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Abstract: The mapping between open circuit voltage (OCV) and state of charge (SOC) is critical
to the lithium-ion battery management system (BMS) for electric vehicles. In order to solve the
poor accuracy in the local SOC range of most OCV models, an OCV model fusion method for SOC
estimation is proposed. According to the characteristics of the experimental OCV–SOC curve, the
method divides SOC interval (0, 100%) into several sub-intervals, and respectively fits the OCV curve
segments in each sub-interval to obtain a corresponding number of OCV sub-models with local
high precision. After that, the OCV sub-models are fused through the continuous weight function
to obtain fusional OCV model. Regarding the OCV curve obtained from low-current OCV test as
the criterion, the fusional OCV models of LiNiMnCoO2 (NMC) and LiFePO4 (LFP) are compared
separately with the conventional OCV models. The comparison shows great fitting accuracy of the
fusional OCV model. Furthermore, the adaptive cubature Kalman filter (ACKF) is utilized to estimate
SOC and capacity under a dynamic stress test (DST) at different temperatures. The experimental
results show that the fusional OCV model can effectively track the performance of the OCV–SOC
curve model.

Keywords: electric vehicles; lithium-ion batteries; open circuit voltage; state of charge; model fusion;
adaptive cubature Kalman filter

1. Introduction

In response to the various policies of sustainable development, the development of
electric vehicles (EVs) with batteries as the main power source has become the theme
of the automotive industry. Because of numerous appealing characteristics, lithium-ion
batteries (LiBs) have been an indispensable part of EVs [1]. As a significant indicator,
the state of charge (SOC) dominates the range anxiety of drivers. Precise and reliable
SOC estimation allows battery management system (BMS) to protect the battery, prevent
overcharge/over-discharge, extend the battery life, and make reasonable control strategies
to save energy [2,3]. Therefore, SOC estimation always attracts the attention of academia
and the industrial community.

Various approaches of SOC estimation have been developed [4–7]. The classical
approach to estimate SOC is the ampere-hour integral method which directly originates
from the definition of the SOC. The precision of ampere-hour integral method is seriously
limited by the initial SOC error, sensor error and battery aging [8]. Model-based methods
have been extensively used due to their self-correcting merits. The essence of model-
based methods is the mapping between SOC and other battery parameters like impedance
spectroscopy and open circuit voltage (OCV). The Kalman filter is commonly used to
estimate SOC in various model-based methods with the bearable amount of calculation cost
and the supply of state uncertainty. The Kalman filter algorithm family includes the classical

Energies 2021, 14, 1797. https://doi.org/10.3390/en14071797 https://www.mdpi.com/journal/energies1
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Kalman filter, extended Kalman filter (EKF) [9,10], unscented Kalman filter (UKF) [11],
cubature Kalman filter (CKF) [12] and all the extensive form of Kalman filter. EKF needs
to solve the Jacobi matrix, which limited its computation speed and remains just 1 order
Taylor expansion precision [13]. UKF needs to set reasonable noise parameter and sigma
point configuration parameter, which is dependent on specific battery working conditions.
CKF generates the cubature points to approximate the state transfer function. With fewer
parameters that need to be adjusted and minimal calculation costs, CKF remains in 3 order
Taylor expansion precision. Therefore, CKF is generally more practical than EKF and UKF.
In order to solve the possible divergence of the filter, the adaptive extended Kalman filter
(AEKF) and adaptive unscented Kalman filter (AUKF) have been studied [14–16]. In this
paper, the adaptive cubature Kalman filter (ACKF) is introduced to estimate SOC.

For the model-based method, the precision of the OCV–SOC function model (OCV
model) which reflects the mapping between SOC and OCV seriously determines the
performance of SOC estimation. The incremental OCV test and the low-current OCV
test are usual experiments to obtain experimental OCV–SOC characteristic curve (OCV
curve) [17,18]. In the same time-consuming condition, the incremental method is slightly
suitable for specific battery material system at a certain temperature [17]. However, the low-
current OCV test provides intact OCV–SOC data points (OCV points), and the measured
voltage can maintain close-to-equilibrium status if the current rate is extremely small [19].
Therefore, the OCV curves obtained by the low-current OCV test are more suitbale used as
reference models (OCV curve models) for various OCV models.

OCV curve presents distinct characteristic with the change of battery material system
it belongs and is influenced by ambient temperature, aging status and current rate [20].
OCV points obtained from OCV test can be sampled reasonably as control points to fit
OCV curve. Lots of OCV function models have been proposed to express OCV curve [8].
The polynomial function, power function, logarithm and exponent are alternative choices
to constitute the OCV model [21–25]. Among these functions, polynomial functions were
commonly used to fit the OCV curve. By comparing five OCV models, Hu et al. [26]
concluded that the sixth-order polynomial function was considered as the most accurate
OCV model among them. In practice, most OCV models were adopted to fit incomplete
OCV curve whose SOC range is between 10% and 90%. By setting cut-off voltage, the
SOC range is commonly regarded as nominal 0–100% to ensure safety. So, the battery
capacity is cut down by the control of the BMS, and not fully utilized. If the accuracy in the
marginal region of the OCV model can be improved as much as possible, it will be helpful
for BMS to further extend the cut-off voltage and increase the available battery capacity.
Furthermore, establishing OCV models which satisfy high fidelity in the full SOC range is
worth studying.

In order to solve the aforementioned problems, this paper attempts to make the
following contributions:

• An OCV model fusion method is proposed to obtain fusional OCV model which may
match the characteristic of OCV curve in complete SOC range. The OCV model fusion
method is applied for a LiNiMnCoO2 (NMC) battery and a LiFePO4 (LFP) battery.
OCV fitting curves with high precision are obtained at temperature of 10 ◦C, 25 ◦C
and 40 ◦C, respectively.

• CKF and ACKF are utilized to estimate SOC and capacity, and the effect of the fusional
OCV model on SOC and capacity estimation is evaluated by comparing with the OCV
curve model. Besides, the adaptability of the ACKF algorithm for OCV model errors
is verified.

Notably, this paper is concerned with how to obtain the OCV model with high fidelity
based on limited but persuasive control points obtained from an experimental test.

The rest of this paper is organized as follows. Section 2 presents the battery model
and OCV model fusion method. Section 3 introduces the ACKF and capacity estimation
algorithm. Section 4 presents the experimental validation. Finally, conclusions are given in
Section 5.
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2. Battery Modeling and Open Circuit Voltage (OCV) Curve Fusion Method

2.1. Battery Modelling

Battery models, the basis of battery algorithms, mainly include electrochemical mech-
anism models [27] and equivalent circuit models (ECMs) [28]. The electrochemical mecha-
nism models are highly accurate but limited by unsustainable computation load. The ECMs
describe dynamic characteristic and operation mechanism of batteries by using circuit
network which comprises traditional resistance, capacitor, and constant voltage source. An
resistor-capacitor (RC) network is commonly used to characterize the dynamic features of
batteries. Among various ECMs, the first-order RC ECM as shown in Figure 1, also called
the Thevenin model, shows the best balance between complexity and accuracy [29,30].

Figure 1. Thevenin model.

OCV denotes the terminal voltage which has a non-linear relationship with SOC; iL
denotes the current of the battery; Ri denotes the internal resistance, and characterizes the
contact resistance among battery electrode material, electrolyte, diaphragm resistance and
various parts; Rp denotes polarization resistance and Cp denotes polarization capacitance,
the parallel connection of Cp and Rp reveals the dynamic characteristics of the battery; Ut
denotes the terminal voltage; Up denotes the potential difference of the RC network which
is called polarization voltage.

The mathematical expression between Ut and iL is:

Ut = OCV − Up − iLRi (1)

The mathematical expression between Up and iL is:

.
Up = − 1

CpRp
Up +

1
Cp

iL (2)

After discretizing the above equation, following equation is summarized as:{
Up,k = Up,k−1exp

(
− Δt

RpCp

)
+ iL,k−1Rp

(
1 − exp

(
− Δt

RpCp

))
Ut,k = OCVk − Up,k − R0iL,k−1

(3)

where the subscript k denotes the sampling step, Δt denotes the step size. OCVk is a
nonlinear function of SOC. By calculating Equation (4), SOC is obtained.

SOCk = SOCk−1 − ηiΔt
Ca

iL,k (4)

where ηi denotes the coulombic efficiency of cell [31], Ca denotes current maximum avail-
able capacity which is directly relevant to battery aging and ambient temperature et al., so
it is not fixed like nominal capacity. ηi is generally defaulted as 1.

The terminal voltage Ut and the current iL in the Thevenin model can be measured
by the voltage sensor and the current sensor respectively. In the meanwhile, the model
parameters Ri, Rp, Cp and non-linear function OCVk have to be determined so that subse-
quent battery algorithm can be sustained. Because parameters are seriously influenced

3
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by the variable factors like battery temperature, aging status, charge or discharge current
etc., recursive least squares method with forgetting factor (FFRLS) is utilized to identify
parameters Ri, Rp, Cp in real time [32].

2.2. OCV Model Fusion Method

The mapping between OCV and SOC is a basic part of battery modeling. During the
process of OCV model selection, the non-linearity of OCV curve brings out the toughest
part. Based on the control points obtained from the OCV test, the coefficients of the OCV
model can be solved after carrying out the curve fitting algorithm. The curves presented
by the solved OCV models can be named as OCV fitting curves. Reasonable selection of
the OCV model can maximize experiment effect as much as possible. From the perspective
of structure, the components of OCV models basically include generalized polynomial,
logarithm, exponent and power function. The polynomial functions satisfy the needs
of general condition, but perform poorly in the local SOC range as shown in Figure 2a.
Besides, polynomial functions may cause under fitting or overfitting if the number of
control points do not match the degree of polynomials. The OCV model which consists
of reasonable combination of polynomial, logarithm, exponent or power function may
perform well in the global SOC range. However, it is still inevitable that the precision of
OCV model in the local SOC range declines seriously, as shown in Figure 2b,c.

  
(a) (b) 

 
(c) 

Figure 2. Conventional open circuit voltage (OCV) models for LiNiMnCoO2 (NMC) battery (21 control points, s denotes
state of charge (SOC), k0, 1, 2, 3, 4, α, β denote fitting coefficients). (a) Fourth-degree polynomial. (b) Polynomial and logarithm.
(c) Exponent and linear function.

With further thinking about problems above, the reasons why it is difficult to perfectly
fit the complete OCV curves can be summarized:

• From the perspective of battery characteristics, the marginal region of some OCV
curves may be polarized, and the changing trend of the OCV curves may be trans-
formed within a small SOC range. It is difficult for the OCV model to fully take into
account the characteristics of the OCV curve.

4
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• From the perspective of practical application, some algorithms are sensitive to the
error of OCV fitting curve. For example, the OCV curve of a LFP battery may have
several large flat regions. If SOC is inferred from the OCV based on OCV fitting curve
which is stored in a table, the error of OCV will lead to larger error of the SOC due to
the deviation of flat regions. Therefore, the requirement for the OCV model’s accuracy
is strengthened.

The problems caused by former reason is the focus of this paper. Predictably, if a single
OCV curve segment with stable changing trend is extracted for fitting, then a high-precision
OCV fitting curve segment can be obtained correspondingly. However, it is a question
of combining all these OCV fitting curve segments. In order to obtain OCV fitting curve
which can maintain high fidelity in the local SOC range as much as possible, an OCV model
fusion method is proposed. Figure 3 demonstrates the flowchart of the OCV model fusion
method which fits an OCV curve of NMC battery.

For different types of battery, the general steps are as follows:

1. Separate out OCV sub-intervals: according to the characteristics of OCV curve, the
global SOC interval (0, 100%) can be divided into several local sub-intervals. In order
to ensure the smoothness of fusional curve, each sub-interval exists overlap with
neighboring sub-intervals.

2. Assign OCV sub-models: according to the characteristics of the OCV curve in the
local SOC sub-interval, each sub-interval corresponds to a specific OCV sub-model.

3. Curve segment fitting: according to practical conditions, collecting the control points
in each sub-interval. After fitting, the OCV fitting curve segments of all sub-models
are obtained.

4. Assign weight: different global weight functions are assigned to corresponding OCV
sub-models. The function should convert weight from high to low continually when
the SOC gradually away from sub-interval in the overlapped region. Logistic function
is suitable for defining conversion above.

5. Fuse: according to weight functions, all OCV sub-models can fuse into a fusional OCV
model. The final OCV fitting curve can be expressed by using equation as follows:

OCV(s) =
∑n

i=1 Wi(s)OCVi(s)
∑n

i=1 Wi(s)
(5)

where s denotes SOC, OCVi(s) denotes the OCV value of sub-model i at s, Wi(s)
denotes the corresponding weight at s. The final fusional OCV model can be directly
used for subsequent algorithms.

Theoretically, the proposed OCV model fusion method is universal for any type of
battery as long as the OCV model can be used to fit the OCV curve. As representative
commercial lithium-ion batteries, the LFP battery and NMC battery are used to verify
the effectiveness of the proposed fusion method. Detailed application of the OCV fusion
method in the two batteries is presented.

5
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Figure 3. Flowchart of OCV model fusion method.

2.2.1. Method for LiNiMnCoO2 (NMC) Battery Cell

An OCV curve of NMC battery with changing rate of OCV over SOC is presented in
Figure 4. Due to the discrete form of OCV curve, the changing rate of OCV is approximately
calculated through the following equation:

OCV′(s) ≈ OCV(s + 0.1%)− OCV(s − 0.1%)

0.2%
(6)

6
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Figure 4. An OCV curve of a NMC battery with changing rate of OCV over SOC.

By analyzing the OCV curve of NMC battery, the following characteristics can be
summarized:

• The OCV curve is clearly monotonous, and OCV changes dramatically when SOC
drops to 0%.

• By approximately calculating the changing rate of the OCV with SOC, it is obvious
that the changing rate of OCV curve has bumps around 20% SOC and 65% SOC.

The OCV models in Figure 2 are adopted to fit global OCV curve, and the results
show that the accuracy fluctuates when the SOC is around 20% and 65%. Intuitively, it
is easy to obtain an accurate OCV sub-model by fitting an OCV curve segment whose
approximate range of SOC is (20%, 65%). By setting interval (15%, 25%) and interval (60,
70%) as conversion region, the OCV curve is divided into three parts. The corresponding
sub-intervals are (0, 25%), (15%, 70%) and (60%, 100%).

In order to verify the effect of fusion method, the OCV models in Figure 2 are alterna-
tive choice of OCV sub-models. Due to the strongly non-linear variation of the OCV curve
when SOC drops to 0%, the exponent, logarithm and power function are alternative choices
of OCV sub-model for sub-interval (0, 25%). The OCV model in Figure 2c shows the best
accuracy in sub-interval (0, 25%), so it is adopted. The variation of the OCV curve is nearly
linear in sub-intervals (15%, 70%) and (60%, 100%), so corresponding sub-models with
polynomial would be adequate for fitting. OCV sub-models adopted for a NMC battery
are presented in Table 1.

Table 1. Sub-models of NMC battery.

Sub-Interval Sub-Model

(0, 25%) OCVNMC,1(s) = k0 + k1s + k2(1 − exp(−αs)) + k3(1−exp(−β/(1 − s)))

(15, 70%) OCVNMC,2(s) = k0 + k1s + k2s2 + k3s3 + k4s4

(60, 100%) OCVNMC,3(s) = k0 + k1s + k2s2 + k3s3 + k4s4

After collecting enough control points in three sub-intervals respectively, the fitting
results can be obtained. Weight function of each sub-interval is defined as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

WNMC,1(s) = 1
1+exp(r(s−0.2))

WNMC,2(s) =

{ 1
1+exp(−r(s−0.2)) , s ≤ 0.425

1
1+exp(r(s−0.65)) , s > 0.425

WNMC,3(s) = 1
1+exp(−r(s−0.65))

(7)

where r denotes the shape parameter which determines the degree of weight conversion.
In this paper, r is configured as 150.

7
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2.2.2. Method for LiFePO4 (LFP) Battery Cell

An OCV curve of a LFP battery with changing rate of OCV over SOC is presented in
Figure 5. Similarly, following the OCV characteristics of LFP battery can be summarized:

• The OCV curve is monotonous, and the OCV changes dramatically when SOC drops
to 0% and rises to 100%. Moreover, the OCV curve has flat regions where the changing
rate of OCV is close to zero.

• By approximately calculating the changing rate of OCV with SOC, it is obvious that
the changing rate of the OCV curve has bumps around 20% SOC and 80% SOC.

 

Figure 5. An OCV curve of LiFePO4 (LFP) battery with changing rate of OCV over SOC.

Different OCV models in Figure 6 are adopted to fit OCV curve, and the results shows
that accuracy fluctuates when SOC is around 10%, 20% and 80%. By setting interval (15%,
25%) and interval (75%, 85%) as the conversion region, OCV curve is divided into three
parts. The corresponding sub-intervals are (0, 25%), (15%, 85%) and (75%, 100%). The
OCV model in Figure 6c is adaptable to the strongly non-linearity of the LFP battery, which
makes it become the OCV sub-model of sub-intervals (0%, 25%) and (75%, 100%). The OCV
model in Figure 6b retains great precision in sub-interval (15%, 85%). The OCV sub-models
adopted for the LFP battery are presented in Table 2.

  
(a) (b) 

 
(c) 

Figure 6. Conventional OCV models for LFP battery (21 control points, s denotes SOC, k0, 1, 2, 3, 4, α, β denote fit coefficients).
(a) Fourth-degree polynomial. (b) Polynomial and logarithm. (c) Exponent and linear function.

8
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Table 2. Sub-models of LFP battery.

Sub-Interval Sub-Model

(0, 25%) OCVLFP,1(s) = k0 + k1s + k2(1 − exp(−αs)) + k3(1−exp(−β/(1 − s)))

(15, 85%) OCVLFP,2(s) = k0 + k1s + k2s2 + k3s3 + k4 log(s) + k5(1 − s)

(75, 100%) OCVLFP,1(s) = k0 + k1s + k2(1 − exp(−αs)) + k3(1−exp(−β/(1 − s)))

After collecting enough control points in three sub-intervals respectively, the fitting
results can be obtained. The weight function of each sub-interval is defined as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

W1(s) = 1
1+exp(r(s−0.2))

W2(s) =

{ 1
1+exp(−r(s−0.2)) , s ≤ 0.5

1
1+exp(r(s−0.8)) , s > 0.5

W3(s) = 1
1+exp(−r(s−0.8))

(8)

So far, the fusional OCV models of both batteries can be obtained by Equation (5)
respectively. There are few points that need to be discussed:

• Although the fusional results are deduced from two examples, the steps of fusion
method are generalized.

• According to practical condition, parameters like sub-intervals, sub-models and
weight function can be explored freely.

• It is not suitable to select a sub-interval with too short a length, otherwise the number
of control points need to be increased.

3. State of Charge (SOC) and Capacity Estimation Algorithm

3.1. Adaptive Cubature Kalman Filter

The discrete state space equation of nonlinear system with additive noise is:{
xk = f (xk−1, uk−1) + wk−1
zk = h(xk, uk) + vk

(9)

where xk denotes the state vector at step k; uk is the control input; f (·) and h (·) represent
the process function and measurement function respectively; wk−1 and vk are independent
Gaussian noise with zero mean, corresponding covariance are Qk−1 and Rk respectively.
For the Thevenin model, the parameters and vectors in Equation (9) are defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (xk, uk) = Axk−1 + Buk−1
h(xk, uk) = OCVk − Up,k − R0iL,k−1

A = diag
(

1, exp(− Δt
Rp Cp

)
)

B =
[
− ηΔt

Ca
Rp(1 − exp(− Δt

Rp Cp
))
]T

xk =
[
SOCkUp,k

]T

zk = Ut,k
uk = iL,k

(10)

In order to cope with the nonlinearity, the distribution of random state vector is
approximated by cubature points with uniform weight. Based on the spherical-radial
cubature rule [33], the cubature points are generated through the following parameters:{

ξi =
√

n[1]i (i = 1, 2, · · · , 2n)
ωi = 1/(2n) (i = 1, 2, · · · , 2n)

(11)

9
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where n denotes dimension of the state vector, ξi represents the ith cubature point, ωi
denotes the weight of the ith points, [1] denotes the following set of points:

[1] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

1
0
...
0

⎤⎥⎥⎥⎦, . . . ,

⎡⎢⎢⎢⎣
0
...
0
1

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
−1
0
...
0

⎤⎥⎥⎥⎦, . . . ,

⎡⎢⎢⎢⎣
0
...
0
−1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (12)

3.2. Process of SOC Estimation

As one component of xk, SOCk can be estimated online by the recurring following process:

3.2.1. Initialization

The mathematical expectation and covariance of state vector x0 need to be initialized
as x̂0|0 and P0|0 respectively, and covariance Q0 and R0 are preset.

3.2.2. Time Update

The complete CKF generates the cubature points at step k − 1, and the cubature points
are propagated to the state vector at step k by the process function. After averaging, the
priori estimation at step k can be obtained. Due to the linearity of the Thevenin model
process equation, the classic Kalman filter algorithm can be applied in the time update
part, so that algorithm can be more concise and efficient. A hat over a letter denotes the
estimation of corresponding parameter.

x̂k|k−1 = f
(

x̂k−1|k−1, uk−1

)
= Ax̂k−1|k−1 + Buk−1 (13)

Pk|k−1 = APk−1|k−1 AT + Qk−1 (14)

3.2.3. Measurement Update

1. Generate cubature points:

xi,k|k−1 = Sk|k−1ξi + x̂k|k−1, (i = 1, 2, · · · , 2n) (15)

Pk|k−1 = Sk|k−1ST
k|k−1 (16)

where Sk|k−1 is the Cholesky decomposition result of Pk|k−1.
2. Calculate propagated cubature points in observation space:

zi,k|k−1 = h
(

xi,k|k−1, uk

)
(17)

3. Calculate the predicted measurement:

ẑk|k−1 = ∑2n
i=1 ωizi,k|k−1 (18)

4. Calculate the measurement innovation covariance:

Pzz,k|k−1 = ∑2n
i=1 ωizi,k|k−1zT

i,k|k−1 − ẑk|k−1ẑT
k|k−1 + Rk−1 (19)

5. Calculate the cross-covariance:

Pzx,k|k−1 = ∑2n
i=1 ωixi,k|k−1zT

i,k|k−1 − x̂k|k−1ẑT
k|k−1 (20)

10
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6. Calculate the Kalman gain:

Kk = Pzx,k|k−1P−1
zz,k|k−1 (21)

7. Calculate the updated state:

x̂k|k = x̂k|k−1 + Kk

(
zk − ẑk|k−1

)
(22)

8. Calculate the updated covariance:

Pk|k = Pk|k−1 − KkPzz,k|k−1KT
k (23)

3.2.4. Adaptive Update of Noise

According to the innovation sequence of terminal voltage, the process noise and
measurement noise are adjusted adaptively.

1. The innovation covariance matrix:

Hk =
1
M ∑k

i=k−M+1 eieT
i (24)

where M denotes the window size which is defaulted as 60, ei denotes residual which
is calculated by:

ek = zk − ẑk|k−1 (25)

2. The process noise covariance Qk is updated as follows:

Qk = Kk HkKT
k (26)

3. The measurement noise covariance Rk is updated as follows:

Rk = Hk + ∑2n
i=1 ωi

(
zi,k|k−1 − zk

)(
zi,k|k−1 − zk

)T
(27)

3.3. Capacity Estimation Based on Estimated SOC

Based on the estimated SOC, the available capacity of battery can be estimated on-line.
The capacity obtained through the capacity test is defaulted as the initial capacity value
when SOC estimation starts to be performed. The change of capacity ΔCk and the change
of SOC ΔSOCk are calculated as follows:

ΔCk = ∑k
i=Ls ηiiL,iΔt (28)

ΔSOCk = SOCk − SOCLs (29)

where Ls denotes the step at which the capacity estimation starts. That is, the capacity
estimation starts only after the SOC estimation has passed Ls step so that fluctuation of
capacity estimation is reduced during the initial period. The capacity is estimated by using
following equation:

Ĉk =
ΔCk

ΔSOCk
(30)

In order to obtain a steady value of available capacity estimation, the change rate of
capacity estimation is limited by using the following equation:∣∣∣∣∣ Ĉk − Ĉk−Lc

Ĉk−Lc

∣∣∣∣∣ ≤ ε (31)

11
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where ε denotes the acceptable change rate of capacity estimation, Lc denotes the step size
of capacity estimation. That is, the capacity is estimated every Lc step. Once Equation (31)
is not satisfied, the change between new estimated capacity and last estimated capacity
will be compulsively set as ε.

Figure 7 illustrates the flowchart of SOC estimation and capacity estimation.

 

Figure 7. Flowchart of state of charge (SOC) and capacity estimation.

4. Experiment and Discussion

4.1. Experiment

The battery experimental system consisted of an Arbin BT2000 battery test machine,
a thermal chamber and a computer with Arbin software. Tested NMC batteries and LFP
batteries were manufactured by MGL. The capacity tests, OCV tests and dynamic stress
tests (DST) were performed at the temperature of 10 ◦C, 25 ◦C, and 40 ◦C. Table 3 presents
basic information of both batteries.

Table 3. Basis information of tested batteries.

Material Type Nominal Capacity (Ah)
Available Capacity (Ah)

10 ◦C 25 ◦C 40 ◦C

NMC cylinder 25.00 28.30 28.75 29.02

LFP pouch 20.00 19.72 19.85 19.94

This study adopted a low-current OCV test, which stimulated the battery with 0.05 C,
to obtain SOC–OCV data points with 1 Hz. SOC and capacity were estimated under DST
which can emulate the actual driving cycles of EVs for batteries. The test profile of DST
and low-current OCV test is illustrated in Figure 8.

12
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(a) (b) 

 
(c) 

Figure 8. Current profiles of: (a) DST. (b) Cycle window of DST. (c) low-current OCV test.

Notably, OCV curves are regarded as OCV reference models whose OCV can be
looked up in OCV curve table. In this way, the closeness between fusional OCV model and
OCV curve model can be evaluated from the perspective of SOC estimation and capacity
estimation.

4.2. The Fusional OCV Model
4.2.1. Fusional OCV Model of NMC Battery

The fitting results of fusional OCV models of the NMC battery at 10 ◦C, 25 ◦C and
40 ◦C are shown in Figure 9a,c,e. The fitting results of conventional OCV models in Table 4,
which are same as the adopted sub-models, are shown in Figure 9b,d,e. All the OCV
models fit the OCV curve based on 21 evenly distributed control points.

Table 4. Conventional OCV models.

Label Model

1 OCV1(s) = k0 + k1s + k2s2 + k3s3 + k4s4

2 OCV2(s) = k0 + k1s + k2s2 + k3s3 + k4 log(s) + k5(1 − s)

3 OCV3(s) = k0 + k1s + k2(1 − exp(−αs)) + k3(1−exp(−β/(1 − s)))

  
(a) (b) 

Figure 9. Cont.
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(c) (d) 

  
(e) (f) 

Figure 9. OCV models of NMC battery at 10 ◦C, 25 ◦C, and 40 ◦C. (a) Fusional OCV model at 10 ◦C. (b) Conventional OCV
models at 10 ◦C. (c) Fusional OCV model at 25 ◦C. (d) Conventional OCV models at 25 ◦C. (e) Fusional OCV model at 40 ◦C.
(f) Conventional OCV models at 40 ◦C.

Table 5 shows the root mean squared error (RMSE) of all models. The fourth-degree
polynomial OCV model performs worst, and what make it unbearable is that all the OCV
fitting curves fourth-degree polynomial OCV model are non-monotonic. The OCV models
2, 3 can capture the changing trend of the OCV, but lost the precision in several local regions.
Based on the local high-precision of sub-models, the fusional OCV model highly fits the
experimental curve and corresponding RMSE is reduced dramatically. Compared with
using OCV sub-models to fit the global OCV curve, the average accuracy of fusional OCV
models increases about 2 times. In terms of temperature effect, the performance of fusional
OCV model is not influenced by ambient temperature. Notably, in order to exclude the
large error of OCV model when SOC drops to 0%, the SOC range of RMSE is between 5%
and 100%.

Table 5. RMSE of fusional OCV models and other models for NMC battery (V).

10 ◦C 25 ◦C 40 ◦C

Fusional model 0.0022 0.0027 0.0031

Model 1 0.0473 0.0575 0.0596

Model 2 0.0106 0.0115 0.0117

Model 3 0.0109 0.0105 0.0101

4.2.2. Fusional OCV Model of LFP Battery

Similarly, the fusional OCV models of the LFP battery at 10 ◦C, 25 ◦C, and 40 ◦C are
given in Figure 10a,c,e and the fitting results of OCV models in Table 4 are also given in
Figure 10b,d,e. All the OCV models fit the OCV curve based on 21 evenly distributed
control points. According to the RMSE of OCV models in Table 6, the fusional OCV models
still perform with great precision, especially in the region of middle SOC. The fourth-degree
polynomial OCV model is the most inaccurate and non-monotonic. Compared with using

14
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OCV sub-models to fit the global OCV curve, the average accuracy of fusional OCV model
increases about 2 times. The OCV models 2, 3 can capture the changing trend of OCV. In
terms of temperature effect, the performance of the fusional OCV model is not influenced
by ambient temperature. Notably, in order to exclude the large error of the OCV model
when SOC drops to 0% and rises to 100%, the SOC range of RMSE is between 5% and 99%.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. OCV models of LFP battery at 10 ◦C, 25 ◦C, and 40 ◦C. (a) Fusional OCV model at 10 ◦C. (b) Conventional OCV
models at 10 ◦C. (c) Fusional OCV model at 25 ◦C. (d) Conventional OCV models at 25 ◦C. € Fusional OCV model at 40 ◦C.
(f) Conventional OCV models at 40 ◦C.

Table 6. RMSE of fusional OCV models and other models for LFP battery (V).

10 ◦C 25 ◦C 40 ◦C

Fusional model 0.0032 0.0033 0.0033

Model 1 0.0386 0.0482 0.0782

Model 2 0.0088 0.0101 0.0100

Model 3 0.0090 0.0096 0.0106
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4.3. The Result of SOC Estimation with Different OCV Models

The proposed OCV model fusion method is further used to estimate SOC for verifi-
cation of OCV model accuracy. By using CKF and ACKF to estimate SOC under DST at
10 ◦C, 25 ◦C and 40 ◦C, the estimation results of the NMC battery are shown in Figure 11
with corresponding RMSE in Table 7 and the estimation results of the LFP battery are given
in Figure 12 with corresponding RMSE in Table 8. Due to the non-monotonicity and large
error of fourth-degree polynomial OCV models, the corresponding SOC estimation results
are invalid. The SOC estimation results of models 2 and 3 are considered.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 11. SOC estimation results for NMC battery by using: (a) CKF at 10 ◦C. (b) ACKF at 10 ◦C. (c) CKF at 25 ◦C. (d) ACKF
at 25 ◦C. (e) CKF at 40 ◦C. (f) ACKF at 40 ◦C.

Table 7. RMSE of SOC estimation for NMC battery (%).

10 ◦C 25 ◦C 40 ◦C

CKF ACKF CKF ACKF CKF ACKF

Fusional model 0.3277 0.0725 0.3385 0.1555 0.4465 0.2125

Model 2 1.6378 0.6027 1.5454 0.5056 1.4508 0.9889

Model 3 1.9407 0.1843 1.7782 0.3828 1.6261 0.3358
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 12. SOC estimation results for LFP battery by using: (a) CKF at 10 ◦C. (b) ACKF at 10 ◦C. (c) CKF at 25 ◦C. (d) ACKF
at 25 ◦C. (e) CKF at 40 ◦C. (f) ACKF at 40 ◦C.

Table 8. RMSE of SOC estimation for LFP battery (%).

10 ◦C 25 ◦C 40 ◦C

CKF ACKF CKF ACKF CKF ACKF

Fusional model 0.6462 0.2049 0.3530 0.4179 0.6506 0.2905

Model 2 1.6222 0.7526 0.8740 0.9157 1.4714 0.7377

Model 3 1.2080 0.7656 1.3779 0.8355 2.4103 0.3655

When applying the CKF algorithm, the difference between the OCV models is obvi-
ous. Since the OCV curve of the NMC battery does not have the flat platform effect like
LFP battery, the advantages of the fusion method are more beneficial for NMC battery.
Compared with other models in the NMC battery, the SOC estimation error based on the
fusional OCV model is dramatically reduced. For LFP battery, the SOC estimation error of
fusional OCV models can still retain minimal, but error may fluctuate with temperature
change. Overall, temperature has no significant effect on the fusion method. The addition
of adaptive noise effectively weakens the influence of OCV model errors and stabilizes the
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estimation results. According to experimental result, the effect of the OCV model fusion
method is verified.

4.4. The Result of Capacity Estimation with Different OCV Models

In order to reduce the impact of the fluctuation during the initial period, capacity
estimation starts to be performed after three DST cycles have finished. In consideration
of the time cost of one DST cycle is 480 s in the experiment, start step LS is set as 1440 s.
Cycle step Lc is set as 360 s and acceptable change rate ε is set as 2%. As shown in
Figures 13 and 14, it can be seen that fluctuation of capacity estimation by using the CKF
algorithm is more obvious than capacity estimation by using the ACKF algorithm. What is
more important, as shown in Tables 9 and 10, is that fusional OCV models still perform
best in tracking capacity estimation results of OCV curve models. In terms of temperature
effect, ambient temperature has no significant effect on the OCV fusion method.

Table 9. RMSE of capacity estimation for NMC battery (Ah).

10 ◦C 25 ◦C 40 ◦C

CKF ACKF CKF ACKF CKF ACKF

Fusional model 0.1833 0.0138 0.1718 0.1556 0.2226 0.1427

Model 2 0.9395 0.3558 0.8801 0.4317 0.8161 0.9693

Model 3 0.9877 0.1973 0.9414 0.1940 0.8499 0.1866

Table 10. RMSE of capacity estimation for LFP battery (Ah).

10 ◦C 25 ◦C 40 ◦C

CKF ACKF CKF ACKF CKF ACKF

Fusional model 0.1523 0.1866 0.1073 0.1791 0.2808 0.1240

Model 2 0.6295 0.4062 0.4753 0.2461 0.5442 0.3240

Model 3 0.3775 0.4850 0.4307 0.4102 0.8465 0.1283
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(a) (b) 

  

(c) (d) 

  
(e) (f) 

Figure 13. Capacity estimation results for NMC battery by using: (a) CKF at 10 ◦C. (b) ACKF at 10 ◦C. (c) CKF at 25 ◦C.
(d) ACKF at 25 ◦C. (e) CKF at 40 ◦C. (f) ACKF at 40 ◦C.

   
(a) (b) 

Figure 14. Cont.
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(c) (d) 

  
(e) (f) 

Figure 14. Capacity estimation results for LFP battery by using: (a) CKF at 10 ◦C. (b) ACKF at 10 ◦C. (c) CKF at 25 ◦C.
(d) ACKF at 25 ◦C. (e) CKF at 40 ◦C. (f) ACKF at 40 ◦C.

5. Conclusions

At present, the research on battery SOC and SOH estimation mainly focuses on
improving the structure of an equivalent circuit model and proposing new estimation
algorithms, ignoring the influence of the OCV model on the accuracy of state estimation.
Using a single OCV model cannot have a good fitting effect in the entire battery discharge
interval. For this reason, an OCV model fusion method is proposed that can effectively
obtain a high-fidelity OCV model. The method makes it possible to focus on the fitting
accuracy in a certain SOC interval, so as to capture the changing trend of the OCV in a
specific SOC region as much as possible. Furthermore, it has good adaptability for fitting
complex OCV curves, and provides a good solution for OCV curves that are difficult to fit
globally. The generalization fitting performance of the method is verified by the application
on NMC battery and LFP battery. Experimental results at three ambient temperatures
showed that the performance of the fusional OCV model was not sensitive to temperature.
Regarding the influence of the OCV fusion model on the accuracy of state estimation,
this paper used CKF and ACKF to estimate the SOC and capacity under three ambient
temperatures, the results indicating that the fusional OCV model can effectively track the
performance of OCV curve model in terms of supporting algorithm.

The fusion method has an important implication for reconstructing a global OCV
characteristic curve based on curve segments. It is not only suitable for offline low-current
OCV experiments, and we will carry out research work on applying it to offline incremental
OCV experiments and online OCV reconstruction processes.
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Abstract: The improvement of the supercapacitor model redundancy is a significant method to
guarantee the reliability of the power system in electric vehicle application. In order to enhance the
accuracy of the supercapacitor model, eight conventional supercapacitor models were selected for
parameter identification by genetic algorithm, and the model accuracies based on standard diving
cycle are further discussed. Then, three fusion modeling approaches including Bayesian fusion,
residual normalization fusion, and state of charge (SOC) fragment fusion are presented and compared.
In order to further improve the accuracy of these models, a two-layer fusion model based on SOC
fragments is proposed in this paper. Compared with other fusion models, the root mean square error
(RMSE), maximum error, and mean error of the two-layer fusion model can be reduced by at least
23.04%, 8.70%, and 30.13%, respectively. Moreover, the two-layer fusion model is further verified at
10, 25, and 40 ◦C, and the RMSE can be correspondingly reduced by 60.41%, 47.26%, 23.04%. The
results indicate that the two-layer fusion model proposed in this paper achieves better robustness
and accuracy.

Keywords: supercapacitor; parameter identification; genetic algorithm; fusion model

1. Introduction

In recent decades, a new energy technology, which has been rapidly developed and
applied in the field of electric vehicles (EV) has attracted the attention of many countries
such as China, the United States, Germany, the United Kingdom and Japan [1]. Lithium-
ion batteries are widely used in EV power systems due to their high energy and power
density and low self-discharge rate [2,3]. The high rate of charge and discharge current will
seriously affect the life of the battery, which can generally only be controlled within 2C rate.
However, supercapacitors can not only achieve high-rate charge and discharge, but also
have unparalleled advantages in terms of power density and long cycle life. Therefore, in
the EVs application, supercapacitors are often combined with lithium-ion batteries to serve
as a hybrid energy storage system for EV energy supply [4–6]. In view of the prominent
characteristic of the high power density, supercapacitors can not only provide the peak
current urgently needed by electric vehicles and absorb excessive braking current, but also
extend the cycle life of the power system and alleviate the impact of surge current on bus
voltage. Supercapacitor models are strongly related to the optimal control of EV power
systems. Therefore, inaccurate model parameters easily degrade the monitoring function
of the power system, and may also lead to potential problems such as low efficiency,
fires, and explosion of electric vehicles [7,8]. Therefore, the increased redundancy of the
supercapacitor model is the significant approach to enhance the accuracy and guarantee
the reliability of power systems for EVs.
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At present, the most commonly used models of supercapacitor include the black box
model, electrochemical model, and equivalent circuit model (ECM) [9,10].

(1) The black box model can describe the relationship between specific parameters
and external characteristics with good flexibility and model precision. Optimization al-
gorithms, including neural networks, fuzzy control, and machine learning, are employed
to train the model on a large number of experimental data [11]. Wu et al. established an
equivalent circuit neural network nonlinear dynamics model with temperature and voltage
as input variables. Although the results are reliable, a large amount of data is needed for
simulation [12]. Zhang et al. constructed a residual capacity estimation model based on an
artificial neural network to represent the dynamic performances of supercapacitors, con-
sidering various currents and uncertain temperatures [13]. The experimental results show
that the proposed model is feasible and effective, which can provide accurate prediction of
residual capacity. Nevertheless, the black box model requires a large amount of data for
training to improve the prediction accuracy.

(2) In order to accurately describe the internal parameters and external character-
istics of supercapacitors, the electrochemical model, including many partial differential
equations, is widely used in supercapacitor modeling [14]. Drummond et al. studied
two electrochemical models to simulate the nonlinear partial differentiation of superca-
pacitors and found that the spectral discrete model can improve computational efficiency
while ensuring accuracy. [15] Wang et al. proposed a three-dimensional model, which
not only makes it possible to simulate the dynamic performances of electric double layer
capacitors (EDLCs), but also provides standard rules for achieving the maximum charging
performance of EDLCs [16]. Drummond et al. presented an absolute voltage stability
method, which combines the electrochemical parameters with electrical properties of the
supercapacitor. The method can obtain a stable voltage with less experimental data [17].
Tian et al. conducted a comparative study on five fractional models and found that the
composition and structure of the models would affect the voltage simulation and state of
charge (SOC) estimation [18]. In fact, the model accuracy is not directly proportional to the
parameter complexity. Although the electrochemical model has many advantages, it is not
conducive to practical application due to its complex structure and huge computation [19].

(3) An equivalent circuit model is a circuit network composed of a capacitor, inductor,
resistor, and other circuit elements to represent the voltage response characteristics of
supercapacitors. At present, equivalent circuit models mainly include the internal resistance
model, RC model, and PNGV model, etc. [20]. Since the equivalent circuit model has fewer
parameters and can balance the accuracy and complexity of dynamic simulation, it has
been extensively used in the model construction of automotive supercapacitors [21–23].
Spyker et al. proposed a classical equivalent circuit, which consists of an equivalent series
resistance, equivalent parallel resistance, and main capacitor, but it only describes the
dynamic performance of supercapacitors in a short time [24]. From ref [22], a variable
resistance equivalent circuit model for supercapacitors is presented to accurately simulate
the charging, redistribution, and self-discharge processes of supercapacitors. Compared
with the energy recursive model, it can provide a more accurate terminal voltage estimation
of the supercapacitor. Liu et al. described the relationship between model parameters and
temperature variation based on different functions. In this way, an equivalent circuit model
considering temperature uncertainty is introduced for enhancing model fitness at various
temperatures [25–27].

There is a lot of research that has discussed the supercapacitor models, but most of
this has focused on the methods to improve the accuracy under a single model. However,
each model has the particular advantage under different SOC ranges. Therefore, the
improvement of model accuracy and the offset of the single model drawback are the key
problems in the supercapacitor modeling field. The fusion model modeling method is an
effective and popular solution to the problem. The fusion method consists of a physical
fusion method and a data fusion method. Additionally, the combination of physical fusion
method and data fusion method can theoretically further improve the model accuracy.
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Liu et al. established a model on the basis of a composite model [28] and presented a
model combination method, which can be used to construct data fusion by a multi-model
combination. Moreover, many data fusion methods including SOC fusion estimation
and weight allocation optimization fusion are introduced in the literature [29]. Li et al.
proposed a fusion estimation method of SOC based on Gaussian process regression (GPR),
which significantly improved the accuracy of the model [30]. However, a single Gaussian
distribution is difficult to resist external interference, and the results are uncertain. Wei et al.
used the normalized weights of multiple Gaussian distributions to calculate the weight of
Gaussian components, and proposed a SOC estimation method based on Gaussian mixture
model (GMM). The simulation results show that this method can effectively resist external
interference and improve the accuracy of the model [31]. Meanwhile, Lyu et al. proposed
a data fusion model method to estimate battery capacity by local charging curve using
Gaussian regression, and smoothing incremental capacity curve by local weighted scatter
smoothing can effectively improve the model accuracy [32]. Researchers can also use a
data fusion method when constructing a terminal voltage fusion model. However, because
the different fusion methods will affect the accuracy of the supercapacitor model, how to
choose the fusion method effectively is a problem worth studying.

In this paper, a two-layer fusion model based on a multi-model supercapacitor is
proposed. This fusion method adopts physical data fusion, including three fusion models:
a fusion model based on SOC fragments, a fusion model based on a Bayesian algorithm [33],
and fusion model based on residual normalization.

This paper is organized as follows. Section 2 introduces the feature experiments for
supercapacitors. In addition, eight popular equivalent circuit models of supercapacitors
are presented in Section 3. Section 4 discusses the parameter identification method for
supercapacitor models. In Section 5, a two-layer fusion model is proposed, and the
conclusion is in Section 6.

2. Characteristics of Supercapacitors

The characteristic experiments of the supercapacitors mainly include hybrid pulse
power characterization (HPPC) and urban dynamometer driving schedule (UDDS). The
HPPC experiment can reflect the relationship between voltage characteristics, depth of
discharge (DoD), and charge–discharge rate under different SOCs, which aims to provide
experimental data supporting the parameter identification of the supercapacitor model. The
UDDS character experiments are mainly used to test the performance of the supercapacitor
under actual driving conditions.

The capacitance of the experimental supercapacitor is 1500 F, and the upper cut-off
voltage is 2.7 V (SOC = 100%) and the lower cut-off voltage is set as 0.5 V (SOC = 0%). The
HPPC test procedure is shown follows:

Step 1: Charge the supercapacitor to 2.7 V with constant current 1 A;
Step 2: Hold the supercapacitor for 10 h to reach a stable state;
Step 3: Discharge the supercapacitor with low current to 0.5 V;
Step 4: Hold for 5 min;
Step 5: Then, charge with 1 A constant current constant voltage (CC-CV) up to the

cut-off voltage of 2.7 V, until the current is less than 0.05 A (define: t = 0).
Step 6: Complete charging and discharging tests in different rates of current, t = t + 1.

Firstly, discharge for 5 s and charge for 5 s at a current of 1A; then, discharge for 5 s and
charge for 5 s at a current of 5A; finally, discharge at 10A for 5 s and charge for 5 s. It is
worth noting the need to stand for a period of time after each charge and discharge.

Step 7: Keep 10% of the rated capacity of 1 A constant discharge. If t ≤ 10, return to
Step 6.

The pulse step, rest step, and discharge step of the test are shown in Figure 1. Positive
denotes current discharge and negative denotes current charge.
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Figure 1. HPPC current and voltage diagram and UDDS current and voltage diagram. (a) Current under UDDS. (b) Voltage
under UDDS. (c) Current under HPPC. (d) Voltage under UDDS.

3. Introduction to the Supercapacitor Model

Since there are many models of supercapacitors, the accuracy of the model and its
complexity should be taken into consideration when selecting the model.

The accuracy and complexity of supercapacitor models are the significant factors of
concern in EV application. Moreover, there are many common supercapacitor models
reported in previous literatures. Consequently, eight popular equivalent circuit models
including the Rint model [6], Thevenin model [6], dual-polarization model [6], PNGV
model [34], GNL model [35], dynamic model [24], first-order RC model with one-state
hysteresis [36], and second-order RC model with one-state hysteresis [36], were compre-
hensively considered and selected in this paper.

The Rint model consists of a power module and an internal resistance module.
The Thevenin model considers the polarization characteristics of the supercapacitor.

In the model, the ideal voltage source, Uoc, describes the open-circuit voltage, and RD and
C are the polarization internal resistance and polarization capacitance, respectively. UD is
the voltage drop of RC parallel link, which is used to simulate the polarization voltage of
the supercapacitor.

In the dual-polarization model, two RC modules in series are added on the basis of
the Rint model to describe the supercapacitor polarization characteristics.

In the PNGV model, Uoc is the ideal voltage source and represents the open-circuit
voltage. R0 is the ohmic resistance of the battery. Rp is the battery polarization resistance.
Cp is the parallel capacitance beside Rp. Cp describes the change in open-circuit voltage as
the load current accumulates over time.
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GNL model considers the effects of ohmic polarization, electrochemical polarization,
concentration polarization, and self-discharge. In the model, the open-circuit voltage
is represented as Uoc. R1 and C1 are concentration polarization resistance capacitance
parameters, respectively. R2 and C2 are the resistance-capacitance parameters of the
electrochemical polarization of the power source. Re is ohmic internal resistance and Rs is
the internal resistance of self-discharge.

The dynamic model is composed of a series resistor, a series capacitor, and two RC
networks. In the model, Uoc is the ideal pressure source. u0, u1, and u2 correspondingly
represent the main capacity and the terminal voltages of the two RC networks.

The model with one-state hysteresis considers changes in y (dependent variable)
behind changes in x (independent variable). In the supercapacitor energy storage system,
the voltage changes behind the current changes. Therefore, the lag level h is added in the
calculation of the first-order RC model with one-state hysteresis, and second-order RC
model with one-state hysteresis.

4. Model Parameter Identification

4.1. Genetic Algorithm (GA)

GA is a kind of adaptive global optimization probabilistic search algorithm, which
has good adaptability and optimization ability in parameter identification. It starts with a
randomly generated population. After the initial population is generated, the principle
of survival of the fittest needs to be implemented in order to finally approach the optimal
solution. In each generation, individuals are selected according to the fitness in the problem
field, and the filial generation representing the new solution set is generated by genetic
operators. This process is the same as natural selection to make offspring better adapted to
the environment. After decoding, the optimal individual in the last generation population
may be used as the optimal solution of the problem. In this paper, the fitness function
of genetic algorithm is the square sum of the error between the terminal voltage of the
equivalent circuit model and the actual measured terminal voltage.

The genetic algorithm flow diagram is shown in Figure 2. The specific steps of genetic
algorithm are listed as follows:

 

Figure 2. Flow chart of genetic algorithm. (The cyclic process of optimizing parameters is reflected in
the red dotted box in the figure).

Step 1. Set the boundary conditions of the parameters.
Step 2. Generate the initial population.
Step 3. Calculate the fitness of individuals in the population and judge whether the

requirements are met. If satisfied, identification is over; otherwise, proceed the next step.
Step 4. Carry out inheritance, crossover, and mutation of the population to

obtain offspring.
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Step 5. Return to Step 3.

4.2. Parameter Identification

This section takes the Thevenin model as an example to describe, and the rest of the
models are similar. Circuit diagrams of the Thevenin model of the supercapacitor is shown
in Table 1, where iL is the load current; RD and C are the polarization internal resistance
and polarization capacitance, respectively; and UD is the voltage drop of RC parallel link,
which is used to simulate the polarization voltage of the supercapacitor [37]. The circuit
equation of this circuit model is Equation (1).{ .

UD = iL
C − UD

RDC
Ut = Uoc − UD − iLRi

(1)

Table 1. Circuit diagram and equation of each model.

Model Circuit Diagram Equation

Rint model Ut = Uoc − iLRi

Thevenin model
{ .

UD = iL
C − UD

RDC
Ut = Uoc − UD − iLRi

Dual-polarization model

⎧⎪⎨⎪⎩
UD1 = iL

CD1
− UD1

RD1CD1

UD2 = iL
CD2

− UD2
RD2CD2

Ut = Uoc − UD1 − UD2 − ILRi

PNGV model

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

dUp
dt

dUb
dt

]
=

[
− 1

Cp Rp
0

0 0

][
Up
Ub

]
+

[
1

Cp
1

Cb

]
[I]

[UL] = [Uoc] +
[ −1 −1

][ Up
Ub

]
− R0[I]
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Table 1. Cont.

Model Circuit Diagram Equation

GNL model

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Im = U1

R1
+ C1

dU1
dt

Im = U2
R2

+ C2
dU2
dt

UL = Uoc − ImRe − U1 − U2
UL = (I − Im)Rs

Dynamic model

⎧⎪⎨⎪⎩
u1
R1

+ C1
du1
dt = ic

u2
R2

+ C2
du2
dt = ic

u1 + u2 + R0i = uc

First-order RC model with
one-state hysteresis

⎧⎨⎩
h = −|κiL|h+|κiL|sgn(iL)
U = − 1

CRd
U + 1

C iL
UL = Uoc + hM − U − iLR0

Second-order RC model with
one-state hysteresis.

⎧⎪⎪⎨⎪⎪⎩
h = −|κiL|h+|κiL|sgn(iL)
U1 = − 1

C1 Rd1
U1 +

1
C1

iL
U2 = − 1

C2 Rd2
U2 +

1
C2

iL
UL = Uoc + hM − U1 − U2 − iLR0

The model is discretized before parameter identification. The polarization voltage of
the supercapacitor model is obtained as Equation (2).

UD[(k + 1)Δt] = e−Δt/τUD(kΔt) + RDiL[(k + 1)Δt][1 − e−Δt/τ ] (2)

Among them, τ = RD × C. Meanwhile, the discretization calculation equation of the
supercapacitor SOC can be obtained as shown in Equation (3).

zk = zk−1 − ηiiLΔt/Cmax (3)

Zk represents the SOC value at time k; Δt represents the segment time of current
acquisition; ηi represents the coulomb efficiency; and Cmax represents the rated capacity of
the supercapacitor.

The parameters to be identified in the Thevenin model of the supercapacitor include
Ri, RD, and τ. Since the parameters will change under different SOC state estimations, it is
necessary to identify the three parameters in each SOC segment. In order to balance the
identification accuracy and efficiency, the discharge segment of the supercapacitor was
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divided into ten segments ranging from 100% to 0%. The identification results and errors
are shown in Table 2:

Table 2. Parameter identification results of Thevenin model for supercapacitors.

SOC Ri (mΩ) RD (mΩ) τ

100%−90% 0.5760 4.079 318.778
90%−80% 0.5874 4.956 159.593
80%−70% 0.5790 4.289 124.776
70%−60% 0.5679 9.450 263.936
60%−50% 0.5557 3.965 134.347
50%−40% 0.5437 7.719 254.746
40%−30% 0.5488 9.117 309.871
30%−20% 0.5494 6.066 180.197
20%−10% 0.5530 6.383 225.290
10%−0% 0.4853 0.681 11.2813

Figure 3 shows the error diagram of the terminal voltage simulation results and
experimental values under UDDS conditions. In general, the identification error can be
divided into two ranges, namely the SOC range of [50%–100%] and [0%–50%]. As can be
seen from the Figure 3, the Thevenin model has a relatively excellent simulation accuracy
in the segment of [50%–100%], and the error in this segment can be controlled within 10 mV
without large fluctuations. Similar results were obtained by verifying the other seven
models. When the SOC drops to [0%–50%], the accuracy of all models decreases. When the
SOC is above 50%, a better precision can be obtained. The results show that the genetic
algorithm can effectively identify the relevant parameters in each model.

Figure 3. UDDS-based Thevenin model validation diagram. (a) Simulation error variation figure (b) Comparison of
simulation terminal voltage and measured value.

After parameter identification based on the data obtained from the HPPC, the max-
imum error, mean error, and root mean square error (RMSE) of the eight models were,
respectively, calculated under the UDDS, as shown in Table 3.

By analyzing the terminal voltage error model of supercapacitors, it can be seen that
more complex models can not necessarily achieve higher accuracy of training data sets. In
fact, if the nature of the model is too complex, it will be more susceptible to uncertainty.
Then, models with overly complex features are not suitable for model validation datasets.

From Table 3, the Rint model has better simulation accuracy compared with other
models. Due to the difference in the simulation accuracy of the SOC segment, the variation
of the SOC segment should be taken into consideration in the comparison. For example, in
the SOC range of (90%–100%), the RMSE of the Rint model is 0.0285 mV, which is the model
with the highest accuracy in this SOC range. However, in the SOC range of (50%–60%), the
accuracy of the dynamic model is the highest, and the root mean square error is 1.7946 mV.
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Table 3. Errors of the eight models.

Model
Maximum Error

(mV)
Mean Error

(mV)
Root Mean Square

Error (mV)

Rint model 15.062 2.2248 3.0864
Thevenin model 15.953 2.2727 3.1445

Dual-polarization
model 18.411 3.9966 4.5970

PNGV model 17.110 3.9035 5.3282
GNL model 15.317 2.2960 3.1851

First-order RC model
with one-state

hysteresis
20.038 5.5645 6.8858

Second-order RC
model with one-state

hysteresis.
26.105 12.2051 12.948

Dynamic model 18.775 3.6325 4.4737

On account of model differences affecting the simulation accuracy of terminal voltage,
none of the models can maintain the optimal simulation accuracy of terminal voltage
at different times. It is difficult for a single model to maintain the optimal accuracy in
a changing external environment. Therefore, the supercapacitor fusion model based on
multi-model probabilistic is proposed in this paper.

5. Multi-Model Probabilistic Fusion Model

It has been verified that the model with the best accuracy is different in the varying
SOC interval. Therefore, results based on a single model are not guaranteed to be optimal in
the entire SOC segment. It is worth proposing an optimization algorithm based on multiple
models to further optimize accuracy. Consequently, four kinds of multi-model voltage
residuals are presented to scientifically determine the model switching objective function.

Fusion model based on SOC fragments: The objective function was established to
find the minimum root mean square error model in different SOC intervals, and the
fusion model was established by combining them. The operation is to divide the SOC
into 10 segments, and then calculate the RMSE of the different models in each segment.
The model with the smallest RMSE value is used as the fusion model of the current
SoC segment.

Fusion model based on Bayesian algorithm: The advantages of different models
are combined by giving weight to the eight models, respectively, for fusion. In order to
determine the weight of each model, the probability is adopted in this paper to describe
the degree of closeness between the predicted terminal voltage and the real voltage. When
selecting weights, the statistical characteristics of the residual are added, and a Bayesian
algorithm is used to obtain the conditional distribution probability of terminal voltage. A
Bayesian algorithm is the estimation of the prior knowledge to the posterior knowledge
in the inspection process. By using the discrete Bayesian algorithm, the probability of the
previous moment is considered as a deterministic probability, and then the probability
of the later moment can be estimated. In this way, the weight of each model at the next
moment is obtained.

Fusion model based on residual normalization: The fusion result is the weighted sum
of each model, which is taken as the initial value of the state estimation at the next moment,
so as to obtain the prior estimate. When the weight is selected, the instantaneous terminal
voltage residuals represent the estimation accuracy. The specific operation is to normalize
the terminal voltage residuals of the eight models, and the obtained probability based on
the normalization of the residual is the model weight.
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5.1. Fusion Model Based on SOC Fragments

RMSEs of different models are calculated under the SOC segment, and the model
corresponding to the minimum RMSE is determined. The model terminal voltage is taken
as the terminal voltage of the segment under the fusion model. According to the minimum
RMSE of each model in 10 SOC segments, the models selected for each SOC segment are
shown in Table 4.

Table 4. Selection of different SOC fragment models.

SOC The Target Model

100%−90% second-order RC model with one-state
90%−80% GNL model
80%−70% Rint model
70%−60% Rint model
60%−50% PNGV model
50%−40% Rint model
40%−30% Rint model
30%−20% Rint model
20%−10% Rint model
10%−0% Thevenin model

It can be seen from the selection of models in different SOC segments that the Rint
model has the highest probability of being defined as the target model. There is a 60%
probability that the Rint model will be selected, which is in line with the overall optimal
result of the Rint model in Table 3. The fusion model method based on the SOC segment in-
corporates 75% of the target model through optimization selection. This method eliminated
some models with poor accuracy in each SOC segment and retained the models with better
accuracy, which greatly reduced the operation time and improved the fusion efficiency.

5.2. Fusion Model Based on Bayesian Algorithm

The Bayesian estimation process is simple and fast, and considering the influence of
the previous moment on the next moment, the predicted value of terminal voltage is set as:

Û(k) =
8

∑
i=1

wi
∼
Ui(k) (4)

Among them,
∼
Ui(k) is the predicted value of terminal voltage of a single model, wi is

the weight coefficient of each model, and wi satisfies
8
∑

i=1
wi = 1.

According to Bayes’ theorem:

p(
∼
U(k)|p(U(k))) =

p(U(k)
∣∣∣∣∼U(k))p(w(k))

p(U(k))
(5)

U(k) is the terminal voltage to be evaluated at k, and p is the probability. The fusion
probability of each target model is calculated as follows:

p(si(k)|U(k)) =
p(si(k), U(k))

p(U(k))
(6)

where si(k) is the parameter set of the ith model under the SOC basis at time k.
The predicted value of terminal voltage can be rewritten as:

Û(k) =
8

∑
i=1

pi
∼
Ui(k) (7)

Residuals for: ei(k) = Ui(k)−
∼
Ui(k)
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Then:
Ψi(k) = 1

(2π)1/2Qi
1/2(k)

exp(−ei(k)
2Qi(k)

−1/2)
(8)

Among them, Qi(k) =
n
∑

k=1
ei(k)2/n. This is the variance of the residuals of each model.

Therefore, the weight coefficient is:

wi(k) =
Ψi(k)wi(k − 1)

8
∑

i=1
Ψi(k)wi(k − 1)

(9)

5.3. Fusion Model Based on Residual Normalization

Without considering the influence of weights at the previous moment on the weights
at the later moment, the probability is adopted to describe the approximation degree
between the predicted terminal voltage and the real value. The predicted value of terminal
voltage is:

Û(k) =
8

∑
i=1

wizk (10)

Zk is the SOC value. wi is the weight coefficient of each model, and wi satisfies
8
∑

i=1
wi = 1.

Residuals for: ei(k) = Ui(k)−
∼
Ui(k)

Then,wi(k) =
S(k)−ei

2(k)
(N−1)S(k) , S(k) is the sum of squares of the residuals of each model. In

other words, S(k) =
8
∑

i=1
ei

2(k).

5.4. Two-Layer Fusion Model

In order to further improve the accuracy and adaptability of the model, the two-layer
fusion model is proposed. The optimal root mean square error (RMSE) is taken as the
decision variable, and the corresponding data to be fused is taken as the result of the
two-layer fusion model. The algorithm process of the double-layer fusion model is shown
in Figure 4.

The specific steps are as follows:
Step 1: Input the error matrices E1, E2 and E3 under UDDS of each model.
Step 2: Calculate RMSE with SOC segment to obtain matrix REij, i = 3, j = 10.
Step 3: Search the position information of the minimum RMSE of each segment,

respectively, to obtain Mij and Nij.
Step 4: Assign the position information Mij and Nij to the corresponding objective

function. That is, get the objective function of different SOC segments.
Under different SOC segments, the selected target models are shown in Table 5.
In the selection of two-layer fusion models of different SOC fragments, it can be

seen that the fusion model based on residual normalization has the highest probability
to be defined as the target model, up to 80%. However, the fusion model based on SOC
fragments and the fusion model based on a Bayesian algorithm only have a 10% probability
to be defined as the target model. The results show that the fusion model based on residual
normalization is more advantageous in general. However, it is not reliable to explain
the accuracy of the model only according to the probability of the model being selected.
Therefore, it is more necessary to compare and analyze each model in depth.
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Figure 4. Flow chart of two-layer fusion model. (The red dashed box in the figure shows the
algorithm cycle process).

Table 5. Selection of two-layer fusion model of different SOC fragments.

SOC The Target Model

100%−90% Fusion model based on residual normalization
90%−80% Fusion model based on residual normalization
80%−70% Fusion model based on Bayesian algorithm:
70%−60% Fusion model based on residual normalization
60%−50% Fusion model based on SOC fragments
50%−40% Fusion model based on residual normalization
40%−30% Fusion model based on residual normalization
30%−20% Fusion model based on residual normalization
20%−10% Fusion model based on residual normalization
10%−0% Fusion model based on residual normalization

5.5. Results and Analysis of Different Fusion Models

Based on the data obtained from the fusion model, it is divided into 10 segments
according to per 10% SOC under the UDDS to verify its errors. On the basis of the errors,
the maximum error, mean error, and RMSE of the four fusion models are calculated,
respectively. The comparison between the simulated values of the four fusion models and
the measured terminal voltages is shown in Figure 5.

It can be concluded that, due to the good convergence and small error, the two-layer
fusion model does not show obvious advantages to improve the accuracy in high SOC
segments. In the middle and low SOC segments, the initial data is more volatile than that
of high SOC segment, while the two-layer fusion model obviously shows the advantage of
fast convergence. Combined with Table 6, the mean error and RMSE of the two-layer fusion
model under the three fusion models are reduced by at least 2.08% and 1.36%, respectively.
Moreover, compared with the other three fusion models, the two-layer fusion model can
make different SOC segments retain the optimal simulation voltage. The two-layer fusion
model can reduce the errors of the single fusion model in different SOC segments to further
improve the model precision.
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Figure 5. Simulation error comparison of models under the same UDDS.

Table 6. Errors of the four fusion models.

Model
Maximum Error

(mV)
Mean Error

(mV)
Root Mean Square

Error (mV)

Fusion model based on
SOC fragments 15.062 2.1179 3.0023

Fusion model based on
Bayesian algorithm 15.062 2.1973 3.0567

Fusion model based on
residual normalization 12.565 1.5112 2.1043

two-layer fusion model 12.565 1.4798 2.0756

5.6. Validation of Fusion Models at Different Temperatures

The supercapacitor model should adapt to the complex and changeable operation
environment. It is well known that different temperatures will make a difference in the
performance of supercapacitor [38]. In order to take into account the temperature, this paper
selected test data under the experimental environment of 10, 25, and 40 ◦C, respectively,
and repeated the parameter identification processes of GA to obtain the eight parameter
sets. Similarly, the obtained parameter set is substituted into the UDDS to verify and
calculate the simulation value of the terminal voltage. Then, the maximum error, mean
error, and RMSE of the four fusion models are obtained.

From Figure 6, it is found that the two-layer fusion model can ensure the minimum
root mean square error and average error in the optimal section at different temperatures.
Figure 6 shows that, under the experimental conditions of 10, 25, and 40 ◦C, the RMSE can
be reduced by 60.41%, 47.26%, and 23.04%, the maximum error can be decreased by 9.51%,
19.87%, and 8.70%, and the mean error can be declined by 68.21%, 48.48%, and 30.13%,
respectively. The improvement effect of the maximum error is not as obvious as that of the
mean error and the RMSE. In fact, the two-layer fusion model takes the minimum RMSE
as the decision variable and imports the fusion data again for settlement based on the
SOC segment. Therefore, for the two-layer fusion model, the interference of other fusion
models in the period of large estimation error can be greatly avoided in terms of RMSE and
mean error, so as to improve the accuracy of the model again. It is demonstrated that the
two-layer fusion model has strong adaptability against temperature and can combine the
advantages of each fusion model at different temperatures to achieve the optimal results.
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Figure 6. Comparison of the fusion model errors at different temperatures. (a) RMSE. (b) Maximum error. (c) Mean error.

6. Conclusions

A two-layer fusion model is proposed in this paper based on three fusion models. In
the two-layer fusion model, the terminal voltages at different times can quickly converge
to the true values, and RMSE can reduce by 23.04%, which indicates that it significantly
improves the accuracy of the model. The two-layer fusion model was validated at ambient
temperatures of 10, 25, and 40 ◦C, respectively. Compared with the previous three fusion
models, the RMSE, maximum error, and mean error of the two-layer fusion model are
all reduced. For RMSE, the two-layer fusion model correspondingly reduced by 60.41%,
47.26%, and 23.04%, which indicates that it has reliability redundancy. Finally, the two-layer
fusion model proposed in this paper can effectively play the advantages of physical fusion
and data fusion with rapid convergence. It can significantly avoid the interference of the
larger model errors in different SOC intervals, improves the accuracy of the estimation
results, and has high applicability.
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Abstract: The present paper proposes a new methodology to aid the electrification process of local
public transport (LPT). In more detail, real drive cycles of traditional buses currently in use are
evaluated together with other data to simulate the consumption of equivalent e-buses (electric
buses) with similar characteristics. The results are then used in order to design the best charging
infrastructure. The proposed methodology is applied to the case study of Algeciras Bay, where a
specific line of LPT is considered. Real measurements are used as data for the simulation model,
and the average consumption of an equivalent e-bus is obtained for different operating conditions.
Based on these results, different sizes and locations for fast-charging infrastructure are proposed,
and the size of the depot charging system is defined trying to maintain the current buses timetable.
Finally, some future developments of the present work are presented by considering other bus lines
that may benefit from the introduction of the defined charging systems.

Keywords: electric heavy-duty vehicles; local public transport; charging infrastructure; electric bus
consumption; simulation

1. Introduction

With the Paris Agreement in 2015, the members of the UNFCCC agreed to undertake
ambitious efforts to keep the global average temperature rise well below 2 ◦C above pre-
industrial levels and to strive for an increase of less than 1.5 ◦C within this century [1].
In order to reach this ambitious long-term goal, nations have to take action and drastically
reduce their overall carbon dioxide (CO2) emissions. Regarding the EU’s total emissions,
the road transportation sector makes a share of 21% [2], whereas road buses in combination
with other heavy-duty vehicles contribute to 5.6% of the total emitted CO2 [3]. Following
the conversion of conventional-powered buses to purely electric-drive ones fed by green
energy would have a significant impact on the overall determined goal, which is the reason
why the EU started the European Clean Bus deployment initiative in 2016 [4], which is
based on three pillars. The first initiative is a public declaration from cities and regions,
manufacturers, and transport organizations endorsing a common ambition to accelerate
the roll out of clean buses. The second one is the creation of a deployment platform to
exchange information, create coalitions, leverage potential investment action, and issue
recommendations on specific policies. Finally, the third pillar is the creation of an expert
group bringing together actors from the demand and the supply side. In this context,
e-buses can play an important role, by completely avoiding local emissions in the city and
reducing the overall emissions proportionally to the increase in renewables in each national
energy mix. Nevertheless, the adoption of electric buses is currently slow, as depicted
in Figure 1, where the electric bus registration in thousands of units is presented for the
different regions on the left vertical axis, and the percentage deviation in respect to the
previous year for the same regions is reported with straight lines on the right vertical axis.
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As can be seen, China is leading the market with a registration of 78,000 new vehicles in
2020, up in respect to the previous year by 9% and a total sales share of 27%.

Europe is steadily growing at a relatively low pace, registering about 7000 e-buses in
2020 making up 4% of all new bus registration in Europe. On the other hand, considering
the number of announced available models of e-buses for the years to come, it is possible to
notice how in China and Europe, the numbers are constant, whereas in the USA, an increase
is foreseen over the years.

The reasons behind this slow introduction of electric buses into the market are mainly
due to the high upfront capital investment in comparison to traditional buses [5] and the
need for proper designing and realization of charging facilities [6,7]. Moreover, the per-
formances of an electric bus are highly influenced by driving distances, road orography,
weather conditions, traffic congestions, and different passenger demands [8], thus being
difficult for local public transport companies to assess whether a specific e-bus model
is capable to substitute the actual traditional vehicle and if the substitution determines
different timetables due to charging necessities. In the literature, the estimation of the
energy consumption along a route of electric buses is usually obtained considering driving
cycles, which are standardized, as reported in [9], where a tool for assessing the energy
consumption of city transit electric buses is proposed. In other works, driving cycles are
acquired from real operation data of electric vehicles, as reported in [10], where standard
cycles and real data from Beijing electric vehicles are compared and assessed, or as in [11],
where a real-world dataset from more than 16,000 electric buses in Shenzhen has been used
to understand operating and charging patterns. Moreover, in [12], GPS devices are used
to collect locations and times of all the bus lines in Cuenca, Ecuador in order to define
which line to prioritize for the electrification according to emissions criteria. Finally, in [7],
the energy consumption value to be used to size the charging infrastructure of an electric
bus fleet in Finland is obtained by testing a 12 m prototype. Table 1 summarizes the review
of the studies presented above. In the present work, real data are collected from traditional
internal combustion engine buses that are currently in operation to derive a specific drive
cycle that accurately resembles the actual operating conditions to which an equivalent
e-bus would be subjected. These data are provided to a simulation tool that evaluates
the consumption of the equivalent e-bus. In more detail, in Section 2, the methodology
proposed to study the electrification of a line of local public transport service is presented.
Then, in Section 3, the methodology is applied to a real test-case scenario constituted by
the electrification of one line of the local public transport in Algeciras Bay to evaluate
the overall energy consumption of an equivalent e-bus along the specific line considered.
Finally, in Section 4, several considerations on the best charging system infrastructure are
reported, while in Section 5, conclusions are presented.

Figure 1. Electric bus registration and announced available models by region. Elaboration of data from IEA [13].
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Table 1. Review of data collection methods to assess the energy consumption of e-buses.

Collection Data Method Case Study

[10] Standard cycles and real operation data Beijing, China
[11] Real-world dataset Shenzen, China
[12] GPS devices Cuenca, Ecuador
[7] Consumption values of a test e-bus Tampere city/Finland

This work
The data are collected with GPS devices

from the real-world route driven by
conventional diesel buses.

Algeciras, Spain

2. Methodology

The present work aims to propose a methodology to aid the transition towards elec-
trification of public transport service companies. In more detail, as depicted in Figure 2,
the idea is to use real data coming from actual buses currently deployed by the public
transport service companies (such as the bus speed profile along a specific line, the corre-
sponding altitude profile, and the operating conditions of the bus, i.e., the auxiliary power
absorption, the number of passengers along the route, and the weather conditions) to run a
Simulink simulation model developed to evaluate the consumption of an e-bus. This model
simulates the corresponding consumption for an equivalent electric bus in terms of size
and seat capacity subjected to the same operating conditions, speed, and altitude profile
of the traditional propelled bus. The e-bus considered is characterized inside the model
by considering its motor, battery, brake system, and driveline specifications. The main
outcome of the model is the simulated consumption of the equivalent e-bus, which is very
useful information to make several other considerations in case of the electrification of the
line, such as the need for modification of the actual bus schedule, the choice of the best
charging system in terms of typology (depot or opportunity charging system), geographical
location, and size (capacity of charge).

Figure 2. Graphic representation of the implemented methodology.

2.1. Simulink Simulation Model

The Simulink simulation model considered in the present work takes inspiration
from [14], where an e-car simulation model is presented. More specifically, in the present
work, the driving cycle that is fed to the model is not a standardized driving cycle such as
the New European Drive Cycle (NEDC), but derives from real data related to a real bus
during its scheduled working hours. In this way, the driving cycle takes into account not
only the path conditions but also the impact generated by traffic conditions. Moreover,
the Simulink model has been modified in order to be capable of accepting an altitude
profile. Indeed, from the altitude variation, it is possible to calculate the slope of the road
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for each single time frame. This parameter is fundamental while considering the motion
equation as described in the following. Furthermore, since the Simulink model in [15] was
considered for an electric car, thus, most of the parameters of the model have been changed
to represent a bus scenario.

In Figure 3, the graphic representation of the Simulink model used in the present work
is reported. The model can be divided into six main blocks: the driver, the brake system,
the electric motor, the battery, the driveline, and the motion equation block. The real
bus speed profile is compared with the simulated speed, and the driver block works as
a proportional integral derivative (PID) controller and adapts the acceleration and brake
pedal position in order to follow the real bus speed profile. According to the brake pedal
position the brake system block gives as an output the braking force and the regenerative
braking command, respectively, to the driveline and motor blocks. As a function of technical
parameters of the considered motor (peak torque, rated power) and of variables of the
simulator (angular speed of the motor, position of the accelerator, regenerative braking
command), the motor block calculates the motor torque and power, which are, respectively,
fed to the driveline and the battery. The driveline block calculates the traction force acting
on the vehicle as a function of the input motor torque, the torque spin loss, the friction
braking force, and the ratio between the gear and wheel radius. As will be presented
shortly, the motion equation block (according to the traction force and all of the opposing
forces acting on the vehicle) calculates the simulated speed of the vehicle, which is given
in a closed loop to the driver block. Finally, the battery block estimates the energy that is
used by the bus considering the motor power and the auxiliary power that are needed.
In the following, the blocks will be described in more detail. The main inputs of the model
can be summarized into three categories: real bus operating data, assumed operating
data, and rated data of the equivalent considered e-bus. Concerning the inputs relative to
the real bus, the speed profile and the contextual altitude profile have been obtained by
using the GPS of a smartphone Google Pixel 4a by means of the free-to-use application
Phyphox [16]. The data have been filtered and elaborated before being fed to the Simulink
simulation model. Regarding the operating conditions of the real bus, several assessments
were made considering weather data for the location in terms of temperature and pressure
(which are used to calculate the density of the air) and the average number of passengers
along the line. The main assumed operating data are the tire pressure, the auxiliary power,
and the initial state of charge of the battery. On the other hand, the main rated data of the
equivalent considered e-bus are the width and height (useful to determine the frontal area
of the bus), the curb weight of the vehicle, the gear ratio, the tire nominal pressure and size,
the drag coefficient, the maximum power and torque of the electric motor, the maximum
braking force of the braking system, and the regenerative braking threshold in terms of
velocity. Furthermore, rated parameters of the battery are also taken into account such as
the open-circuit voltage, the rated capacity, and the internal resistance of the battery.

2.2. Brake System Block

This block represents the braking system of the e-bus. It receives as inputs the pedal
position of the brake, which is transformed into a desired brake force by scaling linearly
the pedal position in respect to the maximum brake force, calculated as a function of
the road adhesion coefficient. The desired brake force is then split into the regenerative
brake force and the friction brake force according to a specific braking factor. Moreover,
the regenerative brake force can assume non-null values only for vehicle speed above a
certain threshold usually in the range 10–25 km/h [17]. Finally, the regenerative brake
force is converted into a corresponding torque at the crankshaft by means of a parameter
taking into account the gear ratio and the tire radius.
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Figure 3. Simulink model information diagram.

2.3. Electric Motor Block

The electric motor block receives as input from the driver block the accelerator pedal
position. This signal is converted into a corresponding positive torque by linearly scaling
the pedal position in respect to the minimum in each instant between the rated torque of
the electric motor and the torque coming from the ratio between the rated power and the
actual angular motor speed, respectively, if it is working in the constant torque region or in
the constant power region, as depicted in Figure 4.

Figure 4. Typical characteristic torque/power curves of in function of angular speed [14].

Moreover, the allowable regenerative torque is defined in respect to the previously
cited minimum according to a specific factor and then used as a lower bound to convert
the regenerative brake torque at the crankshaft coming from the brake block into the actual
regenerative torque, which can be developed. The next step is adding with opposite signs
the accelerating torque and the regenerative torque in order to obtain for each time interval
the net motor torque Tmot

net , which is used to calculate the mechanical output power of
the motor Pmot

mech by multiplying it by the angular speed of the motor. On the other hand,
the electric input power of the motor Pmot

el supplied by the battery is defined as a function of
losses as reported in (1), where the losses are defined as in (2) as a function of the net torque
of the motor, the angular speed of the motor ωmot, and several parameters, which take into
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account the copper losses kc, the iron losses ki, the windage losses kω , and constant power
losses c.

Pmot
mech = Pmot

el − Pmot
losses (1)

Pmotor
losses = kc · (Tmot

net )
2
+ ki · ωmot + kω · (ωmot)

3
+ c (2)

During the regenerative braking phase, the mechanical power coming from the drive-
line is converted into electric power by the electric motor acting as a generator.

Finally, the electric motor block outputs are the electric motor power needed from the
battery and the net motor torque supplied to the driveline.

2.4. Driveline Block

The driveline block receives as inputs the net motor torque from the electric motor,
the friction brake force from the braking system, and the simulated speed of the vehicle.
The simulated speed of the bus is converted into the angular speed of the crankshaft
through the ratio between the tire radius and the gear ratio. The angular speed is then
multiplied by the torque spin losses to obtain the driveline power losses. The torque spin
losses are evaluated as a linear function of the rated torque of the motor and of the spin
loss coefficient, which is assumed to be constant. The torque spin losses are also subtracted
from the net motor torque coming from the electric motor block in order to determine
the driveline torque output. The latter is then converted into the positive tractive force
supplied by the driveline to the tires by means of the ratio between the tire radius and the
gear ratio. The friction brake force coming from the brake system block is then subtracted
from the positive tractive force to obtain the net tractive force acting on the vehicle, which
is delivered to the motion equation block.

2.5. Motion Equation Block

The motion equation block receives as an input the net tractive force acting on the
vehicle and compares it with the sum of resistances acting in the opposite direction on the
bus. Indeed, in every second of the trip of the bus, its motion mainly depends on the fol-
lowing four forces (Figure 5): the inertial force, the aerodynamic force (Rair), the resistance
force due to the grade (Rg), and the rolling resistance (Rr) [18].

Rr = Kr · mgcosθ (3)

Rair =
1
2

ρair · A · Cair · v2 (4)

Rg = m · g · sinθ (5)

where Kr is a rolling coefficient function of the pressure of the tires and of the simulated
speed of the vehicle v. The rolling resistance is given by the product of the rolling resistance
coefficient times the normal component of the weight force, the force perpendicular to
the road on which the vehicle’s wheels are rolling; therefore, if the vehicle is running on
an inclined plane, the force vertical component is defined by the product of the vehicle’s
mass m, the acceleration of gravity g times the cosine of the road slope θ. Concerning the
aerodynamic force, it is a function of the density of the air ρair (which is calculated as a
function of the ambient conditions), of the frontal area of the bus A, of the drag coefficient
Cair, and of the simulated speed of the vehicle. The grade resistance is a function of the
nominal mass of the vehicle plus the mass of all the onboard passengers m and of the
slope of the road profile θ, which is derived from the variation of the altitude profile along
the line.
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Figure 5. Forces acting on a moving bus.

The inertial force related to all the rotating components inside the vehicle is instead
taken into account by considering the concept of equivalent mass expressed in (6). To obtain
the equivalent mass me, the static mass m (which is a function of the vehicle and the number
of passengers onboard) is increased by a factor β, which varies from vehicle to vehicle.

me = m(1 + β) (6)

As already mentioned, to accelerate the vehicle, the net tractive force acting on the
vehicle Ft must exceed the sum of all the resistances, as expressed by the motion equation
in (7).

Ft −
3

∑
i=1

Ri = me · a (7)

The net tractive force Ft can assume positive values, hence the vehicle is said to be in
the powering mode, negative values, which means the vehicle is braking (braking mode),
and finally, a nil value of the Ft causing the vehicle’s natural deceleration (coasting mode).
The motion of the vehicle is an alternation of these three phases. Exploiting (7), it is possible
to calculate the acceleration of the vehicle and, consequently, its simulated speed. The latter
is then supplied back to the driver, brake system, and driveline block in a closed loop.

2.6. Battery Block

The battery block receives as inputs the electric motor power needed from the electric
motor and the power absorbed by the auxiliary systems. The two are summed to evaluate
the total power of discharge of the battery. For the battery, the Thevenin equivalent circuit
shown in Figure 6 is considered. Therefore, the battery is represented by an ideal voltage
source defined as the open-circuit voltage Vbat

oc in series with the resistance Rbat
int , which rep-

resents the internal resistance of the battery. According to the Thevenin equivalent circuit,
assuming constant no-load voltage, battery losses will vary with the current depending on
the total power consumed by the electric motor. Therefore, battery losses can be expected
to be lower if the total power consumed by the engine is reduced.
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Figure 6. Battery’s Thevenin equivalent circuit.

According to (8), the real discharge power of the battery is equal to the ideal discharge
power net of the losses linked to the internal resistance of the battery.

Pdch,bat
real = Pdch,bat

ideal − Pdch,bat
losses = Vbat

oc Idch,bat − Rdch,bat
int Idch,bat2 (8)

from which it is possible to retrieve the discharge current (9).

Idch,bat =
Vbat

oc −
√(

Vbat
oc
)2 − 4Rbat

int Pdch,bat
real

2Rbat
int

(9)

Knowing the discharge current against time, it is possible to evaluate the state of
charge (SOC) of the battery (10) as a function of the rated energy content of the battery
Ebat measured in kWh. The SOC provides the current battery status. It is expressed in
percentage values, where 0% indicates that the battery is completely discharged and 100%
indicates a full charge.

SOCbat =
− ∫ t

0 Vbat
oc Idch,batdt
Ebat · 100 (10)

At this point, the energy average consumption of the e-bus C measured in kWh/km
can be calculated according to (11) as a function of the initial amount of energy inside the
battery Ebat

in and the overall traveled distance in km d.

C =
Ebat

in − SOCbat

100 · Ebat

d
(11)

As a consequence, the consumption of the e-bus can be simulated along its route, giv-
ing the possibility to draw several significant considerations on the more proper charging
system infrastructure for each considered case study, as will be shown in more detail in
Sections 3 and 4.

3. Case Study Scenario

The methodology described in Section 2 is applied to an existing bus line that connects
the city of Algeciras to La Línea de la Concepción, both located in the Autonomous Province
of Andalucía, in the south of Spain. The bus and coach services in Algeciras and, in general,
in Andalucía are operated by different private bus companies. Most of them operate from
the main bus terminals in the towns. Some, however, do use their bus station. The main
bus terminals from which the considered bus line starts and ends its route are the so-called
San Bernardo Station in Algeciras and La Linea bus station in La Línea de la Concepción,
depicted in Figure 7a,b, respectively.
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(a) 

 
(b) 

Figure 7. Bus stations (a) San Bernardo and (b) La Linea.

3.1. Bus Data

Currently, the bus employed to cover this route is the 12 m diesel bus Volvo B12B,
shown in Figure 8, which is a rear-engine coach and intercity bus chassis with 52 seats built
by Volvo for the European market starting from 2001.

 

Figure 8. Current bus employed for the analyzed line.
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The characteristics of the corresponding electric bus model chosen as a substitute are
listed in Table 2 and its layout is depicted in Figure 9. The chosen electric model is a 15 m
long bus, which is completely electric and equipped with onboard lithium-ion battery
packs; it is certified both for class I vehicles (as a city bus) and for class II vehicles (as a bus
for inter-city transport as in this case). The bus is equipped with six battery packs each one
of about 78 kWh for a total energy capacity of about 470 kWh. In particular, four out of six
packs are installed in the rear of the bus, the remaining two are mounted on the roof [19].
The nominal maximum power the asynchronous motor can provide is 300 kW, while the
supply battery voltage is 400 V.

Table 2. Electric bus technical details.

Parameter Value

Length [m] 14.89
Width [m] 2.550
Height [m] 3.465
Mass [kg] 19 000
Paux [kW] [3.5/16/27.5] *

Tire pressure [bar] 8
Seats 55

Payload mass [kg] [700/1540/2800] *
Inertial factor β 0.15

Equivalent mass [kg] 15 250
Max. motor power [kW] 300

Efficiency 0.85
% Regenerative braking 67

Battery energy capacity [kWh] 6 × 78
* in accordance with scenarios described in the text.

Figure 9. Considered bus layout.

The traction battery must also provide the energy to supply the auxiliary services
(i.e., rear and front lights, HVAC, doors automatic system, etc.). In electric buses, and
electric vehicles in general, the most energy-consuming auxiliary service is the heating,
ventilating, and air conditioning (HVAC) unit, and hence, particular attention must be
given to this system in the energy consumption estimation. The air conditioning system
of conventional buses mainly consists of a rooftop mounted evaporator and condenser
and of a compressor assembly mounted on the side of the engine. The air conditioning
compressor in diesel buses is directly driven by the internal combustion engine (ICE)
instead, but in electric buses, it is powered by a dedicated electric motor always supplied
by the battery [20]. For the heating system, the question is a little more complicated. In ICE
buses, the heating system employs the heat coming from the engine’s coolant. About 30%
of the heat generated during combustion is transferred to the coolant, giving an easy and
fast source of heat. The incoming air is, hence, warmed as it passes through a radiator that
holds the hot engine coolant. In an electric bus, none of these components exist. For electric
buses, three main heating solutions can be used: electric resistance heating, electric heat
pump, and fuel heating.
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In [21], the authors carried out a cost analysis for the different HVAC systems that can
be installed on a city electric bus, and their results reveal that the heat pump system helps
to achieve great energy savings compared to the heating resistance system. Nevertheless,
pondering a lifetime of 12 years, the current high initial capital cost of a heat pump system
is not compensated when only considering direct costs.

The thermal load required by the bus to achieve internal thermal comfort for passen-
gers varies at different outdoor conditions. According to [22], with a resistance heating
system, a constant power of 24 kW is necessary for warming the cabin of a 12 m electric
bus with a difference from outside ambient temperate of 27 ◦C, leading in this way to an
increase in the vehicle consumption between 1.3–2 kWh/km depending on the average
forward speed. Instead, running the compressor to cool the cabin on a hot summer day
with 35 ◦C outside requires 12.5 kW, which results in a consumption increase of about
0.7–1 kWh/km. Therefore, the heating system represents the worst operating consumption
case scenario, and in the case of extreme outdoor conditions, it can reduce the overall
driving range by 50% [23,24].

Other auxiliary services presented in an electric bus, as previously mentioned, are the
illumination system, doors automatic system, battery cooling, and pump steering. Again,
according to the results in [22], the overall power demand of these auxiliaries in a 12 m
electric bus is lower compared to the HVAC system, and it is about 3 ÷ 5 kW.

To analyze the impact of the different auxiliary services load on the bus energy
consumption, in this paper, three different scenarios are considered. In the first case,
we assume that the HVAC system is turned off, since the internal temperature is already in
the comfort range of 19 ◦C–23 ◦C. Therefore, the overall power absorbed by the auxiliaries
is set at 3.5 kW. The second scenario instead foresees the use of the air conditioning system
in order to cool the cabin up to a temperature in the comfort range with a temperature
greater than 30 ◦C on the outside; therefore, a value equal to 16 kW has been set as the
power of the auxiliaries. Lastly, the third case represents the worst-case scenario with the
heating system working at the maximum power of 24 kW and, hence, an overall auxiliary
power of about 27.5 kW.

With all the six battery modules, the electric bus weighs around 20 t, which means
it is 14% heavier than the conventional gas model; this increment is mainly due to the
presence of the lithium-ion battery and its lower energy density (only 0.10–0.27 kWh/kg or
0.25–0.70 kWh/L) with respect to diesel fuel (11.6 kWh/kg or 9.7 kWh/L). Choosing an
inertial factor β of 0.15 [25], the value for the equivalent mass results 15.25 t. To this value,
the mass of the passenger must be added, which is computed by multiplying the number
of considered passengers times the average weight of European people of 70 kg.

One of the most significant advantages of electric vehicles is the possibility to harvest
energy during the braking phase, employing the so-called regenerative braking. This fea-
ture is particularly important in electric buses, since they have heavy mass, fixed routes,
and many stop-and-go events. However, assessing the amount of regenerative braking in
an electric vehicle is not a trivial task, since it depends on many factors such as the initial
and final braking speed, the mass of the vehicle, the braking rate, the vehicle structure,
the power-train layout, electric motor, and battery characteristics [26]. Based on papers
that analyze electric bus regenerative braking, the amount of the recovered energy thanks
to the regenerative braking in this study has been set equal to 67% [27,28]. In the model,
regenerative braking is not considered when the bus is driving lower than 10 km/h.

Another advantage of an electric bus over a conventional one is its higher efficiency
both in the well-to-tank and tank-to-wheels analysis [29]. In this study, the charging system
efficiency has been set equal to 85% [30].

One more benefit of choosing an electric bus fleet instead of a gasoline one is the
reduction in pollution and fuel costs. Furthermore, e-buses are less loud, and since the
electric motors produce far fewer vibrations, e-buses are more comfortable for onboard
passengers and need less maintenance. Finally, if well displayed, the recharging process
for an electric bus is more efficient and safer than the gasoline one in terms of reliability.
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The feature of the regenerative braking system must not be forgotten, as it represents a great
advantage compared to the conventional buses, which are not able to recover any energy
in any driving phase. All these combined advantages confirm that if a modernization of
the bus lines is needed, the better option is to replace the gasoline buses with electric ones.
Although the initial introduction of an electric transport system and fleet can be costly, as a
long-term mode of public transport they are surprisingly cost effective [31].

3.2. Route Characteristics

As depicted in Figure 10, the considered M-120 line starts its route in San Bernardo
station in Algeciras and ends in the bus station in La Linea de Concepcion, for an overall
trip about 22 km long. While the first and the end parts of the line pass through the urban
context, the central and longer part of the line develops in highway A-7. Twice a day,
at 7.00 and 15.00, direct service is performed by the line M-120D (roundtrip). The same
path of line M-120 is followed but many fewer stops are made. This feature will allow us to
estimate the difference between electric bus energy consumption in urban and suburban
contexts. The path elevation profile found with Google Earth is reported in Figure 11.

  

(a) (b) 

Figure 10. Analyzed routes (a) complete line M-120 (b) direct line M-120D.

Figure 11. Elevation profile.
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3.3. Results and Discussion
3.3.1. Line M-120D

In Figure 12, the driving cycles measured for the line M-120D are reported. The bus
leaves on time at 3 p.m. from Algeciras bus station with approximately 25 people onboard,
and it arrives at La Linea station at 3.30 p.m. to leave for the return trip at 3.45 p.m.
As mentioned before, since the central part of the route is performed on the highway,
the bus reaches a higher speed touching the maximum one of 100 km/h. The stopping
time at the bus stops varies in the range from 20 s up to 80 s; it is strongly influenced by the
number of onboarding passengers. As a matter of fact, passengers are allowed to enter the
bus only from the front door, and at that moment, they can buy the ticket or validate their
subscription/ticket. This policy on one side greatly decreases fair evasion; however, on the
other side, it slows down the boarding procedure.

Figure 12. Measured driving cycles: (a) Algeciras-La Linea (b) La Linea-Algeciras.

In practical measurements, each trip really lasts about 30 min, as expressed in the
timetable, and therefore, the declared service is guaranteed.

Introducing as input for the simulator the measured driving cycles, the average energy
consumption per kilometer, also considering the charging efficiency, for a single trip is
simulated in different operation conditions. The results for the line M-120D are reported
in Table 3, and we can conclude that the power absorbed by the auxiliaries and, hence,
the outside temperature has a major effect on the energy consumption than the number of
onboard passengers. Indeed, passing from 10 up to 40 passengers causes an increase in the
energy consumption between 3.5 ÷ 5%. Instead passing from an auxiliary power of 3.5 kW
up to 27.5 kW will cause an increase in the energy consumed from 40% up to 50%.
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Table 3. Line M-120D simulation results for electric bus.

# Passengers
Auxiliary

Power [kW]

Energy Consumption
Algeciras—La Linea

[kWh/km]

Energy Consumption
La Linea—Algeciras

[kWh/km]

Energy Consumed
Round Trip

[kWh]

40
3.5

1.492 1.693 68.24
22 1.456 1.640 66.33
10 1.427 1.604 64.94

40
16

1.866 2.06 84.11
22 1.823 2.007 82.06
10 1.794 1.971 80.66

40
27.5

2.204 2.399 98.61
22 2.161 2.345 96.53
10 2.133 2.31 95.18

3.3.2. Line M-120

The same procedure is followed for the line M-120, which presents 19 stops for the
outward trip (12 more with respect to the direct line) and 17 for the return one (10 more
than M-120D). It is worth mentioning that the bus does not stop at all the stations be-
cause rarely all of them are called; however, it must pass in correspondence with all of
them and decelerate so that the driver can check if any passengers are waiting at the
stop. In Figure 13, the driving cycles measured for this line are depicted. As can be seen,
the trends are characterized by many more stops and more speed variations with respect
to those presented in Figure 12. Not all the halts correspond to bus stops; between 300 s
up to 600 s, the bus runs on an always congested road segment due to the presence of an
important traffic light.

In this case, as well, the maximum speed reached by bus both in the outward and
return journeys is 100 km/h; however, this speed is kept just for a few seconds.

The results found for the line M-120 are shown in Table 4. Comparing these results
with those of the direct line, it can be seen that the energy consumption per kilometer,
in this case, is about 5–10% higher. This result could seem in contrast with the spread
knowledge that EVs consume less in an urban context with frequent stop-and-go. However,
by analyzing the driving cycles, it can be noticed that even if in line M-120 more stops
are performed, since the deceleration rates are very high, the bus cannot fully exploit
the regenerative braking [32], resulting, hence, in higher consumptions. Nevertheless,
in the case of electric buses used in LPT services, since the stops are almost all planned,
the driver could be easily taught to adopt an optimized driving behavior to maximize the
regenerative energy.

Table 4. Line M-120 simulation results for electric bus.

# Passengers
Auxiliary

Power [kW]

Energy Consumption
Algeciras—La Linea

[kWh/km]

Energy Consumption
La Linea—Algeciras

[kWh/km]

Energy Consumed
Round Trip

[kWh]

40
3.5

1.626 1.796 73.56
22 1.558 1.731 73.01
10 1.518 1.686 73.54

40
16

2.067 2.21 94.97
22 2.001 2.142 91.97
10 1.966 2.098 90.24

40
27.5

2.473 2.587 112.37
22 2.405 2.522 109.42
10 2.373 2.477 107.71
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Figure 13. Measured driving cycles: (a) Algeciras-La Linea (b) La Linea-Algeciras.

4. Charging System

An electric bus fleet can rely on two main charging systems: overnight and opportunity
charging. Their representation is sketched in Figure 14. Overnight charging systems, as the
name suggests, aim to charge the fleets of buses during the night at the depot with plug-in
connectors and charging power for each connector from 40 up to 150 kW. The output power
mainly depends on whether an AC or DC charging system is installed. In the case of an
AC charging system, the onboard charger of the bus is employed to perform the AC-DC
conversion, and the offboard structure only includes power and communication cables,
metering, and protection devices. The AC charging system (mode 3) allows maximum
power up to about 43 kW (86 kW if two Type2 plugs are used). If, instead, higher charging
powers are required or the electric buses do not dispose of the onboard charger, a DC
charging system is necessary (mode 4), which means that the conversion stage is now
performed offboard the vehicle inside the charging system, and therefore, the infrastructure
capital costs are higher. In this case, the power limit is imposed by the cable and the
connector; as a matter of fact, the Combo 2 (CCS2) connector allows us to reach 200 A
without the need for special liquid cooling systems. Normally, in order not to increase
the power required too much from the public distribution network, the output current is
limited to 150 A, which corresponds to a nominal power of about 100 kW considering the
typical voltage values of the batteries of the actual electric buses on the market. It may
happen that, to complete the service without weighing down the vehicle too much with
larger batteries, electric buses require additional daytime recharges or occasional recharges
that take advantage of the halt times at the terminus and/or at the stops; this bus charging
system takes the name of opportunity charging. The opportunity charging system employs
overhead pantographs, which can support charging powers up to 600 ÷ 750 kW. Given the
high power required, the connection to the electricity grid cannot take place directly from
the low voltage distribution but must take place from the medium voltage distribution.
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(a) (b) 

Figure 14. Representation of (a) depot and (b) opportunity charging systems.

In this paragraph, the aim is to find out the location and the size of the two above-
mentioned charging systems, which assure a correct operation of the bus line without
degrading the service.

The most important data necessary in addition to the vehicle characteristics, to display
the analysis, are the total energy consumption on the entire line, the number of round trips
each bus of the line performs, and the stopping time at each terminal station.

Battery performances, in particular rated power and capacity, degrade over time due
to multiple aging mechanisms. Battery aging can be divided into calendar and cycling
aging. Calendar aging includes all the processes that lead to a degradation of the battery
cell occurring while the battery is at rest. In recent lithium-ion batteries, the main aging
mechanism impacting on calendar aging is the solid electrolyte interphase (SEI) formation
on the negative electrode [33].

Cycling aging, instead, is related to the use of the battery and its severity mainly
depends on charging/discharging current rates, cycle depths, and battery temperature.
Therefore, in this field, the persistent use of high charging powers related to the opportunity
charging system could significantly increase the impact of this side effect. However, given
the high battery capacity of the electric buses considered, the C-rate does not exceed the
common and suggested value of 1C. Therefore, the aging effect of the charging systems
considered in this study is neglected.

The negative effects of the battery aging on the energy capacity have been taken
into account by selecting a higher minimum SOC with respect to the one suggested by
the manufacturer.

Following the indications of Line M-120 timetable [34], it can be deduced that in order
to cover all the scheduled trips, three buses are necessary for the peak time slot in the
weekdays (four if we also consider the bus necessary to cover the direct service of line
M-120D); this number decreases to two on Saturday and to one on Sunday. At the weekend,
the direct service is not provided.

4.1. Opportunity Charging

Given the fast pace of the timetable and the length of the considered line, the installa-
tion of opportunity charging systems becomes necessary.

The overall timetable of line M-120 is divided into the planning timetables of the three
necessary buses as shown in Figure 15. As can be seen, the scheduled duration of the trip is
45 min, and according to the reported timetable, the bus immediately starts another trip as
it arrives at one of the terminals. However, the real case is that the trip between Algeciras
and La Linea always lasts less than 45 min; as a matter of fact, in all the measured runs
(three round trips and, hence, six single runs) the running time was between 36 ÷ 40 min.
This implies a stopping time at the two terminals, which range between 5 up to 10 min.
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This period is indeed necessary also for the offboarding and onboarding process of the
passengers and to apply the opportunity charging.

Figure 15. Timetables of the three buses.

To size the charging system necessary to electrify a bus line, the worst-case scenario
must be considered so that the service is correctly provided also in the most disadvanta-
geous case. In our study, this scenario is verified when the auxiliaries absorb the maximum
power of 27.5 kW, leading in this way to a consumption (considering on average 22 passen-
gers on the bus) of 2.405 kWh per km for the trip from Algeciras to La Linea and of 2.522
for the return one (for the normal service and not the direct one).

Different solutions for the opportunity charging systems have been simulated and
the obtained results are described in the following. However, in the proposals for the
opportunity charging system, the technical limits mentioned by the manufacturer must be
considered, and according to the datasheet of the chosen electric bus, a maximum charging
power of 450kW is allowed. Moreover, a recommended maximum depth of discharge for a
lithium-ion battery is usually about 80% and an additional safety margin of 10% must be
considered in order to allow the bus to return to the depot at any moment in case of an
emergency and to deal with the decrease in energy capacity over time due to battery aging.
Therefore, a minimum SOC of 30% must be always guaranteed.

Finally, if the electric bus stops at the Algeciras terminal for a time interval long enough
to be recharged with the overnight charging system, then this charging solution will be
preferred. This situation occurs for both Buses 2 and 3 in the intervals 15:30–18:30 h and
12:30–14:30, respectively. Therefore, in these time intervals, the electric buses are connected
to the charging system installed for the overnight charging, which is usually rated at 43 kW
AC, instead of to the opportunity charger.

4.1.1. One Opportunity Charger of 450 kW

The first solution reckons on the installation of just one opportunity charger (Opp
Charger) with a rated power of 450 kW installed in the San Bernardo bus station. In Figure 16,
the SOC of the three buses with this charging solution is displayed. As can be noticed,
even if this is the best solution in terms of cost, it does not allow for the correct operation of
the service, since both the SOC of Bus 1 and Bus 3 fall below the safe limit margin of 30%.
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Figure 16. SOC of the three buses with one Opp Charger of 450 kW.

4.1.2. Two Opportunity Chargers of 300 kW

The second solution foresees the installation of two opportunity chargers of 300 kW,
one in each of the two terminals. In this case, as shown in Figure 17, the only critical
situation is that of Bus 1 whose SOC, about 21:30–22 h, decreases under the limit of 30%.
However, this aspect could be solved by performing a switch of buses between Buses 1 and
2 to perform the last two round trips at 21 h and 22:30 h. Indeed, Bus 2 ends the operation
at 20 h with 70% of SOC. It could be recharged in the time interval 20–21 h using the depot
charging system and, then, picked back to perform the last two round trips instead of Bus
1, which, hence, will return to the depot at about 09:00 PM with a SOC of 34%.

Figure 17. SOC of the three buses with two Opp Chargers of 300 kW.

With this solution, the maximum DOD is reached by Bus 1 at the end of its daily
operation. Nevertheless, since the bus recharged approximately at the end of each trip,
along the day, the SOC variations have small entity. This fact helps to prolong the battery
life; as a matter of fact, the smaller the discharge (low DoD), the longer the battery will last.
The situation is even better for Buses 2 and 3; their SOC varies throughout the day in the
range 65–95% and 50–100%, respectively.
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4.1.3. Two Opportunity Chargers of 350 kW

In this last case, the rating power of the two Opp Chargers is increased at 350 kW.
The SOC of the three buses along the day, recharged according to this solution, is reported
in Figure 18. As can be seen, in all three cases, the SOC always remains higher than the
limit, and no buses switch is necessary.

Figure 18. SOC of the three buses with two Opp Chargers of 350 kW.

The maximum DOD in this case is always achieved by Bus 1 at the end of its daily
operation, and it does not differ so much from the previous case. Instead, for the other two
buses, the situation is slightly meliorate with respect to the previous case; their maximum
DOD is 30% and 45%, respectively.

For the service on Sunday, currently, only one bus is employed continuously during
the day. However, in the case of an electric bus fleet, the best solution will be the exchange
of the bus with another one of the three every time its battery is almost near the threshold
value. Therefore, in this way, all three (four considering that of the direct line service) buses
will be used along the day, and they will not rely on the opportunity charging system.

4.2. Depot Charging

The buses of Line M-120 start and finish their operation at the depot San Bernardo in
Algeciras. Therefore, the overnight charging infrastructure must be installed in this location.

To size the depot charging system, the most critical case is the operation during
weekdays, since in this period, three buses are employed (the fourth bus of line M-120D
runs only twice). In Table 5, the arrival times and SOC of the buses are reported along with
the departing times on the following morning.

Table 5. Buses stopping time at night.

#Bus End Operation Start Operation SOC Night Stopping Time

Bus 1 00:00 07:00 35% 7 h
Bus 2 20:00 07:30 77% 11 h 30 min
Bus 3 22:00 08:00 58% 10 h

If we assume to employ an AC 43 kW charging system, the necessary times to recharge
each of the three buses are computed through (12), where Ebat is the energy capacity of the
battery, SOCbat is the final SOC with which the bus ends the daily operation and arrives
at the bus depot (this value is taken from Table 5), Pch is the charging power, and finally,

57



Energies 2021, 14, 5117

ηch is the efficiency if the charging system. They result in 7 h, 2.5 h, and 4.6 h for Buses 1, 2,
and 3, respectively.

tch =
Ebat − Ebat· SOCbat

100
Pch·ηch (12)

Therefore, by overlapping recharging time with the stopping time of the three buses
during the night, it can be concluded that the two AC charging poles of 43 kW are enough
to recharge all the buses before their first run of the morning. In particular, one charging
station is used by the second bus from 20 h up to about 22.30 h, then, from midnight, it will
be dedicated to Bus 1. Finally, the second charging pole during the night will recharge Bus
3, and hence, all the vehicles will be able to start the operation with a full battery.

4.3. Future Expansion

The installation of the charging infrastructure necessary for the electrification of line
M-120 could represent a good starting point for the electrification of other lines, which start
or end the operation in the analyzed terminals. For instance, line M-121, which connects
La Linea to Los Barrios could take advantage of the opportunity charger installed in La
Linea bus station. This line, whose route is 23 km long and is represented in Figure 19a),
is operating from Monday to Friday with the schedule reported in Figure 19b).

 
(a) (b) 

Figure 19. Line M-121: (a) route and (b) timetable.

Since the covered path overlaps with that of Line M-120 for most of the travel time
and the bus model currently employed is the same, the energy consumption calculated for
line M-120 of 2.522 kWh/km is used also for this line. Therefore, it results that to compute
a round trip, the bus will consume about 116 kWh. Given the low number of runs the bus
of this line must cover, its electrification would be possible even by using only the Opp
Charger installed in La Linea, just ensuring that its charging time does not overlap those of
line M-120.

Another line that could effectively benefit from the charging infrastructure installed
in the bus station of Algeciras is line M-150, which connects Algeciras to Tarifa for an
overall length of 21 km. The covered path and the timetable of the two buses necessary to
provide the service are reported in Figure 20a,b, respectively. As for Line M-120, the official
duration of the trip is set at 45 min; however, the real run lasts less as measured during the
real tests. In particular, it has never exceeded 40 min.
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Figure 20. Line M-150: (a) route and (b) timetable of the employed buses.

The energy consumption in the worst-case scenario for a roundtrip in this case is about
106 kWh. The simulated SOC profile of Bus 1 is reported in Figure 21. Instead, the SOC of
Bus 2 is not shown, since for this bus, the charging time does not represent a problem given
the very long stopping times. The SOC of Bus 1 after 15:30 h goes under the limit value of
30%; however, this critical situation could be avoided by using Bus 2 for the runs, which are
performed in the time interval 14:45–16:15 h. Indeed, it is stopped at Algeciras depot from
about 9:30 h (it returns to Algeciras at 9:00 h after the last morning run); therefore, it would
have all the necessary time to be recharged up to 100% and, hence, substitute Bus 1 for the
critical runs.

Figure 21. SOC of Bus 1, which runs Line M-150.

Nevertheless, to correctly electrify line M-150, an overnight charging system composed
of one AC 43-kW charging pole is needed to be installed in Tarifa bus station.

Lastly, in Figure 22, the occupation profile of the two opportunity chargers is reported.
Values of the Y axes equal to 1 imply that the Opp Charger is occupied and, hence, in oper-
ation. On the contrary, Y values equal to 0 denote that the Opp Charger is free and, hence,
turned off.
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Figure 22. Opp Chargers occupation profiles installed in (a) Algeciras and (b) La Linea.

For the charger installed in Algeciras, a critical overlapping situation (highlighted
by a yellow circle) occurs between 11.30–12 h (the charging period of Bus 1 line M-120),
which can last 5/10 min (the charging time of the bus of line M-150). Bus 1 of line M-120
arrives some minutes before 11.30 h to Algeciras station with about 380 kWh in the battery;
therefore, ideally, it has about 35 min to recharge the consumed 94 kWh and, hence, reach
100% SOC. With a charging power of 350 kW, to fill the missing energy, about 16 min are
necessary, this means that the bus of line M-120 can leave the opportunity charger for the
overlapped 5–10 min to the bus of line M-150 without compromising its own operation.
Instead, the opportunity charger installed in La Linea does not report any critical overlap.

5. Conclusions

This paper deals with a public transport electrification scenario-based in terms of
energy consumption evaluation and, consequently, charging infrastructure design and plan-
ning, by considering various operational concerns. The results confirmed the possibility to
replace the conventional old buses currently employed in line M-120 between the cities of
Algeciras and La Linea in Spain with new electric buses. However, the operation of an elec-
tric bus is greatly affected by various factors, such as the outside temperature, the number
of stops, the elevation profile of the path, the number of onboard passengers, etc. On this
aspect, the findings highlight that the main role is played by the power absorbed by the
auxiliaries that, in the worst case, can lead to an increase in energy consumption by 50%.

To correctly electrify the public bus line, both overnight and opportunity charging
systems are required. The slow charge during the night could be performed by two AC
charging poles of 43 kW installed in Algeciras bus station. Instead, the installation of the
opportunity charging system in only one of the two bus stations resulted to not be enough
for the proper operation of the service; therefore, two fast chargers must be installed, one in
each terminal. Finally, from the installation of this charging infrastructure, the electrification
could be easily extended to two other lines of the same company.

The proposed study does not incorporate an economic and environmental analysis
coming from the electrification. Therefore, the future steps of research will focus on the
computation of a cost and emissions assessment also evaluating a possible integration in
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the charging infrastructure of renewable energy sources. Moreover, since in this work,
the effect of the aging of the battery has not been computed, to assess with a higher
precision the impact of this side effect, a more accurate battery model, which comprises not
only the electrical sub-model but also the aging and thermal sub-models, can be included
in future steps.
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Abstract: Regarding the microgrid with large-scale electric vehicle (EV) energy storage systems
working at the vehicle-to-grid (V2G) mode, uncertain factors (e.g., the number of EVs feeding the
microgrid shifts frequently) make the system unfixed, leading to the fact that it is difficult to precisely
determine the real-time droop coefficients of the system, thereby degrading the performance of the
traditional inverter control strategies that rely on the droop coefficients. To solve the problem, this
paper proposes an errorless-control-targeted double control loop (DCL) technique based on robust
MPC to control the microgrid with EV energy storage systems without using droop coefficients.
Firstly, the structure of the DCL method is developed, with each component in the structure detailed.
Compared to the traditional control strategies, the novel one regards the frequency, voltage, and
currents as the control objectives instead of active/inactive power. It deserves to be mentioned that
the frequency and voltage are regulated by proportional-integral controllers, while the currents are
regulated by the finite control set model predictive control (FCS-MPC) method. Secondly, the impacts
of system parameter uncertainties on the prediction accuracy of the FCS-MPC controller are analyzed
clearly, illustrating that it is necessary to develop effective techniques to enhance the robustness
of the controller. Thirdly, sliding mode observers (SMO) based on a novel hyperbolic function are
constructed to detect the real-time disturbances, which can be used to generate voltage compensations
by using automatic disturbance regulators. Then, the voltage compensations are adopted to establish
a modified predicting plant model (PPM) used for the FCS-MPC controller. By using the proposed
SMO-based disturbance detection and compensation techniques, the MPC controller gains a strong
robustness against parameter uncertainties. Finally, a simulation is conducted on a microgrid system
to verify the effectiveness of the proposed techniques, and the obtained results are compared with
the traditional virtual synchronous machine (VSG) strategy relying on droop coefficients.

Keywords: microgrid; errorless control; model predictive control; robustness; sliding mode
disturbance observer

1. Introduction

Nowadays, the microgrid which contains distributed generation (e.g., photovoltaic,
wind, and tidal generation, etc.) and energy storage (e.g., batteries and super-capacitors,
etc.) is one of the most promising power generation and supply systems because it has the
advantages of high flexibility, eco-friendliness and sustainability [1,2]. Apart from feeding
and supporting the conventional grid (grid-connected mode), microgrids play an important
role in forming the grid (island mode) [3]. When the microgrid operates at the island mode
(see Figure 1), it needs to independently supply power for the local DC/AC loads, such as
electric vehicles (EVs), household and industrial electric apparatuses, etc. [4]. Among those
loads, EVs are special because they have rechargeable energy storage systems (RESS), and
as a result, they can feed the DC-bus of the microgrid when the other types of loads are
heavy. The technology is known as vehicle-to-grid (V2G) [5].
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Figure 1. Structure of VSG control-based microgrid.

However, as for the EVs used in the applications of V2G, they are uncertain factors for
the microgrid. The dynamic model of the EV energy storage system can be qualitatively
represented as (1). It can be seen that the supporting power from the EVs is related to the
number of charging piles n, the number of vehicles working at the V2G mode (n·c), and the
supporting period of the EVs (tsu). In detail, the uncertainties are reflected in the following
four aspects. (1) More charging piles might be installed in one microgrid system. (2) The
number of EVs connected with the microgrid varies in different periods. (3) Even though
the charging piles installed within the microgrid are fully occupied, it does not mean that all
of them are available for supporting the microgrid. Usually, whether a vehicle can provide
energy to the grid will depend on the EV owners. (4) EVs that are supplying power to the
grid may end at any time. These uncertainties lead to the fact that the power level (rated
power) of the microgrid is not fixed, bringing about challenges for the DC/AC inverter
control strategies [6]. Specifically, the commonly used inverter control techniques for the
microgrid include droop control and virtual synchronous generator (VSG) control [7,8].
Droop control used for the microgrid originates from the conventional grid. It can be
categorized into P-f /Q-V control and f-P/V-Q control, and the differences between them
can be reflected by their control topology [9–11]. Considering that the droop control has
the disadvantages of small inertia and insufficient damping, it will generate remarkable
voltage and frequency fluctuations or deviations when the loads change [12]. To improve
the inertia and damping of the system, VSG control technology that simulates the behaviors
of the real synchronous generators has been studied since 2007 [13–19]. It deserves to be
mentioned that as for the VSG control method (see Figure 1), f-P/Q-V droop control still
needs to be incorporated. Overall, droop controllers cannot be eliminated for the above
two traditional control methods, thereby requiring droop coefficients. However, when the
uncertainties of the EVs are taken into account, the droop coefficients cannot maintain at
a certain level because the power supply system (hardware and power level) is inclined
to change [20]. In this case, the performance of the traditional control strategies based on
droop control will decline unless the real-time droop coefficients cannot be provided.

Psu = f (n, c, tsu, t) (1)

With reference to [21–25], to solve the uncertainty problem arising from the droop
coefficients, two methods can be potentially adopted, that is, adaptive droop coefficients
and coefficient elimination. In [21], the fuzzy logic-based and model reference-based
adaptive droop coefficient design methods are presented to adjust the adaptability of
the droop controllers, improving the transient response of the system. Reference [22]
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introduces a method that upgrades the droop coefficients based on a sliding mode strategy
to optimize the power-sharing operations. In [23], for the sake of high performance, a
stability-constrained adaptive droop approach is proposed for autonomous power-sharing
of the grid. In [24], a VSG-based method with adaptive active power and DC voltage
droop control is proposed to regulate the voltage and frequency of the grid. In this study,
the droop coefficients are adaptively adjusted depending on the frequency margin of the
system. Literature [25] illustrates that without adding a droop controlling unit, the power,
frequency, and voltage can also be controlled by using the closed-loop feedback control
technique, but no new control schemes are developed in this research. It deserves to be
mentioned that compared to the research concerning adaptive droop coefficients, there are
much fewer studies concerning the droop coefficient elimination strategies today. Hence, it
is a valuable and timely measure to further investigate the control theories without using
droop controllers and droop coefficients.

One main purpose of this paper is to develop a double-closed-loop (DCL) control
strategy to directly regulate the voltage and frequency (the ultimate control objectives)
of the microgrid with large-scale EVs connected. The outer loop will be the voltage and
frequency control, while the inner loop will be the current control one. The goal of the
proposed DCL control strategy is to ensure voltage and frequency are maintained at the
desired level constantly without errors, regardless of the changes of load and EVs. Because
the voltage, frequency, and currents are direct control targets, it is not necessary to employ
droop controllers to generate voltage and frequency references. Therefore, the droop
coefficients can be avoided. When achieving the errorless DCL control scheme, the most
direct way is to adopt several (at least four) proportional-integral (PI) controllers to regulate
the voltage, frequency, and currents. However, [26] and [27] clarify that the PI controllers
have the disadvantages of complicated parameter tuning and low dynamics, leading to the
fact that it is better to adopt the alternative controllers in the main structure.

Many optimization algorithms can be used to overcome the shortcomings of PI con-
trollers. For example, [28] uses the model predictive control (MPC) method to manage
energy resources efficiently. The author of [29] designs an optimal model predictive con-
troller for the nonlinear multi-area power system, while [30] uses MPC to manage the
power in a hydrogen-based microgrid. In [31], a new variable structure control method is
proposed to regulate the frequency of the grid, while [32] proposes a gravitational search
algorithm-based dual proportional-integral method to control the load frequency, which
can be regarded as a typical application of the future search algorithms for optimization [33].
Among those strategies, MPC is characterized by online optimization and quick response,
thereby being a promising alternative [34]. However, because MPC is a model-based control
strategy, its performance highly relies on the accuracy of the system parameters, including
line resistance and inductance of the microgrids. Unfortunately, considering the complexity
of the wiring, connections and working environment of the microgrids, the system parame-
ters might change continuously [35,36]. As for the traditional fixed-parameter-based MPC
methods, once the parameter mismatch phenomenon occurs, the prediction accuracy of the
MPC controllers will degrade significantly. On this premise, if MPC is used to achieve the
DCL control scheme, it is vital to develop effective strategies to enhance the robustness of
MPC controllers against parameter uncertainties.

In this paper, we propose a novel DCL strategy based on robust MPC theory to achieve
errorless frequency and voltage regulation for the microgrids with uncertain EV energy
storage systems. The novelties and contributions can be summarized as follows:

(1) The structure of the novel DCL control method is developed, with the details of each
internal component presented. In comparison with the traditional droop control
and VSG control strategies, droop controllers are not needed any longer, thereby
avoiding the droop coefficients. As for the microgrids with uncertain EV energy
storage systems, when the AC loads are heavy, the overall power provided by the EVs
can be automatically determined by using the errorless-control-targeted scheme, and
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the maximum power that can be provided by each EV can be restrained by setting the
maximum allowable discharge current.

(2) After establishing a disturbance-based predicting plant model (PPM), the impacts of
line resistance and inductance on the prediction accuracy of the FCS-MPC method are
studied in the area of microgrid control, addressing the necessity of developing the
robust MPC technique.

(3) Sliding mode observers (SMO) based on the novel hyperbolic function are developed
to detect the real-time disturbances which can be further used to generate voltage
compensations by controlling them to maintain at zero. This is new in the area
of microgrid control. In order to make the SMOs stable, Lyapunov functions are
constructed to design the parameters of the observers. It deserves to be mentioned that
the voltage compensations need to be substituted into the PPM to select the optimal
voltage vector applied to the inverter, improving the prediction accuracy. By using
the proposed SMO-based disturbance detection and compensation techniques, the
MPC controller is endowed with strong robustness against parameter uncertainties.

The structure of the rest of the paper is as follows: Section 2 introduces the structure
of the proposed DCL control strategy with a traditional MPC controller in comparison
to the VSG method. The mechanisms and implementations of each part in the structure
are discussed. In Section 3, the impacts of the parameter mismatch on the prediction
accuracy of the traditional MPC method are analyzed firstly. Then, the sliding mode
disturbance observers (SMDO) are constructed with their stability analyzed. Additionally,
the implementation procedures of the proposed DCL technique based on the robust MPC
controller are presented in this part. Section 4 discusses the simulation results of the
proposed algorithms, and Section 5 is the conclusion.

2. Proposed Errorless-Control-Targeted DCL Strategy with Traditional MPC Controller

This section introduces the structure of the proposed errorless-control-targeted DCL
strategy in comparison with the traditional VSG method. by firstly revealing the novelty of
the new strategy. Secondly, each part of the DCL structure is illustrated in detail. Lastly, the
working mechanism of the hardware system is explained.

2.1. Structure of Proposed DCL Control Strategy

Figure 2 depicts the structure of the proposed DCL control strategy for the microgrid
working in the island mode. Being similar to the distributed generation and energy storage
systems, the EV energy storage systems are regarded as the power source of the microgrid
in Figure 2. Based on the aforementioned analysis, the EVs are uncertain sources. The
new control strategy comprises a phase-locked loop (PLL) used to detect the real-time
frequency; phase angle and magnitude of the voltage; d, q-axis current calculation part;
automatic voltage regulator (AVR); and an automatic frequency regulator (AFR), which is
used to achieve errorless voltage and frequency control, respectively; an MPC controller
used for current regulation and pulse width modulation (PWM) signal selection; and the
hardware system, which is the controlled object. Their details will be presented in the latter
parts of this section. The main rationale behind the control technique can be described as
follows: The detected frequency and voltage are regulated by PI controllers to maintain
at the desired level, generating d, q-axis current references. Then, the feedback control
theory is adopted for current regulation by using the MPC controller. The advantage of
this method is that no droop controllers are adopted, avoiding the influence of the power
uncertainties caused by the EVs.

By comparing the proposed method with the traditional VSG control strategy shown
in Figure 1, five important differences reflecting the novelties of the proposed method can
be summarized as follows (see Table 1). Firstly, as the active power and inactive power
are not calculated and regulated, so the f-P and Q-V droop controllers are not needed to
calculate the power and voltage references. Considering that voltage and frequency are
the ultimate control objectives, they are directly regulated by the PI controllers without
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considering the intermediate variables (power). Without using droop coefficients, the
EV energy storage system uncertainties will have few impacts on the control strategy.
Secondly, in Figure 1, the voltage control process is an open-loop regulation, while, as for
the proposed method, voltage feedback regulation is adopted, thus contributing to the
voltage-errorless control. Thirdly, in terms of the VSG strategy, the feedback frequency
is used to generate the active power reference, and further, the power is regulated by
using the rotating function of the VSG. Essentially, this is a power-targeted control strategy;
however, the method in Figure 2 is a frequency-errorless control strategy. Fourthly, the
inactive current and active current are regulated by an MPC controller (inner loop), which
is not focused on in the traditional VSG strategy. Finally, the PWM signal generation
procedures are different. As for the VSG method, after the magnitude and phase angle
of the desired voltage are calculated, the control signals are generated relying on the sine
PWM (SPWM) theories. However, in Figure 2, the cost function of the MPC controller can
select the optimal control signal after substituting the candidate voltage vectors into the
PPM. It deserves to be mentioned that the latter one is easier to implement because it is
based on the intuitive optimal control theory.
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D D

D D
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Rf  Lf Rl  Ll

Rl  Ll

Rl  Ll

Rf  Lf

Rf  Lf

Cf

ua,b,c ia,b,c
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f *
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*
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sqrt ud +uq

ia,b,c

u

Udc

Figure 2. Structure of proposed DCL control strategy for microgrid working at island mode.

Table 1. Comparisons of traditional VSG strategy and proposed DCL strategy.

Methods 
Differences Traditional VSG Strategy Proposed DCL Strategy 

Regulated variables active power and inactive power frequency and voltage  
Voltage regulation open-loop voltage control voltage-errorless feedback control 

Frequency regulation frequency-feedback-based power regulation frequency-errorless feedback control 
Current control X MPC-based current regulation 

PWM signal generation SPWM signal generation optimal voltage vector selection-based 
PWM signal generation  

2.2. Details of Each Part of Proposed DCL Control Strategy
2.2.1. Real-Time Frequency, Phase Angle, and d, q-axis Voltage Detection

To obtain the real-time frequency, phase angle, and voltage magnitude of the microgrid,
a three-phase PLL, of which the structure is depicted in Figure 3, is adopted. It deserves
to be mentioned that the coordinate transformation part (abc/dq) satisfies the following
condition [37]: [

ud
uq

]
=

2
3

T ·
⎡⎣ ua

ub
uc

⎤⎦ (2)
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where T is the transformation matrix, and it is

T =

[
cos ϕ

√
3 sin ϕ−cos ϕ

2
−√

3 sin ϕ−cos ϕ
2

− sin ϕ
sin ϕ+

√
3 cos ϕ

2
sin ϕ−√

3 cos ϕ
2

]
(3)

ua,b,c ud

uq

abc

dq

f

Figure 3. Three-phase PLL for frequency, phase angle, and voltage detection.

Moreover, in Figure 3, the PI controller is used to regulate the errors between the
d-axis voltage and the reference (zero), and its output is the angular frequency (ω) of the
microgrid. After imposing integral operation and proportional operation on the angular
speed, the phase angle, and frequency (in Hz) of the microgrid can be obtained as:{

ϕ =
∫ t

0 ωdt
f = ω

2π

(4)

2.2.2. d, q-axis Current Calculation

After detecting the phase angle of the microgrid, the d, q-axis currents that are used
for current regulation can be obtained by using the following equation:

[
id
iq

]
=

2
3

T ·
⎡⎣ ia

ib
ic

⎤⎦ (5)

2.2.3. Errorless Voltage and Frequency Control

In order to achieve errorless control, PI controllers are employed to regulate the
voltage and frequency. For the AFR, input is the error between the frequency reference
(rated frequency, e.g., 50 Hz) and the feedback frequency, while the output is set as the
q-axis current reference iq* (related to the active power). In terms of the AVR, its input is
the error between the magnitude of the rated voltage and the magnitude of the feedback
voltage that can be calculated by (6). As for the output of the AVR, it is the d-axis current
reference id* which is related to the inactive power of the microgrid.

û =
√

ud
2 + uq2 (6)

The transfer functions of the AFR and AVR in the z-domain can be written as:

GAFR(z) = kF_p +
kF_iTsz
z − 1

, GAVR(z) = kV_p +
kV_iTsz
z − 1

(7)

In practice, the proportional and integral factors in (7) need to be tuned. However, as
for the proposed DCL control strategy that contains both PI controllers and MPC controllers,
there exist no mature theories for analysis and parameter tuning. Hence, the trial-and-error
strategy is more suitable to design the parameters of the AFR and AVR [38].

2.2.4. Traditional MPC Control

In terms of the two kinds of commonly used MPC controllers in the field of power
electronic systems, namely, the continuous control set model predictive control (CCS-MPC)
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controller and FCS-MPC controller [39], the latter one is simpler to implement, bringing
about a remarkable computational complexity reduction. This benefits from the look-up
table of the candidate voltages, which can be obtained offline. Comparatively speaking,
the computations of the CCS-MPC methods are much more complicated when executing
the modulation algorithms. Hence, the FCS-MPC controller is adopted in this research. A
discrete PPM is the prerequisite for achieving an FCS-MPC algorithm. Based on Figure 2,
the state-space model of the microgrid in the d, q-axis frame can be established as follows:⎧⎪⎨⎪⎩

did
dt = − R f +Rl

L f +Ll
id +

ed−ud
L f +Ll

diq
dt = − R f +Rl

L f +Ll
iq +

eq−uq
L f +Ll

(8)

Further, apply the Euler forward discretization algorithm to (8) in a time step of Ts
(control period), and the future current states at tk+1 can be obtained as follows:⎧⎪⎨⎪⎩

id(k + 1) =
(L f +Ll−R f Ts−Rl Ts)

L f +Ll
id(k)− Ts

L f +Ll
ud(k) +

Ts
L f +Ll

ed(k)

iq(k + 1) =
(L f +Ll−R f Ts−Rl Ts)

L f +Ll
iq(k)− Ts

L f +Ll
uq(k) + Ts

L f +Ll
eq(k)

(9)

In (9), id,q(k) and ud,q(k) can be directly measured by using current and voltage sensors,
while ed,q(k) should be calculated based on the candidate control voltages for an FCS-MPC
controller. For instance, as far as a two-level inverter is concerned, when the FCS-MPC
algorithm is implemented, seven candidate control voltages can be directly substituted into
the model for prediction, which is denoted as u000, u100, u110, u010, u011, u001, and u101:

esasbsc =

⎡⎣ ea
eb
ec

⎤⎦ =
Udc

3

⎡⎣ 2 −1 −1
−1 2 −1
−1 −1 2

⎤⎦⎡⎣ sa
sb
sc

⎤⎦ (10)

where [sa, sb, sc]T includes [0, 0, 0]T, [1, 0, 0]T, [1, 1, 0]T, [0, 1, 0]T, [0, 1, 1]T, [0, 0, 1]T, and [1,
0, 1]T, and they are the switching states. With reference to (2), the control voltage sets used
for prediction in the d, q-axis frame can be expressed as:[

ed(k)
eq(k)

]
=

2
3

T · esasbsc (11)

After substituting the candidate voltages into (9) to calculate the predicted current
values, a cost function should be used to select the optimal control voltage and the corre-
sponding switching state to be applied to the inverter:

J =
∣∣id∗ − id(k + 1)

∣∣+∣∣iq∗ − iq(k + 1)
∣∣ (12)

In terms of the FCS model predictive current control method, the following constraint
needs to be incorporated: √

id(k + 1)2 + iq(k + 1)2 ≤ imax (13)

As for the traditional FCS-MPC strategy, the resistances and inductances in (9) are
fixed, which are usually measured (denoted as Rf_mea, Lf_mea, Rl_mea, and Ll_mea) by using
the offline methods [40]. However, their real values are inclined to change as the working
environment changes, degrading the prediction accuracy of the MPC controller. This can
further bring about static voltage and frequency errors, failing the goal of errorless control.
To solve the problem, a robust FCS-MPC control method against parameter uncertainties
will be developed in Section 3.
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2.2.5. Hardware System

As shown in Figure 2, the hardware directly controlled by the proposed DCL strategy is
the DC/AC inverter, which will transmit the energy from the distributed generation system
(DGS), inherent energy storage system, and EV storage system to the energy-consumption
side. In the process of energy transmission, the goal is to automatically maintain the
magnitude and frequency of the AC voltage at the rated levels through the proposed
errorless control method. However, as for this system, there exist two crucial issues,
(1) when the EV storage system feeds the microgrid, and (2) how to determine the maximum
output power of one EV. In this paper, the working mechanisms of the EV storage system
can be summarized as follows:

• Firstly, being similar to the traditional V2G technology, whether an EV begins to feed
or stops feeding the microgrid, is determined by the vehicle owners. This can be
achieved by using an app installed on their phones [41]. Secondly, the EV energy
storage system works when it is needed. In detail, if the energy provided by the
distributed generation and inherent storage systems is not enough to maintain the
frequency and magnitude of the AC voltage at the rated level, the EV storage system
will start to feed the grid. This phenomenon usually occurs when the AC loads are
heavy, which reflect in the real-time voltage frequency and magnitude. Otherwise, the
EV energy storage system is inactive.

• When the EVs provide energy to the microgrid, it is impossible to expect each vehicle
to deliver unlimited power for the sake of safety. However, if no effective strategies
are given to limit the output power of each vehicle, the horrible phenomenon might
occur due to the proposed automatic control scheme when the microgrid voltage and
frequency variations are extremely large. To solve the problem, considering that the
output voltage of an EV energy storage system equals the DC-bus voltage Udc, as
long as the output current of each system can be confined within their safe limits
(determined by each vehicle) the EVs can work safely in the V2G process. It deserves
to be mentioned that the maximum allowable output current of each EV system needs
to be provided by the vehicle designers or manufacturers.

3. Robust SMDO-Based MPC Method

This section introduces the impacts of the system parameter uncertainties on the MPC
control firstly. Secondly, the SMDOs are constructed, with their stability discussed in an
innovative way. Then, the proposed disturbance impact elimination method based on
voltage compensation is presented. Finally, the implementation procedures of the DCL
strategy with a modified MPC controller are detailed.

3.1. Impacts of Parameter Uncertainties on MPC Controller

Assume that the deviations of the filter resistance, filter inductance, line resistance,
and line inductance are ΔRf, ΔLf, ΔRl, and ΔLl, respectively, and then, the real parameters
of the microgrid can be described as:

R f = R f _mea + ΔR f , L f = L f _mea + ΔL f , Rl = Rl_mea + ΔRl , Ll = Ll_mea + ΔLl (14)

Substitute (14) into (8), the accurate system model can be rewritten as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

did
dt = − R f _mea+Rl_mea

L f _mea+Ll_mea
id +

ed−ud
L f _mea+Ll_mea

+ fd

diq
dt = − R f _mea+Rl_mea

L f _mea+Ll_mea
iq +

eq−uq
L f _mea+Ll_mea

+ fq

fd = − ΔRl+ΔR f
L f _mea+Ll_mea

id − ΔL f +ΔLl
L f _mea+Ll_mea

did
dt

fq = − ΔRl+ΔR f
L f _mea+Ll_mea

iq − ΔL f +ΔLl
L f _mea+Ll_mea

diq
dt

(15)
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Further, by the use of the discretization algorithm, the discrete model can be obtained as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

id(k + 1) =
(L f _mea+Ll_mea−R f _meaT−Rl_meaTs)

L f _mea+Ll_mea
id(k)− Ts

L f _mea+Ll_mea
ud(k) +

Ts
L f _mea+Ll_mea

ed(k) + fd(k)

iq(k + 1) =
(L f _mea+Ll_mea−R f _meaT−Rl_meaTs)

L f _mea+Ll_mea
iq(k)− Ts

L f _mea+Ll_mea
uq(k) + Ts

L f _mea+Ll_mea
eq(k) + fq(k)

fd(k) = − ΔL f +ΔLl
L f _mea+Ll_mea

id(k + 1) +
ΔL f +ΔLl−ΔR f Ts−ΔRl Ts

L f _mea+Ll_mea
id(k)

fq(k) = − ΔL f +ΔLl
L f _mea+Ll_mea

iq(k + 1) +
ΔL f +ΔLl−ΔR f Ts−ΔRl Ts

L f _mea+Ll_mea
iq(k)

(16)

It should be noted that fd(k) and fq(k) represent the d, q-axis current estimation errors
when subtracting the PPM (9) with the measured parameters Rf_mea, Lf_mea, Rl_mea, and
Ll_mea incorporated from (16). Obviously, when the parameter mismatch issue arises, the
prediction accuracy of the traditional FCS-MPC method will degrade. In order to intuitively
illustrate the impacts of parameter mismatch on the prediction accuracy, a microgrid of
which main parameters (without considering the EV energy storage system) are shown
in Table 2 is employed for analysis. Assume that the d, q-axis currents are controlled to
level off at 10 A (id(k + 1) = id(k) = 20) and 20 A (iq(k + 1) = iq(k) = 20), respectively, and
Figure 4 shows the relationship between the current estimation errors and the parameter
variations. Firstly, for the d, q-axis currents, the prediction errors are smaller than zero,
and the larger the deviations, the larger the magnitudes of the prediction errors become.
Secondly, the inductance variations see more severe impacts than the resistances. Thirdly,
the d, q-axis current prediction errors reach around −45 A and −90 A, respectively, when
ΔLf approaches 1 H. Comparatively, the current prediction errors are small when the line
inductance changes because the magnitude of the system inductance is small. However,
for the system with large line inductance, this will change greatly. These represent that it is
highly required to develop effective solutions to the parameter mismatch issue, otherwise
the control performance of the FCS-MPC strategy will be poor.

Table 2. Main parameters of the microgrid.

Variable Value Unit

PN 10 kVA
UN 310 V
fN 50 Hz

UDC 800 V
Lf 0.18 H
Rf 0.16 Ω
Cf 10 μF
Ll 0.1 mH
Rl 1.2 Ω
Ts 0.001 s
kω −2π × 10−4 -
kv 0.0001 -

3.2. Disturbance Observation Based on Sliding Mode Theory

To eliminate the impacts of parameter uncertainties on the FCS-MPC control perfor-
mance, as illustrated in Figure 2, the d, q-axis disturbances need to be detected at first,
and then, they will be compensated by using a voltage compensation strategy. Hence, the
prerequisite for this method is to construct disturbance observers. Considering that SM
control has the advantages of fast response and high robustness [42], it is employed for
disturbance detection in this paper.
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Figure 4. Relationship between the current estimation errors and the parameter variations. (a) Relationship
between d-axis current estimation errors and ΔRf, ΔLf (ΔRl = ΔLl = 0). (b) Relationship between
d-axis current estimation errors and ΔRl, ΔLl (ΔRf = ΔLf = 0). (c) Relationship between q-axis current
estimation errors and ΔRf, ΔLf (ΔRl = ΔLl = 0). (d) Relationship between q-axis current estimation
errors and ΔRl, ΔLl (ΔRf = ΔLf = 0).

3.2.1. SMDO

According to the sliding mode theory, the disturbance observer based on (15) can be
constructed as: ⎧⎪⎨⎪⎩

dîd
dt = − R f _mea+Rl_mea

L f _mea+Ll_mea
îd +

ed−ud
L f _mea+Ll_mea

+ kdF(id)

dîq
dt = − R f _mea+Rl_mea

L f _mea+Ll_mea
îq +

eq−uq
L f _mea+Ll_mea

+ kqF(iq)
(17)

In (17), F(id) and F(iq) are the switching functions that can be represented as:

⎡⎣ F(id)

F(iq)

⎤⎦ =

⎡⎢⎣ em·id−e−m·id
em·id+e−m·id

em·iq−e−m·iq
em·iq+e−m·iq

⎤⎥⎦ (18)

It deserves to be mentioned that the switching function is a novel hyperbolic function
rather than the traditional signum function [42], of which properties are mainly determined
by the boundary-layer constant m. The reason why the hyperbolic function is designed
in this paper is that it is more inclined to suppress the chattering of the SMOs. When the
system becomes stable, the d, q-axis disturbances can be calculated by:[

fd
fq

]
=

[
kdF(id)
kqF(iq)

]
(19)

3.2.2. Stability Analysis

To construct the Lyapunov function to analyze the stability of the proposed SMOs,
sliding mode surfaces of d, q-axis currents are defined as:

S =

[
Sd
Sq

]
=

[
id
iq

]
= 0 (20)
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Then, the Lyapunov function can be constructed as:

Ly =
1
2

S · ST =
1
2

id
2
+

1
2

iq
2

(21)

Undoubtedly, Ly > 0. Based on the Lyapunov theorem of stability, as long as the derivative
of Ly is smaller than zero, the proposed SMDOs are stable. The derivative of (20) is:

dLy

dt
= id · did

dt
+ iq · diq

dt
(22)

Substitute (15) and (17) into (22), and then it can be obtained that:

dLy

dt
= −R f _mea + Rl_mea

L f _mea + Ll_mea
(id

2
+ iq

2
)

}
term 1<0

+ (kdF(id)− fd)id + (kqF(iq)− fq)iq
}

term 2

(23)

In (23), term 1 is less than zero. To make the system stable, it can be deduced from term
2 that the following condition should be satisfied:{

(kdF(id)− fd)id < 0

(kqF(iq)− fq)iq < 0
(24)

Considering the signs (positive or negative) of id and iq, it can be derived that:⎧⎪⎨⎪⎩
kd < fd

F(id)
, i f id > 0

kd < − fd
F(id)

, i f id < 0
→ kd < −| fd

F(id)
| (25)

⎧⎪⎨⎪⎩
kq < fT

F(iq)
, i f iq > 0

kq < − fq

F(iq)
, i f iq < 0

→ kq < −| fq

F(iq)
| (26)

Overall, the stability condition of the system can be summarized as:

kd, kq < min(−| fd

F(id)
|, −| fq

F(iq)
|) (27)

Unlike the signum function of which the output is either −1 or 1, the output of
the hyperbolic function ranges from −1 and 1. When the id and iq approaches zero, the
magnitudes of kd and kq should be extremely large according to (27). In theory, there is not
one constant for kd and kq satisfying (27) constantly. To solve this problem, considering that
the current estimation errors id and iq physically represent how close the system statuses
are to the sliding surfaces, we can manually design their tolerance values. In this paper, the
smallest allowable estimation error is denoted as λ, that is:

λ = min(
∣∣id
∣∣, ∣∣iq∣∣) (28)

Further, the minimum value of the switching function can be calculated as:

minF =
em·λ − e−m·λ

em·λ + e−m·λ (29)

So far, the observer gains kd and kq can be designed as:

kd = kq = min(−| fd
minF

|, −| fq

minF
|) (30)
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In practice, as long as the system is able to become stable, the disturbances are finite.
Hence, there must exist a constant (for kd and kq) that makes the observers stable. During
the control process, although id and iq are possible to be less than the pre-set value of λ, the
proposed SMDOs can re-converge once their values increase [42].

3.3. Disturbance Impact Elimination-Based Voltage Compensation for MPC

After observing the real-time disturbances by using the SMDOs, the most direct way
to eliminate them is to control them by maintaining them at zero. In this paper, automatic
disturbance regulators (ADR) are adopted to achieve this goal. The inputs of the ADRs are
the errors between zero and the detected disturbances, while the outputs are the voltage
compensations cd and cq. As for the proposed disturbance impact elimination method,
two aspects need to be addressed. Firstly, the ADRs are PI controllers and their transfer
functions are similar to those in (7), and the parameters of the controllers can be tuned by
using the trial-and-error strategy. Secondly, the voltage compensations generated by the
ADRs are used to compensate the control voltages ed and eq of the MPC controller. In detail,
after cd and cq are taken into account, the PPM used for prediction should be modified as:⎧⎪⎨⎪⎩

id(k + 1) =
(L f +Ll−R f Ts−Rl Ts)

L f +Ll
id(k)− Ts

L f +Ll
ud(k) +

Ts
L f +Ll

(ed(k) + cd(k))

iq(k + 1) =
(L f +Ll−R f Ts−Rl Ts)

L f +Ll
iq(k)− Ts

L f +Ll
uq(k) + Ts

L f +Ll
(eq(k) + cq(k))

(31)

In (31), the resistances and inductances are also designed as the measured ones (Rf_mea,
Lf_mea, Rl_mea, and Ll_mea). However, being different from the traditional MPC strategy, the
proposed method is able to eliminate the impacts of the parameter mismatch.

Based on the above analysis and Figure 2, which clearly shows how the SMDO and
MPC controller are integrated into the control system, at the kth period, the implementa-
tions of DCL strategy with a robust MPC control incorporated for the microgrid can be
summarized as follows:

(a) Measurement: The three-phase currents ia,b,c and voltages ua,b,c are detected by using
current and voltage sensors.

(b) Frequency, phase angle, and voltage extraction: The measured phase voltages are used
to extract the frequency f, phase angle ϕ, and d, q-axis voltages ud,q by using the PLL.

(c) For the abc/dq transformation of current: The measured phase currents are trans-
formed to the d, q-axis currents id,q relying on the detected phase angle ϕ.

(d) Calculation of magnitude of voltage: Use (6) to calculate the magnitude of voltage û
(e) The d, q-axis disturbance observation: The proposed SMDOs are employed to detect

the real-time disturbances fd,q.
(f) Calculation of voltage compensations: Use the ADRs to calculate the voltage compen-

sations cd,q according to fd,q.
(g) Prediction: Use the modified PPM (31) to estimate the future current states for each

candidate voltage vector u000, u100, u110, u010, u011, u001, and u101, and select the
voltage vectors that can make the future current satisfy the constraint condition (13).

(h) Evaluation: Substitute the seven predicted values satisfying (13) into the cost function,
selecting the optimal control voltage and the corresponding switching states.

(i) Actuation: Apply the optimum switching states to the DC/AC inverter.

Overall, the proposed SMDO is able to detect the disturbances caused by the parame-
ter mismatch, so theoretically there are no certain bounds of uncertainties in resistances
and inductances. However, considering that when the proposed SMDO-based MPC algo-
rithms are executed, the normal current, voltage, and frequency need to be measured in
advance; the proposed method is available as long as the uncertainties in the resistances
and inductances do not influence the system stability.
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4. Simulation Results

The simulation was conducted on a microgrid system of which parameters are given in
Table 2 to verify the effectiveness of the proposed errorless-control-targeted technique based
on the robust MPC controller. The simulation model was established in MATLAB/Simulink
2018b (The Mathworks inc., Natick, MA, USA), which is shown in Figure 5. In terms of
the simulation setups, four aspects needed to be addressed: (1) The control step was set
as 7e−6 s (sampling period); (2) Resistances were used to simulate the AC loads, and they
could be changed in simulation; (3) Instead of establishing one model for every EV in
the microgrid discretely, an integrated DC source was adopted as the EV energy storage
system, of which maximum allowable output DC current was 10 A. Thus, the maximum
power provided by EVs was 8 kVA. Concerning the four uncertainties of the EV energy
storage systems mentioned in Section I, as for one fixed microgrid system, the number of
EVs that could feed the microgrid was the most crucial factor influencing the power level
of the system. Hence, in the simulation, the uncertainties of EV energy storage systems
were simulated by controlling the maximum allowable current (e.g., when the allowable
current is 0, it represents that there are no vehicles that can feed the microgrid); (4) The
DGS was equivalent to a DC source as well; (5) To better illustrate the effectiveness of the
proposed strategy, the simulation results of the traditional VSG control method mentioned
in [43] (see Figure 1) and the improved VSG with adaptive droop coefficients in [24] are
presented for comparison. It deserves to be mentioned that in addition to the parameters in
Table 2, the inertia and damping factors used for the VSG strategies were J = 0.5 and D = 0.5,
respectively, but in terms of the improved VSG, the values of the initial droop coefficients
double those in Table 2. Besides, the main parameters of the proposed DCL control strategy
are as follows: kF_p = 10, kF_i = 100, kV_p = 20, kV_i = 250, kd = kq = −3000.

Figure 5. Simulation setup for the proposed errorless-control-targeted technique based on the robust MPC.

For the sake of comprehensiveness, the simulation can be divided into three parts.
Firstly, assuming that the EV energy storage system can provide the maximum power
and the parameter mismatch phenomenon does not occur, the control performance char-
acteristics of the proposed DCL strategy, the traditional VSG method, and the improved
VSG method under different loads were compared, proving that the proposed method
is effective. Secondly, to verify that the proposed method is able to maintain the voltage
and frequency at the desired levels with EV uncertainties, assuming that the microgrid
operates under the heavy load, the control performance of the proposed DCL strategy
(no parameter mismatch) when the maximum allowable output DC current changes, is
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presented. Thirdly, to illustrate that it is necessary to develop the robust MPC controller
against parameter mismatch and the proposed SMDO-based control method is effective,
the comparative results of the traditional fixed-parameter based FCS-MPC controller and
the proposed disturbance compensation method (the EV energy storage system can provide
the maximum power) are given.

4.1. Validation of Proposed DCL Method without Parameter Mismatch and EV Uncertainties Considered

In this part, between 0 and 0.5 s, Load 1 in Figure 5 is set as 14.44 Ω (rated load)
while Load 2 (72.2 Ω) does not need to be connected with the microgrid. At 0.5 s, Load 2,
together with Load 1, is suddenly imposed on the system. Figures 6–8 illustrates the control
performance of the traditional VSG (frequency, active power, and reactive power references
are set as the rated values), improved VSG (frequency, active power, and reactive power
references are set as the rated values), and proposed DCL strategies (frequency and voltage
references are set as the rated values), respectively. As for the traditional VSG strategy,
under the rated load, the frequency and voltage can maintain the rated levels. When the
load becomes heavy at 0.5 s, the frequency decreases to 49.5 Hz, and after 0.3 s (settling
time tse = 0.3 s), the frequency becomes 49.8 Hz, which is not the rated level. Under the
heavy load condition, the voltage magnitude sees no change after short-term fluctuations.
In terms of the d-axis currents, they are 21.5 A and 26 A under the rated load and heavy
load, respectively, while the q-axis current keeps around 0.2 A during the test. In terms of
the improved VSG method, the static performance characteristics of the frequency, voltage,
and current under the rated load condition are very similar to those in Figure 6, though
the THD of the phase current is slightly higher. However, the dynamic performance (at
around 0.5 s) showed more obvious differences. In detail, the settling time of the improved
VSG becomes 0.09 s shorter, and the lowest frequency is 49.4 s. Moreover, under the heavy
load condition, the frequency stabilizes at 49.9 Hz, which is slightly larger than that in
Figure 6; these happen because the droop coefficients for the two methods are different. In
Figure 8, the performance characteristics of the proposed DCL strategy are totally different
from those in Figures 6 and 7. Specifically, the frequency levels off at 50 Hz even when the
load is suddenly imposed on the system, however, the voltage is a little smaller than the
reference value. Interestingly, the d-axis currents are smaller than those of the traditional
VSG strategy in both the rated load and heavy load conditions, which are 20.5 A and 24 A,
respectively. As for the q-axis current, it measures around zero, which is also smaller than
that in Figures 6 and 7. Interestingly, in Figure 8, there are small oscillations in the currents,
and the total harmonic distortion (THD) is much larger than those in Figures 6 and 7,
regardless of the rated and heavy load conditions. One main reason why this happens is
the modulation method of the VSG strategies (SPWM) is inclined to reduce the harmonics.
Another interesting phenomenon is that in Figure 8, under the heavy load, the current
oscillations are inclined to decline, which deserves more attention in a future study.

4.2. Validation of Proposed DCL Method with EV Uncertainties Considered

To verify that the proposed DCL method is effective when the EVs that can provide
energy to the microgrid change, at 0.5 s, the maximum output current of the EV energy
storage system is set as 0.5 A (0.4 kVA) from 10 A (8 kVA). This can simulate two working
conditions, that is, when the maximum output current is 10 A, all EVs and charging
piles can feed the microgrid, while only a small number of EVs can feed the microgrid
when the maximum output current is set as 0.5 A. During the test, Load 1 and Load 2 are
simultaneously connected with the microgrid (heavy load). Figure 9 depicts the control
performance of the proposed DCL strategy with the EV uncertainties considered. It can be
seen that firstly, before 0.5 s, the output DC current of the EV energy storage system is 1.5 A,
but after 0.5 s, it becomes 0.5 A as designed. Secondly, the voltage and frequency do not
see obvious change before and after the number of EVs is simulated to decline. Thirdly, the
d-axis current decreases to 22.5 A from 24 A in Figure 8 as the total power of the microgrid
drops, which is reasonable. These illustrate that the proposed DCL method can maintain
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the frequency and voltage at the original values, even when the output power of the EVs
lowers. It needs to be mentioned that the harmonics (THD) in the currents are similar to
those (heavy load condition) in Figure 8. These prove that the proposed method is effective.
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Figure 6. Control performance of the traditional VSG method without parameter mismatch and EV
uncertainties considered.
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Figure 7. Control performance of the improved VSG method without parameter mismatch and EV
uncertainties considered.
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Figure 8. Control performance of the proposed DCL method without parameter mismatch and EV
uncertainties considered.
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Figure 9. Control performance of the proposed DCL method with EV uncertainties considered.
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4.3. Validation of Proposed DCL Method with Parameter Mismatch Considered
4.3.1. Lf_mea = 0.2Lf, Ll_mea = 0.2Ll, Rf_mea = 2Rf, Rl_mea = 2Rl

The simulation setups (load) are the same as those in Section 4.1, and besides, assume
that the measured inductances used for the FCS-MPC controllers are 20% of the real
values while the measured resistances used for control are twice as large as the real values.
That is, Lf_mea = 0.2Lf = 0.036 H, Ll_mea = 0.2Ll = 0.02 mH, Rf_mea = 2Rf = 0.32 Ω, and
Rl_mea = 2Rl = 2.4 Ω. Figure 10 shows the control performance of the proposed DCL method
based on the traditional FCS-MPC controller. It can be seen that, when parameter mismatch
occurs, the control performance degrades significantly in comparison with that in Figure 8.
In detail, the frequency of the system cannot level off at 50 Hz, leading to the THD of
the AC current continually increasing. Additionally, the currents become larger when
the parameters witness variations. These represent that the system cannot work under
the optimal states, and thus, it is necessary to develop an effective method to deal with
the parameter uncertainty problem. Figure 11 presents the system performance when the
proposed SMDO-based MPC controller is used for achieving the DCL strategy. Compared
to the results in Figure 10, the frequency can stabilize at the desired position, and the AC
current (THD) becomes normal. Additionally, the currents in the system are more similar
to those in Figure 8, proving that the proposed SMDO-based disturbance detection and
compensation strategy are effective. Moreover, Figure 12 compares the current prediction
errors before and after the proposed SMDO-based MPC method is employed for control,
which is calculated using (16). Between 0 and 0.5 s, the SMDO does not work, while after
0.5 s, the SMDO works. It can be seen that the prediction errors are slightly changed. This
happens because the purpose of the proposed control strategy is to eliminate the impacts
of the disturbances rather than directly reject the disturbances, which can also be explicitly
derived from Section 3.

id

iqiq 

ia

Figure 10. Control performance of the proposed DCL method with parameter mismatch considered
(the SMDO does not work, Lf_mea = 0.2Lf, Ll_mea = 0.2Ll, Rf_mea = 2Rf, Rl_mea = 2Rl).
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Figure 11. Control performance of the proposed DCL method with parameter mismatch considered
(the SMDO works, Lf_mea = 0.2Lf, Ll_mea = 0.2Ll, Rf_mea = 2Rf, Rl_mea = 2Rl).

fd
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Figure 12. Comparative results of the current prediction errors before and after the proposed SMDO-
based MPC method is employed (Lf_mea = 0.2Lf, Ll_mea = 0.2Ll, Rf_mea = 2Rf, Rl_mea = 2Rl).

4.3.2. Lf_mea = 2Lf, Ll_mea = 1.5Ll, Rf_mea = 0.5Rf, Rl_mea = 0.3Rl

Assume that the measured filter inductance, line inductance, filter resistance, and line
resistance used for the FCS-MPC controller are 4, 3, 0.5, and 0.3 times as large as the real val-
ues, respectively. Namely, Lf_mea = 2Lf = 0.36 H, Ll_mea = 3Ll = 0.3 mH, Rf_mea = 0.5Rf = 0.08 Ω,
and Rl_mea = 0.3Rl = 0.36 Ω. Figures 13 and 14 show the performance of the DCL strategy
based on the traditional FCS-MPC and the DCL strategy based on the proposed FCS-MPC
with SMDO integrated. Figure 15 shows the current prediction errors. Being different from
condition a), the control performance in Figures 13 and 14 is very similar. This happens
because, when in this parameter mismatch condition, the prediction errors are pretty small
(see Figure 15). It deserves to be mentioned that even the prediction errors are nearly
zero, and the proposed technique is able to achieve voltage and frequency-errorless control
without sacrificing the control performance.
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Figure 13. Control performance of the proposed DCL method with parameter mismatch considered
(the SMDO does not work, Lf_mea = 4Lf, Ll_mea = 3Ll, Rf_mea = 0.5Rf, Rl_mea = 0.3Rl).
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Figure 14. Control performance of the proposed DCL method with parameter mismatch considered
(the SMDO works, Lf_mea = 4Lf, Ll_mea = 3Ll, Rf_mea = 0.5Rf, Rl_mea = 0.3Rl).
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Figure 15. Comparative results of the current prediction errors before and after the proposed SMDO-
based MPC method are employed (Lf_mea = 4Lf, Ll_mea = 3Ll, Rf_mea = 0.5Rf, Rl_mea = 0.3Rl).

5. Conclusions

This paper proposes a robust errorless-control-targeted technique based on FCS-MPC
for a microgrid with uncertain electric vehicle energy storage systems, which works under
the island mode. The main contributions and novelties are as follows:

(1) A novel DCL control method is proposed, with each part of it detailed. In comparison
with the traditional control strategies, such as droop control and VSG control, the
proposed one aims to directly regulate the frequency, voltage, and currents rather
than the power of the system. As for this strategy, droop coefficients are no longer
needed, solving the problem that it is difficult to determine the droop coefficients of
the microgrid with uncertain EV energy storage systems.

(2) The impacts of the system parameter mismatch on the prediction accuracy of the
FCS-MPC are analyzed explicitly, posing the necessity of developing the robust MPC
controller.

(3) SMDOs based on the hyperbolic function are developed to detect the d, q-axis dis-
turbances, with their stability discussed innovatively. The detected disturbances are
controlled to maintain at zero by using ADRs, generating voltage compensations used
for modifying the PPM of the MPC controller, thus achieving the goal of disturbance
impact elimination. Simulation results prove that the proposed strategies are effective.

As far as the proposed strategies in this research are concerned, there are several
interesting problems that deserve future study. Firstly, in addition to the FCS-MPC con-
troller, many advanced controllers, such as the variable structure control and future search
algorithm, etc., can be adopted to achieve the DCL method, which might also be efficient.
Secondly, although the stability of the proposed SMDO is analyzed, the stability of the
whole closed-loop control strategy with the FCS-MPC and SMDO integrated is not ad-
dressed in this paper. Thirdly, a trial-and-error strategy is used to tune the parameters
of the PI controllers used in the DCL control topology, which needs to be replaced by a
theoretical analysis strategy. Fourthly, the simulation results show that there are small
oscillations that are related to the load conditions in the currents of the proposed method.
This is an interesting phenomenon, and it might be caused by more different reasons that
need to be urgently explored.
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Nomenclature
n Number of charging piles in one microgrid
c Ratio of EVs working at V2G mode to the maximum number of EVs
tsu, t Period of EVs working at V2G mode, time
Psu Supporting power from EVs
ua,b,c, ia,b,c Three-phase voltages and currents
Udc Bus voltage
T1, T2, . . . , T6 Transistors
D1, D2, . . . , D6 Diodes
Rf, Lf, Cf, Rl, Ll Filter and line resistances, inductances and capacitance
Rf _mea, Lf_mea, Rl_mea, Ll_mea Measured filter and line resistances and inductances
ΔRf, ΔLf, ΔRl, ΔLl Deviations of filter and line resistances and inductances
ea, eb, ec Output voltage of the inverter
ed, eq d, q-axis control voltages
ud, uq d, q-axis voltages
id, iq d, q-axis currents
id*, iq* d, q-axis current references
u* Voltage reference
ϕ Phase angle
f , û Frequency and voltage magnitude
Pt, Pe, Q Mechanical power and active power, reactive power in VSG control
ω, ωN, PN, QN, VN, fN Angular frequency, nominal speed, power, voltage and frequency
kw, kv Droop coefficients for frequency and voltage in VSG control
θ, V Angle and voltage amplitude for control
J Virtual inertia for VSG control
D Virtual damping for VSG control
fd, fq d, q-axis disturbances
cd, cq d, q-axis voltage compensations
kF_p, kF_i Proportional and integral factors for AFR
kV_p, kV_i Proportional and integral factors for AVR
kd, kq Gain factors of sliding mode observers
îd, îq Estimated currents of SMDOs
id, iq Errors between estimated currents and real currents in SMDOs
Ts Control period
m Boundary-layer constant
S Sliding mode surfaces
Ly Lyapunov function
λ The smallest allowable estimation error
imax The maximum allowable current of the system
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Abstract: The safety of power batteries has received more and more attention in promoting electric
vehicles. The external short circuit is particularly prominent as an abnormal and harmful event of a
battery, and the exploration of in-situ low-cost detection technology for such an event is the starting
point of this paper. By building an experimental bench that could detect the external short circuit of the
battery and obtain the acoustic, electrode, and temperature responses, the resulting acoustic analysis
would establish an internal connection with the electrode and temperature measurement when the
external short circuit occurs. The respective acoustic response characteristics of different initial battery
states of charge were analyzed by selecting appropriate acoustic characteristic parameters in the
time and frequency domains. The acoustic measurement could represent the battery abnormality
synchronously like the electrode measurement, and the results of the damage and rearrangement of
the internal of the battery are easy to characterize through a moderate amplification of the acoustic
response. The different initial state of charge (SOC) state reflects noticeable differences in the acoustic
characteristics. Therefore, it is considered that the acoustic emission technology might have potential
battery condition assessment capabilities and be a tool for in-situ battery fault diagnosis.

Keywords: lithium-ion battery; acoustic emission; state of charge; external short circuit; acoustic
characteristic

1. Introduction

With the vigorous development of lithium battery chemistry technology, pure electric
vehicles (PEVs) have gradually begun to replace fuel vehicles. Lithium batteries are widely
used in electric vehicles due to a good balance of many aspects, such as cost, capacity, safety,
and other excellent characteristics. People have anticipated higher requirements for the
overall performance indicators of lithium batteries, especially in terms of volume/mass-
energy density, power density, life cycle, cost, safety performance, etc.

Battery-embedded sensors are used to collect valuable data to optimize battery op-
eration strategies [1,2]. The data will help the battery management system to acquire
the correct status of the battery, optimize the battery performance, and detect abnormal
conditions of the battery in time. At the same time, from the perspective of vehicle battery
driving range and power requirements, the demand for the number of lithium-ion batteries
is increasing, and the performance of these batteries, such as fast charge and discharge
capabilities and safety issues [3–5], are also constantly improving. To meet the needs of
the market, enhance the performance and safety of batteries, and shorten the development
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cycle of new battery systems, it is necessary to carry out failure analysis and fault diagno-
sis of lithium batteries in the course of battery operation. The diagnostic techniques for
Li-ion batteries are increasingly emphasizing a balance of economy and reliability due to
their need to target larger battery sizes and the cost of batteries deployed in increasingly
expensive applications, including electric vehicles.

1.1. Literature Review

Lithium-ion battery cells usually have variable electrical characteristics and are very
sensitive to operating and environmental temperatures. With diagnostic tools and sophisti-
cated battery management strategies, battery performance has been improved by confining
battery operation within specified limits [6–8]. Those limits balance the battery’s perfor-
mance and alleviate the problem of rapid degradation. The causes of rapid degradation
include high-current charging and discharging, low-efficiency temperature environments,
and low or high battery charge timing. The state of the lithium battery would affect the
life of the battery itself and be directly linked to the performance of the vehicle. The char-
acteristic response of the battery electrode as a real-time diagnostic tool usually involves
complex algorithm processing, and the high-precision hardware sensors for the battery
management systems (BMS) are expensive. In this case, although the detection of electrode
characteristics could identify abnormal data, it is challenging to locate the specific fault
location, especially when the batteries are arranged in groups or packages. It can be used as
a supplement to the judgment of battery failure by combining visualizing the inside of the
battery. In recent years, acoustic-related testing methods have gradually gained more and
more attention in lithium battery fault diagnosis due to their versatility, ease of operation,
and acceptable accuracy of results.

In situ and ex situ diagnostic techniques have been broadly used in the fabrication,
planning, performance assessment, and tracking of electrochemical devices [9,10]. There
are four main methods for measuring lithium-ion battery (LIB) failure [11], including
destructive testing, imaging methods, methods based on battery swelling, and methods
based on acoustic measurements. The experimental study of lithium-ion battery failure is
primarily destructive testing, which means that the battery is damaged or severely affected
in its operational behavior and safety; it is crucial for the study of the mechanical and
electrochemical relationships of the battery, but it rarely applies to troubleshooting.

Imaging methods such as X-ray or computed tomography are used to gain insight
into the physical structure of a battery or material and can measure layer thickness through
changes in the state of charge (SOC) or state of health (SOH) and identify structural defects
in materials and battery components. Historically, X-ray tomography has been commonly
used to obtain 3D images of batteries [12–14]. The introduction of lock-in thermal imaging
technology also enables internal visible battery inspections. Combined with the thermal
imaging technology developed in recent years, a clearer view of the internal failure of
the battery would be achieved [15]. However, this usually requires a lot of laboratory
equipment, space, and funds, so there is a high threshold for promotion and application.
Another limitation is that the components to be tested must absorb X-rays to ensure the
feasibility of detection [16,17].

The research conducted by the swelling method is mainly based on the contact mea-
surement for the pouch battery. It is an economical way to reveal most of the phenomena
in LIBs and is widely used in laboratory-stage research. The research includes the correla-
tion of SOC and charge-discharge C rate, considering the battery structure, battery SOH
estimation, and the effect of temperature on swelling, etc. [18]. There is no report on the
measurement of swelling under abuse conditions. Experimental modal analysis (EMA) is a
relatively new topic in LIB measurements. No firm conclusions could yet be drawn about
SOC, SOH, and other effects on EMA behavior, but can be used as an integrated diagnostic
development tool.

A class of acoustic-based methods transmits mechanical waves into the battery cell
through an actuator, and the receiver sensor measures the response of the device to an
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external stimulus, called ultrasonic testing (US) [19]. During scanning, the distance between
the transducer and the object’s surface to be measured remains constant. The energy of
sound waves decays faster in gas than in liquids and solids, which will lead to low accuracy
of measurement data. To enhance the transfer energy of sound waves in the sample and
avoid external interference of the measured object, both the transducer and the battery are
usually invaded into the coupling medium (gel or water) to reduce the effect of reflections
at the outer interface on the measurement. The US can detect not only operating values,
such as SOC and SOH, but also abusive behaviors, such as high temperature, electroplating,
and overcharging, and applies to a wide range of frequencies and various form factor
studies [20,21]. As a non-destructive battery diagnostic tool, some literature has explored
acoustic methods to characterize Li-ion pouch cells, with sound as an indicator of battery
structural health and state-of-charge-related parameters. Time of fly (TOF) offset and
total signal amplitude as index parameters for ultrasonic analysis are used to predict the
battery state and state of health. Combined with traditional electrode detection data, TOF
could present direct structural information of actual batteries in real-time [22,23]. At the
same time, many macroscopic-level static strains of batteries have been associated with the
operating state in the battery, which shows a strong correlation with the volume change
in some pouch batteries. Acoustic measurements have also been used to detect possible
macroscopic crack detection, and microscopic measurements have been used to further
clarify the cause of the shock response in the electrochemical reaction of the battery [24,25].
However, critical explanations for battery fault diagnosis and acoustic detection feature
extraction are still lacking.

Acoustic Emission (AE) is another acoustic-based measurement method that differs
from ultrasonic testing in that the object to be measured is not subjected to external mechan-
ical excitation, but the material itself is measured by a connected (surface) sensor collecting
fast releasing mechanical stress. The resulting sound waves are widely used to monitor
fatigue, crack formation, and mechanical damage in building materials. Also included
under external stimuli (e.g., changes in pressure, strain, temperature, or load), local sources
within the material trigger energy release in the form of stress waves, which can be detected
and converted on the surface of the measured object as electrical signals for subsequent
studies [26,27]. Therefore, the use of AE to detect the electrochemical process of the battery
is also a further application of its technical characteristics. For LIB batteries, the particle
fracture will inevitably fluctuate in acoustic signals, which can be obtained theoretically
through the selection of appropriate equipment and the tuning of filtering algorithms.
However, it is accompanied by an increase in acquisition cost and higher requirements for
robustness. Therefore, from the perspective of balancing the cost of signal acquisition and
the ability to predict abnormal events, the recognition object of the acoustic signal may
also need to be carefully selected. Potential sources of AE events in LIBs include electrode
cracking, transition metal dissolution, cathode electrolyte interface (CEI) formation, solid
electrolyte interface (SEI) formation, etc. On a cylindrical 18,650 cell, some researchers
measured AE during full cell discharge [28], detected SOH by AE [29], and observed the
trend of the AE intensity for each window as a function of a cycle. Other researchers used
the AE to probe the generation, change process of solid electrolyte interphase (SEI) in
batteries [30]. The acquired AE signals could also be divided into various types. Targeting
for different analysis purposes, appropriate characteristic indicators should be selected care-
fully to explore the damage mechanism of lithium-ion batteries [30,31]. Generally speaking,
with the occurrence of electrochemical reactions inside the battery, the transformation of
almost any energy level will be associated with the rearrangement of the local structure. An
acoustic signal will inevitably be emitted in this rearrangement process, which also means
that AE can be regarded as a relatively simple principle diagnostic tool on the one hand; on
the other hand, their broad applicability is accompanied by high sensitivity issues. At the
same time, according to the different anode and cathode material selection and rational
design processes mentioned in the literature [32], it is necessary to fully understand the
acoustic characteristics of a single structure or component of the battery. In the future, in
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the face of acoustic events and characteristics with low discrimination, it is necessary to
introduce more acoustic sensors for simultaneous observation of anodes and cathodes, and
the introduction of half-cell will also be an ideal research object.

In general, a variety of battery fault diagnosis methods have been widely used in the
research of LIB batteries, not only in the analysis of the regular operation of the battery but
also in the real-time monitoring of various failure precursors. Destructive testing means
that the battery is damaged or seriously affected in its operating behavior and safety. It is
primarily used in laboratory research and unsuitable for in situ detection needs. It is of
great help to study the mechanical and electrochemical relationship of batteries in the lab,
while it is not applicable for troubleshooting in reality. Generally speaking, non-destructive
testing (NDT) is of great significance for verifying battery quality and safety standards [33].
The detection of the swelling method has a good effect on a specific pouch battery. When
the measured object is a prismatic battery or a cylindrical battery, the swelling application
effect will be significantly reduced. The other three methods are classic non-destructive
methods, which would provide potentially practical information and has the possibility of
application in in-situ and ex-situ operations, helping to overcome the difficulties and the
problems to be solved in traditional battery state estimation and fault diagnosis operations
based on electrode measurements. Acoustic-based sensing technology is mainly used
for SOC and SOH measurement of batteries, but the associativity of temperature, C rate,
and abuse conditions are less considered. In terms of monitoring time, in comparison,
imaging methods require less measurement time, but it is not easy to form a long-term
continuous analysis process. Acoustic measurement has excellent advantages in long-term
monitoring data accumulation. On that basis, deep learning and mathematical statistics
have great potential as data-driven estimation methods, and they work best when combined
with traditional electrode measurements such as voltage and current observations. So,
the acoustic measurement is of great significance for battery state estimation and fault
diagnosis based on battery electrode measurements.

1.2. Motivation and Original Contribution

From the perspective of battery safety, the short circuit caused by external circuit
failure is a relatively severe electrical abuse behavior. The subsequent performance failure
of the battery is easy to generate, which is reflected in capacity attenuation, short cycle life,
poor consistency, easy self-discharge, high- and low-temperature performance degradation,
etc.; on the other hand, the battery is prone to safety risks such as thermal runaway, gas
leakage, and expansion deformation. From an acoustic point of view, the microstructure of
the battery must be accompanied by relatively drastic changes in the short-circuit process
of high current discharge, which is reflected in the transformation of the microstructure of
the cathode and anode materials, breakdown of the separator accompanied by continuous
heat release of the battery, temperature rise, and other behaviors. Changes in the microme-
chanical structure of the battery will negatively affect the current state and subsequent
performance of the battery. Although the data measured by the electrode can detect the
abnormality of the current data, the ability to capture some short-term abnormal signals is
weak, and the subsequent impact cannot be continuously monitored and identified. For the
short-circuit behavior of different initial SOC, the evaluation method should also require
diversified measurements. In terms of the acquisition of acoustic signals and analysis of
parametric variables, few studies have conducted an in-depth analysis of the high current
caused by short circuits. Therefore, this paper analyzes the acoustic response characteristics
of the battery cells with external short circuits (ESC) under different SOC initial conditions,
obtains the acoustic discrimination criteria for the short-circuit fault diagnosis of 18,650 bat-
teries, and conducts a possible correlation analysis. The research would provide a method
for the failure analysis of lithium batteries, also a new promising tool.
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1.3. Configuration of This Paper

The remainder of this paper is organized as follows: Section 2 illustrates the experi-
ment’s setup. Preliminary Analysis of Acoustic Signals introduces the primary methods
for this study. Results and discussion present the results of the analysis for the acoustic
response of the external short-circuit battery and develop the necessary discussions. Finally,
the conclusion of our approach is given in Conclusion. All term abbreviations used in the
study could be found in Nomenclature.

2. Experimental Section

Acoustic measurements were performed on commercial 18,650-type cylindrical nickel
manganese cobalt oxide (NCM) lithium cells. According to the test conditions and safety
considerations, two cases of initial battery SOC of 80% and 50% were selected. When the
battery is placed in the temperature chamber, the ambient temperature is set to 20 ◦C to
facilitate later observation of temperature changes and establish the connection between
temperature, electrode measurement, and acoustic response. The battery-cell character-
istics are shown in Table 1. Taking Lithium NCM111as an example, the electrochemical
reaction during the charging and discharging process is shown in (1). Figure 1 shows the
installed lithium-ion battery external short-circuit the experimental system. The computer
is connected to the Motohawk via controller area network (CAN) and controls the relays in
the circuit. Hall current sensors are used to measure short-circuit current. The ultrasonic
needle sensor is from ndtXducer, and the miniature needle-type sensor is for industrial
and laboratory use in ultrasonic and acoustic measurements with characteristics such as
low cost, flat sensitivity, and good directivity, and its maximum operating temperature is
around 100 ◦C. The sensor is used to collect the vibration signal generated by the change
of the internal structure of the battery, and the output signal is a high-frequency voltage
signal. The voltage, current, and vibration signals were all recorded by the Nioki MR6000
data acquisition device, and the short-circuit duration was 150 s. To reduce the external
interference to the acoustic signal of the battery, a vibration isolation material is arranged
around the battery and the acoustic sensor; to enhance the sensor’s ability to receive signals,
the Vaseline gel is applied at the contact position between the battery body and the sensor.
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�
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Table 1. List of main parameters of the experiment.

Type of the Battery Cell 18,650-Type Cylindrical NCM Lithium Cells

Nominal cell capacity (0.3 C) 2.0 Ah
Average battery cell voltage 3.6 V

End of discharge voltage 2.5 V
High voltage protection 4.2 V

Operation temperature range −20–55 ◦C
Cathode materials LiNi1−y−zCoyMnzO2
Anode materials Graphite

The collected raw voltage, current, acoustic, and temperature signals are shown in
Figure 2. The time range of the short-circuit occurrence can be clearly defined by the
fluctuating region of the voltage change. The voltage has the remarkable characteristics
of initial sag, fluctuation retention, and secondary sag. The corresponding current has a
similar change process of the initial jump, mid-wave, and terminal drop, which is a phe-
nomenon that can be clearly distinguished from the short-circuit condition at the electrode
measurement. Corresponding to the temperature signal, the initial occurrence of the short
circuit could obtain the rise of the temperature for the positive and negative electrodes and
the slight decrease of the temperature after the short circuit is completed. Corresponding
to the acoustic signal, the initial signal observation would roughly distinguish between
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the beginning and the end of the short circuit (compared to the range determined by the
voltage or current); the signal has an initial apparent change (at the beginning of the ESC),
and a relatively weak mutation (at the end of the ESC); other acoustic features are not very
obvious; it is difficult to distinguish from the data on the figure.

Figure 1. Schematic diagram of the ESC experimental setup based on AE.

Figure 2. Voltage, current, acoustic, and temperature data curve across the entire ESC.

Therefore, in terms of acoustic signal data analysis, phase spectrum analysis reduces
various influencing factors to obtain signal amplitude and phase values for further research.
The frequency-domain characteristics of the AE signal were analyzed from the time-domain
acoustic signal by Fast Fourier Transform (FFT).
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3. Preliminary Analysis of Acoustic Signals

According to the change of the corresponding current, the acoustic signal is preliminar-
ily divided into four time slots in Figure 3, where A is before the ESC, B is the continuous
process of the ESC, C is the near-end after the ESC, and D is the far end after the ESC,
which are used to observe the possible acoustic responses of the battery after a short circuit
occurs. The following results are obtained after filtering the PPT analysis for the acoustic
characteristic data segment of the above time slot.

Figure 3. Segmentation diagram of an acoustic signal.

In Figure 4, there is an apparent difference between the amplitude change of short-
circuit occurrence and the short-circuit occurrence near-end, which reflects a difference
value of more than ten times. From the perspective of frequency, the frequency of the
inherent acoustic characteristics of the battery cell is relatively concentrated before the
short circuit occurs, which is between 3–4 Hz. The frequency characteristics of the ESC at
the near-end are shifted to the left, indicating that the internal structure of the battery is
changed due to the breakdown of the short-circuit current and the acoustic features are
changed, and the material fracture continues after the ESC in the proximal short-circuit
area C. It may be due to residual stress, which is reflected in the continuous increase
in the amplitude of the center frequency. The continuous temperature rise also proves
that the structure continues to change after the short circuit, and there is continuous heat
release. The characteristics of the acoustic response of region D become blurred due to the
rearrangement of the structure and lose its original characteristics, which is reflected in the
chaos of the microstructure and change. These indicate a dramatic change in the mechanical
properties of the electrode, which is consistent with the static mechanical analysis of the
electrode [24,26,30].
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(A) (B) 

  
(C) (D) 

Figure 4. Original acoustic signal and frequency domain characteristics of window A–D. (A), Filtered
acoustic signal before the ESC; (B), Filtered acoustic signal during the ESC; (C), Filtered acoustic
signal near-end after the ESC; (D), Filtered acoustic signal far-end after the ESC.

From the perspective of the acoustic characteristics of a single short-circuit battery,
in terms of the near-end frequency domain characteristics before, during, and after the
ESC (window A–C), it is preliminarily shown that the value of the center frequency and
its amplitude, which are representative, would characterize the change of the internal
structure and the change of the mechanical properties when the short circuit occurs to a
certain extent. The signal at the far (window D) end becomes more ambiguous due to the
internal change of its acoustic characteristics after the short circuit occurs so that it can be
temporarily ignored in selecting the ESC data.

Therefore, in this paper, the correlation analysis of the measured values of electrodes,
acoustics, and temperature is carried out in both time and frequency domains. According
to the relationship between voltage, current, and temperature, the implication between the
response of the battery in different time slots during the ESC process and the character-
istic acoustic parameters would be obtained; the representation to the initial SOC at the
occurrence of the ESC might be clear; while the link between cell structural damage and
rearrangement and the acoustic response could be discussed. The overall framework of the
presented ideas is shown in Figure 5.
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Figure 5. Framework for the acoustic analysis in ESC.

4. Results and Discussion for Acoustic Characteristics of Battery Short Circuit under
Different SOC Conditions

4.1. Analysis of Acoustic Signal Characteristics in Time Domain

Characteristic parameters that are important for battery acoustics include rise time, the
time between the first threshold crossing and the peak amplitude; “duration” or the time
interval between the first and last threshold crossing in a burst signal; and the amplitude
of the response acoustic intensity, etc. The preferred peak value (amplitude) reflects the
response of the whole battery cell to the high-discharge current process in the short-circuit
process, which is closely related to the damage to the battery’s internal structure when
the short circuit occurs. What the acoustic sensor would receive is damage to the internal
structure of the battery. Although the specific position of the AE (sound radiation intensity)
cannot be determined under passive conditions, its amplitude reflects the characteristics of
the special battery discharge conditions. It would be used for comprehensive judgment of
the battery state.

The original acoustic signal obtained by the sensor has a low degree of recognition
with poor signal legibility. To better analyze the acoustic signal, the coaxial variation
curve of the current and the acoustic signal is obtained after processing through a rational
transfer function. The acoustic signal strength is normalized after filtering to ensure good
readability of the values. Overall, in the time range of interest, regardless of the initial SOC
(SOC80 OR SOC50) value, the acoustic signal immediately responds when a short circuit
current occurs. Still, the trend of the acoustic signal is a step-by-step process, and its peak
value shows at the end of the short-circuit process. In Figure 6, it appears later; that is, it
could be found from the figure that the acoustic curve reaches its peak value in about 5 s
after the ESC current drops to 0. The current change is generally in a relatively short time,
but the acoustic change starts at the same time as the current; while it is slightly achieved, a
delayed peak point reflects that the rearrangement of the internal structure of the battery
is the consequence of the short-circuit current shock. The subsequent decline process
demonstrates the process of the destruction and rearrangement of the battery content
structure. More importantly, from the perspective of detection, the initially short-term
electrode behavior would be transformed into a more obvious acoustic change process,
reflecting the vital characterization significance of the battery acoustic characteristics for
the abnormal state of the battery.
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Figure 6. Current and acoustic characteristics of ESC under initial SOC50 condition.

Through observation for Figure 7, there is a specific SOC correlation between the
acoustic intensities detected in SOC80 and SOC50. The acoustic radiation intensity of
SOC80 is higher than that of SOC50 by more than 6%, which corresponds to the case of high
current discharge. Compared with SOC50, the external short-circuit discharge current of
SOC80 also increases by 17%. Of course, this is in line with our expectations for the initial
state of the battery. For the analysis of battery AE duration, the structural characteristics of
the battery itself reflect the response to the short-circuit process. Due to the difference in the
battery’s state, the degree of damage to the battery resulting from high-current discharge is
also different. In Figure 8, SOC80 and SOC50, from the perspective of the two initial states,
the acoustic response process of SOC80 is shorter, reflecting the severity of the structural
damage process. The 22% reduction for the AE rise time in SOC80 also demonstrates the
severity of structural damage inside of the battery, which does not optimistically speculate
the possibility of structural rearrangement and repair. In the acoustic response of B123
battery SOC50 Figure 6, the fluctuation of the acoustic signal could be observed in the later
stage, which may indicate the possibility of repair after structural damage. In the case of
SOC80, no noticeable acoustic signal fluctuations were found subsequently.

Figure 7. Current and acoustic characteristics of ESC with initial SOC80 condition.
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Figure 8. Current, acoustic, and temperature average characteristics of ESC under initial SOC50 and
SOC80 conditions.

To observe the relationship between electrode measurement (current), temperature,
and acoustic signal more intuitively, the data of SOC50 and SOC80 are averaged to obtain
a comparative analysis of coaxial curves under different SOC conditions, as shown in
Figure 8. Finally, from the perspective of the temperature change during the short-circuit
process, multi-position high-strength structural damage probably occurs inside the battery
parallelly. So, the temperature rise rate for the case of SOC80 is 52% higher than that
of SOC50, while the time of its peak arrival is later than the acoustic peak. The reason
for the subsequent temperature descent is more complicated. It is presumed to be the
result of the combined effect of two factors: on the one hand, with the end of the primary
short-circuit reaction, the large-scale structural damage stops; on the other hand, with
some small-scale structural repairs, while some continuous destruction of the structural
rearrangement results in the constant local release of heat, the observed result is a slower
decline rate after the peak. Therefore, the judgment of the abnormal state of the battery
from the perspective of temperature seems to have a relatively evident hysteresis in terms of
timeliness, as the major damage to the internal structure of the battery has been completed.
In this case, the analysis of the acoustic properties would present the abnormal behavior of
the battery ahead of the temperature. Considering that the battery temperature will also be
undulate due to heat accumulation during the regular operation of the battery, the direct
response of the acoustic characteristics to the changes in the battery structure has certain
advantages. The acoustic state can be used as the basis for judging the abnormal state of the
battery. In Figure 9, all the values are normalized, and the SOC50 is used as the comparison
benchmark, reflecting the comparison results of the above-selected parameters.

4.2. Analysis of Acoustic Signal Characteristics in Frequency Domain

The correlation analysis of the external short-circuit acoustic characteristics of the
battery with two initial conditions of battery SOC of 80% and SOC of 50% was carried
out, and three time windows (before, during, and after the ESC) were selected as the main
observation time slot. Here, the magnitude of the amplitude in the frequency domain is
used to represent the strength of the acoustic characteristics.
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Figure 9. Comparison of main characteristic parameters of ESC occurrence.

In Figure 10, based on the acoustic signal characteristics in the three time windows
concerned, the short-circuit acoustic features window-A of SOC80 Figure 10(a1, b1) gener-
ally shows relatively stable acoustic characteristics. The center frequency is between 3–6 Hz,
which refers to the background acoustic aspects of the operation of the experimental device.
Depending on the arrangement of the device, it would be used as an initial calibration ref-
erence in the future considering improving the accuracy of the identification of the acoustic
characteristics for different types of batteries or setups. In the acoustic characteristics of the
window-B range Figure 10(a2, b2), the center frequency moves to the low-frequency area,
and the amplitude is ten times higher than that of the window-A field. The recognition is
with the remarkable feature, representing that the system structure responds strongly and
concentratedly to ESCs, which may be due to the transformation of the internal structure
when the high current, inducing the breakdown of the separator, or the structural rear-
rangement. The system is damaged, but the subsequent structure might continue to be
damaged or maintained. It is necessary to move the data analysis of area C. The acoustic
characteristics of the window C interval do not change significantly from the perspective of
the center frequency, but there are specific differences in the amplitude changes. A set of
data shows that the C interval in B130 Figure 10(b3) amplitude is unchanged, but the C
interval in B136 Figure 10(a3) data shows an increase of about five times the acoustic signal
intensity, which indicates that even if there is no subsequent operation of the electrode
terminal after the short circuit occurs, the trend of structural rearrangement and change
continues after the ESC. The fluctuation may be different for individuals, but the trend
should be the change of battery structure. As the current device cannot guarantee the safety
of subsequent battery electrode tests after the ESC, further observation and analysis of the
acoustic characteristics of the battery electrode operation are still to be confirmed, and more
experimental data are needed.
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Figure 10. Two cases frequency domain characteristics of window A–C with initial SOC80 condi-
tion. (A), acoustic signal before the ESC in (a1,b1); (B), acoustic signal during the ESC in (a2,b2);
(C), acoustic signal near-end after the ESC in (a3,b3).

From the analysis of the initial battery short-circuit test results of SOC50, the overall
trend is similar to that of SOC80. Still, the specific characteristics also demonstrate strong
SOC dependence, in Figure 11. For example, the value of the center frequency moves
along the low-frequency direction, the approximate frequency range is between 2–4 Hz
Figure 11(a1, b1), and the amplitude of the center frequency is less than the case of SOC80,
which reflects a relatively obvious SOC correlation. In the process of the ESC, that is, in
window B Figure 11(a2, b2), the amplitude of its center frequency also appears to move
to the low-frequency end, and the amplitude is lower than that of SOC80. Still, it has an
increase of about 15 times compared with the amplitude of SOC50 window A. The short-
circuited near-end acoustic signal in window C shows that the structure remains unchanged
Figure 11(b3) or further aggravates the damage Figure 11(a3). Based on the observation of
acoustic data, there is no observation that the acoustic characteristics represented by the
structure would be restored to the initial state (window A) after a short circuit occurs. Even
if it is left standing for a long enough time, no similar supporting data are observed. It is
explained that the microstructure damage of the battery cells after the high current short
circuit is irreversible, and it should be isolated or replaced in time from the perspective of
battery safety.
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Figure 11. Two cases frequency domain characteristics of windows A–C with initial SOC50 condi-
tion. (A), acoustic signal before the ESC in (a1,b1); (B), acoustic signal during the ESC in (a2,b2);
(C), acoustic signal near-end after the ESC in (a3,b3).

5. Conclusions

This study investigates the AE characteristics of cylindrical lithium batteries when
an external short circuit occurs. Firstly, a test bench capable of measuring the acoustic
characteristics of the external short-circuit of the battery is built to obtain the electrode,
temperature, and acoustic data of the battery when the ESC occurs. Then, the analysis is
carried out from two aspects of the time domain and frequency domain. In the time domain,
the acoustic signal of the battery appears synchronously with the voltage/current change
during the ESC. With the destruction and rearrangement of the internal structure during
the short circuit, the acoustic response gradually increases and reaches a peak after the end
of the ESC. The critical acoustic characteristic values of rising time, amplitude, and duration
were selected, the SOC correlation analysis was carried out for batteries with different initial
SOC, and the mapping relationship with battery electrode and temperature characteristics
was further considered. In terms of frequency domain analysis, the acoustic response
of the battery is divided into three observation windows before, during, and after the
ESC, and the center frequency and amplitude of the acoustic signal in the three stages are
discussed. The correlation between the initial SOC of the short-circuit occurrence and the
acoustic response is verified. The expectation of the SOC dependence in the time domain
is confirmed. Therefore, by selecting appropriate acoustic characteristic parameters, AE
technology has the ability to diagnose abnormal battery status together with the electrode
and temperature measurement.

From the observation results of the ESC in analysis, the discharge current hopping
from 0 to 20–30 C-rate, the change of the acoustic intensity could be observed, and there is
still a lack of acoustic-related active constant discharge current test data at different levels to
make further judgments. According to the results observed so far, the correlation between
C-rate and acoustic energy is not clear, or the acoustic energy is relatively independent of the
ESC in our research. Compared with electrode measurement, it would extend the duration
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of abnormal events and improve the detection rate of suspicious events. Compared with
temperature measurement, AE can reflect the damage of abnormal circumstances to the
structure earlier, to gain time for subsequent operations. In the future, combined with the
analysis of the charge and discharge acoustic characteristics of different currents of the
different SOC states, and supplemented by the correction of temperature effects, a more
comprehensive battery acoustic and electrode characteristics would be established. The
mapping relationship of characteristics will provide more basis for battery state estimation,
life span estimation, and battery energy management.
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Nomenclature
PEVs Pure electric vehicles
SOC State of Charge
BMS Battery management system
LIB Lithium-ion battery
TOF Time of fly
ESC External short-circuits
SOH State of health
EMA Experimental modal analysis
US Ultrasonic testing
AE Acoustic emission
CEI Cathode electrolyte interface
SEI Solid electrolyte interface
EVs Electric vehicles
NDT Non-destructive testing
FFT Fast Fourier transform
CAN Controller area network
NCM Nickel Manganese Cobalt Oxide
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Abstract: Lithium-ion batteries will generate a large amount of heat during high-rate charging and
discharging. By transferring the heat to the environment in time, the batteries can be kept in a
suitable temperature range. This allows them to work normally, prolongs their cycle life, and reduces
the risk of thermal runaway. Immersion cooling is a simple and efficient thermal management
method. In this paper, a battery thermal management system (BTMS) with immersion cooling was
designed by immersing the lithium-ion cells in the non-conductive coolant—dimethyl silicone oil.
The electric–thermal coupled model was adopted to obtain the heat production and temperature
distribution of the cell during discharging, and the performance of the system was obtained by
numerical calculation. It was found that, compared with natural cooling, immersion cooling could
significantly reduce both the maximum temperature (MAT) of the cell and the temperature of the tabs
during the 3C discharging process. However, the maximum temperature difference (MATD) of the
cell was significantly increased. To solve this problem, the effects of the flow rate, viscosity, specific
heat capacity, and thermal conductivity of the coolant on the performance of immersion cooling were
further investigated and discussed, including the MAT and MATD of the cell, and the pressure drop
of the coolant. The method and results could provide references for the design and application of the
BTMS with immersion cooling in the future.

Keywords: immersion cooling; lithium-ion battery; thermal management; temperature; pressure drop

1. Introduction

Lithium-ion batteries are widely used in electric vehicles due to their great energy
density, high voltage, and small self-discharge rate [1,2]. However, lithium-ion batteries
should be working under certain temperature conditions. The best temperature range is
usually between 20 ◦C and 40 ◦C, and the maximum temperature difference should be con-
trolled within 5 ◦C [3,4]. Excessively higher or lower temperatures could affect the normal
working of the battery, reduce its capacity, and shorten its life [5]. When the temperature is
extremely high, thermal runaway may even occur, resulting in security incidents [6]. In
addition, lithium-ion batteries will release a large amount of heat during long-term cycles
and rapid charging and discharging processes. Insufficient and uneven heat dissipation can
easily lead to local heat accumulations, which cause uneven temperature distributions in
the batteries and in the battery pack, and affect their consistency and safety [7]. Therefore, it
is essential to employ an effective battery thermal management system (BTMS) to regulate
the temperatures and equalize the heat in the batteries.

According to the kinds of heat transfer mediums, the BTMSs commonly used in
electric vehicles mainly include air cooling, liquid cooling, heat pipe cooling, PCM cooling,
and hybrid cooling. The air-cooling type relies on the air as the heat transfer medium [8].
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However, due to the smaller specific heat capacity and lower thermal conductivity of the
air, its temperature regulation and thermal equalization capabilities are usually not as good
as those of the liquid cooling type. The liquid cooling type can be further classified into
indirect cooling and direct cooling (also known as immersion cooling). Indirect cooling is to
attach one or a few cooling plate(s) or pipe(s) on the cells, and the heat is taken away by the
flowing coolant (such as a water–glycol solution) in the channel(s) of the cooling plate(s)
or pipe(s) [9–12]. Direct cooling is usually to immerse the cells in the coolant, so it can
directly contact the cells, and absorb the heat from them. According to the working state of
the coolant, the BTMS with immersion cooling can be further classified into liquid-filled
BTMS and liquid-circulated BTMS [13]. In the former, the coolant is stationary, and in the
latter, the coolant is circulating. In addition, phase change materials (PCMs) and heat pipes
are also commonly used in the research on BTMSs [14,15]. Moreover, hybrid cooling is
used to combine two or more cooling methods to improve the cooling efficiency of the
whole system. The characteristics of these BTMS technologies are summarized in Table 1,
including their application levels, advantages, and limitations [16–20].

Table 1. Existing BTMS technologies.

Cooling Method Application Level Advantages Limitations

Air cooling Middle
The structure is relatively simple, the
design is easy to implement, and the
adaptability is good.

1. The thermal conductivity of air is
low, the specific heat capacity is
small, and the temperature control
ability under high-rate charge and
discharge conditions is relatively
weak. The temperature uniformity
in the battery pack is relatively poor;

2. When the active cooling method
meets the thermal management
requirements, the power
consumption is greater, the space
required for the system is larger,
and the energy density of the
battery pack is smaller;

3. The potential for improvement is
relatively small, the achievable
temperature control limit is
relatively low. It is mainly suitable
for the battery pack with small
energy density and low charge and
discharge rates.

Liquid cooling (indirect) High

1. Compared with those of air, the
specific heat capacity and thermal
conductivity of liquid are usually
greater, and the cooling effect is
usually better under the same
power consumption;

2. The cooling effect can be
effectively improved through the
flow flux, channel design and
material properties of the coolant.
The potential for improvement is
relatively great;

3. The temperature uniformity is
usually better when the pipes or
cooling plates are in contact with
the side of the cells.

1. The structure of the system is more
complex, the overall weight is
greater, and the cost is higher;

2. In order to prevent leakage and
short circuits, the coolant should be
in indirect contact with the cells,
which increases the thermal
resistance and suppresses the
cooling effect;

3. A pump is required to drive the
coolant to circulate, and an
additional cooling system is usually
implemented to chill the coolant;

4. The pipes or cooling plates usually
have great thermal conductivity,
which is not conducive to inhibiting
the thermal runaway propagation in
the battery pack.
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Table 1. Cont.

Cooling Method Application Level Advantages Limitations

Liquid cooling (direct) Low

1. Simple and compact structure,
light weight and low cost;

2. The coolant is in direct contact
with the cells, so the convective
heat transfer is stronger, and the
cooling effect is further improved;

3. The coolant is dielectric, which
could avoid short circuiting and
inhibit the thermal
runaway propagation;

4. The pressure drop of the coolant
is usually lower, and the power
consumption is usually smaller.

1. The sealing requirements for the
battery pack are higher, and
conductive media are not allowed to
enter the system;

2. A pump and a cooling system are
usually required to drive the coolant
and reduce its temperature.

Phase Change Material
(PCM) cooling

Low

1. Simple structure, light weight,
low cost, and easy to implement;

2. The PCM absorbs heat to reduce
the temperature, and does not
require additional cooling system.
So, the power consumption
is small;

3. The shape of the PCM is easy to
change, the layout of the system is
simple, and the temperature
uniformity is relatively good;

4. PCMs usually have good
insulation resistivity and can act
as insulating materials to reduce
the risk of short circuits.

1. After phase transition, the volume
of the PCM usually changes
obviously, increasing the possibility
of leakage;

2. Most PCMs have low thermal
conductivity and poor sensitivity to
temperature changes. Adding
materials that can improve the
thermal conductivity may reduce
the insulation resistivity of PCMs;

3. In the case of continuous cycles, the
cooling effect declines. An
additional cooling system is
required to take away the heat
absorbed by the PCM;

4. The heat absorbed by a certain
amount of PCM is limited.
Increasing the PCM volume could
improve the cooling efficiency, but it
will also increase the mass and
power consumption.

Heat pipe cooling Low

1. Excellent thermal conductivity
and wide application range.
Sensitive to temperature changes,
which can effectively control the
temperature in real time;

2. The working of the heat pipe
alone does not require additional
power consumption.

1. The structure of the system is
complex, and is difficult
to manufacture;

2. Higher cost and risk of leakage.
Small heat capacity;

3. An additional cooling system is
usually required to chill the
condenser section of the heat pipe;

4. The contact area with the cells is
small, and additional cooling plates
are usually needed to improve the
temperature uniformity.

Hybrid cooling Middle

1. Different kinds of thermal
management methods are
combined with complementary
advantages and limitations. It is
conducive to improving the
overall performance of
the system;

2. The power consumption of the
system can be reduced to a
certain extent.

1. Compared with the single thermal
management method, the volume
and structure complexity of the
hybrid cooling system increases,
and the manufacture and
maintenance costs
increase accordingly;

2. The control of the hybrid cooling
systems is more difficult. The
coupling between different kinds of
cooling methods and the
adaptability of various technologies
need to be further studied.
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In immersion cooling, the coolant is in direct contact with the cells, eliminating the
thermal resistance caused by the air gaps and thermal conductive materials. So, theoretically
its heat transfer efficiency will be high. Chen et al. [21] compared the thermal management
performance of several different cooling methods by experiment and calculation, including
air cooling, plate cooling, and immersion cooling. It was found that when obtaining
the same cooling effects, the air cooling consumed more energy, while the two liquid
cooling methods consumed less. However, under small mass flow rates, the immersion
cooling worked better in controlling the maximum temperature and maximum temperature
difference of the cells than the plate cooling. Dubey et al. [22] compared the performance
of immersion cooling and plate cooling applied on a 21,700 lithium-ion battery module
by the CFD method. It was found that the performance of the two methods was basically
the same at a lower discharge rate. However, at a higher discharge rate, the maximum
temperature and maximum temperature difference in the battery module with immersion
cooling were both remarkably lower than those in the battery module with plate cooling.
Besides, with the increase in the flow rate of the coolant, the pressure drop in the cooling
plate rose significantly, up to 15–25 times that of the immersion cooling.

However, since the cells are immersed in the coolant directly, the coolant must be
a fluid with insulation resistivity. So, conductive coolants are no longer suitable for the
BTMS with immersion cooling. For example, Sundin et al. [23] investigated the application
of a non-conductive AmpCool AC-100 coolant developed by Engineered Fluids in the
BTMS with immersion cooling. It was found that the average temperature of the cells
was maintained at about 22.5 ◦C during rapid charging and discharging cycles, and the
temperature fluctuation of each monitor was very small. In contrast, when forced air
cooling was used, the average temperature was 28.7 ◦C, and the temperature fluctuation
was much greater. Bhattacharjee et al. [24] designed an immersion cooling system for a
lithium-ion battery stack at the scale of kWs. The system also used the AmpCool AC-
100 coolant developed by Engineered Fluids. Simulation results showed that, compared
with air cooling and plate cooling, the immersion cooling could significantly reduce the
maximum temperature of the battery stack during discharging. Jithin et al. [25] applied
deionized water, mineral oil, and AmpCool AC-100 to the BTMS with immersion cooling.
It was found that the deionized water could control the average temperature rise of the
cells within 5 ◦C under low mass flow rate (0.003 kg/s). Its cooling effect was the best, and
its power consumption was the lowest. The cooling effects of mineral oil and AmpCool
AC-100 were similar, but the power consumption of AmpCool AC-100 was less.

Tian et al. [26] applied hydrofluoroether (HFE-6120) to a BTMS with immersion
cooling, and found that compared with those of air cooling, the maximum temperature,
maximum temperature difference, and temperature standard deviation of the battery mod-
ule with immersion cooling were significantly reduced under the same power consumption.
Wang et al. [27] used a transformer oil with high insulation resistivity as the coolant, and
designed an immersion cooling thermal management system for pouch-type lithium-ion
cells. The effects of the immersion depth and the flow rate on the maximum temperature
and the maximum temperature difference were investigated. It was found that when the
cells were completely immersed in the coolant, the cooling performance was the best. By
increasing the flow rate of the coolant, the cooling performance could be further improved.
Patil et al. [28] immersed the pouch-type lithium-ion cells in a non-conductive coolant,
and designed a BTMS with immersion cooling. It was found that when the coolant was
flowing and tab cooling was assisted, the cells could obtain the lowest temperature rise and
the smallest temperature difference. Meanwhile, the effects of the discharge rate, spacing
between the cells, type and flow rate of the coolant, and inlet and outlet positions on the
thermal management performance were investigated.

Typically, the coolant of the BTMS with immersion is in direct contact with the cells.
However, Luo et al. [29] designed a special sealing structure for the battery module. Water
was injected into the cooling channels as the coolant, which could directly contact the cells
without causing a short circuit. It was found that the maximum temperature of the cells
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discharged at 2C could be controlled below 50 ◦C at the flow rate of 200 mL/min, and
the maximum temperature difference could be controlled within 5 ◦C at the flow rate of
500 mL/min.

Thermal safety design for cells is also essential in BTMSs [30]. The immersion cooling
with the application of the dielectric coolant can effectively inhibit the propagation if the
thermal runaway of a single cell occurs [20]. For example, Wu et al. [31] used silicone oil as
the coolant to design a BTMS based on immersion cooling. The temperatures of the battery
modules with immersion cooling and with tubular liquid cooling were compared through
numerical simulations. It was found that the maximum temperature rise and maximum
temperature difference of the battery module with immersion cooling were significantly
lower than those with tubular liquid cooling, and the immersion cooling could effectively
suppress the spread of thermal runaway.

In summary, immersion cooling has a simpler design structure and lower pressure
drop, and could achieve better performance in BTMSs. With the continuous increase in
consumers’ demands for the power of electric vehicles, as well as the rapid application
of fast charging technology, higher requirements have been surfaced for BTMSs under
high-rate charge and discharge conditions. It is necessary to investigate the performance
and design method of immersion cooling in the BTMS more deeply. However, the current
studies on BTMSs with immersion cooling did not investigate the effects of the viscosity,
specific heat capacity, thermal conductivity, and other material parameters of the coolant
on the thermal management performance of the system, nor did they discuss the pressure
drop of the coolant. To fill the above knowledge gaps, this research designed a BTMS with
immersion cooling based on the pouch-type lithium-ion cells and the coolant of dimethyl
silicone oil. The coolant was in direct contact with the cells and absorbed the heat. The
performance of the BTMS was obtained by a numerical method and compared with that of
the natural cooling method. The effects of the flow rate, viscosity, specific heat capacity, and
thermal conductivity of the coolant on the maximum temperature (MAT) and the maximum
temperature difference (MATD) of the cell, as well as the pressure drop of the coolant,
were further investigated, which could provide references for the design and application of
BTMSs with immersion cooling in the future.

2. Models and Governing Equations

2.1. Battery

The battery used in this research was a pouch-type lithium-ion cell of 24 Ah. The basic
parameters of the cell are shown in Table 2. The shape and dimensions of the cell are shown
in Figure 1.

Table 2. Basic parameters of the cell [32].

Parameters Value

Capacity (Ah) 25
Rated voltage (V) 3.8
Cathode material LiMnxCoyNizO2, LiMn2O4
Anode material graphite

Charging cut-off voltage (V) 4.2
Discharging cut-off voltage (V) 3.0

Width (mm) 166
Height (mm) 205

Thickness (mm) 7.2
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Figure 1. (a) Shape of the cell; (b) dimensions of the cell (mm).

The electric and thermal behaviors of the cell were obtained by the electric–thermal
coupled model. The electric model was the NTGK model in ANSYS/Fluent. This model
has great advantages in the parameter setting and building process, and is widely used in
the performance simulation of lithium-ion batteries [33]. Assuming that the current in the
current collector is distributed on the spanwise plane of the cell, the potential in the current
collector is:

σi
∂2∅i
∂x2 + σi

∂2∅i
∂y2 +

J·→n
δi

= 0 (i = p, n) (1)

where σi is the conductivity of current collector i (S·m−1), ∅i is the potential in current
collector i (V), δi is the thickness of the current collector i (m), and p or n in the subscript
indicates the positive or negative electrode. J is the current density across the separator
(A·m−2), and

→
n is the normal unit vector perpendicular to the current collector.

The boundary condition at the junction of the current collector and the tab in the
positive electrode is:

→
n ·(−σp∇∅p

)
=

Icell
Ltabδp

(2)

where Icell is the current of a single pair of electrodes (A), Ltab is the width of the tab (m),
and δp is the thickness of the current collector in the positive electrode (m).

The boundary condition at the junction of the current collector and the tab in the
negative electrode is:

∅n = 0 (3)

According to the actual situation, other boundary conditions of the electric model are
insulation conditions.

The current density passing through the separator can be calculated by the equiva-
lent resistance:

J =
Uoc −

(
∅p −∅n

)
R

(4)

where R is the internal resistance per unit area in the cell (Ω·m−2), and Uoc is the open-
circuit voltage of the cell (V).

The temperature distribution in the cell is:

ρCp
∂T
∂t

= λin
∂2T
∂X2 + λin

∂2T
∂Y2 + λth

∂2T
∂Z2 + q (5)
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where ρ is the density (kg·m−3), Cp is the specific heat capacity at constant pressure
(J·kg−1·K−1), and T is the thermodynamic temperature (K). λin is the thermal conductivity
parallel with the spanwise plane of the cell (W·m−1·K−1), λth is the thermal conductivity
perpendicular to the spanwise plane of the cell (W·m−1·K−1), and q is the heat production
rate of the cell (W·m−3).

The heat production rate in the Bernardi’s heat production model is expressed as:

q = qrev + qirev + qCC,p + qCC,n (6)

qrev = − J/2
(dPE + dS + dNE)

T
∂Uoc

∂T
(7)

qirev =
J/2

(dPE + dS + dNE)

(
Uoc −∅p +∅n

)
=

J2R/2
(dPE + dS + dNE)

(8)

qCC,i =
σi(∇∅i)

2

dCC,i/2
(9)

where qrev is the reversible heat production rate (W·m−3), qirev is the irreversible heat
production rate (W·m−3), and qCC, i is the ohmic heat production rate of the current collector
(W·m−3). dPE, dS, and dNE are the thicknesses of the positive electrode, separator, and
negative electrode (m).

The heat production at the tab area is originated from the impedance of the tab and
the contact impedance between the tab and the wire:

qtab,i = I2
tab·Rtab,i (10)

Rtab,i = Htab

(
1

σtab,i
+

1
σc,i

)
(11)

where qtab,i is the heat production rate of the tab (W), Itab is the current passing through
the tab (A), Rtab,i is the impedance of the tab (Ω), and Htab is the height of the tab
(m). σtab,i is the conductivity of the tab (S·m−1), σc,i is the converted conductivity of the
contact impedance between the wire and the tab (S·m−1).

The boundary condition of the thermal model is:

Qc = hAc

(
Tw − Tf

)
(12)

where Qc is the convective heat exchange (W), h is the convective heat transfer coefficient
(W·m−2·K−1), Ac is the convective heat transfer area (m2), Tw is the temperature on the
surface of the cell (K), and Tf is the temperature of the fluid (K).

We imported the three-dimensional cell model in Figure 1b into ANSYS and performed
meshing. The result is shown in Figure 2a. The number of grids was 44,536 and the
number of nodes was 57,704. Then, the electric–thermal coupled model of the cell was
built in ANSYS/Fluent. The relevant material parameters are shown in Tables 3–5. The
relationships of the open-circuit potential and internal resistance with the state of charge
(SOC) are referenced from the experiment results in [32].
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Figure 2. (a) Grids of the cell; (b) grids of the model used for calculation; (c) temperature distribution
on the cell at the end of 1.5 C discharge.

Table 3. Material parameters of the cell [32].

Cell Value

Density ρcell (kg·m−3) 2300
Specific heat capacity Cp,cell (J·kg−1·K−1) 1243

Convective heat transfer coefficient hcell (W·m−2·K−1) 3.5
Thermal conductivity λin (W·m−1·K−1) 21
Thermal conductivity λth (W·m−1·K−1) 0.48

Table 4. Material parameters of the current collectors [32].

Current Collector Positive Negative

Thickness δi (μm) 20 14
Electric conductivity σi (S·m−1) 37.8 × 106 59.6 × 106

Table 5. Material parameters of the tabs [32].

Tab Positive Negative

Width Ltab (mm) 50 50
Height Htab (mm) 50 50

Thickness δtab (mm) 0.3 0.3
Density ρtab (kg·m−3) 8700 2700

Specific heat capacity Cp,tab (J·kg−1·K−1) 385 900
Electric conductivity σtab(S·m−1) 59.6 × 106 37.8 × 106

Thermal conductivity λtab (W·m−1·K−1) 401 237
Convective heat transfer coefficient

htab (W·m−2·K−1) 4 4

Converted conductivity σc,tab(S·m−1) 80 × 106 70 × 106

Based on the experiment conditions given in [32], the voltages of the cell at three
discharge rates (0.5 C, 1 C, 1.5 C) were calculated and compared with the experiment
results given in [32], as shown in Figure 3a. It could be seen that the calculated results were
basically consistent with the experiment results. Meanwhile, the temperature distribution
on the cell at the end of 1.5 C discharge was calculated, as shown in Figure 2c. The
temperature gradually decreased from the top to the bottom, and the temperature at the
junction of the positive tab and the cell was the highest. The maximum temperature,
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minimum temperature, and maximum temperature difference were essentially consistent
with the calculation results given in [32]. Due to the different software used (Comsol was
used in [32]), the color distributions on the temperature scales are not completely identical,
so the display styles of the temperature distributions on the cell are slightly different.
As shown in Figure 1b, three temperature monitor points were set at the corresponding
positions of the model. The temperatures of the three points during 1.5 C discharge were
compared with the experiment results provided in [32], as shown in Figure 3b. It can be
seen that the calculated results were in good consistency with the experiment results.

Figure 3. (a) Voltages of the cell during discharge at 0.5 C, 1 C and 1.5 C; (b) temperatures at point 1,
point 8 and point 12 during discharge at 1.5 C.

When an object is placed in static air for natural convection, the variation range
of the convective heat transfer coefficient is usually between 5 and 25. So, we set the
convective heat transfer coefficient hcell to 5, 10, 15, 20 and 25, respectively. The sensitivity
analysis was performed with the maximum temperature and minimum temperature of
the cell as the indexes. The results are shown in Figure 4. With the increase in hcell ,
the maximum temperature and minimum temperature of the cells both demonstrated
significant downward trends. This indicates that the convective heat transfer between the
cell and the air can significantly affect the temperature distribution in the cell. As shown in
Figure 1, the thickness of the pouch cell was small, but its surface area was large.

Figure 4. Sensitivity analysis of convective heat transfer coefficient.
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2.2. Thermal Management System

The structure of the BTMS with immersion cooling is shown in Figure 5. The coolant
is pumped into the battery module, where it passes through the cells and takes the heat
away. The temperature of the coolant rises after it absorbs the heat. Then, the coolant flows
into the heat exchanger and exchanges heat with the cooling system, and the air before it
flows into the battery module again. The coolant circulates in the system and keeps the
cells working under suitable temperature conditions.

Figure 5. Structure of the BTMS with immersion cooling.

The structure of the battery module is shown in Figure 6a. The cells and the coolant
channels were arranged vertically in the battery module, and separated from each other.
The width of each coolant channel was 7.6 mm, and its length and height had the same
dimensions with those of the cell, as shown in Table 6. Compared with the front or back
surface area of the cell, the side surface area of the cell was very small. When designing
the immersion cooling system, the inlets and outlets of the coolant channels are set on
the planes of the side surfaces of the cells. So, the heat transfer between the side surfaces
of the cells and the coolant can be ignored. Only the heat transfer between the front and
back surfaces of the cells and the coolant was considered. Since the coolant was in direct
contact with the cells, and the water–glycol solution commonly used in plate cooling was
electrically conductive, it was necessary to use a non-conductive coolant. Silicone oil has
excellent insulation resistivity, and its resistance and viscosity changes little in a wide
temperature range, so it is often used as a heat carrier. At a suitable flow rate, silicone oil
can provide good cooling effects for the cells [34]. Moreover, silicone oil has good shear
stability. When the vehicle runs on a bumpy road, the impact of the oil on the cells is very
small. So dimethyl silicone oil was selected as the coolant in this research. Its material
parameters are shown in Table 7.
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Figure 6. (a) Structure of the battery module; (b) model used for calculation.

Table 6. Dimensions of the coolant channel.

Dimension Value

Length (mm) 166
Width (mm) 7.2
Height (mm) 205

Table 7. Material parameters of dimethyl silicone oil.

Material Parameter Value

Density ρc (kg·m−3) 968
Viscosity μc (N·s·m−2) 1.452

Specific heat capacity Cp,c (J·kg−1·K−1) 1630
Thermal conductivity λc(W·m−1·K−1) 0.16

In the model, the dimethyl silicone oil was assumed to be an ideal incompressible
fluid, and no phase change occurred during the cooling process. The initial flow rate of
the coolant at the inlet was 1 mm/s. According to the structure and material parameters,
as well as the flow rates involved in the following investigation, the Reynolds numbers
calculated were all less than 2300, so the flow pattern was a laminar flow.

The continuity equation of the coolant is:

∂ρc

∂t
+∇(ρcv) = 0 (13)

The energy conservation equation of the coolant is:

ρc
∂Tc

∂t
+∇·(ρcvTc) = ∇·

(
λc

Cp,c
∇Tc

)
(14)

The momentum conservation equation of the coolant is:

ρc
dv
dt

= −∇P + μc∇2v (15)

where ρc, μc, λc, Cp,c and Tc are the density, viscosity, thermal conductivity, specific heat
capacity and temperature of the coolant, respectively. v and p are the velocity and pressure
of the coolant, respectively.
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The front and the back surfaces of each cell were both in contact with the coolant, that
is, one cell was in contact with two fluid domains. To simplify the model, we took out one
cell in the center of the battery module and the two fluid domains attached to it. We cut each
fluid domain from its middle plane in the spanwise direction, and applied symmetrical
boundary conditions on the middle planes. The final model used for calculation is shown
in Figure 6b. The boundary conditions and initial conditions are listed in Table 8. Since
the heat production rate of the positive tab was higher than that of the negative tab, the
coolant flowed in from the positive tab side of the cell and flowed out from the other side.

Table 8. Boundary conditions and initial conditions.

Name Condition

Inlet flow rate (mm/s) 1
Initial temperature of coolant (◦C) 23

Flow pattern Laminar
Outlet pressure Atmosphere
Wall condition Non-slip

Five different grid numbers were used for the grid independence verification, and
the average grid qualities were all above 0.9. The maximum temperature (MAT) and
minimum temperature (MIT) of the cell (excluding the tabs) at the end of 3 C discharge
were used as indicators. As shown in Figure 7a, when the number of grids increased from
86,488 to 129,868, the MAT and MIT remained basically unchanged. Five different time
steps were used for the time step independence verification. As shown in Figure 7b, when
the time step decreased from 3 s to 1 s, the MAT and MIT remained basically unchanged.
Considering both the amount of computation and the accuracy of results, the grid number
of 86,488 and the time step of 3 s were finally adopted for the subsequent calculations. The
final grids are shown in Figure 2b.

Figure 7. (a) Grid independence verification; (b) time step independence verification.

3. Performance of BTMS with Immersion Cooling

According to whether the coolant experiences phase transition during the convective
heat transfer process [35], immersion cooling can be classified into single-phase immer-
sion cooling and two-phase immersion cooling [20]. In this research, due to the thermal
characteristics of the dimethyl silicone oil, the coolant did not experience phase transition,
so it belongs to single-phase immersion cooling. Compared with two-phase immersion
cooling, single-phase immersion cooling usually has a simpler structure and lower cost.,
The MAT and the maximum temperature difference (MATD) of the cell (excluding the tabs)
with immersion cooling during the 3 C discharging process are shown in Figure 8. The
temperature distribution on the cell at the end of the 3 C discharge is shown in Figure 9.
There are two conditions considered in immersion cooling: stationary immersion cooling
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(the flow rate of the coolant is 0 mm/s), and flowing immersion cooling (the flow rate of the
coolant is 1 mm/s). For comparison, the temperature information on the cell with natural
cooling is also provided in the figures. Natural cooling is to put one single cell in the air,
cooled passively by natural convective heat transfer. The model is the same with the one
in Section 2.1.

Figure 8. (a) MAT of the cell during 3 C discharging; (b) MATD of the cell during 3 C discharging.

Figure 9. Temperature distributions on the cell at the end of 3 C discharge: (a) natural cooling;
(b) immersion cooling at 0 mm/s; (c) immersion cooling at 1 mm/s.

It can be seen from Figure 8a that the MAT of the cell with natural cooling demon-
strated a rapid upward trend during discharging. At the end of discharge, the MAT of the
cell reached 51.8 ◦C, which exceeded the suitable temperature range of lithium-ion batteries.
However, with stationary immersion cooling, the MAT of the cell also demonstrated a rapid
upward trend. At the end of discharge, the MAT reached 53.6 ◦C, which even exceeded that
with natural cooling. This was caused by several reasons. First, the specific heat capacity of
dimethyl silicone oil is relatively small (1630 J·kg−1·k−1), and is much smaller than that
of water (4200 J·kg−1·k−1). So, its heat absorption and storage capability are relatively
weak. Second, the model of the cell with immersion cooling is part of the battery module.
The tight arrangement of the cells and the heat generated by the surrounding cells both
affect the heat dissipation of the cell. Third, the stationary coolant only exchanges heat
with the cell. Other thermal boundary conditions of the coolant are adiabatic. Therefore,

114



Energies 2022, 15, 2554

during the discharging process, the temperature of the coolant increases continuously, and
the heat exchange between the coolant and the cell decreases continuously. Eventually,
the temperature of the cell rises rapidly. However, natural cooling involves only putting
one cell in the air at 23 ◦C. The higher the temperature of the cell, the stronger the heat
exchange between the air and the cell. So, at the end of discharge, the MAT of the cell with
natural cooling is slightly lower than that with stationary immersion cooling. However, if
the cell is put in a tightly packed battery module, the MAT at the end of discharge could be
much higher.

With flowing immersion cooling, the MAT of the cell was significantly lower than
those with natural cooling and stationery immersion cooling during the entire discharging
process. At the end of discharge, the MAT was greatly reduced to 38.9 ◦C, within the
suitable temperature range of lithium-ion batteries. This is because the flowing coolant
can absorb and take the heat away from the cell continuously, thus greatly improving the
cooling effect.

However, as shown in Figure 8b, the MATDs of the cells with stationary immersion
cooling and flowing immersion cooling were both significantly greater than that with
natural cooling during the entire discharging process. At the end of discharge, the MATD
of the cell with stationary immersion cooling reached 11.6 ◦C, and that with flowing
immersion cooling reached 12.6 ◦C. Both of them exceeded the limit of 5 ◦C. The reason is
related to the temperature distribution of the cell. As shown in Figure 9a,b, with natural
cooling and stationary immersion cooling, the MATs both appear at the junction between
the positive tab and the cell. The MITs both appear at the lower part of the cell. Therefore,
the MATDs of the cells were determined by the temperature near the positive tab and the
temperature of the lower part of the cell under these two conditions.

With natural cooling, the temperature near the tab is higher, where the convective heat
exchange between the cell and the air is stronger. So, the increase in the MAT is inhibited.
The temperature of the lower part of the cell is lower, where the convective heat exchange
between the cell and the air is weaker. So, the increase in the MIT is accelerated. The
combined action of the two factors results in a smaller MATD of the cell. With stationary
immersion cooling, the temperature of the coolant close to the junction between the positive
tab and the cell is higher after the coolant absorbs heat, so its cooling capability is weakened,
and the increase in the MAT is accelerated. The temperature of the coolant far from the tab
is lower, so its cooling capability is stronger, and the increase in the MIT is inhibited. The
coolant with higher temperature is in the upper part, and coolant with lower temperature
is in the lower part. It inhibits the convective heat transfer in the coolant, thereby further
increasing the MATD of the cell.

As shown in Figure 9c, with flowing immersion cooling, the MAT appears at the left
side of the cell, and the MIT appears at the right side of the cell. The temperature gradually
increases from the right to the left. This is because the coolant with lower temperature
was in direct contact with the cell at the inlet, so the cooling effect on the cell close to
the inlet was very good. However, in the initial settings, the flow rate of the coolant was
only 1 mm/s. During the flowing process, its temperature gradually increased, and the
convective heat exchange between the coolant and the cell was weaker. So, the closer to
the outlet, the greater the temperature rise of the cell, resulting in the increase in MATD. It
is also noted that the MAT was transferred from the junction of the positive tab and the
cell to the junction of the negative tab and the cell. Although the positive tab has greater
heat production, and is not in direct contact with the coolant, a good cooling effect can
also be achieved through heat conduction since it is closer to the inlet of the coolant. The
negative tab is far away from the inlet, so its temperature is the highest, but still far below
the corresponding temperatures with natural cooling and stationary immersion cooling.

Through the above analysis it can be seen that, compared with natural cooling and
stationary immersion cooling, flowing immersion cooling demonstrates strong temperature
suppression capability. The MAT of the cell can be controlled within 40 ◦C during the 3 C
discharging process. The temperature of the tabs is also much lower. However, due to the
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small flow rate of the coolant, the MATD of the cell cannot be controlled within 5 ◦C, which
needs to be further improved.

4. Effects of Different Parameters on the Performance of Immersion Cooling

The BTMS with immersion cooling has many parameters that could affect its perfor-
mance, such as the flow rate, viscosity, specific heat capacity, and thermal conductivity of
the coolant. By changing these parameters, their effects on the performance of immersion
cooling were investigated, so as to provide references for the design and optimization of the
BTMS. The method was to change one parameter at a time, while keeping the other param-
eters constant: the single variable method. The MAT and MATD of the cell (excluding the
tabs) at the end of 3 C discharge, as well as the pressure drop of the coolant, were used as
indicators. To facilitate analysis, the MIT of the cell was also supplemented as an indicator.

4.1. Flow Rate

The flow rate determines the mass flow of the coolant passing through the cell, which
in turn determines whether it can quickly remove heat from the cell. However, the flow of
the coolant requires power. The lower the flow rate of the coolant, the lower the energy
consumption of the system. In the initial settings, the flow rate of the coolant was 1 mm/s.
To investigate its effect on the performance of immersion cooling, the flow rate was set to
2 mm/s, 4 mm/s, 6 mm/s, 8 mm/s, 10 mm/s, and 12 mm/s, with the other parameters
remaining unchanged. The MAT, MIT, and MATD of the cell at the end of discharge, as
well as the pressure drop of the coolant, are shown in Figure 10.

Figure 10. Relationship between the flow rate of the coolant and the MAT, MIT, and MATD of the
cell, as well as the pressure drop of the coolant.

It can be seen that, with the increase in the flow rate, the MAT of the cell decreased
from 38.9 ◦C to 29.9 ◦C, a reduction of 9.0 ◦C. The MATD decreased from 12.5 ◦C to 4.3 ◦C,
a reduction of 8.2 ◦C. Both of them demonstrate significant downward trends. This is
because, as the flow rate increases, the coolant can take more and more heat away from
the cell. However, as shown in Figure 9c, when the flow rate is 1 mm/s, the temperature
of the cell near the inlet of the coolant is already low, but the temperature of the cell near
the outlet of the coolant is much higher. When the flow rate increases, the convective heat
exchange between the coolant and the cell near the inlet of the coolant and the cell near
the outlet of the coolant will both increases. However, the increase in the latter is greater
than that of the former. So, the decline in the MAT will be much greater than that of the
MIT, which reduces the MATD of the cell. When the flow rate reaches 8 mm/s, the MATD
decreases to 5 ◦C.
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It can also be seen that the flow rate influences the pressure drop significantly. The
higher the flow rate, the greater the pressure drop, and they are in direct proportion. This
is because the flow pattern of the coolant is laminar, and the pressure drop is mainly
composed of the frictional pressure drop in the channel:

ΔP = f
l
D

ρcv2

2
(16)

where f = 64
Re , after substitution:

ΔP =
32lvμc

D2 (17)

where v is the flow rate of the coolant, μc is the dynamic viscosity of the coolant, l is the
length of the channel, and D is the hydraulic diameter of the channel.

The pressure drop of the coolant determines the pumping power of the circulating
system. The pumping power required by the coolant in the flow channel is:

P = ΔP·A·v (18)

where A is the cross-sectional area of the flow channel. Therefore, the pumping power
increases with the pressure drop. In practical applications, there is a trade-off between
cooling performance and pumping cost.

Therefore, by increasing the flow rate of the coolant, the MAT and MATD of the cell
can be effectively reduced. However, the pump providing the power will consume more
energy. The flow rate should be adjusted in real time according to the actual needs of
the BTMS.

4.2. Viscosity

The viscosity of the coolant is one of the material properties. The viscosity of water is
about 0.001 N·s·m−2, while that of high-viscosity silicone oil can reach tens of thousands
of N·s·m−2. In the initial settings, the coolant is dimethyl silicone oil, and its viscosity
is 1.456 N·s·m−2. To investigate its effect on the performance of immersion cooling, the
viscosity was set to 0.1 N·s·m−2, 0.8 N·s·m−2, 1.5 N·s·m−2, 2.2 N·s·m−2, and 2.9 N·s·m−2,
with the other parameters remaining unchanged. The MAT, MIT, and MATD of the cell at
the end of discharge, as well as the pressure drop of the coolant, are shown in Figure 11.

Figure 11. Relationship between the viscosity of the coolant and the MAT, MIT, MATD of the cell, as
well as the pressure drop of the coolant.

It can be seen that the viscosity of the coolant basically does not influence the MAT and
MATD of the cell. The MAT is maintained at 38.9 ◦C stably, and the MATD is maintained
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at 12.5 ◦C stably. After calculating the Reynolds numbers of the coolant with different
viscosities, it was found that they were all below 2100, so the flow patterns were all laminar.
Therefore, the change in the viscosity has little effect on the flowing process of the coolant,
and the convective heat transfer between the coolant and cell basically does not change.

However, the viscosity influences the pressure drop significantly. The greater the
viscosity, the greater the pressure drop—in direct proportion—which is consistent with
Equation (17). For the BTMS with immersion cooling in this research, shown in Figure 5,
the coolant needs to circulate in the system and exchange heat in the heat exchanger.
Higher viscosity is not conducive to the flow of coolant, and will also increase the energy
consumption of the system. Therefore, the coolant with lower viscosity is better.

4.3. Specific Heat Capacity

Specific heat capacity refers to the heat absorbed or released by a substance of unit
mass when it rises or falls to unit temperature. The specific heat capacity of the coolant
is also one of the material properties. At room temperature, the specific heat capacity of
water is about 4200 J·kg−1·k−1. While in the initial settings, the specific heat capacity of
dimethyl silicone oil is 1630 J·kg−1·k−1. To investigate its effect on the performance of
immersion cooling, the specific heat capacity was set to 1700 J·kg−1·k−1, 2300 J·kg−1·k−1,
2900 J·kg−1·k−1, 3500 J·kg−1·k−1, 4100 J·kg−1·k−1, with the other parameters remaining
unchanged. The MAT, MIT, MATD of the cell at the end of discharge, as well as the pressure
drop of the coolant are shown in Figure 12.

Figure 12. Relationship between the specific heat capacity of the coolant and the MAT, MIT, MATD
of the cell, as well as the pressure drop of the coolant.

It can be seen that with the increase in the specific heat capacity of the coolant, both
the MAT and the MATD of the cell demonstrate downward trends. The MAT of the cell
decreases from 38.6 ◦C to 33.8 ◦C, a reduction of 4.8 ◦C. The MATD decreased from 12.2 ◦C
to 7.8 ◦C, a reduction of 4.4 ◦C. However, the MIT decreased from 26.3 ◦C to 25.9 ◦C, a
reduction of only 0.4 ◦C. The reason for this phenomenon is that specific heat capacity
reflects the heat capacity per unit mass of the coolant. In the convective heat transfer
process between the coolant and the cell, the greater its value is, the more heat can be
transferred through convection. So, the convective heat exchange is stronger, significantly
reducing the temperature of the cell. However, since the temperature of the cell near the
inlet of the coolant is already low, the change in the specific heat capacity has a greater
effect on the MAT than on the MIT. So, the MATD also decreases with the MAT.

It can also be seen that the pressure drop of the coolant basically does not change with
the specific heat capacity. This is because the specific heat capacity is a thermal parameter
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of the material. It mainly affects the heat exchange between the coolant and the cell, not the
flow pattern of the coolant.

Therefore, when designing the BTMS with immersion cooling, the coolant with greater
specific heat capacity can effectively enhance its performance. Adding phase change
material (PCM) into the coolant is an effective way to increase its specific heat capacity,
such as the PCM emulsion and encapsuled PCM [9,36].

4.4. Thermal Conductivity

Thermal conductivity refers to the heat transmitted directly by the material of unit
section and unit length under unit temperature difference. The thermal conductivity of
the coolant can directly affect the convective heat transfer between the coolant and cell. At
room temperature, the thermal conductivity of water is 0.6009 W·m−1·k−1, and that of the
nanofluid prepared by Huang et al. [37] increased by 4.3% compared with water. In the
initial settings, the thermal conductivity of dimethyl silicone oil was 0.16 W·m−1·k−1. To
investigate its effect on the performance of immersion cooling, the thermal conductivity
was set to 0.1 W·m−1·k−1, 0.2 W·m−1·k−1, 0.3 W·m−1·k−1, 0.4 W·m−1·k−1, 0.5 W·m−1·k−1,
0.6 W·m−1·k−1, with the other parameters remaining unchanged. The MAT, MIT, and
MATD of the cell at the end of discharge, as well as the pressure drop of the coolant, are
shown in Figure 13.

Figure 13. Relationship between the thermal conductivity of the coolant and the MAT, MIT, and
MATD of the cell, as well as the pressure drop of the coolant.

It can be seen that, with the increase in the thermal conductivity of the coolant, both
the MAT and the MIT of the cell demonstrate downward trends. The MAT decreased from
40.4 ◦C to 37.0 ◦C, a reduction of 3.4 ◦C. The MIT decreased from 27.6 ◦C to 24.1 ◦C, a
reduction of 3.5 ◦C. When the fluid with uniform temperature passes through a solid wall
with another temperature, a fluid layer with a great temperature change will be formed near
the solid wall, which is called the thermal boundary layer. It can be regarded as a fluid layer
with a temperature gradient, which is also the main area where heat exchange occurs. In
the thermal boundary layer of laminar flow, the heat transfer in the direction perpendicular
to the wall mainly depends on thermal conduction. Therefore, the thermal conductivity
plays an important role in the convection heat exchange between the coolant and the cell.
Increasing thermal conductivity can better promote the convective heat exchange between
them, thereby enhancing the cooling effect. Since the convective heat exchange between the
coolant and the entire cell is enhanced, the MAT and the MIT are reduced synchronously,
resulting in insignificant changes in the MATD of the cell.

It was also noticed that, in the previous analysis, the MIT of the cell was always
around 26 ◦C. However, after increasing the thermal conductivity, the MIT demonstrated
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a significant downward trend. The reason is that the convective heat exchange between
the coolant and the cell at the inlet determines the MIT. In the initial setting, the smaller
thermal conductivity of dimethyl silicone oil functioned as a bottleneck, restricting the
convective heat exchange between the coolant and the cell at the inlet.

It can also be seen that the pressure drop of the coolant basically did not change
with thermal conductivity. This is also because the thermal conductivity was a thermal
parameter of the material. It mainly affects the heat exchange between the coolant and the
cell, not the flow pattern of the coolant.

Therefore, when designing the BTMS with immersion cooling, the coolant with greater
thermal conductivity can effectively enhance its performance. Adding thermal conductive
micro-particles into the coolant is an effective way to improve its thermal conductivity [13,38].

5. Conclusions

In this research, a BTMS with immersion cooling was designed based on the electric–
thermal coupled model of lithium-ion battery and the coolant of dimethyl silicone oil. The
performance of the BTMS with immersion cooling was obtained through numerical calcu-
lations and compared with that with natural cooling. The effects of different parameters
on the performance of immersion cooling were investigated. The following conclusions
were obtained:

1. Compared with natural cooling and stationary immersion cooling, flowing immersion
cooling can significantly reduce the MAT of the cell and the temperature of the tabs
during the 3 C discharging process, even at a flow rate of 1 mm/s. However, both the
stationary immersion cooling and the flowing immersion cooling at 1 mm/s increase
the MATD of the cell significantly;

2. Within a certain range, the MAT and MATD of the cell can be greatly reduced by
increasing the flow rate and specific heat capacity of the coolant. Increasing the
thermal conductivity of the coolant can reduce the MAT and MIT of the cell, but has
little effect on the MATD. The viscosity of the coolant basically does not affect the
temperature of the cell;

3. The pressure drop of the coolant varies with the flow rate and viscosity of the coolant
proportionally. Lower flow rate and smaller viscosity can reduce the energy consump-
tion of the system. The specific heat capacity and thermal conductivity of the coolant
basically do not affect the pressure drop;

4. Compared with other BTMS technologies, the structure design of the BTMS with
immersion cooling is simple and compact. Its pressure drop is lower, and it can
achieve a better cooling effect with smaller power consumption. The temperature
uniformity can also be improved through the adjustments of design and working
parameters. So, the BTMS with immersion cooling has good application prospects in
electric vehicles.
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Abstract: In this paper, a Luenberger observer-based microgrid control strategy is proposed to
enhance the power quality of microgrids, when the grid loads are mixed and strongly non-linear.
To improve performance under this condition, a Luenberger observer is designed for three phase
power grids. On the basis of the observer, the components of different frequencies and sequences
of voltages and currents are obtained accurately. The virtual impedance of different frequencies
and sequences is designed, which makes the equivalent line impedance meet the power-sharing
condition, reducing the fundamental negative sequence voltages and harmonic voltages. The active
power droop equation, meanwhile, is proposed, where the bus voltage is modified. The value range
of virtual impedance is discussed in the complex frequency domain. The proposed control strategy
does not require any communication lines, so the hardware structure is simplified. The simulations
and experiments are provided to verify the effectiveness of the proposed method.

Keywords: low-voltage microgrid; droop control; harmonic power-sharing; virtual impedance;
Luenberger observer; power quality

1. Introduction

With the impact of the energy crisis and concerns about carbon emissions, new energy
power generations have developed rapidly [1,2]. The microgrid is composed of loads,
distributed generators (DG), energy storage equipment, power electronic devices, measure-
ments, monitoring and protection devices. It has been built and put into the application in
islands, remote areas, commercial enterprises, campuses, and industrial power [3–5]. It can
be connected to the grid or operated on an island. The power distribution of the distributed
power sources of the microgrid under island operation is particularly important, and be-
cause there is no frequency and voltage support of the large grid, its electricity quality has
many problems [6,7].

Nowadays, droop control has been widely employed in microgrid inverter control [8].
Because the line impedance is difficult to meet the power-sharing condition, the output
power distribution of traditional droop control is disproportion [9,10]. Some scholars
introduce virtual impedance technology into droop control and conduct a lot of research on
DG power-sharing [11–22]. An intermediate instantaneous droop control loop is adopted
to fix the output impedance in [11], hence, achieving excellent power balance when sharing
linear or non-linear loads. A novel virtual impedance implementation method in terms of a
second-order general-integrator (SOGI) algorithm is proposed for parallel inverter systems
without communication signals in [12]. For the sake of achieving accurate power-sharing
and improving voltage quality without the impact of hardware parameter variations, a
novel voltage stabilization and power-sharing control method is studied in [13], which is
on the basis of the virtual complex impedance. Paper [14] considers the impact of current
harmonics in islanded and grid-connected microgrids. The virtual impedance is applied
to the equal distribution of the harmonic power of the island microgrid and improved
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the output current when connected to the grid. An adaptive virtual impedance control
method is proposed based on the injection of an extra small AC signal (SACS) in the output
voltage of each inverter in [15], which achieves power-sharing in a steady-state. The virtual
impedance proposed in [16] is modified by the feed-forward terms of DG line current
and the point of common coupling (PCC) voltage at the fundamental frequency and har-
monic frequency respectively, and the communication system is introduced simultaneously.
In [17], a control strategy that does not require recognition of line parameters and the
employment of conventional droop is proposed. Nevertheless, this strategy still requires
communication between DG and the PCC. Paper [18] proposes an enhanced virtual har-
monic impedance control scheme to compensate for the PCC voltage harmonics without
harmonic power-sharing error for islanded microgrids. Whereas it is aimed at single-phase
systems and requires a central controller and its communication with the DG. In [19], an
adaptive virtual impedance control method is applied to DG units in islanded microgrids.
However, this control strategy still requires the central controller and its communication
with the DG. Paper [20] introduces a kind of harmonic droop control to realize harmonic
power-sharing. In [21], the paper proposes an adaptive Virtual Synchronous Generator
(VSG) control method based on virtual impedance. The virtual resistance is adaptively
designed according to the operating point of the microgrid. However, the control perfor-
mance under mixed load is not considered. Paper [22] adopts a virtual impedance tuning
method based on a successive approximation to accurately compensate for the mismatch
among line impedances. To realize this strategy, a common triggering signal from the
microgrid central controller is indispensable to start the internal time sequence of each DG
unit. [16,22] requires a communication system, which increases the complexity and cost of
the system.

This paper proposes a control strategy for island microgrid under mixed load, which
is different from other methods as follows. Firstly, the mathematical model of three-phase
current is established, the Luenberger observer of three-phase current is designed and
its stability is proved. Based on the observer configuration of virtual impedances of
different frequencies and sequences, the inverter output power is equally divided and the
unbalanced voltage and harmonic voltage of the PCC are reduced. Secondly, the value
range of the virtual impedance is discussed. At the h-order frequency, with harmonic
voltage as input and harmonic current as output, the root locus of the virtual resistance
is obtained. Analyzing the root locus, it is concluded that the critical value of the virtual
resistance should be its corresponding line resistance value. Finally, the active power
droop control with voltage compensation is employed to increase the PCC voltage. The
effectiveness of the control strategy is verified under different load conditions in both
simulation and experiment.

The paper is arranged as below. In Section 2, they are introduced, which are the
structure of the system and analyzed the employment of virtual impedance to achieve
power-sharing and improve power quality. In Section 3, it is established that the three-
phase current mathematical model, its Luenberger observer, and the stability are derived.
In Section 4, the control strategy structure is discussed. The value range of the harmonic
virtual impedance is analyzed and the droop control with voltage compensation is deducted.
The simulation and experiment of two inverters without communication in parallel are
performed in Sections 5 and 6, respectively, and conclusions are given in Section 7.

2. Power Distribution and Electricity Quality Analysis

Figure 1 shows a simplified diagram of an islanded microgrid, where n DG units are
interfaced to the PCC through different DG feeders. Each DG unit consists of a DC source,
an inverter, and an LC filter. r is the equivalent resistance of the filter inductor. Zli is the
line impedance from DGi to PCC. Pi + jQi is the power transferred from DGi to PCC. The
microgrid also includes several unbalanced and nonlinear loads placed at the PCC.
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Figure 1. Configuration of the islanded microgrid.

2.1. Power Sharing

Unbalanced loads will produce negative sequence currents, and nonlinear loads
produce harmonic currents. The voltage generated by these current components on the
equivalent line impedance causes the system voltage to be unbalanced and the harmonic
content is too large, and at the same time affects the power-sharing performance of the
parallel inverters.

Using virtual impedance to reconstruct the equivalent line impedance at different
frequencies and sequences can improve the power-sharing accuracy and PCC power
quality. The equivalent circuits under fundamental positive sequence, negative sequence
and h-order harmonics are shown in Figure 2.

Figure 2. Equivalent circuits of a microgrid at different frequencies and sequences: (a) Equivalent
circuit at fundamental positive sequence; (b) Equivalent circuit at fundamental negative sequence;
(c) Equivalent circuit at harmonic frequencies.

The superscripts 1, n, and h in Figure 2 represent the variables under the fundamental
positive sequence, fundamental negative sequence, and h-order harmonic network, respec-
tively. Zvi and Zli are virtual impedance and line impedance, respectively. Edroopi is the
given voltage for traditional active droop control. Io1, Ion and Ioh are fundamental positive
sequence components, fundamental negative sequence components and h-order harmonic
components of inverter output current respectively. Moreover, the load is much larger
than the line impedance, where the negative sequence current Ĩn

load flowing through the
balanced load under the negative sequence network and the harmonic current Ĩh

load flowing
through the balanced load under the h-order harmonic network can be ignored.
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Parallel inverters without communication usually use resistive droop control as follows{
Ei = E∗ − kpiPi, kpi > 0
fi = f ∗ + kqiQi, kqi > 0

(1)

where, E∗ and f ∗ are the voltage amplitude and frequency at no-load; Pi, Qi are the active
power and reactive power output by the inverter, Vi, fi are the voltage amplitude and
frequency in the corresponding state; kpi, kqi are the droop coefficients of active and reactive,
respectively.

The power-sharing of parallel inverters needs to satisfy the following relationship

Zl1
Zl2

=
kp1

kp2
(2)

To achieve power-sharing, the setting of virtual impedance should satisfy⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z1
v1+Z1

l1
Z1

v2+Z1
l2
=

kp1
kp2

Zn
v1+Zn

l1
Zn

v2+Zn
l2
=

kp1
kp2

Zh
v1+Zh

l1
Zh

v2+Zh
l2
=

kp1
kp2

(3)

2.2. PCC Voltage Quality Analysis

According to Figure 2a, it can be seen that the PCC fundamental positive sequence
voltage is calculated as

V1
PCC = Edroopi −

(
Z1

v1 + Z1
l1

)
I1
o1 (4)

It can be known from Equation (4) that when the circuit reaches a steady-state, the
PCC voltage is lower than the reference voltage. This is mainly because a part of the voltage
drop occurs on the equivalent line impedance, which causes the PCC voltage amplitude to
drop. The greater the output current, the greater the voltage drop.

According to Figure 2b,c, the PCC fundamental negative sequence voltage and the
h-order harmonic voltage are {

Vn
PCC =

(
Zn

vi + Zn
li
)

In
oi

Vh
PCC = (Zh

vi + Zh
li)Ih

oi

(5)

According to Equation (5), to reduce the fundamental negative sequence voltage and
harmonic voltage of PCC, the virtual impedances should take a negative value.

According to the IEEE 1459-2010 standard [23], the DG harmonic power Hh
i is calcu-

lated as
Hh

i =
3
2

E0 Ih
i (6)

where E0 is the amplitude of the fundamental positive sequence voltage. Ih
i is the amplitude

of the harmonic current.
The three-phase voltage unbalance of PCC is calculated as

εUVF =
max

[∣∣Va − VPavg
∣∣, ∣∣Vb − VPavg

∣∣, ∣∣Vc − VPavg
∣∣]

VPavg
× 100% (7)

where Va, Vb and Vc are the effective value of phase voltage, and Vpavg is the average value
of phase voltage.
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3. Luenberger Observer for Three-Phase Power Grid

The calculation of the virtual impedance voltage at different frequencies and sequences
requires the corresponding inverter output current components. For this reason, a Luen-
berger observer for the three phase grid current is designed in this paper.

3.1. Three Phase Grid Current Model

The 3P3W system does not contain zero sequence components. The grid current can
be divided into the positive and negative sequence components of each harmonic [24],
namely

iabc =

⎡⎣ ia
ib
ic

⎤⎦ =
m

∑
h=1

(ih
abc_p + ih

abc_n) (8)

where the subscripts p and n represent positive and negative sequence components respec-
tively.

The positive sequence component ih
abc_p and the negative sequence component ih

abc_n
of the current in the abc coordinate system are

ih
abc_p = Ih

p

⎡⎢⎢⎢⎢⎢⎣
cos
(

hωt + ϕh
p

)
cos
(

hωt − 2π
3 + ϕh

p

)
cos
(

hωt + 2π
3 + ϕh

p

)

⎤⎥⎥⎥⎥⎥⎦; ih
abc_n = Ih

n

⎡⎢⎢⎢⎢⎢⎣
cos
(

hωt + ϕh
n

)
cos
(

hωt + 2π
3 + ϕh

n

)
cos
(

hωt − 2π
3 + ϕh

n

)

⎤⎥⎥⎥⎥⎥⎦
where, Ih

p and Ih
n are the amplitudes of h-order harmonic positive and negative sequence

current respectively; ϕh
p and ϕh

n are the initial phase angles of positive and negative sequence
current, respectively. ω is the grid current angular frequency.

After Clarke transformation, the grid current in the αβ coordinate system can be
obtained as

iαβ =

[
iα

iβ

]
=

⎡⎢⎣ ∑m
h=1

(
ih
α_p + ih

α_n

)
∑m

h=1

(
ih
β_p + ih

β_n

)
⎤⎥⎦ (9)

where, ih
α_p and ih

β_p are the positive sequence currents in the αβ coordinate system; ih
α_n

and ih
β_n are the negative sequence currents in the αβ coordinate system.
According to (9), the positive sequence current and negative sequence current in the

coordinate system αβ are respectively

ih
α_p = Ih

p cos
(

hωt + ϕh
p

)
(10)

ih
α_n = Ih

n cos
(

hωt + ϕh
n

)
(11)

ih
β_p = Ih

p sin
(

hωt + ϕh
p

)
(12)

ih
β_n = −Ih

n sin
(

hωt + ϕh
n

)
(13)

From Equations (9)–(11), a dynamic equation from the fundamental wave to the
m-order harmonics can be established, and the current iα and its derivative satisfy{ .

xα = Axα

yα = iα = Cxα
(14)

127



Energies 2022, 15, 3655

where,

xα =

⎡⎢⎢⎢⎢⎢⎣
xα,1
xα,2

...
xα,2m−1

xα,2m

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I1
p cos(ωt + ϕ1

p) + I1
n cos

(
ωt + ϕ1

n
)

−I1
p sin(ωt + ϕ1

p)− I1
n sin

(
ωt + ϕ1

n
)

...
Im
p cos(mωt + ϕm

p ) + Im
n cos(mωt + ϕm

n )

−Im
p sin(mωt + ϕm

p )− Im
n sin(mωt + ϕm

n )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
;

A =

⎡⎢⎢⎢⎢⎢⎣
0 ω · · · 0 0

−ω 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 mω
0 0 · · · −mω 0

⎤⎥⎥⎥⎥⎥⎦
2m×2m

C =
[

1 0 1 0 · · · 1 0
]

1×2m

For system (14), there are

rank
[

C CA · · · CA2m−1 ]T
= 2m (15)

According to (15), the system (14) is observable.
Similarly, according to (9), (12) and (13), the current iβ and its derivative satisfy the

dynamic equation { .
xβ = Axβ

yβ = iβ = Cxβ
(16)

where,

xβ =

⎡⎢⎢⎢⎢⎢⎣
xβ,1
xβ,2

...
xβ,2m−1

xβ,2m

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I1
p sin(ωt + ϕ1

p)− I1
n sin

(
ωt + ϕ1

n
)

I1
p cos(ωt + ϕ1

p)− I1
n cos

(
ωt + ϕ1

n
)

...
Im
p sin(mωt + ϕm

p )− Im
n sin(mωt + ϕm

n )

Im
p cos(mωt + ϕm

p )− Im
n cos(mωt + ϕm

n )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The system (16) is also observable.

3.2. Luenberger Observer of Three Phase Grid Current and Its Stability Analysis

The Luenberger observer for system (14) is as follows{ .
x̂α = Ax̂α + G(yα − ŷα)
ŷα = Cx̂α

(17)

where the feedback coefficient G =
[

g1 g2 · · · g2m
]T , “ˆ” means the estimated value

of the variable.
Then the h-order harmonic current is estimated as⎧⎨⎩ îh

α_p =
x̂α,2h−1+x̂β,2h

2 , îh
α_n =

x̂α,2h−1−x̂β,2h
2

îh
β_p =

−x̂α,2h+x̂β,2h−1
2 , îh

β_n =
x̂α,2h+x̂β,2h−1

2

(18)

The 5th and 7th harmonic content in the system is large enough to total current.
The designed observer only estimates the fundamental wave, the 5th harmonic and the
7th harmonic. The following stability analysis is performed only for three-phase current
Luenberger observers with 5th and 7th harmonics.
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In Equation (17), replacing ŷα in the first equation with the second equation, the
following equation can be obtained

.
x̂α = Ax̂α + G(yα − Cx̂α) (19)

where,

xα =

⎡⎢⎢⎢⎢⎢⎢⎣

xα,1
xα,2
xα,3
xα,4
xα,5
xα,6

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I+1 cos
(
ωt + ϕ+

1
)
+ I−1 cos

(
ωt + ϕ−

1
)

−I+1 sin
(
ωt + ϕ+

1
)− I−1 sin

(
ωt + ϕ−

1
)

I+5 cos
(
5ωt + ϕ+

5
)
+ I−5 cos

(
5ωt + ϕ−

5
)

−I+5 sin
(
5ωt + ϕ+

5
)− I−5 sin

(
5ωt + ϕ−

5
)

I+7 cos
(
7ωt + ϕ+

7
)
+ I−7 cos

(
7ωt + ϕ−

7
)

−I+7 sin
(
7ωt + ϕ+

7
)− I−7 sin

(
7ωt + ϕ−

7
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 ω 0 0 0 0
−ω 0 0 0 0 0

0 0 0 5ω 0 0
0 0 −5ω 0 0 0
0 0 0 0 0 7ω
0 0 0 0 −7ω 0

⎤⎥⎥⎥⎥⎥⎥⎦
G =

[
g1 g2 · · · g6

]T

C =
[

1 0 1 0 1 0
]

To simplify the analysis, each element in the feedback matrix G is taken as g. Equation (19)
is discretized and simplified to

x̂α(k + 1) = Aex̂α(k) + GTyα(k) (20)

where T is the sampling period, Ae is given in the Appendix A.
The dynamic response of the Luenberger state observer depends on the eigenvalues

of the state equation coefficient matrix Ae. When the eigenvalues of Ae are all distributed
within the unit circle of the Z domain, the discrete Luenberger disturbance observer is
stable.

Let ω = 314, T = 1 × 10−5s. When the feedback coefficient g increases from small,
the pole change of the coefficient matrix Ae is shown in Figure 3. It can be concluded from
Figure 3 that when 46 < g < 67,127, the modulus value of all eigenvalues of the coefficient
matrix Ae is less than 1, so the observer is stable; when g > 67,127 or g < 46, there is one
eigenvalue whose modulus value is greater than 1, so the observer is unstable.

Figure 3. Pole distribution diagram of Ae when g changes.
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4. Proposed Control Strategy

4.1. Basic Idea

The overall control structure of the inverter is shown in Figure 4. voabc and ioabc are
the output voltage and current of DGi respectively. iLabc is the filter inductor current. ωre f
and Vre f are the reference values of the frequency and voltage amplitude of the improved
droop control output respectively.

Figure 4. Control system structure block diagram.

The positive fundamental sequence component of the current is extracted by the
three phase grid Luenberger observer designed in the previous section. The apparent
power S calculated from the positive sequence component of the fundamental wave of the
output current and the no-load voltage E∗ is fed back to the active droop control, which
can reduce the output current difference of the inverter. The voltage controller Gv(s) is
a parallel connection of PI and quasi-proportional resonance controllers, which realizes
the no steady-state error control of fundamental positive sequence, fundamental negative
sequence and harmonics. In this paper, the virtual impedance feeds back the currents of
different frequencies and sequences, and configures each virtual impedance independently,
which not only satisfies the power-sharing condition, but also reduces the equivalent
fundamental negative sequence impedance and harmonic impedance.

4.2. Analysis of Virtual Impedance Value Range

The voltage and current double closed-loop control with h-order virtual harmonic
impedance are shown in Figure 5. iL f , iC f and io are the filter inductor current, filter
capacitor current and inverter output current, respectively. vo is the inverter output voltage.

Figure 5. Voltage and current double closed-loop control with h-order virtual harmonic impedance.
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In Figure 5, Gi is the proportional controller, Gv(s) is the parallel voltage controller of
PI and QPR, which is expressed as

Gv(s) =
(

kvp +
kvi
s

)
+

2Kr1ωcs

s2 + 2ωcs + (2ω0)
2 +

2Kr2ωcs

s2 + 2ωcs + (6ω0)
2 (21)

where, kvp and kvi are the proportional coefficients and integral coefficients of the PI con-
troller, respectively; Kr1 and Kr2 are the gain of the QPR controller, ωc is the shear frequency,
and ω0 is the fundamental frequency.

The output voltage of the inverter can be obtained from Figure 5 as

vo(s) = Gs(s)
[
vre f (s) + Zh

v(s)i
h
o (s)

]
− Zo(s)io(s) (22)

where,

Gs(s) =
Gv(s)Gi(s)

1 + sCf (sL f + r) + Gv(s)Gi(s) + sCf Gi(s)

Zo(s) =
sL f + r + Gi(s)

1 + sCf (sL f + r) + Gv(s)Gi(s) + sCf Gi(s)

The equivalent harmonic impedance from the inverter to the PCC can be described as

Zh∗(s) =
[

Gs(s)Zh
v(s) + Zo(s)

]
+ Rl + sLl (23)

where, Zh
v(s) = (−Rh

v − sLh
v).

To reduce power coupling, there is Lh
v1 = L1. DG1 and the line impedance can be

equivalent to impedance Zh∗
1 (s) under the h-order harmonic. With PCC harmonic voltage

Eh(s) as input and Ih
o1(s) as output, 1/Zh∗

1 (s) is the closed-loop transfer function of the
system. Let kvp = 0.8, kvi = 20, kip = 0.6, ω0 = 314, ωc = 6.28, Kr1 = 5, Kr2 = 30. The filter
parameters are shown in Table 1. The root locus of the system gain Rh

v1 can be obtained by
substituting the parameters as shown in Figure 6. The root locus equation has been given
in the Appendix A.

Figure 6. Root locus of system.
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According to Figure 6, when the system gain Rh
v1 is greater than the line resistance

Rl1 = 1 Ω, there is a pole in the right half-plane, and the system is unstable. Similarly, the
critical value of other virtual resistors in the parallel system should be the corresponding
line resistance. To sum up, for the sake of making the system stable, the value of virtual
negative resistance should be less than the value of line resistance as far as possible, and
the value of virtual inductance should ensure the resistance of the whole system.

4.3. Droop Control with Voltage Compensation

According to Equation (4), it can be known that the PCC voltage is lower than the
reference voltage, so this section compensates for the PCC voltage.

According to Figure 7, the output reference voltage amplitude of the active droop
equation is

Edroop = E∗ − kpiSi (24)

Figure 7. Improved active droop control block diagram.

The output voltage amplitude reference value is

Vre f = Vdroop + Gc(s)
[

Edroop − V1
oi + I1

oi|Zl |
]

(25)

where V1
oi and I1

oi are the fundamental amplitudes of the inverter output voltage and current,
|Zl | is the line impedance modulus, and Gc(s) adopt proportional-integral controller (Gc(s)
= kcp + kci/s).

When the system reaches a steady-state, there are

VPCC = V1
oi − I1

oi|Zl | = Edroop (26)

Equation (26) shows that the PCC voltage is equal to the output reference voltage of
the traditional active droop controller in the steady-state.

5. Simulation Results

To verify the effectiveness of the proposed control strategy, this paper builds a sim-
ulation model based on Matlab/Simulink. In the model, two voltage source three-phase
inverters are operated in parallel in islanded mode. The droop control parameters of the
two inverters have the same value, and the impedance of the line connected to the PCC
in parallel is not equal. The inverter output voltage is a sine wave with a frequency of
50 Hz and a peak value of 311 V. The three phase uncontrolled rectifier module is used as a
non-linear load. The low-voltage microgrid line parameters are shown in Table 1.

The simulation parameters of the two control strategies are shown in Tables 2 and 3,
respectively. The common load of PCC connections is shown in Table 4. The simulation
results are shown in Figures 7 and 8.
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Figure 8. Traditional virtual impedance droop control: (a) power-sharing performance; (b) PCC
three-phase voltage unbalance εUVF; (c) PCC voltage and A-phase voltage FFT analysis in stage 3;
(d) PCC voltage and A-phase voltage FFT analysis in stage 4.
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Figures 8a and 9a show the power-sharing performance of comparison, which are
the fundamental positive sequence active power, fundamental positive sequence reactive
power, fundamental negative sequence power, 5th harmonic power and 7th harmonic
power from top to bottom. In stage 1 and stage 2, both strategies achieve power-sharing.
When the nonlinear load 3 is connected at 3 s, the harmonic power of the two DGs is not
equal in tradition, but in the proposed strategy. It can be seen that in the proposed control
strategy, the virtual impedance is used to compensate for the harmonic impedance, so that
the harmonic power can also be equally divided.

Figure 9. The proposed control strategy: (a) power-sharing performance; (b) PCC three-phase voltage
unbalance εUVF; (c) PCC voltage and A-phase voltage FFT analysis in stage 3; (d) PCC voltage and
A-phase voltage FFT analysis in stage 4.

Figures 8b and 9b shows the three phase voltage unbalance at each stage. In stages
2 and 3, there is an unbalanced load 2 connected to the PCC, the three phase voltage
unbalance is 3.7% at stage 2 in tradition, which is 0.4% in the proposed. Due to the
reduction of the fundamental negative sequence impedance and the use of parallel voltage
controllers of PI and QPR, the three phase voltage unbalance of the PCC is greatly reduced.
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Figures 8c,d and 9c,d show the PCC voltage waveforms and phase A voltage FFT
analysis of stages 3 and 4. The PCC voltage is distorted due to the nonlinear load 3 being
connected to the PCC in stages 3 and 4. In traditional virtual impedance droop control, the
5th and 7th harmonic components of the PCC voltage are higher. The proposed control
strategy reduces the impedance of the 5th and 7th harmonics, and significantly reduces the
content of the 5th and 7th harmonics of the PCC voltage.

Table 1. Line Parameters of Low Voltage Microgrid.

Parameters Values Parameters Values

Udc 700 V Ll1 0.413 mH
L f 5 mH Rl2 2 Ω
r 0.2 Ω Ll2 0.826 mH

Cf 20 μF Balance load 1 100 Ω + 20 mH

fs 10 kHz Unbalance load 2
Phase A 30 Ω + 30 mH

Phase B 0 Ω
Phase C 30 Ω + 30 mH

Rl1 1 Ω Non-linear load 3 25 Ω

Table 2. Simulation Parameters of Traditional Virtual Impedance Droop Control.

Parameters Values Parameters Values

kpi 1.555 × 10−3 Rv1 0 Ω
kqi 2.5 × 10−4 Lv1 −0.413 mH

kvp, kvi 0.8, 50 Rv2 −1 Ω
kip 0.6 Lv2 −0.826 mH

Table 3. The Simulation Parameters of the Control Strategy Proposed.

Parameters Values Parameters Values

kvp, kvi 0.8, 20 R5
v1 L5

v1 −0.6 Ω, −0.413 mH
ωc 6.28 R7

v1 L7
v1 −0.6 Ω, −0.413 mH

kcp, kci 0.4, 50 R1
v2 L1

v2 −1 Ω, −0.826 mH
g 260 Rn

v2 Ln
v2 −2 Ω, −0.826 mH

R1
v1 L1

v1 0 Ω, −0.413 mH R5
v2 L5

v2 −1.6 Ω, −0.826 mH
Rn

v1 Ln
v1 −1 Ω, −0.413 mH R7

v2 L7
v2 −1.6 Ω, −0.826 mH

Table 4. Connected common load.

Stage1 Stage2 Stage3 Stage4

time of duration 0–1 s 1–3 s 3–5 s 5–7 s
Common load load 1 load 1 and 2 load 1, 2 and 3 load 2 and 3

6. Experimental Verification

To further verify the effectiveness of the proposed method, a parallel system of two
inverters is built with TMS320F28335 as the controller, which is shown in Figure 10. The
experimental parameters are shown in Table 5, and the two inverters have the same droop
control coefficient.
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Figure 10. Experimental hardware: (a) Parallel inverters; (b) loads.

Table 5. Experiment parameters.

Parameters Values Parameters Values

Udc 90 V Rl1 0.5 Ω
L f 5 mH Ll1 1 mH
r 0.2 Ω Rl2 1.5 Ω

Cf 20 μF Ll2 2 mH
fs 20 kHz Balance load 1 10 Ω

E∗ 30 V Unbalance load between phase AB 2 20 Ω
f ∗ 50 Hz non-linear load 3 15 Ω

6.1. PCC Connected to Unbalanced Load

PCC is connected to balanced load 1 and unbalanced load 2. The PCC three phase
voltage and DG output current phase A under the two control strategies are shown in
Figures 11 and 12.

Figure 11. The experimental results of the traditional control method under the unbalanced load
connected to the PCC: (a) PCC voltage; (b) Phase A output current of DGs.

Figure 12. The experimental results of the method proposed under unbalanced load connected to
PCC: (a) PCC voltage; (b) Phase A output current of DGs.
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The DGi output currents under the two control strategies are almost equal. The three
phase voltage unbalance is reduced from 14.66% under the traditional control strategy to
1.70% under the proposed control strategy.

6.2. PCC Connected to Non-Linear Load

In Figure 13a,b, because the PCC is connected with a balanced load 1 and a non-linear
load 3, the PCC voltage is severely distorted, and the FFT analysis of phase A voltage is
shown in Figure 13c. THD has reached 8.17%, and the 5th and 7th harmonic content are
relatively high. The FFT analysis of DG phase A output current is shown in Figure 13d.
Due to the small impedance of the DG1 line, the harmonic content of its output current is
relatively high. The experimental results show that the traditional virtual impedance droop
control can not realize the equal distribution of harmonic power, and the PCC voltage is
severely distorted.

Figure 13. The experimental results of the traditional control method under the non-linear load
connected to the PCC: (a) PCC voltage; (b) Phase A output current of DGs; (c) FFT analysis of phase
A voltage of PCC; (d) FFT analysis of phase A output current of DGs.

After adopting the control method proposed, the PCC voltage and Phase A output
current of DGs are shown in Figure 14a,b. The FFT analysis of the PCC phase A voltage is
shown in Figure 14c, the THD is reduced to 4.41%, and the 5th and 7th harmonic content
of the control are significantly reduced. The FFT analysis of DG phase A output current
is shown in Figure 14d, and the 5th and 7th harmonic content are almost equal. The
experimental results show that the method proposed can realize the equal distribution of
harmonic power, reduce the PCC voltage THD, and improve the electricity quality. Since
the equivalent harmonic impedance is reduced, the voltage harmonic content of the PCC
is reduced, and the inverter also gets more harmonic current. But at the same time, the
harmonic current of the linear load is reduced. Compared with the traditional virtual
impedance control, the harmonic content of the output currents of inverter 1 and inverter
2 under the proposed control strategy is increased. This phenomenon is more pronounced
due to the lower experimental voltage level and the smaller impedance of the load.

Figure 14. The experimental results of the method proposed under the non-linear load connected to
the PCC: (a) PCC voltage; (b) Phase A output current of DGs; (c) FFT analysis of phase A voltage of
PCC; (d) FFT analysis of phase A output current of DGs.

6.3. PCC Connected to Unbalanced and Non-Linear Mixed Load

In Figure 15a,b, because the PCC is connected with a balanced load 1, an unbalanced
load 2 and a non-linear load 3, the PCC voltage quality is seriously degraded. The three-
phase voltage imbalance reached 11.04%. The FFT analysis of the phase A voltage is shown
in Figure 15c. THD reaches 7.87%, so part of the harmonic current flows to the balanced load
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1. The FFT analysis of DG phase A output current is shown in Figure 15d. The harmonic
content of the DG1 output current is relatively high. The experimental results show that
the traditional virtual impedance droop control can not realize the equal distribution of
harmonic power under the condition of a mixed load, the PCC voltage is severely distorted
and the three-phase voltage unbalance is large.

Figure 15. The experimental results of the traditional control method under the mixed load connected
to the PCC: (a) PCC voltage; (b) Phase A output current of DGs; (c) FFT analysis of phase A voltage
of PCC; (d) FFT analysis of phase A output current of DGs.

After adopting the control method proposed, the PCC three phase voltage is shown in
Figure 16a. Its three phase voltage unbalance has dropped to 1.69%. The FFT analysis of
the PCC phase A voltage is shown in Figure 16c. The THD is reduced to 4.48%, and the 5th
and 7th harmonic content of the control are significantly reduced. The FFT analysis of DG
phase A output current is shown in Figure 16d, and the 5th and 7th harmonic content are
almost equal. The experimental results show that the method proposed in this paper can
realize the equal distribution of harmonic power under the mixed load, reduce the PCC
voltage THD and the three-phase voltage unbalance, and improve the electricity quality.

Figure 16. The experimental results of the method proposed under the mixed load connected to the
PCC: (a) PCC voltage; (b) Phase A output current of DGs; (c) FFT analysis of phase A voltage of PCC;
(d) FFT analysis of phase A output current of DGs.

6.4. Transient Performance of the Proposed Method

The inverter adopts the proposed control strategy, and the output current of the
inverter when the load changes are shown in Figure 17. Figure 17a,b are the experimental
waveforms of connecting and disconnecting the nonlinear load 3 when the PCC is connected
with the three-phase balanced load 1, respectively. It can be seen that the proposed control
strategy has a faster response.

Figure 17. Experimental results of the proposed method under load changing conditions: (a) nonlin-
ear load access to PCC and (b) nonlinear loads disconnected from PCC.
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7. Conclusions

To solve the distribution problem of negative sequences and harmonics in microgrids,
and the issue of the degradation of PCC voltage quality when the low-voltage microgrid is
connected with unbalanced and non-linear loads, a control method based on the Luenberger
observer is proposed. The conclusions are as follows:

(1) Analyze the generation mechanism of fundamental negative sequence voltage and
harmonic voltage, and it is pointed out that the fundamental negative sequence
voltage and harmonic voltage can be reduced based on power-sharing by using
virtual impedance with a negative value.

(2) Design a Luenberger observer for three phase current and prove its stability. Use this
observer to get the fundamental positive sequence, fundamental negative sequence
and harmonic components. Configure each sequence of virtual impedances to achieve
power-sharing and improve electricity quality. And analyzed the value range of
virtual impedance.

(3) Design the active power droop equation with voltage compensation to increase the
voltage amplitude.

Author Contributions: Methodology, Y.C.; Software, C.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Science and Technology Department Industrial Public
Relations of Shaanxi Province (No. 2016GY-064).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Ae = AT − GTC + I

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − gT ωT −gT 0 −gT 0

−(gT + ωT) 1 −gT 0 −gT 0

−gT 0 1 − gT 5ωT −gT 0

−gT 0 −(gT + 5ωT) 1 −gT 0

−gT 0 −gT 0 1 − gT 7ωT

−gT 0 −gT 0 −(gT + 7ωT) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where, I is the identity matrix.

Root locus equation:

Rh
v1
(
a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0

)
A8s8 + A7s7 + A6s6 + A5s5 + A4s4 + A3s3 + A2s2 + A1s + A0

= −1

where,

a5 = −0.48 a4 = −287.8 a3 = −1.9 × 106 a2 = −2.94 × 108

a1 = −6.72 × 1011 a0 = −1.68 × 1013 A8 = 4.13 × 10−11 A7 = 1.08 × 10−7

A6 = 5.6 × 10−3 A5 = 2.84 A4 = 2.18 × 104 A3 = 9.41 × 106

A2 = 7.98 × 109 A1 = 3.19 × 1012 A0 = 1.68 × 1013
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Abstract: Accurate estimation of the state-of-health (SOH) of lithium-ion batteries is a crucial reference
for energy management of battery packs for electric vehicles. It is of great significance in ensuring
safe and reliable battery operation while reducing maintenance costs of the battery system. To
eliminate the nonlinear effects caused by factors such as capacity regeneration on the SOH sequence
of batteries and improve the prediction accuracy and stability of lithium-ion battery SOH, a prediction
model based on Variational Modal Decomposition (VMD) and Dung Beetle Optimization -Support
Vector Regression (DBO-SVR) is proposed. Firstly, the VMD algorithm is used to decompose the
SOH sequence of lithium-ion batteries into a series of stationary mode components. Then, each
mode component is treated as a separate subsequence and modeled and predicted directly using
SVR. To address the problem of difficult parameter selection for SVR, the DBO algorithm is used
to optimize the parameters of the SVR model before training. Finally, the predicted values of each
subsequence are added and reconstructed to obtain the final SOH prediction. In order to verify the
effectiveness of the proposed method, the VMD-DBO-SVR model was compared with SVR, Empirical
Mode Decomposition-Support Vector Regression (EMD-SVR), and VMD-SVR methods for SOH
prediction of batteries based on the NASA dataset. Experimental results show that the proposed
model has higher prediction accuracy and fitting degree, with prediction errors all within 1% and
better robustness.

Keywords: lithium-ion battery; state of health; variational mode decomposition; dung beetle
optimization algorithm; support vector regression

1. Introduction

With the acceleration of economic globalization and the massive use of fossil fuels,
environmental pollution and energy shortage have become increasingly prominent issues.
Lithium-ion batteries for energy storage have found extensive applications across various
facets of daily life and industrial production, owing to their substantial energy-storage
capacity and excellent cycling performance [1]. With the growing number of applications
for lithium-ion batteries, the battery will gradually age, leading to performance degradation.
If used improperly, it may cause more serious accidents. Therefore, accurately and quickly
estimating the SOH of the battery can provide necessary information for decision makers,
enabling them to plan ahead, extend battery life, and enhance the safety of utilizing lithium-
ion batteries. This has important practical significance [2]. Currently, although many
methods exist for predicting the SOH, they are primarily categorized into two groups:
model-based and data-driven approaches [3–6].

Equivalent circuit models or electrochemical models are the primary approaches uti-
lized in model-based methods. Reference [7] proposed a method based on Electrochemical
Impedance Spectroscopy (EIS) to estimate the SOH of lithium-ion batteries. Reference [8]
estimated the SOH by constructing a nonlinear equivalent circuit battery model, where
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the incremental state of charge (ΔSOC) is proportional to the SOH within a suitable volt-
age range. Reference [9] utilized the Forgetting Factor Recursive Least Squares (FFRLS)
algorithm to identify the equivalent circuit model of Thevenin for battery parameters. In
this model, the electrical resistance is used as the characteristic factor for battery health
status and is estimated to determine the battery’s SOH. The equivalent circuit model has a
simple structure and low computational complexity, but its robustness is poor, and it is easy
to produce estimation errors under different operating conditions. The electrochemical
model establishes a dynamic system model based on the battery’s electrochemical reaction
mechanism and has higher accuracy, but it is difficult to identify parameters.

Data-driven methods essentially create a black-box model, where the internal structure
of the battery does not need to be explicitly constructed. To construct a prediction model
for SOH, it is only necessary to extract and analyze external parameters of the battery that
are extremely correlated with SOH, and use them as training data. Reference [10] uses
Convolutional Neural Network (CNN) to extract features and reduce data dimensionality
of model input factors. Then, these factors are used as inputs of the Bidirectional Long and
Short Term Memory (BiLSTM) network to predict the SOH. Compared with other neural
networks, this approach provides higher prediction accuracy. Literature [11] proposed an
SOH estimation method based on an improved Ant Lion Optimizer algorithm and Support
Vector Regression (IALO-SVR). This method uses the IALO algorithm to optimize the
kernel parameters of SVR, thereby improving the accuracy of SOH prediction. However,
the accuracy of prediction results in the SVR model is directly affected by the penalty factor
and kernel function parameters. Therefore, selecting appropriate model parameters is a
critical issue that requires immediate attention when using the SVR method for estimating
the SOH of lithium-ion batteries [12–14]. Literature [15] utilizes the Ensemble Empirical
Mode Decomposition (EEMD) algorithm to decompose the original sequence signal into a
trend signal and low-frequency residual signal in order to reduce the influence of various
noises. Then, LSTM and CNN models are used to predict the SOH of the two types of
signals separately. However, EEMD is prone to model mixing, which may affect the overall
prediction accuracy.

To address the above issues, we extracted the available capacity of each charge-
discharge cycle of the battery and calculated the corresponding SOH data. We used this
SOH data as a health indicator and proposed a lithium-ion battery SOH prediction method
based on the VMD-DBO-SVR model. Firstly, the VMD method is employed to decompose
the original SOH sequence into a series of Intrinsic Mode Function (IMF) components that
represent local features at multiple scales. Then, SVR is employed to model and predict
each IMF element directly, and to address the difficulty in selecting SVR parameters, the
DBO algorithm is utilized to optimize the parameters of the SVR model before model train-
ing. Finally, the predicted values of each sub-sequence are combined and reconstructed to
derive the ultimate SOH prediction value. The proposed method is evaluated using the
NASA dataset.

We compared the accuracy and practicality of our method with other methods using
the same dataset in the literature. In reference [16], a Deep Neural Network (DNN) method
was used to predict the SOH of lithium-ion batteries, which has better predictive perfor-
mance compared to other machine learning models. However, due to the use of a single
prediction model, the prediction accuracy is still not high enough. Reference [17] used a
new physics-informed machine learning prediction model PIDDA, which includes three
parts: autoencoder, physical information model training, and physics-based prediction
adjustment, to achieve more accurate SOH prediction with less training data, but it did not
consider the influence of dataset noise. Compared with the above two methods, our method
considers the influence of noise and compensates for the problem of single model parameter
selection, which has certain advantages. In summary, the main objective of this study is to
eliminate the impact of battery capacity regeneration and various noises on capacity data,
thereby eliminating the impact on SOH data, and solving the problem of difficult selection
of SVR model parameters, thereby improving the accuracy of SOH prediction.
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2. Basic Theory

2.1. Definition of Battery SOH

Battery SOH refers to the current health status of a battery, which is an important
indicator of battery performance and service life, as the health status of a battery gradually
deteriorates over time. SOH is typically expressed as a percentage and is defined as
follows [18–20]:

SOH =
Ci

C0
× 100% (1)

where, Ci is the available capacity of the i-th charge-discharge cycle, C0 is the rated capacity.

2.2. VDM Decomposition

VMD is a variational method-based technique used to decompose nonlinear and
non-stationary signals into multiple Intrinsic Mode Functions (IMF) [21,22]. The central
concept of VMD is minimizing the interference among each IMF and other frequency bands
through iterative optimization, which avoids information overlap and makes it robust to
noise and interference. Since lithium-ion batteries are subject to capacity recovery and
random interference during use, it is essential to employ VMD to remove noise interference.
Here are the key stages of the algorithm:

Step 1: Construct the variational model. The original SOH signal is decomposed into
K IMF, and the variational constraint function is formulated as follows:

min{uk},{ωk}
{

K
∑

k=1
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖2

2

}
s.t.

k
∑

k=1
uk(t) = f(t)

(2)

where, f(t) is the SOH data, {uk} is a set of K IMF components that have been decomposed,
{ωk} is a collection of central frequencies corresponding to each IMF component, δ(t) is
the impulse function, ∗ is the convolution function.

Step 2: Introduce a penalty factor α and the Lagrange multiplier λ transforming a
constrained variational problem into an unconstrained variational problem. The augmented
Lagrange expression is derived as:

L = ({uk}, {ωk}, λ) = α
K
∑

k=1
‖∂t[(δ(t) + j/πt) ∗ uk(t)]e−jωkt‖2

2

+‖f(t)− K
∑

k=1
uk(t)‖

2

2
+

[
λ(t), f(t)− K

∑
k=1

uk(t)
] (3)

Step 3: Initialize
{

u1
k
}

,
{

ω1
k
}

,
{

λ1} and upper limit on the number of iterations n.

In the Fourier transform domain, continuously iterate and update
{

ûn+1
k

}
,
{

ωn+1
k

}
and{

λ̂n+1}. The update formula is as follows:

ûn+1
k (ω) =

f̂(ω)− K
∑

i �=k
ûi(ω) + λ̂(ω)/2

1 + 2α(ω − ωk)
2 (4)

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(5)

λ̂n+1(ω) = λ̂n(ω) + γ

[
f̂(ω)−

K

∑
k=1

ûn+1
k (ω)

]
(6)

where, γ is the noise tolerance; ω is the frequency.

143



Energies 2023, 16, 3993

Step 4: Stop the iterative updates until the stopping criteria are satisfied, which are
as follows:

K

∑
k=1

‖ûn+1
k − ûn

k‖
2
2

‖ûn
k‖2

2

< ε (7)

where, ε is the discriminant accuracy, ε > 0.

2.3. Dung Beetle Optimization Algorithm (DBO)

The Dung Beetle Optimization (DBO) algorithm is a population-based intelligent
optimization algorithm proposed by Jiankai Xue et al. [23], inspired by the rolling, dancing,
foraging, stealing, and breeding behaviors of dung beetles. Specifically, the DBO algorithm
achieves the traversal and search of the search space by simulating the behavior of dung
beetles rolling dung balls. This algorithm also introduces some strategies, such as dance
behavior to determine the direction of advancement, and grabbing behavior to jump out of
local optimal solutions. The algorithm exhibits comparable competitiveness to the latest
optimization strategies regarding the speed of convergence and accuracy of solutions.

The DBO algorithm mainly includes four types of behavior: rolling, breeding, foraging,
and stealing, corresponding to four types of dung beetles: rolling dung beetle, breeding
dung beetle, foraging dung beetle, and thief dung beetle. The algorithm achieves parameter
optimization by having each type of dung beetle perform its corresponding operation. The
specific four behaviors of the DBO algorithm are as follows:

(1) Rolling ball
The dung beetle rolls a much larger dung ball than itself and usually uses celestial

cues such as the sun to navigate in order to maintain the dung ball’s motion in a linear path.
During the rolling process, the position of the rolling dung beetle is updated according to
the following formula:

xi(t + 1) = xi(t) + α × k × xi(t − 1) + b × Δx
Δx = |xi(t)− Xw| (8)

where, t is the iteration count, xi(t) is the position information of the i-th beetle during the
t-th iteration, k ∈ (0, 0.2] is a fixed parameter representing the deviation factor, b ∈ (0, 1) is
a fixed parameter, α is the natural coefficient, which is allocated a value of either 1 or −1,
Xw is the global worst position, Δx simulates the variation of light brightness.

When a dung beetle confronts an obstruction that blocks its path, it needs to reposition
itself by dancing in order to find a new route. To simulate this dance behavior, a tangent
function is used to obtain a new rolling direction. After the dung beetle determines a
different direction, it continues to roll the ball backward. The position of the dung beetle is
updated as follows:

xi(t + 1) = xi(t) + tan(θ)|xi(t)− xi(t − 1)| (9)

where, θ is the deflection angle, which takes a value of [0, π].
(2) Reproduction
In nature, female dung beetles roll their dung balls to a safe place suitable for laying

eggs and hide them. Inspired by this behavior, a strategy for selecting boundaries is chosen
to mimic the oviposition area of female dung beetles, which is defined as follows:

Lb
∗ = max(X∗ × (1 − R), Lb)

Ub
∗ = min(X∗ × (1 + R), Ub)

(10)

where, X∗ represents the current optimal position, Lb
∗ and Ub

∗, respectively, represent the
lower and upper bounds of the oviposition area, R = 1 − t/Tmax, Tmax is the maximum
number of iterations, Lb and Ub, respectively, represent the lower and upper bounds of the
optimization problem.
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Once the oviposition area is determined, the female beetle will select an egg in this
area for laying. The boundary range of the oviposition area will dynamically change, which
is mainly determined by the value of R, as can be clearly seen from Equation (10). Therefore,
the position of the egg is also dynamic during the iteration process, defined as:

Bi(t + 1) = X∗ + b1 × (Bi(t)− Lb∗) + b2 × (Bi(t)− Ub∗) (11)

where, Bi(t) is the position of the i-th egg in the t-th iteration, b1 and b2 are two uncorrelated
stochastic vectors of size 1 × D, D is the dimension of the optimization problem.

(3) Foraging
The eggs laid by female beetles will gradually grow. Some matured small beetles will

come out of the ground to search for food. The optimal foraging area of small beetles is
modeled as follows:

Lb
b = max

(
Xb × (1 − R), Lb

)
Ub

b = min
(

Xb × (1 + R), Ub

) (12)

where, Xb is the global optimal position, Lb
b and Ub

b represent the lower and upper bounds
of the optimal foraging area. Therefore, the position update of the small dung beetles is
as follows:

xi(t + 1) = xi(t) + C1 ×
(

xi(t)− Lb
b
)
+ C2 ×

(
xi(t)− Ub

b
)

(13)

where, xi(t) represents the position of the i-th small dung beetle in the t-th iteration, C1
represents a random variable that follows a normal distribution, C2 is a random vector
within the range of (0, 1).

(4) Stealing
There are some beetles, called thieves, that steal dung balls from other beetles. From

Equation (12), it can be seen that Xb is the optimal food source, so it can be assumed that
the area around Xb is the optimal location for competing food. During the iteration process,
the position of the thief is updated as follows:

xi(t + 1) = Xb + S × g ×
(
|xi(t)− X∗|+

∣∣∣xi(t)− Xb
∣∣∣) (14)

where, xi(t) represents the position of the i-th thief at the t-th iteration, g is a random vector
of size 1 × D following a normal distribution, S is a constant.

2.4. Support Vector Regression (SVR)

The SVR method finds the best hyperplane that fits the data by continuously reducing
the error between predicted and actual values. Its advantage is strong generalization ability
and good performance in handling nonlinear problems [24,25].

Assuming a given sample set S = {xi, yi}n
i=1(xi ∈ X = Rn, yi ∈ Y = R). Where xi is

the i-th input vector, yi is the corresponding output vector, and n is the total number of all
samples. By utilizing the SVR method, non-linear mapping is applied to map the sample
set from a low-dimensional space to a high-dimensional space. This non-linear mapping
can be defined as:

f(x) = ω · φ(x) + b (15)

where, x, b, ω represent input data, intercept, and weights, respectively. Then introduce
the slack variables {ξi}n

i=1 and {ξ∗i }n
i=1, we can get:

minR(ω, b, ξ) =
1
2
‖ω‖2 + C

n

∑
i
(ξi + ξ∗i ) (16)
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s.t.

⎧⎪⎪⎨⎪⎪⎩
yi − ω · φ(x)− b ≤ ε+ ξi

ω · φ(x) + b − yi ≤ ε+ ξ∗i
ξi, ξ∗i ≥ 0.

(17)

where, C is the penalty factor, ε(ε > 0) is the highest acceptable error of the regression.
Introducing Lagrange multipliers and kernel function, Equation (16) can be converted into
the following equation:

maxR(α∗i , αi) = −1
2

n

∑
i,j
(α∗i − αi)

(
α∗j − αj

)
φ(xi)φ

(
xj
)− n

∑
i

αi(yi + ε) +
n

∑
i

α∗i (yi − ε) (18)

Subject to:

s.t.

⎧⎪⎨⎪⎩
n
∑
i
(αi − α∗i ) = 0,

0 ≤ αi, α∗i ≤ C, i = 1, 2, . . . n
(19)

where, αi and α∗i are Lagrange multipliers. After minimizing the Lagrangian function,
the SVR expression for the non-linear mapping can be obtained. This expression can be
formulated as:

f(x) =
n

∑
i
(αi − α∗i )K(xi, x) + b (20)

where, K(xi, x) = φ(xi)φ
(
xj
)

is the kernel function. The Radial Basis Function (RBF) is a
widely adopted nonlinear function and is also frequently used in SVR [26]. RBF can be
defined as Equation (21).

KRBF(xi, x) = exp
(
− 1

2σ2 ‖xi − x‖2
)

(21)

where, σ is the kernel parameter.

3. SOH Prediction Based on VMD-DBO-SVR Combination Model

3.1. SVR Method Based on DBO Optimization

This paper employs the SVR method to establish the SOH prediction model. However,
the selection of the penalty factor C and kernel parameter σ has a crucial impact on the
forecasting precision of the SVR model. Larger C values and smaller σ values may lead to
overfitting, while smaller C values and larger σ values may lead to underfitting. Due to the
strong global optimization ability and fast convergence speed, as well as robustness, of the
DBO algorithm, this paper uses the DBO algorithm to tune the penalty factor C and kernel
parameter σ, aiming to improve the prediction accuracy of the SVR method.

The process of DBO for optimizing SVR parameters is illustrated in Figure 1, with the
main procedures as follows:

(1) Initialization parameters for DBO algorithm: population size of dung beetles (pop),
the proportion of four types of dung beetles in the population including rollers, breeders,
foragers, and thieves, the dimension of variable parameters (dim), the maximum number
of iterations (Tmax), and lower bound (Lb) and upper bound (Ub).

(2) Randomly initialize the positions of all dung beetles.
(3) Calculate the fitness values of all dung beetles and record the global optimum

position. In this study, the Mean Square Error (MSE) between actual and predicted values
is applied to establish the fitness function, namely:

MSE =
1
n

n

∑
i
(ŷi − yi)

2 (22)
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where, ŷi is the i-th decomposition component of predicted SOH, yi is the i-th decomposi-
tion component of actual SOH.

(4) Update the positions of all dung beetles: if it is a rolling dung beetle, update its
position by rolling action according to Equation (8) in obstacle-free mode or by dancing
action according to Equation (9) in obstacle mode; if it is a breeding dung beetle, update its
position by breeding action according to Equations (10) and (11); if it is a foraging dung
beetle, update its position by foraging action according to Equations (12) and (13); if it is a
thief dung beetle, update its position by theft action according to Equation (14).

(5) After the update, determine if the position of each individual dung beetle exceeds
the boundaries Lb and Ub. If it does, return to step (3). Otherwise, continue the execution.

(6) Update the present optimal solution and its fitness value.
(7) Repeat the above steps (3) to (6) until the iteration limit Tmax is attained, and output

the optimal parameters to the SVR model.

Start

Initialize DBO parameters

Initialize the dung beetle population

Calculate the fitness value of each population

Perform a ball 
rolling action 
to update the 

position

Is there any 
obstacle

Perform a 
dance action 
to update the 

position

Reproductive behavior, 
updating the 

corresponding dung 
beetle positions

Feeding behavior, 
updating the 

corresponding dung 
beetle positions

Stealing behavior, 
update the 

corresponding dung 
beetle location

Update the current optimal 
solution and its fitness value

Maximum Iterations Reached

Output optimal parameters to 
SVR model

End

Determine if the updated 
position is outside the 

boundary

No

No

No Yes

Yes

Yes

Figure 1. Optimization process of SVR parameters using DBO algorithm.
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3.2. Combined Forecasting Model Framework Based on VMD-DBO-SVR

The flowchart of the combined prediction model based on VMD-DBO-SVR is illus-
trated in Figure 2.

Start

Original sequence

VMD decomposes the original 
sequence

IMF1 IMF2 IMFn

Separate training and testing sets for each 
IMF component, and normalize them

SVR1 SVR2 SVRn DBO 
optimization

Training model

Prediction results of each 
decomposition sequence

Merge Overlay

Final prediction 
results

Error analysis

End

Figure 2. VMD-DBO-SVR forecasting model process.

The lithium-ion battery prediction model in this paper consists of four steps:
(1) Using VMD decomposition to decompose the original sequence of battery SOH

into various modal components with different frequency bands.
(2) Preprocess the data of each mode component obtained by VMD decomposition,

normalize it, and divide the preprocessed data into training data and testing data. Use the
mode component data of the k-th iteration as input and the mode component data of the
k + 1-th iteration as output.

(3) Build an SVR prediction model for each component separately and update the
optimal SVR parameters using the DBO optimization algorithm.

(4) Validate the existing model with the test data, perform reverse normalization on
the predicted values of each component, combine and superimpose the components, obtain
the final SOH prediction result, and conduct error analysis.

4. Experimental Results and Comparative Analysis

4.1. Experimental Data and Parameter Settings

The dataset used in this experiment is from the Prognostics Center of Excellence
(PCoE) at NASA. The dataset includes aging test data for three 18,650 lithium-ion batteries
with a rated capacity of 2 Ah each, labeled B5, B6, and B7. All data were collected at a
temperature of 24 ◦C using the CC-CV cycle test method for aging testing. Firstly, the
battery is charged with a steady current of 1.5 A. When the battery voltage hits 4.2 V, the
steady voltage mode is applied to continue charging the battery until the charging current
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drops below 20 mA. Then, the battery is discharged at a steady current of 2 A until the
voltages of B5, B6, and B7 drop to 2.7 V, 2.5 V, and 2.2 V, respectively. B5–B7 batteries
have undergone 168 charge-discharge cycles, and the data includes measured voltage,
current, temperature, and the available capacity for each cycle. Therefore, this dataset is
mainly used for predicting the SOH and RUL, and estimating the State of Charge (SOC) of
lithium-ion batteries. We extract the available capacity from each charge-discharge cycle
and process it as SOH degradation data according to the SOH definition, enabling us to
estimate the SOH of lithium-ion batteries. The detailed parameters of the 3 batteries are
shown in Table 1, and the SOH degradation curves are shown in Figure 3.

Table 1. Detailed parameters of the experimental dataset.

Number Temperature/◦C Discharge Current Capacity/Ah Shutdown Voltage/V

B5 24 2A/CC 2 2.7
B6 24 2A/CC 2 2.5
B7 24 2A/CC 2 2.2

0 20 40 60 80 100 120 140 160 18055
60
65
70
75
80
85
90
95

100
105

SO
H

/%

B5
B6
B7

Cycle  

Figure 3. SOH degradation curves of NASA dataset battery B5, B6, and B7.

To more comprehensively demonstrate the adaptability of the VMD-DBO-SVR predic-
tion method, in this experiment, 50% and 60% of the SOH data were, respectively, selected
as the training set, and the remaining 50% and 40% of the data were applied as the test set
to test the performance of the model.

When using the VMD algorithm for signal decomposition, it is necessary to select
the mode number K beforehand. If the chosen number of modes is insufficient, certain
significant information in the initial signal may be lost. On the other hand, if the selected
mode number is too large, it may lead to frequency aliasing. Therefore, in this study, the
mode number K is determined by examining the arrangement of center frequencies under
various decomposition mode numbers. Taking the B5 battery as an example, the center
frequencies under different K values are shown in Table 2.

Table 2. Center frequency of B5 battery under different K values.

K Center Frequency/Hz

2 1.97 × 10−5 0.233 - - - -
3 1.97 × 10−5 0.166 0.328 - - -
4 1.96 × 10−5 0.095 0.233 0.357 - -
5 1.96 × 10−5 0.093 0.167 0.292 0.401 -
6 1.96 × 10−5 0.066 0.1664 0.224 0.330 0.402

As shown in Table 2, when K = 6, the central frequencies of the third and fourth mode
components are close, indicating an over-decomposition phenomenon. Therefore, K = 5
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is determined. The time-domain and corresponding frequency-domain plots of the SOH
signal of battery B5 after VMD decomposition are shown in Figures 4 and 5, respectively.

 

Figure 4. Time-domain diagram of VMD decomposition for B5 battery.

 
Figure 5. Spectrum diagram of B5 battery after VMD decomposition.

In Figure 4, IMF1 represents the main trend of the original signal, IMF2 and IMF3
represent the periodic small fluctuations of the original signal within a shorter time period,
and IMF4 and IMF5 represent the signal variations in the higher frequency band. Therefore,
VMD can effectively decompose the different components of lithium battery SOH aging
data. As shown in Figure 5, the mode mixing phenomenon of the original signal is
well suppressed.

The parameter settings used in this paper for optimizing with the DBO algorithm are
as follows: the number of dung beetle populations is pop = 30; the proportion of roller dung
beetles, breeding dung beetles, foraging dung beetles, and thief dung beetles in the dung
beetle population is 0.2, 0.2, 0.2, and 0.4, respectively; the dimension of variable parameters
is dim = 2; the upper limit for the number of iterations is Tmax = 50; the lower boundary is
Lb = 0.01; and the upper boundary is Ub = 100.

4.2. Evaluation Index

(1) Mean Absolute Percentage Error (MAPE):

MAPE =
1
n

n

∑
i

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (23)
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(2) Root Mean Square Error (RMSE):

RMSE =

√
1
n

n

∑
i
(ŷi − yi)

2 (24)

(3) Relative Accuracy (RA):

RA =
1
n

n

∑
i

[
1 −

∣∣∣∣ ŷi − yi
yi

∣∣∣∣] (25)

where, ŷi is the predicted SOH; yi is the actual SOH.
The performance of the proposed model is evaluated using the above indicators in

this paper. A smaller value of MAPE and RMSE indicates a more accurate prediction result,
while a value closer to 1 for RA demonstrates a better prediction performance of the model.

4.3. Experimental Verification and Analysis of SOH Prediction Based on VMD-DBO-SVR Model

When 60% of the data from three lithium-ion batteries were taken as the training set
(B5, B6, and B7 with 100 cycles each), the fitting of the SOH prediction results based on the
VMD-DBO-SVR model and the actual test results of the lithium-ion batteries are shown in
Figure 6. The corresponding prediction errors are shown in Table 3, where ST represents
the starting point of the prediction.

  

(a) (b) (c) 

Figure 6. SOH prediction results with 60% data set of three batteries as training set. (a) B5; (b) B6;
(c) B7.

Table 3. Prediction results of the VMD-DBO-SVR model based on the training dataset of 60%.

Battery MAPE/% RMSE RA

B5 0.3511 0.3488 0.9964
B6 0.5863 0.5019 0.9941
B7 0.2594 0.2765 0.9974

As shown in Figure 6, the predicted SOH values for the three batteries are very
close to the true values, indicating that the proposed method can effectively predict the
trend of battery SOH and has good prediction accuracy. As shown in Table 3, the best
prediction performance among the three batteries is B7, with an RA of 99.74% and RMSE
and MAPE of 0.5019 and 0.2594%, respectively. The worst prediction performance is for
B6, but its RA value is also as high as 99.41%, and RMSE and MAPE are only 0.2765 and
0.5863%, respectively. These results demonstrate that the VMD-DBO-SVR model proposed
in this paper has good applicability to different lithium-ion batteries and can maintain high
prediction accuracy.
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To further verify the SOH prediction accuracy of the proposed model with insufficient
training data, 50% of the data from three batteries were selected as the training set (B5,
B6, and B7 with 84 cycles each), and the remaining 50% were used as the test set for SOH
prediction. When 50% of the data was used for training, the fitting of the lithium-ion battery
SOH prediction results based on the VMD-DBO-SVR model to the true test results is shown
in Figure 7, and the corresponding prediction errors are shown in Table 4.

   
(a) (b) (c) 

Figure 7. SOH prediction results of three batteries with 50% dataset as training set. (a) B5; (b) B6;
(c) B7.

Table 4. Prediction results of the VMD-DBO-SVR model based on a 50% dataset as training set.

Battery MAPE/% RMSE RA

B5 0.3906 0.4771 0.9961
B6 0.7892 0.8227 0.9921
B7 0.3318 0.4828 0.9966

When using fewer data as the training set, the prediction accuracy will decrease as
shown in Figure 7, indicating that the less effective information provided during modeling
from the early stage of prediction, the greater the error in the prediction results. However,
the proposed model in this paper still has a good predictive effect. As shown in Table 4,
even for battery B6 with the worst prediction accuracy, its RA value still reaches 99.21%,
and the RMSE and MAPE values are only 0.8227 and 0.7892%, respectively. Compared with
60% training data, the corresponding RA value only decreases by 0.2%, while the RMSE
and MAPE values increase by only 0.3227 and 0.2029%, respectively, indicating that the
proposed prediction model has good generalization ability.

4.4. Comparative Analysis of VMD-DBO-SVR Model with Other Models

To validate the effectiveness and superiority of the VMD-DBO-SVR model proposed
in this paper for predicting the SOH, three batteries were selected with 50% of their data
employed as the training set, and compared with three other prediction models: SVR,
EMD-SVR, and VMD-SVR. Figure 8 shows the comparison of the prediction results under
different algorithms, and the corresponding prediction errors are shown in Table 5.

Figure 8 reveals that the single model SVR has the worst prediction performance,
and its estimation error gradually increases in the later stage, indicating poor prediction
accuracy. Although the EMD-SVR model reduces the error, the prediction accuracy is still
poor and has not stabilized. The VMD-SVR model overcomes the end effect and modal
aliasing phenomenon of EMD decomposition, and compared with the EMD-SVR model,
the prediction performance is significantly improved, but the prediction accuracy is still not
high enough. The VMD-DBO-SVR model proposed in this paper preprocesses the initial
SOH data using the VMD decomposition method to reduce noise in the original data. After
optimizing the SVR model parameters using the DBO algorithm, the prediction model is
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trained to accurately predict the overall degradation trend of the battery and has good
tracking ability for capacity regeneration, resulting in the best prediction performance.

 
(a) 

 
(b) 

 
(c) 

Figure 8. Comparison of SOH prediction results under different models for three batteries. (a) B5;
(b) B6; (c) B7.
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Table 5. SOH Prediction Errors of Different Models for three Batteries.

Battery Model MAPE/% RMSE RA Prediction Time/s

B5

SVR 1.7833 1.5486 0.9821 0.6875
EMD-SVR 1.1607 0.9775 0.9883 3.2114
VMD-SVR 0.6467 0.5797 0.9935 3.4732

VMD-DBO-SVR 0.3906 0.4771 0.9961 3.7297

B6

SVR 1.9822 1.6458 0.9801 0.7751
EMD-SVR 1.3974 1.3233 0.9860 3.2046
VMD-SVR 1.0090 0.9082 0.9899 3.6104

VMD-DBO-SVR 0.7892 0.8148 0.9921 3.9867

B7

SVR 1.4489 1.4325 0.9855 0.6658
EMD-SVR 1.1933 1.0556 0.9880 3.1699
VMD-SVR 0.7364 0.6431 0.9926 3.1105

VMD-DBO-SVR 0.3318 0.4828 0.9966 3.4405

From Table 5, it can be seen that the SVR model has a shorter prediction time, but
its error is too large, which may result in unsatisfactory prediction results in practical
applications. Compared with the EMD-SVR and VMD-SVR methods, the proposed model
has a significant improvement in prediction accuracy with a relatively small increase in
prediction time. Taking the B5 battery as an example, the RMSE of SVR, EMD-SVR, and
VMD-SVR models are 1.5486, 0.9775, and 0.5797, and their prediction time are 0.6875 s,
3.2114 s, and 3.4732 s, respectively, while the RMSE and prediction time of the proposed
model are 0.4771 and 3.7297 s, proving that the proposed model has higher accuracy than
the other three models with only a small increase in prediction time.

To further demonstrate the superiority of the proposed VMD-DBO-SVR prediction
method, still using battery B5 as an example and under the same initial conditions with the
same training set, we compared the prediction results of our method with those of recently
published models in related literature. The comparison results are shown in Table 6.

Table 6. Comparison of prediction results between proposed method and other method in literature.

Battery Model MAPE/% RMSE

B5
IALO-SVR [11] 0.7400 0.6841

ABMS-CEEMDAN-LSTM [27] 1.3145 1.0948
VMD-DBO-SVR 0.3906 0.4771

From Table 6, it can be seen that although Reference [11] uses an improved ant lion
optimizer to optimize the SVR parameters, it ignores the noise effect of the initial capacity
data of batteries, resulting in lower prediction accuracy. Reference [27] reduces the impact
of battery capacity regeneration by using an adaptive double exponential model smoothing
method and denoising the lithium battery capacity data using CEEMDAN. However,
the modal aliasing effect caused by CEEMDAN is unavoidable, resulting in inaccurate
prediction. In general, the VMD-DBO-SVR model proposed in this work achieves higher
prediction accuracy.

In this section, we first conducted simulations with 60% of the training data to validate
the precision of the proposed method on three batteries. Then, we reduced the training
data to 50% to demonstrate that the prediction accuracy decreases with the decrease of
training data, but the proposed model still has good prediction performance. Furthermore,
we compared the proposed model with SVR, EMD-SVR, and VMD-SVR models from
prediction accuracy and running time, the experimental results showed that the proposed
model had significantly improved prediction accuracy with a small increase in computation
time. Finally, we compared the proposed model with relevant methods in recent literature
to confirm its superior predictive performance.
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5. Conclusions

Accurately predicting the SOH of lithium-ion batteries can improve their safety during
operation and prevent accidents. We propose a SOH prediction model based on Variational
Mode Decomposition (VMD) and Dung Beetle Optimization-Support Vector Regression
(DBO-SVR). Through verification and analysis, the primary conclusions of this paper are
as follows:

(1) The VMD algorithm can decompose the battery SOH sequence into multiple stationary
mode components, which can effectively reduce noise interference, such as capacity
regeneration and testing errors, and minimize prediction errors.

(2) The selection of kernel parameters in the SVR method directly affects the accuracy of
SOH prediction. To address this issue, we proposed a DBO optimization algorithm
to provide the optimal parameters for the SVR method. The combination of the two
methods can improve the prediction accuracy and stability of SOH.

(3) NASA battery dataset was employed to validate the prediction performance of the
proposed VMD-DBO-SVR model. The results showed that the VMD-DBO-SVR model
had good prediction accuracy and stability, and the prediction error was maintained
within 1%.

The above conclusion indicates that the model solves various noise interference prob-
lems through the VMD algorithm, and solves the problem of difficult SVR parameter
selection through the DBO optimization algorithm, thereby improving prediction accuracy
and achieving the preliminary research objectives of this article.

In actual SOH prediction for lithium-ion batteries, it is sometimes difficult to directly
measure the available capacity of the battery, making the approach proposed in this paper
unsuitable. Therefore, the next research direction of this paper is to use easily measurable
feature factors that characterize the degradation pattern of SOH.
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Abstract: In order to address the issue of battery cell disparity in lithium-ion battery systems, battery
balancing techniques are required. This paper proposes an improved battery balancing strategy
within a reconfigurable converter system. The strategy is based on the state of charge (SOC) of
batteries, and utilizes the reconfigurable converter system to transfer energy from battery modules
with high SOC to those with lower SOC. Additionally, it allows for battery module balancing while
supplying power to loads. A MATLAB/Simulink simulation model with five batteries was built to
validate the effectiveness of the proposed balancing strategy under unloaded and loaded conditions.
The simulation results demonstrate that the proposed strategy achieves more efficient and accurate
battery module balancing compared to the previous balancing modes.

Keywords: reconfigurable battery; balancing; integrated converter; state of charge (SOC)

1. Introduction

Due to the cell-to-cell variation in lithium-ion battery systems, individual cells may be-
come overcharged or over-discharged during charging and discharging processes. Failure
to perform timely and effective balancing may result in decreased battery pack lifespan,
reduced capacity, performance degradation, and even safety hazards such as fire [1,2].
Therefore, battery balancing plays an important role in improving overall battery pack lifes-
pan, ensuring battery safety and reliability, and increasing energy utilization efficiency [3,4].

Battery balancing methods can be classified into passive balancing and active balanc-
ing, depending on whether energy dissipation is involved [5].

Passive balancing is mainly achieved by using resistors to discharge high-energy
battery cells, consuming their excess energy in the form of heat to achieve energy consis-
tency among all cells. The advantages of passive balancing include simple and feasible
circuit structure, low cost, small circuit volume, and easy control. However, since energy is
dissipated in the form of heat, the overall energy utilization efficiency of the battery module
is relatively low [6,7].

Active balancing mainly utilizes energy storage components such as capacitors and
inductors to transfer energy between cells, which can be achieved with different circuit
structures. Active balancing has high energy utilization efficiency, high balancing efficiency,
and fast balancing speed. However, it usually comes with complex circuit structures and
control strategies, resulting in higher implementation costs [8].

Balancing circuits typically use battery voltage or state of charge (SOC) as the balancing
indicators. When using battery voltage as the balancing indicator, the advantage lies in
its simplicity and ease of implementation. However, the disparate internal resistance of
batteries can lead to suboptimal balancing effects. On the other hand, using SOC as the
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balancing indicator offers the advantage of superior balancing effectiveness, but it entails
complex calculations and greater implementation difficulties.

Many researchers have conducted research on battery balance using battery voltage as
the balancing indicator. For example, K. Nishijima et al., 2000.proposed a PWM-controlled
DC-DC converter technique that utilized battery voltage as the balancing indicator, which
was comparatively simple and efficient [9]. Siqi Li et al.,2012. designed a balancing circuit
composed of Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) and a multi-
winding transformer. It achieved energy transfer from batteries with higher voltages to
those with lower voltages by controlling the turning on and off of the MOSFETs [10].

As technology progresses, battery balancing methods based on SOC as the balancing
indicator have gradually become mainstream. Cao et al., 2020 studied a hierarchical SOC
balancing control method for battery energy storage systems, which achieved SOC bal-
ancing between battery cells and modules. This was accomplished through modulation
of the duty cycle proposed for power converter switches [11]. Wang et al., 2022 proposed
a layered Model Predictive Control (MPC)-based balancing approach utilizing adaptive
estimation. Different balancing topologies were explored, and Hardware-in-the-Loop (HIL)
testing was conducted to verify the real-time feasibility of the proposed MPC balancing
strategy. Finally, the impact of series-connected battery cell count and the adopted topol-
ogy on balancing performance were discussed [12]. The balancing scheme proposed by
Yun et al. uses SOC as the balancing variable and a closed-loop flyback converter as the
energy transfer circuit, which can effectively solve the inconsistency of battery energy [13].
Li et al. proposed a two-layer equalization method using SOC as the equalization index,
combining the reconfigurable topology with the converter active equalization method. A
simulation circuit of was built consisting of 12 battery cells in MATLAB/Simulink to verify
its equalization effect [14]. The MATLAB version used in this paper is version 2022b.

Currently, reconfigurable battery energy storage systems have attracted increasing
attention due to their ability to dynamically reconfigure the battery topology in real time to
adapt to specific application requirements [15–19]. This can more effectively utilize battery
resources, isolate corresponding batteries according to their current state of charge and
health status without affecting the charge and discharge processes of other batteries, and
extend the battery’s service life while reducing the possibility of module failure [20,21].

The state of charge (SOC) is commonly used to characterize the amount of charge in
a battery cell. A battery cell’s SOC is defined by the ratio of the cell’s present amount of
charge to its rated charge capacity [22]. There is relatively little research on the combination
of reconfigurable and integrated converters for battery systems. In [23], the authors pro-
posed an integrated reconfigurable converter structure that can be used for high-voltage
battery systems. In [24,25], the authors proposed load-sharing balancing strategies and
distributed balancing control for battery modules based on the circuit structure of the
integrated reconfigurable converter. In [26], the authors improved the structure of the inte-
grated reconfigurable converter system and proposed a new balancing strategy. However,
this balancing strategy failed to achieve free energy exchange between battery modules
and only demonstrated effective balancing when the SOC of batteries followed a strict
hierarchical order.

In this paper, we improve on the battery balancing strategy proposed in [26] and
conduct a comparative analysis. Due to only discussing the balancing strategy, the structure
of the reconfigurable converter is simplified. During the balancing process, this balancing
strategy is capable of transferring energy from the battery module with the highest SOC to
the one with the lowest SOC. Only the battery modules with the highest and lowest SOC
are involved in the balancing process, while other battery modules remain unaffected. This
approach effectively avoids repetitive charge–discharge cycles in certain batteries during
balancing. As a result, it enhances system stability and prolongs battery lifespan.

This paper is organized as follows: Section 2 introduces the integrated system of recon-
figurable battery and converter and illustrates its working principle. Section 3 describes the
balancing strategy and design of the control system. Section 4 presents simulation experi-
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mental results and analysis. Section 5 discusses the experimental results and equilibrium
strategies. Section 6 concludes this paper.

2. Structure and Working Principle of Integrated Reconfigurable Converter

The integrated reconfigurable converter is shown in Figure 1. In the figure, S1–S10
and Sb are IGBT, and D1 and D2 are diodes. L is the inductance, C is the capacitance.
B1–B3 are batteries. For simplicity and convenience, three battery modules are used as
examples for illustration. However, the same configuration can be applied to systems with
a higher number of battery modules. The system consists of a battery module selector and
boost converters. The boost converter’s configuration is displayed in Figure 2. The battery
modules can be dynamically reconfigured to select different input voltages. Table 1 shows
the different battery modules that the battery module selector can choose from. When the
input voltage changes, the range of output voltage that the boost converter can provide
also changes accordingly. The relationship between the output voltage Vout, input voltage
Vin, and the duty cycle D of the boost converter is expressed in Equation (1).

Vout =
1

1 − D
Vin (1)

 

Figure 1. Integrated reconfigurable converter structure.

L

RC

D

B

Figure 2. Boost converter.
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Table 1. Different input modes of battery modules.

Selected Module S1 S2 S3 S4 S5 S6

B1 1 0 0 1 0 0
B2 0 1 0 0 1 0
B3 0 0 1 0 0 1

B1, B2 1 0 0 0 1 0
B2, B3 0 1 0 0 0 1

B1, B2, B3 1 0 0 0 0 1

The Battery Management System (BMS) can identify battery modules with relatively
high States of Charge (SOC), and the battery module selector prioritizes their discharging by
switching corresponding switches. The BMS can dynamically reconfigure battery modules
to have two different working modes: power supply mode and balancing mode. These
two modes will be elaborated on in detail below.

2.1. Power Supply Mode

Figure 3a,b illustrate the configuration of the battery system when they are powering
the load. In this mode, the converter operates in boost mode, and the control system
can select different battery modules through the battery module selector to discharge
at different input voltages. In the case of a failure among switches S1–S6, a flow path is
required to release the energy from the inductor to protect the circuit from damage. Figure 4
shows the path along which the inductor current flows. This path can also be used to
return the energy from the inductor back to all battery modules, which not only protects
the circuit, but also avoids wasting energy.

B1 B2 B3

L

LoadC

S3S2S1

S6S5S4

Sb

D3

D1 D2

Sb
On

Sb Off  
(a) 

B1 B2 B3

L

LoadC

S3S2S1

S6S5S4

Sb

D3

D1 D2

Sb
On

Sb Off  
(b) 

Figure 3. Battery system power supply mode: (a) B1 provides power to the load, (b) B2 and B3
provide power to the load.
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B1 B2 B3

L

LoadC

S3S2S1

S6S5S4

Sb

D3

D1 D2  
Figure 4. The freewheeling path for the inductor current.

2.2. Balance Mode

The balancing mode enables energy transfer from battery modules with high SOC
to those with lower SOC, and this energy transfer is achieved by utilizing the inductor L.
Figure 5a–c demonstrate the leftward energy transfer. Figure 5a shows the energy transfer
between one module and another. In this figure, switches Sb and S3 are always on, and by
turning on switch S6 and turning off switch S4, the energy in B3 shifts to inductor L. Then,
by turning off switch S6 and turning on switch S4, the energy in inductor L is released and
charges B2, achieving energy transfer from B3 to B2. The same switching cycle is repeated
until the two modules reach equilibrium. Figure 5b illustrates the energy transfer from one
module to two modules, and Figure 5c shows the energy transfer from two modules to
one module.
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Figure 5. Illustration of balancing mode during one switching cycle. (a) Module to a module (B3
is discharged into B2). (b) Module to modules (B3 is discharged into B1 and B2). (c) Modules to a
module (B2 and B3 are discharged into B1).

3. Balancing Strategy and Control System Design

This section describes the system balancing strategy and the design of the control system.

3.1. Balancing Strategy

The proposed new balancing strategy first identifies the battery module with the
highest SOC and charges the inductor. Since the current flowing through the inductor
cannot change immediately, the energy on the inductor is transferred to the battery module
with the lowest SOC by changing the switch status. This balancing strategy can accelerate
the balancing speed and can also be applied when batteries are powering the load. The
specific balancing strategies for scenarios with and without load usage are explained below:

When there is no load usage, the balancing measure of the battery system is to have
the battery module with the highest SOC store energy in the inductor, and then change
the switch status to release the energy stored on the inductor to the battery module with
the lowest SOC. As shown in Figure 6a,b, when battery module B3 has the highest charge,
while B2 has the lowest, the balancing strategy adjusts such that battery module B3 first
charges the inductor through switches S3 and S6, then maintains the closure of switch S3,
and turns S4 On and S6 Off to transfer the energy from the inductor to B2. Figure 6b shows
the energy transfer from battery module B3 to battery module B1 when B3 has the highest
charge while B1 has the lowest.
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Figure 6. Balancing strategy when not using load: (a) B3 is discharged into B2. (b) B3 is discharged
into B1.

When the load needs to be used, the converter is connected, and the balancing strategy
of the battery system is adjusted so that the battery module with the highest charge level
supplies power to both the load and the inductor, then, by changing the switch status, the
energy stored on the inductor is released to the battery module with the lowest SOC. As
shown in Figure 7a,b, when battery module B1 has the highest charge level while B2 has
the lowest, with the load operating, the balancing strategy adjusts such that battery module
B1 supplies power to the inductor and the load via switches S1 and S4, then maintains the
closure of switch S4, and turns switch S3 On and S1 Off to transfer the energy from the
inductor to the load and B2. Figure 7b shows the case when battery module B1 has the
highest charge level while B3 has the lowest.
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Figure 7. Balancing strategy when not using load: (a) B3 is discharged into B2. (b) B3 is discharged
into B1.
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Figure 8 illustrates the flow diagram of the balancing system: First, all SOC values of
battery modules are obtained and sorted to find the module with the highest and lowest
SOC levels. If the difference in SOC between two modules exceeds the threshold value Δe,
the control system controls the corresponding switches of these two modules to transfer
excess charge from the highest SOC module to the lowest SOC module. If there is no
load during the balancing process, switch Sb remains closed. If the load is used, a PWM
signal is used to control the On/Off state of switch Sb to connect the converter, ensuring
that a single battery module can provide the required voltage. When the SOC difference
between any two modules is lower than the threshold value Δe, the balancing process
ends, and the required battery modules can be connected according to Table 1 to change
the working voltage range of the boost converter. Once the SOC difference exceeds the
threshold value Δe, the balancing procedure starts over. This iterative process ensures
effective SOC balancing and prevents overcharging or over-discharging, thus improving
the overall life and safety performance of the battery.

3.2. Control System Design

This section describes the design of a balancing system with and without load, and
the balancing system controllers are both PI controlled.

3.2.1. Controller Design for the Balancing Operation When No Load Is Used

The system diagram of the PI controller without load balancing mode is shown in
Figure 9. In order to design the PI controller, the small-signal modeling shown in Figure 10
is first derived.

The average state equation for balancing mode without load usage is as follows:

L
diL
dt

= dvi − (1 − d)vo (2)

Introducing AC perturbations into the above equation yields

L
d(IL + îL)

dt
= (D + d̂)(Vi + v̂i)− [1 − (D + d̂)](Vo + v̂o) (3)

The small-signal model can then be written as

L
dîL
dt

= d̂Vi + Dv̂i − (1 − D)v̂o + d̂Vo (4)

The above equation can be obtained by applying Laplace transform as follows:

sLîL = Dv̂i − (1 − D)v̂o + d̂(Vo + Vi) (5)

The transfer function of the balancing mode without load usage can be obtained from
Equation (5):

Tp =
îL

d̂
=

Vi + Vo

Ls
(6)

The transfer function of the PWM modulator can be modeled as follows:

Tm =
1
V̂

(7)

where V̂ = 1 is the peak value of the sawtooth carrier signal. Using the small-signal transfer
function (6), the PI controller parameters Kp and Ki were calculated to regulate the current
on the inductor, namely the balancing current, for achieving the desired open-loop phase
margin at the required cutoff frequency. The Bode plot of the control loop in the charging
mode is shown in Figure 11a. From the Bode plot, it can be inferred that the system is
stable, as the open-loop phase margin (PM) at the cutoff frequency is greater than zero.
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Figure 8. Flow diagram of the balancing management system.

iLref d iL

Figure 9. Controller design for the balancing operation when no load is used.
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Figure 10. Simplified topology of the balancing mode without load usage in small-signal modeling.
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(a) 

(b) 

(c) 

Figure 11. Bode diagrams of (a) balance mode control circuit when not using load, (b) internal current
control circuit when using load, (c) external voltage control circuit when using load.
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3.2.2. Controller Design for the Balancing Operation When Load Is Used

In the balancing mode when load is used, the double-loop control system is adopted
for regulating the Buck–Boost circuit composed of the battery pack, inductor, and diode D2,
as shown in Figure 12. The inner loop is a high-bandwidth current control loop, while the
outer loop is a voltage control loop with lower bandwidth and slower response compared
to the inner loop. The voltage of the outer loop adjusts the output voltage by providing
a reference current signal to the current inner loop, which regulates the current on the
inductor. Owing to the faster response of the inner loop, the outer loop can be treated
separately in the circuit design process, in order to simplify the controller design.

iLref

v c
d iL

iL

voref
vo

Figure 12. Controller design for the balancing operation when load is used.

1. Design of internal current control loop: In order to design the PI controller, the
small-signal modeling as shown in Figure 13 is first derived.
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Figure 13. Simplified topology of the balancing mode when using load in small-signal modeling.

The average state equation for balancing mode when using load is as follows:

L
diL
dt

= dvi − (1 − d)vo (8)

C
dvo

dt
= (1 − d)iL − vo

R
(9)

Introducing AC perturbations into the above equation yields

L
d(IL + îL)

dt
= (D + d̂)(Vi + v̂i)− [1 − (D + d̂)](Vo + v̂o) (10)

C
d(Vo + v̂o)

dt
= [1 − (D + d̂)](IL + îL)− Vo + v̂o

R
(11)

The small-signal model can then be written as

L
dîL
dt

= Dv̂i − (1 − D)v̂o + d̂(Vo + Vi) (12)
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C
dv̂o

dt
= (1 − D)îL − d̂IL − v̂o

R
(13)

The above equation can be obtained by applying Laplace transform, as follows:

sLîL = Dv̂i − (1 − D)v̂o + d̂(Vo + Vi) (14)

sCv̂o = (1 − D)îL − d̂IL − v̂o

R
(15)

The transfer function can be obtained from Equations (15) and (16):

Tp1 =
îL

d̂
=

C(Vo + Vi)s + (2 − D)IL

LCs2 + L
R s + (1 − D)2 (16)

Next, the PI controller parameters Kpc and Kic are calculated to obtain the desired
phase margin for the inner current control loop. The Bode plot of the inner loop is shown
in Figure 11b, and indicates that the system is stable as the open-loop phase margin at the
cutoff frequency is greater than zero.

2. Design of the outer voltage control loop: Due to the high bandwidth and fast current
control characteristics of the inner loop, the transfer function of the inner current
control loop can be neglected in the design of the voltage controller. Therefore, the
duty cycle D can be assumed constant, and its transfer function is

Tp2 =
v̂o

îL
=

1 − D
Cs + 1

R
(17)

Then calculate the PI controller parameters Kpv and Kiv to obtain sufficient open-loop
phase margin at the required cutoff frequency. Figure 11c shows the Bode diagram of the
external voltage control circuit. The phase margin at the cut-off frequency is greater than
zero, and the system is stable. Parameters of the control system designed as described in
Section 3 are given in Table 2.

Table 2. Parameters of the control system.

Mode PI Controller Parameters

Balancing mode when not using load Kpb = 0.35, Kib = 320

Balancing mode when using load Kpc = 0.15, Kic = 132
Kpv = 0.063, Kiv = 8.6

4. Simulation Results

To verify the effectiveness of the above SOC balancing strategy, a system model with
five battery cells was built and simulated using Simulink for validation, and compared
with the balancing strategy described in [26]. The balancing strategy described in [26] can
be summarized as the discharge of the battery module with the highest level of charge
to the entire battery module, but this will lead to the repeated charging and discharging
of the battery module with the highest level of charge. It is worth noting that only three
battery modules were used in [26], but in order to better illustrate the balancing strategy,
this article uses five battery modules for simulation, and the same settings can be applied
to more battery modules. When the control system detects that the difference between the
maximum and minimum SOC of the battery module exceeds the set value, the balancing
starts until the SOC of all battery modules reaches equilibrium, and the balancing process
ends. The simulation model adopts a lithium-ion battery equivalent to 18,650 batteries,
with a rated voltage of 3.7 V and capacity of 2000 mAh. The switching frequency is 20 kHz,
the inductance is 2 mH, and the capacitance is 220 μF. SOC1~SOC5 are 59.5%, 59%, 60%,
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58%, and 58.5%, respectively. The basic parameters of various devices are shown in Table 3.
The overall block diagram of the system simulation is shown in Figure 14. Set the system
step time simulation to 2.5 × 10–5 s. Note: the purpose of setting a smaller SOC difference
between batteries is to accelerate simulation time to verify the effectiveness of the proposed
balancing strategy.

Table 3. Parameters of simulation experiment.

Parameters Size

VB1~VB5 3.7 V
CB1~CB5 2 Ah

SOC1 59.5%
SOC2 59%
SOC3 60%
SOC4 58%
SOC5 58.5%

L 2 mH
C 220 μF
R 100 Ω
f 20 kHz

4.1. Balanced Simulation When No Load Is Used

When no load was used, the balancing current was set to 1 A for the simulation
experiment. To verify the effectiveness of the proposed new balancing control scheme, a
comparison and analysis were conducted with the balancing strategy proposed in [26]. The
SOC variation, balancing current, and output voltage of the battery module under the two
balancing strategies are shown in Figures 15 and 16, respectively. The equilibrium time
and integral of squared error criterion (ISE) of the two balancing strategies are shown in
Table 4. Under the new balancing strategy, the battery module SOC reaches equilibrium in
approximately 219 s, while the balancing strategy in [26] achieved equilibrium at around
415 s. The proposed balancing strategy improves the balancing speed by approximately
47.2%, with the balancing current remaining stable around 1 A, and its current ripple
being relatively small, the ISE is approximately 0.267. Compared with the balance strategy
in [26], the ISE is approximately 1.849, indicating that the new balancing strategy has better
balancing performance.

Figure 14. System simulation block diagram.
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(a) 

 
(b) 

Figure 15. Simulation of the proposed balancing strategy when no load is used: (a) SOC variations of
battery modules; (b) balanced current.

(a) 

Figure 16. Cont.
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(b) 

Figure 16. Balanced simulation when no load is used in [26]: (a) SOC variations of battery modules;
(b) balanced current.

Table 4. Battery equalization time and the size of current ISE when no load is used.

Balancing Strategy Battery Equalization Time ISE

New 219 s 0.267
Old 415 s 1.849

4.2. Balanced Simulation When Using Load

When a load was used, the output voltage was set to 15 V for the simulation exper-
iment. The SOC variation, balancing current, and output voltage of the battery module
under the two balancing strategies are shown in Figures 17 and 18, respectively. The
equilibrium time and ISE of the two balancing strategies are shown in Table 5. The battery
module SOC reaches equilibrium at approximately 242 s with the proposed new balancing
strategy, while the balancing strategy in [26] reached equilibrium at around 416 s. The
proposed balancing strategy improves the balancing speed by approximately 41.8%. The
balancing current in the proposed new balancing strategy remains stable at around 1 A,
and the output voltage stays stable at 15 V with relatively small current ripple and voltage
ripple, the ISE of the output voltage is approximately 1.686. In contrast, the balancing
current in [26] was approximately 1 A, and the output voltage stayed stable at 15 V, and
the ISE of the output voltage was approximately 2.517. Therefore, the output voltage ripple
of the proposed new balancing strategy is relatively small.

To further validate the effectiveness of the proposed equilibrium strategy, the SOC
value of the battery was modified to align with the approach presented in [26]. The SOC
values of batteries B1 to B5 are set to 80%, 79.5%, 79%, 78.5%, and 78%, respectively. Subse-
quently, the simulation was conducted once again. This adjustment was made to ensure
consistency and enable a comprehensive evaluation of the proposed strategy’s performance.
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(a) 

 
(b) 

(c) 

Figure 17. Simulation of the proposed balancing strategy when using load: (a) SOC variations of
battery modules; (b) output voltage; (c) balanced current.
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(a) 

(b) 

 
(c) 

Figure 18. Simulation of the balancing strategy when using load in [26]: (a) SOC variations of battery
modules; (b) output voltage; (c) balanced current.

Table 5. Battery equalization time and the size of voltage ISE when load is used.

Balancing Strategy Battery Equalization Time ISE

New 242 s 1.686
Old 416 s 2.517
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In the simulation experiment, when there was no load, the balancing current was set
to 1 A. The SOC variations and balancing current of the battery modules are illustrated
in Figures 19 and 20, respectively. The equilibrium time and ISE of the two balancing
strategies are shown in Table 6. With the new balancing strategy, the battery module’s
SOC reaches equilibrium in approximately 218 s, whereas the balancing strategy described
in [26] achieved equilibrium at around 411 s. The proposed balancing strategy improves the
balancing speed by approximately 47.0%. Additionally, the ISE for the balancing current in
the proposed equilibrium strategy is approximately 0.268, whereas the ISE for the balancing
current in [26] was approximately 1.845.

 
(a) (b) 

Figure 19. Simulation of the proposed balancing strategy without using load: (a) SOC variations of
battery modules; (b) balanced current.

 
(a) (b) 

Figure 20. Balanced simulation of unused load in [26]: (a) SOC variations of battery modules;
(b) balanced current.

Table 6. The second working condition-Battery equalization time and the size of current ISE when no
load is used.

Balancing Strategy Battery Equalization Time ISE

New 218 s 0.268
Old 411 s 1.845

In the simulation experiments using a load, the output voltage was set to 15 V. The
SOC variations and output voltage of the battery module under the two balancing strategies
are depicted in Figures 21 and 22, respectively. The equilibrium time and ISE of the two
balancing strategies are shown in Table 7. With the proposed new balancing strategy, the
battery module’s SOC reaches equilibrium at approximately 244 s, while the balancing
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strategy mentioned in [26] achieved equilibrium at approximately 413 s. The proposed
balancing strategy improves the balancing speed by approximately 40.9%. In terms of
the output voltage, the ISE for the proposed strategy is approximately 1.683, whereas the
ISE for the strategy in [26] was approximately 2.514. Hence, the proposed new balancing
strategy exhibits relatively small output voltage ripple.

 
(a) (b) 

Figure 21. Simulation of the proposed balancing strategy when using load: (a) SOC variations of
battery modules; (b) oOutput voltage.

 
(a) (b) 

Figure 22. Simulation of the balancing strategy when using load in [26]: (a) SOC variations of battery
modules; (b) output voltage.

Table 7. The second working condition-Battery equalization time and the size of voltage ISE when
load is used.

Balancing Strategy Battery Equalization Time ISE

New 244 s 1.683
Old 413 s 2.514

Based on the above simulation results, the following conclusions can be drawn:

1. The newly proposed equalization strategy results in a significant enhancement of
balancing speed, regardless of the presence or absence of load.

2. Without utilizing load balancing, the equalizing current remains at 1 A. With the
implementation of the new strategy, the current ripple is reduced, indicating an
improvement in system stability.
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3. When using load, where the output voltage on the load is set to 15 V, the new balancing
strategy demonstrates diminished voltage ripple, which implies an augmentation in
overall system stability.

5. Discussion

The proposed new balancing strategy showed significant improvements in balancing
speed compared to the balancing strategy described in [26]. Furthermore, there was
a certain enhancement in system stability, indicated by the reduced current ripple and
voltage ripple during balancing. This can be attributed to the fact that the balancing strategy
operates on a single-cell-to-single-cell basis, transferring energy from the battery with the
highest state of charge to that with the lowest state of charge, thereby avoiding repeated
charge and discharge cycles in certain batteries. However, the limitation of this balancing
strategy lies in the need for a larger duty cycle when load balancing is performed. This is
due to the fact that only one battery is supplying power during the process, necessitating a
higher duty cycle to meet the requirements of output voltage. However, it should also be
noted that this integrated reconfigurable converter system only enables adjacent batteries to
be connected in series in order to supply power together, and cannot bypass intermediate
batteries. For instance, B1 and B2 can be connected in series to simultaneously supply
power to the load, but B1 and B3 are unable to be connected in series with the load by
bypassing B2. This limitation provides potential for improvement in future research.

6. Conclusions

In this paper, an improved battery balancing strategy was presented for application
in integrated reconfigurable converter systems. The integrated reconfigurable converter
system combines a reconfigurable battery system with a converter system, which can be
configured into different operating modes based on the battery’s state: supplying power to
the load mode and balancing mode. When supplying power to the load without the need
for battery balancing, the reconfigurable battery system combined with a boost converter
can select the input voltage according to the demand. When there is a significant charge
difference between the batteries and the system enters the balancing mode, the improved
balancing strategy allows balancing to be performed both during no-load conditions
and while supplying power to the load. The balancing mode adopts a PI controller for
control, and a simulation model was established using MATLAB/Simulink to validate
the effectiveness of the simulation strategy and compare it with previous strategies. The
simulation results demonstrate that regardless of the presence or absence of a load during
balancing, the balancing speed is improved, and the system’s stability is also enhanced.
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Abstract: Electromobility and autonomous driving has started a transformation in the automo-
tive industry, resulting in new requirements for vehicle systems. Due to its functions, the electri-
cal/electronic (E/E) architecture is one of the essential systems. Zonal E/E architecture is a promising
approach to tackle this issue. The research presented in this paper describes a methodology for
determining the optimal number of zones, the position of the zone control units (ZCU), and the
assignment of electric components to these zones and ZCUs. Therefore, the design of the power
supply and the wiring harness is essential. This approach aims to identify the most suitable system
architecture for a given vehicle geometry and a set of electric components. For this purpose, the
assignment of electric components is accomplished by k-means clustering, and Dijkstra’s algorithm is
used to optimize the cable routing. As ZCUs will be the hubs for the in-vehicle data and information
transport in zonal architectures, their position and their number are crucial for the architecture and
wiring harness development. Simulations show a suitable zonal architecture reduces wiring harness
length as well as weight and brings functional benefits. However, the number of zones must be
chosen with care, as there may also be functional limitations.

Keywords: E/E architecture; clustering; wiring harness; zonal architecture; zone control unit

1. Introduction

The automotive industry is undergoing a fundamental transformation, which began
a few years ago with the rise of electric mobility [1,2]. The energy density and thus the
range of battery electric vehicles (BEV) is continually increasing as well as safety, which
is indicated by falling fire accident numbers [3]. Katis summarizes the advancement in
autonomous driving by abilities like autopilot and assisted navigation, wherefore further
sensor technologies like lidar and radar as well as data analysis approaches using artificial
intelligence are essential [4]. The rising number of electric vehicle production and sales
leads to reduction in component cost according to the International Council on Clean
Transportation (ICCT) [5]. High research focus is put on new battery materials, which are
supposed to bring a strong increase in energy density of batteries [3–5].

Autonomous driving, digitalization, and electric mobility place new demands on
vehicles and their systems such as the introduction of voltages above 60 V, the integration
of additional sensors (lidar, radar) and data processing units for autonomous driving
(computer vision, artificial intelligence), cloud services, and better connectivity within the
vehicle and with its environment [6]. With a rising number of functions, the complexity of
the vehicle increases, thus the in-vehicle networks need to fulfill higher and completely new
requirements, which makes a profound change indispensable. Looking at the vehicle’s en-
ergy supply system, this means fundamental changes in the area of hardware and software.
With the growing demand for BEV, platforms are being developed specifically to better
meet their needs. However, they are still based on the E/E architecture of previous vehicle
generations using internal combustion engines. One architectural approach supporting the
advancing digitalization and connectivity is the zonal E/E architecture [7].
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The E/E architecture of vehicles has grown rapidly in recent years. The first architec-
tures included a few components and connections, including the 12 V battery, the lighting,
and the ignition system. With the steady influx of electrical as well as electronic hard-
and software, bus systems were necessary to reduce the number of interconnect lines.
Over the years, these architectures have evolved and today almost all vehicles still use
a decentralized architecture and domain controllers to bundle all functionalities of a do-
main. Continuous integration of additional functions, following the “one function per
ECU”-approach, increased the number of ECUs to as many as 100. In addition, the wiring
harnesses can be up to five kilometers long and weigh 60 to 80 kg, with individual cables
having a length of up to eight meter [7,8]. Although it is common to arrange interrelated
functions in one bus system, several ECUs, even from different busses, are usually required
to realize a customer-related function. The advantage of this architecture is a relatively
uncomplicated extension by single functions. The manufacturer integrates a new ECU
with the corresponding function into the vehicle and connects it to the communication
structure. However, decentralized architectures show some disadvantages regarding the
changing requirements portfolio. The importance of software in vehicles has increased
significantly in recent years and this trend will continue. Therefore, the extension of existing
functions as well as the addition of new functions mainly involves new software. Due to
the “one function per ECU” approach and its hardware parts developed for one specific
function, it is also necessary to change parts of the hardware in current architectures. Fur-
thermore, this approach leads to poor utilization of the available weight and volume. This
is demonstrated by two ECUs, both of which perform separate functions. If combined,
the weight and volume of the computing unit will increase, but the peripheral elements
would increase relatively less since it is sufficient to have only one of them. The length
and weight of the wiring harness in technical systems are proportional to the complexity
of the architecture, i.e., the number of its components, connections, and interfaces. As the
number of ECUs increases, so does the amount of cabling. This leads to weight increase,
as well as restrictions in the composition of the systems, thus causing an increase in cost
and time. Another challenge pushing the decentralized architecture to its limits is the high
number of variants [9]. The required combinations of hard- and software determine the
complexity of a variant. One variant consists of the basic functionalities in combination
with the equipment- and market-specific functions [10]. A high number of variants, which
is proportional to the quantity of ECUs, demands great effort for developing architectures
and extending them. In addition, a high number of software variants and their specific
requirements can increase the number of hardware variants [11].

Although vehicle manufacturers are aware of the problems of the decentralized archi-
tecture, current applications show little innovation. The large number of dependencies on
other systems means that changes must be made over multiple product generations [12,13].
Since a first generation of zone controllers is already available, e.g., from Bosch or Vitesco, it
can be expected that these will gradually replace existing ECUs in the coming years [14,15].
VW and Cariad follow a similar approach called E3, combining multiple ECUs into one
physical ECU with multiple virtual ones [16]. To take full advantage of these technologies,
methods and tools are necessary to design zonal architectures. Therefore, the aim of this
paper is to create a method that helps define the architecture and the ZCU. This will help
developers to evaluate concepts in an early phase and provide further requirements for the
design of the ZCUs.

The article is structured as follows. After introducing current architectures, Section 2
presents the state of the art through two aspects. First, development trends of E/E architec-
ture and features of zonal E/E architectures are given. Based on this, a practical approach
to implement a zonal architecture in a test vehicle is shown. Secondly, the already existing
measures for the optimization of vehicle power supply systems are presented considering
the packaging and wiring harness design. These are checked in regard to their suitability
to achieve a system that is optimum even under changing conditions. Section 3 deals
with the novel method to develop and evaluate the zonal E/E architectures based on a
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design of the power supply system and wiring harness. It consists of several steps for
analysis, conceptual design, dimensioning, and evaluation, including k-means and Dijkstra
algorithm. In Section 4, the autoSHUTTLE, one of the UNICARagil vehicles, is evaluated
for zone numbers of one to eight. Section 5 identifies findings of this paper and potentials
for further research.

2. Power Supply in Zonal E/E Architectures: Basic Concepts and Research Gap

2.1. Basic Concepts: Shift in E/E Architecture

One centralization approach is the division of the E/E architecture into domains, such
as powertrain, infotainment, and body, enabling a more structured architecture. When it
was still possible to implement one function per controller, the domain-centralized archi-
tecture made it easy to add and verify individual functions. However, this advantage is
dwindling with the increase in cross-domain functions and greater connectivity within the
vehicle and with its environment [17]. Moreover, the domain-driven structure comes with
two further drawbacks: The first is the high communication effort between communication
nodes, as ECUs of different domains need to interact for many customer-related func-
tions. The other is the blurring of boundaries between domains by strongly cross-domain
functions. This results in a fuzzy structure, especially for autonomous driving and more
digitalized vehicles. One possible approach addressing these issues is a cross-domain
centralized architecture. Meaning, the functionalities of several domains are bundled in
one ECU. Vitesco Technologies combines all the functions that are needed for driving in
one ECU [15]. Yet, there is one major disadvantage, namely the communication effort. As
the functions in the cross-domain controller increase, so does the calculation effort. Thereby,
the bandwidth necessary to exchange data between these ECUs increases, leading to a
heavier and more complex wiring harness [18].

The zonal architecture is helpful in tackling this problem. In contrast to domain-based
and cross-domain-based architectures, the zonal architecture does not bundle or center
functions with respect to domains; instead, it structures them according to geometric
aspects [19]. Therefore, the vehicle is divided into zones, each with its own ZCU [11]. All
sensors and actuators located in the same zone are connected to the corresponding ZCU.
There are approaches in which the ZCUs only transmit the data to a central processing unit.
It is also possible to process zone-related functions directly on the ZCU in order to relieve
the central processing unit and the communication volume [8,20]. An approach towards
the ZCU are generic ECUs as proposed by Tomar [21]. Generic ECUs are general-purpose
nodes, which can be used for different processing tasks within the vehicle. Bosch estimates
a weight reduction in the wiring harness of 15 to 20% by using a zonal architecture, while
EDAG expects potential savings of up to 30% [7,22]. The zonal approach also enables
more point-to-point connections of safety-critical components, making it easier and more
cost-effective to ensure functional safety. Such architectures are already under development.
However, no manufacturer known to the authors is currently using such architecture in
a series production vehicle. Most system suppliers typically divide the vehicle along the
longitudinal axis and one or more times parallel to the transverse axis, thus obtaining four
to eight zones [23–26].

As other applications, such as unmanned aerial vehicles (UAV) and robots, also have
an E/E architecture, it may be possible to utilize the benefits of zonal architecture in them
as well. Cui’s research indicates a reduction in wiring harness length and weight by at least
16% [27]. Shrestha introduces a domain-based E/E architecture for UAVs and points out
that the centralization of E/E architectures will likely introduce zonal architecture in UAVs
in the future [28].

Figure 1 shows the geometrical and the functional view of the UNICARagil vehicle
architecture. Figure 1a displays the geometrical view with the separation into four zones.
The functional architecture with the components and their interfaces is shown in Figure 1b.
In the UNICARagil project, the research consortium designed and built a platform for four
autonomous vehicles [29–32]. This platform corresponds to a four-zone architecture, but
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without fully comprehensive zone controllers, as they were not available at the beginning
of the project. Instead, the vehicle uses one sensor module per zone to process data from
the optical sensors, one switch to connect components to the Ethernet network, and one
battery including the power distribution unit (PDU) to supply the components in the zone.
In addition to a reduction of the wiring harness weight, the zonal architecture has positive
effects on safety, modularity, and offers new degrees of freedom in packaging [33]. To
ensure the safety of the vehicle in the event of a driver absence, additional hardware is
required, which is best provided in separate zones. Considering the increasing number of
variants, modularity is an important factor. Interchangeable zones make the diversity of
variants more manageable in terms of hardware and software. Efficient packaging leads
to more cabin volume that is available for passengers. Furthermore, it offers additional
degrees of freedom in the development of the overall vehicle, especially in the integration of
other systems. In addition to handling the complexity of the system, freedom in packaging
as well as a high degree of modularity reduces development time and lower costs.

zone 4x

Sensor
ECUBaĴery Switch

Main
ECU

Backup
ECU

b) Functional viewa) Geometrical view

Energy
Data

Rear left

Rear r ight

Front left

Front r ight

Driving Direction

Figure 1. Four-zone architecture of the UNICARagil vehicles.

2.2. Related Work: Optimization of Vehicle Powernet in Conventional and
Domain-Based Architectures

The E/E architecture of vehicles consists of two essential subsystems: the power supply
system for storing and distributing electrical energy and the communication structure for
transmitting information. When comparing these two, it becomes obvious that the power
supply requires volume- and weight-intensive components such as batteries, DC/DC-
converters, and power cables. The communication structure, on the other hand, is mostly
defined by the connection logic, protocols, and the deployment of software functions on
the ECUs. As the zones in zonal E/E architectures are defined by geometrical aspects,
hardware has a greater influence on it. Therefore, the method focuses on the volume- and
weight intensive hardware of the E/E architecture, as the power supply systems, the wiring
harness and the ZCU. To ensure a suitable architecture for the communication structure, the
required cables for the vehicle networks are also considered. Several approaches optimize
the power supply systems in conventional and domain-based architectures, considering the
electrical components with varying level of detail. Since the E/E architecture design was
dominated by the functional criteria, the methods used for previous or current architectures
have a different perspective. As it is necessary to combine package, power supply, and
wiring harness design to realize a suitable zonal E/E architecture, recent methods focusing
on these aspects will be discussed.

Most approaches consider the battery as an essential component for BEVs, while
further components such as the wiring harness and voltage converter are only covered
by few. Package design usually takes the mass of the vehicle’s electrical system into
account as it influences the energy consumption. It focuses on the allocation of vehicle
space to components, the suitable arrangement of the vehicle components, and thus the
realization of the required space in the passenger cabin. Fuchs and Sethuraman focus
on a holistic vehicle design, thus considering the components of the E/E architecture
in a simplified way [34,35]. Their approaches to assess package compatibility are not
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suitable for zonal E/E architectures, as they do not consider the wiring harness. Berthold
and Fay developed approaches modeling the major components of the powertrain, as
well as the battery, by scaling the cells while neglecting other components of the E/E
architecture [36,37]. This can be useful for a technological or economic investigation of
vehicles, but is not suitable for the design of the E/E architecture in an early concept phase.
Lübke developed one of the first systematic approaches for optimizing the vehicle wiring
systems [38]. He simplifies the E/E architectures to nodes and their connecting elements,
varying the node position with a genetic algorithm. The costs are minimized under various
constraints, but it neglects the electrical design and packaging aspects. Diebig develops a
methodology for the simulation-based design of automotive wiring systems with a focus on
the current carrying capacity of the cables as well as the voltage stability [39]. The thermal
modeling of the cables is detailed, but the process simplifies the package situation and
does not include any battery design. Consequently, this method is optimal for designing
the power supply system at a later stage of development. Wang assesses common power
system topologies with respect to their voltage stability using high-power loads [40]. Even
though it is not possible to apply his method to power systems above 12 V, and it does
not consider cost aspects, there are meaningful findings. However, transferring these
findings to practical applications, especially in the context of zonal architectures, proves
challenging. Zhu develops a framework for optimizing wiring harnesses in aircraft, which
begins with the overall wiring harness design and meticulously optimizes the branch
structure in detail [41]. While path planning is optimized, and packaging limitations are
taken into account, additional electrical components are not considered. Braun presents
a methodology for designing conventional and high-voltage vehicle power systems [42].
She investigates the influence of degrees of freedom in the development process based
on energy consumption and total cost of ownership (TCO), taking voltage stability into
consideration. For this purpose, she employs models to simulate the electrical behavior of
the power network components. Braun also integrates cable routing into the methodology
to determine cable lengths. The procedure is suitable for vehicles with conventional and
domain-based architectures, but the lack of packaging consideration renders it inapplicable
to zonal architectures. Becker and Frank delve into detailed modeling of the high-voltage
energy storage system [43,44]. Both focus on the battery design investigating the effects on
the energy consumption and the driving performance. Therefore, the battery performance
is verified, but compatibility with the vehicle package is not ensured. In addition to
automotive applications, there are some methods from other disciplines. In addition to
the overall vehicle and communication structure, the power system, as part of the E/E
architecture, is subject to requirements from almost all vehicle systems. The vehicle systems
have demands regarding the power necessary and the position at which it should be
available. The communication network can be understood as one of these vehicle systems
or as an electrical load. In safety-critical cases, it may also be necessary for a component to
require two power supplies. The requirements of the overall vehicle are directly linked to
customer needs such as maximum speed, range, or possible load. Further requirements
may be functional and technical, such as maximum weight and volume or failure behavior.

In Table 1, we summarize the modeling characteristics of the described literature. In
conclusion, it is neither necessary nor possible to consider a detailed performance of electric
components or the powertrain, as these are not fully defined in early development phases.
Furthermore, a TCO calculation is possible, when environmental data are used as an input,
but since the method brings a small mass reduction in relation to the vehicles mass, there
might not be a significant efficiency benefit. The consideration of the E/E architecture
hardware components as well as the wiring harness with respect to the packaging is
essential for designing the most suitable zonal E/E architecture.
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Table 1. Literature review on electric system design with respect to packaging.

Reference Traction Battery Wiring Harness DC/DC-Converter LV-Battery Electric Loads Packaging
E M V E M R V E M V E M V E M V

[34] x x x x x x x x x x
[35] x x x x x x x
[36] x x x x
[37] x x x x
[38] x x
[39] x
[40] x x x x
[41] x x x
[42] x x x x x x x x x x
[43] x x x
[44] x x

Modelling aspects: E = Electric; M = Mass; R = Routing; V = Volume.

2.3. Research Gap and Contributions

In addition to the overall vehicle and communication structure, the power system, as
part of the E/E architecture, is subject to requirements from almost all vehicle systems. The
vehicle systems have demands regarding the power necessary and the position at which
it should be available. The communication network can be understood as one of these
vehicle systems or as an electrical load. In safety-critical cases, it may also be necessary for
a component to require two power supplies. The requirements of the overall vehicle are
directly linked to customer needs such as maximum speed, range, or possible load. Further
requirements may be functional and technical, such as maximum weight and volume or
failure behavior.

The shift to a zonal E/E architecture adds more requirements for the vehicle power
system. Instead of structuring the vehicle by domains according to functional affiliation,
the position of the component in the vehicle is decisive. This leads not only to limitations in
the software but also to physical boundaries in the vehicle structure. To achieve the highest
possible modularity, zones should be self-contained units. This allows different vehicle
variants and models to reuse zones with little effort. It follows that both components
and cabling should remain within their defined zone. The number of components that
do not belong to a zone must remain as small as possible in favor of modularity. A fully
self-sufficient zone would also require one independent energy storage device per zone,
which is actually not practical. Therefore, only a logical separation of the battery cells
is accomplished. Since a high number of energy storage units can be associated with
higher costs, engineers must weigh up which concepts is most suitable. Modularity and
practicability of the solution constantly have to be assessed.

Electric and autonomous driving define additional requirements and constraints for
tomorrow’s architecture, particularly affecting the wiring harness. The introduction of HV
components into vehicles has increased the number and the weight of the wiring harness
because a second voltage level is necessary and the drives are supplied electrically. The
zonal architecture solves this problem for the HV cables but only under certain conditions.
Most concepts currently show the use of only one HV battery [7,8,20,45,46]. However, since
the driver is no longer available as a fallback level due to autonomous driving functions, at
least one energy storage device must be available in the event of a traction battery failure,
providing the energy for driving an emergency trajectory. The introduction of new vehicle
concepts, such as autonomous shuttles, increases the vehicle height and leads to further
restrictions in regards of the packaging [30,47,48]. The high space requirement for the
passenger cabin reduces the available volume for components. On the other hand, the
number of antennas, sensors, and other electric loads rises at ceiling height, which also
increases the number of cables in those areas. Hence, zone architectures are necessary to
address these challenges [49]. In [7], an eight-zone architecture is assumed, while in [8], six
to eleven, in [46] and [13] six, in [45] four, and in [50] two to four zones are defined. This
already reveals a lack of a structured procedure for determining the number of zones. The
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criteria used to determine the number of zones are unknown. Likewise, the definition of
zone controllers is imprecise, and a clear delimitation of the zone areas does not take place.

The authors are not aware of any holistic method for determining the optimal zonal
E/E architecture or the optimal number of zones for same. In a holistic approach, it is
necessary to consider packaging, the design of the electrical system, the cable layout,
and their aggregation into an optimal architecture. Furthermore, one has to consider the
requirements of the overall vehicle level and other vehicle systems. This paper presents a
method supporting the comparison and selection of the optimal zone architecture already
in early phases of product development with a focus on system specification. Since the
selection of the architecture has extensive influence on the concept and costs of the vehicle,
it is necessary to make the correct decision in early phases. For this purpose, the method
carries out a zone optimization and designs the electrical system with few input data,
such as vehicle dimensions, as well as the electrical data and the positions of the electrical
components. The method combines optimization and design methods to map extensive
wiring system architectures and compare them in early development phases. This reduces
development and production effort of the cables, which results in an increase of redundancy
and modularity of the electrical system architecture and the entire vehicle.

3. Coupled Approach of k-Means Clustering and Dijkstra’s Algorithm for Zonal E/E
Architecture Optimization

To realize a holistic approach considering zone, battery, and wiring harness design,
several optimization and design steps are necessary. Figure 2 shows the entire methodology
to design a zonal E/E architecture with consideration of the power supply and the wiring
harness. The methodology starts with the architecture definition to determine boundary
conditions and discretization. In the next step, clustering techniques identify the opti-
mal cluster position for the ZCU. The cluster position is corrected, considering package
boundary conditions. Then, a genetic algorithm (GA) optimizes the HV traction battery,
and a further procedure allocates the cells to each zone by their power share in relation
to the vehicle’s entire power. Hereafter, the remaining components of the power supply
system are designed, comprising the 12 V battery and the 48 V supercapacitors (SCAP).
The algorithm designs and positions these components in the vehicle to ensure package
and concept compatibility. The routing of the cables is optimized utilizing the Dijkstra
algorithm and a map-based edge weighting. This allows determining the shortest cable
paths while considering requirements from the overall vehicle level and the packaging.

Architecture definition Evaluation and
Selection

BaĴery optimization
(NSGA-II)

Wir ing Harness
optimization

(Dijkstra algor ithm)

Zone optimization
(k-means clustering)

EndStart

Electr ic system
design

Figure 2. Design method for zonal E/E architectures.

3.1. Architecture Definition

For generating a three-dimensional grid of nodes and edges, the outer shell and
dimensions of the passenger cabin are needed. This forms the basis of the geometric
modeling. The nodes correspond to discrete points in the vehicle architecture, and the
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edges connect them according to the graph theory. After the removal of unused nodes
or edges, the remaining ones are available to the algorithm. The electrical components
are mapped to the node closest to their coordinates. The mapping of the other systems is
performed according to the position and the energy demand of their assigned electronic
components. Both sets of information are available, albeit with limited accuracy, prior to
the elaboration of the systems. In the following, the set of available edges, nodes, and the
power and position of the electrical loads is called the structure. In addition to the geometric
representation, an electrical one is necessary, defining the energy and information flows in
the architecture. Since it is not clear yet how the interface design of ZCUs will look, the
architecture specified in Figure 3 is assumed. It shows a block definition diagram using
the system modeling language (SysML). The E/E architecture is based on one or more
zones. Each zone requires a ZCU, which incorporates a DC/DC converter and a switch,
at least one HV battery cell, and electric components. The number of HV battery cells is
proportional to the electric power consumption in a zone and thus also proportional to the
number of electrical loads.

Figure 3. Block definition diagram of the hardware relations for the zonal E/E architecture in vehicles.

The 48 V SCAP and the LV battery are shared between several zones. Besides the
components, a zone is defined by the assigned space of the vehicle. Therefore, vehicle
volume elements are assigned to a zone, defining spatial affiliation and delimitation. In
addition to the structure, there are some functional dependencies. The ZCU controls the
energy flow on the LV level within a zone. An HV line, which is connected to the HV
energy storage via a PDU, supplies the ZCU. HV cables connect all other HV consumers
in the zone to the HV energy storage via the PDU. The information flow within a zone
corresponds to a star topology with the zone controller as the star point [51]. A ring line
connects the zone controllers, and one of them may operate as the central computing unit to
reduce wiring harness length. If a ring line is not applicable due to network specifications,
the central computing unit is connected to all ZCUs as in a star topology [52].

3.2. Zone Optimization

In order to utilize the potential for reducing cable length and weight, it is necessary
to minimize the distance between ZCUs and their dedicated loads. This is achieved by
clustering the position of the electrical loads and positioning the ZCU at the cluster centers.
Therefore, the method described by Maier is used and extended [53]. Since the possible
number of clusters is defined based on the literature review as k = {1, 2, . . ., 8}, k-means
clustering is most suitable. The aim of the k-means algorithm is to minimize the sum of the
quadratic Euclidean distances D between data points and cluster centers.

minD = ∑k
i=1 ∑xj∈Si

∥∥xj − μi
∥∥

2
2, (1)
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wherein ‖xj − μi‖2 indicates the Euclidean distance (l2 norm) between the centroid coordi-
nates μ = {μ1, . . ., μk}, and the data points X = {x1, . . ., xn}, 1 ≤ j ≤ n, which are categorized
into clusters S = {S1, . . ., Sk}, 1 ≤ i ≤ k; k, n ∈ N>0. Clusters are groups of data that are similar
regarding specific features. In this analysis, the features are the x-, y-, and z-coordinates of
the electric components. k-means algorithm comprises three steps: initialization, assign-
ment, and update [54]. In the initialization, the k cluster centers are positioned randomly in
the search space. In the second step, the data points X are assigned to the clusters S, which
has the nearest mean to the data point according to

Si =
{

xj :
∥∥xj − μi

∥∥
2

2 ≤ ∥∥xj − μi∗
∥∥

2
2 ∀i∗, 1 ≤ i∗ ≤ k

}
. (2)

For the update step, the new cluster centers are calculated based on the features of
the assigned data points. Steps two and three are repeated until the algorithm converges,
meaning a further iteration causes no change in the data point-to-cluster assignment.
The k-means ++ -algorithm uses the same procedure as k-means, except for a different
initialization [55]. The first cluster is initialized randomly. Based on the distance between
each data point and the nearest cluster point, the next cluster point is selected. The
probability that a datapoint is selected as a new cluster center is proportional to the squared
distance to its nearest cluster center. The benefit of the k-means++ initialization step is
a shorter convergence time with similar results, as the initial cluster centers are already
closer to the final ones. The sum of the Euclidean distances is proportional to the wiring
harness cost and enables the identification of suitable ZCU positions. Manhattan distance
describes the cable routes better, but as there are limitations like the passenger cabin, they
are optimized in a later step using the Dijkstra algorithm.

Nevertheless, there are two issues that k-means algorithm cannot handle: The approx-
imation of the vehicle by a grid and a uniform cluster size. As the vehicle is approximated
by a three-dimensional grid of nodes and edges, components may not be positioned exactly
on a node and therefore need to be assigned to a node. Starting from the optimal centroid
position, the next available node is searched for and determined as the ZCU position, and
the Euclidean distances are recalculated based on this node. The consistent cluster size is
essential to realize uniform ZCUs, which will increase the quantity of similar produced
units. This will lead to increased flexibility for hardware and software and a reduction of
the cost. Based on the number of data points n and the number of clusters k, the maximum
number of components per cluster, respectively, ZCU xmax is determined using

∀Si ∈ S : |xmax| ≤
⌈ n

k

⌉
. (3)

To ensure that the clusters comprise a similar number of data points, the clusters ci are
categorized into three groups by the following condition, wherein |xi| is the number of
data points assigned to a cluster:

• I |xi| < |xmax|, the cluster is in the receiver group,
• if |xi| > |xmax|, the cluster is in the deliverer group,
• if |xi| = |xmax|, the cluster is in the neutral group, which is not considered in the

balancing process.

The balancing process sorts data points from the group of delivering clusters to the
nearest cluster of the receiving group. After each resorting step, the receiving and the
delivering clusters are evaluated by the conditions above and regrouped. The balancing
process continues until all clusters are in the receiver or in the neutral group. While the
balancing process increases the sum of the Euclidean distance, it simultaneously reduces
costs for the ZCUs. ZCU costs CZCU are calculated using a third-degree polynomial that is
assumed to account for the effect of cost degression and is expressed as follows:

CZCU = fZCU ·
(

p1·k3 + p2·k2 + p3·k + p4

)
, (4)
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where fZCU is the cost factor of a ZCU, k is the number of zones, respectively, the number of
ZCUs in an architecture. The coefficients of the polynomial, p1, p2, p3, and p4, are listed in
Appendix A.

3.3. Battery Optimization

The HV battery is a decisive component for the vehicle powernet, as it is one of the
components with the highest weight and volume. Therefore, an optimal design of the
battery offers potential for increasing vehicle performance and improving the packaging
efficiency considering other requirements. Becker describes an approach for designing the
optimal traction battery by mixing different battery cells using a genetic algorithm, namely
the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [33]. As the disadvantages
of different cell types outperform the benefits, most vehicle manufacturers and suppliers do
not pursue this approach further. The traction battery in this article is thus also generated
using one cell type. The optimal cell number for one cell type is determined using the
Non-Dominated Sorting Genetic Algorithm II (NSGA-II), which shows good results for
various optimization problems [56]. The optimization problem concerns the optimal design
of the energy storage system considering the criteria acceleration, component cost, range,
volume, and weight. It is assumed that there is an exponential relationship between the
number of cells and acceleration, while a linear relationship is supposed for the other
criteria. A genetic algorithm is employed to solve the optimization problem efficiently
and identify a sufficiently robust solution. The number of cells is used as the optimization
variable via binary encoding. Beginning with an initial population, the genetic algorithm
generates new populations that are either equivalent or superior. Three mechanisms are
available for this purpose: mutation, recombination, and a specific selection mechanism
described later on. Recombination combines several existing individuals, while mutation
modifies an individual at one or more positions in the binary encoding. Recombination is
essential for improving the solution, while mutation helps prevent constraints imposed by
local minima. The choice of the recombination and mutation rate decisively influences the
quality of the solution as well as the computation time. The selection mechanism consists
of a binary tournament pairing selection as well as sorting by displacement distance. For
tournament pairing selection, it is necessary to evaluate the performance of each individual
concerning the target functions. The sum of the equally considered five objectives cost fC,
mass fm, volume fV, acceleration fa, and range fR is the fitness value g according to

ming = fC + fm + fV + fa + fR (5)

with the lower boundary for the number of cells nC defined as

nC =
EVeh
EC

, (6)

wherein EVeh is the energy requirement for the demanded vehicle range and EC is the energy
of a single cell. The energy demand of the vehicle is determined using a one-dimensional
driving model. Based on acceleration and rolling resistance as well as drag, the energy
consumption of the vehicle drives is determined for an autonomous shuttle bus using
Worldwide Harmonized Light Vehicles Test Procedure (WLTP). The consumption of the
electric components is simplified by their average power consumption, which is based on
the power consumption and the duration of usage for each device. The necessary electric
loads were determined based on the components of the UNICARagil platform. As the
vehicles based on this platform are able to fulfill functions specified in SAE automated
driving level 4, the dataset is considered as representative for shuttles of level 4 and
below [57]. The electric data of the components do not match those of the UNICARagil
vehicles as these are prototypes. To achieve better alignment with the values of production
vehicles, literature and datasheets were consulted. The data for the electric components are
listed in Appendix A.
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The algorithm stops when the termination criteria are met. Using the NSGAII algo-
rithm, a Pareto front is generated, which consists of a set of optimal solutions. When no
weighting is applied to the cost factors, the variant with the lowest sum of cost factors is
chosen. Depending on requirements, development preferences, and vehicle classification,
a weighting factor can be obtained to identify the most suitable solution from the Pareto
front. To achieve high modularity, it is necessary to allocate the optimized number of
battery cells for the entire vehicle to its various zones. This allocation is based on the power
requirements of each zone, as energy can be shifted between zones during operation. The
shifting of power between zones would be necessary in short time, which comes with
higher cost, as all electric components need to withstand higher currents. The number of
battery cells nB,i per zone is determined using

nB,i = ∑k
i=1

Pi
PVeh·nB,tot

, (7)

where Pi is the electric power consumption in zone i, PVeh is the electric power consumption
of the vehicle, and nB,tot is the total number of cells.

In addition to optimizing the system design and placement of the power supply system,
the aim is to achieve overall vehicle optimization. In terms of the vehicle’s performance, this
is considered in the evaluation criteria of the genetic algorithm. Requirements regarding
the position of the battery cell are considered too. The battery’s volume is constrained by
the space below the cabin and between the wheels. The battery’s height is determined by
the number of cells necessary to fulfill the range requirements. This ensures that the battery
can still be manufactured and mounted as a single component and a logical separation of
the battery cells B = {B1, . . ., Bm}, 1 ≤ i ≤ m, to the zones brings modularity and reliability.
To avoid compromising driving dynamics, the battery cells are positioned on the chassis
floor symmetrically to the longitudinal axis. The placement in the transverse direction is
determined by the position and power distribution of the drive units. The UNICARagil
platform uses four drive units with equal power share, each in one corner resulting in a
symmetrical placement in reference to the transverse axis. Many passenger cars have one
drive unit in the front, causing a shift towards the front of the vehicle. Once the entire
battery is placed, the cells are logically separated based on their nearest zone, considering
the assigned number of battery cells. Therefore, there are no battery cells Bi* with a shorter
Euclidean distance to the cluster center μi than its assigned cells Bi, so the following applies:

Bi : ‖Bi − μi‖2 ≤ ‖Bi∗ − μi‖2 , ∀i∗ = 1 ≤ i∗ ≤ k. (8)

As a result, all battery cells are positioned at the vehicle bottom and closest to their
respective zone. Another approach is the separation of cells from the main battery and
therefore realizing decentralized energy storages. This is not investigated in detail here, as
separate auxiliary components like the battery management system (BMS) and the housing
would lead to disproportionately higher additional costs. With respect to housing, there is
research about approaches to tackle this issue, using batteries that are integrated into the
chassis and do not have their own housing [58].

3.4. Electric System Design

Besides the HV battery, it is necessary to design and position LV components. For this
purpose, the architecture presented in Section 3.1 is assumed. Since the ZCUs serve as the
central power distributors, the DC/DC converters will be integrated into them. This means
that the 12 V battery and an optional 48 V SCAP remain for design and positioning. In
order to guarantee the function of the LV components in case of a failure in the HV voltage
level, two 12 V batteries and 48 V SCAPs are used. Two of each are used to avoid large and
heavy components. The components with safety-critical functions of the dedicated zones
are connected to the battery or the SCAP depending on their power level. The design is
performed based on a worst-case scenario, assuming that the zone with the most powerful
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components dedicated to the battery or SCAP, stops operating. The time for an emergency
halt maneuver tEH and the power of the safety-critical components in this zone on the
corresponding voltage level, ∑PC12V,i for 12 V and ∑PC48V,i for 48 V, are used to determine
the necessary energy of the batteries EBat,i or SCAP ESC,i according to

EBat,i = ∑2
i=1 PC12V,i·tEH (9)

and

ESC,i =

{
∑2

i=1 PZ,48V,i ·tEH , PC,max ≤ ∑ PZ,48V
∑2

i=1 PR,max·tEH , PC,max > ∑ PZ,48V
. (10)

Recuperation is considered in the design of the 48 V SCAP. Therefore, the power of
the 48 V loads PZ,48V and the maximum charging power due to the recuperation PR,max
of the drive units are compared, and the higher one is selected. The position of the 12 V
batteries and the 48 V SCAPs is determined by minimizing the distance to the connected
components.

3.5. Cable Routing Optimization:

The components of an E/E architecture are connected by cables for energy and infor-
mation transmission. Cables for energy transmission are denoted by E = {E1,..., Em}, the
cables for information transmission by I = {I1,..., In}. Since there is currently no standard for
energy and information transmission on the same cable in the automotive sector (cf. USB in
the consumer sector), a distinction between cables for energy and information transmission
is made. In the following, the term wiring harness indicates all cables considering power or
data transmission. As the vehicle structure is approximated by a three-dimensional graph
of nodes and edges, the cable routing is treated as a single-source shortest path (SSSP)
problem. Dijkstra algorithm is a well-established algorithm to solve SSSP problems as it
considers the edge weight, which represents requirements of other vehicle systems, e.g.,
temperature or EMC. Using Dijkstra’s algorithm, the length of each cable is minimized
regarding edge cost. Dijkstra’s algorithm aims to minimize the distance of a path; for or-
thogonal three-dimensional grids, it is similar to the Manhattan distance, which is defined
as the sum of the absolute differences of all vector components [59]. The nodes are defined
by the properties distance and predecessor. Furthermore, they are classified into two sets
of nodes: the unvisited and the visited ones. In the initialization step, all nodes are put
into the set of unvisited ones. The algorithm starts by inspecting the starting node, while
the predecessor is empty for all nodes. Therefore, the distance for the starting node is set
to zero, for all other nodes it is infinite. Beginning with the starting node, all nodes are
visited. When a node is investigated, the distances of all its neighbor nodes are checked
and updated if the shortest path to the visited node plus the distance to the neighboring
node is less than the current distance. After completing this procedure for all neighboring
nodes, the current node is put into the set of visited nodes and never visited again. The
next inspected node is the unvisited node having the shortest distance to the starting node.
The stopping criteria depends on the aim of the algorithm. The variant used here, plans the
shortest path between start and end node. Therefore, it stops as soon as the target node
is put in the set of visited nodes. The other variant identifies the shortest path between a
starting node and all other nodes and terminates when there are only unvisited nodes with
distance infinite left. This means that there is no path to the start node.

Based on the system definition described in Figure 3, start and end point are specified
as follows: when the voltage of the start component is below 60 V, the target component is
the ZCU, otherwise it is the HV PDU. For information processing, the ZCUs are always
the targets, except for the cables connecting the ZCUs. The cost of the cables is determined
using

CC, El = ∑xjεX ‖x − γ‖1·
(
cI + cE· fE·d

(
xj
))

, (11)
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wherein ‖x − γ‖1 is the Manhattan distance (l1 norm) of the starting node x, which are
the electric components, and the target node γ, which is a ZCU or the HV PDU. cI is the
cost factor for information transmission cables in €/m, cE is the cost factor for energy
transmission cable in €/m, which is depending on the diameter of the cable, and fE is the
factor for the ground line, which is one for components that operate on a voltage below
48 V. Components that operate on 48 V or above need a separate ground line, therefore
the factor is two for them. Besides these cables, there is a ring line for data transmission
between all ZCUs, respectively, the centroids μ. Its length corresponds to the Manhattan
distance between the ZCUs, which is determined according to

CC,ZCU =

{
∑k

i=1 ‖μi − μi+1‖1·cI , i < k
∑k

i=1 ‖μi − μ1‖1·cI , i = k
. (12)

The effort required for cable installation can vary at local level. Influencing factors may
be preferred cable routing, temperature, distance to ZCUs as well as occupancy of existing
paths [49]. To reduce manufacturing time and cost, car manufacturers define main cable
routes. It is requested to use these when designing the cable route between components.
There are three common variants for designing the main cable paths: the E-variant, the
H-variant, and the double-H-variant [60]. According to Neckenich, especially for long
vehicles, the double H-variant is dominant. As the UNICARagil vehicles are shuttle busses,
the double-H-variant appears to be most suitable. This routing variant consists of two
paths along the longitudinal axis, one on each side, and two paths along the transverse axis,
approximately at one third and two thirds of the vehicle length. The routing is extended
to include four paths along the vertical axis of the vehicle, which are located in the four
corners, and a second double-H structure in the vehicle roof. In order to consider these
influences, a characteristic map for the graph is required. In Figure 4, the cost of all usable
edges for the Dijkstra algorithm of the autoSHUTTLE are visualized. The characteristic
map represents the requirements of the overall vehicle and the packaging to ensure that the
Dijkstra algorithm respects them in the optimization of the wiring harness. The extended
double-H-paths are indicated by lower edge weight in the vehicle floor and roof.

0

5.0

5.1

1

5

V
eh

ic
le

 h
ei

gh
t z

 Ve
h in

 m

5.1

1 4
Vehicle width

y 
Veh 

in m

2

3

Vehicle length x 
Veh 

in m

5.2

5.0 2
10 0 0

0.2

0.4

0.6

0.8

1

Figure 4. Characteristic edge cost map for cable routing optimization based on vehicle requirements.

3.6. Evaluation

Based on the previous optimization steps, the architectures are compared and evalu-
ated by cost, weight, system complexity, state of function (SOF), and zone balance. Compo-
nent cost and weight are estimated based on the electrical power or capacity utilizing cost
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functions. The definition of complexity for E/E architectures ΛE/E is based on the number
of components, their dynamic, and interfaces according to

ΛE/E = 1 − λp,i + λp,m + λp,d + λv,i + λv,m + λv,d

6
(13)

wherein λ ∈ Q [0, 1] indicates the components of complexity [53]. While the first index
represents the dimension (p for physical, v for virtual), the second index names the aspect
(i for interdependence, m for multiplicity, d for dynamic) [61].

Besides the development aspects like cost, weight, and complexity it is important
to consider the functional differences caused by topologies. By separating the vehicle in
zones, it is possible to realize self-sufficient functional units. They are supposed to operate
independently, and therefore a measure that determines the remaining functions, whenever
one zone has an error, is necessary. As the available energy Eel,SOF and power Pel,SOF are
proportional to the functions, they are used to define the E/E architecture state of function
SOFEE. For the determination of the SOFEE, the worst-case scenario is considered, and
therefore the most powerful zone quits operating. The SOFEE is determined based on

SOFEE = 1 −
(

Eel,SOF
Eel,tot

+
Pel,SOF
Pel,tot

)
2

, (14)

with Eel,tot as total energy and Pel,tot as total power of the architecture. The zone balance is
the sum of the relative deviations of all zone powers of an architecture from their average
power. The algorithm prioritizes these criteria according to the vehicle type and the user
requirements.

Software has a higher share in vehicle development today, which will further increase
in the future. As product development for software components is faster and more agile
than for hardware components, it will be important for these architectures to be updateable
and more flexible for changes. As the assignment of components defines the architectures, it
is representative to evaluate the quality of the clustering as a measurement for flexibility of
an architecture. There are different internal clustering validation measures as the Calinski–
Harabasz index (CHI), the Davies–Bouldin index (DBI), or silhouette coefficient (SC), which
are compared by Liu et al. [62]. The CHI is based on the similarity of a data point to
its cluster (separation) compared with the similarity to other clusters (cohesion). The
separation is defined by the distances between the data points in a cluster to their centroid,
and cohesion is determined using the distance of the cluster centroids to the global one.
The Davies–Bouldin index measures the quality of the clusters by comparing the distance
between clusters with the size of the clusters themselves. The silhouette coefficient uses
the average distance of an object to other objects in the same cluster and subtracts it from
the average distance of the object to the objects of the nearest other cluster. As electric
components in vehicles are distributed inhomogeneous, the distance between components
can be higher than the size of a cluster. Nevertheless, it is reasonable to put them in the
same cluster. Therefore, DBI and SC have a disadvantage against CHI, since they use a
global cluster centroid for comparison. As the clusters of electric components are classified
by geometric features reducing the total distance, the delimitation of clusters might not
be as clear as with a set of problem-specific features. Therefore, the results of DBI and SC
indicate a low to medium quality in cluster results, whereas CHI calculates an absolute
value. As the target is to identify the most suitable architecture, it is more reasonable to
use an index that puts the focus on the comparison of architectures instead of an index
evaluating the quality of the architectures. CHI is determined according to

CHI =
SSB
SSW

× (n − k)
(k − 1)

, (15)
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using SSB as between-cluster variance, SSW as within-cluster variance, k as the number of
clusters, and n the number of data points in X [63]. The between-cluster variance SSB and
the within-cluster SSW variance are determined using

SSB =
k

∑
i=1

|xi|·‖μi − xm‖2, (16)

and

SSW =
k

∑
i=1

∑
x∈si

∥∥xj − μi
∥∥2. (17)

|xi| is the number of data points of the dedicated cluster Si, xm is the mean of all data
points xj, and ‖μi − xm‖ and ‖xj − μi‖ are the Euclidean distance between two vectors.

4. Discussion

The methodology described is verified by means of simulations. For this purpose, the
structure of the prototype vehicle autoSHUTTLE and the electric components based on
literature are used. The main dimensions of the vehicle are shown in Appendix A while
the component data are listed in Appendix A. The vehicle has four-wheel hub drives and
four sensor modules with cameras, lidars, and radars in each of the four corners of the
vehicle. The other loads are distributed unevenly throughout the vehicle. Table 2 shows
the simulation results for the designed zonal architectures. The criteria are SOFEE, balance,
flexibility, the mass of the E/E architecture mEE, and the length of the wiring harness
LWH. The SOFEE and balance are normalized values reaching from zero to one, where one
represents the best possible fulfillment of the criterion. Rising zone numbers go along with
an increase in the SOFEE, as the power per zone and therefore the number of supplied
functions decreases. Higher SOFEE values indicate a lower complexity of the system, which
is meaningful as the wiring harness is highly simplified by zone separation. The breakdown
in several zones also reduces the complexity of the electronic components as the number of
states, the variants, and their dynamic behavior simplifies. The balance decreases as zone
numbers rise, caused by an increasing divergence in the power of the individual zones.
The higher the balance, the more similar are the zones and their ZCUs, leading to higher
modularity and less variants. Therefore, balance has a high influence on the variant cost,
but no influence on functional aspects. The flexibility, which is characterized by the CHI,
decreases as well with rising zone numbers.

Table 2. Functional criteria evaluation based on simulation of zonal E/E architectures from zone
numbers of one to eight.

Zone Number k 1 2 3 4 5 6 7 8

ΛEE 0.029 0.392 0.518 0.527 0.555 0.595 0.631 0.629
SOFEE - 0.437 0.558 0.624 0.669 0.717 0.701 0.767

Balance - 0.937 0.82 0.871 0.847 0.866 0.76 0.773
Flexibility - 100.5 62.01 32.7 45.2 29.0 28.9 24.6

An increased number of zones will come with both advantages and disadvantages.
While the availability of function improves, there is a slight decrease of the balance, which
is related to modularity. Flexibility lowers with a rising zone number, beside the five-
zone architecture, which stands out with an increased value in opposition to the trend.
Surjekat et al. discuss five different zonal architectures, having 3, 5 or 6 ZCUs [52]. In
these architectures, the ZCUs are interconnected using a star topology, ring topology,
or a combination of both. However, it is important to note that while they assess these
architectures in terms of flexibility and safety, comparing their results to the findings
outlined in this paper may not be meaningful. This is because the evaluation criteria are
not clearly defined nor is the wiring harness considered in detail in their assessment.
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Table 3 lists the mass mWH and length LWH of the entire wiring harness as well as the
separate values for the information transmission (mWH,I, LWH,I) and energy transmission
(mWH,E, LWH,E) cables. The wiring harness mass is reduced between 6.8 and 8.8%. While
all architectures show a reduced weight in comparison to the reference architecture with
one zone, the lowest weight is obtained for seven zones. Regarding the wiring harness
mass of the one zone architecture, one needs to consider that four drive units in each
corner of the vehicles were used, which is a major drawback for architectures with few
zone numbers, while the mass of almost 60 kg is still meaningful [7,8]. The mass for the
information transmission cables is reduced by up to one kilogram in accordance with
their length decrease. The length of the cables for energy transmission rises while their
mass decreases sharply. This is caused by the fact that more power cables are necessary
as all ZCUs need to be connected to the HV battery. The weight of the power cables is
reduced, as the cable diameter from the ZCU to the component is reduced. Evaluating
the length of the entire wiring harness for the different zone numbers, a reduction of 5.6
to 13.6% is accomplished. The overall decrease in mass and length shows that there is
potential to improve the E/E architecture by centralization, using ZCUs to optimize the
wiring harness. Cui reduces the length and mass of its wiring harness by 16% and more
considering only cables for information transmission [27]. With this method, their length
is reduced by 6.7 to 13.6% and their mass by 5.7 to 13.6%. The difference is caused by
the different application. In the following, the volumes of humanoid robots and vehicles
will be compared, so the terms height, width, and length will be specified for the robot as
follows: Height is the dimension from the back of the body to the front, that is, from back
to chest. Width is the dimension between the outsides of both hands, and length is the
dimension between the bottom of the feet and the top of the head. Comparing the volumes
of the humanoid robot and the vehicle, it can be seen that the longitudinal extent of both is
significantly greater than the extent in the other two axes. The ratio of length to height and
width is significantly smaller for the humanoid robot. A further difference is the limited
cable paths in robots, since no cables can be laid between the extremities. Thus, most cable
paths are longitudinal connections; elevated and transverse connections are only useful
for a few routes. In vehicles, on the other hand, connections are possible in all spatial
directions; only the vehicle interior prevents connections inside the vehicle. The restriction
to one spatial direction in humanoid robots leads to a higher percentage of weight and
length savings, since practically only the connections to the furthest away components
and short branches to the closer components are determined. Park reports reduction in
length of 24.7% and in mass of 24.6% [6]. The pure values of Park seem superior, while
one needs to consider that he focuses on end-to-end timing of messages and does not
provide information regarding the design procedure of the wiring harness as well as the
distribution of the ECUs in the vehicle. The end-to-end timing of messages is influenced
by the wiring harness design, while the results are still meaningful for the architecture
comparison. Regarding the wiring harness length and weight, the meaningfulness is
reduced as power distribution as well as wiring harness routing is not considered. Besides
the functional and package criteria, the cost is crucial when it comes to architecture design.
The cost for the entire E/E architecture CEE is decreasing with rising zone number caused
by decreasing cost for the information transmission CWH,I and energy transmission CWH,P
cables, whereby one should consider that CWH,E for one zone might be too high, as in a
one-zone architecture are power distribution devices to reduce cable mass. Comparing the
values listed in Table 4 with a recent study of the ICCT shows that the predicted costs are
reasonable [62]. The summed cost projection by the ICCT for the electric components in
BEVs are up to approx. USD 2000 (EUR 11,182.86, 5 September 2023) for 2019, while they
are decreasing to approx. USD 5000 in 2030.
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Table 3. Packaging criteria evaluation based on simulation of zonal E/E architectures from zone
numbers of one to eight.

Zone Number k 1 2 3 4 5 6 7 8

mWH in kg 58.48 23.6 22.92 16.93 16.4 15.74 14.49 14.77
mWH,I in kg 7.08 6.12 6.45 6.68 6.23 6.24 6.38 6.60
mWH,E in kg 51.40 17.48 16.47 10.25 10.17 9.50 8.11 8.17

LWH in m 529.0 467.8 499.0 514.8 492.2 503.0 523.2 546.6
LWH,I in m 236.0 204.0 215.2 222.8 207.8 208.2 212.8 220.2
LWH,E in m 293.0 263.8 283.8 292.0 284.4 294.8 310.4 326.4

Table 4. Cost evaluation based on simulation of zonal E/E architectures from zone numbers of one to
eight.

Zone Number k 1 2 3 4 5 6 7 8

CEE in EUR 13,160 11,535 11,520 11,242 11,265 11,285 11,271 11,308
CWH,I in EUR 177.0 153.0 161.4 167.1 155.85 156.15 159.6 165.15
CWH,E in EUR 2570.0 874.3 823.6 512.7 508.5 475.3 405.8 408.5

CZCU 150.0 225.0 265.7 300.1 343.0 396.7 450.4 480.6

5. Conclusions

In early development phases, technical details of most electrical components are
unclear. Since the power supply system interfaces with almost all systems, its design is
highly dependent on them. Late consideration in the design process leads to problems
in packaging, especially in regards to the wiring harness and the traction battery. This
paper introduces a method to tackle this issue. Based on a minimum of information
about, respectively, position, power consumption, and voltage level, a zonal architecture
is designed in early development phases. As there is an intense interaction between the
E/E architecture and its electronic components, developing one without the other will
cause significant problems. Having a closer lock on the components with the highest
problem potential, the traction battery and the wiring harness are the most critical of the
power supply system. The wiring harness spans the entire vehicle structure, and the
battery has a high weight and volume share of the vehicle. To tackle these problems,
a coupled approach of k-means clustering and Dijkstra algorithm is introduced. The k-
means algorithm identifies the most likely zone numbers for the components, the zone
classification, and the position of its central power and data device, the ZCU. This is
accomplished by clustering the position of the electric components and determining the
best position for the centroid with respect to the vehicle packaging. To ensure that the
proposed architecture is package-compatible, the design of the traction battery and the
wiring harness is integrated. Therefore, the battery for a given range is determined and
integrated in the vehicle packaging. The wiring harness is routed based on the definition
of the system using SysML v1.6 and with respect to requirements such as temperature or
EMC. This enables a synthesis of concepts from different disciplines and systems already
in an early phase. This design method enables the determination of the optimal number of
zones according to application-specific criteria. In this paper, functional, packaging, and
cost criteria are used to evaluate the variant. The selection of the best variant is dependent
on the development aim. For compact vehicles, the version with the lowest cost might be
the best one, and for high-class vehicles, an architecture with the best fulfillment of the
functional criteria is more suitable. With the presented method, it is possible to identify the
optimal zone architecture and design a vehicle power supply system, even when facing
uncertainties. Early identification of the optimal zone and power supply design increases
the quality of the solution and reduces iteration loops, thereby cutting development time
and costs.

The research identified that it is possible to design a zonal architecture with limited
information and to utilize the potential of this new architecture approach. Even with such
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rudimentary data as position, power consumption, and voltage of the electric loads, the
optimization procedure is able to structure the electric loads and reduce wiring harness
length and weight. As the approach uses k-means clustering and Dijkstra’s algorithm,
a model compatible with both was identified and adapted. Furthermore, an adaption
for k-means clustering was developed, which realizes an equal cluster size with minimal
length increase. By combining electrical, package, and wiring harness design, this method
realizes a guideline for the development of zonal E/E architectures in early design phases.

The results of the simulation show that there is a dependency of the clusters on the
distribution of the components, but their electric power is not considered in the clustering
process. The influence and the meaningfulness of its consideration in the clustering proce-
dure needs to be investigated in the future. Furthermore, the sensitivity of the clusters to
position data changes has to be examined to identify further potential for improvement
in the clustering procedure. The relation of the optimization result to the consumer posi-
tion, distribution, and power is essential in this case. A detailed sensitivity investigation
is necessary to ensure the extensibility of the optimized architectures in both electrical
and geometrical terms. For a more accurate determination of the power consumption, a
traffic simulation should be added. To ensure that the cost projection for the architecture is
reliable in the future, the declining costs for batteries and electronic components must be
considered.
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Nomenclature

B Battery cell nB,tot Total number of battery cells
CC,El Cable cost, € p1–p4 Parameter for ZCU cost function
cE Cost factor for energy tra. cables Pi Power of a zone, W
cI Cost factor for information tra. cables PC12V Safety-critical power of a zone on 12 V, W
CC,ZCU Cable cost ring line ZCU, € PC12V Safety-critical power of a zone on 48 V, W
CZCU Zone control unit cost, €/Unit Pel,SOF Remaining electric power, W
D Total Euclidean distance, m Pel,tot Total electric power, W
d(x) Diameter of cable x PVeh Power consumption of the vehicle, W
E Cable for energy transmission Si Cluster
EBat Energy of the 12 V battery, J SOFEE State of Function of E/E architecture
EC Energy of a battery cell, Wh SSB Between-cluster variance
ESC Energy of the 48 V SCAP, J SSW Within-cluster variance
Eel,SOF Remaining electric energy, J tEH Emergency halt maneuver time, s
Eel,tot Total electric energy, J xj Data points of electric components
EVeh Necessary energy for the vehicle range, J xm Mean of all data points x
fa Cost factor acceleration xmax Max. number of data points per cluster
fc Cost factor material cost |x| Number of data points in a cluster
fE Cost factor for ground line x Vehicle length, m
fm Cost factor mass y Vehicle width, m
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fR Cost factor Range z Vehicle height, m
fV Cost factor volume γ Target node
fZCU Cost factor ECU, € λp,i Physical interdependence
g Fitness value λp,d Physical dynamic
I Cable for information transmission λp,m Physical multiplicity
k Zone number λv,i Virtual interdependence
n Number of data points λv,d Virtual dynamic
nC Lower boundary cell number λv,m Virtual multiplicity
nB,i Number of battery cells per zone μi Centroid

Appendix A

Table A1. Parameters.

Symbol Description Value Units

EC Energy of a battery cell 11.5 Wh
FZCU Cost ZCU 150 €

p1 p1 of ZCU Cost Function −0.003571 -
p2 p2 of ZCU Cost Function 0.06667 -
p3 p3 of ZCU Cost Function −0.425 -
p4 p4 of ZCU Cost Function 1.362 -

tEH Emergency halt maneuver time 30 s
xVeh Vehicle length 4.97 m
yVeh Vehicle width 2.05 m
zVeh Vehicle height 2.44 m

Table A2. Assumed electric loads for the E/E architecture of SAE level 4 vehicles.

Component
Maximum el. Power

Pmax [W]
Usage Time tU [%]

Average el. Power
Pavg [W]

Number [-] Reference

Camera 2 100 2 7 [64]
CPU for 96 100 96 2 [64]

DSRC (dedicated short-range
communication) 2 100 2 1 [64]

Lidar sensor 60 100 60 4 [64]
Radar sensor 8 100 8 8 [64,65]

Sonar/Ultrasound sensor 0.15 100 0.15 2 [64]
Air conditioner front - 100 600 1 [66]

Anti-fog light 35 0 0 3 [67]
Blind zone radar 5 100 5 1 [67]

Braking light 21 50 10.5 3 [67]
Cabin lights 20 100 20 1 [67]

Door module - 100 360 2 [66]
Electric roof 300 5 15 1 [67]

Front window heater 1500 - 120 1 [68]
Headlamps 60 100 60 2 [67]

Rear window heating - - 120 1 [69]
Reversing light 21 10 2.1 2 [67]

Body Control Modul 360 100 360 1 [70]
Seats electronics 300 5 15 2 [67]

Turning light 21 20 4.2 6 [67]
5G Router 68.4 100 68.4 1 [71]

GNSS 0.55 100 0.55 1 [72]
Audio system 25 100 25 1 [67]

Multimedia screens 30 100 30 2 [67]
Navigation 15 100 15 1 [67]

ABS - 100 600 1 [73]
Brake-by-wire 1300 - 150 1 [74]
Cooling pump 1200 100 500 1 [68]

Cooling radiator 500 50 100 1 [69]
Engine ECU - 100 700 1 [74]

ESP 7800 - 3000 1 [66]
Steer-by-wire 1400 - 28 1 [74]
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Table A2. Cont.

Component
Maximum el. Power

Pmax [W]
Usage Time tU [%]

Average el. Power
Pavg [W]

Number [-] Reference

Suspension pump 1000 20 200 1 [67]
Vehicle control unit

(Control and Fusion) 1000 - 750 1 [74]

Drive Modul 13,000 25 3250 4 [75]
BMS 24 100 24 1 *

Backup ADAS ECU 500 100 500 1 [76]

* Measurement.
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Abstract: The exchange of sensitive information between power distribution networks (PDNs) and
urban transport networks (UTNs) presents a difficulty in ensuring privacy protection. This research
proposes a new collaborative operation method for a coupled system. The scheme takes into account
the schedulable capacity of electric vehicle charging stations (EVCSs) and locational marginal prices
(LMPs) to handle the difficulty at hand. The EVCS hosting capacity model is built and expressed
as the feasible area of charging power, based on AC power flow. This model is then used to offer
information on the real schedulable capacity. By incorporating the charging loads into the coupling
nodes between PDNs and UTNs, the issue of coordinated operation is separated and becomes equal
to the optimal problem involving charging loads. Based on this premise, the most efficient operational
cost of PDNs is transformed into a comparable representation of cost information in PDNs. This
representation incorporates LMP information that guides charging decisions in UTNs. The suggested
collaborative scheduling methodology in UTNs utilises the collected projection information from the
static traffic assignment (STA) to ensure data privacy protection and achieve non-iterative calculation.
Numerical experiments are conducted to illustrate that the proposed method, which uses a smaller
amount of data, achieves the same level of optimality as the coordinated optimisation.

Keywords: electric vehicles (EV); coordinated optimisation; equivalent model; non-iterative; power
and traffic system

1. Introduction

EVs have gained considerable international recognition due to concerns such as the oil
crisis and carbon emissions. They have emerged as a prominent alternative to replace cars
that run on petrol [1]. Global EV forecast research [2] predicts that the number of EVs in use
globally will increase to 270 million by 2030, representing almost 14% of the total number
of vehicles on the road. However, the extensive integration of electric vehicles (EVs) is
expected to establish a mutually dependent relationship between PDNs and UTNs [3,4].
The travel patterns of EVs will be impacted by different road conditions, leading to changes
in the spatial and temporal distribution of traffic flow. However, the charging price and
queueing time at EVCSs are expected to influence the preferences of EV drivers for charging
stations and, as a result, change the distribution of the electrical demand. Therefore, it is
crucial to include coupling parameters in the coordination and scheduling of PTNs [5–9].

In this regard, researchers have recently focused on studying the interactions in PTNs
to effectively accommodate the widespread use of EVs. Therefore, due to concerns regard-
ing computational efficiency and data security, a substantial amount of study is focused
on examining the coordination of joint flow. One specific form of research focuses on cen-
tralised optimisation by using joint modelling of PTNs and applying various acceleration
strategies for computation. In the given example, a stochastic optimisation framework is de-
veloped to analyse the interconnections of PTNs in [10,11]. These interconnections include
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relationships between EVs/fuel-based automobiles, charging costs, and charging power.
In [12], a coordination model is proposed that is based on the generalised user equilibrium
in power–traffic coupled networks. This model effectively reduces the pressure in the
power distribution networks with EVs. Furthermore, a model that combines dynamic user
equilibrium and that is based on [8,13,14] is introduced to accurately represent the flows
in PTNs. The paper [15] presents a scheduling technique that combines the assignment of
charging stations and the allocation of charging power to ensure an appropriate charging
plan for each EV. In their study, the authors of [16] develop a two-stage architecture that
integrates optimal pathways and active and reactive power regulation for EVs in order to
minimise the cost of charging. A comprehensive model is developed in [17–19] to address
the intricate relationship between EVs, the power grid, and photovoltaics. This model
incorporates multiple stages and takes into account the routing and scheduling of EVs
to effectively handle complex traffic scenarios. In order to address congestion in UTNs,
a pricing model that incorporates both LMPs and congestion charges is proposed. This
model is built on a variational inequality framework, as described in [20].

The previously described research on centralised optimisation enhances computational
efficiency by integrating electricity and transportation modelling. However, due to the
fact that the electricity and traffic systems are controlled by various entities with distinct
information security needs, it is not feasible to implement a centralised method that requires
sharing of information [21].

In addition to centralised optimisation methods, decentralised procedures that rely
on limited information iteration are also crucial for coordinating scheduling in networked
systems. A bi-level coordinate operation framework is built using the alternative direction
method of multipliers (ADMM) in [14,22,23], considering both systemic and individual
views. In [24], a decentralised collaborative pricing method is proposed which uses vari-
ational inequalities. Based on this premise, a decentralised and decoupling architecture
is constructed to effectively address the issue. In order to achieve the best outcome and
maintain the anonymity of information, a scheme has been developed that combines the nu-
merous individual decisions of EVs in PTNs. This strategy involves two separate network
operators and uses small data, as described in reference [25]. A decentralised approach is
utilised in [26] to address the collaborative pricing model, which encompasses road tolls
and charging costs.

Several academics have examined several variables that impact the process of charging
EVs. As an illustration, the researchers in [27] conducted a research study to analyse the
effect of charging station placements on PDNs. The failure of a charging station does
not impact the charging behaviour of electric buses, as seen in [28]. In a previous study,
scientists employed genetic algorithms to forecast forthcoming charging requirements for
EVs and strategise the most advantageous sites for charging stations [29]. A comparison
analysis was conducted in [30] to compare wireless charging with traditional charging
models. The writers of [31] concentrate on long-distance transportation for EVs and devise
the most efficient sites for charging stations to guarantee rapid charging capabilities. In their
study, the authors of [32] used an optimisation model to determine the optimal placement
of charging stations and the appropriate size of electric cars. They took into account factors
such as time-of-use energy price and the behaviour of electric buses to ensure the safe and
efficient operation of PTNs. In order to address the charging requirements and enhance the
charging effectiveness for electric vehicle users, a dispatch model for electric vehicles is
suggested in [33]. This approach employs price advice to reduce the burden on charging
stations. The authors of [34] consider the unpredictability of wind power generation and
optimise the charging behaviour of electric buses to efficiently utilise renewable energy
resources and decrease the use of non-clean energy sources. In order to synchronise the
economic dispatch in PDNs with the traffic assignment in transportation networks (TNs), a
decentralised architecture is suggested to develop the most efficient charge price in [35]. In
their study, the authors of [36] investigate social optimal welfare by examining the charging
fees and the interactions between cooperative Charging Network Operators, mobile EVs,
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and bulk power infrastructures. In addition, the authors of [37] suggest a framework that
integrates pricing for charging and scheduling of power.

Using a decentralised strategy to synchronise power–traffic flows is in perfect har-
mony with the practical reality of their operation by two separate entities. This strategy
successfully addresses the difficulties presented by restricted data sharing while guaran-
teeing the highest level of data privacy. However, due to the dependence on information
iteration, there are several disadvantages to traditional decentralised approaches. (1) Within
the domain of conventional distributed algorithms, such as Lagrangian relaxation [38],
Benders decomposition [39], and generalised Benders decomposition [40], these methods
may face challenges related to slow convergence or even the potential for convergence
failure. (2) In order to maintain equilibrium in the coupled system, the increased frequency
of information exchange will place a greater strain on communication resources. (3) The
increasing number of distribution networks and transportation systems will result in a
significant increase in the iteration count [41].

This study focuses on implementing the analogous projection approach to address the
previously mentioned limitations in PTNs. The strategy, initially presented in [42], aims
to achieve system reduction and has been proven to provide the same level of optimality
as the primal model. Moreover, the technique is utilised in [43] to efficiently synchronise
the optimisation process between the transmission and distribution of electrical power
networks. In [44], the authors successfully characterised the charging power area of EVCS
using this method. However, they have not yet included the projection of optimal cost
information in PDNs.

The aforementioned approaches are specifically employed to address the interconnec-
tions of power systems. However, the interactions of traffic systems are considerably more
complex, involving factors such as the unpredictability of individual behaviour of EVs and
the multitude of road pathways. In order to achieve this goal, this study aims to create
a thorough modelling framework using network equivalent projection that includes the
schedulable capacity of EVCSs and LMPs. This framework will enable effective interaction
and allow for reaching the optimal operating point with minimal information in PTNs.
This paper presents the following primary contributions:

1. A novel non-iterative coordinated optimisation method for PTNs is created using
network equivalent projection. The coupled networks incorporate the schedulable capacity
of EVCSs and dynamic LMPs at charging stations, and map this information into the feasible
region of boundary information for PDNs. Implementing this suggested methodology can
safeguard data confidentiality without the need to share sensitive information.

2. A technique is introduced to map the optimal cost function in the PDN. The
segmented cost function of the PDNs is produced by specifically addressing the economic
dispatch model and the Karush–Kuhn–Tucker (KKT) conditions. The original linked
model of the PTN is substituted with integrated equivalent restrictions and segmented
cost functions incorporating the traffic model. This proposed approach will guarantee
manageable computation in the PTN.

The subsequent sections of this work are structured in the following manner. The
coordinated optimisation model of the PTNs is established in Section 2. Section 3 introduces
a decoupled model of the PTNs based on the feasible region of the PDNs. This model
is created using network equivalent projection and takes into account the schedulable
capacity of EVCS and LMPs. A unique optimal cost mapping methodology for the PDN is
devised in Section 4. A case study is conducted to validate the effectiveness and advantages
of the suggested approach outlined in Section 5. The conclusions are presented in Section 6.

2. Power–Traffic Coupled Model Equation

2.1. Interaction of the Coupled PTNs

The interconnection between PDNs and UTNs is strongly interconnected as a result of
EVs. The EVCS recharge facilities facilitate the interplay between the flow of power and
the flow of traffic. Figure 1 illustrates the operational framework of the interconnected
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power–traffic system. Pricing methods employed by electricity and transportation system
organisations have an impact on the driving and charging decisions made by vehicle users.
EV drivers choose their driving routes and charging stations based on price signals that are
limited by the PDN and road conditions, with the goal of minimising their travel expenses.

 
Figure 1. Operation framework of coupled power-traffic system.

2.2. A Traffic Model for the Travel Characteristics of Vehicles

From a graph theory standpoint, the fundamental components of the UTN are ex-
amined, with crossings being considered as nodes and road segments as connections.
Moreover, the structure of the UTN is represented as (V, A), where V and A are collections
of sequentially numbered intersections and road segments, respectively. An O-D pair
represents the route used by electric vehicles (EVs) from a starting point to a destination,
which indicates the traffic demand. Based on this premise, the traffic assignment problem
is transformed into the calculation of traffic flow on various paths in a UTN, with each
origin–destination pair specified.

An investigation is conducted to examine the travel characteristics of various EVs in
order to meet the charging needs of EVs.

2.2.1. Road Congestion Analysis Based on Various Types of EVs

The structure of the transportation network consists of interconnected links and nodes.
The links symbolise several paths or routes, while the nodes indicate the starting points,
ending points, and points where different paths overlap. In order to model the travel
patterns of EVs, the links in the UTN will be split into three equal segments: charging links,
ordinary links, and bypass links [6].

1. Charging links with EVCSs

The travel time of EVs on a charging link is determined by the combined factors of
charging time and queueing time. Hence, the improved Davidson function considering
queueing theory is employed to quantify the travel time tc

a(xa) of charging EVs, i.e.,

tc
a(xa) = tFCS

a

[
1 + J

(
xa

cFCS
a − xa

)]
, ∀a ∈ TC(A) (1)

where tFCS
a represents the free traveling time in the charging oracle, i.e., the charging time.

xa is the traffic flow of the a-th link. cFCS
a is the traffic capacity of the a-th charging segment.

J represents the parameter controlling the shape of the congestion function in the charging
segment. TC(A) denotes the set of all charging links in UTNs.

2. Regular links without EVCSs
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The widely used Bureau of Public Road (BPR) function is adopted in this work to
represent the time spent on a regular link, i.e.,

tR
a (xa) = t0

a

[
1 + 0.15

(
xa

ca

)4
]

, ∀a ∈ TR(A) (2)

where t0
a is the free traveling time of the a-th link. ca is the traffic capacity of the a-th link.

TR(A) denotes the set of all regular links in UTNs.

3. Bypass links

A bypass link denotes a road segment with an EVCS where EVs skip and continue to
drive without interruption. Due to the short length of the bypass oracle, it can be assumed
that the travel time through this link is negligible and approximated as zero, i.e.,

tb
a(xa) = 0, a ∈ TB(A) (3)

where TB(A) is the set of all bypass links. T(A) is the set of all links in UTNs: TC(A) ∪
TR(A) ∪ TB(A) = T(A).

2.2.2. Modelling the Costs of Vehicles Based on Different Driving Behaviours

Based on the above different types of congestion in UTNs, the travel cost functions
of different paths are established for various transportation participants. For EVs with
charging, a feasible path must include at least a charging station. The set of feasible paths
Kod is expressed as

Kod = KC
od ∪ KR

od (4)

where KC
od, KR

od denote feasible path sets for EVs with recharging and regular vehicles,
respectively.

1. The travel costs of EVs with charging

To estimate the travel cost of EVs with recharging, it is essential to consider three key
components: the monetary value of time spent driving on regular links, the queueing time
in EVCSs, and the charging cost. Accordingly, the travel time tod

k and cost cod
k of an EV with

charging on the feasible path k-th are, respectively, represented by

tod
k = ∑

a∈TC(A)

tc
a(xa)δ

od
a,k + ∑

a∈TR(A)

tc
a(xa)δ

od
a,k, ∀k ∈ KC

od, ∀(o, d) (5)

cod
k = ωtod

k + ∑
a∈TC(A)

(
λ

j
aPFCStFCS

a

)
δod

a,k, ∀k ∈ KC
od, ∀(o, d) (6)

where tod
k and cod

k denote the travel time and cost of a feasible path k between the O-D pair,

respectively. ω is the unit travel cost coefficient. λ
j
a represents the charging price in EVCS a

supplied by node j in a PDN. PFCS is the charging power of EVs.

2. The travel costs of regular EVs

The total cost of regular vehicles is calculated by factoring in only the monetary value
of time spent driving on regular links, i.e.,

tod
k = ∑

a∈TR(A)

tR
a (xa)δ

od
a,k, ∀k ∈ KR

od, ∀(o, d) (7)

cod
k = ωtod

k , ∀k ∈ KR
od, ∀(o, d) (8)

2.2.3. A Traffic Model Based on User Equilibrium

As the charging behaviours of EV users affect the feasible path set and cause divergence
from the path choices of non-charging users, it is vital to express the user equilibrium (UE)
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condition more explicitly. On this basis, an EV charging equilibrium model originating
from [6] is utilised to characterise the equilibrium state in the UTN, i.e.,

min ∑
t∈T(T)

⎛⎝ ∑
a∈TR(A)

∫ xa

0
ωtR

a (θ)dθ + ∑
a∈TC(A)

∫ xa

0
ωtc

a(θ)dθ

⎞⎠ (9)

f od
k,t ≥ 0, ∀t ∈ T, ∀k ∈ Kod, ∀od ∈ (O, D) (10)

rod
t = ∑

k∈Kod

f od
k,t tod

k,t

τRF , ∀t ∈ T, ∀k ∈ K (11)

qmod
od,t = qod,t +

1
2

rod
t−1 −

1
2

rod
t , ∀t ∈ T, ∀od ∈ (O, D) (12)

∑
k∈KC

od

f od
k,t = μqmod

od,t , ∀t ∈ T, ∀od ∈ (O, D) (13)

∑
k∈KR

od

f od
k,t = (1 − μ)qmod

od,t , ∀t ∈ T, ∀od ∈ (O, D) (14)

xa,t = ∑
o∈O

∑
d∈D

∑
k∈Kod

f od
k,t δod

a,k, ∀t ∈ T, ∀a ∈ T(A) (15)

where f od
k is the traffic flow on the k-th path connecting the O-D pair. qod represents the

total travel demand between the O-D pair. δod
a,k is a binary variable that represents the

relationship between link a and path k connecting the O-D pair when δod
a,k = 0 if link a is

included in path k, and δod
a,k = 1 otherwise. μ denotes the ratio of the number of EVs with

charging to the total transportation demand.
In the given model, Equation (9) represents the objective of minimising the total

cost of travel for traffic users. Equation (10) ensures that the traffic flow remains non-
negative. Equations (11) and (12) describe the temporal relationship between traffic flow
by incorporating the remaining flow from path k in the previous period into the traffic
demand in the next period. Equations (13) and (14) represent the balance between traffic
demand and path flow for traffic users on the feasible path k. Equation (15) states that the
traffic flow in link a is equal to the sum of the traffic flows on all paths passing through
this oracle.

2.3. Modelling of the Optimal Power Flow in the PDN

A radial PDN adopted in this part is represented by a directed graph (N, L), where
N denotes the set of nodes and L means the set of branches. The initial node designated
as {1} is connected to the transmission power grid and purchases electricity directly from
the main grid. The other nodes can be numbered sequentially as N+ = {2, . . . , n}, and
so on. (i, j) ∈ L corresponds to a branch from node i to node j. The sets NFCS denote the
collection of nodes that are connected to the EVCS. Φ(i) refers to the set of sub-nodes that
are connected to node i, while Π(j) means the set of nodes that stem from node j. The
optimal power flow is regarded as Equations (16)–(24), in which the subscript t represents
the time interval.

min∑
t∈T

⎛⎜⎜⎜⎜⎝ ∑
j∈N+

(
aj
(

PDG,jt
)2

+ bjPDG,jt

)
︸ ︷︷ ︸

i

+ λMAIN,t ∑
j∈Φ(1)

P1jt︸ ︷︷ ︸
ii

⎞⎟⎟⎟⎟⎠ (16)
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s.t.
Ng

∑
i=1

PGi,t −
Ne

∑
i=1

PEVCSi,t = Ploss,t + PL,t, ∀t ∈ T (17)

Pi,t − Vi,t ∑
j=1

Vj,t

(
cos δij,t

rij
+

sin δij,t

xij

)
= 0, ∀t ∈ T (18)

Qi,t − Vi,t ∑
j=1

Vj,t

(
sin δij,t

rij
− cos δij,t

xij

)
= 0, ∀t ∈ T (19)

P2
i,t + Q2

i,t ≤
(

SMAX
ij,t

)2
, ∀t ∈ T (20)

0 ≤ PDG,jt ≤ Pmax
DG,j, ∀j ∈ N+ ∀t ∈ T (21)

0 ≤ QDG,jt ≤ Qmax
DG,j, ∀j ∈ N+ ∀t ∈ T (22)

Vmin ≤ Vj,t ≤ Vmax, ∀j ∈ N ∀t ∈ T (23)

Pmin
EVCS ≤ PEVCSi,t ≤ Pmax

EVCS ∀t ∈ T (24)

where P1,jt is the power purchased from the main grid. T denotes the entire scheduling
period. aj and bj represent the cost coefficient of the controllable generations connected
to node j in the PDN. PDG,j and QDG,j refer to the active and reactive power output of the
controllable generation at node j. λMAIN represents the purchasing electricity price from
the main grid. Pi and Qi denote the injective active and reactive power at node i. Pij and Qij
refer to the active and reactive power transmitted in the branch (i,j), respectively. rij and xij
represent the equivalent resistance and reactance of the branch (I, j). Vj denotes the voltage
magnitude at node j. δj is the voltage phase angle at node j. PL,j and Ploss,t are conventional
active loads and loss power at node j, respectively. PEVCS,j represent the charging loads of
EVCSs located at node j. Pmax

DG,j and Qmax
DG,j represent, respectively, the upper bound of the

distributed units’ active and reactive power output. Vmax and Vmin are the upper and lower
bounds of the nodal voltage magnitudes. Pmax

EVCS and Pmin
EVCS represent the active power

limits in the EVCSs, respectively.
The objective function of Equation (16) represents the minimum operational cost of

the PDN, including (i) the generation cost of controllable distributed generation units and
(ii) the purchase cost of electricity from the main grid. Equation (17) denotes the active
power balance of the PDN. Equations (18) and (19) denote the power flow balance of
the PDN. Equation (20) represents the active and reactive power transmission limits of
branches. Equations (21) and (22) denote controllable generation capacity in the PDN.
Equation (23) represents the nodal voltage magnitude bounds. Equation (24) is the capacity
limit of EVCSs.

The power flow balance constraints (18) and (19) can be expressed using the lineariza-
tion derivation from [45] in the following manner:

Pi,t ≈
n

∑
j=1

Vj,t

rij
−

n

∑
j=1

δj,t

xij
, ∀t ∈ T (25)

Qi,t ≈ −
n

∑
j=1

Vj,t

xij
−

n

∑
j=1

δj,t

rij
, ∀t ∈ T (26)

We employ the linearization method based on polygon approximation in [46] to
address the branch transmission limitations. According to Equation (20), it is evident that
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there are many power circles being considered. Thus, it is capable of approximating the
aforementioned power circles by using polygons that have a limited number of edges.
Thus, Equation (20) can be converted into:

Pij,tPij,t + Qij,tQij,t ≤
(

Smax
ij,t

)2
, ∀t ∈ T (27)

Pij,t = cos
[(

p − E + 4
4

)
2π

E

]
, ∀p ∈

[
1, 2, . . . ,

E
2

]
, ∀t ∈ T (28)

Qij,t = sin
[(

p − E + 4
4

)
2π

E

]
, ∀p ∈

[
1, 2, . . . ,

E
2

]
, ∀t ∈ T (29)

where E represents the number of edges of the polygon approximating the power circles.
The value of E can be chosen to be between 8 and 20, considering the trade-off between
computational efficiency and accuracy. After evaluating the relationship between efficiency
and precision, an inscribed regular dodecagon (i.e., a polygon with twelve edges) is opted
to replace the power circles.

2.4. Modelling of the Coupled PTN

This section examines the interconnected boundary between the power and trans-
portation systems, specifically focusing on the independent operation models for the UTN
and the PDN mentioned earlier. The goal is to understand the relationship between the
boundary information of these two systems. To achieve this, a coordinated scheduling
model for the power–traffic coupling system is developed. More precisely, the interaction
in a PTN occurs when EVs transfer energy by charging over the links connecting to the
PDN for additional electrical power. Thus, in the PTN, the boundary information of the
UTN pertains to the traffic flow of EVs entering the charging stations, while the boundary
information on the PDN corresponds to the charging load of the EVCS. The correlation
between the charging load linked to the PTN node j and the traffic flow in the UTN is
represented as:

PFCS,j = PFCS ∑
o∈O

∑
d∈D

∑
k∈KC

od

f od
k δod

a,k, ∀a ∈ TC(A), j ∈ NFCS (30)

The coordinated scheduling in the PTN is aimed at the minimum social cost, i.e.,

min ∑
a∈TR(A)

∫ xa

0
ωtR

a (θ)dθ + ∑
a∈TC(A)

∫ xa

0
ωtc

a(θ)dθ + ∑
t∈T

⎛⎝ ∑
i∈N+

(
aj
(

PDG,jt
)2

+ bjPDG,jt

)
+ λMAIN ∑

j∈Φ(1)
P1j,t

⎞⎠ (31)

s.t. {
(10)− (15)
(17), (21)− (29)

(32)

3. Decoupled Model of the PTN Based on the Feasible Region of the PDN

Definition 1 (schedulable capacity (SC)): During the EV charging process, the PDN establishes
a zone that includes all the possible operating locations of the charging loads. This region ensures
stability and security by meeting the restrictions specified in (35).

To facilitate the understanding of the model derivation, a concise representation of the
PTN, comprising Equations (31) and (32), is provided.

min∑
t

(
CPDN,t

(
yPDN,t

)
+ CUTN,t

(
ya

UTN,t

))
(33)
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s.t.

⎧⎨⎩ heq
PDN,t

(
yPDN,t, ut, PEVC

t

)
= 0

hineq
PDN,t

(
yPDN,t, ut, PEVC

t

)
≤ 0

(34)

gUTN,t

(
ya

UTN,t, f od
k,t

)
≤ 0 (35)

ACPT PEVC
t + BCPTya

UTN,t = cCPT,t (36)

The constraints of Equation (34) denote the sets formed by the equality Equations (17),
(25) and (26), and inequality constraints Equations (21)–(24) and (27)–(29), respectively. The
constraints of Equation (35) denote the constraint sets formed by the UTN in Equations
(10)–(15). The CPDN,t denotes the operational cost function of the PDN. yPDN,t is the power
vector injected from controllable generators and the main grid. u represents the vector of the
state variable in the PDN. PEVC

t is the EV maximum charging power from the PDN, which
comprises the charging load and the available charging power. CUTN,t is the cost function
of the UTN. ya

UTN,t is a vector composed of the column vectors traffic flow xa and time ta,
i.e., ya

UTN,t = [xa, ta]. ACPT, BCPT, and cCPT represent coefficient vectors corresponding to
the PDN and the UTN in Equation (30), respectively. PEVC is the charging power of EVCS.

The polyhedral space Ωpri
SC formed by the constraint of Equation (34) is denoted as

follows, where the subscript t is neglected for simplicity:

Ωpri
SC =

{(
yPDN , PEVC

)
∈ Rm × Rn

∣∣∣∣∣ heq
PDN

(
yPDN , u , PEVC) = 0

hineq
PDN

(
yPDN , u , PEVC) ≤ 0

}
(37)

where m and n denote the dimensions.
According to definition 1, it is shown that the schedulable capacity is interpreted as a

projection from the constraints of space (yPDN, u, PEVC) to PEVC in the PDN. The projection
area Ωmap

SC is stated as

Ωmap
SC =

{(
PEVC

)
∈ Rn

∣∣∣∃yPDN ,
(

yPDN , u , PEVC
)
∈ Ωpri

SC

}
(38)

where Ωmap
SC describes the range of EV charging loads accommodated by the PDN at any

period t without violating safety operation constraints, as shown in Equation (34).
This polyhedron, i.e., the boundary information feasibility region, is expressed as:

Ωap
EVC =

{
AEV PEVC

k ≤ βEV

}
(39)

where AEV is the coefficient matrix for different stress directions; and βEV is a coefficient
vector that describes the boundary of the EVSC. The dimensions of AEV and βEV correspond
to the number of boundary points characterising the EVSC. Each determined boundary
point leads to a set of constraints.

Figure 2 presents the coordinated operation framework of the coupled power–traffic
system. The equivalent projection model of the PTN is expressed as:

min
(

CPDN

(
PEVC

k

)
+ CUTN(ya

UTN)
)

(40)

AEV PEVC
k ≤ βEV (41)

gUTN

(
ya

UTN , f od
k

)
≤ 0 (42)

ACPT PEVC
k + BCPTya

UTN = cCPT (43)
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Figure 2. Coordinated operation framework of the coupled power–traffic system.

4. Mapping Optimal Costs of the PDNs

When it comes to connections including boundary EVCSs, the PTN aims to opti-
mise the power and traffic flows. From the perspective of the PDN, charging stations are
classified as variable loads since they consume electrical energy from the grid. Alterna-
tively, when considering the transportation network, these stations can be seen as virtual
sources that provide electric power to cars. The fundamental coupled model in the PTN is
reconstructed and expressed as a result of boundary charging power.

minCPDN
(
yPDN

)
+ CUTN

(
ya

UTN
)

s.t.

⎧⎪⎨⎪⎩
heq

PDN
(
yPDN , u , PEVC) = 0

hineq
PDN

(
yPDN , u , PEVC) ≤ 0

gUTN

(
ya

UTN , f od
k

)
≤ 0

APDNyPDN + DPDN PEVC
k = cPDN

BUTNya
UTN + DUTN PEVC

k = cUTN

(44)

where vector D denotes the charging power at a charging station.
The equivalent model consisting of Equations (33)–(36) implies that each PDN and the

UTN perform optimal social welfare individually with limited data exchange. Hence, the
model of the PDN at the time t is reformulated and expressed as

fPDN(PEVC
k ) = minCPDN

(
yPDN

)
s.t.

⎧⎪⎨⎪⎩
heq

PDN
(
yPDN , u , PEVC) = 0

hineq
PDN

(
yPDN , u , PEVC) ≤ 0

APDNyPDN + DPDN PEVC
k = cPDN

(45)

where the objective function of fPDN(PEVC
k ) means the optimal social cost of the PDN

related to the boundary charging power PEVC
k .

It has been demonstrated that there is an equivalence in optimality between the joint
optimisation Equations (45) and (46), i.e.,

min
(

fPDN(PEVC
k ) + CUTN

(
ya

UTN
))

s.t.

{
gUTN

(
ya

UTN , f od
k

)
≤ 0

BUTNya
UTN + DUTN PEVC

k = cUTN

(46)

From the modified model (see Equation (46)), it is crucial to derive the specific form of
the function CPDN(DPDN). According to Equation (16), the form of the objective function in
PDN is quadratic, which is converted and stated as:

FPDN(PDG) =
1
2

PDG AT
RePDG + BT

RePDG + λMAIN P1 (47)
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where vector PDG and P1 denote all PDG,j and P1j, respectively. The syntax AT
Re = (a1, · · · , ai)

T

and BT
Re = (b1, · · · , bi)

T are utilised to catenate column vectors with the cost coefficient of
the controllable generators.

With the charging power given, the optimal objective in Equation (47) is computed,
and the solution corresponds to an optimal value, where the constraints are categorised
into active and inactive ones. These constraints divided are rewritten, i.e.,

(APDN)aPDG + (DPDN)aPEVC = (cPDN)a (48)

(APDN)inaPDG + (DPDN)inaPEVC ≤ (cPDN)ina (49)

where Equation (48) means the active constraints, denoted by subscript a. Additionally,
Equation (49) is the inactive constraints with subscript ina.

From the perspective of optimisation theory, the optimal solution of the model is not
affected by inactive constraints. Hence, Equation (46) is modified equivalently, i.e.,

minFPDN(PDG)
s.t. (APDN)aPDG + (DPDN)aPEVC = (cPDN)a

(50)

The Lagrange function is expressed as:

L(PDG, μ) =
1
2

PDG AT
RePDG + BT

RePDG + λMAIN P1 + ηT
(
(APDN)aPDG + (DPDN)aPEVC − (cPDN)a

)
(51)

By applying complementary slackness conditions of KKT theory,

∂L(PDG, μ)

∂PDG
= AT

RePDG + BT
Re + (APDN)

T
a μ = 0 (52)

Simultaneously ensuring the satisfaction of the active constraints of Equation (49) gives:(
AT

Re (APDN)
T
a

(APDN)a 0

)(
PDG

η

)
=

( −BT
Re

(cPDN)a − (DPDN)aPEVC

)
(53)

By solving Equation (53), the values PDG, η are⎧⎪⎪⎪⎨⎪⎪⎪⎩
PDG = (APDN)

−1
a
(
(cPDN)a − (DPDN)aPEVC

k
)

η = −AT
Re

(
(APDN)a(APDN)

T
a

)−1(
(cPDN)a − (DPDN)aPEVC)

−
(
(APDN)

T
a

)−1
BT

Re

(54)

There exists a linear relationship between the active power from the main grid and the
charging power (i.e., PEVC). It is shown that f PDN (PEVC) is a quadratic function.

Nonetheless, the above derivation process should be performed in the neighbour inter-
val of the given charging power value (i.e., P̂EVC), and the active and inactive constraints in
Equations (49) and (50) remain unchanged. Hence, it is essential to analyse the conditions
affecting the neighbour interval.

Condition 1: Lagrange multipliers η remain non-negative, ensuring that the inequality
constraints of the problem Equation (49) are satisfied, i.e.,

η ≥ 0 (55)

Condition 2: To guarantee the feasibility of Equation (47), the solution of Equation (51)
must satisfy the inactive constraints of Equation (49).
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To obtain the optimal cost function of the PDN under the feasible region, a piecewise
approach is proposed. Specifically, based on the constraints set in Equation (46), the upper
and lower bounds of the charging power (i.e., PEVC) are expressed as{

PEVC = minPEVC

PEVC
= maxPEVC

s.t.

⎧⎪⎨⎪⎩
heq

PDN
(
yPDN , u , PEVC) = 0

hineq
PDN

(
yPDN , u , PEVC) ≤ 0

APDNyPDN + DPDN PEVC = cPDN

(56)

where PEVC, PEVC denote the upper and lower bounds of the charging power, respectively.
After conducting the analysis mentioned above, it is clear that the deduction can

only be valid within a neighbour interval. To achieve this, the feasible region interval[
PEVC, PEVC

]
is divided into multiple sub-intervals, with each sub-interval determined by

conditions 1 and 2. One significant advantage of determining the interval width based on
active and inactive constraints is the ability to enumerate all sub-intervals, which satisfies
the following constraint, i.e.,

dm−1
PDN ≤ dm

PDN (57)

where the m-th upper bound denotes dm
PDN , and the m-th sub-interval is expressed as[

dm−1
PDN , dm

PDN

]
.

As the exploration of sub-intervals continues, the right endpoint dm
PDN of the sub-

interval is equal to the upper bound PEVC of the feasible region, which is used as a stopping
criterion to express the end of the exploration process. The specific form of the optimal cost
in the PDN is expressed as

fPDN(PEVC) = ∑
m∈M

f m
PDN(d

m
PDN) (58)

where M is the overall count of sub-intervals. f m
PDN

(
dm

PDN
)

denotes the optimal cost of the
m-th sub-interval in the PDN.

According to the definition of LMPs, the charging price is

LMP =
∂ fPDN(PEVC)

∂PEVC (59)

5. Case Study

5.1. Basic Settings

This part develops a connected electric–transportation system for the purpose of
conducting simulation analysis. Figure 3 displays the topology of the traffic network. There
are a total of six EVCSs and four distinct types of highways in both the outer and inner
loops. The trip demand, free travel time, and traffic capacity for each origin–destination
pair (O-D pair) are previously known, and specific parameter configurations are supplied
in Tables 1 and 2. The EVs have an average charging power of 50 kW, and it is estimated
that the average charging time is 30 min. The journey time is valued at USD 10 per hour.

Table 1. Link parameters of roads in the 12-node transportation network.

Road Type 1 Type 2 Type 3 Type 4 EVCS

ca(p.u) 100 100 80 60 15
t0
a(min) 5 8 5 7 20
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Figure 3. Topology of the UTN.

Table 2. O-D pairs and trip rates of t = 1 (in p.u.).

O-D Pair qrs
g qrs

e

T1–T6 9 1
T1–T10 36 4
T1–T11 18 2
T1–T12 27 3
T3–T6 9 1

T3–T10 27 3
T3–T11 18 2
T3–T12 27 3

Figure 4 displays the configuration of the updated IEEE 33-bus system. Node 1 was
linked to the primary power network for the purpose of procuring electricity. Nodes 8,
15, and 31 were linked to electric vehicle (EV) charging stations, which have a maximum
charging capacity of 400 kW. Controllable generations with voltage regulation facilities were
connected to nodes 18 and 33. The scheduling period was fixed at 24 h. The simulations in
this part were performed on the lenovo Y9000P laptop equipped with an AMD Ryzen 7
5800H processor with Radeon Graphics, running at a clock speed of 3.20 GHz, and 16 GB
of RAM. The models were solved using MATLAB R2021b and YALMIP toolboxes, with the
solvers IBM CPLEX 12.8 and IPOPT.

 

 

 
  

26 27 28 29 30 31 32 33

 
 

 

Figure 4. Topology of the PDN.

In order to assess the efficacy of the suggested method utilising equivalent projection,
three specific scenarios were constructed for thorough investigation.

M1: The independent scheduling operation of the power–traffic network without coupling.
M2: The coordinated scheduling operation of the power–traffic network with the

centralised method.
M3: The coordinated scheduling operation of the power–traffic network with equiva-

lent projection.
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5.2. Analysis Discussion

The cost of the power–traffic linked system is clearly lower than operating the power
grid and traffic network separately, as shown in Figure 5. Furthermore, as the adoption of
EVs continues to grow, the disparity between the overall cost of the integrated power–traffic
system and the individual operation managed by M1 in the power–traffic networks becomes
more pronounced. The effectiveness of coupled system scheduling in significantly reducing
operational expenses is proved when compared to standalone scheduling. Furthermore,
the overall expense of the power–traffic coupled network with M2 is equal to the one
computed by M3 (refer to Figure 5). This suggests that by employing the cost function of
the PDNs, the cost coupling in PTNs may be correctly aligned.

Figure 5. Total costs of the PTNs under different EV penetration levels.

Figure 6 examines the charging frequency of EVs at charging stations within the
transportation network during the peak time (t = 10). In a scenario where there is a 10%
penetration rate, the scheduling using M1 does not require a direct connection between
the UTN and the PDN. Due to their higher capacity and lower waiting times, the majority
of EVs prefer to charge at EVCS 2 and 6. The number of charging vehicles at Station
2 and Station 6 is 4.95 and 4.68, respectively, which together make up nearly 75% of
the total charging vehicle count. The independent scheduling of EV charging results in
uneven distribution of EV traffic flow, leading to high saturation levels at EVCS 2 and 6.
Additionally, the paucity of charging stations at Stations 1, 4, and 5 exacerbates this issue.
Unlike the uncoordinated scheduling, the coordinated scheduling of the power–traffic
network efficiently reduces the concentrated distribution of EV traffic flow, leading to
a more balanced traffic flow distribution and an improved utilisation rate for charging
stations. Furthermore, it is important to mention that, regardless of the different levels of
EV adoption, the number of times EVs need to be charged at charging stations, as calculated
using M2 and M3, is consistent with the results obtained from the centralised coordinated
scheduling of the power–traffic system.

Significantly, if the penetration rate falls below 40%, the aggregate demand for electric
vehicles remains relatively modest, which does not pose any risk to the secure functioning
limits of the power distribution networks. Nevertheless, the scenario will undergo a
transformation once the EV adoption rate surpasses 40%. Figure 7 illustrates the voltage
magnitudes of the PDNs when the EV penetration rate is 50%. Through a thorough
examination of Figures 7 and 8, it becomes evident that EVs have a tendency to gather
or cluster near EVCSs 1 and 4. Consequently, the voltage magnitudes at nodes 15 and 16
in the distribution network decrease to 0.9186 and 0.9190, respectively, indicating voltage
violations in the power grid. The increased traffic in the road segments where charging
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stations are situated results in higher impact loads on the distribution grid nodes that are
connected to the charging stations.

Figure 6. Distribution of EV charging numbers among EVCSs under different EV penetration levels.

 
Figure 7. The voltage magnitude in the PDN when EVs penetrate 50%.

It is evident that there is an enhancement in the voltage magnitude, particularly at
node 18, for M2 and M3. Additionally, the voltage distribution in the PDNs is effectively
maintained. The coordinated strategy uses the charging price for the PDNs to incentivise
EVs to charge at specific stations, such as EVCS 1 and 4. Therefore, it can efficiently mitigate
traffic congestion and the low voltage problem at distribution network nodes generated
by the independent scheme. This guarantees the secure and effective functioning of the
power–traffic network.

After conducting a thorough examination of operational costs, EV charging numbers,
and voltage magnitude, we evaluated the calculation time of three approaches in two
common scenarios, peak and off-peak, to further examine their usefulness. Table 3 clearly
demonstrates that M1 has the shortest computation time. Nevertheless, it fails to accomplish
the most efficient functioning of the PTNs, which could potentially jeopardise the secure

215



Energies 2024, 17, 1899

operating of the PDNs. As M2 approaches its optimal state, it heavily depends on the
transmission of large amounts of data between the power and traffic systems. This raises
concerns over the privacy of information and the practicality of its implementation. When
comparing M2 with M3, it is evident that M3 achieves a better balance between maintaining
system privacy and providing precise solutions. Additionally, M3 is able to provide
accuracy even when working with little data.

Figure 8. The traffic flow of the UTN when EVs penetrate 50%.

Table 3. Computation times of different methods.

Different EV
Penetrations

Time of M1 (s) Time of M2 (s) Time of M3 (s)

10% 14.42 46.14 169.34
20% 15.13 47.39 170.05
30% 15.98 49.36 171.96
40% 16.56 50.47 172.56
50% 17.26 52.30 173.31

Figure 8 displays the traffic patterns during peak hours (t = 10) in the UTN for in-depth
examination. The figure reveals that the majority of vehicles opt to travel on the inner
and outer loops due to their higher capacities and fewer traffic signals (t0) compared to
other connections. The traffic flow of the charging link (T4–T5) in the coordinated system
is 10.01 p.u., which indicates a 20% reduction compared to the autonomous scheme. The
coordinated scheduling strategy considers the secure operation of the PDNs. By modifying
the charging fees, voltage losses in the vicinity can be reduced, thereby diverting charging
vehicles to other EVCSs. Furthermore, the traffic patterns achieved by M3 are identical
to the centralised optimisation of the interconnected PTNs, which is solved by M2. This
suggests that the use of boundary information mapping and cost functions can effectively
replace the original power grid model with M3. By employing the suggested approach,
the correctness of optimisation outcomes for the interconnected PTNs is guaranteed, while
also safeguarding the confidentiality of sensitive system information.

5.3. Comparative Analysis of the Case Studies

This section examines the influence of various charging station connection sites on the
power–traffic coupling system. Figure 9 illustrates the topology for scenario 2, which is
distinct from the topologies shown in Figures 3 and 4. The parameter configurations align
with those outlined in Section 5.2.
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(a) (b) 

Figure 9. (a) Comparative case topology of the PDN with different charging station connections.
(b) Comparative case topology of the UTN with different charging station connections.

Figure 10 displays the overall expenses of the PTNs at various locations. In contrast
to instance 1, the bulk of the charging stations are situated within or in close proximity to
the outer circle. Figure 10 demonstrates that the overall operational expenses in case 2 are
often more than those in case 1. The greater operational costs are caused by the positioning
of charging stations along the outer loops and capacity, which forces EVs to detour from
the optimal path and travel extra distances to access the charging stations. From these data,
it can be inferred that placing charging stations along the outer ring has an adverse effect
on the overall operational expenses of the EVs. In order to maximise cost-effectiveness, it is
advisable to strategically position charging stations along the inner loop, so minimising
any extra trip time.

Figure 10. Comparison of total costs under different charging station locations.

Figure 11 illustrates the voltage magnitudes for various charging station sites when the
EV penetration rate is 50%. Case 2 exhibits fewer voltage variations compared to case 1. In
scenario 1, a substantial quantity of electric vehicles congregate at EVCS 5, which is situated
within the inner circle. This efficiently decreases the amount of time spent travelling while
still satisfying the need for travel. The voltage near node 30 approaches its limit as a result.
In case 2, the charging stations are strategically placed in the outer ring or near the outer
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loop. This arrangement helps to decentralise the charging of EVs and minimise the strain
on the PDN, resulting in a reduction in voltage fluctuations.

 
Figure 11. Comparison of voltage magnitudes under different charging station locations.

6. Conclusions

This research introduces a new coordinated scheduling technique for PTNs that ad-
dresses the limitations of previous coordinated optimisation methods. The method utilises
boundary information mapping and implements a non-iterative framework for the PTNs.
Using this proposed approach, the efficient functioning of the PDNs is translated into a
mathematical equation and a safety operation set with minimum data, enabling the PDNs
to attain external equivalence. The suggested model replaces the PDNs by utilising partial
boundary information, allowing for coordinated optimisation of the PTNs. This approach
eliminates the need for iterative solutions between the linked systems. By maintaining
uniformity in the highest level of effectiveness, it simultaneously ensures confidentiality
and protection across many systems. A case analysis is performed on a system that consists
of a 12-node traffic network and an IEEE 33-bus system in order to verify the efficacy of
the suggested method. The main discoveries are as follows: (1) The proposed method
for mapping the feasible domain can effectively align the operational limitations of the
power grid, enabling coordinated scheduling of the power–traffic network while safeguard-
ing the confidentiality of power grid information. (2) In comparison to independently
scheduling the two networks, the coordinated scheduling of the power–traffic networks
can optimise the distribution of electric vehicle traffic flow and charging load in both the
power grid and the traffic network, thereby enhancing the safety and efficiency of the
power–traffic networks.
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