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Preface

Electric machines are some of the most important technological pillars in the development of 
modern societies. They were first used in multiple rotatory-based applications in industry, and 
later found application in the energy and transport sectors. As such, the research and develop-
ments around electric machines are constantly evolving. Scientific and technological efforts in 
electric machines are being applied in three main areas: (1) electric motor technologies (AC/DC, 
synchronous/asynchronous induction, permanent magnet, reluctance, etc.), (2) supervision and 
maintenance strategies (fault detection, condition-based monitoring, predictive maintenance, 
etc.), and (3) control schemes (vector control, fault-tolerant approaches, etc.). Each field of 
application has its own specifications in terms of electric motor requirements and performances. 

This book presents original research work on electric machine technologies and applications. 
It includes two sections.

The first section discusses the maintenance of electric motors, combining signal processing 
and artificial intelligence as a strategic methodology from which novel fault detection and 
identification schemes are being deployed. It also reviews predictive maintenance strategies 
over new industrial communication architectures, the integration of new industrial infor-
mation drivers from text sources, and the effects of some renewable energy-based power 
schemes on electric motors. 

The second section focuses on electric motor controls and their suitability to different motor 
technologies. It discusses direct torque control and Lyapunov-based sensorless schemes in 
switched reluctance, squirrel-cage induction, and permanent magnet synchronous machines 
as well as a doubly fed induction generator.

The chapters in this book highlight a diversity of new trends in electric machines, including 
electric motor technologies, supervision and maintenance strategies, and control schemes. 

Miguel Delgado-Prieto, Ph.D.
Automatic Control Department,

Polytechnic University of Catalonia,
Barcelona, Spain

Roque A. Osornio Rios, Ph.D. 
Faculty of Engineering,

Autonomous University of Querétaro,
San Juan del Río, Mexico

José A. Antonino Daviu, Ph.D.
Electrical Engineering Department,
Polytechnic University of València,

València, Spain
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Chapter 1

Perspective Chapter: Fault 
Detection and Predictive 
Maintenance of Electrical 
Machines
Hadi Ashraf Raja, Karolina Kudelina, Bilal Asad  
and Toomas Vaimann

Abstract

Nowadays, most domestic and industrial fields are moving toward Industry 4.0 
standards and integration with information technology. To decrease shutdown costs 
and minimize downtime, manufacturers switch their production to predictive main-
tenance. Algorithms based on machine learning can be used to make predictions and 
detect timely potential faults in modern energy systems. For this, trained models with 
the usage of data analysis, cloud, and edge computing are implemented. The main 
challenge is the amount and quality of the data used for model training. This chapter 
discusses a specific version of a condition monitoring system, including maintenance 
approaches and machine learning algorithms and their general application issues.

Keywords: electrical machines, fault diagnostics, predictive maintenance, artificial 
intelligence, condition monitoring, neural networks

1. Introduction

The recent advancement in information technology, especially the integration 
of technology with different fields of research, has made day-to-day life convenient 
and opened up new research areas. One of these fields is the internet of things (IoT), 
which enables physical devices to communicate through the internet. The advent of 
these smart or intelligent devices and their implementation in industrial applications 
resulted in the industrial revolution, commonly known as industrial standard 4.0. 
These devices are not only able to communicate with each other but also able to make 
decisions based on defined logic or controlled remotely also referred to as cyber-
physical systems. This has further paved the way for condition monitoring of electri-
cal devices, where these devices act as data acquisition points. The collected data can 
then be used to monitor specific electrical machines. Further, data analysis can be 
done on the collected data to include fault diagnostics on these devices, including the 
prediction of faults [1, 2].
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Industrial standard 4.0 has given way to the implementation of condition monitor-
ing [3, 4] at a mass scale in the industry, leading toward predictive maintenance [5, 6] 
of electrical machines in the near future. Many companies are working on different 
predictive maintenance algorithms to reduce their scheduled maintenance costs. This 
research will further improve the effectiveness of electrical machines in the industry 
[7] and help to reduce unforeseen errors and faults. Most companies are also research-
ing and finding the lifespan of the equipment based on previous patterns and external 
environmental variables to get the best results out of their setup. Researchers have 
already implemented different condition monitoring setups to maximize the potential 
of different electrical machines, including offshore wind turbines [8, 9], but most of 
this equipment is expensive and heavy.

At the moment, the industry is trying to move toward predictive and proactive 
maintenance to help reduce costs due to unexpected errors and faults that could have 
been handled before they become a more significant issue. The maintenance of elec-
trical machines is usually divided into four phases: reactive, periodic, proactive, and 
periodic, as shown in Figure 1. Among the four phases, most of the industry is still on 
scheduled maintenance but is trying to move toward predictive maintenance as it is 
not only cost efficient but also generates a more detailed report on fault diagnostics.

With the move toward predictive maintenance, researchers are also looking for 
ways to utilize newer technology to get better results. The research is not only going 
on in this area but also in other areas like wearable devices for condition monitoring 
of patients to check on any abnormality [10, 11], solar-powered condition monitor-
ing systems [12], air and noise pollution monitoring systems [13], and much more. 
This is because of the advancement in the technology of microcontroller boards 
that have given researchers more options to explore. More researchers are including 
these boards in their research because of their scalability. There have already been 
researches going on like the development of a condition monitoring system for wind 
turbines [14], weather sensors [15], electrical machines [16–18], autonomous vehicles 
[19], and robotics [20, 21]. Most of these condition monitoring systems are still in 
development and might need much more improvement before they can become stable 
and be used on a large scale. One of the most common issues is the sample rate at 
which data is gathered using these devices and its transmission without any data loss.

Most of the systems already in place use SCADA/PLC that are not only complex 
and expensive but also harder to transport [22]. One of the other issues with these 
systems is that although they are data acquisition points, there is no data analysis of 
the collected data. Hence, it is just lying there and not being utilized anywhere for 
fault diagnostics or being used to deduce any results. For the analysis of the collected 

Figure 1. 
Maintenance of electrical machines.



5

Perspective Chapter: Fault Detection and Predictive Maintenance of Electrical Machines
DOI: http://dx.doi.org/10.5772/intechopen.107167

data, cloud computation is used along with edge computing, which helps analyze the 
data and deduce results from it. For the analysis part, machine learning algorithms 
are mainly used to train models based on collected data from these machines. These 
trained models are implemented on the cloud to get near accurate classification and 
prediction related to incoming data from the electrical machines. These models mainly 
were implemented on cloud storage or isolated servers as they need high processing 
power and storage space. However, now things are moving toward edge computation 
from the cloud. This will result in these models being implemented at the edge node 
where the data is being collected rather than on the cloud, which will help identify 
errors on the edge and further reduce the time needed to make a decision. This will 
also result in reduced bandwidth needed to transfer the data over the network.

This chapter discusses a concise overview of a condition monitoring system using 
microcontroller cards, following a small data pre-processing and analysis. Further, 
some light is shown on the machine learning algorithms and the training of data sets 
for different faults, and a short detail related to predictive maintenance is given, how 
it can help, and at what stage it is currently at, followed by a short conclusion.

2. Condition monitoring system

This section will discuss a particular approach to condition monitoring systems 
based on microcontroller boards and cloud resources. The condition monitoring 
system technically consists of three parts: the data acquisition system, the edge node, 
and the cloud. Usually, the researchers do not consider an edge node system. However, 
it is always better to have a local backup, computation power, and space to run some 
analysis if needed. The data acquisition part will consist of the microcontroller board, 
with the edge node being the one that helps in case of any data loss over the network.

The data acquisition part will gather data from the electrical machine using sen-
sors. The incoming data is calibrated before transferring it through the microcontroller 
board to the edge node. In most cases, as the industry uses analog sensors, this part 
also acts as an analog-to-digital converter (ADC). The acquired data is then transmit-
ted toward the second part that is, the edge node. The edge node acts as a local backup 
where the incoming data is stored in a MySQL database. The database is synced in real 
time with the database present in the cloud. Some pre-processing can also be done on 
edge, including digital filtering. The third part of the system, which is in the cloud, runs 
the frontend UI for the end user. It also runs diagnostics in the background on the latest 
synced data to look for faults. As the time difference between data acquisition from the 
electrical machine to showing the diagnostic results on the front end is not much, this 
system can also be referred to as a real-time condition monitoring system. Figure 2 
shows a rough flow chart of the implementation of a condition monitoring part.

The data is collected from the electrical machines using a microcontroller, an 
Arduino, or a teensy. One of the microcontroller cards (i.e., Arduino) is shown in 
Figure 3. The collected data is read through one of the analogs or digital pins on the 
microcontroller card, depending on the sensor used for data collection. If the sen-
sor is IoT compatible, the data can be read over on the digital pin. In contrast, the 
general analog sensors used in the industry need to be calibrated and their output 
adjusted before they can be passed onto the microcontroller board. As the pins on the 
microcontroller boards do not allow a negative voltage or more than a specific voltage, 
before providing the data to the pins of the board, it is necessary to make sure that the 
sensor output is calibrated correctly. If by any chance, there is a negative voltage or 
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higher voltage than the one pin can handle, there is a high chance that the board will 
short circuit. So, it is essential to make sure that this is handled correctly; otherwise, 
might end up in a short circuit of the board and with the data collected being junk 
without any real meaning.

Figure 3. 
Arduino board.

Figure 2. 
Flow chart of a condition monitoring system.
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Once the data is received on the board, it is then forwarded to the edge node, 
which is made up of Raspberry Pi. The data read here through the analog pin is at high 
speed. To ensure, it is transmitted at the same speed without any loss of data serial 
peripheral interface (SPI) connection is used between the microcontroller board and 
Raspberry Pi. Also, to be sure, the voltages for both the microcontroller board and Pi 
are different as some microcontroller boards give an output of 5 Volts at high. In con-
trast, Pi works with a voltage of 3.3 Volts when high, so it is also needed to ensure the 
transmitted values do not go over it. If a high sample rate is not needed, then UART 
communication should be preferred. A short description of different communication 
methods and their sample rate for a longer period of time is shown in Table 1.

The above sample rate per second is just a comparison between the speed for dif-
ferent communication methods for a specific microcontroller board. In this case, the 
microcontroller board is considered as Arduino Mega. The communication devices 
and other specifications, including the buffer capacity of the logger device, are the 
same in all three cases, that is ., Arduino Mega and Raspberry Pi. The results shown 
in Table 1 are approximately the maximum sampling rates of an Arduino Mega that 
can be achieved when run for over a couple of days with the specific communication 
method without any data loss during transmission from Arduino Mega to Raspberry 
Pi. These specific results are hardware-dependent and changing the microcontroller 
board will change the speed range, example, teensy has a far better range. An experi-
mental setup with an induction motor and analog current sensors for data acquisition 
is shown in Figure 4.

The communication method for data transmission between the microcontroller 
board and Pi can be decided based on the sample rate needed for the transmission. 
These sample rates are based on continuous data transmission from a couple of 
hours to days without any data loss between the transmissions. Similarly, the choice 
of microcontroller board might also impact the sample rate for transmission, as the 
newer board having better computation power gives better results. Once the data is 
transmitted to Pi, it is saved up in a local database and synced online simultaneously 
to ensure that every bit of data is synced online with the cloud without any loss. Pi 
also acts as a node that is capable of running analysis (like digital filtering) if needed 
going forward. The transmitted data is then analyzed on the cloud and based on 
different trained models; results are deduced whether any fault is present or not. As 
it is harder to understand incoming data in numerical form, the deduced results are 
then shown at a front end hosted on the cloud. The graphical user interface (GUI) is 
user-friendly and helps the end user understand the result without much information 
related to the system. An example of such a GUI is shown in Figure 5.

The GUI shown in Figure 5 runs on the cloud with scalable resources. It mainly 
consists of two parts, the GUI and the diagnostic analysis running in the background. 
The GUI is built using PHP, whereas the diagnostic analysis primarily uses Python as 
the primary language, with the results saved in a MySQL database. The saved results 

Communication method Sample rate per second

UART 1800

I2C 2600

SPI 3600

Table 1. 
Comparison of sample rate for different communication methods.
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are then projected on the GUI as soon as they are updated in the database. The cloud 
resources used here are scalable. With low data processing, that is , only one or a 
couple of diagnostic analyses running in the background, resources with 4 vCPU 
cores, 16 GB RAM, and 128 GB disk are good enough. This can be further scaled up 
depending on the number of diagnostic analyses and edge devices connected with the 
cloud, that is, increased incoming data flow.

Further, analysis results can also be shown on the GUI including the chance of 
a fault occurring in each phase and the option to control the electrical machine 
remotely if power to the machine is routed through the microcontroller board. 
Hence, there are multiple ways this system can be extended further. This can help 
the end user to understand the situation of the electrical machine in more detail. 
This can also help to identify which phase of the electrical machine or which part 
of the machine is generating issues, which can further reduce the time taken to 
identify the root cause of the fault. This helps maintenance teams in reducing the 
time needed to fix it and decide whether the fault needs to be fixed urgently or can 
be done later.

Figure 4. 
Experimental setup of induction motor with analog sensors.

Figure 5. 
Example of GUI.
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3. Data pre-processing and analysis

The incoming data needs to be pre-processed before it can be used for analysis. 
In this chapter, the analyses are focused on the steady-state operation. As the data is 
coming in the time domain and is raw, it is needed to make sure whether it can be uti-
lized for the need or not. To detect faults in the early stage, it is reasonable to consider 
small frequency components by taking Fourier transforms of the incoming signal. For 
effective fault detection, different operating conditions must be considered, such as 
control environment, load, ambient environment, etc. Figure 6 presents the current 
frequency spectra of a motor with broken rotor bars in several control modes—grid 
fed, scalar, and directtorque control. As seen, a significant shifting in frequency 
components occurs between the signals in different control modes. This is important 
to be considered during the model training.

At the same time, load also should be considered. Figure 7 presents the current 
frequency spectra of a motor with broken rotor bars under different loads. It is seen 
that the behavior of the signal changes as the load increases.

In both cases, there are two regions to be studied to make predictions. Firstly, the 
frequency range of 0–500 Hz, where the impact of the fault is the highest on even har-
monics. Specifically, the most prominent are harmonics on 50, 250, and 350 Hz. Besides, 
harmonics at 750 Hz can be important to be studied and considered for fault prediction.

The data is first converted into the time domain and sampled, according to the 
sampling frequency to make sure we have enough cycles. Figure 8 shows an example of 
sample data set in the frequency domain. As the time domain does not have significant 
components based on which healthy and faulty data can be distinguished; hence, the 
data is converted into the frequency domain first and the frequency spectrum is analyzed 
to find the specific difference between the healthy and the faulty electrical machines.

The frequency spectrum of a faulty electrical machine includes different fre-
quency components, usually not present in a healthy electrical machine frequency 
spectrum. Identifying those components and utilizing different analyzing techniques 
to identify them in the incoming data is part of fault detection. Including those 

Figure 6. 
Current frequency spectra of a faulty motor under different control modes.
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frequency components to extract as features for training different machine learning, 
models can help to identify electrical machines’ faults. Fault detection can be divided 
into two parts: signal processing and machine learning trained algorithms. Different 
analyses based on fast Fourier transforms can be used for the signal processing part.

4. Machine learning algorithms

The most common technique used for the detection of faults at the moment is 
utilizing machine learning trained algorithms. With the advent of artificial intel-
ligence, making self-learning or systems with the aptitude for the decision has helped 
streamline multiple processes. Machine learning algorithms help to create a complex 

Figure 8. 
The frequency spectrum of the signal to be trained.

Figure 7. 
Current frequency spectra of a faulty motor under different loads (grid fed).
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weighted combination based on training data that can be used later to deduce results 
for the incoming data. Figure 9 presents examples of the mostly spread machine 
learning algorithms in the diagnosis of electrical machines [23].

One of the primary drawbacks of machine learning algorithms is that they need a lot 
of data to train a high-accuracy model. However, it usually depends on the complexity 
of the model. Suppose the model will be used for classification, with classification being 
divided into two labels. In that case, the accuracy will be pretty high even with a low 
training data set. But suppose that is to be changed by classifying the classification into 
four different labels. In that case, the system’s complexity will increase, resulting in the 
algorithm needing more data to make an accurate model. Figure 10 shows the general 
working of a machine learning or neural network model, to be precise.

There are different types of machine learning algorithms based on specific logic. 
The training data set results in a statistical complex function based on the selected algo-
rithm that gives a trained model. Among the machine learning algorithms, the most 
used are neural networks. Neural networks are further divided into three main types:

• artificial neural network (ANN),

• recurrent neural network (RNN),

• convolution neural network (CNN).

ANN and RNN are primarily used for training for models related to detection or 
prediction. Most ANN models are regression-based or feed-forward models, whereas 
RNN is feed backward neural network models. Neural network model training is 
divided into three layers: the input layer, the hidden layer, and the output layer. The 
hidden layer is where the weighted nodes are set up, as the weight of these nodes is 
adjusted with each training data set. Once the model is trained using the training 
data set, a blind validation can be carried out to test the accuracy of the model before 
implementing it in a real-time scenario.

Figure 9. 
Examples of machine learning algorithms [23].



New Trends in Electric Machines - Technology and Applications

12

These models, after training, are usually implemented in the cloud and are used to 
detect faults in the incoming signals. Although they can be trained to be precise, the data 
needed for it is usually great. That is why researchers are looking into generating such 
data programmatically based on the real-time collected data and frequency harmonics. 
If this is reached, it will be possible to mass produce faulty data according to the need of 
the electrical machine. This will help train a machine learning model specifically for the 
required scenario. Implementing these models on nodes or edge devices might also be 
possible. This will help move from cloud computation toward edge computing.

Training of machine learning models also has other issues with accuracy, based 
on the complexity of the system. Table 2 shows the comparison of accuracies for two 
different types of training sets having different labeled categories. The comparison 

Neural network 
algorithm

Smaller training set Bigger training set

Two categories 
(%)

Four 
categories (%)

Two categories 
(%)

Four categories 
(%)

Narrow Neural Network 88.30 65.00 70.00 38.50

Medium Neural Network 82.50 63.30 73.50 46.50

Wide Neural Network 88.30 73.30 76.20 51.50

Bilayered Neural Network 82.10 62.10 75.20 43.10

Trilayered Neural 
Network

95.40 64.20 73.3 53.40

Table 2. 
Accuracy comparison of different neural network models.

Figure 10. 
Neural network schematics.
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confirms that changes in complexity or size of training sets do impact the accuracy of 
different machine learning models. In this specific example, the algorithms were run 
with specific conditions to compare them under similar training and validation pro-
cesses. However, the results can still be optimized as the training process (i.e., epochs, 
etc) and the test approach (i.e., v-fold cross-validation, holdout validation, etc) can 
also result in different results. Hence, changing approaches can result in better or, 
even in some cases, worst performance, for example, a trilayered neural network with 
two categories and a smaller training set can result in an overfitted model.

As the system becomes more complex, a larger number of data is needed, but 
this also shows that there is a chance that another machine learning algorithm can 
perform better for the same scenario. Hence, these trained models are still flexible 
and there is a need to either get the optimal number of data sets for the training of 
the machine learning-based models or implement a custom-made machine learning 
model that can help identify faults related explicitly to electrical machines with high 
accuracy.

5. Predictive maintenance

As the industry is moving toward predictive maintenance from scheduled 
 maintenance, there is still much research to be done in this area. Most of the research 
going on is related to fault detection rather than fault prediction, but companies are 
working in this specific area. The most important thing in this field is to identify the 
faulty frequency components in the early stage of the fault and the behavior of the 
signal and its frequency components when the signal is shifting from a healthy state 
to a faulty state. Once these things are identified, the next step is to train such a model 
that will be able to predict whether the fault is going to occur and in how much time. 
This will depend based on pre-processing of data and classification of the compo-
nents. This is not a small task and needs dedication and time.

Researchers are looking for better ways to get a prediction model for faults help to 
identify them even before they occur. This leads us toward predictive maintenance, 
there might be some companies that are already running some kind of predictive 
maintenance algorithms with their systems, but at the moment, the hardware setup 
they have to use alongside it is quite expensive. So, another main issue in this area is 
to make it such that it is not only cheap but also no specific hardware setup is needed 
in this regard. There are also multiple directions in which predictive maintenance 
trained algorithms can be utilized. There can be a combination of different algorithms 
to get higher accuracy or more accurate results. Similarly, fuzzy logic systems can also 
be used in accordance with machine learning algorithms and signal processing to get a 
more accurate system for predictive maintenance.

Another issue that the researchers commonly face in this aspect is the lack of data. 
As the data collected in an industrial environment is limited, especially in the case of 
faults, training a model with quality data and testing it out is quite difficult. Also, the 
data required to train models properly should be good in quality and quantity. Some 
researchers are working on observing the pattern in different faults to generate a 
statistical equation for the faults so that synthetic signals can be generated, which can 
help cover up this issue. The main issue in this aspect is to correctly identify the range 
of amplitude of frequency components that are generated when a fault is present in 
the electrical machine. This is not easy as it requires much data analysis and robust 
testing, but immense research is taking place in this direction.
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6. Conclusion

The industrial revolution and information technology advancements have opened 
up new research areas to make things more convenient for industrial applications. 
IoT, with its usage in condition monitoring, fault detection, and remote controlling, 
is already becoming the norm for the industry. It will be more important in the near 
future to implement predictive maintenance for the industry to move away from 
scheduled maintenance to cut short on losses. Hence, fault diagnostics and predictive 
maintenance are the need of the hour. Here, a concise overview of a condition moni-
toring system is given along with the issues in the machine learning algorithm and the 
possibilities of predictive maintenance are discussed.

Although there are still many limitations, such as microcontroller boards are still 
in development, fault prognostics, limitation of available data, and lack of statistical 
and predictive models. However, much research is being done in these areas, with 
the microcontroller boards being advanced rapidly, making them more reliable and 
stable. An increase in their computational power will also result in a more stable 
and quicker transmission of data. The bigger problem is still related to the lack of 
data, resulting in trained models not being up to the mark. However, researchers are 
currently developing statistical models by reengineering. By observing the signals for 
different faults from an electrical machine, researchers are trying to develop statisti-
cal models that can generate signals similar to the fault. Although the process takes 
much time and concentration, researchers are getting near and it might be possible in 
the near future to generate faulty signals based on statistical models.

This chapter discusses a specific version of a condition monitoring system with 
a discussion related to maintenance approaches, machine learning algorithms, and 
some of the issues faced in this aspect.
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Chapter 2

Perspective Chapter: Data Mining
in Electrical Machine Maintenance
Reports
Karlis Athanasios, Falekas Georgios,
Verginadis Dimosthenis and Jose A. Antonino-Daviu

Abstract

Industrial electrical machine maintenance logs pertinent information, such as fault
causality and earlier indications, in the form of a semi-standardized report, previously
written and now in digital form. New practices in predictive maintenance, state-of--
the-art condition monitoring, include increasing applications of machine learning.
Reports contain a large volume of natural text in various languages and semantics,
proving costly for feature extraction. This chapter aims to present novel techniques in
information extraction to enable literature access to this untapped information
reserve. A high level of correlation between text features and fault causality is noted,
encouraging research for extended application in the scope of electrical machine
maintenance, especially in artificial intelligence indication detection training. Fur-
thermore, these innovative models can be used for decision-making during the repair.
Information from well-trained classifiers can be extrapolated to advance fault causal-
ity understanding.

Keywords: artificial intelligence, big data applications, computer aided engineering,
condition monitoring, deep learning, electrical machines, industry 4.0, knowledge
acquisition, predictive maintenance, supervised learning, text mining

1. Introduction

Maintenance of electrical machines (EMs) follows industry-established procedures
according to subject type and encompasses measurements, maintenance efforts’
results, and technician expertise, all of which are necessarily logged in what is called a
maintenance report (MR). Widespread information storage forms include numerical
and audiovisual data. However, this data is almost always accompanied by a natural
text (NT) in the industry’s regional language form, to provide context. Each fault
typically follows a similar pattern, observations of which are logged in the sequential
flow or keywords in the natural text, containing information about degradation pro-
cedures, fault causalities, and any similar relevant comments. These semantics are
naturally followed and produced by human cognition, effortlessly granting the reader
understanding about the fault type and solution, generating patterns.
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Numerical data is the main contribution of an MR. Values of interest are tracked
according to well-established sensor hardware configuration standards and exper-
tise. However, a standalone number is not enough to assess equipment condition.
For example, low stator winding insulation ohmic resistance could indicate either
particle contamination or thermal aging [1]. Additional information is required to
collapse this quantitative observation into a qualitative one. The industry tends to be
the easiest additional experiment, which in this case is a visual inspection (VI). A
logical avenue to log such information is in one of three ways: videos or pictures,
evidential objects, and NT. Since insertion of observation in the already existing
report form as NT is the easiest, fastest, and cheapest solution, it is almost always
preferred. Evidence and media are preserved for more dire situations and only when
necessary.

NT is a convenient medium for human cognition. We are naturally trained to
extract semantics and information from a high redundancy medium, our language,
spoken or written. Furthermore, parallels and conclusions regarding causality and
precedence can be drawn seamlessly, and transferred via the critical assessment of the
responsible engineer to the interested party. These correlations are often made with-
out conscious effort and therefore vary throughout. Thus, expertise is realized and
advanced throughout the years.

The advent of Industry 4.0 has brought novel tools and techniques capable of
expanding the understanding, processing, and handling of systems and procedures.
Heralding the emergence of Big Data, interconnectivity, and digitization, each
observation or case study can aid in establishing accurate correlations and training
science’s newest and sharpest tool, Artificial Intelligence (AI). AI relies on copious
amounts of information in the form of input–output numeric pairs. With this out-
look, NT proves costly for statistical processing, resulting in a significant volume of
unused data.

Natural Language Processing (NLP) is an interdisciplinary sub-field of computer
science, artificial intelligence, and linguistics, with the aim to quantify semantics and
information in NT. NLP techniques are increasingly being investigated in broader
literature for processing and understanding this data. Applications are rapidly multi-
plying in the past 5 years, facilitated by combined efforts and new hardware. These
now robust methodologies are ready to be investigated and applied in numerous
fields, such as EM condition monitoring (CM). In combination with traditional
numerical causality analysis, graphs depicting common patterns and decision trees
can be composed [2]. Case studies are of paramount importance to not only aid in the
optimization of concurrent techniques by means of additional input, but also draw
attention and confirm results.

Specifically concerning EM CM, such an attempt has not been extensively
researched in literature, to the best of the author's knowledge. Conceptually, this
discipline provides two important facilitations: extensive expert knowledge and
established procedures. This chapter aims to further the establishment of an innova-
tive concept for NLP in the environment of industrial EM CM. A vision of this work is
synergy between experts and machinery, in the form of understanding the context of
observations, asking for further information, and then providing a verdict, which is
the typical procedure undertaken in the industry with the limitations explained above.
AI can automate report cognition and event causality graph production. The authors
consider that this endeavor will aid the acceleration of PM in the new industrial
paradigm by enabling access to a previously inaccessible vault of information. An
overview of similar endeavors in a broader context can be found in [3].
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2. Standard diagnostic procedure

EMs are the primary mobilization force of industry and electricity generation
especially. Figure 1 presents global electricity production [5]. Apart from solar and
other renewables, the rest of the sources are utilized as kinetic sources for turning the
rotor of a synchronous generator (SG), or an induction machine (IM) in the case of
newer wind turbines. Therefore, 95% of global energy includes SGs in its production
chain.

Hence, proper operation with minimal losses and downtime is of paramount
importance. Even operation under sub-optimal power factor -increased losses- should
be avoided, as a considerable amount of energy is wasted. EMs consist of a multitude
of electromechanical parts which can be ailed by various faults, with their severity
ranging from minimal (power factor reduction) to catastrophic (destructive failure).
CM tackles the possibility of these faults by their statistical order of appearance.
Figure 2 depicts fault distributions in EMs [6]. Insulation faults represent the highest
share in large industrial SGs and therefore attract research focus, followed by the
bearings. Rotor faults present a universal, constant appearance. The cited research
agrees with similar surveys done by EPRI and IEEE [7].

Therefore, the EM insulation system and especially that of the stator must face and
withstand various faults while remaining reliable for the EM to stay healthy and
optimal in its operation. The typical EM stator is similar in both SGs and IMs and
consists of [8]:

• the copper conductors, which must have a large enough cross-section in order to
carry the required current without overheating;

Figure 1.
Global electricity production by source. Based on the primary source, 95% of global production utilizes mostly
synchronous generators [4].
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• the stator core, which consists of thin sheets of magnetic steel and prevents the
flowing current in adjacent conductive material;

• the electrical insulation, which is passive but necessary for the EMs and consists of:

• Sub conductor insulation;

• Turn/strands insulation;

• Ground wall (main) insulation.

Constant or transient stresses can affect the insulation deterioration of an EM.
These stresses are thermal, electrical, mechanical, and ambient, commonly known as
TEAM stresses.

Thermal stress [9] is determined by the losses within the conductors and plays the
most significant role in the degradation of the insulation system. The operating tem-
perature of the windings, which is a result of I2R, eddy current, load losses, and
heating due to core losses, is the primary source of thermal stress. Increased temper-
atures lead to more frequent chemical reactions and insulation lifetime is described by
using the Arrhenius law:

L ¼ AeB=T (1)

where L is lifetime, T is the absolute temperature, A is the frequency of molecular
encounter and B ¼ �E=R, where E is the activation energy, which is constant for a given
reaction and R is the universal gas constant. Thermal stress results in high-
temperature differentials, overload, and hot spots.

Figure 2.
Fault distribution in IMs according to their operating voltage level. As the voltage level increases, insulation faults
become more prominent. The same holds for SGs.

20

New Trends in Electric Machines - Technology and Applications



Electrical stress [10] is related to the thickness of the electrical insulation of EMs..
It can lead to partial discharges (PD), which are small electric sparks that occur within
air pockets of the insulation or on the surface of coils. In this case, the lifetime of the
insulation is described by:

L ¼ cE�n (2)

where L is lifetime, c is a constant, E is the stress level (kV/mm) and n is the power
law constant. Surges, overvoltages, and partial discharges are indicative consequences
of electrical stress.

Ambient stress [8] is caused by miscellaneous factors that can lead to stress and
typically amplify main stress categories via their mechanisms. Ambient stress
sources include moisture on the windings, presence of oil or dust, high humidity,
broken particles within the EMs, and aggressive chemicals. The results can be
aggressive and reactive chemical reactions degrading the machine parts, as well as
contamination.

Mechanical stress [9] is caused by force acting on the parts, stemming from
mechanical vibrations or electromagnetic forces, such as end-winding vibrations. The
lifetime of the insulation is described using:

L ¼ Dσ�m (3)

where L is the lifetime, D, m are constants related to the insulation material and σ
is the applied stress in N=mm2. There is vibration and oscillation in slot sections and in
end winding.

Deterioration of the insulation system is typically caused by two or more stress
factors that are responsible for that specific result. Multiple stresses both accelerate
and evolve the failure, leading to more significant problems.

Various diagnostic tests can be used for the evaluation of the condition of an EM.
These tests are undertaken after the EM has been manufactured, installed on-site,
during periodic maintenance checks, or when fault indications occur. Standard offline
diagnostics follow a common sequence, which utilizes the following categories of
experiments.

2.1 Visual inspection (VI)

VI is the standard and usually the first offline diagnostic procedure, because it
gives information for most possible faults both on the stator and rotor, indicating the
necessity of further testing. VI utilizes a borescope, which is an optical device
consisting of a rigid or flexible tube with an eyepiece or display on one end and an
objective camera on the other, linked together by an optical or electrical system in
between. A typical borescope is shown in Figure 3 [11]:

• A flexible or a rigid tube

• An eyepiece

• A light source

• Optical lenses
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Figure 3.
Commercial typical Borescope [11].

Figure 4.
Mechanical erosion.

Figure 5.
Electrical erosion.
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Common goals are the detection of partial discharge spread on bars and resulting
mechanical erosion. It is performed through core ventilation channels from inside the
cooler channels. VI is also suitable for detecting humidity, thermal and mechanical dete-
rioration, cracks, groundwall insulation, insulation degradation, and turn-to-turn failures.

The following figures show several problems detected by using a borescope inside
the stator of a real SG. Specifically, Figure 4 shows significant mechanical erosion at
the top bar of the SG, Figure 5 shows the effects of electrical stresses, Figure 6 shows
electrical erosion at the bar due to PDs, and Figure 7 shows cracks at the bar of the SG.
These images may suggest following electrical testing.

2.2 Insulation resistance (IR) and polarization index (PI) test (Std. IEEE 43: 2013)

Indicative quantities are depicted as the IR value denoted by the time of calculation
(in minutes) after the application of a voltage source on the ends of the insulation

Figure 6.
PD effects.

Figure 7.
Broken Bar.
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component. Typical values include R1 = 100 Ω for most AC windings built after 1970
and R1 = 5 for most EMs with random-wound stator coils and form-wound coils rated
below 1 kV and DC armatures [9, 12].

PI tests follow the same standard with IR. Minimum PI = 1.5 for thermal class A
(105) and minimum PI = 2 for class B (130) and above.

The two previous tests are always performed together -due to their dependence,
explained below- in what is called the IR/PI test, which is suitable for checking
machine windings for insulation deterioration. These tests are the most common for
detecting potential problems in windings caused by contamination and pollution.
Moreover, humidity, moisture, and cracks can be detected with these tests. PI can also
determine if there is thermal deterioration.

The IR/PI test is done right at the machine terminals, one phase at a time, with
cables and transformers disconnected. A high-voltage DC supply and a sensitive
ammeter are required. The IR test measures the resistance of the electrical insulation
between the copper conductor and the core of the stator or rotor. The PI is defined as
the ratio between the IR measured after the voltage has been applied for 10 minutes
and IR measured after 1 minute. Both IR and PI values decrease as an EM operates over
the years because of the inevitably higher pollution penetration into the EM’s windings.
This means that IR is both initially reduced as time progresses and is also less resilient
to the constant thermal stress applied by the current. IR is based on Ohm’s law:

R ¼ V
I

(4)

where V is the applied voltage and I is the sum of capacitive current, conduction
current, leakage surface current, and absorption current. Lower IR is an indication
that a problem exists within the insulation system since resistance has been lowered
by contaminants or defects.

PI is a variation of the IR test. PI is the ratio of the IR measured after the voltage
has been applied for 10 minutes (R10) to the IR measured after just 1 minute (R1):

PI ¼ R10

R1
(5)

2.3 Measurement of power factor (PF) and dissipation factor (DF) (Std. IEEE
286: 2000)

According to the aforementioned standard and common knowledge, PF can be
between 0 and 1. The same goes for DF, according to IEC 60034–27.3. Dissipation and
power factors provide an indication of the dielectric losses within an insulation sys-
tem. These measurements are conducted to identify if there are variations in C, DF,
and PF over time, which indicate partial discharges or insulation degradation.

The DF is measured with a balanced bridge-type instrument, where a resistive-
capacitive network is varied to give the same voltage and phase angle (tan delta) as
measured across the stator winding. The DF is calculated from the R and C elements in
the bridge that give the null voltage. This test is used for detecting humidity, moisture,
PD, dielectric losses, and insulation degradation [13] (Figure 8).

The PF is measured by accurately measuring the Voltage applied between the
copper and the core of a winding and detecting the resulting current. Also, it is
necessary to measure the power of the winding with a wattmeter. So, the PF is:
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PF ¼ W
VI

(6)

Comparing the two methods, the PF test is less accurate but less expensive as there
is no need for a bridge-type instrument. The measurement of the DF can give infor-
mation about PD activity, and contamination, while PF cannot. The DF can be
converted to PF using:

PF ¼ DF

1þDF2� �0:5 (7)

The measurements of PF can be used for detecting possible problems and faults,
such as humidity, moisture, overheating, dielectric losses, and insulation degradation.
A wattmeter is used in order to measure the power to the winding and a voltmeter for
measuring the applied voltage between the copper and the core of the winding and
detecting the current.

2.4 Impedance test (Std. IEEE 112: 2004)

Humidity, moisture, thermal and mechanical deterioration, insulation degrada-
tion, and turn-to-turn failures are the faults, which can be detected by the measure-
ments of the impedance. An AC source is used and different values of current are used
in order to investigate the corresponding voltage values. Then, the impedance is
calculated by using Ohm’s law [14]:

Z ¼ ΔV
I

(8)

Figure 9 shows the results of an Impedance Test on a real Syncronous Generator.
The four different lines are explained above the diagram. SR1 indicates the impedance
of slip ring 1, while SR2 indicates the impedance of slip ring 2.

Figure 8.
PF/DF measurement scheme.
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2.5 Recurrent surge oscilloscope test (RSO) (Std. IEEE 56: 2016)

A low-voltage and high-frequency surge wave is injected at each slip ring. The test
is based on an oscillograph inspection of the voltage traveling wave between the slip
rings along the symmetrically constructed winding field rotor. A low voltage high
frequency surge wave is injected at each one of the slip rings. The two signals are then
compared to determine if the same waveform is observed at each slip ring. If the
waves are identical then no short circuits are present. Variations in the pattern of the
two waveforms would indicate shorts to be present. If the two signals have differ-
ences, interturn, ground, and turn-to-turn faults as well as insulation degradation
are the possible faults. A power source, a reflectometer, or/and oscilloscope are
appropriate for this test [15, 16].

A typical RSO diagram is shown in Figure 10. The two waveforms are identical and
this means that the rotor is free of the aforementioned possible faults. It must be noted
that SR1/OS indicates the voltage of slip ring 1 and SR2/IS indicates the voltage of slip
ring 2.

2.6 Structure of a report

Every industrial EM has to be checked periodically by specialized technicians.
After that, technical reports, which contain useful information and data for the
inspection as well as the history of the inspected EM, are created and given to the
industry in order to be informed about the condition of its EM and decide what
actions must be taken. Moreover, reports like that can be used and analyzed by
researchers in order to create prediction models for the condition of EMs. Specialized
experience and real data from measurements on real EMs are elements that are

Figure 9.
Impedance test results.
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missing and they are very useful for creating prediction models with direct connection
with the real situations of an industrial EM. Therefore, such reports are very signifi-
cant for both industrial and research issues.

A typical structure of the reports used for the training of the proposed model of
this manuscript is:

• Introduction - EM’s Historical Issues - Milestones: The purposes of the Diagnostic
Tests as well as information about the EM and significant dates are presented;

• Operation and Technical Data of the EM: rated power, voltage, current,
frequency, power factor, dimensions, cooling type, number of poles, and other
pertinent measurements;

• Selected Tests and Inspections: Different diagnostic methods are chosen each
time according to the condition of the inspected EM, general considerations
employed in selection;

• Results of the aforementioned tests and inspection: detailed information, data,
diagrams, and pictures about the results of each diagnostic method as well as
comparison with the previous years’ diagnostics;

• Proposed maintenance actions according to the results of the measurements and
information about the next date for diagnosis according to the results of the
measurements.

Figures 11 and 12 highlight the different parts of a commonly found industrial SG
report, created as a general template for the MRs studied during this research. The
reports are considered as semi-structured, a term used in NLP to describe documents
with structured information (tables, figures, lists etc.) interlaced with natural text.
The structure within the report can be used to guide the AI processing it. For example,
we know that the technical data table lists any number of parameters in any order,

Figure 10.
RSO test results.
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therefore, the AI should expect a variable name partnered with a value. Furthermore,
report language terminology is “specialized,” meaning the total vocabulary is limited
and populated with sector-specific terminology, further assisting by limiting the range
of the employed interpretation.

As depicted in the pertinent figures, general information and considerations are
commonly stored in just NT. The test section employs the most intuitive form of
storage, such as imagery for VI. Actions and results are localized, meaning they are
divided in different subsections for each component i.e., stator, rotor, and outside the
frame. Actions are almost always depicted in lists (intuitively), while results follow
the tests’ paradigm of logical choice of medium. This localization can be employed in
problem formulation to facilitate a correlation between cause and effect, while the list
can provide the order of operations if logged properly.

3. Data mining reports using natural language processing

Processing information with logical processors or computer algorithms requires
that its data is in numerical form. Furthermore, this form should also be in the
appropriate context and facilitate necessary mathematical transformations. While this
procedure is intuitive for numerical data such as measurements due to their

Figure 11.
First, more generic part of a typical SG maintenance report, just after the introduction.

28

New Trends in Electric Machines - Technology and Applications



underlying physical meaning and explored mechanisms, text processing requires a
sophisticated approach.

The scientific field of NLP concerns itself with constantly improving existent and
exploring new ways of information extraction from natural text. In the context of EM
CM, it is important to understand the ways state-of-the-art procedures interpret text
bodies, as the interpretation is closely tied to fault causality and can improve not only
correlation understanding between different faults -since faults always are cascading-
but also aid training of Industry 4.0’s prodigal child, AI pattern recognition. This
chapter introduces general principles of NLP state-of-the-art to aid the investigation
of this promising avenue by discussing them in the context of EM CM. The successful
application will enable tapping into a previously underutilized information source
while paving the way for further storage, necessary under new industrial paradigms.

3.1 General principles

Language interpretation by machines is being explored for several decades, with
the most successful principle rising to be word embedding. Understanding the
embedding requires learning some preliminary machine learning (ML) concepts. The
analysis presented hereafter includes CM examples.

Figure 12.
Second, more specific part of a typical SG maintenance report.
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Features are the input variables, here being sentences or words from the text body.
Labels are the things to predict. For example, the sentence “the machine was found to
have an increased PI value” could have the label “thermal degradation”. A straight-
forward structure is having the words as features. Each selection as an input to the
interpreter (could be a sentence or several, or a single word) is referred to as an
Example. Examples can be labeled or unlabeled. It is important to understand that, as
of now, all examples present in any report corpus are unlabeled. ML algorithms
require labeled sentences to be trained. Therefore, an important issue to be solved is
the production of labeled examples.

The training result, that is the prediction of a label given the features, is called the
model. The model consists of the structure and weights of the classifier. A model can
solve either a classification or a regression problem. Regression is continuous value
prediction, while classification refers to discrete predictions. The most straightfor-
ward way to structure a fault prediction model would apparently be classification,
such as the example provided above. However, regressive models could also prove to
be useful and should always be considered.

An important metric in evaluating a training result -the weights and bias of the
model- is Loss. Loss is a number indicating how bad the prediction of a single example
performed. A perfect model would have zero loss, increasing with each failed predic-
tion, and how far from the correct answer it is. Minimization of loss is therefore the
function that the training is based upon and should be carefully formulated.

Low loss is not a complete indication that our model performed adequately. A
model could have low loss but perform poorly when introduced with new unseen
examples. This concept is described as overfitting, which is when our model has a
poor generalization capability. Overfitting occurs when the model is more complex
than necessary, proven time and time again and manifested in Ockham’s razor. But
how can we create a model from scratch based on a text corpus and provide it with
unseen data for validation? The answer is separating the dataset into the training,
validation, and test subsets. Proper separation is of paramount importance to the
training, with existing ML paradigms found in the literature. Training on the same
dataset, however, still exhausts and overfits the model. It generally is a great idea to
keep refreshing the dataset with new reports while continually adjusting the
established model.

As previously discussed, in order to enable the model to multiply features with
their weights, said features should be numerical values. This process is called Feature
Engineering and is a critical step in ML. In the case of text, the most straightforward
way to map words is the so-called One-Hot Encoding. This encoding utilizes a vector
of dimensionality equal to the vocabulary (total number of different words), where
each word corresponds to a specific dimension of the vector, in which place its value is
1, with the rest being 0. Dimensionality can be reduced by aggregating infrequent
words into an out-of-vocabulary (OOV) group. While one-hot encoding is the basic
understanding example of word encoding, advanced techniques are preferred.

Now on to the gist of NLP. The next step up from proper encoding comes in the
form of an Embedding. Shortly, an embedding is a vector in low-dimensional space
coded such that the feature it represents is nearby similar ones. Take for example the
words “king” and “queen.” These words should be relatively close in the embedding
space since they refer to a similar quality. Furthermore, an intuitive embedding would
also support a mathematical operation, for example, “+”, so that the calculation would
be: “king” – “male” + “female” = “queen”. A possible problem with utilizing the one-
hot encoding in this example is that the dimensionality of a sentence would be
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arbitrarily large and sentence vectors would be very sparse; a lot of zeroes with very
few ones in between. Therefore, proper embeddings are required. Thankfully, NLP
research has provided tools for the task.

3.2 BERT: An interesting approach

Concerned with EM CM and NT information extraction specifically, a logical
approach would be to use developed and established tools to achieve our goal, rather
than making one from scratch. The choice of tools is largely based on their perfor-
mance in established standards and engineering intuition -whether it suits the perti-
nent problem-. To that end, Bidirectional Encoder Representations from Transformers
(BERT) are the tool of choice to investigate possible correlations in our task [17].

NLP state-of-the-art employs pre-trained language models. That is, these models
employ a trained embedding model, with additional semantic ML analysis, quickly
defined in the previous subchapter. It is important to remember that with ML tasks,
time efficiency is of paramount importance. Due to the complexity and nuance of text
mining, model training requires immense hardware capability and a time sink. Thus,
pre-trained models have been extensively researched to be employed in final tasks.

Two general separations occur in possible applications: level and approach. The
two levels are sentence and token levels. Sentence level includes the entirety of two or
more sentences as input and attempts to predict their relationship with a holistic
analysis. Token-level tasks provide a more precise output at the word level and are
suited for question answering and named entity recognition. CM tasks are approached
as sentence-level; we attempt to predict faults via sentence relationships.

The approach could be either feature-based or fine-tuning. A feature-based
approach would be largely dependent on the task at hand; additional model architec-
ture is designed specifically for the problem. Fine-tuning is a novel technique that
utilizes the pre-training and keeps the same architecture with parameter training on
the task at hand. Both approaches would be suited to CM and are up for debate. BERT
utilizes fine-tuning.

One novelty provided by the BERT approach is its bi-directional representation.
Previous state-of-the-art models would approach a sentence unidirectionally or at best
aggregate the left-to-right and right-to-left representations. Consider the human
interpretation of a sentence; we both speak and process information serially, or left-
to-right but intuitively also consider the entirety of the sentence both in formulation
and processing. Therefore, a bidirectional representation would theoretically paint a
more complete image.

One more parameter to consider is whether the training is done supervised or
unsupervised. BERT employs an unsupervised training approach due to the nature of
semantics extraction from NT, that is to infer new possible correlations from the
information contained within rather than the already established knowledge, which
would render the research point moot. Pre-training approach also enables transfer
learning, which transfers knowledge from larger datasets and/or supervised tasks. The
natural language contains base semantics that apply to multiple different problems in
different iterations. Consider the following example: a learned differentiation between
“positive” or “negative” would also apply contextually to “healthy” or “faulty”. This
knowledge is contained within a broader dataset and can be fine-tuned on the task at
hand.

As a tool, BERT focuses on the fine-tuning approach, making it essentially plug-
and-play for our operation. Architecture appears to fit the CM context, while its
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performance based on important metrics is state-of-the-art. Therefore, it is promising
for an initial attempt.

3.3 A deeper dive

Transformer [18] utilization presents a unified architecture across different tasks;
both at the pre-training and fine-tuning steps, as well as the capability to be employed
on multiple input forms such as images and video, allowing for a possible expansion of
MR information extraction apart from its text corpus. The architecture allows for
training on unlabeled data, which is paramount for the task at hand. While super-
vised, labeled fine-tuning is required and results in significantly improved perfor-
mance, processing the entirety of the report corpus would prove immensely difficult.
Deep consideration of experts is necessary for this endeavor in labeling examples to
initialize training; processing unlabeled data is equally important in time efficiency.

The relationship between two sentences is not directly captured by language
modeling, which is where the second stage of our training comes in, further realized at
the task level by the fine-tuning mechanism. BERT’s attention basis additionally
allows for correlation between distant sentences, helping the endeavor. However, this
transformer-based architecture may not be easily able to represent the entirety of the
CM problem and purpose; while additional recurrent neural network (RNN) with
long-short term memory (LSTM) neurons -extensively used in NLP- reduces typical
BERT performance, additions may be required to fully encase the problem and have to
be researched. Initial case studies with only BERT are being performed, pending
judgment by experts. Overall, the underlying novel mechanism’s benefits over older
approaches can be summarized as:

• Faster and less complex representation;

• More interpretable models;

• Diversity in tasks;

• Behavior related to semantic and syntactic structure of sentences;

• Application to audio, video, and images.

3.3.1 Tokenization

Another interesting BERT component is the employed WordPiece embedding [19].
Due to its namesake, this embedding utilizes a limited vocabulary of sub-word units,
further reducing dimensionality i.e., aggregating different forms of the same word.
This procedure naturally handles the processing of rare words and is especially useful
in semi-structured language corpora, such as our specialized engineering language.

The embedding includes a balance between character and word delimiters,
enabling handling of newly seen (OOV) words with a completely data-driven
approach and guaranteeing the generation of a deterministic segmentation for any
possible sequence of characters. Additionally, an included length-normalization pro-
cedure and coverage penalty encourages complete coverage of source sentences in
output. This essentially infinite vocabulary allows for open-ended optimization.
However, this approach does not allow for observation of training errors with the
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built-in fitness function and requires a task-specific procedure to evaluate reward.
Therefore, the proper definition of this function is important.

3.4 General approach

Having selected the tools at our disposal, briefly presented above, NLP research
paired with ML paradigms and put in the context of the specific problem produces a
general algorithm for this endeavor. However, before delving further in the discus-
sion, a couple of disclaimers should be made. Firstly, the above tools have been
evaluated and show promise, but researchers should remember that no approach is
perfect. Interested parties are encouraged to test a diverse selection of NLP procedures
in tackling the problem. Secondly, while generalized approaches do not provide spe-
cific solutions, the purpose of this chapter is the introduction of the proposed idea.
Furthermore, the problem is open-ended and needs further elaboration in breaking
down its complexity while setting standards. Thus, the proposed general representa-
tion is deemed appropriate. Finally, the explanation of BERT is kept simple in this
chapter. Interested readers may refer to the open-source code and cited work for an
in-depth, complete analysis. Figure 13 presents an overview.

Figure 13.
General iterative process of machine learning problem establishment.
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3.4.1 Discussion

While the proper selection of AI network architecture and hyperparameters is an
important and difficult task on its own, the real challenge in this endeavor is struc-
turing the problem. Were it only raw text processing, one would only look to
combining NLP paradigms with EM CM expertise to formulate feature selection,
perform labeling and optimize the procedure. However, one grand challenge in this
endeavor is the robust processing of the reports due to their specific-but-varying
structure, which is a double-edged sword; on one hand, this structure can be
employed to better infer correlations and aid the interpreter with limitations; on the
other hand, it should carefully be considered since the improper setting of the
problem structure renders NLP impossible.

ML consensus agrees on an iterative approach. At first, a human manageable
corpus is to be selected and denoised. After being deemed proper and balanced in its
representation, the problem is set up with feature selection, labeling, and architecture
choice, followed by optimization. When results are satisfying and intuitive, outside
expertise should assess and offer an outside perspective; then, the process is expanded
with new data, a classic procedure in ML tasks.

A human overview is the key to this research. In translation tasks, it has been
reported to improve performance by up to 60% (according to pertinent test scores)
[19]. It is important to understand that a complete AI CM is far off; this research aims
to provide a tool for engineers to automatically and efficiently extract information
from untapped datasets. EM MRs represent the intuitive knowledge of experts, which
it attempts to quantify.

3.4.2 Dataset standards and default parameters

Finally, two initial steps in ML approaches are reaching milestones pertinent to
dataset size, and finding initial parameters. This paragraph attempts to provide a few
important values.

• BERT Model: largest allowed by hardware and time constraints;

• Mini-batch size: 16–48;

• Epochs: 2–3;

• Learning Rate: 2e-5 to 5e-5

• Sentences: >4.5 M;

• Vocabulary: 8-40 K;

• Optimizer: default ADAM [20].

Due to being open-source, there are numerous guidelines and examples of
BERT applications. The above values have proven sufficient in the considered
EM CM context via testing with real MRs, and should serve as a good starting point.
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4. Conclusion

Data-driven approaches are substantially beneficial for new industrial and research
paradigms such as Industry 4.0 and the emergence of Big Data. New methodologies,
such as the Digital Twin [21], can greatly benefit from a large and structured database,
especially in the context of EM CM, since faults are deeply correlated and their
mechanisms are still partially obscured. This work presents a novel approach for
structured data extraction from an untapped source of information, namely the
knowledge stored in EM MRs in the form of NT. NLP is increasingly gaining traction
due to the aforementioned circumstances and has not yet been employed in this field,
to the best of the author’s knowledge. We surmise that a breakthrough in this
endeavor can greatly benefit the industry and attempt to initialize it with research in
this department. This chapter serves as the overview of this attempt, providing
extended knowledge acquired during related research.
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Analysis of the Effects Produced 
by Pure Sine and Modified Sine 
Inverters in an Induction Motor
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Abstract

Most of the industrial applications are supported by complex machinery, which 
in turn are supported by electrical motors to perform specific tasks in multiple 
processes. Certainly, induction motors are the most widely used electrical machines 
in a majority of industrial machineries; in this sense, their operating condition 
plays an important role to ensure the machinery availability and to avoid unwanted 
stoppages. On the other hand, several sources may lead to producing faults in induc-
tion motors, but most of the common faults are produced by electrical or mechani-
cal stresses, where the mechanical stresses are usually produced by unbalances or 
misalignments and the electrical stresses are generated by fluctuations or variations 
in the power supply. Thereby, when the induction motors are fed through inverters 
due to renewable energy, their operation may present slight variations since the sine 
wave has no perfect generation. In this regard, this work presents an analysis of the 
effects produced by pure sine and modified sine inverters in an induction motor. 
Such analysis consists of studying the characteristic patterns, reflected as percentage 
variations in some metrics, such as ranges, rms values, and harmonic distortion, that 
induction motors produce over vibration signals, electrical signals (stator current and 
fed voltages), and rotating speed.

Keywords: condition monitoring, induction motors, inverters

1. Introduction

Nowadays, induction motors are, and will remain in the future, the most impor-
tant and frequently used electromechanical machines at industry facilities, but they 
are also of high interest in academic studies [1]. These machines are very important 
and are used because of their overall benefits, such as low cost, relatively easy manu-
facturing, robustness in performance, reliability, wide range of power capacities, and 
easy maintenance [2]. These motors represent around 80% of the used equipment 
and around 60% of the total energy consumption in the industry [3, 4]. Normally, 
electric motors are used with other elements such as mechanical couplings, drivers, 
and power sources to properly operate and to provide motion in the process [5]. 
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The typical applications can be observed as domestic like in drills, pumps, blowers, 
vacuums, etc. or as industrial like in conveyors, machine tools, elevators, etc., which 
is the industrial application that is of main interest in this work [6]. However, the 
industrial environments are frequently changing and involve hard conditions related 
to electrical, mechanical, and thermal situations, among others, that directly or indi-
rectly induce stresses to the induction motor [7]. These stresses cause malfunctioning, 
faults, or wear in many mechanical parts of the motor such as bearings, shafts, rotor 
bars, as well as in the electrical parts like in the stator and rotor windings [8]. The 
final consequences of these problems are observed as process downtimes during 
the motor operation and economic losses, which could be avoided through a correct 
monitoring and diagnosing process [9]. Thus, the importance of analyzing induction 
motors and their peripheral elements is justified because of their importance in the 
industry and domestic applications.

Regarding the importance of the induction motor, many works have been pro-
posed with the purpose to develop methodologies capable of performing the monitor-
ing and diagnosis of this industrial machine. For example, the work developed in [10] 
presents a methodology based on the motor current normalized residual harmonic 
analysis (MCNRHA) for diagnosing the rotor faults of broken bars and inter-turn 
short circuits in the stator windings. The residual harmonics are measured by means 
of the linear fast Fourier transform spectrum (LFFTS) of the healthy motor cur-
rent signal and the faulty condition. In another example, the research presented in 
[11] calculates a fault intensity index in induction motors for the inter-turn short 
circuit fault of the stator winding. For this purpose, the raw current signal in the 
time domain obtained from the motor is processed through the discrete wavelet 
transform (DWT), and by using the detailed coefficients, the statistical parameter of 
the maximum norm is computed under several load conditions and fault severities. A 
common approach for detecting faults in the induction motor is based on the motor 
current signature analysis (MCSA); for instance, the work described in [12] presents 
an approach for detecting the misalignment fault. But that work uses the load torque 
signature analysis (LTSA) for studying a mechanism that transmits power between 
the motor and the loads by using different types of couplings. The obtained results 
show that these techniques perform according to the particular coupling defined. 
An interesting methodology for diagnosing the half-broken rotor bar (BRB) fault in 
an induction motor drive is developed in [13]. In that work, the motor was running 
under different operation conditions using a variable frequency drive (VFD), and 
the square of the current signal is analyzed because it generates more fault frequency 
components. To perform the diagnosis, the multiple signal classification (MUSIC) 
is implemented in an algorithm that can generate a pseudo-spectrum of the cur-
rent signal. On one hand, the investigation developed by [14] presents an algorithm 
based on the Kalman filter (KF) for the stator inter-turn fault detection of induction 
motors. Thus, the KF is applied to extract the motor current signatures and motor 
voltage signatures; these signatures are later used for determining statistical fault 
indexes based on the standard deviation. A particular characteristic of the algorithm 
is that the effect of harmonic pollution is also analyzed, demonstrating to be effec-
tive in such conditions. As an alternative to the classical signal-based approaches 
such as voltages and currents, some other sensor signals have been considered for the 
monitoring and analysis of induction motors. For example, thermal image processing 
has been proposed, such as in [15], where three-phase induction motors are analyzed 
for fault detection. In this case, the thermal images are converted into a new color 
model for identification known as hue saturation and value (HSV), and then, five 
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image segmentation methods are applied for obtaining the hue region: Sobel, Prewitt, 
Roberts, Canny, and Otsu. Next, different statistical parameters are obtained from 
the image matrices segmented for detecting three fault conditions under different 
load conditions: outer race bearing fault, inner race bearing fault, and ball bearing 
defects. On the other hand, the sound, acoustic, and vibration signals have also been 
addressed for analyzing induction motors and detecting faults. The case of acoustic 
signals is handled in [8], where the shortened method of multi-expanded frequency 
selection was developed together with the K-nearest neighbor (KNN) classifier. 
Meanwhile, the sound and vibration signals are adopted in the work reported in [16], 
by implementing the complete ensemble empirical mode decomposition (CEEMD) 
that divides the analyzed signals into intrinsic mode functions. Posteriorly, the 
frequency of the marginal Gabor representation is computed with the purpose of 
obtaining the spectral content in the frequency domain. The method was validated 
for two broken rotor bars. In summary, the several works discussed demonstrate that 
several methodologies through classical techniques have been reported, but not all 
the potential problems associated with induction motors have been addressed. For 
instance, many of the fault diagnostics are focused on the main elements of the motor, 
but other peripheral elements are not completely analyzed yet, such as those related 
to renewable energy systems.

In relation to renewable energy systems used for feeding through inverters and 
motor drives, some works have addressed this topic. An example of the renewable 
energy systems used for feeding induction motors is described in [17]. In such work, 
a system that supplies power energy through photovoltaic panels instead of a bank 
of batteries is presented. The proposed system integrates solar panels, a push-pull 
converter, and a pump (induction motor). The objective was to design a system by 
using the evaluation of the energy-processing cycles allowing optimizing a sensor-
less induction motor drive. In another case, a similar application was handled in the 
research reported by [18] that developed a simplified system for water pumping by 
using an induction motor and photovoltaic panels. This system considered two stages, 
the first being the extraction of the maximum power from the solar panel through 
the control of the duty ratio in a DC-DC boost converter using the maximum power 
point tracking (MPPT) technique. In the second stage, a source inverter operates the 
pump based on a scalar-controlled voltage way. However, the system was tested under 
different load conditions in a laboratory-controlled environment. On one hand, some 
works have focused on the motor feeding through the power inverter such as in [19]. 
That work has explored the topology of a power inverter type Z-source series for feed-
ing an induction motor by using photovoltaic panels, considering that the inverter 
has a single-stage conversion with buck-boost capability. Additionally, from this 
study, it was concluded that the system has benefits such as current and harmonics 
reduction compared with a simple boost control scheme. In the same line, other works 
like the research presented by [20] developed a fuzzy logic controller for improving 
the speed response, reducing harmonic content, and enhancing the overall system 
performance of a multi-level power inverter used for feeding an induction motor. 
The proposed system integrates a photovoltaic panel, a boost converter, a multi-level 
inverter, a classical proportional-integral (PI) controller, and a three-phase induction 
machine; however, the performance of the approach is verified through simulations 
in MATLAB and Simulink. Finally, in [21], a power system based on auxiliary pho-
tovoltaic panels for electric vehicle applications is presented. The system novelty is a 
foldable scissor mechanism enabling the power system portability. Like the previous 
works, the validation of the system was carried out utilizing simulation experiments. 



New Trends in Electric Machines - Technology and Applications

42

As observed from the previously discussed works, the effects of applying systems 
for supplying induction motors through devices based on renewable energy such as 
solar photovoltaic imply the use of power inverters. The effects of these inverters have 
been addressed from the system improvement viewpoint, considering, for example, 
hardware topologies. However, the effects of the power inverters considering the 
type of source output have not been completely analyzed yet and represent an area of 
opportunity.

In this chapter, the effects caused by the power inverters integrated in a renewable 
energy generation system, in islanding mode, over induction motors are analyzed. 
The analyzed system considers the connection of photovoltaic panels to two types of 
power inverters that are interchanged between the experimental tests. The connected 
inverter will supply an induction machine and a bank of batteries for power storing. 
Some physical magnitudes that consider electrical signals (current and voltage), 
vibration signals, and the motor speed will be acquired through a data acquisi-
tion system (DAS), for the behavior analysis. The power inverters considered are 
categorized into two main types: modified sine wave and pure sine wave. The main 
differences between the two devices are the internal hardware structures and topolo-
gies to generate the sine wave that will be used for supplying the motor. Additionally, 
the analysis of the inverters’ effects will be done under different load conditions. 
Therefore, some metrics such as ranges, rms values, and harmonic distortion, 
obtained from the measured signals, will be presented and discussed, demonstrat-
ing the differences when the two types of power inverters feed the induction motor. 
Finally, the experimental results demonstrate how the motor operation varies 
depending on the type of power inverter by presenting noticeable variations in the 
percentage of the metrics when modified sine wave is used instead of pure sine wave.

2. Theoretical background

Next, the theoretical background of the power electronics used by solar photovol-
taic generation systems (SPVGS), and even by some wind power generation systems 
(WPGS), will be addressed. The addressed theory focus particularly on the technolo-
gies that take the produced alternating current energy and convert it into direct 
current energy, better known as power inverters.

2.1 Power inverter

Nowadays, among all the types of renewable energy generation systems, solar PV 
technologies are the most frequently used for power generation because of the merits 
of the solar energy source, like its abundance (it is found practically in any place 
around the globe), less maintenance, no rotating or mechanical parts, low operational 
costs, and being pollution free. Thus, due to all these advantages, the SPVGS have 
more research and technological developments for all their integrated parts. In this 
sense, in the renewable energy generation systems, mainly in the SPVGS, it is very 
common to use power electronic components for providing an adequate energy 
output, for instance, through the power inverter. Essentially, the generation systems 
of renewable energy (GSRE) produce the output, in many cases, as direct current 
(DC) electricity, such as in the case of solar photovoltaic (SPV) systems. Additionally, 
this energy produced by the GSRE can be also stored in battery banks in the DC form 
due to several considerations, such as excess power generation, backup power, and 
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limitations of the generation system. Such limitations in the energy generation pro-
cess assume that the stored energy can be provided to the final user through the bat-
tery banks, as a stable DC power source, when the GSRE is unable to generate power 
energy, like at night for the case of SPVGS or lack of wind for the case of WPGS. 
Later, this DC output needs to be converted into alternating current (AC), which is 
because the loads used in domestic and business applications normally require the 
signal source in this AC form [22]. Therefore, a power inverter is a device that takes 
the generated power in the form of DC from the GSRE, or takes the energy stored 
in the battery bank, and turns it into AC power to operate the final loads [23]. Thus, 
the power inverter is a key device that normally comes together with the photovoltaic 
panels strictly used for obtaining an AC source.

It must be mentioned that due to the tendency of reduction in the prices for solar 
PV systems, it has caused an increment in the research about power inverters address-
ing considerations such as efficiency, size, weight, reliability. Therefore, today, the 
power inverter research industry has grown significantly and has developed a wide 
variety of inverter topologies with the purpose to meet the requirements of power 
conditioning. For example, Ref. [24] has presented a general classification of the 
existing inverters considering aspects such as the number of processing stages, the 
type of isolation, the power rating, the output shape, the voltage gain, the type of grid 
interface, and the soft/hard switching. Many of these topologies consider the signal 
output in the form of a pure sine wave, or a modified sine wave, with the main differ-
ence in the final applications. The topologies that use pure sine wave signal output are 
mainly designed for on-grid connections, meaning that the produced energy from the 
GSRE needs a signal capable of being synchronized and integrated into the commer-
cial grid. In the other case, in many commercial, domestic, and a few cases of business 
applications where an off-grid connection will be used, better known as islanding 
appliances, a power inverter topology with modified sine wave signal output will be 
considered.

It is worth mentioning that although the power inverter is an important device, 
it can pollute the power signal, mainly affecting its quality by producing power 
disturbances (PD) such as spikes and harmonic content. This poor power quality 
(PQ ) affects the final equipment fed by the power energy from the inverter and 
is reflected as losses and delivered heat, causing malfunctioning and even damage 
[24]. Therefore, the effects and impacts of the power inverters are a topic of interest 
because they are not fully addressed yet for application where induction motors are 
fed through renewable energy systems.

3. Experimental setup

The experimental test bench used for the validation of this proposal consists of a 
photovoltaic system that is used as a renewable energy generation system; the pho-
tovoltaic system is connected in an isolated way, and it is used to provide the power 
supply to a single-phase induction motor (IM); the general wiring of the aforemen-
tioned photovoltaic system is represented in Figure 1. As noted, the renewable energy 
generation system is composed of three solar cells (model SL150TU-18P), producing 
an average peak power of around 150 W per cell; a solar charge controller (model 
NV12V010E) is also taken into account since it is responsible for regulating the 
state-of-charge of a set of batteries (three batteries with model CL-31 T-700). Thus, 
the set of batteries allows to store the energy produced by the photovoltaic system 
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(DC voltage), and then, the stored energy is converted into AC voltage by means of 
a DC-AC inverter. In this regard, it must be clarified that two different inverters are 
used for transforming the energy from DC to AC; one of the inverters is a 1500 W 
pure sine wave inverter (model RBP1500WRD by WZRELB), whereas the other one is 
a 1500 W modified sine wave inverter (INCO-1500 by TRUPER). The main technical 
characteristics of the two inverters are summarized in Table 1.

From Table 1, it is observed that both power inverters have similar characteristics; 
however, it is worth mentioning that the pure sine wave inverter is designed to limit 
the amount of harmonic components that can be found in the output signal. In this 
particular case, the THD value always remains under 5%, a situation that indicates 
that the resulting voltage signal is accomplished with international power quality 
standards. On the other hand, the modified sine wave inverter does not provide 
information regarding the THD. Nonetheless, this type of inverter is characterized by 
delivering a nearly squared signal; that is, the amount of harmonics is expected to be 
high. In fact, this last issue is one of the motivations for developing this study to find 
the repercussion of feeding an induction motor with a voltage signal that contains a 
high amount of harmonics and interharmonics.

Figure 1. 
General flowchart representing the wiring of the photovoltaic renewable energy generation system and the 
instrumentation to monitor several physical magnitudes.

Specification Pure sine wave inverter Modified sine wave inverter

Model RBP1500WRD INCO-1500

Manufacturer WZRELB TRUPER

Rated power 1500 W 1500 W

DC input voltage 10–15 V 10.5–15.5 V

AC output voltage 110 V 120 V

Frequency 60 Hz 60 Hz

Maximum efficiency 90% 85%

Total harmonic distortion 
(THD)

< 5% Not provided by manufacturer

Table 1. 
Technical characteristics for the DC-AC inverters used in the experimentation.



45

Analysis of the Effects Produced by Pure Sine and Modified Sine Inverters in an Induction Motor
DOI: http://dx.doi.org/10.5772/intechopen.108866

As stated, the use of these inverters is to analyze the effects that are produced over 
a 372 W single-phase IM (model 1RF20000DB004AB1 by SIEMENS) with two pairs 
of poles, efficiency around 62%, nominal rotating speed of 1755 RPM, and a nominal 
stator current consumption of 5.6 A (rms); the IM is used as the AC load connected to 
each one of the tested inverters.

Furthermore, for monitoring the operation of the IM, several sensors are installed 
to measure different physical magnitudes; therefore, a hall-effect current sensor 
(model SCT-013-030) is installed through the power supply lines to monitor the IM 
stator current consumption, and a transformer-based sensor (model ZMPT101B) 
is used to monitor the supply voltage; similarly, a triaxial accelerometer (model 
LIS3L02AS4) is installed over the IM case in the end-drive shaft in order to acquire 
the vibrations produced by the rotating movement, and an encoder is also installed in 
the IM shaft to measure the rotational speed. These sensors are installed and located 
as illustrated in Figure 1. The signals are acquired by means of two 12-bit 4-channel 
serial-output sampling analog-to-digital converters (ADS7841) that are mounted on 
a self-designed data acquisition system (DAS), which is based on a field program-
mable gate array (FPGA) technology. Thus, a sampling frequency of 6000 Hz is 
programmed in the proprietary DAS to acquire the stator current signal, the voltage 
signal, and the rotational speed, whereas the vibration signals are acquired with a 
sampling frequency of 3000 Hz. Accordingly, the aforementioned signals are con-
tinuously acquired during 30 seconds that comprise the start-up and the steady state 
of the IM, where the considered inverters are tested iteratively in order to perform 
several runs in the IM; all the acquired data are stored in a personal computer for 
posterior analysis.

4. Proposed methodology

The proposed methodology for analyzing the effects produced by pure sine and modi-
fied sine inverters in a single-phase IM consists of three main steps that are summarized in 
the flowchart of Figure 2 that consist of data acquisition, data processing, and analysis.

In the data acquisition stage, the stator current, voltage, vibrations, and rotational 
speed are continuously acquired during 30 seconds of the IM operation; these signals 
are acquired by the proprietary DAS when the IM is fed through the pure sine and 
modified sine inverters, iteratively. In this regard, several tests are performed with each 
different inverter with the aim of comparing the repeatability of the experiments.

Subsequently, in the second stage of data processing, the acquired signals are sub-
jected to a processing procedure by means of estimating the power spectral density 

Figure 2. 
Proposed methodology for analyzing the effects produced by pure sine and modified sine inverters in a  
single-phase IM.
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(PSD) and by estimating the fast Fourier transform (FFT); precisely, the PSD is 
performed from the stator current, whereas the FFT is performed from the vibration 
signals. On the other hand, the raw voltage signal is analyzed in the time domain in 
order to compare similarities and differences between signals from the pure sine and 
modified sine inverters. Similarly, for both the inverters, the rotational speed signals 
are compared between them with an aim to identify the main differences, and such 
signals are also taken into account for a precise estimation of the theoretical frequen-
cies that characterize the operation of the IM under study.

Finally, in the stage of analysis, the previous estimated PSD and FFT locate the 
theoretical frequencies that characterize the electrical and mechanical operation of 
the IM; that is, for the electrical signal, a frequency component must be located in sf  
as the supply frequency component, and the mechanical operation is represented by 

rf  as the rotational speed; for both frequency components ( sf  and rf ), some 
harmonics may appear according to the IM condition. In this sense, the most common 
faulty conditions that affect the operation of IMs are misalignment, unbalance, 
bearing defects, and broker rotor bars; thus, the harmonics of sf  and rf  may be 
more evident depending on whether the IM is working under the influence of any 
defect or not.

5. Results and discussions

The proposed method is performed in order to analyze the effects produced by 
pure sine and modified sine inverters in a single-phase IM; thus, the IM is fed through 
two different inverters, iteratively. Therefore, during the experimentation, several 
signals have been acquired and stored in a personal computer, and each measured 
signal comprises the start-up to the steady state of the IM; the signals are acquired 
during 30 seconds.

Accordingly, Figure 3a and b shows the rotational speed achieved by the IM in its 
end-drive shaft when the pure sine and modified sine inverters are used to feed such 
IM; the average speed that is reached during the steady state for each corresponding 
case is around 1799 rpm and 1794 ± 4 rpm, respectively. Thus, regarding the nominal 
speed provided by the manufactured IM, a speed variation between 2% and 3% is 
achieved when the IM is fed through both inverters. As shown in Figure 3a and b, 
there are some specific differences that characterize the working operation of the 
IM; probably, the main difference relies on the time that the IM requires to reach 
the steady state; precisely, Figure 3a depicts a soft start, where the IM achieves the 
steady state in an average time of around 1.9 seconds, whereas Figure 3b depicts an 
abrupt start, where the IM requires approximately 0.6 seconds to achieve its steady 
state. Thus, a soft start is preferred since it may lead to producing low stator currents 
during the start-up and may also benefit to avoid inducing structural damage to the 
whole elements that are linked to the IM, that is, rigid couplings, shafts, pulley belts, 
and gears, among others. Another difference that can be noted in Figure 3a and b is 
the stability of rotation when the IM has reached its steady state; that is, when the IM 
is fed by the pure sine inverter, a stable rotational speed is produced in the end-drive 
shaft (Figure 3a), whereas a variational rotating speed is generated when the modi-
fied sine inverter is used (Figure 3b). Thereby, most of the time, some processes and/
or applications are affected when the rotational speed of the IM that drives such pro-
cesses is variable; that is, an electric water pump may produce a variable flow of water 
if the rotating speed of impellers is not constant. Moreover, the sudden occurrence 
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of vibrations may affect and induce damage over the whole elements linked to the IM 
that experiences variable speed.

Consequently, Figure 4a and b shows the measurements of the stator current 
consumption when the IM was fed through the pure sine and modified sine invert-
ers, respectively. As it can be appreciated, the soft starting produced by the pure 
sine inverter also leads to a reduced current consumption during the start-up; such 
current consumption is approximately 11.5 amperes peak. Once the IM has achieved 
its steady state, the average current consumption is around 6.5 amperes peak, and 
although Figure 4a depicts the stator current in the IM when it is fed with the pure 
sine inverter, an almost perfect sine wave with some speaks is measured. In this sense, 
the current signal is dirty since the AC-DC inverter is composed of several power 
electronic elements. On the other hand, high current consumption is demanded 
by the IM when it is fed with the modified sine inverter as illustrated in Figure 4b, 
where a peak current consumption higher than 25 amperes is reached and an average 
current consumption of around 9.4 amperes is produced in the steady state. In addi-
tion, the shape of the current wave in Figure 4b is not sinusoidal and consumption 

Figure 3. 
Rotational speed achieved in end-drive shaft of the IM when it is fed through a) the pure sine inverter and b) the 
modified sine inverter.
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shows several variations; this fact is due to the power quality characteristics that 
have the modified sine inverter. Thus, the most critical increase in the stator current 
consumption is presented during the start-up where the increase is more than 200% 
by comparing the current peak of Figure 4a and b; meanwhile, percentages around 
82% and 118% are achieved during the steady state in comparison with the nominal 
current consumption given by the manufacturer.

Voltage signals are shown in Figure 5a and b, respectively, for each one of the con-
sidered inverters, pure sine and modified sine. As it is observed, both voltage signals 
are generated with a pike amplitude of about 180 volts; also, both signals show distor-
tion that in terms of power quality can be understood as harmonics, sags, swells, and 
transients, among others. Precisely, in the zoomed-in view shown in Figure 5a, a 
transient is noted, which is also present in the whole voltage signal; on the other hand, 
the zoomed-in view of Figure 5b also shows transients that in general may affect the 
proper operation of the IM. Hence, all the electronic elements included in both invert-
ers are the main source that leads to producing voltage signals with high distortion. 

Figure 4. 
Measurements of the stator current consumption produced in the IM when it is fed through a) the pure sine 
inverter and b) the modified sine inverter.
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On the other hand, the main difference between the voltage signals of Figure 5a and b 
is the shape, where the voltage signal in Figure 5a depicts an almost perfect sine wave, 
while the voltage signal in Figure 5b does not have a sinusoidal wave. In this regard, it 
must be highlighted that a high harmonic content is inherent in the voltage generation 
for both inverters. Additionally, the THD is estimated from both acquired signals in 
order to validate the percentages of distortion given by the manufactures; in this way, 
distortions of around 5.5% and 22.3% are computed for both inverters, pure sine and 
modified sine, respectively.

The acquired vibration signals are associated with the mechanical operation of 
the IM; in fact, any AC rotating machine may experiment with different operat-
ing conditions when fed through a renewable power supply by means of invert-
ers. For example, if an AC electric motor is connected to a power supply, the 
power quality can affect the operation of the device, producing speed variations 
since it is in function of the voltage applied. Subsequently, the acquired vibra-
tions when the IM is fed through the pure and modified sine inverters are shown 
in Figures 6a and b, respectively; as it is observed, the vibrations produced in the 

Figure 5. 
Recorder voltage signals produced by the considered AC-DC inverters to feed the IM: a) the pure sine inverter and 
b) the modified sine inverter.
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IM have higher amplitude when it is fed through the modified sine inverter, while 
the level of vibrations is reduced when the pure sine inverter is used as the power 
supply source. Also, there are some differences between Figure 6a and b; that is, 
a transient vibration spike is presented at the end of the start-up of the IM when 
it is fed with the pure sine inverter, and then, the vibration level is retained with 
a specific average amplitude. On the other hand, the IM experiences a high level 
of vibrations, which apparently is retained during the start-up and the steady 
state of the IM when the modified sine inverter is used. Qualitatively, by compar-
ing the RMS values of both vibration signals, an increase from 0.0997 to 0.6989 is 
presented when the IM is fed with sine and modified inverters. For the IM under 
test, the vibrations are directly produced by the quality of the voltage signal that 
is provided by both the considered inverters; it should be mentioned that the IM 
is in a healthy condition; thus, there are no external factors that lead to introduc-
ing the occurrence of vibrations. Table 2 summarizes the most important aspects 
depicted with the use of pure and modified sine inverters.

Figure 6. 
Acquired vibration signal in the radial axis of the IM when it is fed through both inverters: a) the pure sine 
inverter and b) the modified sine inverter, respectively.
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Physical 
magnitude

Pure sine wave inverter Modified sine wave inverter

Speed The speed is constant and reaches an average value 
of around 1799 RPM

The speed shows fluctuations 
producing an average speed value of 
1794 ± 4 RPM

Current The stator current consumption is less than the 
nominal current consumption

An increase of around 118% of the 
stator current consumption is reached 
during the steady state

Voltage The distortion is around 5.5% as manufacturer 
depicts

The distortion is higher than 20% as 
the shape wave does not match the 
sine wave

Vibration An averaged RMS vibration value of 0.0997 is 
achieved with a soft noise

The vibration increases seven times by 
considering the RMS vibration value 
0.6989

Table 2. 
Technical characteristics for the DC-AC inverters used in the experimentation.

Figure 7. 
Achieved PSD of the acquired stator current when the IM is fed through a) the pure sine inverter and b) the 
modified sine inverter, respectively.
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Accordingly, the PSD of the stator current and the FFT of the vibrations are 
carried out in order to provide a more accurate analysis of the effects that pure sine 
and modified sine inverters introduce over the operation of an IM. Therefore, 
Figure 7a and b shows the obtained PSD when the pure and modified inverters are 
used to feed the IM, respectively. Some aspects must be highlighted from these 
PSDs; the first one is that the supply frequency ( sf ) is present and it may be located 
approximately around 60 Hz, and it appears with a high amplitude; the second one 
is that in the PSD of Figure 7b appears a significant number of frequency compo-
nents with higher amplitude in comparison with the PSD of Figure 7a. The appear-
ance of additional frequency components is also due to the quality of the power 
voltage supply; moreover, as expected, the use of modified sine inverters results in 
the introduction of frequency components over the PSD that may be masked and/or 
confused with those characteristic fault-related frequency components that are 
commonly induced by faults such as misalignments, unbalances, short circuits, and 
broken rotor bars, among others. Specifically, in the PSD of Figure 7b are induced 
several harmonics related to sf ; such harmonics appear at 2 sf  and 3 sf , but the 2 sf  

Figure 8. 
Achieved FFT of the acquired vibrations when the IM is fed through a) the pure sine inverter and b) the modified 
sine inverter, respectively.
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components may increase their amplitude when problems associated with phase 
problems are inherent to the power supply; additionally, sidebands may appear 
around 2 sf  that are associated with the pole pass frequency ( Pf ). Thereby, in 
Figure 7b, a significant increase of frequency components (2 sf  and 3 sf ) as well as 
the occurrence of additional frequency components ( Pf ) that ideally depict mal-
function problems in the power supply is observed.

Finally, the vibration signals are processed by means of estimating the frequency 
spectra through the FFT; thus, Figure 8a and b shows the resulting vibration spectra 
that belong to the IM operation when it is fed with the pure and modified sine 
inverters, respectively. As it is observed in both spectra, some characteristics related 
to frequency components appear, where it is important to identify the frequency 
component associated with rotational speed ( rf ) that is reached in the IM; also, there 
are some harmonics of rf  that can be identified over both spectra such as the third 
and fourth harmonics (3 rf  and 4 rf ). The aforementioned harmonics are the most 
important since it is around these frequency components that sideband frequencies 
appear, separated by the pole pass frequency ( Pf ) when the IM is fed through the 
modified sine inverter. Thus, the quality of the voltage power supply also affects the 
mechanical operation of electric rotating machines such as IM even if such machines 
are in healthy condition; such affectations commonly produce variations in the 
rotational speed, generation of abnormal noise during the steady state, and some-
times the occurrence of structural vibrations that affect the whole components of the 
IM. On the other hand, the use of pure sine inverters allows to operate the IM almost 
as it was working under conventional conditions where the power supply voltage is 
provided by an electrical factory.

6. Conclusions

This work presented an analysis of the effects produced in an IM when it is fed 
through renewable energy by means of pure sine and modified sine inverters; the 
analysis consists of acquiring some physical magnitudes such as the stator current that 
is consumed by the IM, the voltage supplied to the IM, the rotational speed reached 
in the end-drive shaft of the IM, and the mechanical vibrations produced by the IM 
during its working operation. These signals are continuously acquired and are first 
compared in the time domain. Regarding the obtained results, it can be concluded 
that a slight reduction in the stator current consumption is achieved when the IM 
is fed through the pure sine inverter; also, a soft start-up is produced, the average 
rotational speed is retained in the end-drive shaft, as well as vibration levels are kept 
low. Meanwhile, when the IM is fed through the modified inverter, the stator current 
consumption increases, and this increase may lead to an increase in the temperature 
of the IM and several damages can be also produced. Additionally, the modified 
inverter makes the IM rotate with variations and noise, and subsequently, the occur-
rences of vibrations are present in the whole IM case. Finally, the stator current and 
vibrations are also analyzed by means of the PSD and FFT, where significant differ-
ences are appreciated by comparing the resulting spectra when the IM is fed with both 
the considered inverters. The most important aspect to be highlighted from the PSD 
and FFT is that the modified sine inverter leads to the introduction of a frequency 
component that is associated with the pole pass frequency, where such a component 
is associated with phase problems. Finally, pure sine inverters are recommended in 
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applications where rotating machines are involved; in fact, the consideration of pure 
sine inverters may result in extending the useful life of those elements that are fed 
through them as much as possible.
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Chapter 4

Robust Mechanism for Speed and
Position Observers of Electrical
Machines
Marcin Morawiec

Abstract

In the sensorless control system, the rotor speed or position is not measured but
reconstructed in the dedicated observer structure. The observer structure is based on
the mathematical model of an electrical machine. This model is often determined in
the space vector form by using the stator/rotor flux vector and stator/rotor current
vector components. During the machine works, there exist working points in which
the observer can be unstable or its accuracy is unsatisfactory. In order to increase the
observer system stability, the Lyapunov theorem should be satisfied. Using this, the
observer system’s proper stabilizing function can be determined. However, in many
cases, this procedure is not sufficient and in close to an unstable region properties of
the speed observer structure are very poor—the estimation errors have values
exceeding 5%, which causes loss of synchronization in case of synchronous machines
and errors in the values of electromagnetic torque or stator/rotor fluxes. In order to
prevent this undesirable phenomenon, additional laws of estimation should be intro-
duced to the speed or position estimation mechanism, which is proposed in this
chapter. This mechanism is named in this chapter “robust” because during the
machine works, it increases significantly the properties of the whole sensorless control
system, minimizing the speed or position estimation errors almost to zero, close to the
unstable region (small rotor speed with the regenerating machine mode or close to
synchronous of rotor speed in case of the doubly fed generator). The proposed robust
mechanism has been tested by using simulation and experimental investigations pre-
pared for: the squirrel-cage induction machine, permanent magnet synchronous
machine, and doubly fed induction generator.

Keywords: speed estimation, rotor position, adaptive, non-adaptive,
induction machine, permanent magnet synchronous machine, doubly fed
induction generator

1. Introduction

In sensorless control of an electrical machine, the rotor speed value or rotor posi-
tion is not measured but reconstructed by an observer structure. In the literature,

59



methods of reproducing the rotor speed or rotor position can be divided into three [1]:
algorithmic, neural network, and physical methods. The most popular is an algorith-
mic method in which the observer structure is based on the mathematical model of an
electrical machine. This group includes state full and reduced-order observers, [2], the
adaptive full-order observer (AFO), [3], Kalman filters, [4], model reference adaptive
observers MRAS, [5], sliding mode observers, [6], and backstepping, [6]. The other
approach to the estimation of the state variables is to extend the model of a machine
with an additional state variable—an auxiliary state, [7]. The rotor speed value in
these observers can be reconstructed from the classical adaptation law by using the
proportional-integral controller (PI), [1, 7, 8]. The rotor position value can be
obtained by using the integration of the rotor speed value in the same integration step,
[7, 8]. Other approach to the reconstruction of the rotor speed value is the non-
adaptive method. The rotor speed value is obtained by using the suitable algebraic
transformation of the estimated state variables, [5, 6].

The main problem in the sensorless control systems is the stability of the
observer structure in the wide changes of working points of the machine, [8, 9]:
from zero to nominal rotor speed, under load torque injections, and for
regenerating mode. Stabilization of the observer structure under regenerating
mode and low speed of the induction machine, IM, was studied in many papers,
[9–11]. For this case, the frequency of stator voltage is almost zero, and there
exist unstable poles of the observer system, [8, 10]. Similarly, the problem
occurs for the permanent or interior permanent magnet synchronous machines
(PMSM/IPMSM) during the zero rotor speed; while the electromagnetic force
(EMF) is not generated, [12–14]. To overcome this problem, a different value of
stator current or voltage (high [13] or low [14] frequency) is injected into the
stator voltage from an inverter.

A robust mechanism for the rotor speed estimation is proposed in this chapter. The
proposed approach is suitable for the speed observer structures, which are based on a
mathematical model of an electrical machine (algorithmic) in the space vector form.
In Section 2, the mathematical model of an electrical machine is considered in the
general form for the nonlinear class of systems. In Section 3, the application to IM is
shown. In Section 4, the speed observer of IPMSM with the robust mechanism is
proposed. In Section 5, the robust mechanism for the rotor speed and position esti-
mation is adapted to the observer structure of DFIG.

All the theoretical derivations are confirmed by using simulation and experimental
investigations.

2. Design procedure of the speed and position observer

One of the most popular design procedures for the speed observer of an electrical
machine is based on the second theorem of the Lyapunov of asymptotical stability of
the system in the general form

_x ¼ Axþ Bu, (1)

y ¼ Cx, (2)

where is assumed that A, B, and C are the matrixes that including the system
parameters, x is the vector of state variables, and u is the vector of controls.
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Considering only (1) the model can be rewritten to the vector components form in
which (αβ) is the stationary reference frame and the index kmeans the number of the
state variables in the system defined in (1)–(2)

_xkα ¼ akxkα þ … þ bkukα, (3)

_xkβ ¼ akxkβ þ … þ bkukβ: (4)

If the system (3)–(4) will be connected to the rotating reference frame, then the
differential equations have the form

_xkd ¼ akxkd þ ωdqxkq þ … þ bkukd, (5)

_xkq ¼ akxkq � ωdqxkd þ … þ bkukq, (6)

where ωdq is the angular speed of the (d-q) reference frame, and (ukd, ukq) are the
controls defined in (d-q).

It can be assumed that the system model belongs to the operation domain D
defined by the set of values

D ¼ x∈Rk, jxkdj≤ xmax
kd , jxkqj≤ xmax

kq , ωdq ≤ωmax
dq

n o
, (7)

where
xmax
kd , xmax

kq , ωmax
dq are the maximum values for the state variables, and the param-

eters in the system ak, bk have known, constant, and bounded values.
Assumption 1. For the system (5)–(6) in which the ωdq is treated as the parameter, it

is possible to reconstruct its value by using the adaptive and non-adaptive approaches
and state of variables xk. Moreover, the controls (ukd, ukq) satisfied the persistent of
excitation condition [14].

The first step in the procedure of design of the observer structure is to stabilize the
observer for the system (5)–(6). The observer structure has the following form:

_̂xkd ¼ akx̂kd þ ω̂dqx̂kq þ … þ bkukd þ vd, (8)

_̂xkq ¼ akx̂kq � ω̂dqx̂kd þ … þ bkukq þ vq, (9)

where the estimated values are marked by “^”, and vd, vq are the inputs to the
observer (8)–(9), which stabilize the system.

The estimation errors between estimated (8)–(9) and real/measured values
(5)–(6) are expressed by

~xkd,q ¼ x̂kd,q � xkd,q, (10)

~ωdq ¼ ω̂dq � ωdq: (11)

For the above-defined estimation errors, it is possible to determine the model of
estimation errors, which form is as follows:

_~xkd ¼ ak~xkd þ ω̂dq~xkq þ ~ωdqx̂kq � ~ωdq~xkq þ vd, (12)

_~xkq ¼ ak~xkq � ω̂dq~xkd � ~ωdqx̂kd þ ~ωdq~xkd þ vq: (13)

61

Robust Mechanism for Speed and Position Observers of Electrical Machines
DOI: http://dx.doi.org/10.5772/intechopen.107898



The next step is to determine the form of stabilizing functions, which stabilize the
observer structure (8)–(9). By using the Lyapunov theorem, the observer structure
will be stable if the candidate of the Lyapunov function

V ¼ 0:5 ~x2kd þ ~x2kq
� �

þ V1 ≥0, (14)

is positively defined, and V1 > 0 has the form

V1 ¼ γ�1~ω2
dq: (15)

Derivative of Lyapunov function (14) must be negative determined, therefore
using (12)–(13), its form is determined

_V ¼ ~xkd ak~xkd þ ω̂dq~xkq þ vd
� �þ ~xkq ak~xkq � ω̂dq~xkd þ vq

� �

þ ~ωdq γ�1 _~ωdq þ x̂kq~xkd � x̂kd~xkq
� �

≤0:
(16)

The observer structure will be asymptotically stable if the Lyapunov theorem is
satisfied and the stabilizing functions are chosen

vd ¼ �ak~xkd, (17)

vq ¼ �ak~xkq, (18)

then derivative (16) has the form

_V ¼ ~ωdq x̂kq~xkd � x̂kd~xkq
� �

≤0: (19)

To satisfy (19), the value of the parameter ~ωdq should be determined by

_~ωdq ¼ �γ x̂kq~xkd � x̂kd~xkq
� �

, (20)

where
γ > 0 is the tuning gain.
For (20), the derivative of the Lyapunov function is always smaller than zero

_V <0, and the Lyapunov condition is satisfied.

2.1 Adaptive estimation of parameter ωdq

The estimated value of the parameter ω̂dq can be determined from (20) under
assumption that the derivative of the real value is constant in time _ωdq and equal to zero

_̂ωdq ¼ �γ x̂kq~xkd � x̂kd~xkq
� �

: (21)

The above estimation law is named in the literature [15] as the classical
adaptation law.

Remark 1. The assumption _ωdq ¼ 0 is not desirable for the nonlinear system, in
which the highest accuracy of estimation is needed. For _ωdq 6¼ 0 and ωdq ¼ ω̂dq � ~ωdq,
after substitution (17)–(18) to (16), the derivative of the Lyapunov function has the
following form:
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_V ¼ ~ωdq � 1
γ

_̂ωdq � _~ωdq
� �� �

≤0: (22)

After substitution (21) to (22), the update form of derivative of the Lyapunov
function is achieved

_V ¼ �~ωdq � x̂kq~xkd � x̂kd~xkq
� �þ 1

γ
_~ωdq

� �
≤0: (23)

It is easy to check that in (23) the dependence in the internal bracket x̂k � ~xkð Þ ¼
x̂kq~xkd � x̂kd~xkq means the cross-product of the pair of two vectors that occur in the
observer system. The cross-product for can be determined by using Lagrange’s
identity [16].

Assumption 2. Considering the pair of vectors x̂k, ~xkð Þ defined in the observer
system (8)–(9) and for the estimation errors (10)–(13), there exists Lagrange’s
identity [16], which has the following form:

x̂k � ~xkð Þ2 � jx̂kj2j~xkj2 � x̂k � ~xkð Þ2: (24)

Considering the vector components defined in (d-q) reference frame (24) can be
rewritten as

~xkdx̂kq � ~xkqx̂kd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2kd þ x̂2kq

� �
~x2kd þ ~x2kq

� �
� x̂kd~xkd þ x̂kq~xkq
� �2

r
: (25)

Substituting (25) to (23), the derivative of the Lyapunov function has the
following form:

_V ¼ ~ωdq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2kd þ x̂2kq

� �
~x2kd þ ~x2kq

� �
� x̂kd~xkd þ x̂kq~xkq
� �2

r
� 1
γ
_~ωdq

� �
≤0: (26)

The Lyapunov theorem is satisfied if

_~ωdq ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2kd þ x̂2kq

� �
~x2kd þ ~x2kq

� �
� x̂kd~xkd þ x̂kq~xkq
� �2

r
, (27)

where x̂2kd þ x̂2kq
� �

~x2kd þ ~x2kq
� �

� x̂kd~xkd þ x̂kq~xkq
� �2� �

≥0.

Remark 2: To satisfy the above condition, the negative sign-in (27) must be
changed to positive. The form (27) is determined as follows:

_~ωdq ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2kd þ x̂2kq

� �
~x2kd þ ~x2kq

� �
þ x̂kd~xkd þ x̂kq~xkq
� �2

r
: (28)

Dependence (28) can be used to find the updated form of the classical estimation
law (21). It provides an improvement to the stability range of the observer system.

Assumption 3. The expression (21) has the form of an open integrator. There is a
lack of additional stabilizing function, interconnecting the observer system. To
improve the stability range of the observer system, it is proposed to introduce
additional input sω
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_̂ωdq ¼ �γ x̂kq~xkd � x̂kd~xkq
� �þ sω: (29)

To stabilize the integrator (29), the stabilization function sω should be sω � _~ωdq.
The updated estimation law has the following form:

_̂ωdq ¼ �γ x̂kq~xkd � x̂kd~xkq þ γ1kf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2kd þ x̂2kq

� �
~x2kd þ ~x2kq

� �
þ x̂kd~xkd þ x̂kq~xkq
� �2

r� �
,

(30)

where γ1 is the additional gain, and kf ¼ sign ω̂dq
� �

is the sign of the estimated
parameter.

Remark 3. Under the assumption that in

(30) x̂2kd þ x̂2kq
� �

~x2kd þ ~x2kq
� �

≪ x̂kd~xkd þ x̂kq~xkq
� �2 the update estimation law can be

simplified to the following form

_̂ωdq ¼ �γ x̂kq~xkd � x̂kd~xkq þ γ1kf sωf
� �

, (31)

where sω ¼ x̂kd~xkd þ x̂kq~xkq, and sωf is their filtered value by using a low-pass filter
LPF (to avoid the algebraic loop).

In (31), there is the cross and scalar product x̂k � ~xkð Þ ¼ x̂kd~xkd þ x̂kq~xkq of two
vectors. It is worth noticing that for the perpendicular vectors, the scalar product is
equal to zero; however, in other cases, it is different from zero and additionally
stabilizes the estimation law.

2.2 Non-adaptive estimation of parameter ωdq

In the previous section, the parameter ωdq was reconstructed from the adaptive
law. However, this value can be estimated non-adaptively. Under the assumption of
the steady-state for ak≈1, ~ωdq≈0 and vd, q = 0, from the model of estimation error, the
following approximations can be achieved:

~xkd≈ω̂dqx̂kq, (32)

~xkq≈� ω̂dqx̂kd, (33)

for whose the following relationships are satisfied

~x2kd þ ~x2kq ¼ ω̂2
dq x̂2kd þ x̂2kq
� �

, (34)

ω̂dq ¼
~xkdx̂kq � ~xkqx̂kd

x̂2kd þ x̂2kq
, (35)

where x̂2kd þ x̂2kq 6¼ 0.
Substituting (34)–(35) to (24), the following quadratic function is obtained:

f ω̂dq
� � ¼ � x̂2kd þ x̂2kq

� �
x̂2kd þ x̂2kq

� �
ω̂2
dq þ ω̂dq x̂2kd þ x̂2kq

� �
~xkdx̂kq � ~xkqx̂kd
� �þ

x̂kd~xkd
�

þ x̂kq~xkq
�2
:

(36)
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One of the roots of the function f ω̂dq
� �

can be calculated as follows:

ω̂dq ¼
~xkdx̂kq � ~xkqx̂kd þ kf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xkdx̂kq � ~xkqx̂kd
� �2 þ 4γ1 x̂kd~xkd þ x̂kq~xkq

� �2� �r

2 x̂2kd þ x̂2kq
� � , (37)

where γ1 is the additional tuning gain and kf ¼ sign ω̂dq
� �

.

2.3 Practical stability of the observer system

The practical stability of the observer system was proposed in [17, 18]. Based on
the theorem of practical stability and considering that the system belongs to domainD
defined in (7), the observer structure will be practical stable in the Lyapunov function
derivative is

_V ¼ δ1j~xkdj þ δ2j~xkqj þ δcj~ωdqj≤ � μV þ κ, (38)

where (δ1, δ2,δc) > 0 and ~xkd ≤ ε1, ~xkd ≤ ε2,~ωr ≤ ε3, ε1,2,3 ≪ 1 are sufficient small real
numbers ε1,2,3 >0 and where

γ1 ¼ max
x̂kq~xkd � x̂kd~xkq
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2kd þ x̂2kq

� �
~x2kd þ ~x2kq

� �
þ x̂kd~xkd þ x̂kq~xkq
� �2r þ δc

8>><
>>:

9>>=
>>;
, (39)

and

μ ¼ min δ1 � 1
2ξ21

, δ2 � 1
2ξ22

,
ffiffiffi
2

p
δc

� �
, κ ¼ 0:5 ξ21η

2
1 þ ξ22η

2
2

� �
∀ξi ∈ 0, 1ð Þ, i ¼ 1,2

(40)

Hence, (38) implies the convergence of estimated vector values to their real, in
finite time, noted as t1. The reconstructed parameter ω̂dq converges exponentially to
real ωdq in finite time t > t2 > t1. This condition is satisfied for ideal and constant
parameters of the system (3)–(4). According to [17, 18], the tracking errors converge
to the ball of radius κ=μ. This radius can be decreased by the properly choosing tuning
gains of the observer system (8)–(9).

2.4 Conclusion

Presented in Section 2 is the design of the observer structure generalized to the
class of system (3)–(4) in the space vector form. The form of the system (3)–(4)
was in α-β stationary reference frame. It has been appropriately transformed by
using Clark’s transformation to the rotational reference frame d-q. In system (5)–
(6), there exists the parameter, which is the angular speed of the reference frame
in d-q. The system (5)–(6) has been properly written with a separate parameter
and has a similar form to an AC electrical machines models presented in the next
sections. Therefore, the proposed procedure in Section 2 for designing the observer
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structure can be directly adapted to the sensorless control system of an AC electri-
cal machine. The proposed solution is based on the classical adaptation law of
estimation and non-adaptive. According to the literature, [1, 2, 6–12], the rotor
speed whose value is estimated only from the classical law of adaptation and used
to tune the observer structure (8)–(9) can lead to instability during the
regenerating mode and low speed of the electrical machine. There exist positive
poles of the observer structure for which it is unstable. The problem in the classical
law of adaptation is the open form of the integrator (21) from which the value of
rotor speed is estimated (in the case of an electrical machine). Therefore, in Sec-
tion 2, the additional stabilization function is introduced also to the classical law of
estimation. The proposed stabilization function is based on Lagrange’s identity of
the pair of vectors in the observer system. The form of additional stabilization
law contains the scalar product and the length of the vectors. However, after
the simplification shown in Remark 3, it can be assumed that the stabilization
function is proportional to the scalar product of the chosen vectors that were
presented in [6].

The proposed theoretical issues in Section 2 will be confirmed in the simulation
and experimental results for the squirrel-cage induction machine and interior perma-
nent magnet synchronous machine. Also, it can be extended to estimation of the state
variables of the doubly fed induction generator (DFIG).

3. The speed observer structures of the squirrel-cage induction machine

The AFO speed observer structure of IM is proposed in this section. The rotor
speed will be estimated by using two approaches: from the adaptive estimation law
and non-adaptively.

Considering the mathematical model of the induction machine presented in [5, 6],
for the pair of vectors ψr, isð Þ according to (8)–(9), the conventional AFO observer
structure can be determined in the form

d̂isα
dτ

¼ a1̂isα þ a2ψ̂ rα þ a3ω̂rψ̂ rβ þ a4usα þ vα, (41)

d̂isβ
dτ

¼ a1̂isβ þ a2ψ̂ rβ � a3ω̂rψ̂ rα þ a4usβ þ vβ, (42)

dψ̂ rα

dτ
¼ a5ψ̂ rα � ω̂rψ̂ rβ þ a6 îsα þ vψα, (43)

dψ̂ rβ

dτ
¼ a5ψ̂ rβ þ ω̂rψ̂ rα þ a6 îsβ þ vψβ, (44)

where the estimated values are marked by “^”.
It is assumed that the stator current vector îsα,β, rotor flux vector ψ̂ rα,β

components, and rotor speed ω̂r are estimated in the observer structure (41)–(44),
vα,β, and vψα,β are stabilizing functions introduced to the structure. The values isα,β are
available in measurement and usα,β are treated as the known variables (from the
control system structure of the machine). The machine parameters are included in

a1 ¼ � RsL2
rþRrL2

m
Lrwσ

, a2 ¼ RrLm
Lrwσ

, a3 ¼ Lm
wσ
, a4 ¼ Lr

wσ
, a5 ¼ � Rr

Lr
, a6 ¼ RrLm

Lr
,
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wσ ¼ LrLs � L2
m: (45)

The estimation errors for the observer system (41)–(44) are defined.

~ωr ¼ ω̂r � ωr,,,~ψ rα,β ¼ ψ̂ rα,β � ψ rα,β
~isα,β ¼ îsα,β � isα,β (46)

where it is assumed that components isα,β, ψ rα,β, ωr are the real values.
The rotor speed value ω̂r will be reconstructed adaptively and non-adaptively by

using the observer structure (41)–(44) and based on the measurements isα,β, and usα,β.
Using the design procedure presented in Section 2, the model of estimation errors

is as follows:

d~isα
dτ

¼ a1~isα þ a2~ψ rα þ a3 ~ωrψ̂ rβ þ ω̂r~ψ rβ � ~ωr~ψ rβ
� �þ vα, (47)

d~isβ
dτ

¼ a1~isβ þ a2~ψ rβ � a3 ~ωrψ̂ rα þ ω̂r~ψ rα � ~ωr~ψ rαð Þ þ vβ, (48)

d~ψ rα

dτ
¼ a5~ψ rα � ~ωrψ̂ rβ þ ω̂r~ψ rβ � ~ωr~ψ rβ

� �þ a6~isα þ vψα, (49)

d~ψ rβ

dτ
¼ a5~ψ rβ þ ~ωrψ̂ rα þ ω̂r~ψ rα � ~ωr~ψ rαð Þ þ a6~isβ þ vψβ: (50)

The Lyapunov function defined for the estimation errors has the form

V ¼ 1
2

~i
2
sα þ~i

2
sβ þ ~ψ2

rα þ ~ψ2
rβ

� �
þ V1 >0, (51)

where for the non-adaptive speed estimation V1 ¼ 0, and in (47)–(50), ~ωr ¼ 0
under the assumption (32)–(33), for the case of adaptive law of estimation V1 ¼ 1

γ ~ω
2
r .

The derivative of the Lyapunov function will be negatively determined _V <0 if the
stabilizing functions are chosen.

vα ¼ �cα~isα, vβ ¼ �cα~isβ (52)

vψα ¼ �cψ1~isα þ cψ ω̂r~isβ, vψβ ¼ �cψ1~isβ � cψ ω̂r~isα (53)

where it is assumed (cα ¼ f a1ð Þ>0) as well as cψ ¼ f a3ð Þ>0, whereas cψ1 ≥0, a5
< 0.

The rotor speed value can be estimated directly from the adaptive estimation law
(20) presented in Section 2.1, considering the pair of vectors x̂k, ~xkð Þ � ψ̂r, ~is

� �

_̂ωr ¼ �γ ~isαψ̂ rβ �~isβψ̂ rα þ γ1kf ŝω
� �

, (54)

where the robust term ŝω is given from

ŝω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ̂2
rα þ ψ̂2

rβ

� �
~i
2
sα þ~i

2
sβ

� �
þ ψ̂ rα

~isα þ ψ̂ rβ
~isβ

� �2r
, (55)

and γ1 > 0 is the additional gain, kf ¼ sign ω̂rð Þ.
67

Robust Mechanism for Speed and Position Observers of Electrical Machines
DOI: http://dx.doi.org/10.5772/intechopen.107898



Considering the non-adaptive scheme for rotor speed estimation presented Section
2.2. For the pair of vectors x̂k, ~xkð Þ � ψ̂r, ~is

� �
, the rotor speed value can be estimated

from

ω̂r ¼
~isαψ̂ rβ �~isβψ̂ rα þ kf ŝω

2 ψ̂2
rα þ ψ̂2

rβ

� � , (56)

where

ŝω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~isαψ̂ rβ �~isβψ̂ rα
� �2 þ 4γ1 ψ̂ rα

~isα þ ψ̂ rβ
~isβ

� �2q
: (57)

The proposed AFO speed observer was tested on the 5.5 kW induction machine,
which was clutched to DC motor. The sensorless control system structure was based
on feedback control with the multi-scalar variables shown in [5, 6]. The control
system contains four PI controllers of the rotor speed, electromagnetic torque Te,
square of rotor flux ψ2

r ¼ ψ2
rα þ ψ2

rβ, and the variables x22 ¼ ψ̂ rα îsα þ ψ̂ rβ îsβ.
The control system was implemented in the interface with a DSP Sharc ADSP21363

floating-point signal processor with Altera Cyclone 2 FPGA. The interrupt time was
6.6 kHz, and the transistor switching frequency was 3.3 kHz. The rotor speed and
position were measured by the incremental encoder (11-bits)—only to the accuracy
verification of observer structure. The stator current was measured by the current
transducers LA 25-NP—in the phases “a” and “b” and transformed to the (αβ) refer-
ence frame by using the Park transformation. The nominal parameters of the IM are
presented in Table 1.

In Figures 1–3, the following variables are presented:
ω̂r - estimated rotor speed, ωrM - measured rotor speed, ~ωr - rotor speed error,̂sω -

additional variables, ψ̂2
r ¼ ψ̂2

rα þ ψ̂2
rβ, T̂e ¼ ψ̂ rα îsβ � ψ̂ rβ îsα.

In Figure 1, the IM is starting up from 0.1 to 1.0 p.u. The waveforms of the
estimated value of rotor speed, measured rotor speed, square of rotor flux

Parameter Value Unit

Nominal power 5.5 kW

Nominal speed 1430 rpm

Nominal voltage (Y) 400 V

Nominal current (Y) 11 A

Nominal frequency 50 Hz

Stator resistance RsN 2.92/0.035 Ω/p.u.

Stator resistance RrN 3.36/0.032 Ω/p.u.

Magnetizing inductance LmN 0.422/1.95 H/p.u.

Stator and rotor inductance Ls, Lr 0.439/2.04 H/p.u.

Ub = Un 0.82 p.u.

Ib ¼ In
ffiffiffi
3

p
0.89 p.u.

Table 1.
Parameters of the IM and references unit.
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components, electromagnetic torque, and reference rotor speed are presented. The
reference value of electromagnetic torque is limited to 0.75 p.u. The reference
value of the square of the rotor flux vector components is set to 0.9 p.u. The
estimated rotor speed error during the dynamic states is about 0.015 p.u., and
for the steady state is smaller than 0.01 p.u. In Figure 1a, the rotor speed is
estimated non-adaptively. In Figure 1b, the rotor speed value is estimated from
adaptive law.

In Figure 2, the rotor speed reversed from a nominal speed 1.0 p.u. to �1.0 p.u.
The IM during this test is loaded at about TL = 0.08 p.u. The square of rotor flux was
set to 0.9 p.u. The value ŝωis determined from (57). The value of the rotor speed error
for the case presented in Figure 2a is smaller than 0.02 in the dynamic states. For the
case presented in Figure 2b, the value of rotor speed error is almost the same and
smaller than 0.02 p.u.

In Figure 3, the motoring and regenerating modes of the IM are presented. In
the AFO speed observer in which the rotor speed is estimated from the classical
law of adaptation, for γ1 = 0 in (54) (for this case, the stabilizing function is
omitted), the observer structure is unstable in the regenerating machine mode,
what was signaled in [6]. For the adaptive case (Figure 3b), if γ1 6¼ 0 and the value
ŝω is estimated from (55). The observer structure is stable during the load torque
value change from 0.7 to �0.7 p.u. The rotor speed error is smaller than 0.015 in
the dynamic states. The value of estimated electromagnetic torque for the
regenerating case is about �0.65 p.u. It means that the electromagnetic torque
value is estimated with a small value of the error of about 0.05 p.u. in the station-
ary state, but the observer structure is stable.

For the non-adaptive case presented in Figure 3a, the estimated rotor speed value
has more oscillations than in Figure 3a. It is because the rotor speed is not filtered as in

Figure 1.
The IM is starting up to 1.0 p.u., non-loaded and the rotor speed value is estimated from a) non-adaptive law
(56), b) adaptively (54) – Experimental results.
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the case of adaptive estimation law. However, the estimated value of electromagnetic
torque is �0.7 p.u. (the same as the load torque). Hence, the electromagnetic torque
is estimated more accurately than in the case of the adaptive law of rotor speed
estimation.

Figure 2.
The IM is reversing from 1.0 to �1.0 p.u., non-loaded and the rotor speed value is estimated from a) non-adaptive
law (56), b) adaptively (54) – Experimental results.

Figure 3.
Motoring and regenerating mode of IM for the rotor speed estimated a) from non-adaptive law (56), b) adaptively
(54) – Experimental results.

70

New Trends in Electric Machines - Technology and Applications



3.1 Extended speed observer of the squirrel-cage induction machine

In [19], the speed observer was proposed, which is based on the extended model of
the IM. In the model of the observer structure, an auxiliary variable marked in [5] as
“Z” was introduced and defined as follows:

Ẑα ¼ ω̂rψ̂ rα, (58)

Ẑβ ¼ ω̂rψ̂ rβ: (59)

Based on the introduced auxiliary variables, the observer model can be determined

d̂isα
dτ

¼ a1̂isα þ a2ψ̂ rα þ a3Ẑβ þ a4usα þ k1 îsα � isα
� �

, (60)

d̂isβ
dτ

¼ a1̂isβ þ a2ψ̂ rβ � a3Ẑα þ a4usβ þ k1 îsβ � isβ
� �

, (61)

dψ̂ rα

dτ
¼ a5ψ̂ rα � Ẑβ þ a6 îsα þ k2 Ẑβ � Zβ

� �
, (62)

dψ̂ rβ

dτ
¼ a5ψ̂ rβ þ Ẑα þ a6 îsβ � k2 Ẑα � Zα

� �
, (63)

dẐα

dτ
¼ �ω̂r Ẑβ � a6isα

� �� a5Ẑα þ k3 îsα � isα
� �

, (64)

dẐβ

dτ
¼ ω̂r Ẑα þ a6isβ

� �� a5Ẑβ þ k3 îsβ � isβ
� �

, (65)

where the derivative of estimated rotor speed can be approximated dω̂r
dτ ≈

Δω̂r
ΔT ≈0 in

the small interval time ΔT, and coefficients a1… a6 are defined in (45).
The rotor speed can be determined non-adaptively from the dependence [19]:

ω̂r ¼
Ẑαψ̂ rα þ Ẑβψ̂ rβ

ψ̂2
rα þ ψ̂2

rβ

: (66)

The experimental results in this section are limited only to the regenerating mode
of the IM, in which the observer structure can be unstable. The reference rotor speed
is set to 0.1 p.u.

In the first case presented in Figure 4a, (in which the rotor speed is estimated
from (66)) after 0.5 s machine is loaded TL = �0.6 p.u. For the motoring mode (ω̂r >
0, T̂e ≥0), the speed observer (60)–(65) is stable. After 1.5 s, when the load torque
value is decreased up to �0.2 p.u., the observer system estimates the state variables
incorrectly, the error of estimated rotor speed increases up to 0.05 p.u., and after 1.8 s,
the electromagnetic torque value achieves its limitation (0.75 p.u.). After 1.9 s, the
rotor speed error is higher than 0.05 p.u., and the IM is braking. The observer
structure achieves unstable points of operation in which all the estimates do not
converge to their real values.

The rotor speed value is estimated from (66), which is suitable only for the
motoring mode of the machine. This is the same case as for the AFO speed observer
structure. The speed estimation law is based on the algebraic eq. (66), which does not
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guarantee the stability of the observer structure during the regenerating mode of the
machine. Some poles of the observer move to an unstable zone (are zero or positive).
The reason for this is the form of dependence (66) in which the additional stabiliza-
tion function does not exist. The stabilization function, proposed in Section 2.2, which
is based on Lagrange’s identity, cannot be directly used, because the vectors: ψ̂r and
Ẑhave the same position and different amplitude only. This is the result of the
definition (58)–(59). In this case, it is better to use from (58)–(59), and after few
simple transformations, one can be obtain

Ẑαψ̂ rβ � Ẑβψ̂ rα ¼ ω̂rψ̂ rαψ̂ rβ � ω̂rψ̂ rαψ̂ rβ ¼ 0: (67)

This is satisfied for the ideal case in which all estimation errors are equal to zero. In
the other case, taking the left side of (67) as

ŝω ¼ Ẑαψ̂ rβ � Ẑβψ̂ rα, (68)

and using (66) the update form of non-adaptive speed estimation with the
stabilization function (68) can be determined

ω̂r ¼
Ẑαψ̂ rα þ Ẑβψ̂ rβ þ kf γ1 ŝω

ψ̂2
rα þ ψ̂2

rβ

, (69)

where kf ¼ sign ω̂rð Þ, γ1 ≥0.
The experimental results of the proposed non-adaptive speed estimation with the

stabilization function (68) are presented in Figure 4b. The reference of rotor speed is
set to 0.1 p.u. After 1.5 s, the load torque slowly changes from (the motoring mode)

Figure 4.
Regenerating mode of IM for the rotor speed estimated: a) the rotor speed value is estimated from (66), b) the rotor
speed is estimated by using the proposed robust law (additional stabilization function) – Experimental results.
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0.7 to �0.7 p.u. (the regenerating mode). The speed observer correctly estimates the
electromagnetic torque value with the rotor speed error smaller than 0.015 p.u. during
the dynamic states. The square of rotor flux vector components is stabilized on the
almost constant value equal to 0.9 p.u. The proposed stabilized function (68)
improves the speed observer properties making the speed observer structure more
robust in the regenerating mode, which was confirmed in Figure 4b.

4. Speed and position observer of interior permanent magnet machine

This section is concerned with the observer system of interior permanent
magnet machines IPMSM and their problems during a sensorless application under
disturbances.

4.1 Mathematical models of the IPMSM machines

The mathematical model of IPMSM is often determined in the rotating reference
frame (d-q), which is connected to the position of the rotor. The model in (d-q) was
presented in [12–14]. However, sometimes the mathematical model is better consid-
ered in the stationary (α-β) reference frame connected to the stator. The model of
IPMSM in (α-β) has the following form [12]:

disα
dτ

¼ ωr

Ld
λβ þ �Rsisα þ usαð ÞL1 þ �Rsisβ þ usβ

� �
L3, (70)

disβ
dτ

¼ �ωr

Ld
λα þ �Rsisα þ usαð ÞL3 þ �Rsisβ þ usβ

� �
L4, (71)

dωr

dτ
¼ 1

J
ψ fαisβ � ψ fβisα þ Ld � Lq

� �
isαisβ � TL

� �
, (72)

dθr
dτ

¼ ωr, (73)

where

λα ¼ LdL�1
q ψ fα � 1� LdL�1

q

� �
L0iα2 þ L2isαð Þ, (74)

λβ ¼ LdL�1
q ψ fβ þ 1� LdL�1

q

� �
L0iβ2 � L2isβ
� �

, (75)

L0 ¼ 0:5 Ld þ Lq
� �

,,L1 ¼ L�1
d cos 2θr þ L�1

q sin 2θr (76)

L2 ¼ 0:5 Ld � Lq
� �

,,L3 ¼ 0:5
1
Ld

� 1
Lq

� �
sin 2θrð Þ (77)

L4 ¼ L�1
d sin 2θr þ L�1

q cos 2θr, (78)

iα2 ¼ isα cos 2θr þ isβ sin 2θr (79)

iβ2 ¼ �isα sin 2θr þ isβ cos 2θr, (80)

ψ fα ¼ ψ f cos θr,,ψ fβ ¼ ψ f sin θr (81)
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where Rs is the stator resistance, Ld, Lq are the winding inductances, isα,β are the
stator currents, usα,β are the stator voltages, ψf is the permanent magnet flux linkage,
ωr is the rotor speed, θr is the rotor position, J is the rotor inertia,TL is the load torque.

The design of the IPMSMmachine has a significant impact on the properties of the
whole drive system. In IPMSM without the skews in the slots, there occur the rotor
slot’s harmonics, [20]. The slot’s harmonics cause the non-sinusoidal distribution of
the electromagnetic force (EMF) generated in the machine, [21]. These have a nega-
tive influence on the quality of the control system of the machine, and in particular,
on the speed and position observer. In the literature [12–14], these negative effects are
named by the disturbances in the IPMSM, which have bounded values. These distur-
bances have a significant impact on the machine rotor speed smaller than 15% of the
nominal value and the idling mode of the IPMSM. For the low-speed range, the stator
voltage has a small value, and similarly is the stator currents; because of this, the back-
EMF value is significant. The example waveform of back-EMF voltage in 3.5 kW
IPMSM machine for 10% of nominal rotor speed, registered by using the digital
oscilloscope is presented in Figure 5.

In Figure 5, there are visible 18 slot’s harmonics in the waveform. The IPMSM
nominal parameters are shown in Table 2.

Figure 5.
The phase “A” back-EMF voltage.

Parameter Value Unit

Nominal power 3.5 kW

Nominal speed 1500 rpm

Nominal voltage (Y) 285 V

Nominal current (Y) 7.5 A

Stator resistance Rs 0.023 p.u.

Inductance LdN 0.28 p.u.

Inductance LqN 0.82 p.u.

Rotor flux linkage 0.89 p.u.

Table 2.
IPMSM nominal parameters and reference units.

74

New Trends in Electric Machines - Technology and Applications



In the next section, the speed and position observer is proposed for the IPMSM in
which the disturbances have occurred and the back-EMF voltage has an almost trap-
ezoidal distribution (Figure 5).

4.2 Adaptive speed and position observer of IPMSM

As was mentioned in 4.1, the IPMSM has disturbances in the form of trapezoidal
back-EMF voltage with slot’s harmonics. The classical structures of the observer in (d-
q) are not stable if the rotor speed is smaller than 15–20% of the nominal speed. One of
the solutions to overcome this problem is to implement a dedicated algorithm in
which additional high or low-frequency signals are injected into the stator voltage or
current [13, 14]. However, the sensorless control system is then more complicated
than classical FOC, and the observer structure contains a few low-passes or bandwidth
filters [22]. The procedure of selecting the settings of the observer and the PI control-
lers in the control system is difficult. Therefore in this section, a new form of the
speed and position observer is proposed, which is based on the mathematical model in
the stationary reference frame presented in Section 4.1. Considering the procedure of
design of the observer stabilization function from Section 2, the AFO speed observer
of IPMSM can be determined

d̂isα
dτ

¼ ω̂r

Ld
λ̂β þ �Rŝisα þ usα

� �
L1 þ �Rŝisβ þ usβ

� �
L3 þ vα, (82)

d̂isβ
dτ

¼ � ω̂r

Ld
λ̂α þ �Rŝisα þ usα

� �
L3 þ �Rŝisβ þ usβ

� �
L4 þ vβ, (83)

dθ̂r
dτ

¼ ω̂r þ vθ, (84)

where “^” denotes estimated values; vα,β, and vθ are stabilizing functions
introduced to (82)–(83).

The values of the rotor flux vector components can be obtained by using (74)–(75)
as follows:

λ̂α ¼ LdL�1
q ψ̂ fα � 1� LdL�1

q

� �
L0 îα2 þ L2̂isα
� �

, (85)

λ̂β ¼ LdL�1
q ψ̂ fβ þ 1� LdL�1

q

� �
L0 îβ2 � L2̂isβ
� �

, (86)

where

L0 ¼ 0:5 Ld þ Lq
� �

,,L1 ¼ L�1
d cos 2θ̂r þ L�1

q sin 2θ̂r (87)

L2 ¼ 0:5 Ld � Lq
� �

,,L3 ¼ 0:5
1
Ld

� 1
Lq

� �
sin 2θ̂r

� �
(88)

L4 ¼ L�1
d sin 2θ̂r þ L�1

q cos 2θ̂r, (89)

îα2 ¼ îsα cos 2θ̂r þ îsβ sin 2θ̂r (90)

îβ2 ¼ �îsα sin 2θ̂r þ îsβ cos 2θ̂r, (91)
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ψ̂ fα ¼ ψ f cos θ̂r,:ψ̂ fβ ¼ ψ f sin θ̂r (92)

To stabilize the observer structure (82)–(84), the appropriate form of the stabili-
zation functions vα,β and vθ should be determined to satisfy the Lyapunov theorem.
The Lyapunov candidate function has the form

V ¼ 0:5 ~i
2
sα þ~i

2
sβ

� �
þ ~θ

2
r þ γ�1~ω2

r

� �
, (93)

where

~isα,β ¼ îsα,β � isα,β,,:~ωr ¼ ω̂r � ωr~θr ¼ θ̂r � θr (94)

The derivative of the Lyapunov function can be determined by using the estima-
tion errors (94) and the proposed observer structure as

_V ¼ � cα~i
2
sα þ cα~i

2
sβ

� �
þ ~ωr � 1

Ld
λ̂β~isα þ 1

Ld
λ̂α~isβ þ 1

γ
_~ωr

� �
þ ~θr ~ωr þ vθð Þ≤0: (95)

The derivative of the Lyapunov function (95) is negative if the stabilizing func-
tions are chosen

vα ¼ �cαRsL1~isα þ cλL�1
d ω̂rλ̂β~isα, (96)

vβ ¼ �cαRsL4~isβ � cλL�1
d ω̂rλ̂α~isβ, (97)

vθ ¼ �cθ~θr, (98)

where (cα, cθ) > 0 and cλ ≤
RsL1 λ̂β�RsL4 λ̂α

L�1
d jω̂rj λ̂

2
αþλ̂

2
β

� �.
The rotor speed value can be estimated by using the classical adaptation law

_̂ωr ¼ γL�1
d λ̂β~isα � λ̂α~isβ
� �

, (99)

where γ > 0.
However, under Assumption 3 from Section 2.1 in order to improve the quality of

reconstruction of the rotor speed value, it is better to introduce the additional
stabilization function to the open-integrator (99)

_̂ωr ¼ γL�1
d λ̂β~isα � λ̂α~isβ þ kf ŝω
� �

, (100)

where the value of the stabilizing function can be obtained by using the approach
presented in Section 2.1:

ŝω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̂
2
α þ λ̂

2
β

� �
~i
2
sα þ~i

2
sβ

� �
þ λ̂α~isα þ λ̂β~isβ
� �2r

: (101)

For λ̂
2
α þ λ̂

2
β

� �
~i
2
sα þ~i

2
sβ

� �
≪ λ̂α~isα þ λ̂β~isβ

� �2
, the value of (101) can be determined

from the simplified form
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ŝω ¼ λ̂α~isα þ λ̂β~isβ: (102)

The rotor position can be obtained directly from (84), and the stabilizing function
vθ from (98).

In (98) there is the rotor position error, which is defined ~θr ¼ θ̂r � θr, where θr
means the real (measured) value of rotor speed. However, in the speed observer
structure, the rotor speed is not measured but only estimated. Therefore, it is pro-
posed to replace the deviation ~θr by ~θλ and (98) is rewritten as

vθ ¼ �cθ~θλ, (103)

where ~θλ can be defined as the angle between the rotor flux vector components λα,
β and their estimated values λ̂α,β. Values of deviation ~θλ can be determined as

~θλ ¼ tan �1 φð Þ, (104)

where φ ¼ λαλ̂β � λβλ̂α
� �

λαλ̂α þ λβλ̂β
� ��1

. The rotor flux vector components, λα, β,
can be determined from (74)–(75) in which it is assumed θr≈θ̂r and the measured
values of isα,β are used; also, λαλ̂α þ λβλ̂β

� � 6¼ 0.
Value of ~θλ should be projected using

~θλ ¼
~θλ � π=2, if φ>0
~θλ þ π=2 if φ<0

( )
, (105)

It gives the values ~θλ in a steady state close to zero, and it can be assumed that
~θλ≈~θr. The proposed stabilizing function improves the estimated value of the rotor
position, particularly in the dynamic states of the IPMSM. The stabilizing function is
necessary in the case of IPMSM with the described above disturbances.

Remark 4. The value of rotor flux vector components must be estimated from
(74)–(75), however, by using the estimated rotor speed position θ̂r in (76)–(81).

4.3 Non-adaptive speed estimation of the IPMSM

The rotor speed value can be estimated by using the non-adaptive estimation
scheme. Consider the non-adaptive scheme for the rotor speed estimation presented
in Section 2.2 for the pair of vectors, x̂k, ~xkð Þ � λ̂r, ~is

� �
the rotor speed value can be

estimated from

ω̂r ¼
~isαλ̂β �~isβλ̂α þ kf ŝω

2 λ̂
2
α þ λ̂

2
β

� � , (106)

where

ŝω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~isαλ̂β �~isβλ̂α
� �2 þ 4γ1 λ̂α~isα þ λ̂β~isβ

� �2q
, (107)

and kf ¼ sign ω̂rð Þ, γ1 ≥0.
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4.4 Simulation and experimental results of the speed and position observer of
IPMSM

In this section, the chosen waveforms from the simulation and the experiment
setup are shown. The nominal parameters of the IPMSM are shown in Table 2. The
experimental validations were carried out on 3.5 kW IPMSM. The stator of IPMSM has
18 slots, which are visible in the waveform of EMF from Figure 5. The machine is
controlled by using the classical FOC control presented in [12, 13, 22]. There are three
PI controllers for the rotor speed, isq, and isd stator vector components. Additionally,
the MTPA algorithm [12] was applied.

In Figure 6, the waveform of the simulation results is shown. The estimated rotor
speed ω̂r, stator current vector components îsd,q estimated rotor speed error ~ωr, and

the estimated rotor position θ̂r are presented. In Figure 6a, the machine is starting up
to 1.0 p.u. and after 600 ms loaded to about 0.6 p.u. The error of the rotor position is
smaller than 0.05 p.u. during the dynamic states, the rotor speed error is smaller than
0.01 p.u. In Figure 6b, the machine is reversing to �1.0 p.u. The position error is
smaller than 0.1 p.u. during the dynamic states, and the error of rotor speed is smaller
than 0.05 p.u. In Figure 6b, the measured value of rotor position θrM is shown.

In Figure 7a, after 100 ms the machine is loaded TL = 1.0 p.u. and after 600 ms the
regenerating mode is applied and TL = �1.0 p.u. The rotor reference speed is equal to
0.1 p.u. The estimated electromagnetic torque T̂e, rotor position error ~θr, ~θλ defined in
(104), sω and rotor speed error, and the estimated îsd stator current component are
presented. It is worth noticing that the waveforms of ~θr as well as ŝω and ~ωr are
converged on each other.

The experimental waveforms are presented in Figure 8. The machine’s reversal
from 1.0 to �1.0 p.u. is shown in Figure 8a. The estimated rotor speed ω̂r, stator
current vector components îsd,q estimated rotor speed error ~ωr, and the estimated

Figure 6.
a) Machine is starting up to 1.0 p.u and b) reversing to �1.0 p.u. – Simulation results.
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rotor position θ̂r and the stator current module im are presented. In Figure 8b, the
same waveforms but for the measured value from the encoder of the rotor speed and
rotor position are presented (for comparison). During the machine reverse, the isd
value is about 0.25 p.u. It results from the MTPA algorithm [12].

Figure 7.
a) the load torque TL is changed from 1.0 to – 1.0 p.u., b) parameters of the machine are changed in the sensorless
control system (parameters uncertainties test) – Simulation.

Figure 8.
Machine is reversing from 1.0 to �1.0 p.u. for a) the sensorless control system with the proposed observer, b) the
control system with measured rotor speed and position values – Experimental results.
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In Figure 9, the regenerating mode of IPMSM is shown. The rotor speed was set
to 0.025 p.u., and the machine was loaded at about �0.5 p.u. In Figure 9a, the
stabilizing function is kf = 0.5 in (106), and the value of the error of estimated
rotor position is increased to 0.075 p.u., which is visible in Figure 9a. The value of
the stator current component îsqwas incorrectly estimated (due to rotor position
error). In Figure 9b, the same case is shown, however for kf ¼ 2:5 p.u. The rotor

position error is almost minimized to zero, and the îsq value is about �0. 5 p.u.
(the same as the referenced).

In this section, the presented simulation and experimental results confirmed that
the introduced stabilization function into the speed adaptation scheme leads to the
improvement of the properties of the observer system and robustness of the occurred
disturbances. In this case, these are the non-sinusoidal EMF and slot’s harmonics.

5. Speed and position observer of doubly fed induction generator

In this section, the speed and position observer of the doubly fed induction gener-
ator DFIG is considered. The rotor is connected to a voltage source converter, and the
stator is directly connected to three phases AC-grid. The field-oriented control FOC is
used to control the active and reactive stator powers presented in [23]. The rotor
speed will be estimated by using a non-adaptive estimation scheme only.

5.1 Mathematical models of the DFIG

The mathematical model of DFIG can be determined in rotating or stationary
reference frames (x-y). Considering the rotor and stator current vector components,
the differential equations have the form [24]:

Figure 9.
Regenerating mode of IPMSM machine for the low reference speed 0.025 p.u., TL = �0.5 p.u. for the cases a) in
(106) kf = 0.5, b) in (106) kf = 2.5 p.u. – Experimental results.
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disx
dτ

¼ � Ls

wσ
Rsisx � usxð Þ þ Lm

wσ
ωr Lmisy þ Lriry

� �þ Rrirx � urx
� �

, (108)

disy
dτ

¼ � Lr

wσ
Rsisy � usy
� �� Lm

wσ
ωr Lmisx þ LRirxð Þ � Rriry þ ury
� �

, (109)

dirx
dτ

¼ Ls

wσ
�ωr Lriry þ Lmisy

� �� Rrirx þ urx
� �þ Lm

wσ
Rsisx � usxð Þ, (110)

diry
dτ

¼ Ls

wσ
ωr Lrirx þ Lmisxð Þ � Rriry þ ury
� �þ Lm

wσ
Rsisy � usy
� �

, (111)

dωr

dτ
¼ Lm

JLr
irxisy � iryisx
� �� 1

J
TL þ f rωr
� �

: (112)

where the (x-y) coordinate system is associated with any angular speed, and it is
assumed that (108)–(109) are connected to the stationary stator windings so the
angular speed of the (x,y) system is ωa ¼ 0, fr is the friction.

It is assumed that all the DFIG parameters are known and constant. The compo-
nents urx, ury are treated as the control vector variables, and usx, usy, isx, isy and irx, iry
components are treated as measured and transformed to the adequate (x-y) reference
frame.

To design the observer structure, it is proposed to introduce new auxiliary vari-
ables, which are defined

Hx ¼ ωr Lmisx þ Lrirxð Þ, (113)

Hy ¼ ωr Lmisy þ Lriry
� �

: (114)

Considering (113)–(114) and (108)–(111), the observer structure can be
determined

d̂irx
dτ

¼ � Ls

wσ
Ĥy þ Rrirx þ urx
� �þ Lm

wσ
Rsisx � usxð Þ þ vrx, (115)

d̂iry
dτ

¼ Ls

wσ
Ĥx � Rriry þ ury
� �þ Lm

wσ
Rsisy � usy
� �þ vry, (116)

dĤx

dτ
¼ ω̂r �Ĥy � Rrirx þ urx

� �þ vHx, (117)

dĤy

dτ
¼ ω̂r Ĥx � Rriry þ ury

� �þ vHy, (118)

dθ̂r
dτ

¼ ω̂r þ vθ, (119)

where estimated state variables are marked by “^” and dω̂r
dτ ≈

Δω̂r
ΔT , the observer

contains the stabilization functions vrx, vry and vHx, vHy, vθ .
According to the design procedure of the observer presented in Section 2, in order

to stabilize the observer structure (115)–(119), appropriate form of the stabilization
functions vrx, vry and vHx, vHy, vθ should be determined to satisfy the Lyapunov
theorem. The Lyapunov function has the form
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V ¼ 1
2

~i
2
rx þ~i

2
ry þ ~H

2
x þ ~H

2
y þ ~θ

2
r

� �
>0, (120)

where.

~irx ¼ îrx � irx,~iry ¼ îry � iry,~Hx ¼ Ĥx �Hx,~Hy ¼ Ĥy �Hy and ~θr ¼ θ̂r � θr: (121)

The proposed observer structure will be asymptotically stable if _V2 <0 and if the
stabilizing functions introduced to the structure are determined as

vrx ¼ �cx~irx, (122)

vry ¼ �cy~iry, (123)

vHx ¼ cHx � Ls

wσ

~iry � ω̂rRr~irx

� �
, (124)

vHy ¼ cHy
Ls

wσ

~irx þ ω̂rRr~iry

� �
, (125)

where (cx, cy, cHx, cHy, cθ) > 0 are the observer tuning gains and

vθ ¼ �cθ~θr: (126)

The speed observer structure will be asymptotically stable if (122)–(126) is satis-
fied. In the sensorless control, the rotor speed is not measured, therefore the deviation
~θr in (126) should be replaced by ~θH. This means that the deviation between the
estimated values of Hx and Hy, calculated from (113)–(114) and estimated from the
observer structure in (117)–(118) is as follows:

~θH ¼ tan �1 ϑð Þ, (127)

where

ϑ ¼ HxĤy �HyĤx

HxĤx þHyĤy
and HxĤx þHyĤy

� � 6¼ 0: (128)

The value Ĥx,Ĥy can be estimated from

Ĥx ¼ ω̂r Lmisx þ Lr̂irx
� �

, (129)

Ĥy ¼ ω̂r Lmisy þ Lr̂iry
� �

: (130)

In the observer structure, the rotor speed is not estimated adaptively, therefore the
rotor speed error in (120) is not considered. The rotor speed value can be estimated
from the non-adaptive scheme. From (129)–(130), after some calculation, the rotor
speed value can be determined from

ω̂r ¼
Ĥxψ̂ rx þ Ĥyψ̂ ry � cf sω

ψ̂2
rx þ ψ̂2

ry

, (131)

82

New Trends in Electric Machines - Technology and Applications



where

sω ¼ Ĥxψ̂ ry � Ĥyψ̂ rx, (132)

ψ̂ rx ¼ Lmisx þ Lr̂irx, (133)

ψ̂ ry ¼ Lmisy þ Lr̂iry, (134)

cf ≥ 0 and ψ̂2
rx þ ψ̂2

ry

� �
6¼ 0.

In Figure 10a, the responses of DFIG on the active and reactive power changes are
shown. After 0.1 s, the active power sp value is changed from �0.1 to �0.35, and
reactive power is set to �0.6 p.u. and changed at the same time. After 0.4 s, the active
and reactive powers are changed sp to 0.35 and sq to 0.2 p.u. The rotor speed estimation
error is smaller than 0.015 in the dynamic states, the same as the rotor position error.

In Figure 10b, the active power sp is set to 0.02 p.u. and reactive power sq is set to
�0.6 p.u. The rotor speed of the DFIG is changed from the sub-synchronous to super-
synchronous mode. Close to synchronous rotor speed (1.0 p.u.), the estimated speed
error was smaller than 0.01 p.u., and it is increasing when the speed is growing. The
rotor position error has almost the same value.

In Figure 11a, the active power is changed from�0.1 to�0.35 p.u. The rotor speed
estimation error is smaller than 0.05 p.u. and the rotor position is smaller than 0.1 p.u.
during these changes (in the experimental results). In Figure 11b, the reactive power
is changed from�0.7 to�0.4 p.u., the rotor speed error is smaller than 0.035 p.u., and
the rotor position error value is changed from 0.05 to �0.05 p.u.

In Figure 12a, the rotor speed crosses from �1.1 (super-synchronous mode) to
�0.7 p.u. (sub-synchronous mode). The estimated value of rotor position is growing
and close to synchronous speed (�1.0 p.u.) achieving the value of about 0.12. The
reactive power value was set to �0.6 p.u. With LPF, the filtered value of stabilizing

Figure 10.
a) the changes of the active and reactive power, b) sub and super-synchronous working modes – Simulation results.
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function ŝωf is presented. The value of this function is about 0.005 for the super-
synchronous mode and about 0.001 p.u. for the sub-synchronous mode. The
estimated rotor speed error is about 0.05 p.u. during the crossing through the
synchronous speed.

Figure 11.
The changes: a) the active power from �0.1 to �0.35 p.u., b) reactive power from �0.7 to �0.4 p.u. –
Experimental results.

Figure 12.
The waveforms of chosen variables in a) the rotor speed are changed from the super-synchronous to
sub-synchronous mode, b) the steady state – Experimental results.
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6. Conclusions

In this chapter, robust mechanism for different structures of speed observers or
rotor position was presented. The solution was tagged “robust mechanism” because
of the introduction of stabilizing function in the speed or rotor position estimation
schemes. The additional stabilization law prevents the unstable working range of the
speed observer structure (positive poles of the observer). In this chapter, the stabil-
ity analysis based on the Lyapunov function was presented. The introduced addi-
tional stabilizing function to the observer structure is based on Lagrange’s identity,
which is the main contribution of this chapter. The form of the proposed robust
mechanism is based mainly on the vector and scalar product of the two chosen
vectors in the observer system. The mutual position of these vectors directly influ-
ences the position of the estimated vectors of the observer and also influences the
estimated rotor speed value or the rotor position. The mutual position of a vector
influences the value of the estimated electromagnetic torque of the machine. The
proposed solution has significant meaning during the low speed of the IM and
IPMSM (due to the unstable working points of the observer structure), as well as
during the synchronous rotor speed of the DFIG system. The proposed robust
mechanism for the speed estimation scheme can be applied to each observer
structure, which is based on the space vector form of the mathematical model of an
observer system.

Nomenclature

“^” estimated values,
“�” error of estimated values,
isx,y stator current vector components,
irx,y stator current vector components,
urα,β rotor voltage vector components,
usα,β stator voltage vector components,
ωr rotor angular speed,
θr rotor position,
Rr, Rs rotor and stator resistances,
Lm mutual-flux inductance,
Ls, Lr stator and rotor inductances,
Te electromagnetic torque,
TL load torque,
J machine torque of inertia,
τ relative time,
θ̂r estimated rotor position,
ω̂r estimated rotor electrical speed,
~ωr rotor speed error,
~θr rotor position error,
(x-y) coordinate system associated with any angular speed,
(d-q) coordinate system associated with the rotor angular speed,
Ld, Lq stator winding inductances,
ψf permanent magnet flux linkage,
IM induction machine,
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IPMSM interior permanent magnet synchronous machine,
DFIG doubly fed induction generator,
AFO adaptive full-order observer.
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Chapter 5

Classical Direct Torque Control for
Switched Reluctance Motor Drive
V. Pushparajesh and B.M. Nandish

Abstract

The modern electrical machines require higher efficiency in concern with pollution
of the environment. Industries are focusing on bringing out new avenues in control-
ling the electric motors to adjust the speed and torque without compromising. The
Direct Torque Control technique is suggested in this study. Slip control, which
exploits a peculiar link between slip and torque, is the basic concept underlying this
regulation. Direct torque control provides various benefits over field-oriented control,
including reduced sensitivity to machine parameters, easy assembly, and quick
dynamic torque response. As the voltage space vector is chosen in response to the
inaccuracy in the flux linkage and torque, a current controller is unnecessary in this
design. Low torque ripple, reduced noise, and reduced mechanical vibration are all
attainable through proper torque management in the switching reluctance motor.

Keywords: direct torque control (DTC), field-oriented control, dynamic torque
response, flux linkage, slip control, torque control

1. Introduction

Because of its simple mechanical structure, low cost, efficiency, The Switched
Reluctance Motor (SRM) has the potential to become one of the most widely used
low-cost electromechanical energy converters due to its advantageous torque/speed
characteristic and very minimal requirement for maintenance. However, this drive’s
non-uniform torque output characteristics and doubly salient construction mean it
generates more noise and torque ripples, limiting its usefulness. As a result, various
methods have been developed for reducing torque ripple in switching reluctance
motors. Several torque control techniques are studied with the goal of enhancing the
drive’s efficiency through reduced torque ripple and faster response times.

The early 1980s saw the development of Direct Torque Control for use with AC
drives. In 2012, Yong Chang Zhang, et al., proposed a new direct torque control for
three-level inverter supplied AC drives [1]. By adjusting the state voltage vectors in
relation to the torque and flux errors, we are able to exert direct control over the
torque. Direct torque control for a switching reluctance motor was developed by
Moron et al. using the lyapunov function [2]. In order to precisely control the torque
applied to a switching reluctance motor, Sahoo et al. presented a lyapunov function
[3]. It was proposed by Yong Chang Zhang et al. in 2012 that a sensorless drive for a
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three-level inverter-fed induction motor could benefit from enhanced direct torque
control [1]. A low-ripple torque control at high speeds was implemented by Jin Ye
et al. for switching reluctance motor drives [4].

Improvements in switching reluctance motor performance were studied by
Qingguo Sun et al., who looked into the role of direct torque control and torque
sharing function [5]. Conventional direct torque control of the four-phase switching
reluctance motor was created by Srinivas Pratapgiri and Prasad Polaki Venkata
Narsimha in 2012 [6]. As the bandwidth of the hysteresis controller is restricted in this
control, the decrease of torque ripple is minimal at best. For switching reluctance
motors, proposed a method of shared control of current and flux linkage [7]. For
switching reluctance motors, Jipun and Luk achieved sensorless direct torque control
[8]. This article discusses a machine with a shorter flux path and modifies the electri-
cal and mechanical phases so that they both add up to 45 degrees. When it comes to
the direct torque management of a switching reluctance motor, Bosra et al. proposed a
four-level converter [9].

Due to the odd number of phases, there is a paucity of material on direct torque
control with four phase SRM. Compared to field orientation control, the DTC’s many
benefits include reduced reliance on machine parameters, a quicker dynamic torque
response, and a more straightforward design. Any current controller is unnecessary
for the DTC as the voltage space vectors are chosen in response to flux linkage and
torque faults. Direct torque control, or DTC, is a method whereby a motor’s torque
and speed are adjusted in response to changes in the motor’s electromagnetic field.

2. Control strategy

When the converter switches, the motor’s flux and torque are directly controlled,
making direct torque control an optimal AC variable frequency control concept.
Figure 1 depicts the rudimentary DTC block diagram. Based on the estimated flux and
torque and the reference flux and torque, the stator voltage and resistance may be
calculated. Based on the output levels of this hysteresis comparator, the error is sent to
the hysteresis comparator, and the switching table is used to determine the voltage
vector that will be supplied to the voltage source inverter in order to obtain the
reference torque. Direct torque control for a four-phase switching reluctance motor is

Figure 1.
Block diagram of classical DTC.
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outlined, together with its underlying principles, the specific steps involved, and the
means for putting it into practise [10].

Because of their unique four-phase, eight-by-six-polar configuration, synchronous
motors cannot be controlled using the same direct torque technique as inductance
motors. SRM employs the reluctance principle for producing torque, with each phase
functioning separately and sequentially. Torque is generated in either a positive or
negative direction depending on the magnitude of the change in stator flux amplitude
in relation to the rotor’s location. We call the former “flux acceleration” and the latter
“flux deceleration,” respectively, when the value is positive or negative. Therefore,
the following constitutes a definition of a novel approach to SRM regulation [11].

• The stator flux linkage vector of themotor is kept within amplitude hysteresis bands.

• During the stator flux vector acceleration or deceleration, the torque can be
controlled.

The control goal is accomplished by varying the voltage vector and speeding up or
slowing down the stator flux vector in relation to the rotor rotation [12]. The magni-
tude of the torque is also a function of the instantaneous current, which is different
from the way things are handled with traditional control. It is also shown that the
stator current in this drive control system exhibits a first order delay with respect to
the variation in stator flux. In this way, it is safe to assume that the current remains
stable even if the flux is sped up or slowed down under control [13]. This permits the
control method to regulate torque solely with respect to the value of the flux acceler-
ation and deceleration, and independently of the current change. This is similar to the
traditional control scheme, which assumes that the rotor flux remains unchanged
despite variations in the stator flux and modifies the motor’s torque via regulation of
the stator flux acceleration [14].

3. Impact of voltage vectors

The Direct Torque Control loop has a torque hysteresis controller with three levels
(1, 0, and �1) and a flux hysteresis controller with two levels (1 & �1). The SR motor
has a distinctive pole structure, hence the voltage space vector for each phase is said to
be perpendicular to the pole’s central axis. Keep in mind that the physical winding
topology of the motor has not been altered from its standard setting.

Eachmotor phase can be in one of three voltage states, determined on the drive’s
circuit topology configuration. A zero-voltage loop arises and is defined as the condition
“0”when current is flowingwith one device off (V1 orV2). Similar to how the condition is
described as “�1”when both devices (V1&V2) are switched off and “1”when both
devices (V1&V2) are turned on, themotor phase experiences a negative voltage when
both are off and a positive valuewhenboth are on.Table 1displays the three voltage states
that can exist in a four-phase SRMdrive, which is a result of the switching function.

As a result, there are (mn, where m represents no of voltage states and n represents
no of phases) 81 distinct permutations, as opposed to just two for the classical DTC of
the AC motor. Figure 2 depicts the eight alternative spatial locations of switching
voltage vectors for defining the voltage states, which are defined in the same way as in
the standard direct torque control algorithm but with equal amplitude voltage vectors
that are separated by radians. The mathematical model of IM has typically been
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analysed using the dq coordinate system. Within a two-axis rotating reference frame,
the abc to dq0 transformation determines the direct axis, quadratic axis, and zero
sequence qualities of a three-phase sinusoidal signal. The park transformation is a
standard tool for modelling three-phase electric machines. Because the stator and
rotor values can be referred to a stationary or rotating reference frame, time-varying
inductances can be eliminated.

Each stator winding’s flux linkage is assumed to be at the magnetic pole’s centreline
for the sake of convenience. Figure 3 shows the stable α-β coordinate as a result. In
Eqs. (1) to (4), and Ψα and Ψβ stand for the two-flux linkage that flows in the two
equivalent rotors, generating the same flux as the stator ψ1, ψ2, ψ3 and ψ4 currents (1.4).

Ψα ¼ 1ffiffiffi
2

p ψ1þ ψ2 cos 45� ψ4 cos 45½ � (1)

Ψβ ¼ 1ffiffiffi
2

p ψ3þ ψ2 sin 45þ ψ4 sin 45½ � (2)

Ψs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψα2 þ Ψβ2

q
(3)

δ ¼ arct Ψβ= Ψα
� �

(4)

where, Ψs is instantaneous composition flux linkage, is spatial position angle of
composition flux linkage.

Switching stage of power converter Terminal voltage of winding Switching function S

V1 and V2 both on Positive Voltage 1

VI and V2 one On and the other Off Zero Voltage 0

Vl and V2 both Off Negative voltage �1

Table 1.
Switching function table.

Figure 2.
Spatial location of switching voltage vectors.
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Coordinate decomposition concept yields composition flow linkage height that is
1.4% greater than energy conservation approach, as seen in the aforementioned for-
mulae. As a result, that SRM will spend a lot of time operating at the magnetic
saturation point. While steady error is still ensured, motor efficiency drops dramati-
cally towards magnetic saturation. Using the α-β vector block, we can determine
which part of the plane the flow vector occupies. Sector of the plane in which the flow
vector lies is one of eight, with each sector separated from the others by 45 degrees. If
the stator flux linkage is in the kth region, increasing the flux with the switching
vectors U k+1 and U k�1, or decreasing it with U k+3 and U k�3, is possible.
Switching vectors U k +1 and U k +3 can be used to enhance the torque, whereas U
k�1 and U k�3 can be used to decrease it. Table 2 illustrates the converter’s voltage
switching vector selection. There are eight “active” voltage vectors labelled U1
through U8 and two “null” vectors labelled U0 and U9.

3.1 Classical direct torque control results

The aforementioned technique is used to model the direct torque control scheme
implemented in a MATLAB/Simulink simulation of a four-phase switching reluctance

Figure 3.
Composition flux linkage vector of switched reluctance motor.

Hysteresis controller Voltage vector selection

Φ T S (1) S (2) S (3) S (4) S (5) S (6) S (7) S (8)

1 1 U2 U3 U4 U5 U6 U7 U8 U1

0 U0 U9 U0 U9 U0 U9 U0 U9

�1 U7 U8 U1 U2 U3 U4 U5 U6

0 1 U3 U4 U5 U6 U7 U8 U1 U2

0 U0 U9 U0 U9 U0 U9 U0 U9

�1 U6 U7 U8 U1 U2 U3 U4 U5

Table 2.
Switching voltage vector for converter.
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motor drive. One torque hysteresis controller with three levels and another flux
hysteresis controller with two levels are used to create the simulation model. With
reference to equations 1.2–1.4, the, α, β flux transformation is performed. The phase
count and rotor-position angle inform the design of the flux sector. The voltage
switching vectors form the basis for the lookup table. In the virtual experiment, a
4-phase motor is used. Each zone’s switching vector is chosen from the vector table
based on the output signals from the two-hysteresis comparator, which are in turn
determined by the position sensor. The stator flux hysteresis band in this control
approach is set to 0.01Wb, and the torque hysteresis band is set to 0.3Nm; both values
are held within these bounds throughout all simulations. Within 50 milliseconds, the
motor will have reached the desired speed, having drawn a starting current that was
capped by the converter’s components’maximum ratings. The tests are performed at a
constant stator flux of 0.3Wb under a wide range of load torques.

Using a proportional integral controller with kp and ki set to 0.10 and 0.01
respectively, the speed error is transformed into the reference torque. The simulation
was run to examine how well the hysteresis controller worked under varying speeds
and loads. The 1.5 kilowatt, 3800 revolution per minute, 4 Newton-meter reluctance
drive is put through its paces with a dc voltage of 120 volts. It has been decided that
10mH will be the aligned Inductance and 49mH will be the unaligned Inductance.
We’ve decided on a value of 0.008kg.m.m for the moment of inertia and 0.01N.m.s
for the coefficient of friction. Below are examples of switching reluctance motor drive
performance under a variety of load and speed scenarios.

4. Performance at rated load condition

When first activated, the switching reluctance drive is subjected to the rated load
torque and speed. In Figure 4, we see the current and torque response in this situa-
tion. The phase current and total torque time scale variation is assumed to be 0.71–
0.76 seconds for simplicity in interpreting the responses. It can be seen from the curve
that the rated condition yields a maximum current of 8A.

The hysteresis controller minimises torque inaccuracy by choosing the best
switching vector, which in turn minimises torque ripple as depicted in the image.
Using the following Equation, one can get both the total torque production and the
torque ripple in percentage terms (5).

Tripple ¼ Tmax � Tminð Þ=Tavg
� � ∗ 100% (5)

The figure is further enlarged to specify the variation of the torque ripple
accurately at rated torque over a wide range of speed and is shown in Figure 5.

The response curve (a) indicates that the torque achieves a minimum of 3.94 Nm
and a maximum of 4.15 Nm, with an average of 4.0 Nm reached at 0.09 s. Torque is
5.2% of the total estimated force. According to the torque response curve(b), the
specified torque is reached in 0.09 seconds, after which the output torque ranges
between a maximum of 4.18 Nm and a minimum of 3.92Nm. An average torque value
of 4.01Nm was measured. The percentage of torque ripple is 6.47 percent. In the
torque response curve (c), the rated torque is reached in 0.09 s, following which the
output torque ranges between a maximum of 4.2 Nm and a minimum of 3.9 Nm.
Torque production (Tavg) is measured to be 4.05 Nm on average. Torque ripple is 7.4
percent, according to the calculations.
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5. Performance at 75% of the rated load

At first, the SRM drive is stimulated at 75% load torque at a variety of rated speeds.
Figure 6 displays the resulting current and torque response. According to the graph,
the rated condition produces a maximum current of 6A.

Figure 5.
Torque ripple waveforms at rated torque (a) Rated speed (b) Half rated speed (c) 10% of rated speed.

Figure 4.
Current and torque response of the motor at rated load condition.
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The suggested controller outperforms the alternative proposed controller in terms
of torque response and current response under the aforementioned conditions.
Figure 7 enlarges the torque response curve displayed in Figure 6 to show the precise
fluctuation of torque under 75% of the rated load situation with respect to the exten-
sive range of speed variation.

In 0.08 seconds, the output torque (Tout) reaches 75% of the specified torque, and
from there it varies between a maximum of 3.13 Nm and a minimum of 2.98 Nm, as

Figure 6.
Phase current and torque response at 75% of the rated load with rated speed.

Figure 7.
Torque response at 75% of the rated load (a) Rated speed (b) half of rated speed (c) 10% of rated speed.
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shown in the response curve (a). Generally speaking, 3.0Nm is the average torque
production (Tavg) that was measured. Torque ripple is 5.0% as determined by the
calculation.

Torque output (Tout) reaches 75% of rated torque in 0.08 seconds, as shown by the
response curve (b), and then ranges between a maximum of 3.18 Nm and a minimum
of 2.98 Nm. Torque production (Tavg) is measured to be 3.1 Nm on average. 6.4% is
the percentage value derived for the torque ripple. Torque output (Tout) reaches 75%
rated torque in 0.08 seconds, and after that, it ranges between a maximum of 3.12 Nm
and a minimum of 2.90 Nm, as shown by the torque response curve (c). It has been
determined that the average torque output (Tavg) is 3.05 Nm, and that the torque
ripple is 7.2% of that value. The output torque (Tout) achieves 75% of rated torque in
0.08 s, as shown by the response curve (a), and then ranges between a maximum
(Tmax) of 3.13 Nm and a minimum (Tmin) of 2.98 Nm.

Generally speaking, 3.0Nm is the average torque production (Tavg) that was mea-
sured. Torque ripple is 5.0% as determined by the calculation. Torque output (Tout)
reaches 75% of rated torque in 0.08 seconds, as shown by the response curve (b), and
then ranges between a maximum of 3.18 Nm and a minimum of 2.98 Nm. Torque
production (Tavg) is measured to be 3.1 Nm on average. 6.4% is the percentage value
derived for the torque ripple. Torque output (Tout) reaches 75% rated torque in 0.08
seconds, and after that, it ranges between a maximum of 3.12 Nm and a minimum of
2.90 Nm, as shown by the torque response curve (c). It has been determined that the
average torque output (Tavg) is 3.05 Nm, and that the torque ripple is 7.2% of that
value (Figure 8).

In order to clearly demonstrate the fluctuation in torque under 50% of the rated
load condition with respect to the different speed conditions, the above depicted
torque response curve has been extended. Figure 9 demonstrates the observable range
of values.

Figure 8.
Current and torque response at 50% of the load torque with rated speed.
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In 0.08 seconds, the output torque (Tout) reaches 50% of its rated value, and from
there it varies between a maximum (Tmax) of 2.1 Nm and a minimum (Tmin) of 2.0 Nm,
as shown in the response curve (a). Torque production (Tavg) is calculated to be 2.02
Nm on average. 4.9% is the percentage value determined to be the torque ripple output.
The torque output (Tout) reaches 50% of the specified torque in 0.08 s, and then it
ranges between 2.11 Nm and 1.99 Nm (Tmax and Tmin, respectively) as shown in the
torque response curve (b). Torque production (Tavg) was measured to be 2.0Nm on
average. 6 percent is the calculated ripple percentage of torque. The torque output (Tout)
reaches 50% of the specified torque in 0.08 seconds, as shown by the curve (c), and then
ranges between a maximum (Tmax) of 2.13 Nm and a minimum (Tmin) of 1.99 Nm.

Generally speaking, we can say that the torque output (Tavg) is 2.02 Nm. Torque
ripple is determined to be 6.9% of total output.

6. Performance at 25% of the rated load torque

In order to trigger the SRMdive, a 25% load torque is appliedwhile the speed is varied.
We evaluate the performance of the proposed controller bymeasuring and tabulating the
torque and current responses. Figure 10 depicts this rated-speed torque and current
response. This curve shows that at the rated condition, themaximum current is 2A.

The aforementioned torque response curve is simplified to clearly demonstrate the
accurate fluctuation of torque under 25% of the rated load situation with respect to the
broad range of speed variation. Figure 11 displays this variance.

It can be seen in the torque output profile (a) that the output torque (Tout) reaches
25% of the specified torque in 0.07 seconds, and then ranges between a maximum of
1.01 Nm and a minimum of 0.99Nm. The computed proportion of torque ripple
output is 2.0%, and the average torque output (Tavg) is 1.00Nm.

Torque output (Tout) achieves 25% rated torque in 0.07 s, as shown by the torque
response curve (b), and then ranges between a maximum of 1.015 Nm and a
minimum of 0.99 Nm. To be precise, Tavg is 1.0Nm, which is the average torque
production. According to the numbers, the torque ripple is 2.5%.

Figure 9.
Torque response at 50% of the rated load (a) Rated speed (b) half rated speed (c) 10% of rated speed.
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Torque output (Tout) achieves 25% rated torque in 0.07 s, as suggested by the
response curve (c), and then ranges between a maximum of 1.02 Nm and a minimum
of 0.99 Nm. Torque production (Tavg) averaged out to be 1.01 Nm. The percentage of
torque output is 3.0%.

7. Performance under variable load condition

In the dynamic simulation, the speed was maintained at a constant rated condition
throughout. There were two potential scenarios: It took 0.34 seconds to double the

Figure 10.
Current and torque profile for 25% of the load torque at rated speed.

Figure 11.
Torque profile for 25% of the load torque (a) Rated speed (b) half rated speed (c) 10% of rated speed.
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command torque Tcom from the first case shown in Figure 12 to the second case
whereas it took 0.65 seconds to halve the torque back down to 2 N.m from 4 N.m.
According to the figure, the controller has excellent dynamic performance, with Tout

increasing to 2 Nm in just 0.06s.
The most significant drawback of the conventional direct torque control is its slow

response to initial torque and flux changes. Changes between steady state and step-up
states use the same vectors, making it impossible to differentiate between large and
tiny errors in flux and torque. Both AI and conventional techniques of control over AI
can alleviate these issues. To smooth out the driving torque at any rated speed and
torque, the next few chapters will focus on such smart controllers.

8. Comparative study

An analysis is made on Neural Network Controller and the revealed observations
are made; Table 3 shows the performance comparisons between different controllers.

Figure 12.
Torque profile under external load variation.

Sl. no Proposed controller based
DTC

Rated speed in
%

Torque ripple in %
with respect to the %
applied load torque

Computational time
(sec)

100 75 50 25

1 Hysteresis controller 100 6.0 5.0 4.9 2.0 Equal to run time

50 6.48 6.4 6 2.5

10 7.4 7.2 6.9 3.0

2 Fuzzy controller 100 4.7 4.0 3.5 1.5 4.34

50 5.7 5.6 5.4 2.1

10 6.6 6.2 5.9 2.4

3 Neural network controller 100 3.5 3.3 2.5 1.3 3.17

50 4.4 3.98 3.5 1.8

10 5.6 5.2 5.0 2.2

Table 3.
Performance comparison between different controllers.
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9. Conclusion

The direct torque control technique is tested for switched reluctance motor, Direct
torque Control technique is able to minimize the ripple content in the motor torque
output at different operating conditions. the torque ripple is almost minimized in the
range of about 1.5% to 2% for a fixed speed with variable torque. The settling time of
the torque and the response time of the speed is also reduced, which in turn increases
the efficiency of the machine. The major drawback with the proposed controller is the
fixation of weights during the real time application which reduce the flexibility and
adaptability of the system. This drawback or limitation can be overcome by using
hybrid intelligent controller.
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