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growing. These applications have one common requirement: to properly model the environment

and estimate the robots’ poses. Even though several mapping, SLAM, and target detection and

localization methods exist, marine and underwater environments have some particularities that need

to be addressed, such as reduced vision range, water currents, communication problems, sonar

inaccuracies and unstructured environments.

This Special Issue aims to highlight the current research trends related to the topics of

underwater localization, mapping and SLAM as well as target detection and localization. To this

end, it presents seven papers from leading scholars in the field and demonstrates the diversity

of approaches and methods that are nowadays being explored to improve the performance of

underwater robots.
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Abstract: Aquaculture net cage inspection and maintenance is a central issue in fish farming. In-
spection using autonomous underwater vehicles is a promising solution. This paper proposes laser-
camera triangulation for pose estimation to enable autonomous net following for an autonomous
vehicle. The laser triangulation 3D data is experimentally compared to a doppler velocity log (DVL)
in an active fish farm. We show that our system is comparable in performance to a DVL for distance
and angular pose measurements. Laser triangulation is promising as a short distance ranging sensor
for autonomous vehicles at a low cost compared to acoustic sensors.

Keywords: autonomous navigation; range sensing; inspection and maintenance; 3D vision

1. Introduction

Nearly half of the earth’s land is used for food production, and marine resources
can help feed the growing population. The number of fish farms is increasing rapidly [1].
Typically, the fish is raised in open sea net cages, which consist of a floating collar, a net
pen and a mooring system. These cages are in natural marine environments, and fish
that escape from these environments may cause harm to the environment and its related
food chain. To minimize the escape caused by the failure of the net cage, the net must be
inspected routinely [2]. Net inspections today are commonly performed either by divers or
by human-piloted remotely operated vehicles (ROVs). The ROV operations are challenging
for the pilot as they require both precise maneuvering and a keen eye for detail in order to
detect failures in the net cage from the video stream.

One of the main problems in applying autonomous underwater vehicle to fish cage
inspection is the automatic detection and tracking of net pens. This is to maintain a safe
distance from the net pen and to ensure complete coverage of the cage during the inspection.
Cost constraints are in addition tight since the autonomous vehicle needs to be similar
in cost, or ideally cost less than the human divers used today. Even though there are no
industrial deployment of autonomous net inspection systems that we are aware of, it is
an active topic in research [3]. There are also similar research programs within subsea oil
and gas, [4], and seabed mapping [5]. Aquaculture net pens are especially challenging to
inspect because their shape changes with the water current and due to biofouling changing
their visual appearance [6].

Successful operation of autonomous underwater vehicles requires the ability to nav-
igate, and to understand dynamic environments. There are many mature positioning
systems which can position underwater vehicles. The long baseline method (LBL) and the
ultrashort baseline method (USBL) use acoustic ranging relative to fixed beacons. These
methods require pre-deployed and localized infrastructure, hence increasing the cost and
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the complexity of the operations [7,8]. Furthermore, underwater ranging systems are chal-
lenged by infrastructures prohibiting line-of-sight as, e.g., aquaculture sites [9]. Position
measurements can be integrated with velocity measurements provided by an acoustic
doppler velocity log (DVL) and an onboard digital compass. [10].

Several optical systems are used to get 3D data from underwater. Video cameras
in combination with markers are commonly used for autonomy and navigation [11], for
underwater stereo [12,13] or photogrammetry [14], which will need unique, non-repetitive
features in the scene to estimate the disparity and thereby the depth measurement. Due
to the repetitive structure of the nets to be inspected, stereovision is not well suited in
our use-case.

Structured Light method uses typically a DMD (digital mirror device) to project a
single pattern or a series of spatially coded patterns to get highly accurate 3D measurements
of the scene in real-time. In [15], Multi-Frequency Phase Stepping patterns are used to
acquire high resolution 3D data from a static scene in turbid water.

Scanning LIDARs (Light Detection and Ranging) are used for inspection tasks un-
derwater [5]. Due to the scanning nature and the capturing time of this method, it needs
a compensation for the relative motion of the vehicle. Flash-LIDARs do not include a
scanning and provide real-time 3D data with depth precision below 1 cm at high signal
levels, at 10 Hz [16].

Laser triangulation systems typically project a laser line [17–21] or point [22] onto the
scene to triangulate distances between the laser and a camera. Commercial systems are also
available, e.g., from 2GRobotics (www.2grobotics.com). These systems will need a scanning
device for getting 3D data from the whole scene, which makes them slow, mechanically
complex and expensive. We needed a cheap system, and to reduce complexity we wanted
to use the ROV’s built-in camera. The suggested solution uses two laser lines to enable
detection of a plane from one single image of the projected lasers. Parallel lines were
chosen to get an optimal baseline geometry between the camera and both the laser line
sources—this also results in a compact system suited for mounting on the available ROV,
and also enables estimation of both pitch and yaw.

The algorithms which interpret the data from these sensors, to achieve autonomy, were
first addressed in a probabilistic framework by [23], which is known as the Simultaneous
Localization and Mapping (SLAM) problem. In view-based or dense SLAM, visual odome-
try is performed by comparing two complete views [24], e.g., by registering overlapping
perceptual data, for example, optical imagery [25] or sonar bathymetry [26]. Unstructured
underwater environments pose a more challenging task for feature extraction and data
association than terrestrial environments. Hence, the application of feature-based SLAM
frameworks has so far had limited success in real-world underwater environments [27].

To enable cost effective underwater SLAM for net inspection, this paper proposes using
laser-camera triangulation consisting of two laser lines and one camera for pose estimation
from one image. By assuming the net wall can be approximated to a plane, using two laser
lines enables fitting a plane to the net cage’s wall based on one image only. This enables
estimation of pose relative to the net pen in real time. The partial pose of a camera with
respect to an observed net pen can be used for closed-loop net-following control.

The on-board camera used for net pen inspection was used for the laser triangulation.
The only extra hardware needed are two lasers and their power supply, which drives down
cost compared to acoustic sensors. No synchronization circuit or communication between
laser and camera is needed as we run the lasers continuously.

2. Materials and Methods

2.1. The ROV and the Sensors Employed

The ROV employed in the trials is an Argus Mini, manufactured by Argus Remote
Systems AS, shown in Figure 1. It is an observation class ROV specifically built for
inspection and intervention operations in shallow waters, and meant to serve scientific
purposes as well as the offshore, inshore, and fish farming industries. The Mini weights
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90 kg with dimensions L × B × H = 0.9 m × 0.65 m × 0.6 m and is designed around six
ARS800 thrusters. Four of the thrusters are placed in the horizontal plane, while the other
two are placed in the vertical plane, hence guaranteeing actuation in 4 degrees of freedom
(DOFs), i.e., surge, sway, heave, and yaw. The ROV is passively stabilized by gravity in roll
and pitch.

Figure 1. The Argus Mini remotely operated vehicle (ROV), courtesy of Argus Remote Systems AS.

The Argus Mini is equipped with 5 sensors: a SONY FCB-EV7100 Full HD camera, a
fluxgate compass, a depth sensor, a gyro, and a Nortek DVL 1000 velocity sensor. In addition,
position measurement is provided by a Sonardyne USBL system that consists of a Micro-
Ranger Transceiver mounted onboard the support vessel and a Nano Transponder mounted
on the vehicle. The ROV contains no sensors for direct measurement of acceleration.

The Nortek DVL is forward-looking, i.e., the instrument is mounted on the front
of the ROV, pointing in the x-direction of the body/vehicle frame. This unconventional
DVL configuration is employed with the purpose of enabling DVL lock on submerged
vertical structures present in the aquaculture context, such as net cages of large fish farming
cages (50 m in diameter). Such features of the DVL instrument, combined with its ranging
features, are utilized in [28] to estimate the ROV distance and heading relative to a net cage
and validate a guidance law for autonomous net following.

2.2. The ROV Control System

The company SINTEF employs its in-house control systems on the Argus Mini ROV.
The ROV has three operational modes: manual (assisted with auto-heading (AH) and
auto-depth (AD)), dynamic positioning and net-following. Relevant to the experiment
presented here is the net-following controller, which uses feedback from the forward
looking DVL. Net-following makes the ROV autonomously traverse aquaculture net cages
at a given depth. The method exploits the four range measurements provided by the
DVL beams to approximate the geometry of the net cage in front of the ROV as a plane
through a least-squares regression. It then calculates the ROV position and orientation
relative to this local plane. The relative position and orientation are subsequently fed as
inputs to a nonlinear line-of-sight guidance law [29]. Further details on the employed net
following (NF) guidance as well as the net cage geometry approximation by use of DVL
range measurements can be found in [28].

A 4 DOF extended Kalman filter is also running to assist the dynamic positioning.
The Kalman filter fuses the position measurements provided by the USBL, the velocity
measurements form the DVL and the mathematical model of the ROV to estimate the
vehicle state [30].

3
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2.3. Sea Trials for Data Collection

The trials were executed at the SINTEF ACE Tristeinen aquaculture facility shown
in Figure 2. SINTEF ACE is a full-scale laboratory designed to develop and test new
aquaculture technologies under realistic conditions. The tests were performed inside a cage
for salmon farming, in full operational state. ROV operations in fish farms are commonly
performed inside the fish cages, not outside. This is due to the presence of ropes, chains
and mooring lines on the outside of the cages which the ROV’s tether can get tangled into.
When operating inside the cage, the fish will sometimes obstruct the cameras and sensor
measurements, but the severity of this compared to the ROV being tangled is low. The cage
has a cylindrical shape with a conical bottom, where the upper diameter is approximately
50 m and the total depth is about 30 m. The cage used in the trial is equipped with double
nets in the regions around the main ropes to secure these regions against fish escapes. This
double net setup is used in all fish cages operated by the company operating at SINTEF
ACE, but it is unknown if this is standard for other companies. As will be shown, the
presence of the double nets influences the quality of the distance measurements when
using the DVL. The nets at the Tristeinen facility are square, with a mesh width of 33 mm.
They had been cleaned eight days prior to the trials. The nets originally had a green coating,
but some of this seems to have worn off. Fish population was approximately 190.000
individuals, which is normal.

 

Figure 2. SINTEF ACE, a full-scale laboratory facility designed to develop and test new aquaculture
technologies.

The tests consisted of pointing the laser lines against the cage net and simultaneously
recording HD videos at 60 frames per second (fps), while having the ROV executing
several net cage traverses at constant depth by utilizing the NF guidance, interrupted by
short intervals where the ROV was placed in dynamic positioning (DP) mode. Such a
configuration allows the direct comparison of the laser-camera system capabilities with the
DVL capabilities during the execution of net following tasks, which is highly relevant in
the context of subsea aquaculture operations [9].

2.4. D Data Camera–Laser Line Triangulation

To get 3D data from the fish cage net, we chose to use the method of triangulating
between two laser lines and one camera. Due to the repetitiveness of the pattern in the
cage’s net, we chose a method not relying on correlating features in the scene and rather
projecting the pattern (here, two laser lines). This also enables 3D data in the dark, e.g.,
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at night or at larger depths. A blue laser was chosen to limit the effect of light scattering
particles and attenuation of light in the water.

Two laser lines (OdicForce Lasers’s 80 mW Blue, 450 nm, Adjustable Locking Focus
Direct Diode Module Line Pattern) where chosen to enable estimation of both the distance
and the position relative to the net wall—assuming the wall is planar. The camera used
was the camera available on the ROV (SONY FCB-EV7100 Full HD). The actual setup is
shown in Figure 3.

 
(a) 

 
(b) 

Figure 3. (a) The laser lines are mounted inside watertight tubes from Blue Robotics. The laser lines
are perpendicular to the plane containing the two tubes and the camera. (b) The laser lines are
mounted onto the ROV. The camera used is the on-board ROV camera, seen in the center of the ROV.

We calibrated the system by capturing images of submerged checkerboards where
the laser lines also were projected onto the checkerboard (Figure 4). The calibration was
performed underwater. Then, the refraction glass–water is seen as a lens effect handled by
the calibration routines; this effect is also reduced by using a dome shaped glass to ensure
perpendicular surface from camera lens to glass. Attenuation and scattering due to the
water and its turbidity is handled by using enough light matching the distances we operate.
This aligns with the conclusion in [31]. The calibration was performed by moving the ROV
to get a good dataset with different viewing angles. Using Zhang’s method of camera
calibration [32], we recovered camera distortion parameters using openCV’s camera model
implementation of the camera matrix A, and the distortion coefficients K,

A =

⎡⎣ cx 0 cx
0 fy c
0 0 1

⎤⎦, (1)

where fx, fx are the focal lengths and cx, cy are the principal point; and the distortion
parameters,

K = [k1, k2, k3, p1, p2], (2)

where k1, k2, k3 are the radial distortion parameters and p1, p2 are the tangential distortion
parameters.

5
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Figure 4. Example of calibration images for the camera-laser 3D measurement. The laser lines can be seen in the left part of
the checker board.

We also recover the 3D position of the laser lines on the checkerboards. This information
was used to recover the plane parameters for the two projected laser planes, meaning that
we could perform laser triangulation by intersecting camera rays (lines) with the laser plane
for xyz recovery. Assuming camera as the origin, all camera rays can be expressed as points

p = d · L (3)

where L = [xL, yL, zL] is the direction of the ray and d is the position along the ray. The
laser plane can be defined as

(p − p0) · n = 0, (4)

where p0 is a point on the plane, n is the normal to the plane and p are the points of the
plane. To determine d we solve for

d =
(p0 − l0) · n

l · n
, (5)

meaning that we can find the xyz point of the intersection as d · L.
To get the distance, yaw and pitch between the ROV and net cage wall, the laser

lines were detected in images of the net when the two laser lines were projected. The
laser line points’ positions in the images were located with sub pixel accuracy and looked
up in the calibration lookup table to get the points’ absolute x, y and z distance from the
camera’s center. The resulting positions from both laser lines were by fitted to a plane
using MLESAC (Maximum Likelihood Estimation SAmple. Consensus) [33]. MLESAC is a
generalization of the RANSAC (RANdom SAmple Consensus) algorithm picking a subset
of points, fitting a plane and searching for the plane with highest maximum likelihood to
all points. MLESAC also brings robustness improvements relative to the original RANSAC
algorithm. From the plane parameter, we get the distance to the plane, the yaw and pitch
angles of the camera relative to the net wall. Example images and corresponding fitted
planes are in Figure 5. We handle the detected laser lines as point sets (search for points
per image row) and do not try to make them into lines. This makes us robust for outlier
detections and the fact that the nets have holes which reduces the number of line points
detected. Points from both laser lines are used simultaneously in the MLESAC algorithm.

6
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Figure 5. Example of ROV’s laser line images for the camera–laser 3D measurement and the fitted plane representing the
net cage wall. Upper row is the images, and lower row the plane fitted to the x,y,z positions of the points; units are in mm.

3. Results

This section compares the sensor readouts from a DVL and the laser-camera system
for an experiment where an ROV is navigating inside a fish cage. Fish were swimming
in the cage during the experiment, which contributes significantly to the noise. The DVL
measurements are processed at the sensor and are filtered which can affect the apparent
signal smoothness. The laser triangulation signal is the raw data, with no outlier rejection,
smoothing, nor filtering applied. A graphic showing the geometry of the measurement
setup is shown in Figure 6.

 

Figure 6. The geometry of the fish cage and the measured net distance and yaw angle in the horizontal
North-East plane. The ROV is roll and pitch stable, but the pitch varies ±10 degrees around the zero
point, so the horizontal assumption is not perfect. The yaw angle is calculated by projecting into the
North-East plane.
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An indirect sensor-to-sensor calibration was performed to compare the DVL measure-
ments with the camera measurements. The camera position relative to the DVL position
was determined during the installation on the ROV by measuring the position of the
mounting points. No closed-loop extrinsic calibration was performed to precisely position
the DVL with respect to the camera. The distance calibration consists of: (1) a manual time
synchronization to shift the camera signal to be in step with the DVL time with a static bias;
and (2) a single static bias of 0.37 m, added to the laser measurement to bring the camera
plane in line with the DVL plane. The yaw calibration only synchronizes the time, since the
two sensors were mounted to have the same orientation—and should not need any signal
correction. The net-to-ROV pitch angle is also measured but is not reported since the ROV
is pitch stable—and the signal is small.

3.1. DVL vs. Laser Triangulation Depth Data

Figure 7 compares raw output data from the DVL and the laser triangulation distance
measurements. The two sensors are largely in agreement. An attempt was made to use
the USBL localization system as a third sensor to establish ground truth, and determine
which sensor principle was more accurate in absolute terms. However, the dynamic nature
of the net cages made the USBL data not usable for this purpose. The laser triangulation
measurements are noisier than the DVL distance. The high level of agreement between
the two sensors is surprising, given the open-loop calibration only along the depth axis to
position the sensors relative to each other.

 

Figure 7. The doppler velocity log (DVL) distance measurement compared with the laser triangula-
tion measurement.

There are two areas in the distance data we will look at in detail. The first is the
disagreement around t = 650 s. The DVL and laser have a disagreement of around 25 cm.
A picture from taken at that time is shown in Figure 8. It is seen that a double net is the
cause of the problem. The laser line algorithm returns the distance to the closest net, as
seen in Figure 9. We conclude that the laser triangulation distance is more reliable than the
DVL for distance to the double net.

8
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Figure 8. A picture taken at t = 650 s, where the triangulation distance disagrees with the DVL
distance. The double net pen net in the upper part of the image confuses the DVL. Four laser lines
are visible, two from each net.

Figure 9. The laser line detection in the picture in Figure 10. The two brightest laser lines are found
even when two extra less bright laser lines appear on a more distant net.

 

Figure 10. A picture taken at t = 1020 s, where the triangulation data is significantly more noisy
than the DVL distance. Weak laser signal due to large distance (>2.5 m) to the net makes the laser
triangulation loose data. The image is brightness-corrected for display purposes.

9
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The next area of interest is at the maximum distance of 2.5 m, achieved at t = 1050.
Here the laser triangulation is significantly noisier than the DVL. Looking at the picture
at that time, seen in Figure 10, it is evident that low laser visibility due to turbid water is
the problem, and the triangulation is close to the maximum range. For higher ranges than
this—we would need a brighter laser. Introducing a band-pass filter, will filter out the stray
light from other light sources and improve the laser line contrast; but on the other hand, it
will filter out information needed for net pen inspection.

3.2. DVL vs. Laser Triangulation Yaw Data

The net-relative Yaw angles for both sensors are seen in Figure 11. The data shows
that the ROV was looking at the net head-on with a deviation of 20 degrees in yaw, i.e., the
net following controller is performing well. The loss of DVL signal towards the end of the
dataset is due to the ROV ascent, which indicates that the laser triangulation may be more
robust than the DVL in shallow waters, since the laser is less affected by reflection from the
water surface than acoustic signals. The agreement between the two sensors is impressive
given that no extrinsic calibration was performed apart from time synchronization. The
increase in noise at the end of the dataset is due to the large amount of fish at that time.

 

Figure 11. The DVL net-relative yaw compared with the laser triangulation measurement.

3.3. Kalman Filter Comparison

Figures 12 and 13 shows the trajectory traversed by the ROV during the experiment
estimated by an extended Kalman filter. The curve seen is the circular fish cage. The main
sensor driving the Kalman filter is a ship attached USBL system. Changes to the USBL
either due to ship movement, net movement, or other error sources show up as jumps
in the position estimates—showing that a USBL only system is not sufficient for robust
net inspection. The dots are net positions relative to the ROV from the DVL and the laser
triangulation. It is seen that the two distance sensors are mostly in agreement. It seems
feasible to base a net-following controller on the output of the laser triangulation sensor.
Figures 14–16 show the measured planes overlaid the Kalman pose estimate for only leg
3 to increase readability. The two sensors report similar data in this interval, showing
that one could be exchanged for the other. The overlapping planes enable a well behaved
pose-graph for a SLAM implementation.
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Figure 12. The position of the ROV is the blue line, the red dots are DVL distance measurements, and the green dots are
laser measurements.

 

Figure 13. A Kalman filter estimate of the experiment showing the descent, navigation along the net pen, and the ascent.
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Figure 14. Kalman filter data from leg 3 of the experiment, with the DVL measured planes overlaid
seen in the North-East plane.

Figure 15. Kalman filter data from leg 3 of the experiment, with the laser measured planes overlaid
seen in the North-East plane.

 
(a) 

 
(b) 

Figure 16. A 3d view of the measured planes. The DVL data is in (a), laser data in (b).
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3.4. Quantization

This section compares a quantization effect seen on the DVL to the laser triangulation
sensor. Figure 17 shows two sections of the distance measurements. A quantization error
of around 1 cm sometimes affect the DVL data. The laser triangulation quantization error
is less than mm scale. Any similar quantization issues were not seen on the DVL yaw data.
It is not known if this issue is related to the acoustics, or is a sensor-specific issue.

 

(a) 

 

(b) 

Figure 17. Zoomed in distance measurements from the laser triangulation sensor and the DVL which show quantization effects.

3.5. Noise Comparison

This section attempts to compare the noise levels between the laser measurements and
the DVL distance measurements. This comparison will not be strictly correct since there is
no ground truth but may still be of interest. A linear Kalman filter was used to fuse the
two distance measurements to obtain a quasi-ground-truth. The filter was manually tuned,
and in addition, outliers were manually removed. The outliers were removed because
they would dominate the result otherwise. We compared a time series where both sensors
returned signals at the same time. The results are shown in Figure 18, with the overall
result the DVL distance has a standard deviation measurement error of 2.9 cm, and the
laser sensor has a comparable but slightly larger error of 3.2 cm.

This proof of concept shows that an autonomous vehicle with a camera can be cheaply
upgraded with net cage sensing capacities. Most inspection vehicles have RGB cameras
already installed, which is the expensive part of the sensor, and given that camera sensors
improve in performance per dollar per year—this sensor type will continue to be attractive
in the future. Cost wise, a DVL costs in the range of thousands to tens of thousands USD. In
comparison—the two lasers and housings cost $200, a factor of 25× to 100× in cost savings.
These cost reductions are significant, especially for large fleets of inspection vehicles.

An added result is the verification that the DVL sensor measures the correct ROV-
to-net distance. In, e.g., [9], a DVL is tested as a net cage navigation sensor, but since no
independent measurement was available (it was not known that the DVL was unbiased for
net pen measurements), comparative estimates indicate standard deviation of 3.2 cm for
the laser system, and 2.9 cm for the DVL.
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(a) 

 
(b) 

Figure 18. (a) shows a Kalman filter fusion of the distance measurements, with outliers removed. The outliers are indicated
with circles. (b) Shows the Kalman prediction error which is the basis for estimating the noise levels for the two sensors.

One particular concern was that the double nets, an outer net and an inner net,
resulted in systematic bias on the DVL. The high degree of consistency between the laser
and acoustic measurements show that either sensor is viable for net relative navigation. A
fundamental advantage to the DVL is that it can measure velocity, but the laser triangulation
sensor cannot.

The next steps include testing the laser sensor in closed-loop in an autonomous net
following and mapping application.

4. Conclusions

We have shown experimentally that a laser triangulation can be used to navigate
relative to an aquaculture net cage. The signal quality is nearly as good as a DVL, at less
than 1/25th of the price.
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Abstract: State of the art approaches to Multi-robot localization and mapping still present multiple
issues to be improved, offering a wide range of possibilities for researchers and technology. This paper
presents a new algorithm for visual Multi-robot simultaneous localization and mapping, used to join,
in a common reference system, several trajectories of different robots that participate simultaneously
in a common mission. One of the main problems in centralized configurations, where the leader can
receive multiple data from the rest of robots, is the limited communications bandwidth that delays
the data transmission and can be overloaded quickly, restricting the reactive actions. This paper
presents a new approach to Multi-robot visual graph Simultaneous Localization and Mapping (SLAM)
that aims to perform a joined topological map, which evolves in different directions according to
the different trajectories of the different robots. The main contributions of this new strategy are
centered on: (a) reducing to hashes of small dimensions the visual data to be exchanged among
all agents, diminishing, in consequence, the data delivery time, (b) running two different phases
of SLAM, intra- and inter-session, with their respective loop-closing tasks, with a trajectory joining
action in between, with high flexibility in their combination, (c) simplifying the complete SLAM
process, in concept and implementation, and addressing it to correct the trajectory of several robots,
initially and continuously estimated by means of a visual odometer, and (d) executing the process
online, in order to assure a successful accomplishment of the mission, with the planned trajectories
and at the planned points. Primary results included in this paper show a promising performance
of the algorithm in visual datasets obtained in different points on the coast of the Balearic Islands,
either by divers or by an Autonomous Underwater Vehicle (AUV) equipped with cameras.

Keywords: multi robot; Simultaneous Localization and Mapping; visual loop closure; image
global signatures

1. Introduction and Related Work

Simultaneous Localization and Mapping (SLAM) [1] is an essential task for Autonomous Underwater
Vehicles (AUV) to achieve successfully and precisely their programmed missions. SLAM consists of
building a map of the environment and, at the same time, estimating its own pose within this map.
SLAM is presently a de facto localization standard for any kind of autonomous vehicle. Laser range
finders or sonar were the sensor modality of choice at first [2–4]. However, research turned to computer
vision as soon as price and capabilities of cameras made it possible [5], since cameras provide higher
temporal and spatial data resolutions and richer representations of the world.

However, large-scale or long-term operations with a single robot equipped with cameras
generate huge amounts of visual data that can collapse the vehicle computer, if they are not treated
properly. A common strategy to overcome this problem is to explore the areas of interests in different,
separated missions, so-called sessions, run with a single robot in different time periods (a Multi-session
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configuration [6]) or with several robots running simultaneously (Multi-robot configurations [7]).
Therefore, any low capability of a robot to operate robustly during long periods of time can be
alleviated by running different transits with different agents, at the same time through common areas,
and joining all individual estimated trajectories in a single coordinate frame. Multi-robot systems also
increase robustness in case of failure of any of the robots; however, they need complex coordination and
multiple localization systems. Typical applications using teams of robots include aerial surveillance [8],
underwater exploration [9], maintenance of industrial infrastructures or intervention in archaeological
sites [10], among others.

The first approaches to Multi-robot SLAM were based on particle filters [11], and introduced
the concept of encounters as the relative pose between two robots that can mutually recognize
each other and determine their relative poses. These encounters are introduced as additional pose
constrains in the particle filter. Some Multi-robot approaches are based on the Anchor-nodes [12,13]
proposal, which defined two concepts unconsidered for multiple trajectories until that moment: (a) the
Anchor, defined as the offset of a complete trajectory with respect to a global system of coordinates,
and (b), an encounter, re-defined as a transformation between two different poses of two different
robots that observe the same part of the environment, but without being necessarly that both robots
recognize themselves. In visual-based systems this can be achieved, for instance, detecting overlapping
scenes. In Multi-robot systems, encounters represent additional constraints between different graphs
corresponding to different sessions.

Schuster et al. conceived a very precise SLAM approach to localize a team of planetary rovers
equipped with an Inertial Measurement Unit (IMU) and a stereo camera [14]. IMU data, visual odometry
and wheel odometry are integrated in a local localization Extended Kalman Filter (EKF) and the 3D
point clouds of all robots computed from their respective stereo views are, firstly stored in each agent,
and then matched to be joined in global 3D maps. The use of stereo vision and advanced techniques
for 3D feature matching and alignment complicate considerably the whole system and generate huge
amounts of data to work with and to be exchanged. This solution turns out to be very difficult for
underwater missions, given the limited options for fast communication in this media.

Saeedi et al. offered an extensive survey of Multi-robot systems and strategies, pointing also
towards the upcoming trends and challenges [15], such as extending the systems to dynamic and/or
large-scale environments or increasing the number of agents in the working teams.

Another issue to consider in SLAM is the detection of loop closings and their use to
correct the robot trajectory estimated by means of dead-reckoning sensors, such as, inertial units,
acoustic beacons, laser-based or visual odometers. Loop closing is the problem of recalling revisited
scenes, and approaches to visual loop closure detection try to recognize the same scene in different
images, taken at different and relatively distant time instants, regardless evident differences on scale
or view point [16]. In single session SLAM, since the robot pose is continuously estimated, the search
for images candidate to close a loop with a query (from now on called intra-session loop closings) is
constrained to a region around the robot pose associated with that query [17]. In contrast, multi-robot
loop detection, i.e., the detection of loop closings among different sessions of different robots (from
now on called inter-session loop closings), cannot rely on the AUV poses to constrain the search since,
at first, the relative poses between sessions is unknown. Consequently, it seems that every query of
one session would need to be compared with all the images obtained until that moment in the other
sessions, increasing considerably the time dedicated for this task, and the amount of visual data to
be exchanged.

Exchanging image hashes instead of entire images or sets of image salient points is a way to
reduce data transfer requirements in Multi-robot configurations. Hash functions are usually used to
authenticate messages sent between a source and a receiver, so that the later can verify the authenticity
of the source. Conventional hashing algorithms are extremely sensitive to the hashed messages.
A change in 1 bit of the input message causes dramatic changes on the output. Applications of
hashes, understood as exposed before, include image retrieval in large databases, authentication and
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watermarking, among many others [18]. However in applications of scene recognition, localization
or visual loop closing detection, it is accepted that similar or overlapping images are expected to
produce similar or close hashes while distinct images produce clearly distinctive hashes, being this
concept known are perceptual image hashing [19–23]. In particular, McDonald et al. [6] proposed to
detect loop closings using a solution based on Bag of Words BoW [24] combined with iSAM [12] for
batch map optimization, and Negre et al. [22] showed how their new global image descriptor HALOC
outperformed other techniques, such as BoW and VLAD [20], in the task of loop closing detection
with image hashes. From now on, this text uses equally hash or global image descriptor to refer the
same concept.

All these aforementioned references apply hashes to detect loops in SLAM applications for
single robots. However, now, our interest is focused on the Multi-robot systems, and the application
of global image signatures to find loops between images captured by different robots that operate
in a same mission on a common area of interest. A few authors have already explored this idea.
For instance, Decentralized Visual Simultaneous Localization and Mapping (DSLAM) [25] is a powerful tool
for pose-graph Multi-robot decentralized applications in environments where absolute positioning
is not available. DSLAM reduces every image to its NetVLAD (a Neural Network Architecture for
Place Recognition) global descriptor [26]. To find loop closings, DSLAM seeks, for every query of
one robot, the image of another robot whose NetVLAD descriptor presents the shortest distance
to the descriptor of the query and this distance is below a certain threshold. This process is done
for every frame of every robot that is inside a predefined cluster. DSLAM uses ORB-SLAM [27]
for continuous localization, which includes a global image charectrization based on BoW for initial
odometric estimates, and ORB [28] feature matching and RANSAC to calculate the 3D transform
between confirmed visual loop closings.

The idea of Cloud Computing is applied in some cases to alleviate the computational charge
needed for a set of robots to localize themselves and map the environment running a software
architecture based on a multi-layer cloud platform [29]. In this later reference, robots use ORB-SLAM
for self-localization and the multi agent SLAM is tested with the KITTI [30] public dataset and using
a quadrotor drone in an outdoor environment. A few solutions integrate inertial with image data to
perform Multi-robot graph SLAM. In [31], ORB visual features are tracked along consecutive frames
and integrated together with the motion given by an IMU in a graph optimization context. BoW is also
used to detect candidates to close inter-session loops. The BoW-based global image descriptor of a
query image is compared to the global descriptor of all other images of the other agents, selecting a set
of candidates to close inter-session loops with the query. Afterwards, a brute-force feature matching
with RANSAC is applied to confirm the candidates or to reject them. Experiments in [31] are performed
with aerial robots in industrial environments.

Previous references have been tested only in terrestrial indoor and outdoor environments.
The literature is extremely scarce in Multi-robot SLAM addressed, implemented and tested in
underwater scenarios with AUVs [9,32]. Underwater computer vision is affected by several challenging
problems, such as flickering, reduced range, lack of illumination, haze, light absorption, refraction, and
reflection. These limitations increase the need for more robust visual SLAM approaches which start
with accurate camera calibrations. Accuracy in the processes of camera calibration is critical to reduce
drift in the visual odometry and increase precision in the pose transform obtained from images that
close loops [33,34]. Furthermore, none of the papers cited previously consider the potential impact
of limited communications among robots, because, either they are applied in ground or aerial robots
or they simply assume full, high-bandwidth connectivity. This supposal is clearly unrealistic in
underwater environments, where blue-light laser communications need to be highly directive and
acoustic USBL modems work, on average, at 13 Kbps for long range devices and up to 65 Kbps in
mid-range devices. Additionally, the later speeds are not suitable to transmit medium-high resolution
visual data between two robots without a previous compression. For instance, Pfingsthorn et al. [35]
proposed a visual pose-graph SLAM approach in which compressed JPEG-format images are send

19



J. Mar. Sci. Eng. 2020, 8, 437

via acoustic links only between robots that can mutually recognize their positions and are viewing
overlapping areas. Paull et al. [36] refuse the use of images for SLAM and trust all the localization
process to an acoustic modem for data transmission and instruments that give relatively small amounts
of data, if compared with images: compass, Doppler Velocity Log (DVL) and a Side Scan Sonar. Besides,
they also apply a new strategy to marginalize unnecessary local information to reduce the dimensions
of the transferable packages.

In the context of the ongoing national project TWINBOT (TWIN roBOTs for Cooperative Underwater
Intervention Missions) [37], diverse missions of exploration and cooperative intervention have to be
run using one or several AUVs in underwater areas with multiple appearances and different benthic
habitats. In this project, accurate, fast and reliable robot localization, loop closing and navigation
algorithms are crucial for the success of their missions. This paper presents a new approach to
Multi-robot visual graph-SLAM, especially designed for 2’5D configurations, where vehicles move at
a constant altitude with a camera pointing downwards, with the lens axis constantly perpendicular
to the ground or to the vehicle longitudinal axis. This condition simplifies the visual system to 3
Degrees of Freedom (DoF): two for an in-plane translation (x, y) and another for rotation in yaw (θ).
This simplification fits with aerial and underwater vehicle configurations, if the navigation altitude
is large enough compared with the heigh of the terrain relief [38,39]. However, now tests have been
made only with underwater datasets since the research developed by our team, in general [40], and the
TWINBOT project in particular, is applied entirely and solely underwater, and this approach emerged
as a solution to be applied on the robots that participate in our project missions.

The approach presented now includes several contributions that represent clear advantages with
respect to the existing solutions, namely:

(a) As in [25], images are reduced to global descriptors decreasing drastically the amount of
visual data to be exchanged among robots; however, the global descriptor used now is HALOC [22]
instead of NetVLAD. The construction of HALOC is simpler and faster than NetVLAD, consisting in
projecting all image features on a base of orthogonal vectors, without any need for tedious and long
training tasks. This is a clear advantage over the previous work, since HALOC already showed to
outdo VLAD [20] and BoW, in speed and performance for loop closing detection, in both terrestrial
public benchmaks and underwater environments. HALOC also showed a performance better than
ORB-SLAM, only underwater. Additionally, extensive experiments with HALOC performed in marine
areas partially colonized with seagrass [41,42] also revealed an excellent efficiency, capacity and utility
for loop closing detection in this type of environments.

(b) A second important contribution is the simplification of the whole system with respect previous
approaches. Ours does not require neither the computation of relative poses among robots, nor a
specific strategy to limit their communication and interaction. At every SLAM iteration, the quantity of
bytes to be exchanged between robots is so small that this will not necessarily limit the communication
between all agents that participate in the mission, if needed.

(c) The global procedure includes local and global SLAM tasks, with a map joining process in
between. The advantage of this point lies on the flexibility to choose the moment at which the map
joining is performed, giving priority to local routes as accurate as possible, or delaying the major
corrections once all maps have been joined.

(d) The present approach goes one step beyond its predecessors, since the joined graph
incorporates and reflects, online, the successive poses of all robots that move simultaneously.

(e) The localization and motion problem is simplified to 2D. Furthermore, it avoids complex
multi-layer software architectures or Cloud computing strategies present in previous solutions.

(f) One of the principal objectives has been the reduction of the computational requirements
of the algorithm, since, in general, they are limited in lightweight underwater vehicles. Running
the algorithm online onboard the vehicles is a must, since it is especially addressed to multi-robot
configurations, and these configurations imply controlling, mapping and guiding several robots

20



J. Mar. Sci. Eng. 2020, 8, 437

moving simultaneously, where usually, one centralizes the processing of the localization data of the
whole group.

Furthermore, although they are not directly novel contributions, it is worth mentioning two
additional advantages in the implementation: (i) similarly to [32] or [35], once maps of different
robots are joined, standard graph-based topology representations are used, where images form nodes
and transforms between two images (being from consecutive frames or between two images that
close a loop) form edges or links, and (ii) the graph is optimized by means of standard g2o [43];
this standardization facilitates the exchange of the different modules on a variety of software platforms
and their reuse among different implementations.

Although this is out of the scope of this paper, this vision-based algorithm can complement
the navigation facilities of underwater vehicles equipped with multiple types of sensors. In fact,
this algorithm can integrate additional sensorial data in the first estimation of the vehicle motion,
combining visual odometry with other means of laser or sonar-based dead reckoning [44,45].

The source code of the whole approach has been made publicly available for the scientific
community in several GitHub repositories, together with a simple underwater dataset to test the whole
procedure. Links to sources are provided in Section 3.

Section 2 contextualizes and details all algorithms proposed to: (a) estimate the visual odometry,
(b) detect intra- and inter-session loop closings, (c) perform the local trajectory-based SLAM and
(d) join maps and optimize the global graph. Section 3 presents some qualitative and quantitative
preliminary results. Finally, Section 4 concludes the paper and gives some indications of ongoing and
upcoming tasks to continue and improve this work.

2. Materials and Methods

2.1. Overview

The proposed localization module is based only in vision, with no intervention of either
dead-reckoning navigation instruments, such as IMU or DVL, or global positioning systems, such as
GPS for surface vehicles or Ultra-short Baselines (USBL) for underwater vehicles.

The structure of the proposed system is as follows:
(1) Let us simplify the problem assuming that there are, for instance, two vehicles moving

simultaneously over the same area of interests in such a way that there is no possibility of collision,
and that part of the area will be explored by both robots.

(2) The approach starts by estimating the trajectory of each robot motion, separately, applying
the trajectory-based visual-SLAM strategy included in the multi-session scheme of Burguera and
Bonin-Font [46]. Let us refer to this step as the intra-session SLAM. The indicated trajectory-based
scheme implies that the trajectory of each robot is estimated by means of compounding [47] successive
displacements calculated from one point to the next. These successive displacements form the state
of an Extended Kalman filter (EKF) which is updated using the transforms given by the confirmed
loop closings. In our particular case, this displacement corresponds to the visual odometry calculated
between consecutive images, and the images candidate to close a loop with the current image are
found comparing the corresponding image hashes and confirmed by a RANSAC-based algorithm
applied on a brute-force visual feature-matching process. The main difference with respect to [46]
is that while in a multi-session localization procedure the trajectory of the currently running robot
is joined to another trajectory already completed and available in its totality, now, in a Multi-robot
scheme, both robots are moving at the same time to complete a mission in which both participate
simultaneously. When joined, both trajectories are incomplete, and continue running until all robot
missions are finished.

(3) Simultaneously to both intra-session SLAM tasks, the system also searches for inter-session loop
closings using HALOC. The global signature of each new image captured by each robot is compared
with the global signatures of all images of the other robot. Once a certain number of inter-session
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loop closings are confirmed, both routes are joined in a single graph. Let us refer to this step as
the Map Joining.

(4) Once joined, the global map (graph) must be completed with the successive poses of both
robots until the end of both sessions. Furthermore, the trajectory-based localization approach applied
to both agents separately is not longer valid. Each new displacement of both robots is included in the
form of new nodes on the graph. Each new node of the graph will follow the direction of motion of
each vehicle, which means that the graph will grow in two different directions, according to the two
different trajectories, but forming a single entity. Let us denote this step as the Multi-robot SLAM.

(5) The global graph completion and optimization is done using a pose-based scheme, i.e., all new
nodes corresponding to each robot will contain their successive global poses with respect to the origin
of a unique world coordinate system, while the links between nodes will contain the displacement
between them. After the map joining, only the inter-session loop closings are used to optimize the
global map. If one loop closing between different sessions is confirmed, its resulting transform is
used as an additional constraint between two nodes to optimize the whole graph. In our case, the
optimization solver used is the g2o implementation [43] of the Levenberg Marquardt algorithm [48,49].

2.2. Intra-Session SLAM and Map Joining

2.2.1. Visual Odometry

Figure 1 shows the global idea behind this first step of the approach. The visual odometry
gives the estimated 2D motion between consecutive images by means of a SIFT feature detection and
matching procedure.

Figure 1. Sigle Session SLAM overview.

Algorithm 1 shows the RANSAC-based method used to register two images, i.e., get the transform
(if it exists) between them in translation and rotation. apply_altitude() is a function that converts image
feature coordinates from pixels to meters by considering the altitude at which the AUV navigates,
as well as the camera parameters.
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Algorithm 1: RANSAC approach to estimate the motion X̂A
B from image IA to image IB.

1 Input:

2 fA, fB: SIFT features in images IA and IB
3 aA, aB: Altitudes corresponding to IA and IB
4 C: Set of correspondences
5 K: Number of iterations to perform
6 Ncorr : Number of correspondences to be randomly selected
7 Nmin: Minimum number of correspondences to consider a roto-translation as candidate
8 εcorr : Maximum allowable error per correspondence

9 Output:

10 f ail: Boolean stating if failed to find X̂A
B

11 X̂A
B : The estimated roto-translation

12 begin

13 f ′A ← apply_altitude( fA, aA);
14 f ′B ← apply_altitude( ft, aB);
15 εA

B ← ∞; f ail ← true;
16 for i ← 0 to K − 1 do

17 R ← random selection of Ncorr items from C;
18 X ← arg min

T
∑

(i,j)∈R
||T ⊕ f ′A,i − f ′B,j||;

19 ε ← ∑
(i,j)∈R

||T ⊕ f ′A,i − f ′B,j||;

20 foreach (i, j) ∈ (C − R) do

21 if ‖X ⊕ f ′A,i − f ′B,j‖ < εcorr then

22 R ← R ∪ {(i, j)};
23 end

24 end

25 if |R| > Nmin then

26 X ← arg min
T

∑
(i,j)∈R

||T ⊕ f ′A,i − f ′B,j||;

27 ε ← ∑
(i,j)∈R

||T ⊕ f ′A,i − f ′B,j||;

28 if ε < εA
B then

29 εA
B ← ε; X̂A

B ← X; f ail ← f alse;
30 end

31 end

32 end

33 end

The idea behind this algorithm is that correct correspondences lead to the same roto-translation
while wrong feature matchings lead to different and wrong roto-translations. The algorithm selects
a random subset R of correspondences from the total number of correspondences C between two
images, and then computes the roto-translation X and the subsequent error ε using only this subset.
Afterwards, if the error introduced by the non-selected matchings of C is below a threshold εcorr, then,
these matchings are included in R. If at any moment, the number of elements in R surpasses a threshold
Nmin, the roto-translation and the error are computed again using this expanded R. If the error is
below the smallest error obtained until this moment, the roto-translation is kept as a good model.
This process is iterated a certain number of times. If partial roto-translations are inconsistent and R
never reaches the minimum number of items required, the algorithm will not return any transform,
but a boolean called f ail set to true. The obtained transform can be assumed to be the odometric
displacement between consecutive images and the trajectory of the robot between steps i and j (Xi

j)
(assuming step j being subsequent to i) can be estimated using the compounding ⊕ operator of the
successive odometric displacements (Xi

i+1, Xi+1
i+2, . . . , Xj−1

j ), as described in [50]:

Xi
j = Xi

i+1 ⊕ Xi+1
i+2 ⊕ · · · ⊕ Xj−1

j j > i . (1)
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2.2.2. Local Loop Detection and Trajectory Optimization

Local loops are those found within a single SLAM session. The Loop Candidates set (LCt) is
the set of images Ii that may close a loop with the last gathered image It obtained in each running
trajectory. This set is built by searching in a region within a predefined radius δ [38] around the current
robot pose as estimated by the odometry:

LCt = {i : ||Xi
t||2 ≤ δ, i < t − 1} (2)

where Xi
t is computed by Equation (1).

Every image contained in the set of loop closing candidates (Ii ∈ LCt ) is registered with It using
Algorithm 1, in order to build the set of local loops LLt, being LLt = {Zi

t : i ∈ LCt ∩ ¬ f ail(i, t)}, where
¬ f ail(i, t) indicates that Algorithm 1 did not fail to get a roto-translation Zi

t between Ii and It.
The trajectory estimation obtained by means of compounding the successive odometric

displacements between two points A and B will most likely not coincide with the direct transform
between images obtained in A and B provided by the image registration process of Algorithm 1, if A
and B close a loop:

XA
A+1 ⊕ XA+1

A+2 ⊕ XA+2
A+3 ⊕ · · · ⊕ XB−2

B−1 ⊕ XB−1
B 
= ZA

B (3)

due to the drift introduced by the visual odometry and the error inherent to the transform directly
obtained from the image registration procedure. Figure 2 illustrates these concepts.

Afterwards, a process of global optimization is run to get a trajectory that best combines the
pose constraints imposed by the set of local loops (LLt) and the odometry. As mentioned before, the
trajectory of the robot is the state vector of a Iterative Extended Kalman Filter (IEKF). Each new odometric
displacement (Xt−1

t ) computed between the last image and the previous one is used to augment the

state vector at time t (X−
t ): X−

t =
(

(Xt−1)
T (Xt−1

t )T
)T

. In the prediction stage of the IEKF the
state vector does not change at all.

If LLt is not empty, the trajectory is optimized performing the Update stage of the IEKF using the
set of loop closings as measurements. The observation function hi

t associated with each measurement Zi
t

(the transform of each real loop closing) can be defined as hi
t(X−

t ) = Xi
i+1 ⊕ Xi+1

i+2 ⊕ · · · ⊕ Xt−2
t−1 ⊕ Xt−1

t ,
being the innovation of the IEKF for each measurement: Zi

t − hi
t(X−

t ). With all this elements, one
can iterate the classical equations of an EKF to get the optimized trajectory, until ||X−

t,j − X−
t,j−1|| < γ,

where j represents the last iteration and γ is a predefined threshold. The classical format of the
IEKF involves iterating until the changes between consecutively estimated states are below a certain
threshold. However, in the experiments we verified that after a certain and almost constant number
of iterations, the filter already converged with a difference between consecutive results below the
threshold (||X−

t,j − X−
t,j−1|| < γ). Because of that, it was decided to repeat all the experiments with

a defined number of iterations, in order to limit the number of executions to be done and save
computational resources. In any case, both options can be used in other circumstances, depending on
the needs and environmental conditions of each different system and field case.

2.2.3. Inter-Session Loop Closings

The main problem for joining two trajectories of two robots operating simultaneously is the lack of
geometric relation between their corresponding sessions. Every robot geo-localizes itself with respect
to the origin of its own trajectory, but it has no knowledge about the origin of the other trajectories.
By means of finding inter-session loop closings, i.e., images that show, partially or totally, the same
area, but taken by two different robots in two different sessions running simultaneously, the maps
of the two robots can be joined in a single one [46]. Due to this lack of geometrical relation between
the two trajectories, the search of the loop closing candidates of one robot to close a loop with the
last image captured by the other robot cannot be restricted to a certain area. In this case, one should
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compare the last image gathered by one of the robots with all images taken by the other robot, from the
start of the mission until the current moment. Applying a brute force feature matching algorithm
between all these involved images is unfeasible for online applications, due to the great amount of
computing resources and time needed. One way to alleviate this problem is reducing all images to
global descriptors. As in [46], all images of both sessions are reduced to their HALOC global descriptor.
The size of HALOC is fixed in 384 floats since the size of the used projective orthogonal vectorial space
is 3 [22]. This length is independent of the number of visual features found in each image. The global
descriptor of every new image of one of the sessions (called the query image) is compared with the
global descriptor of all and each of the images taken during the other session. According to [22], those 5
images that give the lowest L1-norm of the difference between their hash and the query hash, and this
norm is lower than a certain threshold δ′ are taken as the inter-session loop closing candidates (GCt):

GCt = {i : ||Hi − Ht||1 ≤ δ′, ∀Ii ∈ Vp} (4)

being Vp the set of images taken by one of the robots from the start of its session until the current
moment, Hi the hash of each of these images and Ht the hash of the query image. The value of δ′ will
be selected experimentally.

Figure 2. In theory, the transform between A and B, if both close a loop should be very close to the
transform obtained compounding the odometric displacements Xi

i+1.

Once the set of candidates is established, the true positives are confirmed by means of the
RANSAC-based Algorithm 1, forming the definitive set of images (GLt) of the first session that, in
principle, close a loop with the last image of the second session, as: GLt = {Zi

t : i ∈ GCt ∩ ¬ f ail(i, t)},
being Zi

t the transformation found by Algorithm 1. Inter-session loops are accumulated at every
iteration of both single SLAM sessions. These transforms Zi

t, are, in fact, a set of geometrical relations
between the two different sessions. Assessing the performance of HALOC in loop closing detection,
in terms of accuracy, recall and fall-out, is out of the scope of this paper, since it has already been
presented in [22,42] with considerable good results underwater.

2.2.4. Map Joining

As mentioned in the previous section, the loop closings between different sessions can be used to
infer the geometrical relation between the two trajectories of the two robots that perform both missions
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simultaneously. The objective now is to align, at a certain moment, both surveys in a single global
graph, and, maintain this single graph from the moment of the joining to the end of both missions.

Let X1 denote the trajectory of one of the sessions. Let the first and last images of this trajectory
be denoted as I1s and I1e, respectively. Let X2 denote the trajectory of the second session and let us
denote its first and last images as I2s and I2e, respectively. Let us denote the number of accumulated
inter-session loop closings at a certain moment t as K. Let us also denote this set of loop closings as ZG,
each one relating one image of the first session with another image of the second session.

ZG =
(

(Z10
20)

T (Z11
21)

T . . . (Z1K−1
2K−1)

T
)T

(5)

where each Z1i
2i represent a transform from image I1i of the session 1 to image I2i of session 2, or what

is the same, the transforms of the loop closings. Each Z1i
2i belongs to a certain GLt.

Let us define X1e
2s as the transform, or the relative motion, from I1e to I2s. For every loop closing,

ideally, Z1i
2i = X1i

1e ⊕X1e
2s ⊕X2s

2i , where X1i
1e is the displacement from I1i to I1e, and X2s

2i is the displacement
from I2s to I2i, being:

X1i
1e = (x1i

1e, y1i
1e, θ1i

1e)
T (6)

X1e
2s = (x1e

2s, y1e
2s, θ1e

2s)
T (7)

X2s
2i = (x2s

2i , y2s
2i , θ2s

2i )
T (8)

The proposal consists of an IEKF that will give the value of X1e
2s that better matches all the loop

closures found until the moment t. The state vector of the IEKF is just the transform X1e
2s , the observation

function for each loop closing will be gi
G = X1i

1e ⊕ X1e
2s ⊕ X2s

2i , and Z1i
2i is the corresponding measurement.

With this, one can form the innovation, and apply the classical EKF equations iteratively, as explained
in Section 2.2.2. X1e

2s is the transformation that can be used to join the two sessions, in such a way that
the state vectors of both trajectories, formed by displacements, are joined by this recently computed
transformation as: XJ =

(
(X1)

T(X1e
2s)

T(X2)
T)T , where XJ represents the joined trajectory, and X1//X2

the state vector of the first and second trajectories, respectively, from their starting points until the
instant t. The idea is illustrated in Figure 3.

(a) (b)

Figure 3. (a) Separated trajectories with intersession loop closings. (b) The joined trajectory.

Once both sessions have been joined, the trajectory-based schema is no longer valid, and the
resulting map is transformed into a pose-based graph. All the robot displacements included in XJ are
transformed into global poses that constitute each node of the global graph as:
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Xi =

{
X0

1 ⊕ X1
2 ⊕ · · · ⊕ Xi−2

i−1 ⊕ Xi−1
i i <= 1e

X0
1 ⊕ X1

2 ⊕ · · · X1e−1
1e ⊕ X1e

2s ⊕ X2s
2s+1 ⊕ · · · ⊕ Xi−1

i i > 1e
(9)

where Xi is the pose associated with node i. The case for i <= 1e refers to the global pose of a node
corresponding to an element of the first trajectory, and the case for i > 1e refers the global pose
of a node of the second trajectory. All the displacements included in XJ become the links between
successive nodes and each node of the graph is associated with its corresponding image.

2.3. Multi-Robot Graph SLAM

Let us assume that, (a) after both trajectories have been joined in a single graph, both robots are
still running their own missions, and, (b) the successive poses of both robots must be included in the
global graph as new nodes, each one following the corresponding trajectory.

The Multi-robot Graph-SLAM procedure detailed below follows the indications of [51], in terms
of structure, node generation, inclusion of loop closings as additional pose constraints, and graph
optimization, but in our case particularized for a Multi-robot configuration. The algorithm includes
the next points:

(1) The local SLAM algorithm explained in Section 2.2 is continuously executed for both trajectories
until them are joined when a certain number of inter-session loop closings have been accumulated.
It is better to optimize the local trajectories every N frames, although there is only a couple of loop
closings, in order to, when both sessions are joined the drift has already been reduced locally, as much
as possible. Otherwise, trajectories could be joined before local optimizations have been applied,
transferring local drifts to the global map.

Let us assume that the Multi-robot localization is centralized in the first robot, which will receive,
from the second robot: (1) The set of visual features and the global descriptor of the last gathered
image, (b) only if the map joining has to be done, the state vector and the last odometric displacement.
The state vector is needed to be attached to the one of the first robot, if it is due. The last frame global
descriptor is needed to find possible loop closures with frames of trajectory 1, the set of features is
needed to confirm or reject the possible candidates, and the last odometric displacement of trajectory 2
will be used as a reference after the map joining.

(2) Once both trajectories have been joined in a single global graph, it is time to feed the map with
the successive displacements of both robots. It is important to note that the last node of the graph
corresponds to the last displacement of the second trajectory, since the first set of elements correspond
to the trajectory of robot 1, then it comes the link between trajectories, and finally the elements of
trajectory 2. Let us denote the identifier ID of the last node of the global graph as Nn2, where n2
represents the number of nodes in the graph, and is equal to the length of the joined state vector XJ
(|XJ |). Accordingly, the ID of the graph node corresponding to the end of the trajectory 1 will be Nn1,
where n1 = |XJ | − 1 − |X2|.

Storing Nn1 and Nn2 is necessary, since they will be the points of the global graph from which the
successive nodes corresponding to trajectories 1 and 2, respectively, will be placed according to the
ongoing motion of both vehicles.

The set of iterated actions performed for the Multi-session SLAM are:

1. Let us denote the last (or next) computed odometric displacements of trajectories 1 and 2 as Xn1

and Xn2, respectively. These displacements together with the last images of both session are
stored in the system.

2. If trajectory 1 has not finished, add a new node (Nn1+1) to the graph, linked to Nn1 with the
transform Xn1. The global pose contained in this node will be: Xn1+1 = Xn1 ⊕ Xn1. Nn1+1 will be
the last node of trajectory 1.

3. If the trajectory 2 has not finished, add a new node (Nn2+1) to the graph, linked to Nn2 with the
transform Xn2. The global pose of this node will be: Xn2+1 = Xn2 ⊕ Xn2. Nn2+1 will be the last
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node of trajectory 2. The link between nodes Xn1+1 and Xn1, and the link between nodes Xn2+1

and Xn2 will contain the values of Xn1 and Xn2, respectively. Each new node added on the graph
is associated in the code to its corresponding image, regardless the trajectory it belongs to. In this
way, with the node ID one can find it associated image, and with an image identifier, one can find
its associated node ID.

4. Search for inter-session loop closings between the last image of session 2 and all images of
session 1 using the algorithm explained in Section 2.2.3. Those candidates of session 1 retrieved
by HALOC that present a transform after the RANSAC discrimination process with several
inliers lower than a pre-fixed parameter (MinRansacInliers), are discarded and considered false
positives that can harm the result of the graph optimization. The rest are accumulated and
considered true positives. Let us name the number of true positives that close a loop with the last
image of trajectory 2 as NTP. For each true positive, the system stores the next data: (a) The name
of both images that close the loop, (b) the identifiers IDa and IDb of both nodes involved in the
loop closing and (c) the transform between both images (ZIDai

IDbi).
5. Let us denote the number of accumulated inter-session loop closings as NALC, initialized to 0

when both sessions are jointed. Then, NALC = NALC + NTP. When NALC = NIsLoopClosings,
where NIsLoopClosings is preset at the beginning of the process, then the graph is optimized
with all the new pose constraints, following the next steps:

(a) Recover the node IDs of the images associated with each inter-session loop closing
classified as true positive, and every corresponding transform.

(b) Add one additional link in the graph between nodes IDai and IDbi, which content is
ZIDai

IDbi , ∀i, 1 � i � NALC.

6. Run the graph bundle adjustment using the Levenberg Marquardt algorithm. Even if after a
certain number of iterations no inter-session loop closings are found, the graph will be optimized
as well, just to re-adjust the odometric trajectory estimates.

7. NALC = 0, NTP = 0, n1 = n1 + 1 and n2 = n2 + 1.
8. Return to the first step, and iterate the process until both trajectories are finished. If one of the

two trajectories finishes before the other one, the system keeps adding the corresponding nodes
of the session that is still on course. Obviously, no additional inter-session loop closings will be
found in this case, so every graph optimization will include only the pose estimates given by the
visual odometry of the ongoing mission.

The idea is illustrated by Algorithm 2.

28



J. Mar. Sci. Eng. 2020, 8, 437

Algorithm 2: Multi-robot Visual Graph SLAM.
1 Inputs

2 Xn1, Xn2: Last odometric displacements of Trajectories 1 and 2 before the map joining.
3 Nn1, Nn2: Identifiers (ID) of the last graph nodes corresponding to trajectories 1 and 2, after the map joining.
4 Xn1,Xn2: Global poses corresponding to nodes Nn1 and Nn2, after the map joining. Xn1 = Xn1−1 ⊕ Xn1

5 In1, In2: last images taken by robots 1 and 2 at instants n1 and n2, just before the map joining.
6 Parameters

7 MinRansacInliers: Minimum number of RANSAC inliers to consider a transform between two images as a true positive
8 NIsLoopClosings: Maximum number of accumulated inter-session loop closings.
9 Nmin: Minimum number of correspondences to consider a roto-translation as candidate.

10 Nc: Number of image candidates to be searched in Trajectory 1 to close a loop with In2

11 Variables

12 I1j: Jth image of the first session, candidate to close a loop with a query image, found using HALOC.
13 NTP: Number of images of trajectory 1 considered as true positives that close a loop with In2

14 NALC : Number of accumulated inter-session loop closings.
15 IDan , IDbn , Ian , Ibn: Graph nodes involved in the nth inter-session loop closing and images corresponding to each node.
16 ZIDan

IDbn
: Transform (x, y, θ) associated with the nth inter-session loop closing.

17 ListO f Candidates: Structure that contains the list of image candidates to close a loop with a given query. Every element
of the structure stores the image Id, its HALOC hash, and the number of features.

18 Htrajectory1: List of Hashes (global descriptor) type HALOC of all images of trajectory 1.
19 Functions

20 [X] = RansacEstimateMotion(I1, I2): returns the odometric displacement (X) between images I1 and I2 using Algorithm 1,
21 H = hash(I): is the function of the HALOC library that returns the HALOC global descriptor H of image I
22 [ListO f Candidates] = LibHALOC(Htrajectory1,Nc , HI2): is the function of the HALOC library that gets Nc candidates of the

trajectory 1 to close a loop with the query I2.
23 AddRelativePose(Z1

2 ,I1, I2): adds a new pose constraint (link with transform ZI1
I2

) between two graph nodes, I1 and I2

24 OptimizeGraph(): Does the global bundle adjustment of the whole graph using the Levenberg-Marquard algorithm.

25 begin

26 NALC = NTP = n = 0 ;
27 Robot 1 takes the next image → In1 + 1 ;
28 Robot 2 takes the next image → In2 + 1 ;
29 H1=hash(In1 + 1); H2=hash(In2 + 1) ;
30 Htrajectory1 ← H1 ;
31 [Xn1+1] = RansacEstimateMotion(In1, In1 + 1).;
32 [Xn2+1] = RansacEstimateMotion(In2, In2 + 1).;
33 Xn1+1 = Xn1 ⊕ Xn1+1. Nn1+1 → node graph ID of Xn1+1 ;
34 Xn2+1 = Xn2 ⊕ Xn2+1. Nn2+1 → node graph ID of Xn2+1 ;
35 Store the correspondences Nn1+1 → In1 + 1 and Nn2+1 → In2 + 1; ;
36 [ListO f Candidates] = LibHALOC(Htrajectory1 , Nc , H2) ;
37 for j ← 0 to Nc do

38 store Ian = I1j, Ibn = In2+1 ;
39 [ZIDan

IDbn
] = RansacEstimateMotion(Ian , Ibn) ;

40 if Number of Inliers between Ian and Ibn � MinRansacInliers then

41 NTP = NTP + 1 ;
42 store ZIDan

IDbn
and IDan, IDbn ;

43 n = n + 1 ;
44 end

45 end

46 NALC=NALC+NTP ;
47 NTP = 0 ;
48 if NALC=NIsLoopClosings then

49 for i ← (n − NALC) to n + NALC do

50 AddRelativePose (ZIDai
IDbi

,IDai , IDbi) ;

51 end

52 NALC = 0,
53 end

54 OptimizeGraph() ;
55 n1 = n1 + 1, n2 = n2 + 1 ;
56 end
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3. Experimental Results

3.1. Experimental Setup

A set of preliminary experiments were performed simulating the Multi-robot configuration with
real underwater data. Three different datasets were used. Every dataset consists of two different
video sequences, partially overlapping. Sequences were recorded either by a diver or by an AUV,
both carrying a bottom looking camera with its lens axis perpendicular to the longitudinal axis of
the vehicle or of the diver. Divers or autonomous underwater vehicles moved at an approximate
constant altitude with respect to the sea bottom. The lack of any other sensorial data which could be
supplied by an AUV, makes the localization system a pure vision-based approach. The three datasets
have been recorded in several coastal sites of the north and south of Mallorca, at depths between 5
and 13 m. All the environments where the datasets were grabbed present a great variety of bottom
textures, including seagrass, stones, sand, algae, moss and pebbles. The first dataset was recorded
in the north coast of the island, by a diver with an attached Gopro camera, pointing downwards,
moving on the surface at an approximate constant altitude of 4 m. Let us refer to both video sequences
of this first dataset as S11 and S12. The camera altitude was obtained at the beginning of the video
sequence by means of a visual marker of known size, placed at the sea bottom, in the starting point of
each trajectory.

A second dataset formed by two partially overlapping trajectories named S21 and S22 were
recorded also in the north coast of Mallorca, also by a diver supplied with a Gopro, looking to the
bottom, far from S11 and S12, swimming on the water surface, at an approximate constant altitude of 4
m. In this case, the initial altitude was computed thanks to the know dimensions of a structure formed
by markers and PVC tubes placed at the sea floor in the origin of both trajectories. The video resolution
was 1920 × 1080 pixels, grabbed at 30 frames per second (fps), and prior to their use, all images were
scaled down to 320 × 180 pixels.

A third dataset, with two video sequences named S31 and S32, was recorded by a SPARUS II
AUV [52] property of the University of the Balearic Islands, at 7.5 fps, moving at a constant altitude of 3
m, in an area of the south of the island with an almost constant depth of 16 m. The navigation altitude
is obtained from the vehicle navigation filter which integrates a Doppler Velocity Log (DVL), an Inertial
Measurement Unit (IMU), a pressure sensor, an Ultra Short Baseline (USBL) acoustic modem [53],
and a stereo 3D odometer. This dataset permitted to test the approach in larger environments with
complex imagery due to the presence of sea grass on the sea bottom. In particular, S31 was recorded
during a trajectory of 93 m long, and S32 during a a trajectory of 114 m, covering both an approximate
area of 300 M2 each one.

Figure 4 shows some samples of images included in the three datasets.
All these images show how all regions are colonized with Posidonia oceanica, a seagrass that forms

dense and large meadows. Images of dataset 3 show a lack of illumination which increases at larger
depths. With these conditions, the feature matching process decreases its performance and affects
directly the accuracy of the visual odometry and the loop closing detection using HALOC. In this type
of marine environments and with our robot and its equipment, moving at approximately 1 knot at
altitudes between 3 m and 5 m, in areas with a depth between 16 m and 20 m, gave a good tradeoff
between image overlap and illumination conditions.

Due to the particular texture of the Posidonia and the slight motion of its leafs caused by the
currents, tracking stable visual features in consecutive overlapping frames is complicated and requires
an accurate selection of the type of features and the feature detection/tracking parameters. Errors in
this process will compromise the accuracy of the visual odometry and the image registration task for
the loop closing confirmation. Previous pieces of work [22,41,42] already showed the high efficiency of
SIFT features for underwater SLAM in areas colonized with Posidonia, in all the tasks involved in the
process: visual odometry, image hashing with HALOC, loop closing detection, and pose refinement.
Although SIFT feature detector is slower than other descriptors and delays the RANSAC-based
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matching process of Algorithm 1, given the robustness and traceability of SIFT, and according to our
experience, this additional processing time is preferable to obtain more reliable trajectories than using
other simpler features that take less time than SIFT to be computed and tracked, but can cause larger
inaccuracies in the camera trajectory estimation or in the image registration process.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Examples of images of dataset 1, in (a–c), dataset 2, in (d–f), and dataset 3, in (g–i).

3.2. Experiments and Results

All experiments performed to get these first preliminary results were run offline, simulating the
Multi-robot configuration with the visual data obtained in the sea. Key images of each video sequence
that forms the different datasets mentioned in the previous section were extracted, indexed, stored
separately in a hard disk, and processed consecutively according to the algorithms exposed in
this paper.

Successive field experiments showed that, an overlap between consecutive images of 35% to 50%
was necessary to obtain a robust visual odometry. On the other hand, reducing the number of images
stored was also required in order to save as much memory space as possible. Consequently, a good
trade off between both requirements was obtained selecting the keyframes of datasets 1 and 2
down-sampling the initial video frame rates at 1.1 fps, on average, and the dataset 3 at 3 fps. 226 key
images were extracted from S11 and 199 from S12. 152 key frames were extracted from the video
sequence S21 and 57 from S22. Finally, a total of 400 key images were extracted from dataset 3,
200 belonging to S31 and 200 to S32.

Local SLAMs are continuously executed for both trajectories in sequential steps of a predefined
number of frames N; each local trajectory is accumulated and optimized from N to N frames,
alternating both sessions every N frames. N is set differently for each dataset.

Figure 5 shows several samples of inter-session loop closings found by HALOC and confirmed
by Algorithm 1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. (a–d) Multi-session loops between sequences S11 and S12. (e–h) Multi-session loops between
sequences S21 and S22. (i–l) Multi-session loops between sequences S31 and S32. (a) Closes a loop
with (b,c) closes a loop with (d,e) close a loop with (f,g) close a loop with (h,i) closes a loop with (j,k)
closes a loop with (l).

Once images and inter-session loops are available, the whole localization and mapping process
starts. In other words, the sequence of actions is as follows:

1. For each dataset, extract the key images of both video sequences and store them in
separated folders

2. For each dataset, compute the HALOC global descriptor of each image extracted from both
video sequences.

3. For each dataset, compute and store in a file, the odometry, frame to frame, for both stored image
sets, corresponding to both sessions.

4. At this point, for each dataset and for each of their sessions, the key frames and the odometry
have been stored and related through successive identifiers. Thereafter, for each dataset run the
local SLAM procedure, which:

(a) Starts algorithm of Section 2.2, building the state vector of each session, by steps of N
consecutive frames, using the displacements included in each odometry file.

(b) For each newly gathered image (lets call it, the query image), searches for local loop
closings on other images of the same dataset which positions are near the query.
This search is done only among the images gathered before the query.

(c) Optimize both local graphs according to Section 2.2.2.
(d) For each image of trajectory 2 (called the query), the algorithm searches the best 5 HALOC

loop closing potential candidates of trajectory 1. Each candidate, if any, is confirmed by
means of Algorithm 1, and filtered out if the number of inliers is lower than the predefined
threshold.

(e) Accumulate the number of inter-session true loop closings.
(f) When the number of accumulated inter-session loop closings is greater than a certain

threshold, join both sessions in a single pose-based graph. That means transforming all
members of the joined state vector in global poses and the corresponding graph nodes,
associating to each node the corresponding image.

5. Run the Multi-robot SLAM procedure, according to Algorithm 2
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(a) Obtain the rest of images from memory and add new nodes according to the successive
odometry data of both sessions, as explained in Section 2.3.

(b) Search among all images of session 1 the best 5 candidates to close an inter-session loop
with each new query of session 2, and filter out all those that do not present enough
inliers after running Algorithm 1. HALOC is, obviously, the method used to find these
candidates to close loops inter-sessions. Since each image will be associated with a node
of the global graph, computing the transform between two candidates to close a loop and
adding this transform between both nodes will be straightforward.

(c) Get the transform between pairs of images that constitute true positives (true
loop closings).

(d) Add this transform to the graph as a new pose constrain, in the form of links between
two nodes. The nodes will be those related with the images involved in the inter-session
loop closing.

(e) Optimize the graph.
(f) Finish the process when all images from both sessions have been already used.

This simulation does not permit assessing anything related to execution times because,
although the whole process works with real data, the Multi-robot configuration has been simulated,
split into three different software packages of different natures. The purpose of these preliminary
results is not giving an accurate set of quantitative and numerical results to assess the process in terms
of execution time or trajectory accuracy. The aim of this section is presenting the implementation of a
new approach and a set of preliminary results that provide: (a) a proof of viability and feasibility of
the solution, (b) a proof of its utility and suitability to manage, in a single map, two sessions of two
different robots that operate simultaneously, in a simple way, (c) a qualitative proof of concept and,
(d) the source code and a dataset to be tested, open to further improvements.

Obtaining a ground truth trajectory underwater is a challenging task, unless one can install an
infrastructure of acoustic beacons or Long Baseline (LBL) systems, which is costly and complicated to
run and manage, and imposes spatial restrictions on the motion of the robots. In our experiments, there
is no ground truth and no possibility to get it. The planned trajectories, in the case of those performed
with the AUV, cannot be used as a ground truth either, since they differ substantially from the ones
that the AUV ends up performing (which is usual in underwater robotics). In consequence, we cannot
compare the trajectories estimated by the system with another one that serves as reference. In our case,
robustness has been qualitatively validated by two means, (a) comparing the resulted global maps
with the mosaics obtained with BIMOS [54] and, (b) comparing the direct transforms between images
that close loops, obtained with Algorithm 1 with the transforms between the graph-nodes related to
the same loop closing images. These two points have been already used and validated in previous
pieces of work [46].

Figure 6a,b,d,e show, respectively, the trajectory of S11, S12, S21 and S22 estimated by the local
SLAM procedure described in Section 2.2. Figure 6c,f show, respectively, the global graph obtained
applying the Multi-robot SLAM procedure described in Section 2.3.

Figures 7 and 8 show four photo-mosaics corresponding to sequences S11, S12, S21 and S22.
These photomosaics have been obtained using BIMOS [54], a mosaicing algorithm based on bags of
binary words that already demonstrated a great performance in underwater environments [55,56].
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Figure 6. (a) Trajectory S11, (b) Trajectory S12, (c) Multi-robot final graph from S11 and S12.
(d) Trajectory S21, (e) Trajectory S22, (f) Multi-robot final graph from S21 and S22.

(a) (b)

Figure 7. (a) Photo-mosaic of S11. (b) Photo-mosaic of S12.

The resulting mosaics have associated an implicit trajectory which imposes the position of
each image with respect to the origin of the mosaic system of coordinates. Due to the lack of any
trajectory ground truth and the impossibility to get it, the mosaic is, to a certain extent, a qualitative
reference to assess the quality of the resulting joined trajectories of Figure 6c,f, since BIMOS has already
demonstrated its good performance in land and underwater. Notice how the mosaic of Figure 7b
shows a montage very close to the SLAM trajectory of S11, and Figure 7a a mosaic fitting the SLAM
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trajectory of S12. It can be assumed that the quality of the single and joined graphs obtained with
BIMOS are similar to the quality of the mosaics.

(a) (b)

Figure 8. (a) Photo-mosaic of S21. (b) Photo-mosaic of S22.

If both mosaics are aligned by their left laterals, where the marker is located, something that fits
very well with the global graph is obtained. The same applies to the mosaics of Figure 8. The structure
containing the two markers is the point joining both trajectories. Then, the alignment of both figures
by the markers gives a result that also fits perfectly with the global graph of Figure 6.

Figure 9a,b show the local SLAM trajectory of S31 and S32, and Figure 9c shows the global graph
estimated after joining both trajectories and applying the Multi-robot graph SLAM approach.

An illustrative video of the whole process involving the three datasets can be seen in [57].
The video shows, at the beginning, some sequences grabbed underwater and used to test our approach.
Afterwards, it shows the whole process for the three datasets exposed: (1) The local SLAM for both
separated trajectories, (2) the moment when both sessions are joined and converted into a single global
graph, and (3) how the graph continues growing in different directions, each one corresponding to
each trajectory involved in the Multi-robot mission. As mentioned in previous sections, the joined
graph is optimized every time a set of inter-session loop closings are confirmed.

As this is a pure visual-based SLAM approach and no other sensorial input is included in the
multi-localization process, this is firstly computed in pixel units. To find the relation between pixels
and metric units, the known real dimensions of the markers used to establish the starting and end
points of each trajectory (see pictures (a) and (e) of Figure 4) were related with the pixel dimensions of
the markers in the images. These relations resulted in coefficients ranging between 0.0015 and 0.0019,
depending on each video sequence.

Another way to verify the consistency of the resulting optimized global map is comparing the
transform between two images (called I1 and I2) that close an inter-session loop, when it is obtained by
two different means: (1) using Algorithm 1, and (2) running the next operation: P1 ⊕ P2, where P1
is the global pose associated with the graph node corresponding to I1, and P2 is the global pose
associated with the graph node corresponding to I2. The idea is illustrated in Figure 10: P1 and P2 are
the global poses associated with two loop closing nodes, TI1

I2 is the direct transform between P1 and P2
obtained with the RANSAC-based algorithm applied directly on I1 and I2. In principle, if the graph
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is consistent, TI1
I2 has to be equivalent to the inverse of P1 composed with P2, which is the transform

between I1 and I2, but obtained composing the global poses between the respective nodes of the loop
closing images.
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Figure 9. (a) Trajectory S31, (b) Trajectory S32, (c) Multi-robot final graph from S31 and S32.

Figure 10. Transforms between nodes P1 and P2.

Tables 1 and 2 show some samples of quantitative results of intersession loop closings with the
corresponding transforms calculated by both aforementioned ways. The first to forth columns show,
respectively, the number of both images that close an inter-session loop and the graph nodes which
each image is associated with. Column I1 contains images of the sessions S11 and S21, and column
I2 contains images of sessions S12 and S22. Fifth and sixth columns indicate the 2D transform,
in translation and rotation (x, y, θ), computed indirectly through the graph and directly using RANSAC
(Algorithm 1). The units of these transforms are expressed in pixels and radians. The seventh
column indicates the difference between both transforms, in module (meters) and orientation (radians).
These samples indicate that: (a) for S11 and S12, the difference of transforms ranges between 1.8 cm
and 0.15 mm in module and between 0.05 rad. (2.86◦) and 0.0089 rad. (0.5◦) in orientation, and (b)
the difference for S21 and S22 ranges between 1.02 cm and 14.8 cm in module and between 0.0085
rad. (0.5◦) and 0.21 rad. (12.03◦) in orientation. These differences are totally acceptable, taking into
account that there are errors inherent to the RANSAC transform estimation process due to the possible
(and usual) presence of any inconsistent inlier, and differences (or errors) due to the successive graph
optimizations, which also cause subsequent readjustments of all node poses.
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Table 1. Comparison of Transforms between images of S11 and S12.

I1 I2 Node I1 Node I2 Graph Transform Ransac Transform dif:(mod., yaw)

56 280 115 113 [3.04;−4.05;0.1711] [3.12;−3.99;0.18] (0.00015 m, 0.0089 rad)

64 287 131 126 [12.10;41.17;0.0633] [21.71;33.31;−0.03] (0,018 m, 0.01 rad)

152 420 307 393 [37.09;31.95;−0.34] [36.65;31.47;−0.29] (0,00097 m, 0.05 rad)

Table 2. Comparison of Transforms between images of S21 and S22.

I1 I2 Node I1 Node I2 Graph Transform Ransac Transform dif:(mod., yaw)

335 1181 672 602 [30.43;59.40;2.42] [−18.61;−1.69;2.61] (0.148 m, 0.2 rad)

603 1190 941 621 [1.19;−30.22;−0.024] [11.77;19.69;0.1959] (0.097 m, 0.21 rad)

877 1211 1215 662 [−6.34;−92.66;−0.196] [24.69;−50.403;−0.314] (0.099 m, 0.12 rad)

871 1211 1209 662 [−20.65;−84.08;−3.69 × 10−4] [14.75;−43.66;−0.086] (0.0102 m, 0.085 rad)

3.3. Some Considerations of the Data Reduction

The length of the HALOC global descriptors used in the aforementioned tests is 384 floats. That is,
a total of 1536 bytes per image, considering that in C ++ a float needs 4 bytes for memory storage.
All this, regardless the image resolution and the amount of SIFT features per image. That means that
no matter how big is the image and how many visual features are being detected per image, that the
length of the hash maintains invariable. Conversely, the size of a color image with a very reduced
resolution of 320 × 240 pixels would be 320 × 240 × 3 = 230,400 bytes. The save on memory space for
data storage is clearly reduced when using the HALOC hash instead of the original images. The set of
image features must be stored for every image, in any case, since they are needed in the later processes
of loop closing confirmation. However, the computational cost of comparing two hashes to retrieve the
best candidates for loop closing just calculating the L1-norm of two vectors is much lower than finding
the best candidates with a brute-force recursive feature double-matching with RANSAC. From this
point on, one can think of applying additional strategies to limit the communication between robots,
complementing, for instance the solution proposed in [35], where the images are sent only among
robots that view, simultaneously, a common point. In this case, we introduce an additional layer to
compress the information to be exchanged, since instead of sending JPEG images, robots would send
their respective hashes.

3.4. Sources Availability

The source code for the odometry computation has been developed in Matlab and it is available
at [58]. The source code of the HALOC library is available at [59], for its C ++ version, and in [60],
for its version in Python.

The sources for the local SLAM, the Map Joining and the later Multi-Robot Graph SLAM have
been developed also in Matlab, and they are available for the community at [61]. The pose-based graph
management has been programmed using the Matlab library for localization and pose estimation
especially addressed to mobile autonomous vehicles [62].

4. Discussion, Conclusions and Future Work

This paper presents a new approach to visual SLAM for Multi-robot configurations, based on
joining, in a single pose-based graph, several trajectories of different robots which operate
simultaneously in a common area of interests. The system finds loop closings between images
of different robot trajectories by means of a hash-based methodology (HALOC), and uses them to add
additional constraints to the global graph. As exposed in the text, the use of HALOC clearly guarantees
an important reduction in storage space, amounts of data to be transferred and time dedicated for loop
closing detection, especially in centralized multi-robot configurations. Using HALOC also assures a
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proper graph optimization since it has already been proved underwater, showing excellent results in
terms of success ratios in loop closing detection.

The strategy for map joining comes from [46], but adapted to a Multi-robot configuration,
which differs from a multi-session case in some aspects. This strategy is simple, easy to replicate,
effective, and, more importantly, as flexible as possible to modulate the moment for map joining
depending on the mission conditions and convenience, which implies a trade off between the accuracy
of the local maps before they are joined, or the need for joining as soon as possible all the trajectories to
centralize the global multiple localization of all the robotic team in a single agent.

Preliminary experiments permitted to show how the application of the new approach for joining,
online, multiple ongoing sessions was perfectly feasible, suggesting a certain consistency and reliability
in the results, from a qualitative point of view.

Although, until now, we focused our efforts exclusively in the estimation of the camera pose and
trajectory, this algorithm has been designed to be applied on board a vehicle. Therefore, one priority
ongoing task is testing this algorithm in a team of real vehicles operating in the sea. To this end, a
ROS [63] wrapper in C++ is currently being developed and tested.

We have now focused our efforts exclusively in the estimation of the camera pose and trajectory
assuming that navigation and control are solved issues. In fact, most of the existing research on SLAM
makes the same assumption. However, the continuous re-estimation of the vehicle poses thanks to
the SLAM algorithm surely affects the control of the vehicles, because the control modules are fed
with the poses and velocities. In addition, changes in control affect, in turn, the vehicle navigation.
At the moment the SLAM algorithm is completely decoupled from the control module, but once it is
installed on a vehicle, the vehicles velocity and pose provided by our SLAM modules, together with
the mission goal points, will be input in the navigation and control subsystems. Another possible line
of research that is also under consideration is to make the goal points also depend on SLAM in order
to add exploration to the AUV capabilities.

Other future work includes:
(1) Extending the tests to additional environments with longer trajectories. (2) Extending the

assessment of the approach by means of evaluating the performance of the SLAM pose corrections
in the presence of additive Gaussian noise in the visual odometry, and all evaluation techniques
employed in [46]. (3) Comparing with other Multi-robot software packages still not tested underwater,
such as DSLAM.

Matlab sources are available in a public repository giving the chance to the scientific community
of testing, replicating, and also improving them.
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Abstract: During the past few decades, the need to intervene in underwater scenarios has grown
due to the increasing necessity to perform tasks like underwater infrastructure inspection and
maintenance or archaeology and geology exploration. In the last few years, the usage of Autonomous
Underwater Vehicles (AUVs) has eased the workload and risks of such interventions. To automate
these tasks, the AUVs have to gather the information of their surroundings, interpret it and make
decisions based on it. The two main perception modalities used at close range are laser and video.
In this paper, we propose the usage of a deep neural network to recognise pipes and valves in
multiple underwater scenarios, using 3D RGB point cloud information provided by a stereo camera.
We generate a diverse and rich dataset for the network training and testing, assessing the effect of a
broad selection of hyperparameters and values. Results show F1-scores of up to 97.2% for a test set
containing images with similar characteristics to the training set and up to 89.3% for a secondary
test set containing images taken at different environments and with distinct characteristics from
the training set. This work demonstrates the validity and robust training of the PointNet neural in
underwater scenarios and its applicability for AUV intervention tasks.

Keywords: point cloud segmentation; deep learning; pipe and valve recognition; underwater per-
ception; computer vision

1. Introduction

During the past few decades, the interest in underwater intervention has grown expo-
nentially as more often it is necessary to perform underwater tasks like surveying, sampling,
archaeology exploration or industrial infrastructure inspection and maintenance of offshore
oil and gas structures, submerged oil wells or pipeline networks, among others [1–5].

Historically, scuba diving has been the prevailing method of conducting the afore-
mentioned tasks. However, performing these missions in a harsh environment like open
water scenarios is slow, dangerous, and resource consuming. More recently, thanks to
technological advances such as Remotely Operated Vehicles (ROVs) equipped with ma-
nipulators, more deep and complex underwater scenarios are accessible for scientific
and industrial activities.

Nonetheless, these ROVs have complex dynamics that make their piloting a difficult
and error-prone task, requiring trained operators. In addition, these vehicles require a
support vessel, which leads to expensive operational costs. To mitigate that, some research
centres have started working towards intervention Autonomous Underwater Vehicles
(AUVs) [6–8]. In addition, due to the complexity of the Underwater Vehicle Manipulator
Systems (UVMS), recent studies have been published towards its control [9,10].

Traditionally, when operating in unknown underwater environments, acoustic bathy-
metric maps are used to get a first identification of the environment. Once the bathymetric
information is available, ROVs or AUVs can be sent to obtain more detailed information
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using short distance sensors with higher resolution. The two main perception modalities
used at close range are laser and video, thanks to their high resolution. They are used
during the approach, object recognition and intervention phases. Existing solutions for all
perception modalities are reviewed in Section 2.1.

The underwater environment is one of the most problematic in terms of sensing in
general and in terms of object perception in particular. The main challenges of underwater
perception include distortion in signals, light propagation artefacts like absorption and
scattering, water turbidity changes or depth-depending colour distortion.

Accurate and robust object detection, identification of target objects in different ex-
perimental conditions and pose estimation are essential requirements for the execution of
manipulation tasks.

In this work, we propose a deep learning based approach to recognise pipes and valves
in multiple underwater scenarios , using the 3D RGB point cloud information provided by
a stereo camera, for real-time AUV inspection and manipulation tasks.

The remainder of this paper is structured as follows: Section 2 reviews related work
on underwater perception and pipe and valve identification and highlights the main
contributions of this work. Section 3 describes the adopted methodology and materials
used in this study. The experimental results are presented and discussed in Section 4.
Finally, Section 5 outlines the main conclusions and future work.

2. Related Work and Contributions

2.1. State of the Art

Even though computer vision is one of the most complete and used perception modal-
ities in robotics and object recognition tasks, it has not been widely used in underwater
scenarios. Light transmission problems and water turbidity affect the images clarity,
colouring and produce distortions; these factors have favoured the usage of other percep-
tion techniques.

Sonar sensing has been largely used for object localisation or environment identi-
fication in underwater scenarios [11,12]. In [13], Kim et al. present an AdaBoost based
method for underwater object detection, while Wang et al. [14] propose a combination of
non-local spatial information and frog leaping algorithm to detect underwater objects in
sonar images. More recently, object detection deep learning techniques have started to
apply over sonar imaging in applications such as detection of underwater bodies in [15,16]
or underwater mine detection in [17]. Sonar imaging also presents some drawbacks as it
tends to generate noisy images, losing texture information; and are not capable of gathering
colour information, which is useful in object recognition tasks.

Underwater laser scans are another perception technique used for object recognition,
providing accurate 3D data. In [18], Palomer et al. present the calibration and integration
of a laser scanner on an AUV for object manipulation. Himri et al. [19,20] use the same
system to detect objects using a recognition and pose estimation pipeline based on point
cloud matching. Inzartsev et al. [21] simulate the use of a single beam laser paired with a
camera to capture its deformation and track an underwater pipeline. Laser scans are also
affected by light transmission problems, have a very high initial cost and can only provide
colourless point clouds.

The only perception modality that allows gathering of colour information for the scene
is computer vision. Furthermore, some of its aforementioned weaknesses can be mitigated
by adapting to the environmental conditions, adjusting the operation range, calibrating the
cameras or colour correcting the obtained images.

Traditional computer vision approaches have been used to detect and track submerged
artifacts [22–25], cables [26–28] and even pipelines [28–31]. Some works are based on
shape and texture descriptors [28,31] or template matching [32,33], while others exploit
colour segmentation to find regions of interest in the images, which are later further
processed [25,34].
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On pipeline detection, Kallasi et al. in [35] and Razzini et al. in [7,36] present tra-
ditional computer vision methods combining shape and colouring information to detect
pipes in underwater scenarios and later project them into point clouds obtained from
stereo vision. In these works, the point cloud information is not used to assist the pipe
recognition process.

The first found trainable system to detect pipelines is presented in [37] by Rekik et al.
using the objects structure and content features along a Support Vector Machine to classify
between positive and negative underwater pipe images samples. Later, Nunes et. al
introduced the application of a Convolutional Neural Network in [38] to classify up to five
underwater objects, including a pipeline. In both of these works, no position of the object
is given, but simply a binary output on the object’s presence.

The application of computer vision approaches based on deep learning in underwater
scenarios has been limited to the detection and pose estimation of 3D-printed objects
in [39] or for living organisms detection like fishes [40] or jellyfishes [41]. Few research
studies involving pipelines are restricted to damage evaluation [42,43] or valve detection
for navigation [44] working with images taken from inside the pipelines. The only known
work addressing pipeline recognition using deep learning is from Guerra et al. in [45],
where a camera-equipped drone is used to detect pipelines in industrial environments.

To the best knowledge of the authors, there are not works applying deep learning tech-
niques in underwater computer vision pipeline and valve recognition, nor implementing
the usage of point cloud information on the detection process itself.

2.2. Main Contributions

The main contributions of this paper are composed of:

1. Generation of a novel point cloud dataset containing pipes and different types of
valves in varied underwater scenarios, providing enough data to perform a robust
training and testing of the selected deep neural network.

2. Implementation and testing of the PointNet architecture in underwater environments
to detect pipes and valves.

3. Studying the suitability of the PointNet network on real-time autonomous underwater
recognition tasks in terms of detection performance and inference time by tuning
diverse hyperparameter values.

4. The datasets (point clouds and corresponding ground truths) along with a trained
model are provided to the scientific community.

3. Materials and Methods

This section presents an overview of the selected network; explains the acquisition,
labelling and organisation of the data; and details the studied network hyperparameters,
the validation process and the evaluation metrics.

3.1. Deep Learning Network

To perform the pipe and valve 3D recognition from point cloud segmentation, we se-
lected the PointNet deep neural network [46]. This is a unified architecture for applications
ranging from object classification and part segmentation to scene semantic segmentation.
PointNet is a highly efficient and effective network, obtaining great metrics in both object
classification and segmentation tasks in indoor and outdoor scenarios [46]. However, it has
never been tested in underwater scenarios. The whole PointNet architecture is shown in
Figure 1.
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Figure 1. PointNet architecture. Reproduced from [46], with permission from publisher Hao Su, 2020.

In this paper, we use the Segmentation Network of PointNet. This network is an
extension to the Classification Network, as it can be seen in Figure 1. Some of its key
features include:

• The integration of max pooling layers as symmetric function to aggregate the infor-
mation from each point, making the model invariant to input permutations.

• Being able to predict per point features that rely both on local structures from nearby
points and global information which makes the prediction invariant to object trans-
formations such as translations or rotations. This combination of local and global
information is obtained by concatenating the global point cloud feature vector with
the local per point features.

• Making the semantic labeling of a point cloud invariant to the point cloud geometric
transformations by aligning all input set to a canonical space before feature extraction.
To achieve this, an affine transformation matrix is predicted using a mini-network
(T-net in Figure 1) and directly applied to the coordinates of input points.

The PointNet architecture takes as input point clouds and it outputs a class label for
each point. During the training, the network is also fed with ground truth point clouds,
where each point is labelled with its pertaining class. The labelling process is further
detailed in Section 3.2.2.

As the original PointNet implementation, we used a softmax cross-entropy loss along
an Adam optimiser. The decay rate for batch normalisation starts with 0.5 and is gradually
increased to 0.99. In addition, we applied a dropout with keep ratio 0.7 on the last fully
connected layer, before class score prediction. Other hyperparameters values such as
learning rate or batch size are discussed, along other parameters, on Section 3.3.

Furthermore, to improve the network performance, we implemented an early stopping
strategy based on the work of Prechelt in [47], assuring that the network training process
stops at an epoch that ensures minimum divergence between validation and training losses.
This technique allows for obtaining a more general and broad training, avoiding overfitting.

3.2. Data

This subsection explains the acquisition, labelling and organisation of the data used to
train and test the PointNet neural network.

3.2.1. Acquisition

As mentioned in Section 3.1, the PointNet uses pointclouds for its training and infer-
ence. To obtain the point clouds, we set up a Bumblebee2 Firewire stereo rig [48] on an
Autonomous Surface Vehicle (ASV) through a Robot Operating System (ROS) framework.

First, we calibrated the stereo rig both on fresh and salt water using the ROS package
image_pipeline/camera_calibration [49,50]. It uses a chessboard pattern to obtain the camera,
rectification and projection matrices along the distortion coefficients for both cameras.
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The acquired synchronised pairs of left-right images (resolution: 1024 × 768 pixels) are
processed as follows by the image_pipeline/stere_image_proc ROS package [51] to calculate
the disparity between pairs of images based on epipolar matching [52], obtaining the
corresponding depth of each pixel from the stereo rig.

Finally, combining this depth information with the RGB colouring from the original
images, we generate the point clouds. An example of the acquisition is pictured in Figure 2.

−→ −→

(a) (b) (c)

Figure 2. Data acquisition process. (a) left and right stereo images, (b) disparity image, (c) point cloud.

3.2.2. Ground Truth Labelling

Ground truth annotations are manually built from the point clouds, where the pixels
corresponding to each class are marked with a different label. The studied classes and their
RGB labels are: Pipe (0, 255, 0), Valve (0, 0, 255) and Background (0, 0, 0). Figure 3 shows a
couple of point clouds along with their corresponding ground truth annotations.

(a) (b)

Figure 3. (a) Original point cloud; (b) ground truth annotations, points corresponding to pipes are
marked in green; to valves, in blue; and to background, in black.

3.2.3. Dataset Managing

Following the steps described in the previous section, we generated two datasets.
The first one includes a total of 262 point clouds along with their ground truths. It was
obtained on an artificial pool and contains diverse connections between pipes of different
diameters and 2/3 way valves. It also contains other objects such as cement blocks and
ceramic vessels, always over a plastic sheeting simulating different textures. This dataset is
split into a train-validation set (90% of the data, 236 point clouds) and a test set (10% of
the data, 26 point clouds). The different combinations of elements and textures increase its
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diversity, helping to assure the robustness in the training and reduce overfitting. From now
on, we will refer to this dataset as the Pool dataset.

The second dataset includes a total of 22 point clouds and their corresponding ground
truths. It was obtained in the sea and contains different pipe connections and valves
positions. In addition, these 22 point clouds were obtained over diverse types of seabed,
such as sand, rocks, algae, or a combination of them. This dataset is used to perform a
secondary test, as it contains point clouds with different characteristics of the ones used to
train and validate the network, allowing us to assess how well the network generalises its
training to new conditions. From now on, we will refer to this dataset as the Sea dataset.

Figure 4 illustrates the dataset managing, while in Figure 5 some examples of point
clouds from both datasets are shown.

Figure 4. Dataset managing.

(a) (b)

Figure 5. Examples of point clouds from (a) Pool dataset and (b) Sea dataset.

3.3. Hyperparameter Study

When training a neural network, there are hyperparameters which can be tuned,
changing some of the features of the network or the training process itself. We selected some
of these hyperparameters and trained the network using different values to study their
effect over its performance in underwater scenarios. The considered hyperparameters were:

• Batch size: number of training samples utilised in one iteration before backpropagating.
• Learning rate: affects the size of the matrix changes that the network takes when

searching for an optimal solution.
• Block (B) and stride (S) size: to prepare the network input, the point clouds are

sampled into blocks of BxB meters, with a sliding window of stride S meters.
• Number of points: maximum number of allowed points per block. If it exceeds,

random points are deleted. Used to control the point cloud density.

The tested values for each hyperparameter are shown in Table 1. In total, 13 experi-
ments are conducted, one using the hyperparameter values used in the original PointNet
implementation [46] (marked in bold in Table 1); and 12 more, each one fixing three of the
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aforementioned hyperparameters to their original values and using one of the other tested
values for the fourth hyperparameter. This way, the effect of each hyperparameter and its
value over the performance is isolated.

Table 1. Tested hyperparameter values. Original values are marked in bold.

Hyperparameter Tested Values

Batch size 16 24 32
Learning rate 0.005 0.001 0.0002
Block-stride 2-2 2-1 1-1 1-0.75
Num. points 4096 2048 1024 512 256 128

3.4. Validation
3.4.1. Validation Process

To ensure the robustness of the results generated for the 13 experiments, we used
the 10 k-fold cross-validation method [53]. Using this method, the train-validation set of
the Pool dataset is split into ten equally sized subsets. The network is trained ten times
as follows, each one using a different subset as validation (23 point clouds) and the nine
remaining as training (213 point clouds), generating ten models which are tested against
both Pool and Sea test sets. Finally, each experiment performance is computed as the mean
of the results of its 10 cross-validation models. This method reduces the variability of
the results, as these are less dependent on the selected training and validation subsets,
therefore obtaining a more accurate performance estimation. Figure 6 depicts the k-fold
cross-validation technique applied to the dataset managing described in Section 3.2.3

Figure 6. Implementation of the 10k-fold cross-validation method.

3.4.2. Evaluation Metrics

To evaluate a model performance, we make a point-wise comparison between its
predictions and their corresponding ground truth annotations, generating a multi-class
confusion matrix. This confusion matrix indicates, for each class: the number of points
correctly identified belonging to that class, True Positives (TP) and not belonging to it,
True Negatives (TN); the number of points misclassified as the studied class, False Positives
(FP); and the number of points belonging to that class misclassified as another one, False
Negatives (FN). Finally, the TP, FP and FN values are used to calculate the Precision, Recall
and F1-score for each class, following Equations (1)–(3):

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

F1-score = 2 × Recall × Precision
Recall + Precision

. (3)

Additionally, the mean time that a model takes to perform the inference of a point
cloud is calculated. This metric is very important, as it defines the frequency that infor-
mation is provided to the system. In underwater applications, it would directly affect the
agility and responsiveness of the AUV that this network could be integrated in, having an
impact over the final operation time.
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4. Experimental Results and Discussion

This section reports the performance obtained for each experiment over the Pool and
Sea test sets and discusses the effect of each hyperparameter over it. The notation used to
name each experiment corresponds as follows: “Base” for the experiment conducted using
the original hyperparameter values, marked in bold in Table 1; the other experiments are
notated as an abbreviation of the modified hyperparameter for that experiment (“Batch”
for batch size, “Lr” for learning rate, “BS” for block-stride and “Np” for number of points)
followed by the actual value of the hyperparameter for that experiment. For instance,
experiment Batch 24 uses all original hyperparameter values except for the batch size,
which in this case is 24.

4.1. Pool Dataset Results

Table 2 shows the F1-scores obtained for the studied classes and its mean for all
experiments when evaluated over the Pool test set. The mean inference time for each
experiment is showcased in Figure 7 as follows.

Table 2. Pool test set F1-scores.

Experiment F1_Pipe F1_Valve F1_Background F1_Mean

Base 97.0% 93.1% 99.8% 96.6%

Batch 24 96.8% 92.7% 99.8% 96.4%
Batch 16 96.7% 92.3% 99.8% 96.2%

Lr 0005 96.4% 91.0% 99.7% 95.7%
Lr 00002 96.5% 92.5% 99.7% 96.2%

BS 2_2 96.0% 90.8% 99.7% 95.5%
BS 2_1 96.9% 93.3% 99.8% 96.7%
BS 1_075 97.1% 94.9% 99.7% 97.2%

Np 2048 96.7% 92.2% 99.8% 96.2%
Np 1024 96.9% 93.2% 99.8% 96.6%
Np 512 96.8% 92.6% 99.8% 96.4%
Np 256 96.9% 93.4% 99.8% 96.7%
Np 128 96.7% 92.8% 99.8% 96.4%
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Figure 7. Pool test set mean inference time.

The results presented in Table 2 show that all experiments achieved a mean F1-score
greater than 95.5%, with the highest value of 97.2% for the experiment BS 1_075, which
has a smaller block stride than its size, overlapping information. Considering the figures
of mean F1-score for all experiments, it is safe to say that no hyperparameter seemed to
represent a major shift in the network behaviour.
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Looking at the metrics presented by the best performing experiment for each class,
it can be seen that the Pipe class achieved an F1-score of 97.1%, outperforming other state-
of-the-art methods for underwater pipe segmentation: [35]—traditional computer vision
algorithms over 2D underwater images achieving an F1-score of 94.1%, [7]—traditional
computer vision algorithms over 2D underwater images achieving a mean F1-score over
three datasets of 88.0% and [45]—deep leaning approach for 2D drone imagery achieving
a pixel-wise accuracy of 73.1%. For the valve class, the BS 1_075 experiment achieved a
F1-score of 94.9%, being a more challenging class due to its complex geometry. As far as
the authors know, no comparable work on underwater valve detection has been identified.
Finally, for the more prevailing Background class, the best performing experiment achieved
an F1-score of 99.7%.

The results on mean inference time for each experiment presented in Figure 7 shows
that the batch size and learning rate hyperparameter values do not influence the inference
time or have little impact, as their value is very similar to the one obtained in the Base
experiment. On the contrary, the block and stride size highly affect the inference time,
the bigger the information block or the stride between blocks, the faster the network can
analyse a point cloud, and vice versa. Finally, the maximum number of allowed points per
block also has a direct impact over the inference time, the lower it is, the faster the network
can analyse a point cloud, as it becomes less dense. The time analysis was carried out in a
computer with the following specs—processor: Intel i7-7700, RAM: 16 GB, GPU: NVIDIA
GeForce GTX 1080.

Taking into account both metrics, BS 1_075 presented the best F1-score and has the
highest inference time. In this experiment, the network uses a small block size and stride,
being able to analyse the data and extract its features better, at the cost of taking longer.
The hyperparameter values of this experiment are a good fit for a system in which quick
responsiveness to changes and high frequency of information are not a priority, allowing
for maximising the recognition performance.

On the other hand, experiments such as BS 2_2 or Np 1024, 512, 256, 128 were able to
maintain very high F1-scores while significantly reducing the inference time. The hyperpa-
rameter values tested in these experiments are a good fit for more agile systems that need a
higher frequency of information and responsiveness to changes.

Figure 8 shows some examples of original point clouds from the Pool test set along
with their corresponding ground truth annotations and network predictions.

(a) (b) (c)

Figure 8. Qualitative results for the Pool test set. (a) original point cloud, (b) ground truth annotations,
(c) network prediction.
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4.2. Sea Dataset Results

Table 3 shows the F1-scores obtained for the studied classes and its mean, for all
experiments when evaluated over the Sea test set. The mean inference time for each
experiment is showcased in Figure 9 as follows.

Table 3. Sea test set F1-scores.

Experiment F1_Pipe F1_Valve F1_Background F1_Mean

Base 85.9% 79.5% 98.8% 88.1%

Batch 24 87.2% 79.9% 98.9% 88.7%
Batch 16 88.1% 80.9% 99.0% 89.3%

Lr 0005 86.2% 81.2% 98.8% 88.7%
Lr 00002 85.2% 76.3% 98.7% 86.8%

BS 2_2 80.7% 77.2% 97.9% 85.3%
BS 2_1 80.2% 79.7% 97.6% 85.8%
BS 1_075 86.7% 73.9% 99.0% 86.5%

Np 2048 85.2% 80.1% 98.5% 87.9%
Np 1024 86.1% 77.8% 98.8% 87.6%
Np 512 85.4% 70.7% 98.8% 85.0%
Np 256 87.1% 80.2% 98.9% 88.8%
Np 128 84.5% 71.5% 98.7% 84.9%
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Figure 9. Sea test set mean inference time.

The results presented in Table 3 show that all experiments achieved a mean F1-score
greater than 84.9% with the highest value of 89.3% for the experiment Batch 16. On average,
the mean F1-score was around 9% lower than for the Pool test set. Even so, all experiments
maintained high F1-scores. Again, the F1-scores of the Pipe and Valve classes are relatively
lower than for the Background class. Even though the Sea test set is more challenging, as it
contains unseen pipe and valve connections and environment conditions, the network was
able to generalise its training and avoid overfitting.

The results on mean inference time for each experiment presented in Figure 9 shows
that the mean inference times for the Sea test set are proportionally lower than the Pool test
set for all experiments. This occurs because the Sea test set contains smaller point clouds
with fewer points.

Figure 10 shows some examples of original point clouds from the Sea test set along
with their corresponding ground truth annotations and network predictions.
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(a) (b) (c)

Figure 10. Qualitative results for the Sea test set. (a) original point cloud; (b) ground truth annotations;
(c) network prediction.

5. Conclusions and Future Work

This work studied the implementation of the PointNet deep neural network in under-
water scenarios to recognise pipes and valves from point clouds. First, two datasets of point
clouds were gathered, providing enough data for the training and testing of the network.
From these, a train-validation set and two test sets were generated, a primary test set with
similar characteristics as the training data and a secondary one containing unseen pipe and
valve links and environment conditions to test the network training generalisation and
overfitting. Then, diverse hyperparameter values were tested to study their effect over the
network performance, both in the recognition task and inference time.

Results from the recognition task concluded that the network was able to identify
pipes and valves with high accuracy for all experiments in both Pool and Sea test sets,
reaching F1-scores of 97.2% and 89.3%, respectively. Regarding the network inference time,
results showed that it is highly dependent on the size of information block and its stride;
and to the point clouds density.

From the performed experiments, we obtained a range of models covering different
trade-offs between detection performance and inference time, enabling the network imple-
mentation into a wider spectrum of systems, adapting to its detection and computational
cost requirements. The BS 1_075 experiment presented metrics that fitted a slower, more
still system, while experiments like BS 2_2 or Np 1024, 512, 256, 128 are a good fit for more
agile and dynamic systems.

The implementation of the PointNet network in underwater scenarios presented some
challenges, like ensuring its recognition performance when trained with point clouds
obtained from underwater images, and its suitability to be integrated on an AUV due to
its computational cost. With the results obtained in this work, we have demonstrated the
validity of the PointNet deep neural network to detect pipes and valves in underwater
scenarios for AUV manipulation and inspection tasks.

The datasets and code, along with one of the Base experiment trained models, are
publicly available at http://srv.uib.es/3d-pipes-1/ (UIB-SRV-3D-pipes) for the scientific
community to test or replicate our experiments.
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Further steps need to be taken in order to achieve an underwater object localisation
and positioning for ROV and AUV intervention using the object recognition presented in
this work. We propose the following future work:

1. Performing an instance-based detection from the presented pixel-based one, allowing
for recognition of pipes and valves as a whole object and to classify them by type
(two or three way) or status (opened or closed).

2. Using the depth information provided by the stereo cameras along with the instance
detection to achieve a spatial 3D positioning of each object. Once the network is
implemented in an AUV, this would provide the vehicle with the information to
manipulate and intervene with the recognised objects.

Author Contributions: Conceptualisation, G.O.-C. and Y.G.-C.; methodology, M.M.-A.; software,
M.M.-A., M.P.-M. and A.M.-T.; validation, M.M.-A.; investigation, M.M.-A. and M.P.-M.; resources,
G.O.-C. and Y.G.-C.; data curation, M.M.-A., M.P.-M. and A.M.-T.; writing—original draft preparation,
M.M.-A. and M.P.-M.; writing—review and editing, M.M.-A., M.P.-M., A.M.-T., G.O.-C. and Y.G.-C.;
supervision, Y.G.-C.; project administration, G.O.-C. and Y.G.-C.; funding acquisition, G.O.-C. and
Y.G.-C. All authors have read and agreed to the published version of the manuscript.

Funding: Miguel Martin-Abadal was supported by the Ministry of Economy and Competitive-
ness (AEI,FEDER,UE), under contract DPI2017-86372-C3-3-R. Gabriel Oliver-Codina was supported
by Ministry of Economy and Competitiveness (AEI,FEDER,UE), under contract DPI2017-86372-
C3-3-R. Yolanda Gonzalez-Cid was supported by the Ministry of Economy and Competitiveness
(AEI,FEDER,UE), under contracts TIN2017-85572-P and DPI2017-86372-C3-3-R; and by the Comuni-
tat Autonoma de les Illes Balears through the Direcció General de Política Universitaria i Recerca
with funds from the Tourist Stay Tax Law (PRD2018/34).

Data Availability Statement: Publicly available datasets were analysed in this study. This data can
be found here: http://srv.uib.es/3d-pipes-1/.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yu, M.; Ariamuthu Venkidasalapathy, J.; Shen, Y.; Quddus, N.; Mannan, M.S. Bow-tie Analysis of Underwater Robots in Offshore
Oil and Gas Operations. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 1–4 May 2017. [CrossRef]

2. Costa, M.; Pinto, J.; Ribeiro, M.; Lima, K.; Monteiro, A.; Kowalczyk, P.; Sousa, J. Underwater Archaeology with Light AUVs.
In Proceedings of the OCEANS 2019—Marseille, Marseille, France, 17–20 June 2019; pp. 1–6. doi:10.1109/OCEANSE.2019.8867503.
[CrossRef]

3. Asakawa, K.; Kojima, J.; Kato, Y.; Matsumoto, S.; Kato, N. Autonomous underwater vehicle AQUA EXPLORER 2 for inspection
of underwater cables. In Proceedings of the 2000 International Symposium on Underwater Technology (Cat. No.00EX418), Tokyo,
Japan, 26 May 2000; pp. 242–247. [CrossRef]

4. Jacobi, M.; Karimanzira, D. Underwater pipeline and cable inspection using autonomous underwater vehicles. In Proceedings of
the 2013 MTS/IEEE OCEANS—Bergen, Bergen, Norway, 10–14 June 2013; pp. 1–6. [CrossRef]
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Abstract: This paper proposes a method to perform on-line multi-class segmentation of Side-Scan
Sonar acoustic images, thus being able to build a semantic map of the sea bottom usable to search
loop candidates in a SLAM context. The proposal follows three main steps. First, the sonar data
is pre-processed by means of acoustics based models. Second, the data is segmented thanks to
a lightweight Convolutional Neural Network which is fed with acoustic swaths gathered within
a temporal window. Third, the segmented swaths are fused into a consistent segmented image.
The experiments, performed with real data gathered in coastal areas of Mallorca (Spain), explore all
the possible configurations and show the validity of our proposal both in terms of segmentation
quality, with per-class precisions and recalls surpassing the 90%, and in terms of computational speed,
requiring less than a 7% of CPU time on a standard laptop computer. The fully documented source
code, and some trained models and datasets are provided as part of this study.

Keywords: sonar; underwater robotics; acoustic image segmentation; neural network

1. Introduction

Even though cameras are gaining popularity in underwater robotics, computer vision still
presents some problems in these scenarios [1]. The particularities of the aquatic medium, such as
light absorption, back scatter or flickering, among many others, significantly reduce the visibility range
and the quality of the image. Because of that, underwater vision is usually constrained to missions
in which the Autonomous Underwater Vehicle (AUV) can navigate close to the sea bottom to properly
observe it [2,3].

To the contrary, acoustic sensors or sonars [4] are particularly well suited for subsea environments
not only because of their large sensing range, but also because they are not influenced by
the illumination conditions and thus they can operate easily in a wider range of scenarios.
Whereas underwater cameras can observe objects that are a few meters away, sonars reach much
larger distances. For example, the Geological LOng-Range Inclined ASDIC (GLORIA) operation range
exceeds the 20 km [5,6]. That is why sonar is still the modality of choice in underwater robotics,
being used as the main exteroceptive sensor [7] or combined with cameras for close range navigation.

There is a large variety of sonars ready to be used by an AUV. For example, the Synthetic Aperture
Sonar (SAS) [8] is known to provide high resolution echo intensity profiles by gathering several
measurements of each spot and fusing them during post-processing. Thanks to that, SAS are able to
scan the sea bottom with resolutions far better than other sonars, reaching improvements of one or
two orders of magnitude in the along-track direction. This advantage has a cost. One the one hand,
using SAS constrains the maximum speed at which the AUV can move, since the same spot has to
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be observed several times. On the other hand, the mentioned high resolution depends on the AUV
moving in straight trajectories, since observing the same spot from different angles may jeopardize
the post-processing. Moreover, SAS are particularly expensive and their deployment is more complex
than other types of sonar.

Another example is the Mechanically Scanned Imaging Sonar (MSIS) [9], whose most distinctive
feature is its rotating sensing head which provides 360◦ echo intensity profiles of the environment.
Because of that, this sensor is used to detect and map obstacles in the plane where the AUV navigates,
though a few studies exist showing their use to scan the sea bottom [10]. The main drawback
of this sensor is, precisely, the mechanical rotation which is responsible for very large scan times,
usually between 10 and 20 seconds and also leads to a high power consumption. This also constrains
the speed at which the AUV can move since moving at high speed would lead to distorted scans.
Additionally, installing an MSIS on an AUV is not simple as they have a preferential mounting
orientation.

The Multi-Beam Sonars (MBS) [11] sample a region of the sea bottom by emitting ultrasonic waves
in an fan shape. The distance to the closest obstacles within their field of view is obtained by means
of Time of Flight (TOF) techniques, thus computing the water depth. In contrast to other sonars,
directional information from the returning sound waves is extracted using beamforming [12], so that a
swath of depth readings is obtained from each single ping. This behaviour constitutes the MBS main
advantage, as well as their most distinctive feature: contrarily to the previously mentioned sonars,
MBS provide true 3D information of the ocean floor and, thus, they are commonly used to obtain
subsea bathymetry. That is why they have been successfully applied to underwater mapping [13] and
Simultaneous Localization and Mapping (SLAM) [14]. Their main disadvantages are their price, as well as,
usually, their size and weight.

The Side-Scan Sonar (SSS) [15,16] provides echo intensity profiles similar to those of SAS and MSIS.
The spatial resolution of SSS [17] is usually below that of SAS and, since they are not mounted on
a rotating platform, they do not provide 360◦ views of the environment but slices of the sea floor.
Moreover, they do not provide true bathymetry like MBS. In spite of these limitations when compared
to SAS or MSIS, SSS are still the sensor of choice to obtain sea floor imagery, and they will probably
remain in the near future for two main reasons.

On the one hand, SSS are economic, thus being suitable even in low cost robotics. On the other
hand, they are particularly easy to deploy. They do not require any special mounting such as MBS or
MSIS and they are even available as a towfish so they can be used without any additional infrastructure
in some AUV and Remotely Operated Vehicles (ROV), as well as in ships. Also, their power consumption
is below that of SAS, MSIS and MBS, thus being well suited in underwater robotics where the power
tends to be a problem.

The most common application of SSS is to produce acoustic images of the sea bottom which are
analysed off-line by humans. These images make it possible to detect some geological features [18]
or to explore and analyse archaeological sites [19], among others, but mainly involving human
analysis of the SSS data. Unfortunately, SSS imagery has not been traditionally used to perform
autonomous navigation since the obtained acoustic images have some particularities that jeopardize
their automatic analysis.

For example, since SSS measurements are slices of the sea bottom usually perpendicular to
the motion direction, they do not overlap between them and, thus, they provide no information to
directly estimate the AUV motion. Also, similarly to other sonars, SSS unevenly ensonify the targets,
thus leading to echoes that do not only depend on the structure of the sea bottom but also on the
particular ensonification pattern [17]. Moreover, since the hydrophone and the ultrasonic emitter are
very close, the acoustic shadows, which correspond to occluded areas, strongly depend on the AUV
position with respect to the target. This means that the same target leads to very different acoustic
images depending on its position relative to the AUV. Finally, raw SSS images are geometrically
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distorted representations of the sea bottom [20] and properly correcting this distortion is a complex
task [21].

There are only few studies dealing with these problems and pursuing fully automated SSS
imagery analysis. Most of them either are too computationally demanding to be used on-line [22] or
focus on areas with clearly distinguishable targets [23], thus lacking generality. Performing SLAM
using SSS data is an almost unexplored research field and, at the extent of the authors knowledge,
there are no studies fully performing SLAM with this type of sonar. For example, [24] proposes a target
detection method from SSS data, but focuses on very specific, man made, environments. Also, [25]
performs SLAM with SSS data in generic environments but still relies on hand labelled landmarks.

Automatic, on-line, analysis of SSS imagery is crucial to perform SLAM, which is necessary to
build truly autonomous vehicles. SLAM relies on on-line place recognition, which consists on deciding
whether the currently observed region was already observed in the past and constitute a so called loop
or not. This process, usually referred to as data registration, can be extremely time consuming and error
prone. Because of that, it is usual to pre-select some candidate loops with some fast algorithm and
then perform data registration only with those candidates. This candidate selection could strongly
benefit from an on-line segmentation of SSS data.

Accordingly, the first step towards robust place recognition for a fully operational SLAM approach
using SSS can be to properly segment acoustic images into different classes. In this way, candidate
loops could be searched at regions with overlapping classes and they could be subsequently refined to
detect actual loops.

Properly segmenting SSS images on-line could be used in many other applications aside of SLAM,
such as geological or biological submarine studies or archaeological research among many others.
For example, an AUV in charge of measuring the coverage of a certain algae could be guided towards
the boundaries of the regions classified as algae using the on-line segmented data.

Research on acoustic image segmentation is scarce and, similarly to previously mentioned studies,
usually targeted at very particular and constrained scenarios [26,27] requiring high-resolution acoustic
data [28,29]. Most of these studies rely on hand-crafted descriptors, often being constrained to a specific
kind of environment.

For example, [29] specifically searches for shadows and edges and performs texture segmentation
by means of the texture energy, thus relying on pre-defined hand-crafted descriptors of the environment
that may only be suitable for a reduced range of environments. A similar situation can be found in [30],
where an ad-hoc morphological filter to detect shadows is combined with erosions and dilations,
or in [28], where the concept of lacunarity is used to segment SAS and SSS images. In all these cases
good segmentation results are achieved but the texture segmentation methods, either hand-crafted
or borrowed from the computer vision community, lack generality and constrain the applicability to
certain types of scenarios. Moreover, most of these methods require large images to properly operate,
thus jeopardizing their on-line application.

General purpose acoustic image segmentation is still an open field particularly challenging when
it comes to SSS because of the above mentioned problems. Among these problems, the one of shadows
leading to radically different images depending on the viewpoint is arguably the most difficult.
Having objects of the same class, even the same object, with completely different features strongly
increases the difficulties of any segmentation process. That is why several studies, such as the
previously mentioned [29] or [30] as well as other studies targeting acoustic image matching [31]
intentionally focus on detecting and dealing with the shadows.

Recent trends on image segmentation make use of Neural Networks (NN) [32]. In particular,
Convolutional Neural Networks (CNN) have shown to provide exceptional results in front of situations
which were extremely difficult to solve for traditional approaches, also providing a general solution
to the segmentation problem. Unfortunately, NN in general and CNN in particular are said to have
one important problem: they require large quantities of data to be trained. In most cases, such a
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large quantity of data is already available [33] and in some others the problem can be avoided taking
advantage of transfer learning [34].

Unfortunately, when dealing with SSS, neither large quantities of data are available nor pre-trained
NN can be used since they are commonly trained with terrestrial optical images and not with acoustic
underwater data. For example, [35] proposes a NN approach to segment SSS data and has to pay
special attention to data augmentation techniques in order to alleviate the lack of large training datasets.

Moreover, although NN are not necessarily slow after training, their computational requirements,
both in terms of space and speed, may be a problem when it comes to AUVs where limitations in space
and power supply prevent the use of fast computers endowed with Graphics Processing Units (GPU) or
Tensor Processing Units (TPU). As a matter of fact, the previously mentioned study [35], which uses a
well known NN architecture, even though it to pre-processes the data to reduce the NN computational
requirements cannot be executed on-line.

The proposal in this paper is to overcome these problems by defining a CNN to segment SSS
imagery not requiring large amounts of data to be trained and being fast enough to be deployed on-line
on an AUV. To accomplish these goals, and being the main contributions of this paper, we:

• Derive an acoustics based method [17] to pre-process the data so that the NN has to deal with
less uncertainties, thus facilitating its training and on-line usage.

• Propose a sliding window approach that makes it possible, when combined with the
pre-processing, to train the NN with a small amount of data and to use it on-line even on
AUVs with reduced computational power.

• Propose a Convolutional Neural Network following an encoder-decoder architecture in charge of
segmenting the acoustic data.

Aside of these novelties, we present an additional contribution by releasing the fully documented
source code, as well as different pre-trained models and some of the datasets used in the paper. All this
code and data is available at https://github.com/aburguera/NNSSS.

This paper is structured as follows. First, the basics of SSS sensing are presented in Section 2.
Afterwards, Section 3 describes how the SSS data is pre-processed based on underwater acoustics.
Section 4 focuses on the proposed CNN. Both training and on-line usage are described as well as the
proposed sliding window approach. Section 5 shows the experimental results, both those aimed at
tuning the system and those devoted at evaluating its quality both quantitatively and qualitatively.
Finally, Section 6 shows the main conclusions and provides an insight for further work.

2. The Side-Scan Sonar

2.1. Overview

A SSS is composed of two sensing heads, which are symmetrically mounted on the AUV on
port and starboard. These sensing heads point at opposite directions perpendicular to the AUV
motion direction while they observe the sea floor at a specific angle θ. This angle, which is called the
mounting angle, is shown in Figure 1 together with the nomenclature, the whole setup and the symbols
used throughout the paper.

Since the operation of the two sensing heads is identical, let us focus on one of them. One sensing
head emits an ultrasonic pulse called ping at regular time intervals. This ultrasonic pulse not only
moves along the sensor acoustic axis but also expands perpendicularly to it. This expansion is usually
modelled by two angles called openings. The horizontal opening ϕ models the sound expansion in the
horizontal plane XY as it moves over the Y axis. The vertical opening α models the sound expansion in
the vertical plane YZ while it moves over the acoustic axis defined by θ.

The ultrasonic pulse will eventually collide with a region of the sea floor called the ensonified
region (ER), which will partially scatter the pulse back to the sensor, where it will be analysed. The size
of the ER depends, thus, on the openings and the altitude h at which the vehicle navigates. Typical SSS
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configurations involve large vertical openings α, of tens of degrees, and small horizontal openings ϕ of
only a few degrees. This means that it is usually assumed that a ER is a thin strip of the ocean floor
perpendicular to the AUV motion direction.

Figure 1. Side-scan sonar model. The x axis points to the AUV motion direction or along-track direction.

2.2. Sensor Operation

After emitting each ultrasonic pulse, the sensing head records the received echo intensities at
fixed time intervals into a vector until a new pulse is emitted and the process starts again. Let this
recorded data vector be referred to as a swath. Thus, a swath vector is obtained for each sonar ping.
Each component of the swath, which holds information about the received echo intensity at a particular
time step, is called a bin. That is, each swath is composed of several bins that can be seen as pixels of a
one dimensional acoustic image.

Since the slant range rs (see Figure 1) can be computed from the TOF of each bin, let us assume
that each bin is associated to a particular distance from the sensor to the ocean floor. Changes in the
speed of sound due to variations in water density, salinity or temperature, among others, are not taken
into account in this paper. Accordingly, the speed at which bins are sampled is directly responsible for
the slant range resolution δs and the time between emitted pulses determines the maximum sensor
range rs,max.

In order to express the position in the YZ plane of a point p in the ER responsible for a particular
bin in the swath, the polar coordinates (rs, θs) are commonly used. The grazing angle θs can be easily
computed as a function of the AUV altitude h, the point altitude hp and the slant range rs as follows:

θs = arcsin
(

h − hp

rs

)
(1)

The AUV altitude h can be obtained either by external sensors, such as a Doppler Velocity Log (DVL),
or by properly analysing the SSS data, as it will be shown in Section 2.3. The slant range rs is already
available since it is fully defined by the bin. Unfortunately, obtaining the point altitude hp solely from
SSS data [36] is a complex and error prone task and the absence of such altitude information leads to
the most serious difficulties in SSS data processing. Accordingly, if bathymetric data is not guaranteed
by additional sensors, it is only possible to state that the grazing angle is within an interval defined by
the mounting angle θ and the vertical opening α as follows:

θs ∈
[
θ − α

2
, θ +

α

2

]
(2)
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This is a large interval, since SSS are built with large α. Because of that, most researchers perform
the so called flat floor assumption. This means assuming that the ocean floor is flat within the ER
and parallel to the XY plane. That is, a common approach is to assume that hp = 0. As a matter
of fact, without external bathymetry, this assumption is mandatory in order to make subsequent data
processing tractable.

Even though this may seem a hard assumption, there are two aspects to emphasize. First, the flat
floor assumption is local. The sensor altitude between the recording of consecutive swaths can change
and so the ocean floor is not assumed to be flat along the AUV path. Second, the effects of assuming
hp = 0 in Equation (1) decrease as the AUV altitude increases. In this way, the flat floor assumption
has almost negligible effects when the AUV navigates at high altitudes h >> hp. An in-depth analysis
of the errors introduced by the flat floor assumption is available in [17].

A similar situation arises in the XY plane due to the horizontal opening ϕ. In this case, as shown in
Figure 1, the point p can be anywhere within the arc q. Similarly to what happens in the vertical plane,
this means that one or more objects within that arc may be responsible for the received echo intensity.
Some studies [17] tackle this problem by fusing data from different swaths to remove the ambiguities.
However, this problem is usually neglected by assuming a pencil-like thin beam in this plane.
This assumption is reasonable given the small opening ϕ and the typical speeds at which AUVs move
which prevent overlapping in the XY plane between the regions ensonified to grab consecutive swaths.

In order to represent the measurements with respect to a coordinate frame located at the sea floor,
the coordinates of each point p in the ER must be properly placed in the sea floor plane. The slant ranges,
which are distances from the sea floor to the sensor itself, cannot be directly used and the so called
ground range rg is needed. The ground range of a point p is defined as the projection over the y axis of
the vector joining the SSS origin of coordinates and the point p. From Figure 1 it is easy to obtain the
following expression:

rg =
√

r2
s − (h − hp)2 (3)

Computing the ground range is affected by the same problem that appeared when computing
the grazing angle: the altitude of point p is required. Because of that, the flat floor assumption is also
commonly applied and hp is assumed to be zero. Computing the ground ranges is known as slant
range correction. Our proposal to achieve this goal is provided in Section 3.3.

2.3. Acoustic Image Formation

As stated previously, the SSS is composed of two sensing heads symmetrically mounted on
the AUV. Since both sensing heads operate simultaneously, the swaths coming from them are usually
joined into a single vector which is called a full swath. For the sake of simplicity, the term swath will be
also used as synonym of full swath whenever there is no ambiguity.

Figure 2 shows an example of a swath gathered with a particular SSS that provides 500 bins. The
x axis corresponds to the bin number and, so, the slant range can be computed from it. The first 250
bins have been provided by the port sensing head whilst the last 250 correspond to the starboard
sensing head. The y axis represents the received echo intensity normalized to the interval [0,1].

The central region with very low echo intensities, known as blind zone, corresponds to time steps
for which no sea floor was detected. The blind zone is due to the region below the AUV that has not
been ensonified. Thus, the small echo intensity values in this zone are produced by a combination of
internal sensor noise and small particles suspended in water.

The first significant echo outside the blind zone is called the First Bottom Return (FBR), and it
corresponds to the point in the ER closest to the corresponding sensing head. Determining the bin and,
thus, the slant range rS,FBR at which the FBR appears is not difficult since the blind zone has almost
zero echo intensity values. This is extremely important since the AUV altitude h can be inferred from
the slant range of the FBR.
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Taking into account that the FBR is due to the portion of the ER closest to the SSS, it is reasonable
to assume that the grazing angle of the FBR is θ + α

2 . According to the SSS geometry shown in Figure 1,
this means that the AUV altitude h is:

h = rs,FBR · sin
(

θ +
α

2

)
+ hFBR (4)

where hFBR, which is the altitude of the FBR, is the only unknown value. However, if we perform
the aforementioned flat floor assumption then hFBR = 0 and so the AUV altitude can be computed.
Conversely, if the AUV altitude is known by external means, the slant range of the FBR can be computed.

Figure 2 clearly shows another important feature of SSS that has to be taken into account to
properly understand and process the data. As it can be observed, the regions surrounding the blind
zone have significantly larger intensity values than those far from it. This is particularly visible in the
starboard part of this Figure.

Figure 2. An example of a swath composed of 500 bins. Bins from 0 to 249 come from the port sensing
head. Bins from 250 to 499 are provided by the starboard sensing head.

Aside of the reflectivity of the sea floor, which carries information about the environment, there are
two other factors that influence the parts of the ER that will produce larger echo intensities. On of these
factors in the ensonification pattern, which depends on the sonar configuration and is not homogeneous
within the ER. The other factor is the sound attenuation with the travelled distance. In the particular
case of SSS, these two factors combine constructively nearby the blind zone, being responsible for the
above mentioned larger intensity values. Section 3.2 discusses this issue and proposes a method to
reduce the negative effects of this trend in the received echo intensities.

Different swaths are grabbed by the SSS while the AUV moves. By aggregating swaths, an acoustic
image is built. A common assumption to build these images is that the AUV moved following a straight
line usually called transect. In this way, building the acoustic image is achieved by simply stacking
the swaths one next to the other. This assumption is reasonable, since in most cases AUV equipped
with SSS are programmed to follow a straight transect [16], go to surface, turn to the desired direction,
submerse again and follow a new straight transect. This study will make this assumption, though some
studies exist that make use of the AUV pose to properly account for the exact AUV motion [17].

Figure 3 shows an example of an acoustic image built by putting swaths together and mapping
echo intensities to grayscale levels. Dark tonalities correspond to low echo intensities and light tonalities
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denote high echo intensities. Each column of pixels in the image shows the swath vector obtained
from one ping while the AUV was moving from left to right. So, one can think about these images as
being built from left to right by adding a new column of pixels at each time step.

Figure 3. Example of acoustic image. Source: [37].

The central dark strip is the blind zone. Changes in its height reflect changes in the AUV altitude
so that the larger the height the larger the altitude, as already shown in Equation (4). The effects of
the uneven ensonification and the sound attenuation with distance can also be observed in the bright
regions surrounding the blind zone and the overall darkening with distance to the central bin.

3. Data Pre-Processing

3.1. Overview

Given the particularities of the SSS and the acoustic image formation, it is advisable to pre-process
the data prior to segmenting the acoustic images. The pre-processing, which has to be performed
locally as soon as a new swath arrives to make it possible on-line operation, is performed in two steps
each one correcting one of the SSS characteristics mentioned previously.

The first step, called intensity correction, tackles the problem of the signal baseline, which is mostly
due to the uneven SSS ensonification pattern and the sound attenuation with distance. The second step,
called slant range correction deals with the problem of the unknown altitudes within the ER. Both steps
are described next.

3.2. Intensity Correction

The received echo intensity is the combination of three components. First, the reflectivity of the
sea floor. Depending on the characteristics of each point in the ER, different echoes will be produced.
Second, the SSS ensonification pattern. Roughly speaking, the emitted sound intensity is much
larger nearby the acoustic axis and decreases with the angular distance to the acoustic axis. Third,
the sound attenuation with distance. The larger the distance the sound has to travel, the more the
energy is lost and, thus, the smaller the received echo intensity. The only component that carries useful
information about the environment is the reflectivity of the sea floor. Thus, it is desirable to compensate
the other components.

As it can be observed in Figure 1 the SSS acoustic axis intersects the sea floor nearby the FBR,
which is the point in the ER closest to the sensor. Thus, under this configuration, both the ensonification
pattern and the sound attenuation with distance combine to produce larger echo intensities near the
blind zone. This situation in which the ensonification pattern and the sound attenuation reinforce the
signal in the same region is common to all SSS configurations, but it is not general to all sonar sensors.
For example, in the MSIS described in [38], sound attenuation and ensonification pattern focus on
different regions of the ER and the overall effect is that larger echo intensities appear far away from
the sensor.
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Since the combination of these three components depends on the specific sonar configuration,
some researchers deal with it using some sensor and environment dependant heuristics [39].
To the contrary, the proposal in this paper is general, so it can be applied to different sonar
configurations, and relies on a well founded theoretical basis. As a matter of fact, the same theory
behing our proposal has been successfully applied to both SSS [17] and to MSIS [38].

Our proposal to model the echo intensity E(p) produced by a point p = (rs, θs) in the ER follows
the echo pressure amplitude model by Kleeman and Kuc [40] and is:

E(rs, θs) =
f · a4

r2
s

(
2 · J1

( 2·π
λ · a · sin(θs − θ)

)
2·π
λ · a · sin(θs − θ)

)2

(5)

where f is the emitted pulse frequency, a is the transducer radius, J1(·) is the Bessel function of the first
kind of order 1 and λ is the emitted pulse wavelength. This Equation explicitly accounts for the uneven
ensonification pattern, which depends on the angular position of p with respect to the acoustic axis,
expressed by the term θs − θ, and the sound attenuation with distance, expressed by the term r2

s .
The frequency f is usually provided by the SSS manufacturers. The wavelength λ is uniquely

related to f given the speed of sound in water, which depends on the water conditions. Even though
these conditions may be unknown or mutable, it is reasonable to assume [41] speed of 1560 m/s for
SSS operating in sea water or 1480 m/s for SSS operating in freshwater to compute λ given f .

Unfortunately, the transducer radius may not be available. Moreover, the transducer may not
even be circular. To alleviate this problem, we propose a method to compute a. If the transducer
is actually circular, then the obtained a will represent the radius. To the contrary, if the transducer
is not circular, the obtained a will not have a geometric interpretation but still could be used in
Equation (5).

Given one sensing head, the blind zone corresponds to grazing angles equal or larger than
θ + α

2 , as it can be observed in Figure 1. This means that the echo intensity for these angles is
zero. In particular, the echo intensity at θ + α

2 is zero. Using this information, that is, the fact that
E(rs, θ + α

2 ) = 0, to rewrite Equation (5), the following expression is obtained:

0 =
f · a4

r2
s

(
2 · J1

( 2·π
λ · a · sin(θ + α

2 − θ)
)

2·π
λ · a · sin(θ + α

2 − θ)

)2

(6)

For this equality to be true, either f or a must be zero, which is physically impossible,
or J1

( 2·π
λ · a · sin(θ + α

2 − θ)
)
= 0. This Bessel function of the first kind J1 has an infinite number

of zeros. According to [40], the first zero corresponds to the boundary of the main ultrasonic lobe
whilst subsequent zeros model the boundaries of the secondary side lobes. The energy of these side
lobes is usually so small that they are often ignored. Since the first occurring zero of J1 appears at
the boundary of the main lobe which is the one modeled by the opening α our proposal is to focus,
precisely, on that first zero though the effect of the other zeros could be explored. The first x that makes
J1(x) = 0 is approximately x = 3.8317 [42]. That is, we can rewrite Equation (6) as follows:

3.8317 =
2 · π

λ
· a · sin(

α

2
) (7)

Thanks to that, we can express the transducer radius a as a function of the wavelength and the
vertical opening:

a =
3.8317 · λ

2 · π · sin
(

α
2
) (8)

Even though E(p) is the echo intensity produced by point p, this intensity is modulated by the
incidence angle. That is, the echo intensity that will reach the SSS depends on the angle at which
the sound collides with the sea bottom at point p. This angle is unknown, and cannot be computed
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unless external bathymetry is available, but it can be approximated by the grazing angle θs under the
flat floor assumption. Accordingly, if we model the sea floor as a Lambertian surface [36,43] which
scatters uniformly the incident energy in all directions, the component of E(p) that reaches the sensor
is E(p) · cos θs. Finally, the received echo also depends on the particular acoustic properties of point p.
Let us model these properties as R(p), which is called the reflectivity.

We can now represent the echo intensity I(p) received by the sensor and echoed by a sea floor
point p = (rs, θs), with the following expression:

I(p) = K · R(p) · E(p) · cos θs (9)

where K is a normalization constant. This Equation makes it possible to get the reflectivity, which carries
information about the sea floor, as a function of the received echo intensity I(p), which is the actual
SSS output, and the sound ensonification intensity E(p), which can be computed using Equation (5):

R(p) =
I(p)

K · E(p) · cos θs
(10)

Since R(p) solely contains information about the sea floor, discarding the uneven ensonification
and the attenuation with distance, the intensity correction consists, precisely, on applying Equation (10)
to each bin provided by the SSS. An acoustic image built using this corrected data will be referred to as
a intensity corrected image.

3.3. Slant Range Correction

The term slant range correction refers to the projection of each bin to the corresponding position
in the sea floor. This can be achieved by means of Equation (3) if hp is known. If the point altitude
is unknown, then the flat floor assumption hp = 0 can be applied.

However, from an algorithmic point of view, Equation (3) is not practical. Taking into account
that the goal of the slant range correction is to create a new swath in which each bin corresponds
to a ground range, it is more useful to have an Equation that, given a ground range, provides the
corresponding slant range so that it can be used to query the original swath and, thus, provide the
echo intensity at that particular ground range. That is, the equation that will be used is derived from
Equation (3) and is the following:

rs =
√

r2
g + (h − hp)2 (11)

In order to build the corrected swath there are two additional criteria to decide. The first one
is the ground range resolution δg. That is, the slant corrected swath will be composed of bins of
equal size, and that size needs to be defined. This resolution δg can be decided depending on the
desired granularity or depending on the mounting angle and the openings, among other factors.
However, in general, using the same resolution than the original swath is convenient. This is the
approach used in this paper and, thus, δg = δs.

The second criteria to decide is related to the fact that, when building the new swath we can
evaluate Equation (11) for each ground range rg corresponding to one specific bin in the corrected
swath but the resulting slant range may not correspond to one specific bin in the original swath but lie
somewhere between two adjacent bins. In this case, our proposal is to perform linear interpolation.

As a result of this process, a slant corrected swath is obtained. The acoustic image obtained by
means of these slant corrected swaths is the slant corrected image.

3.4. Data Selection

Figure 4 shows the intensity and slant corrected version of the acoustic image in Figure 3. There are
two important features to be observed in this image. On the one hand, that the blind zone, outlined
in red, carries no information about the sea bottom. On the other hand, that the echo intensity decreases
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with distance until there is almost no difference between the terrain types. Since this is an intensity
corrected image, this means that there is almost no information about the sea bottom from one distance
to the central bin onward. Let us call this region the low contrast zone.

Accordingly, if our goal is to segment the acoustic image depending on the kind of terrain it
depicts, it is desirable to remove both the blind zone, which carries no information, and the low
contrast zone, which carries almost no information and can lead to undesired effects when training
a NN.

Figure 4. Example of intensity and slant corrected acoustic image. The blind zone as well as the
central bins, separating port and starboard, are outlined. The blind and low contrast zones under
constant altitude and flat floor assumption are also shown.

The blind zone will be located around central bin of each swath, though the exact size will
change from swath to swath because it depends on the AUV altitude, and it will not be symmetrical
with respect to the central bin since the FBR can be different for port and starboard sensing heads.
These effects can be observed in Figure 4, where it is clear that the blind zone increases or decreases
with time and that it is not symmetrical with respect to the central bin.

As for the AUV altitude, this study will assume that the robot navigates at constant altitude.
This is not a hard assumption, since most AUV with SSS are programmed to navigate through straight
transects at constant altitude. Under this assumption, changes in the blind zone size will only be due to
different FBR for port and starboard. However, if we perform the flat floor assumption, which already
plays an important role in this study, the FBR should be the same at both sides of the AUV.

Let INb×T denote an intensity and slant corrected acoustic image built from time step 0 to time step
T − 1 by stacking full swaths of Nb bins, the first Nb

2 corresponding to the the port sensing head and
the last Nb

2 corresponding to the starboard sensing head. Under the two aforementioned assumptions,
it is possible to define a constant δBZ so that the blind zone lies within the bins Nb−δBZ

2 and Nb+δBZ
2 .

Similarly, the constant δLCZ can be defined so that the port low contrast zone lines between the bins 0
and δLCZ − 1 and the starboard low contrast zone is located between Nb − δLCZ and Nb − 1.

Figure 4 illustrates δLCZ and δBZ. As it can be observed, there are two strips in the acoustic image
that are considered to carry useful information. One of them, corresponding to the port, comprises bins
from δLCZ to Nb−δBZ

2 − 1 and the other one, corresponding to the starboard, lies within bins Nb+δBZ
2 + 1

and Nb − δLCZ − 1. Let the bins within these intervals be called the informative bins.
The exact values of δBZ and δLCZ depend on the specific sensor being used, the average altitude

and the environment and will be discussed in Section 5.1.
From now on, only the informative bins of the intensity and slant corrected image will be

considered, leading to two informative strips of data per acoustic image. Let the two sets of informative
bins within a swath be referred to as informative swaths and let the term informative image denote the
image built by stacking informative swaths, so that two informative images are available for each
original acoustic image.
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4. Data Segmentation

4.1. Overview

The main goal of this study is to segment acoustic images in order to detect the existing
terrain types. The segmentation is mainly meant to be used to provide loop candidates to a
SLAM system, though many other applications can benefit from it. Because of that, the acoustic
image has to be segmented on-line, ideally swath by swath. That is why standard image segmentation
approaches, which require full images instead of swaths (i.e., columns of pixels), cannot be used or
have to be adapted to achieve this goal.

Since the swaths provided by the SSS are affected by several sources of error, such as uneven
ensonification patterns or geometric distortions, the segmentation will be performed over the
informative swaths as described in Section 3.4. That is, the SSS output will be first intensity and
slant corrected and then the blind and the low contrast zones will be removed. The remaining bins are
those that will be used to feed the data segmentation process.

Our proposal to perform on-line SSS segmentation is based on a CNN. Roughly speaking, a sliding
window of the most recently gathered informative swaths will be used to feed the CNN. By using a
CNN and a sliding window, each informative swath will be segmented more than once. Thus, a method
to combine several segmentations of a single swath is required.

The proposed CNN architecture, as well as its training and usage, are presented in Section 4.2.
The method to combine the different proposed segmentations within the sliding window and build a
consistent segmentation of the environment is described in Section 4.3.

4.2. The Neural Network

The proposed NN is a fully CNN that follows the encoder-decoder architecture shown in Figure 5,
since this kind of architectures define a good compromise between quality and speed to segment
small images [44]. Hyperparameters such as the number of layers and the convolutions, pooling and
upsampling masks shapes and sizes have been tuned by means of a grid search method.

Figure 5. The Neural Network architecture.

The input of this NN is a set of consecutively gathered informative swaths, which constitute
a patch of the informative image. The patches, which come from a sliding window over one
informative image, have to be joined back to build a segmented informative image. Also, joining
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the port and starboard segmented informative images to build a full segmented acoustic image is
necessary. Both tasks have to be performed externally to the NN as it will be described in Section 4.3.

The encoder part of the NN reduces the dimensionality of the input patch to the so called latent
space by means of a set of convolutional and max-pooling layers. The latent space is meant to learn
the most important features of the input patch, so it can be expanded back to the original size by
the decoder.

The decoder part of the NN is composed of couples of upsampling and convolutional layers,
each one increasing the dimensionality of the previous one until the original size is reached. The last
layer is built using a soft-max activation function, so that each of the C layers expresses the probability
of each bin to belong to one of the C classes.

The specific value of C depends on the specific application where the NN is to be deployed and
the environment particularities. In our case, as it will be described in Section 5, we used C = 3 meaning
that three classes, namely rock, sand and others, will be detected, though our proposal is neither
targeted nor constrained to any specific number of classes.

4.2.1. Training

In order to train the NN, pairs of informative images and the corresponding ground truth are
required. The ground truth images are matrices of the same size that the corresponding informative
images where each cell holds a value between 0 and C − 1 stating the class to which the corresponding
bin in the informative image belongs. The ground truth has to be built manually, by hand-labelling
each of the bins.

For each of these pairs of informative and ground truth images, the swaths separated pS time
steps between them are selected. In order to reduce overfitting, the selected swaths can be randomly
shuffled to remove any sense of order between them.

Then, one informative patch is built for each of these swaths by using the pM preceding and
the pM subsequent swaths. That is, one informative patch is composed of 2 · pM + 1 swaths and it is
guaranteed that the swath at the center of the patch is k · pS, k ≥ 1 swaths away from any other central
swath. The corresponding patch in the ground truth image is also selected. The informative patch is
used to feed the NN and the ground truth patch is compared to the NN output to provide feedback
during training by means of a cross-entropy loss function. Figure 6 illustrates this idea.

Figure 6. The training process.

Thanks to the patch separation (pS) and the patch margin (pM) it is possible to define several NN
training strategies. For example, a sliding window over the whole informative image can be used to
train the NN by simply setting pS = 1. Also, strictly non overlapping informative patches can be used
just by setting pS = 2 · pM + 1.

The specific values of pS and pM, which should be selected taking into account the compromise
between training time, training quality and possible overfitting, will be experimentally assessed in
Section 5.3.
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4.2.2. On-Line Usage

As shown in Figure 5, the input of the NN is an informative patch of M rows and N columns,
M being the number of bins in each informative swath and N being 2 · pM + 1.

Our proposal to perform on-line segmentation of the informative images, which is summarized
in Figure 7, is as follows. First, every Δt time steps, an informative patch is built containing the most
recent N informative swaths. Then, the informative patch is used to feed the NN and the C output
probability layers are obtained. Since each cell in each of the C output layers represent the probability
of the corresponding bin to be of one class or another, this means that every Δt time steps we have a
segmented patch.

Figure 7. On-line usage of the NN and the Map Building (MB).

If Δt < N, consecutively segmented patches will have N − Δt swaths in common. In other words,
each swath will be segmented more than once. Our proposal to combine these multiple segmentations
per swath will be discussed in Section 4.3. Using Δt > N is not advisable since will produce gaps in
the segmented acoustic image.

Low values for Δt lead to low latency segmentation. For example, Δt = 1 means that every
new swath is segmented as soon as it is gathered. However, low values of Δt also lead to larger
computational demand. So, deciding the specific value for this parameter depends on a compromise
between latency and computational burden. An experimental assessment on this regard will be
performed in Section 5.3.

4.3. Map Building

The goal of the Map Building (MB) is to join the segmented patches provided by the NN into a
single, consistent, segmented image. If Δt < N there will be overlapping between segmented patches
and so the MB has to properly combine them, as illustrated in Figure 7. In this paper, two different
methods to build the segmented image are presented: the single-class method (SCM) and the multi-class
method (MCM).

The SCM assigns a single label to each bin in the segmented image stating its class. The process
begins by assigning a single label to each bin in each segmented patch. The assigned label is the one
corresponding to the class with the highest probability. If Δt = N each swath took part in one and
only one of the segmented patches and, so, the classes assigned to the segmented patches can be
directly placed into the segmented image. However, if Δt < N each swath was used to build more
than one of the informative patches classified by the NN. In this case, the label assigned to each bin in
the segmented image is the majority class of the corresponding bins in all the involved patches. As a
result of this process, each bin in the segmented image is assigned to one and only one class.

The MCM keeps the same structure of the segmented patches in the segmented image. That is,
the segmented image will be composed of C layers, each one stating the probability of each bin to
belong to each of the C classes. If Δt = N the C probability layers present in each segmented patch can
be directly placed into the segmented image. If Δt < N, the average probability of each class in all the
overlapping patches is placed in the corresponding positions of the segmented image. Finally, all the
probabilities are normalized to sum one.

As an example, Figure 8 shows the results of using SCM and MCM to build segmented images
being the number of classes C = 3. In order to represent the classification, the three primary colors red,
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green and blue have been assigned to each class. As stated previously, C = 3 is the specific number
of classes that will be used in the experiments, though other values could be used depending on the
target application and the sea floor structure.

(a) (b) (c)

Figure 8. Example of (a) a set of informative swaths and the corresponding segmented images using
(b) SCM and (c) MCM.

Figure 8b shows the output of SCM when used to build the segmented image from the informative
swaths in Figure 8a. As it can be observed, a single label is assigned to each bin, resulting in a clear red,
green or blue color per pixel.

Figure 8c shows the corresponding MCM segmented image. In this case the probability layers
are kept for each patch and combined to build the segmented image. As a result, the depicted colors
are a combination of red, green and blue depending on the probability of the corresponding class.
Because of that, it is easy to visualize uncertainties in the class contours and also appreciate some
details that are not visible in the SCM, such as the small green gaps within the red blob in the left part
of the image.

5. Experimental Results

5.1. Overview

The data used to perform the experiments has been obtained by an EcoMapper AUV equipped
with an Imagenex SportScan SSS, whose main parameters are summarized in Table 1 using the notation
presented in Section 2.

Table 1. Parameters of the Imagenex SportScan SSS used in this paper.

α 30◦

ϕ 3◦

θ 20◦

f 800 KHz
λ 1.95 mm

rs,max 30 m

δs 0.12 m

Bins per swath 250 port, 250 starboard

Sampling frequency 10 swath/s

The AUV mission consisted of a sweeping trajectory along more than 4 Km in Port de Sóller
(Mallorca, Spain). During the straight transects the AUV was underwater gathering SSS data at an
approximate altitude of 5 m. At the end of every straight transect the AUV stopped recording SSS,
surfaced, changed to the new orientation while correcting its pose estimate using GPS and submersed
again to gather data along a new straight transect. Accordingly, the gathered SSS data correspond to
straight transects at almost constant altitude.

The AUV was also equipped with a Doppler Velocity Log (DVL) sensor, providing instantaneous
speed information as well as precise altitude and heading measurements. By combining DVL when
the AUV was underwater and GPS when the AUV surfaced, the trajectory followed by the AUV can be
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computed [17]. This trajectory, shown in Figure 9 overlaid to a Google Maps satellite view, illustrates
the mission performed by the AUV while gathering the data used in this paper.

Figure 9. Trajectory followed by the AUV.

The short transects in which the AUV just submersed and surfaced with almost no motion at
constant altitude have been removed from the data used in this paper, leading to a dataset composed
of five transects and, thus, ten informative images. These transects involve a total of 22438 swaths,
distributed as shown in Table 2.

In order to test and evaluate our proposal, three different classes have been defined. Two of these
classes actually correspond to geological structures: rock, exemplified in Figure 10a, and rippled sand or
sand for short, exemplified in Figure 10b. The third class is called others and, even though it mostly
corresponds to sand, it actually represents all the data whose texture is not sufficient for a human to
properly identify the true sea floor structure. Figure 10c,d show two examples of this class.

Table 2. Dataset specification. The number of informative bins of each class and the corresponding
percentage, within parenthesis, are provided.

Transect Swaths Rock Sand Other

1 5764 125294 (13.095%) 26464 (2.766%) 805066 (84.139%)

2 6800 107706 (9.542%) 133665 (11.841%) 887429 (78.617%)

3 3825 253029 (39.850%) 111411 (17.546%) 270510 (42.603%)

4 3517 215148 (36.852%) 70604 (12.093%) 298070 (51.055%)

5 2532 136762 (32.538%) 38650 (9.196%) 244900 (58.266%)

GLOBAL 22438 837939 (22.497%) 380794 (10.223%) 2505975 (67.280%)

(a) (b)

(c) (d)

Figure 10. Examples of the three considered classes: (a) rock, (b) rippled sand and (c,d) other.
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A ground truth has been constructed, both to train our NN and to test it, by hand-labelling each
bin in each of the acoustic images with the corresponding class.

These classes are not equally distributed along the transects. As it can be expected, the class others
is the most frequent one, representing the 67.28% of the whole dataset. The other classes represent the
22.497% (rock) and the 10.223% (sand). The percentage of each class in each of the transects is detailed in
Table 2. Since classes are unbalanced, the quality measures have to take into account that particularity.

Next, the experiments are presented and discussed. First, the system is calibrated in Section 5.2.
Afterwards, a complete set of experiments and quantitative results is shown in Section 5.3. Finally,
some qualitative results are provided in Section 5.4.

5.2. System Parametrization

The SSS data has been processed as described in Section 3. To this end, the ensonification
pattern, modelled by Equation (5), has been computed for each emitted ping and, thus, for each
gathered swath using the parametrization shown in Table 1. Figure 11a depicts the obtained values
along a short transect. Changes along track are due to changes in altitude. As it can be observed,
the ensonification pattern clearly reflects the two sensing heads and the blind zone. It also illustrates
the two peaks showing the parts of the ER that will be ensonified with more energy. Figure 11b shows
the same values in a 2D plane where the color intensity illustrates the ensonification intensity.

Figure 11c shows the SSS data gathered along the same short transect used to build the
ensonification pattern. As it can be observed, the regions close to the blind zone are responsible
for very large echo intensities, reaching a condition close to saturation and making it difficult to
distinguish objects within these regions. This effect can be also observed in Figure 11d, which shows
the same data in the bin-swath plane using color intensity to represent the echo intensity.

The ensonification pattern is used to correct the raw SSS data. Thanks to that, the echo intensity
is homogenized, desaturating the regions close to the blind zone and thus emphasizing the existing
objects in the acoustic image. Figure 11e shows the result of applying the ensonification pattern to the
raw SSS data using Equation (10) and performing the slant range correction by means of Equation (11).
The same data projected to a 2D plane is depicted in Figure 11f.

As it can be observed, the objects close to the blind zone are more distinguishable from the
background that in the original data, revealing some small details that were not appreciable in the
raw SSS swaths. This process can be seen as a physics based contrast enhancement that leads to
an homogeneous contrast almost independently of the bin location, thus helping the operation of
segmentation algorithms.

By observing the examples in Figure 11 it can be seen not only the blind zone but also that, from a
certain bin onward, both on port and on starboard, the echo intensity is so small that is is difficult
to clearly ascertain the structure of the ocean floor, even in the intensity corrected version. This is
particularly clear in the starboard part of Figure 11d,f. These are, precisely, the low contrast zones
mentioned in Section 3.4.

As mentioned in that section, to reduce the problems that the non informative blind and
low contrast zones would induce in the subsequent segmentation, they are removed. To this end,
the parameters δBZ and δLCZ have been defined. In order to determine these parameters, we proceeded
as follows.

First, we computed the average FBR using Equation (4), the average AUV altitude and performing
the flat floor assumption. This obtained average FBR is 25 bins (both on port and starboard) and is
directly related to δBZ. As a matter of fact, according to Figure 4, δBZ should twice the FBR. Thus,
we determined in this way that δBZ = 50.

Since the low contrast zone is mainly due to the low ensonification intensity for large distances,
we used Equation (5) to determine δLCZ. More specifically, given that δBZ = 50, we have searched the
δLCZ that keeps the 90% of the ensonification intensity within each informative image. By using this
procedure, we have found that δLCZ = 142.
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Taking into account that the SSS used in the experiments provides 250 bins per sensing head,
this means that each informative image, as defined in Section 3.4 and illustrated in Figure 4,
is composed of 83 bins. This an approximation based on the assumption of a flat floor and a
constant navigation altitude. Even though computing δBZ and δLCZ on-line using instantaneous
altitude measurements may seem a better option, that approach would lead to changes in size of the
informative image which would be problematic in further segmentation steps. That is why this study
uses the constant δBZ and δLCZ approximation.

Finally, the value of the patch margin pM, presented in Section 4.2.1, has been set to pM = 41
so that the number of swaths in patch, which is 2 · pM + 1, equals the number of bins, which is 83.
Thanks to this, the NN will be fed with square patches.

(a) (b)

(c) (d)

(e) (f)

Figure 11. Example of data processing. (a,b): Modelled echo intensity E(p) according to Equation (5).
(c,d): Raw SSS data. (e,f): Intensity and slant corrected acoustic image.

5.3. Quantitative Results

After tuning δBZ, δLCZ and pM we conducted some experiments to quantitatively evaluate our
proposal and the effect of pS and Δt. As explained in Section 4.2.1, the patch separation pS defines the
number of swaths between the centers of the patches used to feed the NN during training. In this way,
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a value of pS = 1 means that a sliding window over the whole informative images is used to train the
system and pS = 2 · pM + 1 = N uses strictly non overlapping patches to train the NN. Values larger
than N are not considered since that means that some input data is discarded. Figure 6 illustrates the
meaning of pS. Independently of the value of pS, the order in which the patches are used to feed the
NN is randomized in order to prevent overfitting.

The meaning of Δt, which also lies in the interval [1,N], is similar to the one of pS but it refers to
the separation between patches during the on-line usage of the NN. Its was explained in Section 4.2.2.

The tested values of pS are 1, N−1
2 and N. The tested values for Δt are also 1, N−1

2 and N.
In this way, we explore the effects of using small, medium and large values for both parameters.
Given that in our case N = 83, this means that the explored values are 1, 41 and 83. Both the single
class (SCM) and the multi class (MCM) methods have been evaluated using all the combinations of
parameters mentioned before. This leads to eighteen tested configurations, nine being for SCM and
nine for MCM.

For each of the mentioned eighteen combinations, a K-Fold cross validation with K = 5 has been
performed. To evaluate the quality, the resulting segmented image has been compared to the ground
truth and the confusion matrix has been constructed. In the case of MCM, the most probable class for
each bin in the resulting segmented image has been used to do the comparison.

Let the components of the confusion matrix be named Nx,y, so that Nx,y denotes the number of
bins predicted to be of class x that actually are of class y, where x and y can be 0, 1 or 2, denoting the
classes rock, sand and others respectively. Thus, the correct classifications are those where x = y.

It is important to emphasize that the decision of a classification being correct or not is performed
by comparing the classification itself to a hand labelled ground truth. This ground truth is, by definition,
imperfect since it can be subject to human interpretation. Also, some regions may be difficult to classify
even for a human, especially in the boundaries between classes and some subjective decisions have to
be made in these cases. Thus, the presented results can be slightly influenced by these imperfections in
the ground truth.

Confusion matrices are a useful tool to quantify and visualize how the segmentation errors are
distributed among classes and what classes are more likely to be wrongly classified as another one.
In order to provide a clear representation, these matrices are often normalized according to two
methods. It is important to emphasize that these methods actually provide the same information but
from a different point of view.

The first method is the column-wise normalization, which scales the columns down to sum one.
Since columns depict the true classes, column-wise normalization means that the value in row r and
column c represents the ratio of bins whose true class is c that have been classified as class r. Thus,
this kind of normalization emphasizes the distribution of classes in which the bins of a specific class
have been classified.

The second method is the row-wise normalization. In this case, the rows are scaled down
to sum one. Rows representing the predicted classes, this format means that the value in row
r and column c represents the ratio of bins classified as class r that actually are of class c. Thus,
this normalization approach shows the ratio of each of the true classes given the bins predicted to
belong to one specific class.

Since eighteen different configuration have been tested, considering these two normalization
methods leads to a total of 36 confusion matrices. All these matrices are available at https://github.
com/aburguera/NNSSS/tree/master/RESULTS. A summary is provided in Tables 3 and 4.

More specifically, Table 3a shows the confusion matrix corresponding to all the configurations of
pS and Δt using SCM and normalized column-wise. It can be observed how the largest values appear
in the diagonal, meaning that the ratio of bins correctly identified is the largest one. It can also be
observed how classes are confused among themselves. For example, the matrix shows that the 16.25%
and the 4.57% of the rocks have been classified as sand and other respectively, thus emphasizing that
rocks are misclassified as sand about four times more than they are confused with other.
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Table 3b shows the SCM row-wise normalized confusion matrix. It can be observed, for example,
that the 88.03% of the bins classified as rock were actually rocks and that the 10.22% and the 1.74%
were actually sand and other respectively. Thus, given one bin wrongly classified as rock it is about
ten times more likely that it actually is sand than other.

Table 4a,b show the MCM confusion matrices normalized column-wise and row-wise respectively.
By comparing them to their SCM counterparts it can be observed that the differences are really small,
though suggesting that only minor improvements arise from the use of MCM.

Table 3. Confusion matrices for SCM normalized (a) column-wise (b) row-wise .

(a)
�������Pred.

True
Rock Sand Other

Rock 0.7917 0.0347 0.0428

Sand 0.1625 0.9409 0.1308

Other 0.0457 0.0242 0.8263

(b)
�������Pred.

True
Rock Sand Other

Rock 0.8803 0.1022 0.0174

Sand 0.0602 0.9221 0.0177

Other 0.1111 0.1558 0.7331

Table 4. Confusion matrices for MCM normalized (a) column-wise (b) row-wise.

(a)
�������Pred.

True
Rock Sand Other

Rock 0.8015 0.0367 0.0461

Sand 0.1554 0.9399 0.1358

Other 0.0430 0.0233 0.8180

(b)
�������Pred.

True
Rock Sand Other

Rock 0.8721 0.1085 0.0193

Sand 0.0563 0.9247 0.0189

Other 0.1021 0.1502 0.7476

Using the raw confusion matrices, different quality indicators have been computed. The first one
is the accuracy A, defined as the ratio of correctly classified bins with respect to the total number of
bins being classified:

A =

2
∑

i=0
Ni,i

2
∑

i=0

2
∑

j=0
Ni,j

(12)

The obtained results for SCM and MCM are shown in Table 5. There are no significant differences
between the single class and the multi class approaches, independently of the values of pS and Δt.
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Table 5. Accuracy results for SCM and MCM.

ACCURACY (SCM)
�������pS

Δt
1 N−1

2 N

1 0.9100 0.9020 0.9020
N−1

2 0.8990 0.8950 0.8930

N 0.8830 0.8770 0.8790

ACCURACY (MCM)
�������pS

Δt
1 N−1

2 N

1 0.9100 0.9070 0.9020
N−1

2 0.8990 0.8970 0.8930

N 0.8840 0.8820 0.8790

Also, it can be observed how, overall, the accuracy decreases as the value of pS or Δt increases.
In all cases, however, the accuracy is really high, ranging between an 87.7% in the worst case (SCM,
pS = N and Δt = N−1

2 ) to a 91.0% in the best case (SCM and MCM, pS = Δt = 1).
The results also show that Δt has less influence in the resulting accuracy that pS. This fact is

particularly interesting because small values of pS or Δt lead to larger computational requirements,
as it will be shown later. Since pS is only used during training, a small value of pS will not influence
the on-line usage of our system and a large value could be used for Δt, allowing a fast segmentation
without compromising the quality.

Since our proposal is multi-class, let us evaluate its performance for each of the three proposed
classes. To this end, the multi-class versions of the precision, recall, fall-out and F1-score indicators
will be used.

The precision Pi of the class i is defined as the ratio between the number of bins correctly classified
as being of class i and the total number of bins classified as class i, both correct and incorrect:

Pi =
Ni,i

2
∑

j=0
Ni,j

(13)

The recall Ri, also known as sensitivity, of the class i is the ratio between the number of bins
correctly classified as being of class i with respect to the total number of bins that actually are of class i,
independently of how they have been classified:

Ri =
Ni,i

2
∑

j=0
Nj,i

(14)

The fall-out Fi of class i is the ratio between the number of bins incorrectly classified as being of
class i and the number the number of bins which are not of class i independently of how they have
been classified.

Fi =

(
2
∑

j=0
Ni,j

)
− Ni, i(

2
∑

j=0

2
∑

k=0
Nj,k

)
− 2

∑
j=0

Nj,i

(15)

Finally, the F1-Score F1i is the harmonic mean of the precision and the recall and is computed
as follows:

F1i = 2 · Pi · Ri
Pi + Ri

(16)
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Overall, the precision measures how reliable are the segmentation results for each class. It can be
seen as the probability of a bin classified in one particular class to actually be of that particular class.
The recall measures how complete are the segmentation results for each class, since it measures the
fraction of the existing bins in that class that have been properly detected. The fall-out is a measure
of the errors when classifying each class. Finally, the F1-Score, which combines precision and recall,
is said to be a particularly good indicator when it comes to unbalanced datasets, which is likely to
happen in underwater scenarios such as the one where our dataset has been collected (see Table 2).

Accordingly, a good segmentation would result on large values (� 1) of Pi, Ri and F1i and small
values (� 0) of Fi, and discrepancies between the indicators would provide valuable information.

Table 6 shows the obtained results when using SCM. Results are consistent between the indicators
and they show how quality tends to decrease as pS and Δt increase, though the effects of Δt deserve
further analysis.

Table 6. Precision, recall, fall-out and F1-Score results when using SCM.

Precision
�������pS

Δt 1 N−1
2 N

Rock Sand Other Rock Sand Other Rock Sand Other

1 0.8860 0.9350 0.7960 0.9050 0.9250 0.7430 0.8720 0.9320 0.7780
N−1

2 0.8560 0.9370 0.7430 0.8770 0.9310 0.6960 0.8430 0.9360 0.7240
N 0.8950 0.9030 0.7290 0.9080 0.8970 0.6740 0.8810 0.9030 0.7150

Recall
�������pS

Δt 1 N−1
2 N

Rock Sand Other Rock Sand Other Rock Sand Other

1 0.8300 0.9420 0.8850 0.7940 0.9430 0.9030 0.8190 0.9360 0.8710
N−1

2 0.8270 0.9340 0.8190 0.8000 0.9360 0.8450 0.8170 0.9290 0.8190
N 0.7630 0.9510 0.7640 0.7340 0.9510 0.7910 0.7570 0.9470 0.7530

Fall-Out
�������pS

Δt 1 N−1
2 N

Rock Sand Other Rock Sand Other Rock Sand Other

1 0.0340 0.1310 0.0230 0.0280 0.1480 0.0290 0.0380 0.1390 0.0250
N−1

2 0.0420 0.1310 0.0290 0.0370 0.1410 0.0340 0.0460 0.1350 0.0310
N 0.0320 0.1810 0.0310 0.0280 0.1890 0.0370 0.0360 0.1830 0.0330

F1-Score
�������pS

Δt 1 N−1
2 N

Rock Sand Other Rock Sand Other Rock Sand Other

1 0.8570 0.9390 0.8380 0.8460 0.9340 0.8160 0.8450 0.9340 0.8220
N−1

2 0.8410 0.9350 0.7790 0.8360 0.9330 0.7630 0.8300 0.9320 0.7690
N 0.8240 0.9270 0.7460 0.8120 0.9230 0.7280 0.8140 0.9240 0.7340

Also, these results make it possible to observe the differences between classes. More specifically,
the best precision, recall and F1-score appear with the sand class. This means that sand is
reliably detected, with precisions larger than 90% in all cases except one (pS = N and Δt = N−1

2 with
P1 = 89.7%), and almost completely detected, with recalls larger than 92% in all cases and close to 95%
in most of the cases. This is a reasonable result, since the class sand corresponds to rippled sand, which
has the characteristic pattern shown in Figure 10b, whilst the other classes encompass different textures.
Nevertheless, both the class rock and the class others also lead to large precisions, recalls and F1-Scores.

When it comes to fall-out, sand is the class responsible for the worst results. Rock and others have
fall-outs below 5% in all cases but sand depicts fall-outs ranging from 13% to 18%. This is likely to be
due to the particular shapes in which the sand regions appear in the sea bottom. Whereas rocks and
others appear in large regions, usually filling several consecutive swaths both on port and starboard,
sand tends to be present in small banks. This means that the perimeter of the sand regions is large
within the dataset in comparison to the perimeter of the other classes. Since the perimeter is the most
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difficult region to segment, even for a human when building the ground truth, the effects of these
errors is more noticeable for the sand class.

Figure 12 summarizes the obtained F1-Scores and facilitates the analysis of the effects of Δt.
In particular, it can be observed how, independently of pS, the differences in quality between Δt = N−1

2
and Δt = N are really small and, in some cases, using Δt = N seems to lead to a small improvement.
This suggests that values of Δt within the interval [N−1

2 , N] barely influence the segmentation quality.

(a) (b) (c)

Figure 12. F1-Scores for SCM training with (a) pS = 1, (b) pS = N−1
2 and (c) pS = N.

By comparing Figure 12a–c it can be observed that the results are clearly affected by pS,
getting worse as pS increases. It can also be observed how the quality differences between classes
increases with pS. Whereas the F1-Score of the sand class remains almost unchanged with pS,
the F1-Score of the class others is significantly affected. This suggests that using pS = 1 seems
to be the best choice.

The results corresponding to MCM are shown in Table 7. These results are numerically similar to
those obtained with SCM, and similar trends and patterns can be observed. Thus, the same analysis
performed for SCM can be applied here.

Table 7. Precision, recall, fall-out and F1-Score results when using MCM. The gray cells denote the
configurations under which MCM surpasses SCM.

Precision
�������pS

Δt 1 N−1
2 N

Rock Sand Other Rock Sand Other Rock Sand Other

1 0.8870 0.9360 0.7950 0.8780 0.9340 0.7890 0.8720 0.9320 0.7780
N−1

2 0.8550 0.9380 0.7400 0.8520 0.9370 0.7370 0.8430 0.9360 0.7240
N 0.8930 0.9040 0.7280 0.8880 0.9040 0.7230 0.8810 0.9030 0.7150

Recall
�������pS

Δt 1 N−1
2 N

Rock Sand Other Rock Sand Other Rock Sand Other

1 0.8300 0.9420 0.8870 0.8240 0.9400 0.8780 0.8190 0.9360 0.8710
N−1

2 0.8280 0.9340 0.8210 0.8260 0.9320 0.8190 0.8170 0.9290 0.8190
N 0.7650 0.9510 0.7650 0.7620 0.9490 0.7590 0.7570 0.9470 0.7530

Fall-Out
�������pS

Δt 1 N−1
2 N

Rock Sand Other Rock Sand Other Rock Sand Other

1 0.0330 0.1310 0.0230 0.0360 0.1340 0.0240 0.0380 0.1390 0.0250
N−1

2 0.0420 0.1300 0.0290 0.0430 0.1320 0.0300 0.0460 0.1350 0.0310
N 0.0330 0.1790 0.0310 0.0340 0.1800 0.0320 0.0360 0.1830 0.0330

F1-Score
�������pS

Δt 1 N−1
2 N

Rock Sand Other Rock Sand Other Rock Sand Other

1 0.8570 0.9390 0.8390 0.8500 0.9370 0.8310 0.8450 0.9340 0.8220
N−1

2 0.8410 0.9360 0.7780 0.8380 0.9350 0.7760 0.8300 0.9320 0.7690
N 0.8240 0.9270 0.7460 0.8200 0.9260 0.7400 0.8140 0.9240 0.7340
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However, interesting conclusions arise when observing the cases in which MCM surpasses SCM.
These situations are those shown in gray cells in Table 7, which mark the cases in which precision,
recall, fallout and F1-Score values are larger for MCM and fall-out is smaller. The first aspect to
emphasize is that differences, in all cases, are small. So, even though MCM improves SCM in some
cases and leads to worse results in some others, the overall quality is almost the same.

The second aspect to emphasize, and probably the most relevant, is related to how the cases in
which MCM improves SCM are distributed. For the sake of simplicity, let us focus on the F1-Score,
though similar patterns appear with the other indicators.

As it can be observed, the improvements mostly depend on Δt and are almost uncorrelated wit pS,
which is reasonable since the use SCM or MCM has no effect during training. It can also be observed
that for Δt = N, MCM never surpasses SCM. However, this does not mean that MCM is worse in this
case since the scores are exactly the same, within the working precision, for SCM and MCM. This is also
reasonable, because Δt = N means that the segmented patches do not overlap. Since the differences
between SCM and MCM are the way in which overlapping regions are fused, no differences should
appear in this case. It is important to emphasize that results are exactly the same in that case because
the same trained model was used both for SCM and MCM since the data fusion method does not
affect training.

Thus, the two interesting cases are Δt = 1 and Δt = N−1
2 . For Δt = 1, even though MCM

surpasses SCM only in two of nine cases, it actually leads to the same or almost the same results in the
remaining seven cases. This means that when segmentation is performed for every new ping when
the corresponding swath vector is available, the way in which overlapping regions are fused is not
particularly relevant, probably because there is so much information that the fusion method does not
make the difference.

However, when it comes fo Δt = N−1
2 , MCM surpasses SCM in all cases. The differences in this

case are very small, but it is very significant that MCM is better independently on the training step pS
and the class. Actually, the differences between this configuration and Δt = N are larger for MCM
than for SCM, showing how MCM is able to take profit of partially overlapping patches.

The F1-Scores are summarized in Figure 13. Similarly to the SCM case (Figure 12), results get
worse and the differences between classes increase with the value of pS, thus encouraging the use of
pS = 1. In this case, however, the effects of Δt are perfectly clear, since in all cases the F1-Score gets
worse with Δt. This is due to the already mentioned improvement when Δt = N−1

2 using MCM with
respect to the SCM case.

(a) (b) (c)

Figure 13. F1-Scores for MCM training with (a) pS = 1, (b) pS = N−1
2 and (c) pS = N.

Previous discussion about the effects of pS and Δt included the intuitive idea that small pS or Δt
would increase computational requirements. In order to quantify this intuition, both the training and
the segmentation times have been measured on the provided Python implementation, which relies
on Keras using TensorFlow as backend, executed on a standard laptop endowed with an i7 CPU at
3.1 GHz and without using neither GPU nor TPU.

Table 8 shows the results, which are graphically summarized in Figure 14. The times, expressed in
milliseconds, are the mean time per swath. More specifically, for each fold in the K-Fold cross-validation
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the training time has been measured and divided by the number of swaths or emitted pings in the
training data corresponding to that fold. This training time has been averaged for all folds and the
result is the training time per swath shown in the table.

Table 8. Training and segmentation time consumption when using SCM and MCM.

Time consumption (SCM)
�������pS

Δt 1 N−1
2 N

Training Segment. Training Segment. Training Segment.

1 1373.2110 ms 3.2084 ms 1373.2110 ms 0.2174 ms 1373.2110 ms 0.2148 ms
N−1

2 36.0540 ms 3.2304 ms 36.0540 ms 0.2295 ms 36.0540 ms 0.2294 ms
N 18.0790 ms 3.3044 ms 18.0790 ms 0.2323 ms 18.0790 ms 0.2145 ms

Time consumption (MCM)
�������pS

Δt 1 N−1
2 N

Training Segment. Training Segment. Training Segment.

1 1373.2110 ms 3.8411 ms 1373.2110 ms 0.6879 ms 1373.2110 ms 0.6580 ms
N−1

2 36.0540 ms 3.8038 ms 36.0540 ms 0.6799 ms 36.0540 ms 0.6163 ms
N 18.0790 ms 3.7451 ms 18.0790 ms 0.6960 ms 18.0790 ms 0.6328 ms

As for the segmentation time, a similar procedure has been used. In this case the measured time
is not only the NN prediction time but also the times spent to build the patch to segment, to put the
segmented patch into the segmented image and to compute the most probable class when necessary
have also been measured.

Since training is not affected neither by the value of Δt nor by the use of SCM or MCM, the NN
was trained only once per value of pS. That is why the training times are the same independently of Δt
and the use of SCM or MCM, and that is the reason why a single plot of the training time as a function
of pS is provided in Figure 14a. Results show how training time is particularly large when using
pS = 1 and is drastically reduced by increasing the patch separation. However, since training has to
be performed only once, it should not be an relevant criterion to select one configuration or another.
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Figure 14. Execution times for (a) training, (b) segmenting using SCM and (c) segmenting using MCM.

Figure 14b,c clearly show that the segmentation time is not influenced by pS. This is reasonable,
since pS only takes part in the training process. These figures also show a huge reduction in the
segmentation time when switching from Δt = 1 to Δt = N−1

2 but an almost negligible reduction when
going from Δt = N−1

2 to Δt = N. This is particularly interesting, since it means that choosing one of
these two values of Δt can be done without taking the time into consideration.

By comparing SCM (Figure 14b) and MCM (Figure 14c) it is easy to see that, even though the
segmentation times follow the same pattern, MCM is significantly more computationally demanding.
For example, the smallest segmentation time when using SCM is 0.2148 ms whilst the smallest
segmentation time with MCM is 0.6163 ms, which is almost three times larger.

Finally, it is important to emphasize that the segmentation times are really small in all cases.
The worst situation, which happens when using MCM, pS = 1 and Δt = 1, requires 3.8411 ms per
swath in average and the best one, which appears with SCM, pS = N and Δt = N, uses 0.2145 ms
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per swath in average. This means that the system is able to process, depending on the configuration,
between 260.342 and 4662.005 swaths per second in average. These frequencies are larger by far,
in any case, to typical SSS sampling frequencies. For example, the used SSS provides 10 swaths per
second, as shown in Table 1.

5.4. Qualitative Results

We conducted some experiments in order to visualize the effects of different Δt and the use of
SCM or MCM to build the segmented acoustic image.

Figure 15a shows a fragment of a transect overlaid to the corresponding hand labelled ground
truth. The black strip in the middle represents the blind zone, though, as explained before, it has
not taken part in the segmentation process. The strips on the top and the bottom of the black region
correspond to the port and starboard informative images respectively. Both informative images
have been processed separately, and are shown here together to provide a clear representation of a
segmented transect. The colors used to draw the ground truth are red to denote the rock class, blue to
denote rippled sand and green to denote the class others.

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 15. Segmentation results. (a) Informative images corresponding to a small transect overlaid
with the ground truth and segmented images using (b) SCM and Δt = 1, (c) MCM and Δt = 1, (d) SCM
and Δt = 41, (e) MCM and Δt = 41, (f) SCM and Δt = 83 and (g) MCM and Δt = 83.

82



J. Mar. Sci. Eng. 2020, 8, 557

Figure 15b–f show the resulting segmentation under different configurations after training
our system with all the transects in the dataset except the one to which this example belongs.
During training, the parameter pS ha been set to the intermediate value of N−1

2 = 41. The effects of pS
have already experimentally assessed in Section 5.3.

More specifically, Figure 15b–f show the results corresponding to the SCM using Δt = 1, Δt = 41
and Δt = 83 respectively. Being these results single-class, each bin is assigned a single label and,
thus, the class boundaries are perfectly defined. The tested values of Δt range from performing a new
segmentation every time a new swath is available (Δt = 1) to segmenting patches with no overlap at all
(Δt = 2 · pM + 1 = 83) as explained in Section 4.2.2. The qualitative effect of changing this parameter is
a decrease in detail as Δt increases. For example, most of the small others regions (green) surrounding
the sand regions (blue), which appear in the ground truth and are almost perfectly detected with Δt = 1
are not present when Δt = 83.

Figure 15c,e,g show the MCM results also using Δt = 1, Δt = 41 and Δt = 83. Results are similar
to SCM except that a gradation between classes can be observed, especially in the contours of each
region. Also, the small others regions mentioned before are now appreciable even when using non
overlapping patches (Δt = 83).

There is a final remark to be done with respect to these qualitative results. Even though MCM
using Δt = 1 seems to provide the best results, the time consumption has to be taken into account.
Performing one segmentation every time a new swath is available may not be suitable depending
on the computational capabilities of the on-board computer. As a matter of fact, the quantitative
evaluation in Section 5.3 shows that the time consumption when using Δt = 1 is really large. Moreover,
although MCM seems to be able to preserve some small details even with a large Δt, depending on the
SLAM or mapping algorithm where this data has to be used, a single label per bin may be necessary
and, thus, MCM may not be directly usable.

5.5. Discussion

Deciding the particular parametrization to use in real time operation has to take into account two
factors that have been evaluated: the segmentation quality and the segmentation time. We believe that
training time should not take part in the decision since training is performed only once. Also, it has
been shown that the specific training has no effect on the segmentation time. Accordingly, since the
best overall quality appears with pS = 1 our proposal is to use this particular patch separation
during training.

In this case, the best quality appears with Δt = 1, both with SCM and MCM. However, this is
also, with difference, the most computationally expensive case. Thus, if computational resources are
limited, which is likely to happen in AUVs, larger values for Δt are advisable. Since no significant
differences appear, neither in quality nor in time consumption, between Δt = N−1

2 and Δt = N when
using SCM, both options seem to be equally interesting. MCM is more computationally demanding,
but it surpasses SCM for Δt = N−1

2 . Actually, it leads to a quality similar to SCM with Δt = 1 with
much lower computational cost.

Additionally, MCM has shown to provide more visual detail than SCM before selecting the most
probable class. This means that it can generate maps which are more meaningful for human inspection
and also that some localization and SLAM algorithms could take profit of that feature.

Overall, even though the final decision depends on the computational power of the on-board
computer, an advisable parametrization seems to be pS = 1, Δt = N−1

2 and MCM. This means that,
in our particular computer setup, an average of 0.6879 ms will be used to segment each swath,
making it possible to process an average of 1453.7 swaths per second. Assuming a SSS similar to ours,
which provides 10 swaths per second (see Table 1), this means that only a 0.69% of the CPU time will
be spent segmenting the data, reaching an accuracy of 90.70% and F1-Scores of 0.85, 0.837 and 0.831 for
classes rock, sand and others respectively.
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Comparing our proposal to the results reported by other researchers is difficult, since the number
of classes used as well as their meaning are different to ours and among them and also the provided
quality measures are usually ad-hoc. However, the study by [35], which proposes a NN method,
states accuracies ranging between the 58% and the 68%, thus accomplishing a hit ratio significantly
below ours. Also, [29] reports the obtained confusion matrices showing that an 85.2% and a 93.53% of
rock and floor bins, respectively, are properly detected. These two classes being similar to ours rock
and other, it is safe to conclude that this NN behaves similarly to ours, being slightly inferior detecting
rocks and slightly better when it comes to other.

However, contrarily to [29] and other the existing methods, our proposal has three additional
advantages. On the one hand, our proposal is able to operate on-line, being responsible of an average
CPU occupancy below 1%. On the other hand, our NN having less parameters it is trainable with
less data, whereas the mentioned study has to deal with specific data augmentation techniques. Finally,
our proposal is not only able to work with a relatively fast SSS, which operates at 10Hz whereas other
approaches only deal with 1Hz SSS, but also tolerates low resolutions: our SSS only provides 500 bins,
of which a significant part is discarded, whilst other approaches have only been tested with SSS which,
at least, double the resolution of ours [28,29].

6. Conclusions and Future Work

In this paper we have presented a method to perform on-line segmentation of SSS data.
The proposal performs three main steps. First, it pre-processes the data to take into account the
particularities of SSS sensing. In this way, the main artifacts due to the uneven ensonification pattern
and the sound attenuation with distance are reduced. Second, it uses a sliding window to group the
most recently gathered swaths into overlapping patches. These patches are used to feed a CNN in
charge of segmenting them. Third, it fuses the segmented patches into a consistent segmentation of
the environment.

Thanks to that, each data bin provided by the SSS is assigned to one specific class. This segmentation
has many applications, such as semantically mapping the environment, detecting archaeological or
geological items or quantifying the presence of underwater algae or plants. Also, the segmented data is
useful for a subsequent SLAM step, since having each bin classified into one specific class would make it
easy to detect loops.

Several experiments have been conducted using real SSS data gathered in coastal areas of
Mallorca (Spain). In these experiments different configurations of our proposal have been explored and
quantitatively evaluated thus helping in the process of deciding the best setup. They show, for example,
that accuracies larger than 90% can be achieved in a three-class scenario requiring less than the 7% of
CPU on a standard laptop.

The documented source code as well as some datasets and trained models are publicly available
at https://github.com/aburguera/NNSSS.

Future research pursues one main goal: to endow a SLAM system [25] with true loop detection
capabilities with SSS data. Since data association using SSS is a difficult task due, among others,
to significant changes in the received echoes depending on the viewpoint, including information about
the classes of the existing sea floor parts will improve the ability to detect loops.

To this end, our proposal is to constrain the search for candidate loops to regions assigned to the
same class. After that, a full and robust registration algorithm could be used to confirm or deny these
loops. This would reduce the computational cost of data registration and, thus, help in achieving one
of the main SLAM requirements, which is on-line operation.

Author Contributions: Both authors contributed equally to this work, including the Conceptualization, theoretical
methodology, the implementation of the software, the validation with the datasets obtained in the sea, writing the
original draft, and the final supervision. All authors have read and agreed to the published version of
the manuscript.

84



J. Mar. Sci. Eng. 2020, 8, 557

Funding: This work is partially supported by Ministry of Economy and Competitiveness under contract
DPI2017-86372-C3-3-R (AEI,FEDER,UE).

Acknowledgments: The underwater equipment used to gather this dataset was provided by Unidad de Tecnología
Marina-CSIC (http://www.utm.csic.es/). The authors wish to thank Pablo Rodríguez Fornes, from UTM-CSIC,
and Yvan Petillot, from Heriot-Watt University, for sharing their expertise with us and providing the data used in
the experiments presented in this article. The authors are also grateful to Daniel Moreno Linares for his help with
the XTF format.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Burguera, A.B.; Bonin-Font, F. A trajectory-based approach to multi-session underwater visual SLAM using
global image signatures. J. Mar. Sci. Eng. 2019, 7. [CrossRef]

2. Köser, K.; Frese, U. Challenges in Underwater Visual Navigation and SLAM. In Intelligent Systems, Control and
Automation: Science and Engineering; Springer: Cham, Switzerland, 2020; Volume 96, pp. 125–135. [CrossRef]

3. Wu, Y.; Ta, X.; Xiao, R.; Wei, Y.; An, D.; Li, D. Survey of underwater robot positioning navigation.
Appl. Ocean Res. 2019. [CrossRef]

4. Marage, J.P.; Mori, Y. Sonar and Underwater Acoustics; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013.
[CrossRef]

5. Le Bas, T.P.; Somers, M.L.; Campbell, J.M.; Beale, R. Swath bathymetry with GLORIA. IEEE J. Ocean. Eng.
1996, 21, 545–552. [CrossRef]

6. Searle, R.C.; Le Bas, T.P.; Mitchell, N.C.; Somers, M.L.; Parson, L.M.; Patriat, P. GLORIA image processing:
The state of the art. Mar. Geophys. Res. 1990, 12, 21–39. [CrossRef]

7. Burguera, A. Underwater Localization using Probabilistic Sonar Registration and Pose Graph Optimization.
In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal,
6–9 November 2018. [CrossRef]

8. Marx, D.; Nelson, M.; Chang, E.; Gillespie, W.; Putney, A.; Warman, K. Introduction to synthetic aperture
sonar. IEEE Signal Process. Workshop Stat. Signal Array Process. SSAP 2000, 717–721. [CrossRef]

9. Ribas, D.; Ridao, P.; Neira, J. Understanding Mechanically Scanned Imaging Sonars. In Underwater SLAM for
Structured Environments Using an Imaging Sonar; Springer: Berlin, Germany, 2010; pp. 37–46. [CrossRef]

10. Sousa-Sena, A.L. Shallow Water Remote Sensing Using Sonar Improved With Geostatistics and Stochastic
Resonance Data Processing. Ph.D. Thesis, Universitat de les Illes Balears, Palma, Illes Balears, Spain, 2018.

11. Ji, D.; Liu, J. Multi-Beam Sonar Application on Autonomous Underwater Robot. Mar. Geod. 2015, 38, 281–288.
[CrossRef]

12. Van Veen, B.D.; Buckley, K.M. Beamforming: A Versatile Approach to Spatial Filtering. IEEE ASSP Mag.
1988, 5, 4–24. [CrossRef]

13. Mallios, A.; Vidal, E.; Campos, R.; Carreras, M. Underwater caves sonar data set. Int. J. Robot. Res. 2017,
36, 1247–1251. [CrossRef]

14. Jiang, M.; Song, S.; Li, Y.; Jin, W.; Liu, J.; Feng, X. A Survey of Underwater Acoustic SLAM System. In Lecture
Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11741 LNAI, pp. 159–170. [CrossRef]

15. Sternlicht, D.D. Historical development of side scan sonar. J. Acoust. Soc. Am. 2017, 141, 4041–4041.
[CrossRef]

16. Savini, A. Side-Scan Sonar as a Tool for Seafloor Imagery: Examples from the Mediterranean Continental
Margin. In Sonar Systems; IntechOpen Ltd.: London, UK, 2011. [CrossRef]

17. Burguera, A.; Oliver, G. High-resolution underwater mapping using Side-Scan Sonar. PLoS ONE 2016, 11.
[CrossRef]

18. Johnson, H.P.; Helferty, M. The geological interpretation of Side-Scan Sonar. Rev. Geophys. 1990. [CrossRef]
19. Bava-De-Camargo, P.F. The use of side scan sonar in Brazilian Underwater Archaeology. In Proceedings of

the IEEE/OES Acoustics in Underwater Geosciences Symposium, Rio de Janeiro, Brazil, 29–31 July 2016.
[CrossRef]

20. Cobra, D.T.; Oppenheim, A.V.; Jaffe, J.S. Geometric Distortions in Side-Scan Sonar Images: A Procedure for
Their Estimation and Correction. IEEE J. Ocean. Eng. 1992, 17, 252–268. [CrossRef]

85



J. Mar. Sci. Eng. 2020, 8, 557

21. Sheffer, T.; Guterman, H. Geometrical Correction of Side-scan Sonar Images. In Proceedings of the 2018
IEEE International Conference on the Science of Electrical Engineering in Israel, ICSEE 2018, Eilat, Israel,
12–14 December 2018. [CrossRef]

22. Bikonis, K.; Moszynski, M.; Lubniewski, Z. Application of shape from shading technique for side scan sonar
images. Pol. Marit. Res. 2013, 20, 39–44. [CrossRef]

23. Reed, S.; Petillot, Y.; Bell, J. Mine detection and classification in side scan sonar. Sea Technol. 2004, 45, 35–39.
24. Aulinas, J.; Lladó, X.; Salvi, J.; Petillot, Y.R. Feature based SLAM using side-scan salient objects. In

Proceedings of the MTS/IEEE OCEANS, Seattle, WA, USA, 20–23 September 2010. [CrossRef]
25. Moreno, D.; Burguera, A.; Oliver, G. SSS-SLAM: An Object Oriented Matlab Framework for Underwater

SLAM using Side Scan Sonar. In Proceedings of the XXXV Jornadas de Automática, Valencia, Spain,
3–5 September 2014.

26. Saini, K.; Dewal, M.L.; Rohit, M. Ultrasound Imaging and Image Segmentation in the area of Ultrasound:
A Review. Int. J. Adv. Sci. Technol. 2010, 24, 41–60.

27. Priyadharsini, R.; Sharmila, T.S. Object Detection in Underwater Acoustic Images Using Edge Based
Segmentation Method. Procedia Comput. Sci. 2019, 165, 759–765. [CrossRef]

28. Williams, D.P. Fast Unsupervised Seafloor Characterization in Sonar Imagery Using Lacunarity. IEEE Trans.
Geosci. Remote Sens. 2015, 53, 6022–6034. [CrossRef]

29. Khidkikar, M.; Balasubramanian, R. Segmentation and classification of side-scan sonar data. In Proceedings
of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Montreal, QC, Canada, 3–5 October 2012; Volume 7506 LNAI, pp. 367–376.
[CrossRef]

30. Pinto, M.; Ferreira, B.; Matos, A.; Cruz, N. Side scan sonar image segmentation and feature extraction.
In Proceedings of the MTS/IEEE Biloxi—Marine Technology for Our Future: Global and Local Challenges,
OCEANS 2009, Biloxi, MS, USA, 26–29 October 2009.

31. Daniel, S.; Le Léannec, F.; Roux, C.; Solaiman, B.; Maillard, E.P. Side-scan sonar image matching. IEEE J.
Ocean. Eng. 1998, 23, 245–259. [CrossRef]

32. Sultana, F.; Sufian, A.; Dutta, P. Evolution of Image Segmentation using Deep Convolutional Neural Network:
A Survey. Knowl.-Based Syst. 2020, 201–202. [CrossRef]

33. Alhasoun, F.; Gonzalez, M. Streetify: Using Street View Imagery and Deep Learning for Urban Streets
Development. In Proceedings of the IEEE International Conference on Big Data, Los Angeles, CA, USA,
9–12 December 2019; pp. 2001–2006. [CrossRef]

34. Van Opbroek, A.; Achterberg, H.C.; Vernooij, M.W.; De Bruijne, M. Transfer learning for image segmentation
by combining image weighting and kernel learning. IEEE Trans. Med. Imaging 2019, 38, 213–224. [CrossRef]

35. Yu, F.; Zhu, Y.; Wang, Q.; Li, K.; Wu, M.; Li, G.; Yan, T.; He, B. Segmentation of Side Scan Sonar Images on
AUV. In Proceedings of the 2019 IEEE Underwater Technology (UT), Kaohsiung, Taiwan, 16–19 April 2019;
pp. 1–4. [CrossRef]

36. Coiras, E.; Petillot, Y.; Lane, D.M. Multiresolution 3-D reconstruction from side-scan sonar images. IEEE Trans.
Image Process. 2007, 16, 382–390. [CrossRef] [PubMed]

37. Burguera, A. Segmentation of Side-Scan Sonar Data—Source Code. Available online: https://github.com/
aburguera/NNSSS (accessed on 16 July 2020).

38. Burguera, A. A novel approach to register sonar data for underwater robot localization. In Proceedings of
the Intelligent Systems Conference (IntelliSys 2017), London, UK, 7–8 September 2017; Volume 2018-January,
pp. 1034–1043. [CrossRef]

39. Chang, Y.C.; Hsu, S.K.; Tsai, C.H. Sidescan sonar image processing: Correcting brightness variation and
patching gaps. J. Mar. Sci. Technol. 2010, 18, 785–789.

40. Kleeman, L.; Kuc, R. Sonar Sensing. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 491–519. [CrossRef]

41. Greenspan, M.; Tschiegg, C.E. Tables of the Speed of Sound in Water. J. Acoust. Soc. Am. 1959, 31, 75–76.
[CrossRef]

42. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and
Mathematical Tables; Applied Mathematics Series 55; U.S. Government Printing Office: Washington, DC, USA,
1964; pp. 591–592.

86



J. Mar. Sci. Eng. 2020, 8, 557

43. Langer, D.; Hebert, M. Building qualitative elevation maps from side scan sonar data for autonomous
underwater navigation. In Proceedings of the 1991 IEEE International Conference on Robotics and Automation,
Sacramento, CA, USA, 9–11 April 1991; Volume 3, pp. 2478–2483. [CrossRef]

44. Chollet, F. Deep Learning with Phyton; Manning Publications Co.: Shelter Island, NY, USA, 2018; p. 386.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

87



Journal of

Marine Science 
and Engineering

Article

An Approach for Diver Passive Detection Based on
the Established Model of Breathing Sound Emission

Qiang Tu 1, Fei Yuan 1, Weidi Yang 2 and En Cheng 1,*

1 Key Laboratory of Underwater Acoustic Communication and Marine Information Technology,
Ministry of Education, Xiamen University, Xiamen 361005, China; tuqiang@stu.xmu.edu.cn (Q.T.);
yuanfei@xmu.edu.cn (F.Y.)

2 College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; wdyang@xmu.edu.cn
* Correspondence: chengen@xmu.edu.cn; Tel.: +86-139-5016-5480

Received: 12 December 2019; Accepted: 10 January 2020 ; Published: 15 January 2020

Abstract: Diver breathing sounds can be used as a characteristic for the passive detection of divers.
This work introduces an approach for detecting the presence of a diver based on diver breathing
sounds signals. An underwater channel model for passive diver detection is built to evaluate the
impacts of acoustic energy transmission loss and ambient noise interference. The noise components
of the observed signals are suppressed by spectral subtraction based on block-based threshold theory
and smooth minimal statistic noise tracking theory. Then the envelope spectrum features of the
denoised signal are extracted for diver detection. The performance of the proposed detection method
is demonstrated through experimental analysis and numerical modeling.

Keywords: underwater acoustic signal processing; channel model; signal enhancement; signal
denoising; passive detection

1. Introduction

A diver is an underwater swimmer who carries a self contained underwater breathing apparatus
(SCUBA) system and can stay underwater for a long time. Because of the presence of water, people
ashore find it difficult to find, to search for, and to communicate with divers. In addition, when a diver
is in danger, the probability of misfortune is high, even with the help of rescuers. There are active and
passive sonar system for underwater detection. In shallow water, the active sonar system faces the
challenge of reverberation, and the performance requirements of small targets are high. Compared
with the active mode, passive sonar has small energy consumption, is cheaper and more hidden, and is
being pursued as an alternative [1].

In passive diver detection system, the diver’s breathing sound, coming from the gas exchange
process in SCUBA, is useful for the passive detection of the diver’s presence [2,3]. The periodic
pulse characteristic, caused by the vibration of high pressure gas in inhaling [4], is effective to detect
the diver’s presence. Ref. [5] proposed matched filter to extract periodic characteristic, but reliable
reference signal from the diver’s breathing sound is hard to obtain. Ref. [6] pre-whiten the noise and
detect the diver based on envelope spectrum to a maximum range of 20 m. Although the sounds can
be spatially filtered using an underwater array [7], we focus on detecting the presence of diver in a
single channel, which also can be used in the multichannel scene.

The performance of passive detection is affected by the underwater environment, mainly including
ambient noise interference and transmission loss. The noise spectrum in the ocean is colored by
turbulence, rainfall, marine animals, and ships [8]. Since the diver-oriented sound spectrum distributes
from hundreds of Hz to more than 75 kHz [7]. Diver detection is mainly affected by wind wave noise
from the sea surface [9]. Another difficulty comes from the transmission loss, whose attenuation factors
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mainly include water absorption [5], geometric diffusion loss, bottom and surface scattering. In order
to predict the characteristics of sound transmission, an acoustic rays model is mostly adopted [10].

Due to low signal to noise ratio (SNR) of observed signals, noise suppression is necessary for
detection system, includes noise spectral estimation and noise removing steps. There are many ways
used to estimate noise spectral power. Minimum statistics algorithm tracks the minima values of a
smoothed power estimate of the noisy signal [11]. Cohen further combined the minimum tracking
and the recursive averaging, proposed minima-controlled recursive averaging algorithm (MCRA) [12]
and improved algorithm (IMCRA) [13]. Hendriks proposed the subspace noise tracking algorithm
(SNT) [14] to search for the signal dimension number and to estimate the noise spectral power in
each subspace. Then, the IMCRA method is adopted because of good performance under low SNR
conditions [15]. To remove noise from noisy signals, the block-based threshold algorithm (BT) [16] is
adopted. Compared with others noise suppression methods, such as random matched filtering [17],
cepstral minimum mean-square error motivated noise suppress [18], wavelet threshold [19], the BT
method can adaptively estimate the best noise reduction coefficient on time-frequency point at low
SNR [20]. The BT method minimizes Stein’s unbiased risk estimator (SURE) [21,22] to obtain adaptive
block area size and threshold level. It means that the estimated attenuation coefficients of center point
in blocks are the results of operation of others points in the blocks.

The present work will focus on diver passive detection, and underwater acoustic channel model
from sound source to hydrophone. Firstly, the model of transmission loss and ambient noise is built
to evaluate the measured SNR of observed diver’s breathing sounds. Secondly, we introduce an
adaptive noise subtraction approach to enhance the diver’s breathing sounds, which does not need
prior knowledge of signals. The ambient noise is suppressed by spectral subtraction approach which is
based on BT theory and IMCRA method. Then, extract the envelope spectrum of diver breathing signal
for basis feature of diver detection. Finally, detection performance is proved by practical experiment
and numeral analysis.

The rest of the paper is organized as follows. Section 2 introduces the acoustic channel model
about transmission loss and ambient noise. Section 3 presents detection approach algorithm including
noise estimation algorithm, BT algorithm for noise subtraction, envelope spectrum detection method.
In Section 4, data acquisition experiment and source signal analysis are introduced. Then, Section 5
evaluates the SNR of measurement of diver signals through underwater channel and the performance
of the noise subtraction for detection. Finally, the conclusions are given in Section 6.

2. Underwater Acoustic Channel Model

In underwater acoustic environments, the relationship between received sound level (RL) and
source sound level (SL) follows passive sonar equation RL = SL − TL + NL. SL represents the diver
breathing sound level, is related to measuring in standard range (1 m). TL is transmission loss and NL
is ambient noise level at hydrophone. As Figure 1 shows, transmission loss and ambient noise are the
main parts of underwater acoustic channel model for diver detection.

The acoustic energy transmission loss of the diver breathing soundwave is divided into three
kinds as geometric diffusion loss, water absorption loss and scattering loss. In order to predict the
transmission loss, the normal mode model and the ray model are often used to model the acoustic
transmission process. Considering that the ray model is more suitable for simulating the scene of high
frequency signal detection in short distance, we use it to model the underwater transmission of diver
breathing sounds. The received signal R(t) can be expressed as

R(t) =
L

∑
i=1

αi Aiδ(t − τi) (1)

where L is the number of intrinsic rays, Ai is the amplitude of ith ray and αi represents attenuation
coefficient. τi is the time delay of each ray. Diver breathing sound is regarded as a point sound
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source, and the sound wave diffuses in the form of spherical wave, that is, geometric diffusion loss.
Water absorption loss is related to the temperature, salinity, PH, frequency, the distance of hydrophone.
An experience formula Thorp [5] of predicting the absorption coefficient can be expressed as

α( f ) =
0.1 f 2

1 + f 2 +
40 f 2

4100 + f 2 + 2.75 × 10−4 f 2 + 0.003 (2)

where f is signal frequency in kHz. Scattering attenuation is due to the scattering of sound waves by
the uneven and rough surface of the sea bottom and the sea surface, which leads to the attenuation of
sound waves.

Figure 1. Underwater acoustic channel model for diver detection. Transmission loss contains geometry
diffusion loss, water absorption and scattering by bottom and surface. Observed signals are affected by
ambient noise, for example, wind noise from sea surface.

Besides, ambient noise is also essential in underwater acoustic channel model. Wind noise and
ship noise are the main noise in ambient noise. The frequency of the diver’s breathing sound we are
concerned about is more than 2 kHz. While the ship noise spectrum power is mainly distributing
below 200 Hz [23], the ship noise can be ignored. The ambient noise is mainly wind noise above
1 kHz [24]. The wind noise is caused by the vibration of bubbles when the waves hit the sea surface.
The designed noise generator uses logarithmic relationship between wind speed and ambient noise
level, which is given as [25]

log Nw( f ) = 5 + 0.75w1/2 + 2 log f − 4 log( f + 0.4) (3)

where f denotes sound frequency in Hz, w is wind speed in m/s, Nw is ambient noise level in dB.
In the process of transmission, wind noise is also affected by water absorption attenuation. If the
scattering of sound waves from the bottom of water is ignored, the transmission loss of wind noise is
expressed as [26]

TLnoise = αw × d (4)

where TLnoise denotes the transmission loss of wind noise in dB, αw is the attenuation coefficient in
dB/km, d is the hydrophone depth in km.

3. Noise Reduction and Detection Methodology

This section describes the diver detection process, including noise suppression theory and
envelope spectrum detection theory. The framework of proposed diver detection method demonstrates
in Figure 2.
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Figure 2. Framework of diver detection method.

3.1. Noise Reduction

Set y as observed time series of noisy signals. By short time Fourier transform (STFT), time series
are decomposed into a family of time-frequency atoms Y(k, l), where k and l are time and frequency
scale. In time-frequency domain, the principle of spectral subtraction is to shrink time-frequency
points by attenuation coefficient αkl . The purpose of α value design is to remove the noise components
and keep the signal components. Then, the enhanced signal in time-frequency domain Ỹkl is given as

Ỹkl = αklYkl (5)

To obtain effective αkl , surrounding points of Y(k, l) are divided into a block area. Then, the αkl is
given as

αkl = (1 − λ

γBkl

)+ (6)

where λ > 0 denotes the threshold that decides signals presence or not, operation (g)+ = max(g, 0),
Bkl is block area at point (k, l). Assuming noise power is known and is δ2, γ is the posterior SNR
which is given as γkl = Y2(k, l)/δ2. Equation (6) demonstrates that the denoising performance of the
α is related to block size LB and threshold level λ. Because pure reference signal Ypure is unknown,
the Stein unbiased risk estimation (SURE) [21] algorithm is used to estimate risk equation given as [16]

R̃i = ∑
l,k∈Bi

E|Ypure[k, l]− aiY[k, l]|2

SURE
===== L2

B +
L2

B

∑
n=1

||hn(γn)||2 + 2
L2

B

∑
n=1

∂hn(γn)

∂γn
(7)

where γn denotes nth point in block Bi. Function hn(γn) is given as

hn(Yn) = Sn − Yn =

{
− λ2

S2
n
· γn (Sn > λ)

−γn (Sn ≤ λ)
(8)

where Sn = αnYn. Then, the square equation and the derivative equation of hn are given as

|hn (Yn) |22 =

{
λ4

S4
n
(Yn

σn
))2 (Sn > λ)

(Yn
σn
)2 (Sn ≤ λ)

(9)
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∂hn(γn)

∂γn
=

{
−λ2 S2

n−2γ2
n

S4
n

· γ2
n (Sn > λ)

−1 (Sn ≤ λ)
(10)

In Equation (7), the SURE risk is close to the minimum value in the iterative of Bi. The block
size LB must be close in the way that the signal and the noise have slow variations inside the blocks.
If the noise is color, e.g., ocean ambient noise, the risk estimator can be near unbiased with a narrow
frequency band block [16].

3.2. Noise Level Estimation

The discussion in the previous section assumed the noise level to be known. However, the prior
information of ambient noise can not be known. We use the IMCRA approach [13] to get the posterior
estimation of noise level. In time-frequency domain, the noise power σ2 is estimated from statistical
average of the noise spectrum power of the past time scale, which is given as

σ̃2
d (k, l + 1) = α̃d(k, l)σ̃2

d (k, l) + (1 − α̃d(k, l))|Y(k, l)|2 (11)

where α̂d(k, l) denotes time-varying and frequency independent smooth parameter, which is given as

α̃d(k, l) = αd + (1 − αd)p(k, l) (12)

where αd denotes scalar smoothing parameter, p(k, l) is the presence probability of useful signals,
which is given as

p(k, l) = (1 +
q(k, l)

1 − q(k, l)
(1 + ξ(k, l)) exp(−v(k, l)))−1 (13)

where q(k, l) denotes signal absence probability, v(k, l) = f racγξ1 + ξ, γ and ξ are the posterior SNR
and priori SNR, which are given as

γ(k, l) =
|Y(k, l)|2
σ2

d (k, l)
(14)

ξ(k, l) = αG2
H1
(k, l − 1)γ(k, l − 1) + (1 − α)max {γ(k, l), 0} (15)

where α denotes a weighting factor controlling the balance between noise reduction and signal
distortion, GH1 is spectral gain function. To estimate p(k, l) robust, signal absence probability q(k, l)
is estimated by two iterations of smoothing and minimum tracking. The smoothing in iterations
takes into account the strong correlation of neighboring frames in independent frequency bins by a
first-order recursive averaging. In first iteration, frequency smoothing of each frame is defined by

S(k, l) = αsS(k, l − 1) + (1 − αs)S f (k, l) (16)

where αs(0 < αs < 1) denotes smoothing parameter for adjacent frame, S f (k, l) is the spectrum power
of the noisy signal given as

S f (k, l) =
w

∑
i=−w

b(i)|Y(k − i, l)|2 (17)

where b is a normalized window function of length 2w + 1, e.g., Hanmming window. Then, track the
local minimal frequency bins in consecutive time frame with a window size D, which is given as

Smin(k, l) = minS(k, l′)|l − D + 1 <= l′ <= l (18)

In the first iteration, a rough estimation of signal presence I(k, l) is defined as
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I(k, l) =

{
1, i f γmin(k, l) < γ0 and ζ(k, l) < ζ0, (signal is absent)

0, otherwise(signal is present)
(19)

where γ0 and ζ0 is threshold that use γ0 = 4.6 and ζ0 = 1.67 typically. γmin and ζ denote posterior
SNR and priori SNR in minima tracking of first iteration, which are given as

γmin(k, �) =
|Y(k, �)|2

BminSmin(k, �)
; ζ(k, �) =

S(k, �)
BminSmin(k, �)

. (20)

where Bmin is the bias of minimum estimation. Then, in the second iteration, the smoothing process is
similar with the first iteration. The spectrum power of the noisy signal is installed as

S̃ f (k, l) =

⎧⎨⎩
∑w

i=−w b(i)I(k−i,l)|Y(k−i,l)|2
∑w−w b(i)I(k−i,l)

S̃(k, l − 1), otherwise
(21)

The signal absence probability q̃(k, l) is equation of updated γmin and ζ, as

q̂(k, l) =

⎧⎪⎪⎨⎪⎪⎩
1 , i f γ̃min(k, l) ≤ 1 and ζ̃(k, l) < ζ0

(γ1−γ̃min(k,l))
(γ1−1) , i f 1 < γ̃min(k, l) < γ1 and ζ̃(k, l) < ζ0

0 , otherwise

(22)

where γ̃min and ζ̃ denote posterior SNR and priori SNR in minima tracking of second iteration. γ1 is
threshold that use γ1 = 3 typically. In Equation (22), the threshold processing of γ̃min and ζ̃ guarantees
the performance of ambient noise estimation in the presence of weak signals.

3.3. Detection Method

Previous research has shown that frequency sub-band envelope spectrum detection (ESD) is an
effective detection method to detect the presence of diver [3,6]. ESD takes Denv as the feature of the
diver’s breathing sound, where Denv denotes envelope spectrum energy in the range of typical human
breathing rates 0.3 Hz–1 Hz. Denv takes large value when diver is present, otherwise takes small value.
Because ambient noise not affect the envelope spectrum in the range of 0.3 Hz–1 Hz, Denv is useful
even in the severe ambient noise [3].

Figure 3 shows the calculation process of Denv. We first extract the envelope of noise-reduced
signal. The envelope has obvious periodic characteristic if diver can be detected, otherwise the
envelope is random and irregular. Secondly, we transform the envelope into a spectrum. The periodic
characteristic of the envelope has a related peak in the spectrum. Since human breathing rates vary
with the human body state, e.g., fast swimming or slow swimming, the peak can appear in each
position of typical human breathing rates 0.3 Hz–1 Hz. Then, integrate spectrum over 0.3 Hz–1 Hz
range to calculate Denv for detection.

The results of detection are represented by detection probability PD, which is given as

PD =

⎧⎪⎪⎨⎪⎪⎩
1, i f Denv > 2T

Denv−T
Denv

, i f T < Denv <= 2T

0, i f Denv <= T

(23)

where T denotes threshold of diver detection. The selection of detection threshold is related to the
level of ambient noise. We use the T = DN

env + ε, where DN
env is calculated by the noise signal, ε denotes

a positive constant.
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Figure 3. Flow chart of calculating Denv from signals.

Algorithm 1 Diver detection algorithm BIED based on BT and IMCRA.

Input: Observed signal
STEP 1: Bandpass filtered signal and STFT. Separate signal into many time frames.
STEP 2: For time frame l, compute posterior SNR γ(k, l) as Equation (14) and prior SNR ξ̃(k, l) as

Equation (15)
STEP 3: Compute the first iteration of smoothing power spectrum S(k, l) as Equations (16) and (17),

track the minimum Smin(k, l) as Equation (18).
STEP 4: Compute minima tracking noise’s posterior SNR γmin and priori SNR ξ as Equation (20).
STEP 5:Compute a roughly decision about signal presence I(k, l) as Equation (19).
STEP 6: Install noise power spectrum S̃ f (k, l) as Equation (21).
STEP 7: Repeat the STEP 3–4.
STEP 8: Compute signal absence probability q̃(k, l) as Equation (22). Compute signal presence

probability p(k, l) as Equation (13).
STEP 9: Compute smooth parameters α̃d(k, l) as Equation (12).
STEP 10: Estimate noise power σ2 as Equation (11).
STEP 11: Compute hn(γn), |hn(γn)|(22), ∂hn/∂( γn

σn
) as Equations (8)–(10).

STEP 12: Compute risk in ith block as Equation (7), estimate threshold λ and block size LB by

iteration in blocks.
STEP 13: Compute attenuation coefficient αk,l of atoms in time-frequency plane as Equation (6),

obtain denoising signal Ỹkl as Equation (5).
STEP 14: Transform the time-frequency representation into time series by inverse STFT.
STEP 15: Extract the envelope form result signals. Calculate Denv on envelope spectrum from 0.3 Hz

to 1 Hz.
STEP 16: Calculate detection probability using Equation (23).
Output: Probability of the diver’s presence.

In summary, the proposed diver detection method reduces noise based on BT and IMCRA,
detecting the diver by feature from an envelope spectrum. We call it the BIED method. The detailed
steps of the detection algorithm is shown in Algorithm 1.

4. Data and Analysis

The data of diver breathing sounds is collected in the swimming pool. The diver assisting in the
experiment has more than five years of diving experience. In the experiment, a data acquisition card
and a hydrophone were used to record underwater sounds. Figure 4 shows the diver equipped with
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SCUBA system breaths underwater. The hydrophone is about 1m away from the diver. The sample
rate is 50 kHz.

Figure 4. In experiment, one channel data acquisition system is used to record the diver’s breathing
sound underwater. Sample rate is 50 kHz.

Diver breathing sounds come from the air flow in the SCUBA system. The air flow process is
controlled by the diver breath. The time series of the diver’s breathing sound clearly shows the whole
breathing process as Figure 5a shows. Through 2 kHz high pass filter and low pass filter, the inhaling
and exhaling sounds can be separated as Figure 5b,c show. In Figure 6, the inhaling sounds frequency
distribute in the range of 2 kHz–25 kHz. The frequency of exhaling sounds is mainly below 2 kHz.
The inhaling sound and the exhaling sound can represent the diver’s breathing process separately.
Since the inhaling sounds have better pulse characteristic, while the waveform of exhaling sound is
irregular. We use inhaling sound as the interested signal to diver detection.

Figure 5. Breathing Sound recorded in experiment. The inhaling and exhaling sound are separated
by high-pass and low-pass filters with 2 kHz cutoff frequency. (a) original recorded signal; (b) high
frequency inhaling part of signal; (c) low frequency exhaling part of signal.
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Figure 6. The spectrum of the diver’s breathing sound. Inhaling sound frequency distributes in
2 kHz–25 kHz when sample rate is 50 kHz and exhaling sound frequency power is below 2 kHz.

5. Results and Analysis

5.1. Impacts of Underwater Environment

The main impacts of the underwater environment on diver detection are transmission loss and
ambient noise interference. The above impacts are taken into account in the established underwater
acoustic channel model for diver detection. Then, we can observe the change of breathing sound with
channel parameters. Because the diver breathing sounds collected in the experiment have very obvious
human breath rate characteristics, we regard them as source signals. Transmission loss is considered
to be the result of geometry diffusion loss and water absorption loss. Because scattering attenuation
has little effect on signal strength in short distance, we ignored scattering loss caused by bottom and
surface. The diver detection environment is set as follows, source depth and receiver depth are 5 m,
seafloor depth is 100 m, ambient noise related wind speed is 5 m/s. The Bellhop tool [27] is applied to
calculate the attenuation coefficient of independent frequency. In the operations of Bellhop, the sound
is modeled as Gaussian rays and is tracked by the sound rays at different incident angles from −80◦

to 80◦. The ambient noise is considered to be slowly changing, and the associated sea surface wind
speed is 5 m/s.

In Figure 7, the power spectral density (PSD) of source sound and attenuated sounds at the
distance of 10 m, 30 m, 100 m are shown. With the increase of distance, the sound intensity of
diver breathing sound decreases fast. At a distance of 100 m, the attenuation coefficient is close to
35 dB. Compared with the source signal, the acoustic signal attenuates nearly 20 dB at the distance
of 10 m, nearly 30 dB at the distance of 30 m. That means the trend of sound intensity attenuation
decreases exponentially. Therefore, transmission loss is mainly due to geometry diffusion loss in 100 m,
and frequency dependent water absorption loss has little effect on signal attenuation. The frequency is
not a major limitation in selecting sub-band for diver detection in 100 m.

Figure 8 shows the ambient noise, source sound and observed signals at the distance of 10 m,
30 m, and 100 m. Because of the effect of strong noise and strong attenuation, the observed signals have
lost the waveform of source sound even at the distance of 10 m. Therefore, the first task of detection is
to find the significant sub-band of the signal. The observed signals are divided into several sub-bands
to discuss the effects of attenuation and noise, including 3 kHz–8 kHz, 8 kHz–13 kHz, 13 kHz–18 kHz
and 18 kHz–23 kHz. Figure 9 compares the SNR of each sub-band. The SNR of sub-band 3 kHz–8 kHz
is the lowest because the PSD of ambient noise is high in this frequency band. Otherwise, the SNR of
other sub-bands are similar. We choose sub-band 13 kHz–18 kHz for diver detection because of the
higher SNR.
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Figure 7. PSD of source sound and observed signals at the range of 10 m, 30 m, 100 m.

Figure 8. Ambient noise, source sound and observed signals at the range of 10 m, 30 m, 50 m.

Figure 9. SNR of frequency band 3 kHz–8 kHz, 8 kHz–13 kHz, 13 kHz–18 kHz and 18 kHz–23 kHz.
The 13 kHz–18 kHz band has the best SNR performance.
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5.2. Detection System Performance

The detection of the underwater diver is affected by the underwater environment. For example,
in a river or harbor, the environmental noise will cause the received SNR to decrease. We verify the
performance of the detection system by adjusting the SNR. It is assumed that the ambient noise level
is controlled by the wind and waves noise with 5 m/s wind speed, and the SNR can be changed by
changing the detection distance. The proposed BIED method firstly uses SME theory and BT theory to
estimate the ambient noise level and to remove the noise. Then, extract the characteristic value Denv

from the envelope spectrum to detect the presence of a diver. The threshold of diver detection is set to
T = DN

env + DN
env/3.

To evaluate the SNR of the denoised signal, an evaluation value SNRM is defined as

SNRM = 10 log ∑ y(n)× M(n)
∑ y(n)× |M(n)− 1| (24)

where M denotes the manually marked presence position of diver breathing sounds, |M − 1| is the
opposite of M. In sequence M, the signal presence position is marked as 1, otherwise 0. The SNRM
represents the ratio of diver breathing sound presence signal component and absence signal component
in time series. High SNR means that the envelope characteristics of diver breathing sound are more
obvious and the Denv is high.

The length of time series also affects Denv. Theoretically, the larger the number of diver’s breathing
cycles contained in the observation window, the larger the corresponding detection value Denv.
However, the long observation window does not meet the real detection requirement with reliability
and timeliness. For example, when a diver is escaping from the hydrophone, a short window must be
used to capture the presence of the diver in time. Hence, we use a time window of 22 s to detect diver,
which contains four breathing periodic pulse at least.

Figure 10 compares the pre-processed signals of ESD method and the ones of proposed BIED
method at the distance of 10 m and 30 m. The pre-processed signal of BIED has stronger inhaling sound
pulse than the ESD’s in high SNR condition as Figure 10a,b show. At the distance of 30 m, Figure 10d
shows that the enhanced signal in BIED has inhaling sound characteristics, while the observed signal
in ESD is almost submerged by noise as Figure 10c shows.

In Figure 11, the SNRM of pre-processed signals in the ESD method and the proposed BIED
method are compared. The curve of BIED method has higher SNRM value than the curve of ESD
method within a distance of less than 55 m. That proves the noise elimination process in BIED
is effective to enhance the observed diver breathing sound. In the low SNR conditions, the noise
elimination method is difficult to distinguish the background noise component form the observed
signals. Then, two methods have approximate SNRM value at a long distance.

In Figure 12, two curves show that the detection probability decreases as detection distance
increases. The proposed BIED method has a higher detection probability in the near range. The reason
for this is that the noise reduction process further enhances the SNR of 13 kHz–18 kHz band signal.
The ESD method detects the diver to a maximum range of near 20 m, which is similar to the detection
results of Johansson [6]. Compared with that, the BIED method can detect diver until the 40 m range.
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Figure 10. Pre-processed signals in the ESD method and the BIED method. (a) ESD at the distance of
10 m; (b) BIED at the distance of 10 m; (c) ESD at the distance of 30 m; (d) BIED at the distance of 30 m.

Figure 11. SNR of pre-processed signals in the ESD method and the BIED method.

Figure 12. Detection probability. The detection threshold is set to T = DN
env + DN

env/3.

100



J. Mar. Sci. Eng. 2020, 8, 44

6. Conclusions

In this paper, we propose a diver detection method BIED based on suppressing ambient noise and
extracting envelope spectrum features. The built acoustic channel model mainly considers transmission
loss and noise interference in the underwater passive detection scenario. In the numeral analysis,
the 13 kHz–18 kHz band of observed signals is selected for diver detection. While the ESD method
can detect a range up to 20 m, the proposed BIED method detects one diver to a maximum range
near 40 m.

Although our work shows effectiveness in diver detection, there are still many challenges to face.
One of them is that the strength of the target sound source is too weak and easily covered by noise,
which is the mainly reason for limiting detection distance. There is also a need to detect multiple
divers’ presences. We are working to achieve passive detection in these challenges.
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Abstract: In this paper, we propose an improved three-dimensional underwater electric field-based
target localization method. This method combines the subspace scanning algorithm and the meta
evolutionary programming (meta-EP) particle swarm optimization (PSO) algorithm. The subspace
scanning algorithm is applied as the evaluation function of the electric field-based underwater
target locating problem. The meta-EP PSO method is used to select M elite particles by the
q-tournament selection method, which could effectively reduce the computational complexity
of the three-dimensional underwater target localization. Moreover, the proposed meta-EP PSO
optimization algorithm can avoid subspace scanning trapping into local minima. We also analyze
the positioning performance of the uniform circular and cross-shaped electrodes arrays by using
the subspace scanning algorithm combined with meta–EP PSO. According to the simulation, the
calculation amount of the proposed algorithm is greatly reduced. Moreover, the positioning accuracy
is effectively improved without changing the positioning accuracy and search speed.

Keywords: underwater localization; electric field; subspace scanning; meta-EP PSO

1. Introduction

Underwater target detection and estimation has a wide range of applications in marine
salvage, marine exploration research, inspection of underwater facilities, underwater navigation and
localization, and construction of an underwater environment [1–4]. However, due to the complexity
of underwater environment, underwater target detection and estimation is still a challenging subject
in theory and engineering practice [5–7]. In recent years, various underwater locating methods have
been developed, including acoustic-, light-, and map-based locating methods [8–10]. At present,
acoustic and optical imaging techniques are most commonly used in underwater target locating [11,12].
Acoustic signals have the advantage of less attenuation and longer underwater propagation distance
than other methods. The underwater target positioning technology based on acoustic waves has
provided a relatively complete theoretical system and has achieved considerable development [13,14].
However, the positioning performance of the acoustic method degrades due to specific factors, such as
multipath effect, sonar scan angle, background noise, geomorphic structure complexity, and Doppler
effect [15,16]. As the wavelength of the light is very short, the underwater positioning technology
based on optical imaging has very high accuracy. Moreover, the situation is further complicated in
shallow scenarios with rocks and sandbanks [17]. On the other hand, underwater imaging based on
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optical imaging cannot work in turbid water or environments with no light [18]. On the contrary,
the underwater target locating methods based on electromagnetic fields can avoid these drawbacks [19].
Besides, the electromagnetic field-based localization methods do not suffer from the Doppler effect
due to velocity higher than that of the sound waves, and they do not require transparent water [20].
Therefore, the localization methods based on the electromagnetic field have received great attention.
Generally, the electromagnetic noise is extremely low and stable, especially in deep ocean environments
because of the high conductivity of seawater [21]. The electromagnetic wave-based locating methods
and the low-frequency electro-locating methods are two primary types of underwater locating methods
based on the electromagnetic field. In [20,22], the locating methods based on the power path loss
model of an electromagnetic wave propagating through seawater were proposed. Because of a small
skin depth of a high-frequency signal in seawater, the power of the radio-frequency signal decreases
dramatically, which makes it unsuitable for wide-range locating. The locating methods based on the
quasistatic electric field have been widely studied [1,7,23,24], because they have lower path losses in
seawater compared to the methods based on the high-frequency electromagnetic signals. The electric
sense locating methods based on bionics show good performance in underwater avoidance, docking,
and close-range object shape estimation in dark and turbid environments. However, electric sense
active locating methods are not suitable for long-distance target locating because the electric field
re-emitted by the target is usually much weaker than that of the source field. In Peng’s work [25],
the underwater target electric field locating method based on the coupling Cole–Cole model and finite
element method is proposed. To locate the underwater target, one should move the electrode array
and acquire the voltage in different point, limiting the application of the locating system. The Multiple
Signal Classification (MUSIC) algorithm is a noniterative algorithm that can be used to create a space
spectrum to locate an underwater electromagnetic source. In [26], a MUSIC-type algorithm was
proposed for locating small inclusions buried in a half-space by measuring the scattering amplitude at
a fixed frequency in a two-dimensional space. The locating method was based on the far-field theory.
However, the far-field theory is not suitable for underwater target locating because high-frequency
radiation waves cannot be transferred to a long distance. Therefore, in this paper, underwater target
locating based on the quasi-static electric field for near-distance locating is introduced.

In this paper, we introduce the mixed polarization MUSIC algorithm for underwater localization.
The mixed polarization MUSIC algorithm is different from the other MUSIC algorithms for radar,
such as root-MUSIC and beamspace MUSIC: MP-MUSIC could deal with signal polarization, which
is suitable for underwater electro-locating, allowing us to get the space position of a electric dipole
without considering or solving the moment azimuth of the electric dipole, reducing the computation
time [27,28]. The position of the target can be located via finding the minimum eigenvalue of
the estimated gain matrix and the project matrix of the noise subspace by using the MP-MUSIC
algorithm [29]. Searching for the solution to the proposed MUSIC algorithms denotes an optimization
problem, so using a suitable optimization method can significantly reduce the calculation time.
The evolutionary programming with a meta evolutionary programming (meta-EP) mutation algorithm
and the particle swarm optimization algorithm are combined to develop a hybrid particle swarm
algorithm for three-dimensional underwater target positioning. The simulations are conducted to
validate the effectiveness of the proposed localization algorithm at different electrode configurations.
The simulation results show that the proposed meta-EP particle swarm optimization (PSO) hybrid
algorithm for searching an optimal solution to the localization algorithm has strong competitiveness in
terms of accuracy and convergence speed.
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2. Underwater Target Electro-Locating Method

2.1. Underwater Electric Field Forward Model

The schematic of the three-dimensional multi-electrode underwater electric field positioning is
shown in Figure 1. In Figure 1, the electric dipole source is located at position rp , so the potential of
the ith electrode can be calculated by

ϕ(i) = k
(rp − ri)

Tp∣∣rp − ri
∣∣3 = g (i)p, (1)

where k = u0/ (4π) is a constant, p is the dipole moment, rp is the location of electric dipole source, ri
is the location of the ith electrode, and g (i) is the gain vector of the ith receiving electric dipole located
at position ri.

Figure 1. Schematic of the three-dimensional electric field-based multi-electrode underwater positioning.

The potential measured at different locations can be expressed as

Ψ =

⎡⎢⎣ ϕ1
...

ϕm

⎤⎥⎦ = k

⎡⎢⎣ ...

⎤⎥⎦p = k

⎡⎢⎣ g(1)
...

g(m)

⎤⎥⎦p = G(rp)p, (2)

where G(rp) denotes the gain matrix. According to (2), the potential Ψ is linearly proportional
to the dipole moment p. Location parameter rp in G(rp) is nonlinearly related to the potential
Ψ. Each column in G(rp) represents different dipole components of the same position. Therefore,
for p-dipoles, according to the superposition theorem, the receiving potential can be expressed in the
matrix form as

Ψ =
[

G1 · · · Gp

] ⎡⎢⎣ P1
...

Pp

⎤⎥⎦ , (3)

G(r) =
[

G1 · · · Gp

]
=

[
G1(r1) · · · Gp(rp)

]
, (4)

T =

⎡⎢⎣ P1
...

Pp

⎤⎥⎦ . (5)

Equation (3) can be rewritten as Ψ = G (r)T, where Gi(ri) denotes the gain matrix formulated by
the ith dipole located at position ri, the receiving potential Ψ is a column vector with a size of m × 1,
G(r) is a matrix with a size of m × 3p, and T is a column vector with a size of 3p × 1. Considering
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that the current intensity of electric dipole changes with time and that its position does not change,
Equation (5) can be rewritten as

T =

⎡⎢⎢⎢⎣
M1

[
S1(1) · · · S1(n)

]
...

Mp

[
Sp(1) · · · Sp(n)

]
⎤⎥⎥⎥⎦ =

⎡⎢⎣ M1 0
. . .

0 Mp

⎤⎥⎦
⎡⎢⎣ S1(1) · · · S1(n)

...
. . .

...
Sp(1) · · · Sp(n)

⎤⎥⎦ , (6)

where Mi represents the unit dipole moment of the ith electric dipole and Si(j) denotes the amplitude
of the ith electric dipole at time j. Therefore, Equation (3) can be expressed as

⎡⎢⎢⎣
ϕ( 1, 1 ) · · · ϕ( 1, n )

...
. . .

...
ϕ( m, 1 ) · · · ϕ( m, n )

⎤⎥⎥⎦ =
[

G1 · · · Gp

] ⎡⎢⎢⎣
M1 0

. . .
0 Mp

⎤⎥⎥⎦
⎡⎢⎢⎣

S1(1) · · · S1(n)
...

. . .
...

Sp(1) · · · Sp(n)

⎤⎥⎥⎦ . (7)

Equation (7) can also be abbreviated as

Ψ = GMS = (GM)S = HS, (8)

where G consists of p electric dipoles with a unit dipole moment and m receiving electrodes
array, which forms a m × 3p matrix. The 3p × p diagonal matrix M consists of p unit dipoles’
moments with constant pointing. The dipole moment intensity matrix S has a dimension of p × n;
H = [ H1 · · · Hp ] = GM, each column of H contains all the information about an electric dipole.

The electric field positioning can be considered as solving the minimum problem defined by

J f (i) = λmin{UT
Gi

P⊥UGi}, (9)

where λmin{·} denotes the minimum solution to the expression given in the curly brackets. Therefore,
no special solution is required to make the minimum, and only the minimum eigenvalue related to the
dipole moment needs to be calculated. The subspace scanning algorithm searches for possible locations
of targets in a three-dimensional space. Accordingly, by finding the global minimum eigenvalue by
eigenvalue decomposition, the target positioning in a three-dimensional space can be achieved.

2.2. Improved Three-Dimensional Subspace Scanning and Positioning Algorithm

In the three-dimensional underwater electric field-based target locating, it is necessary to obtain
the received voltage data matrix using the receiving electrode array. The acquired data is given by

Ψ = HS + N, (10)

In Equation (10), the additive noise matrix N is assumed to be zero mean with the covariance of
E
{

NNT
}
= σN

2I , where E{·} denotes the expected value of the argument, H denotes the gain matrix
with a size of (m < r), and S denotes a matrix of a size r × n(r < n). The expected value of the matrix
outer product RΨΨ=E

{
ΨΨT

}
can be represented under the zero-mean white noise assumption as

follows,
RΨΨ=E

{
[HS + N] [HS + N]T

}
=HRSHT+σN

2I, (11)

where RS = E
{

SST}, and RΨΨ can be decomposed as

RΨΨ= UΣUT=
[

US UN

] [ ΣS

ΣN

] [
US UN

]T
. (12)
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In Equation (12), the signal subspace US represents the vector space spanned by r eigenvectors
corresponding to maximum eigenvalues. The remainder of n − r eigenvector composes the noise
subspace UN . Thus, Equation (9) can be rewritten as J f (i) = λmin

{
UT

Gi
UNUT

NUGi

}
. The steps of the

underwater target localization based on the subspace scanning algorithm are as follows.

• Step 1: Obtain measured voltage data using the receiving electrode array Ψ .
• Step 2: Use Equation (11) to construct the corresponding covariance matrix RΨΨ.
• Step 3: Perform the eigenvalue decomposition on RΨΨ, and calculate the orthogonal projection

matrix of the signal subspace P⊥=UNUT
N.

• Step 4: Scan each possible point ri in a three-dimensional positioning area, calculate its gain vector
Gi, perform the singular value decomposition (SVD) operation to obtain the corresponding value
UGi , evaluate each eigenvalue λmin(UGi P

⊥UT
Gi
), search first for the global minimum eigenvalue,

and then the estimated point corresponding to the eigenvalue. The target position is estimated by
the subspace scanning algorithm.

The proposed algorithm performs the eigenvalue decomposition operation on a gain matrix Gi
at each possible position in the space and evaluates the corresponding singular value during the
target positioning process in a three-dimensional space. The positioning process is computationally
expensive. Assume a three-dimensional space 1 m × 1 m × 1 m, where the positioning area is divided
using a 1-cm grid. To complete the scanning and positioning processes, it is necessary to perform
1,000,000 SVD and eigenvalue decomposition operations and calculate the corresponding evaluation
process which is meshgrid scanning method. In the case of the same hardware platform configuration,
usually, a larger number of calculations means a longer calculation time, and the positioning speed
is slower.

With the aim to reduce the number of calculations of the subspace scanning algorithm in the
positioning process, an improved subspace scanning algorithm based on a multi-step search operation
and a simplex algorithm is proposed which is multi-step scanning method. The steps of the proposed
target location algorithm are as follows.

• Step 1: Obtain measured voltage data using the receiving electrode array Ψ .
• Step 2: Use Equation (11) to construct the corresponding covariance matrix RΨΨ.
• Step 3: Perform the eigenvalue decomposition on RΨΨ, and calculate the orthogonal projection

matrix of the signal subspace P⊥=UNUT
N.

• Step 4: Scan each possible point ri in a three-dimensional positioning area, calculate its gain
vector Gi, and perform the SVD operation to obtain the corresponding value UGi , then evaluate

each eigenvalue λmin

(
UGi P

⊥UT
Gi

)
, and search first for the global minimum eigenvalue, and then

the estimated point corresponding to the eigenvalue. The target position is estimated by the
subspace scanning algorithm.

• Step 5: Perform fine mesh division in the area near location rest, and repeat Step 4 to update the
estimated location rest.

• Step 6: Repeat Step 5 until the predefined minimum grid size is reached, and output the
corresponding result rest− f in.

• Step 7: Use the simplex method to search for the initial point rest− f in; the obtained position
represents the final target position estimated by the improved algorithm.

The multi-step scanning method can effectively reduce the calculation burden and improve
the positioning speed. Assume a three-dimensional space 1m × 1m × 1m again. Suppose a 5 cm
low-resolution coarse grid global scan is adopted, the corresponding spatial points are used as a
starting point to perform a local grid fine-grained search with a resolution of 2 cm, 1 cm, 0.5 cm, 0.2 cm,
and 0.1 cm in turn. The simplex method is used to search the local area for the initial point to obtain
the final target position. The total number of scans is 48,000 + N (simplex), where N (simplex) denotes
the number of searches performed by the simplex method, and the average value of N (simplex)
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of 100 is obtained by 1000 tests. Therefore, the multi-step scanning method for three-dimensional
target positioning, compared with the meshgrid scanning method, can effectively reduce the number
of calculations and can achieve positioning resolution of less than 0.1 cm. The multi-step scanning
method can effectively increase the convergence speed, and thus improve the positioning speed.

In order to illustrate the effectiveness of the proposed positioning algorithm, assume that an
electric dipole exists at the position (0.555, 0.555, 0.555) m with dipole moment orientation (1, 0, 0) A.m.
A 100 Hz differential sine wave signal is loaded across the electric dipole. The uniform linear array,
uniform circular array, and their modification array are commonly used in various applications [30,31].
The 8-channel uniform circular receiving electrodes with the circular radius R of 0.1 m are used for
signal reception. The position information of the receiving electrodes is provided in Table 1, where
electrode 9 that is at the center of the circle is set as a reference electrode, and the voltage is obtained
by measuring the potential difference between it and other electrodes. The schematic diagram of
the receiving electrode configuration is displayed in Figure 2. In Figure 2, the red dots represent the
positive ends of the receiving electrodes, and the central black dot denotes the reference electrode.
The received signal of electrode channels under the no-noise condition is presented in Figure 3.

The spatial spectrum image L = 1/λ is drawn in the plane (x, y, 0.555) m. According to the
analysis of the proposed algorithm, the dipole localization problem can be transformed into the
problem of finding the minimum generalized eigenvalue, which is equivalent to finding the maximum
of L. The bright spot position in Figure 4 has the largest value, and the corresponding point coordinate
set is (0.555, 0.555, 0.555) m that consists of the positions predicted by the proposed positioning
algorithm. The simulation results show that the dipole position can be predicted better by the algorithm
under the no-noise condition, and the simulation output is consistent with the actual position.

Table 1. Position of receiving electrodes for uniform circular electrode configuration (unit: m).

Electrode 1 2 3 4 5 6 7 8 9

x 0.1 0.0707 0 −0.070 −0.1 −0.070 0 0.070 0
y 0 −0.0707 −0.1 −0.070 0 0.070 0.1 0.070 0
z 0 0 0 0 0 0 0 0 0

Figure 2. The uniform circular electrode configuration.
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2.3. Electro-Location Based on PSO Algorithm

Although a multi-step search operation can effectively improve the search speed, it has been found
that this method can fall into local extremes when performing the localization tests on some points.
The PSO is a populated search method that employs a swarm of particles to probe the search space [32].
The PSO solves a problem by finding a population of candidate solutions, here the dubbed particles,
and moving these particles around in the search-space following simple mathematical formulae over
the particle’s position and velocity; therefore, the PSO is relatively fast, simple, and can easily converge
to the optimal solution. Therefore, the dipole localization has been determined by implementing the
improved PSO procedures. A detailed description of the implemented optimization algorithm for
solving the dipole localization problems is herein provided. To test the ability of meta-EP PSO for
underwater dipole localization, we conducted the simulation experiments and compared the proposed
algorithm with other versions of the PSO algorithm.
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1) Original PSO algorithm

Each particle is treated as a point in a D-dimensional space. Suppose the ith particle is represented
as xi = (xi1, xi2, · · · , xiD). The change rate of the velocity of the ith particle is represented as vi =

(vi1, vi2, · · · , viD). In the PSO algorithm, initially, a population of particles is randomly generated.
The population update rules of the PSO algorithm at every iteration step are described as follows,{

vt+1
i = vt

i + c1Rand()(pi − xt
i) + c2Rand()(pg − xt

g)

xt+1
i = xt

i + vt+1
i

, (13)

where c1 and c2 denote the constants of canonical PSO; t represents the time step; Rand() stands for
the random function in the range [0, 1]; and pi and pg denote the global best position and the personal
best position of a particle, respectively.

2) Standard PSO (SPSO) algorithm

Shi and Eberhart [33] introduced an inertia weight w to improve the PSO accuracy by damping
the velocities over time, allowing the swarm to converge with higher precision . By integrating w into
the PSO algorithm, the velocity is updated by{

vt+1
i = wvt

i + c1Rand()(pi − xt
i) + c2Rand()(pg − xt

g)

xt+1
i = xt

i + vt+1
i

, (14)

A proper selection of the inertia weight ensures balance between the exploration and exploitation,
where exploration represents the ability to test various regions in the problem space in order to achieve
a good optimum, preferably the global one, and exploitation represents the ability to concentrate the
search around a promising candidate solution in order to locate the optimum precisely. The choice of w
defines how much the particle’s current speed inherits. The more the particle inherits the current speed,
the greater the global optimization ability, and the smaller the local search ability will be. Generally,
fixed weight configuration and dynamic weight configuration are the two most common choices.
According to the work in [32], the acceleration constants c1 and c2 can adjust and change the maximum
step size of particles in time so that the particles can move in the direction of the best position of
themselves. If the acceleration constants c1 and c2 are both equal to zero, the particles will move at the
current speed until the boundary. In this case, the optimization process can be performed only in a
limited range, which affects the algorithm performance. If the acceleration constant c1 is set to be zero,
it is a “social” model. The particles lack cognitive ability and rely only on the group experience. In this
case, the algorithm converges quickly, but it can easily fall into a local optimum. On the other hand,
when the acceleration constant c2 is set to zero, it is a “cognitive” model. Particles cannot share socially,
and rely only on their experience. In this case, it is difficult for the algorithm to find the global optimal
value. Experiments have shown that there were no absolute optimal parameters, and it is necessary
to determine appropriate parameters for each problem to obtain good convergence performance and
robustness. Normally, the following values are used, c1 = c2 = 2[32].

3)Proposed meta-EP PSO algorithm

As the underwater target locating represents a nonconvex optimization problem, the parameter
selection for a specific problem is not straightforward. As mentioned previously, the PSO algorithm has
a risk of trapping into local minima and losing the exploration-exploitation ability. Thus, to overcome
these shortcomings, an improved PSO algorithm that combines the movement update of the property
of the canonical PSO algorithm with the meta-EP mutation characteristic is proposed.
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In the proposed algorithm, M particles are selected among the swarm population by the
q-tournament selection method [34]. Then, the selected elite particles are evolved using the meta-EP
mutation and q-tournament selection of the EP [35]. The meta-EP mutation can be expressed as{

x′i = xi +
√

σi Ni(0, 1)
σ′

i = σi +
√

ασi Ni(0, 1)
, (15)

where xi denotes the position and σi denotes the standard deviation of Gaussian mutations. A single
offspring (x′i, σ′

i ) is generated by parent particle (xi, σi), where Ni(0, 1) indicates that the random
number is generated for each iteration; α denotes an exogenous parameter ensuring that σi tends to
remain positive.

By evaluating the fitness value of particles, the global best position is determined. According to
the global best position, the nearest elite position, the personal best position, velocity, and position of a
particle are updated in the next iteration using the following relations,{

vt+1
i = wvt

i + cpRandp()(pi − xt
i) + cgRandg()(pg − xt

g) + cnRandn()(pe − xt
g)

xt+1
i = xt

i + vt+1
i

(16)

where cg, cn, and cp denote the constant of the global best, the constant of the nearest elite, and the
constant of the personal best, respectively; Randp(),Randg(),Randn() represent random functions in
the range [0, 1]. The proposed meta-EP algorithm for searching the position of a target includes the
following steps.

Step 1: Initialize the positions of N particles, and evaluate the fitness values of all the particles.
Step 2: Select M elite particles by the q-tournament selection method.
Step 3: Evolve the elite particles by the EP and Equation (15).
Step 4: Evaluate the fitness values of the particles and determine the global best position.
Step 5: Determine the global best position, the nearest elite position, and the personal best

position, and update the velocity and position of a particle according to (16).
Step 6: If the termination conditions are not satisfied, go to Step 2; otherwise, output the global

best position.

2.4. Proposed Meta-EP PSO Algorithm for Underwater Dipole Localization

In this paper, the improved three-dimension subspace scanning and proposed meta-EP PSO
algorithm is applied to underwater target localization. First, the forward model, electrode
configuration, parameters, and the fitness function of the PSO are determined.

The flowchart of the proposed localization algorithm is presented in Figure 5. One of the key
issues in the proposed algorithm is finding a suitable mapping between the localization problem
solution and the PSO particle. The proposed PSO algorithm is applied to searching the solution to
λmin(UGiP

⊥UT
Gi
). The dimension of the search space D, that is, the number of the elements of one

particle, is equal to the number of position parameters of dipoles. For the source model with one dipole,
D is equal to three, and a representation of dipole position is expressed as (x, y, z). The individuals
in the swarm are initialized by setting their positions and velocities randomly in the searching space.
Then, the velocity and position of particles are updated in each iteration. The optimization iteration is
terminated when the pre-defined maximum iteration number is reached.
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Figure 5. The flowchart of the proposed localization algorithm.

3. Numerical Simulations

In order to test the feasibility of the proposed PSO algorithm in the underwater target localizing,
two simulation experiments were conducted to evaluate the positioning performance. The uniform
circular electrode and cross electrode configurations are adopted as receiving electrode configurations.
The schematic diagrams of the two common receiving electrode configurations are given in Figure 6a,b,
where the red dots represent the positive receiving channels of the electrode channels, and the black
dots represent the negative receiving channels of the electrode channels. In the two simulations,
the radius R of the uniform circular receiving electrode was 0.1 m, and the electric dipole target was set
in the plane xOy. The distance between the center of the receiving array and the target was r, and the
electric dipole moment was (1, 0, 0) m. At the signal-to-noise ratio of 40 dB, tests were performed 1000
times on each point, respectively, and the root mean square (RMS) error was calculated for each point
at 0.5 m, 1 m, 2 m, 3 m, and 4 m, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. (a) The uniform circular electrode configuration; (b) The cross-shaped electrode configuration
(c) Positioning error of uniform circular electrode configuration in the plane xOy; (d) Positioning
error of the cross-shaped electrode configuration in the plane xOy; (e) Positioning error of uniform
circular electrode configuration in the plane xOz; (f) Positioning error of the cross-shaped electrode
configuration in the plane xOz.
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3.1. Locating Performance of Uniform Circular Electrode Configuration

The electrode positions in the uniform circular receiving electrode configuration were the same as
Table 1. The positioning performances at different positions in the planes xOy and plane xOz were
studied, and the corresponding test results are shown in Figure 6c,e, respectively.

As presented in Figure 6c, (1) as the positioning distance increased in the plane xOy, the positioning
error also increased; (2) at the same positioning distance r, the positioning error showed a certain
regularity with the change in the deflection angle θ, namely, in the range of deflection angle from
(0, π/2) to (π, 3π/2), the positioning error decreased with the deflection angle. On the other hand,
in the range of the deflection angle from (π/2, π) to (3π/2, 2π), the positioning error increased with
the deflection angle; (3) the locating system had blind points at the deflection angle of zero and π due
to the symmetry of acquainted data—the received electrode voltage values of channels 2, 3, and 4 were,
respectively, equal to that of channels 8, 7, and 6. For all the other points, the difference in the received
voltage between the electrodes was small.

Similarly, in the case of a uniform circular electrode configuration, the positioning performance at
different positions in the plane xOz was also studied, and the results are shown in Figure 6e. As shown
in Figure 6e, the blind points occur at the norm direction of plane xOz because the signal intensity
received by electrode channels 3 and 7 was equal to zero, whereas the elevation angle was π/2.
By comparing the results presented in Figure 6c with those presented in Figure 6e, it can be found that
the uniform circular electrode configuration provided better locating performance in the plane xOy.

3.2. Locating Performance of Cross-Shape Electrode Configuration

In the cross-shaped receiving electrode configuration, the electrode positions were as given in
Table 2. The positioning performance at different positions in the planes xOy and xOz were studied,
and the results are shown in Figure 6d,f, respectively.

Table 2. Position of receiving electrodes for cross-shaped electrode configuration (unit: m).

Electrode 1 2 3 4 5 6 7 8 9

x −0.1 −0.05 0.05 0.1 0 0 0 0 0
y 0 0 0 0 −0.1 −0.05 0.05 0.1 0
z 0 0 0 0 0 0 0 0 0

Based on the results presented in Figure 6d, a similar conclusion with that of the uniform circular
electrode configuration in the plane xOy can be obtained. However, the cross-shaped electrode
configuration showed worse locating performance in the plane xOy compared with the uniform
circular electrode configuration. For instance, the minimum locating error of the cross-shaped electrode
configuration was larger than 1.5 cm, whereas the maximum locating error of the uniform circular
electrode configuration was less than 0.3 cm.

Similarly, the positioning performance of the cross-shaped receiving electrode configuration at
different positions in the plane xOz was also studied. The test results are shown in Figure 6f. As can
be seen in Figure 6f, the blind point occurred in the direction normal to the xOz plane. However,
compared with the uniform circular electrode configuration, the cross-shaped electrode configuration
provided better locating performance. By comparing the positioning performances of the uniform
circular receiving electrode configuration and the cross-shaped receiving electrode configuration,
the following conclusions were drawn.

(1) For both the uniform circular receiving electrode configuration and the cross-shaped receiving
electrode configuration, the positioning performance in the plane xOy was better than that in the
plane xOz when the subspace scanning algorithm was used to locate underwater targets.

(2) The positioning performance of the uniform circular receiving electrode configuration was better
than that of the cross-shaped receiving electrode configuration in the plane xOy. Moreover,
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the positioning performance of the cross-shaped receiving electrode configuration was better
than that of the uniform circular receiving electrode configuration in the plane xOz.

(3) Both configurations had certain positioning blind spots in the spatial three-dimensional
positioning process.

4. Simulation and Analysis of the Proposed Algorithm

In this section, a simulation model and a detailed study of the proposed algorithm in underwater
target locating are provided. The receiving array consisted of eight equidistant electrodes in the
loop insulator framework. The positions of electrodes are shown in Table 1, and the radius of the
loop insulator framework was 0.1 m. In the simulation, the dipole was placed at the position of
(0.555, 0.555, 0.555) m with the current moment of (1, 0, 0) A·m.

The proposed meta-EP PSO algorithm was compared with the canonical PSO and SPSO algorithms.
In order to ensure an objective comparison, the locating error was defined as

LE =
√
(xest − xo)2 + (yest − yo)2 + (zest − zo)2, (17)

where (xest, yest, zest) denoted the position estimated by an algorithm, and (xo, yo, zo) denoted the
actual dipole position.

The configuration parameters of the PSO, SPSO, and meta-EP PSO algorithms are given in Table 3.
According to [32], in the fixed-weight configuration, the inertia weight w is commonly in the interval
[0.8, 1.2]. Therefore, the dynamic weight configuration was used, where gradually decreased from 0.9
to 0.4. Accordingly, particles had different development and exploration capabilities at different stages
of evolution. In the comparison, the population size was set to 30 and c1 = c2 = 2.

Table 3. The configuration parameters of the PSO, SPSO, and meta-EP PSO algorithms.

Algorithm w c1 c2 c3 Size

PSO - 2 2 - 30
SPSO 0.9 ∼ 0.4 2 2 - 30

meta-EP PSO 0.9 ∼ 0.4 0.8 0.4 0.8 30

Table 4 gives the average test results for 100 tests with 200 iterations each. The locating error of
one of the tests is presented in Figure 7, and the position estimation in each iteration of the meta-EP
PSO algorithm is presented in Figure 8.

iteration
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r  
(m

)

PSO
SPSO
meta-EP PSO

Figure 7. The locating error of one of the conducted tests.
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Figure 8. Position estimation in each iteration of the proposed meta-EP PSO algorithm.

Table 4. Test results of different algorithms.

Algorithm PSO SPSO Meta-EP PSO

LE 0.545 0.356 0.006

As presented in Table 4, the PSO and SPSO algorithms converge to the local minimums
during the positioning process, resulting in large positioning errors, which make them unsuitable
for three-dimensional positioning scenarios. On the contrary, the proposed meta-EP PSO
algorithm converged to the global minimum and provided the smallest positioning error among
all the algorithms.

In order to study the computation of the meta-EP PSO further, we terminated the algorithm and
recorded the number of iterations of the meta-EP PSO algorithm when the positioning error was less
than 1 cm. The number of iterations of each test is shown in Figure 9.

tests

ite
ra
tio
n

Figure 9. The number of iterations of each test.

As can be seen in Figure 9, most tests of the proposed algorithm terminated at up to 40 iterations.
The average iteration number of the tests was 31.2, the maximum iteration number was 130,
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and the minimum iteration number was 7. The evolution of the algorithm in one iteration required
the evaluation of all the particles in the population and the children generation. In this paper,
the population size was set to 30, and the number of elite particles was set to 3. Thus, each iteration
required at least 33 evaluations. Therefore, the maximum number of evaluation tests was 4290,
and the average number of evaluation test was 1031.25. The average computation of the meta-EP
PSO, meshgrid scanning method and the multi-step scanning are given in Table 5. Compared with the
meshgrid scanning method of 1,000,000 times, the calculation amount of the proposed algorithm was
greatly reduced to only 0.103% of the meshgrid scanning method. Similarly, the computation burden
of meta-EP PSO is 2.14% of the multi-step method. The positioning accuracy was effectively improved
without changing the positioning accuracy and search speed.

Table 5. Comparison of different methods.

Method Evaluations

Meta-EP PSO 1031.25
Meshgrid scanning 1,000,000
Multi-step scanning 48,100

5. Conclusions

In this paper, we study the target locating in the underwater environment based on the electric
field. The subspace scanning algorithm is applied as the evaluation function of the electric field-based
underwater target locating problem. To find the global minimum of the evaluation function,
the meta-EP PSO optimization algorithm is proposed. The meta-EP PSO method selects M elite
particles by the q-tournament selection method, which could significantly speed up the convergence
and avoid subspace scanning trapping into local minima. According to our simulations, the meta-EP
PSO calculation burden is 0.10% of the meshgrid scanning method and 2.14% of the multi-step scanning
method. The simulations show the meta-EP PSO provides more accurate locating performance, where
the root mean square locating error is 0.006 m far smaller than the PSO and SPSO. Moreover, the meta-EP
PSO shows fewer convergence steps compared with the PSO and SPSO. It takes the meta-EP PSO less
than 40 generations to converge, whereas it takes totally 110 generations for PSO and 185 generations
for SPSO. We also study the influence of the electrodes array on the locating performance. The uniform
circular and the cross-shaped electrodes arrays are constructed. According to the simulations, we found
the uniform circular electrodes array has better locating performance than that of the cross-shaped
electrodes array in the plane xOy. However, the cross-shaped electrodes array shows better locating
performance in the plane xOz. In our future work, we will optimize the electrode configurations to
obtain a better locating performance.
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Abstract: In this paper, a new robust adaptive beamforming method is proposed in order to
improve the robustness against steering vector (SV) mismatches that arise from multiple types
of array errors. First, the sub-array technique is applied in order to obtain the decoupled
sample covariance matrix (DSCM), in which the auxiliary sensors are selected to decouple the
array. The decoupled interference-plus-noise covariance matrix (DINCM) is reconstructed with the
estimated interference SV and maximum eigenvalue of the DSCM. Furthermore, the desired signal
SV is estimated as the corresponding eigenvector determined by the correlation coefficients of the
assumed SV and eigenvectors. Finally, the optimal weighting vector is obtained by combining the
reconstructed DINCM and the estimated desired signal SV. Our simulation results show significant
signal-to-interference-plus-noise ratio (SINR) enhancement of the proposed method over existing
methods under multiple types of array errors.

Keywords: robust adaptive beamforming; steering vector mismatch; interference-plus-noise covariance
matrix; array errors

1. Introduction

Adaptive beamforming has gained attention as an effective technique in array signal processing,
due to its good target detection performance [1,2]. A Capon beamformer ensures the minimum output
power under the premise of distortion-free reception from the desired signal direction, which is
essentially equivalent to a minimum variance distortionless response (MVDR) beamformer [3,4],
which is an optimal spatial filter, since it maximizes the output signal-to-interference-plus-noise
ratio (SINR).

Although standard Capon beamformer is the theoretical optimal beamformer and has been
widely applied for its good interference suppression ability, its performance drops sharply when
there are mismatches between the assumed and real array model [5] due to various practical factors,
such as inaccurate sensor positions [1], inconsistency of channels [6,7], and mutual coupling of
antennas [8,9]. The above problems that are faced by the Capon beamformer are mainly divided into
two categories: the mismatch of the desired steering vector (SV) and the involvment of the desired
signal in the sample covariance matrix (SCM). The existence of the desired signal in the received
snapshots significantly degraded the performance of the Capon beamformer, since the desired signal
may be regarded as a interfernece and gets self-nulled [2]. The mismatch of the desired SV fails to
steering the mainlobe towards the desired signal and, therefore, distorts the desired signal.

Numerous methods have been proposed to improve the robustness of Capon beamforming.
Aside from the advantages of the robustness of the beamformer, the drawbacks of these algorithms are
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also obvious. The diagonal loading algorithm increases the robustness of the beamformer by adding a
diagonal matrix on the sample covariance matrix in order to increase the noise power [10,11]. However,
it is difficult to choose the appropriate diagonal loading factor. The eigenspace algorithm requires the
specific number of interferences and it is able to provide satisfactory performance at some situations,
but it is ineffective under low signal-to-noise ratio (SNR) conditions, since the desired signal subpace
is swapped with the noise subpace [12–14]. The use of uncertainty set (US) algorithm is limited, as the
size of the uncertain set is hard to determine and the desired signal is still involved in the SCM [15–24].
Interference-plus-noise covariance matrix (INCM) reconstruction-based algorithms have been shown
to obtain excellent beamforming performance when the array manifold is accurately known [25–27],
but they are not suitable for situations where an array of manifold mismatches exist [28].

The mutual coupling effect destorys the array structure in the SV and, therefore, affects the
traditional methods. Ye et al. proposed a method where the mutual coupling effect could be mitigated
by selecting middle array elements [9], but the presence of desired signal degrades its performance at
high SNRs. Recently, the researchers combined the middle subarray technique and covariance matrix
reconstruction technique in order to obtain the interfernce-noise covariance matrix in [29]. However,
it should be noted that the method is based on the accurately known array structure, which is to say,
the method is ineffective in the presence of other kinds of array errors, like sensor position errors
and the gain-phase errors, since the real array structure is unavailable. In this paper, we improve the
previous method in order to overcome the performance degradation tht arises from multiple types of
array errors. Specifically, in terms of modification, our contributions are as follows.

• The characteristics of three different array error types and their influence on the recieved data are
analyzed, a generalized signal model under the three kinds of errors is given.

• The middle array interference-plus-noise covariance matrix (INCM) is accurately reconstructed
with estimated interference SV and power, which not only handles the problem of multiple
types of array errors, but also mitigates the effect of the desired signal in the sample snapshots.
The interference SVs are correctly estimated using the robust Capon beamforming (RCB) principle,
as the SV mismatches that are due to the sensor position and gain-phase errors are relatively
small. Furthermore, the estimated interference SVs are combined with the maximum eigenvalue
of the decoupled sample covariance matrix (DSCM).

• The desired signal SV is estimated as the corresponding eigenvector of DSCM through the
correlated projection process. The correlation coefficient of the SV and eigenvectors reaches the
maximum when the eigenvector matches the SV.

The weighting vector is finally derived when combining the reconstructed middle array INCM
and estimated desired signal SV. The proposed method is able to deal with multiple types of array
errors and obtain superior SINR improvement. Throughout this paper, the superscripts T and H
represent transpose and conjugate transpose, respectively. The notation E [·] denotes the expectation
operator and I stands for the unit matrix. � is the Hadamard product. [·]−1 represents the matrix
inversion operator.

2. Problem Formulation

2.1. Array Signal Model

Consider that there are M + 1 narrowband signals {sm(k)}M
m=0 that impinge on the uniform linear

array (ULA) of N array elements and they are uncorrelated with each other. That is to say,

E
[
sisH

j

]
= 0, i 
= j (1)
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Assume that these signals arrive at the array with directions-of-arrivals (DOAs) {θm}M
m=0 and

power
{

σ2
m
}M

m=0. Let s0(k) represent the desired signal and the {sm(k)}M
m=1 are the interferences that

are radiated by the farfield jammer devices. The received data in the k-th snapshot can be expressed as

x(k) = AS(k) + n(k) = s0(k)a(θ0) +
M

∑
m=1

sm(k)a(θm) + n(k), (2)

where S(k) = [s0(k), s1(k), . . . , sM(k)]T denotes the echo signal vector and n(k) is an N × 1 additive white
Gaussian noise vector with power σ2

n. The noise component is normal white Gaussian in the receiving
channels, its model is assumed to be the same with traditional beamforming methods, since we mainly
focus on the array errors in this paper. Further, A = [a(θ0), a(θ1), . . . , a(θM)] stands for the steering
matrix of the array, in which the m-th element is specifically given by a(θm) = [1, b(θm), . . . , b(θm)N−1]T,
where b(θm) = exp(j2πd sin θm/λ), λ is the signal wavelength and d is the inter-element spacing.
The N × 1 weighting vector of the well-known Capon beamformer is given as:

w =
R−1

I+na(θ1)

aH(θ1)R−1
I+na(θ1)

, (3)

where RI+n = ∑M
m=1 σ2

ma(θm)aH(θm) + σ2
n IN is the INCM. In practice, the exact RI+n is usually

replaced by the sample covariance matrix (SCM), as R̂x � (1/K)∑K
k=1 x(k)xH(k), with K being the

number of snapshots.

2.2. Array Error Model Analysis

In practice, array model errors essentially result in the mismatch of SV and they degrade the
performance of traditional array signal processing algorithms, as shown in Figure 1. Under array
errors, the ideal signal model Equation (2) is re-expressed as

x̃(k) =ÃS(k) + n(k)

=s0(k)ã(θ0) +
M

∑
m=1

sm(k)ã(θm) + n(k)
(4)

where Ã � f (A, Ξ) is the actual steering matrix and Ξ is the matrix that identifies the array error.
The new array structure is with the steering matrix Ã containing its array characteristics. In this section,
the influences of three array error types are analyzed.

2.2.1. Mutual Coupling

Mutual coupling is an electromagnetic feature, where each sensor interacts with its neighbouring
elements [8,9]. Let us define the mutual coupling length as P; that is, when considering the i-th
element of the array, it couples with the (i − P + 1)th, . . . ,(i − 1)th, (i + 1)th, . . . ,(i + P − 1)th elements.
The mutual coupling effect of the array can be expressed as a M × M symmetric Toeplitz matrix, as

ΞMC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 c1 · · · cP−1 · · · 0

c1 1 c1 · · · . . . 0
... c1 1

. . . · · · cP−1

cP−1 · · · . . . . . . c1
...

0
. . . · · · c1 1 c1

0 · · · cP−1 · · · c1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

(5)
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where cp is the mutual coupling coefficient between the i-th and (i ± p)th sensor. When the mutual
coupling effect exists in the receiving array, Equation (4) is actually written as

x̃(k) =ÃS(k) + n(k)

=s0(k)ã(θ0) +
M

∑
m=1

sm(k)ã(θm) + n(k)

=s0(k) · (ΞMC · a(θ0)) +
M

∑
m=0

sm(k) · (ΞMC · a(θm)) + n(k)

(6)

…...

…...

Figure 1. Receiving array in the presence of array errors.

2.2.2. Sensor Position Error

Realistic phenomena [1], such as sensor installation errors, measurement errors, and the instability
of the antenna platform, inevitably induce sensor position errors. In general, the array element position
error can be expressed, in matrix form, as

ΞSP = [Δa{1}, Δa{2}, . . . , Δa{M}] =

⎡⎢⎢⎢⎢⎢⎣
Δa{1}

1 Δa{1}
2 · · · Δa{1}

M

Δa{2}
1 Δa{2}

2 · · · Δa{2}
M

...
...

...
...

Δa{N}
1 Δa{N}

2 · · · Δa{N}
M

⎤⎥⎥⎥⎥⎥⎦ (7)

where Δa{m} = [Δa{1}
m , Δa{2}

m , . . . , Δa{N}
m ]T stands for the array mismatch vector for the signal from

direction θm. Specifically, its n-th element can be expressed as Δa{n}
m = exp(j2π sin θmΔdn/λ),

where Δdn = ∑n−1
i=0 di − (n − 1)d, with d0 set to 0 and where di represents the real spacing between

the i-th sensor and the (i + 1)th sensor. When the sensor position errors exist in the receiving array,
Equation (4) is actually written as
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x̃(k) =ÃS(k) + n(k)

=s0(k)ã(θ0) +
M

∑
m=1

sm(k)ã(θm) + n(k)

=s0(k) ·
(

Δa{0} � a(θ0)
)
+

M

∑
m=0

sm(k) ·
(

Δa{m} � a(θm)
)
+ n(k)

(8)

2.2.3. Gain-Phase Error in Channel

Because of variations in time and temperature, the gain-phase characteristics of the receiving
sensors change accordingly [6,7]. The gain-phase error can be characterized, by a diagonal matrix, as

ΞGP =

⎡⎢⎢⎢⎢⎣
γ1 0 · · · 0
0 γ2 · · · 0

0 0
. . . 0

0 0 · · · γN

⎤⎥⎥⎥⎥⎦ (9)

where γn = αn exp(jβn), and αn and βn are the additional gain-phase errors of the n-th channel.
When the gain-phase error exists in the receiving array, Equation (4) is actually written as

x̃(k) =ÃS(k) + n(k)

=s0(k)ã(θ0) +
M

∑
m=1

sm(k)ã(θm) + n(k)

=s0(k) · (ΞGP · a(θ0)) +
M

∑
m=0

sm(k) · (ΞGP · a(θm)) + n(k)

(10)

When all three kinds of errors detailed above exist in the array, the actual steering matrix Ã can
be calculated, as

f (A, Ξ) = ΞMC · ΞGP · (ΞSP � A) . (11)

From the above analysis, it can be seen that SV mismatches are due to the array errors,
which severely degrade the performance of beamforming methods. Furthermore, the SV mismatches
that arise from mutual coupling are far larger than those of sensor position and gain-phase errors.

3. Proposed Robust Adaptive Beamforming Method

In this section, we propose a new beamforming method to effectively suppress the interferences
and noise in the presence of multiple types of array errors. The DINCM is accurately reconstructed
based on the constructed DSCM, together with the estimated desired signal SV, in order to form the
proposed beamformer. The detailed procedures are as follows:

3.1. DSCM Construction Based on Sub-Array

When the three types of array errors that are introduced above coexist in the array, then the actual
steering matrix Ã can be calculated as f (A, Ξ) = ΞMC · ΞGP · (ΞSP � A). To begin with, the actual
received data Equation (4) can be further modified as

x̃(k) =ÃS(k) + n(k)

=ΞMC Ã′S(k) + n(k)
(12)

where Ã′ = ΞGP · (ΞSP � A). The signal expression in Equation (12) can be viewed as
an array with mutual coupling, with ideal steering matrix Ã′ = [ã′(θ0), ã′(θ1), . . . , ã′(θM)].
Its elements have the form ã′(θm) = [Δb{1}(θm), Δb{2}(θm) · b(θm), . . . , Δb{N}(θm) · b(θm)N−1]T ,
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where Δb{n}(θm) = αn · Δa{n}
m · exp(jβn). In order to mitigate the mutual coupling effect in the array

Υ̃′, the N − 2P + 2 sensors in the middle are chosen as the sub-array. In this sense, the P − 1 sensors in
the front and end are used as auxiliary sensors [9]. For convenience, we use N′ to represent N − 2P + 2
in the rest of this paper. Therefore, the data of the sub-array is selected as

x̄(k) = Γx̃(k) = ΓΞMC Ã′S(k) + Γn(k), (13)

where Γ = [O IN′ O] is the selective matrix, O is an N′ × (P− 1) matrix with all elements being zero.
If we use Ã′′ to denote ΓΞMC Ã′, then Ã′′ = [ã′′(θ0), ã′′(θ1), . . . , ã′′(θM)], in which ã′′(θm) is expressed
as ã′′(θm) = g(θm) · [Δb{1}(θm), Δb{2}(θm) · b(θm), . . . , Δb{N′}(θm) · b(θm)N′−1]T , where g(θm) = 1 +

∑P−1
i=1 ci+1

(
b′(θm)

−i + b′(θm)
i
)

and b′(θm) = Δb{2}(θm) · b(θm). It can be shown that the mutual
coupling effect in the data is eliminated by multiplying the original data with the selection matrix.
Therefore, the DSCM is constructed, as ˆ̄Rx � (1/K)∑K

k=1 x̄(k)x̄H(k).

3.2. Accurate DINCM Reconstruction

In [29], the researchers simply utilize the Capon spectrum to integrate in the interference region
to reconstruct the INCM. However, this method is ineffective and it suffers severe performance
degradation when multiple types of array errors exist, as shown in the simualtion part. To effectively
form deep nulls in the interferences and noise, in this paper, we shall show how the DINCM is
reconstructed in a improved way in order to achieve robustness to multiple type of errors. To begin
with, the Capon spatial spectrum [30] is utilized to obtain an approximate estimate of the interference
DOAs. The expression is given as

P̂Capon(θ) =
1

āH(θ) ˆ̄R−1
x ā(θ)

, (14)

where ā(θm) = [1, b(θm), . . . , b(θm)N′−1]T . By searching in the complement sector of the desired signal
region, the DOAs of the searched peaks θ̂1, θ̂2, . . . , θ̂M are utilized in order to obtain an approximate
estimate of interference SV as ā(θ̂1), ā(θ̂2), . . . , ā(θ̂M). As the SV mismatches due to gain-phase and
sensor position errors are relatively small, the accuracy can be enhanced by correcting the SVs with the
RCB principle. The correction processing for the m-th SV can be performed by solving

min
a(

N′)
m

a(N′)H
m

ˆ̄R−1
x a(N′)

m s.t.‖a(N′)
m − ā(θ̂m)‖2 ≤ ε, (15)

where ε is the uncertainty level, which indicates the extent of SV mismatches. Therefore, after solving

M problems, the corrected SVs
{

a(N′)
m

}M

m=1
can be obtained. The solution of the m-th problem is

given by a(N′)
m = ā(θ̂m) −

(
IN′ + δ ˆ̄Rx

)−1
ā(θ̂m), where δ is the Lagrange multiplier and it can be

calculated by solving ‖
(

IN′ + δ ˆ̄Rx

)−1
ā(θ̂m)‖2 = ε. On the other hand, the power of the interferences

can be approximated by the corresponding eigenvalue divided by the array size [28]. If we denote
the eigendecomposition of DSCM as ˆ̄Rx = ∑N′

n=1 λ̂nûnûH
n , where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂N′ are eigenvalues

that are arranged in a descending order and ûn corresponds to λ̂n. Subsequently, in terms of the
interference powers, they can be specifically estimated as

σ2
m ≈ λ̂m

N
, m = 1, . . . , (16)
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In practice, in order to make sure that the interference powers are not underestimated,
the maximum power is used for all of the interference powers. The following estimate is derived

σ2
m ≈ λ̂1

N
, m = 1, . . . , (17)

With the estimated power and SV of the interferences, the interference covariance matrix is
reconstructed as

ˆ̄RI+n =
M

∑
m=1

λ̂1

N′ a(N′)
m a(N′)H

m (18)

On the other hand, using the minimum eigenvalue λ̂N′ as the estimate of noise power [31],
the noise covariance matrix is reconstructed as

ˆ̄Rn = λ̂N′ IN′ (19)

Combining the above processes, the following DINCM reconstruction expression can be derived

ˆ̄RI+n =
M

∑
m=1

λ̂1

N′ a(N′)
m a(N′)H

m + λ̂N′ IN′ . (20)

3.3. Desired Signal SV Estimation

The SV of the desired signal can be replaced by the corresponding eigenvector, as the desired
signal covariance matrix is rank one. The eigenvector that corresponds to the desired signal SV can be
chosen by projecting the eigenvectors into the assumed SV (i.e., the correlation coefficient of the SV
and the eigenvectors reaches the maximum when the eigenvector matches the SV) [32]. The correlation
coefficient between the i-th eigenvector and assumed SV is defined as

cor(ûi, ā(θ0)) =
|ûH

i ā(θ0)|
‖ûi‖‖ā(θ0)‖ (21)

The correlation coefficient between ûi and ā(θ0) reaches maximum when ûi is the eigenvector
that corresponds to the desired signal. Therefore, the desired signal SV is obtained as

a(N′)
0 =

√
N′ud, (22)

where ud is the solution to the problem

max
ûi

|ûH
i ā(θ0)| s.t. 1 ≤ i ≤ M + 1. (23)

By replacing the theoretical DINCM and SV of desired signal with ˆ̄RI+n and a(N′)
0 , the proposed

beamformer is given as

wPRAB =
ˆ̄R
−1
I+na(N′)

0

a(N′)H
0

ˆ̄R
−1
I+na(N′)

0

. (24)

By applying the weighting vector wPRAB to the beamformer, the received data can be processed
in order to effectively suppress the interference and noise. Specifically, the output of the beamformer
at instant k is given as

yout(k) = wH
PRAB x̄(k). (25)

The main complexity of our proposed method lies in the interference SV estimation and DSCM
eigendecomposition. Let us define J as the number of search points in the Capon spectrum, and then the
computational complexity of the interference SV estimation and DSCM eigendecomposition are about
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O (
N′3 + N′2 J + N′2K

)
and O (

N′3), in terms of the number of flops, respectively. When considering
the fact that J > K > N′, the above complexity actually becomes O (

N′2 J
)
. Therefore, the overall

complexity of the proposed approach is about O (
N′2 J

)
. Algorithm 1 summarizes the proposed method.

An additional flow chart figure of the proposed method is provided in Figure 2, where the application
of sub-array technique is presented in a clearer way.

Algorithm 1 Steps of the proposed robust adaptive beamforming method

Part 1. DSCM construction based on sub-array
1. Decoupling the received data as x̄(k) = Γx̃(k) = ΓΞMC Ã′S(k) + Γn(k).
2. Constructing the DSCM as ˆ̄Rx � (1/K)∑K

k=1 x̄(k)x̄H(k).
Part 2. Accurate DINCM reconstruction

3. Obtaining approximate estimates of the interference SVs utilizing the Capon spectrum as
ā(θ̂1), ā(θ̂2), . . . , ā(θ̂M).

4. Correcting the interference SVs with RCB principle and obtaining the corrected SVs
{

a(N′)
m

}M

m=1
.

5. Eigendecomposing the DSCM as ˆ̄Rx = ∑N′
n=1 λ̂nûnûH

n and reconstructing the DINCM as
ˆ̄RI+n = ∑M

m=1
λ̂1
N′ a

(N′)
m a(N′)H

m + λ̂N′ IN′ .
Part 3. Desired signal SV estimation

6. Choosing out the eigenvector of ˆ̄Rx maximizes the projection into the assumed SV by solving
maxûi |ûH

i ā(θ0)| s.t. 1 ≤ i ≤ M + 1.
7. Obtaining the desired signal SV as

a(N′)
0 =

√
N′ud.

Final Calculating the weighting vector

wPRAB =
ˆ̄R
−1
I+na(N′)

0

a(N′)H
0

ˆ̄R
−1
I+na(N′)

0

.

…... …...…...

Figure 2. Flow chart of the proposed method.
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4. Simulation Results

A ULA with 28 receiving sensors with half-wavelength inter-element spacing was deployed in
the considered scenario. Two interferences were assumed from DOAs of −50◦ and 32◦ with INR
20 dB, while the desired signal was pointed with a DOA of 0◦. The additive noise was set to be white
Gaussian noise with unit variance.

The simulation considered all three types of array model errors. The sensor position error
satisfied the normal distribution N(d, (0.025)2). The gain-phase error followed the normal distributions
N(1, 0.12) and N(0, (5◦)2), respectively. P = 4 mutual coupling was considered in the scene and
c1 = 1.65e−jπ/3, c2 = 2.35ejπ/2, and c3 = 0.25e−j2π/5.

We compared the proposed method with the diagonal loading sample matrix inversion (LSMI)
method, middle sub-array based (MSB) beamformer [9] method, orthogonal projection (OP) approach,
eigenspace-based (ESB) beamformer method, optimal beamformer method, Li’s method [29], and the
reconstruction method by Gu [25]. For the proposed beamformer, the RCB uncertainty extent was set
as ε = 2. For Gu’s beamformer (introduced in [25]), Li’s method [29], and our proposed beamformer,
the desired signal sector was set as Θ = [−5◦, 5◦], while the complement sector for the interferences
was Θ̄ = [−90◦,−5◦) ∪ (5◦, 90◦].

The output SINR curves versus the SNR were investigated (with the number of snapshots
K = 500), as shown in Figure 3. The results clearly show the superiority of the proposed method,
which outperformed the others at all SNRs. It is worth noting that the Gu’s method is parallel to
Optimal SINR method at all SNRs. This is because the deviation between the assumed and real SV
structure is determined by the DOA and, therefore, once the DOA distribution of the interferences is set,
the deviation between the Gu’s method and the optimal is stable at all SNRs. Specifically, when there is
no array error, the output SINR of Gu’s method can be very close to the optimal. Similarly, Li’s method
is also parallel to the optimal, since the same INCM reconstruction process is involved. While Gu’s
method is superior to Li’s method, this is due to the array aperture loss in Li’s method degrading
its performance.
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Figure 3. Output signal-to-interference-plus-noise ratio (SINR) versus input signal-to-noise ratio (SNR).

The output SINR of our method is close to the optimal result at low SNRs and outperformed all of
the other methods at high SNRs. At low SNRs, the mismatches of the steering vector bring significant
influence to the output SINR. The proposed method is able to attain the optimal due to the SV correcting
process. It should be noted that, at high SNRs, the performance improvement of the proposed method
over other methods decreases, but it still enjoyed the best performance. The proposed method gradually
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converges to Gu’s method at high SNRs. Because, at high input SNRs, the performance increase that
arises from the SV correction process gradually decreases, as the higher input SNR is the more important
factor for improving the output SINR, rather than the correcting process.

In Figure 4, the gap between the optimal SINR and beamformers are depicted in curves.
The deviations from the optimal SINR versus the input SNR can be clearly observed. It can be
observed that the proposed method showed similar performance at high SNRs to Gu’s method, and it
achieved about 18 dB higher at low input SNRs. In terms of Gu’s method, its performance was stable,
retaining a deviation of about 17 dB from optimal performance. The proposed method achieved fast
convergence, while the other beamformers showed slow convergence.
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Figure 4. Deviations from the optimal SINR versus input SNR.

With the SNR set at 0 dB, the output SINR versus the number of snapshots is plotted in Figure 5.
The depicted curves illustrate the superiority of the proposed method; it was very close to optimal.
It can be observed that the proposed method was not sensitive to the number of snapshots and it
showed almost the same convergence rate as the optimal beamformer, with the performance improving
slightly with an increase of the number of snapshots.
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Figure 5. Output SINR versus number of snapshots; SNR = 0 dB, INR = 20 dB.
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In the last example, we further investigated the influence of the array aperture on the performance
of beamformers. We explored the output SINR curves of different methods with the array length
varying from 16 to 35 and the input SNR fixed at 0 dB. Figure 6 clearly shows that, as the array aperture
gets larger, the output SINR of the proposed method gets better accordingly. It is also noted that the
output SINR of Gu’s method as well as the Li’s method gets slightly higher with the larger array
aperture. The array length reflects the array sampling ability of the signals in the spatial domain. When
the array aperture gets larger, the spatial solution of the array gets better and it can more effectively
form nulls at the directions that correspond to the interferences. On the other hand, in terms of some
other methods, as the solution of the array gets more precise, the mismatches of steering vector become
increasingly obvious and degrade the performance more. Therefore, the performance of some methods
are slightly getting worse.
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Figure 6. Output SINR versus array aperture; SNR = 0 dB, INR = 20 dB.

5. Conclusions

This paper introduced a new robust adaptive beamforming method, which is robust to the sensor
position, gain-phase, and mutual coupling errors. In the proposed method, the mutual coupling effect
is mitigated while using the sub-array technique, where the DINCM is reconstructed by combining the
corrected SVs and maximum eigenvalue of the DSCM. Moreover, the desired signal SV is obtained
using the matched eigenvector. The proposed method is capable of simultaneously dealing with
multiple types of array errors. Our simulation results validated the superiority of the proposed method
over existing methods in the presence of multiple types of array errors.
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