu(x) — u(xo)| < clx — xol? (xe By), (7.5.9)

forsome e (0,1)andc > 1
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XO € B1/4

Fig. 7.2: Choice of xo € By

Define rn = 27" for n € N. Set = min{n, In(5%5)/1n 2}, where 1 and 9 are as
in 7.5.7. We construct a nondecreasing sequence (cn) and a nonincreasing sequence
(dn) of positive numbers such that

cn <u(y) <dn fory € By, := Br,(X0),
dn - Cn = 2—Tlﬂ (7.5.10)

This would complete the proof. Let us show how to construct the sequences (cn), (dn)
inductively. Set
ci:=infu, dqy:=c1+1.
R4

Letn € N,n > 2. Assume that ¢y, d; have been constructed for k < n, such that
(75.10) holds for k < n. We will now construct ¢, 1 and d, 1. Set m = %. By
(7.5.10) it follows for y € By,

u(y)—m< 3(dn—cn) = 1277,

Define a function v: R? — R by v(x) := 22" (u(xo + 27"x) — m). Then v(x) < 1 for
x€ Byand Lv = 0in B;.

Assume that|{x € By : v(x) < 0}| > 3|B1|. Werecall that the ball B, ;, has center 0
and the balls B, have center xo. Given |x| > 1, choose k € Ny so that 2K < |x| < 2k+1,
Then by (7.5.10) we have

v(x) = 27 (u(xo + 27"x) —m) < 21" (d, ;4 — m)

< 21+nﬁ(dn—k—1 —Cpk—1+Cn—m)
_ 21+nﬁ(2—(n—k—1)ﬂ _ %Z_Hﬁ)

<21 +DB 1 <opxf - 1.

Next, we apply 7.5.7. Then we conclude v < 1 — 9in B%. This is equivalent to

u<cn+ 2%'92*"/3 inBr,,,.



Jump Processes and Nonlocal Operators =— 299

In this case, we define ¢,,1 = chnand dyi1 = ¢n + 2(=n=DB Note that u < dni1
in B,-n-1 because of our choice of 8. In the case |{x € By: v(x) < 0}| < %}Bl , we
perform analogous steps for —v and set d,,1 1 = dnand ¢, 11 = dn — 201,

O
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Tuomo Kuusi, Giuseppe Mingione, and Yannick Sire
Regularity Issues Involving the Fractional
p-Laplacian

Abstract: We survey on existence and regularity for nonlinear integro-differential
equations involving measure data, focusing on zero order potential estimates. The
nonlocal elliptic operators considered are possibly degenerate or singular and cover
the case of the fractional p-Laplacian operator with measurable coefficients. We report
on the results in [37] providing different, more streamlined proofs.

8.1 Introduction

We survey on recent results in [37], where existence and regularity of solutions to non-
linear nonlocal equations with measure data are obtained. We consider nonlocal el-
liptic equations written as

—Lopu=n inQcR", (8.1.1)

where Q is a bounded open subset for n > 2, — L4 is a nonlocal operator defined by
(Lo g)i= [ | OuEo-uy)er) — 0Ky dxdy,  (612)

for every smooth function ¢ with compact support. In (8.1.1) it is assumed that u be-
longs to M(IR™), that is the space of Borel measures with finite total mass on R". The
function @ : R — R is assumed to be continuous, satisfying @(0) = 0 together with
the monotonicity property

AN <ot < AltfP,  VteR. (8.1.3)
Finally, the kernel K: R" x R" — R is assumed to be measurable, symmetric, and
satisfying the following ellipticity/coercivity properties:

1 A

Anyiren < KoY < pimsy forae (6 y) e RTx R, (8.1.4)

where A > 1 and
se(0,1), p>2—%=:p*. (8.1.5)
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The lower bound p > p. comes from the fact that we are considering elliptic problems
involving a measure. The domain of defintion of the operator — £ is the fractional
Sobolev space W*P(R") in the sense that this is the largest space to which ¢ has to
belong to in order to make the duality in (8.1.2) finite when u € W*P(R™). In the special
case @(t) = |t|P~2t, we recover the fractional p-Laplacian operator with measurable
coefficients (see for instance [4, 14, 15]). On the other hand, in the case @(t) = t we
cover the special case of linear fractional operators with measurable coefficients £
defined by

(—Lu, ) = f n f (()-u)(P(0) ~ pW)K(Gy) dxdy  (8.16)

(see also [2, 10]). In connection to the equation (8.1.1) we shall consider the related
Dirichlet problems, that is those of the form

—Lopu=yu in Q

8.1.7

{ u=g in R"\Q, ( )

where in general the “boundary datum" g ¢ W*? (R™) must be prescribed on the whole

complement of Q. In this case, and when @(t) = |t|P~?tand u = 0, we are essentially

considering the Euler-Lagrange equation of the functional

veo || weo-vPKeay) dxdy
minimized in the class of functions such that v = g outside Q. This survey is two-fold:

1. We first sketch the proof of the solvability of the Dirichlet problem (8.1.7). Af-
ter introducing a suitable notion of solutions (called SOLA for Solutions Obtained
as Limits of Approximations), we briefly describe an existence theorem for SOLA
solutions.

2. Secondly, we describe the pointwise behaviour of these solutions by means
of nonlinear potentials, namely Wolff potentials. We also provide sufficient con-
ditions for continuity properties of solutions by means of p.

We note that a few interesting existence and regularity results for the specific
equation obtained for the fractional laplacian for powers s > 1/2 have been obtained
in [24] and, in a different setting in [30]. More recent work in [12] deals again with
fractional equations involving measures, this time for any s > 0, while the opera-
tor is given by the fractional Laplacean, and the analysis is carried out by means of
fundamental solutions. A notion of renormalised solution for semilinear equations is
proposed in [1]. Another approach in [24] is via duality. In the present survey, for sake
of exposition, we will always put ourselves in the case @(t) = |t[’~*t and K being a
symmetric kernel.

Before going into the results, let us give a brief outlook of the existing literature.
The references we give are by no means exhaustive.
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— The Hélder regularity and Harnack estimates for weak solutions of fractional
p-Laplacian type equations with measurable coefficients, employed in this sur-
vey, were obtained in [14, 15]. There are of course many related results established
later on. Let us mention that the boundary regularity was obtained in [23] using
barriers, and then later on in [34] using a different method. The latter one also
contains Holder regularity for the obstacle problem. For the higher regularity we
would like to mention [9] showing higher differentiability properties of weak solu-
tions. It should be remarked, however, that in view of the local theory one would
expect C1'*-regularity from weak solutions, at least for a certain range of s and
p. To our knowledge, this is an open problem. In the case p = 2 there is a vast
literature about “viscosity" solutions, and in many cases the obtained regularity
is optimal, see for instance [10, 48]. For regularity of variational solutions in the
case p = 2 we mention [2, 25] and references therein.

— The existence of solutions is widely studied issue in the case of local equa-
tions, see [5, 6, 7, 8, 13]. Typical classes are solutions obtained via limiting ap-
proximation (SOLA), renormalized solutions, and entropy solutions. In the case
of nonnegative measures all this coincide with superharmonic solutions, see [27].
The uniqueness in the measure data problems is still a major open problem. In
the case of the nonlocal equations, we deal here with SOLAs. Their existence is
sketched also in this survey paper. The uniqueness of solutions is an open prob-
lem also in the fractional setting.

— Nonlinear potential theory. The first contributions to pointwise potential es-
timates were given by Kilpeldinen and Maly [28, 29] in the beginning of 90’s. They
proved that any nonnegative superharmonic function allows a two-sided estimate
via Wolff-potentials:

— 1yt U .
W, () <ux)<c (Wl’p(x, r) + Blrl’(l)f;) u) ,

where the Wolff-potential ([19, 20]) is defined as

r 1/(p—1)
Wi e [[ (MBLOD) " o g g

The nonnegative measure y is identified via Riesz’ representation theorem, that is
—div(a(x, Du)) = u. An alternative approach to the proof was given by Trudinger
and Wang in [50], and later also in [31]. For further discussion, also to theory de-
veloped for pointwise gradient estimates, we refer to [35, 36].

— Nonlocal potential theory. Pointwise potential estimates can be very effi-
ciently used in the context of potential theory. For instance, they can be used to
prove so-called Wiener criterion giving necessary and sufficient geometric condi-
tions for boundary points to guarantee continuity up to the boundary whenever
boundary values are continuous at that point, see [21, 29, 40, 41, 42, 50]. As of writ-
ing this, the nonlocal Wiener criterion is still open. Nonetheless, there are some
partial developments to the corresponding potential theory in [33, 32, 39].
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— Lane-Emden type equations. Finally, we would like to mention that the po-
tential theoretic approach was very successfully used in the context of so-called
Lane-Emden type equations by Phuc and Verbitsky [46, 47] and also Jaye and Ver-
bitsky [22]. A very natural question is to ask to what extent such results would
generalize to the nonlocal setting.

— Avery interesting open problem is still that is it possible to extend the results
of [37] to more general kernels, which can be, for example, unbounded away from
the diagonal x = y. To our knowledge, even in the case p = 2, the shape of fun-
damental solutions is generally not well-understood.

8.2 The Basic Existence Theorem and SOLA

We investigate the Dirichlet problem (8.1.7). SOLA are therefore defined following the
approximation scheme settled in the local case, with an additional approximation for
the boundary values, which is here allowed to be different than zero. Since problems
of the type (8.1.7) are defined on the whole space R", the analysis of solutions nec-
essarily involves a quantification of the long-range interactions of the function u. A
suitable quantity to control the interaction is the following Tail, which is initially de-

fined whenever v e Lﬁ);l (R™):

1/(p—1)

veor— . . (8.2.1)

Tail(v; xq, 1) := rsl’f P A —
( ) [ RM\B, (xo0) ‘Xfxo‘nJrsp

See [14, 15] where this quantity is instrumental in the derivation of Harnack inequali-
ties and Holder regularity. We accordingly define

LB R i= {ve I N(R") : Tail(v;z,r) <0 VzeR",Vre (0,00)}. (8.2.2)

loc

Definition 8.1. Let u ¢ (WP (Q)) and g € WSP (R"). A weak (energy) solution to the
problem

{ ~Lou=p in 0 (8.2.3)

u=g in RM\Q
is a function u € WP (R") such that

f » J QUX)—UGN(P(X) = 9YDK(x, y) dx dy = s @)

holds for any ¢ € C{(Q) and such that u = g a.e. in R™\Q. Accordingly, we say that u
is a weak subsolution (supersolution) to (8.2.3) if and only if

J 2 e Du()—-uy)(e(x) — 9(y)K(x,y) dxdy < (Z){u, ¢) (8.24)

holds for every non-negative ¢ € C (Q).
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In the following we shall very often refer to a weak solution (sub/supersolution) to
(8.2.3) saying that is a weak solutions to —Lpu = p in a domain Q, thereby omitting
to specify the boundary value g. Moreover we have

Definition 8.2 (SOLA for the Dirichlet problem). Let uy € M(R"), g € WJF(R") n
Lﬁ’p_ 1(R") and let —L ¢ be defined in (8.1.2) under assumptions (8.1.3)-(8.1.5). We say
that a function u € W"4(Q) for

he (0,s), max{l,p—1} =:1q« < g <q:= min{%,p} s (8.2.5)
is a SOLA to (8.1.7) if it is a distributional solution to —Lqpu = u in Q, that is

|, | oweo-uoee - pw)Key dxdy - | pan (8.26)

holds whenever ¢ € CF(Q), ifu = g a.e.inR™\Q. Moreover it has to satisfy the following
approximation property: There exists a sequence of functions {u;} < W*P(R") weakly
solving the approximate Dirichlet problems

—L,puj = Nj in Q
8.2.7
{ uj=g; onRMQ, ( )

in the sense of Definition 8.1, such that u; converges to u a.e. in R" and locally in LY(R").
Here the sequence {u;} — Cy”(R") converges to y weakly in the sense of measures in Q
and moreover satisfies

limsup [;|(B) < [u|(B) (8.2.8)

j—o
whenever Bis a ball. The sequence {g;} — Cg’(R") converges to g in the following sense:
For all balls B, = B;(z) with center in z and radius r > 0, it holds that

g —g in W(By), and lim Tail(gj — g;2,7) = 0. (8.2.9)

j
Condition (8.2.8) can be easily seen to be satisfied if, for example, the sequence {y;}
is obtained via convolutions with a family of standard mollifiers; as a matter of fact,
this is a canonical way to construct the approximating sequence {y;} when showing
the existence of SOLA.
A SOLA to (8.1.7) always exists, as stated in the next theorem.

Theorem 8.3 (Solvability). Let u € M(R"), g € Wy:P(R") n L%, (R") and let — £ ¢ be
defined in (8.1.2) under assumptions (8.1.3)-(8.1.5). Then there exists a SOLA u to (8.1.7)
in the sense of Definition 8.2, such that u € Wh’q(Q) for every h and q as described in
(8.2.5).

In the following we take the opportunity to correct a technical point in the proof of
Theorem 8.3 in [37]. Indeed, we in some instances used a fractional Sobolev inequality
in bounded domains without ensuring that it holds.
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8.3 The De Giorgi-Nash-Moser Theory for the
Fractional p-Laplacian

8.3.1 Some recent results on nonlocal fractional operators

In this section, we recall some recent results for fractional weak solutions (and sub-
and supersolutions), which we adapted to our framework for the sake of the reader;
see [14, 15, 34] for the related proofs. Notice that the proofs of Theorems 8.5 and 8.7 are
valid if we merely assume u € W;;*(Q) ~ L%, ' (R") instead of u € WSP(R").

Definition 8.4. We say that v is a weak subsolution to Lv = 0 in Q if v e WP (Q)
LYY (R") and it satisfies

L v =vo) 2 weo = v et - ek y dxdy <0 @30

for every nonnegative ¢ € C3’(Q). Similarly, v is a weak supersolution to Lv=0inQ
if —v is a weak subsolution to the same equation. Finally,v e WP (Q) n L%, '(R") is a
weak solution if the integral above is zero for every ¢ € CT(Q).

Here the assumptions on the kernel K are of the same type as for K, that is, K(-, -)
is measurable and satisfies A~> < k(x, Y)|x — y|"*SP < A? for almost every (x,y) €
R" x R™.

Firstly, we state a general inequality which shows that the natural extension of the
Caccioppoli inequality to the nonlocal framework has to take into account a suitable
tail. For other fractional Caccioppoli-type inequalities, though not taking into account
the tail contribution, see [44, 45], and also [17].

Theorem 8.5 (Caccioppoli estimate with tail). (14, Theorem 1.4]). Let v be a weak
subsolution to Lv = 0in By = B;(z). Then, for any nonnegative ¢ € C3’(By), the follow-
ing estimate holds true:

jB W (@) — wi ()W) PK(x, y) dx dy

B,
<cf | (maxiwe(o.ws ) 000 - 9PKCx,y) dxdy (832

+cj w, P dx ( sup wh T (0K (x, y) dx) ,
B, yesupp ¢ JRM\B,

where w4 := (v — k)4 for any k € R, and c depends only on p.

Remark 8.6. Observe that the estimate in (8.3.2) holds by replacing w with w := k —u
in the case when v is a weak supersolution.



Measure Data and Nonlocal Equations =— 309

A first natural consequence is the local boundedness of fractional weak subsolutions,
as stated in the following

Theorem 8.7. (Local boundedness, [14, Theorem 1.1 and Remark 4.2]). Let v be a
weak subsolution to Lv = 0 in By = B;(xg). Then, for all § € (0, 1], we have

p
esssup(v — k)4 < 6 Tail((v — k)4+;x0,7/2) +c6 7 (f (v—kt dx) , (8.3.3)
Byj2(Xo) B (Xo)

where v = (p — 1)n/(sp?) and the constant c depends only on n, p, s, and A.

It is worth noticing that the parameter § in (8.3.3) allows a precise interpolation be-
tween the local and nonlocal terms. A well-known consequence of reverse Holder in-
equalities, as in Theorem 8.7, is that they improve themselves. The result is presented
in the following corollary.

Corrolary 8.8. Let v be a weak solution to Lv =0in By = By(xg). Then, for all k € R,

sup |[v—k| < % [Jﬁ |v — k| dx + Tail(v — k; x¢,1/2)
B[rr(XO) (1 — 0’)ﬁ Br(XO)

holds whenever o € (0, 1), with c = c(n, s, p, A).

Proof. Assume that o > 1/2, and without loss of generality that k = 0. Let us consider
numbers 0 < t < v < 1 and point z € B (Xo). Applying Theorem 8.7 with the choice
Br = B(y_t)r/100(2), We gain

C

M) <

1/p
(J% [v|P dx) + Tail(v; z, (y — t)r/200) . (8.3.4)
sr(X0)

We have used the fact that B(,_s),/100(2) < Byr(xo) whenever z € B (Xo). The tail
termin (8.3.4) can be estimated, by splitting the integration domain of the correspond-
ing integral in the sets B, > (X0)\B( —¢)r/200(2) and R"\(B, ,(x0) U By _¢)r/200(2)), as
follows:

1/(p—1)
Tail(v; z, (v — £)r/200) < — & (JLE WPt dx)
(’y - t)p71 r/Z(XO)

]1/(17—1)

r’’ v P!
+ tn n+sp X
(7 - ) R™\(By5(X0) UB(y—tyr/200(2)) |X—X0‘

c 1/p
S ————— J; [v|P dx + Tail(v; xo, 1/2) | -
(y—t)r1 ~r(x0)

(8.3.5)
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Notice that we have used the elementary estimate

|X_X0‘n+sp < C(n’p)
o=z S (- e

for x ¢ B(,_¢)r/200(2)- Using (8.3.4) and (8.3.5) we get

1/p
sup |v| < % (f [vP dx) + Tail(v; xo,1/2) | ,
Bir(xo0) (y—t)r1 Byr(Xo)

which is valid whenever 1/2 < t < v < 1. Extracting sup v from the last integral on
the right hand side and appealing to Young’s inequality, we arrive at

sup |v| < % sup |v|+ % [Jl |v| dx + Tail(v; xo, r/Z)] .
Br(xo) B (x0) (’y — t)P*1 B (xo0)

A standard iteration argument, see e.g. [18], then finishes the proof. O

Lemma 8.3.1. (Logarithmic lemma, [14, Lemma 1.3]). Let p € (1, ). Let u ¢

WP (R") be a weak supersolution to Lv = 0 such that u > 0 in Bg = Bg(xo) < Q.
Then the following estimate holds for any Br = Br(xo) = Bg/,(Xo) and any d > 0,

= d+ux)\]P
K 1 -—
Jo J, Koo os (G55 ) aw
n—sp | s1-p (T\%P . . p—1
<cr {d (R) [Tail(u—; xo, R)] +1},
(8.3.6)
where u_ = max{—u, 0} is the negative part of the function u, and c depends only on

n, p, s and A.

Combining Theorem 8.5 together with a nonlocal Logarithmic-Lemma, one can prove
that both the p-minimizers and weak solutions enjoy oscillation estimates, which nat-
urally yield Hélder continuity (see Theorem 8.9) and some natural Harnack estimates
with tail, as the nonlocal weak Harnack estimate presented in Theorem 8.10 below.

Theorem 8.9. (Hélder continuity, [14, Theorem 1.2]) Let u be a weak solution to
Lv = 0in Br(xo). Then u is locally Holder continuous in B;(xg). In particular, there are
positive constants a, « < sp/(p — 1), and c, both depending only onn, p, s, A, such that

0N | a v
0SC U<C (7> Tail(u; xo, 1) + <J£ [ul? dx) (8.3.7)
By (xo0) r By (xo)

holds whenever g € (0, r/2].
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Theorem 8.10. (Nonlocal weak Harnack inequality, [15, Theorem 1.2]). be a weak
supersolution to Lv = 0 such that u > 0in Bg = Bgr(xo) < Q. Let

- b=Un = g _pn
t:={ n=sp >’ L (8.3.8)

+o,  p=g.

Then, for any Br = Br(xo) = Bg/,(xo) and for any t < t, we have

t % . r 1% . .
(J%, u dx) < Cesgzlrnfu +cC (ﬁ) Tail(u—; xo, R),

where the constant ¢ depends only on n, p, s, and A.

To be precise, the case p > I was not treated in the proof of the weak Harnack with tail
in [15], but one may deduce the result in this case by straightforward modifications. As
expected, the contribution given by the nonlocal tail has again to be considered and
the result is analogous to the local case if u is nonnegative in the whole R™.

In the proof of our main estimates we need to transfer L®°-oscillation estimates
into L9-estimates, reminiscent of the Campanato theory [11, 18]. The excess functional
needs to track also the nonlocal contributions. For this we find it convenient to con-
sider the following functional:

E(v;z,r) := (]g( :

where ¢* := max{1,p — 1}. Observe that E satisfies, for any n, { € Le* (Br(2)) n
L% 1 (R") the trivial decay

o 1/q
V—(V)B,(z) > + Tail(v — (V)g, ()3 2, 1) » (8.3.9)

E(n;z,0r) < c(o,n,s,p)E(n; z, 1), (8.3.10)
and the quasi-triangle inequality
Em+ {3z,r)<clp) (E(n;z,v) + E({52,1)) (8.3.11)
If p = 2, then c(p) = 1 in (8.3.11). Both properties are straightforward to check.

One of the key estimates is the following excess decay estimate.

Theorem 8.11 (Global excess decay). Let v be a weak solution to Lv = 0 in By(x).
Then there exist positive constants a € (0, sp/(p — 1)), and c, both depending only on
n, s, p, A, such that the following inequality holds whenever 0 < p < r:

Q a
E(v;xg,0) < € (7) E(v; xg,1). (8.3.12)

Proof. In view of (8.3.10) we may assume that g < r/4. The basic tool is provided by
Theorem 8.9 and Corollary 8.8. Indeed, together with Holder’s inequality, they imply

oscv<c G)a E(r) (8.3.13)

t
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forallt € [p, r/4], where we have suppressed v and x from the notation. In particular,

(Jgg ‘V - ()8,

Let us then estimate the tail term appearing in the definition of E(p). We rewrite it as

q*

1
q* 0\¢
) < oBchv <c (7) E(r). (8.3.14)

-1
. _ . p_l _ Sp ‘V(X) - (V)BQ |p
Tail(v = W)z3 0" =2 JR"\BQ |x — xo|"*sP dx
o f V) = WP Ve - W, P
B\B, |X— Xo"*P RM\B,, X = Xo["TP
Now, by Corollary 8.8 and Hdélder’s inequality we have that
|(V)g, = (V)B,| < sup [v—(V)B,| < cE(r).
r/2
Therefore we obtain, again by Holder’s inequality,
-1
Qspf |V(X) - (V)Bg |p dX
RMB,, X — Xo["+SP
-1
sp [v(x) = (v)p, P 0\ _
s ce f]Rn\Br/a |x — x| +sP dx+c ( r) V)5, = (V)|
sp V() = V), P~ ey Jt )Pt
<co J]R"\B, X e (%) v 07 dx
2\
+c (r) E(r)
0 sp p—1
<c ( r) E(ry .
On the other hand, appealing to (8.3.13) we have
v(x) — (v)g, P! /% 0\SP _qdt
Sp 0 d < 4 p—1 ud
JB,/,,\BQ X —xolttsp CL ( t) (OBstC T
4 onse ()P gt
p—1 e t at
< CE() L (t) <r) t
c o\«p-1) p—1
< sp—a(p—l)(r) E(ry™,

using also the fact that a(p — 1) < sp. Combining the estimates leads to
a
Tail(v — (V)p,50) < ¢ (%) E(r),

again using a(p — 1) < sp. Together with (8.3.14) this concludes the proof. O
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8.4 The “Harmonic Replacement", a Crucial
Estimate and the Proof of Theorem 8.3
In this section we are going to consider operators of the type £ under the assump-

tions (8.1.3)-(8.1.5). With By, = By,(xo) = R" being a fixed ball, we shall consider
weak solutions u € WP (R™) to the Dirichlet problem

—Lou=peCPR") in By,
{ u=ge ws-p (Rn) in Rn\Bzr . (841)
We set o uy)
u
K(x,y) := WM V), u(x) # u(y) 642

K(x,y), ux) = u(y).

Itis easy to verify that K (-, -) is measurable and satisfies A =2 < K(x, y)|x—y|""P < A?
for almost every (x,y) € R" x R"™. We then define the following weak comparison
solution v € W*P(R") solving the following Dirichlet problem:

{ —Lf(v =0 in B: (8.4.3)

v=u in R™B,,

where Ly is the fractional p-Laplacian with the kernel K. Throughout Lemmas 8.4.1-
8.4.5, u and v will denote the solutions defined in (8.4.1) and (8.4.3), respectively, while
we define w := u — v.

8.4.1 The crucial inequality

Now, the first crucial comparison lemma. The statement of the following lemma
slightly differs from the one in [37]. We provide the proof of the necessary changes.

Lemma 8.4.1. The following inequality holds for a constant ¢ = c(n, p, A), whenever
&>1andd > 0:

[ (lu()—u(y)| + V) —v) )’ we)-w) P dxdy
o Jeo (d+ WO+ W) pe—yfrep
_ cd" S pu|(By)
S-DE-1)
(8.4.4)

In particular, when p > 2 we have

—w)PP _dxdy _ cd""*|u|(By)
Jnfn d+\w Y+ wy)))s [x—y|rtsp < P-DE-1)° (8.4.5)




314 — Tuomo Kuusi, Giuseppe Mingione, and Yannick Sire

Proof. Withw := u — v and w+ := max{+w, 0}, we let
pr =+ (d"F—(d+we) ).

Note, in particular that ¢+ = 0 on R™\B,; moreover this function is bounded and still
belongs to WP (R") since it is obtained via composition of w with a Lipschitz function.
In the following we shall use the notation A(t, s) := |t|P =2t — |s|P~2s for t, s € R. We
choose ¢+ as test functions in the weak formulations of (8.4.1) and (8.4.3); subtracting
them and using the fact that u = v outside B;, we obtain

Jn R"A(u(x)—u(Y)’V(X)_V(Y))(‘Pi(x)—‘ﬂi(J’))R(X’Y) dxdy < d'"*|u|(By).

The integral on the left is treated as in [37] and we give a sketch of the proof. Since

1

P+(0)=@+(y) = £(W+(X)-w+(y))(§ - 1)J0 (d+ tw(y) + (1= Hwe(x) " dt,

the quantity
Vo (0,Y) = AUX)-U(y), V) —VY) (W2 () -W(y),
dictates the sign of the integrand. We have the identity
A(u(0)—u(y), v(x)~v(y))
—(p-1) jol (Lu(x) — u(y)] + (1~ Ov(x) — v(y) P2 dt (w(x) — w(y),
so that using the inequality

1
JO (tu(x) = u(y)| + (1= Olv(x) —v(y)|)P~* dt

1
> =
C

(Ju(x) = u(y)| + |v(x) — v(y) P2

yields

ve(n,y) > P (ui - u@)] + i) — v (wa (0)-w= ()2

Appealing now to

f:m Ftwa(y) + (1 - Owe () Fdt > < (d+ wa(y) + we (0) ¢

finishes the proof together with the properties of the kernel K. O
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8.4.2 Basic estimates in the casep > 2

We now proceed with the proof of the main a priori estimates for solutions, thereby
introducing the following functions:

thtey) = MUy, ) WOV 13y WO G

for x,y e R", x % y, and for any h € (0, s]. The first a priori estimate we are going to
prove is concerned with the case p > 2 and is contained in the following:

Lemma 8.4.2. Assumethatp > 2,h e (0,s),and q € [1, q), where q has been defined
in (8.2.5). Let § := min{qg — q, s — h}. Then

Ve o 1/(p-1)
< [ Iu(Br)
(JBZr fBZy |X y‘fl"’hq dx dy) < rh |: rn*Sp (8.4.7)

holds for a constant ¢ = c(n, s, p, A, 6), which blows up as 6 — 0.

Proof. With d > 0 and ¢ > 1 to be chosen in a few lines, we start by rewriting

W2 (x, y) aww
Witoy) = (( ()Df)

d+|w(x)|+|w(y

[t wol+ wiy) ey ©PP] 7

and then apply Hélder’s inequality in order to get

1 dxd 1 WP (x, dxdy 1P
|Br| Jg,, [x=yl |Br| Jm,, (d+|w(x)|+|w(y)])¢ [x—VI

IS f (d-+|wix lwly e
|Br| Jg,,  |x—y[|n—(s—hap/(p—aq)

x dy

} (r—q)/p

Notice that we have used that g < p. Using (8.4.5) and Fubini’s theorem then yields

1
|Br| Js,,

/p
dxd cd ¢ ju|(By) |*
Wik, y) A [ MI( a]

=y §—1 |B|

(r—a)/p
ccr(8—Ma [J% (d+ |W(X)|)54/(P*Q) dx] .
2r

We then choose

(p—a)/4q
d:- ()L i/ (P=a) dx) . (84.8)
BZr

Notice that we can assume that d > 0; otherwise (8.4.7) follows trivially. This gives

1 dxd _ By)\ P
B[, Mheon gt < e () e
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By carefully choosing the parameter & (see [37] for details), we may apply the fractional
Sobolev inequality (see e.g. [16]) to get

1 dxdy \ 4
d<cr' (— f Wi (x, ) ) (8.4.10)
Br] ), Wn V) [y

Here is where we need a larger ball than By, and this was a missing technical point
in [37]. Indeed, for small h the Sobolev inequality is not valid in By, but the fact that
w = 0 in B,,\B; allows us to apply it in the larger ball B,,. Combining the last two
displays yields the result. O

A straightforward application of the fractional Sobolev embedding theorem together
with (8.4.7) gives the following:

Lemma 8.4.3. Assume thatp > 2,~ € [1,~%), where

np—1)
S n—ps p<n/s
+o0 p=njs.

Then the inequality

1/ 1/(p—1)
(forn)” <e[

holds for a constant ¢ = c(n, s, p, A, v* — ).

8.4.3 Basic estimates inthecase2 > p > 2 —s/n

The counterpart of Lemma 8.4.2in the case p < 2 turns out to be more involved. We just
state the results, since the proofs are completely analogous to [37] taking into account
the small changes presented above in the proof of Lemma 8.4.2.

Lemma 8.4.4. Assume that2 > p > pyx = 2 — s/n; forevery q € [1,q) (withq :=

n(p —1)/(n—s)) there exists h(q) € (0, s), such thatif h(q) < h < sand 6 := min{q —
q,p — px,S — h} then

1/q | 1/(p—1)
u|(Br)
@j MWWCMO ﬁJWW]

(2-p)/q B
won (I, £, o o) [
BZr |X Y‘ q r P

(8.4.11)

holds whenever h(q) < h < s, for a constant c = c(n, s, p, A, §), which blows up as
6 — 0.
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Lemma 8.4.5. Assumethat2 >p > psx =2 —n/s and

1<y<y*= 7nr(lp—_p? .

Then there exists a constant ¢ = c(n, s, p, A, v* — v, p — p«) such that the following
inequality holds:

(J% | dx) Rl . [Iu(Bzr)]l/(pl) + c[E(u; xo, 2r)]* 7P [M] . (8412

yn—sp yn—sp

Moreover, for every q € [1, q) there exists h(q) € (0, s), such that if h(q) < h < s such
that the inequality

1/q 1/(p—1)
¢ [11(Bar)
(LJ% - y|"+hq d"dy) < [ =

S Esixo, 20 ["‘rL(i;')] (84.13)

+

holds for a constant c depending only on n, s, p, A and 8, where the meaning of q, 0 is
specified in Lemma 8.4.4.

8.4.4 Proof of Theorem 8.3

We now come to the proof of Theorem 8.3. We just sketch it and refer to [37] for full
details. We have first an approximation lemma.

Lemma 8.4.6 (Construction of the approximating boundary values g;). Let z € Q;
there exists a sequence {g;} — Cg’(R") such that for any R > 0

lgi(y) —g(y)P!

i —g in WYP(Bg) and
8j—8 (Br) R\ Ba(2) ly—z[n+sp

dy -0 (8.4.14)

asj — oo. Moreover, for every € > O there exist a radius R and an index j, both depending
on &, such that

lgW)IP~t + [gi(y) P!
dy <e¢ (8.4.15)
J]R"\BR(z) ly—z|n+sp Y

holds whenever j > j and R > R. Finally, for every R > O there exists a constant cg,
depending on R and g(-), such that

sup | gjlwse sy < CR - (8.4.16)
]

Recall the following estimates from the previous discussion:
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Lemma 8.4.7. Let Q — By be an open and bounded domain. Let u,v € WP (R") be
weak solutions to the problems

~Lou=ueC?R" in Q and —Lv=0 in Q
u=g in R™NQ v=g in RMNQ,

respectively, where g € WSP(R") and K has been defined as in (8.4.2). Let w := u — v,
q:=n(p—1)/(n—s). Then:
— Whenp > 2, forevery h € (0,s) and q € [1,q), and with § := min{q — q,s — h},
the inequality

[w(x)-w(y)|? 1/q 1/(p—1)
(L JB IX Y\””’q dXdy) ¢kl
2R 2R

holds for a constant ¢ = c(n, s, p, A, 6, Q).
— When2 > p > psx = 2 —s/n, for every q € [1,q) there exists h(q) € (0, s), such
thatifh(q) < h <sand 6 := min{q — q,p — p«, S — h} then the inequality

‘qd J 1/q
(JBZR JBZR |X Y‘nJrhq X y)

1/( 0 |q (2-p)/q
clu@ 0 e ([ | DR aay) T i)

holds for a constant c = c(n, s, p, A, 6, Q).
One gets the bounds

Lemma 8.4.8. Letp > 2,h e (0,s)and q € [1, q), where q has been defined in (8.2.5).
Then there exists a constant c depending onlyonn,s,p,A,s — h,q — q,8(-), Q < By

such that
1/q . dxd 1/q
u;|4 dx) ¥ U Uy (x, y ) <c (8.4.17)
(L| X Wy

holds for all j € N. In the case 2 > p > p« = 2 — s/n, for every q € [1, q) there exists
h(q) € (0, s), such that if h(q) < h < s then estimate (8.4.17) continues to hold and the
constant ¢ additionally depends onp — ps.

From the results in the previous discussion we can conclude that, up to non-relabelled
subsequences and using a diagonal argument, there exists u e Wh"’(.Q) such that
u = gin R™\Q and such that

uj—u in  WM(By)
uj—u in L1(Q) (8.4.18)
uj —u ae.in R"

hold for any given h € (0, s) and q € [p — 1, q). This gives the desired result (see [37]
for the rest of the proof).
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8.5 Pointwise Behaviour of SOLA Solutions

With u being a Borel measure, we define the (truncated) Wolff potential WZ » of the
measure } as

r 1/(p—1)
u o 1| (Bo(Xo)) do
W, (X0, 1) = L ( o Fp 0’ >0 (8.5.1)
whenever x € R" and 0 < r < o0. We have the following two theorems concerning the
nonlinear potential estimates.

Theorem 8.12 (An upper bound via Wolff potential). Let y ¢ M(R"), g ¢
Wlsc;f (R™NLE, L(R") and let — L ¢ be defined in (8.1.2) under assumptions (8.1.3)-(8.1.5).
Let u be a SOLA to (8.1.7) and assume that for a ball Br(xg) < Q the Wolff potential
W’s‘,p (x0, 1) is finite. Then x is a Lebesgue point of u in the sense that there exists the
precise representative of u at xo

u(xp) := gii%(“)Bg(xO) = él)ilr}) b o udx (8.5.2)
4

and the following estimate holds for a constant c depending only onn, s, p, A:

r(XO)

1/q%
lu(xo)| < cW§ ,(xo,7) + ¢ (J~ u|T* dx) + cTail(u; xo, 1), (8.5.3)
B

where gy := max{1l,p — 1}.

Theorem 8.12 is actually itself a corollary of a more general result that we report be-
low, and that in a sense quantifies the oscillations of the gradient averages around the
considered point. For this we need to introduce another quantity that we shall exten-
sively use throughout the paper. This is the following global excess functional, which

is defined for functions f € LT* (R") L%, 1 (R"):

1/q%
E(f;xo, 1) := <Jg( : If=(F)B, (xo) | 7* dX> + Tail(f—(f)p,(xo)s X0, 7)»  (8.5.4)

where, as above, ¢« = max{1, p — 1}. When the role of the point x, will be clear from
the context we shall often denote E(f; r) = E(f; xo, r). The global excess functional is
the right tool to quantify, in an integral way, the oscillations of functions .Then Theo-
rem 8.12 follows from a stronger regularity/decay property of the global excess:

Theorem 8.13 (Global excess decay). Under the assumptions of Theorem 8.12 there ex-
ists a constant c = c(n, s, p, /) such that the following estimate:

4 dt
L E(s X0, ) 5 4 |(0)g, 1) — u(x0)| < CWE, (x0,7) + CEQuixo, 1), (8.55)

holds whenever WY , (xo, r) is finite.
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Estimate (8.5.5) tells that finiteness of Wolff potentials at a point xo allows for a point-
wise control on the oscillations of the solution averages and eventually implies that xq
is a Lebesgue point for u. We will next provide the full proof of the previous estimates.

8.5.1 Proofs of Theorems 8.12 and 8.13

Observe first that were we able to show that the xo is a Lebesgue point of u and
that (8.5.5) holds, then Theorem 8.12 follows immediately. Thus we proceed proving
these.

Let {u;} < W*P(R") be an approximating sequence for the SOLA u with mea-
sure y; and boundary values g;, as described in Definition 8.2, and let I~<j be de-
fined as in (8.4.2) with u; instead of u. For ¢ < r, we define the comparison solution

e WHP(R") as
LK Vipo =0 in B,»(x0)
Vi = Uuj in R™B,/(xo) ,
eventually letting w; = u; — v;; In the following we suppress the dependence on xg
from the notation writing, for instance, E(u; ) = E(u; xo, 0), Tail(u; t) = Tail(u; xo, t)
and so on; we recall that g« = max{1,p — 1}.
Our first goal is to get a oscillation decay estimate for u.

Lemma 8.5.1. Let u be a SOLA-solution in By(xo). Then there are constants ¢ =
c(n, s, p,A) and n = n(n, p) such that

I (Bo(x0)) }”(”” 356)

E(u; X9, 00) < c0*E(u; g, 0) + co™ " [ o5

holds for any o € (0, 1).
Proof. We have the quasi-triangle inequality (the normal triangle inequality when p >
2) whenever n, { € LY | (R") n L' (Bp):

E(m,t) < c(E(,t) + E({—n, 1)) .

The involved constant comes from the fact that in the definition of the Tail(-) there is
power p — 1 present, which leads to concave functions when p < 2. Since v; = u;
outside of Bg/z’ we have, for t < p/2, that

1/q*
E(uj —vj, t) < <J€ lu; — vj|4 dx) .

Therefore, Theorem 8.11 yields

*

/4
E(uj,00) < cE(vj,00)+co -/ <f lu; — vj|4 dx)
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1/q*
< co“E(vj,0) + co " (J: luj — Vj|q* dx)
BQ

1/q*
* *
< c0®E(uj,0) + co™ 4 (ﬁ lu; — vj|4 dx) .
e
Now, by Lemma 8.4.3 for p > 2 we see that

1/q* 1/(p-1)
* 1j|(Be)
<£ lu; — vj|4 dx) éc[ Q]n_sp .
e

Instead, for 2 — s/n < p < 2, Lemma 8.4.5 and Young’s inequality with conjugate
exponents (1/(2 — p), 1/(p — 1)), yield

]1/(17—1)

s\ -1 [ 11(Bo)
Jf uj —v;|7" dx < 8E(uj;0) + c6P~2/ 71 [7’,1_”,
By /2 [

for any 6 € (0, 1). Choosing § = g% 9* and combining the content of the last three
displays then leads to (8.5.6), after letting j — oo. This finishes the proof. O

Next, integrating (8.5.6) against the Haar-measure gives

, . v =1V ®-D
f E(u; ot) dt < ca"‘f E(u; t) dt + ca_’lf ['yn(f;)} ﬂ (8.5.7)
o t o t o | t t

Thus, choosing o small enough so that 0 = (2c)’1/ %  which then depends only on
n,s, p, /A, we obtain after changing variables and reabsorption, also observing that
|u|(6B¢) = O for almost every ¢, that

r r r 1/(p—-1)
j E(us t) % < zf E(us t) g + cf ["t‘,l(_f;)] %. (8.5.8)
oo ar [

Furthermore, since
r
f E(u; t) ﬂ <cE(u,r),
or t

we deduce an intermediate result

r r 1/(p—1)
j E(u;t) # < cE(uyr) + cf [%] % (8.5.9)
0 0

This proves the part of estimate (8.5.5) concerning the first term on the left hand side.

We proceed to prove that the limit in (8.5.2) exists and to complete the proof of
estimate (8.5.5). For this, let0 < § < p/2 < r/8and find k e Nand 9 € (1/4, 1/2] such
that = 9Xp. Then

k—

|(wp, — (Wp,| < ), |(W)By;, — W)By,,,|

=0

=

—.
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k—1
< 97 N Ew; 9p).
j=0

Furthermore, using elementary properties of the excess decay functional, we have that

3 o LS b &
Bwide) - orpg o | B0 Y
P 1og(1/9) 2 Jo, t
k=1 .97 e/9

< c f E(u;t)ggc E(u;t)g,

= Yo t o t

so that , using the content of the last three displays and recalling that p < r/4 < r/9,

it follows
0/9 dt
|(Wp,—(Wp,| <c | E(ut)—. (8.5.10)

) t

In turn, recalling that p/9 < r/(49) < r and using (8.5.9) we have
|(u)B,—(u)p,| < CE(u;7) + cWE (X0, 7) . (8.5.11)

On the other hand, by (8.5.9) the finiteness of W’S’,p (xo, r) implies the finiteness of the
right hand side in (8.5.11) and therefore (8.5.10) readily implies that {(u), } is a Cauchy
net. As a consequence, the limit in (8.5.2) exists and thereby defines the pointwise
precise representative of u at xq. Letting p — 0 in (8.5.11) and taking ¢ = r/4 then
gives

|(u),,, ~u(Xo)| < CE(u; ) + CW¥ ,(xo, 7) .

On the other hand, notice that we have

|(u)g,—(w)B,,| < cE(u;r)

so that the last two displays and triangle inequality finally give (8.5.5) (recall also
(8.5.9)). This completes the proof of Theorem 8.13. Finally, estimate (8.5.3) follows fro