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(3) The FA-SSD model [32] is proposed to improve the accuracy and recall rate of insulator
umbrella disc shedding detection.

2. Materials and Methods

As shown in Figure 3, the overall process of umbrella disc shedding detection included
three parts: pre-training and fine-tuning of the defogging model, training with the clear
insulator image datasets, and testing with the fogged insulator images.

Figure 3. The overall process of umbrella disc shedding detection. (a) Dehaze model. (b) Training
phase. (c) Testing phase.

The dehazing model was trained by synthetic foggy images, and the insulators with
foggy images were fine-tuned to improve the dehazing effect of the algorithm. A feature
fusion module and an attention module were added to the umbrella disc shedding detection
model to improve the detection accuracy. In the detection of the insulator umbrella disc
shedding, clear images of insulators were used for training, and images of insulators with
fog were used for testing.

2.1. Dehazing Model

Inspired by the dehazing algorithm proposed by Chen [33], this paper adopted the
method of pre-training and fine-tuning to improve the dehazing effect of the dehazing
model. The training of the model was divided into two steps. The first step used a large
number of haze-free images and artificially-generated fogged images from the REISDE
dataset [34] to train the dehazing model, and the second step used the foggy insulator
images to fine-tune the dehazing model to improve the dehazing ability of the dehazing
model on fogged insulator images. During fine-tuning, physical priors were guided through
the loss function. As shown in Figure 4, the dehazing model had a two-stage framework.

In the pre-training stage, an advanced dehazing model was adopted as the backbone.
The pre-training phase used synthetic data for training, resulting in a pre-trained model
on the synthetic domain. In the fine-tuning stage, the fog-free image J, transmission map
t, and atmospheric light A were obtained through the backbone network. At the same
time, three priors, including a dark channel prior, a bright channel prior, and the Contrast
Limited Adaptive Histogram Equalization (CLAHE) were introduced, and the model was
guided in the form of loss function.
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Figure 4. Structure of the dehaze model.

The loss function of the dark channel prior is shown as follows:

LDCP = E(t,
∼
t ) = tT Lt + λ(t − ∼

t )T(t − ∼
t ) (1)

where t and t̃ denote the transmission estimates from the DCP and the backbone network,
respectively. L is a Laplacian-like matrix.

The loss function of the bright channel prior is shown as follows:

LBCP =
∥∥∥t − ∼

t
∥∥∥

1
(2)

where t and t̃ represent the transmission estimates from the BCP and the backbone net-
work, respectively.

The loss function of the CLAHE reconstruction is shown as follows:

LCLAHE = ‖I − ICLAHE‖1 (3)

where I is the original hazy input, and ICLAHE is the reconstruction result by JCLAHE, t̃,
and Ã.

The role of the three loss functions is different. Dark channel prior greatly advances
the model performance on real hazy images, bright channel prior helps make the resulting
images brighter and with enhanced contrast, and CLAHE is used to achieve a balance
between LDCP and LBCP.

The total loss of the fine-tuning process was obtained by combining the three losses
as follows:

Lcom = λdLDCP + λbLBCP + λcLCLAHE (4)

where λd, λb, and λc are the tradeoff weights.

2.2. Fa-Ssd Model

Target detection includes target recognition and localization. For CNN, the two
are contradictory [35]. Generally speaking, deep feature maps contain more semantic
information, which is good for object recognition but not good for object localization;
the difference is that the shallow feature map contains more detailed features, which is
good for object localization but not good for object recognition. As shown in Figure 5, the
SSD model adopts a feature pyramid structure to detect objects of different scales; small
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objects are detected on the shallow feature maps, and large objects are detected on the deep
feature maps.

Figure 5. Structure of the SSD model.

However, the problem with this method is that the small target features generated by
the shallow layer lack sufficient semantic information, and the detection of small targets
still is not effective. In order to improve the detection ability of the SSD model for the
insulator umbrella disk shedding, the FA-SSD model is proposed. As shown in Figure 6,
the FA-SSD model adds a feature fusion module and an attention module to the SSD model.

Figure 6. Structure of the FA-SSD model.

First, the insulator images were sent to the ResNet50 [36] feature extraction network
to extract the features. Since the shallow feature maps contain richer small target detail
information, Conv4_x in ResNet50 and two auxiliary convolutional layers were selected
for feature fusion. The feature dimension of Conv4_x was 38 × 38 × 1024, and the feature
dimensions of the two auxiliary convolutional layers were 19 × 19 × 512 and 10 × 10 × 512.
Then, in order to fuse the features of the three different scales simply and efficiently, the two
auxiliary convolutional layers were upsampled using bilinear interpolation to make them
the same size as Conv4_x. Finally, the feature map was concatenated and normalized to
generate a new feature pyramid structure for the identification and localization of umbrella
disc shedding. The parameters of each layer in the structure are shown in Table 1.

On this basis, in order to enhance the network’s ability to extract low-level detail
features, the SE channel attention module [37] was added to the lowest three layers of the
feature pyramid.
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Table 1. Input and output dimensions of each layer.

Layer Name Input Output

Conv1 300 × 300 × 3 150 × 150 × 64
Conv2_x 150 × 150 × 64 75 × 75 × 256
Conv3_x 75 × 75 × 256 38 × 38 × 512
Conv4_x 38 × 38 × 512 38 × 38 × 1024

layer1 38 × 38 × 1024 19 × 19 × 512
layer2 19 × 19 × 512 10 × 10 × 512

SE Module

The SE learns a set of weight coefficients through a small fully connected network
to weigh each channel of the original feature map. In this way, different weights are
assigned to each channel to enhance the feature extraction capability of the network. The
implementation process of the SE was as follows:

(1) We performed convolution pooling and other operations on the input image to obtain
a feature map:

uc = vc ∗ X =
c
′

∑
s=1

vs
c ∗ xs (5)

where vc and X represent the convolution kernel and the input image, respectively;
vs

c and xs represent the convolution kernel and the sth channel of the input image,
respectively; and c

′
represents the number of channels.

(2) We squeezed and compressed the feature map into one-dimensional features:

zc = Fsq(uc) =
1

H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (6)

where H and W represent the width and height of the feature map, respectively.
(3) For excitation, we performed activation operations on multiple channels to extract

different features:

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (7)

(4) We multiplied the obtained weight factor with the corresponding channel feature to
obtain a new feature map:

∼
xc = Fscale(uc, sc) = sc · uc. (8)

3. Results

3.1. Experimental Environment

The proposed model used an NVIDIA RTX 2080Ti GPU for training and testing and
the Ubuntu 18.04 LTS as the operating system; the training process was accelerated by
CUDA 10.1; the computer language was Python 3.6, and the network framework was
PyTorch. The batch size was set to 8, the learning rate was 0.003, the preprocessed size of
the input image was 300 × 300, and the maximum number of iterations was 7800. The SSD
was chosen as the baseline for improvement and comparison purposes.

The datasets used in the dehazing stage included the REISDE dataset and images
of fogged insulators. The insulator images used in this paper were the aerial images of
transmission line inspection, which were obtained by UAV. The datasets used in the object
detection stage consisted of fogged insulator images, as well as fog-free insulator images.
Since the insulators were in normal working condition most of the time, the defect images
occupied a small proportion of the obtained aerial images. In addition, due to factors such
as shooting environment, shooting angle, shooting distance, etc., many images were of poor
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quality. By cooperating with several power grid companies, we obtained some samples
of insulator umbrella disk shedding. Among them, there were 160 images (the number of
the insulator umbrella disc shedding was 176) with fog and 480 images (the number of the
insulator umbrella disc shedding was 518) without fog. We used the images without fog as
the training set and the images with fog as the test set. As shown in Figure 7, the insulator
datasets contained glass insulators and ceramic insulators.

Figure 7. Glass insulators and ceramic insulators. (a) Glass insulators. (b) Ceramic insulators.

To compare the different models, precision(P), recall(R), and F1 were used as model
evaluation metrics. The higher the value, the better the detection performance of the model.

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

F1 =
2 × P × R

P + R
(11)
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where TP and FP denote the number of correctly and incorrectly located defects, respectively.
TP + FP is the total number of located defects, andTP + FN is the total number of actual
defects. F1 is the harmonic mean of precision and recall.

3.2. Ablation Experiment of Fa-Ssd Model

In order to verify the effectiveness of the feature fusion module and the attention
module, the experiments were conducted on the original SSD model, the SSD model with
the feature fusion module, the SSD model with the attention module, and the FA-SSD
model. The visualization results of the FA-SSD model and the SSD model are shown
in Figure 8.

Figure 8. Visualization of SSD and FA-SSD. (a) SSD. (b) FA-SSD.

80



Sensors 2022, 22, 4871

In the experiment, the other parameters of the model training were guaranteed to be
the same, and the obtained detection results are shown in Table 2.

Table 2. Results of the ablation experiment.

SSD
Feature
Fusion

Attention P R F1

� 0.866 0.755 0.806
� � 0.899 0.769 0.828
� � 0.877 0.793 0.832
� � � 0.909 0.817 0.860

The detection performance of the FA-SSD was better than the methods that only added
the feature fusion module or the attention module. Compared with the original SSD model,
the accuracy rate was improved, the recall rate was improved, and the F1 indicator was
improved. The experimental results showed that both the feature fusion module and the
attention module had a positive effect on the model.

3.3. Compared with Other Methods

In order to further verify the effectiveness of the FA-SSD model in the detection of insulator
umbrella disk shedding, under the condition of ensuring the same feature extraction network
and hyperparameters, the method in this paper was compared with the commonly used
target detection algorithm at this stage. The compared methods included Faster R-CNN [27],
YOLOV3 [25], and RetinaNet [38], and the results are shown in Figures 9 and 10 and Table 3.

Figure 9. Results of different methods.
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Figure 10. Visualization results of different methods. (a–c) Faster R-CNN. (d–f) YOLOV3. (g–i) RetinaNet.
(j–l) FA-SSD.

Table 3. Results of different methods.

Method Input Size P R F1

SSD [32] 300 × 300 0.866 0.755 0.806
Faster

R-CNN [27] 800 × 800 0.793 0.702 0.744

YOLOV3 [25] 300 × 300 0.879 0.769 0.820
RetinaNet [38] 300 × 300 0.774 0.658 0.711

FA-SSD 300 × 300 0.909 0.817 0.860

It can be seen that FA-SSD significantly outperformed SSD and other commonly
used object detection algorithms. Compared with other algorithms, the accuracy rate of
detecting the umbrella disc shedding was improved on average 8.1%, and the recall rate
was improved on average 9.6%. Compared with other target detection algorithms, the
FA-SSD algorithm improved the detection accuracy and reduced the missed detection rate.

3.4. Dehazing Algorithm Experiment

As shown in Figure 11, after using the dehazing algorithm to dehaze the hazy images,
the pictures became clearer.
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Figure 11. Visualization of Dehazing Algorithms. (a) Foggy images. (b) Images after dehazing.

In order to verify the effectiveness of the dehazing algorithm proposed in this paper for
the detection of insulator umbrella disc shedding in foggy images, the dehazing algorithm
proposed in this paper was combined with the target detection algorithm, and the obtained
detection results are shown in Figure 12.

As shown in Figure 12, the accuracy and recall of the model proposed in this paper
were better than other models. It can be seen that after adding the defogging model,
the accuracy and recall rate of the insulator umbrella disc shedding detection of the other
models were significantly improved. Among them, the accuracy rate of the model increased
by 0.08 on average, and the recall rate increased by 0.06 on average. This is because the
clear image obtained by the dehazing algorithm was more conducive to the extraction of
the features, thereby improving the detection effect. As shown in Figure 13, after adding the
defogging algorithm, the detection effect of the FA-SSD model was significantly improved.
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Figure 12. Experimental results before and after adding the defogging algorithm.
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Figure 13. Visualization results of the FA-SSD and FA-SSD with defogging algorithm. (a) FA-SSD.
(b) FA-SSD with defogging algorithm.

4. Discussion

On the basis of realizing the defect detection of insulators with foggy images, combined
with the high-speed transmission advantages of 5G technology, real-time detection of
insulator defects can be realized, and the necessary processing methods can be taken in
time to reduce insulator failures. Compared with the traditional manual inspection, the
method in this paper can reduce labor, material resources, and the influence of subjective
factors; compared with the currently used UAV inspection, the method in this paper is more
in real time. In the context of China’s vigorous promotion of a smart grid, this research has
important practical significance and good development prospects.

In the future, our research will have the following three aspects. First, we will examine
more dehazing algorithms, such as the latest semi-supervised [39] or unsupervised [40]
frameworks. Second, we will collect more fogged images of insulators and conduct a joint
training strategy to combine image dehazing with defect detection [41]. Third, we will
study the defect detection of insulators under a series of complex weather conditions such
as sand, rain, and snow and devote ourselves to solving the problem of the defect detection
of transmission lines in complex weather, so as to realize all-weather real-time monitoring
of transmission lines.
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5. Conclusions

Aiming to solve the difficulty of fully extracting effective features from foggy insulator
images, as well as the small and difficult to detect proportion of umbrella disk shedding in
an image, this paper proposed a detection method for insulator umbrella disk shedding
defects that combined a dehazing algorithm and FA-SSD. Through the two-stage algorithm
of dehazing and detection, the accurate detection of the insulator umbrella disk shedding in
a foggy image was realized. This paper is the first to detect the defects in transmission lines
with foggy images, which provides a solution for all-weather monitoring of transmission
lines under complex weather conditions.
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FA-SSD SSD Combining Feature Fusion and Attention Mechanism
FPN Feature Pyramid Network
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P Precision
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FP False Positive
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Abstract: Training a deep convolutional neural network (DCNN) to detect defects in substation
equipment often requires many defect datasets. However, this dataset is not easily acquired, and
the complex background of the infrared images makes defect detection even more difficult. To
alleviate this issue, this article presents a two-level defect detection model (TDDM). First, to extract
the target equipment in the image, an instance segmentation module is constructed by training
from the instance segmentation dataset. Then, the target equipment is segmented by the superpixel
segmentation algorithm into superpixels according to obtain more details information. Next, a
temperature probability density distribution is constructed with the superpixels, and the defect
determination strategy is used to recognize the defect. Finally, experiments verify the effectiveness of
the TDDM according to the defect detection dataset.

Keywords: infrared image; substation equipment; defect detection; superpixel segmentation; temperature
probability density

1. Introduction

Substation equipment is an essential part of the power system [1]. Once defects
exist in operating equipment, an abnormal temperature usually occurs at the defective
parts, triggering thermal failures that can lead to local equipment burnout or even more
severe electric power accidents [2]. Therefore, timely and accurate detection of defects in
substation equipment is of great significance to the safety and stability of a power system.

Many methods have been studied for defects detection in substation equipment, in-
cluding dielectric loss measurement [3], UHF (ultra-high frequency) method [4], FDR
(frequency domain reflectometry) method [5], and infrared image-based methods [6,7].
The dielectric loss measurement requires off-line preventive testing, which will delay the
operation of substation equipment. The complexity of the UHF method makes directly
locating defective regions difficult. The FDR method is sensitive only to defects caused by
moisture. Early infrared image-based methods for detecting thermal defects in substation
equipment require manual intervention, which is time-consuming and costly. However,
with the development of smart grids and the successful application of substation inspec-
tion robots, a large number of on-site infrared images needed to be inspected urgently.
Intelligent defect detection methods have emerged based on computer vision.

Due to the redundant background and the densely packed targets, applying auto-
matic intelligent defect detection methods directly is difficult. Thus, extracting the target
equipment in the complex infrared images is required first. Early researchers studied
the methods using traditional digital image processing techniques, including threshold-
based, region-based, and edge-based methods. Threshold-based methods separate the
foreground from the background of an image by selecting a suitable threshold [8], which
is simple and efficient but susceptible to noise interference, causing poor robustness. A
typical region-based method is the watershed algorithm [9]. It uses the local minima of
the image gradient to form a specific region to segment different image parts. However, it
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is sensitive to the color changes in the object’s surface, giving rise to over-segmentation.
Edge-based methods extract edge features from the image by edge detection operators
such as the Sobel operator [10] and Canny operator [11] to realize the segmentation of
an image. Nevertheless, it cannot guarantee the existence of closed, continuous edge
regions, and it lacks robustness to noise interference. The recent rapid development of deep
learning and imaging technologies has brought innovative ideas for extracted methods
from infrared images of substation equipment. Instance segmentation is a classic task in
the field of computer vision, which can perform object extraction excellently in images.
This task, not only locates and classifies all instances but also segments each instance
from the images [12]. Many applications benefit from accurate instance segmentation,
including electrical systems [13,14], autonomous driving [15], robotics [16,17], and intel-
ligent transportation systems [18]. Consequently, instance segmentation has become an
active research topic in the industry, which benefits its powerful ability of object extraction.
Xiong et al. [19] proposed a method based on Mask R-CNN and Bayesian context network
to recognize power equipment, which is considered the relationship between objects in
a complex background. Ling et al. [20] presented a novel deep learning framework to
locate the broken insulators, which is address the problem of low signal-noise-ratio (SNR)
setting. To detect the transmission line, a transmission line detection (TLD) algorithm is
proposed [21], which is a multitask deep neural network with branched outputs. The deep
learning-based methods show excellent performance to extract the target object.

In the stage of defect detection, some promising methods for detecting defects are
feature extraction and convolutional neural networks. The key to feature extraction-based
approaches is acquiring target ontology features and using classifiers to recognize the
extracted features [22,23]. However, the effectiveness of feature extraction and the selection
of classifiers are great dependence on personal experience. Convolutional neural networks
focus on detecting target defects through an object detection model [24,25]. Li et al. [26] pro-
posed a method of insulator defect location, which is cascades detection and segmentation
networks from two levels. In view of the characteristics of insulator defects, Wang et al. [27]
presented an improved network to detect the defect of aerial insulator photos. The above
method achieved excellent results in defect detection, but requires numerous defective
insulator images to train the DCNN. In reality, the infrared images of defective substation
equipment are difficult to acquire, and the performance of DCNN is difficult to guarantee.
Implementing defect detection of substation equipment in infrared images is still chal-
lenging. In an infrared image, the different parts of the target corresponding to different
heat generation characteristics. Thus, the temperature feature of the target is used to es-
timate temperature probability density distribution, which is used to identify defects by
the presented strategy. The proposed defect detection part is an unsupervised learning
method and is not limited by the dataset. Before that, the superpixel processing is used to
provide more details, those details offer more information for defect detection. Meanwhile,
it reduces the complexity and time spent on the model.

This study proposes the TDDM for defect detection in electric power substations,
which is used in infrared images of substation equipment, e.g., insulator, current trans-
former, lightning arrester, bushing and voltage transformer. The main contributions of this
paper are as follows.

(1) Inspecting the substation equipment from the infrared images with the redundant
background and the densely packed targets directly is difficult. The proposed TDDM
extracted the target firstly, and then, defect analysis is conducted on a single instance,
which is converted to a two-level detection problem.

(2) Superpixel segmentation is conducted on the extracted target equipment to merge
adjacent pixels with similar characteristics. The process is used to provide more
details and reduce the complexity of the subsequent detection determination.

(3) Based on a Gaussian kernel function, the temperature probability density distribution
of the target equipment is constructed, which is used in a defect determination strategy
to find the defective areas in infrared images of the target substation equipment.
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(4) The experimental results show that the proposed model accurately detects defects in
substation equipment in infrared images.

The remainder of this paper is organized as follows. In Section 2, a novel model for
detecting these defects in infrared images is provided, including instance segmentation,
superpixel segmentation, and defect determination. Section 3 verifies the performance of
the proposed model and discusses the influences of superpixel parameters on the results.
Section 4 concludes this work.

2. Procedure for the Proposed Model

The model proposed is designed for automatically detecting defects of substation
equipment in infrared images.The model transforms defect detection into a two-level
detection problem. First, an instance segmentation algorithm directly extracts the target
equipment from infrared images with complex backgrounds. After that, a superpixel
segmentation algorithm merges similar characteristics and captures the details of the target
equipment. Finally, the defect position is determined. Figure 1 is a flowchart of the
proposed TDDM procedure.

Figure 1. Flowchart of TDDM.

2.1. Instance Segmentation

To detect substation equipment in infrared images, we must first extract the target
equipment from the image. Instance segmentation is a basic task of DCNN, which is to
extract the target from a complex background and distinguish different instances in the
image’s foreground [28]. There are three commonly used instance segmentation methods:
top-down detection-based methods, bottom-up semantic segmentation-based methods
and direct instance segmentation at the pixel level. Top-down detection-based methods
perform instance segmentation in a bounding box, such as the Mask R-CNN [29], Mask
Scoring R-CNN [30], and YOLACT [31] networks. In bottom-up semantic segmentation-
based methods, the pixels are labeled for prediction and clustered [32,33]. The SOLO
algorithm [34] performs end-to-end optimization of instance segmentation by mask label-
ing, which directly segments instances at the pixel level.

This study extracted target equipment images using YOLACT. Its backbone is the
feature extraction part used to obtain different resolution feature maps Ci(i = 2, 3, 4, 5) from
the input infrared image. The description of specific backbone configuration parameters
as shown in Table 1. To obtain the multiscale features, Ci(i = 2, 3, 4, 5) are fused by the
horizontal connection with the feature pyramid. Then multiscale features Pj(j = 3, 4, 5, 6, 7)
are connected to prediction heads for multiscale prediction of objects. There are two
branches after the feature pyramid. The one branch predicts the object category, the
bounding box, and the mask coefficients; the higher score bounding box is obtained
through non-maximum suppression (NMS) [35]. The other branch is a fully convolutional
network called protonet, which generates a series of prototype masks based on the feature
map P3. Finally, the prototype masks obtained from protonet are linearly combined with
mask coefficients to get m instance cm(m ∈ {1, 2, · · · , M}. We can perform defect analysis
on a single instance, removing interference from complex backgrounds.
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Table 1. The description of specific backbone configuration parameters.

Layer Name Structure Convolution Kernel Feature Map Size

Input Layer - - 640 × 640

Conv1 - 7 × 7 × 64, stride 2 320 × 320

Pool1 Maxpool 3 × 3 × 64, stride 2 160 × 160

Conv2_x Bottleneck

⎡⎢⎢⎣
1 × 1 × 64

3 × 3 × 64

1 × 1 × 256

⎤⎥⎥⎦×3 160 × 160

Conv3_x Bottleneck

⎡⎢⎢⎣
1 × 1 × 128

3 × 3 × 128

1 × 1 × 512

⎤⎥⎥⎦×4 80 × 80

Conv4_x Bottleneck

⎡⎢⎢⎣
1 × 1 × 256

3 × 3 × 256

1 × 1 × 1024

⎤⎥⎥⎦×6 40 × 40

Conv5_x Bottleneck

⎡⎢⎢⎣
1 × 1 × 512

3 × 3 × 512

1 × 1 × 2048

⎤⎥⎥⎦×3 20 × 20

2.2. Superpixel Segmentation

In the previous section, the image of each type of target equipment in the infrared
image is segmented. In this section, the target equipment is detected individually. To make
defect detection easier, we first perform superpixel segmentation. Superpixel segmentation
forms superpixels from adjacent pixels in the image of target equipment with similar
texture, color, luminance, or other characteristics. Thus, superpixels can be treated as
processing units, reducing the complexity and time spent on the subsequent processing
of the image [36]. Superpixel segmentation methods are generally classified into graph
theory-based methods [37,38] and clustering-based methods [39–41]. Computation of cost
functions in graph theory-based methods is complicated. In contrast, clustering-based
methods has simple principles and good interpretability. The clustering-based simple linear
iterative clustering (SLIC) algorithm obtains uniform compact superpixels, and it has good
controllability and low operational complexity than other superpixel algorithms [42].

Inspired by the SLIC algorithm, the proposed model forms adjacent pixels with similar
temperature characteristics t and spatial characteristics into superpixels cn

m, n ∈ {1, 2, . . . , N}.
Assume that there are I pixels in infrared image c, and the number of superpixels is K. Then
the interval between the clustering centers Ck is S =

√
I/K. The pixels 2S distance from the

clustering center is iteratively clustered based on spatial similarity and temperature similarity,
until the maximum number of iterations is reached. The formula for calculating the distance
D between pixel i and the cluster center Ck is as follows:

D =

√
(

dt

mt
)

2
+ (

dxy

mxy
)

2

, (1)

dt =

√
(tk − ti)

2, (2)

dxy =

√
(xk − xi)

2 + (yk − yi)
2, (3)

where dt is the temperature distance between pixel i and the cluster center Ck, dxy is the
spatial distance between pixel i and the cluster center Ck, mt and mxy are the maximum
temperature distance and spatial distance obtained in the previous iteration, respectively.
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Further, the superpixels cn
m of each instance are obtained, and the corresponding

temperature characteristic Tn
m, n ∈ {1, 2, . . . , N} is calculated by averaging the temperature

of pixels in the superpixel. All temperature characteristics of cn
m lie between the maximum

temperature Tmax
m and the minimum temperature Tmin

m , i.e., Tn
m ∈ [Tmin

m , Tmax
m ].

2.3. Defect Determination

After superpixel segmentation of the target equipment, we inspect the target equipment
one by one to determine whether there exist defects. Figure 2 shows the target equipment of
the background, normal region, and defective region with different temperature characteristics
in the infrared image. The range of temperatures that the defect determination algorithm can
identify is even broader than the temperatures range in Figure 2.

Figure 2. Infrared image of substation equipment and its temperature distribution.

Different temperature characteristics correspond to different temperature probability
densities. Thus, we can model the temperature probability density distribution of the
instances to determine whether there are defects.

For instance cm, the temperature probability density Tn
m can be calculated by Equation (4),

as shown by the blue histogram in Figure 3.

fm(n) =
Tn

m
N
∑

i=1
Ti

m

, n ∈ [1, N]. (4)

However, the temperature probability density data are discretized, which cannot be
used directly. Thus, we need to estimate the probability density function to approximate its
specific distribution. The common probability density estimation methods include para-
metric probability density estimation and non-parameter probability density estimation.
Kernel density estimation (KDE) [43] is a non-parameter probability density estimation
method used to estimate the temperature probability density distribution of the data.

If there is a sufficiently small temperature region A = [TA min
m , TA max

m ] with bandwidth
h, the probability Pm(A) of Tn

m in A is
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Pm(A) =
∫
A

fm(x)dx ≈ fm(x)
TA max

m∫
TA min

m

dx = fm(x)h. (5)

Suppose the probability of Z out of N data falling into region A is

Pm(A) =
Z
N

. (6)

Then the temperature probability density becomes

fm(x) =
Z

Nh
. (7)

The kernel density estimation of Equation 7 using the Gaussian kernel function obtains
the temperature probability density function of instance cm.

fm(x) =
1

Nh

N

∑
j=1

1√
2π

e−
1
2 (

x−Tj
m

h )
2

. (8)

Figure 3. Temperature probability density distribution of cm.

After that, the temperature probability density distribution function is visualized in
Figure 3 by the red curve. The point of local maximum Oq

m((xq
m, yq

m), q = 1, 2, . . . , Q) is
obtained, which is denoted by the black dots in Figure 3.

Based on the temperature probability density distribution function, we propose a
determination strategy to find defects in infrared images. Due to the different temperature
characteristics in the background, normal region, and defective region. Meanwhile, differ-
ent temperature areas are shown in the temperature probability density distribution. Thus,
the presence of Oq

m and Q ≥ 3 indicate the presence of a defect in the target equipment
in this strategy. Then, through the application of the proposed algorithm, x3

m is used as
the threshold, superpixels cn

m with temperature characteristics Tn
m higher than x3

m are deter-
mined to be defective superpixels, automatically. Then, all adjacent defective superpixels
are merged to determine the defective regions Dm in instance cm. Finally, all instances of the

94



Sensors 2022, 22, 6861

infrared image are traversed to obtain all the defective regions automatically. In addition,
Algorithm 1 summarizes the whole programming procedure of the proposed TDDM.

Algorithm 1 TDDM

1: Input:Infrared image c, Number of superpixels K.
2: Output: All defect regions in the infrared image.
3: Obtain instance cm = Seg(c), m = 1, 2, . . . , M
4: for m = 1toM do
5: for n = 1toN do
6: Compute superpixels cn

m
7: Obtain temperature characteristic Tn

m
8: end for
9: Compute temperature probability density distribution fm

10: Compute the local maximum Oq
m(xq

m, yq
m) of fm, where q = 1, 2, . . . , Q

11: if Q ≥ 3 then
12: for n = 1toN do
13: if Tn

m > x3
m then

14: Determine cn
m defective

15: else
16: Determine cn

m normal
17: end if
18: end for
19: Merge all adjacent defective superpixels to obtain Dm
20: else
21: Output: No defect in the instance.
22: end if
23: end for

3. Experiments

3.1. Data Preparation

The experimental infrared images in this article consist of five types of substation
equipment, including insulator, current transformer, voltage transformer, bushing, and
lightning arrester. The images were captured in a substation by the FLIR T600, where the
infrared image resolution is 480 × 360 and the temperature resolution is 0.04 °C. The dataset
composition of the substation equipment infrared images in the experiments is illustrated
in Figure 4. The instance segmentation dataset is used to train the instance segmentation
module, in which the dataset all consists of the normal substation equipment images. The
number of each type of equipment is shown in Table 2. In addition, the defect detection
dataset is used to evaluate the performance of the TDDM.

Figure 4. Dataset composition of the substation equipment infrared images.
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Table 2. Number of each type of equipment in the instance segmentation dataset.

Equipment Number

Insulator 919
Current transformer 413
Lightning arrester 289

Bushing 161
Voltage transformer 153

3.2. Instance Segmentation Results and Analysis

The instance segmentation algorithm ran on Ubuntu 18.04LTS with NVIDIA 2080Ti.
The training was conducted under the network framework PyTorch through Python3.8,
accelerated by CUDA11.2. The current advanced instance segmentation algorithms, includ-
ing SOLO, Mask R-CNN, MS R-CNN, and YOLACT, were compared experimentally. For
training the instance segmentation algorithm, the batch size was set to 2, the SGD optimizer
was used, the momentum value was 0.9, the initial learning rate was 0.001, and the number
of training iterations was 60 epochs.

To choose the optimal instance segmentation algorithm, a multi-target scene with a
complex background was selected for testing. The performance indexes were mAP (mean
average precision) and mAR (mean average recall), which are commonly used indexes
in the current instance segmentation. SOLO, Mask R-CNN, Mask Scoring R-CNN, and
YOLACT were tested on the instance segmentation dataset. The experiment results are
shown in Figure 5 and Table 3.

In Table 3, YOLACT had the highest segmentation accuracies compared with the other
three algorithms. The values are 67.0% and 74.0% in terms of the mAP and mAR metrics,
which were 10.1% and 12.5% higher than the SOLO algorithms. As shown in Figure 5,
Figure 5a are the original images and Figure 5f are the ground truth. The four algorithms
are intuitively compared in Figure 5b–e, where the white rectangle represents the location
of the substation equipment by the model. The pixels of instances belonging to the different
categories are marked with different colors. It can be seen from Figure 5 that the YOLACT
algorithm accurately located the substation equipment in infrared images and had typically
higher quality masks. Thus, this study chose the YOLACT algorithm to segment substation
equipment infrared images.

Table 3. Comparison of instance segmentation algorithms.

Method mAP/% mAR/%

SOLO 56.9 61.5
Mask R-CNN 63.6 70.4

Mask Scoring R-CNN 65.1 70.9
YOLACT 67.0 74.0

3.3. Compared with Other Superpixel Segmentation Methods

In this section, we compare SLIC [40] to several popular superpixel segmentation
algorithms including Felzenszwalb [44], Quickshif [45], and Watershed [46] by the defect
detection dataset. The performance of superpixel segmentation is quantitatively evaluated
by two metrics, which are boundary recall (BR) and under-segmentation error (UE). BR
is the most commonly used metric, which is the percentage of superpixels boundaries
coinciding with ground truth boundaries.

BR =
SP
GP

, (9)

where SP is the number of segmentation results that meet the condition that should be
the ground truth. GP is the total number of the segmentation result. The higher the BR
denotes the better performance. UE is the ratio of calculated over-segmented superpixels.
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The more approaches zero of the UE, the superpixel approaches the ground truth. UE is
defined as follow

UE = −1 +
1
N ∑ |um∩un |>ω|um ||un|, (10)

where um and un are the pixel sets of the m-th superpixel and ground truth, respectively. ω
is set to 0.05 for well established [47]. The lower the UE denotes the better performance.

Figure 5. Comparison of segmentation results of different instance segmentation algorithms. (a) Orig-
inal Images. (b) SOLO. (c) Mask R-CNN. (d) Mask Scoring R-CNN. (e) YOLACT. (f) Ground Truth.

As shown in Figure 6, it illustrates the comparative performance the methods on the
defect detection dataset. The numbers of superpixels are set to 250, 500, 750, 1000, 1250,
and 1500, respectively. From Figure 6, SLIC, Watershed, and Quickshif all obtain good
performance since BR is higher than 0.86. The value of UE in SLIC is the lowest among all
methods, this means that better compactness of superpixel segmentation can be achieved.
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Figure 6. Comparison of superpixel segmentation algorithms performances.

3.4. Defect Detection Results and Analysis

We adopted four widely used metrics for the quantitative evaluations of defect detec-
tion performance: precision (Pr), recall (Re), F1, and mean running time (mRN). A higher
evaluation value indicates better performance, calculated as follows.

Pr=
TP

TP + FP
, (11)

Re =
TP

TP + FN
, (12)

F1 =
2 ∗ Pr ∗ Re

Pr + Re
, (13)

where TP and denote the number of correctly detected defects. TP+FP and TP+FN denote
the total number of detected defects and the total number of actual defects, respectively. F1
is the harmonic mean of Pr and Re.

We use mean intersection over union (mIoU) to calculate the accuracy of defect region
localization. The mIoU is defined as

mIoU(GT ,PM) =
M

∑
m=1

Area(Gm
T ∩ Pm

D )

Area(Gm
T ∪ Pm

D )
, (14)

where Gm
T is the ground truth and Pm

D is the predicted region.
To verify the effectiveness of the TDDM, the defect detection datasets are input to the

TDDM. To choose the best parameter of the number of superpixels K, we set K from 250
to 3000 with an interval of 250 for the ablation experiments. When K = 1000, TDDM has
achieved the best defect detection performance. The values of precision, recall, F1, and mIoU
were 0.812, 0.928, 0.866 and 0.831. When K = 2250, the model had acceptable precision
and recall values performance, but the model running time became longer. Moreover, the
running time of TDDM increased with K. Thus, in a word, the selection of an appropriate
K is important. Table 4 and Figure 7 show the comparison with a different number of
superpixels K to the defect detection dataset.
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Table 4. Detection performance for different numbers of K.

Number of K Pr Re F1 mIoU mRN

250 0.315 0.428 0.362 0.145 1.47
500 0.190 0.285 0.228 0.098 1.91
750 0.555 0.714 0.624 0.582 2.73

1000 0.812 0.928 0.866 0.831 4.30
1250 0.705 0.857 0.773 0.683 4.36
1500 0.722 0.928 0.812 0.738 5.54
1750 0.764 0.928 0.838 0.796 5.64
2000 0.764 0.928 0.838 0.796 6.82
2250 0.812 0.928 0.866 0.817 6.68
2500 0.764 0.928 0.838 0.796 8.64
2750 0.764 0.928 0.838 0.796 10.42
3000 0.764 0.928 0.838 0.796 11.97

Figure 7. Results of ablation experiments on the number of superpixels.

To evaluate the superiority of the proposed method, some ablation experiments were
performed on TDDM. (1) Evaluate the advantage of the superpixel segmentation algorithm
(SSA) as a preprocessing for defect detection. (2) Evaluate the advantage of the DCNN +
superpixel method for defect detection. Table 5 lists the results of the ablation experiment.
As shown in Table 5, the SSA can provide more details and reduce the complexity of the
subsequent detection determination. When the objects are extracted firstly by DCNN, the
metrics for evaluating accuracy have improved. It indicates that DCNN can overcome the
problem of complex background in infrared images. The model achieved superior results
when both DCNN and SSA were used. Pr, Re, F1, mIoU are reached 0.812, 0.928, 0.866, and
0.831, respectively, which were the highest values.

Table 5. Ablation experiment of TDDM.

DCNN SSA Pr Re F1 mIoU mRN

� 0.764 0.928 0.838 0.796 21.34
� 0.555 0.714 0.624 0.582 3.62

� � 0.812 0.928 0.866 0.831 4.30

As shown in Figures 8 and 9, the intuitive defect detection process of the TDDM in
this paper is on the defect detection dataset.In the intuitive experiment results, the different
categories have displayed.
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Figure 8. Process of the normal bushing infrared image detection.

Figure 8 shows the process of the normal bushing infrared image detection. In the
fourth column, the temperature probability density distribution of the bushing has only two
local maxima, which reflects that the substation equipment is no defect. This demonstrates
that the TDDM is effectively applied in detecting normal substation equipment.

Figure 9 shows the entire detection flow of the TDDM to the defect-located infrared
images. From left to right are the input infrared images, instance segmentation, superpixel
segmentation, defect determination, and defect detection results. At the penultimate
column, there are three maxima in the temperature probability density distribution of
target equipment, representing the equipment exist defect. The target equipment defect
detection results are shown in the last column. The white rectangle denotes the target
equipment, and the red rectangle represents the location of the defective regions. As
can be seen that, TDDM accurately located the defect in substation equipment against a
complex background.

(a)

(b)

(c)

Figure 9. Cont.
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(d)

Figure 9. Process of the defect infrared image detection. (a) Insulator. (b) Bushing. (c) Voltage
Transformer. (d) Current Transformer.

4. Discussion

In this paper, a two-level model is proposed for the problem of defect detection in
substation equipment infrared images. On the basis of extracting substation equipment
in the complex background through instance segmentation and superpixel segmentation
methods, and realizing defect detection of substation equipment through temperature prob-
ability density distribution calculation and adaptive defect detection strategy. Compared
with the traditional manual inspection, the proposed method can reduce the resources of
labor and material; compared with the end-to-end deep learning method, the presented
method in this paper does not require many defect datasets. The operating status of the
substation equipment is closely relevant to the stability of the power system, which makes
the defects detection of the substation equipment significant.

In the future, our research will not be limited to the substation equipment in this paper
and will be applied to other electrical equipment. In fact, according to the characteristic of
infrared thermal imaging, the majority of electrical equipment infrared images will show a
certain temperature probability density distribution, which is the physical characteristic.
The proposed method is based on this characteristic to detect defects precisely. Thus, based
on this physical characteristic, we believe the method will be applicable to other cases
where may occur defects in electric power, such as medical equipment, airplanes, and
industrial equipment.

5. Conclusions

This study proposes a novel defect detection model named TDDM for infrared images
of substation equipment. Considering the defective substation equipment infrared images
are difficult to acquire, and the data-driven end-to-end model cannot be trained. Thus,
the two-level defect detection method is presented. In the proposed TDDM, we take
advantage of the fact that the instance segmentation has superior performance to extract
the target in the redundant background. Meanwhile, the part of defect detection of TDDM
is unsupervised and is not limited by the dataset. Furthermore, we evaluated the proposed
model on the defect detection dataset, which accurately detects defects of substation
equipment in infrared images. In the future, we would like to combine the RGB information
to improve substation inspection tasks. In addition, the technology will be applied to more
substation equipment.
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Abbreviations

The following abbreviations are used in this manuscript:

DCNN Deep Convolutional Neural Network
TDDM Two-level Defect Detection Model
UHF Ultra-high Frequency
FDR frequency Domain Reflectometry
SNR Signal-noise-ratio
TLD Transmission Line Detection
NMS Non-maximum Suppression
SLIC Simple Linear Iterative Clustering
KDE Kernel Density Estimation
mAP Mean Aaverage precision
mAR Mean Aaverage Recall
mRN Mean Running Time
SSA Superpixel Segmentation Algorithm
TP True Positive
FP False Positive
FN False Negative
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Abstract: The zero-shot image classification (ZSIC) is designed to solve the classification problem
when the sample is very small, or the category is missing. A common method is to use attribute
or word vectors as a priori category features (auxiliary information) and complete the domain
transfer from training of seen classes to recognition of unseen classes by building a mapping between
image features and a priori category features. However, feature extraction of the whole image lacks
discrimination, and the amount of information of single attribute features or word vector features
of categories is insufficient, which makes the matching degree between image features and prior
class features not high and affects the accuracy of the ZSIC model. To this end, a spatial attention
mechanism is designed, and an image feature extraction module based on this attention mechanism
is constructed to screen critical features with discrimination. A semantic information fusion method
based on matrix decomposition is proposed, which first decomposes the attribute features and then
fuses them with the extracted word vector features of a dataset to achieve information expansion.
Through the above two improvement measures, the classification accuracy of the ZSIC model for
unseen images is improved. The experimental results on public datasets verify the effect and
superiority of the proposed methods.

Keywords: image classification; attention mechanism; matrix decomposition; attributes; word vectors

1. Introduction

In recent years, deep learning algorithms have made rapid progress in the image
recognition field, but they require significant human and material resources to obtain a
sufficient quantity of manually annotated data [1]. In many practical applications, a large
quantity of labeled data is difficult to obtain, and the variety of objects is increasing, which
requires the computer training process to constantly add new samples and new object
types [2,3]. The problem of how to use computers and existing knowledge to classify and
identify samples with insufficient or even completely missing label data has become a
pressing problem. For this reason, ZSIC [4] was created. It is a technique that trains a
learning model to predict and recognize data without class labels (unseen classes) based on
some sample data with class labels (seen classes), supplemented by relevant common-sense
information or a priori knowledge (auxiliary information) [5,6].

To achieve ZSIC, a popular strategy is to learn the mapping or embedding between
the semantic space of classes and the visual space of images based on seen classes and the
semantic description of each category. Semantic descriptions of categories usually include
attributes [7], word vectors [8], gaze [9], and sentences [10]. At present, the embedded-
based methods [11–15] are used to learn visual-to-semantic, semantic-to-visual, or latent
intermedium space, so that visual and semantic embedding can be compared in shared
space. Then, the unseen classes are classified by nearest neighbor search.

Most of the existing embedding methods, either based on end-to-end convolution
neural networks or deep features, emphasize learning the embedding between global
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visual features and semantic vectors, which leads to two problems [16]. First, there are only
slight differences between some features of seen and unseen classes. For some datasets, the
inter-class difference is even smaller than the intra-class. Therefore, global image features
cannot effectively represent fine-grained information, which is difficult to distinguish in
semantic space. Second, compared to visual information, semantic information is not
rich enough. The attribute features of categories are usually based on manual annotation,
rely on professional knowledge, and are limited by the dimension of visual cognition.
The dimension of attribute features is usually not high, and as intermediate auxiliary
information, the amount of information is insufficient [17]. The word vectors are mostly
obtained through models such as word2vec [18], GloVe [19], or fastText [20]. Relatively
speaking, the word vectors may contain more noise and are difficult to combine with human
prior knowledge; thus, their interpretability and discriminability are poor. Therefore, the
imbalanced supervision from the semantic and visual space can make the learned mapping
easily overfitting to seen classes. Inspired by the attention mechanism in the field of natural
language processing, a few methods [16,21–23] introduce attention thinking into ZSIC.
These methods learn regional embedding of different attributes or similarity measures
based on attribute prototypes and learn to distinguish partial features, but they ignore the
global features and the information imbalance of semantic and visual space.

Based on the above observation, this paper proposes an improved ZSIC model. The
main contributions are as follows:

(1) A feature attention mechanism is designed, and an image feature extraction module
based on the attention mechanism is built. The features in different regions of the
image are assigned attention weights to distinguish the key and non-key local features,
and then the local features are fused with the global features.

(2) A semantic information fusion module based on matrix decomposition is built. The
matrix decomposition method is used to transform the binary features of attributes
into continuous features and transform their dimensions to be the same as word
vectors. In addition, attribute features are fused with word vector features to obtain
more accurate and richer fused semantic features as a priori category features.

(3) The improved ZSIC model promotes the alignment of semantic information and visual
features. Experiments on the public dataset show that the improved ZSIC model
improves image classification accuracy.

2. Related Work

2.1. ZSIC Methods

Recent ZSIC methods focus on learning better visual–semantic embeddings. The core
idea is to learn a mapping between the visual and attribute/semantic domains and transfer
semantic knowledge from seen to unseen classes according to the similarity measure. Some
methods [11,12,24,25] follow the visual-to-semantic mapping direction and align visual
features and semantic information in semantic space. However, when high-dimensional
visual features are mapped to a low-dimensional semantic space, the shrink of feature
space would aggravate the hubness problem [26,27] that in some instances in the high-
dimensional space becomes the nearest neighbors of a large number of instances. To tackle
these problems, some methods [13,14,28–30] map semantic embedding to visual space and
treat the projected results as class prototypes. Shigeto et al. [31] experimentally proved that
the semantic-to-visual embedding is able to generate more compact and separative visual
feature distribution with the one-to-many correspondence manner, thereby mitigating the
hubness issue. Ji et al. [32] also follow the inverse mapping direction from semantic space
to visual space and proposed a semantic-guided class imbalance learning model which
alleviates the class-imbalance issue in ZSIC. In addition, for the class-imbalance issue, the
generative models have been introduced to learn semantic-to-visual mapping to generate
visual features of unseen classes [33–37] for data augmentation. Currently, the generative
ZSIC is usually based on variational autoencoders (VAEs) [37], generative adversarial nets
(GANs) [33], and generative flows [34]. However, the performance of this type of method
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greatly depends on the quality of generated visual features or images, which is difficult to
guarantee, and the mode is prone to mode collapse. Furthermore, to alleviate the hubness
issue, common space learning is also employed to learn a common representation space for
interaction between visual and semantic domains [15,38,39]. However, these embedded-
based models only use the global feature representation, ignoring the fine-grained details
in the image, and the training results are not satisfied for the poorly identified features.

2.2. Attention Mechanism

The concept of attention was first introduced into natural language processing tasks.
In particular, because soft attention is differentiable and can learn parameters by back-
propagation of the model, it has been widely used and developed in computer vision
tasks. Zhu et al. [40] applied an attention mechanism in the facial expression recogni-
tion task and proposed a cascade attention-based recognition network by a hybrid of
the spatial attention mechanism and pyramid feature to improve the accuracy of facial
expression recognition under uneven illumination or partial occlusion. Sun et al. and
Liu et al. applied an attention mechanism in the semantic segmentation task of remote
sensing images. They proposed a multi-attention-based UNet [41] and an attention-based
residual encoder [42], respectively. Through channel attention and spatial attention, the
capability of fine-grained features was improved. The above attention mechanism includes
(i) feature aggregation and (ii) a combination of channel attention (global attention) and
spatial attention (local attention), which are common branches of the attention mechanism.
In addition, Obeso et al. [43] proved that the global and local attention mechanism in deep
neural networks works well with the human visual attention mechanism. Inspired by
the above works, several researchers incorporated an attention mechanism into models
for ZSIC. For example, Yang et al. [16] proposed a semantic-aligned reinforced attention
model to discover invariable features related to class-level semantic attributes from variable
intra-class vision information, and thereby to avoid misalignment between visual infor-
mation and semantic representations. Xu et al. [21] jointly learned discriminative global
and local features using only class-level attributes to improve the attribute localization
ability of image representation. Chen et al. [22] proposed an attribute-guided transformer
network to enhance discriminative attribute localization by reducing the relative geometry
relationships among the grid features. Yang et al. [23] proposed to learn prototypes via
placeholders and proposed semantic-oriented fine-tuning for preliminary visual–semantic
alignment. These methods locate salient regions according to semantic attributes and ignore
meaningless information to promote the alignment between a visual space and a semantic
space. Compared with these methods, we also consider the combination of local features
and global features, as well as the imbalance of information in semantic and visual space.

3. Materials and Methods

The basic embedding-based ZSIC model framework is shown in Figure 1.

Figure 1. Basic embedding-based ZSIC model framework.
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The image feature extraction layer uses a deep CNN to extract image features and
input them to a middle embedding layer. A priori class information (auxiliary information)
is usually attribute features or word vector features. In the middle embedding layer, the
correlation between image features and a priori class information is calculated. Let the
total number of seen classes be n and a priori class feature vector of the i-th seen class be βi,
whose dimension is m. In the training stage of the model, the images xi belonging to the
i-th seen class are input into the image feature extraction layer to extract m-dimensional
image feature vectors αxi ; αxi and βi are input into the middle embedding layer, and a
relationship similarity (αxi , βi) between αxi and βi is established to obtain the matching
score. Cosine distance is used to calculate the matching score. Compared with the European
distance, cosine distance is more consistent with the distance calculation form of the high-
dimensional vector, and its formula is

score = similarity(αxi , βi) =
∑m

k=1 akbk√
∑m

k=1 ak
2
√

∑m
k=1 bk

2
(1)

where αxi = [a1, a2, . . . , am] and βi = [b1, b2, . . . , bm].
In order to match the image feature vectors and the prior class feature vectors belong-

ing to the same class as closely as possible, that is, to maximize the matching score, the loss
function is used as follows:

loss = − 1
n

n

∑
i=1

αxi · βi
‖ αxi‖ · ‖βi‖

(2)

In the testing stage of the model, the image feature vectors of unseen classes are
extracted through the feature extraction layer and then matched with the prior class feature
vectors corresponding to each class in the middle embedding layer. When the matching
score is the highest, the corresponding class is the prediction class of the input image.

Using the above model framework, the improved embedding-based ZSIC model is
shown in Figure 2. Details are as follows.

 
Figure 2. Improved ZSIC model.
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3.1. IFE-AM Module

In ZSIC tasks, image features need to be matched with a priori class features, while
image features extracted by CNN correspond to a whole image, so they lack discrimination.
Therefore, an image feature extraction module based on an attention mechanism (IFE-AM)
is constructed (as shown in Figure 2) to focus high-level image features on the key regions of
the input image, in order to reduce the deviation from the priori class features and improve
the degree of matching. The typical convolutional neural networks VGG-19 and ResNet-34
are taken as examples to illustrate the attention mechanism designed in this paper.

The flowchart of the spatial attention mechanism that weights the feature vector of
each position is shown in Figure 3.

 
Figure 3. Flowchart of the attention mechanism.

Let the output features of the last layer of the CNN be F, with dimension [x, y, p],
which contains p channels. For F, set window [x, y], and use max pooling and average
pooling to obtain two p-dimensional feature vectors Fmax and Fmean, respectively, and then
concatenate them to obtain [ Fmax, Fmean]. Then, [ Fmax, Fmean] is connected to the fully
connected (FC) layer, the hidden layer unit is set as p, and a p-dimensional query vector
Q is output for feature selection of the attention mechanism. The feature map of the i-th
channel in F is recorded as f i, i = 1, 2, . . . , p, and its size is x × y; the feature vector of the
j-th position in F is recorded as lj, j = 1, 2, . . . , x × y, and its size is p × 1. Calculate the dot
product of Q and lj to obtain the feature weight wj of the j-th position, and then use the
softmax function for normalization to obtain the feature weight matrix W. The formula is
as follows:

W = softmax
(

wj) = softmax(dot(QT, lj

)
) (3)

The feature values at different positions in f i are weighted and summed according to
the weight matrix W, and Fattention is output.

Finally, based on the idea of residual connection, the feature vectors Fmax, Fmean, and
Fattention are summed to obtain the final output eigenvector Foutput.

3.2. SIF-MD Module

ZSIC methods rely on prior class information to complete the transfer from seen
classes to unseen classes, so accurate and informative class description information is the
key. Currently, the commonly used a priori class description information includes attribute
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features and word vector features. In order to make the two types of a priori class de-
scription information complementary and improve the amount of information, a semantic
information fusion module based on matrix decomposition (SIF-MD) is constructed, as
shown in Figure 2.

Usually, the dimensions of manually set attribute information is small, and the attribute
features are all binary features of 0 or 1, which are relatively sparse and independent; the
dimensions of word vectors are relatively large, which are characterized by continuity
between [–1, 1]. To carry out information fusion, the matrix decomposition method is
used to transform the binary features of attributes into continuous features and transform
their dimensions to be the same as word vectors. The architecture diagram of the matrix
decomposition of attributes is shown in Figure 4.

 
Figure 4. Architecture diagram of the matrix decomposition of attributes.

First, use attribute matrix D (M × N) to represent n-dimensional attribute vectors of m
classes, which is decomposed into U (M × K) and V (N × K) with the equation

D = UVT (4)

where k is the dimension of the matrix decomposition. Make UVT as close as possible to D,
that is, fitting attribute feature D through matrix U and matrix V. The loss function is the
mean squared error MSE (mean squared error) method:

loss =
M

∑
i=1

N

∑
j=1

(
Di,j − D̂i,j

)2 (5)

D̂i,j = UiVT
j (6)

where Ui denotes the vector in the i-th row of matrix U, i = 1, 2, . . . , M, and Vj denotes the
vector in the j-th row of matrix V, j = 1, 2, . . . , N.

To prevent overfitting, the L2 canonical term is added to Formula (5):

loss =
m

∑
i=1

n

∑
j=1

(
Di,j − D̂i,j

)2
+ λ

(‖Ui‖1 + ‖Vj‖1

)
(7)
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Each row in U is a k-dimension vector, which matches the dimension of the word
vector of the corresponding class. The matrix U and the word vector matrix W(m × k) are
summed in certain weight proportions as fused semantic features Wadd, which are given by

Wadd = αW + (1 − α)U (8)

where α is a parameter with a range of [0, 1]; Wadd is a fused semantic feature, retaining
the content of attribute features and word vector features.

4. Experiment Results

The experiment is based on the 4× 1080Ti GPU server of Ubuntu16.04, the Python
3.6 virtual environment is built through Anaconda, and deep learning frameworks of
TensorFlow1.2.0 and Keras2.0.6 are installed.

The top-1 accuracy and top-3 accuracy were used to evaluate the classification results
of the zero-shot classification model on the test set. The training set and test set were
randomly selected four times to obtain four groups of experimental results, and the average
classification accuracy was recorded.

4.1. Dataset

The experiment was conducted based on the Animals with Attributes 2 (AwA2) [27]
dataset. AwA2 is a public dataset for attribute-based classification and zero-shot learning,
and it is publicly available at http://cvml.ist.ac.at/AwA2, accessed on 9 June 2017. The
dataset contains 37,322 images and 50 animal classes, and each class has an 85-dimensional
attribute vector. It is a coarse-grained dataset that is medium-scale in terms of the number
of images and small-scale in terms of the number of classes. In experiments, we followed
the standard zero-shot split proposed in reference [9], that is, 40 classes for training and
10 classes for testing. The training set and test set do not intersect. Among the training set,
13 classes were randomly selected for validation to perform a hyperparameter search.

4.2. Ablation Experiment of IFE-AM Model

According to the model structure shown in Figure 2, the experiments were conducted
with the representative VGG-19 and ResNet-34 as the backbone networks, which are
called VGG-A and ResNet-A, respectively. The image features were extracted by the pre-
improved and improved networks, and the attribute features of the dataset were used to
conduct experiments.

4.2.1. Training Loss and Classification Accuracy

When the model is trained, the training loss is calculated according to Formula (2).
Figure 5 shows the change curves of the training loss (train_loss) corresponding to different
feature extraction networks.

Table 1 shows the epochs required for training and train_loss values corresponding to
different feature extraction networks, as well as the classification accuracy (top-1 and top-3)
of the test set.

Figure 5 and Table 1 show that the train_loss of the ResNet-34 model decreases faster
than the VGG-19 model. The final train_loss of the VGG-19 and ResNet-34 models tends to
be stable, but the train_loss of the ResNet-34 model is lower. From the decreasing trend in
train_loss, the train_loss of the VGG-19 model fluctuates greatly, and the decreasing process
of train_loss of the ResNet-34 model is more stable. The ResNet-A model is also superior to
the VGG-A model in decreasing speed and the stability of train_loss. This shows that the
ResNet-34 model with residual connections can realize matching between image features
and prior class features faster, better, and more stably. In addition, for both the VGG-A
model and ResNet-A model, although their train_loss overall declines slightly slower, their
required training epoch and loss value after stabilization are significantly lower than those
of the original VGG-19 and ResNet-34 networks. This shows that the IFE-AM module
proposed in this paper, as a feature-weighted focusing strategy, improves the model’s
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ability to capture image features in space, thus realizing further fitting of deep features;
additionally, the attention mechanism is based on the method of weighted information
fusion, which makes the acquisition and update of information more stable, thus achieving
a faster and more stable fitting effect.

(a) Change curve of train_loss corresponding to VGG-19 and ResNet-34

(b) Change curve of train_loss corresponding to VGG-A and ResNet-A

Figure 5. Change curves of train_loss.

Table 1. Test results.

Feature Extraction
Network

IFE-AM Epochs Train_Loss Top-1 (%) Top-3 (%)

VGG-19 17 0.174 40.1 53.1
ResNet-34 16 0.155 41.7 56.1

VGG-A
√

13 0.147 43.2 60.9
ResNet-A

√
5 0.139 43.3 63.9

For the image classification results of the test set, the top-1 and top-3 of the ResNet-34
model are all larger than those of the VGG-19 model, which shows that its residual structure
has a good effect on the fitting of deep image features. The top-1 and top-3 of the ResNet-A
model are higher than those of the VGG-19 and ResNet-34 models without the attention
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mechanism, which shows that the attention mechanism can focus the features of spatial
attention and effectively improve the generation of image features and the matching effect
with prior class features. The accuracies of VGG-A and ResNet-A are similar, but the top-3
of ResNet-A is significantly improved, which shows that the ResNet-A model can obtain
more accurate image features in high-dimensional space, making the distance between
classes farther, the distance within classes closer, and the matching effect with semantic
features better.

4.2.2. Feature Segmentation

According to the model shown in Figure 4, for VGG-A and ResNet-A, the image feature
Foutput = Fmax + Fmean + Fattention is split, and Fmax, Fmean and Fattention are, respectively,
output to the next layer for comparison with Foutput. The accuracy of the final image
classification is shown in Tables 2 and 3.

Table 2. Comparison of different image features in the VGG-A model.

Image
Features

Attention
Feature
Fusion

Top-1 (%) Top-3 (%)

Fmax 39.9 45.0
Fmean 40.3 51.1

Fattention
√

40.9 51.9
Foutput

√ √
42.3 60.9

Table 3. Comparison of different image features in the ResNet-A model.

Image
Features

Attention
Feature
Fusion

Top-1 (%) Top-3 (%)

Fmax 39.1 41.1
Fmean 41.7 56.1

Fattention
√

42.9 61.1
Foutput

√ √
43.3 63.9

As shown in Tables 2 and 3, the image classification results of the improved ResNet-
A model based on the attention mechanism are better than those of the VGG-A model.
Whether it is the VGG-A or ResNet-A model, the image classification accuracy correspond-
ing to different image features satisfies Foutput > Fattention > Fmean > Fmax, which verifies
the effect of image feature extraction based on the spatial attention mechanism. Inspired
by the idea of residual connection, the three features are superposed to obtain Foutput,
which fuses the information of different features and finally obtains the optimal image
classification result.

4.3. Ablation Experiment of SIF-MD Module

Since the above experiments verified that ResNet-A and Foutput are better, the following
further experiments are conducted on these bases. Three models of word2vec, GloVe, and
fastText were used to extract the word vector features of each class in the dataset, with
a dimension of 256. The attribute features of the dataset were decomposed according
to Formulas (4)–(7), and the loss threshold value was set as 0.1. Then, the decomposed
attributes were weighted and fused with word vector features extracted by word2vec,
GloVe, and fastText, respectively, according to Formula (8). The fusion parameter α was set
as [0, 1] and the step size as 0.1.

The image classification experiment of the test set was repeated five times, and the
average value of the top-1 was taken. The experimental results corresponding to different
word vectors and different fusion parameters α are shown in Table 4. Figure 6 more
intuitively shows the changing trend of top-1 accuracy with α when different word vectors
are used as auxiliary information.
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Table 4. Image classification top-1 accuracy of the test set.

Word Vector
α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

word2vec 43.1 43.1 43.1 43.3 43.7 43.8 43.8 44.0 44.3 44.5 44.2
GloVe 43.1 44.3 44.6 44.6 44.6 44.7 45.0 45.1 45.8 45.3 44.7

fastText 43.1 43.0 43.3 43.6 43.2 42.8 42.5 42.5 42.2 42.2 42.1

Figure 6. Changing trend of top-1 accuracy of image classification.

As shown in Figure 6, the top-1 accuracy of the word vector extracted by GloVe as
prior class features is significantly higher than that extracted by word2vec or fastText. As
shown in Table 4, when α = 0, that is, only the attribute features are used as the prior class
feature, the top-1 accuracy of image classification is 43.1%. When α = 1, that is, only word
vectors are used as prior class features, the top-1 accuracies corresponding to word2vec
and GloVe are 44.2% and 44.7%, respectively, which are better than the results when only
attribute features are used, while the top-1 accuracy corresponding to fastText is lower
than the results when only attribute features are used. For the word vectors extracted by
word2vec, GloVe, and fastText, the fusions with attribute feature all have positive effects.
For the word2vec word vector, when the fusion weight α = 0.8 and 0.9, the top-1 accuracy is
1.2% and 1.4% higher than that of the attribute vector only and 0.1% and 0.3% higher than
that of the word vector only, respectively. For the fastText word vector, when the fusion
weight α = 0.2, 0.3, and 0.4, the top-1 accuracy is 0.2%, 0.5%, and 0.1% higher than that of
the attribute vector only and 1.2%, 1.5%, and 1.1% higher than that of the word vector only,
respectively. For the GloVe word vector, when the fusion weight α = 0.6, 0.7, 0.8, and 0.9,
the top-1 accuracy is 1.9%, 2.0%, 2.7%, and 2.2% higher than that of the attribute vector only
and 0.3%, 0.4%, 1.1%, and 0.6% higher than that of the word vector only, respectively. The
results show that it is meaningful to fuse attribute features and the word vector features.

5. Discussions

To verify the effectiveness of the method proposed, the method is compared with
the baseline model and existing classical models. The baseline model only uses the deep
learning network ResNet-34 or VGG-19 to extract image features and uses attributes or
word vectors as auxiliary information. The results of the comparative experiment are
shown in Table 5 and Figure 7. In the table, “ResNet-34 + attribute” refers to the model that
uses ResNet-34 to extract image features and uses attributes as auxiliary information. The
image classification results were evaluated with top-1 accuracy. The experimental results
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of IAP, CONSE, and CMT adopt the results given in references [27,31]. The dataset and the
splits of the training set and test set in the experiments of all methods are the same as that
of our method, and no methods were pre-trained by large datasets (such as ImageNet).

Table 5. Image classification results of different methods.

Method Top-1 (%)

1 ResNet-34 + attribute 41.7
2 ResNet-34 + word2vec 42.3
3 ResNet-34 + GloVe 42.7
4 ResNet-34 + fastText 40.6
5 VGG-19 + attribute 40.1
6 VGG-19 + word2vec 40.4
7 VGG-19 + GloVe 41.2
8 VGG-19 + fastText 39.9
9 IAP 35.9
10 CONSE 44.5
11 CMT 37.9
12 ours 45.8

Figure 7. Top-1 accuracy comparison of different methods.

As shown in Table 5 and Figure 7, for the baseline model, the top-1 accuracy of
the model using ResNet-34 to extract image features is higher than that of the model
using the VGG-19 network; the top-1 accuracy of the model using word vectors extracted
by word2vec or GloVe as auxiliary information is higher than that of the model using
attributes; and the top-1 accuracy of the “ResNet-34 + GloVe” method is the highest,
with a value of 42.7%. The top-1 accuracy of our method is 3.1% higher than that of
the “ResNet-34 + GloVe” method. For existing classical methods, IAP detects unseen
classes based on attribute transfer between classes, the attribute features are limited by the
dimension of visual cognition, and the amount of information is insufficient. CONSE uses
CNN to extract image features without distinguishing the importance of different regional
features, and only uses word vectors extracted by word2vec as auxiliary information. CMT
uses Sparse Coding to extract image features and uses a neural network architecture to
learn the word vectors of categories. Although more semantic word representations are
learned by using local and global contexts, the discrimination of word vectors is poor,
and the imbalanced supervision between semantic features and visual features is still
large. Our method assigns attention weights to different regions of the image through the
SIF-MD module and strengthens the key features highly related to semantic information.
In addition, it alleviates the imbalanced supervision issue between semantic features and
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visual features through IFE-AM module. These improvements promote the alignment of
visual features and semantic information and make the matching degree of the two higher,
which is very important for ZSIC. Thus, the top-1 accuracy of our method is 9.9% higher
than IAP, 1.3% higher than CONSE, and 7.9% higher than CMT. The above experimental
results prove the effectiveness of our method.

6. Conclusions

To improve the accuracy of the ZSIC model based on embedded space, the IFE-AM
model and SIF-MD module are constructed in this paper. After the existing CNN is used
to extract the image feature map, the max pooling, average pooling, and spatial attention
methods are used to obtain three feature vectors, and then they are fused as the final image
features. The attribute matrix of the dataset is decomposed to match its dimensions with
the extracted word vector, and then the attribute and word vector are weighted and fused
as auxiliary information of the improved ZSIC model.

Experiments were conducted on a public dataset. First, the ablation experiment of the
IFE-AM model was carried out. The experimental results show that the top-1 and top-3
accuracies corresponding to ResNet-A are 1.6% and 7.8% higher than those of ResNet-34,
respectively; the top-1 and top-3 accuracies corresponding to VGG-A are 3.1% and 7.8%
higher than those of VGG-19, respectively. Then, the ablation experiment of the SIF-MD
module was carried out. The experimental results show that the top-1 accuracies of using
fused semantic information as auxiliary information are significantly higher than that of
using attribute or word vector alone. Third, comparative experiments were carried out,
and the results show that the accuracy of the proposed method is significantly higher than
the baseline method and several existing classical methods.

For different types of semantic information, the fusion parameter is not fixed and
needs to be determined by experiments. How to derive the value of the fusion parameter
in theory is our future work. A small- to medium-sized dataset is considered in our work,
and larger data scenarios will be explored in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

ZSIC Zero-shot image classification
CNNs Convolutional neural networks
IFE-AM Image feature extraction module based on an attention mechanism
SIF-MD Semantic information fusion module based on matrix decomposition
AwA2 Animals with Attributes 2
FC Fully connect
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Abstract: Bolts are important components on transmission lines, and the timely detection and
exclusion of their abnormal conditions are imperative to ensure the stable operation of transmission
lines. To accurately identify bolt defects, we propose a bolt defect identification method incorporating
an attention mechanism and wide residual networks. Firstly, the spatial dimension of the feature
map is compressed by the spatial compression network to obtain the global features of the channel
dimension and enhance the attention of the network to the vital information in a weighted way.
After that, the enhanced feature map is decomposed into two one-dimensional feature vectors by
embedding a cooperative attention mechanism to establish long-term dependencies in one spatial
direction and preserve precise location information in the other direction. During this process, the
prior knowledge of the bolts is utilized to help the network extract critical feature information more
accurately, thus improving the accuracy of recognition. The test results show that the bolt recognition
accuracy of this method is improved to 94.57% compared with that before embedding the attention
mechanism, which verifies the validity of the proposed method.

Keywords: deep learning; bolt defect recognition; wide residuals; double attention

1. Introduction

Bolts are the most numerous and widely distributed fasteners in transmission lines. As
they play an important role in maintaining the stable operation of the lines, it is necessary
to inspect the abnormal state of the bolts promptly so as to guarantee the safe and steady
operation of the lines [1,2]. At present, the use of unmanned aerial vehicles (UAV) equipped
with high-resolution cameras for transmission line inspection is not only safer and more
efficient [3], but also can integrate deep learning-based image processing technology, which
remarkably improves the quality and speed of inspection work. It is of great significance to
study the bolted defect image recognition method based on deep learning.

Since the LeNet model was proposed, convolutional neural network models have
shown considerable potential in image recognition tasks and have continued to develop.
AlexNet [4] further increased the network depth and won the ImageNet challenge in 2012,
and then ZFNet [5] and Google Inception Network (GoogLeNet) [6] were proposed one after
another. Visual Geometry Group Network (VGGNet) [7] uses 16 convolutional layers and
fully connects layers to improve the image recognition accuracy. However, the deepening of
the network is not infinite. With the deepening of the number of network layers, problems
caused by the deep network such as gradient disappearance and gradient explosion also
emerge. The residual network (ResNet) proposed in [8] employs a jump connection method
which effectively reduces the parameter number of the network, improves the training
speed of the network, and ensures high accuracy. It is an effective solution to the problem
that deep neural networks are difficult to train. Based on this, wide residual networks
(WRNs) [9] further improve the model performance and increase the recognition accuracy
by adding the number and width of convolutional layers to the residual blocks.

Currently, deep learning has been comprehensively used in bolt detection [10], defect
classification [11], etc. In [12], the authors used multi-scale features extracted by cascade
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regions with a convolutional neural network (Cascade R-CNN) to build a path aggregation
feature pyramid, which completes bolt defect identification. In [13], the authors enhanced
the model complexity and improved the image recognition accuracy through the combined
utilization of multiple algorithms. In [14], the authors used wide residuals as the backbone
network and selected the optimal structure to achieve effective recognition of bolt defects
by adjusting the network-widening dimension. In [15], a bolt defect data augmentation
method was proposed based on random pasting, and it effectively expanded the number
of bolt defect samples and improved the accuracy of defect recognition. However, due
to the small size of the bolt itself, the bolt image features of the aerial transmission line
are difficult to extract, and the bolt defect recognition effect is not satisfactory. The above
method did not take into account the features of the bolt itself when improving the model.

The attention mechanism can help the network improve the feature extraction ability
of the image [16,17]. It is a bionic of human vision that enables the acquisition of detailed
information and the suppression of irrelevant information by allocating more attention to
the target area. In the domain of deep learning, the attention mechanism uses the feature
map to learn a new weight distribution, which is imposed on the original feature map.
This weighting not only preserves the original information of the image extracted by the
original network, but also enhances focus on the target region, effectively improving the
performance of the model. The attention mechanism is not a complete network structure,
but a plug-and-play lightweight module. When this module is embedded in the network,
it can reasonably allocate computational resources and significantly increase the neural
network performance at the cost of a finite increase in the number of parameters. Thus, it
has received much attention in detection, segmentation, and recognition tasks because of
its practicality and robustness [18–20]. Currently, it can be classified into three categories:
spatial domain, channel domain, and hybrid domain. The squeeze and excitation attention
network (SENet) [21] and efficient channel attention networks (ECA-Net) [22] are both
of single-way attention frames that help the network detect or identify targets better by
aggregating information in the spatial domain or channel domain and adaptively learning
new weights. These networks are more concise than those with multi-way attention. The
selective kernel network (SK-Net) [23] decomposes the feature map into feature vectors
by decomposition, aggregation, and matching. In this way, the network is able to extract
more detailed feature information. The convolutional block attention module (CBAM) [24]
aggregates spatial and channel information to guide the model to focus on the key target
regions in the image, while channel attention (CA) improves the ability to capture targets
by aggregating one-dimensional channel and spatial information to relate the location
relationships between targets in the feature graph. In [25], the authors proposed a dynamic
supervised knowledge distillation method for bolt defect recognition and classification
by applying knowledge distillation techniques to the bolt defect classification task and
combining spatial channel attention. This method effectively improves the accuracy of
bolt defect classification. In [26], the authors used an attention mechanism to locate the
possible regions of the bolt in the image and then combined it with a deconvolutional
network to build a model to achieve accurate detection of the bolt. This is an attention-
based mechanism for transmission tower bolt detection. In [27], the authors embedded a
dual-attention mechanism in faster regions with a convolutional neural network (Faster
R-CNN) to analyze and enhance visual features at different scales and different locations,
which effectively improved the bolt detection accuracy.

Although these methods improve the recognition or detection accuracy of bolts to
some extent, they are all based on improving the feature expression capability of bolts
without improving the model by combining bolt features. In order to identify bolt defects
more accurately, by combining the attention mechanisms, we introduce bolt knowledge
into the model and study the bolt defect recognition method incorporating dual attention
in this paper. WRN is used as the backbone network, and the attention-wide residual
network is designed by embedding squeeze and excitation networks [21] and coordinate
attention [28] to enhance the network’s perception of features in the spatial dimension and
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channel dimension. The network was designed to enhance its ability to perceive features
in the spatial dimension and channel dimension, extracting richer feature information. It
is combined with the prior knowledge of bolts to achieve high-accuracy recognition of
bolt defects.

2. Materials and Methods

In this work, WRN is used as the backbone network, and the number of channels
is 16 × k, 32 × k, and 64 × k, a total of three levels. Among them, three wide residual
blocks are in the first level, four wide residual blocks are in the second level, and six wide
residual blocks are in the third level. The width factor k is taken as 2. The attention-
wide residual network is designed by fusing the attention mechanism in the WRN, so
as to enhance the extraction ability for bolt features and improve the accuracy of defect
recognition. The overall structure is shown in Figure 1. Firstly, SENet attention is added
to each level in the WRN to enhance the network’s ability to capture bolt defect features
and output higher-quality feature maps. Secondly, CA attention based on structural prior
knowledge is imported in combination with the spatial location relationship of pins and
nuts on bolts, which enables the network to better utilize the feature location relationship
and thus improve the accuracy of bolt defect recognition.

Figure 1. Attention to wide residual network structure.

2.1. WRN Framework for Fusing Channel Attention

A residual network consists of a residual block. It is a constant mapping of shallow
features to deeper features using a jump connection so that the residual block can learn
more feature information based on the input features and effectively solve the degradation
problem caused by deeper networks. However, as the number of network layers increases,
the residual block itself cannot be better expressed. A new type of residual approach,
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WRN, which widens the number of convolutional kernels in the original residual block,
was proposed. It effectively improves the utilization of the residual block, reduces the
model parameters, speeds up the computation, and makes it possible to obtain a better
training result without a deeper network layer. In addition, WRN adds a dropout between
the convolutional layers in the residual block to form a wide ResNet block, which has the
effect of improving the performance of the network. The relationship between the ResNet
block and the wide ResNet block is shown in Figure 2, where 3 × 3 indicates the size of the
convolution kernel, N is the number of channels, and k indicates the width factor.

 

Figure 2. Schematic diagram of the relationship between ResNet block (left) and wide-ResNet
block (right).

SENet attention can aggregate the information from the input features at the spatial
level and adaptively acquire new weight relationships through learning. These weight
relationships represent the importance of different regions in the feature map, making the
network focus on key regions in the feature map as a whole. It helps the information transfer
in the network and continuously updates parameters in the direction that is beneficial to
the recognition task.

After fusing SENet attention in the WRN, the network first compresses the spatial
dimension of the feature map of the input SENet through global average pooling, aggre-
gating spatial information to perceive richer global features of the image and enhancing
the network expression capability. The SENet attention structure diagram is shown in
Figure 3. The global average pooling operation generates a feature map of C × 1 × 1 (where
C represents the number of channels) to obtain the global information of channels. Then,
the correlation between channels is captured by the two fully connected layers with the
activation function of ReLu, and the normalized channel weights are then generated by
the sigmoid activation function. At this point, the channel weights of dimension C × 1 × 1
can be multiplied with the input features of dimension C × H × W (where H represents
the feature map of height, W represents the feature map of width) as a new parameter,
i.e., the aligned channel dimension C. For each H × W matrix, a channel coefficient c is
multiplied to obtain the output features C × H × W after SENet attention optimization,
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which enhances the key region features and suppresses irrelevant features to improve the
performance of the network.

C*1*1 C*1*1 C*H*WC*H*W (C/r)*1*1 C*1*1

Figure 3. SENet attention structure diagram.

The attention weights are multiplied by the input features to obtain the output features
F, as follows:

F = δ(MLP(Pool(F0)))× F0 (1)

where F0 denotes the input features, δ and MLP denote the sigmoid activation function and
neural network operation, respectively, and Pool represents the pooling operation.

2.2. CA Attention with Integrated Knowledge

The WRN incorporating SENet attention is enhanced to extract bolt features. However,
according to the prior knowledge of the bolt, pins distribute at the head of the bolt while
nuts usually locate at the root of the bolt, and these positional relationships are fixed. In
order to further improve the bolt defect recognition accuracy using the bolt position infor-
mation, we add CA attention to the output section of the WRN to enhance the positional
relationships of the target. The CA attention structure is shown in Figure 4. First, CA
attention decomposes the input features into a horizontal perceptual feature vector of
dimension C × H × 1 and a vertical perceptual feature vector of dimension C × 1 × W by
global averaging pooling in both directions. The one-dimensional feature vectors in the
horizontal and vertical directions are as follows:

zh
c (h) =

1
W ∑

0≤i<W
Fc(h, i) (2)

zw
c (w) =

1
H ∑

0≤j<H
Fc(j, w) (3)

where H and W represent the height and width, respectively, h, w, i, and j represent
the location coordinates in the feature map, c represents the number of channels, zc

h

represents the one-dimensional feature vector in the horizontal direction, zc
w represents

the one-dimensional feature vector in the vertical direction, and Fc represents the input
feature map.

C*H*W

C*H*1

C*1*W

C*1*(W+H) C*H*W(C/r)*1*(W+H)

C*H*1 C*H*1

C*1*W C*1*W

Figure 4. CA attention structure diagram.

In this process, the attention mechanism establishes long-term dependencies in one
spatial direction and preserves precise location information in the other, helping the net-
work locate key feature regions more accurately. It also gives the network a better global
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sensory view of the field as well as rich feature information. Next, the perceptual feature
vectors in both directions are aggregated, and the feature mapping is obtained by dimen-
sionality reduction through 1 × 1 convolution. Unique feature mappings are generated
using two one-dimensional features.

f = MLP([zh, zw]) (4)

where [zh, zw] represents the stitching operation of two one-dimensional features, and f
is the feature mapping of spatial information in the encoding process of horizontal and
vertical directions. Finally, the feature mapping is decomposed and normalized by the
Sigmoid function to obtain the attention weights in the two directions, and the attention
weights in the two directions are multiplied with the input features of dimensionality
C × H × W to obtain the output features of dimensionality C × H × W. The two directional
weights and output features are as follows:

gh = δ(T( f h)) (5)

gw = δ(T( f w)) (6)

F(i, j) = Fc(i, j)× gh
c (i)× gw

c (j) (7)

where T represents the convolution operation and F(i, j) is the output feature. After the
feature map is processed by CA attention, it is easier for the network to capture the key
feature information in the map using location information, and the relationship between
channels is more obvious.

3. Test Results and Analysis

3.1. Test Data and Settings

Dataset Construction: We constructed a transmission line bolt defect recognition
dataset by cropping and optimizing transmission line aerial images based on the Over-
head Transmission Line Defect Classification Rules (for Trial Implementation). Tests were
conducted to verify the effectiveness of this method. The dataset was divided into three
categories, namely normal bolts, missing pin bolts, and missing nut bolts. There are a total
of 6327 images, of which 2990 were normal bolts, 2802 were missing pin bolts, and 535
were missing nut bolts, and the training set and test set were divided in a ratio of 4:1. The
samples of each category are shown in Figure 5.

(a) Normal bolt image (b) Missing pin bolt image (c) Nut missing bolt image

Figure 5. Three categories of bolt image samples.

Test Settings: The test hardware environment was Linux Ubuntu 16.04, and the GPU
used is an NVIDIA GeForce 1080Ti with 11 GB of RAM. The test parameters were a batch
size of 64, an epoch count of 200, and a learning rate of 0.1. We used the model to perform
a recognition validation on the test set after the model completes an epoch training, obtain
and save the accuracy and loss function values of the model on the test set, and take the
highest recognition accuracy on the test set as the model evaluation metric after the model
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completes training. The accuracy rate was chosen as the evaluation index, and the formula
is shown in Equation (8), where TP is the number of correctly predicted positive samples,
TN is the number of correctly predicted negative samples, FN is the number of incorrectly
predicted negative samples, and FP is the number of incorrectly predicted positive samples.

Accuracy =
TP

TP + TN + FP + FN
(8)

3.2. Ablation Tests and Analysis

In order to verify the effectiveness of this method in the actual bolt defect recognition
task, we compared the accuracy of the test set under different methods by ablation experi-
ments separately, as shown in Table 1. As can be seen, the recognition accuracy of the base
model WRN was 93.31%, an improvement of 0.58% after adding SENet attention. This
is because the SENet attention mechanism acquired richer bolt features by compressing
spatial information, which enhanced the expressiveness of the network. With the addition
of CA attention to the model, the attention mechanism builds long-term dependencies in
space and the network is more likely to use the location relationships to capture key feature
information, resulting in a 0.72% increment in recognition accuracy. The recognition accu-
racy of the model was improved by 1.26% after embedding both SENet attention and CA
attention. The mutual association between the attentions further improved the network’s
performance and it has accomplished a more accurate bolt defect recognition task.

Table 1. Ablation test results.

Method Accuracy (%)

WRN 93.31
WRN + SENet 93.89

WRN + CA 94.03
Ours 94.57

Figure 6 shows the variation curve of the recognition accuracy of the model on the test
set as the number of training rounds increases. As can be seen, between epochs of 1 and 60,
the accuracy of the model has the fastest rising trend, but the fluctuation is large, and the
model has not learned efficient defect recognition ability. Between 60 and 120 epochs, the
model’s learning task is initially completed, but the accuracy curve is still fluctuating. As
the model was trained iteratively, the fluctuation of the accuracy curve gradually decreased
after 120 epochs, and finally stabilized after 160 epochs.

Figure 7 shows the loss descent curves of different networks on the training set during
the training process. As can be seen, the loss function convergence curves of the model
training process under different approaches are compared. The first convergence was
between epochs 1 and 60, during which the WRN model had the highest initial value, the
WRN plus SENet had the slowest convergence, and the WRN plus CA attention had the
fastest convergence. The second convergence was between epochs 60 and 120, and the
third was between epochs 120 and 160. In these two convergence domains, the convergence
rates and convergence trends of the four models were more or less the same, and the loss
function convergence curves of each model showed slight fluctuations. The convergence
trend of WRN is the weakest. WRN plus SENet and WRN plus CA attention are similar,
and the convergence trend of our proposed method is the best.
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Figure 6. Accuracy curve on test set.

Figure 7. Convergence curve of the model training loss function.

In order to demonstrate the improvement in model performance by attention more
intuitively, we used the gradient-weighted class activation mapping (Grad-CAM) [29]
algorithm to visualize the feature maps before and after the model improvement, as shown
in Figure 8. In this test, a bolt image with missing pins was used as the reference. It can
be seen from the figure that the attention area of the features extracted by WRN only is
relatively scattered, which is not conducive to the recognition of the bolt by the model.
Our method incorporates both SENet attention and CA attention, and the extracted feature
map is more significant and discriminative compared with the previous ones. Our method
effectively removes redundant information and allows the model to better distinguish
bolt categories.
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(a) Bolt images (b)WRN Heat Map (c)WRN+SE Heat Map

(d)WRN+CA Heat Map (e)WRN+CA+SE Heat Map

Figure 8. Visualization of the bolt feature map.

3.3. Comparative Tests and Analysis

In these tests, we compared the recognition accuracy of different recognition models
for bolt defects in the test set, as shown in Table 2. WRN has the highest accuracy of 93.31%,
3.94% higher than VGG16, and 0.86% and 0.64% higher than ResNet50 and ResNet101,
respectively. It fully demonstrates the feasibility and superiority of the backbone network
selected in this paper, and paves the way for the next model improvement.

Table 2. Ablation test results.

Recognition Model Accuracy of Bolt Defect Recognition %

VGG16 89.37
ResNet50 92.45

ResNet101 92.67
WRN 93.31

Meanwhile, we compared the recognition accuracy of each bolt before and after the
improvement in the test set, as shown in Figure 9. As can be seen from the figure, after the
improvement, the recognition accuracy was increased by 0.77% for normal bolts, 1.24% for
missing pin bolts, and 1.76% for missing nut bolts. The accuracy improvement for normal
bolts is less, while the accuracy improvement for bolts with missing pins and bolts with
missing nuts is more significant with the help of the attention mechanism. This shows that
the joint attention-wide residual method proposed in this paper is effective for bolt defect
recognition. Embedding SENet attention into each layer to improve the ability of model
feature extraction and combining CA attention to focus more accurately on the area of pin
or nut in the figure helps the model to better discriminate the bolt category and improve
the recognition accuracy.
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Normal bolts Missing pin bolt Nut missing bolt

Figure 9. Comparison of classification accuracy before and after model improvement.

4. Conclusions

In order to identify bolt defects more accurately, by taking WRN as the backbone
network, we address the problem of difficult extraction of bolt features and the fixed
position relationship of pins and nuts on top of the bolts. A new bolt defect identification
method incorporating an attention mechanism and wide residual networks is proposed,
embedding SENet and CA attention and fusing bolt knowledge. The proposed method can
locate the key feature areas with better precision through collaborative space and channel
information so as to help the model to improve the recognition accuracy. The proposed
method has been validated on a homemade transmission line bolt defect recognition dataset.
The test results show that the accuracy of this method was improved by 1.26% compared
with that before improvement, which lays a foundation for the transmission line bolt defect
detection task.
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UAV Unmanned Aerial Vehicle
GoogLeNet Google Inception Network
VGGNet Visual Geometry Group Network
ResNet Residual Network
WRN Wide Residual Networks
Cascade R-CNN Cascade Regions with Convolutional Neural Network
SENet Squeeze and Excitation Attention Network
ECA-Net Efficient Channel Attention Networks
SK-Net Selective Kernel Network
CBAM Convolutional Block Attention Module
CA Channel Attention
Faster R-CNN Faster Regions with Convolutional Neural Network
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Abstract: Unmanned Aerial Vehicle (UAV) inspection of transmission channels in mountainous
areas is susceptible to non-homogeneous fog, such as up-slope fog and advection fog, which causes
crucial portions of transmission lines or towers to become fuzzy or even wholly concealed. This
paper presents a Dual Attention Level Feature Fusion Multi-Patch Hierarchical Network (DAMPHN)
for single image defogging to address the bad quality of cross-level feature fusion in Fast Deep
Multi-Patch Hierarchical Networks (FDMPHN). Compared with FDMPHN before improvement, the
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) of DAMPHN are
increased by 0.3 dB and 0.011 on average, and the Average Processing Time (APT) of a single picture
is shortened by 11%. Additionally, compared with the other three excellent defogging methods, the
PSNR and SSIM values DAMPHN are increased by 1.75 dB and 0.022 on average. Then, to mimic
non-homogeneous fog, we combine the single picture depth information with 3D Berlin noise to
create the UAV-HAZE dataset, which is used in the field of UAV power assessment. The experiment
demonstrates that DAMPHN offers excellent defogging results and is competitive in no-reference
and full-reference assessment indices.

Keywords: transmission channels; non-homogeneous fog; dual attention; DAMPHN; image defogging

1. Introduction

UAVs have been increasingly employed in power inspection to find safety prob-
lems effectively [1]. However, in hilly regions, advection fog, uphill fog, and valley fog
are frequently encountered [2,3], causing critical portions of transmission lines or tow-
ers to become fuzzy or even wholly concealed and decreasing fault detection accuracy.
Image-defogging technology can be used to address the appeal issues. However, the
non-homogenous fog is challenging for the current homogenous fog removal method.
Additionally, the initial non-homogeneous defogging method FDMPHM exploits resid-
ual connections between several levels and ignores the issues with channel redundancy
and unequal pixel distribution in cross-level fusion. Based on this, we suggest the Dual
Attention Level Feature Fusion Multi-Patch Hierarchical Network (DAMPHN), which aims
to enhance the cross-level fusion method of FDMPHN and produce superior defogging
effects. Haze non-uniformity is not considered in power inspection image defogging stud-
ies due to a lack of non-homogeneous haze datasets. Therefore, to create a dataset that
may represent non-homogeneous haze in mountainous places (UAV-HAZE), this paper
ingeniously combines image depth measurements with 3D Berlin noise. The suggested
DAMPHN performs better in color preservation and haze removal than the other four
advanced approaches and can complete the picture preprocessing of transmission channels,
according to numerous experiments on three open datasets and UAV-HAZE.

1.1. Related Work

Model-based parameter estimation and model-free picture enhancement methods are
currently the main single-image fog removal categories. Additionally, future images for
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machine vision services will be of higher quality because of advancements in CCD imager
technology [4]. Some researchers have used the image defog technique to preprocess photos
based on high-quality photographs for transmission channels.

1.1.1. Model-Based Parameter Estimation Method

By predicting the transmission matrix t(x) and global atmospheric light A from the
haze graph J(x, λ), these approaches, based on the atmospheric scattering model [5],
provide images I(x, λ) that are devoid of haze. In Equation (1), the atmospheric scattering
model is displayed.

I(x, λ) = t(x)J(x, λ) + A(1 − t(x)) (1)

t(x) = e−β(λ)d(x) (2)

where d(x) denotes the depth of the scene and β(λ) the scattering coefficient. Both the early
dark channel prior (DCP) [6] and the color decay prior (CAP) [7] were put out and offered
concepts for further study. Convolutional neural networks (CNN) were later developed,
and Cai et al. [8] used CNNs with various kernel parameters for the first time to extract
the distinctive information of dark channel, color attenuation, maximum contrast, and hue
disparity to solve the parameters. Li et al. [9] equalized t(x) and A as a parameter based
on Formula (1) and applied CNN and residual connection to get this parameter. Zhang
et al. [10] used the Dense-Net and U-net networks, respectively. A Densely Connected
Pyramid Dehazing Network (DCPDN) was subsequently proposed based on the joint
discriminator of adversarial networks and the optimization parameter estimate of the edge
retention loss function. To achieve adaptive fusion, Li et al. [11] employed a multi-stage
deep convolutional network to estimate t(x) and A and added a memory network and a
two-level attention mechanism to determine the weight of findings at each stage. To filter
haze residuals step by step and achieve dehazing, Li et al. [12] modified Formula (1) to
be task-oriented and assembled recurrent neural networks based on encoder-decoder and
space. Bai et al. [13], who combined t(x) and A into a single parameter and calculated
it using the depth pre-defamer. The progressive feature fusion module and the picture
recovery module were created to improve parameter estimation.

1.1.2. Model-Free Image Enhancement Method

This technique uses a coding-decoding structure to directly learn the link between
the haze/clear image mapping and integrates attention mechanisms, feature fusion, and
other techniques to enhance the dehazing performance. Das et al. [14] introduced the Fast
Deep Multi-Patch Hierarchical Network (FDMPHN) and Fast Multi-Scale Hierarchical
Network (FDMSHN) by improving the loss function, which was inspired by literature [15].
According to Wang et al. [16], a heterogeneous twin network was suggested, U-Net was
used to extract haze features, and a detail enhancer network was set up to improve im-
age details. Liu et al. [17] proposed an attention-based multi-scale defogging network
(GridDehazeNet), which introduced a channel attention mechanism to improve feature
fusion ability among multiple scales. A feature fusion attention network with a channel
and pixel focus that prioritizes high-frequency and dense hazy areas was proposed by
Qin et al. [18]. To improve the ability to extract edge texture features, Wang et al. [19]
created the edge branch module based on the multi-level attention dehazing module and
the feature fusion module based on Laplace gradient prior knowledge. Using extended
convolution in the multi-scale part, channel attention mechanism in the cross-level fusion
part, and frequency domain loss in the loss function part, Yang et al.’s [20] combination of
FDMPHN and FDMSHN methods to obtain dense feature maps produced good results. A
transfer attention technique was created by Wang et al. [21] to deal with non-uniform noise
in images. To focus on the non-uniform hazy region and address the issues of artifacts
and excessive smoothing, Zhao et al. [22] developed a dynamic attention module based on
the dual attention mechanism. Guo et al. [23] suggested a self-paced half-course learning-
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driven attention image-generating technique based on the dual attention mechanism to
enhance the ability to clear regions with considerable brightness disparities of fog.

1.1.3. Transmission Channel Image Dehazing Method

Recently, researchers have used it in power inspection after taking inspiration from the
appeal algorithm. Liu et al. [24] created their own UAV picture collection for transmission line
inspection and used the DCPDN approach to achieve dehazing. To address the drawbacks of
the DCP method, Zhang et al. [25] divided the sky region by fusing the Canny operator and
gradient energy function to obtain a more accurate atmospheric light value, and Zhai et al. [26]
optimized the quadtree segmentation method. Both techniques were then applied to the image
dehazing of transmission line monitoring systems. To remove haze from photographs of an
insulator umbrella disk in transmission lines, Xin et al. [27] coupled a limited-contrast adaptive
histogram equalization method with the dark channel, bright channel, and these methods.
Gao et al.’s [28] use of DCP to remove haze from fixed-point monitoring photographs of a
tower or pole was likewise based on this technique. Yan et al. [29] created their dataset for
UAV power inspection and used FDMPHN to achieve dehazing.

1.2. Motivation and Contribution

The model-based parameter estimate methods produces improved outcomes in the
area of picture fog removal. However, the overall image that DCP restored is dark, and
color distortion can easily happen in areas of bright light. The reduction impact is weak
when the depth of field shift in the image is not visible or when there is haze, as CAP is
dependent on the color saturation of the image. To maximize the fog removal effect, later
researchers used CNN to estimate the parameters t(x) and A. However, both the param-
eter estimation methods based on CNN [8,10,11] and the parameter estimation method
after the improved atmospheric scattering model [9,12,13] are subject to artifacts, color
distortion, and haze residues because of the shortcomings of the atmospheric scattering
model. Although the model-free image enhancement methods are not limited by the model,
it depends on the ability of the network to extract and fuse the haze features. Only residual
connections are used in the multi-patch network FDMPHN for cross-level feature fusion,
disregarding channel differences and pixel distribution non-uniformity. Therefore, when
the non-uniform characteristics of haze or the fog area are strong, it is easy for haze residue
and detail blur to appear. Later researchers enhanced the network’s capacity for feature
extraction by improving the attention mechanism [17–23], but it was also challenging to
address the issue of non-uniform fog.

In the area of fog removal in power inspection images, Refs. [24–28] all use a uniform
haze dataset created based on an atmospheric scattering model as the foundation for their
analyses, neglecting the non-uniform characteristics of haze distribution in natural settings.
As a result, it is only appropriate for processing images with uniform haze distribution. It
performs poorly when dealing with powerful light sources and non-uniform haze, and
the image quality after recovery is also subpar. Furthermore, power inspection picture
fog removal is still in the uniform haze removal stage, and it is challenging to make
progress due to the relative paucity of non-uniform haze datasets [30]. Therefore, this
paper suggests a Dual Attention Level Feature Fusion Multi-Patch Hierarchical Network
(DAMPHN) to enhance the defogging effect of UAV inspection photos of transmission lines
in mountainous terrain. This work’s key contributions can be summed up as follows:

1. It is suggested to use a Dual Attention Level Feature Fusion Multi-Patch Hierarchical
Network (DAMPHN) that combines an encoder-decoder module with a Dual At-
tention Level Feature Fusion (DA) module. The experimental results show that the
network has low color distortion and a good defogging effect.

2. DA module is proposed. DA makes use of channel attention, pixel attention, and
residual connection to enhance the multi-patch layered network’s cross-level fea-
ture function strategy. The DA module has strong feature fusion capabilities, as
demonstrated by numerous ablation tests.
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3. By calculating picture depth information and inserting 3D Berlin noise of various
frequencies, 2225 pairs of non-homogeneous haze/clear images datasets are con-
structed based on the actual situation. The dataset can, as closely as possible, mimic
the characteristics of haze dispersal in mountainous regions. Later, it is employed
to support DAMPHN training and testing, which can enhance the ability of UAV
inspection photos of transmission lines in mountainous locations to remove fog.

Figure 1 illustrates the specifics of our implementation strategy for DAMPHN-based
image preprocessing of mountain areas’ transmission channel images. Based on this,
Section 2 details the DAMPHN network structure. It also includes the encoder-decoder
and DA module’s unique construction and the loss function needed for network training.
The datasets required for the ablation and application experiments and the creation of
the training parameters are described in Section 3. The usefulness of the suggested DA
and DAMPHN is first demonstrated in Section 4 through several ablation experiments,
after which many algorithms are trained and tested using real haze photos of mountain
power transmission routes and UAV-HAZE datasets. Section 5 discusses and analyzes the
experimental results. In Section 6, several conclusions are made.

 

Figure 1. Implementation scheme of image preprocessing of mountain transmission channel based
on DAMPHN.
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2. Materials and Methods

In this study, the encoder-decoder and DA module-based DAMPHN are suggested.
This section’s first paragraph introduces DAMPHN’s architecture and design principles,
as well as those of its submodules. The training and optimization of the DAMPHN loss
function are covered in the second section.

2.1. DAMPHN

DAMPHN network is a multi-level structure, and each level comprises corresponding
encoders and decoders. The potential of hierarchical feature fusion is further enhanced
by a Dual Attention Level Feature Fusion module (DA). Figure 2 displays the structure
in its entirety. Figure 2 depicts DAMPHN with i hierarchical structure, where each level
processes 4, 2, and 1 picture blocks, respectively, and when i = 1, 2, 3. The j block of level
i is represented as Ii,j if the input image is I. The first layer then divides I into 4 blocks,
identified as I1,1, I1,2, I1,3, and I1,4, both vertically and horizontally. I is divided vertically
into two blocks, designated as I2,1 and I2,2, by the second stratum. I is directly inputted
into the third layer, which is represented as I3,1.

 
Figure 2. DAMPHN network structure.

The pair of encoder decoders that make up each level are denoted as Enci and Deci,
respectively. The encoding feature Qi,j can be retrieved after the input picture Ii,j has
sequentially been through the encoder and DA module. In particular, see Equation (3).

Qi,j =

⎧⎨⎩
Cat

[
Enci

(
Ii,2j−1

)
, Enci

(
Ii,2j

)]
, i = 1, jε1, 2

Enci
(

DA
(

Ii,j, Ji−1,j
))

, i = 2, jε1, 2
Enci

(
DA

(
Ii,j, Ji−1,j

))
, i = 3, j = 1

(3)
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The local feature output Ji,j of all levels can be acquired after the DA module and
decoder. J3,1 represents the final dehazing image after DAMPHN feature extraction from
the local to the overall concept. The specifics are presented in Equation (4):

Ji,j =

⎧⎨⎩
Deci

(
Qi,j

)
, i = 1, jε1, 2

Deci
(

DA
(
Cat

[
Qi,j, Qi,2j

]
, Cat

[
Qi−1,j, Qi−1,2j

]))
, i = 2, j = 1

Deci
(

DA
(
Qi,j, Cat

[
Qi−1,j, Qi−1,2j

]))
, i = 3, j = 1

(4)

2.1.1. Encoder-Decoder

The encoder is used to extract the feature data from the image, while the decoder
reconstructs the image using the feature data. Three convolution layers and three residual
modules (Resblock × 3) make up the encoder in this study. The decoder has a similar
design to the encoder, with three residual modules, two transposed convolution layers, and
one convolution layer. In order to generate a haze-free image and restore the image scale,
decoder transposition convolution is utilized. Figure 3 depicts its network structure.

Figure 3. Encoder-decoder module structure.

2.1.2. DA Module

After going through the encoder-decoder during the hierarchical fusion process, the
local feature Ji,j is produced from the foggy picture I input at the first and second levels.
The convolution transformation of Qi,j yields each channel of Ji,j. As a result, the residual
connection in the original FDMPHN network is employed directly in cross-level fusion, and
the uneven and redundant channel direction in the fusion feature process is not considered.
Additionally, the residual splicing method does not consider the uneven distribution of picture
pixels, and the encode-decoder in the original FDMPHN network relies on pixel domain
mapping to understand the intricate relationship between the hazy image and the clear image.
This led to the development of the DA module provided in this paper, as seen in Figure 4.

The channel domain feature response is first collected by adding the channel attention
layer, and subpar or duplicated features are suppressed. Second, by including a pixel
attention layer to concentrate on regions of the image with uneven pixel distribution,
we may enhance the fusion process’ attention to dense haze or high-frequency regions.
After stitching, input the channel attention layer (Ca_layer) and pixel attention layer
(Pa_layer), assuming that the feature picture of the current level is FCεRH×W×C and the
feature picture of the previous level is FUεRH×W×C. FCAεRH×W×C and FPAεRH×W×C

are obtained. Finally, this paper obtains the output F of the final DA module using the
convolution joint processing channel and the outcomes of pixel attention processing to
make up for the information lost in the extraction process of dual attention layers.

FCA = Ca_layer(Cat[FC, FU ]) (5)
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FPA = Pa_layer(FCA) (6)

F = Cat[conv(FPA), FPA, FCA, Cat[FC, FU ]] (7)

Figure 4. DA module structure.

2.2. Loss of DAMPHN

The total loss function L of DAMPHN is shown in Equation (8), where, respectively,
Lr, Lp, and Ltv stand for reconstruction loss, perception loss, and total variational loss.

L = αrLr + αpLp + αtvLtv (8)

• Reconstruction loss Lr;

Determine the difference between the clear pictures J pixel and the N DAMPHN
defogging images Jn. MAE and MSE are combined linearly. Lr can be written as:

Lr = αr1
1
N

N

∑
i=1

‖Jn − J ‖ +αr2
1
N

N

∑
i=1

‖Jn − J ‖2 (9)

• Perception loss Lp;

The VGG16 network was used to calculate features using the pre-trained model. The
network’s convolution layers (Conv1-2, Conv2-2, and Conv3-2) were utilized to calculate
differences, designated as ϕ(·), and extract features. Lp is written as:

Lp =
1

CKWK HK

3

∑
K=1

‖ ϕK(Jn)− ϕK(J) ‖ (10)

• Total variation loss Ltv.

Ltv is calculated by computing the gradient amplitude of the dehazing image to reduce
noise and keep the image smooth. ∇x(·) and ∇y(·) in Equation (11), respectively, are used
to obtain the gradient matrix of the picture in the horizontal and vertical directions.

Ltv =‖ ∇x(Jn) ‖2 + ‖ ∇y(J) ‖2 (11)

3. Experiment Setup

3.1. Dataset
3.1.1. Ablation Experimental Dataset

The datasets for the ablation experiment were chosen from three standard datasets
from the IEEE CVRP NTIRE Seminar: Dense-HAZE [31], O-HAZE [32], and NH-HAZE [33].
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Dense-HAZE includes 55 identical pairs of dense haze/clear images. From the sample,
1–45 pairings were chosen for training, 46–50 pairs for verification, and 51–55 pairs for
testing in this study. O-HAZE includes 45 sets of outdoor, non-homogeneous haze/clear
images. From that set, 1–35 pairs were chosen for training, 36–40 pairs for verification,
and 41–45 pairings for testing in this study. Fifty-five non-homogeneous haze/clear image
pairs are included in NH-HAZE. In this study, 1–45 were selected for training, 46–50 for
verification, and 51–55 for testing.

3.1.2. Self-Built Transmission Channel Inspection Dataset (UAV-HAZE)

In haze image imaging, because it is often manifested as loss of image visibility, the
atmospheric extinction coefficient σ can solve the β(λ) in Equation (12).

β(λ) =
3.912

σ
(12)

Additionally, visibility varies depending on height. Therefore, the depth value of the
scene and the vertical field of view of the camera are used to estimate the elevation values
of the pixels and their distribution characteristics are calculated to replicate the distribution
and color characteristics of genuine haze. To imitate the color features of haze, Formula (1)
includes the haze color value Ial as follows:

I(x, λ) = t(x)J(x, λ) + A(1 − t(x))× Ial (13)

Taking into account the mountain haze’s irregularly distributed properties. Non-
uniform haze is created using 3D Berlin noise, and a haze generator called FOHIS [34]
is suggested. They are used to mimic non-uniform haze by making three Berlin noises
of varying amplitudes and frequencies, which are then merged with Equation (13) and
multiplied by β(λ).

P_noise =
1
3

3

∑
i=1

P_noisei

2i − 1
(14)

In light of FOHIS, this work estimated the picture depth value in order to synthesize
the mountain transmission into the UAV-HAZE dataset [35]. In the synthesis process, the
Ial of the three-color channels of the image RGB is set to [220,220,210], respectively, to
simulate the color characteristics of the blue-white mountain fog. Then, to imitate the
distribution features of mountain haze, the vertical field of view of the camera is adjusted
to 20◦. This is combined with the depth value of picture pixels, and the pixel elevation
value is calculated. The non-uniform properties of mountain haze were then simulated
by creating 3D Berlin noise with three distinct frequency values (f = 130, 60, 10). Finally,
the data [700–900], [900–1100], [1100–1300] and [1300,1500] were chosen as the extinction
coefficients in Equation (12) using 450 mountain transmission channel photos obtained by
UAV inspection as the original dataset. A total of 2225 non-uniform simulated haze/clear
images of various concentrations make up UAV-HAZE, which is divided into training sets,
verification sets, and test sets in a ratio of 7:2:1. There are 1560 pairs in the training set,
445 pairs in the verification set, and 220 teams in the test set.

3.2. Implementation Details

NVIDIA GeForce RTX3090 (24 GB) was the platform used for the experiment. Data
preprocessing involves cropping each training image into 100 non-overlapping image
blocks with a size of 120 × 160 pixels and unifying the image resolution of the training set
across Dense-HAZE, O-HAZE, NH-HAZY, and UAV-HAZE to 1200 × 1600. The image
blocks were simultaneously rotated at random angles of 0, 90, 180, and 270 degrees. The
Adam optimizer is initially employed in DAMPHN network training with exponential
decay rates γ1 = 0.9, γ2 = 0.999, starting learning rates 1 × 10−4, and batch sizes 100. We
also adjusted the learning rate using an equally spaced strategy with step size = 10 and
gamma = 0.1. Then, the hyperparameters of the loss function are set to αr = 1, αp = 6 × 10−3,
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αtv = 2 × 10−8, αr1 = 0.6, αr2 = 0.4. Finally, when the verification set loss function is stable,
the training is stopped and the best model is obtained.

4. Experiment Results

4.1. Ablation Experiment

Two phases of the ablation experiment were conducted. The first and second sections,
respectively, confirm the reliability of the DA module and the DAMPHN network.

4.1.1. DA Module

Due to the low cross-level fusion quality of the original multi-patch algorithm FDM-
PHN, the DA module is proposed in this study. In order to reduce the complexity of the
algorithm, the encoder-decoder structure of FDMPHN is diminished. The three sets of
experiments listed below are explicitly included in this section:

(I) The network encoder-decoder has six residual modules (Resblock × 6) using only
FDMPHN.

(II) The approach suggested in this work builds on (I) by adding a DA module (FDMPHN
+ DA). A DA module plus six residual modules (Resblock × 6) make up the network
encoder-decoder.

(III) To optimize (II) and DAMPHN, the solution presented in this research uses just three
residual modules (Resblock × 3).

• Quantitative evaluation

PSNR [36], SSIM [37], and APT were chosen for quantitative evaluation in this section
of the experiment. The visual noise and distortion decrease as the PSNR value rises. The
recovery of structural properties such as image brightness and contrast is measured by
SSIM. The dehazing is better the higher the value. Table 1 displays the precise outcomes
of the three groups of studies. In Table 1, when (I) and (II) are compared, the addition of
the DA module raised PSNR and SSIM in the three datasets by an average of 0.35 dB and
0.0073, whereas APT rose by 19% (0.007 s). Comparing (I) and (III), the average PSNR
and SSIM in the three datasets are raised by 0.30 dB and 0.011, respectively, and APT is
shortened by 11% (0.003 s), respectively, after the encode-decoder structure is streamlined.

Table 1. Results of DA module ablation experiments.

Method
Dense-HAZE O-HAZE NH-HAZE

PSNR SSIM APT PSNR SSIM APT PSNR SSIM APT

(I) FDMPHN 13.47 0.4369 0.031 19.93 0.7045 0.030 16.87 0.5512 0.030
(II) FDMPHN + DA 14.03 0.4512 0.036 20.35 0.6976 0.035 16.94 0.5656 0.037
(III) DAMPHN 13.89 0.4497 0.027 20.20 0.7138 0.027 17.07 0.5621 0.027

• Convergence analysis

This section assessed the convergence using the dynamic curves for training loss,
PSNR, and SSIM. On Dense-HAZE, O-HAZE, and NH-HAZE, Figure 5 displays the train-
ing losses, PSNR, and SSIM for the FDMPHN, FDMPHN+DA, and DAMPHN approaches,
respectively. Figure 5 shows the training and testing of the three approaches on three
separate datasets, with the training losses, PSNR, and SSIM information displayed in the
rows and columns, respectively. Figure 5a illustrates how the training loss for the afore-
mentioned approaches steadily lowers as the number of iterations increases and gradually
stabilizes at 35–40 rounds. In Figure 5b,c, all three approaches converge after 200 rounds,
and the DA module performs better regardless of how complicated or straightforward the
encoder-decoder structure is.
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(a) (b) (c) 

Figure 5. Training loss curve and test PSNR and SSIM curve. (a) Training loss. (b) Testing PSNR.
(c) Testing SSIM.

4.1.2. DAMPHN Network

To more accurately evaluate DAMPHN, we further conducted quantitative, qualitative,
and convergence evaluation on three datasets, Dense-HAZE, O-HAZE, and NH-HAZE,
with DCP [6], AOD-Net [9], FDMPHN [14], and GridDehazeNet [17], respectively.

• Quantitative evaluation

PSNR, SSIM, and APT are also used to gauge how well various techniques remove
haze. The outcomes of the quantitative comparison are displayed in Table 2. In Table 2,
the blue values represent the optimal values, and the underlined values represent the
sub-optimal values. In the three datasets, the PSNR and SSIM values of DAMPHN are
3.72 dB and 0.0666 higher than those of DCP on average, and ART is 94% shorter. The
defog quality of AOD-Net in the Dense-HAZE dataset is comparable to that of DAMPHN.
However, on the non-uniform haze datasets O-HAZE and NH-HAZE, the PSNR and SSIM
values of DAMPHN are increased by 1.72 dB and 0.0446 compared with the average value
of AOD-Net. The effect of GridDehazeNet on the fog removal in the three datasets has its
own advantages compared with the method in this paper. Specifically, DAMPHN is, on
average, 0.38 dB higher than GridDehazeNet’s PSNR value, but the SSIM value is lower
than GridDehazeNet’s 0.025. Finally, compared with FDMPHN in the three datasets, the
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PSNR and SSIM values of DAMPHN are increased by 0.30 dB and 0.011 on average, and
ART is shortened by 11%.

Table 2. Results of DAMPHN Network quantitative comparison.

Method
Dense-HAZE O-HAZE NH-HAZE

PSNR SSIM APT PSNR SSIM APT PSNR SSIM APT

DCP [6] 11.60 0.3854 0.406 15.66 0.6753 0.440 13.28 0.4650 0.416
AOD-Net [9] 13.85 0.4714 0.023 18.19 0.6950 0.010 15.64 0.4918 0.009

GridDehazeNet [17] 13.50 0.4721 0.026 19.82 0.7108 0.026 16.70 0.6101 0.026
FDMPHN [14] 13.47 0.4369 0.031 19.93 0.7045 0.030 16.87 0.5512 0.030

DAMPHN (ours) 13.89 0.4497 0.027 20.20 0.7138 0.027 17.07 0.5621 0.027

• Qualitative assessment

The experiment’s visual comparison component is the main focus here. Among the
images, the haze distribution in the first and second rows is more uniform, and the haze
distribution in the third and fourth rows is uneven. The DCP results in Figure 6 reveal
color distortion and a significant degree of residual haze. The image’s color changes to dark
yellow after AOD-Net fog removal, and a significant quantity of haze residue remains in the
non-uniform haze area. GridDehazeNet has a good fog effect when the haze distribution is
relatively uniform, but the image’s color after fog removal is darker than that of the clear
picture. In addition, in the case of non-uniform haze, GridDehazeNet also shows many
haze residues. The image’s overall color after fog removal by FDMPHN is closer to the clear
image when the haze distribution is more uniform. Still, the color distortion appears on the
ground of the first line of the picture. Regarding non-uniform haze, FDMPHN has a good
de-fogging effect, but its de-noising solid ability also causes image smoothing, resulting in
blurred details. DAMPHN is visually similar to FDMPHN. However, in the enlarged area
of the fourth row of the image, the DAMPHN haze residue is less.

• Convergence analysis

In this experiment section, the convergence is assessed using the change curves of
PSNR and SSIM with the number of training rounds. Figure 7 shows the results of each
round of PSNR and SSIM tests for four de-fogging techniques on three datasets. DCP
has the fastest convergence rate. AOD-Net uses a relatively lightweight CNN structure in
the parameter estimation process, which has poor stability and the slowest convergence
rate. When the PSNR value of the current verification set is assumed to be greater than
the previous results during GridDehazeNet training, the round model is optimal. Under
dynamic control, its convergence rate ranks fourth. The FDMPHN and DAMPHN set the
hyperparameters before training, and the validation set is used to optimize the hyperpa-
rameter settings. Therefore, both FDMPHN and DAMPHN converge faster. Specifically,
in Figure 7a, DAMPHN converges faster than FDMPHN. In Figure 7b,c, FDMPHN and
DAMPHN converge at similar speeds. Therefore, DAMPHN in this paper is in second
place in terms of convergence speed.

4.2. Transmission Channel Image
4.2.1. Synthetic Dataset UAV-HAZE

DAMPHN can be utilized to clear haze from Sichuan’s mountainous areas’ trans-
mission channel scenery. This section is based on the dataset created in Section 3.1.2,
UAV-HAZE. With this collection of data, DCP [6], AOD-Net [9], FDMPHN [14], GridDe-
hazeNet [17], and DAMPHN, the approach in this article, are each examined in turn. This
section evaluates both the algorithm’s quantitative and qualitative performance.
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(a) (b) (c) (d) (e) (f) (g) 

Figure 6. NH-HAZE and O-HAZE dehazing results. (a) Hazy. (b) DCP. (c) AOD-Net. (d) GridDe-
hazeNet. (e) FDMPHN. (f) DAMPHN. (g) Ground truth.

 
(a) (b) (c) 

Figure 7. PSNR and SSIM test curves. (a) Dense-HAZE. (b) NH-HAZE. (c) O-HAZE.
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• Quantitative evaluation

PSNR, SSIM, and APT were chosen as evaluation indicators. Table 3 presents the
experimental outcomes. In Table 3, the blue font is the optimal value, and the underlined
value is the sub-optimal value. The PSNR of DAMPHN is optimal, SSIM and ART are sub-
optimal. In this study, DAMPHN’s PSNR and SSIM values are 7.26 dB and 0.0588 greater
than DCP’s, respectively. APT barely makes up 4% of DCP techniques. PSNR and SSIM are
9.32 dB and 0.2057 greater in DAMPHN than in AOD-Net, although APT is 14 times higher.
The PSNR value of DAMPHN is 0.26 dB higher, and the SSIM value is 0.0007 dB lower than
GridDehazeNet. DAMPHN’s SSIM value is the same as FDMPHN’s, but its PSNR is 0.04 dB
higher, and its APT is 94% shorter.

Table 3. Quantitative comparison results on UAV-HAZE.

Method PSNR SSIM APT

DCP [6] 19.97 0.8851 0.352
AOD-Net [9] 17.92 0.7382 0.001

GridDehazeNet [17] 26.98 0.9476 0.015
FDMPHN [14] 27.20 0.9439 0.234

DAMPHN (ours) 27.24 0.9439 0.014

• Qualitative assessment

Figure 8 displays the outcomes of the qualitative comparison between DAMPHN and
the techniques mentioned above. DCP has a positive impact in the mist area, according to
the analysis of Figure 8. The color of the third row seems distorted when the haze density
is excellent, or the randomness of its distribution features is substantial. When dealing
with non-uniform haze, AOD-Net’s primary result is that a significant amount of haze is
left in the processed image, the details are blurred, and there is evident color distortion.
The fog removal quality of GridDehazeNet is superior to that of the first two techniques.
However, some fog was still present close to the first row’s wires and the fourth row’s poles
and towers. In this study, the FDMPHN and DAMPHN techniques can recover the picture
tower’s detailed information with excellent clarity and superb color fidelity. FDMPHN
does, however, have a trace amount of haze residue in the first row’s wire area.

4.2.2. Real Image

The actual utility of DAMPHN was confirmed by the refit project from Gangu to Erlang
Mountain in Shuzhou and the real hazy photographs of the Sichuan-Tibet network project.
The approach was evaluated using both quantitative and qualitative methodologies.

• Quantitative evaluation

Five non-reference image quality evaluation indexes, including information entropy,
standard deviation, clarity, perception-based image quality evaluation method (PIQE) [38],
and APT, were chosen for quantitative evaluation because there were insufficient clear
reference examples. The more relevant information an image carries, the higher its infor-
mation entropy. The image’s standard deviation is used to assess its contrast; the lower
the standard deviation, the more stable the image is. The greater the value, the higher the
sharpness, which is defined as the variance of calculating the absolute value of Laplace.
Block effects, blur, and noise distortion are calculated using PIQE, and a lower value
corresponds to less distortion. In Table 4, the experimental findings are displayed.

In Table 4, the underlined value and the blue text represent the ideal and sub-optimal
values, respectively. This approach performs the best regarding clarity and PIQE, comes
in second for ART, and comes in third for information entropy and standard deviation.
This approach has reduced standard deviation and higher assessment indices compared
to DCP. The proposed method has a clear benefit over AOD-Net regarding image quality,
but it takes four times as long to operate. DAMPHN has higher evaluation indexes than
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GridDehazeNet, except for lower information entropy. DAMPHN is superior to FDMPHN
in various assessment indices compared to FDMPHN before improvement, except for the
picture information entropy, which is less than 0.17.

 
(a) (b) (c) (d) (e) (f) (g) 

Figure 8. Results of UAV-HAZE dehazing. (a) Hazy. (b) DCP. (c) AOD-Net. (d) GridDehazeNet.
(e) FDMPHN. (f) DAMPHN. (g) Ground truth.

Table 4. Results of quantitative evaluation of real images.

Method
Information

Entropy
Standard
Deviation

Clarity PIQE APT

DCP [6] 17.78 32.19 459.86 27.51 0.342
AOD-Net [9] 16.10 45.93 452.79 28.87 0.005

GridDehazeNet [17] 18.28 41.61 470.18 24.90 0.021
FDMPHN [14] 18.10 42.38 465.21 24.48 0.270

DAMPHN (ours) 17.93 41.92 536.11 23.98 0.020

• Qualitative assessment

Figure 9 displays two transmission channel views of the retrofitting project from
Gangu to Erlang Mountain in Shuzhou and the haze reduction effect of four groups of the
Sichuan-Tibet interconnection project. Uphill fog, uphill fog, advection fog, and radiation
fog are all depicted in lines 1 through 4. Intuitive examination reveals that the color of DCP
is severely altered and turns blue-purple in the sky area. AOD-Net effectively removes
haze. However, it has glaring issues with blurred details and intensified hue. Although
GridDehazeNet effectively removes fog, there is still some fog in the third-row valley
and second-row tower areas. The image is also slightly lavender once the fog has been
eliminated, for instance, the first row’s valley fog area and the fourth row’s pole tower
area. In places with high haze density, such as the tower area in the second row and the
valley area in the third row, FDMPHN has a competitive dehazing impact but leaves haze
residue behind. This technique also results in color distortion, as seen in how the first row
of trees on an ascent turned yellow. After adding a DA module, DAMPHN may now pay
closer attention to areas with dense fog and a non-uniform haze. As a result, the method
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suggested in this paper removes fog more thoroughly than GridDehazeNet and FDMPHN
in the first-row and third-row valley areas. Additionally, there is no purple or yellowing in
terms of color preservation.

 
(a) (b) (c) (d) (e) (f) 

Figure 9. Dehazing result of real transmission channel image. (a) Hazy. (b) DCP. (c) AOD-Net.
(d) GridDehazeNet. (e) FDMPHN. (f) DAMPHN.

5. Discussion

In this paper, the issue of transmission line haze that is unevenly dispersed in moun-
tainous places was studied. A DAMPHN is introduced, an innovative non-uniform haze-
defogging network model put forth in this research to facilitate picture preprocessing for
UAV transmission channel inspection in mountainous terrain. Similarly, the DAMPHN
network model is universal. DAMPHN can be used for preprocessing other images in
fog environments, such as unmanned visual perception, surveillance video (road traffic,
transmission lines), and tachographs. DCP, AOD-Net, GridDenzeNet, and FDMPHN were
utilized in numerous tests using open datasets (Dense-HAZE, O-HAZE, and NH-HAZE)
and self-built datasets (UAV-HAZE) to demonstrate the efficacy of DAMPHN.

Notably, because the assumption of uniform distribution of air concentration in the
atmospheric scattering model limits both DCP and AOD-Net, the error of estimating pa-
rameters is significant in dense fog and non-homogeneous haze. DAMPHN is a multi-level
end-to-end fog removal network that seeks to remove fog by discovering the relationship
between the haze and clear image mapping. DAMPHN does not, therefore, need to estimate
the parameters; instead, it relies on the dataset’s basis, and the higher the base, the higher
the quality of fog removal. GridDehazeNet solves the problem of feature fusion between
different scales in multi-scale networks by introducing channel attention. DAMPHN solves
the problem of feature fusion between different levels in multi-patch networks by intro-
ducing channel and pixel attention mechanisms. GridDehazeNet has vital artifact removal,
so the SSIM value is stronger than DAMPHN. DAMPHN pays attention to the problem
of uneven pixel distribution, pays attention to the removal of non-uniform fog, and has
a strong denoising ability and high PSNR value. FDMPHN is identical to a multi-patch
defogging network, but the residual connections in hierarchical fusion restrict how well it
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can fuse features. The pixel attention layer of the DAMPHN’s DA module is designed to
pay attention to areas with unequal haze distribution. In contrast, the channel attention
layer is designed to appropriately evaluate the channel domain properties. DAMPHN has
a better defogging impact as a result than FDMPHN.

Additionally, the frequently used image segmentation algorithms U-Net and GridNet
have produced effective outcomes in image segmentation and picture defogging via inno-
vation. DCPDN solves parameter A using the U-Net network. GridDehazeNet proposes a
multi-scale attention network based on GridNet. They both have superior defogging effects.
With dual U-Net, Amyar et al. [39] created a multi-task and multi-scale network structure
that was effectively used for lung tumor segmentation, classification, and prediction. How-
ever, DAMPHN accomplishes picture fog removal from the local to the global by helping
the feature extraction of the bigger patch image from the top layer with the detailed feature
of the lower layer. From the overall to the local picture segmentation, image fog removal,
and other tasks, U-Net will employ the more comprehensive information collected from the
bottom layer to aid in the development of smaller receptive field information. Consequently,
the two networks’ designs have produced successful outcomes in their respective domains.

In conclusion, the DAMPHN approach offers an excellent defogging effect, less color
distortion, and quick processing speed. In a location with a lot of fog, it is impossible to
eliminate it entirely, and the details are hazy. DAMPHN can improve the defog effect by
enhancing the encoder-decoder structure, feature extraction, and reconstruction skills, all
of which were influenced by U-Net in the field of image segmentation, or by combining
with the conventional image edge previous knowledge to increase the texture information
and boost the fog removal effect.

6. Conclusions

This paper proposes that DAMPHN can achieve a good defog effect and restore the
color and brightness of the image. The network encoder-decoder module and DA module
are composed. The former can learn the mapping relationship between haze and clear
pictures and has a strong feature extraction ability. The latter enhances the feature fusion
ability by empowering the combination of channel attention and pixel attention. However,
in excessive haze density, it cannot be entirely removed, and the details are hazy. Future
work will improve the haze removal effect by enhancing texture information through edge
prior and enhancing the encoder-decoder structure. Additionally, using 3D Berlin noise
and image depth information to simulate haze’s non-uniform distribution characteristics is
not only just restricted to UAV mountain transmission channel inspection; it can also be
applied to a broader range of situations to enhance generalization performance.
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Abbreviations

The following abbreviations are used in this manuscript:
UAV Unmanned Aerial Vehicle
FDMPHN Fast Deep Multi-Patch Hierarchical Network
DAMPHN Dual Attention Level Feature Fusion Multi-Patch Hierarchical Network
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index Measure
APT Average Processing Time
DCP Dark Channel Prior
CAP Color Decay Prior
CNN Convolutional neural networks
AOD-Net All-in-One Dehazing Network
DCPDN Densely Connected Pyramid Dehazing Network
FDMSHN Fast Deep Multi-Scale Hierarchical Network
DA Dual Attention Level Feature Fusion
Ca_layer Channel attention layer
Pa_layer Pixel attention layer
PIQE Perception-based Image Quality Evaluation
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