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and during the discharging mode, it can be given as

Ere f−d
C (t) = kp

∫ t

kδ
sat2(P)dξ + Eck (36)

with Ere f−c
C (t), Ere f−d

C (t) and 0 < kp < 1 as the charge reference, discharge reference, and a
constant representing the lost energy during transformation, respectively. sat1 represent
a saturation function in the range of (−∞, 0) and sat2 the same function in the range of
(0, ∞). The energy reference for the supercapacitor is estimated as the sum result of both
references.

Ere f
C = Ere f−c

C + Ere f−d
C (37)

Then, the buck–boost voltage reference can be obtained using the last supercapacitor
energy equation resolved for the voltage

Vcr =

√
2EC

C
(38)

where Vcr is the reference voltage in the supercapacitor, Ec is the energy stored, and C is
the capacitance.

To track the buck–boost voltage, the NIOC scheme was applied. Using (27), the voltage
error at k + 1, evck+1 was calculated as follows

eVcr,k+1 = ω1,1(k)S(x1) + ω1,2(k)S(x2)

+ w1,3S(x1)S(x2) + �1x2 − Vcr (39)

Then, the NIOC was applied to determine the buck–boost current reference for the
supercapacitor as follows

icr =
1
2

(
R +

1
2

B(x1,k)
T PB(x1,k)

)−1
B(x1,k)

T PeVcr,k+1 (40)

The control scheme for the regenerative braking system using NIOC and the current
reference generator is illustrated in Figure 17.
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The DC motor speed was controlled using a PI controller to track a desired reference

uω = kωl p(ωl,re f − ωl) + kωl i

∫ t

0
(ωl,re f − ωl) (41)

where ωl,re f is the motor reference speed and kωl p and kωl i are proportional and integral
controller gains, respectively.

7. Simulation Results

The proposed control scheme as well as the respective MES and AES were imple-
mented and evaluated using the SimPower System toolbox of Matlab (Matlab, Simulink.
de 1994–2022, ©The Math Works, Inc.). The parameters of the AES and MES are listed in
Table 1.

Table 1. Parameters of the AES and MES.

Description Unit

Converter resistance R. 50 Ω
Converter inductance L 13 × 10−3 H
Converter capacitance C1 2 × 10−3 F
Converter capacitance C2 1 × 10−6 F
Supercapacitor voltage Vsc 350 V
Battery bank voltage Vc 500 V
Initial SOC 80%
Sampling time (ts) 1 × 10−5 s

7.1. Neural Identification

The realized RHONN identification allowed us to obtain a satisfactory estimation of
the system states, which were, in this case, the voltage x1, k and the current x2, k during dif-
ferent operation modes. Figure 1 demonstrates the neural identification of the voltage (x1, k)
and its respective neural weights’ changes during the operation of the time-varying signals.

Figure 2 presents the neural identification of the current (x2, k) and its respective
neural weights’ dynamics that adjust over the operation with the time-varying trajectories.

From the obtained results, it is clear that the proposed RHONN identifiers successfully
approximated the voltage and the current dynamics of the AES, even though time-varying
trajectories were applied. In addition, all neural weights were bounded. This allowed a
correct operation for the recognition of the dynamics of the buck–boost converter because
the capability of identifying these variables over time-varying signals let the system operate
in different conditions. Furthermore, the implementation of the neural controller did not
represent a problem, with the neural identifier working correctly.

7.2. Buck–Boost Trajectories Tracking

In this test, the objective was to demonstrate the trajectories tracking of the AES
voltage and current to validate the correct operation of the proposed NIOC scheme. A
trajectory was proposed to show the dynamics regulation without connecting the whole
regenerative braking system.

The proposed trajectory to be tracked was a time-varying signal, whose amplitude
was changed between 340 V and 360 V. Figure 3 presents the obtained results for the voltage
(x1, k) at the output of the buck–boost converter used in the AES system controlled by
the proposed NIOC scheme. As is shown, the tracking made by the controller operated
correctly and followed the variations of the signal.

Figure 4 demonstrates the behavior of the current (x2, k), as measured at the inductance
of the buck–boost converter. As a result of the good performance of the neural controller for
the voltage (x1, k), the regulation and tracking of the current dynamics worked correctly.
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Figure 5a–c display the current, voltage, and state of charge (SOC) of the AES, re-
spectively. Different voltage values were applied to verify the charging and discharging
operations of the AES. The voltage had an initial value of 380 V where the buck mode
was activated and the supercapacitor was charging. Then, at 25 s, the voltage value was
modified to 340 V resulting in the boost mode turning on and the supercapacitor discharg-
ing. The conclusion obtained with the voltage values was that the supercapacitor had the
capacity to work over charging and discharging operations, which helped extend the life
cycle and SOC of the battery when the whole system was connected.

From the obtained results, it is clear that the proposed control scheme (NIOC) ensured
the tracking of the proposed trajectories for both the voltage and current of the AES.
In addition, the charging and discharging operation modes of the AES were achieved.

7.3. Regenerative Braking System Trajectories Tracking

The objective of this section was to test the complete system functionality including
the AES, MES, and the DC motor installed on the EV. The trajectories to be tracked were
calculated using the reference generative block (38) where the motor speed was the input
and the voltage reference (Vcr) was the output. This voltage output was used in the control
loop of the AES where a cascade-controller-based NIOC scheme was used to regulate the
voltage and the current of the buck–boost converter, respectively, with the objective to
ensure the charge and discharge of the AES supercapacitor. The speed of the DC motor
was controlled by a PI controller where a time-varying trajectory was tracked as presented
in Figure 6.

Figure 7 presents the voltage’s desired trajectory tracking, obtained from the reference
generator block (38), using NIOC when the EV was fully operated. During acceleration,
the voltage value decreased toward 340 V, the boost mode was activated, and the su-
percapacitor was discharging, allowing the AES’s participation in the total EV’s needed
energy; as a result, the MES’s charge duration was enhanced. However, during deceler-
ation the voltage value increased to reach 350 V, the buck mode was turned on, and the
supercapacitor was charging, which helped to recuperate the EV energy waste.

Figure 8 illustrates the current trajectory tracking using the proposed NIOC during
the regenerative braking, where the reference trajectory was obtained from the NIOC
voltage controller.

Figure 10 displays the SOC behavior of the MES battery bank without (blue) and with
(red) the AES during the operation of the regenerative braking system. This demonstrated
the enhancement of the battery operation using the regenerative braking system. The results
obtained showed that the battery SOC decreased slowly with the AES in comparison to
when the AES was not implemented.

The SOC of the AES as well the supercapacitor voltage and current are presented in
Figure 9, where the supercapacitor is discharging when the EV is in an acceleration state
and charging otherwise.

As results of this experiment, the proposed control scheme ensured the trajectory
tracking of the AES voltage obtained from the reference regenerative block. The voltage
value was automatically changed according to the acceleration or deceleration of the
motor EV. In addition, the proposed controller achieved an adequate trajectory tracking
of the AES current. On the other hand, the SOC of the MES was largely improved by
using the proposed AES control methodology, which helped to recuperate the energy
during deceleration and enhance the MES’s charge duration. This demonstrated that the
regenerative braking system had a good performance and operation when implementing
the complete scheme as illustrated in Figure 17. However, it is necessary to add another
test to prove even further the good operation of the EV architecture proposed in this article.

7.4. Robustness Test

In this test, the AES parameters were changed to examine the robustness of the
proposed NIOC. In addition, a comparison with the classical PI controller was done to
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illustrate the potential of the proposed neural control scheme. The obtained results of the
AES when varying the parameters are presented in Figures 11–13.

The goal of this test was to vary the nominal values of the components that integrate
the AES parameters described before in Table 1 and demonstrate the capability of the
neural controller to operate over changes in their conditions, which could be considered as
parasitic signals that were not part of an ideal electric vehicle’s system. Figure 11 illustrates
the voltage and current trajectories tracking of the AES when resistor R was changed by
200% of its nominal value.

Figure 12 demonstrates the voltage and current trajectories tracking of the AES when
inductance L was changed by 100% of its nominal value.

Figure 13 demonstrates the voltage and current trajectories tracking of the AES when
resistor C was changed by 70% of its nominal value.

From the simulation results, we can observe that parameter variations had an impor-
tant impact on the AES voltage and current controlled by the PI controller, with a high
coupling between the control axes and a sluggish response time. However, the proposed
controller (NIOC) ensured an adequate performance in the presence of parameter varia-
tions, the decoupling was ensured, and the response time was improved compared with
that of the PI controller. From this test, we can consider that the proposed controller had
better performance and was robust to AES parameter variations and these results were
supported by the mean squared error calculated to validate the statement made with these
results. Table 2 illustrates the results for the voltage control robustness test while Table 3
describes the mean squared error for the current dynamics. One of the disadvantages of
the PID controller was its capacity to reach the trajectory desired, which meant the squared
error was farther from zero in comparison with that of the NIOC.

Table 2. Mean squared error in x1.

Mean Squared Error of Tracking Trajectories in x1

Controller Mean Value

PID 16.026 × 10−11

NIOC 4.8822 × 10−11

Table 3. Mean squared error in x2.

Mean Squared Error of Tracking Trajectories in x2

Controller Mean Value

PID 140.290 × 10−9

NIOC 2.2314 × 10−9

8. Conclusions

This article presented a regenerative braking system for electrical vehicles controlled
by a neural inverse optimal controller. The control scheme was used to regulate the
dynamics of the AES composed of a buck–boost converter and a supercapacitor, with
the objective to enhance the energy recovery during braking and to participate in the
delivered MES’s energy during acceleration. The proposed controller was developed using
a recurrent high-order neural network identifier, and online training by the extended
Kalman filter based algorithm, which allowed us to approximate the AES’s behavior during
the different operation modes. The validation of the correct identification of the dynamics
with the RHONN was illustrated correctly with the results obtained in the simulation.
This responded to one of the statements mentioned about the implementation and correct
operation of recurrent high-order neural networks in nonlinear systems.
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The neural controller test with the proposed time-varying trajectories helped to achieve
the correct implementation and operation of the dynamics before the complete system
was connected. This was considered because working with the complete regenerative
braking system before the tuning of the controllers may present some issues that could
easily be solved by analyzing the controller separately first. The controller was used to
track the desired trajectories of the AES voltage and current, where a reference generator
block was utilized to define the voltage’s desired value considering the electrical vehicle
operation modes. This reference generator block was very important because this helped
to achieve the necessary current value for the correct operation of the regenerative braking
system. It is important to note the effects that the DC motor had on the EV system
and the good performance obtained by the neural controller. Additionally, the proposed
controller was compared with the PI controller, regarding reference tracking and robustness
against parameter variations. The obtained results illustrated the effectiveness of the
proposed control scheme for the AES trajectory tracking even in the presence of time-
varying references and disturbances. The mean squared error helped to get a better idea
of the improvement that the neural controller presented over a PI controller in this case.
The measure of the error showed by far the effectiveness of NIOC even in the presence
of disturbances or undesired signals. In addition, the charging and discharging of the
AES supercapacitor during acceleration and deceleration was ensured, which helped to
recover the wasted energy during braking and to participate in the MES’s power budget
during acceleration; moreover, it increases the lifetime of the battery bank. As a result,
the charge duration of the MES battery bank was largely enhanced, and the electric vehicle’s
efficiency and operation were improved. Finally, it is necessary to mention that a real-
time implementation is very important to consider; thus, the validation of the proposed
controller will let us know its real effectiveness in terms of real driving performance.
Moreover, new approaches for the inverse optimal and another neural controller such as
the neural sliding mode control could be the simulation of a fully electric vehicle model
system, where more important variables such as temperature conditions are considered,
and the controllers are validated during typical driving conditions.
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Abstract: In bearing fault diagnosis, ensemble empirical mode decomposition (EEMD) is a reliable
technique for treating rolling bearing vibration signals by dividing them into intrinsic mode func-
tions (IMFs). Traditional methods used in EEMD consist of identifying IMFs containing the fault
information and reconstructing them. However, an incorrect selection can result in the loss of useful
IMFs or the addition of unnecessary ones. To overcome this drawback, this paper presents a novel
method called combined modes ensemble empirical mode decomposition (CMEEMD) to directly
obtain a combination of useful IMFs containing fault information. This is without needing to pass
through the processes of IMF selection and reconstruction, as well as guaranteeing that no defect
information is lost. Owing to the small signal-to-noise ratio, this makes it difficult to determine the
fault information of a rolling bearing at the early stage. Therefore, improving noise reduction is
an essential procedure for detecting defects. The paper introduces a robust process for extracting
rolling bearings defect information based on CMEEMD and an enhanced deconvolution technique.
Firstly, the proposed CMEEMD extracts all combined modes (CMs) from adjoining IMFs decomposed
from the raw fault signal by EEMD. Then, a selection indicator known as kurtosis median absolute
deviation (KMAD) is created in this research to identify the combination of the appropriate IMFs.
Finally, the enhanced deconvolution process minimizes noise and improves defect identification in
the identified CM. Analyzing real and simulated bearing signals demonstrates that the developed
method shows excellent performance in extracting defect information. Compared results between
selecting the sensitive IMF using kurtosis and selecting the sensitive CM using the proposed KMAD
show that the identified CM contains rich fault information in many cases. Furthermore, our compar-
isons revealed that the enhanced deconvolution approach proposed here outperformed the minimum
entropy deconvolution (MED) approach for improving fault pulses and the wavelet de-noising
method for noise suppression.

Keywords: combined modes ensemble empirical mode decomposition; KMAD indicator; three-sigma
rule; enhanced minimum entropy deconvolution; rolling element bearing faults; fault detection

1. Introduction

The large-scale use of induction machines accounts for 90% of the industry’s total
energy consumption. Several defects often lead to unexpected failures. These defects can
lead to severe damage to the machine if they are overlooked initially. According to previous
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studies, the high percentage of failures in induction machines is caused by bearing faults.
As a result, it is highly recommended to monitor small and medium voltage machines
continuously for bearing faults [1,2]. Bearing health condition is commonly monitored by
vibration monitoring. The vibration signals provide a wealth of information regarding
machine health conditions [3]. Many approaches aim to pick up the characteristic defect
information from the rolling bearing’s non-stationary and nonlinear vibration signal by
employing appropriate signal processing techniques. Huang et al. [4] created a time-
frequency analysis approach known as empirical mode decomposition (EMD). EMD differs
from short-time Fourier transform and wavelet transform as it is not dependent on the
basis function. It is based on adaptive decomposition characteristics and decomposes
signals into intrinsic mode functions (IMFs). EMD is suitable for non-stationary and non-
linear vibration signals analysis [5], such as bearing faults, and has been widely used for
this purpose. However, a significant problem with EMD is the mixing of modes. As a
solution to this challenge, an improved version of EMD called ensemble empirical mode
decomposition (EEMD) is proposed in [6]. An IMF in the EEMD consists of the average
of a set of trials. The results of the EMD decomposition are used for each trial and a
finite-amplitude white noise [7]. Compared to the EMD, IMFs produced by the EEMD
can better highlight the signal’s significant features. The focus of researchers has always
been on how to identify EEMD’s important IMFs and how to improve the level of noise
minimization. These two main issues will be briefly discussed below.

Considering that the decomposed bearing vibration signal contains some IMFs repre-
senting defect features, as well as other IMFs containing unused information, researchers
have focused on identifying suitable IMFs. Wang et al. [8] suggested the use of the highest
value of kurtosis to pick the relevant IMF. Yang et al. [9] selected the effective IMF using
mutual information. Li J et al. [10] calculated each IMF’s similarity to the input signal based
on Spearman’s rho to identify the required IMF. A merit index for determining the relevant
IMF has been proposed in [11]. However, if only the most suitable IMF is considered, fault
information contained in other IMFs may be lost. In contrast, Li Z et al. [12] developed
a weighted kurtosis index difference spectrum (WKIDS) to choose the important IMFs.
Ma et al. [13] used the correlation coefficient to select the effective IMFs. Luo et al. [14]
identified the effective IMFs by using high kurtosis values. However, Damine et al. [15]
demonstrated that choosing the most suitable IMF can result in the loss of other important
IMFs, and that selecting multiple IMFs can result in the inclusion of unnecessary ones. To
address the abovementioned issues, this paper offers a novel approach called combined
modes ensemble empirical mode decomposition (CMEEMD). This method is based on the
extraction of combined modes (CMs) from the measured vibration signal. After that, a
selection indicator is created to identify the combination of suitable IMFs. The purpose of
this step is to obtain the most information about the defect directly from the input signal,
without having to pass through the IMFs selection and reconstruction processes. It also
ensures that no information about the defect is wasted or irrelevant data are included.

Owing to the effect of surrounding noise, extracting bearing fault information at the
early stage of damage is challenging. Therefore, it is essential to reveal the defect pulses
in the vibration signal. The most commonly used deconvolution process is the minimum
entropy deconvolution (MED). The MED is designed to retrieve the bearing defect pulses in
the input signal. Pennacchi et al. [16] examined the efficiency of the MED on experimental
signals and found that it can detect bearing defects. However, when the original signal
contains noise, the efficiency of MED is reduced. In addition, the output of MED will also be
affected by noise interference. Therefore, researchers were concentrated on increasing the
efficiency of the MED. Chatterton et al. [17] combined EMD with MED to improve bearing
defect detection. Ding et al. [18] introduced a deconvolution process using autoregressive
MED for extracting bearing features.

In view of the above considerations, this paper presents an enhanced deconvolution
approach, which focuses on eliminating the noise interference in the MED output by
introducing a de-noising method derived from the three-sigma rule [19]. A new procedure
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for extracting bearing defect features based on CMEEMD and an enhanced deconvolution
process is discussed in this research work. The following describes the originality of these
procedures. Firstly, the proposed CMEEMD decomposes the original signal into CMs. An
indicator is created to identify the appropriate combination that combines the effective IMFs
instead of selecting and reconstructing them. Secondly, an enhanced deconvolution process
based on MED and a noise suppression technique using the three-sigma rule is performed
on the selected CM. Finally, the envelope spectrum is applied, and the characteristic fault
frequency is extracted to diagnose the bearing fault.

The remaining sections of this paper are organised as following: Section 2 is dedicated
to the basic theories of EEMD, MED, and the rule of three-sigma de-noising method.
Section 3 details the proposed methods of this research. Section 3.1 gives the steps of the
CMEEMD. In Section 3.2, the process of selecting an appropriate combination is introduced.
In Section 3.3, the enhanced deconvolution strategy is presented. Section 3.4 describes
the new bearing fault diagnosis procedure. Section 4 presents the results of applying the
proposed method to the simulated signal. In Section 5, the suggested process is performed
on the experimental data, and the results are verified. In Section 6, the conclusion of this
paper is presented.

2. Theoretical Analysis

2.1. EEMD Method

By comparing EEMD and EMD, it has been concluded that EEMD may be more
effective at revealing the characteristic fault information of rolling element bearings [20].
EEMD solves the problem of mode mixing in EMD by adding Gaussian white noise to
the original signal. Thus, we can better highlight the signal’s intrinsic characteristics. The
algorithm of EEMD [7] is given below, and Figure 1 shows the process flow diagram.

(1) Add a random white Gaussian noise β wi(t) to the existing signal:

xi(t)= x (t) + β wi(t) (1)

where β wi(t) is the i-th added white noise series, and xi(t) represents the noise-added
signal (i = 1, 2, . . . , i).

(2) Divide by EMD the novel signal and obtain N sets of IMFs:

xi(t) =
N

∑
j=1

cij(t) + ri (2)

where cij(t) is the IMFs and ri. is the residue.
(3) Using the formula below, determine the ensemble means cj(t) of the I trials:

cj(t) =
I

∑
i=1

cij(t) (3)

where cj(t) (c1, c2,..., cN) is the IMFs divided by EEMD.
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Figure 1. Flow chart of the ensemble empirical mode decomposition (EEMD) algorithm to obtain the
intrinsic mode functions (IMFs).

2.2. Minimum Entropy Deconvolution Technique

MED was originally introduced by Ralph [21]. The MED highlights the transient
components of the signal with a finite impulse response (FIR) filter. It decreases a signal’s
randomness by minimizing its entropy. Two terms can represent a general signal x(n):

x(n) = z(n) * w(n) + η(n) (4)

There is a convolution between the defect impulse z and its excitation w, which is the
first term in the equation. The second term takes a random noise into account. FIR filter
h(n) can be used in minimum entropy deconvolution (MED) to process the original signal.
From [22,23], it is possible to obtain:

u(n) = x(n)∗h(n) =
M−1

∑
i=0

h(i)x(n − i) (5)

where n = 0, 1, . . . , N, N= T + M − 2. The deconvolution filter length is M, and the input
sequence x(n) length is T. In MED, a signal’s entropy is minimized by maximizing the
Varimax function. The Varimax function for u(n) is:
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V(u) =
∑N

n=0 u4(n)
(∑N

n=0 u2(n))2
(6)

The filtering parameters that maximize V(u) are such that:

∂V(u)
∂h(n)

= 0 (7)

As a result of substituting Equations (6) in (7) and solving the derivative, we obtain:

∑M−1
i=0 h(i)∑N

n=0 x(n − i)x(n − k) = ∑N
n=0

u3(n)x(n − k)
V(u) ‖ u ‖2 (8)

where k = 0, 1, . . . , M − 1.
Equation (8) can be written as:

RXXh = b (9)

where RXX corresponds to a matrix of autocorrelation, h is the filter coefficients vector, and
b includes the input of the filter x(n) cross-correlated with the cube of its output u(n). The
following steps summarize the optimal inverse filter solution:

• Assume that h(0) is a set of initial filter coefficients;
• Calculate u(0) and V(u);
• Calculate Rxx
• Determine b(1) and h(1);
• Repeat the procedure until an optimal filter is obtained.

2.3. The Three-Sigma Rule for Noise Minimization

In probability and statistics, the three-sigma rule states that approximately 99.73% of
data following a normal distribution are located inside a range of three standard deviations
from the mean [24].

P{μ− 3σ < Y < μ+ 3σ} ≈ 99.73% (10)

The mean and standard deviation are represented by μ and σ, respectively. The normal
distribution appears with:

E(Y) = μ = 0 (11)

D(Y) = E
(

Y2
)
− [E(Y)]2= E

(
Y2
)
= σ2 (12)

The variance and the expectation are represented by D(Y) and E(Y), respectively.
Based on Equation (12), the root mean square (RMS) value of Y is:

Yrms =

√
1
n ∑n

i=1[Xi,−, E(Y)]2 =

√
1
n ∑n

i=1 yi
2 =
√

E(Y) = σ (13)

where yi stands for the sample data of Y and n for the number of samples.
Using Equations (11) and (13), Equation (10) can be written as:

P{−3σ < Y < 3σ}= P{−3Yrms < Y < 3Yrms} ≈ 99.73% (14)

Based on the assumption that a fault-free rolling bearing follows the normal distribu-
tion [25], Equation (14) shows that nearly all the noise in the bearing vibration signal Y is
distributed within ±3Yrms. Due to this, it is necessary to remove the components within
±3Yrms. The steps of the de-noising process are as follows [26]:
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1. y (t) is normalized by using zero-mean normalization:

Z(t) =
y − μ

σ
(15)

where Z(t) is the normalized signal.
2. Determine Zrms of Z(t);
3. Replace the sampling data zi of Z(t) falling between ±3Zrms with zero while leaving

zi outside of ±3Zrms unchanged.

w(t) =
{

0, if |z i| � 3Zrms
zi(t), otherwise

(16)

where w(t) represents y(t) after removing the unnecessary components.

3. Proposed Methods

3.1. Combined Modes Ensemble Empirical Mode Decomposition (CMEEMD)

The proposed CMEEMD aims to extract all the CMs from the adjoining IMFs decom-
posed from the bearing fault vibration signal using EEMD. This process is described in
detail below with a flowchart shown in Figure 2. In this paper, adjoining IMFs are combined
using the following expression:

CMi→j= IMFi + . . . + IMFj (17)

where CMi→j is the combined modes of adjoining IMFs from the i-th mode to the j-th mode,
IMFi is the IMF that starts the combination, and IMFj is the IMF that finishes it. Extraction
of CMs is done as follows:

• Divide these CMs into groups. The first group consists of CMs starting with IMF1. By
using Equation (17), we obtain:

CM1→j = IMF1 + . . . + IMFj 2 ≤ j ≤ N (18)

where CM1→j is the combination of adjoining IMFs from IMF1 to the j-th IMF for
j = 2, . . . N, N is the number of IMFs.

• Using Equation (18), extract all CMs starting with IMF1:

CM1→2= IMF1 + IMF2
CM1→3= IMF1 + IMF2 + IMF3

...
CM1→N= IMF1 + IMF2 + IMF3 + . . . + IMFN

(19)

• The second group is constituted by CMs starting with the second mode. In this case,
Equation (17) can be expressed as:

CM2→j = IMF2 + . . . + IMFj 3 ≤ j ≤ N (20)

where CM2→j is the combination of adjoining IMFs from IMF2 to the j-th IMF for
j = 3, . . . N.

• Using Equation (20), extract all CMs starting with IMF2:

CM2→3= IMF2 + IMF3
CM2→4= IMF2 + IMF3 + IMF4

...
CM2→N= IMF2 + IMF3 + IMF4 + . . . + IMFN

(21)
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• The process continues until we reach the N − 1 group. In this case, the last combination
can be represented by the following equation:

CMN−1→N = IMFN−1 + IMFN (22)
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Figure 2. Flow chart of the proposed combined modes ensemble empirical mode decomposition
(CMEEMD).

3.2. Sensitive CM Selection Using KMAD Indicator

Once all the CMs have been extracted, we need to identify the appropriate combination
of sensitive IMFs. An indicator was required to select this combination among all the other
CMs. In many studies, maximum kurtosis was used to identify the most sensitive IMF.
However, if we consider only the best IMF, we may lose information about faults contained
in other IMFs [27]. Therefore, this paper uses the kurtosis of the combined IMFs. The
probability of identifying the appropriate combination is higher when the kurtosis value of
the corresponding combination is high. The expression of kurtosis is defined as follows [28]:

K =
1
N ∑N

i=1
(xi − μ)4

σ4 (23)

where the amplitude of the vibration waveform is indicated by xi, the mean of the signal by
μ, the standard deviation by σ, and the length of the samples by N. According to [29–31],
IMFs with high-frequency bands of the vibration signal contain the main fault information
about the rolling bearings. It is known that the higher the frequency band, the larger the
median absolute deviation (MAD). Therefore, the MAD can be used to identify IMFs with
high-frequency bands. The expression of MAD is defined as follows [32]:

MAD (y) = median (|yn − median(y)|) (24)

where yn represents the n-th sampling of the signal y. To ensure that only sensitive IMFs
are combined in the effective combination, the proposed selection indicator aims to prevent
unwanted IMFs from being added. Accordingly, as the number of IMFs in the combination
decreases, the probability of obtaining the required combination increases. Based on all the
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above, the paper proposes an indicator (KMAD), which combines kurtosis and MAD to
select the appropriate combination of sensitive IMFs.

KMADi→j =
Ki→j . MADi

∑
j
i MADn

(25)

In this equation, Ki→j is the kurtosis value of CMi→j, where CMi→j is the combined
modes of adjoining IMFs from the i-th IMF to the j-th IMF, MADi is the mean absolute
deviation of the i-th IMF that starts the combination, and ∑

j
i MADn means the sum of

MADs of IMFs from the i-th IMF to the j-th IMF. A combination with fewer IMFs has a
lower value of ∑

j
i MADn, which increases the probability of obtaining the combination of

useful IMFs. For each CMi→j, KMADi→j is calculated, where the highest value corresponds
to the required combination.

3.3. The Enhanced Deconvolution Process

One of the most commonly used methods for this is MED. However, when the input
signal contains noise, the effectiveness of the MED will be reduced. For this reason, noise
will affect the MED output. Therefore, an enhanced deconvolution approach is presented
in this paper, which aims to minimize noise interference in the MED output by integrating
the three-sigma rule (see Section 2.3). Figure 3 is a flow chart illustrating the enhanced
MED strategy, and the steps are as follows:

1. Apply the MED technique to the input signal;
2. Perform the de-noising method derived from the three-sigma rule on the MED output.

It consists of the following steps:

• Normalize the MED output using zero-mean normalization;
• Calculate the root mean square value Yrms of the normalized signal Y(t);
• Replace the sampling data yi of Y(t) falling between ±3Yrms with zero while keeping

yi outside of ±3Yrms unmodified.

 

 

Yes
  

Input 

 signal   
MED  

output  
 

Normalized 
signal Y(t)  

    
Replace  
with zero 

 unchanged

Out of range 
 MED  Zero-mean  

normalization 
Calculate   

Figure 3. Proposed enhanced deconvolution process flowchart.

3.4. The Proposed Strategy for Bearing Fault Detection

This paper describes a novel feature extraction method based on CMEEMD and
proposes a deconvolution process to diagnose the bearing fault from the vibration signals.
Figure 4 illustrates the flowchart of the proposed method for detecting bearing defects. The
detailed process of the feature extraction method proposed is as follows:

1. Perform CMEEMD on the fault vibration signal as follows:

• Decompose the fault vibration signal with the defect into IMFs by EEMD;
• Extract all combined modes (CMs) from adjoining IMFs (see Section 3.1).
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2. Select the appropriate combination using the KMAD indicator (see Section 3.2):

• Calculate the KMAD value of each CM;
• Select the required combination based on the highest value of KMAD.

3. Perform the enhanced deconvolution process on the selected CM (see Section 3.3).
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Figure 4. Proposed strategy using CMEEMD, kurtosis median absolute deviation (KMAD) and an
Enhanced Deconvolution Process for diagnosing bearing faults.
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4. The Simulation Validation

A simulation of an inner ring defect bearing is presented in this section to illustrate
the effectiveness and usefulness of the suggested method for extracting fault characteristics.
The periodic impulses represent the vibration waveform caused by a local failure in the
bearing. However, these impulses are usually buried in white noise. As a result, we can
obtain the simulated signal of the rolling bearing from [33]. In this paper, the sampling
frequency is 12,000 Hz, the resonant frequency is 3000 Hz, the inner-race fault frequency is
79 Hz, the time lag is zero, the rotational frequency is 28 Hz, and the damping ratio B = 500.
The random noise has a zero mean and variance of σ2 = 0.72. The data length of the signal
is 10,240. The simulated signal y(t) is plotted in Figure 5a. It can be seen that the noise effect
prevents the extraction of periodic impulses. From the envelope spectrum in Figure 5b,
although the fault characteristic fi and the first harmonic 2fi can be extracted, the remaining
harmonics are covered by noise interference. To improve fault detection, this signal needs
to be pre-processed.

 

 
Figure 5. Inner ring fault simulated signal: (a) waveform; (b) envelope spectrum.

4.1. Analysis of the Proposed Method

Based on the detailed flowchart of the proposed feature extraction method described
in Figure 4, the following processes are followed.

4.1.1. CMEEMD Analysis

According to [29–31], the significant defect information about rolling bearings is
included in IMFs with high-frequency bands. Therefore, the proposed CMEEMD uses the
EEMD to decompose this simulated signal into six IMFs. Then, one extracts all the CMs
from the adjoining IMFs. Based on the recommended method for extracting combined
modes CMs detailed in Section 3.1, fifteen CMs are generated from the six IMFs. The
obtained IMFs are plotted in Figure 6, and the extracted CMs are illustrated in Figure 7.
The next step identifies the most sensitive combination.
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Figure 6. Decomposed result of the simulated signal by EEMD.

 

 

-

Figure 7. Extracted Combined modes (CMs) from the adjoining IMFs.
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4.1.2. Selecting the Appropriate CM

Based on the time-domain waveforms given in Figure 7, the differences between the
CMs are insignificant. Therefore, the most effective combination is selected using the
proposed KMAD indicator. Based on Equation (25), the KMAD values of each combination
are illustrated in Figure 8. It is observed that the combination CM1→2 has the highest value
among all the other combinations. This indicates that it is the appropriate combination of
the sensitive IMFs, i.e., IMF1 and IMF2.

 
Figure 8. Kurtosis median absolute deviation (KMAD) values of each combination.

4.1.3. Performing the Proposed Deconvolution Process

This method focuses on minimizing noise interference in the MED output. The
first step is to highlight the fault impulses in selected combination CM1→2 using MED.
Following that, we minimize the noise using the rule of three-sigma. As illustrated in
Figure 9a, the noise is minimized, and the fault impulses are emphasized. From the
envelope spectrum in Figure 9b, we can efficiently and accurately extract the inner race
fault characteristic frequency fi and nine harmonics (2fi, 3fi, 4fi, 5fi, 6fi, 7fi, 8fi, 9fi, and
10fi). This indicates that the rolling bearing fault feature extraction method proposed in
this paper can extract fault information excellently.

  

  

  

Figure 9. Simulated bearing fault diagnosis results for processing the selected CM using: proposed
method (a,b); conventional MED (c,d); and wavelet denoising (e,f).

4.2. Advantages of the Proposed Methods for the Diagnosis of the Simulated Signal

To demonstrate the superiority of the proposed enhanced deconvolution process, the
conventional MED is performed on the selected combination CM1→2. Figure 9c,d shows
the results of processing the selected combination CM1→2. by the MED. As shown in
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Figure 9c, the fault impulses are highlighted, and the noise level is decreased. However,
some noise interference can still be seen. By comparing it with Figure 9a, it is clear that
noise interference has been reduced significantly. From the envelope spectrum in Figure 9d,
we can extract only the inner race fault characteristic frequency fi and five harmonics (2fi,
3fi, 4fi, 5fi, and 6fi). In comparison with Figure 9b, it is apparent that we can get more
fault information. The comparison results demonstrate that the proposed enhanced MED
outperformed the MED for improving fault detection. To demonstrate the superiority of the
enhanced MED approach in minimizing noise, the wavelet de-noised method is performed
on the selected combination CM1→2. Figure 9e shows that the noise interference is reduced
to some extent; however, the extracted fault frequency and its harmonics in Figure 9f are
not as good as in Figure 9b. In this case, the wavelet de-noising method is less efficient in
suppressing noise, making it difficult to extract fault information from the combination
CM1→2. The results demonstrate that the proposed enhanced MED outperformed the
wavelet de-noising method in suppressing noise. The inter-harmonics (inter-characteristic
frequencies of the faults) present the harmonics of the rotational frequency which are
considered as extracted information. In Figure 9b, one can see that the harmonics multiple
of the rotational frequency are obvious, while they are hidden in Figure 9d. This is due
to the fact that the noise has been minimised in Figure 9a. In addition, a comparison
of the conventional IMF selection method using maximum kurtosis with the proposed
KMAD selection indicator is presented to illustrate its advantages. Table 1 shows the
kurtosis values of the first six IMFs. It can be seen that IMF1 has the highest value of all
the decomposition results, so it is selected as a sensitive IMF. IMF1 was treated using the
enhanced deconvolution approach. As shown in the envelope spectrum of Figure 10a, the
extracted fault information is weaker than the extracted fault information in Figure 10b.
This indicates that the combination CM1→2 contains rich fault feature information. The
KMAD indicator identified CM1→2 as a combination of suitable IMFs, i.e., IMF1 and IMF2.
Consequently, if we choose only IMF1, the information contained in IMF2 will be lost. This
proves that selecting the appropriate combination using the KMAD selection indicator
overcomes the drawback of the IMF selection method using kurtosis to ensure that no
information about the defect is lost.

Table 1. Kurtosis values of each intrinsic mode function (IMF).

IMF Kurtosis

IMF1 4.6127
IMF2 3.2595
IMF3 3.0748
IMF4 3.0268
IMF5 2.9883
IMF6 2.8621

Figure 10. Diagnosis results of the simulated bearing fault using: (a) sensitive IMF-based Kurtosis;
(b) sensitive CM-based KMAD.
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5. Experimental Validation

Experimental data from the Case Western Reserve University [34] was used to validate
the proposed method’s effectiveness for detecting rolling bearing faults. As shown in
Figure 11, the experimental set is composed of a 2 hp motor, a torque sensor/encoder, a
dynamometer, and control electronics. Single point faults were introduced using electro-
discharge machining, providing defects in the outer ring, the ball, and the inner ring.
The rotating speed of the shaft varied from 1730 to 1797 RPM. We used the time signal
of the drive end bearing in this study, recorded for the inner race, outer race, and ball
fault. The data were gathered with 12,000 Hz. The deep groove ball bearing 6205-2RS JEM
SKF was used in this experimental test. The bearing parameters are detailed in [34]. The
bearing defect is localized in the early stages: a crack or spall. Rolling elements generate
shock impulses every time they hit a local fault in the inner or outer ring. These repeated
shock pulses produce a vibration at the frequency associated with the faulty element.
This frequency is usually called the fault characteristics frequency, for example, BPFI (ball
passing frequency inner race), BPFO (ball passing frequency outer race), and BFF (ball fault
frequency), which are related to the inner race, the outer race, and the ball, respectively.
The following are their mathematical equations [35]:

 

Figure 11. Experimental test rig from the Case Western Reserve University (CWRW) [34].

BPFI =
fr

2
Nb (1 +

DbCOSβ
Dc

) (26)

BPFO =
fr

2
Nb (1 − DbCOSβ

Dc
) (27)

BFF =
fr

2
Dc

Db
[1 −(

DbCOSβ
Dc

)2] (28)

Fr, Nb, Dc, Db, and β correspond to the frequency of rotation, rolling element number,
pitch diameter, ball diameter, and angle of contact, respectively.

5.1. Case 1: Diagnosis of the Inner Race Fault

In this case, the vibration signal emanates from the inner race fault. The shaft speed is
1772 rpm, the load is 1hp, and the fault size is 0.007 inches. According to Equation (26), the
calculated fault characteristic frequency for the inner race is 159.9 Hz. Taking 24,000 data
points for analysis, I measured original bearing signal with an inner race fault signal is
plotted in Figure 12a. The periodic impulses cannot be extracted due to the noise effect.
From the envelope spectrum in Figure 12b, the fault characteristic fi and the first harmonic
can be extracted. However, the other harmonics are surrounded by noise interference.
Therefore, this signal requires pre-processing to improve fault detection.
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Figure 12. Experimental inner race defect: (a) waveform; (b) envelope spectrum.

5.1.1. Analysis of the Proposed Method

First, the proposed CMEEMD is used to extract the CMs from the experimental inner
race fault signal. From the first six IMFs, fifteen combined modes (CMs) are generated using
the method detailed in Section 3.1. The obtained IMFs are plotted in Figure 13, and the
extracted CMs are illustrated in Figure 14. The next step is determining the most appropriate
combination. By looking at the time domain waveform of each combination in Figure 14,
it can be seen that the difference between the CMs is not significant. It is impossible
to recognize directly which combination contains the most information about the fault.
Therefore, the appropriate combination is selected using the proposed KMAD indicator.
Based on Equation (25), Figure 15 illustrates the KMAD values of each combination. The
combination CM1→2 has the highest value among all the other combinations, indicating
that it is the best combination of the sensitive IMFs, including IMF1 and IMF2. Following
this, the enhanced MED approach is executed on the selected combination. First, MED is
used to minimize the entropy of CM1→2. After that, the output MED noise is minimized
using the three-sigma rule. As illustrated in Figure 16a, the noise is restricted, and the fault
impulses are highlighted. From the envelope spectrum in Figure 16b, we can extract the
inner race fault characteristic frequency fi and ten harmonics (2fi, 3fi, 4fi, 5fi, 6fi, 7fi, 8fi,
9fi, 10fi, and 11fi). This suggests that the rolling bearing fault feature extraction method
proposed in this paper is able to extract rich fault information.

  

Figure 13. Decomposed result by EEMD.
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Figure 14. Extracted CMs result.

Figure 15. Sensitive CM selection using KMAD.
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Figure 16. Inner race fault diagnosis results for processing the selected CM using: proposed method
(a,b); conventional MED (c,d); and wavelet denoising (e,f).

5.1.2. Advantages of the Proposed Techniques for Inner Race Fault Diagnosis

Figure 16c,d shows the results of processing CM1→2 by the conventional MED. As
shown in Figure 16c, the fault impulses are emphasized, and the noise level is reduced.
However, it can be seen that some noise interference still exists. According to Figure 16a,
noise interference has been reduced effectively. From the envelope spectrum in Figure 16d,
we can distinguish only the inner race fault characteristic frequency fi and six harmonics
(2fi, 3fi, 4fi, 5fi, 6fi, and 7fi). By comparing it with Figure 16b, it is clear that we can get
more fault information. The comparison results show that the enhanced MED performs
better than the MED in improving defect detection. To show the enhanced MED approach’s
superiority in eliminating noise, the wavelet de-noised method is performed on the selected
combination CM1→2. As shown in Figure 16e, although the noise is reduced, the fault
impulses are not highlighted as in Figure 16a. In addition, the extracted fault frequency
and its harmonics in Figure 16f are not as excellent as those in Figure 16b. In this case, it
can be said that the inability of the wavelet de-noising method to reduce noise effectively
makes it difficult to extract rich fault information from the combination CM1→2. The
comparison results demonstrate that the enhanced MED performs better than the wavelet
de-noising method in eliminating noise. The amplitudes of the inter-harmonics shown in
Figure 16b,d,f are much smaller than those shown in Figure 9b,d,f, respectively. This is
due to the fact that a signal with high noise (σ2 = 0.72) is created in the simulation. This
makes it more difficult to eliminate noise interference in the simulated signal than in the
experimental signal. As a result, the amplitude of the noise interference will mix with
the inter-harmonics. To illustrate the advantages of the KMAD selection indicator, this
paper conducted a comparison with the IMF selection method using kurtosis. Table 2
shows the kurtosis values of the first six IMFs. It is evident that IMF2 has the highest
value among all the decomposition results, so it is selected as the sensitive IMF. IMF2 was
processed using the enhanced MED approach. From the envelope spectrum of Figure 17a,
it is clear that the extracted fault information is less than the extracted fault information in
Figure 17b. This shows that the combination CM1→2 holds rich fault feature information.
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The KMAD indicator selected CM1→2 as an appropriate combination of suitable IMFs,
namely IMF1 and IMF2. As a result, if we take only IMF2, the information in IMF1 will be
lost. This demonstrates that utilizing the KMAD selection indicator to select the appropriate
combination overcomes the disadvantage of using kurtosis to choose the sensitive IMF and
guarantees no information about the fault is lost.

Table 2. Kurtosis values of each IMF for Inner Race Fault Diagnosis.

IMF Kurtosis

IMF1 4.6903
IMF2 4.7682
IMF3 4.3248
IMF4 3.0268
IMF5 2.5395
IMF6 2.6651

 

 

Figure 17. Diagnosis results using: (a) sensitive IMF-based Kurtosis; (b) sensitive CM-based KMAD.

5.2. Case 2: Diagnosis of the Outer Race Fault

The vibration signal in this case is caused by an outer race fault, with the shaft rotating
at 1797 rpm and no load applied. The size of the fault is 0.021 inches, and the calculated
fault characteristic frequency is 107.01 Hz. Taking 24,000 data points for analysis, Figure 18a
shows the measured bearing signal with an outer race fault. It can be seen that the noise
prevents the periodic impulses from being extracted. From the envelope spectrum in
Figure 18b, although the fault characteristic frequency fo and the first harmonic 2fo can be
extracted, the remaining harmonics are shrouded in noise interference. Therefore, this fault
signal necessitates pre-processing to improve fault detection.

 

 
Figure 18. Experimental outer race defect: (a) waveform; (b) envelope spectrum.
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5.2.1. Analysis of the Proposed Method

In the first step, CMEEMD extracts the CMs from the experimental outer race fault
signal. Using the CMs extraction technique described in Section 3.1, fifteen CMs are created
from the first six IMFs. Figure 19 shows the resulting IMFs, and Figure 20 shows the
extracted CMs. The next step is to determine which combination is the most sensitive. The
time-domain waveforms of each combination in Figure 20 show that there is no noticeable
difference between the CMs. It is impossible to directly recognize the combination that
combines only the useful IMFs. As a result, the suggested KMAD indicator is used to iden-
tify the appropriate combination. Figure 21 shows the KMAD values for each combination.
The combination CM1→2 has the highest value. This indicates that it is a combination of
sensitive IMFs, i.e., IMF1 and IMF2. Following that, the combination CM1→2 was processed
using the enhanced MED approach. First, MED highlights the fault impulses of CM1→2.
Then, the MED output is treated to the de-noised method derived from the three-sigma
rule. As shown in Figure 22a, the noise is minimized, and the fault impulses are prominent.
From the envelope spectrum in Figure 22b, we can accurately extract the outer race fault
characteristic frequency fo and nine harmonics (2fo, 3fo, 4fo, 5fo, 6fo, 7fo, 8fo, 9fo, and 10fo).
This implies that the proposed method for bearing fault feature extraction can effectively
extract rich fault information.

5.2.2. Advantages of the Proposed Techniques for Outer Race Fault Diagnosis

The results of processing CM1→2 by MED are shown in Figure 22c,d. As seen in
Figure 22c, the noise level is decreased, and the fault impulses are accentuated. However,
there still exists noise interference. Compared to Figure 22a, noise interference has been
significantly reduced. Analyzing the envelope spectrum in Figure 22d, it can be seen that
we can extract less fault information than we can in Figure 22b. It is evident from the
comparison results that the enhanced MED is more effective in improving fault detection
compared to the MED. The wavelet de-noising method is performed on the selected
combination, and the results are shown in Figure 22e,f. Although the noise has been
reduced to a certain extent in Figure 22e, the extracted fault frequency and its harmonics in
Figure 22f are less accurate than those extracted in Figure 22b. In this case, the inability of
the wavelet de-noising to successfully decrease noise prevents the extraction of rich fault
information from the combination CM1→2. The results of the comparison confirm that the
proposed enhanced MED eliminates noise better than the wavelet de-noising method. To
show the advantages of the CM selection method using KMAD, this paper performs a
comparison with the IMF selection method using kurtosis. The kurtosis values for the first
six IMFs are presented in Table 3. It appears that IMF2 has the highest value, so it is selected
as a sensitive IMF. Next, IMF2 was treated using the enhanced MED approach. Based on
the envelope spectrum of Figure 23a, we can extract only the outer race fault characteristic
frequency fo and three harmonics (2fo, 3fo, 4fo). By comparing it with Figure 23b, it is
clear that we can extract more fault information (fo, 2fo, 3fo, 4fo, 5fo, 6fo, 7fo, 8fo, 9fo, and
10fo). This indicates that the selected combination contains rich defect information. The
KMAD indicator identified CM1→2 as an appropriate combination of suitable IMFs, i.e.,
IMF1 and IMF2. Therefore, if we only select IMF2, the fault information in IMF1 will be
wasted. This demonstrates that selecting the appropriate combination using the proposed
indicator overcomes the disadvantage of the IMF selection using kurtosis to assure that no
defect information is wasted.
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Figure 19. Decomposed result by EEMD.

Figure 20. Extracted CMs result.
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Figure 21. Sensitive CM selection using KMAD.

 

 

Figure 22. Outer race fault diagnosis results for processing the selected CM using: proposed method
(a,b); conventional MED (c,d); and wavelet denoising (e,f).

 

Figure 23. Diagnosis results using: (a) sensitive IMF-based Kurtosis; (b) sensitive CM-based KMAD.
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Table 3. Kurtosis values of each IMF for Outer Race Fault Diagnosis.

IMF Kurtosis

IMF1 17.7045
IMF2 25.1902
IMF3 10.6024
IMF4 8.8478
IMF5 10.0602
IMF6 11.0606

5.3. Case 3: Diagnosis of the Ball Bearing Fault

The ball race fault in this case generates the vibration signal. The shaft speed is
1772 rpm, the load is 1 hp, and the fault size is 0.028 inches. The calculated fault character-
istic frequency for the ball race is 139.18 Hz based on Equation (28). Analyzing 24,000 data
points, the bearing signal with a ball race fault is shown in Figure 24a. Due to the noise, it
is difficult to distinguish the impact characteristics. From the envelope spectrum in Fig-
ure 24b, although the fault characteristic frequency fb can be distinguished, its harmonics
are masked by noise interference. To improve fault detection, this fault signal requires a
pre-processing step.

 

 
Figure 24. Experimental ball bearing defect: (a) waveform; (b) envelope spectrum.

5.3.1. Analysis of the Proposed Method

First, CMEEMD extracts the CMs of adjoining modes resulting from the decomposition
of the ball defect vibration signal. The first six IMFs produce fifteen CMs using the CMs
extraction technique described in Section 3.1. The obtained IMFs are shown in Figure 25,
and the extracted CMs are shown in Figure 26. Identifying the most sensitive combination
is the next step. According to Figure 26, there is no noticeable difference between the
CMs based on their time-domain waveforms. Directly identifying the combination of
useful IMFs is impossible. Therefore, the suggested KMAD indicator is used to identify the
appropriate combination. According to Figure 27, the combination CM1→2 has the highest
KMAD value. Accordingly, it indicates that it combines sensitive IMFs, i.e., IMF1 and IMF2.
The combination CM1→2 was then performed using the enhanced deconvolution approach
presented here. The noise is reduced considerably as shown in Figure 28a, and rich fault
information (fb, 2fb, 3fb, 4fb, 5fb, 6fb, 7fb, 8fb, and 9fb) can be extracted from the envelope
spectrum presented in Figure 28b. This suggests that the proposed strategy can greatly
enhance fault identification. Additionally, this demonstrates the validity of the proposed
strategy for bearing fault feature extraction.
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Figure 25. Decomposed result by EEMD.

 

 

Figure 26. Extracted CMs result.
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Figure 27. Effective CM selection based on KMAD.

  

  

  

Figure 28. Ball fault diagnosis results for processing the selected CM using: proposed method (a,b);
conventional MED (c,d); and wavelet denoising (e,f).

5.3.2. Advantages of the Proposed Techniques for Ball Bearing Fault Diagnosis

Figure 28c,d shows the results of processing the combination CM1→2 by the MED. As
shown in Figure 28c, despite the noise level reduction, noise interference is still present.
Compared to Figure 28a, the noise interference has been successfully minimized. Based on
the envelope spectrum in Figure 28d, we can distinguish only the characteristic frequency of
the ball race fault fb and five harmonics (2fb, 3fb, 4fb, 6fb, 7fb). Comparing it with Figure 28b,
it is clear that the fault frequency with its multiplication components are extracted perfectly.
It is evident from the results of the comparison that the enhanced MED is better than
the MED for improving fault detection. The wavelet de-noised method is performed on
the selected combination, and the results are shown in Figure 28e,f. Although the noise
has been reduced to a certain extent in Figure 28e, the envelope spectrum presented in
Figure 28f shows that we can distinguish only the characteristic frequency fb and the first
harmonic, whereas Figure 28b shows that we can perfectly extract fault information (fb,
2fb, 3fb, 4fb, 5fb, 6fb, 7fb, 8fb, and 9fb). In this case, the inability of the wavelet de-noising
approach to successfully decrease noise prevents the extraction of rich fault information
from the combination CM1→2. It is evident from the comparison results that the enhanced
MED suppresses noise more effectively than the wavelet de-noising technique. As an
illustration of the advantages of the proposed CM selection method, we have compared it
to the IMF selection method using maximum kurtosis. From Table 4, it can be seen that
IMF5 has the highest value, so it is selected as a sensitive IMF. This IMF was processed
using the proposed enhanced MED, and the envelope spectrum is shown in Figure 29a.
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It is clear that no information about the defect can be extracted. This is due to the fact
that the use of maximum kurtosis to select the sensitive IMF failed in this case, while the
envelope spectrum in Figure 29b illustrated rich fault information. This is because the
KMAD indicator proposed here succeeds in selecting the combination of valuable IMFs
and proves its superiority for choosing the appropriate combination of useful IMFs.

Table 4. Kurtosis values of each IMF.

IMF Kurtosis

IMF1 3.9782
IMF2 3.6592
IMF3 4.4182
IMF4 4.4670
IMF5 5.0951
IMF6 3.5202

 

Figure 29. Diagnosis results using: (a) sensitive IMF-based kurtosis; (b) sensitive CM-based KMAD.

6. Conclusions

A novel rolling bearing fault feature extraction method is presented here, composed of
the following proposed ideas: CMEEMD, the KMAD selection indicator, and an enhanced
deconvolution approach. Firstly, the proposed CMEEMD extracts all the CMs from the
original bearing vibration signal. A selection indicator named KMAD is proposed to
identify the appropriate combination of suitable IMFs. This step aims to directly obtain
a signal containing the most characteristic information about the fault, without going
through the IMFs selection and reconstruction processes, and guaranteeing that no defect
information is lost. Secondly, due to the effect of background noise, it is difficult to obtain
rich fault information. Therefore, the proposed enhanced MED is performed on the selected
combination. The principle of the enhanced MED is to minimize the noise of the MED
output to obtain better analysis results. The selection method used in this paper has been
applied to several other bearing vibration signals. From these experimental data, we found
that the selected combination is most often CM1→2; however, in rare cases it can also be
CM1→3 and CM2→3. On the other hand, several researchers confirm that the bearing defect
information is included in the first IMFs. This supports and confirms the validity of the
presented method.

The analysis of the simulated signal (presented in Section 4) and experimental rolling
bearing cases (inner race, outer race, and ball race presented in Section 5) leads to the
following results being concluded:

1. Compared to the MED technique, the enhanced MED presented in this paper is more
robust in revealing defect pulses (taking Figure 9 as an example).

2. Comparison with the wavelet de-noising method demonstrated that the enhanced
MED performs well with noise suppression and is more effective in revealing fault
information (taking Figure 28 as an example).

3. Compared results between the sensitive IMF using maximum kurtosis and the sensi-
tive CM using the proposed KMAD indicate that the CM selected contains rich fault
feature information (taking Figure 17 as an example).
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4. CMEEMD and KMAD proposed herein solves the drawback of the IMF selection
method by using the maximum kurtosis value to ensure that no information about
the defect is wasted (taking Figure 23 as an example).

5. In contrast to the conventional IMF selection method that failed to identify the ap-
propriate IMF for the ball defect, the KMAD indicator was successful in selecting the
appropriate combination of useful IMFs (see Figure 29).

6. The analysis of simulated and experimental rolling bearing signals confirms that the
proposed strategy for bearing fault diagnosis can greatly enhance fault detection and
effectively extract rich fault information (taking Figures 9 and 28 as examples).
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Abstract: Multiple factors and consequences may lead to a stator winding fault in an external rotor
permanent magnet synchronous motor that can unleash a complete system shutdown and impair
performance and motor reliability. This type of fault causes disturbances in operation if it is not
recognized and detected in time, since it might lead to catastrophic consequences. In particular, an
external rotor permanent magnet synchronous motor has disadvantages in terms of fault tolerance.
Consequently, the distribution of the air-gap flux density will no longer be uniform, producing
fault harmonics. However, a crucial step of diagnosis and controlling the system condition is to
develop an accurate model of the machine with a lack of turns in the stator winding. This paper
presents an analytical model of the stator winding unbalance fault represented by lack of turns. Here,
mathematical approaches are used by introducing a stator winding parameter for the analytical
modeling of the faulty machine. This model can be employed to determine the various quantities of
the machine under different fault levels, including the magnetomotive force, the flux density in the
air-gap, the flux generated by the stator winding, the stator inductances, and the electromagnetic
torque. On this basis, a corresponding link between the fault level and its signature is established.
The feasibility and efficiency of the analytical approach are validated by finite element analysis and
experimental implementation.

Keywords: stator winding unbalance fault; external rotor permanent magnet synchronous motor;
fault harmonics; diagnosis; lack of turns; analytical approach; finite element analysis

1. Introduction

In recent years, external rotor permanent magnet synchronous motors (ER-PMSMs)
mounted directly in the wheels of vehicles has been one of the trends in drive systems
employed in hybrid and electrical vehicle (HEV) powertrains. The design of this type
of motor presents a challenge, as it must be characterized by high durability and energy
efficiency [1–3].

Interest in continually developing techniques for the diagnosis of faults in electrical
machines is related to several factors. Firstly, the overall number of embedded motors
that are employed in different applications, such as industrial systems, renewable energy
generating systems, and HEVs [4]. However, owing to the ageing of materials, manufactur-
ing faults, or sever conditions, various types of electrical, mechanical, and magnetic faults
can occur in the machine [5], for example: open phase faults, interturn short circuit faults,
lack of turns (LTs) faults in the stator winding, eccentricity, demagnetization, and magnetic
circuit faults [6]. Hence, the integration of detection strategies, diagnosis, and fault-tolerant
control becomes unavoidable. Moreover, during the real operation of the ER-PMSM, LTs
faults may emerge due to manufacturing tolerances or ageing issues. Therefore, once the
LTs fault appears, the stator current increases to generate enough torque, which leads to
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torque and speed ripples, and further exacerbates thermal problems. As a result, early diag-
nosis of the LTs fault is critical for preventing deterioration of ER-PMSM performance and
reducing eventual losses by implementing the most effective corrective measures. These
measures may consist of repairing the faulty machine or, in certain situations, appropriately
reconfiguring the control strategy [6].

Currently, several studies have been conducted on the diagnosis and localization of
stator winding faults in ER-PMSMs. Modeling and experiments have been used as the first
step in these studies, and research aims to extract electrical signals and quantities such
as voltage and currents, mechanical quantities such as speed, torque and vibration, and
magnetic field signals such as magnetic flux and density [7–9]. Secondly, appropriate signal
processing methods were employed to extract fault characteristics from various signals,
identify the mode, assess the severity, and classify the fault [10,11].

The lack of turns (LTs) faults can be detected via different approaches based on signals,
data, and models. The first technique aims to identify characteristic fault frequencies
in measured ER-PMSM signals [12,13], which are processed using time-frequency signal
analysis tools, such as the Fourier transform [14,15], wavelet transforms [16], and the
Hilbert–Huang transform [17]. Unlike the Fourier transform, the drawback of wavelets and
Hilbert–Huang transforms is their incompatibility with real-time analysis. Additionally, a
detection technique using an analysis of the external field, provided by sensors positioned
around the machine, using information fusion methods is proposed in [18–21], but these
methods require an accurate knowledge of the external stray flux.

Advanced machine learning method are also employed to detect ER-PMSM stator
faults. These methods are attractive due to their advanced data processing capabilities
combined with external machine signals, such as vibration, acoustic noise, and torque [22].
A one-dimensional convolutional neural network model, which analyzes torque and current
signals to diagnose the motor across a wide range of speeds, variable loads, and fault levels,
is proposed in [23]. These kinds of advanced algorithms are very efficient, but they require
a large amount of computation and historical data to form models and classify localized
defects, as well as extremely high hardware requirements.

This research focuses on the diagnosis of LTs faults in ER-PMSMs by examining and
analyzing the current and speed spectrum, allowing a simple and powerful implementation
of an online fault diagnosis approach. To better understand the influence and consequences
of the fault, an analytical approach and finite element model validation were employed.
The finite element analysis (FEA) offers the benefits of a well-established application
and high computational precision and accuracy. The analytical approach involves the
development of a mathematical model that replicates the behavior of the machine in the
presence of the fault. This model can be used to predict the impact of the fault on various
machine quantities, and can contribute to the development of effective fault diagnosis
methods. Overall, the combination of the analytical approach and FEA validation provides
comprehensive knowledge of the impact of the LTs fault on ER-PMSMs employed in electric
mobility.

The main contributions of this research are as follows: a novel technique and approach
for modeling LTs faults in ER-PMSMs. The suggested analytical model requires less
computational time and can subsequently provide an accurate reference for real-time fault
diagnosis, accuracy, and maintenance. Then, the experimental validation for an ER-PMSM
operating in the case of a motor is presented. Experimental measurements that must be
taken to ensure a reliable diagnosis are also presented.

The main structure of this paper is as follows: in Section 2, the healthy and faulty
analytical models are established to examine how the LTs fault impacts the various electrical
and mechanical quantities of the machine, and the FEA is used to verify the effectiveness
and accuracy of the proposed analytical model. The experimental setup is provided in
Section 3, and the experimental results are in Section 4. Finally, Section 5 summarizes the
conclusions and prospects of the presented work.
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2. Exhaustive Analysis of LTs Fault

After evoking the secondary consequences at the origin of the stator winding unbal-
ance fault illustrated by LTs, this section aims to provide a global comprehension of the
machine in healthy and faulty conditions using an analytical approach and numerical
validation.

The development of a mathematical model enabling simulation of the behavior of the
ER-PMSM in the two healthy and faulty operating modes is indicated below. This model
is based on a 2D extension of the winding function approach to determine the different
inductances of the machine, taking into consideration all the space harmonics, the real
geometry of the ER-PMSM, as well as the distribution of the windings in the stator slots.
The model of the 24 slots and 22 poles of the ER-PMSM with concentric winding is shown
in Figure 1. The major specifications of the machine are listed in Table 1.

LT Fault

 
Figure 1. The model of the double-layer fractional-slot concentrated-wound ER-PMSM.

Table 1. ER-PMSM parameters.

Parameter Symbol Value Parameter Symbol Value

Rated power (kW) P 1.5 Inner rotor diameter (mm) – 183
Rated speed (rpm) w 600 Length (mm) Laxe 35
DC bus voltage (V) VDC 150 Air-gap length (mm) g 1.365

Rated current (ARMS) IN 11 Stator slot width (mm) les 10.37
Rated torque (Nm) Гe 24 Stator tooth width (mm) lds 21.1431
Number of poles p 22 Stator fictive slot depth (mm) ps 2.0740

Number of phases m 3 Slot opening width (mm) 2
Number of slots Ns 24 Magnet thickness (mm) hm 3

Number of turns per coil NT 22 Residual flux density of PM (T) Br 1.26
Outer stator diameter (mm) – 112 Magnet-arc to pole-pitch ratio (%) αp 85.55

Inner stator radius (mm) Rs 88.6350 Permanent magnets – NdFeB N38SH
Outer rotor diameter (mm) – 186 Magnetic steel – M530-50A

The analytical model is developed based on the assumptions given throughout this
section, as follow [24]:

(1) Magnetic saturation is negligible;
(2) Ideal ferromagnetic steel and the magnetic energy is concentrated in the air-gap;
(3) Small air-gap relative to the internal diameter of the stator and radial magnetic field

(tangential magnetic fields are negligible);
(4) Neglected conductivity and eddy current effects.
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2.1. Analytical Approach
2.1.1. Distribution Function of the ER-PMSM

The distribution function of a coil placed in the magnetic circuit delivers information
about its position. Therefore, the objective is to apply the winding function approach
to compute the inductances of the 24 slots and 22 poles of a double-layer fractional-slot
concentrated-wound (FSCW) ER-PMSM (24/22) [24]. Their waveforms are shown in
Figure 2.
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Figure 2. Distribution function of ER-PMSM.

The Fourier decomposition of the distribution function can be given by:

Fdistribution =
Pe

2π
Oc +

2
π

+∞

∑
h=1

1
h

sin
(

hPe
Oc

2

)
cos(hPeθs) (1)

The total distribution function of a winding is the sum of the distribution functions
of a winding, and the sum of the distribution functions of the coils in a series of the same
phase per pair of poles of this winding.

Fdistribution,T(θs) =
q

∑
i=1

Fdistribution(θs) (2)

where Pe is the winding periodicity, Oc is the coil opening angle, q is the coil number, and
θs is the angular position in relation to the stator reference axis.

2.1.2. Winding Function of the ER-PMSM

The winding function presents the magnetomotive force (MMF) of a single-turn
winding carrying a unit current. We may represent these functions as a series of harmonics
due to the winding’s periodicity and each phase coil’s function, which contains periodic
square pulses. In this analysis instance, the mean value of the distribution function is
null. However, Figure 2 illustrates the winding function, which is proportional to the
distribution function.

Fw(θs) = Fdistribution,T(θs)−
〈

Fdistribution,T(θs)
〉

(3)

The spatial harmonic amplitudes of the winding function, obtained from Equation (3),
for a stator with concentrated winding around a double-layer tooth is illustrated in Figure 3.
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Evidently, the harmonic of rank h = 11 had the highest amplitude of 0.4396 for a machine
(24/22).
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Figure 3. Harmonic spectrum of the winding function.

2.1.3. Winding Factor of the ER-PMSM

The winding factor presents the efficiency of the coil arrangement to create a MMF
and determines the capacity of the electromagnetic torque production. We can write a
general presentation of the total winding factor Kw of harmonic h, using the voltage phasor
diagram [25]:

Kw = KdKp (4)

where Kd is the distribution factor, Kp is the pitch factor, αu = p 2π
Q is the slot angle, m is the

number of phases, Q = 2qpm is the number of slots, τp = πD
2p is the pole pitch, and D is the

diameter of the air-gap.

Kd =
sin
(
h qαu

2
)

q sin
(
h αu

2
) = sin

(
h Q

2pm
2πp
2Q

)
q sin
(

h 2πp
2q2pm

) =
sin
(
h π

6
)

q sin
(

h π
6q

) (5)

Kp = sin
(

h
Oc

τp

π

2

)
(6)

According to Figure 4, the spectrum represents the spatial distribution of the winding
factor. The maximum torque of the machine generated in the air-gap will be created by
the h11 component, with a winding factor of 0.949. This component corresponds to the
fundamental, with a rank h = p.
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Figure 4. Harmonic spectrum of the winding factor.

2.1.4. Magnetomotive Force (MMF)

A. Healthy MMF of the ER-PMSM

The MMF of a double-layer FSCW stator is rich in harmonics. However, this harmonic
content leads to torque ripples, unbalanced saturation, and iron losses [26,27]. For this
reason, the combination of slots and number of poles has specific features that must
be examined and studied before that the machine is designed. The harmonics of the
winding factor (Figure 4) are frequently employed as an indication of the properties of this
combination [28].

The spatial MMF distribution of a phase winding is obtained by superimposing the
MMF of all its coils. Due to the periodicity of the winding, the healthy MMF of each phase j
includes periodic square pulses, and can be represented by a Fourier series decomposition,
as follows:

εs
j(t, θs) = KwNTis

j (t)Fw(θs) (7)

where NT is the turns number and is
j (t) =

√
2Is

j sin
(
ωt + ϕj

)
is the temporal expression of

sinusoidal current.
The total healthy MMF generated by the 22 pole, 24 slot FSCW stator is determined

using the following formula:

εs(t, θs) =
m

∑
j=1

(
εs

j(t, θs)
)

(8)

εs(t, θs) =
1
π

mImaxNT

+∞

∑
h=1

1
h

Kw sin
(

hPe
Oc

2

)
cos(hPeθs − (ωt − ϕ)) (9)

The distribution of the total healthy MMF of the three-phase stator winding is shown
in Figure 5 when it is supplied with a balanced three-phase current of f = 110 Hz. The
harmonic spectrum of the total MMF distribution in the healthy case is determined from
Equations (8) and (9), and illustrated in Figure 6. We notice that the harmonic of rank h11 is
the most dominating of ER-PMSM (24/22).
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Figure 5. Healthy and faulty stator MMF distribution.
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Figure 6. Spatial harmonic spectrum of the total healthy and faulty MMF.

B. Faulty MMF of the ER-PMSM

When a stator winding unbalanced fault of LTs occurs in the machine, the stator
MMF will be impacted by the fault. The general analytic model of the faulty MMF is
obtained using the previously stated methodologies and is shown in Figure 5, which can
be represented by the following expressions:

εs
j, f aulty(t, θs) = KwFw, f aulty(θs)NTis

j (t) (10)

Fw, f aulty(θs) =
Nf

NT
Fw,a(θs) + Fw,b(θs) cos

(
ωt − 2π

3

)
+ Fw,c(θs) cos

(
ωt +

2π

3

)
(11)

εs
f aulty(t, θs) =

+∞

∑
j=1

εs
j, f aulty(t, θs) (12)

The analytical modeling in the faulty state is performed for two fault levels: 25% and
50% LTs in phase A.
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Where Fw,faulty is the winding function in the faulty state, and Nf is the number of
faulty stator turns.

A comparison between the harmonic content of the MMF is presented in Figure 6.
Evidently, when the machine is subjected to the LTs fault, all of the odd harmonics are
present in the spectrum, as well as the appearance of new harmonics that are due to the LTs
fault levels (Red arrows).

2.1.5. Air-Gap Flux Density

The permeance function is proportional to the inverse of the air-gap thickness, and
depends only on the average permeance of the air-gap and the form of the stator slots.

For determination of the air-gap permeance, a simplified geometry of the motor shown
in Figure 7 is considered, with a fictitious model for the slots resulting from the assumptions
for a nonsalient FSCW ER-PMSM, and with radial field lines.

℘(θs) = P0 +
+∞

∑
Ks=1

PKs cos(KsNsθs) (13)

P0 =
μ0

g + ps

(
1 +

psrs
d

g

)
(14)

PKs = 2μ0
ps

g(g + ps)

sin
(
Ksrs

dπ
)

Ksπ
(15)

where μ0 = 4π10−7 is the permeability of a vacuum approximately equal to that of the
air, ps = les/5 is the stator fictive slot depth [18], rs

d is the stator toothing ratio, and Ks is the
permeance rank.

lds
les

ps

Figure 7. Geometry adopted for the stator slots of the ER-PMSM.

The healthy and faulty air-gap flux density for a sinusoidal current system can be
written as the following expression:

bs(t, θs) = ℘(θs)ε
s(t, θs) (16)

bs
f aulty(t, θs) = ℘(θs)ε

s
f aulty(t, θs) (17)

Here, it is assumed that the magnetic field distribution would be affected in the fault
condition. Depending on the two levels of the LTs fault, there is a reduction in the flux
inside the stator core. Based on Figure 9, the magnitude of the flux density is considerably
impacted by the fault. The spectrum of the flux density harmonic in the air-gap is depicted
in Figure 10. The amplitude of the fundamental component in the healthy condition and
no-load case is 0.0652 T.

2.1.6. Inductances in Healthy and Faulty FSCW ER-PMSMs

To be able to determine the different parameters of the machine in healthy and dam-
aged modes for examining the structure of the ER-PMSM, it is crucial to calculate the

144



Energies 2023, 16, 3198

values of the self and mutual inductances. In order to examine several configurations,
these calculations are performed using an analytical approach, as well as a numerical and
experimental validation model.

Inductances have a crucial role in this modeling technique since they account for the
many effects that might occur in the machine. Accurate modeling will lead to additional
information of the signals, and a good compromise in terms of model accuracy.

The inductances of the machine will be determined analytically using the previously
stated winding function.

A. Healthy Magnetic Flux

The magnetic flux produced by a phase i flowing through a phase j winding is provided
by the following equations:

Φji,h(t) = NT

�
bs

i (t, θs)dsj (18)

Φji,h(t) = (NT)
2 Ii(t)RsLaxeKw

2π∫
0

Fdistribution,j(θs)℘(θs)Fw,i(θs)dθs (19)

The self-magnetic flux of phase A is given by:

Φaa,h(t) =
2
Pe

RsLaxe(NT)
2 2Imax

π
℘(θs)

+∞

∑
h=1

[
1
h2 Kw sin2

(
hPe

Oc

2

)
cos(ωt − ϕ)

]
(20)

The mutual magnetic flux between phase A and phase B can be expressed by:

Φab,h(t) = 2
Pe

RsLaxe(NT)
2 2Imax

π ℘(θs)
+∞
∑

h=1

[
1
h2 Kw sin

(
hPe

Oc
2

)(
sin
(

hPe
3Oc

2

)
− sin
(

hPe
Oc
2

))
cos(ωt − ϕ)

] (21)

where Rs is the inner stator radius.

B. Faulty Magnetic Flux

The self-magnetic flux of phase A in the faulty state is given by:

Φa11, f aulty(t) =
2
Pe

RsLaxe(Nf )
2 2Imax

π
℘(θs)

+∞

∑
h=1

[
1
h2 Kw sin2

(
hPe

Oc

2

)
cos(ωt − ϕ)

]
(22)

Φa12, f aulty(t) = − 1
Pe

RsLaxe(Nf )
2 2Imax

π ℘(θs)
+∞
∑

h=1

[
1
h2 Kw sin

(
hPe

Oc
2

)(
sin
(

hPe
3Oc

2

)
− sin
(

hPe
Oc
2

))
cos(ωt − ϕ)

] (23)

The total flux linkage of a phase winding is the sum of the aforementioned, as follows:

Φa, f aulty(t) =
8

∑
n=1

Φan, f aulty(t) (24)

A faulty mutual magnetic flux between phase A and phase b is given by:

Φa1b8, f aulty(t) = 1
Pe

RsLaxeNT Nf
2Imax

π ℘(θs)
+∞
∑

h=1

[
1
h2 Kw sin

(
hPe

Oc
2

)(
sin
(

hPe
3Oc

2

)
− sin
(

hPe
Oc
2

))
cos(ωt − ϕ)

] (25)

Φa5b4, f aulty(t) = 1
Pe

RsLaxeNT Nf
2Imax

π ℘(θs)
+∞
∑

h=1

[
1
h2 Kw sin

(
hPe

Oc
2

)(
sin
(

hPe
3Oc

2

)
− sin
(

hPe
Oc
2

))
cos(ωt − ϕ)

] (26)
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Φab, f aulty(t) = Φa1b8, f aulty(t) + Φa5b4, f aulty(t) (27)

Figure 11 depicts the magnetic flux produced by the three phases with a fault of 25%
and 50% of LTs of phase A.

C. Inductances in Healthy and Faulty States

The ER-PMSM inductances are calculated using the approach provided in [25,29],
which uses the winding function corresponding to the MMF produced by the stator winding.
Accordingly, the self or mutual inductances are determined from the following relation:

Lji,h = (NT)
2RsLaxeKw

2π∫
0

Fdistribution,j(θs)℘(θs)Fw,i(θs)dθs (28)

According to the analytical modeling of the faulty magnetic flux proposed and calcu-
lated from Equations (25) and (28), the general form of the faulty self and mutual inductance
can be expressed as follows:

La−A25%/50% =
Φa, f aulty(t)

Ia(t)
; Ma−A25%/50%−b =

Φab, f aulty(t)
Ia(t)

(29)

where the faulty inductances depend on the severity of the LTs fault, and the number of
faulty stator turns Nf. The analytical calculation of self and mutual inductances is conducted
as an example to explain the complete procedure. The other inductances can be derived
similarly. Figure 12a–c exhibit, respectively, the healthy and faulty inductances according
to the two LTs fault levels. All of the results obtained for healthy and degraded operations
by the analytical and numerical approaches are close.

An AC immobilization test is employed for the experimental measurement (Figure 12).
In this method, an AC current flows in phase A, while the other two phases are in an open
circuit. The self-inductance is then obtained using the RMS voltage and current measured
at different rotor positions [30].

2.2. Numerical Validation: Finite Element Analysis

In order to evaluate and validate the analytical approach, a two-dimensional FEA-2D
model of the motor is tested and simulated (Figure 1). The analysis of the behavior for the
LTs fault, with consideration of the electrical and mechanical quantities of the machine in
operational mode, is performed in an open-loop system. All of the testing and analysis will
be focused on the intrinsic features of the LTs fault. The main structural parameters and
specifications are listed in Table 1. Figure 8 illustrates the study ER-PMSM machine with
faulted turns and the mesh of the FEA model.

The impact of the LTs fault is at first examined without the influence of the controllers
under two fault severities. The ER-PMSM with 24 slots and 22 poles is used for the fault
analysis. The following analyses are performed at a level of 25% and 50% of LTs in phase A
of the machine.
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(a) (b) 

Figure 8. ER-PMSM with LTs in phase A. (a) ER-PMSM stator winding with LTs fault in phase A;
(b) the mesh of the ER-PMSM FEA analysis.

Performance Analysis of ER-PMSM with LTs Fault

Figure 9 illustrates the radial air-gap flux density at no load obtained by the analytical
model and the FEA model in the healthy and faulty states according to the two LT fault
levels. In the case of an unbalanced stator winding fault, the amplitudes of the no-load flux
density waveforms drop. However, all analyses are consistent with the analytical analyses.
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Figure 9. Air-gap flux density distribution in the healthy and faulty cases.

The harmonic spectrum is depicted in Figure 10. The flux density in healthy and faulty
circumstances is mainly composed of the fundamental and other harmonics, as well as
the appearance of new harmonics attributable to the faults (red arrows). In addition, the
amplitude of the fundamental suffers a diminution in the faulty cases compared to the
healthy condition.
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Figure 10. Spatial harmonic spectrum of the healthy and faulty air-gap flux density.

Figure 11 shows the total fluxes generated by the stator power supply in the two
situations of the LTs fault of 25% and 50% of phase A, developed theoretically using the
analytical model described previously, and the finite element method at a speed of 600 rpm.
Due to the change in the stator winding induced by the fault in phase A, an unbalance
arises depending on the level of the fault, which leads to torque ripples (Figure 13). This
analysis will be used to determine the inductance of the machine in the presence of the
fault. The inductances take a critical role in the modeling process, since they consider the
many phenomena that might appear within the machine. Accurate modeling will lead to
additional information of the signals and a good compromise in terms of the accuracy of
the model.
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Figure 11. Total flux created by the stator winding, (a) Total flux with 25% of LTs fault; (b) total flux
with 50% of LTs fault.

The inductances of the ER-PMSM are reported in Figure 12. The values given for the
inductances, calculated using the winding function approach from the real distribution
of windings in the stator slots, are closer to those of the finite element analysis and the
experimental ones. On the other hand, a considerable discrepancy is noted between the
FEA and analytical findings for the analytically calculated inductance. This discrepancy
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can be associated with the inadequacy of the winding function to take into account the real
flux paths, geometry, and nonuniformly saturated iron in an FSCW ER-PMSM machine.
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Figure 12. Comparison between inductances derived by the analytical approach, FEA, and experi-
mental measurements. (a) Healthy inductances; (b) faulty inductances with 25% of LTs fault; (c) faulty
inductances with 50% of LTs fault.

In Figure 13, the ER-PMSM is operated at nominal load. The temporal representation
of the output torque of the machine by FEA for the three cases is provided. In the LTs fault
circumstances of 25% and 50% of phase A, the torque decreases accordingly concerning
the healthy state, according to the fault’s severity level. Moreover, due to the change of its
symmetry, torque ripples appear, which are due to the growth of harmonics. The evolution
of the faulty torque reveals torque ripples corresponding to the double of the frequency,
owing to the decrease of the resistance and the inductance of a phase, which makes the
bandwidth wider. The results concerning the torque are provided in Table 2. It can be
observed that the level of the torque ripples is related to the severity of the fault.
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Figure 13. Electromagnetic torque comparison.

Table 2. Summary of simulation results of electromagnetic torque.

State Torque Ripples (N·m)

Healthy ER-PMSM
{

Γe−min = 24.5023
Γe−max = 24.8956

Faulty state: LTs of 25%
{

Γe−min = 20.7869
Γe−max = 24.5755

Faulty state: LTs of 50%
{

Γe−min = 17.5335
Γe−max = 24.4895

3. Experimental Setup

This section describes the configuration and experimental campaign of the test bench
devoted to the control and diagnosis of the LTs fault of the ER-PMSM, to validate and
verify the theoretical and numerical methodologies. The parameters of the faulty machine
are reported in Table 1. The test bench is illustrated in Figure 14a. The structure of the
stator winding of the machine has been designed in such a way as to offer the possibility of
achieving various levels of LTs and interturn short circuit ITSC defects (Figure 14b). The
architecture of the experimental platform is given in Figure 14c. The experimental bench
for control and diagnosis consists mainly of a three-phase ER-PMSM of 22 poles and a
power of 1.5 kW, coupled to a permanent magnet synchronous generator (PMSG). This
PMSG is equipped with an incremental encoder connected to the interface with a specific
cable to measure the rotation speed, as well as to capture the exact position of the rotor,
whose stator is connected to a three-phase resistive load. The torque is measured via a
T22/50 Nm torque meter connected to an MX440B universal amplifier module from HBM’s
QuantumX. The machine is driven in a closed-loop and the motor is fielded by a Semikron
three-phase IGBT inverter at 5 kHz. The control and signal acquisition are performed via a
dSpace-MicroLabBox 1202 platform. The DC bus voltage VDC is maintained at 150 V by
the grid through the three-phase autotransformer and a diode bridge rectifier.
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Figure 14. Experimental setup. (a) Global view of the test bench setup for control and diagnosis
of the ER-PMSM; (1) ER-PMSM 1.5 kW; (2) torque meter T22/50 Nm; (3) load PMSG; (4) encoder;
(5) MX440B module; (6) dSpace 1202 MicroLabBox; (7) MATLAB/Simulink ControlDesk platform;
(8) DC power supply; (9) Semikron 3Φ inverter; (10) power supply 3Φ/50 Hz; (11) current sensors;
(12) voltage sensor; (13) digital oscilloscope. (b) Structure of the stator winding of the ER-PMSM;
(c) block diagram of the setup.

The faulty harmonics are aimed at kfs, with the values measured in decibels (dB). As a
result, for fault sensitivity, we consider the case of the LTs fault in half of an elementary
coil Ahalf, of 25% and 50%, corresponding, respectively, to 11 turns, 44 turns, and 88 turns.
In reality, the 25% and 50% cases are rarely possible, and the fault is often apparent on

151



Energies 2023, 16, 3198

some turns. Nonetheless, these values, although large, provide a vision of the tendency to
monitor the machine with the fault and the evolution of these harmonics.

4. Experimental Results

Figure 14c depicts a synoptic diagram of the experimental implementation that indi-
cates the experimental validation of the ER-PMSM control results in the healthy condition
with an LTs fault of 25% and 50%. The experimental results are acquired by a digital
oscilloscope linked to the real-time interface. The choice of the sampling frequency sig-
nificantly impacts the quality of the signals, particularly the phase currents, speeds, and
electromagnetic torque, and whatever the control algorithm used. For each healthy/faulty
scenario, a load torque condition is tested: 8 Nm for a speed of 600 rpm. In this section,
we present the experimental results illustrating the behavior of the ER-PMSM impacted by
25% and 50% LTs fault in its stator winding. Figure 15 depicts the flow chart of the control
loop used in this paper with the LTs fault diagnosis.
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Figure 15. The flow chart of the proposed strategy.

4.1. Healthy State of the ER-PMSM

The following section examines the behavior of the machine in the healthy state.
Figure 16 depicts the electrical and mechanical quantities recorded in real-time. The
presentation of the experimental results will be restricted to the intersective PWM. We are
interested in the rotational speed and the waveform of the stator currents. Figure 16a shows
that the rotor speed follows its reference. The three-phase stator currents are shown in
Figure 16b and in the d-q rotating frame in Figure 16c. The spectral analysis of the signals
offers a way to diagnose this type of stator winding fault. We present the spectral analysis
of the rotational speed and the stator current, using the fast Fourier transform (FFT) in
steady state at rated load. We will show how this method makes it possible to determine
the frequency content of the rotational speed and the stator current, and thus to find the
lines associated with the LTs faults of 25% and 50%.

152



Energies 2023, 16, 3198

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0

100

200

300

400

500

600

700

800

 (r
pm

)

r

r*

590

600

610

 
(a) 

  
(b) (c) 

ic ia ib 
iq id 

id* iq* 

Figure 16. Electrical and mechanical characteristics in the healthy state. (a) Rotor speed; (b) stator
phase currents; (c) direct and quadratic current component.

4.2. Faulty State of the ER-PMSM

The following section provides the experimental results of the machine with the LTs
fault. Figures 17 and 18 exhibit the results obtained from the control of the different
electrical and mechanical parameters of the machine with a fault in the stator winding. The
presence of the LTs fault in stator phase A, according to the severity level, shows:

- The rotor speed is not substantially influenced by the LTs fault because of the control
loop that hides and compensates for the effect of the fault;

- High ripples arise in the stator current of phase A, the direct current id, and the
quadratic current iq. The influence of the fault generates an unbalance and a noticeable
variation in the current envelope.
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Figure 17. Electrical and mechanical characteristics in the faulty state with an LTs fault of 25%.
(a) Rotor speed; (b) stator phase currents; (c) zoom of the stator phase currents; (d) direct and
quadratic current component; (e) zoom of the direct and quadratic current component.
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Figure 18. Electrical and mechanical characteristics in the faulty state with an LTs fault of 50%.
(a) Rotor speed; (b) stator phase currents; (c) zoom of the stator phase currents; (d) direct and
quadratic current component; (e) zoom of the direct and quadratic current component.

4.2.1. Motor Speed Signature Analysis

The examination of the motor speed signature analysis (MSSA) may provide a non-
invasive method applied for the detection of stator winding faults. It is a nonparametric
approach devoted to the analysis of stationary phenomena [31,32]. Figure 19 illustrates the
spectrum analysis of the speed in the presence of an LTs fault of 25% to 50%. According to
this study, we notice the appearance or the presence of several components having a direct
relation with the defect according to the specified degree of severity. The appearance of the
lines is an indicator of the existence of the LTs fault.
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Figure 19. Experimental speed spectrum of the ER-PMSM at 8 Nm load and 600 rpm, in healthy and
faulty conditions. (a) LTs fault of 25%; (b) LTs fault of 50%.

4.2.2. Motor Current Signature Analysis

The next stage is to evaluate the application of the spectral analysis of the stator
phase current envelope signal to LTs detection. The steady-state stator phase current
envelope spectra for the motor operating with fs = 110 Hz at 8 Nm load for 25% LTs fault
level is illustrated in Figure 20. The examination of the motor current signature analysis
(MCSA) reveals the influence of the LTs fault in the appearance of harmonics around
the fundamental, which increases with the fault intensity. The influence of the fault is
manifested by the presence of new visible frequency components in the current spectrum
around the fundamental at 2fs and 3fs. Based on this analysis, it can be inferred that the rise
in amplitudes induced by the fault is significant. We can also highlight more typical criteria,
such as the occurrence of kfs frequency lines near the fundamental (k = 1, 2, 3, 4 . . . ) on the
stator current spectrum. Table 3 illustrates the magnitudes and frequency of the ER-PMSM
stator current analysis fault.

Table 3. Experimental magnitude of current components generated by the ER-PMSM at 8 Nm load
and fs = 110 Hz.

ER-PMSM Magnitude (dB)
Current (dB)

fs = 110 Hz 2fs = 220 Hz 3fs = 330 Hz 4fs = 440 Hz 5fs = 550 Hz

Healthy state 0 −43.361 −41.096 −55.616 −23.937

Faulty state: LTs of Ahalf 0 −43.177 −35.001 −45.819 −22.828

Faulty state: LTs of 25% 0 −31.636 −20.759 −38.989 −21.159

Faulty state: LTs of 50% 0 −37.708 −20.689 −42.237 −31.881

According to Figure 20, we notice that after the presence of the fault at a level of 25%,
an appearance and increase of harmonics is reflected in the frequency domain. The presence
of the LTs fault causes torque and speed ripples, which leads to significant mechanical
vibrations in the machine, as well as an unbalance that manifests itself in the form of an
important increase in the current of the faulty phase and a less significant increase for the
other two phases. The spectral analysis of the MCSA indicates a visible rise in amplitude at
2fs, 3fs, and 4fs for both fault levels. However, the fifth harmonic of the spectrum (550 Hz)
will not be influenced by the 50% LTs fault. According to these results, we observe the
existence of proportionality between the severity level of the LTs fault and the amplitude of
the characteristic harmonic of the fault. Therefore, we can subsequently detect an incipient
fault, which is the main objective of the LTs fault diagnosis. All information acquired from
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the spectrum analysis can be employed in an automated fault detection process, while
analyzing the presence of new harmonics and setting detection thresholds using adaptive
observers for reconfiguration and fault isolation.
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Figure 20. (a–f) Experimental current spectrum of the ER-PMSM at 8 Nm load and 600 rpm, in
healthy and faulty conditions with an LTs fault of 25%.

The validity of the analytical model was proven by two approaches: FEA and exper-
imental measurement of inductances and electromotive forces of the healthy and faulty
machines. The occurrence of new harmonics can be attributed to several factors connected
to the LTs fault, including torque and speed ripples, system nonlinearity, and unbalance
of the ER-PMSM electromotive force. These factors can induce variations in the electri-
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cal and mechanical behavior of the machine, resulting in spectral alterations that can be
detected and analyzed to diagnose the fault. While validation of the analytical model by
FEA and experimental measurements is crucial, understanding the underlying reasons
for the spectrum changes is equally important for effective fault diagnosis in real-world
applications.

5. Conclusions

This paper presents a new approach for modeling lack of turns (LTs) faults in the
stator winding of external rotor permanent magnet synchronous motors (ER-PMSMs),
which are of major importance in permanent magnet (PM) electrical machines since, in
rotation, the induction effect generated by PMs aggravates the effects of these faults.
Different operating conditions of ER-PMSMs with LTs fault provide a reference for real-time
diagnosis, prediction, and maintenance planning. The suggested method has substantial
advantages, such as fast calculation, good precision, and explicit physical correlations
between different factors. For this purpose, theoretical operational performances of various
operating situations have been evaluated.

The paper also examines the problem of diagnosing LTs faults in ER-PMSMs at their
early stage by analyzing the spectral content of the speed and current signatures under
various operating situations. The provided results confirm the efficiency of the diagnosis
and the application of spectral analysis for the extraction of LTs fault indicators.

Future research will focus on the development and combination of adaptive fault-
tolerant control of LTs faults, advanced fault diagnosis methodologies for ER-PMSMs, and
the implementation of automated fault detection processes in automotive applications.
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Abstract: Inter-turn short circuit in the excitation windings of synchronous condensers is a common
fault that directly impacts their normal operation. However, current fault analysis and diagnosis
of synchronous condensers primarily rely on voltage-balanced conditions, while research on short-
circuit faults under unbalanced voltage conditions is limited. Therefore, this paper aims to analyze the
fault characteristics of inter-turn short circuits in the excitation windings of synchronous condensers
under unbalanced grid voltage. Mathematical models were developed to represent the air gap flux
density and stator parallel currents for four operating conditions: normal operation and inter-turn
short circuit fault under balanced voltage, as well as a process without fault and with inter-turn
short circuit fault under unbalanced voltage. By comparing the harmonic content and amplitudes,
various aspects of the fault mechanism of synchronous condensers were revealed, and the operating
characteristics under different conditions were analyzed. Considering the four aforementioned
operating conditions, finite element simulation models were created for the TTS-300-2 synchronous
condenser in a specific substation as a case study. The results demonstrate that the inter-turn short
circuit fault in the excitation windings under unbalanced voltage leads to an increase in even harmonic
currents in the stator parallel currents, particularly the second and fourth harmonics. This validates
the accuracy of the theoretical analysis findings.

Keywords: synchronous condenser; unbalanced voltage; inter-turn short circuit in excitation windings;
finite element; fault analysis; stator parallel currents

1. Introduction

Currently, the ultra-high voltage direct current (UHVDC) system is rapidly developing,
imposing more significant requirements on reactive power within the power grid. Large-
scale synchronous condensers (LSSC), with high capacity, exhibit exceptional transient
reactive power support and short-term overload capabilities. By positioning LSSC at the
inverter end of a weak AC grid, commutation failures can be effectively prevented, and
fault clearing speed can be accelerated [1]. Consequently, ensuring the reliable operation of
LSSC is crucial in enhancing the dynamic voltage stability of power systems and ensuring
the stable operation of UHVDC transmission [2].

Inter-turn short circuit in the excitation windings of synchronous condensers is a
common fault not only limits the reactive power capability but also increases the excitation
current, power losses, and local temperature of the synchronous condenser. In severe
cases, it can exacerbate rotor vibrations, generate significant axial magnetization, and even
completely shut down the synchronous condenser [3]. Analyzing characteristic patterns
and accurately diagnosing inter-turn short circuit faults in the excitation windings are
complex tasks within the field of system engineering. Fault diagnosis is typically carried
out using methods such as the DC resistance method [4], AC impedance method [5], and
repetitive pulse method [6]. Since synchronous condensers share structural similarities
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with synchronous generators, research findings related to synchronous generators can be
utilized for synchronous condensers [7–11]. M. Xu et al. [12] comprehensively analyzed
the stator circulating current within parallel branches, considering various degrees and
positions of rotor inter-turn short circuits. The analysis was performed using the finite
element method, yielding valuable insights into the behavior of the circulating current.
Currently, several studies have been conducted on inter-turn short circuit faults in the
excitation windings of synchronous condensers. G. Xu et al. [13] present the single-phase
short circuit faults’ electromagnetic and temperature field calculation and the experimen-
tal validation. M. Ma et al. [14] investigated inter-turn short circuit faults in the rotor
windings of synchronous condensers by analyzing commutation failures in high-voltage
direct current transmission. Finite element analysis revealed that commutation failures can
cause abnormal vibrations in the rotor side of the synchronous condenser, which positively
correlates with the severity of the fault. Y. Zhang et al. [15] applied wavelet transform
to preprocessed excitation current signals extracted from normal and faulty states of the
synchronous condenser. The extracted features were input into a radial basis function
neural network for fault diagnosis. Z. Chen et al. [16] analyzed inter-turn short circuit
faults in the rotor windings of synchronous condensers from the perspective of temperature
distribution and validated the analysis through finite element simulations. C. Wei et al. [17]
investigated the relationship between the number of short-circuited turns in the excitation
windings of synchronous condensers and the magnetic field current in the rotor windings,
proposing an online monitoring fault diagnosis strategy. A. N. Novozhilov et al. [18] estab-
lished a mathematical model for inter-turn short circuit faults in the excitation windings
of synchronous condensers, achieving an accuracy range of 5% to 10%. Most existing
research on the mentioned faults primarily focuses on the short circuit between turns
in the excitation winding. However, the voltage waveform of the grid deviates from a
standard sinusoidal shape due to the non-standard sinusoidal waveform generated by most
generators. As a result, when a short circuit occurs in the excitation winding, it can be seen
as a combination of unbalanced voltage and a short circuit between turns in the excitation
winding. The prevalence of unbalanced voltage further complicates the fault analysis, as
the fault environments studied in literature may not accurately reflect real-world scenarios.
Consequently, matching the observed fault characteristics of the synchronous condenser
with known fault patterns during on-site diagnostics becomes challenging, often leading
to incorrect or even misdiagnosis. Therefore, it is crucial to research the compound fault
of unbalanced voltage and short circuits in the excitation winding. This research aims to
identify distinctive fault characteristics specific to this type of fault and differentiate them
from fault characteristics caused by individual faults. Such investigations are essential
for achieving accurate diagnosis and establishing reliable diagnostic criteria in scenarios
involving these compound faults. J. LI et al. [19] conducted a simulation study on the
inter-turn short circuit fault in the stator winding of a doubly-fed induction generator.
They used finite element modeling to analyze the changes in stator line voltage, rotor line
current, and electromagnetic torque when the excitation winding experiences an inter-turn
short circuit fault, considering the presence of inherent grid voltage imbalance and static
eccentricity. However, their study [19] focused solely on simulation modeling analysis and
did not investigate the theoretical research on mathematical expressions of the relevant
fault characteristic quantities after the occurrence of the fault. As a result, their study has
certain limitations that need to be addressed.

Among the electrical characteristic-oriented methods, the current-based method is
most widely employed since it does not require extra equipment and can make full use of
the stator winding as search coils for further processing. In addition, the parallel branch
circulating current signal in the stator winding carries valuable fault information and,
in certain cases, offers more effective fault diagnosis than rotor vibration signals. To
address the issue of voltage imbalance, this paper begins by investigating the air gap flux
density and proceeds to derive expressions for both the air gap flux density and stator
parallel branch circulating current of the synchronous condenser in four distinct operating
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conditions. Additionally, it conducts a comprehensive analysis of the characteristics of the
stator parallel branch circulating current under different operating conditions, shedding
light on their intricate dynamics: normal operation of the synchronous condenser under
balanced voltage, inter-turn short circuit fault in the excitation windings of the synchronous
condenser under balanced voltage, normal operation of the synchronous condenser under
voltage imbalance, and inter-turn short circuit fault in the excitation windings of the
synchronous condenser under voltage imbalance. The degree of voltage imbalance is
varied by adjusting the voltage magnitude. Mathematical representations are derived,
and a finite element simulation model of the synchronous condenser is constructed to
validate the analysis. This study aims to provide a theoretical basis for diagnosing inter-
turn short circuit faults in the excitation windings of synchronous condensers under voltage
imbalance conditions.

The main structure of this paper is as follows: In Section 2, the expressions for the air
gap flux density and stator parallel currents under different fault types of a synchronous
condenser are derived, and the impacts of faults are analyzed from a theoretical perspective.
Section 3 validates the proposed analytical model’s effectiveness and accuracy using finite
element analysis, and the changes in air gap flux density and stator parallel currents after
faults in the synchronous condenser are analyzed using the finite element model, which is
consistent with the theoretical analysis. Finally, Section 4 summarizes the conclusions of
this paper.

2. Analysis of Composite Faults in Synchronous Condensers

To compare the variations in air gap magnetic flux density, stator parallel current
amplitude, and harmonic content under different operating conditions, this paper focuses
on four scenarios: normal operation of the synchronous condenser under balanced voltage,
inter-turn short circuit fault in the excitation windings of the synchronous condenser under
balanced voltage, normal operation of the synchronous condenser under voltage imbalance,
and inter-turn short circuit fault in the excitation windings of the synchronous condenser
under voltage imbalance. Compared to symmetrical grid voltage, it is assumed that when
the grid voltage becomes asymmetric, the amplitude of one or two phases is reduced.
Nevertheless, the derived formulas apply to all cases, demonstrating their universality.

2.1. Analysis of Air Gap Magnetic Field
2.1.1. Air Gap Magnetic Potential during Normal Operation of Synchronous Condenser
under Balanced Grid Voltage

Neglecting higher-order harmonics, the air gap magnetic potential of the synchronous
condenser during normal operation can be expressed as follows:

f (αm, t) = Fs cos(ωt − αm − ψ − π
2 ) + Fr cos(ωt − αm)

= F1 cos(ωt − αm − β)
(1)

F1 =

√
F2

s cos2 ψ + (Fr − Fs sin ψ)2 (2)

β = arctan
Fs cos ψ

Fr − Fs sin ψ
(3)

where ω is the stator current angular frequency and rotor rotational angular velocity, αm is
the stator spatial electrical angle, ψ is the internal power factor angle, Fs is the armature
magnetic flux amplitude, and Fr is the excitation magnetic flux amplitude.
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2.1.2. Air Gap Magnetic Potential during Inter-Turn Short Circuit Fault in the Excitation
Windings of Synchronous Condenser under Balanced Grid Voltage

When an inter-turn short circuit occurs in the excitation windings of the synchronous
condenser, it generates a counteracting magnetic field [20]. The reverse magnetic MMF
(Magneto-Motive Force) generated by the short-circuited winding is given by

Fd(θr) =

⎧⎨
⎩
− I f 0 Nshort(2π−α)

2π − α
2 < θr <

α
2

I f 0 Nshortα

2π other
(4)

where If0 is the excitation current, Nshort is the number of turns in the short-circuited
winding in the same slot, α is the mechanical angle between the slot where the short-
circuited winding is located and the adjacent slot, θr is the mechanical angle of the rotor.
The magnetic potential resulting from the short circuit can be expressed in terms of its
harmonic components through Fourier decomposition:

Fd(θr) =
−2Nshort I f 0

π

∞

∑
n=1

sin(nα/2)
n

cos nθr (5)

After performing the Fourier transform on Fd(θr), it can be observed that the main
magnetic field in the air gap exhibits various harmonics. When α = 2 kπ/n, taking n = 1,2,
and θr = ωt − αm, we have

f (αm, t) = Fs cos(ωt − αm − ψ − π
2 ) + Fr cos(ωt − αm)

−Fd1 cos(ωt − αm)− Fd2 cos(2ωt − 2αm)
= F1 cos(ωt − αm − β)− Fd2 cos(2ωt − 2αm)

(6)

Fd1 =
2Nshort I f 0

π
sin

α

2
(7)

Fd2 =
Nshort I f 0

π
sin α (8)

F1 =

√
F2

s cos2 ψ + (Fr − Fd1 − Fs sin ψ)2 (9)

β = arctan
Fs cos ψ

Fr − Fd1 − Fs sin ψ
(10)

2.1.3. The Air Gap Magnetic Potential of the Synchronous Condenser under Unbalanced
Grid Voltage Conditions without Any Faults Occurring

Under balanced grid voltage, the armature magnetic field of the synchronous con-
denser exhibits a synchronized circular rotation with the rotor. However, when the grid
voltage becomes unbalanced, the armature magnetic field undergoes distortion, assuming
an elliptical shape. The symmetrical component method can be applied to characterize the
armature magnetic field expression in such scenarios. In this method, the positive-sequence
armature magnetic field rotates synchronously with the rotor, while the negative-sequence
armature magnetic field rotates in the opposite direction. Meanwhile, the zero-sequence ar-
mature magnetic field remains at zero [21]. Consequently, in the presence of an unbalanced
grid voltage, the expression for the armature magnetic potential is given by

fs(αm, t) = F+
s cos(ωt − αm − ψ − π

2
) + F−

s cos(ωt + αm − ψ − π

2
) (11)

where Fs
+ is the positive-sequence armature magnetic flux amplitude, Fs

− is the negative-
sequence armature magnetic flux amplitude. Based on the previous assumption, both Fs

+

and Fs
− are smaller than Fs. The negative-sequence magnetic field caused by the unbal-
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anced grid voltage induces a double-frequency current in the rotor winding. Therefore, the
expression for the excitation current is as follows:

I f (t) = I f 0 + I f 2 cos 2ωt (12)

where If0 is the direct current excitation current generated by the generator excitation sys-
tem, If2 is the amplitude of the twice-frequency excitation current induced. The expression
for the excitation magnetic field generated by the excitation current is as follows:

fr(αm, t) = (I f 0 + I f 2 cos 2ωt)Nk cos(ωt − αm)
= Fr cos(ωt − αm) + I f 2Nk cos 2ωt cos(ωt − αm)

(13)

where k is the waveform coefficient of the excitation magnetic flux. Therefore, the expres-
sion for the synthesized air-gap magnetic potential generated under unbalanced voltage
conditions is as follows:

f (αm, t) = fs(αm, t) + fr(αm, t)
= F1 cos(ωt − αm − β) + F2 cos(ωt + αm − γ)
+ 1

2 I f 2Nk cos(3ωt − αm)
(14)

F1 =

√
F+2

s cos2 ψ + (Fr − F+
s sin ψ)

2 (15)

β = arctan
F+

s cos ψ

Fr − F+
s sin ψ

(16)

F2 =

√
F−2

s cos2 ψ + (
1
2

I f 2NK − F−
s sin ψ)

2
(17)

γ = arctan
F−

s cos ψ
1
2 I f 2NK − F−

s sin ψ
(18)

Equations (14)–(18) reveal that unbalanced voltage conditions lead to the induction
of a double-frequency current in the excitation winding of the synchronous condenser.
As a consequence, third harmonic components are produced in the air gap. It is worth
noting that the amplitude of the third harmonic exhibits a direct proportionality to the
double-frequency current.

2.1.4. The Air Gap Magnetic Flux in the Synchronous Condenser When There Is an
Inter-Turn Short Circuit in the Excitation Winding under Unbalanced Grid Voltage

Under unbalanced grid voltage, a negative-sequence magnetic field is produced,
generating double-frequency excitation current in the rotor. Therefore, it becomes essential
to account for the influence of this double-frequency current on the excitation magnetic
flux when investigating inter-turn short circuits in the excitation winding. The expression
for the air gap magnetic flux in the synchronous condenser under these circumstances is
as follows:

f (αm, t) = F+
s cos(ωt − αm − ψ − π

2 ) + F−
s cos(ωt + αm − ψ − π

2 )

+Fr cos(ωt − αm) + I f 2Nk cos 2ωt cos(ωt − αm)

−Fd1 cos(ωt − αm)− Fd2 cos(2ωt − 2αm)

−F′
d1 cos(ωt − αm) cos 2ωt − F′

d2 cos(2ωt − 2αm) cos 2ωt

= F1 cos(ωt − αm − β) + F2 cos(ωt + αm − γ)

−Fd2 cos(2ωt − 2αm) + ( 1
2 I f 2Nk − 1

2 F′
d1) cos(3ωt − αm)

− 1
2 F′

d2 cos 2αm − 1
2 F′

d2 cos(4ωt − 2αm)

(19)
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F′
d1 =

2Nshort I f 2

π
sin

α

2
(20)

F′
d2 =

Nshort I f 2

π
sin α (21)

F1 =

√
F+2

s cos2 ψ + (Fr − Fd1 − F+
s sin ψ)

2 (22)

β = arctan
F+

s cos ψ

Fr − Fd1 − F+
s sin ψ

(23)

F2 =

√
F−2

s cos2 ψ + (
1
2

I f 2NK − 1
2

F′
d1 − F−

s sin ψ)
2

(24)

γ = arctan
F−

s cos ψ
1
2 I f 2NK − 1

2 F′
d1 − F−

s sin ψ
(25)

According to Equations (19)–(25), the presence of unbalanced voltage, coupled with
an inter-turn short circuit in the excitation winding, gives rise to a multifaceted air gap
magnetic flux in the synchronous condenser. This flux encompasses several components,
namely even harmonic components induced by the inter-turn short circuit, a DC component
introduced by the rotor’s double-frequency current, and odd harmonic components.

2.1.5. Air Gap Magnetic Flux Density

During operation, the air gap magnetic flux density of the synchronous condenser,
denoted as Λ0 per unit area, remains constant. The following expression is derived to
represent the air gap magnetic flux density:

B(αm, t) = Λ0 f (αm, t) (26)

2.2. Analysis of Parallel Branch Current Circulation in the Stator

The stator winding of a large synchronous condenser is connected in a double Y
configuration, employing a three-phase double-layer winding form. This configuration
comprises two parallel branches for each phase (A, B, and C), with multiple coil windings
connected in series within each branch. Hence, the expression for the instantaneous value
of the induced electromotive force in a single branch of the parallel stator winding of the
synchronous condenser is as follows:

e1(αm, t) = Nzkw1B(αm, t)lυ
= Nzkw1B(αm, t)l(2τ f )
= 2Nzkw1τl f Λ0F1 cos(ωt − αm − β)

(27)

where l is the air gap length, f is the electrical frequency, Nz is the number of conductors
connected in series in a single stator branch, and kw1 is the fundamental winding factor. Fig-
ure 1 illustrates the equivalent circuit of the parallel branch in phase A of the synchronous
condenser. The circuit includes Ra1, Ra2, Xa1, and Xa2, which represent the resistance and
leakage reactance of the two branches. The circulating current is denoted as ic.
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Figure 1. A phase winding equivalent circuit diagram.

When the synchronous condenser is operating normally, applying Kirchhoff’s Voltage
Law (KVL) to the stator parallel circuit yields the following equation:

e1(αm, t) + e2(αm, t) + ic(Ra1 + Ra2) + jic(Xa1 + Xa2) = 0 (28)

The expression for the stator parallel circuit current can be obtained from Equation (28)
as follows:

ic = − e1(αm, t) + e2(αm, t)
(Ra1 + Ra2) + j(Xa1 + Xa2)

(29)

2.2.1. Under the Condition of Balanced Grid Voltage, the Synchronous Condenser Operates
without Any Faults

The induced electromotive force in the two parallel branches during the normal
operation of the synchronous condenser is given by the following expression:

{
e1(αm, t) = 2Nzkw1τl f Λ0[F1 cos(ωt − αm − β)]
e2(αm, t) = 2Nzkw1τl f Λ0[F1 cos(ωt − αm − π − β)]

(30)

The stator parallel branch current in this case is

ic = − e1(αm, t) + e2(αm, t)
(Ra1 + Ra2) + j(Xa1 + Xa2)

= 0 (31)

Based on Equation (31), it can be concluded that during normal operation of the
synchronous condenser, the stator parallel branch current is zero, indicating the absence of
any current flowing through the stator parallel branches in this case.

2.2.2. Grid Voltage Balance Synchronous Condenser Excitation Winding Inter-Turn Short
Circuit Occurs

When a short circuit occurs in the excitation winding of the synchronous condenser,
the induced electromotive force in the two parallel branches can be expressed as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e1(αm, t) = 2Nzkw1τl f Λ0

[F1 cos(ωt − αm − β)− Fd2 cos(2ωt − 2αm)]

e2(αm, t) = 2Nzkw1τl f Λ0

[F1 cos(ωt − αm − π − β)− Fd2 cos(2ωt − 2αm − 2π)]

(32)

The parallel stator current is given by

ic = − e1(αm ,t)+e2(αm ,t)
(Ra1+Ra2)+j(Xa1+Xa2)

= 4Nzkw1τl f Λ0Fd2 cos 2(ωt−αm)
(Ra1+Ra2)+j(Xa1+Xa2)

(33)

Based on the above analysis, it can be concluded that during an inter-turn short circuit
in the excitation winding of the synchronous condenser under balanced grid voltage, the
stator parallel current exhibits a second harmonic component that is directly proportional to
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Fd2. In other words, the magnitude of the parallel current is directly related to the severity
of the short circuit.

2.2.3. The Air Gap Magnetic Potential of the Synchronous Condenser under Unbalanced
Grid Voltage Conditions without Any Faults Occurring

In the case of unbalanced grid voltage, the induced electromotive force in the two
parallel branches of the stator is given by the following expression:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e1(αm, t) = 2Nzkw1τl f Λ0[F1 cos(ωt − αm − β)

+F2 cos(ωt + αm − γ) + 1
2 I f 2Nk cos(3ωt − αm)]

e2(αm, t) = 2Nzkw1τl f Λ0[F1 cos(ωt − αm − β − π)

+F2 cos(ωt + αm − γ + π) + 1
2 I f 2Nk cos(3ωt − αm − π)]

(34)

At this time, the stator parallel current is given by

ic = − e1(αm, t) + e2(αm, t)
(Ra1 + Ra2) + j(Xa1 + Xa2)

= 0 (35)

Based on the analysis, it can be concluded that during the operation of the synchronous
condenser under unbalanced grid voltage conditions, there are no stator parallel currents
induced under normal operation.

2.2.4. The Air Gap Magnetic Flux in the Synchronous Condenser When There Is an
Inter-Turn Short Circuit in the Excitation Winding under Unbalanced Grid Voltage

In the presence of an inter-turn short circuit in the excitation winding of the syn-
chronous condenser under unbalanced grid voltage, the induced electromotive forces in
the two stator branches can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1(αm, t) = 2Nzkw1τl f Λ0[F1 cos(ωt − αm − β) + F2 cos(ωt + αm − γ)

−Fd2 cos(2ωt − 2αm) + ( 1
2 I f 2Nk − 1

2 F′
d1) cos(3ωt − αm)

− 1
2 F′

d2 cos 2αm − 1
2 F′

d2 cos(4ωt − 2αm)]

e2(αm, t) = 2Nzkw1τl f Λ0[F1 cos(ωt − αm − β − π) + F2 cos(ωt + αm + π − γ)

−Fd2 cos(2ωt − 2αm − 2π) + ( 1
2 I f 2Nk − 1

2 F′
d1) cos(3ωt − αm − π)

− 1
2 F′

d2 cos(2αm − 2π)− 1
2 F′

d2 cos(4ωt − 2αm − 2π)]

(36)

At this time, the parallel stator current is given by

ic = − e1(αm ,t)+e2(αm ,t)
(Ra1+Ra2)+j(Xa1+Xa2)

= 4Nzkw1τl f Λ0
(Ra1+Ra2)+j(Xa1+Xa2)

[ 1
2 F′

d2 cos 2αm + Fd2 cos(2ωt − 2αm) +
1
2 F′

d2 cos(4ωt − 2αm)]

(37)

Based on the theoretical analysis presented, it can be concluded that the parallel stator
current in the synchronous condenser, under the combined conditions of unbalanced grid
voltage and inter-turn short circuit in the excitation winding, is predominantly character-
ized by even harmonics. The magnitude of the parallel stator current is determined by the
degree of grid voltage unbalance and the severity of the inter-turn short circuit.

Inter-turn short circuit faults in the excitation winding of the synchronous condenser
result in significant modifications to the air gap flux density and parallel stator current.
Unbalanced grid voltage conditions further influence these changes in characteristics.
Consequently, these distinctive variations can serve as reliable references for fault diagnosis.
A comprehensive verification will be conducted through finite element simulation to
validate our findings.
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3. Simulation Analysis

This paper presents a case study on the TTS-300-2 type novel synchronous condenser
at a specific power station. To investigate its behavior, a two-dimensional (2D) finite ele-
ment simulation model and its corresponding external circuit are developed using Ansys
Maxwell 2021 R1 software. This approach enables a comprehensive analysis of the syn-
chronous condensers’ performance and facilitates valuable insights into its operation. The
utilization of adaptive meshing in condensor modeling offers significant advantages by au-
tomatically adjusting the grid density in response to electromagnetic field variations. This
adaptive approach enhances the accuracy of simulation results, improves computational ef-
ficiency, and optimizes both time and computational resources. In this paper, we employed
an adaptive mesh design for the simulation. Details regarding the mesh partition can be
found in Table 1. The Finite Element Method is a numerical technique used to solve integral
and partial differential equations, offering superior accuracy compared to other analytical
analyses. It employs magnetic linearized parameters to accurately model electromagnetic
phenomena. In this study, a 2D field-circuit coupled model of the synchronous condenser is
developed in ANSYS Maxwell using the Finite Element Method. It is important to note that,
for simplicity, the model neglects the effects of skin effects and eddy current losses. The
electromagnetic field expression for the electrical machine is represented by Equation (38).{

∂
∂x (μ

∂A
∂x ) +

∂
∂y (μ

∂A
∂y ) = −Jz

A = A0
(38)

where A is the axial components of the magnetic vector potential; A0 is the magnetic vector
potential in the first boundary; JZ is source current density; μ is material reluctivity.

Table 1. The main information of Mmesh division in 2D finite element model.

Component
Num

Elements
Min Edge

Length (mm)
Max Edge

Length (mm)
Min Element
Area (mm2)

Max Element
Area (mm2)

Stator 13,303 0.0050 0.1044 2.65 × 10−5 0.00270
Rotor 5745 0.0035 0.0420 1.50 × 10−5 0.00054

OuterRegion 4914 0.0040 0.0237 1.20 × 10−5 0.00021
InnerRegion 1836 0.0035 0.0240 1.05 × 10−5 0.00015

Band 945 0.0073 0.0236 6.24 × 10−5 0.00020
Shaft 674 0.0079 0.0257 4.09 × 10−5 0.00023

Stator Coil 23 0.0060 0.0219 4.80 × 10−5 0.00012
Excitation coil 28 0.0096 0.0224 6.72 × 10−5 0.00016

Figures 2 and 3 illustrate the model and circuit schematic representations, respectively.
The critical parameters of the synchronous condenser are provided in Table 2. In Figure 3,
the symbols LPhaseA, LPhaseA1, LPhaseB, LPhaseB1, LPhaseC, and LPhaseC1 represent
the windings of the three-phase double parallel branches. The excitation winding is
denoted as LField, while the faulty portion responsible for the inter-turn short circuit is
referred to as LShortWinding. By manipulating the parameters LField and LShortWinding,
precise control over the number of turns in the short-circuited winding can be achieved.
Furthermore, the resistances LR and LShortR correspond to LField and LShortWinding,
respectively, and must be adjusted accordingly when altering the number of turns.
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Figure 2. Two-dimensional finite element model of new type synchronous condenser.

A
A

A

v

v

A

A
A

A
A

A
A

 
Figure 3. External circuit settings.

Table 2. Parameters of New Synchronous Condenser.

Parameter Value Parameter Value

Rated capacity (Mvar) 300 Number of stator slots 48
Rated exaltation current (A) 1800 Rotor slot number 32

Rated field voltage (V) 407 Stator rated voltage (kV) 20
Number of conductors per slot of stator 2 Stator rated current (A) 8660

Number of turns per slot of rotor 12 Number of parallel branches of stator winding 2
Number of pole-pairs 1 Number of phases 3

Rotor body length (mm) 5950 Inner diameter of stator core (mm) 1240
Air gap length (mm) 70 Frame cushion diameter (mm) 2500

Maximum leading phase operation
capability (Mvar) −200 Rated power factor 0

No-load excitation voltage (V) 137 No-load excitation current (A) 705
Rated speed (rpm) 3000 Rated frequency (Hz) 50

3.1. Model Accuracy Verification

Given the short operating time and the absence of actual on-site fault data for large
synchronous condensers, conducting direct short-circuit experiments on-site is impractical.
Therefore, to validate the accuracy of the simulation model, simulations were performed
under rated operating conditions to analyze the output torque, stator phase voltage, and
phase current on the rotor shaft. The rated operating condition of the synchronous con-
denser refers to its operation at the rated voltage provided in Table 2, carrying the rated load
and being connected to the power grid. The specific results are illustrated in Figures 4–6.
Additionally, we conducted a comparative analysis between the actual data of stator phase
voltage and stator phase current obtained during the synchronous condenser’s rated opera-
tion and the corresponding simulation data. The detailed results are presented in Table 3.
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From the figures, it is evident that the average output torque of the synchronous condenser
is zero, which aligns with its expected operational state. Moreover, the phase voltages and
currents comply with the rated parameters, and the error falls within an acceptable range.
The three-phase currents exhibit symmetry, and there exists a time gap of approximately
5 ms between the stator phase current and the phase voltage. This gap indicates that
the stator phase current leads the phase voltage by 90◦. These observations confirm the
accuracy of the simulation model. By accurately simulating the output torque, stator phase
voltage, and phase current under rated conditions, the simulation model has demonstrated
its ability to replicate the behavior of the synchronous condenser. Despite the challenges
posed by the lack of actual fault data and on-site experiments, the validated simulation re-
sults instill confidence in the reliability of the model for further analysis and fault diagnosis.

 

Figure 4. Output torque.

 

Figure 5. Three-phase current.

 

Figure 6. A-phase winding terminal voltage and stator current.
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Table 3. Comparison of actual data and simulation data.

Data Type Actual Data Simulation Data Error

Stator phase voltage (kV) 11.547 11.536 0.0954%
Stator phase current (kA) 8.66 8.61 0.5774%

The 2D finite element simulation model of the TTS-300-2 synchronous condenser used
in this paper was based on operational parameters primarily extracted from the device’s
technical manual. Key electrical and structural parameters from Table 2 were accurately
applied during the model setup to ensure alignment with the equipment’s characteristics.
Furthermore, by conducting simulations at the rated voltage and load, we validated the
accuracy of torque, phase voltage, and phase current output results under the TTS-300-2
synchronous condenser’s rated operating conditions. As a result, the selected parameters
effectively mimic the actual device’s operational characteristics, guaranteeing the reliability
of the simulation analysis.

To simulate the short-circuit of the excitation winding, this study conducted simulation
analyses with different numbers of coil turns (1 turn, 3 turns, and 5 turns) short-circuited in
the first slot near the large tooth side. In the voltage imbalance simulation, the B-phase and
C-phase voltages were maintained at their rated values. In contrast, only the magnitude of
the A-phase voltage was adjusted to control the degree of voltage imbalance in the power
grid. Specifically, the A-phase voltage values of 96%, 93%, and 90% of the rated voltage
were chosen to highlight the simulation results. Due to space constraints, only a partial
waveform is presented in this section.

3.2. Analysis of Simulation Results
3.2.1. Analysis of Air Gap Flux Density and Stator Parallel Circulating Current in Faulty
Conditions of Synchronous Condenser under Balanced Grid Voltage

• Analysis of Air Gap Magnetic Flux Density

Figure 7a,b depict the analysis results of air gap magnetic flux density under balanced
grid voltage with a short circuit fault. Analysis of Figure 7a reveals that a rotor inter-turn
short circuit leads to a reduction in air gap magnetic flux density due to a loss of magnetic
potential. The severity of the inter-turn short circuit corresponds to a more pronounced
decay in the magnetic flux density. Figure 7b demonstrates that in the absence of an inter-
turn short circuit, the air gap magnetic flux density is primarily composed of fundamental
frequency and odd harmonic components, with only minor influence from slotting effects
in the stator and rotor, resulting in a small amount of even harmonic components. The
occurrence of a second harmonic in the air gap magnetic density under normal conditions
could be attributed to simulation errors resulting in non-uniformity within the air gap
magnetic field. However, the presence of an inter-turn short circuit significantly increases
the even harmonic magnetic flux density, which intensifies as the severity of the short circuit
increases. This observation confirms the accuracy of the derived magnetic field theory.

• Analysis of Parallel Circulation between Stator Branches

Figure 8a,b depict the analysis results of stator parallel branch circulating currents
under balanced grid voltage with a short circuit fault. In normal operating conditions,
no circulating current or harmonic component is present in the stator parallel branches.
However, the occurrence of a short circuit in the excitation winding leads to the generation
of circulating currents in the parallel branches, with a predominant presence of even
harmonic circulating currents, especially the second harmonic component. Moreover,
as the fault severity increases, the amplitude of the harmonic circulating currents also
intensifies. This observation confirms the accuracy of the theoretical derivation.
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(a) (b) 

Figure 7. (a) Air gap flux density of different short circuit degrees under grid voltage balance; (b) Har-
monic analysis of air gap flux density with different short circuit degrees under grid voltage balance.

  
(a) (b) 

Figure 8. (a) Stator parallel circulation with different short circuit degrees when grid voltage is
balanced; (b) Harmonic analysis of stator parallel circulating current with different short circuit
degrees under grid voltage balance.

3.2.2. Analysis of Air Gap Flux Density and Stator Parallel Circulation When the Grid
Voltage Is Unbalanced and the Synchronous Condenser Is Fault-Free

• Analysis of Air Gap Magnetic Flux Density

Figure 9a,b showcase the analysis results of air gap flux density under the condition of
unbalanced grid voltage. Based on the preceding analysis, it is evident that unbalanced grid
voltage causes a reduction in air gap flux density, with a greater degree of voltage imbalance
resulting in a more substantial loss of air gap flux density. In the presence of voltage
imbalance, the amplitude of the fundamental component exhibits a negative correlation
with the degree of voltage imbalance. In contrast, the amplitude of the third harmonic
component demonstrates a positive correlation. This behavior can be attributed to the
induction of twice the frequency current in the excitation winding by the negative-sequence
magnetic fields caused by voltage imbalance. Consequently, third-harmonic magnetic
fields are superimposed on the existing third harmonic, leading to an amplified amplitude
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of the third harmonic and an increased level of magnetic field distortion. According to
Equation (14), voltage imbalance in the grid leads to the emergence of third harmonic
components in the air gap magnetic field. Consequently, the magnetic field assumes an
elliptical shape, deviating from the circular shape predicted by Equation (1). This elliptical
magnetic field causes variations in both the amplitude and harmonic content of the air
gap magnetic field at different time points, as illustrated in Table 4. Table 4 illustrates
the temporal variations of the magnetic field under unbalanced voltage conditions. The
primary changes observed are in the amplitude and fundamental amplitude. Although
the third harmonic also undergoes changes, its magnitude remains relatively small and
inconspicuous due to the low degree of failure.

  
(a) (b) 

Figure 9. (a) Fault-free air gap flux density of synchronous condenser under unbalanced grid voltage;
(b) Harmonic analysis of fault-free air gap flux density of synchronous condenser under unbalanced
grid voltage.

Table 4. The values of air gap magnetic flux density at different time instants under 90% rated voltage.

Time/s Amplitude/T
Fundamental
Amplitude/T

Secondary Harmonic
Amplitude/T

Third Harmonic
Amplitude/T

0.48 1.166 1.034 0.000 0.147
0.485 1.252 1.097 0.000 0.146
0.49 1.191 1.035 0.000 0.147
0.495 1.250 1.097 0.000 0.146

0.5 1.166 1.034 0.000 0.147

• Analysis of Parallel Circulation between Stator Branches

Figure 10 depicts the analysis results of the stator parallel branch current under the condi-
tion of unbalanced grid voltage. The theoretical analysis, as indicated by Equations (34) and (35),
suggests that the stator parallel branch current remains unaffected by unbalanced grid
voltage and maintains a value of 0. However, in the simulation, various factors, such as
magnetic saturation and slot effects that occur during the operation of the synchronous
condenser, are considered, resulting in a negligible non-zero value for the stator parallel
branch current. Although present, the magnitude of this current is minimal and can be
disregarded. Thus, during normal operation without faults, the synchronous condenser
does not generate any significant stator parallel branch current in unbalanced grid voltage.
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Figure 10. Parallel circulating current of fault-free stator of synchronous condenser under unbalanced
grid voltage.

3.2.3. Analysis of Air Gap Magnetic Flux Density and Stator Parallel Circulating Current
under Unbalanced Grid Voltage with Excitation Winding Turn-to-Turn Short Circuit

• Analysis of Air Gap Magnetic Flux Density

Figure 11a,b visually represent the air gap magnetic flux density under different
degrees of turn-to-turn short circuits in the excitation winding when the grid voltage is
unbalanced. Similarly, Figure 12a,b depict the analysis results of air gap magnetic flux
density under varying levels of grid voltage imbalance with excitation winding turn-to-turn
short circuits. The observations from these figures reveal that unbalanced grid voltage
introduces distortions in the air gap magnetic flux density, which are further amplified in the
presence of turn-to-turn short circuit faults in the excitation winding. Consequently, there
is a significant loss of air gap magnetic flux density. Furthermore, the combined occurrence
of faults exacerbates the loss of air gap magnetic flux density compared to a single fault
scenario. As the degree of turn-to-turn short circuit in the excitation winding intensifies,
even harmonics, particularly the second harmonic, become more prominent in the air gap
magnetic flux density. Conversely, grid voltage imbalance primarily affects the fundamental
and third harmonic components of the air gap magnetic flux density. The fundamental
magnetic flux density decreases while the third harmonic magnetic flux density increases
with increasing voltage imbalance. These factors collectively influence the various harmonic
components. The simulation results align with the theoretical analysis conducted.

  
(a) (b) 

Figure 11. (a) A total of 90% rated voltage different short circuit turns air gap flux density; (b) Air
gap flux density harmonic analysis of 90% rated voltage with different short circuit turns.
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(a) (b) 

Figure 12. (a) Air gap flux density of 5-turn short circuit with different voltage balance; (b) Harmonic
analysis of air gap flux density of 5-turn short circuit with different voltage balance.

• Analysis of Parallel Circulation between Stator Branches

Figure 13a,b display the analysis results of stator parallel currents under different
levels of the rotor winding inter-turn short circuits and voltage imbalance in the power
grid. Likewise, Figure 14a,b illustrate the analysis results of stator parallel currents under
varying levels of the rotor winding inter-turn short circuit and voltage balance in the power
grid. Building upon the simulation results and the theoretical analysis discussed earlier, it is
evident that voltage imbalance in the power grid does not impact stator parallel currents in
the absence of a short circuit fault. However, following the occurrence of the rotor winding
inter-turn short circuit, voltage imbalance in the power grid influences the waveform of
stator parallel currents. Consequently, in the case of compound faults, the severity of rotor
winding inter-turn short circuits and the degree of voltage imbalance in the power grid affect
stator parallel currents. As the severity of rotor winding inter-turn short circuits and voltage
imbalance in the power grid intensifies, even harmonics, particularly the second and fourth
harmonics, become more prominent in the stator parallel currents. Nonetheless, compared to
the severity of rotor winding inter-turn short circuits, the influence of voltage imbalance on
stator parallel currents is relatively minor and more susceptible to environmental interference
during measurement. Therefore, fault diagnosis of the excitation winding inter-turn short
circuit should consider multiple fault characteristics to ensure accurate assessment.

  
(a) (b) 

Figure 13. (a) A total of 90% rated voltage stator parallel circulation with different short circuit turns;
(b) 90% rated voltage different short circuit turns stator parallel circulation harmonic analysis.
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(a) (b) 

Figure 14. (a) Five-turn short circuit stator parallel circulation with different voltage balance; (b) Har-
monic analysis of five-turn short circuit stator parallel circulation with different voltage balance.

4. Conclusions

This paper examines the impact of inter-turn short circuits in the excitation winding
and unbalanced grid voltage on the air gap magnetic flux density and circulating current
between stator parallel branches in a synchronous condenser. The study presents derived
mathematical expressions for these characteristics and validates them through finite ele-
ment simulation analysis using a TTS-300-2 synchronous condenser as a case study. The
simulation results align with the theoretical derivations, leading to the following conclusions:

1. The occurrence of an inter-turn short circuit in the excitation winding distorts the air
gap magnetic flux density. This distortion is further amplified by unbalanced grid
voltage, resulting in increased losses in the air gap magnetic flux density. When both
unbalanced grid voltage and inter-turn short circuit in the excitation winding are
present, the loss of air gap magnetic flux density is even more significant compared to
the case of a single fault.

2. In the absence of an inter-turn short circuit in the excitation winding, the impact of
unbalanced grid voltage on the circulating current between stator parallel branches
can be disregarded. However, when compound faults occur, both the degree of
unbalanced grid voltage and the severity of the short circuit can result in fluctuations
in the circulating current between stator parallel branches, with the severity of the
short circuit having a more significant influence on the circulating current.

3. When diagnosing minor faults in a synchronous condenser, relying solely on fea-
tures such as the even harmonic component of the circulating current may result in
inaccurate fault type determination. To enhance fault diagnosis in future research,
it is recommended to incorporate electromechanical information fusion, combining
mechanical and electrical characteristics, for more reliable results.

By studying the inter-turn short circuit fault in synchronous condensers under un-
balanced voltage conditions, this research provides references and guidance for the safe
operation of synchronous condensers. It also establishes a foundation for further research
on fault diagnosis in synchronous condensers.
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Abstract: Induction motors (IMs) are one of the most widely used motor types in the industry due
to their low cost, high reliability, and efficiency. Nevertheless, like other types of AC motors, they
are prone to various faults. In this article, a low-cost embedded system based on a microcontroller
with the ARM Cortex-M4 core is proposed for the extraction of stator winding faults (interturn
short circuits) and an unbalanced supply voltage of the induction motor drive. The voltage induced
in the measurement coil by the axial flux was used as a source of diagnostic information. The
process of signal measurement, acquisition, and processing using a cost-optimized embedded system
(NUCLEO-L476RG), with the potential for industrial deployment, is described in detail. In addition,
the analysis of the possibility of distinguishing between interturn short circuits and unbalanced
supply voltage was carried out. The effect of motor operating conditions and fault severity on the
symptom extraction process was also studied. The results of the experimental research conducted on
a 1.5 kW IM confirmed the effectiveness of the developed embedded system in the extraction of these
types of faults.

Keywords: induction motor drive; fault diagnosis; stator winding fault; supply voltage unbalance;
ARM Cortex; embedded system

1. Introduction

Induction motors (IMs) are widely used in drive systems due to their low production
costs, high reliability, and optimal efficiency. In today’s industrial landscape, three-phase
IMs dominate and account for over 85% of all electric motor utilization [1]. However,
despite the high reliability and durability of IMs, they are prone to various types of
faults [2]. The most common faults of IMs include bearings, rotor cages, and stator winding
faults. Stator winding faults are highly destructive and account for 36% of the total machine
failures for low-voltage machines and 66% for high-voltage machines [3].

Stator winding faults are mainly short circuits caused by damage to the winding
insulation due to excessive mechanical, thermal, or electrical stresses. There are different
types of short circuits: interturn short circuits (ITSCs), short circuits between the coils in
one phase, phase-to-phase short circuits, and phase-to-ground short circuits. Most often,
a stator winding fault begins with ITSCs and successively spreads from a single turn to
subsequent turns and coils in a very short time, leading to a phase-to-phase or phase-to-
ground fault. The rapid propagation of ITSC is caused by the very high current flowing
in the shorted circuit. For this reason, early and effective detection of this type of fault is
crucial and is still a very important research problem [4].

The efficiency and service life of IMs can also be significantly reduced when operating
under unbalanced supply voltage conditions, which is quite common in the industrial
field [1]. Such conditions can result from a variety of factors, such as unevenly distributed
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single-phase loads, malfunctioning power factor correction equipment in the same power
system, and open circuits in the primary distribution system. An unbalanced supply
voltage causes the increased heating of the stator winding, higher losses, vibration, and
reduced torque output. Most of these negative effects contribute to the shortened lifespan
of IMs [5]. Moreover, supply voltage asymmetry can complicate the process of diagnosing
stator winding faults, since even a small supply voltage unbalance results in a large current
asymmetry, which also occurs due to short circuits [6]. Therefore, detecting and distin-
guishing between stator winding faults and an unbalanced supply voltage is extremely
important to prevent serious failures and increase the reliability and safety of drive systems.
It will also contribute to avoiding motor operation with reduced efficiency, which is crucial
to reduce energy consumption and care for the environment.

The requirements for the safety and reliability of modern drive systems are increasing
every year. This is due in part to the increasing electrification in many industries and
the drive to maximize the lifetime of the equipment. Early detection of a fault can also
make it possible to plan motor overhauls accordingly, which will translate into lower
repair costs, shorter delays, and reduced potential production losses. For this reason, new
diagnostic methods are sought that can be used to diagnose faults at a very early stage of
their propagation.

Over the years, several methods for diagnosing IM stator failure have been devel-
oped [7–11]. These methods are based on various types of diagnostic signals, such as input
voltage [12], stator phase current [13], temperature [14], active and reactive power [15],
vibration [16], and axial flux [17]. To extract the fault symptoms from these signals, signal
processing methods can be used. Among the most popular and highly effective is the spec-
tral analysis of the signal using the Fast Fourier Transform (FFT). Methods that perform the
time-frequency analysis, such as the Short-Time Fourier Transform (STFT) or Continuous
Wavelet Transform (CWT) [18], are also attractive in the AC motors stator winding fault
diagnosis field. Automation of the AC motors stator winding fault detection and classifica-
tion process in recent years has most often been implemented using a variety of artificial
intelligence techniques [19], such as machine learning algorithms [20,21] and deep learning
(DL) [22]. When it comes to computerized diagnostic systems, the fastest growing area
in recent years is the application of DL, especially convolutional neural networks (CNN).
They are not only applied for fault detection and classification [23] but also for predictive
maintenance and remaining useful time estimation [24].

Detection of an unbalanced supply voltage is dominated by methods based on voltage
and current signals. The combination of the wavelet transform and principal component
analysis of the mains current signal for the detection of unbalanced supply voltage, au-
tomated with a support vector machine model, is presented in [25]. The diagnosis and
discrimination of the ITSC and unbalanced supply voltage fault method, based on the
analysis of the ratio of the third harmonic to the fundamental FFT magnitude component of
the three-phase stator line current and voltage, is presented in [26]. An effective approach
for the detection of the supply voltage unbalance condition in IM drives, based on a data
mining process using the amplitude of the second harmonic of the stator current zero
crossing instants as a supply voltage unbalance indicator, is presented in [27]. The online
detection method of the unbalanced supply voltage condition, by monitoring a pertinent
indicator calculated using the voltage symmetrical components, is shown in [28].

Nevertheless, most of the methods proposed in the literature for stator winding and
unbalanced supply voltage diagnosis have been described based on the results obtained
using high-end data acquisition (DAQ) equipment and software, such as LabVIEW or
MATLAB & SIMULINK [12,27,28], the price of which often exceeds the cost of the machine
being monitored. For this reason, the real potential of their industrial deployment is
diminishing, as there is no detailed description of the possibilities of low-cost hardware
implementation. In this article, special attention is paid to analyzing the possibilities and
describing how to apply an embedded system based on a low-budget microcontroller
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with an ARM Cortex-M core to extract the symptoms of the SI stator winding faults and
unbalanced supply voltage.

Embedded systems are used in most modern electronic devices and are a key compo-
nent of them. An embedded system is a type of system that is designed to perform specific
functions, usually in real-time. In recent years, embedded systems that utilize microcon-
trollers have been the most common. This allows the achievement of a high degree of
compactness, responding to increasing demands for the greatest possible miniaturization of
devices. The range of applications of embedded systems is very wide, from special-purpose
on-board systems, and inverters powering electric motors, to household appliances, HVAC,
and many other technical objects [29].

Microcontrollers are small single-chip microcomputers. They are equipped with
a variety of peripherals, which include analog-to-digital converters (ADCs), digital-to-
analog converters (DACs), comparators, counters, communication interfaces, as well as
RAM and Flash memory. In recent years, microcontrollers with the ARM Cortex-M core
have been particularly popular. ARM Cortex-M processors are currently one of the best
choices for a wide range of applications. In the fourth quarter of 2020, ARM reported
a record 4.4 billion chips shipped with Cortex-M processors, confirming their very high
popularity [30]. The Cortex M family is a subset of the Cortex family cores, which in turn
is a subset of the ARM architecture. Semiconductor manufacturers implement selected
versions of the cores, equipping them with peripherals and memory to produce a ready-
to-use microcontroller. ARM Cortex-M-based microcontrollers are characterized by high
reliability, high performance, and affordability [31]

Currently, there is a noticeable lack of research in the literature that deals with embed-
ded, low-cost implementation of AC motor fault diagnosis methods. In [32], the Arduino
board-based system is developed to monitor parameters such as speed, temperature, cur-
rent, and voltage of the one-phase IM. Authors believe that using these parameters, faults
such as over-voltage, over-current, overload, and excessive heating can be detected. In [33],
the 8-bit PIC16F877A microcontroller-based system is developed and programmed in C++
language for the detection of under-voltage, over-voltage, over-current, and line-to-ground
faults of one-phase IMs. The STM32F4V11VET microcontroller-based fault diagnosis sys-
tem is proposed in [34] for the detection of the faults of three-phase IMs. This method
is based on the stator phase current signals measured using MCR1101-20-5 (ACEINNA,
Phoenix, USA) current sensors. It is a promising AI-driven method but requires the current
measurement in each of the three phases and it is not strictly defined; the kind of faults the
system can detect (broken bearings and misalignment) are mentioned. There are also com-
mercial condition monitoring solutions available on the market that are characterized by a
relatively low cost, such as the VB300 G-Force datalogger by EXTECH Instruments, which
records a 3-axis shock and vibration and allows the detection of mechanical damage to IMs
based on the vibration signal. Nevertheless, it also requires additional PC software. No
work has been found that describes a low-cost embedded implementation of an IM stator
winding fault and unbalanced supply voltage diagnosis method based on the measurement
of the voltage induced by the axial flux.

In this paper, the feasibility of using a low-cost ARM Cortex-M4 core microcontroller
(STM32L476RG) to extract the symptoms of ITSCs in IM stator winding and supply voltage
unbalance, based on the voltage signal induced in the measuring coil by the axial flux,
is discussed. A NUCLEO-L476RG module with a 32-bit STM32L476RG microcontroller
(STMicroelectronics, Plan-les-Ouates, Geneva, Switzerland) is used to measure and acquire
the diagnostic signal. The method of measuring the diagnostic signal, its acquisitions, the
components of the prepared system, and the necessary configuration are presented in detail.
Experimental tests were carried out, the results of which confirmed the feasibility of using
an embedded system based on a microcontroller with an ARM Cortex-M4 core to extract
symptoms of SI stator winding faults and supply voltage unbalance.

The main theoretical and practical contributions of this research are as follows:
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(1) An analysis of the possibility of using and the proposal of the concept of an embedded
fault diagnosis system based on a low-cost ARM Cortex-M4 core microcontroller to
extract the symptoms of IM stator winding faults and unbalanced supply voltage,
including the comparison of the results with a high-end solution;

(2) A detailed description of the process of setting up diagnostic signal measurement and
acquisition using low-cost microcontrollers, which may serve as a guide for various
embedded system applications;

(3) A detailed analysis of the effect of an ITSC in the stator winding and an unbalanced
supply voltage of the IM drive on the waveform of the voltage induced in the measur-
ing coil by the axial flux;

(4) A detailed analysis of the effect of an ITSC in the stator winding and an unbalanced
supply voltage of the IM drive on the FFT spectrum of the voltage induced in the
measuring coil by the axial flux;

(5) An analysis of the possibility of distinguishing between ITSC in the stator winding
and an unbalanced supply voltage of the IM drive based on symptoms characteristic
of these abnormal conditions;

(6) A proposal for future research and plans to improve and develop the embedded
diagnostic system, including reference to current trends related to the Industry 4.0
paradigm.

The rest of the article is organized as follows: Section 2 describes the key parameters
of the NUCLEO-L476RG evaluation board, STM32L476RG microcontroller, and motor
test bench; Section 3 presents the configuration of the data acquisition system; Then, the
results of the ITSC and unbalanced supply voltage symptom extraction based on the
voltage inducted by axial flux are presented and discussed. This section also outlines key
discoveries and plans for future research; and finally, Section 5 concludes the paper.

2. Experimental Setup

2.1. Characteristics of the Development Board and Microcontroller Used

The development board used in the scope of this research was the NUCLEO-L476RG
evaluation board (Figure 1a). It is one of the most popular evaluation boards by STMicro-
electronics. The STM32 NUCLEO-L476RG (STMicroelectronics, Plan-les-Ouates, Geneva,
Switzerland) is a low-cost and easy-to-use development platform used in flexible prototyp-
ing to quickly develop projects based on STM32 microcontrollers. The NUCLEO-L476RG is
designed around the 32-bit STM32L476RG microcontroller in a 64-pin LQFP package.
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Figure 1. (a) Real view and (b) simplified hardware block diagram of the NUCLEO-L476RG evalua-
tion board.
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The STM32L476RG microcontroller is based on the ARM Cortex-M4 core that operates
at a frequency of up to 80 MHz. This microcontroller embeds 1 MB of Flash memory and
128 kB of SRAM memory. The ARM Cortex-M4 core features a single precision Floating
Point Unit (FPU) and a Memory Protection Unit (MPU). Its design also features 3 ADC mod-
ules and 2 DAC modules with 12-bit resolution. The key parameters of this microcontroller
are grouped in Table 1.

Table 1. Key parameters of the STM32L476RG microcontroller.

Parameter Value

Core ARM Cortex-M4 (32-bit)
Operating clock frequency Up to 80 MHz

Flash memory 1 MB
SRAM memory 128 kB

DMA 14-channel
Key communication interfaces USB OTG, 3× I2C, 5× USART, 3× SPI, CAN

ADC 3 × 12-bit
DAC 2 × 12-bit

Comparators 2× ultra-low power

The NUCLEO-L476RG evaluation board is equipped with ST-Link/V2, which allows
flash programming and microcontroller debugging. The power supply of the module is
flexible, being possible both via USB and from an external voltage source (3.3 V, 5 V, and
7–12 V). There are also three built-in LEDs on the PCB, which indicate USB communication
(LD1), can be programmed by the user (LD2), and indicate the module’s power supply
(LD3). The ST morpho extension pin headers and ARDUINO connectors are also available
on the board for full access to all STM32 inputs and outputs. The simplified hardware
block diagram of the board is presented in Figure 1b. A detailed specification of the
NUCLEO-L476RG is available on the manufacturer’s website [35].

2.2. Motor Test Bench

Experimental tests were carried out on a specially prepared test bench consisting
of an IM with a rated power of 1.5 kW (by Indukta) and a DC motor that provided the
load torque. The real view of the motor test bench is presented in Figure 2a. The rated
parameters of the IM under test are grouped in Table 2. The IM was powered directly from
the three-phase grid. The stator winding of the IM under test was wound in such a way
that its design allowed for the physical modeling of ITSCs with a certain number of turns.
Each phase of the IM under analysis consisted of a coil with 312 turns. During the tests, a
maximum of 8 turns were short-circuited, representing 2.6% of all turns in one phase. The
schematic diagram of the phase terminals led out to the board of this winding is shown in
Figure 2b. The numbers above each piece of winding, visible in Figure 2, are the number of
turns that correspond to the taps derived from the winding. The ITSCs were carried out
without additional current limiting resistance in the shorted circuit.

The diagnostic signal, the induced voltage in the measurement coil, was measured
not only by the NUCLEO-L476RG module described in the previous section but also in
parallel for comparison purposes by a high-end DAQ card by National Instruments (DAQ
NI PXIe-4492). The DAQ card was placed in an NI PXI 1082 industrial computer. The price
of the PXIe-4492 DAQ card was, at the time of article publication, more than 300 times
higher (≈USD 8240) compared to the price of the NUCLEO-L476RG board (≈USD 25).
Moreover, the PXIe-4492 has an ADC module with a significantly higher resolution (24-bit)
compared to the NUCLEO’s 12-bit ADC.
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Figure 2. (a) Real view of the motor test bench: A—SI under test, B—DC motor (load), C—measurement
coil, and D—terminal board; and (b) diagram of the derived stator winding terminals.

Table 2. Rated parameters of the tested IM.

Name of the Parameter Symbol Units

Power PN 1500 [W]
Torque TN 10.16 [Nm]
Speed nN 1410 [rpm]

Stator phase voltage UsN 230 V
Stator current IsN 3.5 [A]

Frequency fsN 50 [Hz]
Pole pairs number pp 2 [-]

Number of stator turns Nst 312 [-]

As presented in Figure 2a, the measurement coil was mounted coaxially with the shaft.
Proper mounting of the measurement coil is necessary to apply the proposed method in
practice. The design of the used coil and its location coaxially with the shaft does not allow
the installation of the cooling fan. Nevertheless, if a fan is necessary, the measurement
coil can also be placed on the top or the side of the motor housing. In this experiment, a
measurement coil with 300 turns and a DNE copper winding wire cross-section equal to
0.35 mm2 was used.

2.3. Details of the Developed Microcontroller-Based Fault Diagnosis System

Since preliminary tests have shown that the value of the voltage induced in the coil by
the axial flux as a result of the ITSC in the IM stator winding is in the order of mV, to obtain
the best possible resolution of the measurement, the signal of this voltage was amplified
using an ultra-precise INA241A2 amplifier from Texas Instruments (Dallas, TX, USA). This
amplifier has a gain of 20 V/V, a maximum gain error of ±0.01%, a maximum voltage offset
error of ±10 μV, and a CMRR (Common Mode Rejection Ratio) of 166 dB (typically). The
amplifier was powered directly from the NUCLEO-L476RG module with a voltage of 3.3 V.

The input and output pins of the INA241A2 amplifier, a diagram of its internal
connections, and the manufacturer’s (Texas Instruments) recommended configuration, as
well as a simplified schematic diagram and a photo of the whole prepared system, are
shown in Figure 3.
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Figure 3. (a) Input and output pins of the INA241A2 amplifier, (b) a diagram of its internal connec-
tions and the manufacturer’s recommended configuration, (c) a simplified schematic, and (d) a photo
of the whole system.
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The INA241A amplifier, as shown in Figure 3, is located between the STM32L476RG
microcontroller and the measurement coil. The IN− and IN+ inputs to which the mea-
surement coil is connected are characterized by a differential mode operation. The REF1
and REF2 pins are reference pins connected to the amplifier supply voltage and GND. The
OUT pin is the output voltage, which is connected to the PC3 pin of the microcontroller,
which is programmed to operate in ADC mode; it recognizes the conversion of the analog
voltage signal induced in the measuring coil into a digital signal. In future research, it is
planned to design a customized PCB, which will contain both the microcontroller and the
amplifier on a single board. The laptop shown in the lower right corner was needed only
for data visualization purposes. In the final system implementation, all functions could be
performed by an embedded system that would indicate the information about the stator
winding and supply voltage symmetry condition.

The application responsible for the data acquisition and processing was written us-
ing the C programming language. Programming and debugging were performed in
the STM32CubeIDE environment. Visualization of the values of variables from the mi-
crocontroller’s memory during real-time operation was carried out using STMStudio
(v3.6.0) software.

3. Configuration and Verification of the Data Acquisition Process

3.1. Configuration of the Measurement and Data Acquisition Process

To enable the effective extraction of the IM stator winding fault symptoms from
the diagnostic signal, it is necessary to properly configure the measurement and signal
acquisition process that is performed by the microcontroller. The microcontroller’s pin
configuration was done using the Integrated Development Environment (IDE) developed
by STMicroelectronics (STM32CubeIDE). STM32CubeIDE is an advanced programming
platform for C/C++ languages with the ability to recognize peripheral configuration, code
generation, compilation, and debugging for STM32 microcontrollers.

The key task at the stage of preparing the measurement and acquisition of the diag-
nostic signal is to correctly configure the microcontroller pin that will be associated with
the ADC module, which converts the analog voltage signal induced in the measurement
coil into a digital signal. Pin two of port C (PC2) was configured as the input of the ADC1
module (channel 3), operated in a single-ended operation mode.

To set the sampling frequency, fp, when using the microcontroller-based embedded
system, it is necessary to configure the timer accordingly so that it generates a cyclic
interrupt every specified time, during which the voltage measurement (sampling) will be
performed. Cyclic interruptions are used to trigger actions that need to be called at the
appropriate frequency. To determine at what frequency the interrupt-generating timer
will count, it is necessary to check the microcontroller’s specification to verify which bus
provides the clocking to the timer and the clocking frequency. In this project, a 16-bit TIM6
timer was used. It was located on the APB1 bus and clocked at 80 MHz. Obtaining this
information allows the TIM6 to be appropriately configured for measurement and signal
acquisition.

The TIM6 counts from 0 to the value defined in the AutoReload Register (ARR), then
generates an interrupt, and resets the counter register to 0 (after the defined time). The
frequency of the interrupt triggering (that is the sampling frequency) fp can be calculated
according to the following equation:

fp =
fCLK_CNT

TIM_ARR + 1
, (1)

where fCLK_CNT is the clock frequency of the bus on which the timer is located, and TIM_ARR
is the value written in the ARR register.
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The fCLK_CNT equals 80 MHz, while 4000 Hz was taken as the desired value of the
interrupt trigger frequency (corresponding to the sampling frequency). Hence, the value
written in the ARR register is as follows:

TIM_ARR =
fCLK_CNT

fp
− 1 =

80 · 106 Hz
4000 Hz

− 1 = 19, 999. (2)

3.2. Verification of the Measurement and Data Acquisition Process

After configuring the peripherals required for the project, it is necessary to verify the
correctness of the measurement and signal acquisition before proceeding with the tests. In
the first step, it was verified if the TIM6 settings were configured correctly. In the timer
interrupt handler function (HAL_TIM_PeriodElapsedCallback()), an additional function was
added to negate the state of one of the test pins, which was configured as a general-purpose
output (GPIO Output). Figure 4 shows the voltage waveform at the output of the test pin
recorded using a GW INSTEK MDO-2102A (Montclair, CA, USA) digital oscilloscope. As
can be seen, the state change at the output of this pin (state 0 corresponded to ground
level, while state 1 corresponded to 3.3 V) occurred every 250 μs. This confirms the correct
configuration of TIM6 and corresponds to a frequency of 4 kHz. The interrupt service
function will be called to measure (sample) the value measured by the ADC module.

 

Figure 4. The voltage waveform at the output of the test pin was recorded using a GW INSTEK
MDO-2102A digital oscilloscope.

The INA241A2 amplifier (Dallas, TX, USA), which is used in the measurement circuit,
not only amplifies the input voltage 20 times but also adds an offset (offset) equal to half
the value of its supply voltage. In the case of the supply voltage Vs = 3.3 V, this offset
equals 1.65 V. This offset allows the ADC module to measure negative voltages. The output
voltage of the INA241A2 amplifier in the absence of input voltage and supply voltage
Vs = 3.3 V is shown in Figure 5.

As expected, the value at the output of the amplifier, when there was no input signal
connected, was close to 1.65 V. In the next step, the results of signal acquisition recognized
by the internal ADC module of the STM32L476RG microcontroller were verified. The wave-
form of the read-out digital signal after converting the analog voltage signal at the amplifier
output by the ADC module (variable ui16RawADCResult) is shown in Figure 6a. To convert
the raw ADC value to voltage, it is necessary to perform the following calculations [36]:

VADC =
VREF+

FULL_SCALE
· ADC_DATA, (3)

where VADC is the actual voltage measured by the ADC module, VREF+ is the reference
voltage value of the ADC module equal to 3.3 V, ADC_DATA is the digital value converted
by the ADC module, and FULL_SCALE is the maximum digital value of the ADC output
equal to FULL_SCALE12-bit = (212 − 1) = 4095 for an ADC with 12-bit resolution.
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Figure 5. The output voltage of the INA241A2 amplifier in the absence of input voltage (amplifier
supply voltage Vs = 3.3 V).

Time [s]

(a)

(b)

(c)

ui
16

R
aw

A
D

C
R

es
ul

t [
-]

fA
m

pl
ifi

er
O

ut
 [-

]
fA

ct
ua

lV
ol

ta
ge

 [-
]

Figure 6. The waveform of (a) the measured digital signal after converting the analog voltage signal
at the amplifier output by the ADC module (ui16RawADCResult), (b) the voltage after converting the
raw ADC value (fAmplifierOutput), and (c) the actual amplifier output voltage after offset and gain
compensation (fActualVoltage).

Figure 6b shows the waveform of the fAmplifierOut variable carrying the information
about the voltage after converting the raw ADC value according to Equation (3). This value
coincides with the waveform recorded using a digital oscilloscope (Figure 5). After taking
into account the offset compensation and gain introduced by the amplifier, the waveform
of the actual voltage at the output of the amplifier (variable fActualVoltage) is shown in
Figure 6c. The value was close to 0, confirming that the measurement and acquisition
configuration were correct in the absence of input voltage.

The final step in verifying the correct configuration of the ADC module was to measure
a sinusoidal voltage signal with an amplitude of 50 mV and a frequency of 50 Hz, generated
using the NI myDAQ card and the NI ELVISmx Function Generator environment. The
waveform of this signal, recorded using a digital oscilloscope, is shown in Figure 7a, while
the measurement at the output of the amplifier by the ADC module of the STM32L476RG
microcontroller, after offset and gain compensation (×20), is shown in Figure 7b. The FFT
amplitude spectrum is shown in Figure 8. The frequency range of the spectrum includes
frequencies from 0 to 2000 Hz, which is due to the adopted sampling frequency of 4000 Hz.
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Figure 7. (a) The waveform of a sinusoidal voltage signal with an amplitude of 50 mV and a frequency
of 50 Hz generated using the NI myDAQ card and the NI ELVISmx Function Generator environment
(recorded using a digital oscilloscope), and (b) the waveform of the generated signal after conversion
and offset compensation measured by the ADC module of the STM32L476RG microcontroller.
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Figure 8. The FFT spectrum of a sinusoidal voltage signal with an amplitude of 50 mV and a frequency
of 50 Hz measured by the ADC module of the STM32L476RG microcontroller.

Based on the analysis of the results of the conducted verification of the reliability of the
measurement and signal acquisition, it was concluded that the configuration was carried
out correctly and the noise level was at a satisfactorily low level of about −125 dB.
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4. ITSC and Unbalanced Supply Voltage Symptom Extraction Based on the Voltage
Inducted by Axial Flux

Due to the limited accuracy of the technological processing of machine components,
IMs are characterized by the presence of certain asymmetries in electrical or magnetic
circuits. The effect of these imperfections is the occurrence of leakage fluxes, the value of
which will depend on the level of asymmetry of the motor. Since the axial flux finds its
source in the currents flowing through the motor windings, faults to the electrical circuits
will also be reflected in this signal. In the case of an undamaged motor, the axial flux
will have a very low value, close to zero [37]. In the following subsections, the effect of
the stator winding faults and unbalanced supply voltage on the waveform of the voltage
inducted by the axial flux, as well as on its FFT spectrum, will be analyzed. This will
allow the assessment of the possibility of extracting the symptoms of these abnormal motor
conditions using a low-cost system.

4.1. Stator Winding Faults (ITSCs)

To verify the validity of the measurement performed with the NUCLEO-L476RG
evaluation board, the initial results were compared with those obtained with a high-end NI
data acquisition board (DAQ), which has a built-in ADC module with a resolution as high
as 24 bits. Figure 9a shows a comparison of the waveform of the induced voltage in the
measurement coil by axial flux, umc, for an unloaded IM with undamaged stator winding
(Nsh = 0, Nsh—number of shorted turns), measured using the NUCLEO-L476RG module
and the DAQ NI PXI-4492 card. As expected, based on the analysis of these waveforms,
the value of the induced voltage in the absence of a stator winding fault was very low;
the signal amplitude was about 4 mV. The results obtained for the DAQ NI PXI-4492
measurement card and the STM32L476RG microcontroller were similar. Figure 9b shows a
comparison of the umc waveform for the same drive system operating conditions but with
8 shorted turns (Nsh = 8) in the IM stator winding. As a result of the damage to the stator
winding, the value of the amplitude of the voltage induced by the axial flux increased by
about 10 times. Again, both the measurement and data acquisition methods yielded similar
results, confirming the correctness of the measurement and signal acquisition performed
by the developed low-lost system.
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Figure 9. The waveform of the umc measured using the NUCLEO-L476RG module and DAQ NI
PXI-4492 measurement card for an unloaded motor and (a) Nsh = 0, (b) Nsh = 8.
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The effect of the stator winding fault can also be seen in the FFT spectrum of the
induced voltage signal as an increase of the selected characteristic frequency components.
These harmonics are described by the following equation [37]:

fsp = k fs ± n
1 − s

pb
= k fs ± n fr, (4)

where:

fs—fundamental frequency of the supply voltage;
fr—rotational frequency;
pp—number of pole pairs;
s—slip;
n—1, 3, 5, . . ., 2pp − 1;
k—consecutive positive integers (1, 2, 3 . . .).

Figure 10 shows the FFT spectra of the umc measured using the NUCLEO-L476RG mod-
ule and the DAQ NI PXI-4492 measurement card for an unloaded motor and
Nsh = 0 (Figure 10a) and Nsh = 8 (Figure 10b). Based on the analysis of these figures,
it was concluded that the amplitudes of the harmonics seen in these spectra were similar
for both methods of measurement and signal acquisition. The spectrum when the signal
was measured with the DAQ NI PXI-4492 card had a lower noise level (by about 30 dB).
The higher noise level for the NUCLEO-L476RG did not adversely affect the analysis of the
harmonic values. The spectra also show selected stator winding fault-specific frequency
components, calculated according to Equation (4). By comparing the spectra shown in
Figure 10a,b, it is possible to find the largest increase in the harmonic corresponding to
the frequency of the supply voltage (fs = 50 Hz) as a result of the damage. The results
confirmed the correctness of the measurement carried out using the NUCLEO-L476RG.
Therefore, further detailed analysis will be performed only for the proposed solution based
on the embedded system.
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Figure 10. The FFT spectrum of the umc measured using the NUCLEO-L476RG module and DAQ NI
PXI-4492 card for an unloaded motor and (a) Nsh = 0, (b) Nsh = 8 (fs = fsN = 50 Hz, fr = 24.9 Hz).
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Figure 11a shows the waveform of the umc for the measurement using the NUCLEO-
L476RG module, the motor loaded with the rated torque (TL = TN, TL—load torque.), and
different severities of the stator winding fault (Nsh = 0, Nsh = 2, Nsh = 4, and Nsh = 8).
Based on the analysis of these waveforms, it can be seen that there was a clear trend of
increasing umc amplitude values as the fault deepened. The FFT spectrum for the same
operating conditions and degrees of stator winding fault is shown in Figure 11b. Based on
the analysis of the amplitudes of characteristic frequencies, it can be concluded that the
largest increase in amplitude due to ITSCs was seen for the fs component. An increase in
other harmonics calculated according to Equation (4) can also be observed, especially the
fs − fr, fs + fr, fs + 5fs, and 3fs components.
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Figure 11. (a) The waveform and (b) the FFT spectrum of the umc measured using the NUCLEO-
L476RG module, for a motor loaded with rated torque and different severities of the stator
winding fault.

The effect of Nsh in the IM stator winding and the TL level on the increase in the
amplitudes of the characteristic fault frequencies (fITSC), fs − fr, fs + fr, fs + 5fs, and 3fs,
in the FFT spectrum of the um, is shown in Figure 12. The increase in the value of the
Adiff (fITSC) amplitudes is calculated as the difference between the amplitude value for the
undamaged winding and a given number of shorted turns. Based on the analysis of the
results shown in Figure 12, it can be concluded that the value of the amplitude of the fs
component increased significantly already with 1 shorted turn in the stator winding. In
addition, only a very small effect of the load torque was visible. A similar trend was seen
for the fs + fr (Figure 12c) and 3fs (Figure 12e) components. Nevertheless, the increases in
the amplitudes of these components due to ITSCs were lower compared to the amplitudes
of fs. For the fs − fr, and fs + 5fs frequency components, the increase in amplitudes due to
the ITSC did not occur for the entire range of analyzed stator winding conditions and TL
levels. Thus, it can be concluded that monitoring the amplitude of the fs and optionally
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fs + fr components can allow the detection of the IM stator winding fault at an early stage
of its propagation (Nsh = 1).
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Figure 12. The effect of Nsh in the IM stator winding and TL level on the increase in the amplitude
of the selected frequency components: (a) fs, (b) fs − fr, (c) fs + fr, (d) fs + 5fr and (e) 3fs in the FFT
spectrum of the umc.

4.2. Unbalanced Supply Voltage

To introduce a condition of power supply voltage unbalance, each of the phases of the
IM under study was supplied by a single-phase autotransformer allowing stepless voltage
regulation. The supply voltage value in one of the phases (phase A) was reduced from
230 V to 210 V. The analyzed levels of the supply voltage unbalance are grouped in Table 3.
The supply voltage unbalance coefficient, αu2, was calculated as the ratio of the negative
sequence supply voltage component to the positive sequence supply voltage component.
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Table 3. Analyzed levels of the supply voltage unbalance.

The RMS Value of the Supply Voltage of the
Phase C

Supply Voltage Unbalance Coefficient αu2

230 V 0.08%
228 V 0.32%
225 V 0.57%
220 V 1.39%
215 V 2.23%
210 V 2.84%

The waveforms of the voltage induced in the measuring coil by the axial flux for
different levels of power supply unbalance are shown in Figure 13. Based on the analysis of
these waveforms it can be concluded that the effect of the power supply unbalance on the
amplitude of the umc was significantly less visible compared to the effect of ITSCs. For the
analyzed range of supply voltage unbalance levels, the umc amplitude was close to 5 mV.
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Figure 13. The waveforms of the voltage induced in the measuring coil by the axial flux for different
levels of power supply unbalance.

The FFT spectrum of the umc measured using the NUCLEO-L476RG module for an
unloaded motor (Figure 14a), a motor loaded with the rated load torque (Figure 14b), and
different power supply unbalance levels is presented in Figure 14. Based on the analysis of
these spectra, it can be concluded that there was an increase in the amplitude of the fs + 2fr
and 3fs − 2fr frequency components as a result of the supply voltage unbalance.

One of the most important observations is that the frequency components that in-
creased as a result of the ITSC did not change their value due to the unbalanced supply
voltage, and the other frequency components (fs + 2fr and 3fs − 2fr) appeared. This may
allow the distinguishing between these two abnormal conditions (stator winding fault and
unbalanced supply voltage). Nevertheless, a more detailed analysis is needed.

The effect of the supply voltage unbalance level and TL on the increase in the am-
plitudes of the frequency components that increased the most significantly in the case of
the ITSC (fs and fs + fr), and the characteristics for supply voltage unbalance (according to
Figure 14) (fs + 2fr, and 3fs − 2fr) are presented in Figure 15. Based on the analysis of these
results, it can be concluded that the values of the amplitude of the fs and fs + fr did not
increase as a result of the unbalanced supply voltage. The amplitude increase of the fs + 2fr
component was visible already with an αu2 value of 1.39% (the phase voltage RMS value
reduced to 220 V). In the case of the 3fs − 2fr frequency component, the increase as a result
of the unbalanced supply voltage was more irregular for different levels of load torque but
still visible. Thus, it can be concluded that monitoring the amplitude of the fs + 2fr, and
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optionally 3fs − 2fr components can allow the detection of the unbalanced supply voltage
of the IM drive.
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Figure 14. The FFT spectrum of the umc measured using the NUCLEO-L476RG module, for
(a) an unloaded motor, and (b) a motor loaded with rated load torque, and different power supply
unbalance levels.
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Figure 15. The effect of unbalanced supply voltage level and TL on the increase in the amplitude of
the selected frequency components: (a) fs, (b) fs + fr, (c) fs + 2fr, and (d) 3fs − 2fr in the FFT spectrum
of the umc.
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4.3. Influence of the Power Supply Method on the Amplitude Increase of the Selected Harmonics

In the present work, special attention was paid to the IM powered directly from the
grid. Nevertheless, the effectiveness of the ITSC symptom extraction was also verified for
the IM powered by a Danfoss VLT AutomationDrive FC-302 inverter. The FFT spectra of the
umc measured using the NUCLEO-L476RG module for a motor loaded with rated torque,
the different severity of the stator winding fault, and the IM supplied by a Danfoss VLT
AutomationDrive FC-302 inverter, for three different values of fs, are shown in Figure 16.
Based on the analysis of the results, it can be concluded that both in the case of the IM
powered directly from the grid and a voltage source inverter, there was an increase in the
amplitude value of the fs component as a result of the ITSCs. It confirms the versatility of
the proposed solution in terms of the power supply method.
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Figure 16. The FFT spectra of the umc measured using the NUCLEO-L476RG module for a motor
loaded with rated torque, different degrees of stator winding fault, and power supply from voltage
source inverter, (a) fs = 50 Hz, (b) fs = 40 Hz, and (c) fs = 30 Hz.
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4.4. Discussion of the Key Results and Plans for Future Research and Development

Experimental tests made it possible to evaluate the performance of the developed
embedded system, analyze the effect of the IM stator winding fault and an unbalanced
supply voltage on the voltage induced in the measurement coil by the axial flux, and extract
the symptoms that appear in the FFT spectrum of this voltage as a result of these abnormal
conditions. The key discoveries are as follows:

• The results of the measurement and signal acquisition process performed using the
developed embedded system based on the STM32L476RG microcontroller did not
differ from the results obtained using the high-end PXIe-4492 DAQ measurement card
by NI;

• The ITSC in the IM stator winding resulted in a significant increase in the amplitude of
the umc regardless of the level of the load torque. The greater the severity of the fault,
the greater the increase in amplitude;

• The unbalanced supply voltage of the IM drive did not lead to an increase in the
amplitude of the umc;

• The value of the amplitude of the fs component in the umc FFT spectrum increased
the most as a result of the ITSC already with one shorted turn in the stator winding.
The amplitudes of the fs + fr and 3fs components also increased, but the increase was
smaller compared to fs;

• The value of the amplitudes of the fs + 2fr and 3fs − 2fr (particularly) components in
the umc FFT spectrum increased the most due to the unbalanced supply voltage;

• The distinguishing between the two abnormal conditions analyzed (stator winding
fault and unbalanced supply voltage) were recognized based on the monitoring of
the amplitudes of the fs (characteristic for stator winding fault) and the 3fs − 2fr
(characteristic for unbalanced supply voltage) components;

• The developed method of monitoring the condition of the IM stator winding proved
to be effective not only in the case of an IM supplied from the grid but also by
the inverter.

Even though the developed system, despite its low cost, already at this stage al-
lows monitoring of the condition of the IM stator winding and the symmetry of the
supply voltage, it will be developed in the future and improved with important functions
to meet the requirements for modern drive systems that are associated with the Indus-
try 4.0 paradigm. There are many specific areas for future research and development
(R&D), including:

• The improvement of the proposed system with the addition of a module that, based on
the input vector consisting of statistical information about the voltage signal induced
in the measuring coil by the axial flux and the values of harmonic amplitudes, will
automatically indicate the state of the stator winding and the symmetry of the supply
voltage;

• The integration of the amplifier and microcontroller on a single, specially designed
compact PCB that can be mounted at the installer’s convenience;

• An extension of the functionality of the developed system to measure other diagnostic
signals, such as stator phase currents, and the ability to detect other types of faults,
such as broken rotor cage bars, bearing faults, and others;

• An extension of the functionality of the developed system with other mathematical
apparatuses that can be used for diagnostic signal processing to extract the symptoms
of ITSC and unbalanced supply voltage, such as STFT;

• Adding the function of predicting the possibility of a given failure of the analyzed
machine; an extension with the functionality called predictive maintenance;

• The analysis of application possibilities and industry areas where the developed
system could be also applied.

From the above points, the first step will be to fully automate the process of monitoring
IM stator winding conditions and supply voltage symmetry using AI (machine learning
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and deep learning) techniques. A simplified block diagram of the flow of diagnostic
information processing from the measurement of the signal on the monitored object to the
automation of the process of inferring its condition (including the parts that have already
been implemented and future R&D plans) is shown in Figure 17.

 

Monitored IM Measurement and 
acuqisiton of the umc

umc

Calculation of the umc waveform 
statistical information 

(e.g. RMS), FFT analysis 

Already implemented Plan for future R&D activities

Automation of the IM fault diagnosis
(Artificial Intelligence-based)

Feature 
vector

Figure 17. Simplified block diagram of the flow of diagnostic information including the parts that
have already been implemented and future R&D plans.

5. Conclusions

The experimental results presented in this paper confirmed the feasibility of using a
module based on a low-cost ARM Cortex-M4 core microcontroller to monitor the condition
of the IM stator winding based on the voltage induced in the measuring coil by the axial
flux. The experimental results also proved that FFT analysis of this signal made it possible
to extract symptoms of an incipient ITSC, even with a single shorted turn in the stator
winding of IM. The results also showed that it was possible to detect and distinguish from
a short circuit an asymmetrical IM supply voltage based on analysis of the amplitudes of
selected harmonics in the induced voltage spectrum. This study was carried out over a
wide range of operating conditions of the drive system, including the verification of the
effect of the power supply method on the increase of individual amplitudes in the analyzed
spectrum of the voltage inducted by the axial flux.

The use of the proposed hardware implementation poses several challenges, including
those related to the correct configuration of the measurement and acquisition of the diag-
nostic signal, which is explained in detail and can be helpful in the process of preparing
an embedded system for diagnostic purposes for various types of applications. Since
the evaluation board used in this work (NUCLEO-L476RG with low-cost STM32L476RG
microcontroller) is much cheaper compared to the high-end data acquisition boards used,
such as DAQ NI PXI-4492, it has great potential for industrial applications.

Future research will focus on the development and hardware implementation (on a
low-cost microcontroller) of an algorithm that will fully automate the process of detect-
ing and classifying an ITSC in the stator winding of an IM, which will use the statisti-
cal information of the induced voltage waveform or the amplitude of selected harmon-
ics in the FFT spectrum of this signal. For this purpose, it is planned to use machine
learning algorithms whose computational complexity will allow implementation in an
embedded system.
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