
Machine Learning 
for Energy Systems

Printed Edition of the Special Issue Published in Energies

www.mdpi.com/journal/energies

Denis Sidorov
Edited by

 M
achine Learning for Energy System

s   •   Denis Sidorov



Machine Learning for Energy Systems



Machine Learning for Energy Systems

Editor

Denis Sidorov

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editor

Denis Sidorov

Russian Academy of Sciences

Irkutsk National Research

Technical University

Russia

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Energies

(ISSN 1996-1073) (available at: https://www.mdpi.com/journal/energies/special issues/Machine

Learning Energy Systems).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03943-382-7 (Hbk) 

ISBN 978-3-03943-383-4 (PDF)

Cover image courtesy of pixabay.com user.

c© 2020 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Denis Sidorov, Fang Liu and Yonghui Sun

Machine Learning for Energy Systems
Reprinted from: Energies 2020, 13, 4708, doi:10.3390/en13184708 . . . . . . . . . . . . . . . . . . . 1

Chin-Tan Lee and Shih-Cheng Horng

Abnormality Detection of Cast-Resin Transformers Using the Fuzzy Logic Clustering 
Decision Tree
Reprinted from: Energies 2020, 13, 2546, doi:110.3390/en13102546 . . . . . . . . . . . . . . . . . . 7

Ruixuan Yang, Fulin Zhou and Kai Zhong

A Harmonic Impedance Identification Method of Traction Network Based on Data 
Evolution Mechanism
Reprinted from: Energies 2020, 13, 1904, doi:10.3390/en13081904 . . . . . . . . . . . . . . . . . . . 27

Ahmad Nayyar Hassan and Ayman El-Hag

Two-Layer Ensemble-Based Soft Voting Classifier for Transformer Oil Interfacial 
Tension Prediction
Reprinted from: Energies 2020, 13, 1735, doi:10.3390/en13071735 . . . . . . . . . . . . . . . . . . . 43

Rongyong Zhao, Daheng Dong, Cuiling Li, Steven Liu, Hao Zhang, Miyuan Li and 
Wenzhong Shen

An Improved Power Control Approach for Wind Turbine Fatigue Balancing in an Offshore 
Wind Farm
Reprinted from: Energies 2020, 13, 1549, doi:10.3390/en13071549 . . . . . . . . . . . . . . . . . . . 55

Denis Sidorov, Daniil Panasetsky, Nikita Tomin, Dmitriy Karamov, Aleksei Zhukov, 
Ildar Muftahov, Aliona Dreglea, Fang Liu and Yong Li

Toward Zero-Emission Hybrid AC/DC Power Systems with Renewable Energy Sources and 
Storages: A Case Study from Lake Baikal Region
Reprinted from: Energies 2020, 13, 1226, doi:10.3390/en13051226 . . . . . . . . . . . . . . . . . . . 75

Hua Liu, Yong Li, Yijia Cao, Zilong Zeng and Denis Sidorov

Operational Risk Assessment of Electric-Gas Integrated Energy Systems Considering 
N-1 Accidents
Reprinted from: Energies 2020, 13, 1208, doi:10.3390/en13051208 . . . . . . . . . . . . . . . . . . . 93

Syed Naeem Haider, Qianchuan Zhao and Xueliang Li

Cluster-Based Prediction for Batteries in Data Centers
Reprinted from: Energies 2020, 13, 1085, doi:10.3390/en13051085 . . . . . . . . . . . . . . . . . . . 109

Fulin Zhou, Feifan Liu, Ruixuan Yang and Huanrui Liu

Method for Estimating Harmonic Parameters Based on Measurement Data without Phase Angle
Reprinted from: Energies 2020, 13, 879, doi:10.3390/en13040879 . . . . . . . . . . . . . . . . . . . 127
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Abstract: The objective of this editorial is to overview the content of the special issue “Machine
Learning for Energy Systems”. This special issue collects innovative contributions addressing
the top challenges in energy systems development, including electric power systems, heating
and cooling systems, and gas transportation systems. The special attention is paid to the
non-standard mathematical methods integrating data-driven black box dynamical models with
classic mathematical and mechanical models. The general motivation of this special issue is driven
by the considerable interest in the rethinking and improvement of energy systems due to the
progress in heterogeneous data acquisition, data fusion, numerical methods, machine learning, and
high-performance computing. The editor of this special issue has made an attempt to publish a book
containing original contributions addressing theory and various applications of machine learning in
energy systems’ operation, monitoring, and design. The response to our call had 27 submissions from
11 countries (Brazil, Canada, China, Denmark, Germany, Russia, Saudi Arabia, South Korea, Taiwan,
UK, and USA), of which 12 were accepted and 15 were rejected. This issue contains 11 technical
articles, one review, and one editorial. It covers a broad range of topics including reliability of power
systems analysis, power quality issues in railway electrification systems, test systems of transformer
oil, industrial control problems in metallurgy, power control for wind turbine fatigue balancing,
advanced methods for forecasting of PV output power as well as wind speed and power, control of
the AC/DC hybrid power systems with renewables and storage systems, electric-gas energy systems’
risk assessment, battery’s degradation status prediction, insulators fault forecasting, and autonomous
energy coordination using blockchain-based negotiation model. In addition, review of the blockchain
technology for information security of the energy internet is given. We believe that this special
issue will be of interest not only to academics and researchers, but also to all the engineers who are
seriously concerned about the unsolved problems in contemporary power engineering, multi-energy
microgrids modeling.

Keywords: industrial mathematics; pattern recognition; inverse problems; intelligent control;
artificial intelligence; energy management system; smart microgrid; energy systems; forecasting;
optimization; Volterra equations; energy storage; load leveling; power control; offshore wind farm;
cyber-physical systems
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1. Introduction

Future energy systems will grow in complexity, causing both higher demands in reliability and
an increase in the degrees of freedom for functional improvement of integrated multi-energy systems.
Progress in mathematical modeling tools development based on heterogeneous data acquisition,
data fusion, cybersecurity, and global navigation satellite systems (GNSS) opens new perspectives in
modern energy systems rethinking and improvement.

Machine learning-based data-driven models have exceptional potential to play the important
role of improving the comprehensive utilization rate of multi-energy including renewables. With the
wide interconnection of source-storage-load equipment at the multi-energy smart grid level through
wired/wireless communication networks, the multi-energy grid has gradually evolved into a highly
coupled cyber-physical system, and the traditional operation and control methods are difficult to apply.

This Special Issue of Energies aims at addressing the top challenges in energy systems
development, including electric power systems, heating and cooling systems, and gas transportation
systems. Special attention is paid to the efficient mathematical methods integrating data-driven black
box dynamical models with classic mathematical and mechanical models and methods.

2. Brief Overview of the Contributions

The work “A New Hybrid Short-Term Interval Forecasting of PV Output Power Based on
EEMD-SE-RVM” [1] by S. Wang et al. proposed a novel hybrid model for short-term PV output
power interval forecasting based on sample entropy, ensemble empirical mode decomposition
(EEMD), and relevance vector machine (RVM). The PV output power sequences were decomposed
into several intrinsic mode functions (IMFs) and residual components by EEMD. The frequency
domain decomposition helped to reduce the influence of noise. Then, the SE algorithm was utilized
to reconstruct the components, with typical characteristics, into trend decomposition and detail
decomposition which were prepared for point forecasting and interval forecasting, respectively.
After that, the forecasting results were superimposed for the overall forecasting results. The simulation
results verified the proposed hybrid model. The conclusion suggested that the proposed hybrid model
improved both the reliability and sharpness of prediction intervals, and it was suitable for practical
application on other renewable energies output power forecasting.

F. Liu, R.R. Li, and A. Dreglea in the work titled “Wind Speed and Power Ultra Short-Term Robust
Forecasting Based on Takagi–Sugeno Fuzzy Model” [2] proposed an ultra short-time forecasting
method based on the Takagi–Sugeno (T–S) fuzzy model for both wind power and wind speed. First,
a fuzzy C-means (FCM) algorithm was utilized to cluster the dataset. Then, the T–S fuzzy model was
studied for ultra-short-term forecasting. Then, the recursive least squares (RLS) algorithm was used to
quantify the consequent parameters of the T–S fuzzy model. The comparison results showed that the
proposed method had higher accuracy, compared to the existing methods. The conclusion suggested
that the errors of proposed method were smaller. Meanwhile, the proposed method also handled
mutation points better.

S.F. Stefenon and R.Z. Freire et al. in the work titled “Electrical Insulator Fault Forecasting Based
on a Wavelet Neuro-Fuzzy System” [3] presented the novel approach for predicting electrical insulator
conditions. An offline time series forecasting approach with an adaptive neuro-fuzzy inference
system (ANFIS) was studied. Then, wavelet packets transform (WPT) was associated to the ANFIS
model for the improvement of time series forecasting performance and the noise reduction. Besides,
distinct parameters were adjusted to improve the model performance. The numerical comparisons
were presented to verify the effectiveness of the proposed methods. The conclusion suggested that
ANFIS was a reasonable approach, considering both computational effort and performance.

In the work “Cluster-Based Prediction for Batteries in Data Centers” [4] S.N. Haider et al. proposed
a clustered auto-regressive integrated moving average (ARIMA) for forecasting battery’s health.
The clustering approaches were studied to obtain the accurate patterns in data sets for the improvement
of ARIMA. The numerical results verified the performance of the proposed method. The conclusion
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suggested that the clustered ARIMA had better performance, compared to the single predictor and total
data predictors. Meanwhile, the k-shape-based clustering assisted results were more accurate than the
dynamic time warping clustering. It is to be noted that the efficient maintenance of storage systems is
one of the corestones for future power systems and these studies will support such systems developent.

In the work titled “An Integrated Methodology for Rule Extraction from ELM-Based Vacuum
Tank Degasser Multiclassifier for Decision-Making” [5] S.H. Wang et al. proposed a method of
rules extraction from the trained extreme learning machine (ELM) classification model for the
decision-making purposes. First, a three-class classification problem of the end temperature in the
vacuum tank degasser (VTD) system was studied. Second, an ELM multiclassifier was studied to
instruct the end temperature in different ranges. Finally, based on the classified training data set,
rules were extracted with discrete and continuous features utilizing the classification and regression
trees (CART) algorithm. The experimental results demonstrated the effectiveness of the proposed
method. The conclusion suggested that the proposed method was able to classify the end temperature
demonstrating the high potential for reliable prediction of the end temperature in a VTD system.

The work titled “Electric Power System Operation Mechanism with Energy Routers Based on
QoS Index under Blockchain Architecture” [6] by G.J. Gong et al. proposed an integrated application
of blockchain technology on energy routers at transmission and distribution networks with increased
renewable energy penetration. This paper studied the operations of energy routers for transmission
and distribution networks with high permeability renewable energy access, and the application of
blockchain technology integrating the energy flow quality of service index with the independent
cooperative mode of the energy router node. Then, the QoS index of energy flow control and energy
router node doubly-fed stability control model were designed. Besides, multiobjective particle swarm
optimisation (MOPSO) to optimize output of multi-energy power generation was studied. Moreover, in
order to resolve those complications in the power mutual aid of energy nodes at all levels, this paper
utilized an autonomous energy collaborative optimization mechanism and control process of the router
nodes at the transmission and distribution network with the blockchain as the technical support. Finally,
optimization mechanism and control flow of autonomous energy coordination of b2u (bottom-up)
between router nodes of transmission and distribution network were studied. The simulations verified
the effectiveness of the proposed methods.

The work conducted by Z.L. Zeng et al. [7] titled “Blockchain Technology for Information
Security of the Energy Internet: Fundamentals, Features, Strategy and Application” first studied the
information security problems existing in the energy internet from system control layer, device access,
market transaction and user privacy. Then, the multilevel and multichain information transmission
model for the weak centralization of scheduling and the decentralization of transaction were proposed.
Besides, the information transmission model which was able to solve some of the information security
issues was studied. The analysis of applications verified the effectiveness of the proposed blockchain
based method. The conclusion suggested that the biggest advantage of the blockchain in information
security was its ability to prevent tampering, and it was very difficult for an ordinary information
attacker to possess such powerful computing power.

The work by H. Liu et al. [8] titled “Operational Risk Assessment of Electric-Gas Integrated
Energy Systems Considering N − 1 Accidents” proposed a comprehensive energy risk assessment
index and a risk assessment strategy for the multi-energy electric-gas integrated energy system (EGIES)
considering component N − 1 accident. Then, the EGIES steady-state analysis model considering
the operation constraints was studied to analyze the operation status of each component. After that,
the EGIES component accident set was studied to simulate the accident consequences caused by
the failure of each component to EGIES. Besides, to identify the vulnerability of EGIES components,
EGIES risk assessment system was studied. Then, the risk assessment of IEEE14-NG15 system was
constructed. The simulations verified the effectiveness of proposed method. The conclusion suggested
that the proposed method was able to assess the coupling and interaction effects between subsystems,
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reflect the security of system operation to a certain extent, and provide scientific decision basis for
relevant personnel.

The work by D. Sidorov et al. [9], “Toward Zero-Emission Hybrid AC/DC Power Systems with
Renewable Energy Sources and Storages: A Case Study from Lake Baikal Region”, proposed the
dynamical models of AC/DC hybrid isolated power system consisting of four power grids with
renewable generation units and energy storage systems based on deep reinforcement learning
and integral equations. The proposed method was based on two-level optimization technique
for operational and emergency control of a hybrid AC/DC community. Based on deep reinforcement
learning, the optimal energy management policies at the local level of every grid using advanced
stochastic optimization method were studied. Meanwhile, the optimal redistribution of active
power between subsystems by minimizing network losses was analyzed. The numerical analysis
demonstrated the effectiveness of proposed framework. Besides, the conclusion also demonstrated the
disadvantages of proposed method which was the future work. Such studies will help to design future
multi-energy microgrids and support sustainable development.

The work by R.Y. Zhao et al. [10], “An Improved Power Control Approach for Wind Turbine
Fatigue Balancing in an Offshore Wind Farm”, proposed an improved power control approach to
optimize the wind turbine (WT) fatigue distribution by balancing the turbulence loads to individual
WTs. Then, a control topology was constructed to describe the logical states of the wind farm main
controller (WFMC). The simulation results verified that the improved power dispatch approach was
able to reduce the mean turbine fatigue of an offshore wind farm, balance the fatigue loads on WTs,
further extend the WT lifetime, and reduce the potential maintenance costs.

The work by A.N. Hassan et al. [11], “Two-Layer Ensemble-Based Soft Voting Classifier for
Transformer Oil Interfacial Tension Prediction”, studied a two-layered soft voting-based ensemble
model to predict the interfacial tension (IFT). The performances of multiple machine learning
algorithms (as individuals and combined) to predict the transformer oil IFT were also studied.
The comparison results revealed that no single technique showed superior performance on all
employed metrics. Moreover, the combining methods had better performances. Besides, it was
found that feature selection helped to obtain better performance.

The work by R.X. Yang et al. [12], “A Harmonic Impedance Identification Method of Traction
Network Based on Data Evolution Mechanism”, proposed an identification method based on a data
evolution mechanism to improve the identification accuracy of harmonic impedance. The harmonic
impedance model and the equivalent circuit of the traction network were firstly studied. Then, the data
evolution mechanism based on the sample coefficient of determination was studied to divide results
into several reliability levels. In the data evolution mechanism through adding new harmonic data,
the high-reliability results covered all frequencies, which improved the accuracy of identification.
The simulation results verified the effectiveness of proposed method. The conclusion suggested
the proposed method was able to improve the accuracy, but it was mainly used for offline analysis.
The computation time and data amount also should be focused on.

The work by F.L. Zhou et al. [13], “Method for Estimating Harmonic Parameters Based on
Measurement Data without Phase Angle”, proposed a method for estimating harmonic parameters
in the case of monitoring data without phase, based on the partial least square regression method.
The proposed method utilized the amplitude information of the harmonic voltage and current of the
point of common coupling to estimate the harmonic parameters and the harmonic responsibility of
each harmonic source. The effectiveness of the proposed method was verified through the simulations.
The conclusion also suggested that the background harmonics were able to affect the estimation
ability of the algorithm, and it was meaningful to improve the robustness of the algorithm in the
future research.

4



Energies 2020, 13, 4708

The work by C.T. Lee et al. [14], “Abnormality Detection of Cast-Resin Transformers Using the
Fuzzy Logic Clustering Decision Tree”, proposed a fuzzy logic clustering decision tree to diagnose the
partial discharges concerning the abnormal defects of cast-resin transformers. Meanwhile, the proposed
method integrated a hierarchical clustering scheme with the decision tree to improve the performance.
The testing results demonstrated the performance of proposed method. The conclusion demonstrated
that the proposed method was able to serve as an effective abnormality detection of cast-resin
transformers where real-time processing of data was required. Meanwhile, the future research would
focus on the application of the proposed method to resolve complicated fault detection problems.

3. Concluding Remarks and Outlook

The Special Issue Book “Machine Learning for Energy Systems” presents a collection of articles
dealing with relevant topics in the broad field of data-driven methods. Various mathematical and
computational techniques and approaches were presented focusing on different aspects of energy
systems. However, all approaches had the computational intelligence and advanced mathematical
models at their core. The success of this Special Issue has motivated the editor to propose a new
Special Issue that will complement the present one with focus in cyber-physical systems. We invite
the research community to submit novel contributions covering how cyber-physical systems and data
driven methods can help in improve the future energy systems.

Funding: The reported editorial study was funded by NSFC and RFBR according to the research project No.
61911530132/19-58-53011.

Conflicts of Interest: The authors declare that there is no conflict of interest.
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Abstract: Failures of cast-resin transformers not only reduce the reliability of power systems, but also
have great effects on power quality. Partial discharges (PD) occurring in epoxy resin insulators of
high-voltage electrical equipment will result in harmful effects on insulation and can cause power
system blackouts. Pattern recognition of PD is a useful tool for improving the reliability of high-voltage
electrical equipment. In this work, a fuzzy logic clustering decision tree (FLCDT) is proposed to
diagnose the PD concerning the abnormal defects of cast-resin transformers. The FLCDT integrates
a hierarchical clustering scheme with the decision tree. The hierarchical clustering scheme uses
splitting attributes to divide the data set into suspended clusters according to separation matrices.
The hierarchical clustering scheme is regarded as a preprocessing stage for classification using a
decision tree. The whole data set is divided by the hierarchical clustering scheme into some suspended
clusters, and the patterns in each suspended cluster are classified by the decision tree. The FLCDT
was successfully adopted to classify the aberrant PD of cast-resin transformers. Classification results
of FLCDT were compared with two software packages, See5 and CART. The FLCDT performed much
better than the CART and See5 in terms of classification precisions.

Keywords: cast-resin transformers; abnormal defects; partial discharge; pattern recognition;
hierarchical clustering; decision tree

1. Introduction

The power transformer is an important equipment in a power system, which directly affects the
safety of the power station and the safe operation of the power grid. Among them, the cast-resin
transformer provides the products numerous excellent characters such as low no-load loss, oilless,
anti-flaming, maintenance-free, good moisture resistance and crazing resistance, etc. The cast-resin
transformer is perfectly matched to the requirement on inflammable and explosive site such as
commercial center, high-tech factory, hospital, underground, airport, train station, tower building,
industrial and mining enterprise, etc. Disturbances of power quality will result in significant financial
consequences to network operators and customers. Since many uncertainties are involved, it is
difficult to obtain exact financial losses due to poor power quality. Therefore, online monitoring of the
cast-resin transformers has been an important challenge for power engineers. Failures of cast-resin
transformers not only reduce reliability of power system, but also have great effects on power quality.
Power engineers are devoted to intensifying diagnosis on the cast-resin transformer for discovering
hidden troubles timely and guaranteeing the normal operation of the cast-resin transformer. Partial
discharge (PD) is one of the main causes which leads to internal insulation deterioration of the
cast-resin transformer. Online monitoring of PD can reduce the risk of insulation failure of cast-resin
transformers [1]. There are many methods, such as ultrasound, acoustic emission, electrical contact,

Energies 2020, 13, 2546; doi:110.3390/en13102546 www.mdpi.com/journal/energies7
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optical and radio frequency sensing, could be used to detect and locate PD in a cast-resin transformer [2].
For electrical detection, UHF antenna is widely used in the PD measurements because it is more
sensitive than other methods with regard to the noise issue.

PD is a localized electrical discharge that occurs repetitively in a small region. In general, PD
can be categorized into six forms from their occurring causes: corona discharge, surface discharge,
internal discharge, electrical tree, floating partial discharge and contact noise. Corona discharge takes
place at atmospheric pressure in the presence of inhomogeneous fields. Surface discharge appears
in arrangements with tangential field distribution along the boundary of two different insulation
materials. Internal discharge occurs within cavities or voids inside solid or liquid dielectrics. Electric
trees occur at points where gas voids, impurities, mechanical defects or conducting projections cause
excessive local electrical field stresses within small regions of the dielectric. Floating PD occurs when
there is an ungrounded conductor within the electric field between conductor and ground. Contact
noise occurs if the ground connection to a bushing is poor.

PD occurs in high-voltage electrical equipment, such as cables, transformers, motors and generators.
It is a kind of very small spark that occurs due to a high electrical field. Since a PD occurring in
high-voltage electrical equipment has a specific pattern, pattern recognition of PD is a useful tool for
improving the reliability of high-voltage electrical equipment [3]. With the development of electricity,
the PD diagnosis is a useful tool for evaluation of the cast-resin transformer and prevention of the
possible failures. It is essential to determine the different types of faults by PD diagnosis to estimate
the likely defect type and severity. The use of PD pattern recognition can identify potential faults and
inspect insulation defects from the measured data. Then, the potential effects are used to estimate
the risk of insulation failure in high-voltage electrical equipment. This information is important to
evaluate the risk of discharge in the insulation. PD pattern recognition in the past depended on expert
judgments for classification and defect level determination. Such a process is unscientific and needs
professional experience from years’ practice.

To date, artificial intelligent techniques were adopted for pattern recognition and classification of
PD. Mor et al. used the cross wavelet transform to perform automatic PD recognition [4]. The wavelet
analysis has been regarded as a promising tool to denoising and fault diagnosis, however it is difficult
to determine the composition level that yields the best result. Gu et al. proposed a fractional Fourier
transform-based approach for gas-insulated switchgear PD recognition [5]. Ma et al. proposed a fractal
theory-based PD recognition technique for medium-voltage motors [6]. However, some clusters of PD
patterns are very close in the fractal map, which may result in incorrect identification.

As a more scientific approach, machine learning technique for PD recognition is utilized to bypass
human errors [7].

There exist numerous machine learning techniques for the pattern recognition of PD such as the
artificial neural network [8], clustering [9,10], support vector machine [11] and deep learning [12–14].
The artificial neural network constitutes an information processing model which contains empirical
knowledge using a learning process. However, it is computationally expensive and lack of rules
for determining the proper network structure. The clustering technique is set up based on the
stream density and the clustering theory, however the zero-weight problem exists in the general
clustering approach. The support vector machines belong to supervised learning techniques based on
statistical learning theory which may be applied for PD pattern recognition, however the classification
performance of SVM is conveniently affected by the setting of parameters. Deep learning was
successfully applied in pattern recognition and image segmentation, however it is a challenging task
due to the limited data availability.

The contribution of this work is to develop a fuzzy logic clustering decision tree (FLCDT) to classify
the abnormal defects of cast-resin transformers. Fuzzy logic methods have been successfully applied
to many applications in renewable energy. Liu et al. developed an ultra-short-time forecasting method
based on the Takagi–Sugeno fuzzy model for wind power and wind speed [15]. In [16], an offline time
series forecasting approach with an adaptive neuro-fuzzy inference system was conducted for electrical
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insulator fault forecast. Wang et al. proposed a fuzzy hybrid model to evaluate the energy policies
and investments in renewable energy resources [17]. Thao et al. presented an improved interval
fuzzy modeling technique to estimate solar photovoltaic, wind and battery power in a demonstrative
renewable energy system under large data changes [18].

A 60-MVA cast resin transformer with a rated voltage of 22.8 kV is used in this study. The IEC
60,270 standard [19] is utilized to perform an off-line PD measurement on electrical equipment.
The training dataset has three continuous attributes and three abnormal defects. Three continuous
attributes are the number of discharge (n) over the chosen block, discharge magnitude (q) and the
corresponding phase angle (φ) where PD pulses occur. Three abnormal defects are failure in S-phase
cable termination, failure in R-phase cable and failure in T-phase cable termination. The FLCDT
integrates a hierarchical clustering scheme with the decision tree. The hierarchical clustering scheme
uses splitting attributes to divide the data set into suspended clusters according to a separation matrix
and fuzzy rules. The suspended clusters consist of more than one pattern, which can be further
classified by the decision tree [20].

In the remaining part of the study, the Section 2 is used to present the fuzzy logic clustering
decision tree. Section 3 introduces the PD measurements of cast-resin transformers and describes the
pattern recognition of PD. In Section 4, the FLCDT is applied to classify the aberrant PD of cast-resin
transformers and compared with two software packages, See5 and CART. Finally, Section 5 makes
a conclusion.

2. The Fuzzy Logic Clustering Decision Tree

2.1. Motivation

Since the number of possible attributes and the number of classes are rather large, data mining
techniques have been receiving increasing attention from the research community. For example, the fault
detection of the ion implantation processes is a challenging issue in semiconductor fabrication because
of the large number of wafer recipes. Fuzzy-rule-based classification algorithms [21,22] have received
significant attention among researchers due to a finer fuzzy partition and good behavior in the real-time
databases. These advantages may be suppressed if the number of attributes and number of classes
become large, a finer partition of fuzzy subsets is required and results in a large size of the fuzzy-rule
sets. To resolve this disadvantage, the main characteristic of the developed method is to divide the
classes into specific clusters to accomplish a finer partition of fuzzy subsets. Figure 1 illustrates an
eight-class example of cluster splitting, which is divided into four suspended clusters. In each cluster,
the recognizability now is four times larger than the original structure. Thus, the approach not only
can achieve higher classification accuracy, but also spend less computational complexity.

 
Figure 1. Cluster splitting in an eight-class example.

Since the cluster can be further classified by data mining techniques, the concept of clustering
of the proposed method is hierarchical. The hierarchical concept had been adopted fairly widely in
various classification methods, including the hierarchical decision trees [23,24], hierarchical Bayesian
networks [25,26] and hierarchical neural networks [27,28], to improve the computation time and
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accuracy of classification. Accordingly, the FLCDT scheme is proposed to achieve a finer fuzzy partition
without expensive computation. The motivation of the FLCDT is to measure the distance between two
classes of an attribute. A separability factor is used to decide whether the two classes belong to the
same cluster or not. After performing the FLCDT, a cluster spanning tree containing a cluster leader
and some suspended clusters will be constructed. A cluster leader is the root of the cluster spanning
tree. The classes in any suspended cluster is much less than the cluster leader. The flow diagram of the
FLCDT scheme is displayed in Figure 2.

Figure 2. Flow diagram of the fuzzy logic clustering decision tree (FLCDT) scheme.

2.2. Splitting Cluster

2.2.1. Separation Matrix Based on the Chebyshev Inequality

Since not all the attributes are indispensable to separate classes, a specified criterion can be used
to select few critical and effective ones to split clusters. The attribute values for members in the given
training data spread over a specific range with a particular probability density function. Thus, the
overlapping degree of the attribute values is used to decide the separability between two classes.
For instances, Figure 3 shows two classes Ci and Cj for the kth attribute are separable, while Figure 4
shows two classes are not separable.

Figure 3. Classes Ci and Cj are separable.

10
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Figure 4. Classes Ci and Cj are not separable.

The separability factor is used to determine whether two classes Ci and Cj for the kth attribute are
separable or not, which is defined as

S(Ci, Cj)k =

{
0, if Ci and Cj are separable for the kth attribute,
1, otherwise.

(1)

The value of S(Ci, Cj)k is calculated by the Chebyshev inequality [29]. Let Xk
i denote the random

variable for the kth attribute of class Ci. We assume without loss of generality that μk
i < μ

k
j , where

μk
i and σk

i represent the mean and standard deviation of Xk
i , respectively. Let ak

i be a positive real

value such that P
(∣∣∣Xk

i − μk
i

∣∣∣ ≥ ak
i

)
≤ α, where P[(·)] represents the probability of (·), and α denotes the

significance level, which is set to be 0.05. Based on the Chebyshev inequality [29], the value of ak
i is set

as
σk

i√
0.05

. Once ak
i is obtained, an upper-bound, pi = min

(
1,
[
σk

i /max(δ,μk
j − μk

i − ak
i )
]2)

, is determined

according to the Chebyshev inequality such that P
(∣∣∣∣Xk

j − μk
j

∣∣∣∣≥ max(δ,μk
j − μk

i − ak
i )
)
≤ pi, where δ is

a tiny positive real value. If μk
j is sufficiently greater than μk

i + ak
i , the value of pi is very small, two

classes Ci and Cj are more easily separable as illustrated in Figure 5. Thus, a threshold value p̂ can be
used to determine the separation factor for two classes Ci and Cj.

S
(
Ci, Cj) k

=

{
0, i f pi < p̂ ,
1, otherwise.

(2)

Figure 5. Separation of two classes based on pi.

Now, the separation matrix for the kth attribute is defined as [S(Ci, Cj)k], whose (i, j)th element
is S(Ci, Cj)k.

2.2.2. Divide Cluster

To select the classes which are belong to a same cluster, a separability graph according to the
separability matrix [S(Ci, Cj)k] is constructed. Regarding a class as a node, [S(Ci, Cj)k] is treated as an
incidence matrix of the kth attribute. If S(Ci, Cj)k = 1, two nodes Ci and Cj are connected by an arc.
The separability graph contains several disjoint connectivity sub-graphs. A connectivity sub-graph
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indicates a cluster, and the amount of disjoint connectivity sub-graphs is the number of suspended
clusters which are obtained by the kth attribute. For example, Figure 6 shows a separability graph,
which is constructed according to the separability matrix shown in Figure 7. The separability graph has
two clusters, the first one comprises classes 1, 2, 3 and 4, and the other comprises classes 5, 6, 7 and 8.

Figure 6. Separability graph.

Figure 7. Separability matrix.

2.3. Selection of Crucial Attributes

It is possible that all classes are not separable using an attribute. The separability graph may be a
connectivity graph using this attribute. Thus, an attribute which can divide all classes into at least
two clusters is defined as a crucial attribute (CA). Since there are several CAs in the training data,
a disjoint cluster obtained using some CA can be further divide using other CA. This is the reason
that we claim the proposed cluster splitting is a hierarchical cluster splitting. Because the priority of
CAs utilized to split the classes will influence the classification accuracy, we describe the procedures
of the hierarchical cluster splitting as below. First, the set of overall classes is defined as the cluster
leader Cr0. After successively applying two CAs, say CA1 and CA2, to Cr0, the connectivity is resulted
from the conjunction operation of [S(Ci, Cj)k1

] and [S(Ci, Cj)k2
], where k1 and k2 represent the selecting

attribute of CA1 and CA2, respectively. The conjunction operation of two matrices is defined as the
(i, j)th entry of [S(Ci, Cj)k1

] ∧ [S(Ci, Cj)k2
] is performed by Boolean algebra, S(Ci, Cj)k1

∧ S(Ci, Cj)k2
.

Figure 8 displays a typical cluster spanning tree of m CAs, where CAi represents the CA used in the ith
level, L is the number of clusters in the first level, and nL denotes the number of clusters in the second
level of the cluster CL. The suspended cluster (SC) is a cluster obtained from the last CA in the CA
priority sequence or contains only one class.

For any priority sequence of CAs, the number of SCs in the cluster spanning tree are the same.
However, an improper splitting of former clusters will affect the accuracy of the latter cluster splitting
along the path of cluster spanning tree. For example, Figures 9 and 10 show the separability matrices
of a classification problem with 8 classes, C1~C8 and two attributes, k1 and k2. If the k1 attribute is used
first to split the 8 classes in Figure 9, there are three clusters after splitting. One comprises 1 class, and
the other two comprise 3 and 4 classes. If the k2 attribute is used first to split the 8 classes in Figure 10,
there are four clusters after splitting and each cluster contain 2 classes. The k2 attribute is chosen to
split the cluster leader because it results in more SCs.
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Figure 8. Cluster spanning tree.

Figure 9. The separability matrix [S(Ci, Cj)k1
].

Figure 10. Separability matrix [S(Ci, Cj)k2
].

To describe the criterion, we define Lk and nk,l(Crj) as the amount of SCs and the amount of
classes in the lth SC obtained by the kth attribute to divide the cluster Crj, respectively. The criterion
for selecting the attribute k to divide Crj is

minυk(Crj) =
1
Lk
×
⎛⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎣ Lk∑

l=1

(
nk,l(Crj) − nk,l

(
Crj

))2
/(Lk − 1)

⎤⎥⎥⎥⎥⎥⎥⎦+ 1

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

where nk,l
(
Crj

)
=

Lk∑
l=1

nk,l
(
Crj

)
/Lk is the average amount of classes in the obtained SCs. Obviously, the

attribute will result in more SCs if it has a smaller variation concerning the number of classes in the
SCs. This attribute is the CA that we seek. Consider the separability matrices shown in Figures 9
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and 10, if the k1 attribute is used to divide the cluster first, there are three SCs. One comprises one class
the other two comprise three and four classes. The value of υk1

(Cr0) is 1.11. If the k2 attribute is used
first, there are four SCs and each SC comprises two classes. The value of υk2(Cr0) is 0.25. Since the
value of υk2(Cr0) is the smallest, the k2 attribute is chosen to split Cr0.

Now, the algorithm (Algorithm 1) to determine the priority of CAs for constructing the cluster
spanning tree is described below.

Algorithm 1: Determine the priority of CAs

Step 1: Use the training data set to calculate the separation matrix for each attribute. Configure the set of
Non-Split Clusters (NSC) = {Cr0}.

Step 2: Determine the splitting attribute k according to equation (3) for each cluster in NSC, then use this
attribute to divide the clusters and move these SCs into NSC.

Step 3: Remove the clusters which was divided and those cannot be divided by any attribute.
Step 4: If NSC = ϕ, stop; else, go to Step 2.

2.4. The Hierarchical Clustering Scheme

The hierarchical clustering scheme has two phases: the training phase for generating the fuzzy
logic rules and the classifying phase to classify a new data pattern. In the training phase, a data set
with predetermined SCs is given. The fuzzy logic rules are generated according to the given data
patterns. In the classifying phase, a fuzzy inference mechanism is utilized to classify an unknown data
pattern according to the fuzzy logic rules.

2.4.1. The Fuzzy Rules Generation

Consider a given training data set for a non-SC cluster Crj in the cluster spanning tree, an attribute
ki can split the cluster into SCs. The g given data patterns for attribute ki are denoted as xp

ki
, p = 1, . . . , g,

with M known SCs, SCrj1, . . . , SCrjM. These g data patterns are trained to split the non-SC cluster Crj.
The fuzzy if-then rule [30,31] is defined as follows.

Ri: If xp
ki

is AI
i , then xp

ki
belongs to SCrji with CFI

i , where I denotes the amount of fuzzy subsets, AI
i

denotes the ith fuzzy subset, i = 1, . . . , I, SCrji represents the consequent, which is one of the M SCs
and CFI

i denotes the certainty grade of rule Ri.
Let μi(·) represent the membership function of (·) with respect to the fuzzy subset AI

i . Therefore,
μi(x

p
ki
) can be treated as a compatibility grade of xp

ki
corresponding to AI

i . Define

βSCrjl(Ri) =
∑

xp∈SCrjl

μi(x
p
ki
) (4)

as the sum of compatibility grade for SCrjl corresponding to AI
i . The generation of fuzzy logic rules to

split cluster Crj is summarized as follows.
The step-wise process of the Algorithm 2 is given below.
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Algorithm 2: Generate the fuzzy rules

Step 1: Given the g training data xp
ki

, p = 1, . . . , g and the splitting attribute ki for cluster Crj with M known
SCrjm, m = 1, . . . , M and set i = 1.

Step 2: Compute the sum of compatibility grade for SCrjm, m = 1, . . . , M, by (4).
Step 3: Determine the SCrjx with the maximum sum of compatibility grade

βSCrjx (Ri) = max
{
βSCrj1 (Ri), . . . , βSCrjM (Ri)

}
(5)

Step 4: Calculate the certainty grade CFi of rule Ri

CFi =
(
βSCrix (Ri) − β(Ri)

)
/

M∑
m=1

βSCrjm (Ri) (6)

where β(Ri) =
∑

SCrjm�SCrjx

βSCrjm (Ri)/(M− 1) denotes the mean of the sum of compatibility grade for the

rest SCs corresponding to AI
i .

Step 5: If i = I, then stop; else, set i = i + 1 and go to Step 2.

The hierarchical clustering scheme (Algorithm 3) is summarized as follows.

Algorithm 3: Hierarchical clustering scheme

Step 0: Set the threshold value p̂.
Step 1: Calculate μk

i and σk
i and determine [S(Ci, Cj)k] for attribute k.

Step 2: Use Algorithm I to determine the priority sequence of CAs for constructing the cluster spanning tree.
Step 3: Apply Algorithm II to create the fuzzy if-then rules.

2.4.2. The Classification Processes

After creation of the fuzzy if-then rules for each cluster, we can identify a new data pattern to a
suitable SC. Let x′kj represent the kj attribute value of a new data pattern at cluster Crj. The weighted
certainty grade of x′kj corresponding to the SCrjm is defined as αSCrjm =

∑
Ri

μ(x′kj) ·CFI
i , which sum of

the multiplication of the compatibility grade of x′kj corresponding to AI
i and the certainty grade of all

fuzzy rules Ri. Therefore, the classification processes are stated below.
Classification Processes: The SC has the maximum weighted certainty grade of x′kj is the desired

cluster SCrjl, i.e., SCrjl = arg(max
{
αSCrj1 , . . . ,αSCrjM

}
).

The step-wise procedure of the Algorithm 4 is explained below.

Algorithm 4: Classification

Step 1: Configure Current Cluster (CCr)=Cr0 and given the new data pattern x′.
Step 2: The cluster SCrjl with maximum weighted certainty grade of x′kj is the desired cluster of x′.
Step 3: Classify x′ into a SC (SCrjl). If the SCrjl is not a SC, then set CCr=SCrjl and repeat step 3; else, stop.

2.5. Classify the Suspended Cluster Using C4.5

Decision trees is one of the more popular classification algorithms being used in classification
problems, which provides a good visualization that helps in decision making. The entropy-based
algorithms which build multi-way decision trees, such as ID3 and C4.5 [32], are the most commonly
used classification models designed for structured data. The Gini index based crisp decision tree
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algorithms, such as CART [33], Quest [34] and SLIQ [35], applies a numerical splitting criterion to build
binary decision trees. C4.5 utilizes a minimum number of significant rules and some minor rules for
classification. C4.5 has the characteristic of the instability such that few variations of data can produce
significant differences on the model [20]. However, the run-time complexity of the C4.5 corresponds to
the tree depth, which is related to the number of training examples. To overcome the drawback of the
C4.5, a hierarchical clustering scheme is utilized as a preprocessing stage for classification. The whole
data set is divided by the hierarchical clustering scheme into a SC and the patterns in the SC is classified
using the C4.5. Since the number of patterns in the SC is reduced, the run-time complexity of the C4.5
can be resolved.

C4.5 is also composed of training phase and classifying phase. The goal of training phase is to
construct a decision tree and determine the splitting condition in each node. The critical attribute with
the largest gain ratio is chosen as the splitting attribute to make the decision. C4.5 prunes trees after
creation in an attempt to discard branches that are not helpful and replaces them with leaf nodes.

The mathematical basis of the C4.5 is described below. Let K denote the number of attributes
and T =

{
x1, x2, . . . , xg

}
denote the given training data set, where xg = (xg

1, xg
2, . . . , xg

K) is a data pattern
and xg

k denotes the kth attribute value of xg. Let N denote the number of classes and Ci denote the

ith class. The probability of a data pattern selected from T which belongs to Ci is pi =
|Ci |
|T| , where |Ci|

denote the amount of data patterns in Ci. The information conveyed by a probability distribution
P = (p1, p2, . . . , pN) is called the entropy, which is defined as

I(T) = −
N∑

i=1

pi∗ log2(pi) (7)

The value of I(T) measures the uncertainty associated with the probability distribution.
The expected information requirement to partition T into n subsets is

I(ak, T) =
n∑

i=1

|Ti|
|T| × I(Ti) (8)

where T1, T2, . . . , Tn denote the partition of T using the kth attribute, ak. The value of G(ak, T) represents
the expected reduction in entropy due to sorting on ak, which is defined as

G(ak, T) = I(T) − I(ak, T) (9)

C4.5 chooses the splitting attribute based on the gain ratio R(ak, T), which is defined as follows.

R(ak, T) =
G(ak, T)
SI(ak, T)

(10)

where SI(ak, T) is the split information, which can be obtained by

SI(ak, T) = −
n∑

i=1

|Ti|
|T| × log2

( |Ti|
|T|

)
(11)

The partition values of a continuous attribute ak are first, arranged in ascending order, a1
k , a2

k , . . . , am
k .

For each partition value aj
k, j = 1, 2, . . . , m, the data patterns are partitioned into two sets. The first

one contains the values less than or equal to aj
k and the other one contains the parts greater than aj

k.

We compute the R(aj
k, T) for each partition value aj

k, then select the best partition value such that the
gain ratio is maximized.
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3. Abnormality Detection of Cast-Resin Transformers

3.1. Matrix Transformation of 3D PD Patterns

Figure 11 shows a typical 2D PD patterns, where the horizontal axis represents the discharge
phase angle ranging from 0◦~360◦, the vertical axis represents the size of the discharge ranging from 0
pC~60 pC and the point is the discharge signal.

Figure 11. Typical 2D partial discharges (PD) pattern.

Figure 12 shows a typical 3D PD pattern. The key attributes of typical 3D PD patterns include
phase angle (φ), discharge magnitude (q) and number of discharges (n). In the data sets, the format of
different categories may not be the same as expected. To meet the data formulation of FLCDT, data
transformation for 3D PD pattern is necessary. Figure 13 shows the three steps of data transformation
for 3D PD pattern. In step 1, the 3D PD pattern is transformed into a 360 × 60 matrix, where the row
index indicates the phase angle and column index indicates discharge magnitude and the elements on
the matrix is the number of discharges. In step 2, the original sparse matrix is compressed into a dense
matrix after removing all the zero elements in each row. In step 3, feature vectors of the 3D PD pattern
are extracted from the dense matrix. Each feature vector also consists of three key attributes, which are
phase angle, discharge magnitude and number of discharges. Thus, the dimension of a feature vector
is 3. For example, the first and last feature vector for the 3D PD pattern shown in Figure 13 are [19, 74,
22] and [301, 15, 25], respectively.

 

Figure 12. Typical 3D PD pattern.
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Figure 13. Three steps of data transformation for 3D PD pattern.

3.2. 3D PD Patterns Characteristics

There are four kinds of PD patterns used in this work, which are failure in S-phase cable termination,
failure in R-phase cable, failure in T-phase cable termination and normal operation. Figure 14 shows
the 3D PD pattern of failure in S-phase cable termination. Most of the discharges are between 50–70 pC.
Figure 15 shows the 3D PD pattern of failure in R-phase cable. Most of the discharges are between
20–55 pC and the phase angle is widely distributed. Figure 16 shows the 3D PD pattern of failure in
T-phase cable termination. Most of the discharges are between 10–35 pC. Figure 17 shows the 3D PD
pattern of normal operation. Most of the discharges are between 10–25 pC. After applying the three
steps of data transformation for 3D PD pattern, we can obtain the feature vectors of the corresponding
3D PD pattern. Then, the Algorithm I is utilized to determine the priority of CAs using the training
feature vectors to construct the cluster spanning tree.
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Figure 14. Failure in S-phase cable termination.

 

Figure 15. Failure in R-phase cable.

Figure 16. Failure in T-phase cable termination.
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.

Figure 17. Normal operation of the equipment.

4. Experiment Results and Comparison

This work uses data collected by a well-known foundry company in Taiwan. A PD measurement
based on the IEC 60,270 standard was performed on a 60-MVA cast resin transformer with a rated
voltage of 22.8 kV. Three RF sensors are installed near the surfaces of the power transformer to detect
the PD signals. The positions of RF sensors are adjusted to obtain the same performance. Three phase
voltages are obtained from voltage output. Phase voltage and three PD signals are connected to a
4-channel oscilloscope to identify where the PD occurs. The R-S-T sensors capture the PD signal and
send them to the scope through three wideband RF cables. The phase voltages are adjusted to measure
the PD from the power transformer.

Table 1 shows the three attributes used in the PD detection, which are phase angle (φ), discharge
magnitude (q) and number of discharges (n). Table 2 lists the four classes of PD patterns, which are
failure in S-phase cable termination, failure in R-phase cable, failure in T-phase cable termination and
normal operation. Three cable defects were created artificially on the cable prior to the cable joints
installation. Each PD pattern is experimented on 40 times. In total, this experiment produced 160 sets
of PD patterns, 128 of which are for training and 32 of which are for testing. Each class has 32 training
patterns and 8 testing patterns. After three steps of data transformation, 84,368 feature vectors were
used for training and 21,092 feature vectors were used for testing. After applying Algorithm I, the CA
utilized to split the root cluster is the charge pC. Three threshold values p̂ = 0.5, 0.7 and 0.9 were used
in Algorithm III. The FLCDT was compared with two software packages, See5 and CART. See5 is a
data mining tool to extract informative patterns from data and assemble them into classifiers to make
predictions [36]. See5 is developed based on the C4.5 to operate on large databases and incorporate
innovations such as boosting. The classification and regression tree (CART) in the classification toolbox
for MATLAB was utilized to compare the accuracy [37]. CART selects the best decision split that
maximizes the improvement in Gini index over all possible splits of all predictors.

Table 1. Three attributes used in the PD pattern recognition.

Notation Attribute

k1 Phase angle
k2 Charge pC
k3 Cycle Number
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Table 2. Four kinds of PD patterns.

Notation PD Pattern

1 Failure in S-phase cable termination
2 Failure in R-phase cable
3 Failure in T-phase cable termination
4 Normal operation

Figure 18 shows the cluster spanning tree and the corresponding CA, where a block represents a
cluster and the classes are displayed inside the parenthesis in each cluster. The CA is listed above the
outgoing branch. There are two SCs in the cluster spanning tree for p̂ = 0.5, where each SC consists of
two patterns. There are three SCs in the cluster spanning tree for p̂ = 0.7 and 0.9, where SC3 consists of
two patterns. Finally, the C4.5 algorithm is applied to SC3 and construct the decision tree. Figure 19
displays the decision tree of SC3, which consists of patterns 3 and 4. Two attributes including phase
angle and charge pC are utilized in the decision tree of SC3. Since the attribute values of cycle number
has a higher overlapping degree, different classes in a dataset are not easily separable. Thus, attribute
of cycle number is never used in the cluster spanning tree and decision tree of SC3.

(a) (b) 

Figure 18. Cluster spanning tree and the corresponding CA. (a) p̂ = 0.5; (b) p̂ = 0.7 and 0.9.

Figure 19. Decision tree of SC3 for p̂ = 0.7 and 0.9.

Figure 20 shows the pattern distributions of the 21,092 testing feature vectors. In Figure 20, ‘�’
represents the failure in S-phase cable termination (pattern 1), ‘�’ represents the failure in R-phase
cable (pattern 2), ‘Δ’ represents the failure in T-phase cable termination (pattern 3), ‘ ’ represents the
normal operation of the equipment (pattern 4). From the pattern distributions, it is clear that three SCs
can be classified using the charge pC (k2), and pattern 3 and 4 can be classified using the phase angle
(k1) and the charge pC (k2).
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Figure 20. Distribution of the 21,092 testing feature vectors.

The classification precision of FLCDT was compared with the existing software CART and See5.
The classification precision is defined as the number of correctly classified patterns to the total number
of patterns. Table 3 shows the resulting classification precisions of four patterns, training time and
classification time. Consider the three threshold values, we found that case ‘p̂ = 0.5′ resulted in a smaller
classification precision, while the results of other two cases are the same. Since a larger threshold
value p̂ allows a higher overlapping degree, two classes are more easily separable. The classification
precisions, training times and classification times obtained by the software CART and See5 are also
shown in Table 3. Test results show that the FLCDT with p̂ = 0.7 and p̂ = 0.9 performs better than CART
and See5 for classification precisions. The reason is that overfitting arises when the decision trees
are directly applied to the training data set. Overfitting happens when a decision tree is excessively
dependent on irrelevant features of the training data so that its predictive ability for untrained data is
reduced. For patterns 1 and 4, See5 has a better performance than CART. Furthermore, the training
time required by FLCDT is much shorter than those required by CART and See5. The FLCDT not only
performs better than CART and See5 in the aspect of classification precision, but also requires less
training time. This also reveals that the hierarchical clustering scheme helps reduce the time complexity
of C4.5 algorithm. Figure 21 shows the confusion matrix of four patterns. The confusion matrix shows
that all the measurements belonging to pattern 1 are classified correctly. For pattern 2, 12.5% of the
data measurement are misclassified into pattern 3. In addition, 12.5% of the data measurement known
to be in pattern 3 are misclassified into pattern 4. For pattern 4, 12.5% of the data measurements are
misclassified into pattern 2 and 3, respectively. Table 4 shows the classification recall, precision, F-score
and the average results of four patterns using FLCDT with p̂ = 0.7. The overall accuracy of the FLCDT
with p̂ = 0.7 is 87.5%. Currently, there is no way to plot a ROC curve for multi-class classification
problems as it is defined only for binary class classification. The ROC-AUC score for considered
problem is not provided in this work.
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Table 3. Test results.

Pattern
Classification Precision (%)

FLCDT
^
p= 0.5 FLCDT

^
p= 0.7 FLCDT

^
p = 0.9 CART See5

1 87.5 100.0 100.0 87.5 87.5
2 87.5 87.5 87.5 62.5 75
3 75 87.5 87.5 75 75
4 75 75 75 62.5 62.5

Training time (sec.) 11.217 9.136 8.962 26.458 18.625
Classification time (sec.) 0.036 0.035 0.032 0.085 0.061

Figure 21. Confusion matrix of the of four patterns.

Table 4. Classification recall, precision and F-score of FLCDT with p̂ = 0.7.

Pattern 1 2 3 4 Average

Recall (%) 100 87.5 87.5 75 87.5
Precision (%) 100 87.5 77.78 85.71 87.75
F-score (%) 100 87.5 82.35 80.00 87.46

5. Conclusions

PD diagnosis is a useful tool for evaluating insulation condition of the transformer and prevention
of the possible failures. Classification of different types of PDs is import for the diagnosis of the quality
of high-voltage electrical equipment. In this work, a fuzzy logic clustering decision tree (FLCDT) is
proposed to classify the aberrant PD of cast-resin transformers. The proposed method integrates a
hierarchical clustering scheme with the decision tree. The FLCDT not only consumes less training time,
but also improves the classification precision. PD measurements based on the IEC 60,270 standard were
performed on a 60-MVA cast resin transformer with a rated voltage of 22.8 kV. The test dataset has three
continuous attributes and three abnormal defects. Test results demonstrate that the FLCDT performs
better than the CART and See5 with respect to the classification accuracies. Accordingly, the proposed
FLCDT can serve as an effective abnormality detection of cast-resin transformers where real-time
processing of data is required. Future research will focus on the application of the proposed method to
resolve complicated fault detection problems, such as the incipient winding and core deformations of
power transformers, linear induction motors and brushless direct current motors.
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Abstract: In railway electrification systems, the harmonic impedance of the traction network is
of great value for avoiding harmonic resonance and electrical matching of impedance parameters
between trains and traction networks. Therefore, harmonic impedance identification is beneficial
to suppress harmonics and improve the power quality of the traction network. As a result of the
coupling characteristics of the traction power supply system, the identification results of harmonic
impedance may be inaccurate and controversial. In this context, an identification method based on a
data evolution mechanism is proposed. At first, a harmonic impedance model is established and
the equivalent circuit of the traction network is established. According to the harmonic impedance
model, the proposed method eliminates the outliers of the measured data from trains by the Grubbs
criterion and calculates the harmonic impedance by partial least squares regression. Then, the data
evolution mechanism based on the sample coefficient of determination is introduced to estimate the
reliability of the identification results and to divide results into several reliability levels. Furthermore,
in the data evolution mechanism through adding new harmonic data, the low-reliability results can
be replaced by the new results with high reliability and, finally, the high-reliability results can cover
all frequencies. Moreover, the identification results based on the simulation data show the higher
reliability results are more accurate than the lower reliability results. The measured data verify that
the the data evolution mechanism can improve accuracy and reliability, and their results prove the
feasibility and validation of the proposed method.

Keywords: harmonic impedance; traction network; harmonic impedance identification; linear
regression model; data evolution mechanism

1. Introduction

With a rapid development of railway electrification systems (RESs), especially high-speed railways,
harmonic distortion problems have attracted increasing attention. At present, electrical locomotives
and electric multiple units (EMUs) (collectively called trains) based on pulse-width-modulation (PWM)
controlled converters are widely applied in practice [1]. These trains could inject wider and higher
high-order harmonic currents into traction power supply systems. The frequencies of harmonic
currents can cover the resonance frequencies of traction networks. This will lead to a lot of abnormal
problems, such as harmonic resonance [2,3] and harmonic instability [4,5]. Under these conditions,
the large components of high-order harmonics could not only easily cause temporary overvoltage,
but also even in extreme cases cause some serious incidents, such as the burst of on-board arresters [6].
Thus, the harmonic problem, a huge impact on the normal operation of trains, is a hidden danger
to the security of RESs. Based on the above, proper harmonic suppression [7,8] and good matching
characteristics of the harmonic impedance [9] are the key to improving harmonic problems and power
quality [10,11], while the harmonic impedance of the traction network is an important parameter.
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Therefore, a method that can accurately identify the harmonic impedance of the traction network
is needed.

In recent years, various methods have been used to calculate harmonic impedance in a traction
network. Reference [2,12] built the impedance models of traction networks and calculated harmonic
impedance according to the structure and parameters of a traction network. These models can
obtain the resonance frequencies and research some parameters which could influence the harmonic
impedance. However, in practice, it is very difficult to obtain all system parameters accurately.
Thus, the model methods are usually used in simulation research, but they have some limitations
in measured harmonic data. Reference [13] proposed a method to estimate harmonic impedance by
injecting harmonic currents with specific spectrum into the power grid. However, this method needs a
harmonic source device and it is possible to have an impact on the normal operation of the power
system. Moreover, some identification methods of harmonic impedance are widely used in the utility
power grid (UPG). Fluctuation methods [14,15] can identify the harmonic impedance through the
ratio of the increments of harmonic voltage to current at a point of common coupling (PCC) with high
measurement accuracy. Reference [16–19] proposed linear regression methods. In essence, they build
an equivalent circuit model for harmonic analysis and establish the regression equation by deriving the
harmonic voltage and current correlation at PCC. Then, using large amounts of measured harmonic
data, they calculate the harmonic impedance and harmonic emission level by regression estimation.
Moreover, [20] proposed a method to estimate harmonic parameters and harmonic responsibility with
the harmonic amplitude and phase difference of harmonic voltage and current. These methods have
already had quite mature applications in the UPG, so in these research works it is possible to use the
linear regression method in RESs.

However, compared with the traditional UPG, RESs are a special power grid and hold some
unique characteristics. These mean the linear regression method has some limitations in the application
process so that the identification results of harmonic impedance may be inaccurate. For further analysis,
the main limitations of linear regression methods is shown as follows:

1. The traditional UPG mainly has low-order harmonics, while in the RESs the harmonic problems
usually focus on the high frequencies, such as 20th–60th (1000–3000 Hz). However, in practice,
it is more difficult to accurately measure high-order harmonic information than low-order,
especially the phases of high-order harmonics. In the application of linear regression methods, the
measurement errors could be converted into fluctuations of calculated data, which will influence
the identification results of harmonic impedance.

2. In the RESs, it is necessary to consider the train-network coupling [21]. The train-network
coupling is a dynamic electrical interaction between fast moving trains and the static traction
network. Therefore, in this situation, the harmonic impedance of a traction network could change
with the fast movement of trains. Meanwhile, some system parameters, which are essential for
calculating impedance, could also change. As a result of the dynamic coupling between trains
and the traction network, it is not conducive to the accurate identification of harmonic impedance.

To solve these problems, a method combining linear regression with data elimination and data
evolution mechanism is proposed in this paper. The main contributions of this paper are as follows:

1. The harmonic impedance identification model based on an electrical circuit and linear regression
method is derived in this paper, which is the electrical theoretical basis for calculating impedance.

2. The data elimination based on the Grubbs criterion is introduced to eliminate the outliers of the
measured data in order to reduce the influence of error data on linear regression.

3. In this paper, the presented data evolution mechanism serves two purposes. Firstly, based on
the sample coefficient of determination, the data evolution mechanism is used to evaluate the
reliability of regression results. Then the regression results can be divided into different reliability
levels. Results with high reliability level are more accurate and more valuable than those with low
reliability. Secondly, taking further advantage of the reliability level, data evolution mechanism
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could supplement the results of a high-reliability level by adding new measured data, and can
even replace the results of a low-reliability level at some frequencies.

Section 2 introduces the train-network coupling system and derives the equivalent circuit and
regression equations. In Section 3, the mathematical theory and application of data elimination and data
evolution mechanism are illustrated, and the identification process of harmonic impedance is given.
Section 4 carries on the simulation of harmonic impedance identification to verify the effectiveness and
accuracy of the proposed method, and defines calculation parameters. In Section 5, measured data
is used to demonstrate the application case, and the results of harmonic impedance identification is
discussed. Finally, Section 6 is a summary of the full paper.

2. Harmonic Impedance Identification Model

The traction power supply system, including power grid, traction substation, traction network,
rails and trains, is a complex network structure. For example, a train-network coupling structure,
based on a typical two-phase network, is shown in Figure 1.

A
B
C

 
Figure 1. Train-network coupling system.

Figure 2 is the equivalent circuit of train-network coupling system in the harmonic state.
The traction substation (SS) and the section post (SP) are the edges of the traction power supply system.
The train at the power collection point (PCP) is simply consisted of a current source Ih

T and a harmonic
impedance Zh

c . Zh
T1 and Yh

T1 are the T-type equivalent circuit parameters of the traction network
between PCP and SS, and Zh

T2 and Yh
T2 are the parameters of the traction network between PCP and SP.

Moreover, Zh
SS is the harmonic impedance of the traction substation, including the leakage impedance

of the traction transformer, the harmonic impedance of the external power grid, etc. Uh
S is the system

harmonic voltage, which in other words is the equivalent background harmonic voltage source.

Figure 2. The equivalent circuit of train-network coupling system.

The Thevenin equivalent circuit is established in Figure 3 by the equivalent parameters except the
parameters of the train. Zh

S is the impedance of the traction network, which needs to be calculated
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and be identified. Uh
P and Ih

P are the voltage and current at the PCP, which could be measured by the
potential transformer (PT) and the current transformer (CT) of the train.

Figure 3. Thevenin equivalent circuit.

Therefore, the relationship equation can be obtained in (1):

.
U

h
S =

.
I
h
PZh

S +
.

U
h
P (1)

Expansion (1) with the real and imaginary parts, there are two regression equations:

Uh
Sx = Uh

Px + Zh
SxIh

Px −Zh
SyIh

Py (2)

Uh
Sy = Uh

Py + Zh
SyIh

Px + Zh
SxIh

Py (3)

where Uh
Px, Uh

Py, Zh
Sx and Zh

Sy are the regression coefficients that can be estimated by a regression
method. Linear regression is a common method in many fields [22]. In this paper, we use partial least
squares regression (PLSR) [23] to identify Zh

S.
In this section, through circuit derivation from the train-network coupling system, the Thevenin

equivalent circuit and regression equations are obtained. It is easy to calculate harmonic impedance
via the PLSR method. This is a simple and common methodology, which is capable of calculating
harmonic impedance in traditional power grids. However, as described in Section 1, the two limitations
are so unavoidable that this methodology straightly applied to RESs could cause great calculation error.
So, taking the coupling characteristics of the train-network system as guidance, the method needs
specific improvement. The improvement is designed under the framework of the above harmonic
impedance identification model.

3. Data Elimination and Data Evolution Mechanism

Based on the above, the improvements of the data elimination and data evolution mechanisms
are designed in this section. The Grubbs criterion is introduced to eliminate outliers for increasing
the accuracy of regression results, and the data evolution mechanism based on reliable estimation is
introduced to investigate whether the identification results are reliable and uncontroversial.

3.1. Elimination of Outliers Based on Grubbs Criterion

In order to reduce the influence of the outliers on the calculation accuracy of PLSR, for each
sample we use the Grubbs criterion, which can process data consistency, to recognize and eliminate
the abnormal error data.

Assuming that a group of samples Y =
{
yi
∣∣∣yi ∈ R, y1 < y2 < . . . < yn

}
(i = 1, 2, . . . , n) is normally

distributed, and calculating the statistics value in (4) and (5):

G1 =
(y− y1)

s
(4)
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Gn =
(yn − y)

s
(5)

where y and s are the sample mean and standard deviation, respectively. Then, identifying the statistic
critical value G(α, n) by looking up the Grubbs critical table.

If [G1 ≥ Gn] ∧ [G1 > G(α, n)], y1 is an outlier and should be eliminated. Correspondingly, if
[Gn ≥ G1] ∧ [Gn > G(α, n)], yn should be eliminated. Then, we proceed by recalculating the sample
mean and standard deviation with the remaining samples, and identifying the new statistics value G′1
and G′n, until there are no outliers anymore.

In this paper, we use the Grubbs criterion to recognize outliers of the current Ih
P shown in Figure 3.

Because in practice the amplitudes of measured harmonic currents are more susceptible to change than
the voltages due to the dynamic change of train operation, and the outliers of currents could have a
greater impact on the PLSR calculation results. Moreover, the amplitudes of harmonic currents are
approximated as a normal distribution [24], while the Grubbs criterion is a classical statistical treatment
of outliers in the normally distributed samples.

3.2. The Reliability Estimation for PLSR Calculation Results

Firstly, the regression Equations (2) and (3) are the general expression of the multivariate linear
regression model in (6):

y = λ0 + λ1 · x1 + λ2 · x2 (6)

where λ0 is the undetermined constant, λ1 and λ2 are the undetermined coefficients. These three
variables can be estimated by PLSR. y and x are the dependent variable and independent variable,
which correspond to the voltage and current, respectively.

In order to evaluate the reliability of the result, the sample coefficient of determination (SCD) γ2 is
introduced in (7). It is the ratio of the regression sum of squares (SSR) to sum of squares for total (SST):

γ2 =
SSR
SST

=

∑n
i=1(ŷi − y)2∑n
i=1(yi − y)2 (7)

where yi is the measured data, and ŷi and y respectively denote the estimate value and average value
of the measured data yi.

In (7), SST reflects the uncertainty of the dependent variable y and SSR reflects the uncertainty
of the estimate value depended on the independent variable x. In other words, SCD γ2 determines the
fluctuation in the dependent variable caused by the variation of the independent variable. Obviously,
SCD ranges from 0 to 1. The closer SCD gets to 1, the higher reliability the result of regression estimation
holds (i.e., the more information of independent variable x the multivariate linear regression model utilizes).

3.3. The Data Evolution Mechanism with Reliability Estimation

As for measured voltage and current, we use the fast Fourier transform (FFT) algorithm with
10 cycles of waveform data to obtain the amplitude and phase information of harmonic voltage and
current varying with time. Then we can calculate the real part and imaginary part of harmonic voltage
and current with the amplitude and phase information. It can form a matrix H1000×L in which the 1000
rows denote the frequencies from 5 Hz to 5000 Hz and the length L of columns denotes the sample
number of measured harmonic data. Based on the matrix H1000×L, we set a calculation window of
100 columns as one calculation group, and slide only one column every time to the end, i.e., the first
calculation group is columns 1 through 100, the second group is columns 2 through 101, and so on.
This is assuming that the number of the calculation groups is m and taking PLSR with calculation
groups by (2) and (3). Thus, we can get m results of regression estimation and each result holds a SCD.
We can evaluate the reliability of regression results and divide them into four reliability levels shown
in Table 1.
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Table 1. The reliability levels of sample coefficient of determination (SCD).

Reliability Levels Ranges of SCD Priority of Data Processing

High reliability γ2 ∈ [α1, 1] Highest
Medium reliability γ2 ∈ [α2,α1) Medium

Low reliability γ2 ∈ [α3,α2) Lowest
No reliability γ2 ∈ [0,α3) Data eliminating

In Table 1, α1, α2 and α3 are the critical values of reliability levels. Obviously, we have 0 < α3 <
α2 < α1 < 1.

Based on the above, the calculation results (the harmonic impedance) with high reliability, medium
reliability and low reliability are aggregated in sets W1, W2 and W3. Therefore, because the reliability
levels show the accuracy of PLSR, we first consider using high-reliability data W1, then medium
reliability data W2 and finally low reliability data W3. In other words, the high reliability data samples
could be used to calculate the harmonic impedance in priority. The harmonic impedance can be
calculated as the mean value of vectors in (8).

Z
h
s =

1
pi

⎛⎜⎜⎜⎜⎜⎝ pi∑
k=1

Zh
sx(k) + j ·

pi∑
k=1

Zh
sy(k)

⎞⎟⎟⎟⎟⎟⎠ (8)

where pi(i = 1, 2, 3) is the sample number of Wi, Zh
s ∈Wi and h = 5, 10, 15, 20 · · · 5000Hz.

If the reliability estimation results show that there are no or less high reliability data sets W1

due to the lack of data or the rapid change of system parameters, we could consider using medium
reliability data set W2 to calculate the harmonic impedance. Furthermore, if the sample numbers of
W1 and W2 are both equal to zero or close to 0, the medium reliability data set W3 could be used to
calculate the harmonic impedance, although there is an inaccuracy in harmonic impedance. In this
paper, we consider 5% of m results as the critical value of whether the data quantity is sufficient.
It means that if p1 > 0.05m, we use W1 to finish the calculation. Through this process, the harmonic
impedance at 5–5000 Hz could be obtained preliminarily.

However, owing to the data elimination and data evolution, maybe there are two problems which
could exist in practical industry scenarios:

1. The high-reliability result may not cover all the range of frequencies (e.g., the critical resonance
frequency may be emitted);

2. The total number of the results for some certain harmonic impedance may be very small so that it
is not convincing.

Fortunately, as for a certain power supply section (PSS) that is desired to obtain the harmonic
impedance, the two problems can be solved by adding new measured data from the same vehicle
moving through the same PSS at other times to improve and supplement the last calculation result.
With the increasing number of measured data: (1) the reliability of the results is improved; (2) the
high-reliability result covers a much wider range of the spectrum; (3) the absolute number of the
high-reliability data will increase.

This solution is reasonable and feasible, because for one electrified railway line during one day or
one week, there are plenty of scheduled trains running through the PSS and for a certain train, it will
run several times. With the increasing of the new measured data, the calculation result of harmonic
impedance will be an increasingly accurate approach to the best optimal solution.

3.4. The Identification Process of Harmonic Impedance

The identification steps of harmonic impedance is shown as follows:
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• Step 1—Calculate the harmonic voltage Uh
P and current Ih

P by FFT algorithm with measured
waveform data.

• Step 2—Eliminate the outliers of Ih
P by Grubbs Criterion.

• Step 3—Calculate the real parts Zh
Sx and the imaginary parts Zh

Sy of the harmonic impedance by

PLSR with each 100 samples and calculate the corresponding SCD γ2.
• Step 4—Repeat Step 3 until you get m results of PLSR and SCD.
• Step 5—Select the proper critical values α1, α2 and α3 of reliability levels and classify the m results

into four reliability levels in Table 1.
• Step 6—Judge whether the number of the high-reliability data set W1 is higher than 5% of m,

then we use data set W1 to calculate the harmonic impedance by (8). If not, we use medium
reliability data set W2. If the high-reliability data set and medium-reliability data set both are
insufficient, we only use data set W3.

• Step 7—Judge whether the reliability data is sufficient and whether the reliability results cover all
the range of frequency. If not, we could add data new measured data.

In order to express the identification process more clearly, the flowchart of harmonic impedance
identification is shown in Figure 4. In general, the process consists of four parts: data acquisition,
data elimination, regression and the data evolution mechanism. The main purpose of data acquisition
is to obtain harmonic voltage and current data which can be used for regression, and indeed data
acquisition is a practical engineering aspect. Data elimination can reduce the error of regression
calculation caused by measurement error and can ensure the high accuracy of regression. In addition,
to calculate harmonic impedance in this paper regression is to provide the reliability for data evolution
mechanism. The data evolution mechanism can be further subdivided into two parts. Firstly, data
grouping is based on the reliability estimation. Secondly, the previous results of data grouping can be
supplemented and replaced by new data.

 
Figure 4. The flowchart of harmonic impedance identification.
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4. Simulation Verification

In Figure 5, we build a simulation model of a train-network coupling system in Matlab/Simulink
program, based on the direct power supply system.

Figure 5. The simulation model of a train-network coupling system.

The power grid is a 110 kV voltage source and a short-circuit impedance in series connection.
Traction transformer is a single-phase transformer and its voltage is 27.5 kV. In the simulation, we take
the harmonic current source as a train, located 5 km away from the end of traction network. In order to
simulate the ideal situation of obtaining sufficient harmonic data covering all the range of frequency
(5–5000 Hz), the equivalent harmonic current sources (train) injects 2nd–100th order harmonic currents,
5 A amplitudes and 0 phases, into the traction network. Moreover, the length of the traction network is
30 km and the distance between each connection point of the rail and the return line is 5 km. Referring
to the eight-port representation model, we use eight conductors to build the transmission line model
of the traction network. T1 and T2 are contact lines; R1 and R2 are the rail line; A1 and A2 are the
reinforced lines; NF1 and NF2 are the return lines.

Based on the above simulation model, we use the parameter method to calculate the harmonic
impedance of the traction network as the ‘simulation value’. Then we use PLSR to calculate the
harmonic impedance as the ‘regression value’. The result is shown in Figure 6.

Obviously, the comparison in Figure 6 between ‘simulation value’ and ‘regression value’ indicates
that the PLSR results of the harmonic impedance are accurate. Although the calculation results of phases
fluctuate slightly, the overall trend is relatively accurate. Therefore, the PLSR model can correctly calculate
the harmonic impedance of the traction network with the measured harmonic data at PCP.

Furthermore, to verify the validity of data evolution mechanism, we calculate the harmonic
impedance and SCD under fluctuations. In this simulation, we set noise signal to the amplitude of the
harmonic current source (train) to simulate the practical disturbance. In this paper, we define that
the critical values α1, α2 and α3 of reliability levels are 0.9, 0.7 and 0.3, respectively. Taking 19th-order
harmonic as an instance, through adding different amounts of noise, we respectively calculate the
harmonic impedance and plot its trend in with γ2 ≈ 1, γ2 ≈ 0.9 and γ2 ≈ 0.7. The results are shown in
Figure 7 and Table 2.

The results of simulation verification show that:

1. Without noise, the ‘regression value’ is close to the ‘simulation value’. The error of the harmonic
impedance amplitude is very low and the error of the phase is only about 1%. This indicates
that the PLSR method can be used to identify the harmonic impedance accurately without
any disturbance.

2. The calculation error increases rapidly after the disturbance noise is injected into the traction
network. It means that in practice the error of the calculation results could be very high owing
to the characteristics of the train-network coupling system. Thus, the proposed data evolution
mechanism could show the reliability of harmonic impedance identification.
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3. There is a certain correlation between the accuracy of the calculation results and the reliability of
PLSR, so it is proper to select SCD γ2 as the index to evaluate the reliability.

 
(a) Amplitudes of the harmonic impedance 

(b) Phase of the harmonic impedance 

Figure 6. The calculation results of the harmonic impedance.

 

(a) Amplitude (b) Phase 

Figure 7. The 19th-order harmonic impedance under noise.

Table 2. Analysis of calculation results.

Harmonic
Impedance

Simulation
Value

Regression Value

γ2≈1 γ2≈0.9 γ2≈0.7

Mean
Value

Error/%
Mean
Value

Error/%
Mean
Value

Error/%

Amplitude/Ω 212.39 212.91 0.24 193.08 9.09 154.47 28.21
Phase/◦ 89.17 88.19 1.10 88.19 1.10 88.19 1.10
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5. Application Case

In this research, the voltage and current waveform data was from PT and CT of a HXD1 locomotive,
shown in Figure 8. The sampling frequency of measurement devices was 20,000 Hz, and the voltage
and current waveform is shown in Figure 9.

 
Figure 8. Schematic diagram of measurement.

Figure 9. Voltage and current waveform.

Obviously, voltage was extremely distorted owing to a large amount of high-order harmonic.
By FFT, the total harmonic distortion (THD) of voltage has reached 22.09% and the characteristic
frequencies approximately ranged from 2500 Hz to 3000 Hz. Therefore, in this case, it is necessary for
in-depth analysis to identify the harmonic impedance of this traction network.

Firstly, without a data evolution mechanism, the PLSR method is used to calculate the harmonic
impedance at 5–5000 Hz in Figure 8.

In Figure 10, the amplitudes of harmonic impedance peak at about 2750 Hz (55th-order), 2550 Hz
(51st-order) and 2050 Hz (41st-order) and, respectively, reach nearly 4723.84 Ω, 2382.86 Ω and 4023.89 Ω
(95% probability value). Combined with the phase spectrum, we find that the phase trend is close to
the zero crossing point at 2550 Hz and the harmonic impedance changes from the inductive impedance
to capacitive. Therefore, we preliminarily conclude that the harmonic resonance frequencies in this
train-network coupling system range from 2550 Hz to 2750 Hz.

Moreover, the mean values of the harmonic impedance is calculated by (8) and the amplitude of
them is shown in Figure 11. Same with the above analysis, the characteristic frequencies range from
2750 Hz to 3000 Hz. And the maximum amplitude of the mean values is about 3000 Ω at 2750 Hz,
while the maximum amplitude in Figure 10 is about 4800 Ω. In addition, the maximum amplitude of
harmonic impedance at other characteristic frequencies mostly decreases, because of large changes
in phases. This demonstrates that the harmonic impedance at the characteristic frequencies easily
changes, which means it is difficult to identify it accurately.
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(a) Amplitude of the harmonic impedance with measured data. 

(b) Phase of harmonic impedance with measured data. 

Figure 10. Harmonic impedance spectrum with measured data.

Figure 11. Amplitude of the mean value of harmonic impedance.
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Secondly, to prove that the harmonic impedance of high reliability is accurate, we choose 100
results of 35th-order harmonic impedance with the highest SCD. They are shown in Figure 12 and
their mean value is 57.58 + j918.06(Ω).

 

(a) The real part (b) The imaginary part 

Figure 12. The 35th-order harmonic impedance of 100 results.

Then, the 35th-order harmonic voltage calculated by (2) and (3) at PCP with the impedance and
current is shown in Figure 13, and the mean value of its amplitude is 183.83 V. In addition, the measured
data show the voltage is about 179.84 V and the error is 2.30%. Thus, this shows the accuracy is
high enough, and the validity of the proposed method is also verified. Furthermore, according to
Figures 12 and 13, the trends of harmonic impedance and harmonic voltage vary obviously with time.
This demonstrates that due to the train-network coupling the harmonic problem is dynamic and the
harmonic impedance can change with the fast movement of trains.

Figure 13. The 35th-order harmonic voltage.

Thirdly, according to the flowchart in Figure 4, the data elimination of outliers and the data
evolution mechanism are implemented in the harmonic impedance identification. The results of
harmonic impedance identification based on the data evolution mechanism are shown in Figure 11.

The amplitudes and phases of harmonic impedance are shown in Figure 14a. It is obvious that
the amplitude trend and harmonic resonance frequencies are very similar to the results of Figure 14.
Moreover, the reliable samples means they are from the high-reliability data set and medium reliability
data set (γ2 ≥ 0.7). According to the number of reliable samples, there are not enough reliability samples
to prove whether the harmonic impedance identification is accurate at some important frequencies
close to the harmonic resonance frequencies. Because at these frequencies the train-network coupling
system is in an unstable state and this locomotive is moving fast, it could lead to dynamic change of the
impedance and system parameters. This is why the results of the harmonic impedance identification
at these frequencies are not reliable.
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(a) The identification results with a part of data (b) The identification results with all data 

Figure 14. Harmonic impedance characteristic curves and reliable samples.

Therefore, after adding new measured data of the same locomotive in the same power supply
section, we use all measured data to obtain the results in Figure 11. It is easy to find the improvement.

1. The results with high reliability and medium reliability cover a wider spectrum, such as the circled
harmonic impedance in the top of Figure 11.

2. A part of the results raises the reliability levels, such as 30th-order and 31st-order harmonic impedance.
3. The amount of reliable data absolutely increases, such as 18th-order and 29th-order.

Moreover, compared with the maximum amplitude of 3000 Ω in Figure 10, the maximum
amplitude of harmonic impedance can reach 4000 Ω and the reliability of the results is high enough.
This means that a part of results of the calculated harmonic impedance are not accurate. If the mean
value of all calculation results is directly considered as the identification result, highly reliable and
accurate data could be mixed with the wrong data. Therefore, the identification result of introducing
the data evolution mechanism is better than the result without any data processing.

Although the limitations of the practical measurement make it impossible to fully demonstrate
the entire process of the data evolution mechanism, the validation of it has been proved by comparison
between a part of data and all data. With the increase of measured data, the harmonic impedance
characteristic curves will be improved.

6. Conclusions

In this paper, a method is proposed to utilize the measured data of trains at the PCP to identify
the harmonic impedance of the traction network. According to the characteristics of the train-network
coupling system in the RESs, the data elimination (Grubbs criterion) and data evolution mechanism
(based on the sample coefficient of determination) are introduced into the linear regression method
(PLSR), which is based on the Thevenin equivalent circuit of the traction network. Compared to
the traditional identification based on linear regression without any data processing, the proposed
method can not only improve identification accuracy but also estimate the reliability of identification
results. It demonstrates that the identification results are reliable and uncontroversial. Moreover,
as a result of the introduction of the data evolution mechanism, with the addition of new measured
data, the identification results can be further supplemented and improved. The harmonic impedance
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covering all important frequencies, such as characteristic frequencies, can eventually obtained with
high reliability. Therefore, a reliable identification of harmonic impedance can provide data basis for
harmonic suppression (such as harmonic filter design and adjustment of train current specturm to
avoid resonance frequencies), which is beneficial to improving the security and stability of the RESs.

Although the proposed method holds the above advantages, it can only be used for offline analysis
at present. The identification method requires harmonic data of all frequencies so that the computation
time would be too long. Thus, in addition to improving the robustness of the method, it is necessary
to focus on the computation time and data amount. For example, the harmonic impedance only at
characteristic frequencies is identified. These problems need to be studied in future research.
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Abstract: This paper uses a two-layered soft voting-based ensemble model to predict the interfacial
tension (IFT), as one of the transformer oil test parameters. The input feature vector is composed of
acidity, water content, dissipation factor, color and breakdown voltage. To test the generalization of
the model, the training data was obtained from one utility company and the testing data was obtained
from another utility. The model results in an optimal accuracy of 0.87 and a F1-score of 0.89. Detailed
studies were also carried out to find the conditions under which the model renders optimal results.

Keywords: Interfacial tension; machine learning; transformer oil parameters

1. Introduction

Power and distribution transformers are one of the most significant and expensive assets in any
power system grid. Internal faults in the transformer such as partial discharge (PD) or overloading
may lead to insulation deterioration and eventually to complete failure of the transformer. This causes
catastrophic transformer outages, which lead to both direct and indirect costs. Hence, assessing
the transformer’s health condition and continuous monitoring of the insulation system ensures its
satisfactory performance, maintains efficiency, and prolongs its lifetime.

Together, the oil and insulation paper constitute the transformer’s insulation system and have
two important functionalities [1]: to act as an insulation to insulate high voltage from the ground and
as a coolant to dissipate the generated heat efficiently. The overall health condition of a transformer
depends largely on the state of its oil and paper insulation system [2]. Ageing of the transformer
oil, which is a natural process in any insulation system, results in the formation of sludge particles,
which in turn damages the properties of other insulation components like cellulose paper in the
transformer winding. Therefore, it becomes very critical to monitor the transformer oil quality by
regularly inspecting samples using different electrical, physical and chemical methods.

There are several elements that can be measured to quantify the transformer oil ageing condition.
They can be classified into three categories: dissolved gas analysis (DGA), furan content and oil tests.
DGA analysis is conducted mainly to detect the emergence of different faults inside the transformer
winding, like arcing or PD activities. Furan, on the other hand, is measured to estimate the health
condition of the transformer paper insulation. Finally, oil tests reveal information about several aspects
of the electrical, physical and chemical condition of the transformer oil. For example, oil tests include
water content, breakdown voltage (BDV), interfacial tension (IFT), dissipation factor (DF), color and
acidity [3]. Conducting such tests routinely adds to the overall maintenance cost of the transformer.
The cost of the oil sample varies from one country to another, for example, testing one oil sample (BDV,
acidity, water content and IFT) in Dubai would cost around USD 1500 [4]. Thus, instead of testing
these samples, it is more economical to predict their values. This is particularly so, given the recent
advancement in machine learning (ML) algorithms as they have proven efficacy in many applications.
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Among all oil tests, the IFT conducted as per the ASTM D971 standard has the highest cost, requires
specific expertise and specialized instruments [2].

The IFT of mineral oil is related to the aging of the oil sample. Mineral oil is essentially a non-polar
saturated hydrocarbon fluid and when it undergoes oxidative degradation, oxygenated species are
formed such as carboxylic acids, which are hydrophilic in nature. The presence of these hydrophilic
components in the transformer oil can influence the chemical (acidity), electrical (BDV), and physical
(IFT) properties of the oil sample. Measuring the IFT is basically conducted by measuring the surface
tension of an oil sample against that of water, which is highly polar. The more the two liquids (oil
and water) are similar in their polarity, the lower the value of the surface tension between them. Thus,
the higher the concentration of hydrophilic materials in the oil sample, the lower will be the interfacial
tension of the oil measured against water. So, the magnitude of the IFT is inversely related to the
concentration of the hydrophilic degradation products that result from the aging of the oil. Since
hydrophilic materials are usually highly polar and thus not very soluble in non-polar oil, the presence
of these species can result in sludge formation that in turns contributes to the further degradation of
the transformer insulation system [5].

Recently, the application of machine learning in transformer assessment has become more
widespread. Most of the reported studies have concentrated on predicting the transformer health
index (HI). The transformer HI is a calculated number that estimates the health condition of oil-filled
transformers [6]. In [7], a fuzzy logic-based approach was used to predict the HI value using the oil
quality, dissolved gas and furan content parameters as inputs. The reported classification success rate
was 97% based on a three-class classification system. Moreover, in [8], an artificial neural network
(ANN) approach was proposed to classify the condition of the transformer based on the predicted HI
value. The input features used in this model are oil test parameters, DGA and furan content. Based on
the testing outcomes, 97% of the testing samples were correctly classified into a three-class condition
problem. To further enhance the HI calculation, a reduced model was implemented [9]. It has been
found that a HI with relatively high accuracy can be achieved with few tests.

Few studies have been conducted to estimate transformer oil characteristics such as water
content and breakdown voltages [10–12]. A cascaded ANN was used to predict transformer oil
parameters using the Megger test [10]. Also, ANN with stepwise regression was implemented to
predict the transformer furan content [11]. These studies were only conducted on a moderate number
of transformers, which makes it hard to generalize the conclusions. A polynomial regression model has
been developed to predict the breakdown voltage as a function of the transformer service period and
other oil testing parameters like total acidity and water content. Except for a few cases, the percentage
error between the actual and predicted values of transformer breakdown voltage was less than 10% [12].
However, the model needs the water content and total acidity as an input to predict the breakdown
voltage. Hence, while this model saves the cost of conducting the breakdown voltage test, there is still
a need to conduct two other oil tests. Moreover, the values of the water content and total acidity need
to be collected at different time intervals to formulate the mathematical model and predict the value of
the transformer oil breakdown voltage, which adds to the overall transformer oil maintenance cost.

In this paper, the authors investigated the ability of ensemble methods to predict the class of IFT.
An ensemble method is a learning technique that uses several base models in order to produce one
optimal predictive model [13]. The key idea behind any learning-based problem is to find a single
model that best predicts the output. Instead of depending on only one model and hoping that it might
be the most accurate we can come up with, ensemble methods take a myriad of models into account
and leverage these to produce one final model. In our problem, we use two layers of these ensemble
models using soft voting. The concept behind a voting classifier is to combine different machine
learning classifiers and use a voting criterion of some sort to predict the class label [13]. A classifier of
this sort can balance out the individual weakness of the classifiers involved. There are two types of
voting classifiers: (i) majority/hard voting and (ii) soft voting. The former uses the mode of the class
labels predicted by the individual classifiers while the later returns the class label as argmax of the sum
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of predicted probabilities. In other words, each classifier is assigned a weight and the class label that
has the maximum weighted average is selected as the output class label.

2. Materials and Methods

2.1. Dataset

Two different datasets were used in this study, i.e., a training dataset and a testing dataset.
The training set consists of the oil tests of 730 transformers with a high voltage rating of 66 kV and
power rating ranges from 12.5 to 40 MVA. The testing dataset consists of 36 transformers with a high
voltage rating of 13.8 kV and power rating ranges from 0.5 to 1.5 MVA. It is apparent that these two
datasets have no overlap in terms of the transformer rating or in terms of their geographical location
as they were obtained from two different countries in the Gulf region. While the aging mechanism
may be different in these two different categories of oil-filled transformers due to the different loading
conditions, the impact of aging on the oil chemical, electrical and physical properties will be similar.
The input features included in the dataset are water content, acidity, breakdown voltage, dissipation
factor (DF) and color and the output variable is the interfacial tension (IFT). The output feature vector
was divided into two categories (good and bad) based on their values. Figure 1 depicts the distribution
of data between the two classes for both the training and testing sets. Oil samples with IFT ≥ 30
dyne/cm are considered as “Good” oil, otherwise the sample is considered as “Bad”.

 
(a) (b) 

Figure 1. The data distribution of the (a) training dataset and (b) testing dataset.

2.2. Data Pre-Processing

Data pre-processing was divided into two main steps. The first step involves outlier removal
while the second step includes normalization of the data. An outlier is an observation that lies outside
the overall pattern of a distribution. Outliers severely skew the performance of a classifier, therefore,
there is a strong requirement to remove them if any exist. In order to remove them, the mean and
standard deviation of each column is computed and any observation whose absolute difference from
the mean exceeds three times the standard deviation is detected as an outlier and is removed. In order
to make sure that all the features have the same significance, at the start it is very important that the
scales of all the features remain the same. In order to make sure that all the feature values are in the
same scale, each individual feature is converted into a number between zero and one. This is done by
min-max scaling, that is, for each reading, the minimum value is subtracted and the result is divided
by the maximum value of that feature.
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2.3. Data Visualization

The heatmap of correlation was calculated to see whether there is multi-collinearity among
different features or not. The heatmap is shown in Figure 2 and it depicts the correlation score between
different input features.

Even though there is some relatively high correlation between some of the features like acidity
and color (correlation = 0.74) and DF and acidity (correlation = 0.75), no correlation between any of the
features is greater than 0.80, which indicates that no multi-collinearity exists. It is worth mentioning
here that the calculated correlation is for the whole 730 transformers. The correlation will be more
evident for severely aged transformers. For example, the correlation between IFT and acidity drops
from −0.72 to −0.77 if the correlation was calculated for transformers with an IFT value less than 20.

 
Figure 2. Correlation matrix of the input features in the dataset.

2.4. Machine Learning Model Architecture

The machine learning model proposed in this paper is a two-layer ensemble-based soft voting
classifier, which uses a total of eight different classifiers. The first layer consists of two main blocks
with four classifiers in each block. The first block consists of four classical machine learning algorithms,
which are non-ensemble-based followed by a soft voting classifier module. These four learning
algorithms are naïve Bayes, support vector machine with radial basis function as the kernel function,
logistic regression and k-nearest neighbors. The output of each classifier is then passed to the voting
classifier, which does soft voting based on the argmax of the sum of predicted probabilities of the class
labels. The second layer consists of four ensemble-based classifiers and each one’s output is again
fed into a separate voting classifier that performs soft voting. The four ensemble classifiers used in
this block are random forest, decision tree-based bagging model, Ada-boost and gradient boosting
classifier. The output of each of the two blocks in layer one is finally fed to another voting module
which performs soft voting and generates an output label. The block diagram shown in Figure 3
demonstrates the structure of the model.

The key idea behind using the consensus of multiple classical machine learning algorithms in
the first block is to overcome the limitations of some algorithms, as the shortcoming of one algorithm
might be a strength of another. For example, naïve Bayes assumes that the presence of one feature
is unrelated to another feature [14]. This assumption might not be valid in many physical systems
due to the inherent correlation among the predictor variables as shown in Figure 2. However, it is
extremely fast and easy to compute for generating the output labels for the test set. K-nearest neighbors,
on the other hand, assumes that similar values that are close to each other perhaps belong to the same
class [15]. In order to assign label to a test data point it loads all the labelled data points in the memory
and computes the distances between all the label input data and the test data points. Furthermore,
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it decides the first K neighbors on the criterion of the smallest distance, and then finally computes the
mode of the class label of these K neighbors as the output label. As this algorithm keeps everything in
the memory during testing and computes all the distances while making a prediction, it is extremely
slow. However, it generates a decision boundary between classes that is highly nonlinear, and therefore
accommodates linear classifiers like logistic regression.

Figure 3. Block diagram of the proposed two-layer ensemble-based soft voting classifier.

The concept remains the same in the second block as well. The unanimity of numerous different
algorithms will reduce the weaknesses and enhance the strength of the combined model in general.
However, in order to deal with the issue of limited data, this block uses the idea of bootstrap plus
aggregation and ensemble models. Bootstrap plus aggregation means that from the main pool of data,
a large number of samples are collected with replacement to make multiple datasets. Then, many
models are trained using the boosted number of data points across multiple datasets generated from
the original data, and their outputs are combined. Bootstrap plus aggregation is commonly known
as bagging. Not only does bagging help in dealing with the issue of a lesser volume of data, it also
reduces variance in highly variant models like decision trees, which severely overfit the training data.
Decision trees (mainly CART) are greedy in nature—the splitting variable is chosen on local and not
global minimization of the error [16]. This in turn results in decision trees having similar structure and
predictions that are highly correlated to each other. This problem is solved by using random forests.
Random forests adjust the splitting criterion such that the resulting predictions from different trees
have less correlation among each other. In order to make sure that the split is not greedy, random
forests ensure that the learning algorithm looks through all variables and their values in order to
select the most optimal split point. Random forests run multiple trees in parallel, therefore it remains
unbiased towards miss-classifications.

With all these learning algorithms that combine both classical and ensemble via the final voting
classification layer, the model learns the data in the best possible manner and renders highly accurate
results. All the hyperparameter tuning is done using grid search cross-validation, which uses 5-fold
cross-validation. Grid search cross-validation does an exhaustive search over specified parameter
values for an estimator.
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2.5. Evaluation Metrics

In the testing phase, the generated classification model along with the chosen features was
evaluated using the testing dataset. A confusion matrix can be constructed to show the actual and
predicted classifications. Table 1 shows a confusion matrix for binary classification problems, in which
the class is either Yes or No. The size of the testing data is determined in relation with the over-all
size of available data. Since the testing data have known classes, the classifier accuracy rate can be
calculated. The F-measure is another reliable statistical evaluation measure that is widely used to
evaluate and compare the performance of classifiers on binary classification problems. The F-measure
is the harmonic mean of the precision (P) and recall (R), as shown in Equation (1).

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 = 2
P×R
P + R

(1)

where P is the ratio of the correctly predicted positive instances over all predicted positive instances,
i.e., true positive (TP) and false positives (FP); R is the ratio of correctly predicted positive instances
over all actual (real) positive instances, i.e., true positive (TP) and false negatives (FN); and F1 is the
harmonic mean of precision and recall. P, R, and F1 are useful measures for binary classification
problems and imbalanced classification problems.

Table 1. Confusion matrix of binary classification problems.

Really
Is

Classified As

Yes No

Yes TF FN
No FP TN

As a generalization for multi-class classification problems, the overall classification accuracy
measure is given in Equation (2).

Accuracy Rate =
TP + TN

TP + FP + TN + FN
(2)

3. Results and Discussion

The aforementioned evaluation metrics of the different combined and individual classifiers are
presented and discussed in the following subsections.

3.1. Classification Accuray of Both Individual and Combined Classifiers

As previously addressed, the first dataset (730 transformers) was used for training purposes and
the second dataset (36 transformers) was used for testing. In a previous publication, the authors used
the dataset for the 730 transformers for both training and testing [17]. An overall accuracy of 95.5% was
achieved when 10-fold cross-validation was used for the training and testing of the data. The accuracy,
F1-score, precision and recall for both the classical and ensemble machine learning algorithms are
shown in Tables 2 and 3, respectively. It is evident from Tables 2 and 3 that there is no single classifier
that gives the best results for all metrics. Also, the maximum overall accuracy achieved was 86.1%
using AdaBoost as a classifier. Moreover, the only classifier that did not show any FN is the naïve
Bayes classifier. However, it shows the highest FP among all individual classifiers. It is interesting to
note that except for naïve Bayes, the precision is higher than the recall for all other classifiers.

48



Energies 2020, 13, 1735

Table 2. Evaluation metrics of each of the individual classical machine learning classifiers.

Classical Machine Learning Algorithm Accuracy F1-Score (F1) Precison (P) Recall (R)

Naïve Bayes 0.833 0.892 0.806 1.0
K-Nearest Neighbors 0.777 0.826 0.904 0.760
Logistic Regression 0.833 0.874 0.913 0.84

Support Vector Machine 0.75 0.809 0.863 0.76

Table 3. Evaluation metrics of each of the individual ensemble classifiers.

Ensembling Method Accuracy F1-Score (F1) Precison (P) Recall (R)

Bagging with Decision trees 0.75 0.791 0.944 0.68
Random Forests 0.833 0.870 0.952 0.80

AdaBoost 0.861 0.875 0.952 0.81
Gradient Boosting 0.857 0.873 0.934 0.82

After combining the classifiers, a marginal improvement in the classification accuracy is evident
only for the two-layer ensemble-based technique, as depicted in Table 4. Nevertheless, the two-layer
ensemble-based technique does not show superior performance in other metrics such as F1 and recall.
Thus, it can be stated that no ML algorithm can guarantee the best performance for all evaluation
metrics. Moreover, and similar to the individual classifiers, the precision was higher than the recall for
all ensembling blocks.

Table 4. Evaluation metrics of each of the individual and combined ensembling blocks.

Ensembling Method Blocks Accuracy F1-Score (F1) Precison (P) Recall (R)

Ensemble with classical ML models 0.861 0.898 0.917 0.88
Ensemble with tree based models 0.833 0.870 0.952 0.80

Two layer ensemble-based 0.871 0.894 0.955 0.84

3.2. Classification Under Reduced Number of Features

Reducing the number of tests required to predict the IFT will further reduce the cost of transformer
oil assessment. Different techniques have been implemented to change the size of the input feature
vector. Both principal component analysis (PCA) and linear discriminant analysis (LDA) are used
to vary the feature space. PCA is a feature extraction technique. It projects the data onto a lower
dimensional feature space by using an orthogonal transformation based on the maximization of
variance. The resulting dimensions are reduced in number with respect to the total number of features
and are also orthogonal (have no overlap) to each other. PCA is performed on the dataset to find the
number of transformed dimensions that capture the maximum variance. Figure 4 shows the variance
shared by each component. The first three components are responsible for most of the data variance
(93%), therefore we tested the proposed model using only the first three components.

Testing the PCA proposed model with reduced number of features reduces the accuracy to about
60.4%, as shown in Table 5. A drastic drop in all other measuring metrics is also evident. PCA is an
unsupervised dimensionality reduction and therefore it does not consider the information of class
labels. This results in the generation of transformed dimensions that do maximize variance of data but
also make the separation between classes difficult.
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Figure 4. Relative variance of transformed components shown through a bar graph and explicit shared
variance values.

Table 5. Evaluation metrics of reduced input feature vector.

Feature Extraction/Selection Technique Accuracy F1-Score (F1) Precison (P) Recall (R)

PCA 0.604 0.683 0.722 0.587
LDA 0.75 0.809 0.863 0.76

Extra tree classifier 0.833 0.875 0.913 0.84

In order to solve this problem, we use LDA which is a supervised feature extraction technique.
The key concept behind LDA is that in order to find the new axis, the optimization problem should
be such that it minimizes the intraclass (within class) variance and maximizes the distance between
projected class means so it is easier to do the classification once the dimensions have been reduced.
In order to have a fair comparison with PCA, the number of dimensions were kept constant at three.
Testing the proposed model on reduced dimensions with LDA improves the accuracy to 75%, but this
is still less than the accuracy achieved on the original dataset. This means that even though the last two
components have less share in the variance, they are important to accomplish the previously achieved
classification accuracy.

As an alternative to PCA and LDA, the features are selected directly based on their importance
and not by transforming them into a different domain and then reducing the dimension. In order
to select the top three features, we rank the features by assigning them relative importance. This is
done using the extra tree classifier, which is a variant of a decision tree. However, when looking for
the best split to separate the samples of a node into two groups, random splits are drawn for each
of the selected features and the best split among these is chosen. The results for feature importance
using the extra tree classifier are shown in Figure 5, which gives color, dissipation factor and acidity
the highest scores. Therefore, we checked our model with only this subset of features. This agrees
with the correlation matrix that shows that these three features have the highest correlation with the
IFT. Using only these features results in an accuracy of 83.3%, which is close to the accuracy using the
original dataset.
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Figure 5. The feature importance bar graph and relative importance score using extra tree classifier.

3.3. Classification Under Balanced Number of Input Features

One of the problems in the training dataset is the imbalance between the two classes as depicted in
Figure 1. To overcome this problem, two different approaches were investigated, namely, up sampling
and down sampling. In a previous study, up sampling improved the classification accuracy of furan
content in transformer oil [18]. Both the up sampler and down sampler were implemented using
a random sample from the original data. In the case of up sampling, random sampling without
replacement is done from the minority class to increase the number of data points in the minority equal
to the majority class. For down sampling, random sampling without replacement is done from the
majority class to down size the number of data points to the number of samples in the minority class.
The results of using these techniques is shown in Table 6. While both techniques did not contribute to
the improvement of the classification accuracy, up sampling resulted in relatively better results than
down sampling. This could be attributed to the low number of testing samples and hence improving
the training data may not result in improvement in the testing samples. As samples are selected at
random for down sampling, there is a high probability that data points that are essential in causing the
separation between the two classes are not selected and hence the output is not accurate.

Table 6. Evaluation metrics of two different data balancing techniques.

Input Data Balancing Technique Accuracy F1-Score (F1) Precison (P) Recall (R)

Up Sampling 0.805 0.844 0.95 0.76
Down Sampling 0.72 0.773 0.894 0.68

4. Conclusions

Transformer oil IFT is a very important parameter that needs to be evaluated to assess the condition
of transformer oil. Compared to other oil tests, IFT is relatively harder and more expensive to conduct.
In this paper, the viability of using multiple machine learning algorithms (as individuals and combined)
to predict the transformer oil IFT was investigated. In this investigation, two different datasets for
transformers from two different geographical locations were used with one used for training and
the other used for testing. This was implemented to ensure the robustness of the proposed method.
No single technique showed superior performance on all measured metrics. However, combining
different ML algorithms and applying voting technique generally resulted in better measured metrics
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than individual ML algorithms. Moreover, it was found that reducing the input feature vector using
PCA resulted in a significant reduction in all measured metrics. However, when feature selection was
based on the feature correlation with the IFT, much better results were achieved. One of the drawbacks
of the proposed technique is the shortage of testing samples. As a future work, the authors will try to
collect more samples to further validate the proposed algorithm.
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Abstract: Increasing maintenance costs will hinder the expansion of the wind power industry in the
coming decades. Training personnel, field maintenance, and frequent boat or helicopter visits to wind
turbines (WTs) is becoming a large cost. One reason for this cost is the routine turbine inspection
repair and other stochastic maintenance necessitated by increasingly unbalanced figure loads and
unequal turbine fatigue distribution in large-scale offshore wind farms (OWFs). In order to solve the
problems of unbalanced fatigue loads and unequal turbine fatigue distribution, thereby cutting the
maintenance cost, this study analyzes the disadvantages of conventional turbine fatigue definitions.
We propose an improved fatigue definition that simultaneously considers the mean wind speed, wind
wake turbulence, and electric power generation. Further, based on timed automata theory, a power
dispatch approach is proposed to balance the fatigue loads on turbines in a wind farm. A control
topology is constructed to describe the logical states of the wind farm main controller (WFMC) in an
offshore wind farm. With this novel power control approach, the WFMC can re-dispatch the reference
power to the wind turbines according to their cumulative fatigue value and the real wind conditions
around the individual turbines in every power dispatch time interval. A workflow is also designed
for the control approach implementation. Finally, to validate this proposed approach, wind data
from the Horns Rev offshore wind farm in Denmark are used for a numerical simulation. All the
simulation results with 3D and 2D figures illustrate that this approach is feasible to balance the loads
on an offshore wind farm. Some significant implications are that this novel approach can cut the
maintenance cost and also prolong the service life of OWFs.

Keywords: wind turbine; maintenance; fatigue; power control; offshore wind farm

1. Introduction

Wind energy is becoming one of the most important sustainable energy sources for electricity
production. Offshore wind energy is receiving increasing attention because of the lack of suitable
locations on land for installing wind turbines and the fact that offshore wind energy resources are
significantly more plentiful than those onshore. Many ongoing offshore wind farm (OWF) projects
aim for a total power of 1000 MW individually and consist of advanced turbines that produce more
than 2 MW. The electricity power industry is increasingly attracted to the future prospects of this
technology [1–3].

Wind farm maintenance costs so much that their economic projections are not necessarily better
than those for onshore wind farms [4–6], primarily due to the expenses of helicopter and boat visits to
wind turbines. At present, most OWFs (for example, the one at Horns Rev in Denmark) are facing a
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new set of problems not previously encountered, particularly concerning limited access to the farm
due to weather and sea wave conditions [7].

One of the main causes is the increasingly unequal and unbalanced fatigue loads in the OWFs,
which are caused by the wake effect from using a conventional wind farm control. As Figure A1 in
the section of Appendix A shows an image taken in February 2018 showing the obvious wake effects
marked by humid air condensation in the Horns Rev OWF, Denmark. In material science theory,
fatigue occurs when a material is subjected to repeated loading and unloading. In an OWF, the main
causes of fatigue are the cyclic wind and wake disturbance loading and unloading, which affect the
entire wind turbine structure. Based on the “Germanischer Lloyd” (GL) standard, Marín et al. [8] did
research on the causes behind often-occurring failures. Sørensen et al. [9] analyzed the design code
model based on probability theory and studied several fatigue models. Under wind loads, Barle [10]
investigated the service strength. Under a maximum monotonic load, the static strength and fatigue
were evaluated. Marino [11] considered different wind conditions, studied the fatigue loads and
coupled response of a wind turbine. Wilkie et al. [12] investigated different environmental conditions,
and built fatigue damage models based on Gaussian process regression.

As a relatively new technology, wind turbine control can improve wind turbine performance under
operation and maintenance constraints [13]. Leithead et al. [14] studied active control approaches to
cut the fatigue loads on a WT. Leithead et al. [15] proposed a control model to improve the performance
of a WT. To reduce the effects of wind flow disturbance to WTs, Camblong [16] studied a control
algorithm. Lescher et al. [17] investigated the linear parameter varying model of a WT, then designed a
controller for multi-variable gain dispatching. To cut the maintenance cost of WTs, Sarker et al. [18] used
preventive maintenance strategy, and proposed a maintenance cost model for offshore WTs. Based on
Monte Carlo simulations, Ziegler et al. [19] studied a fatigue estimation model for monopile foundation
of a WT. To reduce the structural loads on a WT, thereby prolonging its service life, Jackson et al. [20]
designed a scheme using a new control strategy. To minimize the fatigue differences of WTs in a
wind farm, Yao [21] optimized a power-dispatching model. To reduce the effect from wind-wave
misalignment to the fatigue of WTs, Sun [22] proposed a pendulum-tuned mass damper in a 3D space.
The present research on control algorithms and technologies above is effective for power dispatching
and fatigue loads reduction for WTs. Wilkie [12] proposed that a WT control system should capture
maximum wind energy, and extend the lifetime of the turbine’s components. From the perspective of
wind farm operations, a high-efficiency control technology should mitigate the increasingly unbalanced
fatigue loads on WTs in an OWF.

This study is organized as follows. In Section 2, we describe a general wind farm layout model
and analyze the conventional power control approach used in OWFs. In Section 3, we introduce
wind turbine fatigue, focusing on the wake effect as the main cause of the unequal turbine fatigue
distribution in a OWF; establish a wind power mechanics in the far wake effect; and then improve the
conventional fatigue definition into an integrated definition based on three factors: the mean wind
force, wind turbulence, and power generation. We use automata theory to design a specific WFMC
control topology in Section 4. In Section 5, the workflow of this novel power control approach is
sketched. Section 6 presents the simulated results of this novel power control approach using wind
energy data sampled in Horns Rev OWF. Section 7 discusses the performance of the conventional
control approach and the improved control approach considering three important parameters: the
mean turbine fatigue, the standard deviation (SD) of turbine fatigue, and the possible power loss.
Finally, some important conclusions are drawn in Section 8.

2. Conventional Power Control in an OWF

2.1. OWF Layout Model

Without loss generality, we consider an array-geometry OWF with equidistant spacing between
WT rows and lines, as shown in Figure 1. In an OWF, the distance between two neighboring turbines is
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about 5–8 rotor diameters, which can be considered far enough [23–25]. Assume that an OWF consists
of m rows and n columns of WTs. Each wind turbine is marked with T(i, j). The indices i varies from 1
to m, and j varies from 1 to n.

Figure 1. The layout model of an offshore wind farm (OWF).

The wind speed measured by anemometers installed in each wind turbine decreases along the
downstream direction. The studies in [26–31] estimated the wind speed reduction in an OWF. As an
example, in the present work we used the wind data of the Horns Rev OWF, which is located at a reef
approximately 14 km off Jutland in the North Sea in Denmark. The Horns Rev wind farm was built by
the Danish Energy company Elsam (now DONG Energy) in 2002 and was the first OWF in the North
Sea. This wind farm consists of 80 wind turbines (Vestas V80, nominal power 2.0 MW), with a total
capacity of 160 MW and an annual power production of 600 MkWh [32].

2.2. Conventional Wind Farm Control

As described in [32], a Wind Farm Main Controller (WFMC) was designed and installed in the
Horns Rev OWF. The WFMC acquires the wind data surrounding turbines and the electric power
data from the transformer station, and, after power dispatching calculation, returns control signals
to the turbines. To control the active power, the WFMC includes control functions such as: (a) the
absolute production limiter, (b) the balance control, (c) the gradient limitation, and (d) the delta
control. To control the reactive power, the WFMC includes the functions of a fixed MVA (i.e. Mega
Volt Ampere) exchange and voltage control on the output from the transformer linked to the onshore
grid. The communication to and from the WFMC between the SCADA (supervisory control and data
acquisition) and the wind turbines is shown in Figure 2.
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Figure 2. The power control and communication scheme in an OWF.

To date, most endeavors have sought to improve the electric power control for electricity
requirements matching the grid. For example, the balance control function is implemented to meet
the grid power requirements [32]. In [33], the power control laws were validated in an OWF. In [34],
Condition Monitoring Systems were introduced to improve maintenance management and increase
the reliability of OWFs. In fact, the loads on turbines cannot be balanced by a conventional WFMC
approach, so turbine fatigue distribution cannot be balanced further for WT lifetime extending.

An advanced WFMC should consider both output power maximization and lifetime of the turbine
components, such as the gearbox, the blades, and the tower [13]. One of the most popular approaches
is to balance the natural wind load to the individual wind turbines, relying on a reasonable wind
power dispatch approach, thereby equalizing turbine fatigue.

3. Improved Turbine Fatigue Definition

OWF control technology can provide opportunities to improve the performance of both WTs and
wind farms under operation and maintenance limitations. In order to extend the lifetime of turbine
components and thereby reduce the maintenance costs incurred by using boats or helicopters, the
conventional control can be improved with considerations of both power generation and turbine
fatigue balance. We study this control improvement based on precise and empirical wind power
delivery models as follows.

3.1. Wind Power Mechanics with a Wake Effect

In order to analyze wind power delivery mechanics, some concepts are introduced from Betz’s
Momentum [35].

3.1.1. Upstream Wind Power

In an offshore wind farm, the upstream wind power of the WT marked as T(i, j), can be calculated as

P f ro(i, j) =
1
2
ρv3

i, jA (1)

where ρ is the air density, vi, j is the upstream wind speed, and A is the blade sweeping area. Then, the
upstream wind power of wind turbine T(i+1, j) is

P f ro(i + 1, j) =
1
2
ρv3

i+1, jA (2)

in the case of a large OWF, in which most internal wind turbines are running in the downstream
wake from front WTs. In order to estimate the wind power deficit caused by wind wake effects at
any downstream distance, many wake models were developed, such as the Frandsen model, the
Schlichting model, and the Jensen model [26].
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We assume that wind turbine T(i+ 1, j) is located downstream from wind turbine T(i, j) as shown
in Figure 3. Here, the averaged ratio of the upstream wind speed of T(i, j) to the upstream wind speed
of T(i + 1, j) can be evaluated in (3). The distance between T(i, j) and T(i + 1, j) is 7 rotor diameters
(i.e., 7d), used in the Horns Rev OWF. The wind speed in this OWF varies from 2 to 24 m/s.

vi, j

vi+1, j
= 1.0767 (3)

Figure 3. Neighboring wind turbines in the far wake of the Horns Rev OWF, Denmark.

This ratio is approximately equal to the value mentioned in [23] based on the engineering
experience of velocity deficits in the far wake of an OWF.

3.1.2. Wind Power Delivery

Based on the observed wind data acquired from the Horns Rev OWF in references [23,35], the
coefficient wind power delivery is defined as the ratio of the decreased power of the upstream turbine
to the increased power of its downstream partner during wind power delivery. In order to simplify
the wind direction category, this study focuses on two main wind direction categories, normal power
delivery and oblique power delivery, as shown in Figure 4. In the case of normal power delivery, the
wind directions are normal to the WT rows or columns. The main wind angles are 0◦, 90◦, 180◦, and
270◦. The corresponding wind power delivery group has a solid line boundary in Figure 4. In the
case of oblique power delivery, the wind direction is oblique to the wind farm layout. The wind
angles considered here are 45◦, 135◦, 225◦, and 315◦. The corresponding wind power delivery group is
marked with dashed line bars in Figure 4.
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Figure 4. Normal and oblique wind delivery in the Horns Rev OWF, Denmark. Note, WGT is the wind
energy-giving turbine, and WRT is the wind energy-receiving turbine.

• Category 1. Normal power delivery

We assume that a downstream turbine only absorbs some part of the wind energy after the energy
absorption from the upstream turbines in the same column along the downstream direction. The initial
upstream wind speed of the first turbine is 8 ± 0.5 m/s1. As wind moves through the wind farm
downstream, the wake widths considered are ±1◦ and ±5◦.

Case 1, wind direction 0◦ or 180◦:
For a single column along the wind direction, the normalized power ratios between the second

turbine to the first turbine and subsequent turbines to their front turbines are

α(00±10,2−1, j) =
P f ro(2, j)

P f ro(1, j)
=

0.621
1.000

= 0.621 (4)

α(00±10,3−2, j) =
P f ro(3, j)

P f ro(2, j)
=

0.629
0.621

= 1.013 (5)

α(00±10,4−3, j) =
P f ro(4, j)

P f ro(3, j)
=

0.601
0.629

= 0.956 (6)

α(00±10,5−4, j) =
P f ro(5, j)

P f ro(4, j)
=

0.602
0.601

= 1.002 (7)

α(00±10,6−5, j) =
P f ro(6, j)

P f ro(5, j)
=

0.603
0.602

= 1.002 (8)

α(00±10,7−6, j) =
P f ro(7, j)

P f ro(6, j)
=

0.607
0.603

= 1.007 (9)

α(00±10,8−7, j) =
P f ro(8, j)

P f ro(7, j)
=

0.610
0.607

= 1.004 (10)

With a 180◦ wind direction, the power ratio sequence is inverted
(i.e., (1.004,1.007,1.002,1.002,0.956,1.1013,0.621)). According to Reference [23], this analysis
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focuses on the wake center areas, where the wind power at the second WT and subsequent WTs is
approximately 60% freestream [23].

Case 2, wind direction 90◦ or 270◦:
With a 90◦ or 270◦ wind direction, the normalized power ratios between the second turbine, the

first turbine, and subsequent turbines to their front turbines are approximately the same as the values
in case 1. The only difference is that the turbine number in a single row is ten in case 2. The wind
power at the second WT and subsequent WTs is approximately 60% freestream [23].

When an upstream turbine T(i, j) is more fatigued than a downstream turbine, we can control
its pitch angle to absorb less wind power; therefore, an additional portion of the wind power will be
delivered to the downstream wind turbine. This additional wind power, denoted as ΔP f ro(i + k, j),
will be absorbed by the downstream turbine if the wind flow falls in the range of the cut-in speed and
the rated speed. The partial-load conditions and wind power increment can be calculated as

ΔP f ro(i + k, j) =
n−1∏

k

αk
(i+k+1)−(i+l)ΔP f ro(i, j) (11)

In partial-power conditions (which a wind turbine most commonly runs in), cp is considered as a
constant. In full-power conditions, cp is assumed to be piecewise linear [4]. Thus, we can evaluate the
electric power change as

ΔP(i, j) = cp
∣∣∣ΔP f ro(i, j)

∣∣∣ (12)

Further, based on Equations (10) and (11),

ΔP(i + k, j) = cp|
n−1∏

k

αk
(i+k+1)−(i+l)ΔP f ro(i, j)| (13)

If the electric power change ΔP(i,j) is due to the change of the pitch angle, rather than a change
of wind speed, we expect that the upstream turbine T(i,j) leaves some of its front wind power to its
downstream partner, the turbine agent T(i + k, j). Then,

ΔP(i, j) < 0⇒ ΔP(i + k, j) > 0 (14)

In the sections below, for simplicity, we assume all ΔP(i, j) to be positive.

• Category 2. Oblique power delivery

When the wind blows obliquely to the wind farm, we consider the main directions of 45◦, 135◦,
225◦, and 315◦ shown in Figure 4. The distance between the neighboring upstream and downstream
turbines along one of the aforementioned oblique directions is x = 7

√
2d. For a single column along

the wind directions of 45◦, 135◦, 225◦, and 315◦ (the same power ratios as the wind direction of 312◦;
case 3 in [23]), the normalized power ratios of the second turbine to the first turbine and of subsequent
turbines to their front turbines are

α(450±10,2−1,2−1) =
P f ro(2, 2)

P f ro(1, 1)
=

0.858
1.000

= 0.858 (15)

α(450±10,3−2,3−2) =
P f ro(3, 3)

P f ro(2, 2)
=

0.801
0.858

= 0.934 (16)

α(450±10,4−3,4−3) =
P f ro(4, 4)

P f ro(3, 3)
=

0.758
0.801

= 0.946 (17)

α(450±10,5−4,5−4) =
P f ro(5, 5)

P f ro(4, 4)
=

0.703
0.758

= 0.927 (18)
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α(450±10,6−5,6−5) =
P f ro(6, 6)

P f ro(5, 5)
=

0.689
0.703

= 0.980 (19)

α(450±10,7−6,7−6) =
P f ro(7, 7)

P f ro(6, 6)
=

0.668
0.689

= 0.969 (20)

α(450±10,8−7,8−7) =
P f ro(8, 8)

P f ro(7, 7)
=

0.659
0.668

= 0.987 (21)

The wind power of WT can be calculated as

P f ro(i + k, j + k) =
n−1∏

k

α(i+k+1)−(i+l),(i+k+1)−(i+l)P f ro(i, j) (22)

where k varies from 1 to m-i. When an upstream turbine delivers partial wind power, to its oblique
downstream partner, the delivery power is

ΔP f ro(i + k, j + k) =
n−1∏

k

α(i+k+1)−(i+l),(i+k+1)−(i+l)ΔP f ro(i, j) (23)

The electric power change relationship between wind turbines T(i, j) and T(i + k, j + k) is

ΔP(i + k, j + k) =
n−1∏

k

α(i+k+1)−(i+l),(i+k+1)−(i+l)ΔP(i, j) (24)

Note that the two delivery coefficients αN and αo above are theoretical parameters for ideal large
OWFs. They can be adjusted according to real wind conditions and wind farm layouts.

3.2. Conventional Fatigue Definition

The WT fatigue is a very complex technical issue. In the material area, in the case of cyclic loading
or loading and unloading, fatigue is the progressive damage. Here, we introduce two conventional
fatigue definitions.

• Definition 1. Power fatigue

In general, a turbine is fatigue-loaded and then generates electric power. The work in [36] counted
all the electric power from a WT’s installation and defined the power fatigue coefficient as

C f atigue =

t0∫
0

p(t)dt

PratedTli f etime
(25)

where t0 is the working duration from the wind turbine installation, Prated is the WT’s rated power, and
Tli f etime is the whole designed WT lifetime (e.g., 25 years).

• Definition 2. Equivalent fatigue loads

The turbulence intensity increases significantly in the wake regions of OWFs. According to [37–40],
the main fatigue factor is, as expected, the turbulence intensity.

Considering that the ratio of the standard deviations of turbulence in the axial velocity to the
wind speed at the hub is 0.15, without yaw errors. The equivalent loads Leq is

Leq = (
∑

i

Lm
i ni/Neq)

1/m
(26)
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where 1/m is the material S–N curve slope. Neq is the total number of rotations.
Analyzing the two fatigue definitions above reveals some difficulties. First definition 1 (power

fatigue) only counts electric power generation while neglecting the wind turbulence loads to the
different turbine parts, such as the rotor, the blades, the gearbox, and the tower. Second, definition 2
(equivalent fatigue loads) can calculate the turbulence in the form of load cycles, while the equivalent
cycle cannot be calculated with the turbine rotation period in real operation.

3.3. Improved Fatigue Definition

To balance the WT fatigue distribution in an OWF, an improved fatigue can be defined considering
both the electric power generation and the real wind turbulence intensity.

In real wind farm operations, the individual wind turbine always suffers basic mean wind loads
and cyclic wind turbulence loads, even when the turbine is at a standstill. However, the more electric
power a turbine generates, the more turbulence loads it will suffer alongside stronger mean wind force
on the turbine’s structure. Therefore, we consider the mean wind loads, the cyclic wind turbulence
loads, and the power generation loads to define an easily calculated fatigue coefficient.

In this study, we consider the rated power, generated power, wind turbulence, and service life of
a WT. Here, WT installation moment t = 0 and the present moment t = tp. Considering the factors
above, we define the improved fatigue coefficient as

C f at = fmean + ftur + fwork = Cmean

∫ tp

0 Imean(t)dt

Tser(1 + prep)
+ Ctur

∫ tp

0 Ie f f (t)dt

Tser(1 + prep)
+

∫ tp

0 p(t)dt

PratTser(1 + prep)
(27)

where C f at is the improved fatigue coefficient of a WT including three factors:

1. fmean is the fatigue caused by the mean cyclic wind flow, denoted as the mean wind fatigue.
This mean wind varies slowly. The cyclic mean wind flow is the averaged wind speed measured
by an anemometer installed on the nacelle. This mean wind flow acts on the wind turbine with a
large force but a low frequency and thus causes a lower fatigue than the wind turbulence imposed
by the wake disturbance.

Cmean is the mean wind flow coefficient determined by the OWF layout, the WT’s material structure,
and the surrounding wind flow conditions; Tser is the WT lifetime, and prep is the recovery coefficient
(0–1) after regular repair. In fact, the whole service life will be extended when some key components
are repaired. Imean(t) is the mean wind load intensity, which has the same dimension as the wind
power and can be calculated as

Imean(t) = βmeanv(t)3
i, jA (28)

where βmean is the mean wind load coefficient, determined by the local wind conditions and the specific
structure of the turbine; v(t)i, j is the average wind speed measured by turbine anemometer; and A is
the blade-sweeping area.

2. ftur is fatigue caused by wind turbulence, mainly on the blades, the nacelle, and the tower,
denoted as wind turbulence fatigue. Ctur is the wind turbulence coefficient depending on the
local climatic conditions, OWF layout, and WT material structure. To calculate, in Figure 4 of [41],
the measured turbulence intensities in the overlapped-wake sections can be used; Ie f f (t) is the
turbulence intensity. In [41], the ambient turbulence intensity Ia(t) and the wake turbulence
intensity contribution Iw(t) can be used to evaluate turbulence intensity Ie f f (t) as:

Ie f f (t) =
√

Ia(t)
2 + Iw(t)

2 (29)
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where, according to [41], Iw(t) is calculated as

Iw(t) =
1
S

√
1.2Ct(t) (30)

where S is the distance between two WTs, Ct(t) is the WT thrust coefficient.

3. fwork is the power generation fatigue. Here, p(t) is the transient power at time t. Prat is the
nominal power.

In order to make the technique applicable to different OWFs, an empirical compound ratio
between the mean wind fatigue, turbulence fatigue, and work fatigue is proposed as follows:

γ = fmea/ fdis/ fwork (31)

where γ is determined according to site climate conditions, the OWF layout, and the WT structure.
Equation (26) can be improved in two cases as:

C f at =

{
C f at(t0) + fmea + ftur + fwork i f vcut−in < v < vcut−o f f
C f at(t0) + fmea + ftur i f v < vcut−in or v > vcut−o f f

(32)

where C f at(t0) is the fatigue coefficient at time t0. fwork will be equal to zero when a wind turbine does
not generate power, corresponding to situations when the wind speed lies outside the effective wind
speed range (vcut−in, vcut−o f f ) or the turbine is braked for maintenance.

4. WFMC Control Topology

Based on the above, this improved fatigue coefficient can be used as the basic parameter to
evaluate the fatigue status of individual WTs in an OWF. The wind farm’s operational and maintenance
costs can be reduced if the lifetime of the wind turbines can be extended using an effective fatigue
control approach. Likewise, the frequency of maintenance using boats and helicopters can be
reduced. Considering the fatigue improvement, we construct a control topology for a WFMC based on
automata theory.

Based on the data from individual turbines and the measured data from the transformer station
in [32], the WFMC returns control signals to the WTs. In order to regulate the active power, the WFMC
implements the control functions including Absolute Production Limiter, Balance Control, Gradient
Limitation, Delta Control, and Reactive Power Control. Besides these typical functions, we propose a
fatigue-optimization-based control topology for a WFMC as shown in Figure 5.

This fatigue-based control topology consists of seven operational states that the WFMC can
possibly run in. State 1 is a conventional power dispatch state, which is the current work state of the
WFMC. The equation Pout(i, j) = Pre f (i, j) indicates that the WFMC dispatches the reference power to the
individual turbines according to the data of the individual WTs and the measured power data from the
transformer station. Therefore the output power of each wind turbine, denoted as Pout(i, j), is equal to
the reference power, denoted as Pre f (i, j).

State 2 is the fatigue calculation. The WFMC will run in state 2 when the guard (V < Vcut−in)∨ (V >
Vcut−out) is met. In state 2, the main work of the WFMC is to calculate the fatigue without counting
power fatigue, i.e., fwork = 0. Conversely, the WFMC will return to state 1 when the guard is enabled,
which means that the wind speed is in the range of the cut-in speed and the cut-out speed or that
the calculation interval (e.g., 30 minutes) is over. In State 2, the main work is to calculate the fatigue
without counting power fatigue, i.e., fwork = 0.
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Figure 5. Improved control topology of the wind farm main controller.

State 3 entails normal delta power calculation. The WFMC will operate in state 3 when the guard
(Vcut−in ≤ V ≤ Vcut−out) ∧ (θwind ∈ {θNormal}) is enabled, and the wind direction falls in the range of
the permitted angle tolerance around the main normal wind directions, e.g., 0◦, 90◦, 180◦, and 270◦.
In state 3, as equation ΔP(i−k, j) = f ( f i, fi−k, j, fi, j, ppos, pre f (i − k, j), pre f (i, j)) shows, the main work of
the WFMC is to calculate the delta power for each WT according to the average fatigue of the WTs in
the same column along a normal wind direction, the fatigue values of WTs to be paired, the possible
power output, and the reference power values of the turbines; the WFMC will then move directly into
state 4, the normal power re-dispatch, when the normal delta power calculation is finished in state 3.

State 4 is the normal power re-dispatch. In state 4, as equations P(i−k, j)re−dispatch = Pre f er(i−k, j) −
ΔP(i−k, j) and Pout(i, j)re−dispatch = Pre f er(i, j) + α

−k
N ΔP(i−k, j) show in Figure 5, the main function of the

WFMC is to re-dispatch the power for each wind turbine, according to the results from state 3, to
balance the turbulence load on the WTs in a wind farm. The WFMC will move directly into state 5,
fatigue calculation, when the power re-dispatch is finished in state 4.

State 5 involves fatigue calculation. In state 5, as the equation C f at(i, j) = fmea(i, j) + ftur(i, j) +
fwork(i, j) shows in Figure 5, the main work of the WFMC is to calculate the fatigue coefficient for each
wind turbine based on the mean wind fatigue fmea(i, j), the wind turbulence fatigue fwork(i, j), and the
work fatigue in every wind power dispatch interval. The WFMC will return directly into state 1, the
conventional power dispatch, when the guard (V < Vcut−in) ∨ (V > Vcut−out) ∨ (t ≥ tinterval) is enabled.

State 6 entails the oblique delta power calculations. The WFMC will operate in state 6 when the
guard (Vcut−in ≤ V ≤ Vcut−out) ∧ (θwind ∈

{
θOblique

}
) is enabled, which means that the wind speed is in

the range of the cut-in speed and the cut-out speed, and the wind direction falls in the range of the
permitted angle tolerance around the main oblique wind directions, e.g., 45◦, 135◦, 225◦, and 315◦.
In state 6, the main work of the WFMC is to determine the delta power for each WT along the oblique
directions; the WFMC will then move directly into state 7, the oblique power re-dispatch, when the
normal delta power calculation is finished in state 6.
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State 7 is the oblique power re-dispatch. In state 7, the WFMC re-dispatches the power for each
WT along the oblique directions, according to the results from state 6. The WFMC will move directly
into state 5, the fatigue calculation, when the oblique power re-dispatch is finished in state 7.

In addition, in states 3 and 6, ΔP is the delivery power determined in the WFMC. ΔP is empirically as

ΔP =

{
2(Pre f − Pkk), i f Pre f − 2(Pre f − Pkk) > 0
0.8Pre f , otherwise

(33)

where Pkk is the mean power value in the power delivery group No.kk.

5. Workflow of the Wind Farm Main Controller

We design the WFMC workflow in Figure 6 according to topology above.

jiPrefjiwindθ jivwind fatC i j

 
Figure 6. Workflow of the wind farm main controller.

5.1. Workflow of the WFMC

In the organization process of wind power delivery group, the WFMC organize all the turbines
in the normal or oblique directions into parallel groups. Then, the WFMC will judge whether the
SD of the WT fatigue distribution is larger than the minimum value, i.e., “sd > sdmin?” or not. If the
result is true, the WFMC moves into the power re-dispatch process; otherwise, the WFMC returns to
its initialization state.

Sequentially, the WFMC calculates the mean fatigue of each organized group, compares each
turbine fatigue coefficient with the group averaged value, cGroup, and establishes flags to represent
which turbine(s) need to cut their power output because of their over-loaded fatigue and which
turbine(s) can absorb more wind power because of their under-loaded fatigue. Based on the fatigue,
the power delivery turbine pairs are organized in such a way that the WT with the most fatigue pairs
with the WT with the least fatigue, the second most fatigued pairs with the second least fatigued
one, etc. According to the wind power mechanics with a wake effect in Section 3, the re-dispatched
power output of the OWF is theoretically less than the dispatched power because of the wind speed
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deficit in the wake area, while the wind turbine fatigue can be equalized gradually with this improved
power control approach. This is the primary novelty in the improved fatigue definition, WFMC control
topology, and workflow presented in this study.

5.2. Wind Direction Tolerance

In order to apply theoretical models into a natural wind farm, the permitted tolerance around the
main angles (i.e., the normal angles and oblique angles) should be considered.

Angle tolerances are usually defined as the angle varying range. For example, the minimum
permitted tolerance of the Horns Rev OWF (see Figure 7) for 315◦ wind can be calculated by triangle
geometry. Permitted angles (from φ1 to φ4) are calculated as

φ1 = tan−1(
CB
FB

) = tan−1(
0.5× 7d
7× 7D

) = 4.0856◦ (34)

φ2 = tan−1(
HI
IG

) = tan−1(
0.5× 7d
9× 7D

) = 3.1798◦ (35)

φ3 = tan−1(
CE
EA

) − 45◦ = tan−1(
0.5× 7D + 7× 7D

7× 7D
) − 45 = 1.9749◦ (36)

φ4 = 45◦ − tan−1(
DE
EA

) = 45◦ − tan−1(
0.5× 7D + 6× 7D

7× 7D
) = 2.1211◦ (37)

φ

φ

φ

φ

Figure 7. Angle tolerance in the case of a wind angle of 315◦ in the Horns Rev OWF, Denmark.

In the oblique wind angle cases, we consider the minimum angles from φ3 and φ4 as

Atol = ±min
{
φ3,φ4

}
= ±1.9749◦ (38)
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Based on these calculations above, the tolerances of the wind direction angles of 0◦, 45◦, 90◦, 135◦,
180◦, 225◦, 270◦, and 315◦ are calculated as

Atol =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
± 4.0856◦, θwind = 0◦, 180◦

± 1.9749◦, θwind = 45◦, 135◦, 225◦
± 3.1798◦, θwind = 90◦, 270◦

, 315◦ (39)

where C f at is the average of all turbine fatigue values, and stmin is the minimum value of the calculated
SD of C f at(i, j), which is set with a feasible constant, such as 0.0001, in this work.

6. Numerical Simulations

To validate this fatigue-based power control approach, we use the database of the Technical
University of Denmark [38]. The resource data can be used for wind turbine design, wind farm sitting
analysis, and operational optimization.

In this study, we use the Horns Rev OWF as an engineering example to test the wind farm model
shown in Figure 1. The Horns Rev OWF is one of the largest OWFs in the world [38].

The natural wind condition is that the wind speed is 2–24 m/s, and the mean wind speed is 9.6 m/s
at a 62 m hub height. The wind turbulence intensity falls in the range of 2% to 20%, and the mean
value is 4.5206%. The wind direction falls in the range of 0◦ to 100◦, and 270◦ to 360◦.

We executed simulation code programmed in MATLAB 2019a [40]. Then, we imported the wind
data and the basic power control parameters of the Horns Rev OWF into the simulation program
and calculated the improved fatigue coefficient with this novel power control approach. Finally, the
simulation results illustrate the farm fatigue distribution in both the conventional control approach
and the improved control approach. The simulation parameters are listed as:

(a) The mean wind speed value is 9.6 m/s with a turbulence intensity of 4.5206% as in [38].
(b) The empirical compound ratio γ = fmea/ fdis/ fwork = 0.3/0.6/1.0.
(c) The data on wind directions was obtained from [38]. The main wind directions were 0◦, 45◦, 90◦,

and 315◦ with the tolerance values estimated in Equation (28).
(d) Simulation stages: the conventional farm control approach was assumed for 8 years (from Dec.,

2002 to Nov., 2010) and the improved control approach was assumed for another 8 years (from
Dec., 2010 to Nov., 2018).

(e) In the Horns Rev wind farm, considering the actual wind farm conditions where the wake effect
tends to saturate after three turbines, in a power delivery group, we assume that an upstream
turbine is able to deliver its power to one of three downstream turbines.

(f) WFMC power dispatching interval is 30 mins.
(g) The optimal target is to minimize the fatigue SD in the whole OWF below a threshold of 0.0001.

During the initial stage of the simulation, a zero fatigue distribution is configured according to the
wind farm’s operation starting in December, 2002. Figure 8 shows WT fatigue distribution using the
conventional control method [32] over the duration of 70,080 hours. Here, the turbine fatigue values
are clearly unequal and irregularly distributed over the whole wind farm area.
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Figure 8. Conventional farm fatigue distribution (2002–2010, Horns Rev OWF, Denmark).

For the duration of 2002-2010, as shown in Figure 8, the mean fatigue of all the turbines in this
wind farm is 0.25134, and the SD of the turbine fatigue distribution is 0.0027171.

For the duration of 2010–2018, we calculate two cases. The first case is a simulation using the
conventional control, where the turbine fatigue accumulation persists under the conventional control
approach. The simulation result is shown in Figure 9. By the end of the second stage, the mean turbine
fatigue in this wind farm increases up to 0.48001, and the fatigue SD enhances up to 0.0057665.

Figure 9. Farm fatigue distribution based on the Conventional Control (2010–2018, Horns Rev OWF).

The second case features a simulation with an improved control approach, where the WT fatigue
is accumulated using the improved control approach. The optimization result shows that the mean
WT fatigue of the whole OWF increases to 0.47129, but the SD of farm fatigue distribution drops to
0.00012209, which means that the WT fatigue distribution is flatter than that using the conventional
control in Figure 10, which can save maintenance costs.
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Figure 10. WT fatigue distribution based on the improved control (2010–2018, Horns Rev OWF).

7. Discussion

Besides simulations with different control approaches, this study compares the performance of the
conventional control WFMC approach and the improved WFMC control approach considering three
important parameters: the mean turbine fatigue, the SD of turbine fatigue, and the possible power loss.
Figure 11 illustrates different comparisons, where the solid lines denote conventional control and the
circle-marked dashed lines denote improved control, during the two simulation stages (2002–2010 and
2010–2018).

 
Figure 11. Performance of the conventional and improved control in the Horns Rev OWF.

As Figure 11 shows, the two mean fatigue curves are nearly the same in both the conventional
and improved control approaches. For example, the mean turbine fatigue by 2018 is 0.48001 using the
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conventional control and 0.47129 under the improved control (i.e., approximately equal). The second
parameter, the SD of wind turbine fatigue, is very different for the two control approaches. The SD
of wind turbine fatigue keeps increasing up to 0.0057665 by 2018 using the conventional control but
decreases gradually to 0.00012209 by 2018 using the improved control. The two curves separate in
the year 2010, when the improvement of the WFMC control was made. From this comparison, it is
obvious that the flatter this turbine fatigue distribution is, the fewer visits are required by boats or
helicopters, leading to a lower maintenance cost.

Wind farm power loss is the factor that has the greatest potential to obstruct such a novel approach
during real operations. The power loss of the improved control approach is plotted in the bottom
section of Figure 11. During the first duration, the electric power the whole OWF is calculated. In
Figure 11, the OWF power loss maintains a mean value of 5.7297% because of the natural wind
turbulence from 2002 to 2018. While using the improved power control approach with the same
wind data, the power loss in the duration of improved fatigue balance is less than 8.849% in 2010
and reduces to 3.217% by 2018. To some extent, compared with the costs incurred by frequent visits
and maintenance, this power generation loss is relatively less, especially in a power-limited state of a
WFMC. This assumption should be prove to be true with the future long running duration of the wind
farm. In addition, the safety of the maintenance personnel can be further enhanced with a reduced
maintenance frequency.

8. Conclusions

The unequal and unbalanced fatigue distribution caused by the wind speed reduction and
significant increase in the turbulence level in a far wake is one of causes of the high cost of wind
turbines. To reduce this cost, this study presents an improved power control approach to optimize the
WT fatigue distribution by balancing the turbulence loads to individual WTs.

This novel power control approach is mainly centered on theoretical research for improving
the turbine fatigue definitions, algorithms, WFMC control topologies, and workflows of wind farm
main controllers. Sequentially we analyze the conventional power control in a WFMC, as well as the
conventional wind turbine fatigue definitions, and then improve the wind turbine fatigue considering
together the average wind speed, the turbulence in the turbine wake, and electric power generation.

This study designs a corresponding WFMC control topology and the wind power re-dispatch
workflow of a WFMC. The wind direction tolerance values around the main wind angles are calculated
depending on the OWF layout geometry, and, finally, this optimization result minimizes the SD of
WT fatigue.

The novel power control approach is validated with a simulation of fatigue distribution
optimization in one of largest OWFs—the Horns Rev Wind farm-using the wind data stored in
the wind characteristics database supported by the Technical University of Denmark. The quantitative
fatigue distributions are simulated based on the improved power dispatch approach and illustrated in
3D plots. The simulation results prove that the improved power dispatch approach can reduce the
mean turbine fatigue of an OWF, balance the fatigue loads on WTs, further extend the WT lifetime and
reduce the potential maintenance costs.

Author Contributions: Conceptualization, methodology, and writing—review and editing: R.Z., D.D., C.L., and
M.L.; Supervision: S.L., H.Z., and W.S.; Funding acquisition: H.Z.; and Software, validation, formal analysis,
investigation, data curation, writing—original draft preparation, visualization, and project administration: R.Z.
All authors have read and agreed to the published version of the manuscript.

Acknowledgments: This work was supported in part by the Major Program of the National Natural Science
Foundation of China under Grant No.71871160, in part by the National Key Research and Development Program of
China under Grant 2017YFE0100900, and in part by the 2018 Industrial Internet Innovation and the Development
Project from MIIT (Test project of Yongyou Jingzhi industrial Internet platform).

Conflicts of Interest: The authors declare no conflicts of interest.

71



Energies 2020, 13, 1549

Appendix A

 
Figure A1. Image taken in February 2018 showing the obvious wake effects marked by humid air
condensation in the Horns Rev OWF, Denmark.
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Abstract: Tourism development in ecologically vulnerable areas like the lake Baikal region in Eastern
Siberia is a challenging problem. To this end, the dynamical models of AC/DC hybrid isolated
power system consisting of four power grids with renewable generation units and energy storage
systems are proposed using the advanced methods based on deep reinforcement learning and integral
equations. First, the wind and solar irradiance potential of several sites on the lake Baikal’s banks is
analyzed as well as the electric load as a function of the climatic conditions. The optimal selection of
the energy storage system components is supported in online mode. The approach is justified using
the retrospective meteorological datasets. Such a formulation will allow us to develop a number
of valuable recommendations related to the optimal control of several autonomous AC/DC hybrid
power systems with different structures, equipment composition and kind of AC or DC current.
Developed approach provides the valuable information at different stages of AC/DC hybrid power
systems projects development with stand-alone hybrid solar-wind power generation systems.

Keywords: hybrid AC/DC power system; stochastic optimization; renewable energy source;
forecasting; machine learning; Volterra models

1. Introduction

Over the past quarter century, a large number of interdisciplinary studies have been focused
on the renewable sources (RES) and energy storage systems (ESS) integration in both centralized
and autonomous hybrid AC/DC electric power systems. The installed capacity of renewable energy
sources, including sunlight, wind, rain, tides, waves, and geothermal heat, reached 2011.33 GW
according to statistics from the International Renewable Energy Agency. Moreover, over the past
ten years, growth has amounted to more than 50% (1015 GW) of installed capacity [1]. The share
of renewable energy sources in the global energy balance will grow from 30% to 40% by 2030 [2].
One of the main factors stimulating such a scenario for the world energy systems development is
the environment protection and concern about the long-term rise of the average temperature of the
Earth’s biosphere [3]. The human activity, especially in the energy sector, causes an increase in the
concentration of CO2 in the atmosphere. These challenges are prompting the global community to
draw a roadmap for CO2 reduction that includes international environmental agreements, investment
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programs, and regulations that stimulate the global development of clean energy. The Kyoto Protocol
and 20 years later the Paris Agreement are the main catalysts for the development of renewable energy
in the world [4,5]. Moreover, many countries are developing their own programs that support the
sustainable development and RES integration: green certificates, free connection to the energy system,
compensation for technological connection, guaranteed price and purchase of produced energy, tax
benefits and other preferences [6–8].

Deployment of hybrid systems with isolated alternating current and direct current, including
microgrids (MG), can create significant advantages in the power industry, as it avoids the various
costs of power supply using clean energy technologies. These grids solve specific problems such as
cost reduction, CO2 emission reduction, reliability, and energy sources diversification. As electricity
becomes more locally generated through distributed energy resources (DERs), such network structures
offer a way to improve the reliability, resiliency, and security of the local grid. By aggregating various
DERs, isolated AC/DC hybrid systems and MGs are considered as a powerful complement to the
centralized power transmission and distribution power systems [9].

Moreover, isolated hybrid networks are an ideal energy tool to integrate RES into the local
community and allow consumer participation in an energy enterprise. Villages, towns and cities
can meet their energy needs locally based on the concept of the MG community or multi-MG.
Increasingly, community of MGs and more powerful isolated AC/DC hybrid systems are being
considered as an option even in the areas with a larger grid, mainly as a way to increase the local
energy independence, resilience and flexibility. Such systems make a community’s electricity more
reliable and environmentally friendly. Others systems serve critical facilities like fire, police and water
treatment plants. The third ones are built for the remote area (outposts, isolated villages, summer
camps) that otherwise could face the lack of access to reliable electricity supply.

Russia, as the world’s largest country located at middle and high latitudes, faces various weather
and climate anomalies related to global climate change. It is to be noted that the environmental
warming in Siberia has surpassed estimates of warming elsewhere [10]. Eastern Siberia has a sharp
continental climate: the average temperatures of the coldest and warmest months varying by as much
as 65 ◦C which makes its unique nature especially sensitive to recent climate changes. Many remote
and isolated power systems in Eastern Siberia from 100 kW (microgrids) to 20–30 megawatts (AC/DC
power grids), are currently powered by diesel generation, and some are powered by wind and solar.
Although diesel fuel is energy-intensive and provides electricity on demand, it creates operational
and logistical problems. Transporting diesel is complex, expensive, and often requires large storage
volumes [11]. For example, many remote communities in Yakutia depend on several wholesale fuel
supplies each year, which are subject to disruptions in the supply chain and fuel price volatility. Remote
resorts in the Baikal region, which the spectrum coverage from a few kilowatts to megawatts, have
electric power needs comparable to remote villages.

Lake Baikal is the world’s largest freshwater lake. The lake and its environs have been declared a
UNESCO World Heritage Site due to their unique ecosystems. The Baikal region is developing an
eco-resort sector and some of them are remote. It should be noted that eco-resorts are interested in
providing the amenities expected by tourists and, like isolated communities, supporting as many green
areas as possible to reduce or replace diesel power generation.

The nature preserving ecotourism development is a big challenge which needs the smart
coordination of tourist businesses, governmental control and utilities companies. Solar, wind and
geothermal are all clean, RES, with a solid installed capacity and a great potential of electricity
generation. Three solar power plants with total capacity 50 MW have been recently launched in
Buryatia region of the lake. To this end the important task for Lake Baikal region is interconnection
planning of community of MGs or isolated AC/DC power systems with RES and ESSs. Such grids
systems united to the single community serves the recreation areas which can be located at a great
distance from each other.
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1.1. Related Works

Hybrid AC/DC power systems can optimally accommodate the components and resources of
future smart grids, including renewable DER, electric cars, and ESS. Many studies have examined the
technical and economic advantages of combining DC and AC power in distribution systems. In [12–15],
the using DC power in a distribution network improved the throughput and voltage profile of the
feeders of the distribution system. To get benefits from both AC and DC, an intelligent hybrid AC/DC
power system was proposed in [13]. This hybrid system has reduced the cost of battery equipment
used with renewable DERs. In [15], using DC power in a distribution system led to higher throughput
and lower power losses than in pure AC.

Some recent works [16,17] considered the optimal planning of hybrid AC/ DC power systems in
general. For example, an algorithm proposed in [16] for planning the expansion of hybrid AC/DC
transmission systems can select the optimal combination of AC/DC transmission lines from a predefined
set of contenders. In this case the model has two main drawbacks: (1) the number of scenarios for
the solution is predetermined; (2) power losses associated with AC/DC converters and DC lines are
not taken into account in the calculations. These problems try to overcome in [18], where the authors
proposed a stochastic planning model for hybrid AC/DC distribution systems, which is able to find the
optimal hybrid AC/DC configuration of buses and lines in the distribution system. The objective of the
planning model is to minimize the costs of installing and operating a distribution system.

The operation of various types of isolated compact power systems with small capacity is considered
in recent studies (from 10 kW to 5 MW): AC, DC, and hybrid AC/DC microgrids. For the grid-connected
operation, an isolated hybrid AC/DC microgrid can be connected with a distribution power network
and other MGs to form a community of MGs [19]. Prior work on the community of MGs mainly
focuses on energy cooperation. In this way, each MG coordinates its local resources [20–24] or the
distribution power network [25,26], as well as other MGs [27–31].

Recently, for managing local resources of an MG, there were stochastic optimization models
were proposed based on the deep reinforcement learning [21–24]. Such machine learning models
have demonstrated effectiveness and certain advantages such as a reduction in the computational
complexity of a multi-objective problem that, solving non-convex optimization problems. In [21,22]
have introduced a deep Q-network (DQN) architectures for addressing the problem of operating
an isolated MGs in a stochastic DER environment, which included PV systems, batteries, hydrogen
storages, diesel generators. These approaches were empirically illustrated in the case of isolated AC/DC
MGs located in Belgium and Eastern Siberia (Russia). In [23], a reinforcement-learning-based online
optimal smooth control method is proposed for ESS in hybrid AC/DC MGs involving PV systems and
diesel generators. The authors used neural networks to estimate the nonlinear dynamics of storage
systems and to learn the optimal control input to lead a smooth charging and discharging control
for ESS in MGs with unknown system parameters. In [24], the authors used a DQN algorithm for
the MGs energy management taking into account the stochastic nature of input data. It was shown
that employed DQN algorithm is able to select thecost-effective schedules using ESS’ charging and
discharging control. The performance of the DQN approach has been evaluated using real power-grid
data from California Independent System Operator.

For coordination between an MG and the external distribution network, [25] proposed a hierarchical
optimization approach to solve the problems of interaction between the distribution electric network and
MGs. In [26], a two-level model of MG is presented for optimization problem. Using transaction-based
optimization between MG and the distribution network, this model can reduce losses and improve
voltage quality. In terms of the coordinative operation of the community of MGs, [27] introduced an
idea of sharing resources among a community of MGs for effective reduction of amount of electricity
purchased from the utility network. In [28], the reference presented a new approach for the coordinative
operation of the community, which is obtained by a stochastic bi-level model. In [29] authors considered
the coordinated information and strategies among the community to reduce MG operational costs.
However, this work for community MGs is mainly focused on energy cooperation, while standby or
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emergency cooperation is not considered to overcome the uncertain DER output power. To solve these
problems, cooperative energy and reserve scheduling model based on game theory was proposed
in [30], which can contribute to the optimal operation of community of MGs. A community of the
concept of operator MG was proposed in [31]. In this case, the actions of the benevolent planner in the
process of redistributing income and expenses among members do not allow the decision reached by
each member of the community to be worse than the decision that he would have achieved individually.

Notwithstanding many works, the problem of determining optimal technical characteristics for
AC/DC network within a community of MGs or more powerful hybrid power grids, especially located
far apart, remains an open problem. This is the main thread motivating the contribution of this paper.

1.2. Paper Contribution

For addressing these issues, the article proposes a new algorithm for operational and emergency
control of a hybrid AC/DC system combining isolated grids in the community, Figure 1.

Figure 1. A Hybrid AC/DC System.

The main feature of the studied energy systems is that the combined grids are located at a distance
from each other, and the network connecting them is created on the basis of a minimum investment. In
this regard, for optimal power exchange between subsystems, it is necessary to take into account the
network equations.

The network is being formed in the following stages:

1. Isolated work. At this stage the grids are isolated. Each subsystem includes the following elements:
load; RES + storage and diesel generation. The control objective for every subsystem is to
minimize the power supply cost by means of optimal storage management, which corresponds to
minimizing the operating time of the diesel generator. The power supply cost, as well as CO2

emissions are the highest for the isolated work.
2. Community forming. Integrating subsystems into a single community is possible only if there is

a technical and economic feasibility. For example, the proximity of the transmission network,
the reduction in the cost of electricity compared to diesel generation, etc. In this case, after MGs
smart connection, the cost of power supply, as well as CO2 emissions will decrease.

Traditionally, isolated grids are combined by means of AC distribution network with radial
structure. The inability to create loops leads to low control flexibility. For example, there is no possibility
of power exchange between subsystems over the shortest distance with minimum transmission costs.

Combining subsystems using both AC and DC currents offers the following significant advantages.
The DC network loops, together with the inverters coordination, significantly expand the control
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boundaries. Thus, in the future, with the development of converting and control technologies, AC/DC
combining may turn out to be more profitable.

The following tasks of managing a hybrid AC/DC power system can be distinguished:

1. AC/DC system planning. This task is relatively new and poorly studied. Given the high degree of
uncertainty due to the complexity of the structure, the presence of RES and storages, as well as a
large number of owners, the selection of specific criteria for optimal planning is quite complicated.
The most successful, in our opinion, attempt was made in [18].

2. AC/DC operational and emergency control-optimal control of normal and emergency conditions
for the given network structure.

Further in this paper we consider only the tasks of optimal operational and emergency control.
The paper is organized as follows. Section 2 describes the proposed two-level operational and

emergency control algorithms. This section also provides a brief description of the steady state model
for the hybrid AC/DC network. Section 3 focuses on the case study. This section also provides
the results of operational control of the converter settings during one winter day. Section 4 is for
conclusions and further work.

2. Methodology

This section provides a methodological description of the proposed hybrid network management
approaches. The two-level operational and emergency control algorithms are described in Sections 2.1
and 2.2 respectively. Section 2.3 gives a brief description of the steady state model for the hybrid
AC/DC network.

2.1. Hybrid Network Operational Control Algorithm

Based on practical experience, operational management must strike a balance between efficiency
and ease of technical implementation. The inclusion of an excess amount of information in the control
cycle can lead to a significant complication of the algorithm and / or its technical implementation in
order to increase its effectiveness. At the same time, it is necessary that the volume of control actions
is minimal, and their implementation is understandable and excludes the presence of significant
uncertainty. Based on the foregoing, in this paper, we propose a two-level algorithm for optimal
operational control of a hybrid network, which includes local and centralized levels, see Figure 2.

Figure 2. Two-level operational management system.

It is assumed that the future community is connected to an external centralized grid, and isolated
AC/DC power systems contain their own intelligent energy management systems (EMSs) for optimal
energy management. The stochastic behavior of both load demands and renewable energy is considered
in the proposed centralized EMS model. This input of the model presents optimal management policies
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for each isolated hybrid AC/DC power system as a potential participant of the future community, which
was initially generated based on using an intelligent DQN-based EMS. As a consequence, each entity of
such energy network community can benefit from joining the community for to the following causes:

• the more efficient allocation of resources, allowing energy trading at more favorable prices;
• the provision of aggregated reserve,
• decrease in peak power cost.

2.1.1. Local Level

At the local level, the problem of stochastic optimization of storage system control is being solved in
order to minimize operating costs of an isolated hybrid AC/DC network. The sub-optimization problem
is formulated as a partially observable Markov decision process (MDP) in order to determine the optimal
(maximum) operational revenues for each individual scenario of the network configuration. Optimally
operating a hybrid AC/DC grid is considered as an agent that interacts with its environment [30].
At each time step, the agent observes a state variable st, takes an action at ∈ A and moves into
a state st+1P̃(st, at). A reward signal rt = ρ(st, at, st+1) is associated to the transition (st, at, st+1),
where ρ : S×A× S→ R is the reward function. We then define state-action value function Qt(st, at)

associated to an optimal policy π∗ is used to characterize the quality of taking action at at state st and
then acting optimally and is defined as:

Qt(st, at) = r(st, at) + γmin
at+1

Qt+1(st+1, at+1), (1)

where r(st, at) ∈ R-revenues function (i.e., reward function), which define each transition generates an
operational revenue rt for each individual scenario of the network configuration.

Following [21], the deep neural network is employed to approximate Qt(st, at). For so-called
Q-network the notation Q

(
st, a′t; Θt

)
is used. Deep neural networks offer generalization properties that

are adapted to high-dimensional sensory inputs such as time series. This algorithm combines the
Q-learning algorithm using deep neural networks to represent the optimal Q-function called DQN [31].
The neural network parameters Θt can be updated using stochastic gradient descent by sampling
batches of transitions a quadruple

(
st, a′t, ct, st+1

)
and the parameters Θt are updated according to:

Θt+1 = Θt + α
(
YQ −Q

(
st, a′t; Θ

))
∇ΘtQ

(
st, a′t; Θ

)
, (2)

where α is a scalar step size called the learning rate.
In general, a hybrid AC/DC power grid is off-grid and the goal is to maximize operational

revenues. We propose to employ the concept of a virtual power plant (VPP), which is based on the
suggestion of idea to aggregate the capacities of many DER (i.e., generation, storage or demand)
hybrid AC / DC networks for creating a single operating profile and managing uncertainty. VPP can
coordinate all DERs, as in a single agent, to integrate them into the network without jeopardizing the
stability and reliability of the network, adding many other additional advantages and opportunities
for consumers, prosumers and grid operator [32]. This makes VPP EMS a good candidate to justify our
DQN-agent-based approach (Figure 3).

The DQN-based agent of VPP EMS only has access to the current aggregating non-flexible
consumption and non-steerable (i.e., renewable, PV and) generation, as well as renewable generation
24 h, 48 h ahead, forecasts for the hybrid AC/DC power grid. It has also access to the state of charge
of the different storages and the aggregating capacity of steerable generators (diesel units). As a
result, it must decide how to optimally use the storage systems and steerable generators. As shown in
Figure 3, VPP EMS can produce control actions only for virtual storage and steerable generator while
aggregating capacities of non-steerable generation and loads are only inputs of VPP EMS.
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Figure 3. A general scheme of the hybrid AC/DC power grid featuring distributed energy resources
(DERs) associated with possible inclusions options batteries, hydrogen storages and diesel unit devices.

We consider various types of storage devices in order to be able to respond to both short-term
and long-term fluctuations in power generation using renewable energy. The gensets, i.e., the diesel
steerable generation, compensates to establish the equilibrium. Depending on the configuration
of hybrid power grid, an excess of non-steerable generation and no more room for storage, the
non-steerable generation is lost or can storage in hydrogen/fuel cells.

The reward function of the system corresponds to the instantaneous operational revenues rt at time
t ∈ T. We used 3 quantities that are prerequisites to the definition of rt the reward function: electricity
generation Φt[Wh] ∈ R

+, net electricity demand dt[Wh] ∈ R and power balance, δt[Wh] ∈ R within
the power isolated AC/DC grid: δt = −aB

t − aH2
t − aDG

t − dt (Figure 3).
From the series of rewards τt, we get operational revenues over year y, defined as follows:

My =
∑

t∈τy

rt where τy is the set of time steps belonging to year y. Therefore, the optimal operation

police of the hybrid AC/DC power grid optimization is determined by the maximization of My [33].

2.1.2. Centralized Level

The centralized level algorithm controls the settings of the inverters Pinv 1, Pinv 2, . . . Pinv N in
order to minimize active power flow P to the external network (min P). As limitations, in this work, we
took into account the maximum values of the inverter capacities, as well as the need for the existence
of an AC/DC power flow:

|Pinv i| < Pinv MAXi,

0 = [FAC, FDC],

where Pinv MAXi is maximum capacity of the i-th inverter; |Pinv i| is the absolute value of the i-th inverter
setting; FAC-AC mismatch equations; FDC-DC mismatch equations. See Section 2.3 for details. As
input data, the optimization algorithm receives information about the network topology, as well as
the current generation/consumption level at AC and DC nodes. The input data is needed for state
estimation and AC/DC power flow solving. The proposed algorithm provides optimal redistribution of
active power between subsystems while minimizing network losses. At every control cycle, subsystems
with power excess cover the needs of subsystems with deficiency. In case of availability, the total active
power excess is transferred to the external network with minimum losses. The total active power
deficiency is covered from the external network with minimum losses.

81



Energies 2020, 13, 1226

The advantage of the proposed algorithm is the relative ease of implementation, which is provided
by two levels structure. It is also necessary to note the possibility of taking into account the network
equations. As a rule, when analyzing the aggregation of MGs, the electrical network is either not taken
into account at all, or is taken into account in a simplified form. However, due to the minimization
of capital investments, the network infrastructure may turn out to be the weakest link restricting the
power exchange between the subsystems. In this case, the neglection of network equations can lead to
unacceptable operating modes.

2.1.3. The Relationship between Local and Centralized Levels

The storage systems’ charge-discharge process can be described using the Volterra integral
models [34]. The storage system optimization should be clearly distinguished from the storage system
modeling. The latter can be attacked using generalization of the recently proposed Volterra balance
model [35].

Let us provide the brief introduction to the Volterra model of storage system and validate the
MDP model using the approach based on the Volterra equations. The Volterra models describe the
systems state evolution. The conventional ampere-hour integral model (direct problem)

SOC(t) = SOC(0) +

t∫
0

η(·)i(τ)dτ

in [34] is considered as an inverse problem with respect to the instantaneous storage current i(τ) which
is assumed positive for charge and negative for discharge. Here η(·) is the storage efficiency which can
be function of SOC in turn. SOC can be expressed in % and in ampere-hours (or kWh). The Volterra
integral equation is a useful tool for storage modeling

t∫
0

K(t, τ)x(τ)dτ = f (t),

where source function f (t) and kernel K(t, τ) are known and x(t) is the desired function.
For a community of MGs with storage systems it is useful to employ the following system of Volterra

integral equations with jump discontinuous kernels (with constrains) combining mathematically in
one place Local and Centralized levels⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∫
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
K1,1(t, τ) . . . K1,m(t, τ)
. . . . . . . . .

Km,1(t, τ) . . . Km,m(t, τ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1(τ)

. . .
xm(τ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠dτ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(t)
. . .

fm(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,
Ki, j(t, τ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K1

i, j(t, τ), t, τ ∈ m1

. . .
Kn

i, j(t, τ), t, τ ∈ mn

fi(t) = fi RES(t) + fi AC\DC(t) − fi LOAD(t),

vi(t) =
t∫

0
xi(τ)dτ, max

t∈[0,T]
vi(t) ≤ vi max, i = 1, 2, . . . , m

Ei min(t) ≤
t∫

0
vi(τ)dτ ≤ Ei max(t),

0 < α1(t) < · · · < αn−1(t) < t.

(3)

Here:
mj = {t, τ

∣∣∣α j−1(t) < τ < α j(t)
}
;α0(t) = 0,αn(t) = t, j = 1, 2, . . . , m,
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where m is number of grids; functions α j(t) show the proportions in which units in storage system
are used in each grid. For example, if grid has three batteries used in equal proportions, then
α0(t) = 0,α1(t) = t/3, α2(t) = 2t/3,α3(t) = t; n is number of units in storage system for i-th grid;
the diagonal elements of the matrix K[m×m] shows efficiency of storage system of each grid, the
remaining elements of the matrix show at the Local Level the coefficients of power flow from storage
systems of other grids; fi RES (t) is the generation of RES; fi LOAD(t) is predicted electric load of the
community, fi AC\DC is AC/DC power flow at the Centralized Level; vi max is maximum speed of the
charge for i-th storage; E i min(t), E i max(t) are constraints on the storage levels. The alternating power
function (APF) based on xi(τ) is possible to find for each storage using proposed model.

Such models can be employed to simulate the degradation processes in storage systems of MGs
using retrospective time series of generation and load for specific location. Numerical results of
proposed integral model were derived using the collocation numerical method proposed in [36,37] for
determination APF and SoC will be shown on real datasets below.

2.2. Hybrid Network Emergency Control Algorithm

Conventional approaches to emergency control strategies can be divided into local and centralized.
Local control is carried out by simple devices with high speed algorithms. The decentralized approach
provides a high level of reliability. For instance, in the case of a slack converter loss its functions can
transfer to another droop control converter. But in some cases local control can be inefficient, because
the lack of system information. Centralized control is required for the effective management of complex
systems. In this case, to increase a complexity of control algorithm the collection of pre-emergency
parameters from EMS is required.

In this paper, we propose to use the above-described operational control algorithm as a key element
for implementing emergency control in a hybrid AC/DC system. Using the same optimization procedure,
the proposed centralized emergency control layer provides optimal transition to a post-emergency
state. The control actions must be calculated in advance. Figure 4 shows the calculation cycle of the
proposed centralized emergency control for hybrid networks.

Figure 4. Hybrid network emergency control calculation cycle.

Control actions database should be produced on every cycle. A relatively small number of elements
in the community provides a relatively small number of disturbances, which must be considered. In
case of emergency the control actions will be instantly retrieved from the database.
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2.3. Power Flow Equations of Hybrid Systems

The proposed algorithms need a steady-state model for power flow calculation for the centralized
level. Usually, two types of AC/DC solvers are considered: the unified [38] when AC and DC equations
solve simultaneously and the sequential [39], when AC and DC equations solve separately. In some
cases, the sequential approach may lead to divergence [40], or a worse convergence [41]. In this regard,
the unified method was implemented in our studies.

The rest of this section provides a brief description of the steady state equations of hybrid systems.
The considered VSC model, shown in Figure 5, includes coupling transformer, reactor and high
harmonics filter.

g
PCONV,i
QCONV,iPINJAC,i

QINJAC,i

PINJDC,iPL,i

ICONV,i

jBF,i

Vg×exp(j g)

PGLAC,i
QGLAC,i PGLDC,i

ITRANS,i

Vf×exp(j f)

ZTRANS,i

ZREACTOR,if

PCC

UCONV,i

PDC,i

UbaseAC
UbaseDC

IF,i

Figure 5. Steady state VSC station model.

2.3.1. AC Side Equations

The AC side is represented by the following set of equations:

0 = PGLAC,i − PINJAC,i − PCONV,i,

0 = QGLAC,i −QINJAC,i −QCONV,i,

where PGLAC,i and QGLAC,i–consumption/generation of active and reactive powers in AC network;
PCONV,i is defined as follows:
PCONV,i = 0 for the buses without or with disabled converter;
PCONV,i = f (VDCi) for the slack converters or converters with the droop control;
PCONV,i = const for the converters with constant active power consumption.
QCONV,i is defined as follows:
QCONV,i = const for PQ converter nodes;
QCONV,i = f

(
Vg

)
for PV converter nodes.

The injected active PINJAC,i and reactive QINJAC,i AC powers are calculated using the following
classical equations:

PINJAC,i = Vi

M∑
m=1

Vm(Gimcoscosθim + Bimsinsinθim),

QINJAC,i = Vi

M∑
m=1

Vm(Gimsinsinθim − Bimcoscosθim).

2.3.2. DC Side Equations

The DC side is represented by the following set of equations:

0 = PINJDC,i − PDC,i − PGLDC,i, (4)
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where PGLDC,i is consumption/generation of active power in DC network; PDC,i is determined by
the formula:

PDC,i = PCONV,i + ΔPL,i,

where ΔPL,iPLi–total loss of the i-th converter, determined according to the following equation:

ΔPL,i = ai + bi ×
∣∣∣ICONV,i

∣∣∣+ (Crec,i + Cinc,i)×
∣∣∣ICONV,i

∣∣∣2 +RTRANS,i ×
∣∣∣ITRANS,i

∣∣∣2 +RREACTOR,i ×
∣∣∣ICONV,i

∣∣∣2.

The transformer current ITRANS,i is obtained by:

ITRANS,i =

(
PCONV,i + QCONV,i

Vi × ejθi

)
.

The reactor (converter) current ICONV,i is obtained by:

ICONV,i = ITRANS,i − jBF,i ×V f ,i,

where V f ,i is obtained by:

V f ,i = −ZTRANS,i × kTRANS,i × ITRANS,i + Ug,i.

In Equation (4) PINJDC,i is the injected DC power of the non-slack DC buses into the DC network, it is
calculated as follows:

PINJDC,i = VDC,i

N∑
n=1

VDC,iGDCin,

where GDCin are the elements of the DC system admittance matrix.

3. Case Study and Performance Assessment

3.1. Data Sets

Goryachinsk village located on the coast of Lake Baikal was selected for case study. The
retrospective time series were taken from open sources. Namely, there are 11 years of meteorological
observations for the selected location. Figure 6 shows the change in solar radiation over the past 12
years. The solar radiation has high values in the summer and reaches 180–195 kW·h/m2 per month.
Wind speed at a height of 10 m in the considered location has low values not exceeding 4 m/s. Figure 7
shows the average wind speed over the past 11 years.

Figure 6. Solar radiation over the past 12 years.
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Figure 7. Wind speed records for the selected location for 11 years.

The retrospective datasets of the solar radiation and wind speed can be used to model the
operational parameters of solar panels and wind generators. In addition, these arrays of information
can be used for short-term forecasting and building an optimal energy system management strategy.
Proposed approach has been validated on real annual climatological and load datasets from Goryachinsk
resort village, Lake Baikal region. The historical datasets consist of mean hourly wind speed and direct
normal solar irradiance time series as well as electricity load typical profiles in the Goryachinsk village
with a 50 MW total peak critical load.

Based on this real dataset, we examined isolated AC/DC grids options for four holiday resort villages
featuring DERs associated with different combinations of aggregated elements: PV, wind production,
batteries, hydrogen storages and diesel unit devices. The main parameters are listed in Table 1.

Table 1. The main parameters of isolated hybrid AC/DC power grids.

Isolated AC/DC
Power Grid

Aggregated Power Capacity of DERs

PV, MWp Wind, MW
PV +Wind,

MW
Batteries,

MWh
Hydrogen

Storages, MW
Diesel

Generator, MW

1 120 - - 150 11 20
1 - 220 - 300 - 20
1 120 - - 150 11 -
1 - - 33 + 186 180 - -

3.2. Local Level of Energy Grid Management

Initially, we considered the case where the hybrid AC/DC power grids are off-grid and the goals
are to minimize the exploitation cost. We used the DQN architecture with the state vector as input
and the Q-value for each disctretized action as a separate output. The available information at each
time-step is composed of the consumption, the state of charge, the renewable production, predictions of
future PV or wind production for the next 24 h and 48 h. Wind and radiance prediction was produced
in a naive way by averaging past values. We assume that the agent has control of the storage devices
and it must decide how to use the storage systems. The actions available at each decision step are
charging, discharging and idling of each storage device in the microgrid. When the energy level from
storages and from non-flexible production is not sufficient to ensure the loads are served, the steerable
generators, i.e., the diesel steerable generation, compensate for the remaining energy to be supplied.

As said before, we examined four different isolated AC/DC power systems containing DERs with
different initial parameters (Table 1). Two systems had diesel stations. Such a hybrid AC/DC system
have VPP EMS based on DQN-agent to the optimal energy management.
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After the start with a random DQN we perform the update specified in Equation (2) for
each time step and, at the same time, we fill up a reproductive memory with all observations,
operations and rewards with an agent that follows an ε-greedy policy subject to the policy π(s) =
max�(a ∈ A) �Q(s, a; Θk)� is taken with a probability 1-ε, and a random operations (with uniform
probability over operations) is chosen with probability ε. Here ε decreases over time. At the stages of
verification and tests the policy π(s) is applied with ε = 0. The typical winter policies computed with
minimal information available to the DQN-agent for isolated AC/DC grids are shown in Figure 8.

(a) isolated AC/DC grid 1 * (b) isolated AC/DC grid 2.

(c) isolated AC/DC grid 3 *. (d) isolated AC/DC grid 3.

Figure 8. The typical winter policies computed with minimal information available to the DQN-agent
for isolated AC/DC grids *.

The computed typical policy with using DQN-based VPP EMS gives various operational revenues
over year My, which depend on the composition of energy storage and the availability of steerable
generators. The isolated grids with hydrogen storages are the most successful (Grid 1: MyG1 = 20.31
euro/year and Grid 3: MyG3 = 1.53 euro/year). These storages allow accumulating unused generation
from RES for a long time. Other isolated grids had expected costs over year (Grid2: MyG2 = −1003.68
euro/year and Grid4: MyG4 = −1875.53 euro/year) when most of the costs are associated with the
inability to cover demand through their own local sources, which involves the purchase of energy from
an external network or disconnection of consumers. The presence of a diesel generator allows to get
more income (for example, for Grid 1) or reduce losses (for example, for Grid 4 in comparison with Grid
2). However, the availability of such generators in itself is an additional cost associated with fuel costs,
as well as constant pollution of the surrounding area, in the form of CO2 emissions. Obviously, one of
the most effective solutions is to unite isolated AC/DC grids into the single community through an
electric network, which will cover the lacking weather potential of RES generation, reduce (or exclude)
the diesel generators, and, most importantly, increase the revenues of each power grid through optimal
energy exchange.
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3.3. Load Leveling in MGs Using System of Volterra Equations

The objective of this paragraph is to demonstrate the application of the Volterra equations model
for battery modeling. In this case the Volterra model introduced in (3) will be as follows

t∫
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.9 0 0 0
0
0
0

0.9 0 0
0 0.9 0
0 0 0.9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1(τ)

x2(τ)

x3(τ)

x4(τ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dτ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
f1(t)
f2(t)
f3(t)
f4(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
where vi max = 3.5 MW means the limitation on the maximum power with which the storage system in
i-th grid can be charged and discharged, E i min = 0%, E i max = 100%, fi(t) is the disbalance between
generation, losses, power flow and load to be compensated by storage system. As a result of Volterra
model in Figure 9 calculated APF and SoC are shown for Grid 2.

(a) isolated AC/DC grid 2. Winter (b) isolated AC/DC grid 2. Summer

Figure 9. Alternating power functions (APF in MW) with state of charge information (SoC in %) for
second grid in community of grids computed by System of Volterra integral equations (VIE) for winter
and summer period.

3.4. Hybrid AC/DC Test System

Figure 10 shows a hybrid test AC/DC community, that includes different types of renewable
generation, loads and storages. The corresponding test system data is shown in Table 2. The community
consists of four holiday resort villages with a 50 MW total peak critical load. Each MG is assumed to
have wind and solar power plants and ESS consisting of battery and hydrogen storage system.

Table 2. Test System Data.

AC Network DC Network

From To Circuit Number R,p.u. X,p.u. From To R,p.u.

1 2 1 0.0017 0.0016 200 300 0.00685
1 2 2 0.0017 0.0016 200 500 0.01371
2 6 1 0.0068 0.0065 500 400 0.00685

2 6 2 0.0068 0.0065 AC side:
Ubase = 35 kV, Sbase = 1 MVA;

DC side:
Ubase = 35 kV, Sbase= 1 MVA;

Inverter 2–Udc = const
Inverter 3,4,5–Pinv = const

PinvMAX = +/− 20 MW

6 3 1 3.42 × 106 3.42 × 106

6 3 2 3.42 × 106 3.42 × 106

6 5 1 0.0068 0.0065
6 5 2 0.0068 0.0065
2 4 1 0.0068 0.0065
2 4 2 0.0068 0.0065
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Figure 10. The hybrid AC/DC test system.

RES and storage devices are located on the DC side, the load of household consumers is located
on the AC side. Lack of generation is covered by an external network, Bus 1 is the AC slack bus. The
AC network consists of double-circuit lines of various lengths with a 35 kV voltage level, the DC
network is a bipolar 35 kV system. Inverter 2 is a slack inverter; inverters 3, 4 and 5 provide constant
power control.

3.5. Centralized Level Operational Control of the Test System

Figure 11 shows the results of operational control of the test system using the proposed two-level
algorithm. At each local level, the storage control problem is solved using stochastic optimization in
order to maximize the operating costs of every subsystem. The centralized level optimizes the settings
of the inverters Pinv2-Pinv5 in order to minimize active power flow P to the external network.
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Figure 11. Operational control of the test system using the proposed two-level algorithm.
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4. Conclusions, Discussion and Further Work

This paper has introduced a modeling framework, based on two-level optimization technique, for
operational and emergency control of a hybrid AC/DC community. The proposed framework has two
main features. First, it provides optimal energy management policies at the local level of every grid
(or microgrid) using advanced stochastic optimization method based on deep reinforcement learning.
Second, it provides the optimal redistribution of active power between subsystems by minimizing
network losses. Numerical results obtained on a test case implemented in Baikal region show that
the proposed framework is effective for grid community management and has high potential for CO2

reduction. The Volterra integral vector model for the grid community was evaluated on the real dataset
and validated.

The disadvantage of the proposed algorithm is its inability to implement global control of energy
storage, since this control is carried out at a local level without taking into account an external network.
However, it should be noted that the inclusion of the possibility of global storage managing will lead to
a significant complication of the algorithm, since in this case the current control of inverters should be
carried out taking into account the time interval at which minimization of consumption is performed.
In addition, the global management of storages will require the transfer of control actions to the local
level of owners, which may be associated with technical difficulties. The global storage control topic is
reserved for future work.

Further work will be focused on the excess power management, including the issuance of both
the internal (storage charge) and the external network.
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Abstract: The reliability analysis method and risk assessment model for the traditional single network
no longer meet the requirements of the risk analysis of coupled systems. This paper establishes
a risk assessment system of electric-gas integrated energy system (EGIES) considering the risk
security of components. According to the mathematical model of each component, the EGIES steady
state analysis model considering the operation constraints is established to analyze the operation
status of each component. Then the EGIES component accident set is established to simulate the
accident consequences caused by the failure of each component to EGIES. Furthermore, EGIES risk
assessment system is constructed to identify the vulnerability of EGIES components. Finally, the risk
assessment of IEEE14-NG15 system is carried out. The simulation results verify the effectiveness of
the proposed method.

Keywords: integrated energy system; risk assessment; component accident set; vulnerability

1. Introduction

Power system and natural gas system are strongly coupled systems. In recent years, the application
scenarios of energy field research have gradually changed from single energy systems to multi-energy
systems [1,2]. The energy sources are mutually coupled, which can allow the stepwise utilization
and collaborative optimization of energy sources. And the mutual support between different energy
systems also improves the security and stability of each system. However, it makes the operation and
control of multi-energy systems more complicated [3,4]. In terms of system failure, it may be caused
by the system’s own factors, or it may be caused by other subsystems propagating the failure through
coupling elements, which makes the security of multi-energy systems also more complicated [5,6].
For example, the output power fluctuation of renewable energy may cause the output fluctuation
of gas turbine, which leads to the fluctuation of pipeline flow and node pressure of natural gas
system. Interruption of gas source or sudden drop of air pressure in natural gas system may cause
shutdown of gas turbine in power system, which will force other generators to increase output and
cause transmission plugs, further affecting the safe and stable operation of power system. In order to
ensure secure and stable operation of EGIES, it is very important for operators to quickly and accurately
evaluate the operational risk of the system.

At present, research on integrated energy systems has focused on energy flow analysis [7,8],
optimized operation [9–11], and collaborative planning [12]. Most of the researches on system risk
assessment have stayed in a single energy system, and there are few studies on risk assessment of
multi-energy systems. The research on integrated energy system risk assessment is in its infancy, and
the research results of this research direction are currently mainly focused on the reliability assessment
of integrated energy systems. In [13], the influence of electricity-gas coupling on the operation status
of the integrated energy system was studied, but the impact of gas supply risks on the security of the
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entire system has not been fully considered. In [14], the impact of the shortage for natural gas supply on
the operation of the integrated energy system was analyzed, and the impact of intermittent new energy
power injection on the feasible region of the natural gas system was also evaluated. Reference [15]
proposed universal indicators from the energy link, device link, distribution network link and user
link. The security assessment of the regional integrated energy system was performed. However, the
risk of accidents caused by component failures to the system was not considered in [14,15]. In [16], the
sufficiency and safety of the integrated energy system were analyzed, and the key fault scenarios and
extreme operation scenarios were identified using the natural gas transient power flow model and the
power system interlocking fault model. In [17], reliability indexes such as expected electric/gas/heat
demand not supplied, expected wind power abandoned and power-to-gas device capacity utilization
were proposed. [16,17] were not refined to evaluate the operating status of the integrated system. The
above research results evaluate the reliability level of integrated energy system from the perspective of
long-term planning, which is of great significance for system optimization planning and operation
control. However, the quantitative calculation results based on the short-term scale of system operation
risk are more helpful for the operating personnel to make online decisions. Operation regulators need
to conduct risk assessment based on the real-time operation state of the system, so as to find potential
safety hazards, give timely warnings, and assist in making decisions to adjust the current operation
mode to ensure the safety of the system.

In this article, an EGIES steady-state analysis model considering operating constraints is established.
Establishing natural gas system evaluation indicators including node low pressure severity, pipeline
overload severity, pipeline tidal distribution severity, and gas load loss, we combine the power system
risk assessment indicators to establish the EGIES assessment system. We also identify vulnerable
components in EGIES by considering the possibility/severity of component failure. Finally, the risk
assessment of IEEE14-NG15 EGIES was conducted to verify the effectiveness of the proposed model
and method.

2. The Steady-State Modeling and Power Flow Calculation of EGIES

Due to the differences in physical characteristics of different electric-gas integrated energy system
energy systems, our modeling needs to be coordinated uniformly. For the coupling of EGIES, it is
actually a key element in the transformation of energy forms. In the modeling process, the energy
transformation characteristics should be considered, similar to the energy hub.

2.1. Gas Turbine Condition Analysis Model

A gas turbine is an energy converter between the natural gas pipeline network and the power
grid. For a natural gas pipeline network, a gas turbine can be equivalent to a natural gas load; for a
power system, it can be equivalent to an adjustable output power source. The relationship between the
gas consumption of a gas turbine and its active output can be expressed as follows [18]:

PG,i = ag,i fg,i
3 + βg,i fg,i

2 + γg,i fg,i (1)

where fg,i is the amount of gas consumed by the i-th gas turbine; αg,i, βg,i, γg,i are the electrical energy
conversion coefficients of the gas turbine; PG,i is the active output of the i-th gas turbine.

2.2. Energy Flow Model of Gas Pressure Regulator

The compressor is an important non-pipeline component in the natural gas pipeline network, and
its parameters mainly include flow rate and inlet and outlet pressure. The relationship between the
power required by the compressor and its air pressure ratio can be calculated by the following formula:

fch = αc + βc ·HP + γc ·HP2 (2)
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HP = f in
c · α

η(α− 1)
· [(pout

pin )α(α−1) − 1] (3)

where HP(105W) is power; f in
c (m3/h) is the equivalent flow through the compressor under standard

conditions; α is the variable index (here α is 1.27); η is the compressor efficiency, generally maintained
at 0.75–0.85; αc, βc, γc are fuel ratio coefficients; fch is the amount of gas consumed by the gas-consuming
compressor; pout is the output air pressure; pin is the input air pressure.

2.3. Natural Gas Pipeline Model

In the case of fixed external conditions, the flow of the pipeline is mainly related to the pressure
at the head and end of the pipeline. Given the two variables of the pipeline flow, the pressure at the
beginning of the pipeline, and the pressure at the end, the unknown variable can be solved. According
to the conservation law of natural gas hydrodynamic mass and Bernoulli’s equation, the natural gas
flow equations of different pressure levels based on certain assumptions are as follows [19,20]:

fi j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5.72 · 10−4

√(
pi − pj

)
· D5

i j
FGLij

7.57 · 10−4 · Tn
pn

√(
p2

i − p2
j

)
· D5

i j
FGLijTa

7.57 · 10−4 · Tn
pn

√(
p2

i − p2
j

)
· D5

i j
FGLijTaZa

(4)

These three types are applicable to natural gas pipelines with pipeline pressures below 0–0.75 bar,
0.75–7.0 bar and greater than 7.0 bar, respectively. i and j represent the beginning and end of the natural
gas pipeline respectively, and fi j

(
m3/h

)
represents the flow from node i to node j through the pipeline;

pi(bar) and pj(bar) are the pressure at the beginning and end of the pipe; Dij(mm) is the diameter of
the pipe; F is the non-directional friction coefficient; Ta(K) is the average temperature of natural gas,
Tn(K) is the temperature under standard conditions; G is the specific gravity of natural gas; Za is the
average compressibility coefficient.

2.4. The Steady-State Power Flow Model of EGIES

For the EGIES system, each subsystem has its own physical characteristics, so the original physical
characteristics are still maintained during the modeling process. The coupling link mainly plays the
interaction between the systems, so the transformation characteristics and physical characteristics of
the coupling link are mainly considered. The expression of the EGIES steady-state model cited in the
article [3] is: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

fE
(
xe, xg, xeh

)
= 0

fNG
(
xe, xg, xeh

)
= 0

fEH
(
xe, xg, xeh

)
= 0

(5)

These three formulas respectively represent the equations of the coupling of the power grid,
natural gas network and energy; xe represent power system variables including power, phase angle,
and voltage amplitude; xg represent natural gas system variables including pressure and flow; xeh
represent the energy coupling variable including the power conversion factor.

2.5. Flow Calculation for EGIES

The similarity of power system and natural gas system in the solution of power flow is mainly
reflected in two aspects:

(1) According to the law of conservation of mass, Kirchhoff’s first law and Kirchhoff’s second law
are also applicable in natural gas systems. Correspondingly, natural gas flow solutions can be
formed focusing on nodes and closed loops [20].
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(2) The key to solving power flow of power system and natural gas system is to use high-efficiency
iterative algorithm to solve high-dimensional nonlinear equations. Therefore, the solution method
represented by Newton’s method can be extended to natural gas systems [21].

In this paper, the nodal method is used to solve the power flow equation of the natural gas system.
For the n-node natural gas system, according to Equation (5), when the k-th iteration is solved using
Newton’s method, the correction equation is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩ F

(
x(k)g

)
= J(k)Δx(k)g

x(k+1)
g = x(k)g − Δx(k)g

(6)

Among them:

F
(
x(k)g

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fNG1

[
x(k)g1 , x(k)g2 , . . . , x(k)gn

]
fNG2

[
x(k)g1 , x(k)g2 , . . . , x(k)gn

]
...

fNGn

[
x(k)g1 , x(k)g2 , . . . , x(k)gn

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

where F
(
x(k)g

)
is the error vector of the function sought; J(k) is the current Jacobian matrix; J(k) is the

current correction vector. By iterating the above formula repeatedly until the convergence condition is
satisfied, the result can be finally obtained.

The main power link of the comprehensive energy system is distribution network, and its main
features include radial operation, large branch R/X ratio, multi-phase unbalance, multiple branches,
and the existence of renewable energy access. In addition, with the gradual close coupling of multiple
energy sources in the integrated energy system, the power system is not only the output object of
other energy links, but also the energy supplier of the coupling links in other energy systems. These
characteristics put forward new requirements for the steady-state analysis of power links in the
integrated energy system, and the influence of other energy links coupled with it should be considered
in the solution process. The flow calculation process of EGIES is shown in Figure 1.

In power flow calculation of power system, its basis is node voltage current equation I = YU,
which is expressed by power variable and becomes:

.
Im =

k∑
n=1

Ymn
.

Un =
Pm − jQm

Ûm
, m = 1, 2, . . . , N (8)

where
.
Im and

.
Un are respectively the injection current of node m and the voltage of node n. Ymn is an

element in the admittance matrix. Pm and Qm are respectively the injected active power and reactive
power of node m. Ûm is the conjugate of the voltage vector; N is the number of system nodes. Because
distribution network power flow solving technology is very mature, this article will not repeat them.
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Figure 1. Flow chart of EGIES flow calculation.

3. Accident Severity Assessment Indexes of EGIES

The accident severity assessment of EGIES include power system and natural gas system accident
severity assessment. The power system evaluation indicators have been described in [22], so this article
will not repeat them. Natural gas system evaluation indicators include node low pressure severity,
pipeline overload severity, pipeline flow distribution severity, and gas network load loss severity. The
above indicators can reflect the operating characteristics of the natural gas system from some aspects.

3.1. Low-Pressure Severity Index for Natural Gas System Nodes

Node pressure reflects the gas supply capacity of the natural gas system. Considering the existence
of factors such as non-directional friction coefficient, there is a transmission security zone due to
the maximum transmission distance of natural gas during the transmission process. In the area, the
pressure at the end of the pipe can be controlled within safe limits. The severity of low gas pressure at
the nodes of the natural gas network indicates the gas supply capacity of the nodes. The low-pressure
severity function of node i of the natural gas pipeline network is defined as:

ag(pi) =

⎧⎪⎪⎨⎪⎪⎩0 pi ≥ ps
ps−pi

ps−plim
pi < ps

(9)

where pi is the pressure of the natural gas network node i; ps is the rated gas pressure of the natural gas
network node i; plim is the maximum low-pressure risk threshold.

The severity of low-pressure in a natural gas system can be expressed as:

Sg(p) =
N∑

i=1

ag(pi)/N (10)
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where N is the total number of nodes in the natural gas pipeline network; ag(pi) is a function of the
low-pressure severity of natural gas network node i.

3.2. Gas Pipeline Overload Severity Index

When the transmission capacity of the power line exceeds its limit value, the thermal effect
phenomenon will accelerate the aging of the line and even cause the line to fail. Analogous to the
overload severity of power lines, the overload severity of natural gas pipelines is proposed to measure
the pipeline operating status. The pipeline overload severity function between node i and node j can
be expressed as:

ag
(

fi j
)
=

⎧⎪⎪⎨⎪⎪⎩0 fi j < fd
fi j− fd

flim− fd
fi j ≥ fd

(11)

where fi j is the pipeline flow between nodes i and j; fllim is the maximum transmission flow, which
represents the threshold of the overload risk of the branch; fd is the set pipeline overload risk threshold,
which is generally 90% of flim.

Therefore, the pipeline overload severity of the natural gas network can be expressed as:

Sg( f ) =
M∑

i=1

ag
(

fi j
)
/M (12)

where M is the total number of natural gas pipelines; ag
(

fi j
)

is the pipeline overload severity function
of natural gas pipeline network node i and node j.

3.3. Gas Flow Distribution Severity Index of Natural Gas System

This article uses tidal current entropy [23] to quantitatively describe the equilibrium of the pipeline
flow distribution. The entropy theory was first applied to the laws of thermodynamics, and then
gradually applied to systems such as information science and statistical physics. The entropy is a
measure, which reflects the chaotic and disordered state of the system. If the order degree of the system
is lower, the entropy is higher, Conversely, the higher the order degree of the system, the smaller its
entropy. Although the average load rate of the electric power system and the natural gas system can
reflect the load level of the system as a whole, the description of the load rate distribution of the line is
insufficient and imperfect. When the system is at a certain load level, the following can happen: it
may be that the load rate of all the lines is near the average load rate, or it may be that the load rate of
some lines is much higher than the average load rate while the load rate of some lines is much lower
than the average load rate. This information cannot be represented by the average load rate, and it is
not possible to use the average load rate as an indicator to study how the unbalanced distribution
of power flows will affect system security. Therefore, entropy theory is introduced in this paper to
reflect the distribution of power flow in the system. The amount of gas transmitted by the natural
gas system is closely related to the capacity of the natural gas pipeline. Gas lines with large natural
gas pipelines carry large volumes of gas, and conversely, small volumes of natural gas pipelines carry
small volumes of gas. In this way, the flow distribution of the natural gas system is balanced. The flow
entropy of the natural gas pipeline is defined here as:

Hg = −C
n−1∑
k=1

[p(k)lnp(k)] (13)

where C is taken as ln10; the interval is equally divided into 20 parts, and p(k) is the ratio of the lines
with the load ratio belonging to the same interval to the total number of lines.
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When the load rates of all the pipelines are not in the same load rate interval, the power flow
entropy reaches the maximum:

Hmax = −Cln
1
M

(14)

At this time, the distribution of the pipeline flow is extremely uneven. Once the load or other
factors cause fluctuations in the operating state, the line with a high load rate is likely to fluctuate and
exceed the safe range, which will cause a failure. The larger the value of the flow entropy, the more
uneven the flow distribution, the lower the security and the lower the line utilization.

The flow distribution severity function of a natural gas system can be expressed as:

Sg(H) =

⎧⎪⎪⎨⎪⎪⎩0 Hg < Ho
Hg−Ho

Hmax−H0
Hg ≥ Ho

(15)

where Hg is the pipe flow entropy of the system after component failure; Ho is the steady-state entropy
of the pipeline before the component fails; Hmax is the maximum flow value of the natural gas system.

3.4. Gas Load Loss Severity Index

Regardless of whether it is a power network or a natural gas pipeline network, it is important
to transfer energy from the supply side to the user side. Therefore, the gas load loss severity is an
important indicator for evaluating the system. n this paper, the electric-gas load reduction optimization
model [17] considering component faults is adopted to achieve as much reserved load as possible in
case of system failure. The gas load loss ratio of natural gas pipeline network is defined as:

η =

∑n
i=1 Fi − F′i∑n

i=1 Fi
× 100% (16)

where η is the proportion of natural gas pipeline load loss after the accident; Fi is the gas load of natural
gas node i before the fault; F′i is the gas load of node i before and after the fault.

The gas load loss severity function is defined as:

Sgload =

⎧⎪⎪⎨⎪⎪⎩
η
ηlim

η < ηlim

1 η ≥ ηlim
(17)

where ηlim is the threshold for the loss of the natural gas system, and 20% of the total natural gas load
is taken in this paper.

4. EGIES Risk Assessment Considering N-1 Failure

In this chapter, combined with the severity assessment index of the EGIES established in the
second part, the risk assessment model of EGIES established based on the risk assessment theory [24,25]
and the failure probability of EGIES is considered. Finally, risk values of components in the electrical
integrated energy system are calculated to identify vulnerable links.

4.1. EGIES Failure Probability Considering N-1 Failure

It can be seen from the statistical data that the occurrence probability of power system accidents
basically conforms to the characteristics of the Poisson distribution [26]. The probability of power
system accidents can be expressed as:

p(Ei) =
(
1− e−λi

)
e−

∑
j�i λ j (18)
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where Ei is the i-th accident in the power system; p(E i

)
is the probability of accident Ei; λi is the failure

rate of component i.
In a natural gas system, the probability of component accidents also meets the Poisson distribution

law [27], and can be similarly expressed as:

p(Gi) = (1− e−gi)e−
∑

j�i gj (19)

where Gi is the i-th accident in the natural gas pipeline network; p(G i) is the probability of the
accident Gi; gi is the failure rate of the natural gas pipeline network component i.

The failure rates of the power system and the natural gas system are independent of each other,
when the failures of the components in the two systems are considered separately. The following two
formulas show the component failure rates of the natural gas system and the power system in the
EGIES considering N-1 failure:

p
(
Egi

)
= p(Ei)

Ne∏
j=1

[
1− p

(
Gj
)]

(20)

p(Gei) = p(Gi)

Ng∏
j=1

[
1− p

(
Ej
)]

(21)

where p(E i) and p(G i) are respectively the initial failure rates of the electrical and natural gas network
components; p(E gi) and p(G ei) are respectively the failure probability of the electrical and gas network
components; Ne and Ne are respectively the total components of the electrical and gas network.

4.2. Risk Assessment Model of EGIES

In this paper, the coupling effect between EGIES multi-energy systems is considered, and the
comprehensive risk assessment indicators as shown below are established based on the risk assessment
theory:

Rk =

⎧⎪⎪⎨⎪⎪⎩p
(
Eg,k

)(
Ye,k + Yg,k

)
k ∈ Ne

p
(
Ge,k

)(
Ye,k + Yg,k

)
k ∈ Ng

(22)

among them:
Ye = Se(U) + Se(P) + Se(H) + Seload (23)

Yg = Sg(p) + Sg( f ) + Sg(H) + Sgload (24)

where Se(U), Se(P), Se(H) and Seload are respectively low voltage severity, line overload severity, power
flow distribution severity and power loss load severity; where Sg(p), Sg( f ), Sg(H) and Sgload are
respectively low-pressure severity, gas pipeline overload severity, Gas flow distribution severity and
Gas load loss severity.

4.3. EGIES Security Assessment Process Based on Risk Theory

The main steps of EGIES security assessment method based on risk theory [25] are as follows, and
the process is shown in Figure 2:

(1) Select the target component and formulate the corresponding component accident set for the
target component; Through the simulation of component failure scenarios, the ability of EGIES to
maintain normal operation was analyzed.

(2) Update the running state of each component according to the proposed component accident set;
EGIES steady-state model was established to analyze the operation status of typical accident
scenarios. In the convergence calculation of the model, not only the convergence of the power flow
of the EGIES coupling system is guaranteed, but also the operation of the system is guaranteed to
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meet the constraint conditions. If not, the cycle iteration is conducted by adjusting the energy
coupling variable or optimizing load reduction to finally meet the operating conditions.

(3) Calculate the EGIES risk. Through the established EGIES evaluation system, the vulnerability
and importance of each component of the system were identified horizontally, and the main
impact of the component on the system operation was evaluated vertically.

Figure 2. Flow chart of EGIES security assessment.

5. Case Study

The EGIES system shown in Figure 3 is simulated and analyzed based on GAMS and MATLAB
software. The system includes IEEE-14 nodes of power system and 15 nodes of natural gas network.
The coupling elements include three gas turbines and three compressors. The operation constraints in
the EGIES include are shown as follows:

(1) The voltage limit range of power system nodes is between 0.95 and 1.05. The transmission power
of the line is within the limit range.

(2) The lower limit of the gas pressure at the natural gas pipeline network system is 45 bar; the
amount of natural gas flowing through the pipeline cannot exceed its limit value; the injected gas
volume of the gas sources does not exceed 25,700 m3/h; the compression ratio of the compressor
does not exceed 1.6, the gas volume does not exceed 7200 m3/h, 1500 m3/h, 8000 m3/h at the
compressors Q5, Q12 and Q16.

101



Energies 2020, 13, 1208

Figure 3. IEEE14-NG15 system structure diagram.

It was assumed that the reliability of the natural gas pipeline, the compressor and the power line
is 0.90, 0.90 and 0.92 respectively. The Pipeline parameters of 15-node natural gas system are shown in
Table A1 of Appendix A, and the gas loads of natural gas system are shown in Table A2 of Appendix A.
In the initial state of EGIES, the risk indicators of severity of natural gas system accident and severity
of power system accident are shown in Figures 4 and 5 respectively.

Taking the outlet pipeline fault of natural gas source N1 (Element label 1 represents the risk value
of the system under normal operation, component Q1 is labeled 2, component Q2 is labeled 3, and so
on in Figures 4–7) as an example, it is illustrated that the above evaluation indicators can correctly
reflect the changes in operating state of other parts of EGIES caused by gas network fault. As can be
seen from Figure 4, a large number of air sources are missing, resulting in a large resection of the gas
load. At the same time, the amount of gas transmitted in the pipeline also decreases correspondingly,
resulting in low node pressure, low pipeline overload and abnormal power flow distribution. The
90 MW gas turbine at node E3 supports the operation of the whole large power grid. Due to the severe
reduction of gas supply, the gas turbine output is seriously reduced, resulting in a substantial reduction
of power load.
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Figure 4. Natural gas system accident severity.

Figure 5. Power system accident severity.

Figure 6. Compressor operating ratio.
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Figure 7. EGIES components comprehensive risk index value.

Although the E3 gas turbine is inadequately powered, other generators can still maintain the
power supply of part of the electrical load. Therefore, there is a large loss of electrical load and an
uneven distribution of power flow, but there is no serious line overload. As a result of the above
process, the gas flow through the compressor Q5 and the compressor Q12 is zero, and the energy
supply of the compressor Q16 is zero, which can also be reflected in Figure. 6 of the operating state of
the three compressors.

Taking the fault of 60 MW gas turbine outlet line connected with node E8 (component Q32 is
labeled 33 in in Figures 4–7) as an example, it is illustrated that the above evaluation indicators can
correctly reflect the changes in operating state of other parts of EGIES caused by power grid failure.
It can be seen from Figure 5 that the state change process of the EGIES after a gas turbine failure is
similar to the N1 outlet pipeline failure scenario described above. The power generated by the gas
turbine cannot be supplied to the system due to failure of the power line at the outlet of the gas turbine.
Therefore, the natural gas supply to the gas turbine by the node N12 must be interrupted, and the
operating status of the gas network also changes accordingly. Unlike the first case, the power line is
severely overloaded in the second case. The main reason is that different energy systems have different
definitions of load overload. In power systems, a load loss of more than 20% is defined as a severe
load loss. In fact, in the first case, only 45.54% of the electric load was retained, while in the second
case, 74.35% was retained. The greater the electric load retention, the higher the possibility of overload
on power lines.

According to Equation (22), the comprehensive risk index value of EGIES can be calculated. The
top ten comprehensive risk index of components is shown in Table 1, which include the outlet line of
generation. the compressor and the outlet pipeline of the gas source and so on. The distribution of
comprehensive risk index of components is shown in Figure 7. According to the integrated risk index
curve of EGIES components, the vulnerable links of the EGIES can be identified.

Table 1. EGIES components comprehensive risk index value of the top ten.

Ranking Element Comprehensive Risk Index Value

1 Q32 3.874359
2 Q1 3.547659
3 Q17 3.005848
4 Q33 2.898421
5 Q5 2.687361
6 Q35 2.308918
7 Q16 2.143113
8 Q29 1.904551
9 Q24 1.583715

10 Q8 1.285279
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As can be seen from Table 1 and Figure 7, the comprehensive risk value of component Q32 is
the highest. The reason is that Q32 is the outlet line of the generator. If a fault occurs, Q32 cannot
supply power to the system, and the system will suffer serious power load loss. Considering that the
generator connected to Q32 is a gas turbine, it is also sensitive to the fault disturbance of the natural
gas network. Q1, Q17, Q32 and Q5 rank higher in the table. Q1 and Q17 are both gas source outlet
pipelines, which undertake the task of supplying gas to the natural gas system. If Q1 and Q17 fail, the
gas source will not be able to supply gas normally, and the system will suffer serious loss of gas load.
In addition, the terminal nodes of Q1 and Q17 are connected to the gas turbine, which are sensitive
to the fault disturbance of the power grid. Q5 is the line where the air pressure regulating device is
located, which is responsible for the air pressure regulation of the natural gas network. If Q5 fails, the
pressure adjustment of the natural gas system will be abnormal, and natural gas cannot be normally
transmitted. Moreover, Q5 is the first end of multiple gas supply lines, which is also the reason for the
higher risk value. The reasons for the higher risk values of element Q33 are discussed below.

According to the method discussed in this article, combined with each severity index after the
failure of comprehensive energy system, the comprehensive risk value is used to evaluate the security
risk of N-1 failure. Through comparative analysis with the methods proposed in reference [28], the
ranking results of the top 10 comprehensive values of risk obtained by the two methods are shown
in Table 1. It can be seen from Table 2 that the ranking of the first 10 high-risk faults obtained in this
paper is very similar to the results of the method in literature [28], which proves the correctness and
availability of the method in this paper.

Table 2. Comparison of the top 10 risk values of N-1 accidents.

Ranking The Method in This Paper The Method in Reference [28]

1 Q32 Q32
2 Q1 Q1
3 Q17 Q5
4 Q33 Q16
5 Q5 Q24
6 Q35 Q8
7 Q16 Q12
8 Q29 Q23
9 Q24 Q35
10 Q8 Q33

The difference between the risk ranking obtained in this paper and the method proposed in [28]
mainly lies in Q17, Q33 and Q29. The reasons for the higher risk of Q17 have been mentioned above
and will not be repeated. Although the component Q33 is traversed by the shortest path between fewer
power-load pairs, the reason for the greater risk of Q33 is that its end is connected to the air pressure
regulator, which is greatly affected by the disturbance of the natural gas network. Q29 is not directly
connected to the gas unit and is less affected by the fault of the gas network. However, Q29 is passed
by more power-load node pairs, and it is in the key position of network energy transmission, which
plays an important role in shortening the electrical distance between power generation node and load
node. Once Q29 fails, other lines will be overloaded, which will easily cause a grid cascading fault.

6. Summary

In this paper, a comprehensive energy risk assessment index and a risk assessment strategy for
the EGIES considering component n-1 accident are proposed. Firstly, the steady state power flow
model of the EGIES is established to analyze the safe operation of each subsystem. Secondly, the
vulnerability of components is analyzed according to the severity function of IENGS, and the critical
and non-critical components in the system are identified. Thirdly, IENGS risk assessment model is
established to analyze the security of EGIES running state. Furthermore, an IENGS risk assessment
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method considering n-1 accidents is proposed to analyze the vulnerable links in the electric-gas
integrated energy system. The research shows that the EGIES risk assessment method proposed in this
paper can assess the coupling and interaction effects between subsystems, reflect the security of system
operation to a certain extent, and provide scientific decision basis for relevant personnel.
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Appendix A

Table A1. Pipeline parameters of 15-node natural gas system.

Start of Pipeline i End of Pipeline j Length L(m) Diameter D(mm)

1 2 750 5000
2 3 400 5000
2 4 275 5000
2 5 275 5000
3 6 250 6000
3 7 275 6000
3 8 275 5000
4 7 175 5000
5 6 175 6000
6 8 200 500
6 12 400 5000
7 8 175 500
7 9 250 500
9 10 200 500
10 11 150 500
12 13 350 2000
12 14 750 5000
12 15 350 2000

Table A2. Natural gas loads of 15-node natural gas system.

Node Number Gas Load (m3/h)

2 14,595
3 2000
4 1750
5 1570
6 8500
7 1500
8 1860
9 650
10 450
11 290
12 100,00
13 4000
15 4000
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Abstract: Prediction of a battery’s health in data centers plays a significant role in Battery Management
Systems (BMS). Data centers use thousands of batteries, and their lifespan ultimately decreases
over time. Predicting battery’s degradation status is very critical, even before the first failure
is encountered during its discharge cycle, which also turns out to be a very difficult task in real
life. Therefore, a framework to improve Auto-Regressive Integrated Moving Average (ARIMA)
accuracy for forecasting battery’s health with clustered predictors is proposed. Clustering approaches,
such as Dynamic Time Warping (DTW) or k-shape-based, are beneficial to find patterns in data
sets with multiple time series. The aspect of large number of batteries in a data center is used
to cluster the voltage patterns, which are further utilized to improve the accuracy of the ARIMA
model. Our proposed work shows that the forecasting accuracy of the ARIMA model is significantly
improved by applying the results of the clustered predictor for batteries in a real data center.
This paper presents the actual historical data of 40 batteries of the large-scale data center for one
whole year to validate the effectiveness of the proposed methodology.

Keywords: forecasting; clustering; energy systems; classification

1. Introduction

Uninterrupted power source (UPS) batteries are an integral part of any data center, which ensure
the stable performance of the data center during transitional fail-over mechanisms between power
grids and diesel generators [1]. Data centers require steady power for smooth performance, which
is thus managed by the UPS batteries. UPS is installed between the main power grid and the servers [2].
Since the electricity bill of a data center constitutes a significant portion of its overall operational costs,
data centers are now major consumers of electrical energy [3]. In 2013, data centers in U.S.A. consumed
91 billion kilowatt-hours of electricity, and this was expected to continue to rise over the years [4].
In 2017, nearly 8 million data centers required an astronomical 416.2 terawatt-hours of electricity [5,6].
Even a single faulty battery in a pack could cause millions of dollars of damage to the equipment used
in the data centers during transition. The layout of the data center’s design is illustrated in Figure 1.

Despite the increasing improvements in battery manufacturing and storage technology [7],
health estimation of batteries in data centers is still a challenge. Not surprisingly, many studies
have been conducted to develop battery life prediction of the battery packs, such as voltage fault
diagnosis, charge regimes, and state of health (SOH) estimation. Severson et al. [8] demonstrated
a data-driven model to predict the battery life cycle with voltage curves of 124 batteries before
degradation. Tang et al. [9] predicted the battery voltage with the model-based extreme learning
machine for electric vehicles. L. Jiang et al. [10] employed the Taguchi method to search an optimal
charging pattern for 5-stage constant-current charging strategy and improved the lithium-ion battery
charging efficiency by 0.6–0.9%. D. Sidorov et al. [11] presented a review of battery energy storage
and an example of battery modeling for renewable energy applications and demonstrated an adaptive
approach to solve the load leveling problem with storage. Hu et al. [12] employed advanced sparse
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Bayesian predictive modeling (SBPM) methodology to capture the underlying correspondence between
capacity loss and sample entropy. Sample entropy of short voltages displayed an effective variable
of capacity loss. You et al. [13] proposed a data-driven approach to trace battery SOH by using data,
such as current, voltage, and temperature, as well as historical distributions. Song et al. [14] proposed
a data-driven hybrid remaining useful life estimation approach by fussing the IND-AR (Iterative
nonlinear degradation autoregressive model) and empirical model via the state-space model in RPF
(Regularized particle filter) for spacecraft lithium-ion batteries. Zhou et al. [15] combined Empirical
Mode Decomposition (EMD) and Auto-Regressive Integrated Moving Average (ARIMA) models
for the prediction of lithium-ion batteries’ Remaining Useful Life (RUL) in the Battery Management
System (BMS), which is used in electric vehicles. Chen et al. [16] proposed a hybrid approach
by combining Variational Mode Decomposition (VMD) de-noising technique, ARIMA, and GM (Gray
Model) (1,1) models for battery RUL prediction.

Figure 1. Data center layout. PDUS = Power Distribution Units.

The ARIMA model has been one of the most widely used models in time-series forecasting [17–19].
Kavasseri et al. [20] examines the use of fractional-ARIMA or f-ARIMA models to forecast wind speeds
on the day-ahead (24 h) and two-day-ahead (48 h) horizons. A hybridization of Artificial Neural
Network (ANN) and the ARIMA model is proposed by Khashei et al. [21] to overcome the mentioned
limitation of ANNs and yield a more accurate forecasting model than traditional hybrid ARIMA-ANNs
models. The annual energy consumption in Iran is forecasted by using three patterns of ARIMA–ANFIS
model by Barak et al [22].

ARIMA is used in forecasting social, economic, engineering, foreign exchange, and stock problems.
It predicts future values of a time series using a linear combination of its past values and a series
of errors [23–27]. Since batteries in the data center are always on charging mode, the deep discharge
is a rare occurrence for batteries and their distinctive internal chemistry causes different behaviors
like stationary or stochastic for each battery. In addition, failure data is not available in real life which
makes it a challenge to accurately predict the battery status before its first failure. For this paper,
we developed a cluster-assisted ARIMA model framework to improve the accurate prediction of battery
voltage. Clustered patterns are utilized as external regressors to improve the accuracy of the ARIMA
model and provide a more accurate indication of battery status in the future. Clustering in machine
learning is the grouping of a similar set of data points. This aspect is used to group the patterns
of batteries within the data center and improve the forecasting model instead of predicting thousands
of batteries individually. Clustering algorithms, like Dynamic Time Warping (DTW), hierarchical, fuzzy,
k-shape, and TADPole all have unique functionality for grouping similar data points, and the features
selected by clustering improve the model forecasting accuracy [28–30]. The proposed cluster-assisted
forecasting results are compared with actual battery data and without clustered ARIMA forecasting.
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The rest of the paper is organized as follows: Section 2 describes the features of the data center
and data set used for the study. Section 3 describes data preprocessing and explain the methodology
by introducing the algorithms for cluster consistency and clustered ARIMA forecasting. Section 4
shows the steps to implement the proposed clustered forecasting method. Section 5 demonstrates
the battery cluster consistency detection results and cluster-assisted ARIMA forecasting, as well as
discusses the effectiveness of the method by comparing the results with actual data and without the
cluster-assisted forecasting ARIMA model. Section 6 concludes this work.

2. Overview of the Data Set

In this paper, data is collected from a large-scale social media company located in China. One year
of data is used for research with 470,226 data points and a sampling interval time of 1 min. This data set
includes the variables of data center’s main power, transmission units, battery units, cooling systems,
and DC (Direct Current) load values. Data set variables are shown in Table 1.

Table 1. Data center’s data set with all 470,226 feature instances.

Data Center Features Type Attributes

Phase current/active/factor Power 12
3-Phase active/power/factor Power 6
HVDC module load/voltage Transmission units 11

HVDC DC module current/volt Transmission units 12
Battery group current/state Battery units 4

Voltage/Resistance/Temperature Battery units 120
PDU branch current server units 24

AC supply/return temperature Cooling system 24
Humidity Cooling system 19

AC coil temperature Cooling system 6
Up/Down front temperature Cooling system 24

DC meter volt/current DC unit 4

Our objective is to develop a scalable clustering framework to improve the forecasting accuracy
of the ARIMA model for battery voltages in data centers. Voltage measurement of individual batteries
is a common practice in data centers whereas other parameters like current and charging regimes
are also collectively measured from a group of batteries. Voltage is utilized in the simplest of BMS
of small vehicles to large scale data centers. Our data has voltage from 40 batteries; and battery aging
features are selected from domain knowledge of batteries [8].

3. Methodology

Figure 2 shows the flowchart of the proposed method and the steps of the proposed method
are given as follows:

• Data Preprocessing

Step 1: First, separate the battery voltage data from the data set. Extract the historic
values of first-month battery voltages and keep updating the real-time voltage values.

• Cluster Consistency

Step 2: Carry out clustering analysis on first month data and real time updated data set
and proceed to the step 3.
Step 3: Match the clustering results of first month and updated month data for cluster
consistency. If cluster members are different in first and updated month clusters, then go
to the next step.

• Clustered ARIMA Forecasting
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Step 4: Fit an ARIMA model using the cluster members as external predictors to forecast
the battery’s voltage status, and if a cluster has only 1 member, then fit an ARIMA
model without the external predictor. If the forecasted voltage has a declining trend,
then the battery health is dropping comparative to its first-month’s cluster members.

Figure 2. Proposed method flowchart.

3.1. Data Preprocessing

Data cleaning is the first step in the data preprocessing step by identifying the missing values
and correcting the raw data for analysis. See Section 2 for multiple features of the data set.
Battery voltage data is utilized to forecast battery health with the assumption that all the batteries
are new and equally healthy. Data centers keep batteries in a safe and controlled environment,
and all the batteries would show identical behavior and over fitted prediction models if short intervals
are selected considering batteries do not fail in their early months. Our analysis suggests that discharge
events occur sometimes once in a few months and sometimes twice a month. In order to analyze
the effect of these events in a consistent manner, we used one year of data and divided it by 12
to update the data on each iteration on monthly basis. The first month’s data was extracted from
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the data set and used as a standard for comparing clustering and voltage status with real-time updated
data. See Section 4.1.

3.2. Cluster Consistency

We now present our proposed cluster based predictor configuration Algorithm 1 for batteries
in a data center. The approach to update the clustered predictor for forecasting on monthly basis
is presented in this algorithm. For a detailed description of the k-shape-based and DTW clustering
algorithm, see Appendixes A.1 and A.2.

Algorithm 1: Configuration Algorithm for Cluster Based Predictor.
Input: Vij and LVij are the first and latest month input data sets, respectively; i=time

and j=total number of batteries
Output: Outlined battery cluster DA
initialize
for first month clustering do

B = Vij ←clustering applied to input data set
end

return Set of initial clustering/First month FB
for first month cluster voltage status do

FB ←Mean estimation applied to clusters
end

return First month cluster voltage status MB
for latest month clustering do

LB = LVij ←clustering applied to input data set
LB // set of latest month clustering
MC = LB ←Mean estimation applied to latest clusters
MC // set of latest month clusters voltage status
DA = LB − FB // Subtract elements of latest cluster set from First month
cluster set

DM = MC − MB // Initial clustering set and latest clustering mean
voltage difference

if DM = ∅ then

No change in cluster voltage status
else

DM �= ∅
Change in cluster voltage status
DM is the set of changed voltage status batteries
if DA = ∅ then

Consistent clusters
else

DA �= ∅
Inconsistent cluster
DA is the set of odd batteries

end

return New cluster or outlined batteries DA
end

return Changed cluster voltage status DA
end

Clustering algorithms accept the battery voltage data set, Vij , as the first-month historic voltage
data set and LVij as the latest and updated voltage data set, where (i) is the time, and (j) is the total
number of batteries. FB is the set of batteries when clustering is applied in the first month. LB is the set
of batteries when clustering is applied in the latest month. DA is the set of inconsistent batteries’ cluster
which is a result of a comparison between clustering sets of latest month (LB) and first month (FB).
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If DA is not equal to ∅, it is an inconsistent or outlined battery cluster. MB and MC are the first
and latest month clusters’ mean voltage sets, respectively. These sets also represent cluster voltage
status comparative to other clusters. The difference between MB and MC gives us DM. If DM is not
equal to ∅, cluster voltage status changes.

3.3. Clustered ARIMA Forecasting

Algorithm 2 is proposed to improve the ARIMA accuracy by utilizing clustering results as external
regressors to forecast battery health. ARIMA models are the integration of Auto-regressive (AR) models
and Moving Average models. ARIMA models are good for forecasting stationary time-series data [31].
Input sets are either DA or DM. Extracting a battery element from the set, vj, makes a new set DC.
Extracting another element from DA from the remaining elements results in R, where R is the set
of predictors used to forecast the battery element in DC. Then, fit an ARIMA model with R predictors
to forecast DC. AF is the battery’s forecasted voltage values.

Algorithm 2: Clustered ARIMA Forecasting.

Input: DA, set of outlined batteries
or MA, voltage status changed
Output: AF ARIMA forecasts voltage behavior
initialize
DC = DA − {vj}={vj : vj ∈ DA} // Select a battery from the cluster set
if DC = ∅ then

DA ←Fit ARIMA model to DA
AF ←Forecast with fitted ARIMA model
else

DC �= ∅
DR = DA − DC R = DR − {vj}={vj : vj ∈ DR} // Select predictors
DC ←Fit ARIMA model with R
AF ←Forecast with fitted ARIMA model and R

end

return Battery voltage forecast AF
while AF is the voltage forecast do

Battery voltage forecast status check
if AF Decline in battery voltage then

AF is the set of degrading batteries
else

AF is the set of stable batteries
end

end

return AF Voltage forecast

4. Software Implementation

4.1. Cluster Consistency Detection

Import the time-series data transformed into CSV format in the data preprocessing step for R
programming. Dtwclust package is used for time series clustering in R. For clustering batteries,
data frame should be converted into a matrix by (as.matrix) function. Visualize the clustering results
using Plot function. Repeat this process every month until an inconsistent cluster is detected and then
perform clustered ARIMA forecasting (see Section 4.2). An overview of the clustering inconsistency
detection procedure is shown in Figure 3.
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Figure 3. Battery cluster inconsistency and battery degradation forecast method.

4.2. Implementing Clustered ARIMA Forecasting

The objective of this procedure is to improve the forecasting accuracy of ARIMA model by utilizing
cluster members as an external regressor. An overview of the method is shown in Figure 3. Import
“Forecast” package in R. Select a battery from the inconsistent cluster to forecast. Perform ACF (Auto
Correlation Function), PACF (Partial Auto Correlation Function), and Dickey-Fuller test to check
the data stationarity. Use auto.ARIMA function to build the fitting model for the selected battery.
Select cluster predictors for “Xreg” function in the fitting model; if the cluster contains only one battery,
then “Xreg” function is not required. Use the “forecast” function to forecast the battery voltage. If the
declining trend is shown, the cluster is degrading, and if the trend is stable, then the battery will
be stable in the future, as well.
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5. Result and Discussion

5.1. Data Center Battery Setup

Forty VRLA batteries were installed in a room, with 20 batteries in each rack with an average
voltage level between 13 and 14 V. Voltage data was collected in the BMS of the data center. There
were four discharge cycles and three power surges during one year of battery life in the data center, as
shown in Figure 4.

Figure 4. One year battery voltages in data center.

5.2. Battery Voltage Time Series Clustering

Table 2 shows the Silhouette index test values, which were used to select number of clusters
when clustering is applied on the batteries (see Figure 5). Figure 6 shows consistent cluster members
from the first eight months. Inconsistent cluster is shown in Figure 7 after nine months. Battery 6
is now separated by battery 36 and 39, which was originally in the same cluster from the first month.
Implementing DTW clustering and k-shape-based clustering on similar data resulted in different
cluster members, which can be seen in Figures 8 and 9.

This change in cluster consistency is an indication of a change in battery voltage behavior. Utilizing
this new information as a starting point to predict the battery health from each cluster, an improved
accuracy forecasting model is discussed in Section 5.3.

Table 2. Silhouette index test for cluster number selection.

Silhouette Index

Time Cluster 2 Cluster 3 Cluster 4 Cluster 5

Month1 0.7356 0.7554 0.6295 0.5831
Month8 0.5857 0.5935 0.5440 0.4960
Month9 0.5741 0.6076 0.5607 0.4737
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Figure 5. K-shape-based 1st month clusters.

Figure 6. Consistent clusters after eight months.

Figure 7. Cluster inconsistency encounter after nine months.
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Figure 8. Dynamic Time Warping (DTW) clustering 1st month clusters.

Figure 9. DTW clustering after nine months.

5.3. ARIMA Forecasting

The proposed clustered ARIMA approach was evaluated by comparing actual voltage with CK
predictors (k-shape-based clustered predictors), Single predictors (without clustering),Total predictors
(complete data), and CDTW predictors (DTW clustered predictors). The metrics used are Root
Mean Square Error (RMSE), Mean Average Error (MAE), and Mean Average Percentage Error
(MAPE). One battery from each cluster, such as Battery 6, Battery 15, Battery 19, and Battery 36,
was selected for demonstration. The cluster inconsistency was detected in the 9th month, thus
transforming the data of 9th month for the forecasting model. ACF and PACF for the transformed
data are shown in Figure 10. Table 3 shows the augmented Dickey-Fuller test of the selected batteries.
Batteries were selected from different clusters, and each battery showed different voltage behavior,
which would require a different fitting model for each battery. The forecast package used the
(auto.ARIMA) function to automatically select the best-fitted model by comparing with the other
models. AIC (Akaike information criterion) and BIC (Bayesian information criterion) are both
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penalized-likelihood criteria that were used for fit criteria [32]. Tables 4 and 5 show the AIC and BIC
values of the best-fitted model on the batteries for the Total, Single, CK, and CDTW predictors scenario.

Table 3. The augmented Dickey-Fuller.

Dickey-Fuller Lag Order p-Value

Battery 6 −5.6687 3 0.01
Battery 15 −4.8736 3 0.01
Battery 19 −5.1239 3 0.01
Battery 36 −7.1468 3 0.01

Figure 10. Auto-correlation and partial correlation of the selected battery data.

Table 4. Fitted models AIC and BICvalues.

Battery 6 Battery 36 Battery 15

T-Predictor S = CK-Predictor CK-Predictor S-Predictor T-Predictor CK-Predictor S-Predictor T-Predictor

AIC −251.59 −268.59 −244.52 −228.09 −234.49 −297.4 −220.57 −255.08
BIC −249.5 −206.81 −229.86 −207.31 −217.01 −288.96 −206.27 −252.99

Table 5. Fitted models AIC and BIC values with Dynamic Time Warping (DTW) Clustering.

Battery 19 Battery 36 Battery 15

T-Predictor S = CDTW -Predictor CDTW -Predictor S-Predictor T-Predictor CDTW -Predictor S-Predictor T-Predictor

AIC −280.93 −297.34 −264.44 −228.09 −234.49 −280.38 −220.57 −255.08
BIC −268.46 −268.01 −243.74 −207.31 −217.01 −268.31 −206.27 −252.99

Battery 6 (cluster 2) is a single member in cluster 2, and it has zero external predictor in the cluster
at the point of cluster inconsistency detection by k-shape clustering. This makes battery 6 (cluster 2)
a special case because CK predictor and Single predictor case is equal for battery 6. Prediction results
of battery 6 with Single/CK predictor have better accuracy than Total predictor. This argument is further
verified for Battery 15 (cluster 1) and Battery 36 (cluster 3) with the metrics comparison of the CK
predictor, Single predictor, and Total predictor in Table 6. Battery 15 (cluster 1), Battery 36 (cluster 2),
and Battery 19 (cluster 3) are the chosen batteries from CDTW clustering. Table 7 shows the metrics
comparison of the CDTW predictor, Single predictor, and Total predictor. ARIMA accuracy is improved
when implemented with DTW and k-shape-based clustering. Results show that k-shape-based
clustered ARIMA model has better accuracy than DTW.
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Table 6. Auto-Regressive Integrated Moving Average (ARIMA) performance comparison
of k-shape-based Clustered predictor (CK), Single predictor (S), and Total predictor (T). RMSE =
Root Mean Square Error; MAE = Mean Average Error; MAPE = Mean Average Percentage Error.

Battery 6 Battery 36 Battery 15

T-Predictor S = CK-Predictor CK-Predictor S-Predictor T-Predictor CK-Predictor S-Predictor T-Predictor

RMSE 0.0253 0.0224 0.0252 0.0285 0.0283 0.0180 0.0282 0.0243
MAE 0.0206 0.0167 0.0186 0.0204 0.0219 0.0149 0.0225 0.0191

MAPE 0.1523 0.1233 0.1358 0.1489 0.1597 0.1096 0.1646 0.1398

Table 7. ARIMA performance comparison of Dynamic Time Warping (DTW) Clustered predictor
(CDTW ), Single predictor (S), and Total predictor (T) .

Battery 19 Battery 36 Battery 15

T-Predictor S = CDTW -Predictor CDTW -Predictor S-predictor T-Predictor CDTW -Predictor S-Predictor T-Predictor

RMSE 0.0192 0.0160 0.0267 0.0285 0.0283 0.0200 0.0282 0.0243
MAE 0.0159 0.0130 0.0210 0.0204 0.0219 0.0174 0.0225 0.0191

MAPE 0.1198 0.0977 0.1531 0.1489 0.1597 0.1274 0.1646 0.1398

Comparison of voltage forecast of Battery 6, Battery 15, Battery 19, and Battery 36 with actual voltage,
CK predictor, Single predictor, CDTW predictor, and Total predictor is shown in Figures 11–14, respectively.
Battery 6 is a single member of k-shape-based cluster 2, so it is compared with CK predictor,
Total predictor, and actual voltage in Figure 11. Battery 19 is the only member of Dynamic Time
Warping (DWT) cluster 3, so it is compared with CDTW predictor, Total predictor, and actual voltage
values in Figure 13. It is evident from Figures 6 and 7 and these figures that the CK predictor model
is a better fit for the battery voltage data.

Figure 11. Comparison of measured and ARIMA forecasted voltage with Clustered (Single) predictor
of Battery 6.

Figure 12. Comparison of measured and ARIMA forecasted voltage with CK , Single, Total, and CDTW

predictor of Battery 15 from cluster 1.
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Figure 13. Comparison of measured and ARIMA forecasted voltage with Total predictor of Battery 19.

Figure 14. Comparison of measured and ARIMA forecasted voltage with CK , Single, Total, and CDTW

predictor of Battery 36.

5.4. Effectiveness of Clustered ARIMA Approach

Identifying a battery with a declining voltage is difficult in the data center, as can be seen
in Figure 4. Voltage equalization depends on the voltage threshold levels, which is not a better
solution for batteries in the data center because it causes false alarms during charge and discharge
cycles, and, since the batteries are always on a charging mode, any flaw cannot be observed until it
is too late, whereas weak batteries fail when there is a discharge cycle due to power supply failure.
As battery 6 failed only in the battery discharging event caused by the power failure, Figure 15 shows
that it resumes its voltage status from where it left off when charging recommences. Our proposed
clustered ARIMA framework predicts the battery voltage and provides an estimate of battery status
in the future with improved accuracy. Similarly, one-year actual resistance values of Battery 6, 15, 19,
and 36 verify the predicted results in Figure 16.
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Figure 15. One-year actual voltage value, voltage drop in Battery 6, as well as stable voltages for Battery
15, 19, and 36, validate the proposed method.

Figure 16. One-year actual resistance value, resistance rise in Battery 6, as well as Stable Resistance
for Battery 15, 19, and 36, validate the proposed method.

6. Conclusions

Considering that the prediction model has a significant impact on a forecasting battery’s
degradation status, in order to improve the ARIMA model forecasting accuracy, a clustered ARIMA
forecasting framework was proposed, with the 40 batteries in the data center. Cluster-assisted
results can significantly improve the ARIMA forecasting accuracy compared with the Single predictor
and Total data predictors. It was observed that the k-shape-based clustering assisted results are more
accurate compared to Dynamic Time Warping (DTW) clustering. A few challenges with our data-driven
technique implications are the cleaning and preparation of data set, loss of data, and missing values
that have to be addressed to apply the proposed method.
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The following abbreviations are used in this manuscript:

UPS Uninterrupted power source
T-predictor Total predictors
S-predictor Single predictors
CK-predictor k-shape-based clustered predictors
CDTW -predictor Dynamic Time Warping clustered predictors
SBD Shape-based
HVDC High Voltage Direct Current
PDU Power Distribution Units
AC Air Condition

Appendix A

Appendix A.1

k-shape clustering is an iterative refinement algorithm to isolate each cluster with keeping
the shapes of time-series data. In k-shape, cross-correlation measures are implemented to calculate
the centroid of all clusters, and then update the members of each cluster [30], where CCw(�x,�y)
is the cross-correlation sequence between �x and �y, and Ro is the Rayleigh quotient see Equation (A1).

SBD(�x,�y) = 1 − max
w

(
CCw(�x,�y)√

Ro(�x,�x).Ro(�y,�y)

)
. (A1)

Appendix A.2

Several methods have been proposed to cluster time series. All approaches generally
modify existing algorithms, either by replacing the default distance measures with a version
that is more suitable for comparing time series as shown in Equation (A2). Dynamic Time Warping
(DTW) is general and, hence, suitable for almost every domain. A warping path W = {w1, w2, ..., wk},
with k ≥ m, is a contiguous set of matrix elements that defines a mapping between �x and �y under
several constraints [30].

DTW(�x,�y) = min
√

Σk
i=1wi. (A2)
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Abstract: The excessive use of power electronics makes power quality problems in power grids
increasingly prominent. The estimation of the harmonic parameters of harmonic sources in the power
grid and the division of harmonic responsibilities are of great significance for the evaluation of power
quality. At present, methods for estimating harmonic parameters and harmonic responsibilities
need to provide the amplitude and phase information of the current and voltage of the point of
common coupling (PCC). However, in practical engineering applications, the general power quality
monitor only provides the amplitude information of the voltage and current of the measured point
and the phase difference information between them. Missing phase information invalidates existing
methods. Based on the partial least squares regression method, the present work proposes a method
for estimating harmonic parameters in the case of monitoring data without phase. This method only
needs to measure the amplitude information of the harmonic voltage and current of the PCC and the
phase difference between them, then use the measurable data to estimate the harmonic parameters
and the harmonic responsibility of each harmonic source. It provides a new way to effectively solve
the problem that the measured data of the project has no phase information. The feasibility and
effectiveness of the proposed method are proved by simulation data and measured engineering data.

Keywords: power quality; harmonic parameter; harmonic responsibility; monitoring data without
phase angle; parameter estimation

1. Introduction

With the development of electronic technology, power electronic equipment is widely used.
Power electronic equipment has non-linear and fast switching characteristics. This non-linear
time-varying load is extremely prone to generate harmonics. Power quality problems caused by
harmonics have received extensive attention [1]. The prerequisite for evaluating and improving power
quality is to evaluate the harmonic emission levels of each user reasonably. In order to evaluate the
harmonic emission levels of each user correctly, it is necessary to divide the harmonic responsibility.
In addition, the quantitative estimation of the harmonic responsibility of each harmonic source provides
a basis for the implementation of a “reward and punishment scheme” [2]. At present, the basis for the
division of harmonic responsibility is not given internationally. Most methods project the harmonic
voltage generated at the PCC when the harmonic source acts alone to the harmonic voltage of the
PCC. The size and direction of the projection is an evaluation indicator for dividing the harmonic
responsibility [3–9]. In recent years, research on the division of harmonic responsibilities has been
carried out step-by-step. The main assessment methods can be divided into “intervention” and
“non-intervention” methods [10–17]. At present, non-intervention methods are more commonly used.
Harmonic parameters can be estimated without disturbing the normal operation of the power system.
This requires extracting more information from the limited measurement data. Machine learning is a
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data processing method that can find the underlying laws and values of data from massive amounts
of data. It has the advantages of fast running speed, high accuracy, and high efficiency. Experts and
scholars have introduced machine learning methods into the field of power quality and achieved good
results [18–20]. Regression algorithms in machine learning are fast, accurate and are widely used in
non-intervention methods. For better analysis, the methods of estimating harmonic responsibility are
further divided into direct and indirect algorithms:

1. Indirect algorithm first estimates harmonic parameters. The harmonic responsibility of each
harmonic source can then be estimated [5–8]. The complex linear least square method is used
to estimate the harmonic impedance and background harmonic voltage, thereby realizing the
quantitative calculation of the harmonic responsibility of the harmonic source for the concerned
bus [5]. The combination of the dominant fluctuation filtering method and the quantile regression
method is adopted to divide the user’s harmonic responsibility [6]. Ridge estimation method is
used to estimate the harmonic impedance, which can better improve the ill-conditioned solution
when the coefficient matrix is ill-conditioned [7]. To improve the robustness of the algorithm,
a robust regression method in the complex domain is used to quantitatively estimate the harmonic
responsibility of the harmonic source [8]. The above methods all require the amplitude and phase
information of the harmonic voltage and harmonic current at the PCC. General power quality
monitors can only provide the phase difference between harmonic voltage and harmonic current,
not their phase values. In addition, the phase information of higher harmonics is more difficult to
measure. This makes the above method ineffective in practical engineering applications.

2. The direct algorithm estimates the harmonic responsibility of each harmonic source directly,
such as the complex least squares method and partial least squares method [3]. Aiming at the
problem of centralized multiple harmonic source responsibility division, [3] proposed a research
method of evaluating harmonic responsibilities based on measured data. This method only needs
the amplitude information of the harmonic voltage and harmonic current at the PCC and does not
need the phase information. However, this method has the disadvantage that it cannot estimate
harmonic parameters such as harmonic impedance.

In order to estimate harmonic parameters with measurable information, [21] proposed a method
for harmonic impedance estimation on the system side based on measurement data without phase
angle. This method requires amplitude information and phase difference of the harmonic voltage and
harmonic current, which can be measured by a general power quality monitor. However, [21] has not
established a model applicable to multiple harmonic sources, which makes this method unsuitable
for the situation where multiple harmonic sources are common in practice. In addition, [21] did not
further calculate parameters such as harmonic responsibility of each harmonic source. [22] proposed
a method of impedance calculation based on particle swarm optimization. Impedance parameters
between nodes can be calculated. However, this method involves the measurement and calculation of
multiple nodes. There are many equations, and the method is complicated.

Aiming at the above problems, the main contributions of this paper are as follows:

1. This paper presents a method for estimating harmonic parameters. The proposed method only
needs the amplitude information and phase difference of the harmonic voltage and harmonic
current at the PCC. It solves the problem that the harmonic parameters cannot be estimated due
to the difficulty of measuring the phase value of the data. Compared with traditional direct
algorithms, more harmonic parameters can be estimated. Compared with traditional indirect
algorithms, there is no need to measure the data phase value information.

2. This paper derives a mathematical model that can be used in practice based on the linear regression
model. This model is not only applicable to the case of a single harmonic source, but also to
the case of multiple harmonic sources that are common in practice. Harmonic parameters such
as the harmonic contribution impedance, harmonic contribution voltage, and the harmonic
responsibility of each harmonic source can be estimated.
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3. In order to verify the effectiveness of the proposed method, the estimation accuracy of this method,
and the traditional linear regression method are compared.

4. This paper provides a new idea for estimating the harmonic parameters of the system, especially
for the higher harmonics whose phase value information cannot be accurately measured.
The proposed method has less calculation and is easy to implement.

2. Evaluation Model of Harmonic Responsibility

2.1. Definition of Harmonic Responsibility

In the power system, the feeders are connected to the PCC bus. There are some linear loads and
nonlinear harmonic sources on the feeder. The schematic diagram of the power system is shown in
Figure 1. According to the theory of harmonic power flow calculation, the fundamental power flow
and the harmonic power flow can be calculated separately [3]. The following research on harmonic
identification is at hth harmonic frequency (h = 0,1,2,...).

For the study of single harmonic source identification, the power supply side of the power system
can be equivalent to the Thevenin equivalent circuit and the user side equivalent to the Norton circuit.
The equivalent circuit diagram is shown in Figure 2. The power supply side contains an equivalent
harmonic voltage source (

.
Uss) and a harmonic impedance (Zss). The user side contains an equivalent

harmonic current source (
.
Ics) and a harmonic impedance (Zcs). There is a harmonic voltage (

.
Upccs) at

the PCC and harmonic current (
.
Ipccs) flows. According to the same idea, an equivalent circuit suitable

for multiple harmonic sources is established as shown in Figure 3. Similarly, there is an equivalent
harmonic voltage source (

.
Us) and a harmonic impedance (Zs) on the power supply side. The user side

contains n feeders. Each feeder contains an equivalent harmonic current source (
.
Icyk) and a harmonic

impedance (Zck) (k = 1, 2, 3 . . . , n). There is a harmonic voltage (
.

Upcc) at the PCC, and each feeder

connected to it also contains a harmonic current (
.
Ick).

Figure 1. Schematic diagram of the power system with multiple feeders connected to the point of
common coupling (PCC) bus.

Figure 2. Equivalent circuit to identify a single harmonic source.
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Figure 3. Equivalent circuit of the power system with concentrated multiple harmonic feeders.

When the harmonic source on each feeder acts independently, harmonic voltage (
.

Upcck) will be
generated at the PCC. According to the superposition theorem, the vector sum of the background
harmonic voltage (

.
Upcc0) and these harmonic voltages is the harmonic voltage (

.
Upcc) at the PCC. It can

be expressed as:
.

U
h
pcc =

.
U

h
pcc0 +

n∑
i=1

.
U

h
pcci (1)

The phasor relationship of the harmonic voltages is shown in Figure 4. There is a phase angle (θi)
(i = 0, 1, 2, . . . , n) between the harmonic voltage (

.
Upcci) generated by each harmonic source at the PCC

point and the harmonic voltage (
.

Upcc) at the PCC.

Figure 4. Phasor projection diagram of the harmonic voltages.

The harmonic voltage (
.

Upcci) generated by the harmonic source at the PCC is projected onto the

harmonic voltage (
.

Upcc) at the PCC. The scale of the projection is considered to be the magnitude of
harmonic responsibility. The projection direction is positive, which indicates that the harmonic source
emits harmonics; otherwise, it indicates that the harmonic source absorbs harmonics. The harmonic
responsibility of the harmonic source can be quantitatively expressed as:

Hpcci =
∣∣∣∣ .
Upcci

∣∣∣∣ cosθi/
∣∣∣∣ .
Upcc

∣∣∣∣ (2)

2.2. Shortcomings of Existing Estimation Methods

In order to accurately estimate the harmonic responsibility of harmonic sources, experts and
scholars have conducted a lot of research [3–17]. These methods can be divided into direct algorithms
and indirect algorithms. The idea of the direct algorithm is to use linear regression to estimate
the harmonic responsibility directly, which only needs the amplitude information of the harmonic
voltage and harmonic current. But this algorithm cannot estimate harmonic parameters such as
harmonic impedance. The idea of the indirect algorithm is to estimate the harmonic impedance first,
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then calculate the harmonic contribution voltage of each harmonic source, and then calculate the
harmonic responsibility. Although this method can estimate multiple harmonic parameters, the method
fails when the power quality monitor cannot accurately measure the phase value information.
The method of manually constructing the phase can avoid the failure of the indirect algorithm, but it
will introduce uncontrollable errors [21].

The following sections will analyze the classic algorithms of the two methods in detail.

2.2.1. Direct Method for Estimating Harmonic Responsibility

In the direct algorithm, [3] established a model for assessing the harmonic responsibility of
multiple harmonics, and solved it by linear regression. Take the direct algorithm proposed in [3] as an
example for analysis. Based on the phasor relationship in Figure 4, it can be obtained as

∣∣∣∣ .
Upcc

∣∣∣∣ = n∑
i=1

∣∣∣Zsci

∣∣∣∣∣∣∣ .Ici

∣∣∣∣ cosθi +
∣∣∣∣ .
Upcc0

∣∣∣∣ cosθ0 (3)

where
Zsci =

1⎛⎜⎜⎜⎜⎝ n∑
j=1, j�i

1
Zcj

+ 1
Zs

⎞⎟⎟⎟⎟⎠
where Zsci is the harmonic contribution impedance of the feeder i in the power system. It is the parallel
value of other harmonic impedances, except feeder i.

The harmonic voltage (
.

Upcc) at the PCC point is considered as the dependent variable. The harmonic

current of each feeder (
.
Ici) is considered an independent variable. Linear regression is performed on

equation (3) to get the regression coefficient (
∣∣∣Zsci

∣∣∣ cosθi). The calculation method of the harmonic
responsibility of each harmonic source is as follows:

Hpcci =

∣∣∣Zsci

∣∣∣∣∣∣∣ .Ici

∣∣∣∣ cosθi∣∣∣∣ .
Upcc

∣∣∣∣ (4)

According to the above analysis, the estimated characteristics of the direct method are as follows:

(1) From the perspective of information input, the direct algorithm only needs the amplitude
information of the harmonic voltage and harmonic current.

(2) From the perspective of information output, the direct algorithm can only estimate the harmonic
liability, but cannot estimate other harmonic parameters.

(3) The direct algorithm does not use the phase difference information of the harmonic voltage and
harmonic current measured by the power quality monitor so that the algorithm cannot estimate
other harmonic parameters.

2.2.2. Indirect Method for Estimating Harmonic Responsibility

In the indirect algorithm, paper [7] first estimates the harmonic impedance parameters and then
calculates the harmonic responsibility of each harmonic source. Take the indirect algorithm proposed
in [7] as an example of the analysis. The phasor relationship in Figure 4 can be expressed as:

.
Upcc =

n∑
i=1

Zsci

.
Ici +

.
Upcc0 (5)
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When the phase values of the harmonic voltage and harmonic current are known, the real and
imaginary parts of equation (6) can be expanded as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

.
Upccx =

n∑
i=1

(Zscix

.
Icix −Zsciy

.
Iciy) +

.
Upcc0x

.
Upccy =

n∑
i=1

(Zscix

.
Iciy + Zsciy

.
Icix) +

.
Upcc0y

(6)

The subscript x of the variable represents the real part, and the subscript y represents the imaginary
part. The harmonic voltage is considered as the dependent variable, and the harmonic current is
considered as the independent variable. Linear regression is performed on Equation (7) to obtain the
harmonic impedance (Zsci). The harmonic contribution voltage (

.
Upcci) of the harmonic source can be

expressed as:
.

Upcci = Zsci

.
Ici (7)

The harmonic responsibility can be calculated as:

Hpcci =

∣∣∣∣ .
Upcci

∣∣∣∣ cosθi∣∣∣∣ .
Upcc

∣∣∣∣ (8)

In summary, the estimation characteristics of the indirect algorithm are as follows:

(1) From the perspective of information input, the amplitude information and phase information of
the harmonic voltage and harmonic current are required.

(2) From the perspective of information output, harmonic parameters including harmonic
contribution impedance, harmonic contribution voltage, and harmonic responsibility can
be estimated.

(3) When the phase information of the harmonic voltage and harmonic current is missing, the phase
needs to be constructed artificially to avoid indirect algorithm failure, as this will inevitably
cause errors.

2.2.3. The Basic Principle of the Proposed Algorithm

According to the equivalent circuit in Figure 3, the phasor relationship in Figure 4 can be
expressed as:

.
Upcc =

n∑
i=1

.
IcyiZz +

.
Upcc0 (9)

Note that the harmonic current (
.
Icyi) in equation (10) is the harmonic current of the equivalent

harmonic source, and the harmonic impedance (Zz) is the parallel value of all harmonic impedances
in the power system. The harmonic current (

.
Ici) in equation (6) is the harmonic current of the feeder,

and the harmonic impedance (Zsci) is the parallel value of all harmonic impedances in the system
except the feeder. The harmonic impedance in Equation (10) is called the total harmonic impedance,
and it can be expressed as:

Zz =
1

n∑
i=1

1
Zci

+ 1
Zs

(10)

In order to further distinguish the physical meaning of the total harmonic impedance and the
harmonic contribution impedance, the equivalent circuit when a single harmonic source acts alone is
shown in Figure 5.
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Figure 5. The equivalent circuit of the system when the feeder i acts alone.

When the harmonic source acts alone, the theoretical harmonic current (
.
Ici−theory) on the feeder

can be expressed as:

.
Icyi =

.
Ici−theory +

.
Ici−theory ×

1
Zci

1
Zs

+
n∑

j=1, j�i

1
Zcj

(11)

In practical power systems, the harmonic impedance on the user side is much larger than the
harmonic impedance on the power supply side (

∣∣∣Zci

∣∣∣� ∣∣∣Zs

∣∣∣). Equation (12) can be approximated as:

.
Icyi ≈

.
Ici−theory (12)

The actual harmonic current on the feeder is approximately equal to the theoretical harmonic
current [3], which is expressed as:

.
Icyi ≈

.
Ici−T ≈

.
Ici (13)

Equation (10) can be rewritten as:

.
Upcc =

n∑
i=1

.
IciZz +

.
Upcc0 (14)

We conjugate the two ends of equation (15) and multiply the harmonic voltage (
.

U
h
pcc) at both ends

of the equation. The resulting equation is expressed as

∣∣∣Upcc

∣∣∣2 =
n∑

i=1

SciZ
∗
z +

.
U
∗
pcc0

.
Upcc (15)

where Sci and Z∗z can be expressed as: {
Sci = Pci + jQci
Z∗z = Zzx − jZzy

(16)

where Sci represents the apparent power of feeder i. Pci and Qci represent the active power and reactive
power of feeder i, respectively. Superscript * indicates the conjugate of a variable.

In Equation (16), the algebraic formula (
.

U
h∗
pcc0

.
U

h
pcc) can be regarded as a constant (

.
C). Take the real

part of equation (16), and it can be rewritten as:

∣∣∣Upcc

∣∣∣2 =
n∑

i=1

(PciZzx + QciZzy) + Cx (17)
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In Equation (18), the active (Pci) and reactive power (Qci) of feeder i are used as independent

variables, and the harmonic voltage (
∣∣∣Upcc

∣∣∣2) at the PCC is used as the dependent variable. The total
harmonic impedance can be estimated by linear regression. Further, the harmonic contribution voltage
of feeder i can be calculated, which can be expressed as:

.
Upcci =

.
IciZz (18)

Since the general power quality monitor can only measure the phase difference of the harmonic
voltage and harmonic current instead of their phase values, the phase difference is taken as the phase
value of the harmonic current in Equation (19). The phase of the calculated harmonic contribution
voltage is the phase difference between the harmonic contribution voltage (

.
Upcci) and the harmonic

voltage (
.

Upcc) at the PCC. This processing method does not affect the calculation of harmonic
responsibility of feeder i. Harmonic responsibility can still be estimated by Equation (9).

In summary, the harmonic parameters estimated in this paper include the total harmonic impedance
of the system, the harmonic contribution voltage of each feeder, and the harmonic responsibility of
each feeder. The total harmonic impedance can be estimated by linear regression. And the harmonic
contribution voltage of each feeder can be estimated by Equation (19). After estimating the harmonic
contribution voltage of each feeder, the harmonic responsibilities of each feeder can be estimated by
Equation (9).

The characteristics of the algorithm in this paper are as follows:

(1) The harmonic parameters, including the total harmonic impedance of the feeder i, the harmonic
contribution voltage of the feeder i, and the harmonic responsibility of the feeder i can be estimated
by the algorithm.

(2) During the estimation process, the harmonic voltage at the PCC, and the power of each feeder
are required. The calculation of power parameters no longer requires the phase values of the
harmonic voltage and harmonic current, only their phase difference. This makes it possible to
estimate harmonic parameters such as harmonic impedance with a general power quality monitor.

Compared with the above-mentioned classic algorithm, this algorithm has the following
advantages:

(1) Compared with the direct algorithm, the algorithm can estimate the harmonic parameters such as
total harmonic impedance, in addition to the harmonic responsibility.

(2) Compared with indirect algorithms, the parameters required for the algorithm can be measured
with a general power quality monitor.

3. Simulation Verification

As the proposed algorithm is applicable to harmonics of any frequency, the simulations are
performed at the 3rd harmonic frequency.

In the simulation, the estimation capabilities of the following four methods are compared:
Ideal Method: The phase values of the harmonic voltage and harmonic current are used for

estimation. Harmonic parameters can be estimated from existing linear regression models.
Proposed Method: The phase difference between the harmonic voltage and the harmonic current is

used for estimation. Harmonic parameters can be estimated by the linear model proposed in this paper.
Random Phase Method: The phase is constructed by the random phase method, and then the

harmonic parameters are estimated by the existing linear regression model.
Zero Phase Method: The zero phase method is used to construct phase, and then the harmonic

parameters are estimated by the existing linear regression model.
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3.1. The Case of a Single Harmonic Source

To establish a simulation model according to the equivalent circuit diagram shown in Figure 2,
we set the harmonic voltage amplitude at the power supply side to 50 V, the phase angle to 50 degrees,
and the harmonic impedance to 7+ 50 jΩ. The amplitude of the user-side harmonic current source was
set to 12 A, the phase angle was 180 degrees, and a disturbance signal was added. We set the harmonic
impedance on the user side to 80 + 800 jΩ.

Considering that the harmonic impedance on the user side is much larger than the harmonic
impedance on the power supply side, the total harmonic impedance can be approximately equivalent
to the harmonic contribution impedance of the harmonic source. The estimation results of the harmonic
parameters on the user side are shown in Table 1.

Table 1. Error of parameter estimation of a single harmonic source.

Harmonic Parameters

Known Phase Value Unknown Phase Value

Ideal Method
Proposed
Method

Random Phase
Method

Zero Phase
Method

Relative Error

Modulus value of harmonic
contribution impedance (%) 1.12 1.91 21.77 20.29

Amplitude of harmonic
contribution voltage (%) 0.97 2.07 20.95 19.48

Harmonic responsibility (%) 0.98 2.15 21.74 20.43

Absolute Error

Phase angle of harmonic
contribution impedance 0.0208 0.0031 0.0562 0.0235

Phase angle of harmonic
contribution voltage 0.0224 0.0015 0.0546 0.0251

According to the simulation results, the following conclusions can be drawn:
When the phase value of the data can be measured, it is very accurate to use the ideal method

to estimate the harmonic parameters. When the phase value information of the data is missing,
the relative error of the harmonic parameters estimated by the proposed method was less than 5%,
and the absolute error of the estimated phase angle was less than 0.02. In the case of a single harmonic
source, the error of the phase angle of the harmonic parameters estimated by the random phase method
and zero phase method is acceptable, but the error of the estimated value of the modulus is large.

Considering that there are often multiple harmonic sources in the actual power system, the model
of a single harmonic source is not applicable. The situation of multiple harmonic sources was analyzed,
and is discussed below.

3.2. The Case of Multiple Harmonic Sources

In the simulation, it was assumed that three feeders on the user side contain harmonic sources.
We set the amplitude of the equivalent harmonic voltage source on the power supply side to 50V,
the phase angle to 60 degrees, and the harmonic resistance to 1.2 + 15jΩ. We set the amplitude of the
equivalent harmonic electric current source of the user-side feeder to 11A, 16A, and 20A in sequence,
and the phase angle to be 1 radian, 2 radians, and 3 radians in order. The harmonic impedance of
each feeder on the user side was set to 80 + 800jΩ. In order to simulate the fluctuations in the system,
we added a noise signal to each feeder on the user side, and set the current amplitude fluctuation
within 5%. Considering that Zs � Zci(i = 1, 2, 3), the total harmonic impedance is approximately
equivalent to the harmonic contribution impedance of the feeder. The harmonic parameters of the
system can be estimated by different methods, and the relative errors of each parameter are shown in
Table 2.

135



Energies 2020, 13, 879

Table 2. Relative error of parameter estimation of a single harmonic source.

Harmonic Parameters Feeder

Known
Phase Value

Unknown Phase Value

Ideal
Method

Proposed
Method

Random
Phase Method

Zero Phase
Method

Relative
Error

Modulus value of harmonic
contribution impedance

1 3.11 4.43 11.46 12.47
2 3.11 4.43 11.46 12.47
3 3.11 4.43 11.46 12.47

Amplitude of harmonic
contribution voltage

1 2.01 3.32 10.28 11.28
2 0.30 1.58 8.43 9.41
3 1.83 3.13 10.08 11.08

Harmonic responsibility (%)

0 0.40 15.50 26.47 29.97
1 9.80 12.87 71.83 103.74
2 1.34 2.31 11.05 9.59
3 1.38 4.52 29.39 49.27

Absolute
Error

Phase angle of harmonic
contribution impedance

1 0.0093 0.0256 0.2787 0.4127
2 0.0093 0.0256 0.2787 0.4127
3 0.0093 0.0256 0.2787 0.4127

Phase angle of harmonic
contribution voltage

1 0.0566 0.0728 0.2314 0.3653
2 0.0163 0.0327 0.2716 0.4056
3 0.0108 0.0055 0.2987 0.4327

In Table 2, feeder 0 indicates the power supply side.
In the simulation, the theoretical harmonic responsibilities of feeders 1 to 3 were 13.66%, 51.22%,

and 44.34% in turn. The theoretical harmonic responsibility of the power supply side was −9.22%.
The conclusions that can be drawn from Table 2 are as follows:

(1) From the aspect of estimation accuracy, the relative error of the ideal method and the proposed
method is small, and the estimation error of most parameters is controlled within 5%. The relative
errors of the random phase and zero phase methods are very large, and the estimation error of
most parameters is more than 10%. It can be seen that the estimation accuracy of the ideal method
and the proposed method was better.

(2) From the perspective of the difficulty of implementing the algorithm, the ideal method requires
the phase values of the harmonic voltage and harmonic current, but the general power quality
monitor can only provide the phase difference between them. Compared with the ideal method,
other methods estimate harmonic parameters based on phase difference information, and the
methods are easier to implement.

In the method proposed in this paper, when estimating the harmonic responsibility, the estimation
error of the harmonic responsibility of the power supply side and feeder 1 is large, both exceeding
10%. Because they have less harmonic responsibility, small absolute errors can also cause large relative
errors. It can be seen that the proposed method has better estimation accuracy for feeders with larger
harmonic responsibilities

In order to explore the influence of different background harmonics on the above four methods,
we changed the amplitude of the background harmonics, and estimated the harmonic parameters of
each feeder through four methods. Considering that more attention is paid to feeders with higher
harmonic responsibility in practice, four different methods were used to estimate the harmonic
parameters of feeder 2 with higher harmonic responsibility. In order to evaluate the magnitude of
the background harmonic, the ratio of the amplitude of the harmonic contribution voltage generated
by feeder 2 to the amplitude of the background harmonic voltage is defined as the parameter m.
(m =

∣∣∣Upcc0
∣∣∣/∣∣∣Upcc2

∣∣∣). The larger the parameter m, the larger the background harmonics. The relative
errors of the harmonic parameters estimated by the four methods are shown in Figures 6–8.
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(a) (b) 

Figure 6. (a) Relative error of the modulus value of the harmonic contribution voltage of feeder 2;
(b) Absolute error of phase value of the harmonic contribution voltage of feeder 2.

 

(a) (b) 

Figure 7. (a) Relative error of the modulus value of the harmonic contribution impedance of feeder 2;
(b) Absolute error of phase value of the harmonic contribution impedance of feeder 2.

Figure 8. Relative error of harmonic responsibility of feeder 2.

From the figure above, the following conclusions were obtained:

(1) The estimation capabilities of the random phase method and the zero phase method are unstable,
and the estimation errors of the two methods are relatively worse in most cases. In contrast,
the ideal method and proposed method have more stable estimation capabilities and better.
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(2) From the perspective of changing trends, the estimation ability of the proposed method will
deteriorate as the background harmonics become larger. The ideal method also has the same
trend in estimating harmonic responsibility.

(3) When the background harmonic voltage is low, the estimation error of the proposed method
to estimate each harmonic parameter can be controlled within 5%. When the amplitude of the
background harmonic voltage reaches the amplitude of the harmonic contribution voltage of the
feeder, the harmonic parameters obtained by the proposed method are also acceptable.

In summary, when the phase values of the harmonic voltage and harmonic current can be
measured, it is accurate to estimate the harmonic parameters by the existing methods. However,
in practice, ordinary power quality monitors can only provide the phase difference between the
harmonic voltage and the harmonic current. The errors introduced by constructing the phase are
uncontrollable, and such methods are not desirable. In contrast, the method proposed in this paper
can directly use phase difference information to estimate harmonic parameters with high accuracy.

4. Instance Verification

In this section, the proposed algorithm is verified by using residential electricity and electrified
railways as examples. Due to the particularity of the load in electrified railways, the problems arising
should be taken seriously [23,24].

4.1. The Case of Residential Electricity

The data of this example came from the experimental platform. The bus voltage was 220 V, and the
frequency was 50 Hz. Three feeders were connected to the bus. Feeder A contained electrical appliances,
feeder B was connected to a resistor, and feeder C was connected to a reactance. The schematic diagram
of the experiment is shown in Figure 9.

Figure 9. Schematic of the experimental system.

The sampling frequency of the measuring device was 25,600 Hz. Considering the measurement
time and the linear regression method used, harmonic parameters can be estimated with samples from
600 cycles. The 13th and 21st harmonics were used as examples to estimate the harmonic parameters
of each feeder.

The measurement data at the 13th harmonic frequency is shown in Figure 10.
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(a) (b) 

 
(c) 

Figure 10. (a) Harmonic voltage data at PCC point; (b) Harmonic current data of each feeder; (c) Phase
difference data between harmonic voltage and harmonic current of each feeder.

The harmonic parameters of each feeder obtained by different algorithms are shown in Table 3.

Table 3. Results of different methods for estimating harmonic parameters.

Harmonic Parameters Feeder Proposed Method
Random Phase

Method
Zero Phase

Method

Harmonic contribution
impedance (Ω)

A
B 0.90 + 3.42 j 0.54 + 1.3 j 0.36 + 1.37 j
C

Harmonic contribution
voltage modulus value (V)

A 1.1211 0.4466 0.4507
B 0.0114 0.0046 0.0046
C 0.0469 0.0187 0.0189

Harmonic responsibility (%)

0 2.83 65.94 63.35
A 95.79 34.36 36.77
B 0.41 0.35 0.32
C 0.97 −0.65 −0.44

In Table 3, feeder 0 indicates the power supply side.
In this example, feeder A contains harmonic sources, and feeder B and feeder C do not contain

harmonic sources. The harmonic responsibility (Hpcck) of each feeder should have the following
relationship: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

HpccA � Hpcc0

HpccB → 0
HpccC → 0

(19)

The measurement data at the 21st harmonic frequency is shown in Figure 11.
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(a) (b) 

 
(c) 

Figure 11. (a) Harmonic voltage data at PCC point; (b) Harmonic current data of each feeder; (c) Phase
difference data between harmonic voltage and harmonic current of each feeder.

The harmonic parameters of each feeder obtained by different algorithms are shown in Table 4.

Table 4. Results of different methods for estimating harmonic parameters.

Harmonic Parameters Feeder Proposed Method
Random Phase

Method
Zero Phase

Method

Harmonic contribution
impedance (Ω)

A
B 0.59 + 3.90 j 0.43 + 1.02 j 0.29 + 1.08 j
C

Harmonic contribution
voltage modulus value (V)

A 0.4815 0.1349 0.1362
B 0.0037 0.0010 0.0010
C 0.0221 0.0062 0.0063

Harmonic responsibility (%)

0 6.83 73.84 72.86
A 93.35 26.89 27.72
B −0.72 −0.20 −0.21
C 0.54 −0.53 −0.37

In Table 4, feeder 0 indicates the power supply side.
In this application case, the estimated results of the proposed method are shown in Tables 3 and 4,

which are basically consistent with the actual situation.

4.2. The Case of Electrified Railway

Measurement data comes from a traction substation. During the measurement period, two trains
were running on two feeders, respectively. The schematic of this example is shown in Figure 12.
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Figure 12. Schematic diagram of the “traction net-locomotive” system.

The sampling frequency of the measuring device was 25,600 Hz. Considering that the locomotive
is a special load, it emits not only odd harmonics but also higher harmonics. Taking the 11th and
31st harmonics as examples, different methods were used to estimate the harmonic parameters of the
two feeders.

The measured data at the 11th harmonic frequency is shown in Figure 13.

 

(a) (b) 

  
(c) (d) 

Figure 13. (a) Harmonic voltage data at PCC point; (b) Harmonic current data of each feeder; (c) Phase
difference data between harmonic voltage and harmonic current of Line A; (d) Phase difference data
between harmonic voltage and harmonic current of Line B.

The harmonic parameters of each feeder obtained by different algorithms are shown in Table 5.
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Table 5. Results of different methods for estimating harmonic parameters.

Harmonic Parameters Line Proposed Method
Random Phase

Method
Zero Phase

Method

Harmonic contribution
impedance (Ω)

A 8.35 + 166.06 j 26.44 + 39.92 j 4.55 + 47.67 j
B

Harmonic contribution voltage
modulus value (V)

A 15.51 4.47 4.47
B 9.97 2.87 2.87

Harmonic responsibility (%)
0 6.35 65.10 76.64
A 68.99 22.40 18.15
B 24.66 12.50 5.21

The measured data at the 31st harmonic frequency is shown in Figure 14.

  

(a) (b) 

  
(c) (d) 

Figure 14. (a) Harmonic voltage data at PCC point; (b) Harmonic current data of each line; (c) Phase
difference data between harmonic voltage and harmonic current of Line A; (d) Phase difference data
between harmonic voltage and harmonic current of Line B.

The harmonic parameters of each feeder obtained by different algorithms are shown in Table 6.
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Table 6. Results of different methods for estimating harmonic parameters.

Harmonic Parameters Line Proposed Method
Random Phase

Method
Zero Phase

Method

Harmonic contribution
impedance (Ω)

A 1.56 + 184.48 j 58.68 + 31.46 j 25.83 + 61.37 j
B

Harmonic contribution voltage
modulus value (V)

A 8.05 2.91 2.91
B 9.54 3.44 3.44

Harmonic responsibility (%)
0 6.40 90.23 71.63
A 50.20 5.49 13.59
B 43.40 4.28 14.78

In practical traction systems, locomotives are the main source of higher harmonics. The locomotive
should bear the main harmonic responsibility. The harmonic responsibilities estimated by the proposed
method are basically consistent with the actual situation.

The feasibility and accuracy of the method proposed in this paper were further proven by the two
examples above.

5. Discussion

Simulation and experimental results demonstrated the feasibility and accuracy of the proposed
method in actual engineering. Compared with the method of constructing the phase (random phase
and zero phase methods), the proposed method had a high estimation accuracy. This is because
the method of constructing the phase introduces uncontrollable errors, and the proposed algorithm
directly uses the measurement data. Compared with the estimation method using the data phase value
(ideal method), the error produced by the proposed algorithm was slightly larger. This is because
the proposed method performed a power operation on the original data, amplifying the error to
some extent.

6. Conclusions

In this paper, a linear model was derived, and phase values of harmonic voltage and harmonic
current were no longer needed in the estimation process. The proposed algorithm uses the phase
difference information and amplitude information of the harmonic voltage and harmonic current to
estimate the harmonic parameters. Phase difference information and amplitude information can be
measured by a general power quality monitor. This provides a new way to estimate the harmonic
parameters of each feeder in practice.

The proposed algorithm has the following characteristics:

(1) The estimation accuracy of this algorithm will be affected by background harmonics. It has the
same characteristics as the method proposed in [21].

(2) When the algorithm estimates the harmonic responsibility of the feeder, the estimation accuracy
is higher for the feeder with larger harmonic responsibility.

(3) From the perspective of the complexity of the algorithm, although the derivation process may be
slightly complicated, the algorithm in this paper still uses linear regression to estimate the total
harmonic impedance. Linear regression does not take a long time, so the execution time of the
algorithm in this article is short.

Considering that the background harmonics will affect the estimation ability of the algorithm,
future research will improve the robustness of the algorithm.
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Abstract: The surface contamination of electrical insulators can increase the electrical conductivity
of these components, which may lead to faults in the electrical power system. During inspections,
ultrasound equipment is employed to detect defective insulators or those that may cause failures
within a certain period. Assuming that the signal collected by the ultrasound device can be processed
and used for both the detection of defective insulators and prediction of failures, this study starts
by presenting an experimental procedure considering a contaminated insulator removed from the
distribution line for data acquisition. Based on the obtained data set, an offline time series forecasting
approach with an Adaptive Neuro-Fuzzy Inference System (ANFIS) was conducted. To improve
the time series forecasting performance and to reduce the noise, Wavelet Packets Transform (WPT)
was associated to the ANFIS model. Once the ANFIS model associated with WPT has distinct
parameters to be adjusted, a complete evaluation concerning different model configurations was
conducted. In this case, three inference system structures were evaluated: grid partition, fuzzy
c-means clustering, and subtractive clustering. A performance analysis focusing on computational
effort and the coefficient of determination provided additional parameter configurations for the
model. Taking into account both parametrical and statistical analysis, the Wavelet Neuro-Fuzzy
System with fuzzy c-means showed that it is possible to achieve impressive accuracy, even when
compared to classical approaches, in the prediction of electrical insulators conditions.

Keywords: Adaptive Neuro-Fuzzy Inference System; insulator fault forecast; wavelet packets; time
series forecasting

1. Introduction

Power grid insulators are responsible for supporting cables and keeping the system isolated from
the ground and the other voltage phases. As these insulators are exposed to the environment, they may
get contaminated by small particle deposits on their surface. The contamination does not necessarily
mean that the insulator needs to be replaced, but if this contamination remains or increases, it may
lead to a system failure [1]. In practice, the protection switchgear (recloser) would disconnect the line.
If the insulator was seriously damaged and the defect was permanent, field personnel would have to
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be sent to replace the insulator; otherwise, the recloser will put the line back in service and it will work
as mentioned before.

As presented in [2], fault location and identification associated with the electrical system is
considered an important issue in order to ensure the efficiency of the services associated with energy
distribution. For the inspection of the electrical system and faulty insulators location, ultrasound
detectors are used, which capture the ultrasonic noise of the network components. The signal generated
by this equipment is an audio signal, which is electronically sampled in a time series form [3]. In order
to predict the continuity of the signal generated by the ultrasound detector, an evaluation based on a
modified version of the Wavelet Neuro-Fuzzy is presented in this article.

An Adaptive Neuro-Fuzzy Inference System (ANFIS) is a particular type of Artificial Neural
Network (ANN) based on the Takagi–Sugeno–Kang inference model. The ANFIS method couples
the benefits of both feedforward ANNs and fuzzy system techniques in the same framework [4].
Considering the best characteristics of each technique, the neuro-fuzzy network can be used to handle
systems that involve inaccurate, complex and nonlinear data [5].

Neuro-fuzzy systems inherit learning and classification capacity, robustness, adaptation, nonlinear
mapping, and clustering characteristics from ANNs. The behavior of these models can be understood
through the observation of variables associated with the membership functions, the relationship
between inputs and outputs, and from fuzzy rules due to similarities to human languages. From these
aspects, the ANFIS method could be adopted for chaotic time series forecasting [6–9].

The idea of using ANFIS in this study was based on the success of applications of hybrid models.
Actually, many techniques are available for the purpose of prediction, but hybrid techniques present
consistent results when applied to both classification and time series forecasting applications [10,11].
In [10], assuming public datasets with concept drift, the authors proposed an ensemble technique based
on the Random Forest algorithm. The algorithm exploits ensemble pruning as a forgetting strategy,
and the results performed better in classification when compared to other state-of-the-art concept
drift classifiers. Additionally, in [11], both wind speed and power were assumed as case studies to
propose a hybrid strategy, named the ultra-short-time forecasting method, based on the Takagi–Sugeno
fuzzy model. The antecedent and the consequent parts of the inference system were identified by the
fuzzy c-means clustering algorithm, which was associated with the recursive least squares method.
Considering wind farms from both China and Ireland, the proposed approach was compared with
Support Vector Machines (SVM), empirical mode decomposition, and a classical back-propagation
neural network, where the proposed method was shown to better predict short-term wind power.

In this article, the ANFIS model was employed for time series forecasting with the objective
of evaluating its performance in predicting electrical insulator conditions, those available in the
distribution network and which are susceptible to different climate and environment conditions. In this
study, the signal adopted as an input for the model came from ultrasonic equipment used for electrical
network inspection. Considering a normalized time series, feature extraction was performed by
Wavelet Packets Transform (WPT) [9], which allows signal simplification in both time and frequency
domains considering its entropy, energy, and variation.

By associating wavelets and ANNs based on a fuzzy system, recent research has shown promising
results in distinct applications. In the work presented in [12], a novel fuzzy neural network structure
assuming a cerebellar model neural network (CMNN) was proposed. Combining the advantages of
wavelets associated with CMNN and the Takagi–Sugeno–Kang inference model, the authors compared
the proposed method with traditional ANN structures, showing promising results for uncertain
nonlinear systems identification.

In [13], a hybrid fuzzy wavelet neural network (HFWNN) was proposed, and the algorithm
parameters were initialized considering the fuzzy c-means clustering method (FCM). The proposed
approach considered the first layer of the network to reflect data uncertainties, while a flexible second
layer performed linear combinations of the wavelet function. In this case, the HFWNN parameters
were adjusted assuming a genetic algorithm optimization procedure.
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Another application involving both fuzzy and wavelet methods was presented in [14], where a
polynomial neural network, also assuming FCM, was applied in the premise operator to overcome
dimensionality problems, while the consequence part was determined by means of wavelet functions
whose parameters were estimated with the aid of the least squares method. The proposed algorithm
showed an impressive ability to describe nonlinear relations between input and output variables,
especially in regression and system identification problems.

Based on features extraction, an approach considering the ANFIS method associated with both
wavelet and Fourier transforms was presented in [15] to solve a classification task, with the main
purpose of identifying the electrical energy quality provided to an electrical system. Similar works
assuming ANFIS to deal with identification or classification of electrical systems failures were presented
in [16,17].

A comparison between the fuzzy learning vector quantization used in clustering,
Levenberg–Marquardt, and ANFIS based on input signals provided from the wavelet transform
was presented in [18]. Considering a classification case study, the objective was to evaluate fundus eye
images in order to identify retinal abdominal eye disease. In this case, all methods presented 100% of
success in solving this task.

An application concerning electrical energy price prediction based on both wavelets and ANFIS
was presented in [19]. Following the same line as previous works mentioned in this article, the technique
provided consistent results in terms of prediction even considering the nonlinear characteristic of the
data set. A study assuming three performance indices to compare ANFIS with both classical ANN
structure and Multivariate Linear Regression (MLR) models was presented in [20]. The main idea was
to solve the prediction problem associated with the wastewater quality of the Las Vegas Wash, which
is a 12-mile-long channel that feeds most of the Las Vegas Valley. The authors showed that ANFIS
provided better results in terms of prediction when compared to classical ANN and MLR techniques.

Taking into account the necessity of predictive maintenance to avoid electrical system failures,
those associated with electrical insulator conditions, and the consistent results provided by the ANFIS
method in time series forecasting applications presented above, this research proposes the use of
Wavelet Packets Transform for both signal preprocessing and feature extraction based on a data set
obtained from ultrasonic equipment considering a laboratory experiment in which a contaminated
electrical insulator removed from an actual transmission line was assumed for data acquisition.

As mentioned before, contaminated insulators could be the reason for electrical system failures.
To avoid this situation, the prediction of the insulator condition assuming a modified ANFIS method
was performed in this study considering three approaches: (i) grid partition [21]; (ii) subtractive
clustering [22]; and (iii) fuzzy c-means clustering [23]. This paper presents a complete statistical
evaluation of the capabilities of the ANFIS algorithm combined with WPT to predict the development
of a fault in insulators of the electrical distribution system based on time series forecasting procedures.

The next section of this paper describes the problem related to the contamination of electrical
insulators and their proper classification. Section 3 presents experimental procedures for data
acquisition, and Section 4 addresses the proposed method assumed for time series forecasting.
Section 5 shows the results and discusses the method performance. Finally, Section 6 reports the
conclusions and future works associated with this research.

2. Description of the Electrical Insulator Problem

For more than a century, porcelain insulators have been used to support and insulate aerial
conductors on transmission and distribution systems. Despite recent polymeric insulators being lighter,
ceramic insulators are still being used, and some utilities still prefer them over the polymeric ones [24].
Since transmission and distribution systems run over wide and open areas, the insulators used in
these systems are subjected to environmental stresses, such as pollution and contamination, along with
the normally applied voltage and mechanical loads. Transient voltage due to lightning or transient
mechanical stress due to strong winds are examples of stresses imposed on the insulation system [25].
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The stresses which these insulators must withstand during an operational lifetime may weaken
their electrical and mechanical characteristics, leading to failure. A failure would be when the voltage
applied finds a way through the insulator’s surface to the ground, leading to a short circuit, taking the
transmission line or distribution feeder out of operation. A failure could also be mechanical, when the
insulator breaks and the line or feeder may get to the ground, in this case leading to a short circuit [26].

The contamination of the insulator’s surface is a great concern [27], as it may lead to other
possible failure mechanisms. As contamination deposits on the insulator surface, it may increase the
leakage current that flows from the live side to the ground and/or to the other phases of a polyphasic
system. The increased leakage current increases the level of electrical losses, intensifies electromagnetic
interference, and increases the flashover probability. Proximity to unpaved roads, coastal areas,
and polluted environments—especially due to the proximity of industry, mining and agricultural
activities—may increase the level of contamination and threaten the insulators’ surfaces of transmission
and distribution to electrical systems.

To avoid or mitigate the possibility of an insulator failure, it is important to monitor its condition.
Among the various techniques available, ultrasound is one of the most employed by utilities in order to
find defective insulators [28]. This method is based on the capture (and processing) of the ultrasound
emitted by partial discharges that would happen in an insulator that is not working correctly.

Inspectors should be able to identify a defective insulator based on an audio signal provided by
the ultrasound equipment. To identify a defective insulator, inspectors must be trained and able to
detect differences in the audio signal provided by the ultrasound equipment, which is not a simple
task [1]. Additionally, contaminated insulators do not represent a failure in the system, and do not
need to be replaced. However, this situation may lead to failures [29]. In this way, through time
series forecasting methods based on ultrasound signals of contaminated insulators, techniques can be
assumed to predict failures in the system.

3. Data Acquisition Experiment

This section describes the data acquisition method that was performed in order to detect
contaminated insulators according to a common procedure adopted by utilities.

3.1. Contaminated Insulator

An actual 25 kV class insulator was taken from the local utility (CELESC—Centrais Elétricas de
Santa Catarina, Brazil) distribution feeder, in a rural area. A controlled environment for data acquisition
was prepared in a laboratory environment simulating the inspection routine. The ultrasound data
were captured using ultrasound equipment. Figure 1 shows the contaminated insulator adopted in
this research.

Figure 1. Contaminated insulator removed from a 25 kV rural area distribution system.
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3.2. Laboratory Setup and Data Acquisition

The sample removed from the electrical system was fixed in a crossarm of a pole inside the
laboratory as it would be in the field, according to the local energy utility company. The ultrasound
equipment was positioned 2.2 m away from the sample. A nominal voltage of 13.8 kV (RMS, root
mean square) and 60 Hz—the same as that provided by electrical feeders in both urban and rural areas
in the south of Brazil—was assumed.

The ultrasound detector model 250 from Radar Engineers® was used during the experiment.
The sensitivity of the equipment (gain) can be adjusted according to the intensity of the ultrasonic noise.
The gain of the equipment varies from 0 to 10; in this work, the adequate gain for signal recording
was 0.5, considering that, from 1.0, the signal was saturated in some measurements and thus was not
considered. The signal that can be captured ranges from 1 kHz to 1 GHz [30,31].

The detector’s audio output was connected to a computer through a sound card controlled by a
LabVIEW® interface for data acquisition. The sampling rate assumed for data acquisition was 48 kHz,
which is sufficient to process signals with a frequency lower than 20 kHz. The signal was recorded in a
time series of 6.25 s, totaling a signal of 300,000 samples. For data recording and all software analysis,
an Intel Core i7-3520M, with 8 GB of Random-Access Memory (RAM), with MATLAB® software
was used. The signal was recorded and analyzed offline with the same computer. After the data
acquisition procedures, the time series was divided into distinct data sets to perform the statistical
analysis associated with the time series forecasting method presented in this work. More information
about this division was presented in Section 5 in the sequence of this article.

4. Time Series Forecasting

The present section describes the technique employed for time series forecasting based on the
data collected in the experiment described in the previous section. At first, a brief introduction about
time series forecasting concepts is presented, followed by the feature extraction method assumed in
this study. The ANFIS approach is presented in the sequence. Finally, an overview of the time series
strategy proposed in this study is addressed.

A time series can be defined as a data set obtained considering a sampling rate in time [7].
The data set can be presumed to build a prediction model considering previous values of the time
series to perform both one-step or n-steps ahead forecasting. Primarily, models were built based on the
probability distribution of the data set.

According to [32], assuming the time t of available observations from a time series to forecast
their value at some future time t + D, the time series can be considered stationary if no significant
variations are found in the variance analysis over time. In this case, the time series is stable and shows
regular behavior. If a short time series is considered, it is not usually possible to evaluate tendencies,
seasonality, and irregularity in the data set [9].

Supposing that observations are available at discrete samples, at equally spaced intervals of time,
a sample at instant t might be described as xt, and previous observations that can be used to forecast
the time series considering a prediction horizon D are ϕ(t) = [xt−1, xt−2, xt−3, . . . , xt−τ], where τ
represents the number of regressors assumed in the model.

A parametric autoregressive model for nonlinear time series forecasting can be defined as [33]

x̂t+D(t|θ) = y[ϕ(t),θ] (1)

whereϕ(t) represents the regression vector while θ is the vector containing the adjustable parameters of
the model. Additionally, y is the function realized by the selected model. In this research, y represents
the function provided by the ANFIS technique that will be addressed in the sequence of this section.
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4.1. Features Extraction

The present research adopted WPT for feature extraction, which represents the generalization of
the wavelet transform. At each iteration, WPT performs a new decomposition based on coefficients of
previous iterations. Consequently, it indicates that the final number of coefficients depends on the
number of iterations (decompositions) [34].

By considering an orthogonal wavelet decomposition (W) in the wavelet packet node level (WP),
the division of approximation coefficients creates a tree structure of two vectors: the first one is
the approximation coefficient vector, and the second one can be defined as a detailed vector [35].
The information lost during the approximation procedure is captured in the previously mentioned
coefficients and a new vector is created. In this case, successive details are not reanalyzed [18].

The WP function can be described in the following form:

Wn
j,k(t) = 2 j/2Wn

(
2 jt− k

)
(2)

where j is a scalable parameter, k represents the translation operator, and n is the oscillation parameter.
The two first WP functions for n = 0 and n = 1 are, respectively,

W0
0,0(t) = φ(t),

W1
0,0(t) = ψ(t).

(3)

The first function of Equation (3) represents the scale function, and the second one the main
function [31]. The next functions, for n = 2, 3, . . . , N, can be defined according to the following
relations:

W2n
0,0(t) =

√
2
∑
k
δ(k)Wn

1,k(2t− k),

W2n+1
0,0 (t) =

√
2
∑
k
ζ(k)Wn

1,k(2t− k)
(4)

where δ(k) is a low-pass filter and ζ(k) is a high-pass filter; these are associated with the predefined
scaling function and the mother wavelet function. The coefficients Ωn

j (k) could be obtained assuming
the product of functions x(t) and Wn

j, k :

Ωn
j (k) =

∫ ∞

−∞
x(t)Wn

j,kdt. (5)

Each coefficient WP can be defined according to a specific frequency level. The wavelet transform
decomposes low-frequency elements, while WPT decomposes all the elements. In this way, the
use of WPT results in components of both low and high frequencies; these are called low and
high approximations.

In order to use WPT, entropy, energy and variation should be considered in the WP calculation
procedure. Energy is assumed to define distinct classes, and in the proposed approach, it contains
failure information associated with the insulator condition. The energy fluctuation corresponds to
specific types of failures, similar to the approach presented in [36]. The signal is decomposed in J
levels, resulting in orthogonal subspaces, where the frequency component can be obtained using

En
J =

∑
k

[
Ωn

J (k)
]2

. (6)

For energy normalization in each frequency bandwidth, the distribution percentage associated
with the energy component is

en
J =

En
J

Etotal
=

En
J∑2J

n=1 En
J

. (7)
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The vector’s relative energy describes the development in time considering subspaces of low
and high frequencies. Changes in the distribution pattern describe the energy flow, which reveals
the pattern to be identified. Assuming the tree structure that was previously mentioned, which was
created from the division of the approximation coefficients, a binary optimal value is defined. In this
way, it is possible to create new subdivisions (sub-trees) from the previous one considering the entropy
criterion. Depending on the application, the resulting sub-tree can be much smaller than the original
one. This technique considers that the objective is to find a minimum criterion in order to obtain an
efficient algorithm [37].

The coefficients are allocated according to their Shannon entropy and are rebuilt to generate a
filtered signal. Based on a data set obtained from experimental procedures described in Section 3,
Figure 2 describes an example of the previously mentioned procedure considering 500 recorded points,
representing 10.42 ms of data acquisition with a sampling frequency of 48 kHz. In this case, coefficients
can be assumed quantitatively to represent signal distributions combining their characteristics; these
could be used in an efficient way for training when associated with a time series forecasting problem.

Figure 2. Comparison between original and rebuild signal using Wavelet Packets Transform (WPT).

The Shannon entropy describes the energy content in a signal through the distribution of amplitude
levels. The uncertainty definition is adopted in this case for probabilistic treatment purposes and can
be defined as a logarithmic function H(.), given by

H(p1, . . . , pn) = −
n∑

i=1

pi log(pi) (8)

where pi is the occurrence probability associated with an event i. Thus, the entropy indicates the
probabilistic uncertainty of a probability distribution [38]. After normalizing the input variables of
the time series, the pertinence degree is calculated in the fuzzy layer. It corresponds to how the
inputs satisfy the fuzzy sets associated with each input. In the rule layers, the firing level is calculated
according to each rule.

To solve the forecasting problem, a data set is selected, and the mean, variance, and covariance
values were used in the statistical analysis. The variance Vi of each variable can be defined as

Vi =
1

n− 1

n∑
m=1

(x̂i,m − xi)
2 (9)

where x̂i,m is the value of the predicted output variable i in object m, and xi is the mean value. Vi
indicates how far the predicted values are from expected values. The covariance Ci, j is the linear
correlation between two random variables according to the following equation:

Ci, j =
1

n− 1

n∑
m=1

(x̂i,m − xi)
(
x̂ j,m − xj

)
. (10)
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where x̂ j,m also represents the value of the predicted output—now for variable j in object m—and
xj is the mean value. Here, the eigenvalues and eigenvectors are calculated and associated with the
cumulative variability percentage in order to determine the main components (factors). Factors with
the highest eigenvalues are selected, and indicators of each factor are then calculated. The influential
characteristics are chosen based on the evaluation of indicators considering the most significant factors.

4.2. Adaptive Neuro-Fuzzy Inference System

After the filtering procedures described in the previous section, the ANFIS method was applied
for mapping input characteristics with the objective of creating input rules. These rules generate a set of
characteristics associated with the desired output [39]. Considering an arbitrary selection of functions,
the structures are predefined based on characteristics of the model variables [20]. The structure of
ANFIS is a combination of a fuzzy inference system and a neural network; the summary of this
architecture is presented in Figure 3.

Figure 3. Adaptive Neuro-Fuzzy Inference System (ANFIS) structure for time series evaluation.

The fuzzy inference structure considering grid partitioning creates a single-output Sugeno fuzzy
system, which is used as an initial condition for ANFIS training (see Figure 3). The grid partition
method improves parallel processing performance, ensuring equality in the distribution of tasks to
each core of the processor. For this type of cluster, a distinct rule is defined for each combination
between the participation function and the correspondent output function [40]. Taking into account a
subtractive cluster structure, which requires a separate data set and distinct arguments, it is possible to
extract the rules sets that can identify the behavior of the time series. In this type of cluster exists a
specific rule for each fuzzy cluster [41].

The fuzzy inference system based on c-means (FCM) automatically selects the number of clusters
and randomly distributes the coefficients to each sample of the data set. The algorithm repeats this
procedure until it reaches convergence, which means that each cluster centroid cj should be calculated
considering its membership level for n data points [42].

cj =

∑n
k=1 wi, j

mxi∑n
k=1 wi, jm

. (11)

Any point xi has a set of coefficients according to the cluster k-th degree, where wi, j represents
the clustering degree, and m the fuzzy partition matrix exponent. The FCM method tries to separate
elements of the data set in a finite collection assuming a predefined criterion [43]. Thus, the objective
function to be minimized, with η clusters, can be expressed by
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arg minη
n∑

i=1

η∑
j=1

wi, j
m‖xi − cj‖2 (12)

considering

wi, j =
1∑η

k=1

( ‖xi−cj‖
‖xi−ck‖

) 2
m−1

. (13)

4.3. Algorithm Setup

Summarizing the technique procedures until this step, at first, a scalable filter was applied in the
time series. In the sequence, a decomposition procedure was performed assuming Wavelet Packets
Transform (WPT) from three to five levels. Previous tests showed that more levels did not improve the
results obtained in this work [44]. We also considered two and three nodes during decomposition, and
again, previous tests reported that, when more nodes were assumed, a loss of characteristics of the
original signal was reported. The decomposition was performed to obtain a wavelet package tree; after
that, WPT was applied.

For the fuzzy inference structure based on grid partition, two functions were associated with each
input; in this case, Gaussian functions were utilized. The Gaussian function adopted here is given by

γinput(xi) = e
−(xi−u)2

2σ2 (14)

where u is the center and σ represents the spreading parameter of the Gaussian function. For the
output, a linear function was used.

In the FCM structure, 5 to 30 subtractive clusters were considered in the analysis. The influence
range of each center was specified in each dimension to 0.5; i.e., for each cluster center, a spherical
neighborhood with a radius equal to the previously mentioned value was assumed [14]. In order
to apply standardized training procedures, the maximum number of iterations was set to 1000.
Additionally, an adaptive algorithm was assumed with an initial step of 0.01, a decreasing rate equal
to 0.9, and an increasing rate equal to 1.1. The hybrid neural network optimization method uses the
combination of least-squares estimation and error back-propagation for training [13].

The error signal is calculated by the difference in net target γi to the net output γ̂i for both training
and testing procedures. Finally, a metric of global error evaluation based on the root mean square error
(RMSE) was assumed as a stopping criterion during training and also for testing, where

RMSE =

√√
1
n

n∑
i = 1

(γi − γ̂i)
2. (15)

This article presents other metrics for validation of the proposed method, such as mean absolute
error (MAE) and mean absolute percentage error (MAPE). MAE denotes the mean of absolute difference
between the observed value to the predicted one, given by:

MAE =
1
n

n∑
i = 1

∣∣∣γi − γ̂i
∣∣∣. (16)

MAPE calculates the average error ratio to the correct values, where

MAPE =
1
n

n∑
i = 1

∣∣∣∣∣γi − γ̂i

γi

∣∣∣∣∣. (17)
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Based on recent studies focusing on time series forecasting [45–48], the coefficient of determination
R2 was assumed as a performance criterion for model evaluation; see Equation (18). Thus, γi is the
mean of the targets (γi), and these values represent the observed data—those acquired using the
ultrasound equipment.

R2 = 1−
∑n

i=1(γi − γ̂i)
2∑n

i=1

(
γi − γi

)2 . (18)

With the objective of illustrating the procedures and methods described in this research, Figure 4
presents a flowchart of this research. The flowchart shows the analysis from the insulator which will
probably develop the failure to predictability analysis.

Figure 4. Method flowchart for insulator withdrawal and model evaluation.

5. Results and Discussion

Taking into account the parameters described in the previous section to configure both feature
extraction and neuro-fuzzy methods, this section presents and discusses the results of the proposed
model. This section was divided into four subsections: (i) analysis of the inference system; (ii) analysis
of the fuzzy c-means clustering method; (iii) comparison of the proposed method with classical
approaches; and (iv) a brief review about the state-of-the-art approaches that follow the same line of
this research.

For the statistical analysis, the time series obtained in the experimental procedure presented in
Section 3, which was based on a contaminated insulator, was divided into five data sets of 50,000
samples each. The percentages of each data set assumed for training, validation, and testing were 75%,
15%, and 10%, respectively. The amount of data assumed for the three phases previously mentioned
was obtained based on prior evaluations of the model performance in order to avoid overfitting during
both validation and testing phases. The mean results provided by the algorithms among all data sets
were assumed and are presented in the next subsection. Data analysis was conducted assuming the
signal obtained from the wavelet energy coefficient.

5.1. Analysis of the Inference System Structure

Three fuzzy inference structures were examined in this study: the first one from data using grid
partition, the second one from data assuming subtractive clustering (FCM), and the third one from
data using FCM clustering. Table 1 shows mean values considering the decomposed signal in wavelet
packets until the third level, where one node was considered. In all tables, underlined results indicate
the best result for each column.
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Table 1. Analysis with different fuzzy inference structures. FCM: fuzzy c-means clustering method;
RMSE: root mean square error.

Method Time (s)
R2

RMSE MAE MAPE Standard
DeviationTraining Validation Testing

Grid
Partition 115.03 0.9588 0.9602 0.9592 0.0155 8.5 ×

10−3 0.9309 2.5 ×
10−3

FCM
Clustering 158.52 0.9635 0.9643 0.9637 0.0142 6.3 ×

10−3 0.8580 2.6 ×
10−3

Subtractive
Clustering 956.59 0.9678 0.9685 0.9686 0.0141 9.6 × 10−4 0.1737 2.2 × 10−3

As presented in Table 1, the grid partition structure provided the fastest results for training.
However, the faster the method, the lower the performance in terms of the coefficient of determination.
The subtractive clustering structure provided the best results. However, it was 87.97% more
time-consuming when compared to the grid partition strategy.

In all cases reported in Table 1, the standard deviation values indicated that the three approaches
are stable, even considering distinct windows in time. Table 1 also presents the RMSE values obtained
during the testing phases of each method. By analyzing the RMSE standard deviation of all methods, a
small value was obtained, with this equal being to 7.81 × 10−4. MAE also provided a low standard
deviation value between the analyzed methods of 3.88 × 10−3. Finally, MAPE values follow the trend
of the RMSE. Taking this information into account, the performance analysis presented in the sequence
of this article considered the coefficient of determination as the main factor.

The FCM clustering structure is widely discussed in the specialized literature, as can be seen
in [9,13,14,18]. The method provided a balanced performance when both execution time and R2 were
evaluated. In this case, the mean time was considered as one of the criteria assumed to select the best
fuzzy inference structure. Due to these aspects, and the R2 values presented in Table 1, the method
presented in the next subsection was chosen for future analysis. Additionally, distinct decomposition
configurations based on wavelet packets will also be discussed. Assuming FCM clustering, Table 2 shows
an evaluation of the time and algorithm forecasting performance according to the number of clusters.

Table 2. Evaluation of the number of clusters considering the FCM structure.

Cluster
Number

Mean
Time (s)

R2

RMSE MAE MAPE Std.
DeviationTraining Validation Testing

5 104.89 0.9577 0.9598 0.9583 0.0146 6.5 ×
10−5 0.8576

3.0 ×
10−3

10 314.42 0.9618 0.9632 0.9622 0.0140 1.2 ×
10−4 0.7639

15 445.00 0.9640 0.9649 0.9642 0.0136 1.6 ×
10−4 0.7574

20 737.56 0.9650 0.9658 0.9652 0.0135 8.1 ×
10−5 0.6211

25 1118.56 0.9666 0.9669 0.9667 0.0132 3.7 ×
10−5 0.5990

30 1497.45 0.9668 0.9671 0.9669 0.0132 5.1 × 10−5 0.5388

In terms of performance, it can be emphasized that the results obtained between 5 and 10 clusters.
In this way, 10 clusters were used for comparison with respect to WPT configurations. In terms of
execution time, a progressive increase can be observed with a proportional increase in the number of
clusters. To illustrate the relation between the input (target) and the predicted (output) signals during
the testing phase, Figure 5 shows the results for 500 samples considering one-step ahead forecasting,
using 10 clusters.
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Figure 5. Comparison between predicted and real data assuming an FCM structure for the testing phase.

The RMSE, MAE and MAPE values for the testing phase were smaller using more clusters,
however the time required for convergence was longer. Again, small variations in terms of the number
of clusters for RMSE and MAE were obtained.

5.2. Analysis of the Fuzzy C-Means Clustering Method

After defining the structure of the model, this section provides an evaluation of the fuzzy c-means
clustering method. The results reported in this section employed the third, fourth and fifth levels of
wavelet decomposition and three nodes. The underlined results represent the best results of each
configuration, while results in bold indicate the global best results.

Table 3 presents the results for the training phase. The first number in column 1 indicates the
decomposition level, while the second one represents the number of nodes.

Table 3. Training analysis for FCM clustering.

Levels_Nodes
Number

R2

Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5

3_1 0.9618 0.9616 0.9677 0.9612 0.9649
3_2 0.9665 0.9667 0.9666 0.9682 0.9682
4_1 0.9618 0.9616 0.9683 0.9611 0.9650
4_2 0.9629 0.9653 0.9699 0.9623 0.9694
5_1 0.9618 0.9617 0.9684 0.9604 0.9653
5_2 0.9672 0.9686 0.9663 0.9653 0.9632

The algorithm provided the best results considering four decomposition levels and two nodes.
Validation results are presented in Table 4.

Table 4. Validation analysis for FCM clustering.

Levels_Nodes
Number

R2

Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5

3_1 0.9632 0.9622 0.9690 0.9660 0.9609
3_2 0.9669 0.9669 0.9672 0.9663 0.9665
4_1 0.9632 0.9622 0.9698 0.9660 0.9609
4_2 0.9629 0.9656 0.9705 0.9615 0.9659
5_1 0.9631 0.9623 0.9698 0.9655 0.9613
5_2 0.9681 0.9692 0.9663 0.9654 0.9630
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When validation results were evaluated, a similar condition when compared to the training phase
was observed, where both the decomposition level and the number of nodes that provided the best
results for training were replicated for validation. The same behavior was obtained during the testing
phase (see details in Table 5).

Table 5. Testing analysis for FCM clustering.

Levels_Nodes
Number

R2

Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5

3_1 0.9622 0.9618 0.9680 0.9626 0.9639
3_2 0.9666 0.9668 0.9667 0.9677 0.9678
4_1 0.9622 0.9617 0.9687 0.9625 0.9640
4_2 0.9629 0.9654 0.9700 0.9621 0.9685
5_1 0.9622 0.9619 0.9688 0.9618 0.9643
5_2 0.9674 0.9687 0.9663 0.9654 0.9630

The comparison among distinct data sets during testing showed that the algorithm is stable,
presenting variations in performance smaller than 0.79%. The best overall result was obtained
considering the FCM clustering method with 10 clusters, with four levels and two nodes for the Data
Set 3. The complete statistical analysis is presented in Table 6, where the covariance is calculated
considering the variation in terms of the number of nodes associated to each decomposition level.

Table 6. Statistical results for the testing analysis of FCM clustering.

Levels_Nodes
Number

Mean R2 RMSE MAE MAPE Std.
Deviation

Variance Covariance

3_1 0.9637 0.0140 1.2 × 10−4 0.7714 2.6 × 10−3 6.49 × 10−6
1.46 × 10−7

3_2 0.9671 0.0064 2.9 × 10−6 0.2325 5.6 × 10−4 3.17 × 10−7

4_1 0.9638 0.0139 1.1 × 10−4 0.7431 2.9 × 10−3 8.27 × 10−6
6.42 × 10−6

4_2 0.9658 0.0061 1.3 × 10−4 0.0368 3.5 × 10−3 1.19 × 10−5

5_1 0.9638 0.0140 1.2 × 10−4 0.7728 3.0 × 10−3 8.80 × 10−6
1.30 × 10−6

5_2 0.9662 0.0063 6.5 × 10−5 0.2540 2.2 × 10−3 4.74 × 10−6

The algorithm provided considerable small variance values, showing that WPT can efficiently
reduce the effect of noise in the time series, providing a stable algorithm. The importance of
evaluating more performance measures can be highlighted at this point, as for the RMSE, three
distinct configurations provided the similar results, using two nodes. The fact of adding the R2 metric
contributes to the selection of the best model, as already described in this paragraph. The MAE
values obtained in this case helped to confirm that three levels and three nodes provided the best
model configuration.

5.3. Benchmarking with Nonlinear Autoregressive Methods

Assuming the task of comparing the proposed approach with well-stablished methods for time
series forecasting, in this section, we considered two more structures: a Nonlinear Autoregressive
(NAR) model, and a Nonlinear AutoRegressive with Exogenous Input (NARX) model, both of which
are based on Neural Networks technique [49].

During training, three distinct classical approaches were considered: Levenberg–Marquardt
(LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG). Additionally, distinct
configuration parameters were assumed: the number of hidden neurons (NHN), the number of
regressors (ND), and the number of delayed outputs.

In the NAR network the calculation is based on Data Set 1, and in NARX networks, the calculation
is based on the data relationship of Data Set 1 to Data Set 2. Data Set 2 represents values in a time
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window ahead of Data Set 1. Table 7 was based on R2 and Table 8 on RMSE. These tables present the
benchmark for all methods described above. Results were presented for network testing. For both
hidden layers and regressors, amounts of 5, 10 and 15 were considered in the evaluation.

Table 7. Benchmark evaluation with nonlinear autoregressive methods based on R2. NHN: number of
hidden neurons; ND: number of regressors; LM: Levenberg–Marquardt; BR: Bayesian Regularization;
SCG: Scaled Conjugate Gradient; NAR: Nonlinear Autoregressive; NARX: Nonlinear Autoregressive
with Exogenous Input.

NHN ND
NAR-R2 NARX-R2

LM BR SCG LM BR SCG

05
05 0.7441 0.7441 0.7425 0.7409 0.7412 0.7365
10 0.7877 0.7879 0.7869 0.7864 0.7869 0.7856
15 0.8189 0.8193 0.8180 0.8173 0.8181 0.8171

10
05 0.7440 0.7440 0.7418 0.7411 0.7414 0.7367
10 0.7874 0.7880 0.7856 0.7868 0.7876 0.7787
15 0.8191 0.8198 0.8176 0.8176 0.8191 0.8162

15
05 0.7435 0.7440 0.7387 0.7410 0.7413 0.7392
10 0.7879 0.7879 0.7845 0.7867 0.7883 0.7666
15 0.8190 0.8201 0.8145 0.8175 0.8199 0.8141

Table 8. Benchmark evaluation with nonlinear autoregressive methods based on RMSE.

NHN ND
NAR-RMSE NARX-RMSE

LM BR SCG LM BR SCG

05
05 0.0374 0.0377 0.0373 0.0374 0.0375 0.0372
10 0.0350 0.0351 0.0345 0.0345 0.0348 0.0352
15 0.0323 0.0318 0.0350 0.0323 0.0320 0.0330

10
05 0.0378 0.0379 0.0378 0.0374 0.0379 0.0376
10 0.0352 0.0345 0.0344 0.0349 0.0347 0.0343
15 0.0325 0.0327 0.0328 0.0323 0.0327 0.0325

15
05 0.0377 0.0373 0.0380 0.0389 0.0384 0.0375
10 0.0348 0.0346 0.0350 0.0347 0.0334 0.0347
15 0.0324 0.0325 0.0325 0.0327 0.0323 0.0328

In this analysis, NAR and NARX methods provided lower performance when compared to the
proposed Wavelet Neuro-Fuzzy approach. In its best case, the NAR model reached 0.8201 in terms
of R2 during the testing phase, which was much lower than the Wavelet Neuro-Fuzzy model, which
reported 0.9700. The variation of the training method did not significantly impact the final results of
both NAR and NARX models, as well as the number of hidden neurons. However, when the number
of regressors was increased, an improvement in the performance associated with R2 values could be
noticed. In this case, it is important to emphasize that, by increasing the number of regressors, the
computational effort also increases. After 15 regressors, the maximum number of iterations (1000) was
reached by both methods.

Based on RMSE results, NAR and NARX methods continued to maintain inferior results when
compared to the proposed Wavelet Neuro-Fuzzy approach; even when varying both the settings and
the optimization model, the RMSE values provided by these methods were much higher than the
Wavelet Neuro-Fuzzy model.

5.4. State-of-the-Art Approaches and Comparisons

Huang, Oh and Pedrycz presented two studies in [13] and [14] comparing different techniques
with FCM and wavelets. In the proposed evaluations, other techniques based on FCM also presented
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small errors. The article presented in [13] exposed how hybrid algorithms provided superior results
when compared to the application of isolated techniques. In [14], the FCM method was used for the
premise calculation, while the consequence calculation was obtained by wavelet functions whose
parameters were estimated with the aid of the least square method.

Other work based in FCM was presented by Yang and Liu in [9], where an application focusing on
time series also presented interesting results. The proposed model was also based on feature extraction
through wavelets. The application considered the technique proposed by [50] for noise detection in
time series. Comparisons showed that this algorithm is superior to ANFIS and the classic Artificial
Neural Networks approach.

In the works reported in [5,19,20], ANFIS was assumed for time series forecasting. Fu, Cheng,
Yang, and Batista showed in [20] that ANFIS provided better prediction when compared to classical
approaches. Additionally, an improved Wavelet-ANFIS was proposed and the results reached 98.5%
in terms of accuracy assuming three association functions.

In [18], Damayanti compared ANFIS and fuzzy learning vector quantization (FLVQ). The author
showed that FLVQ provided better results for image classification purposes when wavelet
transformation was used.

The ANFIS method was also assumed in [15] considering two Gaussian association functions
with WPT. In this study, ANFIS was adopted to classify different types of disturbance events in power
quality. The method was assumed for fuzzy inference structure evaluation based on grid partition,
the same evaluated in this research and reported in the first line of Table 1. Additionally, here, the
method was compared to FCM and subtractive clustering. Moreover, in [15], promising results were
obtained, and an accuracy of 99.56% was obtained for the classification task. In this case, it is important
to emphasize that a considerable small data set was assumed, and the variability of the method was
not evaluated. In this way, even providing interesting results, there is a lack of information about the
algorithm’s precision and robustness.

Similar to the previously mentioned work, Babayomi and Oluseyi obtained an accuracy of around
81% for location and prediction for 10 different types of faults [16]. In this case, just the ANFIS method
was assumed considering grid partition.

6. Conclusions and Future Research

This article presented a complete approach for predicting electrical insulator conditions. This work
was based on an experimental procedure for data acquisition using a contaminated insulator, which
was removed during an inspection of an electrical system in the South Region of Brazil. Ultrasound
equipment was used during the experiment and a data set was obtained. To predict the condition of
the insulator, a hybrid neuro-fuzzy approach was adopted. The signal provided by the ultrasound
apparatus was filtered assuming a Wavelet Packets Transform in order to improve the performance of
the time series forecasting model. Additionally, three inference system structures were evaluated: grid
partition, fuzzy c-means clustering, and subtractive clustering. Moreover, distinct parameters as the
numbers of clusters, levels, and nodes were adjusted to improve the model performance.

The application of ANFIS for time series forecasting was shown to be a reasonable approach,
considering both computational effort and performance. By assuming a larger number of clusters, a
considerable increase in time (computational effort) was reported, whereas no significant improvement
in the result was observed in terms of coefficient of determination.

In a specific evaluation associated with the algorithm configuration, the FCM clustering method
showed balanced results in terms of training time and accuracy. This approach was successfully
reported by other researchers and emphasized in this work.

The statistical analysis showed that the proposed approach provided low variability, even
considering distinct data sets, confirming the method’s robustness for this application. Additionally, it
can be emphasized that the method robustness was improved by the application of Wavelet Packets
Transform for noise reduction and feature extraction.

161



Energies 2020, 13, 484

Contaminated insulators are reported by energy companies as a frequent problem. Taking into
account the fact that most of the energy network uses aerial lines without coverage, the application of
this technique for insulator monitoring can provide interesting information, whether they are going to
reach failure in a future horizon or not.

In addition, as an alternative approach to the use of a neuro-fuzzy system for time series forecasting,
some authors are assuming deep learning techniques for the same purpose, as presented in [51,52];
for example, the Long Short-Term Memory (LSTM) method. Taking into account the fact that, in
most studies, no comparisons were performed between these algorithms [53], this approach can be
suggested as interesting future work when considering the same data sets. Finally, the future of this
research will be focused on the development of hardware capable of detecting defective insulators
early. Additionally, by associating failure classification presented in [44], and time series forecasting
as discussed in this work, a more elaborated method to predict distinct types of failures in electrical
insulators can be developed. The idea for future works is to combine both models focusing on
the development of a specialized system capable of both to predict and classify failures as cracks,
contamination among others.
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Abstract: With the integration of highly permeable renewable energy to the grid at different levels
(transmission, distribution and grid-connected), the volatility on both sides (source side and load
side) leading to bidirectional power flow in the power grid complicates the control mechanism. In
order to ensure the real-time power balance, energy exchange, higher energy utilization efficiency
and stability maintenance in the electric power system, this paper proposes an integrated application
of blockchain technology on energy routers at transmission and distribution networks with increased
renewable energy penetration. This paper focuses on the safe and stable operation of a highly
penetrated renewable energy grid-connected power system and its operation. It also demonstrates a
blockchain-based negotiation model with weakly centralized scenarios for “source-network-load”
collaborative scheduling operations; secondly, the QoS (quality of service) index of energy flow control
and energy router node doubly-fed stability control model were designed. Further, it also introduces
the MOPSO (multi-objective particle swarm optimization) algorithm for power output optimization
of multienergy power generation; Thirdly, based on the blockchain underlying architecture and load
prediction value constraints, this paper puts forward the optimization mechanism and control flow
of autonomous energy coordination of b2u (bottom-up) between router nodes of transmission and
distribution network based on blockchain.

Keywords: high permeability renewable energy; blockchain technology; energy router; QoS index of
energy flow; MOPSO algorithm; scheduling optimization

1. Introduction

Extensively distributed renewable energy is well-known for its diverse advantages, such as its
wide availability and clean power, which adjures human society to switch the existing energy structure
in order to set up a clean, efficient, safe and sustainable modern energy system [1,2]. Renewable
energy refers to the energy that is not depleted when used and generally comprises wind, solar, hydro,
biomass, tidal and geothermal sources [3]. Among them, (1) in the long run, biomass power generation
and geothermal power generation are relatively less affected by natural factors such as seasons, day
and night and cloudy weather [4]; (2) over a certain period of time, hydropower generation is also
less affected by natural environmental factors; (3) in the short term, power generation sources such
as tidal, wind and solar, are also greatly affected by environmental factors [5]. At present, the large
scale integration of renewable energy power generation in the source side has been achieved by the
centralization of wind, photovoltaic and hydropower generation, and some areas are assisted by
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biomass, tidal, geothermal and other methods of generating electricity [6]. Meanwhile, the load side also
transfers excess energy to the power grid in the form of distributed wind and photovoltaic micro-grid.

With the large-scale access of highly permeable renewable energy, the diversity and uncertainty
of energy forms increase the complexity of power output and distribution [7]. Simultaneously, the
phenomenon of “abandoning or curtailing wind, solar and hydro,” in some areas leads to poor
coordination and matching ability between the source side and the grid side [8,9]. Moreover, the dual
overlaying of source and load volatility under renewable energy access leads to the bidirectionalization
of power flow and complicating the control mechanism. Therefore, it is difficult to realize real-time,
efficient and intelligent control of transmission and distribution networks by unified centralized
scheduling. Hence, it is urgent to improve the level of collaborative optimization, so as to enhance
the autonomous decision-making ability and autonomous coordination ability of transmission
and distribution network nodes at all levels. Being a distributed and decentralized peer-to-peer
network, a blockchain has the technical characteristics of distributive decision making, cooperative
autonomy, traceability and tamper resistance [10], making it suitable for the cooperative optimization of
transmission and distribution network under the access of renewable energy in terms of topology and
collaborative scheduling [11,12]. This can fairly well guarantee the safe operation of the transmission
and distribution network.

References [13–15] analyze the technical requirements of energy Internet for blockchain and
its applicability. Reference [16] combined different scenarios in the energy internet, such as carbon
emission rights certification, illustrating the specific application of blockchain. Article [17–19] has
proposed the mathematical model and relevant optimization methods of transmission network structure
optimization along with emergency demand-side response strategy in transmission network planning.
Reference [20] uses the distributed ledger technology of the blockchain for the demand response of the
smart grid can improve the accuracy of signal tracking. Reference [21] describes to the interconnection
between smart devices of the Internet of Things and the interconnection of blockchain nodes, and
analyzes the feasibility of device operation and data management. In reference [22], block chain
technology is used to solve the security problem of communication between different types of machines
in Cyber-Physical Systems (CPS). Therein, block chain for M2M secure communication is designed
to ensure that the communication data between machines is tamperproof. Reference [23] proposes
a security solution that applies blockchain technology to smart grid and multienergy interactions,
and uses digital signature technology to ensure high security of the solution. The above articles
respectively study and analyze the blockchain technology and renewable energy access requirements
from the application mode of blockchain under the energy Internet together with transmission and
distribution network optimization techniques. Apart from this, they lack the combination of the
“source–grid–load” operation scenario under renewable energy access, analyzing the collaborative
optimization mechanism and control flow of the energy distribution router in the transmission and
distribution network, and the information interaction and constraints between different levels of energy
routers under the weakly centralized scheduling. To overcome those issues, realizing the application
of blockchain this paper puts forward a novel idea of technology integration supporting the energy
router application scenario on the top with blockchain technology with access to highly permeable
renewable energy.

The main contributions made of this research paper are as follows:

a. For the flexible output power generation, synchronizing the demand response and transmission
and distribution network characteristics, the doubly-fed stability control model using energy
routers nodes under blockchain node topology was designed with the QoS (quality of service)
index for the energy flow control. This will help to achieve the optimization of the source side
and grid side cooperation.

b. The influencing factors of high integration of renewable, network fault or overloading parameters
can affect the power generation. Thus, all the influencing factors are considered for generation
control feedback and integration control of energy flow and information flow in the transmission,
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and a distribution network under a weakly centralized scheduling is realized through the b2u
(bottom-up) negotiation mechanism based on a master-slave multichain. This will lead to
autonomous decision-making capability, and autonomous coordination of transmission and
distribution networks will be realized.

c. The energy router is used as a network node, and the master-slave multichain negotiation
mechanism is used to realize the information exchange between the energy routers, which
improves the interoperability between the energy nodes with increased security of blockchain
architecture; through the optimization algorithm of the blockchain smart contract, joint output
schemes of different power plants can be obtained, which improves the ability of the power
transmission and distribution network to mitigate wind and light loss.

2. The Energy Router Operating Scenario with Highly Permeable Renewable Energy Access

2.1. Prerequisites of Weakly Centralized Collaborative Scheduling

The normal and stable operation of the transmission and distribution network and the power
plants are under the unified control of the dispatch control system. The power dispatch system mainly
incorporates the below listed four functions:

a. Real-time Monitoring and early warning: It acquires the check result data, such as power
generation plan, heavy load, over the limit, sensitivity and other information, to realize real-time
monitoring and early warning on both sides of the source and the load, and ensure the safety of
the power grid.

b. Dispatching plan: It obtains real-time information, such as grid topology trends, which is used
to provide source-load prediction data and power generation plans, locate substation authority
and perform safety analysis and evaluation of power generation plans.

c. Security check: It provides heavy-duty, over-limit, sensitivity, and stability information to review
synergistic results on the distribution side.

d. Dispatch management: It provides various online equipment parameters of the power system,
coordinates and manages the internal function allocation of the dispatch control system.

The four-function modules guarantee the safe and stable operation of the electric power system.
However, under the new situation of high-permeability renewable energy access, regardless of the
more serious phenomenon of “abandoning wind and solar” and the bidirectionalization of energy
trends in transmission and distribution networks, it is essential to strengthen the autonomous operating
capacity of intelligent energy node equipment, such as energy routers [24]. And some functions of
the scheduling system are required to be implemented locally; i.e., from the strong centralization of
unified scheduling to the weak centralization of distributed coordination [25]. Some of the existing
scheduling functions that the energy router node can undertake are shown in Table 1:

Table 1. The existing scheduling functions which the energy router/switch node can perform.

The Scheduling Function Corresponding Functions That Energy Router Nodes Can Implement

Real-time monitoring and early warning Get the data result which can be checked based on self-calculation force, and monitor its
safety in real-time

Dispatching plan Guide the optimization of energy flow of its own node through historical generation plan
and scheduling requirements

Security check Independently check overload and other information

Dispatch management Some functions can be negotiated and managed by energy routing nodes

2.2. Application Scenario of Energy Router Based on Blockchain under “Source–Grid–Load” Cooperative Operation

The energy router here refers to the core equipment of the energy Internet architecture. It is a
smart agent capable of computing, communication, precise control, remote coordination, autonomy
and plug-and-play access to the power grid. It has functions such as energy interaction, information
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interaction and intelligent distribution. Among them, information exchange is realized through
software platforms such as server clusters and power consumption information collection equipment;
energy interaction is realized through hardware platforms such as power electronic transformers with
voltage transformation and current transformation functions. In order to support highly permeable
renewable energy access to the grid, the power dispatch center can decentralize some functions to the
energy routing nodes at all levels, and realize intelligent control of energy routing nodes in terms of
cooperative autonomy, decision-making efficiency, collaborative operation and data security based on
blockchain technology. The collaborative operation model is shown in Figure 1.

Figure 1. The “source–grid–load” operation model for renewable energy access.

In the context of widespread access to renewable energy sources, the “source–grid–load”
cooperative operation model shown in Figure 1 focuses on the different problems from the source side,
grid side and load side. The blockchain technology and energy flow QoS index is introduced on the
basis of power and load prediction from the source side and load side, which can ensure the cooperative
autonomy and cooperative operation of energy nodes at all voltage levels. The brief explanation of
operation and working of source side, grid side and load side energy nodes in the model is as follows:

a. Source side: The source side strives to increase the proportion of renewable energy output
and reduce the impact of its output fluctuations. It obeys the following principles: (1) priority
to maximum utilization of renewable energy; (2) reduce losses caused by “abandonment of
wind and solar”; (3) ensure that the electric power system has least disturbances; (4) meet the
renewable energy output; and (5) satisfy the corresponding line transmission capacity to the
reliable extent.

b. Grid side: Grid side is based on the principle that the energy routers at each voltage level are
interconnected, and the energy flow and information flow are highly integrated. Due to the
diversity of renewable energy forms, the following issues must be kept in full consideration
when encouraging the grid to actively access renewable energy: (1) Accessible renewable energy
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capacity and geographical differences. (2) The particularities of and complementarity between
different energy forms. (3) Time sensitivity of renewable energy and volatility of energy supply.
Therefore, the energy router not only needs to share some functions of the dispatch control
system [26], but also needs to optimize the QoS indicators of the energy nodes of the local level
for maintaining the output level of the local renewable energy. Simultaneously, in order to ensure
that the energy router can access data at any time and participate in data interaction, record
management, etc., to achieve peer-to-peer power demand negotiation in a trusted environment,
energy routers at different voltage levels are to be used as network nodes to build different types
of energy router negotiation chains to complete energy demand negotiation; authenticating and
registering [27]; storing and managing an energy router’s intelligent optimization algorithms and
QoS indicator data in a smart contract; and building a weakly centralized trusted transmission
and distribution environment. In addition, through the analysis of the previous block data, it
can guide the next stage of energy complementary allocation and the formation of transmission
and distribution plans [28–30].

Due to the variation of renewable energy generation capacity in different regions, according to the
different amount of storage data of each substation in the transmission and distribution network and
based on its own power calculation, the energy routers in the peer-to-peer transmission and distribution
network can be divided into nodes with different rights according to the voltage levels. In Figure 1,
relating to China, the voltage level above 100 kV is considered as transmission line and 110 kV and
lower is considered the distribution line. Here, the transmission levels denote the configuration set
up for above 110 kV with the energy routers at different nodes being given higher authority, which
can independently implement all block functions, such as recording block, broadcast communication,
encryption and decryption. Likewise, the distribution level refers to the configuration set, with energy
routers at 110 kV and below being given lower authority. They only need to retain a part of the data of
the blockchain and participate in the negotiation of transmission and distribution planning; despite
their limited storage capacity and computing power, their limited data storage with low maintenance
costs are beneficial.

Load side: Figure 1 defines a variety of roles for the load side with distinct divergence:
(1) Traditional loads include residential users, industrial and commercial users, etc., acting as energy
consumers. (2) As a typical power flexible load, electric vehicles can actively participate in the operation
of the grid and interact with the grid; usually, when the power demand is at the peak, the electric
vehicle can transfer its excess power to the grid. (3) The distributed power source mainly includes
power generation and energy storage devices, which can reduce the pressure of the power grid; the
generated power is preferentially consumed nearby, and the surplus power generates a power flow
reversal. Considering the above types of loads, the dispatch control system needs to obtain the output
data of various types of loads and distributed energy, and carry out corresponding load forecasting;
simultaneously, the load side should also interact with the information exchanged by the network to
further realize the load-network cooperation.

3. Energy Router Node Model Based on Energy Flow QoS Index and Blockchain Architecture

In the coordinated scheduling of the “source–grid–load” three-tier architecture, all energy nodes
and energy router nodes negotiate among themselves through the blockchain. Compared with the
source node and the load node, the collaborative optimization of the transmission and distribution
network is most complicated by the fusion control involving energy flow and information flow.
Therefore, this paper combines the blockchain technology, the energy flow QoS index and the physical
node structure to establish an optimization model of the energy router node in the transmission and
distribution network, as demonstrated in Figure 2.
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Figure 2. Node model of transmission and distribution network energy router.

This model adopts a three-tier architecture consisting of a physical node layer, a blockchain
negotiation layer and a QoS indicator layer. It ensures a relatively balanced output of energy nodes at
different levels under renewable energy access with the physical and information perspective.

The energy router node model is constituted from the following functions:

• The physical node adopts the different types of automatic controllers compatible with various
power generation units, such as a power system stabilizer (PSS), an automatic generation controller
(AGC), a maximum power point tracker (MPPT) and a droop control, as shown in Figure 2, and
forms a doubly-fed stability control model with the energy router to optimize local energy output.
The automatic controllers constitute primary feedback by physical means, such as suppressing
low-frequency oscillation and initially enhancing the safety of the transmission and distribution
network. In order to further improve the interconnection of energy nodes, energy routers (R1–R4
in Figure 2.) are introduced into the transmission lines of different local power plants [31]. In the
transmission and distribution network, the energy router can not only realize the interconnection
and energy centralized management of different levels of energy nodes but also the function of
local distributed power flow information feedback. The energy router integrates the power supply
and demand information shared by the upper and lower energy routers, and then negotiates the
prediction result through the blockchain, and feeds it back to the local energy power generation
units as secondary feedback, further enhancing the output controllability and output stability.

• The blockchain negotiation layer is divided into two types: primary (main) chain and secondary
(slave) chain, which jointly achieves the negotiation of power supply and demand between nodes
at different voltage levels. The secondary negotiation chain at low voltage level consists of blocks
generated by the 35 kV/110 kV/220 kV energy router nodes respectively, which have the function
of calculating and recording energy node data, such as the QoS index value of its current level,
and the optimal distribution of power transmission and transformation. Those chains also have
the function of sharing power information with the negotiation chains at the adjacent voltage level.
The blocks generated by the 330 kV energy router nodes constitute the primary negotiation chain
at a high voltage level. In addition to implementing the secondary negotiation chain functions, it
also has the functions of publishing the negotiation result, calculating the overall QoS index value
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of the system, storing the negotiation data and recording the expected output value for the source
side from the dispatch control system.

• QoS index layer is an evaluation system layer coupled with the optimization strategy. With
renewable energy sources with fluctuating output power to further share the load demand, and
in order to ensure the quality of power transmission under the requirements of power balance
between renewable energy and traditional power generations, it is necessary to refer to the existing
information flow transmission QoS indicators to construct an energy node QoS evaluation system
that matches the physical node layer. Based on this, the equalization coefficient, line loading rate,
loss and loss-to-loss ratio are defined as optimization indicators of the QoS evaluation system. It
can provide clear optimization targets for energy router nodes, reduce power transmission loss
and improve renewable energy utilization under the condition of ensuring the balanced output of
different power generation units.

4. Definition and Evaluation Mechanism of the QoS Index Layer

The specific definitions of the four types of QoS indicators are as follows:

(a) Equilibrium coefficient: The local renewable energy power generation needs to control its own
power generation according to its own weight ωi and the transmission capacity limit Plim. The ωi
is defined as the ratio of the predicted output of different renewable energy power generation to
the predicted total output of local energy, as shown in Equation (1):

ωi = Pi/
∑

i∈NRe

Pi , (1)

where Pi is the predicted output of different energy power plants and NRe is the collection of local
power generations of different energy types.

Under the condition of a certain transmission capacity, in order to ensure the balanced output
of different renewable energy power generations in the locality, the equalization coefficient μ is
introduced, and the value is as small as possible to indicate whether the power plant meets the
optimization index of output fairness, as shown in Equation (2):

μ =

∣∣∣Preali − Plim ×ωi
∣∣∣

Plim ×ωi
× 100%, i ∈ NRe, (2)

where Plim is the transmission capacity limit of the line; Preali is the actual delivery capacity of the
local renewable energy power generations.

(b) Line loading rate: In order to minimize the energy loss caused by the overhead transmission line
and promote the economic operation of transmission and distribution network, the line loading
rate is defined as the ratio of actual transmission capacity to transmission capacity limit given by
Equation (3).

φw =

⎛⎜⎜⎜⎜⎜⎜⎝∑
i∈NRe

Preali /Plim

⎞⎟⎟⎟⎟⎟⎟⎠× 100%. (3)

Considering all aspects of factors and setting aside for load fluctuations, this paper sets the line
loading rate from 50% to 75%.

(c) Degree of loss: Combined with the electric energy surplus of the local wind and solar renewable
energy power generations, the degree of loss (Q) is defined as the degree of abandoned wind
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and solar, which is related to the power loss and the duration of wind and solar abandonment.
Degree of loss can be defined by the following Equations (4) and (5):

Qlossi =
[
Preali − (Plim ×ωi)

]
× Δt, i ∈ NRe (4)

Qloss(xkV) =
∑

i

Qlossi , (5)

where Δt is the duration of wind and solar abandonment; x ∈ {35, 110, 220, 330}; that is,
different voltages.

(d) Input-loss ratio (ILR): The energy loss generated by the substation during the transformation
process occupies a considerable proportion of the total loss. The ILR is defined by Equation (6).

ILR = 10× log10(Pinput/Ploss), (6)

where Ploss is the energy loss during the substation transformation process of the corresponding
grade energy node. Pinput is the total energy received by the upper node. According to the actual
demands, cost and other factors for comprehensive consideration, the ILR can be set within an
acceptable range, and the ILR value can directly measure the working capacity of the substation.

There are two main roles in the above four types of indicators. Firstly, after the blockchain
intelligent contract finds the joint output plan of different power generations through the multiobjective
optimization algorithm, the optimization result can be evaluated. Secondly, each energy router node
competes for the quality of power transmission through the evaluation result of the energy flow QoS
index to form a consensus mechanism in the blockchain.

5. Blockchain-Based Transmission and Distribution Network Negotiation Model

5.1. Blockchain Hierarchical Negotiation Mapping Architecture

By analyzing and defining the inter-constraint relationship between the various levels in the
transmission and distribution network node model, the blockchain hierarchical negotiation mapping
architecture shown in Figure 3 can correspond to it [32].

 

Figure 3. Node model of transmission and distribution network energy router.

The mapping relationship is listed as follows:
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(a) The goal of the application layer is to ensure the quality of power transmission and improve the
utilization of renewable energy.

(b) Energy routers at all levels compete for QoS indicators through a consensus layer, the obtained
QoS score can form an incentive.

(c) Through the multiobjective intelligent optimization algorithm in the counterparty layer, the
optimal output prediction of various energy power generations in the node layer in Figure 2 can
be obtained.

(d) By defining the low voltage level negotiation slave chain and the high voltage level negotiation
main chain, a master-slave multichain structure is formed to optimize the data dissemination
mechanism at the network layer.

(e) The size of the internal block of the master-slave multichain in the data layer is determined by the
energy router nodes at different voltage levels, and the block with larger capacity is generated
and processed at a slower speed.

For example, the 330 kV node needs to have the functions of recording the overall QoS indicator
value of the system at the same time, while other low-voltage level nodes do not need to record
additional data but have higher real-time requirements for uploading their own data. Therefore, a
reasonable choice of block capacity will improve the overall operating efficiency of the system.

5.2. Transmission and Distribution Network Negotiation Mechanism Based on the Master-Slave Multichain
Structure

In the transmission and distribution network, under highly permeable renewable energy access,
the energy router nodes at all levels have complex roles, such as dealing with different types of power
generation and energy routers with different functions. Among them, the energy router should not
only realize energy control but also manage and optimize the actual outputs of multienergy power
plants at this level [33]. At the same time, realizing the information guarantee, that is, providing a
stable and efficient information interaction environment for consultation and information transmission
between nodes, is also one of the functions of the energy router [34]. Therefore, this paper designs the
transmission and distribution network negotiation mechanism based on the master-slave multichain,
as demonstrated in Figure 4. Information flow in this mechanism is bidirectional. The downstream
information flow is emitted by the main chain of the 330 kV energy router to perform the negotiation
results. Upstream information flow is b2u power negotiation information flow, it is issued by the
network 35 kV energy router slave chain, which is used to pass the power consumption prediction
value step by step. Through this mechanism, the dispatch control system is weakly centralized and the
grid prediction accuracy is improved. With the energy flow QoS index, the master-slave chain is used
to evaluate the negotiation results and optimize the energy nodes at all levels. After the negotiation is
reached, all information involved in the result is stored in the 330 kV energy router main blockchain,
and the information is periodically updated to generate a new block [35–37].

In the energy node QoS evaluation system proposed in this paper, all levels of energy routers
should implement the negotiation results under the premise of satisfying the equalization coefficient
μ and line loading rate φw. The local total loss Qloss(xkV) and input-loss ratio ILR(xkV) were used to
evaluate the final negotiating results. At the beginning of the negotiation, the Qloss(xkV) and ILR(xkV)

of the previous phase are set to the acceptable lower limit of QoS to ensure that the QoS value of the
negotiation mechanism is within an acceptable range. The data involved are regularly stored by the
corresponding level of the block. The information transmission process uses asymmetric encryption
technology to ensure security at the same time.

The local predicted output value Plocal(xkV) of the energy nodes at all levels in this mechanism
needs to comprehensively consider the total amount of actual output Preal(xkV) and the transmission
capacity limit Plim(xkV) of each line. Where x ∈ {35, 110, 220},

Preal(xkV) > Plim(xkV), then Plocal(xkV) = Plim(xkV) (7)
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Preal(xkV) ≤ Plim(xkV), then Plocal(xkV) = Preal(xkV). (8)
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Figure 4. Blockchain-based transmission and distribution network consultation mechanism.

The total actual output Preal(xkV) is the sum of various types of energy generation output.

Preal(xkV) =
∑

i∈NRe

Preali + Pthermal, (9)

where Preali is the actual delivery capacity of the renewable energy power generation in each energy
router node, and Pthermal is the actual output of the thermal power generation.

The transmission and distribution network negotiation mechanism based on the blockchain
mainly includes the following three steps:

(a) Energy supply and demand negotiation mechanism b2u based on master-slave and multichain.

i. Starting at time t, the 35 kV energy router slave chain collects the load current reverse
power value PREV and the load predicted value PLP, and calculates the total power
required PL at the load side. Combined with the local output predicted value Plocal(35kV),
the Pin(35kV) is calculated and uploaded to the 110 kV energy router slave chain by the
35 kV slave chain. This step takes time Δt. Where Pin(35kV) is the power value required by
the 35 kV energy router, which is obtained from the 110 kV energy router:

Pin(35kV) = PL − Plocal(35kV) = (PLP − PREV) − Plocal(35kV). (10)
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ii. Starting at time t + Δt, the 110 kV energy router slave chain derives the Pin(110kV) according
to Pin(35kV) and Plocal(110kV), and then uploads the data to the 220 kV energy router slave
chain before time t + 2Δt. Plocal110kV is the predicted value of the local output and Pin110kV
is the value of the power that the 110 kV energy router needs to obtain from the upper
220 kV energy router. Starting at time t + 2Δt, the 220 kV energy router slave chain
performs the same steps as the 110 kV energy router slave chain, ending at time t + 3Δt.

Pin(110kV) = Pin(35kV) − Plocal(110kV) (11)

Pin(220kV) = Pin(110kV) − Plocal(220kV). (12)

iii. Energy routers’ slave chains at all levels meet the constraints of equalization coefficient and
line loading rate respectively, and calculate the amount of renewable energy abandonment
Qloss(xkV) and the input loss ratio ILR(xkV) according to their own power calculation. Then,
these data are uploaded to the 330 kV energy router main chain within the limit of the
data upload time node. As shown in Figure 4, t + Δt, t + 2Δt and t + 3Δt represent the
time node.

iv. Starting at time (t + 3Δt), the 330 kV energy router main chain obtains data Pin(220kV),
which is the predicted value of the source power generation demand Pb2u derived by the
power negotiation mechanism b2u.

Pin(220kV) = Pb2u. (13)

At the same time, the main chain of the 330 kV energy router acquires the PE, and calculates
Qloss(xkV) and ILR(xkV) according to the Qloss(total) and ILR(total) uploaded by the energy routers at all
levels. Among them, PE is the expectation value of the dispatch control system to the source power
generation in the short term. The length of time required for this step is Δt.⎧⎪⎪⎪⎨⎪⎪⎪⎩

Qloss(total) =
∑
x

Qloss(xkV)

ILR(total) =
∑
x

ILR(xkV)
, x ∈ {35, 110, 220, 330}. (14)

At this point, the energy routers at all levels have basically clarified their respective power
conversion value, and the energy negotiation based on b2u is basically completed.

(b) At time t + 4Δt, the 330 kV energy router main chain compares Pb2u with PE, and checks whether
Qloss(tatal) and ILR(total) met the requirements of the previous preset values or not.{

(1− 5%)PE ≤ Pb2u ≤ (1 + 5%)PE

others
. (15)

The Pb2u floating range is set to ±5%. When the values of Pb2u, Qloss(tatal), and ILR(total) satisfies
the condition, the entire system performs the task according to the b2u power negotiation results.
Otherwise, the prediction accuracy of the energy routers at all levels is calibrated according to the
preset requirements and renegotiated until the conditions are met to determine the negotiation results.
If the negotiation proceeds smoothly, the negotiation result is finally determined at t + 5Δt.

(c) At time t + 5Δt, the 330 kV energy router’s main chain delivers the results to the energy routers’
slave chains at all levels, and executes negotiation results. Simultaneously, the hash value
generated by the result is stored in the main chain block of the 330 kV energy router. This can
ensure that the problem caused by the unreasonable negotiation mechanism can be traced back to
the source. This step ends at time t + 6Δt.
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The transmission and distribution network negotiation mechanism based on the master-slave multichain
structure takes the b2u power negotiation as the core, and combines the energy flow QoS index and
power prediction. This mechanism ensures the high security of the negotiation environment and the
traceability of the negotiation result under the function of achieving high integration of energy flow
and information flow.

6. Feasibility Verification

6.1. Simulation of Intelligent Contract Example and Evaluation of QoS Index Based on Multiobjective Particle
Swarm Optimization

Introducing the blockchain architecture and energy flow QoS indicators in the optimization model
of the energy router node in the transmission and distribution network can provide optimization
strategies and ensure a weakly centralized trusted transmission and distribution environment, but
further analysis of the actual power output of renewable energy power generations at each energy node
in the physical node layer is also needed. In the cooperative optimization mechanism of transmission
and distribution network under the blockchain architecture, the conclusions of joint output schemes of
different power generations in energy nodes, and reducing the excess of photovoltaic and wind power
uploading to transmission lines with its maximum possible utilization, are the core solution goal of
blockchain smart contract. Therefore, this paper integrates the MOPSO (multiobjective particle swarm
optimization) algorithm into the intelligent contract of blockchain, taking the physical node layer in
Figure 2 as an example to solve the optimal schemes for the output of different power generation
units. The data routers that provide the data are the energy routers of the power plants of this voltage
class and the energy routers of the next voltage class. The inputs to the simulation process are: the
output goal of each power plants, i.e., its output proportion being infinitely close to its own installed
proportion; upper and lower limit of output limit of each power plant; upper and lower limits of the
total loading rate of the transmission line; and the energy demand of the next voltage class energy
router. The output of the simulation process is: after the multiobjective optimization, the amount
of power required to be sent to the energy router of the next voltage level, Qloss(xkV) and ILR(xkV), is
sent to 330 kV master chain after being evaluated by QoS index. Other nodes in the transmission
and distribution network can refer to the optimization strategy of the node, and change or add the
constraints in the smart contract according to different voltage levels and various environmental factors.

The MOPSO algorithm introduces an adaptive mesh method (estimating the information density
of particles), a search mechanism for Pareto optimal solutions that balance global and local search
capabilities and a pruning technique for archive sets that reject poor quality particles [38–40]. It has the
characteristics of fewer control parameters, easy implementation and a certain degree of parallelism [41,
42]. MOPSO updates the position and velocity of particles in a population-based on inertia weights and
learning factors in order to reduce the renewable input or increase hydro and thermal generation. In
order to maximally utilize renewable sources with least disturbances in the power grid, the algorithm
is optimized, and the disturbance or mutation operator is executed to prevent the particles from
falling into the local Pareto front end. After the optimization is performed by MOPSO algorithm,
the energy router feeds the final result to the power generation units of the same level through the
secondary feedback line in the transmission and distribution network routing model (refer to Figure 2),
ensuring the intelligence and efficiency based on the blockchain negotiation process. The energy
flow QoS indicator will evaluate the negotiation results of the optimized energy routers at the same
level, and upload the evaluation results step by step to help further optimize the transmission and
distribution plan.

In this paper, MATLAB is used to simulate the MOPSO algorithm, taking the electric power
system power generation data of northwest region of China with abundant solar and wind energy
resources as an example, in order to analyze the output of the four types of power generations based on
the energy flow QoS indicator, while setting the maximum output of clean energy and the actual output
of each power generation units as close as possible to the transmission capacity limit of the objective
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function; and setting the transmission line loading rate to reasonable, photovoltaic and wind power
relative to the hydropower and thermal power adjustment ability, to ensure the least disturbances in
output as constraints. The specific experimental data are as follows:

The simulation selected the installed capacity limit in the northwest region of china as an idealized
model, in which the proportions of wind, solar and hydrothermal power plants are 19%, 15%, 13% and
53% respectively. In order to alleviate the problem of wind and solar curtailment to grid integration, the
actual transmission capacity of the two power plants should be as close as possible to the transmission
capacity limit, but the transmission line loading rate at its energy node will affect the maximum output.
This limitation will be backed up by the relatively strong thermal and hydro power regulation capacity;
the difference between the upper and lower limits for setting the thermal and hydro output limit is
greater than the limits for photovoltaic and wind power. Simultaneously, in order to minimize the
fluctuation of the local renewable generations output, the difference between the upper and lower
limits of the thermal power output limit is greater than that of renewable energy. Thus, the thermal
and hydro power generation helps to compensate the disturbances created by higher integration of
renewable power generations to the grid. The limits for different power generation sources are as
shown in Table 2.

Table 2. The objective function and constraint conditions based on the quality of service (QoS) index of
energy flow.

Power Generations Types

Constraint Conditions Objective Function∑
i∈NRe

Preali /Plim Preali /Plim Preali /Plim

Photovoltaic

[50%, 75%]

[10%, 20%] 15%
Wind [10%, 20%] 19%

Hydroelectric [10%, 15%] 13%
Thermal [25%, 55%] 53%

The data obtained from the northwest region of China comprised of the maximum generation
output proportions of wind, solar, hydro and thermal power plants in a certain region at different
times (samples at different times were recorded, 500 data was selected for simulation) are shown by
matrix Q in Equation (16); the data are of the 2019 China power supply and demand situation analysis
and forecast report, combined with relevant reports on the increase in the proportion of new energy
installed capacity.

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

586 357 297 258
591 352 296 259

...
...

...
...

590 352 296 259
595 352 296 255

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
500×4

(16)

According to the constraints in Table 2, Using the search mechanism of Pareto’s optimal solution
and the trimming technique of the Archive set, which removes the poor quality particles, the simulation
results of the optimal output of the renewable energy power plant in the energy node of the selected
area can be obtained. The simulation results of the optimal output of the renewable energy power
generations from their energy nodes in the selected area are shown in Figure 5a,b, where the actual
transmission capacities of wind, solar, hydro and thermal account for 17%, 14%, 13% and 29%, thereby
showing the area incorporating higher uses of renewable sources. Figure 5b shows the actual delivery
capacity and transmission capacity limit when the power required by the next level energy router is
2000 (MW) in a certain period of time.
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(a) (b) 

Figure 5. (a) Simulation results of the optimal scheme of the actual output of each energy plant; (b) the
optimal output scheme for each power plant when the power demand is 2000 (MW).

The simulation results of the optimal output scheme obtained by Figure 5a,b shows that: due to
the limitation of the transmission line load rate of the local energy node if it is necessary to reduce
the degree of abandonment of wind and solar while ensuring the minimum fluctuation in the power
grid, it needed to increase the output level of hydropower and thermal power generation with strong
regulation ability to enhance the complementarity of high permeability renewable energy. With the
application maximum, clean energy utilization can be attained, making the thermal and hydro power
more flexible with the demand and supply and availability of renewable power generation. But still,
thermal power generation remains the main energy supplier for making the power grid more flexible
to accepting more renewable integration by limiting fluctuations.

After the optimization algorithm obtains the optimal output scheme of the energy router, as
demonstrated in the example, the energy flow QoS index is used to optimize the evaluation of the
routing node in the transmission and distribution network. The evaluation of the simulation results is
shown in Table 3.

Table 3. Energy flow QoS index evaluation results.

QoS Index

Power Plant
Photovoltaic Wind Hydroelectric Thermal

Line load rate (φw/%) 74.8
Equilibrium coefficient (μ/%) 1.3 6.5 0.0 44.7
Loss degree (Qlossi /MW× h) 0.096 × 103 0.6 × 103 0.0 × 103 11.4 × 103

It can be observed in Table 3 that the total transmission line loading rate is 74.8%, which meets
the loading rate requirement. It can also be seen that among the renewable energy sources in the
region, the photovoltaic and wind power output are relatively balanced and with minimal loss. But in
order to adjust the wind and solar loss and grid stability, the appropriate thermal and hydro power
outputs need to be ensured. The ILR needs to be evaluated according to the situation of its power
transformation at this node. Based on the above data, the output of the energy routing node in the
example is relatively good.

Taking the energy routing nodes in the simulation results as an example, due to regional differences,
other nodes in the transmission and distribution network can change the upper and lower limits of
the conventional and renewable generations according to the resource conditions and load demand
characteristics of different regions to meet different targets, and using the energy flow QoS index to
evaluate the optimization results. Different nodes have different requirements for energy plants under
the access of renewable energy, which leads to some minor, and also may lead to major complications
in the mutual energy and information interaction of energy nodes. Therefore, it is necessary to
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simulate and analyze the negotiation mechanism of energy distribution router based on a master-slave
multichain structure.

6.2. Simulation of a Master-Slave, Multichain Negotiation Mechanism Based on a Multichain Platform

The blockchain based transmission and distribution grid energy router negotiation mechanism
shown in Figure 4 has a multichain structure, including a 330 kV main chain and three 35 kV–220 kV
slave chains. In the process of information exchange between links, the interaction data consists of QoS
values and power prediction values of each generation node. Therefore, the feasibility simulation of the
negotiation process needs to be authenticated and analyzed in two aspects, including the construction
of the multichain structure and the simulation of information interaction.

Based on multichain technology, the multichain demo document was configured, and the PHP
runtime environment built based on the xampp platform, thereby configuring the software and the
blockchain environment. The minimum specification required for the blockchain platform is mentioned
in Appendix A. The four-system configuration was set up on a windows 7 personal computer with 64-bit
4 GB random access memory to realize the operation and connection of the master-slave multichain, the
configuration of the rights and the transmission of information in the form of assets, so as to verify the
feasibility of building the multichain structure. The specific operations were as follows: during xampp
operation, the blockchain network environment of four computers were configured respectively, along
with creating and configuring multiple chains through the command window. The four configured
chains were named: Chain330kV, Chain220kV, Chain110kV, and Chain35kV. The Chain330kV was
selected as the full-node chain; i.e., the main chain with the rights of block publishing, administration,
connection, sending, receiving, asset issuance and flow management. Simultaneously, the other three
computers were configured as the slave node chain. The slave chain, the 35 kV slave chain node
(Chain35kV, IP:192.168.1.2:5597) and the 110 kV slave node (Chain110kV, IP:192.168.1.2:7324) were
taken as examples. The two slave chains respectively issued an application for interconnection with
the main chain Chain330kV through the instruction “multichaindTestChain@192.169.1.1:2781.” The
main chain received instructions to complete the interconnection and give the slave chain the right to
connect, send, receive and release the asset. The main chain reserves all the permissions of all the node
and also reserves the right to configure the slave chain permissions. The main operations are shown in
Appendix B (Figures A1–A3).

The main-slave multichain information interaction was mainly verified from two aspects: the
transfer of QoS values between the main chain and the slave chain, and the transmission of the predicted
value of the electrical quantities between the slave chains. Taking the 110 kV slave chain (Chain110kV,
IP:192.168.1.2:7324) as an example, when the b2u power negotiation mechanism proceeds to t + Δt, the
chain receives the data information from the Chain35kV and downloads it, calculates Pin (110kV) and
uploads it to Chain220kV. And the QoS indicator, after the smart contract is optimized, is submitted
to the Chain330kV from the node; the main operations are as in Appendix C (Figures A4–A6). The
computation process includes the simulation of MOPSO within the smart contract. For more clarifying
the swiftness, 10 simulations were conducted and Appendix A demonstrates the computational
cost of blockchain intelligent contract based on MOPSO algorithm showing its feasibility for the
practical application.

By constructing a master-slave multichain platform and simulating the information interaction
process between multiple chains, it is possible to verify the feasibility of an energy router negotiation
mechanism based on master-slave multichain structure; i.e., it authenticates the feasibility of the
blockchain technology applied to the energy router control mechanism based on QoS indicators.
However, the construction of the complete platform based on blockchain technology is temporarily
unable to complete due to the high-end hardware requirements. In the near future, the construction
of model scenarios will be further improved, and the obstacles to applying blockchain technology to
energy router negotiation will be explored.
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7. Conclusions

This paper studied the operations of energy routers for transmission and distribution networks
with high permeability renewable energy access, and the application of blockchain technology
integrating the energy flow QoS index with the independent cooperative mode of the energy router
node. The energy flow QoS index was integrated with the independent cooperative mode of the
energy router node, and the transmission and distribution network was optimized from the four
constraints of equilibrium coefficient, line loading rate, loss degree and input loss ratio. Observing the
characteristics of renewable energy access to the transmission and distribution network, and based on
the weakly centralized system architecture of distributed energy router nodes, this paper proposes a
“source–grid–load” collaborative scheduling operation scenario model based on blockchain. Combined
with the functions of energy routers in the transmission and distribution network, the energy router
node doubly-fed stability control model was considered to ensure the balance output and stability of the
output power of each power generation unit. The MOPSO algorithm is introduced into the intelligent
contract of the blockchain for optimization of amount of energy integration from different sources.
The optimal output scheme of each power generation unit in the example was obtained, improving
the ability of the transmission and distribution network to mitigate the loss of wind and solar, and
the evaluability of the energy flow QoS index was verified. Due to the complexity of renewable
energy access to the transmission and distribution network, there are many complications in the power
mutual aid of energy nodes at all levels. In order to resolve those complications, this paper drafts an
autonomous energy collaborative optimization mechanism and control process of the router nodes at
the transmission and distribution network with the blockchain as the technical support. Through the
mechanism purposed in this paper, the weak centralization of the dispatch control system was realized:
the energy router was used as the node, and the master-slave multichain negotiation mechanism was
used to realize the information exchange between the energy routers, improving the interoperability
between the energy nodes. At the same time, the prediction accuracy and optimization level of
the high-permeable renewable energy access to the transmission and distribution network has been
improved. Finally, the power transmission and distribution mode of the autonomous decision-making
ability and autonomous coordination ability of the energy router nodes were attained.
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Nomenclature

The following nomenclatures are used in this paper:

b2u Bottom-to-up power negotiation mechanism
CPS Cyber-Physical Systems
MOPSO Multiobjective particle swarm optimization
MPPT Maximum power point tracking
PSS Power system stabilizer
QoS Quality of service
Plim Transmission capacity limit
ωi Equilibrium coefficient
Pi The predicted power output of various types of power generations

Preali
The actual power delivery capacity of the local distributed renewable
generations

NRe The collection of various types of local power generations
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φw Rate of transmission line loading
Qloss Degree of power loss
ΔT Duration of wind and solar abandonment
ILR Input loss ratio

Ploss
The energy loss during the substation process of the corresponding
grade energy node

Pinput The total energy received by the upper node
t Time at which negotiation mechanism starts execution
Δt Time required to perform each step
Plocal (x kV) Local predicted power output of the energy nodes at all levels
Preal (x kV) Total actual power output
Pthermal Actual power output of the thermal power plant
Pin (x kV) Required power output of 35 kV energy router
PREV Load current grid connected back feed power value
PLP Predicted Load value
PL Total power required at the load side

PE
The expected value of the dispatch control system to the source power
generation in short term

Appendix A

Table A1. Computation cost of MOPSO as a smart contract.

Computational Times Computational Cost (Seconds)
Computational Results

(Thermal; Wind; PV; Hydro) (MW)

1 196.997661 586; 355; 296; 260
2 204.400184 558; 377; 302; 259
3 201.155895 586; 355; 296; 260
4 191.935027 558; 377; 302; 259
5 188.888183 561; 376; 300; 260
6 199.140892 556; 379; 299; 264
7 198.745108 586; 355; 296; 260
8 199.980375 557; 376; 300; 260
9 191.858195 557; 379; 299; 265
10 200.698211 563; 379; 294; 260

Table A2. Specifications required for blockchain platform.

Hardware System Requirements Others

Linux
supports Ubuntu 12.04+,
CentOS 6.2+, Debian 7+,
Fedora 15+, RHEL 6.2+.

512 MB of RAM
1 GB of disk space

Windows supports Windows 7, 8, 10, Server 2008 or later. 512 MB of RAM
1 GB of disk space

Mac 64-bit, supports OS X 10.12 512 MB of RAM
1 GB of disk space
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Appendix B

Appendix B.1 Establishment of Multichain Nodes

 

Figure A1. The establishment of multichain nodes.

Appendix B.2 The Slave Node Sending a Connection Request to the Primary Node

 

Figure A2. Making a connection request.

Appendix B.3 The Master Node Accepting the Application and Setting the Slave Node Permissions

 

Figure A3. Setting the permissions of the slave node.

184



Energies 2020, 13, 418

Appendix C

Appendix C.1 Chain330kV, Chain220kV, Chain110kV, and Chain35kV Connection Display (Multichain
Connection Display)

Figure A4. Master-slave node connection diagram.

Appendix C.2 Chain35kV’s Scheduling Data Upload and Chain11kV Receiving

Figure A5. Chain35kV releasing scheduling data, and data asset information downloading.
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Appendix C.3 Chain110kV’s Scheduling Data Upload, and Chain330kV Receiving Data

Figure A6. Chain110kV releasing scheduling data, and data asset information downloading.
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Abstract: The main characteristics of the photovoltaic (PV) output power are the randomness and
uncertainty, such features make it not easy to establish an accurate forecasting method. The accurate
short-term forecasting of PV output power has great significance for the stability, safe operation and
economic dispatch of the power grid. The deterministic point forecast method ignores the randomness
and volatility of PV output power. Aiming at overcoming those defects, this paper proposes a novel
hybrid model for short-term PV output power interval forecasting based on ensemble empirical
mode decomposition (EEMD) as well as relevance vector machine (RVM). Firstly, the EEMD is used
to decompose the PV output power sequences into several intrinsic mode functions (IMFs) and
residual (RES) components. After that, based on the decomposed components, the sample entropy
(SE) algorithm is utilized to reconstruct those components where three new components with typical
characteristics are obtained. Then, by implementing RVM, the forecasting model for every component
is developed. Finally, the forecasting results of every new component are superimposed in order to
achieve the overall forecasting results with certain confidence level. Simulation results demonstrate,
by comparing them with some previous methods, that the hybrid method based on EEMD-SE-RVM
has relatively higher forecasting accuracy, more reliable forecasting interval and high engineering
application value.

Keywords: photovoltaic output power forecasting; hybrid interval forecasting; relevance vector
machine; sample entropy; ensemble empirical mode decomposition

1. Introduction

With the development of industrialization, traditional fossil fuels are faced with the increased
depletion and the environmental pollution problems brought by fossil fuels’ combustion become
the main obstacle to global economic development. To solve this problem, in the past few decades,
more and more attentions have been paid on the renewable energy sources, such as biomass energy,
tidal energy, wind energy, solar energy, etc. [1]. However, due to the intermittency and variability
of those renewable energies, they would cause unavoidable fluctuations and instability if they are
highly integrated in the power grid. Therefore, how to obtain the accurate forecast of renewable energy
sources is massively important for the safe, steady and reliable operation of power grid [2].

Regarding the short-term renewable energy generation forecasting, the existing models are roughly
divided into four categories: artificial intelligence based models (AIBM), statistical models, physical
models and hybrid models [3]. In [4], the statistical smoothing techniques were utilized to create a
statistical normalization of the solar energy, which was beneficial to implement the online short-term
power forecasting of photovoltaic (PV). In [5], the ARIMA model was taken as a statistical model to
realize the output power forecasting of a PV-grid-connected system. As a method of statistical and
machine learning, ensemble approach also played a crucial role in short-term load forecasting [6,7].
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In [6], an ensemble approach was combined together with extreme learning machine (ELM) and
wavelet for short-term load forecasting in solar power system. In [7], a solar forecasting model was
proposed based on multiple satellite images and support vector machine (SVM). The motion vector of
the cloud was predicted by the satellite atmosphere motion vector (AMVS) image, then, the output
prediction of the PV power was realized. In [8], the ANN techniques were combined with spatial
modes to forecast the daily global horizontal irradiance. Physical models used physical factors to
construct the required models [9–15], and in most cases, there were no distinct boundaries within
different models, thus the hybrid models [4,5,11,16–18] have become the most frequently used models
to forecast PV generation. For example, in [4], the statistical models and AIBM were combined to
implement short-term solar power forecasting. In [11,16–18], the AIBM and physical models were
integrated to obtain the forecasting of PV systems output power. On the other hand, by taking the
randomness and uncertainty of solar energy into account, in recent years, there have been lots of results
discussing the short-term forecasting problem of PV output power [5,16,19]. Besides the one-day-ahead
time horizons [16], other forecasting time scales have also been considered, such as one-hour-ahead,
15-, 30- and 45-min-ahead time horizons [20].

However, in most of the aforementioned models, only point forecast problems were concerned,
with few determined values were achieved. Nevertheless, many forecasting errors were detected in the
results [21]. Besides that, those models lacked the ability to describe the non-stationary with a probable
range of fluctuation. Different from the specific value of conventional point forecast, prediction interval
(PI) can deliver a quantification of uncertainty with a prescribed confidence level, which indicates the
probable prediction. Due to the uncertainty of the forecasting, a range consisting of upper and lower
bounds with the indication of accuracy is more credible than the conventional prediction points [22].
Interval forecasting can provide more information about changeability of the target variable, which is
more suitable to predict the renewable energy generation [23,24]. According to the results of point
forecasting, if the probability distribution of model error is known exactly, the prediction interval can
be calculated accurately. In [25], a method was established based on ELM and the pairs bootstrap and
then applied to obtain the probabilistic interval forecasting of wind power, where the prediction error
was assumed to obey Gaussian distribution. In [26], the prediction error was analyzed and assumed
to obey Beta distribution, and then the interval forecasting model was developed. The conventional
prediction interval methods mainly depend on the accuracy of point forecasts and error assumptions,
but it is difficult to quantify a special prior error assumption, which influences the performance of
prediction interval.

Up to now, several forecasting methods have been proposed for forecasting renewable energy
power [27–31]. For data with strong randomness, the preprocessing of data is especially important
to improve the prediction accuracy. The common data processing methods include EMD, ensemble
empirical mode decomposition (EEMD) and wavelet decomposition. For example, EMD can decompose
complex sequences and then predict them separately. In order to obtain better performance of wind
forecasting, in [32], the prediction interval is optimized by combining the conditional probability.
In [33], the EEMD method was used to solve the model mixing problems. However, the relativities
among the decompositions were usually ignored in the conventional EEMD methods, where some
complexity was also added. In [34], a kind of ELM was proposed to realize the probabilistic interval
forecasting of wind power, where the authors used a two-layer integrated machine learning method.
In [35], the random forest model of different meteorological conditions was established and the
components were predicted, then the weighted output was carried out on the prediction results. To
obtain better performance of short-term forecasting, EEMD method based on sample entropy (SE) was
proposed, which was more effective and accurate than the conventional EEMD.

Nevertheless, there have been few interval prediction methods of solar power based on EEMD,
which decomposed the time series into diverse frequency components and forecasting each component
to improve the accuracy. Thus, the method involving EEMD and SE was used to decompose the
original sequence into different new components. That method was also used to construct the different
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components in order to analyze the complexity. Then, the characteristic of EEMD method was
optimized. The results considering the interval forecasting methods by the hybrid method including
EEMD, SE and relevance vector machine (RVM), which have great challenge and importance can
enhance the accuracy of the conventional RVM method.

Based on the above discussions, this paper proposes a new hybrid model based on EEMD-SE-RVM
for short-term interval forecasting of PV output power. Several intrinsic mode functions (IMFs) and
residual (RES) components can be obtained by using the EEMD to decompose the original PV power
output sequences. Consequently, three new components with typical characteristics are obtained based
on the SE algorithm. Then, for each new component, a prediction model is established using RVM,
respectively, and, the forecasting results of every new component are superimposed so that the overall
forecasting result with a certain confidence level is obtained. Considering the simulated case study, the
results show that this hybrid approach is very effective and has a robust generalization ability as well
as a strong practical application value.

The rest of this article is organized as follows. Section 2 introduces the basic models of EEMD,
SE and RVM algorithms, respectively. Section 3 develops the hybrid model interval forecasting of
PV output power. Case studies and numerical results are given in Section 4. Finally, conclusions are
drawn in Section 5.

2. Methodology

2.1. EEMD Principle

The most obvious drawback of conventional EMD is that it will produce mode mixing, which
indicates that either a single IMF consisting of obvious different proportion or composed of signals of
the same proportion in different IMF components, and it usually leads to signal instability. Aiming at
solving this drawback, a new method named EEMD was proposed, which is basically a noise-assisted
data analysis method. This demonstrates that noise can be performed using in the EMD method.

In EEMD, there are two important parameters. One is the amplitude k of the white noise and the
other is maximum number of iterations M of EMD. Usually, the values of M and k are chosen according
to the characteristics of personal experience and data. Without loss of generality, in this paper, M was
taken as 100 and the range of k was 0.05–0.5.

The detailed steps of EEMD can be highlighted in the following five points [18]:
(1) Set both values of k and M.
(2) The white noise sequence is added to the signal.
(3) EMD is used to decompose the signal that has been added with white noise to IMFs.
(4) Repeat steps (2) and (3) for a certain amount of white noise each time and the decomposition of

corresponding IMF components is obtained. The average of all the corresponding IMFs was calculated
where it is the final result of each IMF. Then, the average value of all residual components was
calculated, and the average value was taken as the final result of the residual.

ci(t) =
N∑

n=1

ci.n(t)/N, rm(t) =
N∑

n=1

rm,n(t)/N. (1)

(5) Output ci(t)(i = 1, · · · , m) represents IMF components and rm(t) represents the RES component.

2.2. SE Principle

For the IMF components and the RES component that are decomposed by the EEMD, if the
forecasting model is developed individually, the calculation will be greatly increased, and the correlation
between different components will be ignored. In this paper, the sample entropy theory was used for
recombination of these components with relevant characteristics.
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For a given k, r and N, where k represents embedding dimension, r denotes tolerance, N represents
number of data points. SampEn(N, k, r) is the negative logarithm of the conditional probability. For a
data sequence {xi} = {

x(1), . . . , x(N)
}
, the specific algorithm of sample entropy is expressed as follows:

(1) Construct the sequence {xi} constitute m-dimensional vector

X(i) = [x(i), x(i + 1), · · · , x(i + k− 1)] (2)

(2) Define the distance dk(X(i), X( j)) between vectors X(i) and X( j) as the absolute maximum
difference between their scalar components

dk(X(i), X( j)) = max
0∼k−1

|x(i + k) − x( j + k)| (3)

(3) For a given value of r, count the number of dk(X(i), X( j)) ≤ r, and then calculate the ratio of
N − k. Be defined as

Bk
i (r) =

1
N − k

num{dk(X(i), X( j)) ≤ r} (4)

where r denotes the threshold, which serves as a noise filter, r > 0; i = 1, · · · , N − k + 1.
(4) The mean value of Bk

i (r) can be represented as

Bk(r) =
1

N − k + 1

N−k+1∑
i=1

Bk
i (r) (5)

(5) By increasing the iteration to k + 1, repetition step (1) to step (4), the mean value of Bk+1
i (r) can

be represented as

Bk+1(r) =
1

N − k

N−k∑
i=1

Bk+1
i (r) (6)

(6) Finally, SampEn for a finite data length of N can be estimated as

SampEn(N, k, r) = − ln[Bk+1(r)/Bk(r)] (7)

In general, r is between 0.1 and 0.25 SD, k equals to 1 or 2, among them SD represents the standard
deviation of time series. Here k is set as 2 and r is 0.15 SD.

2.3. RVM Principle

Comparing with other forecasting algorithms, RVM not only has the characteristics of modeling
highly sparse, less optimized parameters, flexible kernel selection and strong generalization ability, but
also can directly implement the interval forecasting. Therefore, RVM is used to develop the interval
forecasting model for those new components reconstructed by SE.

For a specified input training sample {xn}Nn=1 and the corresponding output set {tn}Nn=1, the
relevance vector machine regression model can be defined as follows

ti =
N∑

i=1

ωiK(x, xi) +ω0 + ε (8)

where ε ∼ N(0, σ2) is the error of the independent sample, ωi are the model weights, N is the sample
size and K(x, xi) is a nonlinear kernel function.
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Given a training sample set {xi, ti}Ni=1, suppose the target value ti is independent and the noise in
data follows the Gaussian distribution with the variance σ2, then the likelihood function of the training
sample set can be described as

p(t|ω, σ2) =
N∏

n=1
p(ti|ω, σ2)

= (2πσ2)
−N/2 exp{− ||t−Φω||2

2σ2 }
(9)

where t = (t1, · · · , tn)
T, ω = (ω0,ω1, · · ·ωn)

T and Φ is the design matrix defined by

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 K(x1, x1) K(x1, x2) · · · K(x1, xN)

1 K(x2, x1) K(x2, x2) · · · K(x2, xN)
...

...
...

. . .
...

1 K(xN, x1) K(xN, x2) . . . K(xN, xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

Based on the priori probabilities distribution and likelihood distribution, the posterior distribution
over the weight form Bays rule can be written as

p(ω|t,α, σ2) =
p(t|ω,σ2)p(ω|α)

p(t|α,σ2)

= (2π)−(N+1)/2|Σ|−1/2
exp{− 1

2 (ω− μ)TΣ−1(ω− μ)}
(11)

where Σ = (σ−2ΦTΦ + A)
−1

, μ = σ−2ΣΦTt and A = diag(a0, a1, . . . , aN).
At last, the hyper parameter α and the variance σ2 can be estimated by using the maximum

likelihood algorithm.
The input value is x∗i , then the corresponding forecasting value can be described as [13]{

y∗ = ϕ(x∗i )μ
σ2∗ = σ2

MP + ϕ(x∗i )
TΣϕ(x∗i )

(12)

Under the confidence level of α, the interval forecasting value results can be described as [25]

[Lαb , Uαb ] = [y∗ − zα/2σ∗, y∗ + zα/2σ∗] (13)

where Lαb and Uαb represents lower and upper bound of forecasting value. Zα/2 represents standard
Gaussian distribution, which depends on the confidence level.

3. Hybrid Forecasting Model

The proposed hybrid method mainly has three stages in PI construction. Those stages are historical
PV output power series decomposition stage by using EEMD, the components construction stage
utilizing SE and the construction stage by RVM. This part is divided into five sections. The first section
is to introduce the principle of sample selection. The second section is to describe the decomposition of
the data using EEMD and the third section is to demonstrate the reconstruction of components using
SE. In the last section, the analysis of the RVM method and the corresponding flow chart as well as the
pseudo-code program are given.

3.1. Sample Selection

For the sake of validating the forecasting ability of the method proposed in this paper, the PV
output power simulation data of a PV power plant in Jiangsu province from July 2011 to June 2012 was
obtained. Considering the different sunrise and sunset time in each season, and in order to ensure
that the data obtained has value, only 10 h data from 8:00 to 17:00 was taken. If different seasons are
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selected, then the sunrise and sunset time of different seasons are different. In order to unify the data,
8:00–17:00 time period was selected. Otherwise, the changes of weather have massive impacts on the
PV output power. By comparing the historical output power curve with the meteorological curve, it
can be found that the meteorological conditions have a great influence on the PV power output. In
order to ensure the consistency of the same kind of data and to predict the PV output power more
accurately, the PV historical output power data was divided into three types (sunny days, cloudy days
and rainy days) according to the numerical weather prediction (NWP). The photovoltaic historical
output power was classified according to the weather type, and the model prediction was respectively
carried out on the photovoltaic historical output power. Using the EEMD to decompose the historical
PV output power. The forecasting model was developed respectively. The historical photovoltaic
output power data of 6 h to be predicted and the NWP at the time to be predicted were used as the
input of the model. The model in this paper was a rolling prediction model. For different time to be
predicted, the input data was updated online and in real time.

3.2. Decomposing the Classified PV Output Power Using EEMD

While PV output power contains randomness and volatility with the influence of weather changes
and other factors, the result of direct forecasting would have a large error. For the sake of enhancing
the forecasting results, it is essential to preprocess the original data. In the performed comparison, the
EEMD shows better noise robustness and decomposing result than other decomposition algorithms. In
this paper, the PV output power was decomposed by using EEMD, and some new components were
achieved. For example, Figure 1 shows the decomposition results of a sunny-day PV output power
data by applying EEMD.

Figure 1. Decomposition results by ensemble empirical mode decomposition (EEMD).

3.3. Reconstructing the New Components Using SE

As it can be seen from Figure 1, there was a similar trend for some components. If these components
are highly similar, the value of the sample entropy between them will be small. Therefore, the rules to
reconstruct the new components based on SE are as presented as follows:

(1) The sample entropy of the given PV data sequence, IMF components and RES component
were calculated.
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(2) The components with obviously lower sample entropy value than that of the given sequence
could form the trend component.

(3) The components with obviously higher sample entropy value than that of the given sequence
could form the random component.

(4) The detail component’s sample entropy value was within a given threshold of θ around the
given sequence. In this paper, we chose θ = 0.7.

Figure 2 gives the trend graph of the new components after reconstruction.

Figure 2. Trend graph of each new component.

It can be obviously noticed from Figure 2 that the three components (trend, detail and random)
have their own typical features. With respect to the trend component, it can roughly reflect the overall
fluctuation of the original PV power sequence. Similarly, for the detail component, it can characterize
the detailed fluctuations of the original PV power sequence. Considering the random component, it
represents the fluctuations caused by other factors, which cannot to be explicitly described. Table 1
shows the composition of each new component.

Table 1. Composition of each component.

New Component Trend Component Detail Component Random Component

IMFs and RES IMF6, IMF7, IMF8, RES IMF1, IMF3, IMF4, IMF5 IMF2

For further simplification of the calculation, the forecasting interval was reduced. The trend
component was selected for point forecasting, the detail and random components were selected
for interval forecasting. Then, the result of the different component forecasting was superposed,
the interval forecasting at a certain degree of confidence was obtained and the optimal prediction
was realized.

3.4. Kernel Function of RVM

RVM is a pattern recognition as well as regression forecasting method, which is based on kernel
function, the kernel implements non-linear transformation among plurality of feature spaces. The basic
method of mixed kernel is to combine plurality of kernels having different characteristics together with
a certain proportion, and optimizes the combined kernel function so as to have better performance.
Considering that RVM has the advantages of less limitation of kernel function selection and the
excellent properties of RBF kernel in solving local fluctuations and polynomial kernel in dealing with
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global fluctuations, the combination of the global kernel of polynomial kernel and the typical local
kernel of RBF kernel is used for short-term PV output power interval forecasting so as to obtain better
forecasting results. The hybrid kernel is shown as [13,28]

K(x, y) = θG(x, y) + (1− θ)P(x, y) (14)

G(x, y) = exp(−||x− y||2
σ2 ) (15)

P(x, y) = (x · y) = (x · y + 1)2 (16)

where G(x, y) is the Gaussian kernel function, P(x, y) is the binomial kernel function, θ is the weight of
the kernel function and σ is the kernel width. θ and σ are the parameters that need to be optimized. In
this paper, the optimal values of θ and σ are obtained by using the method of grid search [36].

3.5. Evaluating Indicator

There are many evaluation indicators for the forecasting, an evaluation index different from the
well-known point forecasting, such as MAPE and RMSE. The following evaluation indicators were
used in this paper.

(1) Mean absolute percentage error

MAPE =
1
N

N∑
i=1

∣∣∣∣∣ y f or − ytru

ytru

∣∣∣∣∣× 100% (17)

where y f or is the value of forecasting, ytru is the actual value of sample and N represents the number of
the sample.

(2) Forecasting interval coverage percentage

FICP(1−β) = 1
N
ξ(1−β) × 100% (18)

where N denotes the number of the sample, ξ is the number of the actual PV output power within the
interval under the level 1− β.

(3) Forecasting interval average width

FIAW(1−β) = 1
N

N∑
i=1

Uβ − Lβ

ytru
(19)

where N represents the number of the sample, ytru is the actual value of the sample, Uβ is the upper
boundary and Lβ is the lower boundary under the level 1− β.

This paper proposed a new EEMD-SE-RVM method used for the PV output power short-term
interval forecasting. A simplified pseudo-algorithm that summarizes this process is provided in
Algorithm 1.
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Algorithm 1. PV power forecast

1: PV power data and climate data
2: Divide the data into three categories (sunny, cloudy and rainy)
3: Using EEMD decompose PV output power into IMFs and RES
4: Input: IMFs and RES;
5: if SE θ < 0.7 then,
6: constitute the trend component
7: end if

8: if SE θ > 0.7 then,
9: constitute the random component
10: else constitute the detail component
11: end if

12: while trend component do

13: RVM point forecasting
14: while detail component and random component do

15: RVM interval forecasting
16: end while

The EEMD method has better performance used in the interval forecast by eliminating the mode
mixing problem, which exists in the EMD method. However, prediction interval forecast based on
conventional EEMD is still influenced by the high complexity. The proposed method uses SE to analyze
the decompositions so that the complexity is reduced. According to the analysis above, SE recombined
the decomposition into trend, detail and random components to optimize the forecasting method. The
trend component, which is smoother and steadier, was used to achieve point forecasting, and the detail
component and random component were difficult to be used in the conventional point forecast method
because of the uncertainty and non-stationary. The method that achieved point and interval forecasts
respectively could guarantee better performance by reducing the numerical value fluctuation.

4. Case Study

In this part, the PV data of Jiangsu photovoltaic power station from July 2011 to June 2012 was
used to test the accuracy and effectiveness of the EEMD-SE-RVM model proposed in this paper. The
installed capacity of this PV plant was 30 MW, consisting of 28 PV arrays of 1.09 MW. The data
were collected once an hour and 24 times a day. What is collected is the instantaneous value of PV
output power at the current time. The prediction date was randomly selected and the data before the
prediction date was used as the training data of the model.

For the sake of validating the interval forecasting effect of the model proposed in this paper under
different confidence levels, two confidence levels of 90% and 60% were chosen as examples. Figures 3–8
depict the results in different case interval forecasting. In this paper, three common indices forecasting
interval coverage percentage (FICP), forecasting interval average width (FIAW) and mean absolute
percentage error (MAPE) were used to assess the effect of the interval forecasting [24,27]. Tables 2–4
give the different case interval forecasting results and analysis.
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Figure 3. Interval forecasting results in a sunny day with the 90% confidence level.

Figure 4. Interval forecasting results in a sunny day with the 60% confidence level.
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Figure 5. Interval forecasting results in a cloudy day with the 90% confidence level.

Figure 6. Interval forecasting results in a cloudy day with the 60% confidence level.
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Figure 7. Interval forecasting results in a gloomy day with the 90% confidence level.

Figure 8. Interval forecasting results in a gloomy day with the 60% confidence level.

Table 2. Interval forecasting results of EEMD-sample entropy (SE)-relevance vector machine (RVM)
mode in a sunny day.

90% Confidence Level 60% Confidence Level

MAPE 4.05% 4.05%
FICP 100% 70%
FIAW 0.2441 0.1249
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Table 3. Interval forecasting results of EEMD-SE-RVM model in a cloudy day.

90% Confidence Level 60% Confidence Level

MAPE 19.08% 19.08%
FICP 100% 60%
FIAW 0.9904 0.5383

Table 4. Interval forecasting results of EEMD-SE-RVM model in a gloomy day.

90% Confidence Level 60% Confidence Level

MAPE 14.91% 14.91%
FICP 100% 60%
FIAW 1.1051 0.5279

To prove the superiority of the method proposed in this paper, the RVM model, EMD-RVM model
and EEMD-RVM model were also used for the same PV output power short-term interval forecasting,
respectively. In this case, the forecasting results in the sunny day were chosen for example. In this
paper, three evaluation indexes FICP, FIAW and MAPE and model running time were used to evaluate
the effect of interval prediction. In Table 5, the results at 90% confidence level of four different models
were provided.

Table 5. Comparison of forecasting effect among four models.

Forecasting Model FICP FIAW MAPE Running Time

RVM [7] 90% 0.2595 7.08% 19 s
EMD-RVM 90% 0.2502 5.19% 126 s

EEMD-RVM [33] 100% 0.2513 4.96% 97 s
EEMD-SE-RVM 100% 0.2441 4.05% 58 s

On the other hand, for more evaluation of the adaptability to different PV output power data of
this proposed model, the other forecast days in different seasons were considered. For example, the
date of 6 August 2011, 30 October 2011, 14 May 2012 and 19 March 2012 were selected stochastically.
According to the four days original PV output power data, the probability of one hour-ahead of the PV
output power in these four days at 90% confidence was predicted, and the results are illustrated in
Figure 9. At the same time, in Table 6, the results of evaluating the indicators FICP, FIAW and MAPE
are given.

Table 6. Comparison of indices results among four different days.

Forecast Day FICP FIAW MAPE

6 August 2011 100% 0.2871 5.73%
30 October 2011 89.76% 0.2249 3.99%
14 March 2012 90% 0.1840 5.05%
19 May 2012 90% 0.1825 3.70%
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Figure 9. Interval forecasting results of four days for a PV power plant. (a) 6 August 2011; (b) 30
October 2011; (c) 14 March 2012 and (d) 19 May 2012.

Taking sunny days as an example, the short-term interval prediction of two different time scales
was carried out under a 90% confidence level are depicted in Figure 10. At the same time, in Table 7,
the results of evaluating the indicators FICP, FIAW and MAPE are given.

 

Figure 10. Results under two different circumstances (a) Hour-ahead and (b) day-ahead.

202



Energies 2020, 13, 87

Table 7. Comparison of indices results between two different days.

Circumstance FICP FIAW MAPE

Day-ahead 90% 0.7208 7.90%
Hour-ahead 90% 0.5097 4.86%

It can be clearly noted from the comparison results that the forecasting effects obtained by
the proposed method were better than the other methods. Furthermore, the superiority and wide
adaptability of this proposed model were fully confirmed based on the above comparison.

5. Conclusions

Firstly, considering the influence of different meteorological conditions on the output power of
PV, the original PV output power data has been classified into three categories. Strong theoretical basis
in addition to noise robustness are some of the advantages of EEMD. Those features overcome the
drawbacks that the wavelet analysis requires, which are the artificial selection of the basic functions
and the mode mixing phenomenon of EMD. Consequently, the original PV output power achieves
better decomposition by the use of EEMD. Secondly, the use of SE excavates the correlation among
the components as well as reduces the model complexity, which creates contributions to enhance the
running efficiency. Thirdly, the hybrid kernel RVM method was implemented to achieve the PV output
power short-term interval forecasting. In the part of illustrative results, comparing the EEMD-SE-RVM
with other models, the obtained MAPE and FIAW indices had better values than other models, and
the FICP of the proposed model was higher than that obtained from the compared models. In this
paper, the proposed hybrid model not only improved the forecasting precision, but also enhanced the
interval coverage rate, and at the same time, reduced the width of the prediction interval, which made
it suitable for practical application on other renewable energies output power forecasting.
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Abstract: Accurate wind power and wind speed forecasting remains a critical challenge in wind
power systems management. This paper proposes an ultra short-time forecasting method based
on the Takagi–Sugeno (T–S) fuzzy model for wind power and wind speed. The model does not
rely on a large amount of historical data and can obtain accurate forecasting results though efficient
linearization. The proposed method employs meteorological measurements as input. Next, the
antecedent and the consequent parameters of the forecasting model are identified by the fuzzy
c-means clustering algorithm and the recursive least squares method. From these components,
the T–S fuzzy model is obtained. Wind farms located in China (Shanxi Province) and in Ireland
(County Kerry) are considered as cases with which to validate the proposed forecasting method.
The forecasting results are compared with results from the contemporary machine learning-based
models including support vector machine (SVM), the combined model of SVM and empirical mode
decomposition, and back propagation neural network methods. The results show that the proposed
T–S fuzzy model can effectively improve the precision of the short-term wind power forecasting.

Keywords: wind power: wind speed: T–S fuzzy model: forecasting; linearization; machine learning

1. Introduction

As a result of advances in power electronic design and manufacturing as well as growing concerns
about global warming and related government financial incentives, wind energy has become the
fastest-growing new energy source in the past two decades. Global wind turbine capacity increased
by 52.5 GW in 2017, a slight increase from 51 GW in 2016. The overall capacity of all wind turbines
installed worldwide by the end of 2017 reached 539 GW [1]. Wind energy is random, intermittent,
and uncontrollable. A large-scale wind power grid connection will have a significant impact on the
stability of power systems and also bring many challenges to ionization balance, power system safety,
and power quality. To reduce wind uncertainty, energy managers and power operators need to make
accurate forecasts of wind speed and power. In addition, accurate prediction results have a major
impact on the design of wind farm layout, wind farm, and grid management. Therefore, the accurate
prediction of wind speed has become an urgent and important task with tangible benefits [2].

Wind power and wind speed forecasting methods are classified into statistical methods and
physical methods [3]. Physical methods describe the physical conversion process of wind energy into
electric energy. The numerical weather prediction (NWP) is a representative method that employs
numerical solutions of partial differential equations, based on thermodynamics and fluid mechanics
models, to describe weather changes; the NWP formulates corresponding weather forecasting
mechanism based on various features and parameters including air pressure, wind direction, humidity,
wind speed, and other meteorological elements at different heights [4]. Air temperature, air pressure,
wind direction, and other meteorological data for the upcoming period on a wind farm can be employed
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to build NWP models of complex atmospheric processes. Accordingly, NWP employs all the above
information, in addition to historical data from the wind farm, to build forecasting models. The
statistical methods build a map-based relationship between historical data and forecasting output;
the methods enable an analysis of the change rules of wind power series regardless of the physical
performance during the change process of related environmental factors and realize the prediction.

Contemporary intelligent methods are widely used for a variety of prediction and classification
problems in various energy systems for phase transition monitoring [5], combustion regimes
monitoring [6], transportation systems [7], power system’s operational stability and efficiency [7–11],
pollution problems [12], energy storage control, load leveling [13], and many other applications. In
comparison with physical methods, machine learning (ML) methods can be faster and more accurate.
Therefore, significant research has been undertaken with regard to forecasting wind power or wind
speed using contemporary ML methods; for example, the support vector regression (SVR) is combined
with Elman recurrent neural work (ERNN) and seasonal index adjustment (SIA) as a hybrid model
to forecast medium-term wind power in [14]. On the basis of the autoregressive integrated moving
average (ARIMA), a hybrid of KF-ANN model is used for wind power forecasting and to improve
the accuracy of wind power forecasting in [15]. The artificial neural network (ANN) model with
meteorological data is applied to predict of the mean, maximum, and minimum hourly wind power
eight hours ahead in [16] using the conventional multi-level perceptron (MLP). A self-adapting
forecasting model based on extreme learning machine (ELM) is employed for ultra-short term wind
power time series forecasting in [17]. A detailed comprehensive comparative analysis of three different
ANNs in one-hour-ahead wind power prediction, including adaptive linear element, radial basis
function and back-propagation network can be found in [18]. A combined forecasting approach is
proposed in [19], which builds forecasting model with self-adjusting parameters of low computational
complexity. The hybrid model, based on Hilbert-Huang Transform and neural networks for time
series forecasting, is proposed in [20]. Other common methods like spatial correlation (SC) method,
genetic algorithm (GA), support vector machine (SVM), Kalman filtering (KF) method, autoregressive
moving average method (ARMA), continuous method, grey forecasting (GF) method, and various
combinations of these methods have been employed for wind power or wind speed forecast in multiple
studies [21–25].

However, the continuous method only sets the measured data as the forecasting value which
reduces its accuracy. The low-order forecasting model also has low precision and the high-order model
is difficult to build and utilize in the real time framework. The KF method can be efficient when the
statistical properties of the noise are obtained; otherwise, its performance is limited. It is difficult to, a
priori, determine the optimal network structure for ANN; is has a slow learning rate, local minimum
point, and unstable memory, resulting in prediction accuracy that hardly meets the requirements.
SVMs rely on the well-established statistical VC learning theory developed by Vladimir Vapnik and
Aleksei Chervonenkis in the 1960s and proposed in [26]. In SVM, the choices of kernel function and
parameters depend on the experience of the designer. These parameters are easily influenced by the
training data and not robust to concept drift. Additionally, most of these methods rely on the sample;
the quantity and quality of the sample can have a great impact on the prediction results.

In view of the limitations of available research with regard to physical and statistical methods, this
paper proposes a new method based on the Takagi–Sugeno (T–S) fuzzy model for wind power and wind
speed forecasting. This method enjoys reliable linearization ability and can express complex nonlinear
process with specific mathematical equations; the model is also able to solve multi-classification
problems without a large amount of retrospective data and calculations. The high prediction accuracy
and robustness are the most important advantages of the approach proposed in this article.

The paper is organized as follows. In Section 2, the approach of T–S fuzzy model is introduced,
including which methods are selected to build the model. Section 3 introduces the process of forecasting
wind power and wind speed based on T–S fuzzy model. Parameters and input variables are obtained.
The error indices are selected to evaluate the performance of the proposed model and compare the
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proposed model with other traditional approaches. Section 4 describes the case study, including the
data processing and description as well as the results analysis of the experiment. Actual measured data
with different cases is used to build model and evaluate model forecasting performance by calculating
forecast accuracy metrics and comparing with SVM, EMD-SVM, and BPNN. Here, a SVM model is
built with LIBSVM [27] and an EMD model is built with EMD in the Matlab toolbox [28]. For BPNN,
the hidden layer is set as 15 and the tanh function is selected as activation function. Finally, a brief
summary of the paper is given in Section 5.

2. Methodology

2.1. The Approach of Takagi–Sugeno (T–S) Fuzzy Model

The T–S fuzzy model, proposed by Takagi and Sugeno, has great linearization ability though
expressing complex nonlinear system with a number of linear or nearly linear subsystems. Theoretically,
the T–S model can be infinitely closed to a nonlinear dynamical system if the fuzzy rules are selected
appropriately [29]. Figure 1 presents the basic structure of the T–S fuzzy model which includes two
parts, the antecedent structure and consequent structure, respectively.

Figure 1. The structure of Takagi–Sugeno (T–S) fuzzy model.

Here xi is the input of the model; Sn is the n-th sub system; μn is the membership degree for input
variable to Sn; Rule n is the fuzzy rule for Sn; yn is the output of the n-th subsystem; wn is the weight
for the n-th subsystem to total output; y is the output of the model.

The most import part to build the T–S fuzzy model is to select the appropriate fuzzy rule for
every subsystem, select the appropriate algorithm to identify the model to obtain all the parameters
including membership degree, cluster, cluster centers, parameters in the rules. In this paper, fuzzy
c-means (FCM) cluster algorithm is selected to identify the antecedent structure and the recursive least
squares (RLS) method is selected to identify the consequent structure.

2.2. Fuzzy C-Means (FCM) Algorithm

FCM is a well-known clustering algorithm. In a non-fuzzy clustering algorithm, each data point
can only belong to exactly one cluster. In fuzzy clustering, data points can be classified to multiple
clusters. In contrast to other clustering algorithms, in FCM, each data point can belong to more than
one cluster. The identification includes the following steps:

Step (1) Give an initial membership matrix U0; Set ε a small positive number; Input data set Z to be
clustered; Set the number of cluster set C, the fuzzy index m and the iteration l = 0;

Step (2) Obtain the updated clustering center vi according to (1);
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Step (3) Obtain the updated distance norm and the objective function according to (2) and (3);
Step (4) Obtain the update membership matrix according to (4);
Step (5) Stop the iteration when ‖Ji+1 − Ji‖<ε, otherwise, set l = l + 1, return to Step 2;

vi =

N∑
k=1

(μik)
mzk

N∑
k=1

(μik)
m

(1)

D2
ik = ‖zk − vi‖2A = (zk − vi)

TA(zk − vi) (2)

μik =
1

N∑
j=1

(
Dik
Djk

) 2
(m−1))

(3)

J(Z; U; V) =
c∑

i=1

N∑
k=1

(μik)
m‖zk − vi‖2A (4)

Here, Z = (z1, z2, ..., zN) is the finite dataset to be clustered; U = [μik] is a membership matrix of Z;
V = (v1, v2, ..., vN) is a vector of the clusters’ center; μik is the membership degree of zk relative to the
cluster center vi; C is the number of clusters; n is the number of samples; m is the fuzzy exponential;
Dik

2 is the square inner product distance norm; A determines the shape of the cluster, set A = I, where I
is the unit matrix.

2.3. Recursive Least Squares (RLS) Algorithm

The RLS is used to identify consequent parameters of the T–S fuzzy model. Set m(k) = [x1(k)
x2(k)...xn(k)], where n is the number of the input variables. The identification steps are summarized
as follows:

Step (1) Determine the input and the output data sequence according to the measured data;
Step (2) Set the initial values for θ(k) and P(k);
Step (3) Compute θ(k), P(k), w(k) as shown in (5);⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θ
(
k + 1) = θ(k) + w(k + 1)P(k)m(k)[y(k + 1) −mT(k)θ(k)]

P(k + 1) = 1
λ [I −w(k + 1)P(k)m(k)mT(k)]P(k)

w(k + 1) = [λ+ mT(k)P(k)m(k)]−1
(5)

Step (4) Set k = k + 1, go to Step 3;

Here, λ is the forgetting factor which is generally selected from interval [0.95, 1]; θ(k) is the
parameter matrix to be identified; P(k) is the covariance matrix; w(k) is the gain matrix; m(k) is the input
matrix; y(k + 1) is output.

3. Proposed Forecasting Model for Wind Speed and Wind Power

The proposed model is built to forecast ultra short-term wind power and wind speed. The inputs
and the parameters of model are important, including which variables should be selected as the model
input and how many clusters into which the data should be divided. The error index is also important
to evaluate the performance of the proposed model.
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3.1. Flow Work of Forecasting Model Based on T–S Fuzzy Model

Figure 2 presents the process of building the T–S fuzzy model for wind speed and wind power,
including data processing, FCM clustering, RLS identifying parameters in every rule, and evaluating
the model with error indexes by comparing with traditional methods SVM, EMD-SVM, BPNN.

 

Figure 2. The flowchart of forecasting model based on T–S fuzzy model.

3.2. Error Index

Because there is no universal criterion to evaluate models, several common models quality metrics
are adopted here. It is critical to select reasonable criteria to evaluate the performance of the proposed
method. In this model, the error indices are the root mean squares of the errors (RMSE), the mean
absolute error (MAE), the mean percentage absolute error (MAPE), and the relative error (RE). RMSE
reflects the closeness of error distribution and MAE reflects the amplitude of the errors; MAPE is
equivalent to standardized MAE which reflects absolute corresponding degree. RE is used to reflect the
amount of large errors. In addition, the index of agreement developed by Willmott as a standardized
measure of the degree of model prediction error and varies between 0 and 1. A value of 1 indicates a
perfect match, and 0 indicates no agreement at all. The index of agreement can detect additive and
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proportional differences in the observed and forecasting means and variances, the IA can be used
to confirm the validity of the over performance [30]. All of these indicators are used to estimate the
proposed method. The expressions are as follows:

RMSE =

√√
1
n

n∑
i=1

(yi −�y i)
2
, (6)

MAE =
1
n

n∑
i=1

∣∣∣∣yi −�y i

∣∣∣∣, (7)

MAPE =
1
n

n∑
i=1

∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣, (8)

RE =

∣∣∣∣∣∣∣ yi −�y i
yi

∣∣∣∣∣∣∣, (9)

IA = 1−

n∑
i=1

(ŷi − yi)
2

n∑
i=1

(∣∣∣ŷi − y
∣∣∣+ ∣∣∣yi − y

∣∣∣)2 (10)

Here, n is the length of the testing vector of considered time series, ŷi is the i-th forecasting value,
ȳ is the mean value of all forecasting value, yi is the i-th measured value.

3.3. Parameters

The T–S fuzzy model with the simplest structure is expressed as follows [18]:

Ri : i f x1 is Ai1 and x2 is A12 . . . .and xr is Air
then yi = pi0 + pi1x1 + pi2x2 + . . .+ pirxr, i = 1, 2 . . . n

(11)

Here, Ri is the i-th rule; n is number of the general fuzzy rules; xi is the input variable; yi is the
output of i-th rule. Air is the r-th fuzzy set in the i-th rule.

In consideration of the calculation and accuracy, there are three main rules for wind speed
forecasting model and for the wind power forecasting model. There are two clusters for wind speed
forecasting model and four clusters for wind power forecasting. Therefore, the final outputs for wind
power and wind speed, respectively, can be expressed as follows:

ywind power = wwp1ywind power1 + wwp2ywind power2 + wwp3ywind power3 (12)

ywind speed = wws1ywind speed1 + wws2ywind speed2 + wws3ywind speed3 (13)

Here, ywind power is the final output of wind power forecasting; ywind speed is the final output of wind
speed forecasting; Wwpi is the weight of the output from the i-th wind power forecasting sub-model;
Wwsi is the weight of the output from the i-th wind speed forecasting sub-model.

3.4. Input Variables

The process of wind speed and wind power generation is complex, given the significant
meteorological factors such as humidity, temperature, and air pressure. Therefore, a features analysis
was performed. The correlation between wind speed and historical wind speed as well as other
meteorological measurements has been previously studied. Meteorological information from weather
stations cannot contribute significantly to forecasting wind speed and wind power. Therefore, historical
retrospective data is selected as the input for forecasting model. To decide how many input variables
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should be selected, the simulation is performed with different input variables. The 500 sampling points
are used to test. Results are shown in Tables 1 and 2.

Table 1. Performance of wind power forecasting model with different inputs.

Input Variable

Error Indexes
RMSE MAE MAPE IA

[WP1] 3.3347 2.4245 0.8611 0.9871
[WP1 WP2] 1.9922 1.4526 0.5020 0.9955

[WP1 WP2 WP3] 1.9102 1.3911 0.3111 0.9959
[WP1 WP2 WP3 WP4] 1.8837 1.3902 0.3386 0.9960

[WP1 WP2 WP3 WP4 WP5] 1.9469 1.4488 0.4641 0.9957

Table 2. Performance of wind speed forecasting model with different inputs.

Input Variable

Error Indexes
RMSE MAE MAPE IA

[WS1] 1.0332 0.6519 0.1077 0.9665
[WS1 WS2] 0.8452 0.5161 0.0925 0.9740

[WS1 WS2 WS3] 0.7520 0.4610 0.0760 0.9830

[WS1 WS2 WS3 WS4] 0.7654 0.4660 0.0778 0.9823
[WS1 WS2 WS3 WS4 WS5] 0.7754 0.4666 0.0777 0.9821

Here, WPi is the wind power i hour before the predicted point. According to Table 1, the
performance of the model for forecasting wind power is best when the input variables are the four
historically measured wind powers before the point to be predicted.

Here, WSi is the wind speed i hours before the predicted time point. As seen in Table 2, the
performance of the forecasting model is best when the inputs are the three historically measured wind
speed before the point to be predicted.

Therefore, the ywind power i and ywind speedi can be expressed as follows:

ywind power i = ai1wp1i + ai2wp2i + ai3wp3i + ai4wp4i, (14)

ywind speed i = bi1ws1i + bi1ws2i + bi3ws3i (15)

4. Case Study

4.1. Data Sets

This paper collected the historical data of a wind farm located in Shanxi Province in China and a
wind farm located in County Kerry in Ireland. The 200 values were used for training s to build the
forecasting model. The 96 values were used as the testing data to evaluate the performance of the
model. The forecasting results are compared with actual data and the forecasting results from other
three ML based forecasting models.

4.2. Data Processing

Atmospheric conditions measurement systems provide valuable information for wind forecasts.
But such measurements often include errors and are prone to other factors, including data loss and
corruption during transmission [31]. Therefore, it is necessary to improve data processing for building
a more accurate forecasting model. In this paper, the two-way comparison method [32] is selected to
identify and modify the abnormal data. The row data and the processed data are shown in Figure 3.
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(a) 

 
(b) 

Figure 3. The time series (a) wind power (b) wind speed.

As seen in Figure 3, there are some abnormal data in the time series like continuous zeros and
missing values. Following data processing, the more effective sample set was obtained to do the
following study.

Figure 4 is the series of wind power and wind speed after data processing. As seen in Figure 4, the
abnormal data is modified like data between 15:00 and 17:00 h. Therefore, the more effective sample
set was obtained to do the following study.

 
(a) 

Figure 4. Cont.
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(b) 

Figure 4. The time series with data processing (a) wind power (b) wind speed.

The originally collected data is normalized according to (16) and converted into the interval
[−1, 1].

Xi =
xi − xmin

xmax − xmin
(16)

4.3. Study in Wind Power and Wind Speed Forecasting

The forecasting results from the proposed model and other models were obtained as seen in
Figure 5, where (a) is forecasting results for wind power, (b) and (c) are forecasting results for the wind
speed from different wind farms. The curve from the T–S model is always closer to the curve of actual
data, and can follow the actual data better in both cases. However, the performances of the other three
models are different in different cases, indicating they are not as stable as the proposed model.

 
(a) 

Figure 5. Cont.
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(b) 

 
(c) 

Figure 5. Comparison of forecasting results with T–S fuzzy model and other methods in (a) wind
power in China; (b) wind speed in China; (c) wind speed in Ireland.

Figure 6 presents the absolute errors from the proposed model and the other traditional methods
in two cases: (a) is for wind power and (b) is for wind speed. It can be seen the range for wind power
absolute error is [−5.421 5.189] and is much smaller than the whole range of all the forecasting methods,
which is about [−17 10]. The situation is the same in the case of wind speed forecasting. As Figure 6b
shows, the range of absolute errors for wind speed forecasting from T–S fuzzy model is [−1.412 1.513],
which is also much smaller than the whole range [−2 2]. As seen in Figure 6c, the absolute errors for the
wind forecasting in the case of the Irish dataset is [−0.6645 0.9342] whereas the whole range is [−4 2].
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(a) 

(b) 

(c) 

Figure 6. Absolute errors of T–S fuzzy model and other methods in (a) wind power in China; (b) wind
speed in China; (c) wind speed in Ireland.

The error metrics are calculated and presented in Table 3. The best results are shown in bold.
Regardless of the case, the proposed model can obtain the smallest RMSE, MAPE, and MAE. For wind
power forecasting, the RMSE, MAPE, and MAE are respectively reduced by 1.7566%, 16.8471%, and
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1.1812% in comparison with the average values of other three ML methods; the IA is increased by
0.0139% in comparison with the average IA of other three models. For wind speed forecasting, the
RMSE, MAPE, and MAE from the proposed model are also reduced by 0.1587%, 1.5599%, and 0.1025%,
respectively, in comparison with the average values of other three methods and the IA is increased by
0.0077%. For Case III, the proposed model still has the best performance with compared with the three
other methods, specifically, the errors of the T–S fuzzy model are smaller and distribute more densely.
The performance of the proposed model is better and forecasting results are more stable.

Table 3. Forecasting errors analysis.

Case I Case II Case II

RMSE

t-s 1.8104 0.4503 0.3427

svm 3.8018 0.6376 0.6768
emd-svm 3.2462 0.6579 0.7735

bpnn 3.6529 0.5316 1.7974

MAPE (%)

t-s 9.3551 6.1542 1.2265

svm 17.3577 7.9282 2.4060
emd-svm 24.8647 8.6377 2.6926

bpnn 36.3843 6.5766 6.9218

MAE

t-s 1.4760 0.3598 0.1550

svm 2.7301 0.4847 0.3069
emd-svm 2.4386 0.5082 0.3501

bpnn 2.8029 0.3939 0.8117

IA

t-s 0.9949 0.9912 0.9713

svm 0.9789 0.9817 0.8873
emd-svm 0.9844 0.9796 0.8420

bpnn 0.9797 0.9891 0.6307

Figure 7 presents the relative errors distribution probability for the wind power and wind speed
forecasting from the four abovementioned methods. The probability of RE is distributed between 0
and 10% are about 80% in two cases, significantly more than other methods, especially for wind power
forecasting. The figure also shows that there are very few REs which distributed in the range of more
than 30% for the T–S fuzzy model. It shows that the proposed model can obtain much fewer errors
when compared with other three ML methods.

From the above analysis, one may conclude that the three competing methods rely more on the
quality of sample data, especially BPNN, for which the forecasting performance is not the same. SVM
and EMD-SVM are also very sensitive to input data. Therefore, we can conclude that, in comparison
with the three other methods, the main advantage for the proposed method is that the T–S fuzzy model
can solve a multi-classification problem; the proposed approach also enjoys better linearization ability
and is robust to measurements errors.

218



Energies 2019, 12, 3551

 

Figure 7. Probability of relative errors for wind power and wind speed forecasting results obtained
from different models.

5. Conclusions

Wind power and wind speed forecasting are both essential for efficient operation and the optimal
management in a wind farm. This paper proposes a novel method to forecast wind power and wind
speed based on an adaptive T–S fuzzy model, which includes two parts: antecedent structure and
consequent structure. Antecedent parameters and consequent parameters can be obtained by FCM
and RLS. The SVM and EMD-SVM can only be used for binary classification, and BPNN depends
more on the quantity and quality of samples. In comparison with these methods, the proposed model
can handle multi-classification problems and is not restricted by samples; moreover, the modelling
process is simpler. By analysing the RMSE, MAPE, MAE, and IA of the wind power and wind speed
forecasting results from the proposed model and other methods, the errors of the proposed model are
smaller and more intensive; the proposed method also handles mutation points better. In conclusion,
the proposed method increases the forecasting accuracy and has better performance. Therefore, the
proposed method has practical value.
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Nomenclature

xi Input of the model
Sn n-th sub system
μn Membership degree for input variable to Sn

Rule n Fuzzy rule for Sn

yn Output of the n-th subsystem
wn Weight for the n-th subsystem to total output
y Output of the model
Z Finite dataset to be clustered
U Membership matrix of Z
V Vector of the clusters’ center
C Number of clusters
n Number of samples
m Fuzzy exponential
Dik

2 Square inner product distance norm
θ(k) Parameter matrix
P(k) Covariance matrix
w(k) Gain matrix
m(k) Input matrix
ywind power Final output of wind power forecasting
ywind speed Final output of wind speed forecasting
Wwpi Weight of the output of the i-th wind power forecasting submodel
Wwsi Weight of the output of the i-th wind speed forecasting submodel
WPi Wind power i hour before the predicted point
WSi Wind speed i hours before the predicted point.
T-S Takagi-Sugeno fuzzy model
FCM Fuzzy c-means clustering algorithm
RLS Recursive least squares method
SVM Support vector machine
EMD-SVM Combined model of SVM and empirical mode decomposition
BPNN Back propagation neural network methods
RMSE Error indexes are the root mean squares of the errors
MAE Mean absolute error
MAPE Mean percentage absolute error
ML Machine learning
RE Relative error
IA Index of agreement
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Abstract: The present work proposes an integrated methodology for rule extraction in a vacuum
tank degasser (VTD) for decision-making purposes. An extreme learning machine (ELM) algorithm
is established for a three-class classification problem according to an end temperature of liquid
steel that is higher than its operating restriction, within the operation restriction and lower than the
operating restriction. Based on these black-box model results, an integrated three-step approach for
rule extraction is constructed to interpret the understandability of the proposed ELM classifier. First,
the irrelevant attributes are pruned without decreasing the classification accuracy. Second, fuzzy
rules are generated in the form of discrete input attributes and the target classification. Last but not
the least, the rules are refined by generating rules with continuous attributes. The novelty of the
proposed rule extraction approach lies in the generation of rules using the discrete and continuous
attributes at different stages. The proposed method is analyzed and validated on actual production
data derived from a No.2 steelmaking workshop in Baosteel. The experimental results revealed that
the extracted rules are effective for the VTD system in classifying the end temperature of liquid steel
into high, normal, and low ranges. In addition, much fewer input attributes are needed to implement
the rules for the manufacturing process of VTD. The extracted rules serve explicit instructions for
decision-making for the VTD operators.

Keywords: vacuum tank degasser; rule extraction; extreme learning machine; classification and
regression trees

1. Introduction

Over the past decades the new materials market has become rapidly competitive. In modern
steelmaking, which involves the refining of hot metal in ladles or furnaces and solidifying by continuous
casters (CC), clean steels with high quality have been steadily growing because of steel’s mechanical
properties have become more and more important for defending steel products against newer
competitive materials. In order to produce a satisfactory clean steel with low impurity contents, such
as sulfur, phosphorus, non-metallic inclusions, hydrogen, and nitrogen, it is necessary to accurately
control the composition and temperature of liquid steel. Steelmakers are urged to improve operating
conditions throughout the steelmaking processes to obtain high-purity steel. In practice, the vacuum
tank degasser (VTD) is widely used as a secondary steelmaking process to produce steel products with
low contents of carbon, hydrogen, and nitrogen. As is schematically illustrated in Figure 1, a refractory
lined ladle is installed in a chamber where the ascending gas is pumped out, leading to a very low
operating pressure inside the chamber (i.e., 67 Pa). The gas of argon (Ar) is blown into the ladle
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through the special porous plug(s) or nozzle(s) installed at the bottom of the ladle, and fine bubbles
rise from the bottom and disperse into the molten metal. As the argon bubbles rise through the plume,
it picks up nitrogen and hydrogen dissolved in the molten metal and leaves the gases maintained
at low pressure at the top. In this VTD process, the dissolved impurities in the molten metal were
removed partially through two chemical reactions, 2[H] = H2 and 2[N] = N2 (cf. Figure 1).

 

Figure 1. Schematic representation of a VTD.

The aim of VTD system is to obtain liquid steel with the desired composition and temperature.
An approach of accelerating the control level of liquid steel in VTD is to forecast the temperature
accurately. As the most critical step in the secondary steelmaking process, the VTD has been extensively
studied through using various approaches with the goal of better understanding the cause-effect
relationships of the vacuum degassing process. Several mathematical models of VTD refining have
been developed [1–3]. These models were formulated on the basis of differential equations to describe
chemical/physical reactions during the production process in the ladle. These mathematical models
are local models, dehydrogenation [2] or denitrogenation [3], which depict only part of the property, so
it is extremely hard to forecast the temperature of liquid steel using these kinds of white-box models.

An artificial neural network (ANN) is an information process mechanism and can be applied to
define the cause-effect relationships between process input parameters and outputs that ‘learn’ directly
from historical data. ANNs have been widely applied in the steelmaking process. Gajic et al. [4],
for example, have developed the energy consumption model of an electric arc furnace (EAF) based
on the feedforward ANNs. Temperature prediction models [5,6] for EAF were established using the
neural networks. Rajesh et al. [7] employed feedforward neural networks to predict the intermediate
stopping temperature and end blow oxygen in the LD converter steel making process. Wang et al. [8]
constructed a molten steel temperature prediction model in a ladle furnace by taking the general
regression neural networks as a predictor in their ensemble method. The main feature that makes
the neural nets a suitable approach for predicting the temperature drop of liquid steel in VTD is that
they are non-linear regression algorithms and can model high dimensional systems. These black-box
models offer alternatives to conventional concepts of knowledge representation to solve the prediction
problem for an industrial production process system. Volterra polynomial kernel regression (VPKR) is
a method to approximate a broad range of input-output maps from sparse and noisy data, which is a
central theme in machine learning. The classic Frechét work [9] made contributions to the research
topic due to their solid mathematical theory. Moreover, data-driven models based on the VPKR have
been found to be useful for nonlinear dynamic systems in industrial applications [10,11]. To address
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the control problem, the issue could be reduced to solve the nonlinear Volterra integral equations,
which have been well studied in heat and power engineering (readers may refer to monograph [12]).

However, in practical manufacturing process applications, black-box prediction is no longer
satisfactory. Rule extraction is of vital importance to interpret the understandability of black-box
models [13–16]. The main advantage of rule extraction is that operating decisions can be made for
the industry process to promote the controlling level and further improve energy efficiency. Various
rule extraction methods have been studied in different application issues. Gao et al. [17], for instance,
constructed the rules extraction from a fuzzy-based SVM model for the blast furnace system which
used classification and regression trees (CART). Chakraborty et al. [18] proposed a reverse engineering
recursive rule extraction (Re-RX) algorithm, which suits for both discrete and continuous attributes
in the application issues. Zhou et al. [19] developed a rule extraction mechanism by clustering the
process instance data for the manufacturing process design.

In the present work, we propose an integrated method for rule extraction from the VTD black-box
model. First is checking the data and eliminating the irrelevant attributes, so not to decrease the
model’s expected classification accuracy. Second, fuzzy rules are generated in the form of discrete
input attributes (if present) and the target classification. Last but not the least, the rules are refined by
generating rules with the continuous attributes (if present). The novelty of the proposed rule extraction
approach lies in the generation of rules using the discrete and continuous attributes at different stages.
The paper is organized as follows: The extreme learning machine (ELM) network and CART algorithm
are briefly presented in the second section. In the third section, the ELM based VTD multiclassifier is
established for the end temperature of liquid steel. Section 4 provides the proposed rule extraction
method based on the ELM classifier and the rule extraction is shown for the manufacturing process.
Finally, conclusions are drawn in the last section.

2. Brief of Related Soft Computing Algorithms

2.1. Extreme Learning Machine

ELM [20] is an efficient learning algorithm for single-hidden layer feedforward neural networks
(SLFNs). Based on the least squares method, the ELM algorithm could take place without iterative
tuning and reach the globally optimum solution. The output weights between hidden layer and output
layer are determined analytically during the learning process [21].

Given a training data set comprising N observations, {xn}, where n = 1, . . . N, together with
corresponding target values, {yn}, the purpose is to predict the value of y for a new value of x. The
output function of ELM with L hidden nodes is mathematically represented as:

L∑
i=1

βigi
(
x j
)
=

L∑
i=1

βiG
(
ai, bi, x j

)
= ŷ j, j = 1, 2, . . . N (1)

where βi is the weight vector between the hidden and output layers, ai is the weight vector between
the input and hidden layers, bi is the bias of the ith hidden node, G(ai, bi, xj) is the output function of
the ith hidden node, and ŷj is the output predictive value.

According to the ELM theory, the main idea of ELM is to predict the training set with zero error,
i.e.,

∑N
j=1 ‖ŷ j − yj‖ = 0, which implies that there exists (ai, bi) and βi satisfies the following:

L∑
i=1

βiG
(
ai, bi, x j

)
= yj. (2)
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Equation (2) can be rewritten as
Hβ = Y, (3)

where

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
h(x1)

...
h(xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(a1, b1, x1) · · · G(aL, bL, x1)
...

...
...

G(a1, b1, xN) · · · G(aL, bL, xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×L

, (4)

β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
β1
...
βL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ and Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1
...

yN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

As defined in ELM, H is the output matrix of hidden layer. The aim is to calculate the output
weights β in minimizing the norm of β, as well as the training errors. The mathematical issue can be
represented as follows:

Minimize : LPELM =
1
2
‖β‖2 + C

2

N∑
i=1
ξ2

i .

Subject to : h(xi)β = yi − ξi i = 1, 2, . . . , N,
(6)

where C is a user-specified parameter and ξi is the training error.
Based on the Karush-Kuhn-Tucker (KKT) theorem, to train the ELM is equal to solving the

following optimization problem:

LDELM =
1
2
‖β‖2 + C

2

N∑
i=1

ξ2
i −

N∑
i=1

αi(h(xi)β− yi + ξi), (7)

where αi is the Lagrange multiplier.
Two different solutions to the dual optimization problem can be achieved with different sizes of

the training data set.
1. The training set is not huge:

β = HT
( I

C
+ HHT

)−1
Y. (8)

The corresponding output function of ELM is

f (x) = h(x)HT
( I

C
+ HHT

)−1
H. (9)

2. The training set is huge:

β =
( I

C
+ HTH

)−1
HTY. (10)

The corresponding output function of ELM is

f (x) = h(x)
( I

C
+ HTH

)−1
HTY. (11)

These two solutions have different computational costs in the implementation of ELM. In the
application of the small training data set (N<<L), Equation (9) can increase the learning speed. However,
if the size of training data is huge (N>>L), one may prefer to use the Equation (11) instead.
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For multiclass cases, the predicted class label of a given test sample is the index number of the
highest output node. Let fi(x) denote the output function of the ith output function of the ith output
node, i.e., f (x) = [f 1(x), . . . , fm(x)]T, then the predicted class label of input vector x is

label(x) = arg max
i∈{1,Δ,m} fi

(x). (12)

2.2. Classification and Regression Trees

The CART decision tree proposed by Breiman et al. [22] is a binary tree structure to construct
classification or regression models from data. In this study, we want to search the IF-THEN rules using
the classification case of CART. In the CART algorithm, the maximal binary tree is constructed by
partitioning the training data space recursively. Then, the maximal binary tree is pruned based on the
Occam’s razor principle. To grow the binary tree, the Gini index is used to find the root node with the
minimized value of the feature. The procedure of the CART algorithm is presented as follows.

Step 1: Given a training data set, S, comprising N observations, {xi}, where i = 1, 2, . . . , N,
together with corresponding target m classes, {yi

k}, where k = 1, 2, . . . , m, set pj (j = 1, 2, . . . , m) as the
probabilities of each class and satisfy

∑m
j=1 pj = 1. The Gini index Gi(S) is defined as

Gi(S) = 1−
m∑

j=1

p2
j . (13)

Step 2: Calculate the Gini indexes of all partition nodes as

Gi(S)|C =
N1

N
Gi(S1) +

N2

N
Gi(S2), (14)

where S1 and S2 are the subsets of S divided by a certain condition C and N1 and N2 are the numbers of
the patterns in S1 and S2, respectively. For the continuous input variable, the average of two adjacent
values is thought as a candidate partition node. Thus, there are total (N − 1) × n possible partition
nodes in the data set with n continuous variables.

Step 3: Find the optimal partition node from all the possible partition nodes with the lowest Gini
index. The corresponding variable is the root node and the threshold is the branch condition under the
root node. Two subsets are produced after the root node. The same procedure is applied recursively to
the two subsets to generate the maximal binary tree.

Step 4: Prune the maximal binary tree by cutting off some branches without increasing the
cost-complexity, which produces a sequence of subtrees consisting of the root node.

Step 5: Select the optimal subtree from the candidate subtrees using the cross-validation method.

3. ELM-Based Classification for VTD

3.1. Production Data

In the present work, the experimental data were collected from a No.2 steelmaking workshop in
Baosteel. A total of 4000 observations during normal operations in VTD were collected for modelling
purposes. Each observation contained discrete attributes (ladle material, refractory life, and heat status)
and 16 continuous process parameters. Of the data, 2400 observations (60%) were used for training,
800 observations (20%) were used for validating, and the remaining 800 observations (20%) were used
for testing. Figure 2 shows the evolution of the end temperature in the VTD.
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Figure 2. Evolution of the end temperature in the VTD.

Table 1 tabulates the attribute information from the VTD system, in which the discrete attributes
are converted into binary inputs with the use of the one-hot encoding method. The continuous
attributes are labeled as C1, C2, . . . , C16 and the discrete attributes are labeled as D1, D2, . . . , D9.

Table 1. List of candidate input attributes from VTD.

Attribute Name Unit Input Attributes

Liquid steel weight t
��
C1

1

Tap temperature ◦C
��

C2
Tap to vacuum time min

��
C3

Arrive high vacuum time min
��

C4
Keep vacuum time min

��
C5

Soft stirring time min
��

C6
Refining time min

��
C7

Argon consumption m3
��

C8
Wire feed consumption kg

��
C9,

���
C10,

���
C11, C12

Alloy consumption kg
��
C13, C14,

���
C15,

��
C16

Ladle material - D1,
���
D2,

��
D3

Refractory life -
���
D4, D5,

��
D6

Heat status -
���
D7, D8,

��
D9

1 Attributes with wave line are the input attributes after feature selection.

3.2. Three-Class of the End Temperature

To construct the three-class classifier for the end temperature of liquid steel in the VTD system,
the controlled bound of the temperature needs to be determined. In the statistics, a large amount of
the individual samples were located within the range [μ − σ, μ + σ], where μ stands for the expected
value and σ stands for the standard deviation. To capture the main property of the end temperature
in VTD, we formed the normal end temperature bound as [μ − σ, μ + σ], i.e., [1535.6 ◦C, 1574.3 ◦C]
for the VTD. The experimental data are classified to three classes, as follows: Low end temperature
(<1535.6 ◦C) labeled as class 1, normal end temperature ([1535.6 ◦C, 1574.3 ◦C]) labeled as class 2, and
high-end temperature (>1574.3 ◦C) labeled as class 3. Figure 3 shows the sample distributions on the
three classes. Class 1 and class 3 represent 19.175% (767 observations) and 13.825% (553 observations)
of the data set, respectively, and the remaining 67% (2680 observations) are classified as class 2.
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Figure 3. Distribution of the temperature points in terms of low, normal, and high. The numbers on
the top of each column denote the values of the ordinates, for example 475 indicates that there are
475 points that fall into the low temperature range for the training data set. The meaning of the other
numbers is analogous.

3.3. ELM-Based Three-Class Classification of the End Temperature

To design a three-class classifier for the end temperature of VTD, a three-class ELM classifier
was established in this study. For the ELM network, the sigmoid function g(x) = 1/(1 + exp(−x)) was
selected as the activation function. The cost parameter C was selected from {2−24, 2−23, . . . , 224, 225}
and the number of hidden nodes L was selected from {10, 20, . . . , 1000}. In our simulations, all the
input attributes were normalized into [0, 1]. The optimal parameter combination (C, L) was determined
by the prediction accuracy on validation set. The parameter combination (C, L) was selected with the
highest validation set accuracy (VSA). Here, the VSA is defined as the ratio of the number of the correct
classifications to the validation set size. With the optimal parameter combination, the ELM-based
three-class classifier was used to perform the classification task on the testing data set and the results
are tabulated in Table 2. As shown in Table 2, we can get the following information: (1) The training
accuracy (TRA) is satisfactory, reaching 80.33% for the VTD; (2) the testing accuracy (TEA) is 71.88%
and is encouraging for the end temperature prediction in the VTD system; (3) the predictions for the
end temperature in the normal bound are credible for the correct rate, attaining 472/544 = 86.76%,
while the predictions for outside the normal bound are unreliable; and (4) overfitting exists due to the
large difference between the TRA and the VSA; therefore, methods should be developed to reduce the
overfitting. From these results, the three-class classification method for the end temperature is effective
in the VTD system.

Table 2. Evaluation of the predictive performance of the proposed model.

Inputs Distribution
End Temperature (◦C) TRA VSA TEA

Low Normal High (%) (%) (%)

25
true 141 544 115

80.33 63.75 71.88prediction 154 622 24
correct 95 472 8

19
prediction 152 627 21

79.54 66.13 72.75correct 97 478 7
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To reduce the overfitting of the model, feature selection is conducted on the VTD input sets to
establish the robust classifier. In this study, a feature pruning method was proposed to remove the
irrelevant features from the original attributes set if the classification accuracy increases after pruning.
The method first validates the accuracy, A0, of the initial accuracy, Fj, with the input feature set. It than
calculates accuracy Anew by removing each feature from Fj. The approach removes the feature ni from
Fj if Anew ≥ A0. The mechanism for feature pruning is given below.

Fj =

⎧⎪⎪⎨⎪⎪⎩Fj − ni Anew ≥ A0

Fj otherwise
. (15)

The VSA in Table 2, with the 25 inputs, was used as the initial accuracy. If the removal of a
feature can make the VSA higher than the previous one, the feature is removed. Finally, 19 features
were selected out and are presented in Table 1. Furthermore, to make a comparison, the results with
these new features are tabulated in Table 2. It is clear that the feature selection helps to improve the
performance of the ELM classifier. The overfitting is reduced and there is a little increase of TEA,
which implies that the classification model can be promoted by feature pruning. In addition, the
predictions for the end temperature in the normal bound kept reliability for the correct rate, attaining
478/544 = 87.87%.

4. Rules Extraction for VTD

The ELM-based three-class classifier can effectively classify the end temperature into low, normal,
and high regions. However, the mechanism in this black-box model is still unknown to the operators
for the decision-making propose in a VTD system. To this end, rule extraction is further important for
the practical manufacturing process. The correct classified samples by the ELM model after feature
selection in the training set were used as the current training set. Thus, the training samples come
to 1909 (79.54% of the original training set) in the current training set, while the current testing set
was still the original one. As there are continuous and discrete attributes in classification of the end
temperature of the VTD system, different approaches should be made in this setting. For the binary
discrete attributes, a binary tree is generated using the CART algorithm, as shown in Figure 4.

 

Figure 4. Tree structure for rule extraction on the dataset with correct classifications using only
discrete attributes.

The following set of rules is obtained after embodying the binary tree rules:

Rule R1: IF D2 = 0, THEN the predict class = 2;
Rule R2: IF D2 = 1 and D9 = 0, THEN the predict class = 1;
Rule R3: IF D2 = 1 and D9 = 1 and D4 = 0, THEN the predict class = 1;
Rule R4: IF D2 = 1 and D9 = 1 and D4 = 1, THEN the predict class = 2.

The classification results on the current training dataset by application of the CART algorithm
using only the binary attributes are summarized in Table 3. The support denotes the percentage of
samples that are covered by the rule. The error is the misclassified percentage in a rule.
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Table 3. Support level and error rate of the rules generated using CART with only discrete attributes.

Rules #Samples
Correct Wrong Support Error

Classification Classification (%) (%)

R1 1510 1412 98 79.10 6.49
R2 322 266 56 16.87 17.39
R3 8 6 2 0.42 25.00
R4 69 63 6 3.61 8.70

All rules 1909 1747 162 100 8.49

The support threshold δ1 and error threshold δ2 were set to 0.05. From Table 3, it can be seen that
the rule R1 and R2 should be refined to improve the classification accuracy. So, rules are generated
for the unclassified samples by using the continuous attributes. The binary classification tree can be
created by applying the CART algorithm using the continuous attributes. Four rules are obtained for
classification of the unclassified samples in rule R1. Similarly for rule R2, three rules are generated for
classification of the unclassified samples. The two sub binary trees are depicted in Figure 5.

 

Figure 5. Tree structure for rule extraction on the dataset of rule R1 (a) and R2 (b).

The ultimate binary tree is obtained after embedding the two sub binary trees with continuous
attributes into the first binary tree with discrete attributes, which is depicted in Figure 6. The ultimate
rules are exhibited as follows:

Rule R1: IF D2= 0, follows:

Rule R1a: IF C6 < 25.0917 and C4 < 23.05, THEN predict class = 2;
Rule R1b: IF C6 < 25.0917 and C4 ≥ 23.05, THEN predict class = 3;
Rule R1c: IF C6 ≥ 25.0917 and C5 < 20.0417, THEN predict class = 2;
Rule R1d: IF C6 ≥ 25.0917 and C5 ≥ 20.0417, THEN predict class = 1;

Rule R2: IF D2 = 1 and D9 = 0, follows:

Rule R2a: IF C10 < 5.5, THEN predict class = 1;
Rule R2b: IF C10 ≥ 5.5 and C9 < 56.5, THEN predict class = 2;
Rule R2c: IF C10 ≥ 5.5 and C9 ≥ 56.5, THEN predict class = 3;

Rule R3: IF D2 = 1 and D9 = 1 and D4 = 0, THEN the predict class = 1;
Rule R4: IF D2 = 1 and D9 = 1 and D4 = 1, THEN the predict class = 2.
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Figure 6. Tree structure for rule extraction on the dataset with correct classifications.

From the above rules, only eight attributes are needed (three discrete features and five continuous
features) to judge the end temperature as being low, normal, or high. The discrete attributes describe
the ladle conditions and are of vital importance to the end temperature of liquid steel in a VTD. The
property of heat transfer through the ladle is different due to the different ladle materials. The refractory
life of the ladle represents the thickness of the interior thermal insulation material, which is the main
heat absorbing media during the transportation of the liquid steel. The heat status indicates the
temperature of the interior thermal insulation material. In the practical manufacturing process, the
tap temperature is adjusted according to the heat status of the ladle furnace. This is the temperature
correction stage in the VTD system. The five continuous attributes are soft stirring time C6, arrive high
vacuum time C4, keep vacuum time C5, wire feed consumption type 2 C10, and wire feed consumption
type 1 C9. These features are the key operating parameters in the VTD system and control the vacuum
degassing process. All these results reveal that the rules extracted from the ELM-based classification
model are reasonable and convenient for use in decision-making in the VTD system.

From the previous discussion, the rule extraction methodology from the ELM-based classification
for the VTD system can be summarized as follows (Algorithm 1):

Algorithm 1: Rule extraction from ELM classification

Input: Training data set S = {(xi, ti)}, i = 1, 2, . . . , N, xi∈Rn, ti∈R, with discrete attributes D and continuous
attributes C.

Output: A set of classification rules.
1: Calculate the expected value μ and the standard deviation σ of the target series
2: for i = 1 to N do

3: if ti < μ − σ, then, yi = 1.
4: if μ − σ ≤ ti ≤ μ + σ, then, yi = 2.
5: if ti > μ + σ, then, yi = 3.
6: end for

7: Switch the discrete attributes D into binary inputs with the use of the one-hot encoding method.
8: Normalize the continuous attributes C into [0, 1].
9: Train an ELM using the data set S with all its attributes D and C.
10: Prune the ELM classifier to obtain the new D’ and C’. Let S’ be the set of samples that are correctly

classified by the pruned ELM network.
11: If D’ = φ, then generate a binary tree using the continuous attributes C’ and stop.
12: Otherwise, generate binary tree rules R using only the D’ with the data set S’.
13: for each rule Ri do

14: if support(Ri) > δ1 and error(Ri) > δ2, then
15: Generate binary tree rules using continuous attributes C’ with the data set Si’ that satisfy the condition of

rule Ri.
16: end for
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Further apply the proposed method to predict the end temperature of VTD; the extracted rules
are verified by the testing data set. The results are evaluated based on the values of accuracy (the ratio
of the correct predictions on the testing data set) and fidelity (the ability of the extracted rules that
mimic the black-box model).

Accuracy =
TP + FN

TP + TN + FP + FN
× 100%, (16)

Fidelity =
TP

TP + FP
× 100%, (17)

where TP, TN, FP, and FN represent the abbreviation of true positives, true negatives, false positives,
and false negatives, respectively.

Table 4 shows the classification results using the extracted rules. The accuracy reached 75%, higher
than the ELM classifier, which is 72.75% on the testing data set after feature selection. In addition,
a large amount of the corrected predictions by the ELM classifiers can also be correctly classified
by the extracted rules. That is to say, the extracted rules can accurately mimic the black-box ELM
model. Moreover, the extracted rules only need eight features, far less than the 19 features in the ELM
classification model. Another notable point is that the extracted rules are explicit information items for
classifying the end temperature into low, normal, or high range. Therefore, the extracted rules can be
directly used in the VTD system for decision-making with desirable accuracy.

Table 4. Results of rule extraction for VTD system.

Method Attributes Rules Accuracy (%) Fidelity (%)

Proposed 8 9 75 89.75
CART 6 7 74 88.50

To explain the feasibility and effectiveness of our proposed method, a comparison with the ELM
regression model was conducted. It should be noted that the ELM regression model can only predict
the numerical values of the end temperature and cannot give the direct three-class classification
results. Therefore, the numerical predictions were converted into the classification result according to
the temperature divisions. As discussed above, there are eight features reserved in the hybrid rule
extraction model. The five continuous attributes are arrive high vacuum time C4, keep vacuum time
C5, soft stirring time C6, wire feed consumption type 1 C9, and wire feed consumption type 2 C10.
The 3 discrete attributes are ladle material type 2 D2, refractory life type 1 D4 and heat status type 3 D9.
Thus, a fair comparison can be conducted if these attributes are fed into the ELM regression model.
Figure 7 depicts the prediction results of the end temperature on the testing set. Further switching these
numerical prediction values into the three-class classification results can obtain a TEA of 74.12%. From
the viewpoint of TEAs, the ELM regression model is weaker than the proposed integrated classification
model with the same input attributes. In addition, the ELM regression model trained the non-liner
function in the black-box and the rules generated are unclear in this black-box model.
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Figure 7. Numerical predictions of the end temperature through the ELM regression model, based on
the testing set.

As a rule extraction approach, the CART algorithm can work independently of the trained ELM
model. Figure 8 depicts the binary tree built by the CART algorithm using the original training data
set with all 25 of the attributes. The testing results are shown in Table 4. Although fewer features are
used in the CART model, the extracted rules, as shown in Figure 8, were a little one-sided, with no
high-end temperature rule. At this point, they cannot cover all cases reflecting the end temperature
range. Thus, the rules extracted directly from the original training data set with all the features have
difficulty in capturing the characteristics of the VTD system. This undesirable performance indicates
that the combination of the ELM and the CART algorithm is an essential method to extract rules for the
VTD system.

 

Figure 8. Tree structure for rule extraction on the original training set.

From the viewpoint of addressing the end temperature control problem in the VTD system, the
proposed strategy provides a novel modeling thought that makes the black-box model transparent to
the operators. It integrates the advantages of the ELM classification model and the CART algorithm.
The novelty of the current work is to develop a rule extraction method for controlling the end
temperature within a certain range. Since process control would be the ultimate purpose and the VTD
system control often means controlling the temperature and composition of liquid steel within desirable
bounds, the extracted rules can play a role in making transparent decisions versus the black-box model.
Compared with the direct numerical prediction methods, such as ELM, the current work can mimic
the black-box model with enhanced transparency. Another important contribution made in this work
is using CART to improve ELM classification for rule extraction. The direct CART applications [23–25]
have been widely studied for different technological issues. These developments are probably due to
that the CART algorithm is essentially a kind of white-box modelling approach. The CART method
can be used to extract rules from data with mixed attributes. However, the one-sided rules obtained
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using the original training data set in our study cannot be applied to the practical manufacturing
process. Therefore, we propose a hybrid method that uses the CART to extract rules from the trained
ELM black-box model, through which all-sided rules have been obtained and the advantage of ELM
black-box model for the VTD system can be fully mined. Of course, the proposed methodology
can be applied to address other industry manufacturing process control issues. Additionally, the
classification method and rule extraction algorithm is not limited to ELM and CART algorithms. Other
classification algorithms, like ANNs [26] and SVMs [27], and other rule extraction approaches, like
C4.5 [28] and the Re-RX algorithm [29], can work as well within the proposed hybrid strategy. For
further research, it could be interesting to extend the proposed framework for dealing with other
manufacturing problems by testing other combinations, such as ANNs and C4.5, SVMs and Re-RX
algorithm, etc.

The main motivation to pursue the current research is that the operation of VTD systems is still
a serious problem in practice. The all-sided rules have been extracted from the production data by
combining the ELM and CART algorithms. The most important reason is that the features are pruned
according to the prediction results of ELM model and the patterns are well confirmed to capture the
dynamic properties. Another more important reason is that the CART algorithm is essentially a kind
of white-box modeling method to extract process control strategies. Hence, the proposed method
presents a novel strategy to obtain a solution for the VTD control issue.

5. Conclusions

In this paper, a method of rules extraction from the trained ELM classification model for the
decision-making purposes has been presented. Firstly, a three-class classification problem of the end
temperature in the VTD system has been constructed according to the practical control mechanism.
Secondly, an ELM multiclassifier has been developed to instruct the end temperature in low, normal,
or high ranges. Finally, based on the pruned and correctly classified training data set, rules are extracted
with discrete and continuous features utilizing the CART algorithm. The proposed method has the
ability to successfully classify the end temperature, which demonstrates the potential for reliable
prediction of the end temperature in a VTD system. The extracted rules can act as a potential tool for
predicting the end temperature in advance, which will be helpful in precisely controlling the process of
VTD systems.

In the future, the proposed model will be further developed. More data sources from different
industrial fields and more factors will be applied to this model in order to verify the feasibility and
further optimal model parameters to obtain higher predicting accuracies. If the above-mentioned
method is proved to be practical, other similar refining processes will be considered to develop a new
model based on an integrated methodology for rule extraction from an ELM-Based multi-classifier,
and this model is expected to be used as a what-if tool to provide a practical guide in the future.
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Abstract: In order to ensure the information security, most of the important information including
the data of advanced metering infrastructure (AMI) in the energy internet is currently transmitted
and exchanged through the intranet or the carrier communication. The former increases the cost
of network construction, and the latter is susceptible to interference and attacks in the process of
information dissemination. The blockchain is an emerging decentralized architecture and distributed
computing paradigm. Under the premise that these nodes do not need mutual trust, the blockchain
can implement trusted peer-to-peer communication for protecting the important information by
adopting distributed consensus mechanisms, encryption algorithms, point-to-point transmission
and smart contracts. In response to the above issues, this paper firstly analyzes the information
security problems existing in the energy internet from the four perspectives of system control layer,
device access, market transaction and user privacy. Then blockchain technology is introduced, and its
working principles and technical characteristics are analyzed. Based on the technical characteristics,
we propose the multilevel and multichain information transmission model for the weak centralization
of scheduling and the decentralization of transaction. Furthermore, we discuss that the information
transmission model helps solve some of the information security issues from the four perspectives of
system control, device access, market transaction and user privacy. Application examples are used to
illustrate the technical features that benefited from the blockchain for the information security of the
energy internet.

Keywords: blockchain; energy internet; information security

1. Introduction

The energy internet is used mainly to realize the optimal allocation of resources across regions,
the integrated utilization of multienergy and the optimized operation of multienergy systems [1–3].
It not only includes electricity, gas, heat, cold and other multienergy physical systems, but also includes
a new type of information communication system represented by the secondary system of the smart
grid. The information security crisis is hidden behind the rapid development of the energy internet [4].
In 2010, the first computer virus Stuxnet for industrial control systems was discovered [5,6]. Stuxnet
first penetrated the computer network through an infected USB and other devices. Therefore, even
an intranet that is isolated from the external network can be attacked by Stuxnet [7]. It has been
reported that more than one-fifth of Iran’s nuclear power plant centrifuges were damaged by Stuxnet.
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In addition to Stuxnet, the United States and other countries have repeatedly found examples of hacking
in industrial systems, including the power system [8–10]. These have highlighted the vulnerability of
information security. With equipment informatization and the wide application of information and
communication technology, security considerations and protection of the energy system should be
expanded from the physical level to the informational level.

The emerging blockchain technology originated in the financial sector and has shown remarkable
development in the financial field, which enables participator to trade with others and maintain a
consistent and temper-proof ledger without a centralized bank [11,12]. The core advantage of the
blockchain is the non-tampering, point-to-point transitivity, distributed storage and privacy protection.
These characteristics ensure that different subjects can trust each other, which greatly reduces the cost
of reshaping or maintaining trust, so that the blockchain technology can be further developed in other
fields besides content delivery [13], key management [14], and decentralized storage [15,16]. Regarding
the application of blockchain in energy internet, some domestic and foreign scholars have carried out
some researches. In [17], the application scenarios and business models of the blockchain technology
are introduced for energy generation, transmission, distribution and storage. In [18], a new hybrid
blockchain storage mode is proposed to improve the overall efficiency of internet running, achieve
a decentralized supervision, and provide a credible, safe and efficient performance of the energy
internet in the storage of massive data. In [19], blockchain technology is utilized to realize a security
check and congestion management for transactions verified by the central institution. In [20], the role
of blockchain technology in different parts of the energy internet is expounded, such as in energy
metrology certification, energy market transaction and energy finance. In [21], the decentralized energy
trading system using blockchain technology was implemented. The result demonstrates this energy
trading system using blockchain technology can be resistant to significant known attacks and keep
financial profiles secure and private. In [22], a blockchain-based energy trading platform is proposed
for electric vehicles in smart campus parking lots. Therefore, it is feasible to introduce blockchain
technology into the energy internet.

Although blockchain technology has been applied in energy internet from the above articles,
it has not been explored in information security. The blockchain can be a promising technique to
help cope with the information security problems in energy internet because of characteristics such
as non-tampering, point-to-point transitivity, distributed storage and privacy protection. In [23],
the smart grid data storage alliance chain system is constructed through the alliance blockchain
technology for collectively maintaining a secure and reliable data storage database in a decentralized
way to prevent single point failure caused by malicious attacks and deliberate data tampering. In [24],
the blockchain-based supply-demand interaction system architecture is designed for realizing the
non-tamperable modification of the information generated by supply-demand interaction to prevent
single point failure.

In this article, the application of blockchain in the energy internet is investigated from the
perspective of multidimensional information security. The information security requirements existing
in the energy internet is analyzed from the four perspectives of system control layer, device access,
market transaction and user privacy. Then blockchain technology is introduced, and its working
principles and technical characteristics are analyzed. Considering the large number of demand response
resources, wide distribution and difficulty in direct control, we propose the multilevel and multichain
information transmission model based on the blockchain for the weak centralization of scheduling
and the decentralization of transaction. According to the functional requirements, the importance
of the data, the computational power and the control area, the nodes based on the blockchain in the
energy internet are divided into several types. Then the operational process of the proposed model is
analyzed. Furthermore, we discuss how the proposed model can play the role of information protection
in system control, device access, market transaction and user privacy. The superiority of the blockchain
is discussed by comparing with other information defense technologies. Finally, the feasibility of using
the blockchain for improving information security is analyzed by combining existing practical projects.
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2. Demand Analysis of Information Security in Energy Internet

Energy internet is mainly composed of the physical system and information system shown in
Figure 1, according to the difference in function [25]. The information system realizes the currency
of the information among energy subnets, the energy interface, energy switches and energy routers.
All running operations require accurate and timely information for technical support, including state
estimation, fault handling, fault detection, operation optimization, optimal scheduling, load transfer,
etc. The information systems require far more security than physical systems. Once a fault of the
information system occurs, it would affect the operation of the entire multienergy system instead of
the single one. This section analyzed the information security requirements of the energy system
from four aspects: system operation layer, equipment access layer, market transactions layer and user
privacy layer.

 
Figure 1. The partitioning-hierarchical architecture of the energy internet.

2.1. Information Security Requirements of the System Operation Layer

With the massive access of distributed devices, the energy-optimized scheduling must be
developed toward being distributed. Figure 1 shows an energy internet with partitioning-distributed
architecture including physical systems and information systems. The distributed control in this
structure decomposes the set global optimization goals into several independent local optimization
goals, which are computed in parallel on several nodes that can communicate with each other, such
as the energy router in this architecture. These nodes are actually the regional control centers or the
dispatching centers for each subsystem. Each node is only responsible for optimizing the local device
and making adjustments based on the interaction information of adjacent nodes. This information does
not necessarily come from its own system, but may also come from other energy systems. This control
mode, such as the Alternating Direction Method of Multipliers (ADMM), is largely dependent on
the information system, and only through continuous information interaction with neighboring
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nodes can it achieve the same convergence as the centralized optimization algorithm [26]. Most
distributed protection and distributed optimization are inseparable from information sharing. In [27],
the integrated protection is proposed to realize more reliable and sensitive fault detection by sharing
information and cooperation among different protection functions.

The information attacks vary in their type, form and impact, such as (1) GPS spoofing attacks [28],
(2) time synchronization attacks [29], (3) Denial-of-Service (DOS) attacks [30] and False Data Injection
(FDI) attacks [31]. The FDI attack is the more common information attack. If the attacker successfully
launches an attack by manipulating or injecting false data either in the measurements or the control
signals to the energy internet, it may lead to the wrong decision of the control center and eventually
cause the chain failure. Countermeasures against FDI attacks are classified in the literature into
protection-based methods [32] and detection-based methods [33]. However, when FDI attacks closely
imitating the normal distribution of the measurements, these methods have the incapability of detecting
the attacks [34]. Meanwhile the data mining technology is used to identify and correct data that
may contain bad data or attack information [35]. However, the data mining technology is not a strict
information protection technology. The defense measures applied to the smart grid are to establish a
more targeted defense model for specific attacks, which has poor generalization ability. As soon as a
new information attack technology emerges, it needs to be upgraded [20].

2.2. Information Security Requirements of the Equipment Access Layer

The distributed equipment connected to the system is rich and diverse, including electric vehicles,
air conditioners and other smart home, as well as energy storage, power-to-gas, distributed energy
and other large equipment [36,37]. At the same time, access methods are also various, which can
be either through the industrial communication network or through open network access systems
such as the internet [38–40]. It is difficult to manage and control the information interface of access
equipment uniformly. The attacker can use the security vulnerability to obtain the identity information
of the access device, interact with other devices through forgery or counterfeit identity, and initiate a
Distributed Denial of Service (DDOS) attack [41,42], spreading illegal content [43], trace users identity
and other information attacks by listening to the information and issuing false messages to interfere
with the normal operation of the device.

2.3. Information Security Requirements of the Market Transactions Layer

With the development of energy internet, the distributed energy sources will be connected to the
power grid [44,45]. Meanwhile, information data and the information scale will increase dramatically,
the centralized decision-making method will increase the operating cost of the trading center and the
time-consuming [46,47]. If the trading center operates is attacked by an external hacker, the security of
the transaction and the privacy of the participants cannot be guaranteed [48]. Under this background,
the distributed trading model with many participants and small trading volume has gradually become
a trading trend [49]. Due to opaque information, unpublished rules and untimely subsidies during the
distributed energy transaction process, the security of the transaction cannot be guaranteed [50]. For
example, users cheat high subsidies by faking their own transactions and electricity usage data [51].
Furthermore, the distributed energy sources have small capacity and random output, so it is difficult
to be directly connected with power grid [52]. Many scholars have proposed the control concept of
virtual power plants to reduce the impact of these problems by aggregating distributed energy sources
and centrally managing them [53,54]. This process requires accurate and reliable measurement and
multilateral trust between virtual power plants and distributed energy sources. At present, due to the
lack of a credible trading platform and an open transparent information platform, it is impossible to
trade between virtual power plants or between virtual power plant and other users in a symmetrical
environment. That increases transaction costs and transaction risks. The blockchain can help cope
with the trust problem because of characteristics such as non-tampering, point-to-point transitivity,
distributed storage and privacy protection [55].
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2.4. Information Security Requirements of the User Privacy Layer

The energy consumption monitoring is an important component of energy internet [56,57].
For users, it helps to understand their own energy consumption situation, so that users can reduce
excessive energy consumption and make more efficient use of energy by making reasonable energy
use plans without affecting normal life. For the energy management department, it helps to optimize
the allocation of energy and further provides them with real and effective data to reasonably schedule
energy and reducing the energy rescheduling costs [58]. In the process of interaction, a large amount
of information such as time, location, behavior, participants and purpose will inevitably be generated,
which may contain personal sensitive information. If it cannot be effectively protected, it is easy to
be intercepted by attackers in the process of information interaction or sharing [59–61]. If personal
information is leaked, it may bring risks to personal property, life and even personal safety. If the
equipment information is abused, it may affect the normal production order and constitute a serious
security threat. Therefore, while providing users with better services, it is necessary to protect the
private data of the user.

3. Principle and Technical Characteristics of Blockchain Technology

The build process of the blockchain is simplified as shown in Figure 2 and includes three main
steps. The first block begins from the “Genesis Block” [62]. The newly generated blocks are connected
from the previous block in chronological order. The block link is accomplished via the hash value
metadata index of the father block. The blockchain users search the numerical solution that corresponds
to the specific hash value, which is called “digging mine”. When a user in the blockchain finds the
solution, the user will broadcast the value solution over the entire network, and other users in the
network will stop looking for the solution and turn to verifying the numerical solution. Once the
numerical solution is verified, the newly built blocks are added to the existing blockchain. Then,
the complete blockchain is generated.

Figure 2. Workflow of blockchain technology.

The blockchain generally utilizes an intelligent contract to automate contract terms, a hashing
algorithm to safeguard information confidentiality, a consensus mechanism to safeguard data integrity
and an asymmetric key to safeguard data flow security. Figure 3 illustrates the security features of the
blockchain technology.
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Figure 3. Security features of the blockchain technology.

3.1. Distributed Network, Weakly Centered and High Fault Tolerance

The major drawback of a traditional centralized architecture is that third-party owners can change
data in a non-public way. The distributed architecture of the blockchain can solve the problem of
tampering with data. In the blockchain network, there is no absolute central device and management
organization, so that each device can serve as a node. Each node in the blockchain network has
the same rights and obligations. Furthermore, each node has a full backup of data, tampering with
information on any node cannot pass the consistency check of the global network. The only way to
tamper with the information is to change more than 51% of the backup data [63]. Only in this way can
the previous consistency condition be broken and a forged consistency check condition be established.
It is not possible in the energy internet due to the number of nodes. Of course, not all nodes need to
have a full backup. In addition, these nodes can also be set to nodes with different functional attributes
according to different functional requirements.

3.2. Encryption Algorithm

The encryption algorithm mainly contains three parts, including the hash algorithm, the timestamp
and the Merkle tree structure. The SHA-256 (Secure Hash Algorithm-256) hash algorithm is a one-way
cipher system that ensures that transaction information cannot be tampered. The hash algorithm
is used to encrypt the information block into an output hash that consists of a string in a one-way
irreversible manner. In addition to the SHA-256, the typical hash algorithm includes the MD5, SHA1
and SM3. Table 1 is the performance comparison of the four algorithms [64]. The advantage of
SHA-256 is still relatively obvious from Table 1. At present, the hash algorithm of Bitcoin is mainly
SHA-256. The timestamp is part of the block metadata, which naturally causes the block to include
a time attribute and proves the time validity of the data. Furthermore, each subsequent timestamp
will enhance the pre-order timestamp, so the time security of the final blockchain is further promoted.
The Merkle tree structure is used to store hash values for all transaction data and ultimately obtain
a uniform hash value. The Merkle tree is similar to a tree structure in which the branches are the
hash values of the transaction data [65]. The trunk is the hash value generated by the hash algorithm
after combining the hash values on all branches. The Merkle tree greatly reduces the amount of data
transmission and the difficulty of calculation in terms of data consistency. Once the information block
is tampered with, including arbitrary information and the timestamp, the hash value will be different
from the original and then cannot be verified by other nodes [66]. In other words, the best way to
validate the data is checking the hash value.
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Table 1. The performance comparison of the typical hash algorithms.

Hash Algorithm Security Level Calculating Speed Output Byte

MD-5 Lowest Fastest 128
SHA-1 Middle Middle 160

SHA-256 Higher Slightly slower than SHA-1 256
SM-3 Highest Slightly slower than SHA-1 256

3.3. Consensus Mechanism

The consensus mechanism of the blockchain can ensure the consistency of data in the blocks of
each node at a system with highly dispersed decision-making power. Every node in the system has
read and write permissions for the block. However, only the node that first solves this complex but is
easy to verify the mathematical problem can exercise the write permission. The mathematical problem
is to find a random number such that the double hash value of the block header is less than or equal to
a target hash value. As long as one node finds the random number, other nodes will start to verify the
random number. Once more than half of the nodes pass the verification, they will stop searching for
the random number and broadcast the random number directly. All nodes have reached consensus on
the information in this block. According to different functional requirements, the current consensus
mechanism is mainly divided into the following five categories: Proof of Work (POW) [67], Proof of
Stake (POS) [68], Delegated Proof of Stake (DPOS) and Practical Byzantine Fault Tolerance (PBFT) [69].
Energy internet has the dispatch center, so it cannot be completely decentralized. From the Table 2,
the PBFT not only have the highest efficiency and requires the lowest computational power, but also
can realize the weakly centralized. It can be seen that PBFT is more suitable for the energy internet
comparing other consensus mechanisms.

Table 2. The comparison of the typical consensus mechanisms.

Assessment
Criteria

Degree of
Centralization

Efficiency of
Consensus

Computational
Power

Fault Tolerance

POW Lowest Lowest Highest 50%
POS Lower Lower Middle 50%

DPOS Middle Middle Lower 50%
PBFT Highest Highest Lowest 33%

3.4. Intelligent Contrast

Intelligent contract refers to the program code stored in the distributed ledger, which realizes the
functions of receiving, storing and transferring information [70]. Essentially, it is the computer program
that can automatically execute the pre-set contract terms. By writing and storing the contents of the
contract in the form of code, the system will be automatically executed without the outside parties once
the conditions of the contract terms are met. Due to the decentralized nature and the cryptographic
algorithms of the blockchain, the participating parties do not have the authority to change the clauses
individually, which makes them trustful [71]. An intelligent contract greatly improves the degree of
automation and idle resources integration ability.

3.5. Privilege Management

Privilege management is implemented primarily through asymmetric keys (public key and private
key). The public key is full-net publicly visible; the private key has information owner control. In the
permission control, information is encrypted by one of the keys and must then be decrypted with
another key that matches it, which makes the information more manageable. The private key is signed
to the information. The public key validates the signature. The information is encrypted by the public
key and decrypted by the private key. These two processes achieve the effective transmission of
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information. The blockchain stores data content in the form of code and creates an algorithmic trust
between codes. In an open platform without third-party endorsement, these special characters can
guarantee information security.

4. Information Transmission Model of Energy Internet Based on Blockchain

With the wide access of distributed energy, flexible and controllable multienergy devices such
as distributed power generation, energy storage, controllable load, heat pump and power-to-gas
equipment will become important regulating equipment in the energy internet. The energy internet is
no longer a traditional single energy system. The number of distributed physical devices that need
to be coordinated is uncountable at the energy internet. Therefore, traditional top-down centralized
decision scheduling is no longer applicable, and decentralized distributed scheduling will become
the development direction of energy internet. Based on whether there is subjective initiative in the
defense strategy, the information defense strategy is classified into the proactive defense, the proactive
defense and other defense strategies. So, we mapped the distributed architecture of blockchain and
segmentation principle of the node permission to the hierarchical architecture and key nodes at energy
internet to construct a multilevel and multichain information transmission model for realizing the weak
centralization of scheduling and the decentralization of transaction. Figure 4 shows the multilevel and
multichain information transmission model of energy internet based on the blockchain.

Figure 4. The multilevel and multichain information transmission model of energy internet based
on blockchain.

4.1. The MultiLevel and MultiChain Information Transmission Model

Blockchain technology is to achieve decentralization by saving the complete blockchain on most
nodes. Considering the different computational power of the node in the blockchain, it is not required
that all nodes can provide the same amount of computational resources. Similarly, according to the
functional requirements, the importance of the data, the computational power and the control area,
the nodes in the energy internet are divided into the following types:
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1. The master node: It stores the entire blockchain, verifies the new blocks that are broadcasted onto
the network and ensures that information contained in blocks follow protocol rules. In addition
to including the original functionality of the blockchain node, it can be considered as an energy
trading node with the billing and settlement capabilities. Meanwhile it also can be considered as
a control center for energy dispatch in the region.

2. The lightweight node: It only downloads block headers rather than the entire blockchain. The size
of block headers is smaller than the block body. So, the lightweight node does not require very
large storage space. It also needs to validate information authenticity by the simplified payment
verification. The information authenticity is validated by solving a mathematical problem that
is hard to solve but easy to verify. So, it does need the strong of the computational power.
The lightweight node is easy to maintain and run than the master one. Most devices in the
energy system can be considered as the lightweight node. Since they do not have the super
computational power and the large storage space and just need to follow the instructions that can
be validated by the decryption algorithm.

3. The pruned node: It only stores the latest fixed-length blockchain. In the energy internet,
the scheduler does not directly control the distributed device, but only issues scheduling
instructions to the agent. So, these agents can be a pruned node. It only needs to adjust the
controlled equipment according to the latest superior scheduling instructions and the latest
energy information of the controlled area.

The traditional centralized management will greatly increase the communication of the system
pressure considering the number of the access devices. It cannot achieve real-time transmission of
information and influence the execution of the scheduling plan. In case of communication network
failure or a malicious attack, the stable operation of the whole system will be affected. Therefore, we
divided the energy internet information system into multiple levels. The principle of hierarchical
division in the different energy system is similar. So, we only described the principle in the power
system. Firstly, the power system was divided into several levels according to the voltage level, and
then each level was further divided into several areas according to the regional and network structure.
In each area, we chose an agent that is responsible for coordinating the distributed devices within the
region. These agents can be divided according to the control scope or the control functions [72,73].
The scheduler does not directly control the distributed device, but only issues scheduling instructions
to the agent. The control center at each level is responsible for only one level of scheduling. It is natural
that the communication pressure is reduced by the hierarchical approach. Meanwhile, the upper
control center does not directly control the lower control center, but only makes a backup correction for
the instructions of the lower control center. It keeps the autonomy of subordinate control centers.

Considering the differences, like the time inertia, between the different energy systems, it is
impossible to build a unified blockchain for storing the entire information of the whole system.
An exclusive blockchain, like the blockchain of power and the blockchain of gas, is built to store its
own information of its own system. By cross-chain technology, energy trading and information fusion
are achieved among the different blockchains [74]. In the hierarchical structure of the information
transmission model, energy trading is not just initiated by the highest-level agents, and all agents can
initiate energy transactions with other agents at the same level. So, the blockchain of different layers
will be established. The different energy systems at each level will have their own blockchain. At last,
the multilevel and multichain information transmission model of energy internet is built. It is beneficial
to make the communication and negotiation between the source and the seller more convenient and
improve the transaction timeliness and demand matching.

4.2. The Operational Process of the Proposed Information Transmission Model

Based on the multilevel and multichain information transmission model proposed in this paper,
the system’s operating process is shown in Figure 5. The process can be divided into three parts shown
as follows:
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1. Collect information: All nodes with scheduling and trading functions will collect information
related to their functions. This information comes from the homologous system and heterologous
system. The information collected in the homologous system includes the lower-level energy
production plan, the higher-level energy scheduling plan, energy price, operation constrain,
the location of energy-rich supply node and so on. The information collected in the heterologous
system mainly includes the energy demand and the energy supply. When the load fluctuates
greatly, it is likely that the shortage or surplus of the energy supply at the original system will
occur, resulting in an imbalance in energy supply and demand. At this moment, on the premise of
obtaining the information of energy supply and demand of other energy systems, energy trading
can be used to alleviate the problem of the energy imbalances.

2. Energy trading: Each node firstly formulates its own energy dispatching strategy including
energy trading with other system based on the collected relevant information and broadcast
these dispatching strategies at the same level of blockchain network. The node with the “mining”
capabilities collects all reasonable response strategies and packages them into a block. If this
scheduling strategy in the block is executed directly without verifying, it is likely to cause the
system to crash. So, the miner verifies whether these response strategies of each at this stage meet the
convergence conditions before the response strategies are executed [75]. If not, the correction variables
are added to these response strategies and recompose the new response strategy. No correction
variable is added until these scheduling strategies of all nodes meet the convergence conditions.
Once these scheduling strategies meet the convergence conditions, the miner adds this block to the
local blockchain and broadcasts the latest blockchain to the whole network.

3. Execute scheduling instruction: Each device queries the latest blockchain and obtains the
encrypted files stored in the new block. The scheduling instruction in the encrypted files is
encrypted by the recipient’s public key. The device only uses the private key to decrypt the files
for obtaining the scheduling instruction. At last, the scheduling instruction is executed by the
corresponding device.

 
Figure 5. The flowchart of the multilevel and multichain information transmission model.
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5. Application of the Information Transmission Model in the Information Security of
Energy Internet

In this section, the solutions of the blockchain technology for the information security problems in
the energy internet were discussed from the structural layer, the data layer, the value layer and the
privilege layer, as shown in Figure 6. At last, we compared the advantages and disadvantages of the
proactive defense, passive defense and blockchain in information security.

Figure 6. Illustration on the application of blockchain technology in the energy internet.

5.1. Security from the Operational Control Layer of the Energy Internet

Figure 7 compares the information flow of the traditional centralized and blockchain architectures.
The traditional centralized architecture exists in the central server, the information gathering center and
the control center. Once the central server is abnormal, the secure operation of the information system
will weaken, even causing cascading failures of non-homogeneous energy systems. The blockchain
adopts a decentralized architecture that can solve the inherent problems.

The multilayer block network, which can be weakly centered or completely decentralized, should
be constructed considering the number of controlled devices or area control centers. Each device and
control center can act as a node in the multilayer block network. All nodes are divided into different
layers according to control area and function attribute. Peer nodes in the same layer of the block-chain
have the same rights and obligations, while these nodes can retain their own matching properties.
Each device or control center has its own private key. When these nodes broadcast their own data, they
will add a digital signature encrypted with the private key at the end of the data package. Only the
authorized node can decrypt the encrypted packet with the public key matching the private key. Since
the attacker does not have the public key, it is impossible to decrypt the data even if the packet is
intercepted. The communication between nodes adopts a mesh structure, and the transmission link is
not unique. Even if an attacker blocks some communication links between nodes, information can still
be transmitted through other paths. Furthermore, the control center of the same layer has written a
complete backup of the blockchain data. Even if some control centers of this layer are paralyzed by an
attack, they can be repaired through the database of other nodes in the same layer or other special
nodes in the upper and lower layers.
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Figure 7. Comparison on information flow and structures between the traditional centralized and
blockchain technologies.

With the help of the ADMM, it is explained how the proposed model can be applied in distributed
optimization. The ADMM is one of the methods to solve distributed optimization problems. It combines
the decomposability of dual rising method and the good convergence of multiplier method. The ADMM
has the advantages of simple form, good convergence and strong robustness. The standard form of the
ADMM is shown as follow [76]: {

min f (x) + g(z)
Ax + Bz = c

(1)

where f (x) and g(z) are both convex functions; x and z are the variables. A, B and c are the
known parameters.

The augmented Lagrange function is shown as follows:

Lρ(x, z,λ) = f (x) + g(z) + λT(Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖22 (2)

where λ is the dual variable and ρ ≥ 0 is the penalty coefficient.
The standard format for variable substitution in the k + 1 -th iteration is shown as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xk+1 = argminxLρ
(
x, zk,λk

)
zk+1 = argminzLρ

(
xk+1, z,λk

)
λk+1 = λk + ρ

(
Axk+1 + Bzk+1 − c

) (3)

The convergence conditions are shown as follows:⎧⎪⎪⎨⎪⎪⎩ ‖Axk+1 + Bzk+1 −C‖2 ≤ ε1

‖ρATB
(
Zk+1 −Zk

)
‖

2
≤ ε2

(4)
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where ε1 and ε2 are the preset thresholds.
System S1 and system S2 represent the different systems of the energy system to describe this

process. In the proposed information transmission model, f (x) and g (z) can be considered as the
different objective function of system S1 and system S2. A, B and c represent the collected information
described in the above subsection. x and z represent the different response strategy of the different
system. It is obvious that in this problem exists two objective functions. However, it is easy to convert
the multiple targets model into the single target model by introducing the weight coefficient. At first,
S1 and S2 make the response strategy based on the collected information, respectively. Then the miner
verifies whether these response strategies meet the convergence conditions (4). If not, S1 and S2 revise
the strategy shown in (3), which is based on the previous response strategy. Until these response
strategies meet the convergence condition meet the convergence conditions, the final scheduling policy
is determined.

5.2. Security from the information Interaction Layer of the Energy Internet

As shown in Figure 7, the data in the traditional system are aggregated into the centralized control
center and are then transmitted. While the blockchain system integrates all information into the
information block and then broadcasts and stores the information block after verification, different
nodes in the same layer save full backup files. In the traditional system, if any node or any control
center is at fault, the control area of the abnormal center will collapse. However, the blockchain system
utilizes the backup of adjacent nodes from the same layer to maintain control of the fault area, which
makes information systems more reliable and robust.

The self-description of the intelligent device is stored in the blockchain in the form of code, and the
distributed database of device attributes is built. The intelligent device is identified by the distributed
database and is connected to the energy network. The intelligent device and the control center allocate
asymmetric key pairs separately. The packets generated on the intellectual device are encrypted by the
hash algorithm and are attached with the private key signature. The control center uses the matching
public key to decrypt the packet. The decision system will automatically generate commands that
pass to the related device by similar encryption and decryption methods. In summary, the distributed
database allows efficient identification of the equipment, the hash algorithm guarantees the authenticity
of information security and the asymmetric key of the encryption and decryption methods facilitates
the precise transmission of information.

5.3. Security from the Privacy Protection Layer of the Energy Internet

Information right management of the energy internet can be classified as information sharing,
privacy protection (information non-sharing) and access controls [77]. As shown in Figure 8,
multidomain information sharing achieves high precision of energy optimization configurations.
The lack of comprehensive information will cause decision deviation. For the user, it is necessary
to manage the access rights of the information, which contains privacy content such as the user’s
customary information, head of household information, etc.
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Figure 8. Achieving multioptimization configuration through information sharing based on
the blockchain.

The blockchain records the internal information of the multienergy system (the operating state
of the equipment, the load demand of each node, the real-time energy price, etc.) and the external
information except for the multienergy system (weather conditions, wind speed, wind direction,
illumination, etc.). The real-time sharing of information can be processed by big data technology for
mining the potential of the multienergy systems and can optimize the operating state of the system.

Figure 9 shows the process of information protection in the blockchain. An attacker acquires the
characteristics of the user’s behavior, energy dissipation characteristics, etc. by stealing information and
then performs an accurate attack on the system or the users. The “asymmetric key” in the blockchain
realizes the privilege control of information. The sender uses the private key to sign the information
and the recipient’s public key to encrypt the information. The recipient uses the sender’s public
key to verify his/her identity and decrypts the encrypted information with his/her own private key.
As long as the public key and private keys are controlled, the user can control the permissions of the
information to protect the security of the information. In addition to managing the original single
private key, the secret sharing scheme of private key can be used to protect the private keys [78,79].
Firstly, the private key is divided into n pieces, which are jointly stored by the n participants. Only
when more than t participants cooperate together, the private key can be reconstructed. It greatly
improves the security of the private key.
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Figure 9. Flow chart of information protection in the blockchain.

5.4. Security from the Energy Trade Layer of the Energy Internet

The integration of distributed energy and the innovation of energy technology make the energy
flow change from unidirectional flow to bidirectional flow. In the new type of energy system, traditional
energy consumers are considered not only as energy producers but also as energy makers. As shown
in Figure 8, the boundary energy prices are generated by utilizing the shared information stored in the
block chain and indirectly promote the transformation from the traditional single-energy commercial
transaction model to the cross-platform multienergy commercial transaction mode.

Traditional trading is from sellers to clients, but now, users in some small areas can directly
trade with other users or energy sellers. The innovation in the energy market allows users to have
multiple options for energy suppliers. Users not only can choose the energy sellers but also can
independently sell energy produced by themselves at a real-time price. In this process, the blockchain
not only verifies the credit of energy sellers but also provides trading platforms. The distributed
“book keeping” principle and the authentication mechanism guarantee the authority of metrology and
certification. Any assets can be stored in the form of code and can then be transformed into intelligent
assets in the blockchain. Blockchain record, track and monitor the properties and changes of assets
to prevent tampering. Furthermore, Smart contracts can be formulated in the blockchain. Once the
contract is reached, the contract terms will be automatically enforced. This not only guarantees the
implementation and reliability of the contract but also is conducive to the fairness of the energy market.

5.5. Comparison of the Blockchain and Other Security Technologies

Important information in the energy internet is mainly transmitted and exchanged through the
intranet, mostly by carrier communication, which is easily disturbed and attacked. For data that
may contain bad data or attack information, data mining techniques are used to identify and correct
such issues. It is not universal that a specific model must be established for a specific attack problem.
Based on whether there is subjective initiative in the defense strategy, the information defense strategy
is classified into the proactive defense, the proactive defense and other defense strategies. Table 3
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compares the advantages and disadvantages of the proactive defense, passive defense and blockchain
in information security.

Table 3. Advantages and disadvantages of proactive defense, passive defense and the blockchain.

Categories Advantages Disadvantages

Firewall
technology

1. Monitor network access to
Strengthen the security strategy

2. Check the information to reject
suspicious access.

1. Once the attack is successful, the original defense
system is no longer defensive.

2. Illegal operation of legitimate users cannot
provide better defense.

Intrusion
monitoring

1. Track the attacker’s attack line.
2. Detect flood attacks committed by

hackers as legitimate users.

1. Cannot make up for the system vulnerabilities
without user involvement.

2. Cannot prevent an attack without
user involvement.

Honeypot
technology

1. Analyze the captured behavior to
obtain the hacker’s feature.

2. Regulate the behavior of the
intruder to reduce the damage.

1. Only track and capture activities that interact
directly with it.

2. Exposed the real operating system to attackers.

Trusted
computing

1. Build an absolutely trust root stored
outside the trust platform.

2. Build the trust chain among the
connected devices.

1. The trust root is stored outside the trusted
platform module.

2. Once a component is changed, the value of the
PCR needs to be recalculated.

Blockchain

1. Establish a trust mechanism.
2. Remove the harmful parts.
3. Ensure the data’s integrity.
4. Control the access rights of the

information network.

1. Difficult to balance between the degree of
decentralization and the efficiency of
the consensus.

2. Difficult to balance between storage capacity and
processing performance.

(1) Passive Defense: This is a pre-set defense against known attacks, but the lack of subjective
considerations makes passive defense lose the ability to fully protect real-time information
systems. A firewall is the most common passive defense technology and establishes a barrier
(security gateway) between the internal trusted network and external non-trusted network to
prevent external users from intruding into the internal network by illegal means [80]. Although a
firewall can defend against known attacks by designing defensive rules in advance, it is helpless
in defending against the threat of internal attacks and backdoor attacks. At the same time, this is
the most serious flaw of the passive defense system. In addition, passive defense includes identity
authentication technology [81], access control [82], intrusion detection [83] and other technologies.

(2) Proactive Defense: This defense is based on the independent analysis and judgement of procedural
behavior, which can be more proactive in searching and dealing with hazards. It can counter
the attackers to safeguard the security of the information system. Honeypot technology is the
most common active defense technology, which designs deliberate system vulnerabilities to
guide hackers to attack [84]. It can detect eavesdropping hackers and collects all kinds of hacker
attack tools for later defense. Proactive defense makes up for the lack of passive defense through
the consideration of subjective factors and can take active defense measures against an attack.
In addition, proactive defense technology includes trap technology, vulnerability scanning [85],
trusted computing technology [86] and other technologies.

(3) Blockchain: A blockchain is not a type of information defense technology, but its unique properties
can provide higher anti-interference and confidentiality to the information data. Block technology
can be used as the bottom of the energy internet information system technology. Each perceptual
device assigns a fixed private key and adds a digital signature encrypted with multiple private
keys at the end of the resulting packet. The information node chain of the whole system forms
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a mesh structure, which makes the data path have high redundancy. The digital signature
not only makes it difficult for attackers to forge sensor data but also makes it impossible for
attackers to decrypt the data content. Even if the attacker blocks part of the data path in the
network, the highly redundant mesh structure allows the information to be transmitted across
other data paths.

6. Typical Application Scenario of The Blockchain in energy internet

The concept and construction mode of blockchain have been relatively mature, and some research
results have been obtained in the application analysis of energy utilization. Meanwhile, the application
of blockchain in information security at the energy internet also has begun to emerge. This section
analyzes the feasibility of using the blockchain for improving information security from several projects.

6.1. Case 1: Info-Interconnection Among Devices

ADEPT (autonomous decentralized peer-to-peer telemetry) was jointly created by the International
Business Machines Corporation and the Samsung Group to build an internet of things based on
the blockchain, aiming to solve the problem of informational interconnection among devices [87].
The system consists of three elements: BitTorrent (file sharing), Ethereum (intelligent contract) and
TeleHash (a point-to-point information transmitting system). BitTorrent is used to transmit data.
It can ensure the dispersion characteristics of data and can avoid the impact of network instability.
TeleHash is a terminal-to-terminal cryptographic library designed for application connections between
devices and management devices. These elements can be used for achieving device registration and
certification, formulating interaction rules based on the consensus mechanism, automatizing contract
executions and other functions.

When the information interacts between the devices, the Adept system will execute the function
of the distributed storage and track the relationships between the participants. The Adept system can
build a bridging information link between devices via various types of protocols. The self-describing
file of the device stored in the blockchain can help the device understand the functions of other devices.
In other words, it allows devices to track relationships with other devices or the user. As shown in
Figure 10, intelligent washing machines achieve information interconnection with other devices using
the Adept system. By obtaining the amount of the user’s exercise and the frequency of laundry from
the smartphone or the smart watch, the intelligent washing machine can automatically calculate the
residual amount of detergent and complete the online purchase behavior. The opening time of the
washing machine can be automatically regulated based on the power market time-sharing price.

Figure 10. Application scenarios of the autonomous decentralized peer-to-peer telemetry
(ADEPT) system.
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6.2. Case 2: Operation Monitoring of Devices

Filament is the application of IoT (Internet of Things) software stack based on the blockchain
shown in Figure 11, which makes a unique identity for each device [88]. Filament has two main
hardware units: Filament Tap and Filament Patch. The Filament platform includes five protocols:
Blockname, TeleHash, Smart contract, Pennybank and BitTorrent. The operation of Filament Tap
depends on the first three protocols, and the user can choose the next two protocols as a technology
extension. Blockname generates a unique identifier in the embedded chip of the device and stores it in
the blockchain. TeleHash provides peer-to-peer encryption channels. BitTorrent supports file sharing.
Pennybank creates a hosted service between two devices that allows them to settle transactions when
they are online. It achieves perfect communication between the internet and other devices by creating
an intelligent device directory.

Filament uses block-chain technology to upgrade the transmission equipment in the traditional
Australian grid. By arranging a set of “taps” for sensor monitoring on the poles and establishing a
corresponding communication mechanism, the poles are built into a digital node. It can monitor the
operation of the equipment based on the data published and shared in the blockchain system. If the
smart digital pole caught fire or began to tip, it would generate an incident report in real time into the
blockchain and notify the maintenance crews to deal with the fault. Meanwhile, the nearest working
pole would take over responsibility for the faulty pole. In addition to monitoring its own status, smart
digital poles can perform fault diagnosis and fault location through information sharing. Once the
digital node senses any exception, the monitoring platform will issue a status alert.

 
Figure 11. Application of the blockchain in the communication poles of the Filament project.

6.3. Case 3: Free and Direct Trade Among Users in the Micro-grid

The transactive grid is a trading platform developed by the Lo3 energy and consensus systems,
shown in Figure 12 [89]. The residents that participate in the project use solar energy to generate
electricity, and each household has a smart meter connected to the blockchain. The smart meter can
monitor the energy flow from the sides of the energy supplier and consumers in order to achieve a
dynamic balance of supply and demand. Energy trading can be automatically executed by using an
intelligent contract. Participants can perform autonomous transactions without relying on third parties.
On the one hand, the excess energy can be fed back to the grid; on the other hand, it can be directly
sold to other users.

Smart meters based on the blockchain can record the flow of energy and enable autonomous
management and transactions of energy. Secure and credible transactions require trusted metering
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and authoritative certification. The technical characteristics of the blockchain can guarantee the
authority. More importantly, the blockchain can expand the scope of the transaction. Once the trading
conditions are met, it can build the trading channels by the authentication mechanism without trust
between participants.

Figure 12. Demonstration of the blockchain technology in the energy market of a smart community.

7. Conclusions

Blockchain technology provides a series of innovation concepts to energy systems. The research
goal in this paper was to improve information security of the energy internet. On the basis of
summarizing the information security, the principle and technical characteristics of the blockchain were
expounded. Furthermore, by comparing the blockchain to other information defense technologies, this
paper discussed the superiority of the blockchain in information security. Based on the superiority of
blockchain in information security, the multilevel and multichain information transmission model was
proposed for the weak centralization of scheduling and the decentralization of transaction. Then we
systemically analyzed a way to use this model for improving the information security of the energy
internet. Finally, by combining existing practical projects, the final section analyzed the feasibility of
using the blockchain for improving information security.

At present, most research regarding the blockchain pays more attention to virtual currency, finance
and computers and less attention to the fields of energy. The only research regarding the combination
of blockchain and the energy internet focuses on the research directions of energy trading, market
mechanisms and demand response. These research directions can explain the characteristics of the
blockchain to some extent, but they do not expound on their unique characteristics in information
security. The biggest advantage of the blockchain in information security is its ability to prevent
tampering. When tampering with notarized information, attackers must tamper with more than 51%
of the node’s backup information for establishing a new consistency test condition, which requires very
large amounts of computing power. It is very difficult for an ordinary information attacker to possess
such powerful computing power. The new-type chain information security defense system is the most
important research method for the blockchain. In detail, a multilevel information security protection
system combined with multiple security technologies must be built for protecting the security of
systems from every aspect, such as the perception layer, the data transmission layer and the application
control layer. This is expected to truly achieve information security and information self-healing
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