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Preface to "New Trends in Differential and
Difference Equations and Applications”

Differential and difference equations, their methods, their techniques, and their huge variety
of applications have attracted interest in different fields of science in the last few years. Not only
their solvability and the study of qualitative properties have been the aim of many research papers,
but, also, their role in different types of boundary value problems have allowed the study of many
real-world phenomena.

This Special Issue provides examples of some new methods and techniques on research topics,
such as sufficient conditions to obtain heteroclinic solutions for phi-Laplacian equations, invariants,
local and global solutions, stability theory (asymptotic, exponential, Lipsichtz, etc.), numerical
methods for partial differential equations, fuzzy integro-differential equations, divided-difference
equations, limit-periodic solutions for difference equations, Backlund transformations for nonlinear
equations and systems, and coupled systems with functional boundary conditions that include the
periodic case.

These topics, which encompass several areas of mathematical research, give the reader a
comprehensive and quick overview of the trends and recent research results, which may be useful

in their research or in future research topics.

Feliz Manuel Minhés, Joao Fialho

Special Issue Editors



@ axioms ﬁw\n\l’y

Atrticle
Heteroclinic Solutions for Classical and Singular
¢-Laplacian Non-Autonomous Differential Equations

Feliz Minhés

Departamento de Matematica, Escola de Ciéncias e Tecnologia, Centro de Investigacio em Matematica e
Aplicagdes (CIMA), Instituto de Investigacao e Formacdo Avangada, Universidade de Evora. Rua Romao
Ramalho, 59, 7000-671 Evora, Portugal; fminhos@uevora.pt

Received: 28 December 2018; Accepted: 11 February 2019; Published: 15 February 2019

Abstract: In this paper, we consider the second order discontinuous differential equation in the
real line, (a (t,u) ¢ (")) = f (t,u,u’), a.et € R,u(—o0) = v, u(+oo0) = v, with ¢ an increasing
homeomorphism such that ¢(0) = 0 and ¢(R) = R, a € C(R? R) with a(t, x) > 0 for (t,x) € R?,
f : R® — R a L!'-Carathéodory function and v—,v* € R such that v~ < v*. The existence and
localization of heteroclinic connections is obtained assuming a Nagumo-type condition on the real line
and without asymptotic conditions on the nonlinearities ¢ and f. To the best of our knowledge, this
result is even new when ¢(y) = y, that is for equation(a (t, u(t)) u'(t)) = f (t,u(t),u'(t)), a.et € R.
Moreover, these results can be applied to classical and singular ¢-Laplacian equations and to the
mean curvature operator.

Keywords: ¢-Laplacian operator; mean curvature operator; heteroclinic solutions; problems in the
real line; lower and upper solutions; Nagumo condition on the real line; fixed point theory

2010 Mathematics Subject Classification: 34C37; 34B40; 34B15; 47H10

1. Introduction

In this paper, we study the second order non-autonomous half-linear equation on the whole
real line,

(a(tu)¢ (u’))/ =f(tuu'), aeteR, 1)

with ¢ an increasing homeomorphism, ¢(0) = 0 and $(R) = R, a € C(R?,R) such that a(t, x) > 0 for
(t,x) € R?,and f : R® — R a L!-Carathéodory function, together with the asymptotic conditions:

u(—0) =v-, u(+o) =v", 2

with v, v~ € R such that v~ < v*. Moreover, an application to singular ¢-Laplacian equations will
be shown.

This problem (1) and (2) was studied in [1,2] . This last paper contained several results and criteria.
For example, Theorem 2.1 in [2] guarantees the existence of heteroclinic solutions under, in short,
the following main assumptions:

e ¢ grows at most linearly at infinity;
o f(t,v',0) <0< f(t,v",0)foraet eR;

Axioms 2019, 8, 22; d0i:10.3390/axioms8010022 1 www.mdpi.com/journal /axioms
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e thereexist constants L, H > 0, a continuous function 6 : Rt — R" and a function A € LP([—L, L]),
with 1 < p < oo, such that:

If(t,x,y)| < A(t)0(a(t,x)|y]), forae. [t| < L, everyx € [v-,vT],
+oo q_1

s a
vl > H,/ﬁds,m,

e forevery C > 0, there exist functions 5jc € L'(R), Ac € L} ([0, +00)), nullin [0, L] and positive
in [L, +00), and N¢(t) € L'(R) such that:

fxy) < =Ac(t)¢(lyl),
f(-=t,xy) = Act)p(ly|), forae t > L, everyx € [v,v"],
‘y‘ < NC(t)/
lf(tx,y)| < ne(t)ifxe [v7,vt],|y| < Nc(t), foraet € R.

Motivated by these works, we prove, in this paper, the existence of heteroclinic solutions for (1)
assuming a Nagumo-type condition on the real line and without asymptotic assumptions on the
nonlinearities ¢ and f. The method follows arguments suggested in [3-5], applying the technique
of [3] to a more general function a4, with an adequate functional problem and to classical and singular
¢-Laplacian equations. The most common application for ¢ is the so-called p-Laplacian, i.e., ¢(y) =
[y|P~2p, p > 1, and even in this particular case, verifying (4), the new assumption on ¢.Moreover,
this type of equation includes, for example, the mean curvature operator. On the other hand, to the
best of our knowledge, the main result is even new when ¢(y) = y, that is for equation:

(a(tu) u’)' =f(tuu'), aetcR

The study of differential equations and boundary value problems on the half-line or in the
whole real line and the existence of homoclinic or heteroclinic solutions have received increasing
interest in the last few years, due to the applications to non-Newtonian fluids theory, the diffusion of
flows in porous media, and nonlinear elasticity (see, for instance, [6-16] and the references therein).
In particular, heteroclinic connections are related to processes in which the variable transits from an
unstable equilibrium to a stable one (see, for example, [17-24]); that is why heteroclinic solutions are
often called transitional solutions.

The paper is organized in this way: Section 2 contains some notations and auxiliary results.
In Section 3, we prove the existence of heteroclinic connections for a functional problem, which is used
to obtain an existence and location theorem for heteroclinic solutions for the initial problem. Section 4
contains an example, to show the applicability of the main theorem. The last section applies the above
theory to singular ¢-Laplacian differential equations.

2. Notations and Auxiliary Results

Throughout this paper, we consider the set X := BC!(R) of the C'(R) bounded functions,
equipped with the norm |x| = max { x| , |’ }, where [[y, := sup [y (1)
teR

By standard procedures, it can be shown that (X, |.||x) is a Banach space.

As a solution of the problem (1) and (2), we mean a function # € X such that t
(a(t,u(t)) ¢ (u'(t)) € WY(R) and satisfying (1) and (2).

The L!-Carathéodory functions will play a key role throughout the work:
Definition 1. A function f : R® — R is L'-Carathéodory if it verifies:

(i)  foreach (x,y) € R%, t v+ f(t,x,y) is measurable on R;
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(ii)  for almost every t € R, (x,y) +— f(t,x,y) is continuous in R?;
iii or each > 0, there exists a positive function e LYR) such that, for
P p Po

teR

maX{Squ(f)/SUP Iy(f)l} <p,
teR
[f(tx,y)] < @p(t), ae.t €R. 3)

The following hypothesis will be assumed:

(H1) ¢ is an increasing homeomorphism with ¢(0) = 0 and ¢(R) = R such that:

97 )| < o7 (w]); @
(Hy) a € C(R?R) is a continuous and positive function with a(t,x) — +co as |t| — +co.

To overcome the lack of compactness of the domain, we apply the following criterion, suggested
in [25]:

Lemma 1. A set M C X is compact if the following conditions hold:

1. Mis uniformly bounded in X;
2. the functions belonging to M are equicontinuous on any compact interval of R;
3. the functions from M are equiconvergent at +oo, that is, given € > 0, there exists T () > 0 such that:

[f(£) = f(oo)| < € and |f'(t) - f'(o0)| <,
forall |t| > T(e) and f € M.

3. Existence Results

The first existence result for heteroclinic connections will be obtained for an auxiliary functional
problem without the usual asymptotic or growth assumptions on ¢ or on the nonlinearity f.

Consider two continuous operators A : X — C(R), x — Ay, with Ay > 0, Vx € X, and
F:X — Ll(R), x — Fy, the functional problem composed of:

(Au(t) ¢ (W' (1)) = Fu(t), ae. t €R, )

and the boundary conditions (2).
Define, for each bounded set Q) C X,

m(t) := minAy (t) (6)
xeQ)
and for the above operators, assume that:
(F;) For each > 0, there is ¢, € L1(R), with ¢, (t) > 0, a.e. t € R, such that |F.(t)| < ¢, (), a.e

t € R, whenever ||x||yx < 7.
(A1) Ax(t) = +ooas |t| — +co and:

+o00
/¢ (” lp”) >ds<+oo. @)
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Theorem 1. Assume that conditions (Hy ), (Fy), and (A1) hold and there is R > 0 such that:

vl e () g

max < R.
1 (2 )d
sup ¢ 1< L ml(p;;r r)

Then, there exists u € X such that Ay, - (p ou’) € WVL(R), verifying (5) and (2), given by:

)=v" +/ ¢ <Tu+f (13 )d>ds.

where T, is the unique solution of:

o W+ [° F.(r)d
[ (o

Moreover, for R > 0 such that ||x||x < R,
Ty € [wy, wy),

with:

+00
wy = — [ Yr(r)dr,

and: oo
wy = / Yr(r)dr.

Proof. For every x € X, define the operator T : X — X by

H=v + /jm ¢! <Tx - E‘;"(g ") dr) ds

where 7, € R is the unique solution of:

/_+oo¢71 (TX +f;‘w(ls%)( (r) dr> P

To show that 7y is the unique solution of (10), consider the strictly-increasing function in R:

00 S Fe(r)d
o £ (1L5508)

lim G(y) = /::’ ¢l (—o0) ds = —oo,

Yy——00

and remark that:

and:

“+o00
: _ -1 _
 m G(y) = /700 ¢ (+o0)ds = +oo.

®)

©)

(10)

(1)

12)

(13)

(14)

Moreover, for wy given by (12) and w, given by (13), G(w;) and G(w,) have opposite signs, as:

o0 ‘o E(r)d
G(wy) :/:» P! <W> ds<0<vt—v7,
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Glun) = [ g7 <wz+ S F (1) dr) oo

Ax(s)

As G is strictly increasing in R, by (14), there is k > 0 such that ws = wp + kand G(w3) > v —v~.
Therefore, the equation G(y) = v~ — v has a unique solution 1y, and by Bolzano’s theorem, 7y €
[w1,wy], when ||x| x < R, for some R > 0.

It is clear that if T has a fixed point u, then u is a solution of the problem (5) and (2).

To prove the existence of such a fixed point, we consider several steps:

Step 1. T : X — X is well defined

By the positivity of A and the continuity of A and F, then T, and:

[l Fe(r)d
()= ¢! (T L T)

are continuous on R, that is Ty, € C(R).
Moreover, by (Hy), (Fy), (A1), and (10), Ty and T, are bounded. Therefore, Ty € X.

Step 2. T is compact.

Let B C X be a bounded subset, x € B, and py > 0 such that ||x||y < po. Consider m(t) given
by (6) with Q) = B.

Claim: TB is uniformly bounded in X.
By (4), (11), and (A1), we have:

ITellee = sup v +/;4f1 <W> ds
< sup <|v| +/jw ¢! < —TXJF‘IAT(IS (r)dr )ds)
< sup <|v |+/ 9" <rx|+/{x(s;a )ldr> ds)
Y (TR AR
< bl e (Zf lf"; )d7>ds<+oo,

and:
Tl = suply (wf/_;o:g () dr> < supy <|rx|+.fij(|t§x <r>dr>
o
< ot ()
< s (M) <o

Therefore, TB is uniformly bounded in X.
Claim: TB is equicontinuous on X.

For M > 0, consider t1, t, € [—-M, M], and without loss of generality, t; < t,.
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Then, by (4), (11) and (Ay),

Te(t) = Te(t)| = /t1 ¢! <W> *

—00

o (Tt [T Fe(r)dr
_/W‘P 1<Ax(s)>d5
ty Tx+f Fy (r d
_ /tl ¢ 1<X(S)>ds

t |Te| + [° o |Fe ()| dr
< /t ~1 ( ) ) ds
2 [T Fpy (r)dr
< / ((s)) ds

— 0, uniformly as t; — t,,

and:

x+ fooFX r di’
-] = o ()

g (B By dr
Ax(tZ)

— 0, uniformly as t; — f5.

Therefore, TB is equicontinuous on X.
Claim: T'B is equiconvergent at f-co.
Let u € B. As in the claims above:

' Tx+f Fe (r )d
Tx(t)ftglgo(n(t))‘ = ’/ <x(5)>ds

2 Y, (r)dr
/;¢1<.f3&3>>@

— 0,ast— —oo,

IN

and:

X T * Fy(r)dr

no-gm o] = |f o (L0
b (e B () dr

_/700 ¢ 1 <Ax(5)> ds
+oo Tx+fjooFx (]’)d?’

_ /t ¢ 1 (Ax(s)> ds

oo v (r)dr
/t+ ¢! (W) ds

— 0, ast — +oo.

IN
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Moreover, by (A1),

" f Fy (r)dr Ty
T;(f)—tgmwﬂ(t)‘ = |¢1 <T+IA°°U)()) A (hmA(t>>|

and:

t—-too Ax(t)

™ +]f:)° Fy () dr
B (P tli)?ooAx(t)

— 0, ast — +oo.

T - Jim T = ’(P(W)

Therefore, TB is equiconvergent at +c0, and by Lemma 1, T is compact.
Step 3. Let D C X be a closed and bounded set. Then, TD C D .
Consider D C X defined as:

D={xeX:|xlx <p1},

with p; such that:

om0 [ 70 (g ) e (55) )
K:=2 /;m ¥, (r)dr

*(t) := minA, ().
m*(t) gggx()

with:

and:

Let x € D. Following similar arguments as in the previous claims, with m(t) given by (6) and
Q=D,

1Tl = Stlslﬂlg‘Tx(t”
oo Y Sy L (r)dr
e [ (f+{4;s;<> )
2 Y
< |V }+/ ¢ ( f_ (Pl) >d < p1,
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and:

teR

/ _ / [te| + [ o |Fe (r) | dr
HTXHDO = Sup‘Tx(f)‘SSt;lH}{)(P ( Ax(D) )

2 [Ty, (r)dr
< g -1 —c0 " P1 < )
> t?ﬂlg ‘P < mr (t) 01

Therefore, TD C D. By Schauder’s fixed point theorem, Ty has a fixed point in X. That is, there is
a heteroclinic solution of the problem (5) and (2). [

To make the relation between the functional problem and the initial one, we apply the lower and
upper solution method, according to the following definition:

Definition 2. A function « € X is a lower solution of the problem (1) and (2) if t — (a (t,a(t)) ¢p(a/(t))) €

Wl’l(R),
(a(t,a)) p(a)) > f(ta,d'), ae. t €R, (15)

and:
a(—o0) <v7, a(+o0) <vT. (16)

An upper solution B € X of the problem (1) and (2) satisfies t — (a (t, B(t)) ¢(B'(t))) € WV (R) and
the reversed inequalities.

To have some control on the first derivative, we apply a Nagumo-type condition:

Definition 3. A L-Carathéodory function f : R® — R satisfies a Nagumo-type growth condition relative to
a, B € X, with a(t) < B(t), Vt € R if there are positive and continuous functions 1,0 : R — R such that:

"+00 |¢ S)‘ e
supp(t) <+, [ G s = e an
and:
£ x,9)] < 9(8) 0(Jy)), for ac. t € Rand a(t) < x < B(1). (18)

Lemma 2. Let f : R® — R be a L'-Carathéodory function f : R3 — R satisfying a Nagumo-type growth
condition relative to o, p € BC(R), with a(t) < B(t), Vt € R. Then, there exists N > 0 (not depending on u)
such that for every solution u of (1) and (2) with:

a(t) <u(t) < B(t), fort €R, (19)

we have:
[0 < N. (20)

Proof. Let u be a solution of (1) and (2) verifying (19). Take r > 0 such that:
r>max{|v |, |[v]}. (21)

If [u'(t)| < r,Vt € R, the proof would be complete by taking N > r.
Suppose there is tg € R such that |u/(ty)| > N.
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In the case 1//(tg) > N, by (17), we can take N > r such that:

a(t,u))p(N —

Mds >M <sup B(t) — inf a(t)) (22)
a(tu))p(r) <W) D e -

with M := sup, g ¢(t), which is finite by (17).

By (2), thereare t1, t, € Rsuchthatt; < tp,u'(t1) = N, u'(tz) = r,and r < u/(t) < N,Vt € [, t2].
Therefore, the following contradiction with (22) holds, by the change of variable a(t, u)¢(u'(t)) = s
and (17):

a(t'7¢(N) ‘¢_1(a<s,§<s>>>‘ i 7 ‘4’ (m)‘ ds
i (07 Gn)|) st * (97 (i) )

- /:WWu/(s)))’ds
_ [ fsus) ()
- _ A Wu(s) ds

< /,ltzw(S) u(s) ds < M/: v
< M (u(t) —u(h))
<

M (sup B(t) — infzx(t)) .

teR teR

Therefore, u'(t) < N,Vt € R.
By similar arguments, it can be shown that #/(t) > —N, Vt € R. Therefore, ||1//||,, < N,Vt € R. O

The next lemma, in [26], provides a technical tool to use going forward:
Lemma 3. Forv,w € C(I) such that v(x) < w(x), for every x € I, define:
q(x, u) = max{v, min{u,w}}.

Then, for each u € CY(I), the next two properties hold:

(a) ddxq(x 1 (x)) exists for a.e.x € .
(b)) Ifu,uy € CY(I) and uy — win C'(I), then:

%q(x,um(x)) — %q(x,u(x))for ae. x €I

The main result will be given by the next theorem:

Theorem 2. Suppose that f : R3 — R is a L'-Carathéodory function verifying a Nagumo-type condition and
hypotheses (Hy), (Hy), and (8). If there are lower and upper solutions of the problem (1) and (2), « and B,
respectively, such that:

a(t) < B(t), Vt eR,

then there is a function u € X with t — (a (t,u(t)) ¢ (u'(t))) € WV(R), the solution of the problem (1)
and (2) and:
a(t) <u(t) < B(t), vt e R.
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Proof. Define the truncation operator Q : W (R) — X ¢ WV (R) given by:

B(), x(t) > p(t)
X

Qx) := Qu(t) = 4 x(t), a(t) <x(t) <p(t)
a(t), x(t) < a(t).
Consider the modified equation:
(oo (5e)) = r(veu, zoum) @)

L) - Qulb)
T+21+ |u(t) — Qu(t)|

for a.e. t € R, which is well defined by Lemma 3.
Claim 1: Every solution u(t) of the problem (23) and (2) verifies:

a(t) < u(t) < B(t), Vt € R.

Let u be a solution of the problem (23) and (2), and suppose, by contradiction, that there is ¢y such
that a(ty) > u(ty). Remark that, by (16), tp # fco as u(4c0) — a(£oc0) > 0.
Define:

min(u(t) — a(t)) := u(ty) — at) <0.

Therefore, there is an interval |ty, t1] such that u(t) — a(t) < 0, for a.e. t €]t, 1], and by (15),

this contradiction is achieved:
d I
(st 0 ()

. a 1 () - Qul)
= £ (80, ful) + =0

< f(ta(t),d (1) < (a(a(t) (@' (1))".

(a(t,x) p(a))’

Therefore, a(t) < u(t), vVt € R. Following similar arguments, it can be proven that u(t) < p(t),
vt e R.

Claim 2: The problem (23) and (2) has a solution.
Let A: X — C(R) and F: X — L'(R) be the operators given by Ay := a(t, Qx(t)) and:

- d 1 u(t) — Qx(t)
Foim £ (10, 500 + a1 iy —onT

As, for:
p = max { ], 1Bl |2 [|o - |8l N}
with N given by (20),
)_Qx(t)‘
mlo< | (hon. g )'+1+tz1+\u() Q:(1]
<

[ (he0 g0 <o

then Fy verifies (F;). Moreover, from:

a(t,Qx(t)) = min {a(t,«)),a(t, p)},

10
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we have that A satisfies (A;) with 0 < m(t) < r;mﬂg {a(t,a),a(t,B)}.
€
Therefore, by Schauder’s fixed point theorem, the problem (23) and (2) has a solution, which,
by Claim 1, is a solution of the problem (1) and (2). O
4. Example

Consider the boundary value problem, defined on the whole real line, composed by the
differential equation:

w2 — A ()2
[(t2+1)3 ((u)4+1) (u’)3]’: 10300 [( ®) 1:12( ) ,aet€R, (24)

coupled with the boundary conditions:
u(—o0) = -1, u(4o0) =1. (25)

Remark that the null function is not solution of the problem (24) and (25), which is a particular
case of (1) and (2), with:

(P(w) = wsl
a(tx) = (P+1)° (x4 1),
_ 1 @-1y
SOy = o0 1re

vT = —1,andv" =1.
All hypotheses of Theorem 2 are satisfied. In fact:
e fisa L'-Carathéodory function with:

1 (e*+1) 0

?o) = o000 112

e ¢(w) verifies (H;), and function a(t, x) satisfies (Ha) ;

e the constant functions a(t) = —1 and B(t) = k, with k €]1, +c0[, are lower and upper solutions of
the problem (24) and (25), respectively.

e f(tx,y) verifies (8) for p > 1.54 and satisfies a Nagumo-type condition for —1 < x < k with:

_ 1 k .2
¥ = o000 13 2 24 OW) =¥

Therefore, by Theorem 2, there is a heteroclinic connection # between two equilibrium points —1
and one of the problem (24) and (25), such that:

“1<u(t) <k VteR, k> 1.

5. Singular ¢-Laplacian Equations

The previous theory can be easily adapted to singular ¢-Laplacian equations, that is for equations:

(a(tu)¢ (u’))/ =f(tuu'), aet R, (1s)

where ¢ verifies:

11
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(Hs) ¢ : (=b,b) = R, for some 0 < b < 400, is an increasing homeomorphism with ¢(0) = 0 and
¢(—b,b) = R such that:

67 @)| < 97 (wl);

In this case, a heteroclinic solution of (Is), that is a solution for the problem (1s) and (2), is a
function u € X such that u/(t) € (—b,b), fort € R,and t + (a (t,u) ¢ (u')) € WV (R), satisfying (1s)
and (2).

The theory for singular ¢-Laplacian equations is analogous to Theorems 1 and 2, replacing the
assumption (H;) by (Hs).

As an example, we can consider the problem, for n € Nand k > 0,

! 2
! ()’ 1) (|’ |+1)
(1+#) 1 ()™ - ,2> - { ooy et €R,
< ( ) Vi-(w) (1+£%) (26)

u(—o0) = -1, u(4o0) =1.
Clearly, Problem (26) is a particular case of (1) and (2), with:

w
P(w) = Nt forw e (-1,1),

which models mechanical oscillations under relativistic effects,

(1 + t2> (1 + x2”> , (27)

(=1 (y[+1)
fltxy) = Wf (28)

vT = —1,andv" =1.

a(t, x)

Moreover, the nonlinearity f given by (28) is a L!-Carathéodory function with:

_ P+ (p+1)
2et) = oo+

The conditions of Theorem 2 are satisfied with (Hj) replaced by (Hjs), as:

e the function a(t, x), defined by (27), verifies (H)

e the constant functions a(t) = —1 and B(t
Problem (26), respectively.

e f(t,x,y) verifies (8) for p € [1.09,591] and satisfies a Nagumo-type condition for
—1 < x <1 with:

) = 1 are lower and upper solutions of

1
(5 = 1000

and 0(y) = |y| + 1.

Therefore, there is a heteroclinic connection u between two equilibrium points —1 and one, for
the singular ¢-Laplacian problem (26), such that:

—1<u(t) <1, VteR.

6. Conclusions

As can be seen in the Introduction, sufficient conditions for the existence of heteroclinic solutions
require strong assumptions on the nonlinearities. The goal of this paper is to weaken these conditions
on the nonlinearity f, replacing them by assumptions on the inverse of the homeomorphism ¢,
following the ideas and methods suggested in [27,28].

12
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7. Discussion

The present result guarantees the existence of heteroclinic solutions for a broader set of

nonlinearities, without “asking too much” of the homeomorphism ¢.

However, it is the author’s feeling that Condition (8) can be improved, applying other techniques

and method. These are, in my opinion, the next steps for the research in this direction.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: In this paper, we study Lipschitz stability of Caputo fractional differential equations with
non-instantaneous impulses and state dependent delays. The study is based on Lyapunov functions
and the Razumikhin technique. Our equations in particular include constant delays, time variable
delay, distributed delay, etc. We consider the case of impulses that start abruptly at some points and
their actions continue on given finite intervals. The study of Lipschitz stability by Lyapunov functions
requires appropriate derivatives among fractional differential equations. A brief overview of different
types of derivative known in the literature is given. Some sulfficient conditions for uniform Lipschitz
stability and uniform global Lipschitz stability are obtained by an application of several types of
derivatives of Lyapunov functions. Examples are given to illustrate the results.

Keywords: non-instantaneous impulses; Caputo fractional derivative; differential equations;
state dependent delays; lipschitz stability

AMS Subject Classifications: 34A37, 34K20, 34K37

1. Introduction

Many papers in the literature study stability of solutions of differential equations via Lyapunov
functions. One type of stability, useful in real world problems, is the so-called Lipschitz stability and
Dannan and Elaydi [1] introduced the notion of Lipschitz stability for ordinary differential equations.
As noted in [1], this type of stability is important only for nonlinear problems since it coincides
with uniform stability in linear systems. Based on theoretical results for Lipschitz stability in [1],
the dynamic behavior of a spacecraft when a single magnetic torque-rod is used for achieving a pure
spin condition is studied in [2]. Recently, stability properties of delay fractional differential equations
without any type of impulse are considered and we refer the reader to [3] and the references therein.

In this paper, we study the Lipschitz stability for a nonlinear system of non-instantaneous
impulsive fractional differential equations with state dependent delay (NIFrDDE). The impulses start
abruptly at some points and their actions continue on given finite intervals. Non-instantaneous
impulsive differential equations were introduced by Hernandez and O’Regan in 2013 (see, for
example, [4]). The systematic description of solutions of both ordinary and Caputo fractional
differential equations with non-instantaneous impulse and without delays is given in the

Axioms 2019, 8, 4; d0i:10.3390/axioms8010004 15 www.mdpi.com/journal /axioms



Axioms 2019, 8, 4

monograph [5]. In addition, some results for non-instantaneous fractional equations without any type
of delay are presented in [6-8]. In [9], Caputo fractional differential equations with time varying delays
is considered (we note that the model had no impulses). However, in this paper, for the first time,
we consider together

1. Lipschitz stability;
2. state dependent delays (note a special case is time varying delays); and
3. models with non-instantaneous impulses.

There are two different approaches in the literature for the interpretation of the solution of
fractional differential equations with impulses (for more details, see [6] and Chapter 2 of the book [5]).
In the first interpretation, the lower limit of the fractional derivative is one and the same on the whole
interval of study and at each point of jump we consider a boundary value problem defined by the
impulsive function. In the second interpretation, the lower limit of the fractional derivative changes at
each time of jump with the idea of considering an initial value problem at each jump point.

In this paper, we use the second approach to study Lipschitz stability properties of nonlinear
non-instantaneous impulsive delay differential equations. The delays are bounded and depend on
both the time and the state. Note several stability properties are studied in the literature for Caputo
fractional differential equations (for example, see [10] (without delays), [3] (with delays and no
impulses), and [11] (with multiple discrete delays without impulses)). Our study is based on Lyapunov
functions and the Razumikhin technique. A brief overview in the literature of different types of
derivatives of Lyapunov functions among the studied fractional differential equation is given. Several
sufficient conditions for uniform Lipschitz stability and global uniform Lipschitz stability are obtained
by an application of these derivatives. Some examples illustrating the results are given.

2. Notes on Fractional Calculus

We give the main definition of fractional derivatives used in the literature (see,
for example, [12-14]). We give these definitions for scalar functions. Throughout the paper, we assume
g€ (0,1).

- Riemann-Liouville (RL) fractional derivative :

t
1 d r
RL7 _ @ _ g1 >
1, Djm(t) F(l—q)dtt/(t s) Tm(s)ds, t > to
0

where I'(.) denotes the Gamma function.
- Caputo fractional derivative

r1-gq).

t
gD?m(t) R /(t —s) 1w/ (s)ds, t>t.
to

Note that for a constant  the equality ngm = 0 holds. However, for any given t* ,we denote
EDIm(r) = £DIm(b)] s
- The Griinwald—Letnikov fractional derivative is given by
1 5

GLn4 1 r
- Dim(t) 7;1113(1)m r;) (=1)" yCrm(t—rh), t>t
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and the Griinwald-Letnikov fractional Dini derivative by

(]
gLDim(t) = limsuplq Z (=1)" yCym(t —rh), t>to,
h—0+ r=0

where ;C; = w and [%] denotes the integer part of the fraction %

From the relation between the Caputo fractional derivative and the Griinwald-Letnikov fractional
derivative using Equation (1), we define the Caputo fractional Dini derivative of a function as

cDTm(t) = SLDY [m(t) — m(to)],

ie.,
t—ty

(=]
. 1 :
SDLm(t) = limsup {m(t) —mtg) — Y (1) <Z> (m(t —th) — m(to))].
h—0+ r=1
The fractional derivatives for scalar functions could be easily generalized to the vector case by
taking fractional derivatives with the same fractional order for all components.

3. Statement of the Problem and Basic Definitions

Let the positive constant r be given and the points {t;}5°, {s;}{° be such that 0 < s; < t; < s;11,
i=1,2,.... Lettp > 0 be the given initial time. Without loss of generality, we can assume t( € [0, s1).

Consider the space PCy of all functions y : [—r,0] — R", which are piecewise continuous
endowed with the norm |[|y||pc, = sup,c(_,q {[ly()]| : y € PCo} where [|.[] is a norm in R".

The intervals (¢;,5;11), i = 0,1,2,... are the intervals on which the fractional differential equations
are given and on the intervals (s;,t;), i = 1,2,... the impulsive conditions are given.

The Caputo fractional derivative has a memory and it depends significantly on its lower derivative.
This property as well as the meaning of impulses in the differential equation lead to two basic
approaches to Caputo fractional differential equations with non-instantaneous impulses:

- Unchangeable lower limit of the Caputo fractional derivative: the lower limit of the fractional
derivative is equal to the initial time f; on the whole interval of consideration.

- Changeable lower limit of the Caputo fractional derivative: the lower limit of the fractional
derivative is equal to the left end t; on the interval (¢;,s;41),i = 0,1,2,... without impulses.

In this paper, we study the case of changeable lower limit of the Caputo fractional derivative.
Consider the initial value problem (IVP) for a nonlinear system of non-instantaneous impulsive
fractional differential equations with state dependent delay (NIFrDDE) with g € (0,1):

,CiD?x(t) = f(t,x(t), Xp(1x,)) fort e (ti,sip1],i=0,1,2,...,
x(t) = ¢i(t,x(s;)), te€ (si,ti], i=12,..., (1)
x(t+tg) = ¢(t) fort € [-r,0],

where x € R”", ,CiD?x(t) denotes the Caputo fractional derivative with lower limit ¢; for the state
x(t), the functions f : [0,51] U4 [, six1] X R" x PCo — R"; p : [0,51] U4 [t 5i01] X PCo — R,
@ € PCy; ¢; : [siti] x R" — R", i = 1,2,.... Here, x:(s) = x(t +5s),s € [~1,0], i.e., represents
the history of the state from time t — r up to the present time t. Note that for any f > 0 we let
Xo(tx) = X(0(t, x(t+5))),5 € [-1,0], i.e., the function p determines the state-dependent delay. Note,
the integer order differential equations with non-instantaneous impulses and state dependent delay
are studied in [15].

Let PC|tg, o) be the space of all functions y : [ty — r,00) — R" which are piecewise continuous on
[to — r, 00) with points of discontinuity s;, i = 1,2,..., the limits y(s; — 0) = limy s, t<s; y(t) = y(s:)
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and y(s;+) = lim; g, 55, y(t) exist, for any t € (t;,s;] the Caputo fractional derivative E_ny(t),i =
0,1,..., exists and it is endowed with the norm ||y||p¢ = SUP e [t —r,c0) {|ly(H)|| : y € PClty, o)} where
||| is a norm in R".

Define the set PCi[ty,0) = {y € C(UZ,(t;,s:],R") such thatforany t € (t;,s] : ftf(t -
§) T ly(s)ds < o0, i=1,2,...}.

We introduce the assumptions:

Al. The function f € C([0,s1] U, [t si11] x R" x PCo, R") is such that for any y € R",u € PCy
the inclusion f(.,y,u) € PC7[0,c0) holds.

A2.  The function p € C([0,51] U4 [t s:41] X PCo, [—7,00)) and for any (t,y) € Us_y[t;,si11] x PCo
the inequalities t — r < p(t,y) < t holds.

A3. The functions ¢; € C([s;, t;] x R",R"), i =1,2,....

A4. The function ¢ € PCy.

A5.  The function f(t,0) = 0 for t € [0,51] U724 [ti,siv1] and ¢;(£,0) = 0 fort € [s;, 8], i=1,2,....

Remark 1. Assumption A5 guarantees the existence of the zero solution of IVP for NIFrDDE (Equation (1))
with the zero initial function ¢ = 0.

Remark 2. Assumption A2 guarantees the delay of the argument in Equation (1).

Definition 1. Let the conditions A1-A4 be satisfied. The function x € PC|ty, o) is a solution of the IVP in
Equation (1) iff it satisfies the following integral-algebraic equation

o(t), te[-r0],
] e(0)+ ﬁ fot(t — s)qflf(s,x(s),xp(slxs>)ds, te (0,s1],
*) = ¢x(fIX(si)q), te (sitil, i=12..., @
it x(s1)) + 1oy JEt= )T f (5, x(5), Xp(o.x) s, EE (Hisiga], i=1,2,....

Definition 2. The functions f, p are defined only on the intervals without impulses on which the differential
equation is given.

We generalize Lipschitz stability ([1]) for ordinary differential equations to systems of Caputo
fractional non-instantaneous impulsive differential equations with state dependent delay.

Definition 3. The zero solution of NIFrDDE (Equation (1)) is said to be:

- Uniformly Lipschitz stable if there exists M > 1 and 6 > 0 such that, for any for any initial time to €
[0, 1] U1 [tk sk ] and any initial function ¢ € PC, the inequality ||¢||pc, < & implies |[x(t; ty, ¢)|| <
M||¢||pc, for t > to where x(t; to, @) is a solution of Equation (1).

- Globally uniformly Lipschitz stable if there exists M > 1 such that, for any initial time ty <
[0, 1] Uz 1 [tk, sk and any initial function ¢ € PCy, the inequality ||¢||pc, < oo implies |[x(t; ty, ¢)|| <
M| ¢||pc, for t = to.

Let] C Ry, 0¢€ J,p > 0.Consider the following sets:

M(J) = {a € C[J,RT] :a(0) = 0, a(r) is strictly increasing in ], and
a~1(ar) < rga(a) for some function g, : ga(a) > 1, ifa > 1},
K(J) = {a € C[J,R"] :a(0) = 0, a(r) is strictly increasing in ], and
a(r) < Kr for some constant K, > 0},
Sp = {x e R": ||x]| <p}.
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Remark 3. The function a(u) = Kyju, Ky > 0 is from the class K(R4) with K, = Kj. The function
a(u) = Kau?, Ky € (0,1] is from the class M([1, 00)) with q(u =/ =1foru>1

4. Lyapunov Functions and Their Derivatives among Nonlinear Non-Instantaneous Caputo Delay
Fractional Differential Equations

One approach to study Lipschitz stability of solutions of Equation (1) is based on using
Lyapunov-like functions. The first step is to define a Lyapunov function. The second step is to
define its derivative among the fractional equation.

We use the class A of Lyapunov-like functions, defined and used for impulsive differential
equations in [16].

Definition 4. Let | € Ry be a given interval, and A C R" be a given set. We say that the function
V(tx): ] x A — Ry, belongs to the class A(], A) if

- The function V (t,x) is continuous on J/{sy € J} x A and it is locally Lipschitz with respect to its second
argument.
- Foreachsy € Jand x € A, there exist finite limits

V(sg,x) = V(s —0,x) = lim V(t,x) and V(s +0,x) = im V (¢, x).
t1s) tl sk

In connection with the Caputo fractional derivative, it is necessary to define in an appropriate
way the derivative of Lyapunov functions among the studied equation. We give a brief overview of
the derivatives of Lyapunov functions among solutions of fractional differential equations known and
used in the literature. There are mainly three types of derivatives of Lyapunov functions from the class
A(],A) used in the literature to study stability properties of solutions of Caputo fractional differential
in Equation (1):

- First type: the Caputo fractional derivative of the function V (¢, x(t)) € A([a,b), A) defined by

WD) =m0 L (VEXO)ds telaa) O

where x(t) is a solution of Equation (1).
- Second type: Dini fractional derivative of the Lyapunov function V € A([tp, o), R") among
Equation (1): Let ¢ € PCy and t € (#, Sk+1) for a non-negative integer k. Then,

V(L 90),t, o) =

(5] )
imsup g [V (6,9(0)) = 15 (1) 4GV (E = 9(0) = HF0,(0)9p(0 ) )]

where ¢o(s) = ¢(s) and ¢(p(t, o) —t) = ¢(p(t,¢(s)) —t) for any s € [—r,0]. We note that,
because of Assumption A2, the inequality t —r < p(t, ¢(s)) < t holds (—r < p(t,¢(s)) —t < 0),
ie¢(p(t, ¢(s)) —t) is well defined.

The derivative of Equation (4) keeps the concept of fractional derivatives because it has a memory.
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- Third type: Caputo fractional Dini derivative of a Lyapunov function V € A([ty, ), R")
among Equation (1): Let the initial function ¢ € PCj be given and the function ¢ € PCy
and t € (fy, sk, 1) for a non-negative integer k. Then,

)DLV (1,9315,9(0) = limsup o { Vi1, 9(0) = V{11, 0(0)
h—0T
- ®

= X G (V0= 900) ~ WA (1, 900) 9ot 0) ~ D) = Vit 0(00) |,

r=1

r‘\
b

or its equivalence

£\ DLVt ity 9(0)) =

timsup 1 {V(E9(0) + 12 (1) 4GV 9(0) = 191,900, 00(t00) - D)) | (@

r=1
__ Vit 9(0)
(t=t)T(1—q)
The derivative El)Di V(t, ¢;tk, 9(0)) given by Equation (6) depends significantly on both the
fractional order g and the initial data (f, ¢) of IVP for FrDDE (Equation (1)) and it makes this
type of derivative close to the idea of the Caputo fractional derivative of a function.

Remark 4. For any initial data (t;, ¢) € Ry x PCy of the IVP for NIFrDDE (Equation (1)) and any function
¢ € PCy and any point t € (ty,Si11) for a non-negative integer k the relations

() DLV (t st 9(0)) = Dy V(4 9(0), 1, 9) — §DT(V(t, 9(0)),

DLV (5,931, 9(0) = D V(L P(0), 1g), i V(1 9(0)) =0 %)

)DLV (L st 9(0)) < D V(E9(0), b, 9), i V(t, 9(0)) > 0. ®)

are satisfied.

Remark 5. A derivative of V(t,x) € A(],A) among a system of Caputo fractional differential equations
without delays was introduced by V. Lakshmikantham et al. [17] in 2009. Later, it was generalized for fractional
equations with delays ([18-20]):

DY)V (£:9(0),9) = limsup T [V(E9(0) ~ Vi1 9(0) < W 9))], £ 2o ©
1—
where ¢ € C([—7,0], 7).

This definition is a direct generalization of the well known Dini derivative among differential equations
with ordinary derivatives. However, for equations with fractional derivatives, it seems strange. It does not
depend on the order q of the fractional derivative nor on the initial time to. The operator defined by Equation (9)
has no memory, which is typical for the fractional derivative.

The derivative D(Jrl) V(t,¢(0), ¢) defined by Equation (9) is applied in [18] to study stability of fractional
delay differential equations where in the proof of the main comparison result (Theorem 4.3 [18]) the derivative
DG)V(t,¢(0),¢) is incorrectly substituted by the Caputo fractional derivative (see Equations (20) and (30)
in [18]). A similar situation occurs with the application of the derivative of Equation (9) in [20] for studying
stability of impulsive fractional differential equations.
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In the next example to simplify the calculations and to emphasize the derivatives and their
properties, we consider the scalar case, i.e. n = 1.

Example 1. (Lyapunov function depending directly on the time variable). Let V(t,x) = m(t) x2 where
m e Cl(RJF,RJr)‘

Case 1. Caputo fractional derivative. Let x be a solution of NIFrDDE (Equation (1)). Then, the
fractional derivative

1 tm! (5)x2(s) + Zm(s)x(s)x’(s)d
1-9) Ji (t—s)7

is difficult to obtain in the general case for any solution of Equation (1). In addition, the solution x(t)

S

DTV (6x()) = §,D7 (m(1) (1)) = ¢

might not be differentiable on the intervals of impulses.
Case 2. Dini fractional derivative. Let ¢ € PCp and t € (t, sx;1) for a non-negative integer k. Then,
applying Equation (4), we obtain

DLV (t(0), i, 9)
= limsup ;; =m0 fl 1)1 yCom(t = 1) (9(0) = W £ (£, $(0), 9 (p(t,90) — £))))?]
1
= timsup g (1 (<¢<o>>2 — (9(0) = £ (£,9(0), ¢(p(t, ¢0) = 1)))?)

ﬂ]

+(P(0) ~ HF(1,9(0),40))2 Y, (~1)7 (Com(t —rh)]

r=0

= 9(0) m(t)f(t,¢(0), ¢(p(t, 40) =) + ($(0))* £-D (m(1)).

Case 2. Caputo fractional Dini derivative. Let ¢, ¢ € PCpand t € (t, sg.1) for a non-negative integer
k. Then, we use Equation (6) and obtain

)DLV (L, ¢:t,9(0))
("]
= timsup o {p(0)2m(6) = 12 (<1744t = 1) (9(0) — 0,000,000, 0) — )}

- (90l T

= 20(0)m(6)(t,9(0), (p(t,90) — 1)) + (9(0)> KD (m(1)) ~ (9(0) Pm(te) L%

(t—t)71

FV(t,¢(0), b, ¢) — V(fquJ(O))m'

5. Comparison Results

Lemma 1. [17]. Let v € C([a,b],R) be such that (t —a)'~9v € C([a,b],R) and there exists a point
€ (a,b): v(t) = 0and v(t) < 0 for t € [a, T]. Then, SDIv(T) > 0.
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We wuse the following comparison scalar fractional differential equation with
non-instantaneous impulses:

CDJu(t) = g(t,u(t)) fort € (t,5:1],i =0,1,2,...,
u(t) = wi(t,u(si — 0)), te (S,‘,t,‘], i=1,2,..., (10)

u(to) = uo,

where #1190 € R, g : [0,51] U ; [t k] X R = R, ¢ : [sp, tep1] X R = R (k=1,2,3,...).

We obtain some comparison results. Note some comparison results for fractional time delay
differential equations are obtained in [18] by applying the derivative defined by Equation (9) and
substituting it incorrectly as a Caputo fractional derivative (see Remark 5).

We introduce the following conditions:

A6. The function g(t,u) € C([0,s1] Uz [te, Sk+1] X Ry, R) is strictly decreasing with respect to
its second argument, and for any k = 1,2,... the functions ¢ : [sg, ] x R — Ry are
nondecreasing with respect to their second argument.

A7. The function g(t,0) = 0 for t € [0,s1] Uz [tk Sk+1] and for any k = 1,2,... the function
Py (t,0) = 0 for t € [s, t].

A8. Forallk=1,2,..., the functions yy satisfies Yy (t,u) < u, t € [st, t], u € R.

In our main results, we use the Lipschitz stability of the zero solution of the scalar comparison
non-instantaneous impulsive fractional differential in Equation (10).

Example 2. Let ty =2k,k=0,1,... and s =2k —1, k =1,2,.... Consider the scalar non-instantaneous
impulsive fractional differential equation

tCiD?‘25u(t) =u(t) fort € (t;,s:411),i=0,1,2,...,
u(t) = zpk(t,u(sk — O)), te (Si,f,‘}, i=1,2,..., (11)
u(0) = uo,

where u, uy € R.

Case 1. Suppose for all natural numbers k = 1,2,... the equality (t,u) = 5, u € R, t € [s, 4]
holds. Then, the solution of Equation (11) is given by

ugEq 25 (t°%), te(0,1],
ug(Egps (1) _ =
u(t) — Zfo.(;}(‘li) , te (2k 1,2k], k7],2,..., (12)

uoBoos (W) b (1~ 2k)025), te (2k,2k+1), k=1,2,....
[T (40)
The solution of Equation (11) is uniformly Lipschitz stable with M; = 30 (see Figure 1 for the
graph of the solutions with various initial values).
Case 2. Suppose for all natural numbers k = 1,2, ... the equality ¢y (t,u) = tu, u € R, t € sy, t]
holds. Then, the solution of Equation (11) is given by

ugEo25(t%%), te (0,1],
u(t) =3 ug(Eoas(1))F T (20) ¢, te (2k—1,2k, k=1,2,..., (13)
1o (Eo2s(1))F TTEy (20)Eoos((t — 26)°%), te€ (2k,2k+1], k=1,2,....

The solution of Equation (11) is unbounded (see Figure 2 for the graph of the solution).

Therefore, for g (t,u) = 5; < u the solution is Lipschitz stable but for ¢ (t, u) = 4 > u it is not
(compare with condition (A8)). O
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Figure 1. Example 2. Graph of the solution of Equation (11) with ¢ (t, u) = 3; for various initial values.
u

3.5%10° —

3.0x10° —

2.5x10° —

2.0%10° —

15100 —

1.0x10° F

-_— 11020.5

500000 |-

I I / L L
2 4 6 8

Figure 2. Example 2. Graph of the solution of Equation (11) with ¢y (¢, u) = tu.

In our study, we use some comparison results. When the Caputo fractional derivative is used,
then the comparison result is:

Lemma 2. (Caputo fractional derivative). Assume the following conditions are satisfied:

1. Assumptions A1-A4 and A6 are satisfied.

2. The function x*(t) = x(t;to, @) : [to, T) — A,x* € PCI([ty, T)) is a solution of Equation (1) where
ACR"0€AT<co

3. The function V€ A([to, T), A) is such that

(i) Foranyi=0,1,2,---: (t,si41) N[to, T) # D and for t € (t;,s;11) N [to, T), the inequality
DIV (L, (1) < g1, V(L X" (1))

holds.
(i)  Foralli=1,2,3,---: (s t;) N[to, T) # @ the inequality

V(tgi(t,x*(si = 0))) < 9i(t, V(si = 0,x7(s; = 0))) for t € (si,ti] N[to, T)

holds.

23



Axioms 2019, 8, 4

If supsei—rq)V(to, @(s)) < uo, then the inequality V(t,x*(t)) < r(t) for t € [to, T) holds, where
r(t) = r(t; to, ug) is the maximal solution on [ty, T) of Equation (10) with ug > 0.

Proof. We use induction with respect to the intervals to prove Lemma 2. Let m(t) = V(t,x*(t)), t > to.
We prove
m(t) < u(t), t > to. (14)

Lett € [ty,s1]. Let ¢ > 0 be an arbitrary number. We prove
m(t) <u(t)+e t> [t s1]. (15)

Note m(ty) = V(to, ¢(0)) < supyci_,,q V(to, ¢(s)) < uy, i.e. the inequality in Equation (15) holds for
t = ty. If the inequality in Equation (15) is not true, then there exists a point t* € (t,s;1] such that
m(t*) = u(t*) +e, m(t) <u(t)+e t € [ty t*).

From Lemma 1 with a = to, b = s;, T = t* and o(t) = m(t) — u(t) — e the inequality
gD?m(t*) EE) Diu(t*) = g(t*,u(t")) holds.

From Assumption A6 and Condition 3(i), the inequality E)thm(t*) < g(t*,m(t*)) = g(t*, u(t*) +
€) < g(t*,u(t*)) holds. The contradiction proves the validity of Equation (15). Since ¢ is an arbitrary
positive number, we obtain the inequality in Equation (14) for ¢ € [to,s1].

Let t € (s1,t1]. Then, from the impulsive equality in Equation (1), Condition 3(ii), Assumption A6
and the inequality in Equation (14) for t = s; — 0, we obtain m(t) = V(t,x*(t)) = V (¢, ¢1(t, x* (51 —
0)) < P1(t, V(s1 —0,x*(s1 —0))) = ¢1(t,m(s; — 0)) < (¢, u(sy —0)) = u(t), i.e. Equation (14)
holds on (s1, t1]-

Let t € (f1,52]. Let e > 0 be an arbitrary number. We prove Equation (15) for t € [t1,s;]. Note that
Equation (15) is true for t = t;. If the inequality in Equation (15) is not true, then there exists a point
t* € (t1,s2] such that m(*) = u(+*) +¢, m(t) <u(t)+¢ t € [ty t*).

From Lemma 1 witha = #, b = s, T = t* and v(t) = m(t) — u(t) — ¢, the inequality
gD?m(t*) 22 Dlu(t*) = g(+*,u(t*)) holds.

From Assumption A6 and Condition 3(i), the inequality ED?m(t*) < g(t*,m(t*)) = g(t*, u(t*) +
€) < g(t*,u(t*)) holds. The contradiction proves the validity of Equation (15) and the inequality in
Equation (14) for t € (t1,s3]. Continuing this process and an induction argument prove Equation (14)
and Lemma 2. [J

Lemma 3. [10] Let m € C([tp, T],IR) and there exists T € (t, T], such that m(t) = 0 and m(t) < 0 for
t € [to, T). Then, the inequality gLDim(T) > 0 holds.

When the Dini fractional derivative defined by Equation (4) or Caputo fractional Dini derivative
defined by Equation (5) is used then the comparison result is:

Lemma 4. (Dini fractional derivative/Caputo fractional Dini derivative). Assume:

1. Assumptions A1-A4 and A6 are satisfied.

2. The function x*(t) = x(t; to, @) : [to, T) — A, x* € PCI([ty, T)) is a solution of Equation (1) where
ACR"0€AT<co

3. The function V € A([to, T), A) is such that

(i) Foranyi=0,1,2,---: (t;,si41) N[to, T) # @ and for t € (t;,s;41) N [to, T), the inequality

DyV(t ¢ ti) < gt V(L ¢(0))
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holds where ¢(@) = x*(t +®), ® € [~,0], and D)V (t,$,t;) is one of the following two
derivatives: the Dini fractional derivative qu)V(t,(p( ), t,,(p) defined by Equation (4) or the Caputo
fractional Dini derivative El)D‘qFV(t’ ¢; ti, 9(0)) defined by Equation (5).

(i) Foralli=1,2,3,---: (si,t;) N[ty, T) # D, the inequality

V(t,¢i(t, x"(si = 0))) < 9i(t,V(si = 0,x"(s; = 0))) for t € (s;,t;] N [to, T)
holds.

If supsej—yg)V(to, (s)) < uo, then the inequality V(t,x*(t)) < r(t) for t € [to, T) holds, where
r(t) = r(t; to, ug) is the maximal solution on [tg, T) of Equation (10) with ug > 0.

Proof. The proof is similar to the one in Lemma 2 where instead of the Caputo fractional derivative
of the Lyapunov function, we use the Dini fractional derivative or the Caputo fractional Dini
derivative which are less restrictive with respect to the properties of Lyapunov functions (for example,
differentiability is not required). We sketch the proof emphasizing the differences with Lemma 2.

Case 1. Let D) V(t, ¢, t;) = El)DiV(t, ¢;ti,9(0)),i =1,2,... in Condition 3(i) of Lemma 4.

We use 1nduct10n with respect to the intervals to prove Lemma 4. We prove the inequality in
Equation (14).

Case 1.1. Let t € [ty,s1]. We prove Equation (15) with ¢ > 0 an arbitrary number. Note that
Equation (15) holds for t = ty. If the inequality in Equation (15) is not true, then there exists a point

€ (tp,s1] such that p(t*) = 0 and p(t*) < O for t € [t,t*) where p(t) = m(t) — u(t) — e. From

Lemma 3 with T = t* we get the inequality

GL GL cL
DU m(t*) >k Dl u(t*) +¢t Dle.

Thus
o DIm(t*) =GF DT (m(t*) —m(to)) =g Dim(t*) — £EDIm(to) 16)
~ LD (u(t") — ug) = Du(r"),

Following the proof of Lemma 3 [3] from the choice of the point £, the definition of the function
m(t), the definition of the derivative f])Dq V(t,$(0);to, 9(0)), Assumption A2 and x(t +s) = ¢(s),
Xo(tx) = Xp(tgy) = X(P(t,¢0)) = x(t + (p(t, o) —t)) = ¢(p(t, o) — t), Assumption A6 and Condition
3(i) of Lemma 4, we obtain the inequality

= DY (m(t*) —m(to)) < () DLV, $(0); o, 9(0))
< gt V(" ¢(0)) = g(t*,M(t*)) =gt u(t) +¢) <g(t",u(t")) 17)
Tu(t*)

with ¢(0) = x(t+ ), © € [-7,0].

The inequality in Equation (17) contradicts the inequality in Equation (16). The contradiction
proves the validity of Equation (15) and, therefore, the validity of Equation (14) on [to, 1]

Case 1.2. Let t € (sq, t1]. From the impulsive equality in Equation (1), Condition 3(ii) of Lemma 4,
Assumption A6 and the inequality in Equation (14) for t = s; — 0, we obtain for t € (s, #] the
inequalities m(t) = V(t,x*(t)) = V(t,¢1(t,x* (51 — 0))) < ¢1(t, V(s1 — 0,x*(s1 — 0))) = 91 (t, m(s1 —
0)) < ¢1(t,u(s1 —0)) = u(t), i.e. Equation (14) holds on (s, 7).

Case 1.3. Let t € (11, 52). The proof of the inequality in Equation (15) for t > (t1, 5] is similar to
the one in Case 1.1 by replacing ty with ¢;.

[ Dim(T)
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Case 2. Let D(yV(t, ¢,t;) in Condition 3(i) of Lemma 4 be the Dini fractional derivative

D(JS)V(t,(p(O),ti,(p) defined by Equation (4). Then, based on the proof in Case 1 and Remark 4,
we establish Lemma 4. [

6. Main Results
Theorem 1. (Caputo fractional derivative) Let the following conditions be satisfied:

1. Assumptions A1-A8 are fulfilled.
2. There exist a function V € A(Ry,R") and

(i) The inequalities
b([lx[]) < V(tx) <a(llx]), xeR",teRy
holds, where a € K([0,p]), b € M([0,p]), p > 0;
(i))  For any initial data and any solution x(t) of Equation (1) defined on [ty, o) such that for any T €

(t, Sky1), k is a non-negative integer, such that x(t) € Sp, t € [to, T] and V(T,x(1)) > V(s,x(s))
for s € [to, T] the inequality

CDIV (L x(t) < g(t, V(E,x(1)), t€ (tsia] O [bo,T),i=0,1,2,... k

holds.
(iii)  Foranyk =0,1,2,...and t € (s, tx1], y € Sp the inequality

V(t, ¢e(ty)) < ¢i(t, V(sk—0,y))

holds.
3. The zero solution of Equation (10) is uniformly Lipschitz stable (uniformly globally Lipschitz stable).
Then, the zero solution of Equation (1) is uniformly Lipschitz stable (uniformly globally Lipschitz stable).

Proof. Let the zero solution of Equation (10) be uniformly Lipschitz stable. Let fy > 0 be an arbitrary.
Without loss of generality, we assume t( € [0, 7). From Condition 3, there exist M > 1, §; > 0 such
that for any up € R: |ug| < 61 the inequality

[1u(t; to, uo)| < M |ug| for t > ty (18)

holds, where u(t; ty, 1g) is a solution of Equation (10) with the initial data (fo, uo).

From the inclusions a € K([0,p]) and b € M([0, p]), there exist a function q,(u) and a positive
constant K,. Without loss of generality, we can assume K, > 1. Choose the constant M; such that
My > max{1,q,(Kq), gy (M)Ka} and &, < 5f7-. Therefore, 2M16, < p.

Let 6 = min {(51,(52, %} Choose the initial function ¢ € PCy([—r,0]) such that ||¢||pc, < 9.
Therefore, ||¢||pc, < <8 < p,ie. ¢(s) €S, fors € [—r,0]. Consider the solution y(t) = y(t; to, ¢)
of the system in Equation (1) for the chosen initial data (¢, ¢).

Let uj = sup(_,q V(to, ¢(s)). From the choice of ¢ and the properties of the function a(u)

applying condition 2(1) we get 15 = V(to, ¢(€)) < a(|lp(@)|1) < alllgllpcy) < Kallglinc, < Ked < 1.
Therefore, the function u*(t) satisfies Equation (18) for t > to with ug = uf;, where u*(t) = u(t; to, 1)
is a solution of Equation (10) with initial data (to, uf)).

Let & € (0, M;6] be an arbitrary number. We prove

V(Ly(1) <b(Millgllpc, +¢), t= to. (19)

For t = to, we get Vo, (o)) = V(o 9(0) < a(llp(0)I) < a(lgllec, < Kallgllrc, <
b(qp(Ka)ll@llpc,) < b(Mill@|lpc,) < b(Mi||@||pc, + ), i-e. the inequality in Equation (19) holds.
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Assume Equation (19) is not true.

Case 1. There exists a point T > to, T € U2 (tg, k1] such that V(t,y(t)) < b(Mil|¢||pc, +€)
for t € [ty, T), V(T,y(T)) = b(M||@|lpc, +¢), i.e. V(s,y(s)) < V(T,y(T)) fors € [to, T]. Then,
from Condition 2(i), we obtain the inequalities ||y (t)|| < b=1(V(t,y(t)) < Mi||@||pc, +& < 2M;6 <
2M;0y < pfort € [to, T], ie., y(t) € Sp for t € [ty, T] and, according to Condition 2(ii) of Theorem 1
with T = T, it follows that Condition 3(i) of Lemma 2 is satisfied for the solution y(t) on the interval
[to, T]and A = S,,.

According to Lemma 2, we get

V(t, y(t)) < u*() for t € [to, T). (20)

From the inequality in Equation (20) and Condition 2(i), we obtain

HV(T,y(T)) < b~ (1))
“HM Jugl) = b7 1(MV(f(J, (€))) < ap(M)V(to, 9(&)) (1)
S%(M)a(llfﬂ(é’)l\) a(M)a((lello) < qp(M)Kal[@)l[pc, < Mil[gl[pc,-

M1H<P|\Pc0 =b"

The contradiction proves the validity of Equation (19). From the inequality in Equation (19) and
Condition 2(i), we have Theorem 1.

Case 2. There exists a point T > ty, T € UpZ; (s, t) such that V(t,y(t)) < b(M;]|¢||pc, + €) for
tefty, T), V(T,y(T)) = b(Mi||¢|lpc, +€). Then, as in Case 1 we get y(t) € Sy fort € [to, T]. Let T €
(8j,tj41) for a natural number j. According to Condition 2(iii) of Theorem 1, we obtain b(M||¢||pc, +
&) = V(T,y(T)) = V(T ¢;(Tyls; — 0))) < ¢5(T, V(s — 0,y(s; — 0))) < w;(T,b(Mllgllncy)) <
P;(T,b(Mi]|pl|pc,) + €). The contradiction proves this case is not possible.

Case 3. There exists a natural number k such that V(t,y(t)) < b(Mi||¢||o +¢€) for t € [to, s¢]
and V(s +0,y(sk +0)) > b(Milgllo + ). Therefore, gy (si, b(Mill@llo)) = sk, V(sk y(sk))) =
V(sk + 0, ¢r(sk, y(sk —0))) = V(sk +0,y(sk +0)) > b(M;i||¢||o). The contradiction proves this case is
not possible.

The proof of globally uniformly Lipschitz stability is analogous so we omit it. []

Theorem 2. Let the conditions of Theorem 1 be satisfied where Condition 2(i) is replaced by:

2%(i) the inequalities A1(t)||x||> < V < Aa(t)|x]|>, x € Sp,t € RT holds, where Ay, Ay €
C(R4, (0,00)) and there exists positive constant Ay, Ap : Ay < Ap such that Ay (t) > Ay, Ax(t) < Aj for
t>0,andp > 0.

If the zero solution of Equation (10) is uniformly Lipschitz stable (uniformly globally Lipschitz stable), then
the zero solution of Equation (1) is uniformly Lipschitz stable (uniformly globally Lipschitz stable).

Proof. The proof is similar to the one in Theorem 1 where M; = / M%.

Theorem 3. (Dini fractional derivative/ Caputo fractional Dini derivative) Let the following conditions
be satisfied:

1. Assumptions A1-A8 are fulfilled.
2. There exist a function V(t,x) € A(R4,R"), p > 0and

(i) The inequalities
b(llxl)) < V(t,x) <a(llxl]), xRt € Ry

holds, where a € K([0, p]), b € M([0, p]).
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(ii)  For any function ¢ € PCqy : ¢(s) € S, for s € [—r,0] such that forany t : t € (t,Sk41), kisa
non-negative integer, such that V(t +s,¢(s)) < V(t,¢(0)), s € [—r,0] the inequality

D)V(t g, t) < &(1V(t9(0)))

holds where D)V (t, ¢, t) is one of the following two derivatives: the Dini fractional
derivative D+ V(t ¢(0),ty, ¢) defined by Equation (4) or the Caputo fractional Dini derivative

(])D+V(t (]J tk, ¢(0)) defined by Equation (5) and p > 0.
(iii)  Foranyk =0,1,2,...and t € (s, tyy1], y € Sp the inequality

V(L o(ty)) < elt, V(sk = 0,y))
holds.
3. The zero solution of Equation (10) is uniformly Lipschitz stable (uniformly globally Lipschitz stable).
Then, the zero solution of Equation (1) is uniformly Lipschitz stable (uniformly globally Lipschitz stable).

The proof of Theorem 3 is similar to the one in Theorem 1 where Lemma 4 is applied instead of
Lemma 2.

Example 3. Let tp = 2k,k = 0,1,2... and s, = 2k—1, k = 1,2,.... Consider the non-instantaneous
impulsive fractional differential equations

D71 (1) = 0.25x () — x2(t) 4 0.25x7 () (Xp(4,1,))30
ED?'ZSXZ(t) = 0.25X2(t) + x1(t) + 0.25X2(t)(xp<trxt))%
fort € (t,si41],i=0,1,2,..., (22)

() = x1(s; = 0) olt) = x2(s; = 0)

V2it T V2it

where x = (x1,x7), p(t,u) = t—sinz(u) =1 <p(tu) <t Xt ) = ((xp(t,xt))l’(xp(t,xp))z) and
(xp(t,xf))i = x;(t — sin?(x;(t +5))), s €[-1,0],i=1,2.

, te (s, t],i=1,2,..

Let V(t,x) = 23 + 23, x = (x1, x2).

Let x(t) be a solution of Equation (22). Let the point T € (f, s¢11], k is a non-negative integer,
be such that x(t) € Sy, t € [0,7] and x1(7)? + x2(7)% > x1(s)% + x2(s)?, s € [0, 7]. Using the notation
Xp(r,x,) and Assumption A2, it follows that p(7,x;(t +@)) € [t —r,7],j = 1,2, ® € [-r,0] and
therefore (xp(T’xT))% + (xp(T/XT))% < x1(1)? + x2(7)? or

() (Xp(t,0))3 < 263 (8) (Xp(e.0))T + 23 () (X (1,003 < 23 (H) (11(7) + 22(7)?) < 21 (8)?

and

23 () (Xt )T < 6 (8) (Xp(r,0))T + 25 (1) (X (1,3 < 203() (x1(7)? + 22(7)) < 22 (1)%.
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Then, foralli =0,1,2,...,k] and t € (t;,5;11] N[0, 7], we get the inequality

EDPPV(t x(t)) =f D{Pxi(t) +f DI x3(1)
< 2x(t) ;D{*x ( ) +2x5(t) £, D{ P xa(t)

= 2x1(t) (0 25x1(F) — x2(t) 4 0.25x7 (¢ )(xp(,/xt))%> (23)
+2x5(t) (0 255, (t) + x1 () + 0.25x2(t)(xp<t,xt))%>
< V(t,x(t)).

In addition, for any natural number i, x € S; C R*andt € [si ;] = [2i —1,2i, we get V (¢, %) =

2it
2 2 2 2 24 42
1 (x X xiHx5  V(six) . _
(25) + () =5(F+%) <552 = Y52 = pu(t, v (si, %)) with (1) = &,
According to Example 2, Case 1 and Theorem 1, the zero solution of Equation (22) is uniformly
Lipschitz stable. [

Example 4. Let tp = 2k,k = 0,1,2... and s, =2k —1, k = 1,2,.... Consider the non-instantaneous
impulsive fractional differential equations

RED(cos(0.57t(t + £ +1)) +1.1)
cos(0.57t(t+t;+1)) +1.1
REDA(cos(0.57t(t + t; + 1)) +1.1)

GDPPx1(t) = 0.5x1 (£) — x2(t) + 0.521 (£) (% (4,0,))5 — x1(8)

’

EDPPxy(t) = 0.5x5 () + x1(£) + 0.5 (£) (X, )T — X2(t)

cos(0.5(t+t;+1)) +1.1 (24)
fort € (t,si41],i=0,1,2,...,
x1(si — 0) x2(s; — 0)
x1(t) = ———2, x(t) = —~+—2%, te(s;,t],i=1,2,.
l( ) Tit 2( ) Tit ( i J

where x = (x1,x2), p(t,u) =t — sinz(u), t—05 < p(tu) <t, Xo(tp) = ((xp(m))l,(xp(m))z) and
(Xpt))i = xi(t = 0.5sin?(x;(t +5))), s € [~0.5,0],i = 1,2, p(t) = cos(0.57(t + t; + 1)) + 1.1 for
t € [t Skra)-

Note that, for any t € [t, sx.1], the inequality p(t) < p(t +s),s € [—0.5,0] holds.
In this case, the quadratic function and Theorem 1 does not work (as it did in Example 3) because

RL
EDPBV(t,x(t)) < 2V (4 x(1))(1 - tk:(%m) <2v(tx(t)(1- 10 RLDA(p(#)) and the solution of the
comparison Equation (10) with g(t,u) = 2u(1 — ) RED(cos(0.57(t + t; + 1)) + 1.1) is difficult
to obtain.

Consider the Lyapunov function V(t,x) = p(t)(x2 +x3), x = (x1, x2).

Let the function ¢ € PCy, r = 0.5 be such that ¢(s) € S; fors € [—-0.5,0]. Lett: t € (t,5¢41), k
is a non-negative integer, be such that p(f +s)(¢1(s)? + ¢2(s)?) < p(t)(¢ ( )2+ ¢2(0)?), s € [-1,0].
From the definition of the function p, it follows that o(t, ¢;(s)) — t = —0. 5sin?(¢p $(s)) € [-0.5,0] fors €
[~1,0],j = 1,2 and therefore p(t +s)((¢1(p(£, ¢1(s)) — 1))> + (¢2(p(t, ¢2(s)) — 1)) < p(£)(¢1(0)* +
$2(0)?), s € [-0.5,0]. Then

p(£)(p2(p(t, po) — £))* < p(t +5)(¢2(p(t, p2(s)) — ))?
< p(+) ((0a(p(t p1(5)) = 1)+ (@2(p(t2(5)) ~ 1))?) 25)
p(t) (¢1(0)2+¢2(0)2), s €[—05,0].

Similarly, we get p(t)(¢1(o(t, ¢o) — 1)) < p(t) (4:1 (0)? +4>z(0)2).
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Then, using Example 1, Case 2 and the notations x; = ¢o, X, = ¢(o(t, o) — 1), ie,
F( (), Xy(1) = F(1,9(0), p(p(E g0) — 1)), we get the inequality
Doy V(£ 9(0), tr, ¢) = ¢1(0)p(£) f1(t,9(0), p(p(t, po) — 1)) + ¢2(0)p() f2(t, $(0), ¢ (p(t, o) — 1))

+ (930 + g30), Dp(0)

) REDAp(t)
= ¢1(0)p(t) (0~5¢1(0) — ¢2(0) +0.5¢1(0) (¢2(p(t, o) — 1)) — ¢1 (O)ka
5 RLDAp(t)
+¢2(0)p(t) (0-5¢2(0) +¢1(0) +0.5¢2(0) (1 (o(t, o) —1))* — P2 (0) *——— o(0) )

+(030)+ ¢30), Dp(0)
< V(t,9(0)).

In addition, for any natural number i, x € S; C R?andt € [si ti] = [2i —1,2i, we get V (¢, \/%) =

2 2 2 2 242
1 (x x xiHxy _ V(spx) . _
(o) + () = 5 (3 +3) < 52 = Y9 — 4y(1,v(s,,2) with it ) = 4.
According to Example 2, Case 1 and Theorem 3, the zero solution of Equation (24) is uniformly
Lipschitz stable.
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Abstract: This paper presents a new efficient method for the numerical solution of a linear time-
dependent partial differential equation. The proposed technique includes the collocation method with
Legendre wavelets for spatial discretization and the three-step Taylor method for time discretization.
This procedure is third-order accurate in time. A comparative study between the proposed method
and the one-step wavelet collocation method is provided. In order to verify the stability of these
methods, asymptotic stability analysis is employed. Numerical illustrations are investigated to show
the reliability and efficiency of the proposed method. An important property of the presented method
is that unlike the one-step wavelet collocation method, it is not necessary to choose a small time step
to achieve stability.

Keywords: Legendre wavelets; collocation method; three-step Taylor method; asymptotic stability;
time-dependent partial differential equations

MSC: 35K05, 41A30, 65M70

1. Introduction

In recent years, many kinds of wavelet bases have been utilized to solve functional equations;
for example, Shannon wavelets [1], Daubechies wavelets [2] and Chebyshev wavelets [3,4]. In this
paper, we utilize Legendre wavelets. Legendre wavelets are derived from Legendre polynomials [5].
These wavelets have been used in solving different kinds of functional equations such as integral
equations [6,7], fractional equations [8,9], ordinary differential equations [5], partial differential
equations [10,11], etc.

In solving time-dependent problems, Legendre wavelets are often used for spatial discretization.
Different techniques are implemented for time discretization. In some articles, Legendre wavelets
are also applied for time discretization. Therefore, the collocation points should be defined for both
time and spatial variables. Also in this technique, multi-dimensional wavelets should be used to
approximate required functions, which deal with large matrices and require large storage space.
For example, readers can refer to [9].

There are many contexts that use collocation methods in solving functional equations.
For example, Luo et al. [12] presented three collocation methods based on a family of barycentric
rational interpolation functions for solving a class of nonlinear parabolic partial differential equations.
Furthermore, for solving a class of fractional subdiffusion equation, Luo et al. in 2016 [13] used the
quadratic spline collocation method.

Another path for time discretization uses a finite difference method. Islam et al. [10] used a
fully implicit scheme, which is based on the first-order Taylor expansion. Yin et al. [11] employed

Axioms 2018, 7, 70; d0i:10.3390/ axioms7040070 32 www.mdpi.com/journal /axioms
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the f-weighted scheme for nonlinear Klein-Sine-Gordon equations. Stability is the important
point in using finite difference methods. Thus, methods that are first-order accurate in time might
be inappropriate.

Here, we exploit the three-step finite element method for time discretization [14-16]. For the
suitable differentiable function F(t), these three steps are defined as follows:

At At OF
F(t+5) = FO) +75 5, (1), M
At At OF At
F(t+7) :F(t)+7§(t+?), )
F(t+ At) :P(t)—l—At%—f(t—i—%). 3)

It can be shown that the above equations are equivalent to the third-order Taylor expansion.
Therefore, this method is third-order accurate in t. The first idea of using these three steps has been
demonstrated by Jiang and Kawahara [14]. Equations (1)-(3) are usually accompanied by the Galerkin
finite element method, which is known as the three-step Taylor-Galerkin method [17]. Kumar and
Mehra [2] proposed a three-step wavelet Galerkin method based on the Daubechies wavelets for
solving partial differential equations subject to periodic boundary conditions. In this paper, motivated
and inspired by the ongoing research, we develop a new effective method, which combines the
Legendre wavelets collocation method for spatial discretization and the mentioned three steps for time
discretization in the numerical solution of a linear time-dependent partial differential equation subject
to the Dirichlet boundary conditions. We call this method the three-step wavelet collocation method.
Furthermore, we explain the asymptotic stability of the proposed method.

The organization of this paper is as follows. In Section 2, fundamental properties of the
Legendre wavelets are described. The three-step wavelet collocation method is presented in Section 3.
The analysis of asymptotic stability is performed in Section 4. Some numerical examples are presented
in Section 5. Finally, Section 6 provides the conclusions of the study.

2. Basic Properties of Legendre Wavelets

Legendre wavelets are defined on the interval [0, 1] as follows [5]:

=51 l I+1
Pru(x) = y/m+ 3277 L, (21 — (21 + 1)), ?§x<7

0, otherwise

where k can assume any positive integer, m = 0,1,---,M, = 0,1,---,2F — 1 and Ly (x) are the
well-known Legendre polynomials of order .
A function f(x) defined over [0, 1] can be approximated in terms of Legendre wavelets as:

k-1 M

flx) ~ [Z Y. cinrm(x) = CTE(x), @)

=0 m=0

where:
Y(y) = o s S T
(x) = [o0, o1, YoM P10, P11, Yok 1,00 Pk 11 rlpqu,M] ’

and ¢;,,, =< f(x),1,, >, in which < .,. > denotes the inner product.
The derivative of the vector ¥ (x) can be expressed by:

d¥(x)
dx

= DY¥(x),
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where D is the 2¢(M + 1) operational matrix. Mohammadi and Hosseini obtained D and the
operational matrix for the n-th derivative:

d"¥ (x)
dx

=D"¥(x), (5)
in [5].
3. Three-Step Wavelet Collocation Method

In this section, we explain the main structure of the three-step wavelet collocation method.

3.1. Time Discretization

Consider the following linear time-dependent partial differential equation:

L S R oY) ©

with the initial condition:
u(x,0)=g(x), 0<x<1 (7)

and boundary conditions:
u(0,£) = ho(t), ®)
u(l,t) =n(t), t>0. )

Assume that n > 0 and At denote the time step such that , = nAt, n = 0,1, - - N;. By using the
Taylor expansion, the value of the function u(x, t) at the time £, 11 can be expressed as follows:
ou (A)? ,0%u

At)d 93
wret = g gy g BO7 Tty g 07y ofay, (10)

(2)—1:)" represent u(x, t,) and g—lZ(x, ty), respectively.

We can use the first-order Taylor expansion for time discretization and Legendre wavelets for
spatial discretization [10]. We call this method the one-step wavelet collocation method. In addition,
the time derivative in the given differential equations is approximated by Euler’s formula:

where the symbols u" and (

(G~ Ml t) Zul b gy,

and therefore, we have semi-discrete equation:

un+1 — + At(%)n'

The three-step Taylor method for time discretization is derived by applying a factorization process
to the right side of Equation (10) as follows:

:u"+At—[u"+§3[u"+%(%':)”]}. (11

Atd . AFD N, F
])” ot 2 ot

P)
(I+At§[l+ S+ 5,

where the symbol I is the identity operator.
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Now, using Equation (11) and employing a new notation, the three-step Taylor method is obtained
as follows:

nil _ o At ou

(7 \n
u 3 (5p) (12)
n+l _ h ﬁ al n+l
u 2= 2 (at ) 3 (13)
W — g ar( 2y, (14)

ot
It should be noted that u"+3, u"+7 and u"+! represent the computed solution at time level
At At

(tn + ?), (tn + 7) and (t, + At), respectively.

3.2. Spatial Discretization

After time discretization, the spatial derivatives of u(x, t) are approximated by Legendre wavelets.
The collocation method is utilized in this part. Let the unknown solution u(x, t,) be expanded by:
2-1 M
(e te) = =y Y el tpim(x) = (€)1 (x). (15)

1=0 m=0

According to Equation (15), we use only one-dimensional Legendre wavelets to approximate the
solution. The solution dependence