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Dr. Jesús Armando Aguilar Jiménez holds a PhD in Engineering from the Institute of Engineering

at the Autonomous University of Baja California (UABC). He is a faculty member at the Faculty of

Engineering, Mexicali Campus, UABC, and is recognized as a Level 1 member of the National System

of Researchers. His research interests encompass renewable energies, energy simulation, energy

conservation, and efficient energy use, as well as energy innovation. Currently engaged in energy

projects for both the public and private sectors, he actively participates in academic committees

for the evaluation of scientific research. Dr. Aguilar-Jiménez also contributes to the development
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Preface

“Advances in Renewable Energy and Energy Storage” constitutes a thorough examination of the

crucial transition towards a global energy matrix based on renewable sources. This reprint focuses

on cutting-edge technologies, highlighting enhanced efficiency, superior energy integration, and

cost-effectiveness to foster the widespread adoption of renewable energies. The objectives encompass

guiding collective efforts towards sustainable development, mitigating environmental pollution, and

addressing the challenges of climate change.

Motivated by the urgent need for sustainable energy solutions, this reprint aims to inform and

inspire diverse stakeholders, including academics, industry professionals, and policymakers. The

authors, distinguished experts in the field, have collaborated to distill innovative research, providing

a comprehensive resource for decision makers in both the public and private sectors. We extend

our sincere gratitude to those who contributed to this effort, recognizing the collective commitment

needed to steer our world towards a resilient and environmentally conscious energy future.

Luis Hernández-Callejo, Jesús Armando Aguilar Jiménez, and Carlos Meza Benavides

Editors
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Article

Assessing the Potential of Qatari House Roofs for Solar Panel
Installations: A Feasibility Survey

Ayed Banibaqash, Ziad Hunaiti and Maysam Abbod *

Department of Electronic and Electrical Engineering, College of Engineering, Design and Physical Sciences,
Brunel University London, Uxbridge, London UB8 3PH, UK
* Correspondence: maysam.abbod@brunel.ac.uk

Abstract: Qatar’s ambitious Vision 2030 includes a major shift towards clean energy, and residential
solar PV installation can be an obvious option, given its abundant sunlight and high power for
residential cooling. Despite significant solar panel farm investment, there has been limited progress
in deploying solar panels on home roofs, and further research is needed to identify the potential
for such an initiative and its impact on the country’s move towards clean energy. This field survey
assesses the potential for residential rooftop solar panel installation across Qatar, considering space
availability, currently utilized space, remaining space, shading, and roof type. It also provided
indications of potential obstacles and shading that might affect panel sunlight exposure. The results
showed that there is significant potential for installing solar panels on Qatari homes, which could
contribute to a considerable portion of the energy consumed by households during peak usage
periods, particularly in the summer months. Moreover, excess energy generated could be exported
to other countries with high demand during periods of low demand in Qatar. The study’s findings
complement previous research efforts and provide insights for policymakers and stakeholders to
develop strategies that endorse the vision for 2030 and promote the transition towards clean energy
in Qatar.

Keywords: renewable energy; solar panels; Qatar; roof solar panels; roof survey; installation feasibil-
ity; solar panel installation drivers

1. Introduction

Qatar is committed to achieving its Vision 2030, which aims to create a sustainable
and diversified economy as well as a healthy and secure society. One of the key strategies
to achieve this vision is through a major shift towards clean energy [1]. Given the country’s
geographic location, Qatar is well-suited to harnessing the power of the sun to achieve
its sustainable electricity goals. The country has abundant sunlight throughout the year,
making it an ideal location for the installation of solar PV arrays [2]. Qatar has already taken
significant steps towards achieving its vision of clean energy and has invested heavily in
solar panel farms, such as the 800 MW Al-Kharsaah Solar Power Plant, which is expected to
power around 10% of the country’s energy needs [3]. These farms are a critical component
of Qatar’s clean energy strategy, but more can be undertaken. The majority of Qatar’s
energy load is domestic use, especially for cooling during the summer months, as noted
by the Annual Statistics Report 2021 of Qatar General Electricity & Water Corporation
(KAHRAMAA), accounting for 38,284,270 MWh out of the total amount of electricity
generated nationally per year (Figure 1) [4]. It is clear from the figure that domestic users
account for nearly four times the number of industrial consumers. This fact supports the
objective of this study, indicating that residential buildings have the potential to play a
significant role in the transition toward clean energy and achieve milestones toward the
national net-zero target. At the time of this study, there is still limited progress in deploying
solar panels on home roofs, despite the country’s high levels of sunshine and the potential
benefits that such installations can bring [2].

Solar 2023, 3, 650–662. https://doi.org/10.3390/solar3040035 https://www.mdpi.com/journal/solar
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Figure 1. Domestic energy consumption [4].

Deploying solar panels on home roofs can contribute to the country’s clean energy
goals by creating a distributed network of clean energy production. This can help reduce
the country’s dependence on fossil fuels (as well as the cannibalization of its primary
national exports), lower carbon emissions, and create a more resilient energy system. Given
that the country is one of the main energy exporters and experiences a high number of
sunny days, it can enable significant clean energy generation that can be exported [2].
However, further research is needed to identify the potential for this initiative and its
impact on the country’s move towards clean energy. This includes examining factors such
as the availability of suitable roof space, the orientation of the roofs, and the presence
of any shading or obstructions that might limit the effectiveness of the solar panels. By
conducting such research, stakeholders can better understand the potential of solar panels
on residential roofs and develop strategies to accelerate and optimize their deployment.

2. Drivers for Roof Solar Panels in Qatar

Qatar has made progress in large-scale solar farm investments, but residential solar
panel deployment is still needed to achieve the nation’s clean energy vision by 2030 [1].
Previous research has identified key challenges, as summarized in Figure 2, that must be
addressed before scaling up solar panel deployment in Qatar [5]. These challenges include a
lack of interest in renewable energy, competition from other energy sources, uncompetitive
pricing due to subsidized conventional electricity, limited awareness of renewable energy,
insufficient government initiatives, and a lack of environmental concern. Similar challenges
exist in other Gulf Cooperation Council (GCC) countries. Thus, addressing these issues is
necessary before considering residential and commercial solar panel deployment in Qatar.
A national roadmap for sustainable energy is crucial for achieving this long-term goal.

2
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Figure 2. Five key challenges to residential solar PV adoption [5].

By considering the six drivers for promoting solar panel adoption, namely potential,
awareness, the net-zero pathway, energy efficiency, lowering subsidies, and sustainability,
stakeholders can develop effective strategies to encourage the installation of solar panels
and achieve the vision of a sustainable future (Figure 3).

 

Figure 3. Six PANELS drivers [authors].

2.1. Potential

Qatar has vast potential for solar energy investment, positioning itself as a leader in
clean energy exports. Factors such as high sun hours, market experience, and financial
capacity make Qatar an ideal location for solar energy ventures [6]. Qatar is well-suited for
solar energy investments, with an average of 3600 h of direct solar radiation annually [7].

3
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The country is committed to reducing its carbon footprint and aims to generate 20% of its
energy from renewables by 2030, with solar energy playing a significant role [8].

A recent feasibility study explored various scenarios of solar panel deployment in
Qatar’s residential and commercial buildings, considering panel sizes, efficiency, and daily
sun exposure. Results indicated substantial potential for rooftop solar panels, generating
significant energy during peak usage, particularly in hot summer months. Surplus energy
could be exported to countries with high energy demands, positioning Qatar as a major
contributor to solving global energy crises [2].

Qatar’s extensive experience in the energy market, particularly in the oil and gas
industry, can be leveraged to develop the solar energy sector and gain a competitive
advantage in the global clean energy market [9]. The country’s financial capacity and
resources enable large-scale solar energy investments [10]. Notably, Qatar has already
invested in significant solar energy projects, including the Al-Kharsaah Solar Power Plant,
one of the world’s largest [11]. With its potential for solar energy investment and clean
energy exports, Qatar can contribute to its own energy needs, reduce carbon emissions, and
address global energy demands [12]. Its high sun hours, market experience, and financial
capacity make it an ideal destination for solar energy investment [2].

2.2. Awareness

Awareness plays a vital role in promoting the adoption of renewable energy resources.
In Qatar, a lack of awareness has been identified as a significant challenge hindering
the deployment of renewable energy [13]. To address this challenge, the government
should implement projects that allow households to actively participate and experience
the benefits of installing solar panels. This can effectively raise awareness throughout
the nation [14]. Given Qatar’s socially connected society, visible solar panels on homes
would initiate conversations and spark interest in renewable energy, leading to a snowball
effect of adoption [15]. The installation of solar panels serves as a strategic tool to raise
awareness and drive the transition toward clean energy use [16]. Not only does it offer
tangible benefits like reduced energy bills, but it also visually demonstrates individuals’,
businesses’, and nations’ commitment to reducing carbon emissions and contributing to
global climate change mitigation efforts [17]. This visual representation can generate public
interest and awareness of renewable energy, inspiring more individuals and businesses to
embrace clean energy sources [18].

Moreover, increasing public awareness about renewable energy can garner support
for policies and initiatives promoting clean energy adoption [17]. This creates a favorable
environment for renewable energy investment and deployment in Qatar, encouraging busi-
nesses to invest in renewable energy projects. Therefore, enhancing public understanding
of the nature and significance of clean and renewable energy sources is a crucial step in
establishing them as a normative and primary component of the national energy mix. In
Qatar, the installation of solar panels on homes acts as a catalyst for raising awareness
and driving the transition to clean energy. By generating public interest and support for
renewable energy, Qatar can contribute to global climate change mitigation efforts and
foster a more sustainable future for all.

2.3. Net-Zero Building Pathway

To achieve more sustainable and energy-efficient buildings, implementing a net-zero
strategy is crucial. Net-zero buildings have the capability to generate as much energy as
they consume, resulting in a neutral or net-zero energy balance [19]. Currently, homes
in Qatar heavily rely on external energy sources, but the installation of solar panels on
rooftops can pave the way towards net-zero buildings [20]. By incorporating solar panels,
homes in Qatar can reduce their dependence on conventional energy sources and promote
the use of renewable energy. The region’s abundant sunshine makes solar energy an ideal
solution for meeting residential energy needs [13]. Local energy production allows homes

4
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to decrease their reliance on grid-supplied electricity, which is often costly and contributes
to carbon emissions [2].

Apart from the environmental advantages, transitioning to net-zero buildings can
lead to significant cost savings for homeowners. By generating their own energy, home-
owners can reduce their electricity bills and even potentially sell surplus energy back to
the grid [19]. This introduces a new revenue stream and helps offset the upfront costs of
solar panel installation [2]. Additionally, adopting a net-zero strategy improves overall
energy efficiency in buildings, resulting in reduced energy consumption and lower carbon
emissions. These efforts align with global initiatives to combat climate change [21]. There-
fore, installing solar panels on homes in Qatar serves as a strategic step towards achieving
net-zero buildings. Through localized energy production, homeowners can decrease their
reliance on conventional energy sources, lower energy expenses, and contribute to global
climate change mitigation [20]. Thus, implementing a net-zero strategy is essential for
creating a more sustainable and energy-efficient built environment in Qatar.

2.4. Energy Efficiency

Energy efficiency is crucial for a sustainable energy strategy in Qatar, where all homes
currently rely on fossil fuel-generated energy. Promoting energy efficiency is vital to reduce
consumption, lower carbon emissions, and create a sustainable built environment [22]. By
installing solar panels and implementing a net-zero strategy, homeowners are expected
to shift towards using energy-efficient appliances and monitoring their energy usage [23].
Solar panel installation on Qatar’s homes can transform the way homeowners consume en-
ergy. Producing their own energy raises awareness about consumption and environmental
impact, fostering a greater appreciation for energy efficiency and a willingness to invest in
low-energy appliances [23].

Furthermore, a net-zero strategy incentivizes energy efficiency through a feedback
loop between production and consumption [23]. As homeowners become adept at generat-
ing their own energy, they become conscious of consumption patterns and take steps to
reduce energy usage. This includes adopting energy-efficient habits, investing in efficient
appliances, and monitoring consumption for potential savings. Therefore, promoting
energy efficiency is vital for a sustainable energy strategy, especially in Qatar, where homes
solely rely on fossil fuel-generated energy. Through solar panel installation and a net-zero
approach, homeowners can enhance awareness, invest in efficient technologies, and con-
tribute to a sustainable built environment [24]. Energy efficiency is essential for achieving a
sustainable and energy-efficient future in Qatar.

2.5. Lowering Electricity Subsidies

Qatar can transition to a sustainable energy future by deploying solar panels on homes.
Energy subsidies pose a challenge as the government provides free energy to citizens,
hindering solar panel installation. However, the government can support panel installation
to reduce non-clean energy use and subsidies [10,13]. This empowers homeowners to
generate their own energy, reducing their reliance on non-clean sources [25]. It shifts the
energy production burden from the government to individuals, lowering subsidies [10].
Homeowners can contribute to the grid and export excess energy, generating revenue [2].
Government support for solar panels demonstrates a commitment to sustainability and
emission reduction, fosters environmental consciousness, and encourages investment in
sustainable energy [25,26].

2.6. Suitability

The deployment of solar panels in Qatar can contribute significantly to achieving
sustainability across the three main pillars: the economy, society, and the environment.
Solar energy is a clean and renewable source of energy that can support the economy by
providing a new source of energy and sustaining the other available sources for future gen-
erations [10]. By investing in solar energy, the country can reduce its reliance on non-clean
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sources of energy, which can reduce the costs associated with importing and transporting
non-renewable fuels. This can, in turn, support economic growth and development [27].
Moreover, solar energy can benefit society by minimizing pollution, particularly carbon
emissions. The use of solar panels can help reduce the amount of carbon particles in the
air, which can lead to a healthier and more sustainable society. This can contribute to
the overall well-being of the population, as reducing pollution can lead to a reduction in
respiratory illnesses and other health issues [28]. By reducing the generation of CO2 from
clean sources of energy, solar panels can contribute to a more sustainable environment that
can be kept for future generations. This can also help reduce the negative impact of climate
change on the environment and support the preservation of natural resources [29].

In order to effectively facilitate the implementation of the six drivers for solar panel
deployment in Qatar, it is essential to carry out a field survey aimed at evaluating the
viability of installing solar panels on different types of residential buildings. This survey
will provide valuable insights to homeowners and decision-makers, enabling them to
develop suitable scenarios for the installation and effective utilization of solar panels on
domestic roofs in Qatar [30].

3. Materials and Methods

To evaluate the feasibility of installing solar panels on homes in Qatar, a survey was
conducted using a manual approach with a structured interview sheet with closed-ended
questions as the data collection method, based on the previous literature (as explained in
Table 1). The reason for opting for manual surveying instead of remote sensing methods,
such as the use of satellite images [31], is primarily due to cost, accessibility, and issues
related to legal and ethical approvals. Additionally, the use of drones has been considered;
however, as of now, drone surveying is not yet allowed in Qatar [32].

The survey aimed to gather data on the availability of space for solar panel installation,
currently utilized space, remaining space, shading, and roof type. The use of a structured
interview sheet with closed-ended questions provided a standardized approach to data
collection and made the process more efficient. Closed-ended questions were used to
collect quantitative data, which could be easily analyzed statistically to identify patterns
and relationships in the data [33]. As shown in Figure 4, the research design consisted of
four stages to complete the research project. The first stage was designing and testing the
data collection instrument, which was the most important part of the research design. It
involved identifying the main aspects to be included within the data collection instruments,
and an interview sheet was established. Each item included had a justification, as shown in
Table 1.

Figure 4. Research design [authors].
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Table 1. Collected data and justification.

Interview Question Rationale

House location The location of a house in the field survey is essential to obtaining accurate geographical
representation [3,34].

Number of similar houses in
the street or compound

Knowing the number of similar houses in the same area is essential for a wider and more
representative study. It helps with solar panel installation planning, as a community solar setup
can be considered [34].

Number of bedrooms in the
house

The number of bedrooms in a house is crucial for solar panel installation. It helps estimate energy
consumption and the correct number of panels needed. Also, analyzing energy usage patterns
identifies areas for conservation measures, reducing consumption, and enhancing solar panel
effectiveness [35].

Items on the roof

Before installing solar panels, it is essential to identify existing objects that may hinder the process
or limit available space. These can include AC units, chimneys, skylights, and other structures.
Assessing their current use and placement on the roof helps determine the best solar panel
installation approach [3].

Approximate total roof size in
square meters

Determining the approximate size of a roof (in square meters) is essential when considering the
installation of solar panels. This information can be used to calculate the amount of viable free
space available for solar panel installation [3].

Average remaining empty
space on the roof

To install solar panels on a roof effectively, assess the available space for optimal energy
generation. Utilize the average remaining empty space, avoiding obstructions like vents or
chimneys, to maximize panels and energy output. Plan and design carefully for an aesthetically
pleasing integration with the roof’s architecture [3].

Recreational use of the roof

Before installing solar panels on a recreational roof, assess their potential impact on leisure
activities. The size and orientation of the panels might obstruct or limit recreational use [3].
However, with careful planning, solar panels can serve a dual purpose by providing shade and
protection for leisure activities while generating renewable energy for the home [34].

Roof type
To install solar panels on a house, assess the roof type, condition, orientation, and angle for
sufficient sunlight. Evaluating the roof’s suitability ensures the maximum benefits of renewable
energy for the home [3].

House height

When assessing the feasibility of solar panels for a house, consider the building height compared
to surrounding structures. If taller neighboring buildings block direct sunlight from the east or
west, optimal sun exposure may be challenging [3]. Also, evaluate the roof angle and orientation.
Proper assessment ensures efficient solar panel installation, maximizing the benefits of solar
energy for the home [34].

Solar shading

Solar shading is the process of identifying potential obstructions, like nearby buildings or tall
trees, that may block sunlight from reaching a rooftop or solar panel installation. By
understanding shading risks, effective measures can be taken to optimize sunlight exposure,
maximize energy generation, and reduce the need for additional energy sources [3].

The second stage of the research design was the survey strategy. Since the majority of
the country’s population is based in Doha, the study selected areas to be included in the
survey. Moreover, due to the fact that homes in similar neighborhoods typically have many
similarities, the interview included asking the homeowners if nearby homes are similar
to their own. This enabled achieving geographical representation as well as statistical
representation to represent the whole number of homes in Qatar, which is expected to be
around 365,000 domestic customers, according to KAHRAMAA’s Annual Statistics Report
2021 [4].

The third stage of the research design involved data collection. To facilitate this process,
the interview questions were digitized into an electronic form that allowed for convenient
and efficient data collection on the spot [36]. This eliminated the need for further processing
and streamlined the data collection process. Additionally, using an electronic form allowed
for anonymous data storage, thereby ensuring the confidentiality of the participants [37].
Electronic data collection methods have become increasingly popular in recent years as
they offer a range of advantages over traditional paper-based methods. For example,
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electronic forms can reduce the risk of errors and inconsistencies as well as improve the
speed and efficiency of data collection. Furthermore, electronic forms can be easily stored
and accessed, making it easier to analyze and interpret the data.

The final stage of the research design involved data analysis and the presentation of
the findings. To achieve this task, Excel was used to plot graphs and perform the necessary
statistical analyses to convert the collected data into meaningful information. Excel is
a widely used spreadsheet software that can be used for data analysis and has many
built-in statistical functions that can aid in the analysis process [38]. The use of Excel in
data analysis has several advantages, such as the ability to handle large amounts of data,
perform calculations efficiently, and present data in an easily understood way using graphs
and charts [39]. Furthermore, the use of objective data in presenting research findings helps
draw meaningful conclusions.

4. Results

Given the homogeneity of homes in Qatar [40], the use of a cluster sampling plan [41]
enabled the surveying of 10 different areas in Doha, with a total of 50 homes physically
surveyed from these areas, resulting in a total sample of 1068 similar homes in the same
street or compound, as shown in Table 2. This sample size is considered larger than the
typically required sample of 384 from the total population of 365,000, ensuring a statistically
representative sample [42].

Table 2. Areas and number of houses surveyed.

Surveyed House Area Number Similar Houses in the Street or Compound

Al-Kheesa 20 700
Al Waab 10 240

The Pearl-Qatar 4 25
Al Waab 3 20

Musheireb 3 20
Al Sadd 3 20

Abu Hamour 2 13
Ain Khaled 2 12

Lusail 1 8
Al-Hilal 2 10

Total 50 1068

Table 3 summarizes the survey results.

Table 3. Survey results.

Survey Item Outcome

Average number of bedrooms per house 4
Average total roof area [m2] 244
Average remaining total roof area [m2] 144
Average house height [m] 9

Use of roof for recreational purposes Yes No
10% 90%

Possibility for shading Yes No
30% 70%

Type of house roof Flat roof Gable roof Bonnet roof
100% 0% 0%

Items on the roof
External AC
units Satellite dishes Water tank Storage shed

(box)
Solar panel for
water heating

80% 80% 100% 10% 20%

The survey findings indicate that the majority of homes in the area are relatively
spacious, with 40% being five-bedroom homes and 20% being four-bedroom homes. The
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remaining 40% comprise three- and two-bedroom homes. The average total size of the
homes is 244 square meters, which is quite substantial.

Regarding the features on the roofs of these homes, all houses have water tanks, and a
significant majority (80%) have external AC units and satellite dishes installed. However,
storage sheds are less common, present on only 10% of houses, and solar panels for water
heating are found on 20% of homes.

Approximately 59% of the roof space remains empty after accounting for the men-
tioned items, suggesting that over 50% of houses have enough available space to potentially
accommodate solar panel installations.

Furthermore, it appears that roofs are rarely used for recreational purposes, with 90%
of respondents confirming that their roofs are not utilized for any other activities, likely
due to the hot climate and modern indoor lifestyles. This means that if solar panels were
installed on the roofs, they would not interfere with daily activities in the homes.

An important consideration for solar panel installation is the roof orientation. Fortu-
nately, all the roofs in the area are flat, making them suitable for solar panel placement to
maximize energy generation.

Moreover, the majority of houses have a height ranging from 7 to 10 m, with an
average height of 9 m. This height distribution indicates that there is a low likelihood of
shading or obstruction of sunlight, which is favorable for solar energy generation.

Finally, the survey revealed that 70% of surveyed houses do not have nearby buildings,
trees, or other objects that may cause shading, while 30% reported potential shading issues.
Overall, these results demonstrate a high potential for solar PV installation in the area to
generate an optimal amount of clean energy.

5. Discussion

The presented results indicate that Qatari homes are highly germane to the installation
of solar panels due to their relatively large area and spaciousness. The study found that
50% or more of the roof space is available for solar panel installation without interfering
with the daily activities of the homeowners. This is in line with a previous study, which
reported that most Qatari homes have spacious rooftops with significant potential for solar
panel installation [43]. Moreover, the study found that there are limited problems caused
by shading from trees or tall neighboring structures. This is because most Qatari homes are
of similar height in wholly residential neighborhoods; thus, they are not typically in prox-
imity to obstructions that could otherwise block sunlight, as reported by the homeowners.
However, if there is latent shading, solar panels can be installed in locations that provide a
minimum degree of shading and the best sun view. This is consistent with the findings of a
study [43], which indicated that shading can be minimized by choosing the best location for
solar panel installation. Additionally, solar PV arrays can themselves be used as shading
devices, thus reducing direct solar heat gain by homes (while having unimpeded exposure
to sunlight for power generation) and thus reducing the latent energy demand required for
cooling [44].

The study also discovered that the prevalence of flat roofs on Qatari homes offers
several benefits for solar panel installation, as depicted in Figure 5. These flat roofs offer easy
access for technicians during installation and allow for the adjustment of panel orientation
to maximize energy generation, a crucial factor impacting performance. Moreover, flat
roofs support the use of automatic platforms for sun tracking, significantly enhancing
energy generation—unlike angled roofs, which have limitations in this regard. Tracking
systems can boost energy production by up to 25%, a valuable advantage, particularly in
regions with high solar irradiance like Qatar [45,46].

Furthermore, the high similarities between homes in Qatar [40], as shown in Figure 6,
enable the establishment of an easy strategy for technical teams to replicate the instal-
lation design in similar homes, which can reduce time costs and achieve the intended
deployments within a realistic timescale. The similarities between homes can make it easier
for homeowners to make the decision to install solar panels, as they can see examples

9



Solar 2023, 3

of installations on homes similar to theirs, and installers will become highly proficient
in installing required arrays and equipment in similar types of structures. This is in line
with previous research on the benefits of standardization in building design for renewable
energy adoption. For example, a study [47] found that standardizing building design can
facilitate the integration of renewable energy systems, particularly in residential build-
ings. Another study [47] found that standardizing building design can reduce the cost of
renewable energy systems by streamlining the installation process.

 

Figure 5. Example of a surveyed home roof.

 

Figure 6. Example of structural homogeneity of Qatari homes.
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The outcomes from this study complement previous research conducted by the au-
thors, aimed at establishing the analytical feasibility of deploying solar panels on Qatar’s
houses [2]. The primary objective was to calculate various solar panel deployment scenar-
ios using analytical methods, considering different panel sizes, efficiency, and daily sun
exposure. These scenarios were then compared to estimate the generated energy and its
comparison with actual consumption over a twelve month period. The findings revealed
the most viable scenarios that enable homes in Qatar to sufficiently generate solar energy
to cover their consumption. Moreover, there is a high possibility that surplus energy gener-
ated during the low season can be exported to areas experiencing high energy demands,
such as the Western world. This potential not only benefits Qatar but also supports global
efforts towards transitioning to clean energy, providing a valuable solution for energy
crises [48].

Hence, the findings of this study support the potential for solar panel installation
on Qatari homes. With their spaciousness, limited shading, and flat roofs, Qatari homes
are ideally suited for solar panel installation. This aligns with the Qatari government’s
ambitious goal of generating 200 MW of solar energy by 2022 [49]. By encouraging and
facilitating the installation of solar panels on homes, Qatar can move towards a more
sustainable future. This should begin with pilot projects involving the installation of
solar panels on real homes to gather actual information on their performance, taking into
account factors such as solar radiation, temperature, and dust that might reduce generation
potential. This is essential to ensure optimal and sustainable performance [50].

6. Conclusions

The study has successfully achieved its primary objective of assessing the suitability
of Qatari homes for solar panel installation. The obtained results are highly promising
and offer significant value to various stakeholders involved in decision-making regarding
the deployment of solar panels in residential areas. Furthermore, these findings hold
invaluable importance for the parties responsible for the deployment, as they can utilize
them to develop a comprehensive national strategy for replicating the deployment plan
in different regions, considering the high similarities observed among homes in Qatar.
These findings also complement and align with past research efforts conducted using
analytical means.

However, to draw a definitive conclusion, it is recommended to conduct real pilot
projects involving the installation of solar panels on actual homes and gather additional
information on their performance in situ. This should include aspects like solar radiation,
temperature, air quality (as dust can reduce generation potential), connectivity with the
main grid, storage, and all relevant variables. Such an approach will yield crucial insights
into potential challenges that may arise during installation and usage, thereby enabling the
formulation of practical solutions based on user experiences and operational evidence.

Despite the potential difficulties that may arise, the positive outcomes of this study
indicate a promising future for solar panel installation on Qatari homes. By implementing
such initiatives, Qatari households can effectively reduce their carbon footprint and con-
tribute to the creation of a greener and more sustainable environment for future generations.
This will undoubtedly play a significant role in Qatar’s commitment to clean energy and
global efforts towards combating climate change.
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Abstract: Installations of decentralised renewable energy systems (RES) are becoming increasing
popular as governments introduce ambitious energy policies to curb emissions and slow surging
energy costs. This work presents a novel model for optimal sizing for a decentralised renewable
generation and hybrid storage system to create a renewable energy community (REC), developed in
Python. The model implements photovoltaic (PV) solar and wind turbines combined with a hybrid
battery and regenerative hydrogen fuel cell (RHFC). The electrical service demand was derived using
real usage data from a rural island case study location. Cost remuneration was managed with an
REC virtual trading layer, ensuring fair distribution among actors in accordance with the European
RED(III) policy. A multi-objective genetic algorithm (GA) stochastically determines the system
capacities such that the inherent trade-off relationship between project cost and decarbonisation can
be observed. The optimal design resulted in a levelized cost of electricity (LCOE) of 0.15 EUR/kWh,
reducing costs by over 50% compared with typical EU grid power, with a project internal rate of
return (IRR) of 10.8%, simple return of 9.6%/year, and return on investment (ROI) of 9 years. The
emissions output from grid-only use was reduced by 72% to 69 gCO2e/kWh. Further research of
lifetime economics and additional revenue streams in combination with this work could provide a
useful tool for users to quickly design and prototype future decentralised REC systems.

Keywords: decentralised energy systems; renewable energy community; hydrogen energy storage
system; decarbonisation; techno-economic assessment; multi-objective optimisation

1. Introduction

The current state of the energy generation landscape is undergoing a significant change
as concerns are raised over climate change, energy cost, and energy security. The aim as
stipulated in the Paris Agreement [1] of keeping the average surface temperature increase
below 2 ◦C by 2050 is unlikely given global trends [2], and will be impossible without an
ambitious sustainable energy development and technological innovation [3]. Recent events
on the global stage have also caused nations in Europe and around the world to reconsider
their energy security strategies [4,5]. The adoption of renewable energy at scale should
include measures to increase the effectiveness whilst providing cost reductions [6].

The introduction of renewable energy systems (RES), including photovoltaic (PV) solar
panels and wind turbines, have been the key driving force in removing global dependence
on fossil fuels from the energy sector [7]. These types of generation assets are known
as non-dispatchable as they are completely dependent on weather conditions [8] and so
cannot be precisely controlled. This is a problem for transmission service operators (TSOs)
as ensuring the voltage and frequency are balanced at a grid level becomes challenging [9].
The increasing volume of decentralised RES installed at the demand side is also problem
for grid operators [10], as they can induce bidirectional grid flows and put additional strain
on the network.
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One solution to this problem is the use of energy storage systems (ESS) to store
excess energy and increase the share of the total RES production directly through self-
consumption [11,12]. Electro-chemical storage such as batteries have been deployed in
many cases for use as grid-level storage [13–15], as they have the advantage of fast response
to demand and can be installed in most global climates. A number of battery technologies
including high-performance solid state chemistries are a promising solution due to their
long-term stability and high capacity retention [16,17]. Most grid storage applications
deploy LiFePO4 variants as they are widely available and have a relatively low cost [18].
Crucially for the research methods used in this work, the retrieval of reliable cost and envi-
ronmental data is vital for an accurate result, which for LiFePO4 is widely available within
the literature. Hydrogen has often been considered for long-term seasonal storage [19],
due in part to the mentioned capacity retention challenges of battery storage. Hydrogen
is also a flexible energy vector for many other uses, such as heating and industrial pro-
cesses [20]. A hybrid battery and hydrogen ESS has a great potential to increase the share
of renewables within the energy mix [21], thus decreasing the reliance on traditional power
stations. The advent of widely available ESS has meant that it is now possible to emphasise
the self-consumption of energy at a local level to reduce the problems of grid stress and
planning. A ‘prosumer’ (an end user that is able to both consume and produce energy [22])
or group of prosumers could install decentralised RES coupled with storage technology,
and self-consume the power generated at a local level.

To address these challenges, this work presents and evaluates the application of decen-
tralised renewable energy communities (RECs). RECs in practice have many advantages
and solve the most common issues associated with increased decentralised generation,
while also promoting the further self-consumption of electricity. In a REC configuration,
consumers and prosumers are no longer restricted to buying and selling energy from their
utility company and can virtually ’share’ the excess energy between actors within the
energy community itself. This is mutually beneficial for both the network operator, as they
no longer need to manage unpredictable grid flows, and for the REC participants as they
receive direct renumeration and a reduction in carbon emissions.

The REC considered in this work was based on the policy recommendations recently
implemented by a number of EU countries outlined in the Renewable Energy Directive
(RED-II) (EU) 2018/2001 [23]. The directive defines a REC as “a legal entity that is based
on open and voluntary participation, it is autonomous and controlled by shareholders or
members located in the proximity of renewable energy plants belonging to the community
itself. The members may be physical persons, companies or local authorities. . . ”. While
the directive has been transposed into several other national laws and decrees, including
Austria [24], France [25], Germany [26], and the Netherlands [27], the REC modelled
in this work most closely resembles the framework practiced in Italy as discussed by
Trevisan et al. [28]. Although the study was in Spanish territory, it was chosen to follow the
Italian implementation as there are more example cases available and, as of 2021, further
improvements to the 2019 Spanish REC policy are currently in progress [29].

As laid out in decree-law 199/2021 [30], a group of self-consuming members within
the REC must be located within the same low-voltage (LV) network downstream of the
same LV/MV substation. Energy is shared in the existing physical network using a virtual
network model. The difference between the energy consumed and energy produced by
the REC is resolved over each one-hour period to determine the capacity available to be
shared [31]. The model created in this work uses the principles of the relevant regulation to
design the virtual REC.

A number of studies including operational renewable energy communities have in-
vestigated the use of ESS within a REC to further improve the economic performance of
centralised renewables. Trevisan et al. presented an optimised energy model considering
PV solar and ESS to provide renewable power to a port REC, showing a decrease in energy
bills of 28% compared with the business-as-usual case [32]. Bartolini et al. investigated
how to size a mixed RES to fully self-consume all generation at a community level, as
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well as meeting the heat energy needs, and showed that using hydrogen generation and
storage is an economically viable alternative to battery systems [33]. Although less ex-
plored in the literature, there have also been studies focused on the environmental and
emissions reductions possible with such a community-based system. Wang et al. proposed
a community-based virtual power plant solution in Japan with PV and battery ESS with
the ability to reduce carbon emissions by 16.26% [34].

Several different modelling and optimisation software tools have also emerged to
assist in model-based design and assessment. An in-depth review by Cuesta et al. pre-
sented popular renewable energy modelling tools, including the ability to model different
renewable assets and output different technical, economic, environmental, and social key
performance indicators [35]. Software such as HOMER (version 3.16), TRNSYS (version 18),
and MATLAB/Simulink (2022b) are most often used due to their ease of use and available
documentation. However, they can be restrictive for some REC cases due to their propri-
etary nature. Creating the model in Python will provide the flexibility of an open-source
platform and a scalable product suitable for deployment as a lightweight software or web
applications.

A number of optimisation procedures have been addressed and utilised in the litera-
ture to determine the optimal design of hybrid RES and ESS. Most cases vary the design
capacities to achieve one or more competing criteria such as economics, grid independence,
and environmental impact. Niveditha and Rajan Singaravel consider a multi-objective
design criteria for achieving near zero energy buildings (NZEB), using the functions of cost,
loss of load probability (LLP), and total energy transfer (TET) to determine the best sizing
arrangement for the PV-wind-battery storage system [36]. Zhang et al. presents a capacity
configuration for both an on-grid and off-grid mixed renewable system with hydrogen and
batteries [37]. The NSGA-II algorithm was used to determine the trade-off relationship
between system cost, renewable curtailment, and loss of load probability (LLP), which can
be considered analogous to grid independence for grid-connected configurations. Xu et al.
considers the design of an off-grid PV-wind-hydrogen storage system using the multi-
objective criteria of LCOE, LLP, and power abandonment rate (PAR). The pareto optimal
solution produces an LCOE of 0.226 USD/kWh at acceptable LLP and PAR values [38].
Studying the emissions associated with the grid independence would more accurately
determine the positive environmental impact, which was of particular focus in this work.
Results from the literature also do not consider the implementation of such an optimization
procedure for RECs, and the impact of trading arrangements between members. Other
algorithms including multi-objective particle swarm optimisation (MOPSO) [39] and multi-
objective evolutionary algorithm with decision-making (MOEA-DM) [40] have also been
applied to ESS design; however, NSGA-II remains very popular and has proven robustness
in energy flow optimisation problems [41].

2. Contribution

In this study, a techno-economic and carbon emissions assessment was conducted for
a decentralised REC. The case study location was chosen as Formentera; a largely rural
Balearic Island located in the Mediterranean Sea as illustrated in Figure 1. Emphasis is
put on the isolated nature of the energy grid, which naturally increases the energy cost
and embedded carbon of electricity usage, making it an ideal location for the study. A
comparison of the base case scenario was used to compare the improvements made with
the implementation of the REC.

The community has shared usage of PV solar and wind power to produce energy, and
a hybrid battery and regenerative hydrogen fuel cell to store excess production. The com-
bination of battery and hydrogen minimises the potential shortcomings of decentralised
storage. A virtual trading scheme based on the EU decree-law 199/2021 for REC imple-
mentation was used to evaluate the energy shared between community members, without
considering incentives or feed in tariffs. Through the implementation of key economic and
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environmental parameters, the multi-objective optimisation determines the best design
topology within the defined REC boundary conditions.

 
Figure 1. Formentera Island, highlighted in red, is located east of the Spanish mainland in the
Mediterranean [42].

The multi-objective results reveal an inherent trade-off relationship between low-cost
energy and the ability to decarbonise supply, and that this approaches a critical limit at
both extremes of the pareto front. This work shows that across the pareto optimal sets, the
hybridisation of energy storage provides a better overall performance than a battery-only
or hydrogen-only case. Additional constraints can be applied to the objective domain to
assist in design decision-making.

The implementation of the model in Python allows for the creation of a scalable prod-
uct, which following digitisation trends in model-based design could provide a vital tool for
communities and policymakers to determine the best method for assisting communities to
reach net-zero emissions. To summarise, the novelty of this work is summarised as follows:

• The modelling of a hybridised battery and RHFC system for a remote renewable
energy community application using real-world power consumption data from a rural
island location;

• the use of multi-objective optimisation to evaluate the system pareto front based on
economic and environmental performance;

• the inclusion of a virtual trading layer based on the latest RED(III) REC policies;
• the formulation of a scalable and modular renewable energy community modelling

and simulation platform.

3. Materials and Methods

For the purposes of simplification, the simulation model was discretised into one hour
time steps using kWh as the function unit for all energy flows within the system. The
case study input assumptions including building load and meteorological datasets are
defined first. The meteorological data at the chosen coordinate location were obtained
from the National Aeronautics and Space Administration (NASA) Langley Research Center
(LaRC) Prediction of Worldwide Energy Resource Project funded through the NASA Earth
Science/Applied Science Program [43]. A combination of hourly and monthly energy
consumption collected from the case study location was used to recreate typical annual load
profiles for each of the seven buildings within the virtual REC. A selection of 24 industrial,
commercial, and residential load profiles produced by Farhad et al. (2020) were used to
augment the profiles where required [44].
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3.1. Renewable Energy Community Implementation

It was assumed that the community members will have a shared capital investment
in the generation and storage assets. PV solar and wind assets can either be installed in
the low-voltage energy grid within the same secondary substation of the REC, or spread
out between the members, installing in open areas such as rooftops. The stationary ESS
consisting of both a lithium-ion battery and a RHFC was installed with the REC boundary
conditions in accordance with the EU decree-law 199/2021, with the capacity to accept but
also release energy to the physical energy grid. A simple diagram of the system architecture
is shown in Figure 2.

 

Figure 2. Renewable energy community system architecture. The community buildings grouped on
the left are connected virtually to the distributed generation and storage assets, which are also able to
export to the local power grid.

The control strategy consists of a load-following authority, but with additional consid-
erations for the hybrid ESS. Since batteries have an improved performance as short-term
storage, these are allowed to discharge first to cover the load of the REC. Once the bat-
tery depth-of-discharge (DOD) limit is reached, the hydrogen system is then activated to
cover the remaining demand. During the charging phase, this control scheme occurs in
reverse. By evaluating the excess energy available between the total REC consumption and
production over each one-hour increment in line with decree-law 162/19 for community
implementation in Italy, the total virtual energy flows between community members were
derived. This case does not consider incentives to reduce financial strain and instead
evaluates through a techno-economic assessment over a 20-year project period whether the
hybrid system was able to provide net-positive economic and environmental performance
over the business-as-usual case.

The electrical load profiles form the foundation of the assessment of economic and
environmental improvements to the REC. The community consists of seven member build-
ings; a community centre, a small school, a large school, local government offices, and three
typical residential units. For the community centre, two schools, and offices, sample daily
load profiles, as well as the monthly average energy consumption, were collected directly
from the test site. For the residential units, a combination of the annual heating, cooling,
and appliances usage of 80.7 kWh/m2 was used to evaluation the typical characteristics
of a residence in Spain [45], where the buildings were assumed to be 50 m2 in area. The
monthly and yearly consumption was used to create a spline, over which the daily load
profile was interpolated and repeated to create the one-year load profiles for each building.
The total yearly consumption for each member is included in Table 1, with the monthly
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and daily load profiles shown in Figure 3. The three mixed homes have been combined to
represent a mixed family building and to improve visibility within the analysis.

 

(a) Monthly electricity demand (b) Normalised daily electricity demand 

Figure 3. Building electrical energy service demand model based on the requirements of the renew-
able energy community. Figure 3b displays the average daily power demand curves of the different
building types within the model.

Table 1. Total annual electrical consumption for each member of the renewable energy community.

Annual Consumption

Community centre 66,500
Elementary school 19,200

High school 46,200
Government offices 28,900
3× Residential units 12,000

3.2. Weather and Environment Data

The weather data were collected for the year 2022 at the coordinate location of the
chosen REC case study site. The model requires accurate measurements of ambient tem-
perature, wind speed, and global horizontal irradiance (GHI) solar conditions to evaluate
the hour-by-hour power output of the renewable generation technologies. Figure 4 shows
the hourly mean temperature and GHI for each month over one year. A higher GHI is
observed in the summer period as expected in the northern hemisphere.

  

(a) Ambient temperature (°C) (b) Global horizontal irradiance (W/m2) 

Figure 4. Temperature and solar conditions over a one-year period at the island location. The weather
conditions are assumed to remain constant year-on-year through the lifetime of the system.

20



Energies 2023, 16, 7363

3.3. System Design and Characteristics
3.3.1. PV Solar Array Model

The Mediterranean region’s warm and dry climate promotes the use of PV solar
systems to generate clean energy. For the purposes of the study, the solar array was
assumed to be installed at 180◦ directly to the south, and at an optimal tilt angle of
38.7◦. The power output of the solar panels PPV was modelled using the following
governing equation [46]:

PPV = CPVd f (
G(t)module

GSTC
)[1 + αP(Tc − Tc,STC)] (1)

where CPV is the generation capacity (kW) of the solar installation under standard condi-
tions, df is the derate factor, G(t)module is the direct solar irradiance in W/m2, GSTC is the
direct solar irradiance under standard test conditions (1000 W/m2), αP is the thermal power
coefficient (%/◦C), and Tc,STC is the PV cell temperature under standard test conditions
(25 ◦C). Tc is the PV cell temperature and is calculated by considering the measured nominal
operating cell temperature (NOCT). NOCT is the cell measured temperature at a solar
irradiance GNOCT of 800 W/m2, an ambient temperature Ta,NOCT of 20 ◦C, and a wind
speed of 1 m/s [44]. This known thermal characteristic can then be used to adjust the cell
temperature and find the corrected power output using the following equation [47]:

Tc = T(t)a + (Tc,NOCT − Ta,NOCT)(
G(t)module

GNOCT
)(

1 − ηmp

τα
) (2)

where T(t)a is the ambient temperature at timestep t and ηmp is the cell efficiency. The
constants τα can be assumed to be 0.9 for most cases. Since ηmp is not known, the efficiency
under standard conditions ηmp,STC is substituted into the cell temperature equation above
and the result yields the following:

Tc =
T(t)a + (Tc,NOCT − Ta,NOCT)(G(t)module/GNOCT)[1 − (ηmp,STC(1 − αPTc,STC))/τα])

(1 + (Tc,NOCT − Ta,NOCT)(G(t)module/GNOCT)[(αPηmp,STC)/τα]
(3)

The GHI input data need to be adjusted based on the local latitude ϕ and module tilt
β to find the module irradiance G(t, module) for the time of day and year. This is found with
the following equations [48]:

G(t)module =
G(t)horizontal sin(α + β)

sin α
(4)

α = 90◦ − ϕ + δ (5)

δ = 23.45◦ · sin[360/365(284 + d)] (6)

where G(t)module is the module irradiance, G(t)horizontal is the GHI data, α is the elevation
angle, and δ is the declination angle which deviates from the earth’s tilt of 23.45◦ depending
on the day of the year d.

3.3.2. Wind Turbine Model

A generic dynamic wind turbine model was used to calculate the expected power
output in the selected location using the following [49]:

P(t) =
1
2

Cpρ(t)AV3(t)(ηm · ηe) (7)

where Cp is the power coefficient, ρ(t) is the air density at the hub height, A is the selected
swept area in m2, V(t) is the wind speed in m/s at the time step t, and ηm and ηe are the
mechanical and electrical efficiencies. The wind speed is usually measured at a different
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height compared to the hub height, Zhub. Therefore, the model uses the logarithmic law to
derive the hourly wind speed at the hub height as follows [49]:

Vhub = Vanem(
In(Zhub/Z0)

In(Zanem/Z0)
) (8)

where Z0 is the surface roughness length (m), Zanem is the anemometer height (m), Vhub
is the wind speed at the required hub height (m/s), and the Vanem is the measured wind
speed at the anemometer height (10 m for the dataset used). For simplicity, Cp is evaluated
by way of a 2D-look up table based on the four classes of wind turbines described in
IEC 61400 standard [50]. The average wind speed and distribution was evaluated and the
most appropriate characteristic was chosen from the four available classes ranked from
low to high wind speeds [51]. The normalised power range for each class of “Offshore”,
“IEC-1”, “IEC-2”, and “IEC-3” are shown in Figure 5a. The energy output over the course of
one year can also be determined analytically by assessing the wind speed distribution. The
Rayleigh distribution, shown in Figure 5b, has been overlaid to show that the wind speed
distribution data follow this statistical law, which indicates that the normalised power
curves will operate effectively for the model.

  
(a) Turbine normalised power output curve (b) Wind speed distribution at Formentera 

Figure 5. Wind model input assumptions are primarily a combination of standardised wind turbine
power coefficients and the load wind speed data measured at 10 m above sea level.

3.3.3. Lithium Ion Battery Model

The battery model utilises a simplified version of the Shepard battery model [52],
replacing internal and other resistive losses with a total charge ηcharge discharge ηdischarge
efficiency for the hourly discharge case. The simplification allows for less information to be
known about the chemistry and dynamics of the specific battery to perform calculations
for the current capacity and state of charge (SOC). The battery system contains two parts: a
charge model and a discharge model. The models take the power requirement from the
battery and output the resulting SOC for the end of the timestep. These parts are defined
as follows:

{
SOC(t + 1)batt =

Q(t)batt +
∫

P(t)battηcharge, dt)
Q(t0)batt

· 100 charging

SOC(t + 1)batt =
Q(t)batt −

∫
P(t)battηdischarge, dt)

Q(t0)batt
· 100 discharging

(9)

where SOCt+1,batt is the next timestep battery SOC, Qt,batt is the battery state of charge
at timestep t, Qt0,batt is the initial SOC, Pt,charge is the average charge power draw, and
Pt,discharge is the discharge power draw. These outputs are subject to the minimum and
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maximum SOC limits SOCmin and SOCmax. The model includes degradation in the battery
capacity linearly as a function of charge cycles, as shown below:

Q(l, t)batt = Q(t0)batt − αl (10)

where Q(l, t)batt is the dynamic capacity in kWh as a function of cycles the cycles l, and α is
the ageing factor (kWh/cycle).

3.3.4. Regenerative Hydrogen Fuel Cell

The RHFC model provides an alternative energy storage facility to the electrochemical
battery. The model consists of a PEM fuel cell and PEM electrolyser capable of consuming
and producing hydrogen, respectively. The system also considers a hydrogen storage
module with its own rated capacity and efficiency. The overall equations are like that of
the simplified battery model in that the electrolyser and fuel cell analogously represent the
charge and discharge elements. The system can therefore be shown as the following:

{ Q(t + 1)H2 = Q(t)H2 −
∫

P(t) f cη f c, dt Fuel cell

Q(t + 1)H2 = Q(t)H2 +
∫

P(t)elηel , dt Electrolyser
(11)

where Q(t + 1)H2 is the next timestep hydrogen energy stored (kWh), Q(t)H2 is the current
timestep hydrogen energy stored (kWh) P(t)fc is the average fuel cell power production [kW]
in the current one-hour timestep t, and P(t)el is the average electrolyser power consumption
[kW]. ηfc and ηel are the average lifetime fuel cell and electrolyser efficiencies [%], respec-
tively. Like the battery, these energy values are also subject to QH2,min and QH2,max limits.

3.3.5. Model Input Assumptions

Table 2 contains the necessary input assumptions for the energy models, including
efficiencies and other system dynamics that determine the output power generated or
stored. The PV panel characteristics are based on the Sunpower Maxeon panel series, while
the wind turbine is an approximation of common small-scale turbine systems on the market.
The roughness length assumption of 0.05 is defined as rural, farmland area with low crops
and without many trees [53]. The hydrogen system efficiency values are based on industry
knowledge gathered from leading European fuel cell and electrolyser manufacturers.

Table 2. Hybrid renewable energy system design input assumptions across the different included
technologies.

PV Solar

Panel Power (W) 400
Panel Area (m2) 2

Thermal Coefficient (%/◦C) −0.3
NOCT (◦C) 42

Lifetime (years) 20

Wind turbine

Hub Height (m) 20
Roughness Height (m) 0.05

Lifetime (years) 20

Lithium battery

Total Efficiency (%) 95
Maximum Cycles 8000

Maximum Age (years) 10

Regenerative hydrogen fuel cell

Fuel Cell Efficiency (%) 46
Electrolyser Efficiency (%) 68

Lifetime (years) 20
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3.4. Energy Management Strategy

The energy management strategy for the hybrid storage system is shown in Figure 6.
When generation supply is available in excess of demand, the battery charges first, followed
by the larger capacity hydrogen storage via the electrolyser. When the demand outgrows
the supply, the battery discharges first, followed by the activation of the fuel cell. In
practical terms, the battery is actually being charged by the fuel cell while active, as the
fuel cell cannot module its output without incurring performance losses. The charge and
discharge states are is shown in Figure 6.

Figure 6. Energy management strategy of the hybrid storage system.

Virtual trading was used to fairly satisfy the community members based on the shared
energy available. The excess energy available is shared equally, satisfying each load in
ascending order of magnitude. This means that it is more likely that a member’s electricity
demand will be fully satisfied if smaller. It should be noted that this algorithm can be
modified to suit any location-specific REC policy.

3.5. Economic and Environmental Indicators

A selection of three different system configurations: the best economic outcome, best
environmental outcome, and a midpoint configuration between the two would be assessed
in the model. It is important from a financial perspective to understand the investment
requirements and expected returns for prospective REC members. The net present value
(NPV) is commonly employed to determine economic feasibility, as well as the internal rate
of return (IRR), simple return [%], payback period [years], and levelized cost of electricity
(LCOE) for energy specific cases. Generally, if the NPV is positive compared to the base
scenario, the investment is worthwhile [54].

NPV =
N

∑
n=1

CO&M,n + Cf ,n

(1 + R)n − C0 (12)

where CO&M,t is the operation and maintenance cashflow for year t, Cf ,t is the fuel input
cashflow, R is the discount rate, and C0 is the initial capital investment. It was assumed that
any grid consumption is included in Cf ,t in units of EUR/year. The capital requirement
and operating cashflows are summed for each generation and storage asset to solve for the
system NPV. The IRR evaluates the rate of return if the NPV is set to zero, at which point
the project breaks even.

NPV =
N

∑
n=1

Cn

(1 + IRRR)n (13)

Calculating the LCOE is beneficial when assessing the economic feasibility of different
technologies. The LCOE was evaluated against the grid cost to assess the cost savings per
unit of electricity which could be expected by the community members. LCOE is defined
as the total cost or lifetime cost of the asset divided by the total electricity delivered to
the consumer [55].

LCOE(/kWh) =
∑N

n=1 C0,n + CO&M,n + Cf ,n

∑N
n=1 En

(14)
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where C0,n is the capital cost of the asset, and En is the lifetime energy delivered. A range of
different assessments exist for the economics of renewable assets, as it is highly dependent
on the capital requirement, location, delivery and installation cost, and available labour
among other factors. The resulting CAPEX, OPEX, and lifetime parameters are shown in
Table 2. The costs include the balance of plant (BOP), such as DC-AC inverters and IoT
control equipment. The project has an assumed discount rate R of 5% and an estimated
inflation rate of 2% per year, as well as a year-one electricity grid unit cost of 0.30 EUR/kWh
for each building. Where the asset lifetime is less than 20 years, the asset is retired and
the cost of a new equivalent system was included in the NPV assessment in that given
replacement year. This method assumes the BOP cost is relatively low.

The environmental impact was estimated through the global warming potential (GWP)
of the assets, which when summed together and divided by the total energy delivered
over the system lifetime derives the emissions intensity, measured in extgCO2eext/kWh.
The values are then compared with the grid emissions intensity for the island, for which
the total decarbonisation potential was evaluated. The grid emissions were found using
generation data gathered from the national TSO (Red Electrica de Espana) for the year
2021 and found to have an average of 325 gCO2e/kWh.

EItotal =
∑m

j=1 (EIj·Ej)

∑m
j=1 (Ej)

(15)

EIj is the emissions intensity and Ej is the energy output for m number of generators
and energy storage systems. This calculation was performed for each timestep of the
simulation to find the dynamic emissions value depending on the instantaneous energy
mix of the REC. The emissions intensity found within the literature can vary due to the
range of manufacturing techniques and factors considered when performing the life cycle
assessment (LCA). For this reason, some values such as those used for the hydrogen system
are taken as an educated estimation of the emissions impact based on a variety of sources.
The GWP embedded during manufacturing and installation for the assets and technology
costs are shown in Table 3.

Table 3. Hybrid renewable energy system economic and climate impact assumptions for the different
modelled technologies.

Technology CAPEX OPEX Lifetime
Emissions

Embedded

PV Solar Array
[55–57] 2500 EUR/kW 30

EUR/kW/year 20 years 1826
kgCO2e/kW

Wind Turbine
[58,59] 2850 EUR/kW 32

EUR/kW/year 20 years 520 kgCO2e/kW

Lithium-Ion LFP
[18,60] 328 EUR/kWh 5

EUR/kWh/year
10 years or 8000

cycles
254

kgCO2e/kWh
PEM Fuel Cell

[18,61] 1200 EUR/kW 13
EUR/kW/year 20 years 73.3

kgCO2e/kWh
AEM

Electrolyser
[18,62,63]

1500 EUR/kW 14
EUR/kW/year 20 years or 35,000 h 239

kgCO2e/kWh

Hydrogen Storage
Vessel [64–66] 30 EUR/kWh - 20+ years 5.1

kgCO2e/kWh

3.6. Multi-Objective Optimisation Procedure

Designing and configuring the optimal system sizing for a hybrid decentralized energy
system is a complex process. There are a number of non-linear phenomena being simulated,
as well as many potential design objectives and constraints. The chosen objective functions
considering both cost and carbon reduction are the NPV and the equivalent GWP. The
objective functions rely on varying the capacities of the PV solar, wind, battery, and RHFC
installations at the site.
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The NSGA-II uses a heuristic evolutionary learning algorithm with a population of
potential design solutions within the defined constraints. It then ranks the population based
on a non-dominated sorting, producing a pareto front of optimal solutions by minimizing
both objective functions [36]. Each individual in the population was determined based
on the simulation of the model of a one-year period and evaluating the two objectives.
The best-performing individuals are passed to the next generation, whereas a combina-
tion of mutations and created offspring (crossover) determines the remaining individuals.
NSGA-II provides several advantages including the use of elitism and reduced compu-
tational complexity [67]. The solving process for NSGA-II implementation is shown in
Figure 7. The algorithm also requires inputs, including the population size, number of
offspring, stopping conditions, and variable constraints, as shown in Table 4. The lower
limit for all system assets was set to zero, while the upper limit was set to 200 kW in line
with the adopted REC regulation for this study. The pymoo module created and maintained
by Blank et al. [68] was used to implement the NSGA-II algorithm in Python.

Figure 7. Hybrid energy system model approach with multi-objective optimisation algorithm
NSGA-II solving process.
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Table 4. Initialisation parameters and constraints of the NSGA-II optimisation algorithm.

Parameter Value

Population Size 72
No. of Offspring 24

Max No. of Generations 400
Lower Bounds (all assets) 0 kW/kWh
Upper Bounds (all assets) 200 kW/kWh

The input parameters were set into the simulation model with the selected objective
functions and run within the NSGA-II algorithm. The optimisation ran to the maximum
allowed generations before terminating. Due to the bound nature of the problem, the com-
ponent capacity variables start as a random distribution, from which the non-dominated
solutions on the pareto front are derived. Well-performing individuals are moved forward
to the next generation, as well as a selection of offspring and individuals that have experi-
enced random mutation. As the generations progress, the population steadily converges
on a large set of non-dominated solutions that align with the pareto front between the best
system economics and decarbonisation performance, denoted by the objective functions of
cost savings and emissions intensity. The graph in Figure 8 shows the convergence of the
objective function products during the progression through the first 200 generations of the
hybrid system optimisation, which will converge towards a single value.

 

Figure 8. Convergence of the optimisation pareto front as shown by an aggregated scalar objective
function minimising towards a single value.

4. Results and Discussion

4.1. Optimisation Results of the Hybrid Energy Generation and Storage Renewable Energy Community

The primary case studied was the hybrid architecture consisting of both a lithium
battery and an RHFC. Within the resulting pareto front in Figure 9a, each point on the graph
represents a different combination of design capacities ranging from the configuration able
to achieve the highest economic returns to the system able to deliver the lowest net carbon
output. The lifetime cost savings potential ranges from approximately EUR 130k to EUR
186k, while the emission intensity ranges from 82 to 140 gCO2e/kWh. It is interesting
to note that the savings do not start at zero, implying that below EUR 130k returns, the

27



Energies 2023, 16, 7363

configuration was able to increase in economic performance as well as decarbonisation
before reaching an inflection point. At this point, it is clear that the net savings were able
to continue increasing, while the net emissions reached its minimum and began to climb
again. At the other end of the front, the gradient began to increase as both the returns
increase but also the emissions intensity. This continued up to the point where the system
can no longer provide additional savings without an exponential increase in embedded
emissions and therefore environmental impact.

 
(a) Pareto front in objective space (b) Optimal variables sorted by objective 

Figure 9. Key outputs from the multi-objective optimisation process, indicating relationship between
cost reduction and climate impact of the system design.

The resulting pareto front presents several crucial outcomes and challenges for pro-
viding a low cost and net-zero energy system. Firstly, an inherent trade-off relationship
was observed between the ability to decarbonise and ensure net profitability. Secondly,
the REC architecture, within the context and constraints of the study, can reduce carbon
emissions by over 75% compared to local grid usage. However, this is a hard limit due to
the capacity factors of the components and the embedded carbon within the system during
manufacturing. Additionally, trying to decrease the carbon emissions further only incurs a
financial penalty, which would be hard to incentivise to the REC members.

The graph in Figure 9b displays the capacities of PV solar, wind power, battery, fuel
cell, and electrolyser systems with the final population arranged by the two objective
functions. The best economic outcome is on the left, while the best environmental outcome
is on the right. It can be observed that all systems generally tend towards an increase
in capacity as the emissions improve. This is most likely because a larger total off-grid
capacity has a higher self-consumption rate, and therefore is relying less on the grid which
has a high emissions intensity of 325 gCO2e/kWh. The REC was consequently able to
reduce emissions to a greater extent. This, of course, negatively impacts the economics
of the REC as more capital has to be invested into a more substantial design. It appears
from the graph that the wind power, as well as the fuel cell and electrolyser which make up
the RHFC are most sensitive to changes in the objective functions. The following section
explores the chosen optimal design, and details why the capacities affect the objective
functions in this way.

4.2. Best Hybrid System Design for the Renewable Energy Community

The pareto front provides a range of potential non-dominated solutions in which
neither objective function is favoured over the other. There are several methods that can be
used to choose a nominally ‘best’ system from the population to perform further analysis.
Based on the research conducted by Wang and Rangaiah [69], it was chosen to use simple
additive weighting (SAW). SAW normalises both objective function values, where zero is
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the worst possible result and one is the most improved. The values are then summed for
each member of the population to find the best overall solution.

{
Fij =

fij

f+j
for a maximisation criterion, where fi+ = max

i∈m
fij

Fij =
fij

f−j
for a maximisation criterion, where fi− = min

i∈m
fij

(16)

Ai =
n

∑
j=1

Fij (17)

Fij is the normalised set of objective functions j for the pareto population i and fij is the
initial set. fi+ and fi− are the maximum and minimum criteria of the set, respectively. Ai
then provides the best set of design variables to use in the hybrid REC, given in Table 5.
The system was then simulated to perform analysis of all performance indicators.

Table 5. Optimal installed capacities of the energy system assets.

REC Asset Optimal Values

PV Solar 71 kW

Wind Turbine(s) 32 kW

Lithium Battery 14 kWh

PEM Fuel Cell 20 kW

AEM Electrolyser 18 kW

Figure 10 contains two one-week sample periods obtained from the simulation, dis-
playing the balance of each asset and their contribution to balancing the total REC load.
Typical summer and winter periods are used to observe the seasonal variation in the system
response. The REC load was higher on average during the summer period, leading to
increased reliance and leading the energy grid to fill gaps in the consumption requirement
when the ESS was unavailable. The winter period, by contrast, was able to satisfy the
load requirement with the exception of some short periods. This shows that although the
REC can operate largely off-grid, it is still beneficial from both an economic and emissions
perspective to remain grid-connected from the short period when the REC generation and
hybrid storage cannot fully balance the consumption. The hydrogen system requires a max-
imum storage of 1835k, which was evaluated from the simulation as the storage required to
avoid any state-of-charge limits. The value therefore is a worst-case scenario for the system,
as it is likely that a smaller storage would be chosen in accordance with the installation
space available within the REC. Given the lower heating value (LHV) of hydrogen and
the average fuel cell efficiency of 46%, the system would require approximately 14 Nm2 of
hydrogen stored at 35bar to supply the required quantity of a one-year period.

Table 6 below shows a full breakdown of the economic and environmental performance
of each grouped asset. The solar array was able to deliver the most energy to the REC
due to the high capacity of 71 kW, but also the higher solar potential on the island of
Formentera of 4.7 kWh/m2, compared to London, UK, of 2.9 kWh/m2. Energy generated
from wind provides the next greatest portion of over 24%, the benefit of which is that
energy is generated during the night period as well as the day to charge the battery and
a steady quantity of hydrogen. The battery itself was relatively small compared to the
other components at 14 kWh and responds only when the energy generated is no longer
available in excess of supply. The fuel cell and electrolyser were sized at 20 kW and 18 kW,
respectively. It is interesting to note that the electrolyser was smaller in power input
capacity than the fuel cell, even though the efficiencies would dictate the fuel cell would
need approximately half the rated power of the electrolyser to achieve the same capacity
factor. The increased generation from wind power over more of the simulation may allow
the electrolyser to run for longer periods and make up the fuel cell’s lower efficiency.

29



Energies 2023, 16, 7363

 

Figure 10. Energy generation hour-by-hour breakdown by source. Example shown includes typical
summer and winter weeks.

Table 6. The economic and environmental performance of the different REC assets in the optimal
design configuration.

Technology Asset
Energy-Delivered

(kWh)
Capacity-Factor (%) CAPEX (EUR)

OPEX
(EUR/year)

LCOE
(EUR/kWh)

Emissions
(gCO2e/kWh)

PV Solar
[71 kW] 141,184 19 177,500 2130 0.07 40.7

Wind
Turbine(s)
[32 kW]

60,517 22 91,200 1024 0.09 15.9

Lithium
Battery [14 kWh] 4910 8 5446 308 0.08 72.4

Hydrogen
System [1836 kWh] 26,360 15 106,000 570 0.17 18.6

4.2.1. Techno-Economic Assessment

It is important to analyse each component on an individual basis to fully understand
their contribution to the economic and emissions performance within the system. This
would not only help to confirm the results seen in the pareto optimality, but also from
a practical perspective assist a potential system designer to identify the most important
assets, any particularly sensitive parameters, and assess the risks associated with each.

The solar array has the largest capital and operational costs compared with the wind
power alternative due to the higher unit costs per kW. Despite this, the PV solar was able
to achieve a greater capacity factor, which is the measure of energy output as a ratio of
the total potential output of the same period. PV solar is naturally limited by the hours of
solar available, while wind power is limited by the average wind speed and distribution.
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The higher capacity is the main mechanism which produced a lower LCOE for the PV
solar of 0.07 compared with wind power’s 0.09 EUR/kWh, despite the higher CAPEX
and OPEX costs. This result also implies that although wind power is possible on with
the REC, it may be beneficial from a to study a PV solar generation only option due to
the potential impracticalities of local wind turbines. The inverse was then observed for
the environmental impact, in that the PV solar has considerably higher embedded emis-
sions of 40.7 gCO2e/kWh compared with the 15.9 gCO2e/kWh expected from equivalent
wind energy. These results show a good agreement with the reported embedded emis-
sions from the IPCC AR5 report [70] of 45 gCO2e/kWh and 13 gCO2e/kWh for solar and
wind, respectively.

At EUR 106k, the RHFC CAPEX was a factor of twenty higher than the battery.
This trend carries over into the LCOE results, where an approximate doubling of the
levelized cost was observed for the hydrogen system compared with lithium batteries.
These outcomes are in line with similar hydrogen system results found in the literature [55,71].
It is widely known that hydrogen technology is a less financially viable alternative for
many applications, so this result was somewhat expected. This could change in the near
future as the costs of hydrogen technology reduce.

The emissions output from the battery per kWh delivery was far higher than the
hydrogen solution at 72.4 and 18.6 gCO2e/kWh, respectively. The trend is also supported
by the population variables in Figure 9b, in which it is noted that as the hydrogen assets
increased in capacity, the emissions result improved, while the net savings deteriorated.

Figure 11 contains the present value curve of the grid-only case, that is when electricity
cost is paid to the utility company over the project period. The curve starts at zero as
there is no capital cost associated with grid usage, but the operational cost per year is high.
By contrast, the modelled REC requires an initial investment of EUR 380k. However, the
lower year-on-year cost means that the system can pay off the investment cost, described
as the payback term, in 9 years. The project ends with a final total savings of EUR 178k
when the inflation and discounts rates of 2% and 5%, respectively, are considered. The
result produces an IRR of 10.9%, year’s returns of 9.6%, and an average system LCOE of
0.16 EUR/kWh. This assessment was based on the cost of equipment and installation
since 2020.

 

Figure 11. The present value over the project period. The system was primarily compared with a
’business-as-usage’ grid-only scenario.

Considering the historical and currently observed trends in renewable generation and
storage equipment cost, it is projected that by 2030 and beyond there will continue to be a
substantial decrease in the financial requirements for this type of system. The results shown
here are therefore towards the upper bounds in terms of uncertainty about the future cost
of an REC implementation.
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4.2.2. REC Members’ Net Savings and Environmental Impacts

The model not only provides a global view of the potential impact of an REC configu-
ration but is also able to analyse the reduction in cost and emissions on a per load basis.
There were seven discretised loads within the model, with each being able to mutually
accept and trade energy with the decentralised assets. Table 7 below shows the average
LCOE and emissions intensity for each building and the percentage decrease in emissions.
The REC provided a considerable degree of self-consumption, ranging from 91.1% for the
largest load to over 98% for the smallest. In terms of the impact on the energy cost, the new
LCOE ranged between 0.16 and 0.17 EUR/kWh compared to 0.30 EUR/kWh for grid-only.
The decarbonisation of energy usage was also seen to be in the range of 75–77% in the first
year of installation.

Table 7. Quantity of energy delivered to the REC compared with the quantity of energy delivered
from the grid.

REC Member REC Delivered (kWh) Grid Delivered (kWh)

Community centre 61,078 5461

Elementary school 18,807 348

High school 44,743 1437

Council offices 28,244 683

Residential units 11,975 514

4.3. Best Case and Extremes Comparison

During the study, it was vital to understand not only the characteristics of the system
at the ‘best’ pareto result, but also the performance at the extremes of the multi-objective
optimisation. The result gives an indication as to how sensitive the result was to changing
parameters. Table 8 contains the results of the three chosen REC configurations in terms of
hybrid generation and storage capacities.

Table 8. Comparison REC configurations for extreme cases for net savings and decarbonisation
potential compared with the chosen nominal case.

Best Net Savings Nominal Best Emissions Savings

REC Delivered (kWh) 151,493 156,536 158,823
Self-Consumption (%) 91.0 94.5 96.2

LCOE (EUR/kWh) 0.15 0.16 0.19
Net Savings (EUR) 187,080 178,229 139,647

Savings (%) 51 47 36
IRR (%) 12.6 10.9 7.1

Simple Payback (%) 10.1 9.6 8.0
Payback Term (years) 8.3 9.0 11.5

Emissions 79 69 61
(gCO2e/kwh)

Decarbonisation (%) 75.6 78.8 81.2

4.4. Pareto Front Comparison of Energy Storage System Technologies

The hybrid ESS comprised of a lithium battery and RHFC system produces differing
performance outcomes based on the relative capacities of the technologies. Therefore, a
comparison of the multi-objective optimisation for the same REC set-up with an additional
battery-only ESS and RHFC-only ESS are required to ensure that the hybrid design was able
to provide the best performance in terms of environmental impact and cost savings for the
REC members. Figure 12 compares these pareto fronts, from which the combination of the
technologies was able to produce a significant improvement over the technologies working
independently. This was likely due to the fact that the battery is better at providing a short-
term response but suffers from increased degradation if used frequently for charge and
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discharge, and similarly the hydrogen system requires a high capital cost and is best suited
to the long-term storage of grid energy. The battery alone also has increased embedded
carbon, which limited its ability to decarbonise. The hydrogen-only system suffered from
the limitation that the electrolyser only runs at rated power, limiting flexibility.

 
Figure 12. The present value over project period compared with the ’business-as-usual’ grid-only scenario.

Table 9 below summarises a range of LCOE results from the literature with similar
smart grid and renewable energy architectures, incorporating hydrogen storage where
available. It should be noted that specific parameters such as renewable resource availabil-
ity, local technology costs, and system sizing may induce uncertainty in the resulting total
system LCOE. For example, locations with a higher solar potential are naturally able to
achieve a lower PV solar LCOE, and conversely, remote areas with high delivery and instal-
lation costs would experience higher project costs. The resulting average is 0.13 EUR/kWh,
which is in good agreement with the central economic and environmental trade-off case
produced in this work.

Table 9. Comparison of the levelized cost of electricity results of similar hybrid hydrogen smart grid
systems within the literature.

Reference
Smart Grid

Architecture
Assets Location Scale

LCOE
(EUR/kWh)

This work Energy
community

Solar, wind,
battery/RHFC

Formentera,
Spain <100 kW 0.15

[55] DC microgrid Solar,
battery/RHFC Sub-Saharan <100 kW 0.16

[72] AC microgrid Solar/wind,
genset/RHFC Morocco <1 MW 0.07

[73] AC microgrid Solar/wind,
hydrogen India <1 MW 0.08

[74] Energy
community

Solar/wind,
battery/RHFC Ghana <100 kW 0.26

[75] Energy
community

Solar/wind,
hydrogen Canada >1 MW 0.08

5. Conclusions

This work presents a novel decentralised hybrid generation and ESS implementing
both battery and hydrogen technology for use in a geographically isolated rural renewable
energy community. A review of the existing state of the art was presented and highlighted
the gaps in knowledge for such a system, particularly when considering both economic
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feasibility and a dynamic calculation of the environmental impact. This discussion comes
at an interesting time for Europe and around the world as policymakers work to facilitate
the potential benefits of aggregating decentralised renewables, one such method being the
REC. The steady cost reduction in PV solar and wind power as seen over the past years
has also accelerated growth in the decentralised energy sector. The rise of cost-effective
hydrogen technology is set to make a considerable impact on how energy is stored and
transported as a vector.

The results from this study show that there is an inherent trade-off relationship be-
tween cost reduction and the ability to decarbonise the energy system. By using a model
built in Python, several different economic and environmental scenarios can be assessed.
The implementation of a multi-objective algorithm gives potential system designers and
policymakers a range of possible solutions. In this case, the optimal design results in an
LCOE of 0.15W EUR/kWh, a project IRR of 10.8%, and an ROI of 9 years. Greenhouse gas
emissions were reduced by 72% in the first year of installation to 69 gCO2e/kWh.

In further studies, emphasis should be placed on performing a sensitivity analysis and
understanding where uncertainty may arise in the energy model. In particular, varying
the component input assumptions such as capital cost and embedded emissions in line
with reported ranges from the literature would further account for future uncertainty
in performance. Additionally, further improvements to the system sizing optimisation
method, including additional objective functions such as the loss of load probability from
the literature, quantifying social impacts, and applying local space constraints would
capture other potential strengths and weaknesses of the hybrid storage technology. Finally,
research into the implementation of REC architectures in other locations around the world
beyond the case study in this work would not only provide additional validation but also
give a global perspective of how effective an REC could be in keeping energy costs stable
and curbing the impacts of climate change.
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Abbreviations

The following abbreviations are used in this manuscript:

CAPEX Capital Expenditure
DOD Depth of Discharge
ESS Energy Storage System
GA Genetic Algorithm
GHI Global Horizontal Irradiance
GWP Global Warming Potential
IEC International Electrotechnical Commission
IRR Internal Rate of Return
LCOE Levelised Cost of Electricity
NPV Net Present Value
NSGA Non-dominated Sorting Genetic Algorithm
OPEX Operational Expenditure
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PEM Proton Exchange Membrane
PV Photovoltaic
REC Renewable Energy Community
RED Renewable Energy Directive
RES Renewable Energy System
RHFC Regenerative Hydrogen Fuel Cell
ROI Return on Investment
SOC State of Charge
TSO Transmissions System Operator
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Abstract: Participation in the electricity market requires making commitments without knowing
the real generation or electricity prices. This is problematic for renewable generators due to their
fluctuating output. Battery energy storage systems (BESSs) integrated with renewable sources in a
hybrid farm (HF) can alleviate imbalances and increase power system flexibility. However, the impact
of battery degradation on long-term profitability must be taken into account when choosing the
correct market participation strategy. This study evaluates the state-of-the-art on energy management
systems (EMS) for HFs participating in day-ahead and intraday markets, incorporating both BESSs’
calendar and cycling degradation. Results suggest that efforts to attain additional profits in intraday
markets can be detrimental, especially when the degradation effect is considered in the analysis.
A new market participation strategy is proposed that aims to address the limitations of market
overlapping and forecasting errors. The results demonstrate that the proposed method can enhance
long-term benefits while also reducing battery degradation.

Keywords: BESS; optimization; degradation; markets

1. Introduction

Renewable energy systems face uncertainty in resource availability, which can create
challenges in participating in electricity markets that require prior commitments. Energy
storage systems (ESS) can mitigate this uncertainty by storing energy for later use [1].

The energy commitment for the day-ahead market is made by submitting offers to
the market operator the day before delivery. Forecasting techniques are applied to predict
electricity prices and resource availability [2], using techniques such as the SARIMA model,
which can capture seasonal correlations in historical data. The authors in [3] demonstrate
how a SARIMA model can outperform deep-learning techniques. In this work, SARIMA
models are used to forecast both electricity prices and wind speeds, and have been shown
to outperform deep-learning techniques in previous studies.

An offering strategy for energy commitment is typically formulated as a constrained
optimization problem [4]. The decision vector includes offers for each hour of the mar-
ket, and the objective is to maximize revenue during the session. Constraints include
physical parameters of the plant and market rules, which heavily influence the feasible
solution space.

Multi-market participation, which includes day-ahead and intraday market sessions,
cannot be formulated as a single optimization problem due to the different timeframes of
each market. A progressive optimization approach, as proposed by the authors in [5], is
used in this work.

Intraday markets can be utilized to increase profits through revenue stacking, which
typically involves combining energy and power services. Studies such as [6] demonstrate
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that combining frequency response and arbitrage can increase revenue by up to 25%. Similar
results are found in studies such as [7], which consider multiple spot market participation.
This is also proposed by the authors in [7]. These approaches are compared in this work.

The aforementioned studies do not model the forecast generation and market offering
processes. Generated forecasts at different times of the day can contradict each other and
lead to issues when various markets overlap. This work addresses this issue.

Balancing mechanisms in electricity markets, such as penalties for deviations, can be
used to address deviations caused by forecasting errors. Intraday markets can be used to
correct errors [8], but require prior commitments. An alternative solution is to use energy
storage systems for real-time corrections through a service called capacity firming (CF) [9].

Capacity firming has received increasing attention in recent literature as a service
provided in real-time as opposed to arbitrage. Studies such as [10] propose energy conser-
vation methods for control schemes of BESSs integrated with a PV system. Other works,
such as [11], show how a simple control algorithm can achieve capacity firming in a BESS
combined with a wind farm, although the storage system is only used for this service.

The Iberian electricity markets are used as an example in this work since, like many
other systems, they have day-ahead and intraday spot markets. Market operator rules are
incorporated into the optimization algorithm and the calculation of net benefits. Partici-
pation in intraday markets and the use of the CF service are compared, and the revenue
stacking of different services is evaluated. This work also considers the effect of degradation
on long-term profits, an approach that has not been considered in the previous literature.

A HF model consisting of a Gamesa G128 Wind Turbine Generator (WTG) and a
BESS is presented. Unlike a virtual power plant (VPP), the system components are not
distributed; thus, they share a point of common coupling (PCC). The SARIMA forecasting
model uses wind historical data from the Sotavento experimental wind farm [12] and
electricity prices from the Iberian market as inputs for the EMS.

The results show that participating in all markets may be counter-productive due
to market overlap. The best results in terms of profits per degradation are obtained by
allowing the BESS to participate only in the day-ahead market and performing capacity
firming in real time.

The work proposes a new service called SOC Emptying (SE), which involves dividing
the BESS into two virtual energy storage systems (VESS). One VESS provides regular
services, while the other is used to empty the BESS whenever the combined state of charge
(SOC) exceeds a specific threshold. This service aims to reduce upward deviations and give
the BESS more maneuverability. The inclusion of this service further improves the results,
resulting in increased profits per percentage of capacity loss and higher net present values
when extrapolating the results for the entire project.

The contributions of this work are outlined as follows:

• A formulation for a progressive optimization algorithm for hybrid farm multi-market
participation that takes into account degradation effects caused by operation.

• The implementation of a real-time BESS degradation model that assesses capacity and
power losses in a simulation framework to evaluate different market participation strategies.

• Evidence shows that using the BESS in all markets does not necessarily result in a
better income after comparing different simulation scenarios.

• A proposed service that enhances the BESS utilization efficiency and increases the
project’s net present value (NPV).

The paper is structured as follows: Section 2 provides an overview of the Iberian
electricity market rules. Section 3 describes the HF model used in the study. The day-ahead
and intraday market offering optimization models are analyzed in Section 4. Section 5
presents the simulation use cases and results. Conclusions and future research directions
are discussed in Section 6.
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2. Iberian Market’s Rules

Before each market session opening time, the EMS must have forecasted data of prices
and wind power generation. It is therefore necessary to know when each market session
takes place and which hourly delivery periods are negotiated, both for forecasting and
optimization problem definition. To obtain real benefits, this study follows the regulations
of the Iberian markets, which take into account deviation costs.

This section introduces the rules of the Iberian markets, starting with the day-ahead
market, followed by the intraday markets, and finally, the deviation rules are described,
which consider four different deviation costs.

2.1. Day-Ahead Market

The majority of energy traded in the Iberian wholesale markets is conducted through
the day-ahead market. In 2020, it accounted for 74% of the total energy traded [13].
Therefore, it is the most important market for arbitrage operations. The Iberian day-ahead
market session takes place every day of the year at 12:00 CET.

The price and volume of energy is determined for each hour of the following day
by the intersection of demand and supply. Market agents submit their offers through
the market operator OMIE [14]. As a result, the EMS has to submit 24-hourly offers for
the following day, using price and generation forecasts generated 12 to 36 hours prior to
delivery time.

2.2. Intraday Markets

After the day-ahead market, intraday markets accounted for 14% of the energy traded
in 2020 [13]. Since intraday spot markets had six times more energy than continuous
intraday markets, this work only considers the former. In Table 1, the closing times and
delivery hours of the market sessions are shown.

Table 1. Intraday market sessions in 2018.

Session 1 2 3 4 5 6

Closing time 18:50 21:50 1:50 4:50 8:50 12:50
Delivery hours 22(D-1)–23 0–23 4–23 7–23 11–23 15–23

The closing times in Table 1 are the deadlines for submitting offers to the market
operator. Decisions must be made before this time. The delivery hours in the table are the
hours during which the energy negotiated in each intraday market session will be delivered
on day D.

Since Sessions 1 and 2 cover the same hours, Session 1 is neglected as Session 2 has a
closer opening time to the delivery. Intraday markets allow agents to correct their schedules
in the day-ahead market. This can be performed by purchasing energy during hours when
a deviation from the day-ahead program is expected. Arbitrage can also be performed to
gain additional liquidity. Both options are considered in the simulation cases.

2.3. Adjustment Mechanism

Four different deviation costs need to be considered in the Iberian market:

• Positive deviation costs for upward deviations that have a negative impact on the system;
• Positive deviation costs for upward deviations that have a positive impact on the system;
• Negative deviation costs for downward deviations that have a negative impact on

the system;
• Negative deviation costs for downward deviations that have a positive impact on

the system.

A deviation during an hourly period h is calculated as follows:

λ(h) = |Ed(h)− Ec(h)|, (1)
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where the following apply:

• λ(h): Deviation during hour h (MWh).
• Ed(h): Delivery during hour h (MWh).
• Ec(h): Commitment during hour h (MWh).

If the deviation is upwards and in favor of the system, the additional energy is
remunerated at the day-ahead price during hour h; therefore, the bonus is calculated as:

β(h) = λ(h) ∗ ΠdM(h), (2)

where the following apply:

• β(h): Bonus obtained during hour h (EUR).
• ΠdM(h): Day-ahead price during hour h (EUR/MWh).

If the deviation is upwards and against the system, the energy excess is remunerated
at less than the day-ahead price during hour h. This bonus is calculated as:

β(h) = λ(h) ∗ ΠdM(h) ∗ (1 − λcoe f (h)), (3)

where the following applies:

• λcoe f (h): Coefficient for deviations against the system during hour h.

If the deviation is downwards and in favor of the system, the energy deficit is
charged at the same price as the day-ahead price during hour h; therefore, the penalty is
calculated as:

ρ(h) = λ(h) ∗ ΠdM(h), (4)

where the following applies:

• ρ(h): Penalty during hour h (EUR).

If the deviation is downwards and against the system, the energy deficit is charged at
a rate surpassing the day-ahead price during hour h; therefore, the penalty is calculated as:

ρ(h) = λ(h) ∗ ΠdM(h) ∗ (1 + λcoe f (h)). (5)

The total deviation cost is formulated as follows. As can be seen, it can be negative
when more energy is available than committed:

λcost(h) = ρ(h)− β(h) (6)

where the following applies:

• λcost(h) : Deviation costs during hour h (EUR).

The coefficient λcoe f (h) represents the system’s vulnerability to deviations against it. A
higher coefficient means that a higher penalty will be paid. As seen in (3), if the coefficient
is greater than 1, the bonus for upward deviations can be negative, which implies a penalty.
During the same hourly period, if downward deviations are against the system, upward
deviations are in favor of the system, and vice versa. The deviation coefficient is determined
by the system operator and is the same for both types of deviations.

3. Hybrid Plant Model Overview

The model consists of the physical systems and their control architecture. In this
section, the model inputs’ generation is described for both wind speed and market prices.
Afterwards, the plant model and its control architecture are introduced. Lastly, the daily
earning calculation is formulated.

3.1. Model Inputs
3.1.1. Wind Power

Wind power is obtained through a two-stage approach, as in [15]. First, hourly
wind speed is forecasted using a SARIMA; then, forecasted data are fed into a function
that expresses a Gamesa G128 wind turbine power curve. The optimization and energy

42



Batteries 2023, 9, 483

management system (EMS) models directly receive the forecasted and real wind power
hourly values.

Wind speed historical data are obtained from Sotavento experimental park in Galicia,
Spain [12]. This source was chosen due to its publicly available data and its location within
the Iberian market region. The data have a resolution of one hour, and the measured wind
speed for the year 2018 is presented in Figure 1.

Figure 1. Hourly wind speed historical data for the year 2018.

Hourly wind speed forecasts are required during the opening hours of market sessions.
The first forecast is at 12:00 h, when the day-ahead market commences, and subsequent
forecasts are generated during the opening hours of intraday market sessions. For real-time
operations, actual measured wind speed data are utilized. The SARIMA model utilized in
this work has an order of (2, 0, 3)(2, 1, 3)12, obtained from [16]. The configuration process
for the model is not covered in this work. Figure 2 illustrates the 2018 average mean
absolute percentage error (MAPE) of the wind speed forecasts generated during different
market sessions. It is observed that the prediction error tends to decrease.

Figure 2. Average MAPE of each wind speed forecast for 2018.
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3.1.2. Electricity Price Forecasts

The 24-hourly prices for the next day are predicted at 12:00 h on the previous day. A
SARIMA model of order (2, 1, 3)(1, 0, 1)24 was obtained from [16]. In Figure 3, the predicted
and real day-ahead prices for April the 16th are shown. Intraday prices are considered as
known beforehand for simplicity.

Figure 3. Day-ahead market price forecast for April the 16th.

3.1.3. Deviation Prices

The hourly deviation coefficients derived from 2018 historical data are used to calculate
the final deviation costs. However, a deviation coefficient is required for the optimization
model of intraday market offerings. Since deviation coefficients are only known after the
delivery period has ended, a forecasting technique for predicting the direction (favorable
or unfavorable) of deviation is required, but it is outside the scope of this paper. Therefore,
a deviation coefficient of 21%, the average of 2017, is considered when participating in the
intraday market.

3.2. Plant Model Components

The HF model consists of a wind turbine generator and a BESS.

3.2.1. Wind Turbine Generator

The generation system is a single Gamesa G128 WTG with a nominal power of 4.5 MW.
The power curve is taken from [17]. Only a WTG is considered for convenience. Generator
converter efficiency is considered part of the power curve characteristic.

3.2.2. Battery Energy Storage System

The storage system is composed of a 10 MWh/2.5 MW lithium iron phosphate (LFP)
battery, whose round-trip efficiency is assumed to be constant at 90%, as in [18]. A cycling
degradation model, based on depth of discharge (DOD) is implemented, sourced from a
finalization of the degradation curve presented in [19]. The model calculates degradation
by using rainflow counting of the cycles performed during the day and determines the
State of Health (SOH) lost based on the DOD of these cycles, in accordance with the curve
shown in Figure 4.
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Figure 4. Cycling degradation model.

A calendar degradation model, sourced from [20], is incorporated into the plant model.
This model is based on tests conducted on different LFP batteries over 899 days, where
they were maintained at various SOCs and temperatures. The test results for 25 ◦C were
selected and are presented in Table 2.

Table 2. Calendar degradation results at 25 ◦C [20].

SOC (%) Capacity Lost (%)

0 0.002
50 0.0055

100 0.012

As depicted in Table 2, daily calendar degradation can be represented as a linear
function of SOC. Since it is also considered linear with respect to time, the following
expression has been obtained from the table:

Degcal(h) = SOC(h)× 1.2 × 10−4

24
(7)

where the following apply:

• Degcal(h): Calendar degradation during hour h (%).
• SOC(h): SOC at the end of hour h (%)

3.3. Control Architecture

The EMS operates on three levels. The tertiary level operates in advance, and is
responsible for formulating strategies for offerings in various energy markets. It receives
as inputs the predicted prices, generation, and the real-time SOC for the intraday market
and SE optimization models, which are executed at this control level. It then sends market
commitments to the secondary level.

The secondary control level operates in real-time and generates the setpoints for the
BESS based on the difference between generation and commitments generated on the third
level. The BESS setpoints are calculated as follows:

PESS(h) = PCom(h)− PGen(h), (8)

where the following apply:

• PESS(h): BESS setpoint during hour h (MW).
• PGen(h): Generation during hour h (MW).
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• PCom(h): Commitment during hour h (MW).

As shown, when an upward deviation is anticipated, the BESS will receive a setpoint
to charge the excess. Conversely, when a downward deviation is expected, a discharging
setpoint is generated.

The primary control level manages the energy storage system; it receives charge–
discharge setpoints from the secondary level and adjusts them based on the real-time
SOC. If the BESS does not have enough energy to cover the missing energy, a downward
deviation will occur during that hour. If the BESS is unable to store the excess energy, then
an upward deviation will occur.

A sketch of the EMS control architecture is illustrated in Figure 5.

Figure 5. EMS control levels.

3.4. Daily Profits Calculation

The daily profits are calculated as the sum of the hourly profits. In Equation (9), the
calculation of daily earnings is depicted. The daily losses are formulated as in Equation (10).

Earnings =
24

∑
h=1

(
EDM,C(h) · ΠDM(h) + EID,C(h) · ΠID(h)

)
. (9)

Losses =
24

∑
h=1

(
Pϕ(h) · ΠID(h) + λcost(h)

)
. (10)

where the following apply:

• Earnings: Daily earnings (EUR).
• EDM,C(h): Energy commitment in day-ahead market during hour h (MWh).
• ΠDM(h): Day ahead market real price during hour h (EUR/MWh).
• EID,C(h): Energy commitment in intraday markets during hour h (MWh).
• ΠID(h): Intraday market real price during hour h (EUR/MWh).
• Losses: Daily losses (EUR).
• Pϕ(h): Power purchased in intraday market during hour h (MW).

Downward deviations can be corrected in intraday markets in two ways:

• By purchasing the expected energy deficit in the intraday market (Pϕ(h)).
• By using stored energy to cover the imbalance.

The optimization algorithm chooses how to correct expected deviations depending on
the intraday market prices and deviation costs at each hour.
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4. Optimization Problems for Market Participation

In this work, market scheduling strategies are formulated as mathematical optimiza-
tion problems. The progressive optimization approach, similar to the one described in [5], is
employed. The day-ahead market scheduling problem is first solved to generate an hourly
power schedule vector PSch. This vector is updated and sent to the secondary control level
in real-time throughout the day. The process is illustrated in Figure 6.

Figure 6. Daily optimization process.

This section presents the formulation of the optimization problems. The day-ahead
market offering is explained first, followed by the intraday market offering, and finally the
proposed SE service optimization is described as a separate problem.

4.1. Day-Ahead Market Offering

The inputs for the day-ahead market offering include the price and power generation
forecasts for the next day generated at 12:00 PM and the plant assets’ parameters. The
optimization problem is subject to the following constraints:

1. The charge power cannot be higher than the nominal value:

Pch(h) ≤ Pnom,BESS · φd(h), (11)

where the following apply:

• Pch(h): Charging power during hour h (MW).
• Pnom: Nominal power (MW).
• φd(h): A binary variable that equals 1 when the battery is not discharging during

hour h.
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2. The discharge power cannot be higher than the nominal value:

Pdis(h) ≤ Pnom,ESS · φc(h), (12)

where the following apply:

• Pdis(h): Discharging power during hour h (MW).
• Pnom: Nominal power (MW)
• φc(h): A binary variable that equals 1 when the battery is not charging during

hour h.

3. The charging power is always positive:

Pch(h) ≥ 0. (13)

4. For optimization algorithm simplicity, the discharge power is also always positive:

Pdis(h) ≥ 0. (14)

5. The simultaneous charge and discharge is not possible:

φc(h) + φd(h) ≤ 1. (15)

6. The energy stored at the end of each period is calculated as follows:

E(h) = E(h − 1) +
(

Pch(h) · ξ − Pdis(h)
ξ

)
, (16)

where the following apply:

• E(h): Energy stored in the battery at the end of hour h (MWh).
• ξ: Efficiency (%)
• E(h − 1): Energy stored on the battery at the beginning of hour h, which is

considered to be 0 at the first hour.

7. The stored energy cannot have a negative value:

E(h) ≥ 0. (17)

8. The BESS cannot discharge if its participation in the day-ahead market is disabled;
this constraint is activated depending on the case of study:

Pdis(h) = 0. (18)

9. The power flow of the plant is defined as follows:

Pgen(h) = Ps(h) + Pch(h), (19)

where the following apply:

• Pgen(h): Total generation power during hour h (MW).
• Ps(h): Generation power sent directly to the grid during hour h (MW).
• Pch(h): Generation power sent to the storage system during hour h (MW).

The following objective function seeks to maximize the income:

Max

{
24

∑
h=1

ΠDM(h) ·
(

Ps(h) + Pdis(h)
)}

. (20)

The objective of this function is to maximize profits through the generation of the
optimal schedule based on forecasted energy and prices. Deviations are not accounted for
in this optimization problem and are addressed in the intraday market optimization. The
output of this offering strategy is the hourly schedules for the following day, which serve
as input for the next optimization problems.
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As it can be seen, the BESS does not purchase energy from the market. As per the
regulations of the Renewable Energy Economic Regime [21], a BESS is not allowed to
purchase energy from electricity markets when operating in hybrid plants.

4.2. Intraday Market Participation

The intraday market participation aims to adjust the hourly schedule in the case of
expected deviations. It does so through two means: selling expected excess energy if
enabled and purchasing energy in case of expected downward deviation. The optimiza-
tion function takes the following inputs: committed hourly schedules, generated power
prediction, deviation costs, intraday market prices, and the expected state of charge at the
beginning of delivery.

Each intraday market session occurs three hours before delivery, as shown in Table 1.
The expected SOC at the start of delivery is communicated by the tertiary control level. The
constraints for this optimization are the same as those for the day-ahead market scheduling
problem, with the addition of the following constraints:

1. The upward deviations are

λ↑(h) = PPCC(h)− Psch(h), (21)

where the following apply:

• λ↑(h) : Upward deviation during hour h (MW).
• PPCC(h) : PCC power during hour h (MW).
• Psch(h) : Scheduled power during hour h (MW).

2. The downward deviations are

λ↓(h) = Psch(h)− PPCC(h), (22)

where the following applies:

• λ↓(h) : Downward deviation during hour h (MW).

3. The downward deviations are considered always positive, for simplicity purposes:

λ↓(h) ≥ 0. (23)

4. The same happens with upward deviations:

λ↑(h) ≥ 0. (24)

As can be seen, when one type of deviation takes place, the other is equal to zero.
5. The hourly deviation costs are

λcost(h) = λ↓(h) · ρ(h)− λ↑(h) · β(h), (25)

The deviation penalty and bonuses are calculated from expressions (3) to (5). The
intraday optimization uses real day-ahead market prices, available at the time of
the intraday market. The deviation coefficient is set at 21% and the average is from
2017, and it is used only as an assumption at this stage, while historical deviation
coefficients are used later to calculate real benefits.

6. The internal power flow constraint depicted in (19) is modified:

Pgen(h) = Ps(h) + Pch(h) + Pdel(h) + Pcurt(h), (26)

where the following apply:

• Pdel(h): Generated power used to cover deviations during hour h (MW).
• Pcur(h): Generation power curtailed during hour h (MW).

The generated power is allocated to either cover expected deviations or to maximize
profits in the intraday market.
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7. The constraint regulating stored energy is a modification of (16) as follows:

E(h) = E(t − 1) +
(

Pch(h) · ξ − Pdis(h) + Pdis,s(h)
ξ

)
, (27)

where the following applies:

• Pdis,s(h): BESS power sold during hour h (MW).

This division of discharged power into two parts—one used to cover deviations and
one used for arbitrage—is similar to the division of generated power.

8. If arbitrage in the intraday market is disabled, the following constraints are applied:

Pdis,s(h) = 0. (28)

Ps(h) = 0. (29)

9. The PCC output power is computed as follows:

PPCC(h) = Pdel(h) + Pdis(h) + Pϕ(h), (30)

The intraday market purchased power is not physically received by the plant and
serves to fulfill commitments in the day-ahead market in case of deviations. It is
therefore not included in the PCC output power constraint, which measures expected
deviations. The exchanged power is part of the scheduled power vector input for the
subsequent intraday market optimization, as shown in the constraints represented by
expressions (21) and (22).

The objective function is defined in (31) with two goals: minimizing expected devia-
tions and maximizing profits through energy trading.

Max

{
IDlen

∑
h=1

ΠID(h) ·
(

Ps(h) + Pdis,s(h)− Pϕ(h)
)
− λcost(h)

}
, (31)

where the following applies:

• IDlen: Intraday market length.

The hourly commitment vector is updated using the outputs of the intraday market
optimization problem:

PSch,new(h) = PSch,prev(h)− Pϕ(h) + (Ps(h) + Pdis,s(h)) (32)

where the following apply:

• PSch,new(h): New hourly schedule (MW).
• PSch,prev(h): Previous hourly schedule (MW).

4.3. State of Charge Emptying

As previously discussed, the secondary control level sends generated energy to the
grid when the BESS is full and hourly commitments are fulfilled, leading to an upward
deviation. The market operator only pays for excess energy at the day-ahead market price
when the deviation is in favor of the system, as described in Equations (2) and (3). This can
result in a missed opportunity to sell energy at higher prices when the deviation is against
the system.

Moreover, the highest calendar degradation occurs when the BESS is full, as shown in
Table 2. A new operating mode is proposed that involves selling part of the stored energy
on the nearest intraday market when the BESS SOC exceeds a set threshold. This service
differs from intraday market arbitrage in the following ways:

• It operates simultaneously with the intraday market optimization process.
• It only manages energy above a certain threshold, not the entire BESS.
• It is limited to offering energy only in the first hours of each intraday market, to

prevent overlap with the next one.
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In Figure 7, the operating hours of the proposed service are shown, marked in blue,
over the delivery hours of the intraday market, which are represented as white bars.

Figure 7. SE service operating hours.

This service splits the BESS into two virtual energy storage systems (VESS), one for
profit generation and the other for deviation reduction. The stored energy is divided with
a threshold of 75% set for the SE service. This value was determined through testing
various values in the study and was found to be the optimal balance between profits and
deviation reduction.

SOCi = SOCSE − SOCthr, (33)

where the following apply:

• SOCSE: SOC used for SE service (%).
• SOCthr: SOC threshold (%).

The SE service is managed as an optimization problem identical to the one for intraday
market participation but limited to the first hours of the next intraday market. The variables
used for deviation coverage are disabled as the objective of this service is solely profit
generation. The objective function is as follows:

Max

{
SElen

∑
h=1

ΠID · PSE(h)
)}

, (34)

where the following apply:

• SElen: SE length for the next intraday market .
• PSE(h): Power sold during hour h (MW).

The goal is to sell available energy at the most expensive hours. The scheduled power
vector is updated as in (32).

PSch,new(h) = PSch,prev(h) + PSE(h) (35)

5. Simulations and Results

In this section, the simulation scenarios are presented, each showcasing a different
approach to using the BESS on the HF. Each scenario involves simulating the HF with the
respective approach operating during 2018 in the Iberian electricity markets. The aim is to
compare and assess whether revenue-stacking is more efficient than focusing on individual
services, and the performance of the proposed service.

At the end of each day, the accumulated degradation and SOC serve as initial val-
ues for the following day’s operation. The average daily profits and degradation under
each scenario are used in a full project extrapolation for a comprehensive view of the
different cases.

5.1. Simulation Cases

The simulation cases used are the following:

• Ideal: Perfect foresight of prices and power generation, which operates only in the
day-ahead market.

• DM: Energy sales in the day-ahead and intraday markets to cover deviations.
• DM + SE: Same as DM, but with additional SOC emptying service.
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• DM + ID: Energy sales in day-ahead market and intraday markets to sell excess and
cover deviations.

• ID: Only participates in intraday markets for energy sales and covering deviations.
• SE: Only participates in intraday markets to cover deviations and performs SE service.
• CF: No market participation; covers deviations through capacity firming services

(already provided in previous cases).

5.2. Simulation Results

The simulation was conducted using the same input data in each case. Expected
profits were calculated by summing the earnings from day-ahead and intraday market
commitments and real prices. Real profits were calculated as the difference between daily
earnings (Equation (9)) and daily losses (Equation (10)) using historical data of electricity
prices and deviation coefficients. Figure 8 displays the accumulated profits and costs for
each scenario, and Table 3 shows the numerical results.

Figure 8. Simulations results.

Table 3. Numerical results.

Case

Expected
Profits

(EUR M)

Deviation
Costs

(EUR M)

Purchases
Costs

(EUR M)

Real
Profits

(EUR M)

Ideal 0.614 0 0 0.614
DM + ID 1.677 0.031 1.309 0.336

ID 1.671 0.029 1.305 0.338
DM 0.488 −0.277 0.256 0.509

DM + SE 0.581 −0.201 0.276 0.507
SE 0.568 −0.195 0.255 0.508
CF 0.482 −0.27 0.244 0.509

The results indicate that expected profits increase with intraday market arbitrage, as
anticipated. These profits are calculated based on the delivery of all committed energy to
the market, resulting in higher profits in scenarios with intraday market participation as
all expected energy excess can be sold. The worst expected outcomes occur in scenarios
without intraday market participation, and similar results are observed when the BESS
performs capacity firming.

The deviation costs are negative in almost all scenarios, indicating when upward
deviations are more frequent. Purchasing energy in the intraday market effectively avoids
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downward deviations. The fewer services the BESS provides, the greater the negative
deviation costs, suggesting that the BESS tends to be fully charged most of the time, leading
to upward deviations.

Purchases in the intraday market are the primary cause of profitability losses. These
costs are significantly higher with intraday market participation. The fact that intraday
market purchases occur when the BESS cannot cover expected deviations highlights that
increased BESS involvement in markets can have negative effects.

Committing more energy to various markets increases the risk of having to make
corrections by purchasing energy in the intraday market. The best results seem to be
achieved by letting the BESS operate solely in the day-ahead market or providing capacity
firming services. As shown in Figure 9, intraday market participation has resulted in the
need to cover up to 40% of committed energy through intraday market purchases.

Figure 9. Committed energy covered with purchases in intraday markets.

Figure 10 displays the accumulated degradation. In scenarios where the BESS provides
the most services, it tends to be emptier, which reduces calendar degradation and results in
lower overall aging of the BESS.

Figure 10. Degradation in each case.
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Figure 11 shows the comparison between real profits and degradation. It reveals that
reserving the BESS for SOC emptying and capacity firming yields the best outcome when
profits are compared to capacity loss, which indicates a more efficient usage of the BESS.

Figure 11. Real profits per 1% of capacity lost.

5.3. Full Project Extrapolation Results

The trade-off between maximizing short-term profits and stretching the life of the en-
ergy storage system is a crucial factor to consider. The NPV is a useful metric that takes into
account future cash flows and discount rates to determine a project’s overall profitability.

In the table, the NPV of each case is calculated, discounting the daily cash flow and
the purchase cost of the BESS. The results show that the best NPV is achieved when the
BESS is reserved for SE and capacity firming. When only participating in the day-ahead
market, the NPV is not very different, but participating in the intraday market significantly
lowers the NPV, indicating lower project profitability.

The results of each simulation scenario are extrapolated for the entire project life. The
average daily cash flow is determined from the average daily results of 2018, and daily
degradation is similarly calculated to estimate project completion. The project ends when
the accumulated degradation of the BESS reaches 20%, a commonly used value in the
relevant literature (e.g., [22,23]). The average values and estimated project lifetimes for
each case are presented in Table 4.

Table 4. Project extrapolation under each case.

Case

Average Daily
Capacity Loss

(%)

Average Daily
Profits
(EUR)

Lifetime
(Years)

Ideal 2.08 × 10−3 1682.28 26.31
DM + ID 7.48 × 10−3 921.44 7.32

ID 7.56 × 10−3 925.11 7.25
DM 1.06 × 10−2 1394.37 5.12

DM + SE 1.02 × 10−2 1389.89 5.36
SE 1 × 10−2 1392.7 5.48
CF 1.05 × 10−2 1394.74 5.18
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It is worth noting that the BESS is not operated in the ideal scenario. In this case, the
BESS is only utilized for allocating generated energy when prices are the highest. However,
due to the degradation costs and the BESS efficiency, this operation is not profitable.

The SE has lower daily profits but a higher NPV compared to the case with CF. The
NPV of each project is calculated using a 7.5% discount rate and is presented in Table 5.
The results show that using the BESS for the SE service and capacity firming provides the
highest NPV.

Table 5. NPV under each case.

Case NPV (EUR M)

Ideal 7.226
DM + intraday market 1.912

Intraday market 1.905
DM 2.179

DM + SE 2.253
SE 2.299
CF 2.2

6. Conclusions

A three-level EMS for a HF to participate in the Iberian electricity market has been
presented. The day-ahead and intraday market offering strategies are formulated as linear
programming problems, with generation and price forecasts at the start of each market
session as inputs. The model has incorporated adjustments based on Iberian market
regulations to account for committed power correction impacts. It also includes a real-time
degradation model of the BESS to assess capacity and power losses.

A simulation framework has been proposed to assess various BESS market partici-
pation strategies. The results indicate that participating in both day-ahead and intraday
wholesale markets generates the highest expected profits, but actual profits are lower com-
pared to other strategies. The proposed optimization algorithm and results of the study can
be applied to any electrical system that operates with concurrent day-ahead and intraday
spot markets, which is a common practice in many countries. This can be used as a guide
for agents trying to optimize their plants.

The results show that using the BESS in all markets does not necessarily result in a
higher income, challenging the common belief that utilizing the BESS in all markets leads
to the best outcome. The proposed SE service enables participation in intraday markets
without the drawback of market overlap, enhancing the BESS utilization efficiency and
increasing the NPV of the project. Moreover, it highlights the crucial role of adjustment
mechanisms on actual income and the importance of modeling them thoroughly. Lastly, it
is worth remarking that the plant proposed in this work is considered a price-taker; the
effect of a plant or a number of plants large enough to impact electricity market prices is
proposed as a future work.
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Abbreviations

The following abbreviations are used in this manuscript:

BESS Battery energy storage system
HyF Hybrid farm
EMS Energy management system
DOD Depth of discharge
SOC State of charge
SOH State of Health
NPV Net present value
EOL End of life
MILP Mixed-integer linear program

References

1. Günter, N.; Marinopoulos, A. Energy storage for grid services and applications: Classification, market review, metrics, and
methodology for evaluation of deployment cases. J. Energy Storage 2016, 8, 226–234. [CrossRef]

2. Sweeney, C.; Bessa, R.J.; Browell, J.; Pinson, P. The future of forecasting for renewable energy. WIREs Energy Environ. 2020, 9, e365.
[CrossRef]

3. Liu, X.; Lin, Z.; Feng, Z. Short-term offshore wind speed forecast by seasonal ARIMA—A comparison against GRU and LSTM.
Energy 2021, 227, 120492. [CrossRef]

4. Legrand, M.; Labajo-Hurtado, R.; Rodríguez-Antón, L.M.; Doce, Y. Price arbitrage optimization of a photovoltaic power plant
with Liquid Air Energy Storage. implementation to the Spanish case. Energy 2022, 239, 121957. [CrossRef]

5. Wang, Y.; Zhao, H.; Li, P. Optimal offering and operating strategies for wind-storage system participating in spot electricity
markets with progressive stochastic-robust hybrid optimization Model Series. Math. Probl. Eng. 2019, 2019, 2142050. [CrossRef]

6. Pusceddu, E.; Zakeri, B.; Castagneto Gissey, G. Synergies between energy arbitrage and fast frequency response for battery
energy storage systems. Appl. Energy 2021, 283, 116274. [CrossRef]

7. Englberger, S.; Jossen, A.; Hesse, H. Unlocking the Potential of Battery Storage with the Dynamic Stacking of Multiple Applications.
Cell Rep. Phys. Sci. 2020, 1, 100238. [CrossRef]

8. Shinde, P.; Amelin, M. A Literature Review of Intraday Electricity Markets and Prices. In Proceedings of the 2019 IEEE Milan
PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [CrossRef]
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Abstract: The state-of-charge (SOC) estimation accuracy is closely associated with the estimation
method and the battery parameter identification performance. The battery parameter identification
method based on forgetting factor recursive least squares (FFRLS) has the advantages of high
parameter identification accuracy and fast dynamic response speed. On this basis, the performance of
two SOC estimation methods, the extended Kalman filter (EKF) and adaptive extended Kalman filter
(AEKF) are compared and studied. The results show that AEKF has better steady-state and dynamic
SOC estimation performance, but the estimation accuracy and dynamic response performance are still
not objective. To further improve the performance of SOC estimation, a joint SOC estimation method
based on FFRLS-AEKF is proposed, and the SOC estimation experimental results with FFRLS-AEKF
and AEKF are conducted. The experimental results show that the proposed joint SOC estimation
method based on FFRLS-AEKF has a better steady-state and dynamic performance of SOC estimation.
The maximum absolute error of the proposed algorithm is 4.97%. As the battery working time
increases, the SOC estimation accuracy continues to converge to the true value, and the average
absolute error is reduced to 2.5%. The proposed method and theoretical analysis are proven to be
correct and feasible.

Keywords: LiFePO4 battery; high precision; FFRLS; AEKF; SOC estimation

1. Introduction

The LiFePO4 battery has advantages such as good safety, long service life, and high
power density, and so on [1,2], which is widely used in electric vehicles and energy storage
systems. To prevent battery failures such as overcharging and over-discharging, it is
necessary to monitor the battery operating status in real time, especially its state of charge
(SOC).

The methods of accurate SOC estimation can generally be categorized into the fol-
lowing types: open-circuit voltage, ampere-hour integral-based estimation method, data-
driven-based estimation method, and filtering algorithms based on equivalent circuit
models [3–5]. There is a monotonic one-to-one correspondence between the open-circuit
voltage and the SOC value of the battery. The corresponding table of open-circuit voltage
and SOC can be established, and the SOC value can be determined by looking up the
table [6]. However, this method requires a long time after the battery is charged and
discharged before measuring the open-circuit voltage. Reference [7] proposed a fast open-
circuit voltage prediction method. The battery only needs to be placed within 15 min to
accurately predict the open-circuit voltage. However, the calculation process is complex,
and the requirements for the processor are high. The ampere-hour integral method tracks
the SOC by the change in the current integral value. The measurement error will accumu-
late in the integral, resulting in a large error of SOC. Reference [8] analyzed the error sources
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of the ampere-hour analysis method and proposed a method to reduce the cumulative
error of time and the proportional error of the SOC. However, it is more dependent on the
current accuracy, and the accuracy of the current sensor is higher.

If the data-driven algorithm is trained properly, it can predict the SOC of any type of
battery without knowing its inherent characteristics in advance. Reference [9] proposed a
method of predicting SOC via artificial neural network machine learning. The root-mean-
squared error (RMSE) of the LiFePO4 battery used in this paper is 0.33% during the test
cycle. The author of Reference [10] proposed a recurrent neural network (RNN) with long
short-term memory (LSTM) to accurately estimate the SOC of lithium-ion batteries, and
it can achieve high accuracy at temperatures from 10 ◦C to 25 ◦C. Reference [11] used
the support vector machine (SVM) method to estimate the SOC of the battery from the
experimental data set, which has high accuracy. In the method of machine learning or deep
learning, a data-driven algorithm collects terminal voltage, working current, temperature,
and other data in the work of the battery, and it uses neural network and machine learning
to train a large amount of data to obtain the current SOC value. This method needs to collect
a large amount of data for calculation, which requires a powerful processor and is sensitive
to the type of battery. If the internal parameters of the battery change, the data-driven
model cannot follow the internal changes well, resulting in a larger SOC estimation error.

The filtering algorithms based on equivalent circuit models mainly use derivative algo-
rithms of Kalman filtering (KF) and particle filtering algorithms for SOC estimation [12–17].
As the most popular model-based method, the KF-based algorithm has enhanced robust-
ness to measurement and process noise and has a high estimation accuracy [18]. Based on
the extended Kalman filter (EKF) algorithm, an adaptive dual EKF algorithm is proposed
in Ref. [12]; the EKF algorithm is used to improve the nonlinear battery model for SOC
estimation in Refs. [17,19] for the LiFePO4 battery. A strong tracking volume EKF algorithm
(STEKF) is proposed in Ref. [20] to provide accurate SOC prediction and a faster computing
time. A multi-rate strong tracking EKF algorithm (MRSTEKF) is proposed by introducing
multi-rate control strategy and enhancement technology in Ref. [21], and the SOC tracking
stability and estimation accuracy is improved from 55.34% and 49.51% with STEKF to
52.66% and 33.88% with MRSTEKF, respectively. An online adaptive EKF algorithm based
on the Davidson model is used to estimate SOC [22], and the SOC estimation error can be
reduced to 2%. The sigma points Kalman filter (SPKF) is another nonlinear system filtering
algorithm that can be used to estimate SOC, which uses numerical approximations instead
of analytical approximations of EKF. A joint battery model and SOC estimation algorithm
based on SPKF is proposed in Ref. [23], which has the same computational complexity as
EKF but has higher accuracy. In Ref. [24], a combination of the volumetric Kalman filtering
algorithm and the forgetting factor recursive least squares (FFRLS) algorithm is used to
estimate SOC, and the maximum estimation error of SOC under high-rate pulses is reduced
to be less than 1%. On the other hand, the method of approximating a probability density
function based on a particle filter is used to estimate the SOC. In Ref. [25], a volumetric
particle filter for accurate SOC estimation is proposed. In Ref. [26], dual-scale, dual-particle,
and dual-scale adaptive particle filters for SOC estimation are proposed. However, com-
pared with SOC estimation algorithms based on the Kalman filter, the SOC estimation
algorithms based on the particle filter have a larger computational burden [27]. In Ref. [28],
an analytical mathematical formulation of storage and its SOC is presented. In Ref. [29], a
power allocation strategy based on cluster switching to relieve the stated problem in two
levels is proposed, which is used to eliminate the imbalanced SOC and decrease battery
energy loss. To address the power allocation challenges, a novel optimized state-of-charge
(SOC) feedback-based energy management strategy in Ref. [30] is proposed for HESS in
IPS to restrain the DC bus voltage fluctuation in this paper.

In this paper, a FFRLS-AEKF joint estimation algorithm based on time-varying param-
eter model is proposed, which considers the characteristics that the FFRLS algorithm can
update the battery parameters in real time and the AEKF algorithm can correct the initial
value error of SOC and follows the parameters of the battery. Firstly, the working principle
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of FFRLS for battery parameter identification is analyzed. Secondly, the second-order
equivalent circuit state discretization equation based on the AEKF algorithm is established,
and the steps of the battery SOC estimation method based on AEKF are discussed. Thirdly,
a joint SOC estimation method based on FFRLS-AEKF is proposed. Fourthly, the SOC
estimation performance of three methods as EKF, AEKF, and FFRLS-AEKF is compared
by experiments. The experimental results show that the FFRLS-AEKF algorithm can have
a higher SOC estimation and faster accuracy convergence speed. Finally, the thesis is
summarized.

2. The Basic Principle of Parameter Identification Based on the FFRLS

2.1. Mathematical Modeling of a Second-Order RC Circuit

The second-order RC equivalent circuit model of the LiFePO4 battery is shown in
Figure 1. The two RC circuits, respectively, describe the electrochemical polarization pro-
cess with a small time constant and the concentration polarization process with a large
time constant. Among them, UOC is the open-circuit voltage of the battery, R0 is the in-
ternal resistance, and Rp1 and Cp1 are the electrochemical polarization internal resistance
and electrochemical polarization capacitance, respectively. Rp2 and Cp2 are the concentra-
tion difference polarization internal resistance and concentration difference polarization
capacitance, respectively. UL and IL are load voltage and load current, respectively.

UOC

R0

RP1

CP1

RP2

CP2

+

UL

IL

Figure 1. Second-order RC model.

According to Figure 1, the state space equation expression of the second-order RC
model circuit can be listed as follows:( dUp1

dt
dUp2

dt

)
=

(
− 1

Rp1Cp1

0

0
− 1

Rp2Cp2

)(
Up1
Up2

)
+

( 1
Cp1

1
Cp2

)
IL

UOC = Up1 + Up2 + R0 IL + UL

(1)

where
dUp1

dt and
dUp2

dt represent the electrochemical polarization voltage and the concentra-
tion difference polarization voltage, respectively.

2.2. The Basic Principle of the FFRLS

The traditional recursive least squares (RLS) method is widely used in the field of
system identification. For linear systems, its mathematical description can be expressed as
follows:

Y(k) = ϕ(k)θ(k)T + e(k)
ϕ(k) = [−Y(k − 1) · · · − Y(k − n) u(k) · · · u(k − n)]

(2)

where Y(k) is the output signal of the system at k time, u(k) is the input signal of the system
at k time, θ(k) represents the parameter vector to be estimated, ϕ(k) is the input matrix of
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the system at time k, n is the parameter to be estimated, and e(k) is the noise of the system.
The recursive formula of the FFRLS method is as follows:

θ̂(k + 1) = θ̂(k) + K(k + 1)[Y(k + 1)− ϕT(k + 1)θ(k)]
K(k + 1) = P(k + 1)ϕ(k + 1)

P(k + 1) = P(k)− P(k)ϕ(k+1)ϕT(k+1)
1+ϕT(k+1)P(k)ϕ(k+1)

(3)

In Equation (3), P(k) is the covariance matrix, and K(k) is the gain matrix. During the
recursive process, RLS uses the difference between the estimated value and the measured
value of the system output, as well as the gain matrix K(k), to make adjustments to the
parameter vector θ̂(k). During initialization, the initial value of θ̂(k) and K(k) can be any
value, P(0) = αI, α is as large as possible a constant, and I is the identity matrix.

To reduce the influence of past data and give greater weight to new data, a forgetting
factor is introduced by setting it to λ(0 < λ < 1), leading to the development of FFRLS [31,32].
Equation (3) is modified as follows:

θ̂(k + 1) = θ̂(k) + K(k + 1)[y(k + 1)− ϕT(k + 1)θ̂(k)]
K(k + 1) = P(k)ϕ(k+1)

λ+ϕT(k+1)P(k)ϕ(k+1)
P(k + 1) = 1

λ [1 − K(k + 1)ϕT(k + 1)]P(k)
(4)

Equation (4) is a recursive formula based on the forgetting factor recursive least
squares method, where the forgetting factor λ is generally taken between 0.95 and 1. The
larger the value of λ, the smaller the weight of new data. When λ = 1, it degenerates into
the ordinary RLS method.

2.3. Online Identification of Parameters for a Second-Order RC Circuit

From Figure 1, the KVL (Kirchhoff’s voltage law) equation of the circuit can be ob-
tained:

UOC = Up1 + Up2 + R0 IL + UL (5)

According to Equation (1), taking the Laplace transform on both sides:

UOC(s) = (
Rp1

Rp1Cp1s + 1
+

Rp2

Rp2Cp2s + 1
+ R0)I(s) + UL(s) (6)

Let the time constants be τp1 = Rp1Cp1 and τp2 = Rp2Cp2, and let a = τp1τp2, b =
τp1 + τp2, c = Rp1 + Rp2 + R0; then, Equation (6) can be simplified as:

aUOCs2 + bUOCs + UOC = aR0 I2
s + dIs + cI + aU2

s + UL (7)

Equation (8) can be obtained via discretion using Equation (7) as follows:

U(k) =
−bT − 2a

T2 + bT + a
U(k− 1) +

a
T2 + bT + a

U(k− 2) +
cT2 + dT + aR0

T2 + bT + a
I(k) +

−dT − 2aR0

T2 + bT + a
I(k− 1) +

aR0

T2 + bT + a
I (8)

After simplification, the expression (8) becomes:

U(k) = k1U(k − 1) + k2U(k − 2) + k3 I(k) + k4 I(k − 1) + k5 I(k − 2) (9)

Substituting Equation (9) into FFRLS, the value of parameter θ(k) = (k1, k2, k3, k4, k5)
can be calculated, and then the circuit model parameter R0, Rp1, Rp2, Cp1, Cp2 from the
identification results can be deduced as follows:

τp1 = T
2(k1+k2+1) [

√
k2

1 − 4k2 − k1 − 2k2]

τp2 = − T
2(k1+k2+1) [

√
k2

1 − 4k2 + k1 + 2k2]
(10)
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Combining Equations (4), (8) and (10), Equation (11) can be obtained as follows:

R0 = k5
k2

Rp1 =
τp1

k3+k4+k5
k1+k2+1 +τp2R0+

T(k4+2k5)
k1+k2+1

τp1−τp2

Rp2 = k3+k4+k5
k1+k2+1 − Rp1 − R0

Cp1 =
τp1
Rp1

Cp2 =
τp2
Rp2

(11)

3. SOC Estimation Method Based on AEKF

3.1. Adaptive Extended Kalman Filter State Equation

The Kalman filter algorithm applies to linear systems. If it is used in a nonlinear
system, the Taylor expansion formula needs to be used to locally approximate the nonlinear
state equation as a linear equation. The method used for nonlinear systems is called the
extended Kalman filter algorithm. Nonlinear systems can be represented by Formula (12):{

xk+1 = f (xk, uk) + wk
yk = g(xk, uk) + vk

(12)

where xk is the state variable, yk is the observation variable, f (xk, uk) is the nonlinear state
function, g(xk, uk) is the nonlinear observation function, and wk and vk are gaussian white
noise with zero means and covariances of Qk and Rk, respectively. The EKF algorithm takes
advantage of the local linearity property of nonlinear functions by locally linearizing both
nonlinear functions. As described in the previous section, x̂k/k this is the optimal estimated
value of the state variable at k time. By performing a first-order Taylor expansion of the
nonlinear state function f (xk, uk) around x̂k/k, Equation (13) can be obtained as follows:

f (xk, uk) = f (x̂k/k, uk) +
∂ f
∂xk

∣∣∣xk=x̂k/k (xk − x̂k/k) + o(xk − x̂k/k) (13)

In Equation (13), ignoring the high-order term o(xk − x̂k/k) and letting ∂ f
∂xk

∣∣∣xk=x̂k/k = Fk,
Equation (2) can be simplified as follows:

xk+1 = f (x̂k/k, uk) + Fk(xk − x̂k/k) + wk (14)

Expanding the nonlinear observation function g(xk, uk) around the prior state estimate
x̂k/k−1 at k time by a first-order Taylor series, Equation (15) can be obtained as follows:

g(xk, uk) = g(x̂k/k−1, uk) +
∂g
∂xk

∣∣∣xk=x̂k/k−1 (xk − x̂k/k−1) + o(xk − x̂k/k−1) (15)

Ignoring higher-order terms in o(xk − x̂k/k−1) and setting ∂g
∂xk

∣∣∣xk=x̂k/k−1 = Gk, Equa-
tion (14) can be simplified as follows:

yk = g(x̂k/k−1, uk) + Gk(xk − x̂k/k−1) + vk (16)

If both the nonlinear state equation and the observation equation are linear, then
Equation (11) can be rewritten as follows:{

xk+1 = Fkxk + f (x̂k/k, uk)− Fkx̂k/k + wk
yk = Gkxk + g(x̂k/k−1, uk)− Gkx̂k/k−1 + vk

(17)
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Here, matrices Fk and Gk can be obtained by calculating the Jacobian matrices of f and
g. If the state variable x is n-dimensional, i.e., x = [x1, x2, . . ., xn]T, then the solution for
matrices Fk and Gk is as follows.

Fk =
∂ f
∂x

=

⎡⎢⎢⎢⎢⎢⎣
∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
... · · · ...

∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn

⎤⎥⎥⎥⎥⎥⎦ (18)

Gk =
∂g
∂x

=

⎡⎢⎢⎢⎢⎢⎣
∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xn

∂g2
∂x1

∂g2
∂x2

· · · ∂g2
∂xn

...
... · · · ...

∂gn
∂x1

∂gn
∂x2

· · · ∂gn
∂xn

⎤⎥⎥⎥⎥⎥⎦ (19)

The EKF algorithm requires advanced calibration of the covariance matrices for obser-
vation noise and process noise, which is often calculated by experience, and the covariance
matrices Qk and Rk are fixed values. However, in high-rate conditions of lithium iron
phosphate batteries, the noise often changes due to the internal chemical reaction and
resulting temperature variation and is no longer a fixed value. To improve the accuracy
of SOC estimation, the AEKF algorithm is introduced. Based on the EKF algorithm, the
AEKF adds the Sage–Husa adaptive filtering algorithm, enabling the observation noise
covariance matrix and the process noise covariance matrix in the EKF algorithm to be
adaptively updated, thus improving the accuracy of the SOC estimation. The steps of the
AEKF algorithm are listed as follows:

Step 1. Initialization
Set x̂0 = x0, y0, P0, Q0, R0 when k = 0, where x̂0 is the initial estimate of the state

variables, y0 is the initial observation value, P0 is the initial value of the error covariance
matrix, and Q0 and R0 are the initial values of the process covariance matrix and observation
noise covariance matrix, respectively.

Step 2. State prediction

x̂k/k−1 = f
(
x̂k−1/k−1, uk−1

)
(20)

Step 3. Prediction of error covariance

Pk/k−1 = Fk−1Pk−1/k−1Fk−1
T + Qk−1 (21)

Step 4. Calculate the Kalman gain

Kk = Pk/k−1GT
k

[
GkPk/k−1GT

k + Rk−1

]−1
(22)

Step 5. State estimation

x̂k/k = x̂k/k−1 + Kk[yk − g(x̂k/k−1, uk)] (23)

Step 6. Update the noise covariance matrix

ek = yk − g(x̂k/k−1, uk) (24)

{
Ek = E

(
ekeT

k
)

d = eT
k E−1

k ek
(25)
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In Equations (24) and (25), ek is called the innovation matrix, and d is the estimated
residual value expressed using the adaptive window factor in the windowing function,
which is used to calculate the observation dimension M. According to the principle of the
windowing function, if M is small, the computational burden of the adaptive algorithm is
reduced, but the accuracy of the algorithm is lower. Conversely, if M is large, the accuracy
of the algorithm is significantly improved, but the computational burden is too high, which
is not suitable for recursive estimation algorithms. Therefore, M needs to be adjusted
according to the convergence time, as shown in Equation (26).⎧⎨⎩

M = 1, d = 1
M = k, d = 0
M = k × ηd, 0 < d < 1

(26)

In Equation (26), η is the window convergence rate, which has a range of 0 < η < 1.
After calculating M, the noise covariance matrix can be updated as shown in Equations (27)
and (28):

Hk =
1
M

i=k

∑
i=k−M+1

ekeT
k (27)

{
Rk = Hk − GkPk/k−1GT

k
Qk = Kk HkKT

k
(28)

Step 7. Estimation of error covariance.

Pk/k = (I − KkGk)Pk/k−1 (29)

Subsequently, repeat step 2~step 7 for recursive estimation to obtain the optimal
estimate of the state variables.

3.2. Discretization of State Space Equation

Taking the operating current IL as the input variable, battery SOC, battery electrochem-
ical polarization voltage Up1, and concentration difference polarization voltage Up2 as state
variables, and UOC as the observation variable, Equation (30) can be obtained by combining
Equations (8) and (9):

⎛⎜⎝SOC(t)
dUp1(t)

dt
dUp2(t)

dt

⎞⎟⎠ =

⎛⎜⎝1 0 0
0 − 1

Rp1(t)Cp1(t)
0

0 0 − 1
Rp2(t)Cp2(t)

⎞⎟⎠
⎛⎝SOCt0

Up1(t)
Up2(t)

⎞⎠+

⎛⎜⎜⎜⎝
−
∫ t

t0
ηdt

Q0
1

Cp1(t)
1

Cp2(t)

⎞⎟⎟⎟⎠I(t) (30)

UL(t) = UOC[SOC(t)]− I(t)R0(t)− Up1(t)− Up2(t) (31)

Equations (30) and (31) are the continuous state equation and continuous observation
equation, respectively. Here, UOC[SOC(t)] is the open-circuit voltage at time t obtained
using the OCV-SOC relation function.

Setting the Coulomb efficiency η to be 1 and defining the sampling period as T,
Equations (30) and (31) are discretized as follows:

⎛⎝SOC(k + 1)
Up1(k + 1)
Up2(k + 1)

⎞⎠ =

⎛⎜⎜⎝
1 0 0

0 e
−T

τp1(k) 0

0 0 e
−T

τp2(k)

⎞⎟⎟⎠
⎛⎝SOC(k)

Up1(k)
Up2(k)

⎞⎠+

⎛⎜⎜⎝
− T

Q0

Rp1(k)(1 − e
−T

τp1(k) )

Rp2(k)(1 − e
−T

τp2(k) )

⎞⎟⎟⎠I(k) (32)

UL(k) = UOC[SOC(k)]− Up1(k)− Up2(k)− I(k)R0(k) (33)
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The vector composed of SOC(k), Up1(k), and Up2(k) in the above equation is the state
vector xk of the system at k time in Equation (11), while UL(k) is the observation vector yk of
the system at k time. Equation (32) is a linear equation, while the nonlinearity of the battery
system state space equation is reflected in the UOC[SOC(k)] part of Equation (33). Therefore,
the Kalman filtering algorithm for SOC estimation is carried out using both EKF and AEKF,
and the results are compared with the coulomb counting method for SOC estimation.

3.3. SOC Estimation Process for LiFePO4 Battery

Step 1. Data input. Input the test data of the LiFePO4 battery, including the working
current sampling data IL(k), terminal voltage UL(k), battery capacity of 13 Ah, parameter
model identification results, and sampling period T = 0.1 s.

Step 2. Algorithm initialization. Initialize the battery state vector x0 = [SOC(0), 0, 0],

estimation error covariance matrix P0 =

⎡⎣10−6 0 0
0 10−6 0
0 0 10−6

⎤⎦, process noise covariance

matrix Q0 =

⎡⎣10−6 0 0
0 10−6 0
0 0 10−6

⎤⎦, and observation noise covariance matrix R0 = 0.05.

Step 3. Calculate the prior estimate of the state variable and the predicted covari-
ance matrix. Firstly, according to Equation (10), calculate the state transition matrix Ak =

diag[1, e
−T

τp1(k) , e
−T

τp2(k) ] and thesysteminputmatrix Bk = [− T
Q0

, Rp1(1 − e
−T

τp1(k) ), Rp2(1 − e
−T

τp2(k) )]
T

using the model parameters at time k. Secondly, substitute the state vector xk = [SOC(k),
Up1(k), Up2(k)] and the operating current I(k) at k time into Equation (20) to calculate the
prior estimate value x̂k+1/k of the state variable. Finally, calculate the predicted error
covariance matrix Pk+1/k according to Equation (21).

Step 4. Calculating the Kalman gain matrix. Firstly, the nonlinear observation equation
is linearized based on Equation (8), and the Jacobian matrix Gk of the observation equation
is calculated, as given in equation (33). Secondly, the Jacobian matrix Gk, the predicted
error covariance matrix Pk+1/k, and the observation noise matrix Rk are substituted into
Equation (22) to calculate the Kalman gain matrix Kk.

Gk = [
∂UOC[SOC]− IR0

∂SOC
|k ,

∂ − Up1

Up1
|k ,

∂ − Up2

Up2
|k ] = [

∂UOC[SOC]
∂SOC

|k ,−1,−1] (34)

Step 5. Calculating the optimal estimated value of the state vector and updating the
error covariance matrix. Based on Equation (34), the observation value, i.e., the estimated
value UL(k) of the battery terminal voltage at k time, is calculated. Then, Equation (23) is used
to calculate the optimal estimated value x̂k+1/k+1 = [SOC(k + 1), Up1(k + 1), Up2(k + 1)]T

of the state vector, where SOC(k + 1) is the SOC value estimated by AEKF at (k + 1) time.
Finally, Equation (13) is used to update the error covariance matrix Pk+1/k.

Step 6. Updating the noise covariance matrix. The process noise covariance matrix Qk
and the observation noise covariance matrix R(k) are calculated based on Equations (24)
and (25). Steps 2 to 6 are repeated recursively to estimate the SOC value at each moment.

3.4. Comparison and Analysis of SOC Estimation Results between EKF and AEKF Algorithms

To compare and analyze the performance of EKF and AEKF algorithms for SOC
estimation of lithium iron phosphate batteries, a comparative study is conducted on SOC
estimation based on the second-order equivalent circuit parameter model. Through battery
charge–discharge testing, the corresponding relationship between battery OCV and SOC
can be obtained through fitting. A 13 Ah-rated capacity and 3.2 V-rated voltage LiFePO4
battery is selected for HPPC testing to obtain its SOC and OCV data. The testing procedure
involved discharging at 1 C for 10 s, resting for 40 s, and then charging at 0.75 C for 10 s.
After resting for 45 min for every 10% drop in SOC, the OCV is measured, followed by
another cycle of testing until the SOC of the battery reached 0.06, which is considered as
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the end of the discharge. Under the global discharge, the battery terminal voltage UL, the
output current IL, and the real values of SOC are shown in Figures 2 and 3, respectively.

Figure 2. The waveform of terminal voltage UL and the output current IL.

Figure 3. The waveform of real values of SOC.

Figures 4 and 5, respectively, show the SOC estimation results and estimation errors
under the EKF and AEKF algorithms. From Figures 4 and 5, it can be seen that compared
with the EKF algorithm, the AEKF algorithm can converge to the vicinity of the true value
more quickly. The convergence time of the EKF algorithm and the AEKF algorithm is
532.8 s and 124.5 s, respectively. The SOC estimation accuracy of the AEKF algorithm is
higher than that of the EKF algorithm. Experimental results show that the AEKF algorithm
has a better SOC estimation convergence speed and accuracy.

Time/s

SO
C

/%

EKF estimate value
AEKF estimate value
True value

Figure 4. The SOC estimating results with EKF and AEKF.
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Time

EKF error

AEKF error

SO
C

Figure 5. The SOC estimating errors with EKF and AEKF.

The specific statistical characteristics of SOC estimation errors under EKF and AEKF
algorithms are shown in Table 1 (absolute error, AE; relative error, RE; mean absolute error,
MAE; mean relative error, MRE), and the relevant features are calculated based on the
converged results. From Table 1, it can be seen that the SOC estimation accuracy of the
AEKF algorithm is better than that of the EKF algorithm, with a maximum absolute error
(MaxAE) of 11.9% and a maximum relative error (MaxRE) of 152.6%, which occurs at the
end of discharge. And the MAE of the SOC estimation is 8.8%, and the MRE of the SOC
estimation is 25.4% with the AEKF algorithm, which is lower than that with the EKF. It
can also be seen from Table 1 that the errors of both EKF and AEKF algorithms gradually
increase. Therefore, the adaptive noise covariance matrix updating method of the AEKF
algorithm can reduce SOC estimation errors. However, the SOC estimation precision is still
large, which cannot meet the actual use needs of the battery energy management system.
And, further optimization of the SOC estimation algorithm is needed.

Table 1. SOC estimation error under the EKF algorithm and AEKF algorithm.

Estimation Algorithm MaxAE MaxRE MAE MRE

EKF 14.1% 180.3% 10.9% 31.2%
AEKF 11.9% 152.6% 8.8% 25.4%

4. SOC Estimation Method Based on FFRLS-AFKF

The FFRLS-AEKF joint estimation algorithm uses the SOC value estimated using the
AEKF algorithm to replace the estimated value of the ampere-hour integration method in
the FFRLS algorithm to improve the battery equivalent circuit parameters identification
accuracy. The identified model parameters are substituted into the AEKF algorithm to
recursively estimate the SOC and improve the accuracy of the AEKF algorithm. Then,
the estimated SOC value is fed back to FFRLS, and through positive feedback, the SOC
estimation accuracy is finally improved. The specific calculation process is shown in
Figure 6.

Step 1. Initialize the FFRLS algorithm and the AEKF algorithm, where SOC(0) is
obtained by the open-circuit voltage method.

Step 2. Obtain the model parameters at k time through the FFRLS algorithm, substitute
them into the AEKF algorithm, construct the corresponding transfer matrix and input
matrix, and obtain the SOC at (k + 1) time.

Step 3. Substitute the SOC at (k + 1) time into the OCV-SOC relationship formula, and
then use the FFRLS algorithm to obtain the model parameters at (k + 1) time.

Step 4. Update the transfer matrix and input matrix in the AEKF algorithm to obtain
the SOC of the next time step; repeat steps 2 to step 4 and recursively obtain the SOC at
each time step. The specific calculation process is shown in the diagram.
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Figure 6. FFRLS + AEKF processes.

5. Experimental Results

The experimental parameters setting is the same as in Section 3.2. The structure of
the battery pack used in the experiment is first parallel and then series. The batteries
used are all new, and the working temperature is 25 ◦C. According to the method in
Section 2.3, the battery parameters R0, Rp1, Cp1, Rp2, and Cp2 can be identified at 25 ◦C, and
the identification results are in Table 2. Four single cells form a parallel unit, and ten parallel
units, a total of forty battery cells form a series battery pack. The parallel unit is composed
of ten parallel units, and a total of forty battery cells are composed of series battery packs.
The model of the battery is IFP9380, the rated capacity is 15 Ah, the nominal voltage is 3.2 V,
the operating voltage range is 2.0–3.65 V, and the maximum discharge current is 2.00 A.
The main control chip of the switching circuit selects STM32F103VB8T6 battery voltage
measurement using the battery management chip LTC6811. The measurement error is less
than 1 mV, and the sampling frequency is greater than 3 kHz. The sampling of the circuit
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current uses a shunt, and the sampling error is less than 0.1%. The experimental platform
is shown in Figure 7.

Table 2. The identification results.

R0/Ω Rp1/Ω Cp1/F Rp2/Ω Cp2/F

0.0005206917 0.0001007158 1256.806552 0.0024315296 26355.45136

 
(a) 

 
(b) 

 
(c) 

Figure 7. Experimental platform of battery charge and discharge. (a) Control board physical diagram.
(b) DC power supply charging. (c) Battery pack interface diagram.

Figures 8 and 9 show the SOC estimation results and errors using the AEKF and FFRLS-
AEKF algorithms, respectively. From Figures 6 and 7, it can be seen that the estimation
results with the FFRLS-AEKF algorithm are closer to the true values, and the SOC estimation
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errors with the FFRLS-AEKF algorithm are smaller than with the AEKF algorithm. The
estimation errors of the AEKF and FFRLS-AEKF algorithms are shown in Table 3. It can
be seen from Table 3 that the maximum absolute error of the joint estimation algorithm
is 4.97%, and the error is controlled within 5%. As the battery operating time increases,
the SOC estimation accuracy continuously converges to the vicinity of the true value, with
the average absolute error decreasing to 2.5%. The experimental results show that the
FFRLS-AEKF joint estimation algorithm has good convergence performance and high
estimation accuracy, verifying that the proposed method is correct and feasible. Therefore,
the SOC estimation performances with EKF, AEKF, and FFRLS-AEKF are shown in Table 4.

Time/s

SO
C

/%

FFRLS-AEKF 
estimate value
AEKF estimation 
value of variable 
parameter model
True value

Figure 8. The SOC estimating results of the FFRLS-AEKF and AEKF.

Figure 9. The SOC estimating errors of the FFRLS-AEKF and AEKF.

Table 3. Compared FFRLS-AEKF and AEKF algorithm of SOC errors.

Estimation Algorithm MaxAE MaxRE MAE MRE

AEKF 6.6% 15.7% 4.0% 8.1%
FFRLS-AEKF 4.97% 6.8% 2.5% 4.3%

Table 4. The SOC estimation performances with EKF, AEKF, and FFRLS-AEKF.

Estimation Algorithm EKF AEKF FFRLS-AEKF

Steady-precision low lower lowest
Convergence speed fast faster fastest

6. Conclusions

The working principle of FFRLS for battery parameter identification is analyzed. The
second-order equivalent circuit state discretization equation based on the AEKF algorithm
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is established, and the steps of the battery SOC estimation method based on AEKF are
discussed and simulated. The simulation results show that it has the disadvantages of low
steady-state accuracy and slow convergence rate. To improve SOC estimation precision,
combining the advantages of high precision and adaptability of FFRLS and AEKF, a joint
SOC estimation method based on FFRLS-AEKF is proposed and experimented with. The
experimental results show that the FFRLS-AEKF algorithm can have higher SOC estimation
and faster accuracy convergence speed, verifying that the proposed method is correct and
feasible.

In the actual use of the battery pack, it is often necessary to combine the battery cells
in series and parallel to provide sufficient capacity and voltage level. However, in the
process of series and parallel grouping of the battery pack, there will be problems such
as more complex model parameters and difficult data sampling. Therefore, the next step
in this research field needs to consider the influence of physical parameters such as the
small number of sampling points, incomplete sampling data, and contact resistance on
the accuracy of the battery model. The establishment of a perfect equivalent model of the
battery pack is the focus of the next step in this research.
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Abstract: Because the new energy is intermittent and uncertain, it has an influence on the system’s
output power stability. A hydrogen energy storage system is added to the system to create a wind,
light, and hydrogen integrated energy system, which increases the utilization rate of renewable
energy while encouraging the consumption of renewable energy and lowering the rate of abandoning
wind and light. Considering the system’s comprehensive operation cost economy, power fluctuation,
and power shortage as the goal, considering the relationship between power generation and load,
assigning charging and discharging commands to storage batteries and hydrogen energy storage,
and constructing a model for optimal capacity allocation of wind–hydrogen microgrid system.
The optimal configuration model of the wind, solar, and hydrogen microgrid system capacity is
constructed. A particle swarm optimization with dynamic adjustment of inertial weight (IDW-PSO)
is proposed to solve the optimal allocation scheme of the model in order to achieve the optimal
allocation of energy storage capacity in a wind–hydrogen storage microgrid. Finally, a microgrid
system in Beijing is taken as an example for simulation and solution, and the results demonstrate that
the proposed approach has the characteristics to optimize the economy and improve the capacity of
renewable energy consumption, realize the inhibition of the fluctuations of power, reduce system
power shortage, and accelerate the convergence speed.

Keywords: independent microgrid system; wind and solar complementary power generation;
hydrogen energy storage; IDW-PSO; capacity configuration

1. Introduction

In recent years, wind and photovoltaic power generation have been essential for
new power systems mainly based on new energy sources. With the promotion of carbon
neutrality and the increasingly prominent problem of energy shortage, the large-scale
application of new energy generation has become the trend of power system development.
Because wind and sunlight are the primary energy sources of new energy generation, they
are randomly influenced by the environment, temperature, geographical location, and
other aspects, quickly leading to the imbalance of power conversion and the instability
of power generation time, affecting the system’s stability. Given the intermittent and
uncertain influence of new energy, with the popularization of new energy, the proportion
is increasing, which will significantly impact the stability, safety, and system operating rate
for new energy sources [1]. The application of energy storage technology in new energy
systems helps to improve the utilization rate of power generation in new energy power
systems, keep the system stable in power supply during peak power generation and low
power generation due to external influence, and improve the utilization efficiency of power
generation systems [2]. Aiming at the intermittency and instability nature of new energy
power generation, the energy storage is utilized in order to store and release the electric
energy, and power supplementation is carried out so as to improve the energy utilization
rate and the stability of the power supply of the power system.
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Because of the uncertainty and fluctuation of scenery, large-scale access to clean
energy will also contain more uncertain factors, which will cause the phenomenon of
abandoning wind and light and affect power stability [3]. The incorporation of hydrogen
energy storage in the system has the advantages of being pollution-free, sustainable, and
energy-saving, and is a green and clean energy storage system. The use of a hydrogen
energy storage system allows for the storage of excess electricity from wind and solar
energy abandonment, realizing the use of clean energy in the form of integrated energy of
electricity–hydrogen–electricity, and improving the efficiency of the available renewable
energy sources. Hydrogen energy storage has high energy density, a low cost of running
and sustaining compared with other energy storage, long-term storage and non-pollution,
applicable to both instantaneous power supply and long time power supply, applicable
to different situations. Compared with the traditional battery, the fuel cell in hydrogen
energy storage can be between the hydrogen chemical energy converted to electrical energy
without the mutual conversion of other energy forms, which significantly reduces the
loss and increases the power generation efficiency, and has the advantage of high energy
conversion, environmental protection and the like.

With the gradual increase in the occupation of new energy sources, the percentage
of wind and solar farms has been increasing, and consequently the research on power
fluctuation problems has been gradually deepened. There have been many studies at home
and abroad on the problem of optimal allocation of integrated energy system capacity.
Literature [4] uses variational mode decomposition (VMD) to analyze the unbalanced
power in a wind–solar hybrid microgrid. It establishes a model for the optimal allocation
of hybrid energy capacity for the storage of batteries and supercapacitors. Literature [5] es-
tablished a capacity optimization allocation method to reduce grid-connected photovoltaic
power for photovoltaic power plants as well as hybrid energy storage systems. According
to [6], the megawatt isolated microgrid consisting of photovoltaic/wind turbines, energy
storage, diesel, and gas turbines is optimized in capacity allocation to solve electricity
supply problems for powerless remote locations. Literature [7] proposes a quantitative
optimal configuration method for a wind and solar complementary power supply system.
Literature [8] puts forward an optimization strategy of double-layer hybrid energy stor-
age capacity for a distribution grid by accounting for the distribution network loss and
the total cost of the stored capacity system. In literature [9], a configuration model of a
multi-source microgrid is constructed considering three aspects: installation location, unit
arrangement and combination, extraordinary load of electric vehicles, and the dynamic
matching problem between power generation and power consumption is analyzed. In
reference [10], a multi-objective optimal allocation method of energy storage systems is
proposed to deal with the issue of energy storage allocation under one-party investment
and multiple benefits. These studies all show that the adoption with hybrid energy stor-
age is crucial in rational distribution of microgrids, both consider the issues of reducing
power loss and system investment cost or maximum economy, but do not consider the
utilization of clean energy. In literature [11], the coupling of renewable energy power gen-
eration and hydrogen energy storage is shown to be a powerful means of achieving clean
and carbon-neutral energy consumption, which has excellent potential for development.
Literature [12] explains the application value system of hydrogen energy storage in the
“source-network load” of the new power system. Hydrogen energy storage has the advan-
tages of cross-season, cross-regional and large-scale storage. It has a specific rapid response
ability, which has substantial application value in all aspects of the “source-network load”
of new power systems. Literature [13] mainly considers how to construct a multi-energy
combined storage and supply model in the integrated energy system with hydrogen storage
as the conversion hub of multiple energy forms in low carbon parks, so as to achieve the
optimized allocation method with low carbon emission and low cost; literature [14] uses
the hydrogen produced by the hydrogen storage system to work together with a heat
storage system and air source heat pump to reduce the use cost of electricity, heat and cold
energy in the park, and establishes a capacity optimal allocation model taking integrated
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energy cost minimization as the optimization target. The research on hydrogen energy
storage systems mainly focuses on using hydrogen without considering the conversion of
hydrogen energy storage as electric energy. Literature [15] builds a typical wind and solar
hydrogen storage capacity configuration model based on wind energy, solar photovoltaic,
electric energy storage, and hydrogen production equipment, Then establishes a demand
response model of day-ahead segmented electricity price load to reduce the total cost of
running the system. The application of hydrogen energy storage focuses on the recycling
of hydrogen. Increasing hydrogen energy conversion into electric energy is conducive
to improving the rate of abandoning wind and light and transforming into a green and
low-carbon environment [16].

Based on the issues described above, a wind–solar hydrogen storage microgrid system
with a wind turbine, photovoltaic generator, hydrogen storage system, and battery system
as subsystems is constructed in the paper, and the particle swarm algorithm for improving
the dynamic adjustment of inertia weights is applied to the system’s capacity configuration,
and the optimal configuration proposal on system capacity is obtained, which makes the
highest system economy, achieves power stabilization, reduces the rate of abandoning
wind and solar power, as well as the reduction of the system’s shortage of power.

2. Wind–Solar Hydrogen Microgrid System

The distributed new energy system has wind power, photovoltaic, geothermal, tidal,
and other subsystems with random output. The integrated development of a compre-
hensive energy system enhances the combined application of energy [17]. This paper’s
wind, light, and hydrogen microgrid system consists of wind turbines, photovoltaic gener-
ators, hydrogen production units, hydrogen storage units, fuel cells, and other auxiliary
equipment. Hydrogen energy storage is used to realize the interconnection of electricity–
hydrogen–electricity, to suppress the power fluctuation of distributed new power sources,
which can contribute to the sustainability of energy [18]. The electricity–hydrogen system
architecture of the park is schematically displayed in Figure 1. By matching and coupling
various forms of energy storage, the energy utilization rate can be improved, achieving peak
shaving and valley filling, stabilizing power fluctuation, and leading to certain economic
benefits.

Figure 1. Schematic diagram of electric–hydrogen integrated energy structure.

Figure 1 is a schematic structural diagram of an electric–hydrogen system, mainly
consisting of a generation unit, a capacity storage unit and load. The electricity generation
unit comprises of wind power generation and photovoltaic power generation, which takes
renewable energy as the main energy source of the system, while the energy storage unit
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comprises a storage battery and hydrogen storage system, which has a role of balancing
the load of the system, and absorbs excess energy through the energy storage system when
there is sufficient wind and light energy; and supplements it through the energy storage
system when there is insufficient wind and light energy.

2.1. Modeling of Generator Set
2.1.1. Photovoltaic Generation System

Physical photovoltaic (PV) power generation is the direct transformation of solar
energy through PV panels into electrical energy. Photovoltaic power generation is affected
by solar radiation, the radiation angle, sunshine hours, and environmental temperature.
The specific photovoltaic power generation output model is shown in Formula (1) [19]:

Ppv(t) = PpvN fpv
G(t)
Gref

[1 + α(Tc(t)− Tref)] (1)

where: Ppv(t) represents the actual electricity generation power of the photovoltaic panel;
PpvN is the nominal capacity of the photovoltaic panel to generate electricity; f pv is the
operation efficiency of photovoltaic system; G(t) is the actual light intensity at time t; Gref is
the reference standard light intensity; α is the temperature coefficient; Tc(t) is the operating
temperature of the photovoltaic panel at time t; Tref is the reference standard ambient
temperature.

Photovoltaic panel operation temperature transformation is caused by the ambient
temperature, and solar light intensity is caused by many aspects of the influence of the
relationship shown in Formula (2):

TC(t) = T(t) +
Trated
800

G(t) (2)

where: T(t) is the actual ambient temperature; and Trated is the standard reference tempera-
ture of a photovoltaic panel.

2.1.2. Wind Power Generation Model

Wind turbine power output is affected by various aspects such as the speed of wind,
blades, ambient temperature, air pressure, etc. [20]. Wind power generation means to con-
vert the kinetic energy to mechanical energy and utilize a turbine to convert the mechanical
energy into electrical power. The wind speed changes randomly due to external factors,
leading to intermittent and fluctuating wind power generation. The power delivery by
wind turbine is most affected by the wind speed, and approximated relationship with the
wind speed is shown in Formula (3):

Pwt(t) =

⎧⎪⎨⎪⎩
0, v(t) < vin v(t) > vo

Pr
v(t)−vin
vr−vin

, vin ≤ v(t) ≤ vr

Pr, vr < v(t) ≤ vo

(3)

where: Pwt(t) is the active output power of the wind farm in time t, Pr is the rated output
power of the wind turbine, v(t) is the actual wind speed of the wind turbine in time t, vr is
the rated wind speed, vin is the cut-in wind speed, and vo is the cut-out wind speed.

2.2. Modeling of Hydrogen Energy Storage System

The hydrogen energy storage system is an integral part for the energy storage system in
an independent microgrid system. The hydrogen energy storage system mainly comprises
electrolytic cells, fuel cells, and hydrogen storage equipment. Its structural schematic
diagram is shown in Figure 2.
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Figure 2. Structure diagram of hydrogen energy storage system.

2.2.1. Mathematical Modeling of Electrolytic Cell

Electrolyzed water is a widely used primary hydrogen production method in indus-
trial hydrogen production [21]. The electrolyzer electrolyzes water into hydrogen and
oxygen. There are alkaline electrolyzers, proton exchange membrane electrolyzers, and
solid oxide electrolyzers. Compared with other electrolyzers, alkaline electrolyzers have
higher efficiency and the best hydrogen production capacity. The system life is twice as
long as that of proton exchange membrane electrolyzers, and the cold start-up time is
shorter than that of solid oxide electrolyzers. An alkaline electrolyzer is the safest, most
mature, and most widely used. The hydrogen production rate of an alkaline electrolyzer
is [22] ⎧⎨⎩ VH2 = ηF

NC
2F I

ηF = 96.5e(
0.09

I − 75.5
I2 )

(4)

where: VH2 is the hydrogen production rate; ηF is Faraday efficiency; NC is the number of
electrolyzers; F is Faraday constant (C/mol); I is the current in the electrolytic cell.

In practice, the electrolytic cell cannot be electrolyzed entirely, and its conversion
efficiency is represented by

PH2(t) = ηELPe(t) (5)

where: PH2(t) is the power generated by hydrogen production in the electrolytic cell; Pe(t)
is the electricity consumption of the electrolytic cell; and ηEL is the conversion efficiency of
electricity and hydrogen in the electrolyzer.

2.2.2. Mathematical Modeling of Fuel Cell

A mathematical example is provided for the fuel cell:

QH2fc =
NSPfc

Ufc(2F)
(6)

where: QH2fc is the hydrogen consumption of the fuel cell; NS is the number of batteries
connected in series; Pfc is the output power of the fuel cell; Ufc is the battery voltage; and F
is the Faraday constant (C/mol).

2.2.3. Mathematical Modeling of Hydrogen Storage Device

Most hydrogen storage devices use hydrogen storage tanks, which can store the
hydrogen produced by electrolytic cells and provide hydrogen for fuel cells. The hydrogen
storage tank device has the characteristics of low cost, high safety, and fast charging and
discharging speed. A hydrogen storage tank is characterized by a mathematical model:

PaH2 =
RTa

V

∫ t2

t1

(
VH2 − QH2fc

)
dt (7)

where: PaH2 is the pressure of the hydrogen storage tank; R is a gas constant; Ta is the
thermodynamic temperature of the gas; V is the total capacity of the hydrogen storage tank;
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t1 and t2 are the start time for starting hydrogen production and the end time for stopping
hydrogen production, respectively.

2.3. Battery Modeling

A storage battery is a kind of galvanic energy storage, while chemical energy storage
is a relatively stable and high-grade energy storage method. This article selected a lithium
battery as a storage battery, and the running state of the storage system is marked by the
state of charge (SOC) of the lithium battery. When SOC = 1, the battery capacity reaches a
maximum value [23]. The battery output model is

Charging status:

SOC(t) = SOC(t − 1)(1 − σ) + Pc(t)ηc
Δt

Emax
(8)

Discharge state:

SOC(t) = SOC(t − 1)(1 − σ)− Pf (t)
Δt

η f Emax
(9)

where: σ is the charge and discharge rate of the storage battery; Pc and Pf are the charging
and discharging power of the battery in t time; ηc and ηf are charge and discharge efficiency;
and Emax is the maximum capacity of the battery.

3. Capacity Optimal Allocation Model

Based on the microgrid system of wind–solar hydrogen storage, this paper not only
considers the economy of the independent microgrid of wind–solar hydrogen storage;
but also to consider the power fluctuations on the wind generated by the wind and light
abandonment, so as to make the wind utilization rate to reach the highest, and put forward
the corresponding optimization scheme.

3.1. Objective Function

In this paper, the most economical price is used as the objective function in the
independent wind, solar, and hydrogen storage microgrid.

Objective function 1 includes: In the hydrogen-containing composite energy storage
system, investment and recovery costs are considered to achieve the best economic benefits.
In this paper, the objective function of minimizing the integrated operating cost of the
system can be expressed as:

CT is the system’s total operation cost, composed of each piece of equipment’s in-
vestment and operation cost. Each piece of equipment is comprised of wind turbines,
photovoltaics, batteries, and hydrogen storage, and their installation cost, replacement cost,
in addition to operation and maintenance cost together constitute the operating cost of the
investment [24].

CT = min{CIN + CRE + COM} (10)

where: CT is the total operating cost of the system; CIN is the installed cost of the equipment;
CRE is the replacement cost of the equipment; and COM is the operation and maintenance
cost of the equipment.

CIN represents the installed cost for the equipment, which can be expressed as

CIN = QPIN
r(1 + r)m

(1 + r)m − 1
(11)

where: CIN is the installed cost of the equipment; Q is the rated capacity of the equipment;
PIN is the unit installed cost of the equipment; r is the discount rate of equipment; and m is
the service life of the equipment.
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CRE as replacement cost for devices, which can be expressed as

CRE = QPRE
r(1 + r)m

(1 + r)m − 1
(12)

where: CRE is the replacement cost of the equipment; Q is the rated capacity of the equip-
ment; PRE is the unit replacement cost of equipment; r is the discount rate of equipment;
and m is the service life of the equipment.

COM is the operation and maintenance cost for equipment, which can be expressed as

COM = λQP (13)

where: COM is the operation and maintenance cost of the equipment; Q is the rated capacity
of the equipment; P is the unit cost of equipment; and λ is the ratio of the operation and
maintenance cost of each equipment to the total cost of each equipment.

Objective function 2 can restrain the power fluctuation and build an optimal configu-
ration model of a microgrid, including the wind–hydrogen storage as well as the energy
storage system formed by the battery, which can be expressed as follows:

EA = EPV + EW + ELi (14)

where: EA is the sum capacity for energy storage of wind and solar batteries. Because the
battery has the function of charging and discharging, EA has a maximum and minimum
value.

minEA ≤ EA ≤ maxEA (15)

Hydrogen storage system discharge:

EA + EH2 = EL (16)

Charging (hydrogen storage) of hydrogen energy storage system:

EA = EH2 + EL (17)

where: EH2 is the energy storage capacity of the hydrogen energy storage system; and EL is
the total capacity of the load.

Objective function 3 for the wind–solar hydrogen storage-independent microgrid, due
to many external influences, after increasing the energy storage system, cannot completely
guarantee the reliability of the system power supply [25]. The critical index of load shortage
can refer to the power fluctuation problem. When the load is short of electricity, the system
is more stable and reliable, and vice versa. Figure 3 shows the load power shortage
operation flow in the wind–solar hydrogen storage microgrid system. Elps shows a power
shortage of the load, which can be expressed as

fL =
n

∑
k=1

Elps(k)/
n

∑
k=1

EL(k) (18)

When power generation from wind and solar meets the load requirements, when
ΔE > 0, power shortage Elps = 0, and the ΔE is judged, and different charging combination
devices are selected. When ΔE is greater than or equal to the max range between the
battery and hydrogen storage capacity, the maximum value of the battery and hydrogen
storage is used for charging; When ΔE is greater than the maximum range of the battery
capacity, the maximum value of the battery is used to charge, and the remaining electricity
is used to charge the hydrogen storage. When ΔE exceeds the upper range of the hydrogen
storage capacity, the maximum amount in hydrogen storage is used for charging. When ΔE
becomes less than the maximum range of capacity of hydrogen storage, hydrogen storage
is used for charging.
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Figure 3. Operation flow chart of load power shortage.

When the amount of wind–solar power generation satisfies the load requirement, that
is, ΔE < 0, the wind–solar power generation is insufficient, so it is necessary to discharge
the stored power to supplement the shortage of the system, judge ΔE, and choose different
discharge combination distribution methods. When −ΔE is greater than or equal to the
maximum range of the storage battery and hydrogen storage capacity, the maximum value
of storage battery and hydrogen storage capacity is used for discharge. When −ΔE is
greater than the maximum range of the battery capacity, the maximum value of the battery
is employed for discharge, and the balance of the power is used to discharge on hydrogen
energy storage. When −ΔE is greater than the maximum range of the hydrogen storage
capacity, the maximum value of hydrogen storage is used for discharge. When −ΔE is
less than the maximum range of hydrogen storage capacity, hydrogen storage is used for
discharge.

3.2. Constraints

(1) Capacity constraints of hydrogen storage equipment:

Vmin ≤ V ≤ Vmax (19)

where: Vmin and Vmax are the minimum and maximum capacities of the hydrogen storage
tank.

(2) Capacity constraints of hydrogen storage equipment:

SOC ∈ [0, 1] (20)

where: SOC is the operating state of charge in the energy storage system.
(3) Power load constraint:

PL = PW + PPV + PH2 + PLi (21)

where: PL is the power load of the system, kW.
(4) Energy waste rate constraint:
Excess power is generated in the system when the power generated in the system is

greater than the load demand in the system and the maximum energy stored in the system,
resulting in wasted energy. This is because the capacity allocation is unreasonable, and
the power generation unit is configured with excessive output. When the system energy
waste rate is less, the system capacity allocation is more reasonable, which can significantly
reduce the waste of resources.

fL < fset (22)
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where: fset is the control range of the energy waste efficiency of the system for a setting of 0.5.
To solve the multi-objective function problem, fuzzy mathematics is used in this paper.

In most cases, the objective functions may affect each other, so it is not easy to achieve
simultaneous optimization. The sub-objective optimization and multi-objective are solved
by fuzzy mathematics. Under the condition of satisfying all constraints, each objective
function is fuzzified, and the objective function is solved based on fuzzy statistics by
taking the maximum value according to the affiliation function, and the optimal solution is
obtained.

In this paper, the membership function of the distributed function of half Γ decline is

uk(t) =

{
1, Fk(t) ≤ Fkmin(t)

exp( Fkmin(t)−Fk(t)
Fkmin(t)

), Fk(t) > Fkmin(t)
(23)

where: Fkmin(t) is the minimum value of the single objective function Fk(t) under the
constraint conditions.

Under the principle of maximum affiliation, the fuzzy multi-objective optimization
problem is converted into a nonlinear but targeted optimization issue, and the multi-
objective function solving model becomes

maxu(t) =

⎧⎨⎩
u(t) ≤ u1(t)
u(t) ≤ u2(t)
u(t) ≤ u3(t)

(24)

where: u(t), u1(t), u2(t), and u3(t) are, respectively, the satisfaction of fuzzy optimization,
the satisfaction of system total operation cost, the satisfaction of power fluctuation, and the
satisfaction of load power shortage.

4. Improved Particle Swarm Optimization Algorithm

4.1. Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm was inspired by the study of artificial
life and was proposed as a global stochastic search algorithm in the simulation of bird flock
foraging [26]. The particle swarm optimization algorithm has strong anti-interference ability,
good results, fast speed, and memory function, and is also a multi-agent optimization
system. Each particle can dynamically adjust according to the surrounding state to find its
optimal and overall solution [27].

In the optimization process, after initializing the target population in N-dimensional
space, the particles constantly update their positions and velocities, generating a new
position each time and solving the next time to attain the optimal result. The iterative
expression for the update rate as well as the position in the process of particle solution is{

vk+1
i = ωvk

i + c1r1(PM − xk
i ) + c2r2(GM − xk

i )

xk+1
i = vk+1

i + xk
i

(25)

where: k is the number of iterations; ω is the inertia weight coefficient; vi
k and xi

k are the
velocity and position of particles; c1 and c2 are acceleration factors; r1 and r2 are random
numbers between [0,1]; PM is the particle individual extreme value; and GM is the extreme
value of the population.

4.2. Improved Particle Swarm Optimization

For the particle swarm optimization algorithm, it is susceptible to problems such as
falling into the local extremum and poor local search ability. To solve these problems, the
particle swarm optimization algorithm is improved. A particle swarm optimization with
dynamic adjustment of intrinsic weight is used, and exponential function and random
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function of beta distribution [28] are used to improve it, achieve the algorithm’s global
search ability, and reduce the possibility of falling into local extremum.

The inertia weight ω is an essential variable among the particle swarm, determining
influence degree of particle velocity on the velocity in the next iteration. The capability
of global search is strong when ω is large, the capability of local search is weak, and it
can easily fall into the local optimization state. With the increase in iteration times, the

exponential function e
−k

kmax is adopted to increase the global search ability and the later
search accuracy.

The improved expression for the inertia weights is

ω = ωmin + (ωmax − ωmin)e
−k

kmax + σ × betarnd(p, q) (26)

where: kmax is the maximum number of iterations; σ is the inertia adjustment factor; ωmax
is the initial inertia weight; ωmin is the inertia weight of the maximum number of iterations.

In particle swarm optimization, the acceleration factor determines the influence of
individual particle experience information and other particle experience information on the
optimization trajectory. For the acceleration factor, c1 is the global acceleration factor and c2
is the local acceleration factor [29]. To converge faster, the acceleration factor is improved so
that c1 gradually increases and c2 gradually decreases, thus strengthening the convergence
ability of particles to the global optimum.

c1 = c0 sin2
[
π
2

(
1 − k

kmax

)]
c2 = c0 sin2

(
π
2

k
kmax

) (27)

where: c0 is the initial value.

4.3. Solution Steps

In solving the problem of optimal system capacity configuration, the paper applies the
improved IDW-PSO problem solving and the flow is shown in Figure 4.

 
Figure 4. Solution flow.
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5. Model Solving

This paper uses the improved particle swarm optimization algorithm with dynamically
adjusted inertia weight to optimize the configuration of each device’s hydrogen-containing
hybrid energy storage microgrid capacity. Firstly, the fundamental parameter models of
each device unit, including illumination intensity and load parameters, are determined—
secondly, input parameters, including capacity range, conversion rate, etc. Then, the
system’s capacity is optimized according to the system’s total operating cost. The core
of the system optimal analysis method based on IDW-PSO is to determine the optimal
capacity allocation under the condition of minimum total system cost, to reduce the loss
of power supply probability, reduce the fluctuation of power, preventing instability of the
microgrid. A flow diagram of the operation strategy is illustrated in Figure 5:

 
Figure 5. Operation strategy flow chart.

Step (1): Modeling each unit of the microgrid, inputting data such as wind speed and load,
and inputting relevant parameters;

Step (2): Initialize the calculated output of photovoltaic and wind power generation;
Step (3): Input system constraints and objective functions;
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Step (4): Calculate whether the wind and solar power generation meet the load demand
ΔE, execute an objective function, and select different operation processes;

Step (5): After executing the objective function, check whether the microgrid is within the
constraint range and update the relevant parameters of the system;

Step (6): Whether the maximum number of iterations has been reached. Without satisfying
the condition, the program will continue to run;

Step (7): Obtain optimal economic operating cost and related data.

6. Example Analysis

Taking a wind, solar, and hydrogen microgrid system in Beijing as an example, the
capacity of centralized photovoltaic units is 200 KW, and that of centralized wind turbines is
350 KW. Figure 6 shows the data on wind power, photovoltaic power generation, and load
consumption on a specific day in this area. Relevant parameters of battery and hydrogen
storage of the system are presented in Table 1. The optimization model of the capacity
optimization of wind and hydrogen storage system constructed in this paper is solved by
MATLAB.

 

Figure 6. Wind–solar load curve.

Table 1. Example parameters.

Parameter Value

The daily investment cost of storage battery is RMB/set 397
Battery charging efficiency/% 0.75
Battery discharge efficiency/% 0.85

The daily investment cost of hydrogen energy storage is RMB/set 534
Hydrogen storage charging efficiency/% 0.75

Hydrogen energy storage discharge efficiency/% 0.6
Efficiency of inverter/% 0.95

Type Service life/year

Wind generator [30] 20
PV 25

Storage battery 15
Electrolytic bath 15

Hydrogen storage tank 25
Fuel battery 10

Inverter 20

In the whole microgrid system, the equipment at the power generation end includes
a wind turbine, photovoltaic equipment, storage battery, and hydrogen energy storage
system. According to a defined objective value function and various parameters, wind
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turbine, photovoltaic unit, and hydrogen energy storage jointly bear the load consumption
of the system and keep the power balance in real time. At 5~18 h, due to the sun’s rising,
the light amplitude appeared and reached the maximum peak at 12 h at noon, when the
light incident angle reached the maximum. Because wind turbines are built in places with
abundant wind resources, they can generate electricity 24 h a day.

Simulation Results Analysis

To comprehensively analyze the economic advantages of the energy storage operation
of the system according to the improved IDW-PSO algorithm, the effects of system load
shortage and power balance on the configuration results are considered, this paper sets the
following four schemes for comparative analysis. Scheme 1: Choose the energy storage
configuration scheme that is currently widely used. Scheme 2: The battery and hydro-
gen energy storage is selected as the energy storage schemes of the system for optimal
configuration, and the compression factor particle swarm optimization algorithm is used.
Scheme 3: Select battery and hydrogen energy storage as the system energy storage scheme
for optimal configuration, and use the IDW-PSO algorithm. Scheme 4: Select battery and
hydrogen energy storage as the system energy storage scheme to optimize the structure
and use the improved IDW-PSO algorithm. The simulation establishes the population scale
of 200, and iteration number of 200, acceleration factor initial value is set to 1.65, the battery
SOC lower limit is 0.1, the SOC upper limit is 0.9, while a battery SOC initial value is set to
0.5, and a simulation results are as follows:

Upon calculation, the results of the optimized configuration under each scenario are
obtained as shown in Figure 7 and Table 2. Scheme 2, Scheme 3, and Scheme 4, respectively,
show the differences in iteration times, average time, and total cost caused by different
operation results. The above three schemes can all be applied to the capacity optimization
arrangement of hydrogen-containing composite power storage system. From a comparative
analysis of Figure 7, the improved IDW-PSO algorithm can reduce the number of iterations,
speed up the calculation time, and calculate the optimal system operating cost more
effectively. The convergence speed and accuracy of the improved IDW-PSO are different
from those of IDW-PSO and compressed factor particle swarm optimization, which reduces
the local optimal solution, slow divergence speed and efficiency. The algorithms in the
present paper have fewer iteration times and operation times. Compared with other
algorithms, this algorithm is superior to different algorithms with the capacity optimization
configuration scheme, which improves the system economy.

Figure 7. Comparison of convergence curves of various algorithms.
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Table 2. Comparison of economic results of each algorithm.

Algorithm Name
Minimum Operating Cost/Ten

Thousand Yuan
Average Number of

Iterations
Average Time/s

Compressive factor particle
swarm optimization [31] 8.359 150 16.12

IDW-PSO 8.328 144 15.15
Improved IDW-PSO 8.326 124 15.05

At this time, see Table 3 for the system capacity optimization configuration scheme
through Scheme 1, Scheme 3, and Scheme 4.

Table 3. Optimization result.

Application Scheme
Storage

Battery/Unit
Supercapacitor/Unit

Hydrogen Energy
Storage/Unit

LPSP
Minimum Cost/Ten

Thousand Yuan

Scheme 1 2034 28,956 — 0.0321 8.321
Scheme 3 (Before

improvement) 1975 — 127 0.0297 8.359

Scheme 4 (After
improvement) 1989 — 106 0.014 8.323

Table 3 shows that the optimal configuration for the microgrid system in the hybrid
energy storage of supercapacitors and storage batteries in Scheme 1 is 2034 storage batteries
and 28,956 supercapacitors. In this case, the system loss of power supply probability is
0.0321, and the system’s total operating cost is 83,210 yuan. The optimal configuration of the
Scheme 3 microgrid system before improvement is 1975 batteries and 127 hydrogen storage
batteries; now the system loss of power supply probability is 0.0297, and the comprehensive
operating of the system costs 83,590 yuan. The optimal configuration of the improved
Scheme 4 microgrid system is 1989 batteries and 106 hydrogen storage batteries. Currently,
the system loss of power supply probability is 0.014, and the system’s total operating cost
is 83,230 yuan. From the comparative analysis of Table 3, in the hybrid energy storage of
battery and supercapacitor, the minimum price for Scheme 3 is higher than that of Scheme 1
because the cost of hydrogen energy storage is much higher than that of the supercapacitor,
and the operating cost of Scheme 4 is unchanged. The scheme proposed in this paper
(Scheme 4) reduces the power shortage by 56.4% in Scheme 1 and 52.9% in Scheme 3 while
maintaining the running cost unchanged. Therefore, the scheme used in this paper is
superior to other projects, which improves the power shortage problem caused by the
system’s unbalanced configuration.

From the perspective of solving the problem of the power shortage rate, the scheme in
this paper has increased by 1.81% and 1.57%, respectively, compared with Scheme 1 and 3.
In this paper, Beijing’s average daily electricity consumption in 2022 is 210 degrees. Accord-
ing to this ratio, the scheme in this paper can solve the power shortage of about 3.5 degrees
by storing energy. Thermal power plants need about 320 g standard coal for the first gener-
ation of electricity, saving 1 kg of typical coal = reducing emissions by 2.493 kg “carbon
dioxide” = reducing emission by 0.68 kg “carbon.” Then, this scheme can reduce carbon
dioxide and carbon emissions by about 1019.13 kg a year in this area. Therefore, the scheme
proposed in this paper has great practical significance for promoting carbon neutrality.

For wind–solar hybrid electricity generation, both wind turbines and photovoltaic
units have limited capacities, and the adjustment range is relatively small. Hydrogen
storage has excellent advantages for power generation because hydrogen storage can
perform charging and discharging functions and has a wide range of power adjustments.
As can be seen from Figure 8, from 0:00 to 6:00, since the load output is higher than the
wind and light energy export power, batteries and hydrogen energy storage are discharged;
At 6:00–16:00, because the load output is less than the wind and light output power, the
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battery and hydrogen energy storage are charged. From 16:00 to 22:00, the battery and
hydrogen energy storage discharge because the load output is greater than the wind and
light output power. From 22:00 to 24:00, the battery and hydrogen energy storage charge
because the load output is less than the wind and light output power.

Based on the economic and system loss of power supply probability, the system
optimizes the capacity allocation scheme for wind, light, and hydrogen storage systems,
thus achieving the purpose of shaving peaks and filling valleys and restraining power
fluctuation. When the generating power of wind and light is greater than the load output,
the hydrogen storage is optimized by the algorithm to realize “peak clipping”. When the
generating power of wind and light is less than the load output, the hydrogen storage
system is discharged through algorithm optimization to realize “valley filling” of the system
power.

Figure 8 is a power comparison chart before and after system optimization, which is,
respectively, the power comparison in the whole system before and after the optimization
of the hydrogen energy storage system. Before the optimal configuration of the hydro-
gen energy storage system, a variance of the output power of the whole system was
9171.78 kW2. After the optimal configuration, the variance of the whole system’s output
power is 6582.22 kW2, with an obvious decrease in the fluctuation of the output power. The
0-A region represents the supplementary power region where the fuel cell of the hydrogen
energy storage system discharges to supplement wind power and photovoltaic power,
thus achieving the function of “valley filling” for the system power. The area A-B region
represents the electrolyze in the hydrogen storage system for hydrogen storage, to absorb
the force of wind power and photovoltaic, and thus achieve the “peak clipping” effect on
the system power. The B—C region is the same as the 0—A region, and the C—D region is
the same as the A—B region. Meanwhile, the waste power of the hydrogen energy storage
system before configuration is 3.7435 kW, while after configuration, it is 1.8263 kW, which
significantly reduces the waste air volume.

 
Figure 8. Power comparison diagram before and after optimization.

7. Conclusions

In this paper, the influence of wind turbines, photovoltaic systems, hydrogen storage
systems, and battery output ratios on the operation of independent microgrid systems is
considered, which is experimentally verified to improve the degree of renewable energy
consumption.

In this paper, a particle swarm algorithm is proposed to improve the particle swarm
algorithm for dynamically adjusting the inertia weights, establish a capacity optimization
model, and obtain a capacity optimization scheme with the optimal system operating cost,
system loss of power supply probability and system power. The integrated operation
cost of the wind–solar hydrogen storage microgrid system is reduced by 0.431%, and
the variance of the whole system after hydrogen storage configuration is 28.23% of that
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before configuration. The power fluctuation and the rate of abandoning wind and light are
reduced.

The improved IDW-PSO algorithm will improve the optimization accuracy, reduce the
risk of falling into the optimal local solution, and accelerate the iteration speed so that the
system can get the optimal solution faster and better. The improved algorithm is improved
from 142 to 124 iterations, and the accuracy of the results is improved by 0.024%.

This scheme can reduce carbon dioxide and carbon emissions by about 1019.13 km an-
nually in this area. When building the optimal configuration of wind and solar hydrogen
storage systems, considering the economic indicators and power shortage load, the com-
plementary relationship between hydrogen energy storage and storage battery is used to
combine them and realize the suppression of power fluctuations, to achieve the purpose
of peak shaving peaks and filling in valleys, to eliminate the wind and light rejection rate
better, increase system economic efficiency, to reduce the amount of power shortage in the
system, and strive to make the system more environmentally friendly by realizing carbon
neutrality.

This paper in the microgrid capacity optimization configuration model allows for a
wind-optical-hydrogen-storage microgrid system to provide some support. Starting from
the energy demand side, this model can not only configure the capacity of wind, light,
storage battery, and hydrogen storage, but also add more forms of energy—for example,
flywheel energy storage, biological energy storage, pumped storage, and so on. The
system is more environmentally friendly for the application of hydrogen energy storage,
and the interconnection of electricity and hydrogen is used to realize carbon emission
reduction. With the development of time and the application of hydrogen energy, the cost
of hydrogen production is reduced, the difficulty of hydrogen production is reduced, and
the efficiency of hydrogen production is improved. Hydrogen energy storage can optimize
power and energy simultaneously in electricity storage and power generation and will
be further studied. High-density, pollution-free, and sustainable utilization of hydrogen
is a significant trend and the significance of efficient production. In future research, the
load-side model or the model of demand-side response and load-side interaction will be
further considered when optimizing the system to be closer to the actual demand.
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Abstract: After the fault disturbance (DC bi-polar blocking) in the AC/DC hybrid system, when the
battery energy storage system (BESS) near the fault location is used to eliminate the power transfer,
some sensitive and vulnerable transmission lines still have the problem of power flow exceeding the
limit value. Therefore, an optimal configuration of BESS for AC/DC hybrid systems based on power
flow exceeding risk index is proposed, which is used to eliminate the impact of power transfer on
transmission lines. Firstly, considering the line outage distribution factor, the power flow exceeding
risk index is established, which is used to judge the sensitive and vulnerable transmission lines on
the shortest path power flow after the fault in the AC/DC hybrid system. The shortest path power
flow is found by using the Dijkstra algorithm; the transmission lines nodes of the shortest path power
flow are selected as candidate nodes for BESS configuration. Secondly, considering the safe and
stable operation capability of the transmission lines, a multi-objective optimal mathematical model
of BESS configuration for the AC/DC hybrid system is established, which minimizes the annual
investment cost of BESS and maximizes the sum of the power flow exceeding risk index. Finally,
the CEPRI36V7 power grid model in Power System Analysis Software Package (PSASP) is used for
simulation analysis to verify the effectiveness of the proposed method.

Keywords: AC/DC hybrid system; battery energy storage system (BESS); improved power flow
exceeding risk index; fault disturbance; optimal configuration; line outage distribution factor

1. Introduction

With the emergence of new phenomena, such as the widespread interconnection of
power grids and the high penetration of renewable energy, in the past decades, cascading
failures of power systems have caused several large-scale power outages worldwide, such
as the power outages in California [1], and the disconnection accident in the power grid of
Europe [2], which have caused huge economic losses and threatened the stable operation
of power grids.

Due to its good technical and economic benefits in large capacity, long-distance, and
flexible transmission, DC transmission technology has been widely used in long-distance
power transmission, power grid interconnection, and other aspects. DC transmission tech-
nology has improved the ability of friendly large-scale renewable energy and effectively
solved the imbalance between regional supply and demand of electricity [3]. With the con-
tinuous development of HVDC transmission technology and the application of many DC
projects, China has built a large-scale complex AC/DC hybrid power grid [4,5]. However,
the DC blocking fault in the DC transmission converter station will inevitably transfer the
power from the DC transmission line to the AC transmission line, which will cause the
power flow of the AC transmission line to exceed the thermal stability limit power and the
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cascading failure. And then blackout accidents of power systems will happen, which seri-
ously influence the local society and economy [6,7]. Therefore, to ensure the safe and stable
operation of the AC/DC hybrid system, it is of great practical significance to eliminate the
out-of-limit power flow caused by DC power transfer in AC transmission lines.

The energy storage has good dynamic active and reactive power regulation capabilities,
and it can adapt to operational control requirements of different time scales. To reduce
the load shedding after the system failure, improve the system operation flexibility and
stability, and ensures the safe, reliable, and efficient operation of the AC/DC hybrid system,
the DC power transfer of the AC/DC hybrid system is eliminated by using the energy
storage [8]. However, due to the different impact of DC power transfer on other lines,
the energy storage near the fault location is used to eliminate the power transfer after the
fault disturbance (DC bi-polar blocking) in the AC/DC hybrid system, some sensitive and
vulnerable transmission lines still have the problem of power flow exceeding the limit
value. It is necessary to quickly identify the sensitive line set that has a great impact on the
transmission power, and configure the energy storage in this node line, which can quickly
eliminate the power limit, improve the system stability, and prevent the occurrence of
major accidents.

At this stage, the method of identifying the vulnerability of the power system based
on the dynamic characteristics of the power grid has been widely used [9]. In [10], the
risk theory assessment method is used to identify key lines by simulating the hidden fault
model in the chain fault, but it requires many simulation results to determine the probability
of line disconnection through tests, which increases the workload and is difficult to achieve
online application and reduces the practicality of the project. In [11], a vulnerability
assessment method of power grid cascading fault propagation elements based on power
flow entropy is proposed, which can distinguish the vulnerability of branches from impact
and consequence. This method accurately models the physical characteristics of the power
grid and can improve the simulation speed by reducing the fault search space. However,
there is still a contradiction between sampling times and simulation accuracy, which is
difficult to achieve online application. In [12], a comprehensive index is proposed to
identify the vulnerable lines, which applies the impact vulnerability to represent its impact-
resistance ability and the transfer vulnerability to represent the damage caused by its
removal from the system. However, this method does not consider the margin of power
flow out-of-limit capacity of other lines after the disconnected transmission line. The
method of identifying the sensitive and vulnerable transmission lines based on power
flow exceeding risk index is proposed in [13]. The method would not have to repeatedly
calculate the impedance matrix of the line disconnection and connection. But it is difficult
to apply to AC/DC hybrid systems, weak power grids, and other power systems. The
scope of the application is limited. The improved power flow exceeding risk index is used
for AC/DC hybrid systems and other various power systems. And this method preserved
the advantages of traditional methods.

The optimal configuration of BESS is mainly to determine its optimal access location
and capacity, to better play its performance, and to improve the absorption rate of renewable
energy. In [14,15], the proposed coordinated operational planning for wind farms with
BESS is that it can reduce the impacts of wind power forecast errors. Considering the
uncertainty and curtailment rate constraint of wind power, reference [16] focuses on the
BESS configuration method in wind farms. In [17], the capacity allocation of BESS is used to
smooth wind power fluctuations, and the BESS capacity size at different confidence levels
is studied. In [18], this paper proposes a bi-level optimal energy storage system (ESS) siting
and sizing algorithm to mitigate the voltage deviation in distribution networks. A capacity
allocation method of BESS in secondary frequency regulation with the goal of maximum net
benefit is proposed in [19]. The literature [14–19] focuses on a single application scenario,
such as reducing prediction error, improving new energy consumption, and ensuring
power grid stability to achieve BESS configuration, which has significant limitations. They
do not fully explore their advantages in coordinated operation or multiple application
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scenarios. Large BESS capacity needs to be configured, and the utilization rate of BESS
is low.

References [20–22] propose an optimized configuration method for the coordinated
operation of BESS and renewable energy. Collaborative configuration of distributed gen-
eration and BESS in microgrids considering the state of health is studied in [23]. In [24],
considering the uncertainty of the net load, this study provides an approach to analyzing
the BESS demand capacity for peak shaving and frequency regulation. In reference [25], the
feasibility and compatibility of using such idle capacity and power of BESS to participate
in the electricity energy market and reserve ancillary service market are explored, and a
coordinated operation strategy for the three application scenarios of BESS is proposed to
improve its utilization. When the power system is in a steady state, to achieve economic
efficiency, ensure grid stability, and improve the utilization rate of BESS, the optimization
configuration of BESS for the collaborative operation of BESS and renewable energy and
multiple application scenarios of BESS services is studied by domestic and foreign scholars.
But the frequent occurrence of extreme weather would seriously affect the safe and stable
operation ability of the power grid. It is necessary to study the optimal configuration of
BESS considering the influence of extreme weather on the power grid. This can enhance
the safe and stable operation capacity of the power grid.

To cope with the impact of extreme weather, such as typhoons and freezing rain,
on the power grid, BESS has been configured to improve the reliability and flexibility
of the power grid in recent years. Literature [26] takes the load-shedding cost of the
system under extreme events as the toughness index and studies the optimal allocation of
BESS considering the toughness of the distribution network. In [27], a distributed energy
storage planning model for the distribution network considering the influence of typhoon
weather is established, and a decomposition collaborative solution method based on the
Benders decomposition is proposed. In [28], a new quantitative index of toughness and
formulates of a method of BESS planning were proposed to enhance the seismic capacity of
the distribution network. Literature [29] proposed a distribution network BESS planning
method considering toughness and established a two-stage robust optimization model,
which can effectively ensure the uninterrupted power supply of important loads. The above
literature configures BESS to improve the flexibility or toughness of the power grid by
ensuring a continuous power supply of important loads in extreme weather. However, with
the increase in the penetration rate of new energy, the probability of power grid failures has
increased, such as exceeding the power limit of transmission lines and cascading faults in
the power grid. It is very necessary to allocate BESS reasonably after a power grid failure,
such as to quickly eliminate the over-limit of AC line power and improve the stability of the
system; how to reasonably configure BESS after the DC locking fault occurs in the AC/DC
hybrid system.

And then, a large amount of research has been conducted domestically and interna-
tionally on solution methods for BESS optimization configuration. Intelligent optimization
algorithms, such as genetic algorithm [30] and particle swarm optimization (PSO) [31],
have been widely applied. The optimization configuration method proposed provides a
good reference for the solution in this article.

Aiming at the advantages and disadvantages of the existing research, considering the
millisecond level active dynamic response capability of the BESS system, an optimized
configuration of BESS in the AC/DC hybrid system based on the improved power flow
exceeding risk index is proposed. Firstly, the improved power flow exceeding risk index
is established to evaluate the sensitivity and vulnerability of other lines to the transferred
power flow after the branch is disconnected. Secondly, the Dijkstra algorithm is used to find
out the shortest path of the closed loop formed by the breaking line, and the key nodes are
selected as the candidate sites for BESS by calculating the improved power flow exceeding
risk index of the shortest path. Finally, a multi-objective function with the maximum sum
of improved power flow exceeding risk index and the minimum annual investment cost of
BESS is established, and particle swarm optimization (PSO) is used to obtain the optimal
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configuration scheme of BESS in the AC/DC hybrid system. Meanwhile, the BESS system
adopted the active power control strategy, including plant-level control and local control,
which quickly eliminates the power exceeding the limit of the AC line and suppresses the
power fluctuation of the power grid.

This paper is organized as follows: The identification of sensitive and vulnerable lines
is talked about in Section 2. The mathematical model for the optimal allocation of BESS
is proposed in Section 3. The Model-solving method is given in Section 4. In Section 5,
the effectiveness and feasibility performance of the proposed method are examined on the
CEPRI36V7 grid model. Section 6 is the conclusion.

2. Identification of Sensitive and Vulnerable Lines

2.1. Line Outage Distribution Factor

If line A of the AC/DC hybrid system is faulty, and it causes the line disconnection
(DC line causes blocking fault, etc.), which causes the transfer of active power flow in the
system, that is, the active power flow of other lines is changed. The relationship between
the change of normal line power flow and the original power flow of the disconnected line
can be expressed by the Line Outage Distribution Factor (LODF) [32]:

DR−A =
ΔPR−A

PA (1)

where ΔPR−A is the change of line R’s active power flow after line A is disconnected; DR−A
is the LODF that causes the change of line R’s active power flow after line A is disconnected;
PA is the steady-state initial active power of line A.

Assuming that the nodes at both ends of line A are i and j, and the injected active
power remains unchanged before and after disconnection, the change of node active power
flow caused by line A disconnection is

ΔP = [0 · · · 1 · · · − 1 · · · 0]T PA = MAPA (2)

where MA is the node-branch associated n × 1 order column vector of branch A, and the
row corresponds to the node number.

The n × 1 order change Δθ of node voltage phase angle caused by line A disconnection.
Δθ can be expressed as

Δθ = (B − MAx−1
A MT

A)
−1

MAPA (3)

where B is the n × n order admittance matrix; the admittance matrix is sparse type; xA is
the reactance of line A.

Then, the change of active power flow of branch R (R 	= A) caused by line A discon-
nection is

ΔPR−A =
MT

RΔθ

xR
= DR−APA =

MT
R(B − MAx−1

A MT
A)

−1
MAPA

xR
(4)

where MR is the node-branch associated n × 1 order column vector of branch R; xR is the 1
order reactance of line R.

Let B−1 = X, after simplification, the expression of DR−A is:

DR−A =
XR−A/xR

1 − XA−A/xR
(5)

Among them,
XR−A = MT

RXMA (6)

XA−A = MT
AXMA (7)
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where X is the n × n order impedance matrix; XA−A, XR−A is the 1 order self-impedance
and mutual impedance between nodes of port R and port A, respectively.

After the DC blocking fault occurs in the AC/DC hybrid system, the influence of DC
power transfer on the AC line can be measured by calculating the LODF of the AC line.

2.2. The Improved Power Flow Exceeding Risk Index

The improved power flow exceeding risk index takes into account the impact of power
transfer on other lines and the margin of the out-of-limit capacity of line power flow. After
considering the margin of the out-of-limit capacity of line power flow, it is not necessary to
consider the problem of reverse power flow of other lines caused by power flow transfer
separately, which reduces unnecessary calculations, and can better reflect the sensitivity
and vulnerability of other lines, and identify the sensitive and vulnerable lines in the system.
Under the change of power flow of line R caused by the disconnection of line A, the margin
of the out-of-limit capacity of the power flow of line R can be expressed as follows:

When DR−A < 0, this is true, the expression of line power flow out-of-limit capacity
margin is as follows:

ΔP′ =
{ |PR,max + PR| PR ≥ 0
|−PR,max − PR| PR < 0

(8)

When DR−A > 0, this is true, the expression of line power flow out-of-limit capacity
margin is as follows:

ΔP′ =
{|−PR,max + PR| PR ≥ 0

|PR,max − PR| PR < 0
(9)

Combined with the LODF, the improved power flow exceeding risk index is given to
evaluate the sensitivity and vulnerability of other lines to the transferred power flow after
the branch break, as follows:

ΦR−A =
ΔP′

DR−A · PA,max
(10)

where PA,max is the thermal stability limit value of the breaking line.
After a DC blocking fault occurs in the AC/DC hybrid system, the sensitivity and

vulnerability of each AC line can be effectively evaluated by calculating the improved
power flow exceeding risk index of each AC line. The smallest the improved power flow
exceeding risk index of each AC line, the lower its ability to receive the transferred power
flow, and the higher the improved power flow exceeding risk index. This paper selects the
sensitive vulnerability line when the absolute value of the improved power flow exceeding
risk index is less than 0.5. Secondly, after the DC blocking fault occurs in the AC/DC hybrid
system, the DC power flow is mainly transferred to the shortest path that forms a closed
loop with the DC line, so the shortest path set of DC power transfer needs to be searched.

2.3. The Shortest Path Search Based on the Dijkstra Algorithm

Using the knowledge of graph theory, the AC/DC hybrid system is simplified and
abstracted into a graph G (V, E), where V represents the bus set in the grid, E represents
the line set between buses, and the line side weight value is the line reactance. Then, the
shortest path algorithm related to graph theory is adopted.

The shortest path search algorithms in graph theory include the Dijkstra algorithm,
Floyd algorithm, etc. The Dijkstra algorithm has small time complexity and is easy to ex-
pand; the Floyd algorithm has high time complexity and space complexity, which increases
the calculation amount. Its advantage is that it can be used to search the shortest path
of the line with negative weight. Because of the scalability of the Dijkstra algorithm and
the fact that there are no branches with negative weights in the graph, and to meet the
requirements of fast calculation, the shortest path search based on the Dijkstra algorithm
is adopted.
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After the DC blocking fault occurs in the AC/DC hybrid system, the shortest path
forming a closed loop with the DC line can be searched by using the Dijkstra algorithm,
and then the sensitive AC line can be identified by combining the improved power flow
exceeding risk index, and the power input node of the sensitive, vulnerable line is used as
the candidate location for configuring BESS.

3. The Mathematical Model for Optimal Allocation of BESS

3.1. Objective Function

After the DC locking fault occurs in the AC/DC hybrid system, when the system
optimizes the configuration of BESS, it should also have a certain economy while elim-
inating the power flow over-limit on the sensitive and vulnerable lines. Therefore, the
multi-objective function of the optimal configuration of BESS in the AC/DC hybrid system
is as follows:

maxΓ =
K

∑
k=1

∣∣∣∣ ΔP′

Dk−A · Pdc−max

∣∣∣∣ (11)

minGinv =
r(1 + r)y

(1 + r)y − 1
· (c1 · Pe + c2 · Ee) (12)

where Γ is the sum of the improved power flow exceeding risk index of sensitive vulnerable
lines after DC blocking fault; Dk−A is the LODF; Pdc−max is the thermal stability limit
value of DC line; Ginv is the annual investment cost of BESS; c1, c2 are the unit power
cost and capacity cost of BESS; Pe, Ee are the rated power and rated capacity of the BESS,
respectively; r is the annual interest rate of the fund; Y is the life cycle of BESS; K is the
sensitive vulnerability line.

3.2. Constraint

(1) Power balance constraints

M

∑
m=1

PG,m +
N

∑
n=1

PL,n +
S

∑
s=1

PB,s = 0 (13)

where PG,m, PL,n, PB,s are, respectively, the output of generator m, the required power
of load n, and the charging and discharging power of BESS s; S is the quantity of
configured BESS in the system; M and N are the number of generators and the number
of loads in the system.

(2) Line loss constraint

P′
RU2

R ≥ RR · (P′
R

2
+ Q′

R
2
) (14)

where P′
R, Q′

R are the active power and reactive power transmitted by the receiving
end of the R line, respectively; RR is the resistance of the R line; UR is the voltage
amplitude of the receiving terminal node of the Rth line.

(3) Generator power constraint

PG,m ≤ PG,m ≤ PG,m (15)

where PG,m, PG,m are the upper and lower limits of generator output, respectively.
(4) Line power constraint

PL,m ≤ PL,m ≤ PL,m (16)

where PL,m, PL,m are the upper and lower limits of the active power of the transmis-
sion line.

(5) Capacity constraints of BESS

Smin ≤ Sr ≤ Smax (17)

98



Electronics 2023, 12, 3169

where Smin, Smax are the minimum and maximum capacities of BESS, respectively.
(6) Power constraint of BESS charge and discharge

−Pr,max ≤ Pc
r ≤ 0

0 ≤ Pd
r ≤ Pr,max

(18)

where Pr,max is the maximum value of BESS discharge power; Pc
r , Pd

r are the charge
power and discharge power of the BESS system, respectively.

4. Model-Solving Method

The sharing of information among the entire population is beneficial for the population
towards a better position in genetic algorithms. Only the best individual’s information is
shared in PSO, and the entire search process is tracking the optimal solution. So, the PSO
algorithm has faster convergence than the genetic algorithm. And due to its advantages of
high accuracy and fast convergence, the PSO algorithm is widely used in BESS capacity
configuration [33,34]. Therefore, this article chooses the PSO algorithm for solving BESS
capacity configuration.

To reasonably obtain the location of BESS, the PSO algorithm is used to solve for the
optimal capacity of BESS, and the optimal location of BESS is selected from candidate
nodes. Meanwhile, BESS adopts the active power control strategy, including plant-level
control and local control, which quickly eliminates the power exceeding the limit of the AC
line, suppresses the power fluctuation of the power grid, and ensures the safe and stable
operation ability of the power grid.

The specific process is shown in Figure 1, and the solution steps are as follows:

(1) The graph obtained by abstracting the power grid is G0, and the reactance value of
each line in the power system is taken as the weight value of each side;

(2) After DC blocking occurs in the converter station at the sending end, the Dijkstra
algorithm is used to find the shortest path between the converter station and the
designated node;

(3) The branch set contained in the target source point and destination point are combined
to obtain the branch set of power flow transfer;

(4) Calculate the improved power flow exceeding risk index of all branches in the power
flow transfer branch set, and select the branches whose absolute value of the improved
power flow exceeding risk index is less than 0.5 to form the main branch set;

(5) For the lines in the main branch set, if there is a reverse flow and the branch flow
meets |P′

R|≤|PR|, it will be removed from the main branch set (P′
R is the branch flow

after the line is disconnected);
(6) Input parameters. Input PSO controlling variables of the original parameters. Set PSO

algorithm parameters: the maximum iteration number is 300, and the population size
is 200;

(7) Initialize the population. According to Equation (19), the N solutions are generated,
such as the energy storage power and capacity, and they also are guaranteed to satisfy
the condition. The objective function value is calculated for all the scenes using
Equations (11) and (12).

xij = xmin
j + rand() · (xmax

j − xmin
j ) (19)

where i = 1, 2, . . . , N is a D-dimension vector; j = 1, 2, . . . , d; rand() represents
random numbers between 1 and 0; xmax

j , xmin
j are the maximum and minimum values

of particles, respectively;
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(8) Calculate the fitness value for particles by using (20). It is updated local optimal
position and global optimal position by using Equations (21) and (22).

pi =
Fi

N
∑

k=1
Fk

(20)

vij(t + 1) = w × vij(t) + c1 × rand()× (pij(t)− xij(t)
)
+ c2 × rand()× (pgj(t)− xij(t)

)
(21)

xij(t + 1) = xij(t) + vij(t + 1) (22)

where Fi is the corresponding fitness value for particles I; vij(t + 1), vij(t) are the
velocity of the ith particle at t + 1, t times, respectively; w is the inertia factor; w = 0.8,
c1 and c2 are the learning rate; c1 = 0.9, c2 = 0.9. pij(t), pgj(t) respectively represent
the individual optimal value and the global optimal value of particles;

(9) Output optimal solution. If the iteration number is greater than the set value, then
output the Parote optimal. Otherwise, return to step (7).

 

Figure 1. Solution flow of BESS optimization configuration.

5. Simulation Analysis

5.1. Parameter Design

The CEPRI36V7 power grid model in the power system analysis comprehensive program
(PSASP) was used for simulation analysis to verify the effectiveness of the proposed BESS con-
figuration strategy. The parameters of the CEPRI36V7 model are referred to in reference [35].
The topology of the CEPRI36V7 model is shown in Figure 2. The parameters of the CEPRI36V7
model are referred to in reference [35]. The node parameters, generator parameters, and branch
parameters of the CEPRI36V7 model are shown in Tables 1–3, respectively.
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Figure 2. The power grid structure of CEPRI36V7.

Table 1. The node parameters of the CEPRI36V7 model.

Bus_i Type Pd/MW Qd/Mvar Base/kV Bus_i Type Pd/MW Qd/Mvar Base/kV

1 3 0 0 10.5 19 1 86.4 66.2 220

2 1 0 0 20 20 1 71.9 47.4 220

3 2 0 0 10.5 21 1 70 50 220

4 1 0 0 15.7 22 1 226.5 169 220

5 1 0 0 10.5 23 1 287 144 220

6 2 0 0 10.5 24 1 0 0 220

7 2 0 0 10.5 25 1 0 0 500

8 2 0 0 10.5 26 1 0 0 500

9 1 376 221 220 27 1 0 0 500

10 1 0 0 20 28 1 0 0 500

11 1 0 0 500 29 1 520 10 220

12 1 0 0 500 30 1 0 0 220

13 1 0 0 500 31 1 0 0 220

14 1 0 0 220 32 1 0 0 220

15 1 0 0 20 33 1 0 0 220

16 1 500 230 220 34 1 0 0 220

17 1 0 0 20 35 1 0 0 0

18 1 430 220 220 36 1 0 0 0
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Table 2. The generator parameters of the CEPRI36V7 model.

Bus Pg/MW Qg/Mvar Vg/p.u.

1 0 0 1

2 600 360 1

3 310 0 1

4 160 70 1

5 430 334 1

6 −1 0 1

7 225 0 1

8 306 0 1

Table 3. The branch parameters of the CEPRI36V7 model.

Fbus Tbus r x b Ratio Fbus Tbus r x b

11 25 0 0.0001 0 0 31 32 0 0.0001 0
12 26 0 0.0001 0 0 9 22 0.0559 0.218 0.3908
12 27 0 0.0001 0 0 9 23 0.0034 0.0131 0
13 28 0 0.0001 0 0 9 24 0.0147 0.104 0
14 19 0.0034 0.02 0 0 24 1 0 0.015 0
16 18 0.0033 0.0333 0 0 9 2 0 0.0217 0
16 19 0.0578 0.218 0.3774 0 22 3 0 0.0124 0
16 20 0.0165 0.0662 0.4706 0 19 4 0 0.064 0
16 21 0.0374 0.178 0.328 0 18 5 0 0.0375 0
16 29 0 0.0001 0 0 30 7 0 0.0438 0
18 34 0 0.001 0 0 31 8 0 0.0328 0
19 21 0.0114 0.037 0 0 12 15 0 0.018 0
19 30 0.0196 0.0854 0.162 0 6 17 0 0.0337 0
20 22 0.0214 0.0859 0.6016 0 9 10 0 −0.002 0
21 22 0.015 0.0607 0.4396 0 14 15 0 −0.002 0
22 23 0.0537 0.19 0.3306 0 13 17 0 0.01 0
23 24 0.0106 0.074 0 0 11 10 0 0.018 0
25 26 0.0033 0.0343 3.7594 0 36 15 0 0.0001 0
27 28 0.00245 0.0255 2.79 0 16 17 0 0.001 0
29 33 0 0.0001 0 0 35 10 0 0.001 0
30 31 0 0.0001 0 0

The capacity of the CEPRI36V7 power grid is 2600 MW, and nodes 33 to 34 are DC
transmission lines, with a DC transmission capacity of 2 × 200 MW; DC power flows
from 33 nodes to 34 nodes, and nodes 10, 15, and 17 in the system are the central nodes of
three-winding transformers T1, T2, and T3.

This article uses lithium BESS. The maximum rated power and capacity of the total
installed BESS are 800 MW and 1600 MW. h respectively, and the cost coefficients are
1500 yuan/kW and 2000 yuan/kWh. The charge and discharge rate of BESS is 0.5 C.

5.2. Sensitive Line Identification

The simplified structure of the power grid is shown in Figure 3. The red line represents
the DC bipolar locking fault line. The blue line and black line represent the non-shortest
path AC line. The green line represents the shortest path AC line. The converter station
of node 33 has a DC bipolar locking fault, and the Dijkstra algorithm is used to obtain the
shortest path composed of node 33 and node 34, namely: 33, 31, 30, 19, 14, 15, 12, 27, 28, 13,
17, 16, 29, and 34, a total of 13 AC lines. The power change curve of the AC line is shown in
Figures 4 and 5 after the converter station of node 33 has a dual-machine locking fault at
5 s.
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Figure 3. The simplified grid structure of CEPRI36V7.

 
Figure 4. Change curve of AC line after DC blocking.

 
Figure 5. Power change curve of the shortest path line after DC blocking.
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It can be seen from Figure 4 that the power variation of lines L19-14 and L14-15 is the
largest, with a power variation greater than 2 p.u., and the power variation of other lines is
less than 1.3 p.u. It can be seen from Figure 5 that the power variation of the AC line on the
shortest path is greater than 1.5 p.u. It can be seen that after the DC bipolar locking fault,
the power flow is mainly in the shortest path composed of node 33 and node 34.

The improved power flow exceeding risk index of each line on the shortest path is
shown in Table 4 after the bipolar locking fault occurs at the converter station of node 33
at 5 s. From Table 4, it can be seen that the absolute value of the improved power flow
exceeding risk index of lines L30-31, L19-30, L14-19, L15-14, L15-12, L17-13, L17-16, and
L16-29 is less than 0.5, so the above AC lines are sensitive and vulnerable. Since node 15
and node 17 are the central nodes of the three-winding transformer, and BESS is configured
at the sending end of the AC line, the candidate nodes for BESS are 31, 19, 14, and 16.

Table 4. The improved power flow exceeding risk index of the shortest path.

AC Line Initial Power/p.u. Power after Fault/p.u. LODF
The Improved Power Flow

Exceeding Risk Index

L31-33 4.00 0.00 −1.00 1.67

L30-31 1.02 −2.98 −1.00 0.41

L19-L30 −1.20 −5.17 −1.00 0.70

L14-19 −0.34 −2.94 −0.82 0.42

L15-14 −0.34 −2.94 −0.65 0.32

L15-12 0.34 2.94 0.65 0.14

L12-27 4.86 7.18 0.58 1.29

L27-28 4.86 7.18 0.58 1.29

L13-28 −4.61 −7.04 −0.61 3.70

L17-13 −4.80 −7.04 −0.56 3.22

L17-16 4.79 7.01 0.56 0.36

L16-29 2.38 6.20 1.02 0.32

L29-L34 −3.82 0.00 −0.96 2.15

5.3. Optimization Configuration Results of Single BESS

To verify that the BESS is configured in the sensitive and vulnerable line, the BESS
to improve the improved power flow exceeding risk index is the best. Firstly, the PSO
algorithm is used to obtain a set of Pareto solutions of the BESS configuration capacity and
location, as shown in Table 5.

Table 5. The single BESS configuration capacity and location.

ESS Power/MW ESS Capacity/MW·h ESS Location
Annual Investment
Cost/Million Yuan

the Sum of the Improved Power
Flow Exceeding Risk Index

541.15 541.15 × 2 31 443.47 24.18

276.31 276.31 × 2 16 226.44 18.29

391.88 391.88 × 2 16 321.15 19.47

From Table 5, there are two sets for the BESS configuration at node 16. There are
two sets for the BESS configuration at node 16. The annual investment cost of BESS is
226.44 million yuan and 321.15 million yuan. Similarly, the BESS configuration also obtains
the optimal solution at 31 nodes; the annual investment cost of BESS is 226.44 million yuan
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and 443.47 million yuan. Therefore, we obtained the lowest annual investment costs in
Pareto solutions in Table 2.

To verify that the PSO algorithm has obtained the optimal solution, the iterative
convergence curve comparison between PSO and GA (Genetic algorithm) is shown in
Figure 6. According to the iterative convergence curve of Figure 6, it can conclude that the
PSO has fewer convergence times, more effectively avoid local convergence, and has better
stability than the GA. We know that the PSO algorithm can obtain the optimal solution.

 
(a) 

(b) 

Figure 6. The iterative convergence curve. (a) Iterative convergence curve of energy storage annual
investment cost. (b) Iterative convergence curve of the sum of improved power flow exceeding the
risk index.

Then, the following three scenarios are compared and analyzed: (1) the BESS is
configured in a node in the sensitive and vulnerable line, and 31 nodes are selected in this
paper; (2) the BESS is configured in the nodes in the shortest path except for the sensitive
and vulnerable lines. This paper selects 27 nodes; (3) 21 nodes are selected for other nodes
with BESS configured outside the shortest path. Under the three conditions, each node is
connected to 541.15 MW of BESS, and the improved power flow exceeding risk index of
sensitive and vulnerable AC lines is shown in Tables 6–8.
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Table 6. The improved power flow exceeding risk index of the AC line with vulnerability after node
31 is connected to BESS.

AC Line
Initial

Power/p.u.
Power after
Fault/p.u.

LODF
The Improved Power Flow

Exceeding Risk Index

L30-31 1.02 −1.68 −0.68 −0.71

L14-19 −0.34 −1.3 −0.41 −0.83

L15-14 −0.34 −1.3 −0.24 −0.87

L15-12 0.34 1.3 0.24 0.39

L17-16 4.79 6.37 0.39 0.51

L16-29 2.38 6.79 1.1 0.29

Table 7. The improved power flow exceeding risk index of the AC line with vulnerability after node
27 is connected to BESS.

AC Line
Initial

Power/p.u.
Power after
Fault/p.u.

LODF
The Improved Power Flow

Exceeding Risk Index

L30-31 1.02 −2.98 −1 −0.48

L14-19 −0.34 −4.17 −1.13 −0.3

L15-14 −0.34 −4.17 −0.96 −0.22

L15-12 0.34 4.17 0.96 0.1

L17-16 4.79 6.36 0.39 0.51

L16-29 2.38 6.69 1.08 0.3

Table 8. The improved power flow exceeding risk index of the AC line with vulnerability after node
21 is connected to BESS.

AC Line
Initial

Power/p.u.
Power after
Fault/p.u.

LODF
The Improved Power Flow

Exceeding Risk Index

L30-31 1.02 −2.98 −1 −0.48

L14-19 −0.34 −1.69 −0.51 −0.67

L15-14 −0.34 −1.69 −0.34 −0.61

L15-12 0.34 1.69 0.34 0.27

L17-16 4.79 6.9 0.53 0.38

L16-29 2.38 7.03 1.16 0.28

It can be seen from Tables 6–8 that after the BESS is arranged at the 31 nodes of the
sensitive and vulnerable line, the risk index of tidal current out-of-limit of lines L31-30,
19-14, L14-15 and L17-16 exceeds 0.5, and only the risk index of tidal current out-of-limit of
lines L15-12 and L16-29 is lower than 0.5; After the BESS is arranged at 27 nodes, only the
improve power flow exceeding risk index of line L17-16 exceeds 0.5, and the improve power
flow exceeding risk index of other lines does not exceed 0.5; After the BESS is configured at
node 21, the improve power flow exceeding risk index of lines 19-14 and L14-15 exceeds
0.5, and the improve power flow exceeding risk index of other lines does not exceed 0.5; It
can be seen that the BESS configuration on the sensitive and vulnerable lines has greatly
improved the safe operation ability of AC lines.

It can be seen from Figures 7–9 that after the BESS is incorporated into 31 nodes, it
is helpful to suppress the oscillation of line power, and the change of line power is lower
than 1.5 p.u; after the BESS is incorporated into 27 nodes, the oscillation of line power is
increased, and the power variation of some lines is greater than 1.5 p.u; after the BESS is
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connected to 21 nodes, the power of AC lines on the shortest path changes irregularly, and
the power of some lines increases gradually after 17 s, greatly reducing the system stability.
It can be seen that only when the BESS is connected to the sensitive and vulnerable lines
that the safe and stable operation capacity of the AC lines can be effectively improved.

 

Figure 7. The shortest path power change curve after BESS is connected to node 31.

 
Figure 8. Shortest path power change curve after BESS access node 27.

 

Figure 9. The shortest path power change curve after BESS is connected to node 21.

107



Electronics 2023, 12, 3169

5.4. Optimization Configuration Results of Multi-BESS

When the system configures two and three BESS, a set of Pareto solutions is shown in
Table 9. The improved power flow exceeding risk index of sensitive and vulnerable AC
lines after configurations two and three BESS is shown in Tables 10 and 11. The shortest
path power change curve after BESS is shown in Figures 10 and 11.

Table 9. The multi-BESS configuration capacity and location.

Nodes BESS Power/MW
ESS

Capacity/MW·h BESS Location
Investment and

Construction
Costs/Million Yuan

the Sum of the Improved
Power

Flow Exceeding Risk Index

2 nodes
88.09 88.09 × 2 29

248.89 17.78
299.25 299.25 × 2 31

3 nodes
88.09 88.09 × 2 29

248.89 17.7811.87 11.87 × 2 19

287.38 287.38 × 2 31

Table 10. The improved power flow exceeding risk index of sensitive and vulnerable AC lines after
the configuration of two BESS.

AC Line
Initial

Power/p.u.
Power after
Fault/p.u.

LODF
The Improved Power Flow

Exceeding Risk Index

L30-31 1.02 −2.98 −1 −1.38

L14-19 −0.34 −4.17 −1.13 −1.48

L15-14 −0.34 −4.17 −0.96 −0.5

L15-12 0.34 4.17 0.96 0.5

L17-16 4.79 6.36 0.39 0.58

L16-29 2.38 6.69 1.08 0.5

Table 11. The improved power flow exceeding risk index of sensitive and vulnerable AC lines after
configuration three BESS.

AC Line
Initial

Power/p.u.
Power after
Fault/p.u.

LODF
The Improved Power Flow

Exceeding Risk Index

L30-31 1.02 −2.98 −1 −1.24

L14-19 −0.34 −1.69 −0.51 −1.48

L15-14 −0.34 −1.69 −0.34 −0.5

L15-12 0.34 1.69 0.34 0.5

L17-16 4.79 6.9 0.53 0.58

L16-29 2.38 7.03 1.16 0.5

It can be seen from Table 6 that when two and three BESS are configured on sensitive
lines, the total power of the BESS is the same, and the annual investment cost and the sum
of improved power flow exceeding risk index are also the same. Moreover, the sum of
the power of 19 nodes and 31 nodes, when three BESS are configured on sensitive lines, is
equal to the sum power of configured two BESS. It can be seen from Tables 7 and 8 that the
improved power flow exceeding risk index for sensitive and vulnerable AC lines is greater
than 0.5, and when three BESS are configured, the impact on the improved power flow
exceeding risk index is relatively small. It can be seen from Figures 9 and 10 that when two
and three BESS are configured for sensitive lines, the power variation of the line is much
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lower than configuring one BESS for sensitive lines. And suppressing power oscillation
is greatly improved. We know that configuring BESS for multiple nodes eliminating the
impact of DC power transfer on AC lines is better than the BESS configured for a single
node. Configuring BESS for multiple nodes to improve the safe and stable operation ability
of AC lines is better than the BESS configured for a single node. Secondly, when the
configured BESS quantity is greater than 2, it has a small impact on the sum of improved
power flow exceeding risk index and annual investment cost.

 
Figure 10. Shortest path power change curve after configuring 2 BESS.

 
Figure 11. Shortest path power change curve after configuring 3 BESS.

6. Conclusions

The method of identifying the sensitive and vulnerable transmission lines based
on improved power flow exceeding risk index is proposed, and it can apply to AC/DC
hybrid systems, weak power grids, and other power systems. And the proposed method
can quickly identify the sensitive and vulnerable transmission lines in the shortest path
and simplify the method of calculating the branch disconnection coefficient. The method
would not have to repeatedly calculate the impedance matrix of the line disconnection
and connection.
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The optimal energy storage configuration can be obtained by the multi-objective
optimal mathematical model, including minimizing the annual investment cost of BESS
and maximizing the sum of the improved power flow exceeding the risk index of the
sensitive and vulnerable transmission lines. The BESS for sensitive and fragile lines can
quickly eliminate the impact of DC power transfer on AC lines, and the BESS can also
suppress power fluctuations and greatly improve the transient stability operation ability of
the power grid.

The proposed energy storage configuration method does not only improve the tran-
sient stability of the power grid. Simultaneously, during the stability power grid, the
configured energy storage can actively supports voltage, frequency, etc. The configuration
method proposed in this article enriches the application scenarios of energy storage. The
safe and stable operation ability of the system is greatly improved.

In the future, we will study the HIL implementation of the proposed system along with
the proposed optimal allocation method. After this, the fault disturbance, power system
planning BESS resources will be explored through the robust optimization-based model.
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Abstract: The accelerated urbanization process has been considered to be the root cause of increasingly
severe energy consumption growth in China. However, energy is still an essential factor for the
urbanization process, so arbitrarily mitigating energy use currently will unquestionably slow down
the urbanization process. The principal contribution of this paper is to comprehensively analyze
the dynamic interaction mechanism between the new-type urbanization and energy consumption,
and further put forward a new idea of comparing the benefit of an increase in the level of new-type
urbanization resulting from energy consumption and the negative externality of environmental
damage related with energy consumption. This paper conducts an empirical study on the causal
relationship between new-type urbanization and energy consumption using Chinese provincial
administrative units from 1999 to 2020. And we find that new-type urbanization leads to energy
consumption negatively and energy consumption leads to new-type urbanization positively for
provinces in the eastern region. There is only a one-way effect of energy consumption on new-type
urbanization for provinces in the central and northeastern regions, and there is negative feedback
causality for provinces in the western region. Additionally, the benefit of an increase in the level of
new-type urbanization resulting from energy consumption is larger than the negative externality
of environmental damage related to energy consumption for provinces in the eastern, central, and
northeastern regions, yet it is totally opposite for provinces in the western region. Finally, we propose
some fruitful policy recommendations to construct new-type urbanization under the background of
clear reduction targets for energy consumption in China.

Keywords: new-type urbanization; energy consumption; environmental Kuznets curve;
PVAR approach

1. Introduction

When the “Reform and Opening-up” policy was put into practice in the year of 1978,
China’s urbanization experienced a steady upward trend [1,2]. According to the statistics
from the National Bureau of Statistics (NBS), China’s urbanization rate increased from
17.9% in 1978 to 65.2% in 2022. Nevertheless, much of China remains to be urbanized,
especially the inland regions. As China has a larger population, millions of rural residents
will move into urban areas every year during to-be urbanization process. Although China’s
urbanization greatly raises people’s living standards, it has also been deemed to be the
root cause of increasingly severe energy consumption growth; for example, the heavy use
of fossil energy, which undoubtedly brings about a series of environmental pollution [3].
The total energy consumption in China even made up 23.6% of the global total in the year
2018 [4]. Specifically, urban areas solely account for 75.15% of total energy consumption in
China [5]. As a responsible country, China has been determined to set clear reduction targets
for energy consumption. Because the urbanization process in China is still accelerating at
present, energy is still an essential factor for the urbanization process. Arbitrarily mitigating
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energy use currently will unquestionably slow down the urbanization process. Therefore,
there are two kinds of opposite effects simultaneously, which are the benefit of an increase in
the level of urbanization resulting from energy consumption and the negative externality of
environmental damage related to energy consumption respectively. Could the advantages
sufficiently offset the disadvantages? Investigating these two kinds of opposite effects has
vital theoretical and practical significance for promoting the urbanization process under the
background of clear reduction targets for energy consumption in China. If the advantages
of energy consumption outweigh its disadvantages, it pays to promote the urbanization
process by increasing energy consumption. However, if energy consumption does not
promote or even adversely affect the urbanization process, an energy conservation policy
should be adopted to offset the negative externality of environmental damage related to
energy consumption.

Previous studies have extensively investigated this subject, yet the majority empha-
sized the one-way effect of urbanization on energy consumption in the beginning. Many
scholars found that the urbanization process leads to energy consumption growth [6–9].
In contrast, some scholars argued that urbanization may lead to energy consumption
negatively [10–16]. Based on Northam [17], the third strand of research further examined
the nonlinear relationship between the two due to the mixed findings. Most scholars
confirmed that the nexus of the two is indeed nonlinear [2,18–20]. Another branch of the
literature used city size as a proxy variable for urbanization rate, which indicated that
there also was a nonlinear relationship between city size and energy consumption [21,22].
There are two kinds of explanations for the nonlinear relationship between the two. On
the one hand, the essence of urbanization can be ascribed to the agglomeration effect, scale
effect, and spatial spillover effect, which are conducive to reducing the energy consumption
of residents or increasing energy efficiency [5,14,23–25]. On the other hand, the urban-
ization process reduces energy consumption through industrial structure upgrading and
technical innovation [19,26–28].

The level of urbanization is mainly measured by the single index method in the above
studies. These simple indicators can only mirror the level of population-oriented urbaniza-
tion rather than the improvement of production and lifestyle. Especially after China issued
the “National New-type Urbanization Plan” in 2014, human-centered urbanization has
been put into practice. Therefore, investigating the relationship between new-type urban-
ization and energy consumption has much more practical significance currently. Recently, a
few scholars used the comprehensive index method to measure its connotation and further
examine its effect on energy consumption. Liu et al. [14] used a spatial econometric model
for China’s regions on this subject and found that new-type urbanization leads energy
consumption negatively, yet its effect on adjacent areas or the spatial spillover effect is
positive. Lin and Zhu [4] examined the effect of new-type urbanization on energy saving
and its transmission channels based on Chinese cities and found that it can bring about an
energy-saving effect. Yu [29] examined the ecological effect of new-type urbanization and
found that China’s new-type urbanization can improve energy efficiency. Feng et al. [30]
examined the effect of new-type urbanization on energy efficiency based on Chinese cities
and found that it has a double-threshold effect. Shao and Wang [31] examined the effect
of new-type urbanization on green total factor energy efficiency and found that it has a
heterogeneous effect for different cities. Not surprisingly, the relationship between the
two is much more complicated compared to traditional urbanization.

Apart from that, as an essential factor of economic development, energy consump-
tion is also conducive to promoting the level of urbanization. Ghosh and Kanjilal [32]
investigated the cointegration relationship between the two for India and found that there
is causality running from energy consumption to urbanization. Wu et al. [2] estimated
the direct effects of various energy consumption patterns in China and found that energy
consumption leads to urbanization positively, and the positive effect is dependent on en-
ergy consumption intensity, energy consumption scale, and energy consumption structure.
Xu and Wang [33] examined the threshold effect of energy consumption on new-type

114



Sustainability 2023, 15, 11117

urbanization in China and found that there was a significant threshold effect. Some schol-
ars further explored how energy consumption affected the urbanization process. These
studies found that the carbon emission reduction effect [34], agglomeration economy effect
and economies of scale [32,35,36], and the industrial structure effect [36–38] are primary
transmission channels through which energy consumption affects urbanization.

The above studies in this field indicate that there should be a bi-directional causality
between the two. So far, a wealth of studies primarily investigated uni-directional causality
on this subject, yet the bi-directional causality between the two is still scarce. Comparatively,
a large body of studies proved that economic growth and energy consumption present a
bi-directional causal relationship [39–44]. As urbanization is widely considered a symbol
of economic development [37–39], an abundance of support can be indirectly found for the
bi-directional causality relationship on our subject. To the best of our knowledge, only Tang
et al. [45] explored the two-way correlation mechanism between new-type urbanization
and clean energy consumption based on Chinese provincial data and found that there is a
significant two-way promoting effect between the two. To sum up, the extant literature in
this field actually denotes that energy consumption probably affects urbanization by means
of its effects on economic development.

Despite the existing studies in this field having explored extensively the relationship
between the two, there are still a few drawbacks on this subject. Firstly, the bulk of empirical
studies simply examined how urbanization affects energy consumption, or whether energy
consumption promoted the level of urbanization, and these empirical results did not
compare the benefit of an increase in the level of urbanization resulting from energy
consumption and the negative externality of environmental damage related to energy
consumption, so they cannot provide corresponding policy implications for promoting the
urbanization process. Secondly, there should be a bi-directional causality between the two,
and the existing studies mainly examined the one-way effect of urbanization on energy
consumption. Thirdly, the empirical studies on this subject are generally conducted based
on the linear relationship hypothesis, and the estimated results are always inconsistent.
The nonlinear relationship hypothesis may be more realistic, especially for the effect of new-
type urbanization, which remains to be further examined empirically. In this regard, our
study makes the following contributions. Firstly, this paper comprehensively analyzes the
dynamic interaction mechanism between new-type urbanization and energy consumption,
aiming to reveal the bi-directional causality between the two and extend the depth and
breadth of this subject. Secondly, this paper put forward a new idea of comparing the benefit
of an increase in the level of new-type urbanization resulting from energy consumption and
the negative externality of environmental damage related to energy consumption, which
can provide targeted policy recommendations. Thirdly, this paper creatively explains
the estimated results with the concept of the well-known Environmental Kuznets Curve
(EKC) hypothesis based on some energy-related data, which not only adds new empirical
evidence for the EKC relation but also provides a robustness test for our regression results
given that new-type urbanization and energy consumption factually present the two-way
causal relationship.

The remainder of this article is arranged as follows. The following section introduces
the measurement methods and analysis of the measurement results; Section 3 outlines the
econometric specification and presents empirical results; and Section 4 concludes.

2. Measurement Methods and Analysis of Measurement Results

2.1. Measurement Methods

The most critical things are methods for calculating the level of new-type urbanization
and energy consumption in this paper. According to Ma et al. [46], the amount of energy
consumption per capital is applied to measure the level of energy consumption. Similar to
the existing studies [4,47], the composite index method is used to fully measure the level
of new-type urbanization. The index system is made up of two levels, which include a
total of 19 computable indices, as is shown in Table 1. To overcome some shortcomings
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of the subjective weighting method, the entropy method is employed to calculate the
constructed comprehensive urbanization index. The “+” and “−” of Index Attributes in
Table 1 signify the influence of 19 computable indices on the comprehensive index, and
“+” indicates an increase in the metric of indices would promote the comprehensive index, and
“−” indicates an increase in the metric of indices would decrease the comprehensive index.

Table 1. China’s comprehensive urbanization index system. Reprinted from [48]. Copyright
5584080645167 (2023) with permission from Elsevier.

Index I Index II Index Attribute

Population

Urban population density +
Full-time equivalent of R&D personnel +

Urban population ratio +
Number of college degrees or above per

ten thousand people +

Proportion of employed persons in the
tertiary industry +

Economy

Gross domestic products per capita +
Consumption proportion of urban to rural residents −

Disposable income of urban household per capita +
Tertiary industry as a percentage of regional GDP +

Living environment

Urban wastewater treatment ability per day −
Green covered area as a percentage of completed area +

Greenery area of per capital park +
Area under a cleaning program per square kilometer

of built-up area +

Living conditions

Urban gas access rate +
Urban water access rate +

Number of public toilets per ten thousand people +
Number of public transportation vehicles per ten

thousand people +

Urban per capita area of paved roads +
Number of patent grants per ten thousand people +

The sample data of our empirical research spans 22 years, from 1999 to 2020, and
includes all provincial administrative units in China. The original data for energy con-
sumption are obtained from the China Energy Statistical Yearbook and the China Statistical
Yearbook. All relevant data for calculating the comprehensive urbanization index are
obtained from the China Statistical Yearbook, China Energy Statistical Yearbook, China City
Statistical Yearbook, China Statistical Yearbook on Science and Technology, each provincial
statistical yearbook, and so on. Considering the data unavailability, Tibet, Hong Kong,
Macao, and Taiwan are deleted from the sample in our empirical study. Consequently,
the research sample finally consists of 30 provincial administrative units. And these
30 provincial administrative units can be classified into four categories according to the
National Bureau of Statistics: east, northeast, central, and west. So as to cancel the impact
of the price level in different years, all data related to nominal GDP are revised to a constant
price based on the 1999 price index in the process of computation.

2.2. Analysis of Measurement Results

According to the specific calculation method introduced above, the provincial level of
energy consumption in China from 1999 to 2020 is calculated firstly. To visually describe the
characteristics of the temporal–spatial evolution in the provincial level of energy consump-
tion, the measurement results are reported in the form of topographic maps. Figure 1 shows
the concrete results. Due to space constraints, the results from 1999, 2007, 2013, and 2020
are only displayed. It can be clearly seen in Figure 1 that the dark blue areas represent the
highest level of energy consumption in 30 provincial administrative units. Obviously, the
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number of dark blue regions increased from zero in 1999 to ten in 2020. For the convenience
of discussions, all provincial administrative units are called “province”. Therefore, we can
conclude from these results that the provincial level of energy consumption in China is on
the rise over the study period [43,49]. And in 2020, the provincial level of energy consump-
tion demonstrated visible spatial differentiation. Among the provinces with the highest
level of energy consumption, four provinces lie in the western region: Xinjiang, Qinghai,
Gansu, and Inner Mongolia. Four provinces, Beijing, Shanghai, Hebei, and Jiangsu, are
in the eastern region. Only one province, Shaanxi, lies in the central region, and only
one province, Liaoning, lies in the northeastern region. Generally, the western region has
the highest level of energy consumption among the four types of regions, followed by
the eastern region. And the rest of the two regions have comparatively lower levels of
energy consumption. The provincial level of energy consumption from the eastern to the
central, northeastern, and western regions is similar to the U-shaped curve [49]. The spatial
characteristics of the provincial level of energy consumption imply preliminarily that it is
necessary to give thought to regional heterogeneity on this subject.

Figure 1. Chinese provincial level of energy consumption for some years (million tons).

Then, the comprehensive urbanization index is calculated by the widely used entropy
method. To visually describe the characteristics of the temporal–spatial evolution of
this index, the measurement results are reported similarly in the same way. Figure 2
shows the concrete results. Due to space constraints, the results from 1999, 2007, 2013,
and 2020 are only displayed. It can be clearly seen in Figure 2 that the dark blue areas
represent the highest level of new-type urbanization in 30 provincial administrative units.
Obviously, the number of dark blue regions is zero in 1999, yet nearly all provinces in
the eastern and central regions belonged to the highest group in 2020. Therefore, we can
conclude from these results that the provincial level of new-type urbanization has also
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increased greatly over the study period, especially after the year 2013 [2,4,49]. On the
one hand, the main reason for these time series characteristics can be probably ascribed
to the “National New-type Urbanization Plan”, which makes the economy, society, and
ecology balanced in the process of urbanization. On the other hand, the increase in the level
of energy consumption may also be conducive to speeding up the process of urbanization.
And in 2020, the provincial level of new-type urbanization has also displayed significant
spatial differentiation. Specifically, the majority of provinces have achieved the highest
status in 2020. And only a few provinces have not reached the highest level, these are
Xinjiang, Jilin, Shanxi, Gansu, Guizhou, Qinghai, Yunnan, and Guangxi. Additionally,
these provinces mainly lie in the western and central regions. The average comprehensive
urbanization index of the provinces in the eastern, central, northeastern, and western
regions is calculated to be 0.299, 0.169, 0.188, and 0.159, respectively, which verifies that the
provincial level of new-type urbanization looks like the inverted S-shaped curve, which is
slightly different with the provincial level of energy consumption [46,47]. Therefore, the
spatial characteristics of the provincial level of new-type urbanization further imply that it
is necessary to give thought to regional heterogeneity on this subject.

Figure 2. Chinese provincial level of new-type urbanization for some years.

To display the tendency intuitively, the growth rate of the above measured variables is
depicted with a scatter diagram in Figure 3 for the four groups, eastern (Figure 3a), central
(Figure 3b), northeastern (Figure 3c), and western regions (Figure 3d), respectively. In
Figure 3, the relationship between comprehensive urbanization index growth and energy
consumption growth is significantly different in the four groups. Specifically, there seems to
be a strong relationship between the northeast and western regions, yet no such relationship
emerges in the eastern and central regions. These results further prove that we cannot
neglect the “one size for all” homogeneity issue among provinces when investigating
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the causal relationship between the two, and it is reasonable to classify the data into
four groups: east, northeast, central, and west. Secondly, the weak relationship between
the two in the eastern and central regions denotes there may be a nonlinear relationship
between comprehensive urbanization index growth and energy consumption growth, and
the traditional linear model is not suitable for this subject. Nevertheless, it should be
noted that these kinds of scatter charts roughly reflect the possible correlation relationship
between the two, and the exact relationship between the two remains to be confirmed
rigorously by employing reasonable econometric models.

Figure 3. Comprehensive urbanization index growth vs. energy consumption growth.

3. PVAR Model Regression Results and Analysis

3.1. Model Specification

So as to fully reveal the causal on this subject, the panel vector autoregression (PVAR)
model is employed to conduct empirical research. Compared with the widely used vector
autoregression (VAR) model, the PVAR model has the advantage of dealing with long-
term panel data and endogenous causality in the traditional linear regression model. The
corresponding PVAR model is constructed as follows:

Yit = Γ0 +
n

∑
p=1

ΓpYit-p + δi + ft + εit

where the subscripts i and t denote province and year, respectively; Yit is a multi-dimensional
variable, which is NU and EC, representing the level of new-type urbanization and energy
consumption, respectively, measured by the methods introduced hereinabove; Yit-p is a
p-period lag term of Yit; and δi and ft indicate individual province fixed effects and year
fixed effects, respectively. εit is termed the random disturbance.

As the PVAR model includes the lag term of dependent variables and individual
province fixed effects, it can be considered a typical dynamic panel data model. Thus, the
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OLS estimation will be biased and inconsistent. Therefore, the system GMM proposed by
Blundell and Bond [49] is used to estimate the PVAR model. The PVAR model is commonly
conducted by the following steps [50,51]. Firstly, the stationarity of the panel data and the
causal relationship between NU and EC have to be tested. Secondly, the optimal lag order
needs to be selected, and the PVAR model can be estimated logically. Thirdly, the impulse
response graph will be displayed based on the PVAR model regression. The last step is the
variance decomposition.

3.2. PVAR Model Regression Analysis
3.2.1. Stationarity Tests

First of all, it is necessary to inspect the stationarity of time series variables. The IPS,
Fisher-ADF, and Fisher-PP are comprehensively used to implement unit root tests, and the
results are reported in Table 2. In Table 2, the p-values of all tests for the first-difference
series of NU and EC are all 0.000, which rejects the null hypothesis at the 1% significance
level. Hence, we can conclude that the first-difference series of NU and EC are stationary.
In other words, these original data are integrated processes of order one.

Table 2. Unit root test results.

Variables
IPS Fisher-ADF Fisher-PP

Statistics p-Value Statistics p-Value Statistics p-Value

NU −3.272 0.001 107.964 0.000 39.533 0.988
NU−1 −13.091 0.000 290.177 0.000 615.121 0.000

EC −1.569 0.363 141.268 0.000 45.468 0.943
EC−1 −10.008 0.000 219.605 0.000 290.094 0.000

Notes: The null hypothesis is that the time series variables have a unit root process.

3.2.2. Benchmark Regression Results

Before estimating the PVAR model, an optimal lag p-period of time series variables
remains to be explored. Based on the standard procedure in empirical studies, the AIC,
BIC, and HQIC are used to select the optimal lag order. The selection of two lag periods is
reasonable. Therefore, 2 is the optimal lag order in this paper. The estimation results of the
PVAR model are reported in Table 3. The EC equation reflects the effects of EC and UN on
EC, and the UN equation reflects the effects of UN and EC on UN. The estimated results
for all provinces as a whole are reported in the top line of Table 3. As shown in Table 3,
in the EC equation, the first-period lag of EC has a significant positive effect on EC, and
the second-period lag of EC has a significant negative effect on EC, which indicates that
energy consumption presents the characteristics of path-dependent inertia in the short run,
yet it tends to converge in the long run [4,47]. The first-period lag of NU has a significant
negative effect on EC and the second-period lag of NU has a significant positive effect on EC,
which indicates that new-type urbanization leads to energy consumption negatively in the
short run [10–16], yet the new-type urbanization leads to energy consumption positively
in the long run [6–9]. In the NU equation, the first-period lag of NU has a significant
positive effect on NU, and the second-period lag of NU does not have any significant effect
on NU, which indicates that new-type urbanization also presents the characteristics of
path-dependent inertia in the short run. The first-period lag of EC has a significant positive
effect on NU [33], and the second-period lag of EC has a significant negative effect on
NU [45], which indicates that an increase in energy consumption brings about a further
increase in the level of new-type urbanization in the short run, yet it is detrimental to
new-type urbanization in the long run.
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Table 3. Estimation results of the PVAR model.

Sample Type Variable Coefficient Variable Coefficient

Countrywide

EC equation
EC−1

1.553 ***
(14.04) NU−1

−1.279 **
(2.00)

EC−2
−0.513 ***

(−8.32) NU−2
1.138 *
(1.81)

NU equation
NU−1

1.342 ***
(4.84) EC−1

0.021 **
(2.37)

NU−2
−0.257
(−0.84) EC−2

−0.022 ***
(−2.58)

Eastern

EC equation
EC−1

1.492 ***
(15.46) NU−1

−0.879 *
(−1.80)

EC−2
−0.465 ***

(−5.45) NU−2
0.638
(1.18)

NU equation
NU−1

1.083 ***
(5.09) EC−1

0.042 ***
(4.42)

NU−2
0.008
(0.04) EC−2

−0.035 ***
(−4.80)

Central

EC equation
EC−1

1.451 ***
(11.31) NU−1

−1.188
(−1.40)

EC−2
−0.495 ***

(−4.21) NU−2
1.321 *
(1.69)

NU equation
NU−1

1.507 ***
(7.37) EC−1

0.031 **
(2.35)

NU−2
−0.448 **
(−2.02) EC−2

−0.027 **
(−2.02)

Northeastern

EC equation
EC−1

1.689 ***
(10.52) NU−1

−10.142
(−1.35)

EC−2
−0.408 ***

(−3.43) NU−2
5.158 *
(1.87)

NU equation
NU−1

0.891 ***
(3.59) EC−1

0.029 ***
(2.81)

NU−2
0.189
(0.94) EC−2

−0.026 ***
(−2.93)

Western

EC equation
EC−1

1.508 ***
(18.47) NU−1

−3.508 ***
(−3.05)

EC−2
−0.415 ***

(−5.21) NU−2
1.462 *
(1.95)

NU equation
NU−1

1.339 ***
(4.57) EC−1

0.010
(2.37)

NU−2
−0.284
(−0.97) EC−2

−0.008 *
(−1.66)

Notes: ***, **, and * show significant levels at 1%, 5%, and 10%, respectively. The value given in parentheses is
t statistics. The subscripts −1 and −2 represent the first-period lag and the second-period lag, respectively.

The estimated results for all provinces as a whole neglect regional heterogeneity. To
explore this issue, groups of provinces are classified into four types of regions according
to NBS. The estimated results for provinces in the eastern region are reported in the top
second line of Table 3. As shown in Table 3, in the EC equation, the first-period lag of EC
and the second-period lag of EC have a similar effect on EC compared to the whole country.
The first-period lag of NU has a significant negative effect on EC, and the second-period lag
of NU does not have any effect on EC, which indicates that new-type urbanization leads to
energy consumption negatively in the short run [4,30], yet this inhibitory effect gradually
disappears over time. In the NU equation, both NU and EC have a similar effect on UN
compared to the whole country.

The estimated results for provinces in the central region are reported in the top third
line of Table 3. As shown in Table 3, in the EC equation, the first-period lag of EC and the

121



Sustainability 2023, 15, 11117

second-period lag of EC have a similar effect on EC compared to the whole country. Both
the first-period lag of NU and the second-period lag of NU do not have any significant
effect on EC, which indicates that an increase in the level of new-type urbanization does
not bring about energy consumption [52]. In the NU equation, the first-period lag of NU
has a significant positive effect on NU, and the second-period lag of NU has a significant
negative effect on NU. The first-period lag of EC and the second-period lag of EC have a
similar effect on UN compared to the whole country.

The estimated results for provinces in the northeastern region are reported in the
fourth line of Table 3. As shown in Table 3, in the EC equation, the first-period lag of EC
and the second-period lag of EC have a similar effect on EC compared to the whole country.
Both the first-period lag of NU and the second-period lag of NU do not have any significant
effect on EC, which also indicates that an increase in the level of new-type urbanization
does not bring about energy consumption [52]. In the NU equation, both NU and EC have
a similar effect on UN compared to the whole country.

The estimated results for provinces in the western region are reported in the fifth line
of Table 3. As shown in Table 3, in the EC equation, the first-period lag of EC and the
second-period lag of EC have a similar effect on EC compared to the whole country. The
first-period lag of NU and the second-period lag of NU have a similar effect on EC as the
eastern region, which indicates that new-type urbanization leads to energy consumption
negatively in the short run [4,30], yet this inhibitory effect gradually disappears over time.
In the NU equation, the first-period lag of NU and the second-period lag of NU have
a similar effect on NU compared to the whole country. The first-period lag of EC does
not have any effect on UN, and the second-period lag of EC has a significantly negative
effect on UN, which indicates that an increase in energy consumption is detrimental to
new-type urbanization.

3.2.3. Discussions with Concept of EKC

According to existing studies, energy consumption may lead to economic development
and environmental pollution simultaneously [53–55]. Since new-type urbanization is
widely considered a symbol of economic development [38], the critical issue is whether
energy consumption can bring about larger benefits with respect to its cost. This basic
benefit–cost tradeoff can be inferred from the causal relationship between the two. When
energy consumption is conducive to promoting the level of new-type urbanization, it may
indicate that the benefit of an increase in the level of new-type urbanization resulting from
energy consumption is larger than the negative externality of environmental damage related
to energy consumption. On the contrary, if the new-type urbanization leads to energy
consumption positively, it may indicate that the advantage of energy consumption exceeds
its disadvantage. From the estimated results for all provinces as a whole, we can conclude
that the advantage of energy consumption is larger than its disadvantage in the short run,
yet the relationship is opposite over time. From the estimated results for provinces in the
eastern region, we can conclude that the advantage of energy consumption is always larger
than its disadvantage over time. This again proves that those provinces in the eastern
region may have started to cope with the possible environmental damage related to energy
consumption. From the estimated results for provinces in the central, northeastern, and
western regions, the advantages of energy consumption and its disadvantages are similar
to the whole country, where the negative externality of environmental damage exceeds its
benefit over time.

The PVAR model regression results can also be interpreted with the concept of the
EKC, which assumes that economic growth and environmental pollution present an
“inverted U” relationship [56]. Initially, as the level of new-type urbanization is rela-
tively low, there are not too many industrial activities that lead to environmental pollution.
Therefore, an increase in the level of new-type urbanization is conducive to reducing energy
consumption for all samples in the short run. As the pace of new-type urbanization acceler-
ates, there will be more and more high-pollution industries, and environmental pollution
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may gradually increase. As the estimation results indicated, an increase in the level of
new-type urbanization may enhance energy consumption in the long run for the central,
northeast, and western regions. Even so, for provinces in the eastern region, new-type
urbanization is not conducive to increasing energy consumption over time. As the economy
improves, these provinces may start to focus on the possible environmental damage related
to energy consumption and attempt to take some remedial actions [57]. Generally speaking,
as long as new-type urbanization reaches a high level as the eastern region, more resources
may be dedicated to environmental protection. Consequently, an increase in the level of
new-type urbanization will be conducive to reducing environmental pollution. Our main
target is not to explore the EKC, yet the implications of the estimated results are compatible
with the EKC prediction. To sum up, as the pace of new-type urbanization accelerates,
a negative externality, such as environmental pollution related to energy consumption,
gradually increases. Once a province reaches a high level of new-type urbanization, it may
conversely reduce the negative externality related to energy consumption, as indicated by
the EKC assumption.

3.3. Impulse Response Analysis

So as to further investigate the dynamic relationship between the variables in the
PVAR model, the impulse response function is computed. Specifically, we set up Monte
Carlo simulations for four types of subsamples and finally obtained a 4 × 4 impulse
response graph, and the corresponding results are displayed in Figure 4 for the different
groups: eastern (Figure 4a), central (Figure 4b), northeastern (Figure 4c), and western
regions (Figure 4d), respectively.

Figure 4. Variable impulse responses.

For provinces in the eastern regions, only NU shows a positive response to a standard
deviation in its own unit. These results further verify that provinces in the eastern region
may have been committed to environmental protection, hence there is no dynamic rela-
tionship. For provinces in the central region, the impulse response of EC to NU is positive,
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which is consistent with the PVAR model regression analysis. The implication is that these
provinces should pay much attention to the high-pollution industries while the pace of
new-type urbanization accelerates. The impulse response of NU to EC is positive in the cur-
rent period, and then it decreases in the first period and tends to be weak after the second
period, which is also consistent with the PVAR model regression analysis. The implication
is that the negative externality of environmental damage related to energy consumption
may offset the benefit of an increase in the level of new-type urbanization from energy
consumption over time. While energy consumption is not conducive to promoting the
level of new-type urbanization, these provinces should adopt some conservation policies.
For provinces in the northeastern region, the impulse response of EC to NU is negative,
which quickly reaches the highest value and then converges to zero. The implication is
that the negative externality of environmental damage related to energy consumption
may gradually increase over time. The impulse response of NU to EC is positive in the
current period, and then it decreases in the first period and tends to be weak after the
fourth period, which is the same as the provinces in the central region. For the provinces in
the western region, the impulse response of EC to NU and the impulse response of NU to
EC are virtually the same as the provinces in the central region, hence it is not necessary
to interpret these results. In contrast to other regions, it is noteworthy that the impulse
response of EC to NU does not diminish over time. This further denotes that the urbaniza-
tion process in the western region relies predominantly on high energy consumption and
highly pollutant-intensive inputs, and the legacy of conventional economic development
approaches remains an arduous obstacle to overcome.

3.4. Variance Decomposition

In order to compare the relative contribution degree of unit standard deviation in
EC and NU, we further adopt the variance decomposition. The variance decomposition
results of period 5, period 10, and period 20 are displayed in Table 3 for different groups:
(a) eastern, (b) central, (c) northeastern, and (d) western regions. As shown in Table 4, for
provinces in the eastern, central, and western regions, the variance decomposition of EC
is dominated by its own shock, and NU has a small effect. However, for provinces in the
northeastern region, the variance decomposition of EC is dominated by the effect of NU,
and its own shock has a small effect. For provinces in the eastern region, the variance
decomposition of NU to its own shock is almost equal to the effect of EC. However, for
provinces in central, northeastern, and western regions, the variance decomposition of NU
is dominated by its own shock, and EC has a small effect. Combined with the variance
decomposition of both variables, the effect of EC on NU is much larger than the effect
of NU on EC for provinces in the eastern region, yet it is the opposite for provinces in
central, northeastern, and western regions. These variance decomposition results also
further confirm that energy consumption may bring about greater advantages relative to
its disadvantage for provinces in the eastern region, yet it is imperative to cope with the
possible cost of environmental pollution related to energy consumption for the provinces
in central, northeastern, and western regions.

Table 4. Variance decomposition.

Response Variable s
Eastern Central Northeastern Western

EC NU EC NU EC NU EC NU

EC 5 0.979 0.021 0.916 0.084 0.443 0.557 0.986 0.014
NU 5 0.057 0.943 0.177 0.823 0.233 0.767 0.036 0.964
EC 10 0.950 0.050 0.818 0.182 0.255 0.745 0.913 0.087
NU 10 0.194 0.806 0.124 0.876 0.118 0.882 0.032 0.968
EC 15 0.924 0.076 0.756 0.244 0.160 0.840 0.820 0.180
NU 15 0.360 0.640 0.106 0.894 0.069 0.931 0.040 0.960
EC 20 0.903 0.097 0.724 0.276 0.103 0.897 0.744 0.256
NU 20 0.507 0.493 0.099 0.901 0.043 0.957 0.047 0.953
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So as to visually display the relative contribution degree of unit standard deviation in
EC and NU, we further draw the variance decomposition results of EC and NU in the form
of a coordinate axis. Figure 5 shows the variance decomposition of EC to NU for different
groups: variance decomposition of EC to NU (Figure 5a) and variance decomposition of
NU to EC (Figure 5b), respectively. As shown in Figure 5a, NU has a remarkable influence
on EC for the provinces in the northeastern region, and the contribution rate is the largest
among the four groups. Additionally, NU has an increasing contribution rate to unit
standard deviation in EC for all groups. As explained above, these results imply that it
is imperative to cope with the possible cost of environmental pollution related to energy
consumption. As shown in Figure 5b, EC has decreasing contribution rate to unit standard
deviation in NU for provinces in the central, northeastern, and western regions, yet EC
has an increasing contribution rate to unit standard deviation in NU for provinces in the
eastern region, which became the largest after the tenth forecast period. These results also
imply that environmental pollution related to energy consumption may gradually increase
as the pace of new-type urbanization accelerates for provinces in the central, northeastern,
and western regions, which are consistent with the estimation results of the PVAR model.

 

Figure 5. Variance decomposition of EC and NU.

4. In-Depth Analysis of Energy-Related Data

Finally, the pollution-related calculations are included for an in-depth analysis. We
collect supplementary data, such as carbon emissions per real CNY 10,000, energy used
per real CNY 10,000 (energy consumption intensity), the ratio of output value in the
tertiary industry to real GDP, and the average per capita real GDP. All the relevant data
are from each year’s China Statistical Yearbooks, China Energy Statistical Yearbooks, each
provincial statistical yearbook, and so on. As original data for the carbon emissions
can be obtained from 2003 to 2019, the sample data span from 2003 to 2019. Figure 6
shows these calculations for different groups: carbon emissions (Figure 6a), energy
consumption intensity (Figure 6b), industrial structure (Figure 6c), and per capita real GDP
(Figure 6d), respectively.
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Figure 6. Some energy-related data.

As shown in Figure 6a, the largest carbon emitter appears in the western region,
followed by the northeastern and central regions, and the least carbon emitter happens to
be in the eastern region. As the pace of the new-type urbanization accelerates, provinces
in the eastern region may make great strides to reduce the pollution of carbon emissions
related to energy consumption. These results undoubtedly denote that there is an EKC
relation. As shown in Figure 6b, the western region has the highest energy consumption
intensity, followed by the northeastern and central regions, and finally the eastern region.
As energy consumption intensity represents the efficiency of energy use, the characteristics
of this variable in the four different groups denote that the energy is the most efficiently
used in the eastern regions, followed by central and northeastern regions, and finally the
western region. As the pace of new-type urbanization accelerates, provinces in the eastern
region may successfully change their energy mix, and a decrease in carbon emissions is
also can be anticipated. For example, pollution-free electrical energy can be massively put
to use. To sum up, these two variables both confirm the causal relationship that new-type
urbanization leads to energy consumption negatively for provinces in the eastern region,
and new-type urbanization leads to energy consumption positively for provinces in the
central, northeastern, and western regions over time, which seems to be in agreement with
the estimation results of the PVAR model.

Figure 6c,d further provides the economic reality for the EKC relation and the causal
relationship between the two. As shown in Figure 6c, the ratio of output value in the
tertiary industry to real GDP in the eastern region is the highest among the four groups,
followed by the northeastern region, the western region, and the central region. As shown
in Figure 6d, per capita real GDP in the four groups is the same as Figure 6c. As the economy
develops in the eastern region, there may be a trend toward the tertiary industry, which
produces low-pollution products. Therefore, new-type urbanization leads to negative
energy consumption. Provinces in the central, northeastern, and western regions are
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generally eager to raise the per capita real GDP level, so standards are lax concerning
relevant environmental regulations. Even some high-pollution industries are encouraged
in these regions, and spontaneously their ratio of output value in the tertiary industry to
real GDP is behind the eastern region. Hence, the economic reality is consistent with the
EKC relation and the causal relationship between the two.

5. Concluding Remarks

The panel data of Chinese provincial administrative units are classified into four
categories according to the widely adopted standard in this paper. In order to explore
the causal relationship between new-type urbanization and energy consumption, we
employ the PVAR model to investigate this issue and obtain the following conclusions.
(1) For provinces in the eastern region, new-type urbanization leads to energy consumption
negatively, and energy consumption leads to new-type urbanization positively, which
becomes negative over time. For the provinces in the central and northeastern regions, an
increase in the level of new-type urbanization does not bring about energy consumption,
while the uni-directional causal relationship running from energy consumption to new-type
urbanization is similar to provinces in the eastern region. For provinces in the western
region, there is negative feedback causality between the two. (2) For provinces in the
eastern region, the advantage of energy consumption is larger than its disadvantage in the
short run, yet the relationship is the opposite in the long run. For provinces in the central
and northeastern regions, the advantages of energy consumption and its disadvantages are
similar to provinces in the eastern region. However, for provinces in the western region,
the disadvantage of energy consumption may exceed its advantage. These findings are
also consistent with the EKC relation. Once a province reaches a high level of new-type
urbanization, it may conversely reduce the negative externality of environmental damage
related to energy consumption. (3) The impulse response analysis further presents the
dynamic relationship between the two. The variance decomposition demonstrates that
the effect of energy consumption on new-type is much larger than the effect of new-type
urbanization on energy consumption for the provinces in the eastern region, while it
is totally the opposite for provinces in the central, northeastern, and western regions.
(4) The largest carbon emitter appears in the western region, followed by the northeastern
and central regions, and the smallest carbon emitter happens to be in the eastern region. The
western region has the highest energy consumption intensity, followed by the northeastern
and central regions, and finally the eastern region. The ratio of output value in tertiary
industry to real GDP in the eastern region is the highest among the four groups, followed
by the northeastern region, the western region, and the central region, and the per capita
real GDP in the four groups is the same as the ratio of output value in the tertiary industry
to real GDP.

On the basis of our conclusions above, several straightforward policy implications can
be put forward. As the causal relationship presents regional heterogeneity, a one-size-for-all
energy policy will not work effectively. Our government should take into consideration
the different levels of new-type urbanization while implementing an energy consumption
policy. Specifically, for provinces in the eastern region, they should spare no effort to
promote the level of new-type urbanization and mitigate energy use in the construction
of new-type urbanization. For provinces in the central region, energy consumption is
not conducive to promoting the level of new-type urbanization, hence they should adopt
some conservation policies to avoid the negative externality of environmental damage
related to energy consumption. For provinces in the northeastern and western regions,
the negative externality of environmental damage related to energy consumption may
gradually increase, and they should especially pay attention to cope with the possible
environmental damage and take remedial actions. Finally, according to the in-depth
analysis of energy-related data, for the provinces in the northeastern and western regions,
they should try to raise the efficiency of energy use, so as to reduce carbon emissions.
For example, our Chinese government can encourage enterprises to carry out energy-
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saving technologies in the production of goods and services. Additionally, for provinces
in the northeastern and western regions, some high-pollution industries may have been
encouraged, hence standards have to be strict concerning environmental protection and
relevant environmental regulations.

The used methodology in this paper has some shortcomings, which calls for further
research. Firstly, the constructed comprehensive urbanization index does not take into
consideration the aspect of income inequality due to data availability. A comprehensive
urbanization index should be constructed to reflect more about social welfare. Secondly, the
empirical study in this paper does not consider the spatial spillover effect when exploring
the causal relationship between energy consumption and urbanization. As we all know,
both the level of energy consumption and urbanization probably present a spatial autocor-
relation relationship, so future studies should employ spatial econometric techniques in
this topic to deal with the possible estimation bias of the non-spatial econometric models.
Thirdly, the empirical study in this paper is still based on Chinese provincial-level data. As
the urban areas are the primary body to promote the urbanization process currently, it is of
great value to conduct in-depth investigations at the city level.
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Abstract: With the increasing global demand for renewable energy (RE), the growing share of new
energy sources has become an inevitable trend. However, due to the uncertainty and fluctuation of
renewable energy generation, this poses challenges to the stability of the power system. To mitigate
the volatility of wind power output, ensure reliable power supply, and improve energy storage
utilization, shared energy storage (SES) can be deployed in renewable energy bases (REBs) to alleviate
the pressure on the power supply. However, electrochemical energy storage (EES) faces issues such
as lifespan degradation and maintenance cost allocation. In this regard, this paper establishes an
EES characterization model considering the dynamic degradation characteristics of batteries and
analyzes the coupled relationship between lifespan degradation laws and key parameters in SES
operation. Additionally, to assess the impact of electrochemical energy storage’s dynamic degradation
characteristics on energy capacity allocation and operational strategies, an optimization model for
SES in REBs is developed. Building upon this, a cost allocation mechanism is designed based on
the marginal contribution in both the day-ahead and the real-time markets to address the differing
demands for SES among different units within the REBs. Case studies are conducted to validate
the rationality of the proposed optimization model for SES in REBs and the adaptability of the cost
allocation mechanism. The results provide valuable insights for practical applications.

Keywords: shared energy storage; renewable energy base; dynamic degradation characteristics;
two-stage market optimization; cost allocation mechanism

1. Introduction

With the implementation of the dual-carbon target, it has become clear that large-scale
renewable energy generation, specifically through wind and photovoltaic power, is the
direction and necessary choice for new power systems in the future [1–3]. To achieve the
strategic goals of building a new power system, China has proposed to further build REBs
to facilitate the high-quality and rapid development of RE. The “14th Five-Year Plan for
China’s Economic and Social Development and the Long-Range Objectives through the
Year 2035” released in March 2021 proposes to focus on developing nine clean energy bases
and four offshore wind power bases during the duration of the 14th Five-Year Plan. In
June 2022, the National Development and Reform Commission and nine other departments
issued the “14th Five-Year Plan for the Development of RE”, which explicitly proposes
active steps to promote the development of wind and solar power generation facilities, and
expedite the construction of large-scale REB projects, with a particular emphasis on desert,
Gobi, and other barren regions [4–6]. However, the “anti-peak” characteristic of wind
power and the weather impact on photovoltaic power generation have increased volatility
of the net load curve, which imposes higher requirements on flexible resources for the new
power system. Several provinces have implemented policies mandating that RE plants
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install a specific percentage of ES to reduce the influence of RE integration on the safety
and stability of the power grid. The integration of energy storage systems with renewable
energy sources addresses the mismatch between renewable energy generation and load
demand and reduces the uncertainty of renewable energy output, thereby enhancing the
overall operational efficiency of the grid, lowering power supply costs, improving system
stability, and enhancing power quality [7–9].

Due to the instability of RE, ES is needed to improve the total efficiency and stability
of the power grid, reduce electricity supply costs, and enhance the utilization rate of RE.
Currently, EES is the main ES technology, and its application has become increasingly
widespread as its technology continues to develop and costs continue to decline [10]. Nev-
ertheless, when ES is solely coupled with REBs, its usage rate is comparably low, making it
challenging to recoup the expenses of ES, particularly in the present scenario where raw
material costs are surging while RE project prices continue to fall [11,12]. The utilization
rate of ES will further decrease when coupled solely with REBs, thereby hindering the pro-
motion of the development of RE. To address the low utilization rate and poor economics
of ES paired only with REBs, SES can provide an effective solution. By using SES, ES
expenses can be reduced and utilization rates can be increased, thereby better supporting
the development of RE [13–15].

A large-scale REB is composed of multiple wind and photovoltaic units, as well as
their collection and transmission networks. Essentially, configuring SES for REBs means
meeting the ES needs of various RE units within the base. Therefore, we need to consider
the differences in ES needs of different RE units within the base to achieve fair distribution
of ES costs. The core of the SES mechanism for REBs is how to quantify the contribution
of SES to the ES capacity requirements of various RE units and then share the cost of SES
accordingly [7]. Several studies have been conducted on the modes of operation for SES
and cost allocation among RE units. Some researchers have investigated the impact of
performance quality and prediction errors of renewable energy units on the demand for
energy storage capacity and the allocation of energy storage costs [16]. Ref. [17] proposed
a wind power cluster and SES coordination optimization mechanism, and allocated the
benefits of each member of the alliance to demonstrate that the coordination optimization
mechanism is conducive to reducing operating costs of each member and ensuring fairness
of benefit distribution. In [18], a novel non-cooperative game mechanism is proposed,
which optimally regulates the operation of distributed generation and flexibility resources
by considering economic factors and electric power quality. Ref. [19] introduced a new two-
stage credit-based model for SES which, considering time accumulation effects, developed
an SES pricing strategy and a capacity planning scheme, and demonstrated the advantages
of the proposed novel shared model in the field of economic efficiency and the utilization
rate of ES. The research results indicate that SES has enormous potential value, not only
for configuring SES in REBs but also for applying SES to various links in the power
supply chain. Ref. [20] aimed to examine the real advantages of implementing SES in
residential neighborhoods, established optimization operation models for independent
and SES, compared and analyzed the optimal energy operations of the two, and developed
an efficient control strategy suitable for the use of SES to demonstrate the advantages of
SES in saving electricity costs and improving the ES utilization rate. Some studies have
also proposed transactional operation mechanisms for energy storage systems based on
non-cooperative game theory [21,22]. In [22], an interactive energy management scheme is
defined for multiple SES systems and users to achieve information sharing. These studies
have provided certain theoretical support and a decision-making basis for the formulation
of SES modes among a considerable quantity of RE units within a large REB. Existing
research has primarily focused on optimal capacity allocation and economic benefits of SES
among renewable energy units while neglecting the impact of cost allocation mechanisms
on the sustainable operation of SES. Therefore, this paper formulates a fair cost allocation
mechanism considering the differential ES demands of each renewable energy unit within
the base, aiming to achieve equitable distribution of ES costs.
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EES, mainly consisting of energy storage batteries, is one of the most economically
advantageous ES technologies among existing RE storage technologies. However, it should
be noted that EES has the characteristic of dynamic degradation of its lifespan. Although
SES operation modes can improve ES utilization rate, they can accelerate the degradation
of the lifespan of EES. However, in the research on SES for renewable energy integration
currently, the influence of shared operation on energy storage battery lifespan degradation is
often overlooked or simplified. For instance, some studies consider the working efficiency
of energy storage batteries as a constant value, disregarding the dynamic changes in
charging and discharging efficiencies [23,24]. However, in actual operation, energy storage
batteries experience dynamic changes in charging and discharging efficiencies due to power
losses generated during operation to meet load demand [25,26]. Additionally, to simplify
the complex degradation variations in practical operation, certain studies assume the same
degree of lifespan degradation under different operating conditions, without accounting
for the nuanced degradation of ES capacity under different operational scenarios [27].
However, it is clear that the lifespan of EES will gradually shorten with changes in the state
of charge (SOC) and the number of charging-and-discharging cycles. To more accurately
estimate the degradation of the lifespan of energy storage batteries, equivalent circuit
models, empirical models, and aging mechanism models are currently mainly used [28].
Ref. [29] proposed a method to detect the decay of the available capacity of energy storage
batteries using the discharge curve and capacity data based on a first-order Thevenin
equivalent circuit model. Ref. [30] established a calendar aging model of energy storage
batteries based on experimental data and quantified the impact of SOC, temperature, and
battery operating time on the degree of battery life decay. Ref. [31] studied the dynamic
performance changes of energy storage batteries under different environmental conditions
in a residential photovoltaic energy storage battery system, and analyzed the impact of
charging-and-discharging curves on battery aging. Moreover, existing research tends to
focus on the lifespan degradation characteristics of distributed independent energy storage
systems, lacking investigations on the impact of dynamic degradation characteristics of
SES on system operation. This paper, however, conducts a refined analysis of the dynamic
degradation characteristics in the actual operation of EES.

Moreover, due to the diverse output characteristics of different renewable energy units,
there are variations in the capacity requirements for SES. Existing research has primarily
focused on optimal capacity allocation and economic benefits of SES among renewable
energy units while neglecting the impact of cost allocation mechanisms on the sustainable
operation of SES. To analyze the influence of dynamic degradation characteristics on the
operational strategies and capacity allocation of electrochemical shared energy storage in
REBs, and to address the issue of uneven cost allocation resulting from differences in ES
capacity requirements, this paper presents a refined modeling of SES lifespan degradation.
Building upon the health status of EES, known as the state of health (SoH), this research
investigates the optimization of operational strategies and cost allocation mechanisms for
SES in REBs by considering dynamic degradation characteristics. The main innovations
can be summarized in the following three aspects:

• This paper refines the coupling relationship between the degradation laws and key
parameters in the operation process of shared energy storage, and establishes a refined
degradation model for the operation of electrochemical energy storage sharing. This
model can better reflect the changes in performance parameters such as shared energy
storage charging and discharging efficiencies and state of health (SoH), thus quantify-
ing the degree of degradation in the lifespan of shared energy storage. It also provides
important theoretical support for the practical application of shared energy storage.

• A renewable energy base–shared energy storage operation framework that considers
dynamic lifespan degradation is designed. This framework fully utilizes the advan-
tages of shared energy storage and enhances the profitability of various units within
high renewable energy bases in the day-ahead market through “peak shaving and
valley filling”. At the same time, it mitigates the uncertainty of wind power output
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and reduces the assessment cost of real-time balancing markets. The design of this
framework can better promote the sustainable development of renewable energy
generation.

• A shared energy storage cost allocation mechanism is proposed for renewable energy
bases based on the marginal contribution in both the day-ahead and the real-time
market. This mechanism can meet the energy storage demands of different renewable
energy generators and incentivize compatibility. The numerical results demonstrate
a positive correlation between the shared energy storage costs allocated to different
renewable energy generators and their corresponding energy storage demands. The
implementation of this mechanism can better promote the coordinated optimization
of renewable energy and shared energy storage operations, achieving a win-win
situation.

The rest of this paper is structured in the following manner. The SES operation
framework for a REB is proposed in Section 2. The refined model of dynamic life decay of
EES is introduced in Section 3. In Section 4, an optimized operational approach for SES in a
REB is presented, taking into account the dynamic degradation characteristics of EES. The
SES cost allocation mechanism based on the marginal contribution in both the day-ahead
and real-time markets is introduced in Section 5. Section 6 contains the conclusions and
future prospects of this study.

2. Framework of Energy Storage Sharing

A two-stage optimal collaborative operation strategy for a REB and SES is proposed
by combining day-ahead optimization and real-time optimization. This strategy includes
two stages: during the first stage, the optimization of day-ahead scheduling is carried
out, and each unit in the REB optimizes its day-ahead operation strategy based on the
day-ahead output prediction data. In the second stage, the charging and discharging
operation statuses of SES vary according to real-time electricity prices and the uncertainty
of wind power output, then embedded it into the day-ahead optimization model of the first
stage. Meanwhile, the dynamic degradation characteristics of the SES’s lifespan are taken
into account, and the influence of battery health status changes on ES capacity allocation is
considered. Considering the differential SES capacity demands of different units within
the REB, this paper measures the contribution of each member to the overall alliance and
allocates the investment and operational costs of SES among various renewable energy units
within the base. This allocation is performed in a manner that reflects the varying needs
of different units and ensures a fair distribution of the investment and operational costs
associated with SES. This strategy aims to optimize the overall operation of the system, fully
consider the uncertainty and fluctuations of wind power output in actual operation, and
improve the efficiency and economic viability of RE generation. The Operation framework
for energy storage sharing in a renewable energy base is shown in Figure 1.
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Figure 1. Operation framework for energy storage sharing in a renewable energy base.

3. Dynamic Degradation Model in Battery Energy Storage Sharing

To alleviate the impact of large-scale RE, such as wind and solar power, it may be
necessary to frequently adjust the charge and discharge states of RE batteries and the power
flow in and out of the grid. Therefore, the capacity degradation caused by the changes in
charge and discharge behavior of RE batteries in a brief span of time cannot be ignored.
It is necessary to consider the influence of changes in charge and discharge power on the
performance and lifespan of ES devices. Therefore, the fine-grained dynamic degradation
characteristics of EES are of great significance. In this section, the dynamic degradation
characteristics of EES will be finely modeled to provide more theoretical support for the
subsequent research on operation and cost allocation mechanisms of SES in REB.

3.1. Health-Aware Perception Model

The previous literature has used the SoH of an electrochemical battery to characterize
its degree of life degradation. Within this segment, a health-aware perception model
utilizing the battery’s equivalent circuit is established. Since the dual-polarization (DP)
equivalent circuit model is superior to the Thevenin model in the field of balance estimation
precision and calculative speed, the DP model has been chosen to characterize the SOH
of the battery. The DP model is essentially a series circuit, consisting of a power source,
internal resistance, and a second-order RC parallel circuit, shown in Figure 2 [32].

Figure 2. DP equivalent circuit.
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The spatial state equations for the DP equivalent circuit can be derived as follows:{
ut = Uoc − uc1,t − uc2,t − itR0

it =
uc1,t
R1

+ C1
duc1,t

dt =
uc2,t
R2

+ C2
duc2,t

dt
(1)

where Uoc is the open circuit voltage, R0 is the internal resistance of the battery, i(t) is
the internal current of the battery, and uc1,t and uc2,t represent voltage across the two RC
circuits. By measuring the open circuit voltage and voltage across each RC circuit, the
circuit current can be calculated using the spatial state equations. Battery capacity can then
be calculated using Equation (2).

ESES ,t = ESES ,t0 − ηSES

∫ t

t0

itdt (2)

where ηSES is the Coulombic efficiency of the battery, ESES,t0 represents the rated capacity
of the battery at initial state, ESES,t represents the capacity of the battery at time t, and t0
represents the initial operating time of the battery. Based on the stored energy capacity, the
SoH of the ES battery can be calculated.

The SoH of the ES battery at time t SOHt is expressed as the present available capacity
divided by the rated capacity at initial state, as follows:

SOHt =
ESES ,t

ESES ,t0

× 100% (3)

As energy storage batteries undergo continuous charging-and-discharging cycles,
internal aging occurs, resulting in increased internal resistance and decayed capacity. For a
brand-new RE storage battery, its initial SoH is 1. When SoHt is lower than a certain value
δ or the internal resistance of the battery increases to more than twice the initial resistance,
the energy storage battery should be dismantled and recycled. Therefore, the final state
of health for the battery is δ, which is set to 0.8 in this paper [33–35]. Thus, the SoHt and
internal resistance of energy storage batteries are subject to the following constraints:{

SOHt ≥ δ
Zt ≥ 2Zstart

(4)

where Zt is the internal resistance of the battery at time t. The relationship between SoH
and battery internal resistance can be further established using DP equivalent circuits,
which facilitates the determination of whether the battery is still suitable for ES based on
its internal resistance, as shown below:

Zt = Zstart +
SOHt0 − SOHt

SOHt0 − SOHtN

(Zend − Zstart) (5)

where SOHt0 and SOHtN , respectively, represent the initial and final health status of the
battery during its lifespan, Zstart and Zend are the battery’s resistance at the beginning and
end of the entire lifespan, respectively, and tN is the end time of the battery’s lifespan.

In addition, the relationship between the maximum power output Pt of a battery at
a certain moment and its SoH can be derived from DP equivalent circuits, as shown in
Equation (6):

Pt =
Zstart

Zt
P0 (6)

where P0 refers to the maximum power output that the battery can produce at the initial
state.
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3.2. Energy Storage Battery Life Degradation Model

The life degradation of ES batteries is influenced by various external stress factors,
such as temperature and operating time, and is also affected by the battery’s life status.
Therefore, its degradation can be considered as a nonlinear process that is the result of the
combined effect of external stress and time by establishing a nonlinear life degradation
model that can be decomposed into multiple stress factor models.

The life degradation caused by calendar aging Lcal , can be considered as a function of
the average state of charge Soc(κ), battery average temperature Tc, and time t.

Lcal= gt(κ, t, TC) (7)

Each charge and discharge cycle of the battery results in life degradation. The cumula-
tive life degradation is obtained by adding up life degradation of each cycle.

Lcyc =
N

∑
t=1

ωtgc(κt, ϑt, Tc) (8)

where Lcyc,loss refers to the life degradation caused by cycle aging; ϑt represents the depth
of discharge of the battery in the t-th cycle; and ωt is a 0–1 variable that characterizes the
operating state of the battery in the cycle t, with a value of 1 indicating that the battery is in
a cyclic charging-and-discharging state and 0 indicating that the battery is not undergoing
charging and discharging, during which the life degradation of the battery only includes
the life degradation caused by calendar aging. The life degradation of the entire lifetime of
the battery can be represented as the function gd of κ, t, Tc, ϑ:

gd(κ, t, TC, ϑ) = gt(κ, t, TC) +
N

∑
t=1

ωtgc(κt, ϑt, Tc) (9)

If cycles are identical, in a single cycle, the average temperature and SOC equals the
overall averages of the battery lifetime, thus Tc = Tc, κ = κ. Equation (8) can be simplified
as shown below:

gd(κ, t, TC, ϑ, N) = Ngd(κ, t, TC, ϑ, 1) = Ngd,1 (10)

where gd(κ, t, Tc, ϑ, 1) is denoted as gd,1, which represents the life degradation during a
single cycle, and N is the number of charge and discharge cycles.

The life degradation caused by calendar aging and cycle aging can be expressed in a
product form of multiple linear stress factor models as follows:

gd,1 = [G(t) + G(ϑ)]G(κ)G(TC) (11)

(1) The temperature stress model:

G(TC) = ea0(TC−Tre f )
Tre f
TC (12)

(2) The state-of-charge stress model:

G(κ) = ea1(κ−κre f ) (13)

(3) The time stress model:
G(t) = a2t (14)

(4) The depth-of-discharge stress model:

G(ϑ) = 1
a3ϑa4+a5

ϑt =
Pch

t +Pdis
t

2Ec,t

(15)
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where a0 represents the temperature stress coefficient; Tre f refers the reference temperature
in Kelvin (K); a1 is the SOC stress coefficient; κre f is the reference SOC, which can be gener-
ally taken as 0.4–0.5; a2 is the time stress coefficient, indicating that after excluding factors
such as temperature and life dependence, the degradation rate has a linear relationship
with time; Pch(t) and Pdis(t) represent the charging and discharging powers of the battery
during the t-th cycle, respectively; and a3, a4, and a5 are stress coefficients about DOD.

According to the empirical formula [30], the life degradation of an energy storage
battery can be calculated as follows:

Lloss = 1 − γcell e−υcell gd − (1 − γcell)e−gd (16)

where Lloss represents the life degradation of the battery over its entire life cycle (pu), and
γcell and νcell are parameters related to the formation process of SEI film.

3.3. Dynamic Efficiency Model for Energy Storage Batteries
3.3.1. Segmented Linearization of Power for EES Batteries

At any given time, the operating power of the battery P(t) satisfies the following
equation:

Pc ,t = Pch
t + Pdis

t (17)

However, it is impossible for one battery to charge and discharge simultaneously at
any given time, and one of Pch

t or Pdis
t must be zero. The dynamic behavior of the battery

is simulated using the aforementioned DP equivalent circuit model, and the relationship
between the battery SoH and internal resistance is calculated. The charge–discharge cycles
of the battery will cause dynamic changes in its SoH and internal resistance, resulting in
dynamic changes in the operational efficiency during different periods. To simplify the
model, the charging and discharging power of the battery are segmented and linearized
separately. If the charging power is divided into M1 segments, it satisfies:

Pch
t =

M1

∑
m=1

Pcm ,t (18)

Pmin
cm ωc,m ,t ≤ Pcm ,t ≤ Pmax

cm ωc,m ,t, m = 1, 2, . . . , M1 (19)

where Pmax
cm and Pmin

cm are the maximum and minimum of the charging power for the
segment, respectively, and ωc,m,t is a 0–1 state variable that characterizes the charging state
at time t, where a value of 1 indicates that the charging power is within the mth segment.

M1

∑
m=1

ωc,m ,t = 1 (20)

The above equation indicates that the battery charging power can only be within one
power segment at any given moment. Similarly, for the discharging power, it is divided
into M2 segments, which satisfies:

Pdis
t =

M2

∑
j=1

P′
cj,t (21)

Pmin′
cj,t πc,j,t ≤ P′

cj,t ≤ Pmax′
cj,t πc,j,t, j = 1, 2, . . . , M2 (22)

M2

∑
j=1

πc,j,t = 1 (23)
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where Pmax′
cj,t and Pmin′

cj,t are the maximum and minimum of the discharging power for the
j-th segment of the battery, respectively, and πc,j,t is a 0–1 state variable that characterizes
the discharging power at t, where a value of 1 indicates that the discharging power is
within the j-th segment.

3.3.2. Storage Capacity of EES Batteries

After the time Δt, the incremental capacity of the battery is as follows:

ΔEc,t = [
M1

∑
m=1

Pcm,tη
ch
cm +

1
ηdis

cj

M2

∑
j=1

P′
cj,t]Δt (24)

ΔEc ,t = Ec ,t−1 − Ec ,t (25)

Emin
c ≤ Ec ,t ≤ Emax

c (26)

where ηch
cj and ηdis

cj refer to the charging and discharging efficiencies of the m-th segment,

respectively, and Emin
c and Emax

c are the minimal and maximal battery capacity, respectively.

4. Shared Energy Storage Operation Model

In this section, we investigate the optimal strategy for the joint operation of RE
units containing multiple wind turbines and SES, considering the dynamic degradation
characteristics.

4.1. Objective Function

The objective function is to maximize profit, which comprises the revenue of the
day-ahead electricity market and real-time electricity market, and the total cost of SES.

max ∑
t∈φT

(RDA
t + RBA

t − Csum
t ) (27)

where RDA
t denotes the day-ahead market revenue at time t, RBA

t denotes the real-time
market revenue at time t, and Csum

t denotes the total cost of SES at time t.
The day-ahead energy market (DEM) revenue RDA

t and real-time energy market (REM)
revenue RBA

t can be expressed as follows:

RDA
t = λDA

t PDA
t (28)

RBA
t = λdown

t Pdown
t − λ

up
t Pup

t (29)

λdown
t = φdownλDA

t , λ
up
t = φupλDA

t (30)

where λDA
t is the DEM price at time t; PDA

t is the total power in the DEM at time t; Pdown
t

and Pup
t represent the positive and negative power imbalance at time t respectively; λdown

t
and λ

up
t are the settlement prices for the positive and negative imbalances of electricity

quantities in the balancing market, respectively; and φdown and φup are the penalty factors
corresponding to positive and negative imbalances of electricity quantities, respectively.

The total cost of SES Csum
t is expressed as Equation (33), and Csum

t includes the invest-
ment cost of SES and its degradation cost, as follows:

Cat
t =

Cinv
t Lloss,t

24 × (1 − 40%)
(31)
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Cinv
t =

γ(1 + γ)y

(1 + γ)y − 1
× cSES

P PSES
max + cSES

E ESES
T × 365

(32)

Csum
t = Cinv

t + Cat
t (33)

where T is all the dispatch cycle number of SES within one day, and Lloss,t is the lifespan
degradation rate of EES batteries during period t. Typically, when the health status of
a lithium-ion battery drops below 80%, the battery’s utilization rate cannot meet the ES
requirements and it should be recycled. Cinv

t is the SES investment cost, γ refers to the
annual percentage rate of funds, y is the lifespan of the SES device, cSES

P and cSES
E are the

unit cost prices of shared energy per unit power and unit capacity, respectively, PSES
max is the

maximum power of the SES, and ESES is the capacity of SES.
The above utilizes the concept of unitized cost, which converts ES replacement cost

into cost per unit charge–discharge capacity, in order to obtain the ES degradation cost at
each moment.

4.2. Constraints

In this paper, the wind turbine units and the collaborative entity of the SES are selected
to participate in the day-ahead energy DEM. Therefore, the total power in the DEM is equal
to the sum of the day-ahead power outputs from the wind turbines and the energy storage
unit. Similarly, when they participate in the REM, the total power in the REM is equal to
the sum of the real-time power outputs from the wind turbines and the energy storage unit,
as follows:

PDA
t = PDA

wind,t + PDA
SES,t (34)

PBA
δ = PBA

wind,δ + PBA
SES,δ (35)

where PDA
wind,t is the wind power of the DEM at time t, PDA

SES,t is the ES power of the DEM at
time t, PBA

δ is the total power in the REM at time t, PBA
wind,δ is the wind power of the REM

at time δ, and PBA
SES,δ is the ES power of the REM at time δ. The participation of the energy

storage unit in the DEM is determined by both its charging power and discharging power.
It is the difference between the discharging power and the charging power. Since the energy
storage unit can only be in either a charging or discharging state at a given time t, when it is
in the discharging state, it generates positive revenue from participating in the DEM. On the
other hand, when it is in the charging state, it incurs negative revenue from participating in
the DEM. Therefore, the day-ahead power of the energy storage unit participating in the
market is the difference between the discharging power and the charging power. The same
principle applies to the power of the energy storage unit participating in REM.

PDA
SES,t = PDA

dis,t − PDA
ch,t (36)

PBA
SES,δ = PBA

dis,δ − PBA
ch,δ (37)

where PDA
ch,t is charging power of the DEM at time t, PDA

dis,t is the ES discharging power of
the DEM at time t, PBA

ch,t is the ES charging power of the REM at time t, and PBA
dis,t is the

ES discharging power of the REM at time t. All four of these variables take non-negative
values.

Constraints on the system are as follows:
(1) the constraints of wind power output are

0 ≤ PDA
wind,t ≤ PDA

sum,t (38)
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0 ≤ PBA
wind,δ ≤ PBA

sum,t (39)

where PDA
sum,t represents the day-ahead forecasted total power for multiple wind turbines at

time t, and PBA
sum,t represents the real-time forecasted total power for multiple wind turbines

at time t.
(2) Energy storage capacity and power constraints: Equation (40) represents the

constraint on the ES capacity. Equation (41) represents the minimal and maximal of the
charging and discharging powers. Equation (42) restricts the device from charging and
discharging energy simultaneously. Equation (43) denotes the energy balance constraint
of the ES; it means that the charging-and-discharging capacity during the 24 h regulation
process must maintain balance with the initial energy level.

0 ≤ EDA
SES,t ≤ ESES, 0 ≤ EBA

SES,δ ≤ ESES (40)

{
0 ≤ PDA

ch,t ≤ μch
t PSES

max
0 ≤ PDA

dis,t ≤ μdis
t PSES

max
,

{
0 ≤ PBA

ch,δ ≤ μch
t PSES

max
0 ≤ PBA

dis,δ ≤ μdis
t PSES

max
(41)

μchar
t + μdis

t ≤ 1 (42)

EDA
SES,0 = EDA

SES,T , EBA
SES,0 = EBA

SES,T (43)

where EDA
SES,t and EBA

SES,t represent the day-ahead and REM storage capacities at differ-
ent times, PSES

max represents the maximum operational power of the SES, μch
t and μdis

t are
0–1 variables that represent the operation status of the ES at time t, and EDA

SES,T and EBA
SES,T

represent the DEM and REM storage capacities at the last time t of the day.
Additionally, the energy iteration relationship of the ES unit in the DEM and REM is

shown in Equations (44) and (45):

EDA
SES,t+1 = EDA

SES,t + PDA
ch,t · ηSES

t − PDA
dis,t/ηSES

t , EDA
SES,0= 60%ESES (44)

EBA
SES,δ+1 = EBA

SES,δ + (PBA
ch,δ · ηSES

t − PBA
dis,δ/ηSES

t )Δt , δ ∈ [t, t + 1] , EBA
SES,0= 60%ESES (45)

where ηSES
t represents the working efficiency of the ES at time t.

Taking into account the dynamic degradation characteristics of EES devices and using
SoH as a medium, the changes in the performance parameters of ES are incorporated into
the above constraints to reflect the influence of the degradation of ES life on the operation
and benefits. The analysis in Section 3 reveals a nonlinear dependence between ES device
parameters and SoH. To facilitate the optimization calculation, this nonlinear relationship
is first linearized.

By using the idea of piecewise model linearization, the linear relationship between
battery internal resistance Zt and SoH can be fitted as follows:

Zt = αSOHt + β (46)

Substituting Equation (46) into the expression for ES charging and discharging powers
yields.

PSES
t,max =

Zstart

αSOHt + β
· PSES

0,max (47)

Similarly, the expression for different segments of ES capacity can be uniformly lin-
earized.

ESES,t = aSOHt + b (48)
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We can substitute the ES parameter expressions obtained from Equations (47) and (48)
into the constraints for ES power and capacity and update them on an hourly basis to
account for the dynamic degradation characteristics of the ES device.

(3) Power balance constraints:

PBA
wind,δ + gSES,t − dSES,t − PDA

wind,t = Pdown
t − Pup

t (49)

0 ≤ Pup
t ≤ M3(1 − zt) (50)

0 ≤ Pdown
t ≤ M4zt (51)

where gSES,t and dSES,t represent the charging and discharging quantities respectively, of
the ES system, zt is a binary variable indicating the power imbalance status, and M3 and
M4 are sufficiently large positive numbers.

Equations (27)–(51) are used to establish the coupling relationship between the DEM
and REM of the alliance which is composed of REBs and SES.

5. Cost Allocation Mechanism of Shared Energy Storage

To ensure equitable distribution of investment costs for SES, this paper introduces the
concept of a “revenue increase rate” as a measure to quantify the demand level of a REB
for SES. This metric evaluates the number of occupied ES resources by the REB and the
potential revenue that can be obtained. The analysis in this paper considers the market
revenue of a REB, including electricity value and system flexibility, in both day-ahead and
real-time balancing markets, and compares them with the benefits obtained when the REB
participates individually in the market. Finally, the costs of the SES are allocated to each
REB based on comprehensive revenue-increase-rate metrics for REB.

5.1. Electricity Value in the Day-Ahead Market

Before allocating the SES costs, it is essential to calculate the revenue obtained by
each alliance member from selling electricity in the day-ahead market. The calculation
method of this revenue is obtained by multiplying the declared power with the day-ahead
market clearance price. To better solve the cost allocation problem, this paper uses the
Vickrey–Clarke–Groves (VCG) mechanism, which is a widely used incentive-compatible
mechanism for allocating social welfare [36]. In addition, this mechanism can help define
the substitute value of SES for other electricity users. As multiple renewable energy base–
energy storage systems jointly quoting can only obtain the alliance’s overall quotation
curve, this paper analyzes the demand for SES by different REBs through the substitute
value method to obtain individual quotation curves for each entity. This method indirectly
obtains the individual quotation curves of each entity by comparing the changes in the
alliance’s overall quotation curve, thereby better solving the cost allocation problem, as in
Equation (52).

RWPP
DA,i,t = ∑

t∈Γ
λDA

t · (PC∗
DA,t − PC∗

DA,−i,t), ∀i, j, t (52)

where RWPP
DA,i,t represents the revenue obtained by a certain REB in the DEM, PC∗

DA,t represents
the optimal day-ahead declared power obtained by the optimization model, and PC∗

DA,−i,t
represents the optimal declared power corresponding to removing a specific REB.

5.2. Flexibility Value in the Real-Time Balancing Market

The revenue earned by the alliance members’ flexibility during real-time operations is
known as the flexibility value in the REM, which is obtained by multiplying the respective
imbalanced electricity quantity with the corresponding settlement price. When comparing
the individual deviation direction with the system’s overall deviation direction, if they
are opposite, this indicates that the member has alleviated the extent of system deviation,
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reduced the system’s demand for flexibility, and increased overall revenue. Then, the
member’s revenue is positive. If the directions are the same, it indicates that the member
has intensified the degree of system deviation, further increased the system’s demand for
flexibility, and decreased overall revenue, and the member’s revenue is negative. Similar
to measuring the energy value of each member in the DEM, we can extract the flexibility
value of a member in the real-time market and represent the revenue of REB members
in the real-time balancing market through the deviation that appears in the alliance as a
whole, as shown in Equation (53):

RWPP
BA,i,t = ∑

t∈Γ
∑

s∈Ω
δs(λ

+
s,t(PC+∗

s,t − PC+∗
s,−i,t) + λ−

s,t(PC−∗
s,t − PC−∗

s,−i,t)), ∀s, i, t (53)

where δs is the possibility of the scenario, RWPP
BA,i,t refers to the revenue obtained by the REB

in the real-time balancing market, PC+∗
s,t and PC−∗

s,t represent the most effective methods
for making bids of positive and negative imbalance power of the alliance, respectively,
obtained by solving the above optimization model, and PC+∗

s,−i,t and PC−∗
s,−i,t represent the

positive and negative imbalance power of the alliance, respectively, corresponding to
removing a specific wind power merchant.

Similarly, by measuring the revenue obtained by a REB’s individual participation in
the market from both the day-ahead and real-time dimensions and comparing them with
the revenue obtained after forming the alliance, the revenue increment of each REB in the
alliance can be obtained, as shown in Equation (54).

ΔRWPP
i,t = RWPP

DA,i,t + RWPP
BA,i,t − RWPP

i,t,D , ∀i, t (54)

where ΔRWPP
i,t represents the revenue increase in a certain REB in the alliance, and RWPP

i,t,D
represents the revenue obtained by this REB’s individual participation in the market.

Therefore, the revenue increase rate of each REB in the alliance’s joint bidding is the
ratio of the total revenue increase in this member in the DEM and REM and the total
revenue increase in all members in the alliance, as shown in Equation (55).

τWPP
i =

∑
t∈Γ

TWPP
i,t

∑
i∈M

∑
t∈Γ

TWPP
i,t

, ∀i, t (55)

The main revenue improvement rate characterizes the proportion of the revenue that
alliance members can obtain in the DEM and REM from two dimensions: the value of
electricity energy and the value of flexibility. The coupling connection between the DEM
and REM is established by the concept of imbalance power. Through the determination
of penalty prices, a REB can be guided to overproduce or underproduce a certain amount
of power in the DEM. SES can exert a controlling function over smoothing the power
imbalance that arises as a result, thus achieving the goal of maximizing overall revenue.
On this basis, the investment and depreciation costs of SES can be allocated according to
the aforementioned revenue improvement rate, as shown in Equation (56).

CWPP
i = CSES · τWPP

i , CSES = Cinv + Cat (56)

where CWPP
i represents the SES cost that must be allocated to a certain REB, and CSES

represents the overall cost of SES.

6. Case Study

6.1. Data Description

In this case study, the alliance consists of 10 wind turbines and 1 shared energy storage,
and the operational parameters of the SES are shown in Table 1. To model the wind power
output uncertainty, this paper adjusted the real electricity generated by a wind power
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plant in a certain northwest region proportionally as the wind power forecast value, and
used Monte Carlo sampling to generate multiple wind power output scenarios for each
sub-wind-power plant based on the statistical error of the forecast value. Then, this paper
used the scenario reduction method to limit the number of scenarios to 10. The market
prices were obtained from publicly available data of the PJM electricity market, and the
price penalty factors ϕdown and ϕup in REM were taken as 0.8 and 1.2, respectively.

Table 1. Model parameters.

Parameter Value Parameter Value

Tref 20 ◦C μre f 0.5

a0 0.0693 a1 1.04

a2 4.14 × 10−10/s a3 1.40 × 105

a4 −0.501 a5 −1.23 × 105

γcell 0.0575 νcell 121

ESES 100 MW·h PSES
max 30 MW

SOH0 100% cSES
P 300 USD/kW

cSES
E 1200 USD/kWh γ 8%

6.2. Results and Discussion

Based on the existing REB, the reasonable allocation of EES battery capacity and power
is critical to SES system planning. If the ES capacity allocated to wind turbines in the REB
is too small, it will be difficult to effectively absorb wind power. If the ES capacity is too
large, the investment and operation costs will be too high, which could significantly affect
the financial advantages of SES. This paper studies the effect of SES capacity allocation on
alliance revenue. Figure 3 demonstrates that alliance members experience an increase in
market revenue as the energy storage capacity rises, reaching a peak at a certain point when
the capacity is relatively low. However, surpassing the optimal energy storage capacity
linked to maximum profit leads to a subsequent decline in the members’ profitability. This
decline can be attributed to excessive energy storage capacity, which introduces redundancy
in energy storage resources. The resulting high investment and operational costs associated
with this surplus capacity contribute to diminished profits for alliance members. In this
case study, for most wind turbines, the ES capacity ratio corresponding to the maximum
revenue is mostly between 14% and 21%.

Additionally, Figure 4 shows a significant increase in revenue for wind turbines 7–10,
indicating that these four wind turbines need to bear a high SES investment cost. To balance
the economic profits of the alliance and ES investment costs, the most suitable SES capacity
ratio is within the 17–20% interval, which means that the SES capacity allocation for the
REB is most suitable within the range of 90–110 MW. This paper chooses 100 MW as the
optimal SES capacity configuration for the REB, and studies the optimized operation and
cost allocation of the 100 MW.

The scheduling and operation status of SES with or without considering the cost of
dynamic degradation of ES are presented in Figure 5.

144



Energies 2023, 16, 5356

Figure 3. Revenue of alliance members.

 

Figure 4. The revenue increase rate of alliance members.

 

Figure 5. The SOC of energy storage.
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In Figure 5, M1 represents the SoC of SES when dynamic attenuation characteristics are
not taken into consideration, and M2 represents the SoC of SES when dynamic attenuation
characteristics are taken into consideration. And dark blue represents the initial SoC
of the ES, green represents an increase in the value of the SoC, and red represents a
decrease in SoC. By comparing the SOC of SES with and without considering the dynamic
attenuation, it can be observed that when there is a significant difference between the
real-time output of the wind turbine and the previously declared power, the SOC of SES
changes extensively. This indicates that the REM power of the ES is also substantial, and
the storage device can adjust the overall clear power through its charging-and-discharging
behavior to maintain the power balance. Consequently, the storage device can minimize
the effects of unpredictability in wind power output on system operation, improving the
overall alliance revenue. Moreover, compared to the scenario without considering dynamic
attenuation, when dynamic attenuation is considered, the SOC change frequency and
amplitude of SES are more conservative. This results in a reduced number of charging-
and-discharging cycles and a reduced frequency of deep charging or discharging, leading
to a smoother change in energy capacity. This prolongs the service life of SES. When
dynamic attenuation is not considered, the ES device tends to increase the revenue of
various entities in the energy market through frequent charging-and-discharging behavior
to maximize overall revenue. However, when dynamic attenuation is considered, the
utilization rate of the storage device is significantly reduced to achieve higher total alliance
revenue, leading to a lower clear power in the real-time balance market and a lowered
frequency of charging-and-discharging behavior.

By analyzing the cross-sections of different stages of SES, it is shown in Figure 6 that
when the ES capacity drops below 20%, the optimal scheduling requirement under the
initial state has deviated. This will reduce its ability to improve the anti-peak properties of
wind power and reduce the imbalance settlement cost of wind power. This further indicates
the necessity of considering the dynamic degradation of ES to avoid excessive use of SES.

 
Figure 6. Operation of energy storage before and after degradation.

If fixed decay cost for payment of SES is applied without considering its dynamic
characteristic changes, and if ES state parameters are not updated during its usage, and if
the charging and discharging costs remain constant and do not change with the changes in
charging and discharging capacities, then the health status of the ES cannot be adequately
represented, and the overuse of ES cannot be avoided in the sharing mode. This paper
proposes that updating the characteristic parameters of ES in a timely manner according
to its operating conditions and accounting for the decay cost of ES during different usage
stages based on charging and discharging quantities can more reasonably improve the
system benefits on the basis of reducing the loss of ES life.
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Based on the revenue obtained by wind turbines and SES forming alliances and wind
turbines participating in the market individually, the revenue increase brought by forming
alliances can be derived. The results are shown in Table 2. Comparing the final revenue
situation, it can be seen that after multiple wind turbines share ES, their revenue has
increased, but the increase proportion is different, mainly due to the different prediction
accuracies of each wind turbine. Wind turbine 9 achieved a 28.61% increase in revenue
compared to participating in the market individually, while wind turbine 3, which has the
least revenue increase, has also achieved 1.01 times the revenue when participating in the
market individually after constructing SES. It is evident that the model proposed in this
paper, which involves multiple wind turbines jointly sharing ES to participate in market
operation, can take into account the interests of all parties and improve the overall revenue.

Table 2. Revenue increase rate of each wind turbine.

Wind Turbine Number 1 2 3 4 5

Revenue increase rate 2.24% 3.47% 1.00% 2.99% 3.81%

Wind turbine number 6 7 8 9 10

Revenue increase rate 1.51% 24.44% 26.22% 28.61% 5.72%

Comparing the different profits of wind power with the same installed capacity
in Figure 7, it can be observed that the distinct profitability of wind power producers
with the same capacity are due to different prediction errors. The larger the deviation
between the real and reported power data of a wind turbine, the higher the corresponding
imbalance costs it incurs, which results in lower actual profits of the RE station than
expected. Meanwhile, the profit of a single wind turbine, when forming alliances with
other wind turbines and ES, may not increase significantly even if its profitability is high,
mainly because the wind turbine itself is already highly matched with the load, and the
complementary effects between multiple wind turbines and the regulating function of ES
do not significantly reduce their output deviation.

Figure 7. Revenue increase rate of each wind farm.

According to the proportion of revenue improvement from each wind turbine to the
total revenue increase, the investment and degradation costs of SES are allocated, and
the higher the revenue increase rate of a wind turbine, the more SES cost it needs to bear.
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This can ensure enthusiasm for cooperation of all alliance members and the stability of the
alliance.

As shown in Figure 8, by comparing the day-ahead and real-time revenues of ten wind
farms, it can be seen that the capacity and prediction error of wind turbines both affect
their share of investment in SES. In an RE field, wind turbines with larger errors between
actual capacity and output and reported values need to bear higher initial investment costs
of SES.

Figure 8. Revenue increase rate of different market members.

The day-ahead revenues of wind farm 3 and wind farm 4 are basically the same, but
the investment expense of ES required varies greatly. This is mainly because wind farm 3
has better matching with the load, which can better meet the load demand in each period
with its own output characteristics, and therefore has less demand for peak-shaving and
filling of ES and flexibility value, resulting in a smaller proportion of corresponding shared
investment. The real-time revenue of wind farm 4 and wind farm 7 is basically the same,
but the cost of SES is different, indicating that wind turbines with different capacities still
need to bear a larger proportion of initial investment costs of ES even if their prediction
accuracy is similar.

The impact of wind turbine output prediction accuracy on the cost allocation of an
SES alliance is analyzed below, and the results are presented in Figure 9.

As seen in Figures 8 and 9, it can be observed that wind turbines 7, 8, 9, and 10
have higher improvement rates in revenue and higher SES costs. As prediction accuracy
improves, the SES cost of each wind turbine unit, especially those with higher revenue
increase rates, decreases to varying degrees. This is because the improvement in prediction
accuracy reduces the deviation between the pre-bid power and real-time output of each
unit, leading to decreased demand for ES capacity and subsequently lowering the SES
investment cost. Moreover, the improvement in prediction accuracy reduces the frequency
and power of charging and discharging, resulting in a lower degradation cost due to
the ES cycle. Therefore, each member of the alliance will also see a reduction in their
corresponding SES costs. Additionally, due to the different prediction accuracy of each
unit, their demand for ES when participating in the spot market is also different, leading to
varying changes in the cost sharing. For turbine 9, which has the highest improvement rate
in revenue, when its prediction accuracy improves by 5%, the shared cost can be reduced
by about 6%, which is conducive to incentivizing alliance members to actively participate
in the spot market and enhancing their market competitiveness.
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Figure 9. The allocation of ES costs for alliance members under different prediction accuracies.

As shown in Figure 10, the capacity demand of SES in each wind turbine unit in the
REB also changes when the electricity price penalty coefficient in the REM of the alliance
changes. Specifically, when the overgeneration price penalty coefficient φdown decreases
or the undergeneration price penalty coefficient φup increases, the optimal SES allocation
capacity in the REB will gradually increase. This is because the change in the electricity
price penalty coefficient will increase the capacity demand of SES of each wind turbine
unit, which will increase the investment expense of SES, and the charging and discharging
powers will also increase, resulting in more frequent charging-and-discharging behaviors,
and the decay cost will also increase, leading to a continuous increase in the SES cost borne
by each unit. However, since the capacity demand for ES of each turbine is different when
the electricity price penalty coefficient changes, the increment of their ES allocation cost is
also different.

Figure 10. The allocation of ES costs for alliance members under different penalty coefficients.
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The output prediction accuracy of each unit is set as shown in Table 3. Combined with
Table 3 and Figure 10, for unit 7, 8, and 9, when the electricity price penalty coefficient
changes, their increment of ES allocation cost is relatively large. This is mainly because
their output prediction accuracy is low, and the day-ahead forecast error is large, which will
face higher imbalance penalty fees in the REM. To improve their economic benefits, they
will increase the demand for SES to compensate for the fluctuation between their awarded
electricity volume and real-time power output, thus reducing the imbalance settlement
cost.

Table 3. Prediction accuracy of wind turbine.

Wind Turbine 1 2 3 4 5

Prediction accuracy 15% 10.5% 6% 20% 13%

Wind turbine 6 7 8 9 10

Prediction accuracy 15% 5% 8% 8.3% 17%

For units with higher prediction accuracy, when the electricity price penalty coefficient
changes, their increment of ES allocation cost increases more conservatively. When φdown

decreases from 0.9 to 0.8, the ES allocation cost for unit 9 increases by USD 1095, which
is about 10 times the increment of the ES allocation cost for unit 4. In addition, for wind
turbine units with similar installed capacity, such as units 3, 5, and 10, their increments
of ES allocation cost are different due to different prediction accuracies. Obviously, for
unit 10 with higher prediction accuracy, the increment in ES demand is smaller, and the ES
allocation cost increases more conservatively. For unit 3 with lower prediction accuracy, its
increment of ES allocation cost is 1.11 times higher than that of unit 10. In fact, according to
the cost allocation mechanism proposed in this article, wind power producers must make a
trade-off between implementing higher-cost yet more effective prediction technologies and
bearing increased shared energy storage investment costs to maximize their own utility.

7. Conclusions

This paper provides a detailed modeling of the degradation of shared energy storage
lifespan, and analyzes the impact of dynamic degradation characteristics on the operational
strategies and capacity allocation schemes of shared energy storage in renewable energy
bases. It establishes an optimization model for the optimal operation of shared energy stor-
age in renewable energy bases, taking into account the dynamic degradation characteristics.
Furthermore, a cost allocation mechanism is designed to address the diversity in shared
energy storage demands. The following results have been confirmed:

(1) The most suitable capacity ratio for SES in a REB is in the range of 17% to 20%, which
can balance the economic benefits of alliances and ES investment costs well. When
wind turbines form an alliance with SES, their profits increase compared to when they
participate in the market alone. Considering the dynamic decay of ES, the utilization
rate of ES is considerably reduced to increase the overall profits of the alliance, and
the charging-and-discharging frequency and quantity in the REM are also reduced.

(2) The capacity and prediction errors of wind turbines will affect their share of SES costs.
When the prediction accuracy is similar, wind turbines with larger installed capacities
need to bear a higher proportion of ES costs, and as the prediction accuracy improves,
the SES costs borne by each wind turbine decrease to varying degrees.

(3) The penalty factor of the REM price in the alliance also affects the optimal SES capacity
configuration and the SES costs of each wind turbine in the REB. When the penalty
factor changes, the capacity demand for SES in each wind turbine in the REB increases,
and the SES costs increase. Moreover, wind turbines with lower output prediction
accuracy and similar installed capacity have larger increases in SES costs.

In conclusion, the SES optimization model for RE stations, taking into account dynamic
decay of EES, is more objective and reasonable. The calculation of profits for different
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units in the REB has guidance significance for designing SES cost allocation mechanisms.
The proposed model is also applicable to photovoltaic power stations. However, there are
still some limitations in this paper that can be improved in the future. On the one hand,
this paper does not consider network constraints and power flow constraints. In-depth
research can be conducted on the capacity configuration of energy storage in renewable
energy bases, taking into account power supply security, reliability, and power quality. On
the other hand, this study primarily focuses on multiple renewable energy bases and a
single shared energy storage system. Future research can investigate the capacity allocation
problem for multiple shared energy storage stations.
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Abstract: Photovoltaics and batteries can be connected to a traction power supply system through a
railway power conditioner (RPC) to switch between different control strategies. This can address
power quality issues or provide emergency traction for locomotives that unexpectedly lose power
and even break through traditional energy barriers in the railway field, achieving a low-carbon power
supply for railway energy, and a mutual backup with substations. However, methods to coordinate
the control strategies of PV and the battery locomotive traction have not been clearly revealed, nor
has the actual stability of the system. In this study, to address the above issues, an emergency power
supply scheme is proposed for the first time that utilizes a dual-mode RPC inverter combined with a
coordinated control strategy for the PV and battery, achieving the traction of locomotives. In addition,
a one-dimensional impedance model was established for the PV system, battery system, locomotive
(CRH3), and RPC projected onto the dq coordinate system, and the critical amplitude margin (CAM)
was defined to quantitatively analyze the sensitivity and laws of different parameters concerning the
low-frequency stability of the system. At the same time, impedance ratios and passive criteria were
used to reveal the stability mechanism, and parameter adjustment criteria and design suggestions
were put forward. Finally, the feasibility of the emergency power supply scheme of the “PV–battery
locomotive network” coupling system and the correctness of the low-frequency stability study were
verified using the Starsim semi-physical experiment platform.

Keywords: emergency power supply; PV–battery locomotive network; railway power conditioner;
low-frequency stability; critical amplitude margin; verification and testing

1. Introduction

The “2022 Climate Services Status” report released by the World Meteorological
Organization (WMO), a specialized agency of the United Nations, states that the clean
energy power supply must be doubled by 2030 to limit the global temperature rise. Railway
transportation is a significant contributor to energy consumption and carbon emissions
in the transportation sector due to its massive electricity usage. With the depletion of
fossil fuels and the consequences of global warming, there is mounting pressure on the
railway industry to take action and reduce its carbon emissions. To achieve the green
transformation of railways, progress has been made internationally in the adoption of new
energy sources for railways: JR-East has installed 453 kW solar panels at Tokyo Station,
serving locomotives on the Tokaido line 3 [1]; the subway operator in Santiago, Chile, built
two solar photovoltaic power stations in 2017, supplying 60% of the subway’s electricity
and achieving a renewable energy utilization rate of 76% [2]; 100% of the primary energy
used by the Dutch railway is provided by wind [3]; a 2.2 MW rooftop photovoltaic system
has been built at Wuhan Railway Station in China; a 10 MW solar power generation device
has been installed on the roof of Hangzhou East Station [4]; the total installed capacity of
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the photovoltaic system of the Xiong’an high-speed railway in China is 6 MW [5]. The
photovoltaic (PV) resources along China’s AC-electrified railways are abundant, and their
high proportion of utilization can promote China’s achievement of the “dual carbon” goal
and increase the national independent contribution under the global energy conservation
and emission reduction goal [6].

Currently, access methods of PV and battery devices are roughly divided into two
categories: one is to access the battery device from the side of the locomotive to recover
braking energy and control the voltage fluctuation of the traction network [7], and the
other is to access the traction network side. For example, China’s electrified railway mainly
considers access to PV and battery devices from the high-voltage side (110 kV) and the
traction side (27.5 kV). There are two types of PV and battery inverters: one is a three-
phase inverter combined with a three-phase/two-phase transformer, and the other is a
back-to-back single-phase inverter [8]. The high-voltage side access method is suitable
for small-capacity PV and battery devices, and the large capacity required for three-phase
inverters leads to higher costs. At present, the railway power conditioners (RPCs) that
utilize single-phase inverters to connect multiple source devices from the traction side
have received frequent attention due to their excellent comprehensive performance [9].
The authors of [10–14] studied the unbalanced power compensation and harmonic control
of the traction power supply systems with different RPC topologies. In [15], the train
braking energy was recycled and reused through a RPC in conjunction with battery devices.
In [16], a coordinated control scheme based on a RPC for PV and battery access to a
traction power supply system was proposed, utilizing new energy to provide additional
active power. Most of the above studies considered using PV or battery compensation
power to reduce the consumption of fossil fuels but electricity is still mainly provided
by thermal power generation. In [17], an overview of an emergency traction scheme for
locomotive and substation coordination based on battery devices was presented and this
paper aims to solve the problem of sudden accidents such as substation failures leading to
locomotive power loss. In this state, the locomotive is completely powered by the battery.
However, the research on the combined application of PV and battery for emergency
traction in locomotives is not yet widely explored, and more research is needed to explore
its potential and feasibility, if the PV power is connected to the battery for charging and
collaborates with the battery to traction the locomotive, almost all of the electrical energy
comes from renewable energy. However, to design the emergency power supply scheme
for PV and battery systems and identify whether the collaborative integration of PV and
battery systems can further change the railway energy supply system to achieve the long-
term stable full-power traction of locomotives, the above-mentioned problems are worth
deep research and solving. Due to the wide coverage of Chinese railways and superior
energy storage conditions, as well as the long routes and abundant solar resources along
such lines, solar power for AC-electrified railways has broad application prospects and
extensive benefits. Therefore, this article takes the AC power supply system of Chinese
railways with a rated voltage of 27.5 kV as an example and proposes the use of RPC access
to PV and battery devices to achieve the emergency or long-term traction of locomotives,
thus, expanding the function of RPCs and promoting the consumption of PV resources.
In addition, due to differences in operational modes and design parameters between DC
railways and AC railways, this article does not explore issues related to DC railways.

However, it is also important to determine whether the system remains stable when
using the PV and battery locomotive traction and to reveal the main factors and laws that
affect the stable operation of the system; all of these issues need to be addressed prior to
the implementation of PV and battery traction locomotives in practice. At present, there are
multiple frequency-scale instability issues in the traction power supply system of railways,
such as low-frequency oscillation (LFO), harmonic resonance, and harmonic instability.
Among them, LFO has been commonly reported in the electric railway domain around the
world, thus, attracting widespread research attention [18,19]. The first reported occurrence
of the LFO phenomenon dates back to 1996 in Norway when a rotating converter was
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adopted in a traction substation [20]. Since then, in Germany, Sweden, and Norway, rotating
converters have been used to interface the traction network, transforming three-phase utility
power into a single phase for the catenary network [21]. The main cause of LFO has been
attributed to the electromechanical characteristics of rotating converters [22]. However, for
other electric railway systems [23,24], the mechanism of LFO remains unclear. Recently,
from 2008 to 2016, there has been an increasing frequency of LFOs observed in Chinese
railways [25,26]. Many studies have revealed that the occurrence of LFO in China is caused
by the introduction of more converters and impedance mismatch [27–29]. Concurrently,
locomotives have a LC resonant onboard filter that may oscillate, in addition, such a filter
combined with the line can be triggered in oscillation by electric arcs, which is quite a
commonplace phenomenon caused by the sliding contact mechanism [30]. In PV and
battery locomotive traction, more converters may be introduced, which may further induce
LFO. Research on the low-frequency stability of multi-source connected traction power
supply systems is not yet complete. In [31], the integration of PV power into the traction
network through a RPC was considered and an impedance model of a “PV-locomotive-
traction network” was established. It was found that unreasonable parameter settings
during the integration of the PV systems did indeed induce LFO; at the same time, the
parallel connection of the PV modules led to multiple increases in the converters, which
can also lead to LFO in the system. However, the instability mechanism of the system
and methods to improve the system stability were not specifically revealed. The variation
in the source impedance caused by the parallel connection of the subsystem modules
and the parameter adjustment of the converter controller may lead to artificial active
enhancement or the weakening of the low-frequency stability of the system. Therefore, to
further improve the system stability, it is necessary to specifically reveal the sensitivity and
law of the influence of controller parameters on the system’s stability.

Regarding the above issues, this article proposes an emergency power supply scheme
based on RPC access to PV and battery devices in Section 2.1. Through coordinated control
strategies, PV and batteries can be used independently for the day and night emergency
traction of locomotives. They may achieve “low-carbon” locomotive operation and also
serve as a backup power source for the long-term traction of locomotives. On this basis,
an impedance model of the “PV–battery locomotive network” coupling system under this
scheme is established on the RPC DC bus side in Section 2.2. Then, the critical amplitude
margin is defined for the first time based on the impedance ratio criterion; the influence of
parameters on the low-frequency stability of the system is quantitatively evaluated and
passive evidence is introduced to reveal the mechanism of the influence of the parallel
number of PV and battery modules on the stability. Furthermore, parameter adjustment
criteria and main circuit impedance reshaping governance are proposed to prevent LFO
in Section 2.3. Finally, the feasibility of the emergency power supply scheme and the
correctness of the stability study are verified through testing on the Starsim platform in
Section 3.

2. Materials and Methods

2.1. Proposal of Emergency Power Supply Scheme
2.1.1. System Topology

The topology of the “PV–battery locomotive network” system is shown in Figure 1,
which includes a traction network, a high-speed locomotive, a railway power conditioner,
and a new energy power supply system composed of PV and a battery.
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Figure 1. System topology and control block diagram.

The three-phase electricity from the grid is converted from the traction substation to
a 27.5 kV single-phase AC current, which is sent to the α and β power supply arms. The
PV and battery are integrated into a 2 kV DC bus via their respective DC/DC converters,
and the RPC-side single-phase inverter and LC-type filtering circuit are used to convert the
power into 1.5 kV single-phase AC power through step-up transformers Tα and Tβ, which
is then sent to the α and β power supply arms. The Udc is the DC voltage on the input
side of the RPC; U0 is the single-phase AC voltage on the output side of the filtering circuit;
Ui is the unfiltered voltage of the RPC; Cbus is the capacitor on the DC side of the RPC;
VSCα and VSCβ are single-phase inverters in RPC; iα, uα, and uβ are the corresponding
voltage and current of the supply arm; RMS means root-mean-square extraction; PPV and
PBat, respectively, represent the output power of the PV and battery; PLL stands for phase-
locked loop; U0RMS is the root-mean-square value of U0; iL is the output current of the RPC
inverter; i0 is the output current after filtering; and sinωt is the reference sine wave and
Zload is the equivalent load in Section 2.2.2. DC converters in PV systems mainly include
voltage regulation control and maximum power point tracking control (MPPT), while in
battery systems they mainly include charging and voltage regulation control. Under the
emergency power supply scheme, the PV and battery systems provide the locomotive’s
traction but it is still necessary to consider the overall plan for the connection of the PV and
battery systems to the traction power supply system to formulate the control strategy.

The RPC converter is a dual-mode single-phase inverter. Its control strategy is shown
in Figure 1. When it is applied to power compensation, the voltage U0 is controlled to
track the phase frequency of the traction network voltages uα and uβ, and the output
signal is compared with the harmonic and negative sequence reference signal, followed
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by the PWM input signal from the PI controller. At this time, the PV and battery are used
as auxiliary power supplies, and the traction net is used as the main power source to
control the single-phase inverter to support the voltage amplitude and frequency of both
the DC and AC sides of the RPC. In the emergency power supply scheme, the PV and
battery provide the DC-side voltage, the Udc amplitude, and the AC-side U0 frequency
support through a DC converter, and the inverter independently outputs the sinusoidal
AC power. At this time, the PV and battery serve as the main power supply. The DC
converter coordinates with the RPC inverter according to the actual working conditions
to achieve traction network voltage management and locomotive traction under different
power supply schemes.

2.1.2. Division of Multiple Working Modes

The sum of the power inputs and outputs of the PV, battery, and RPC ports will affect
the DC bus voltage Udc, as shown in Figure 1. It is necessary to balance the power of each
port through the division of the working modes. The flowchart for the system’s power
control is shown in Figure 2.

 

Figure 2. Flowchart for the traction power supply system’s power control.

In the above figure, PPV is the output power of the PV system, PBat is the output power
of the battery system, PLoad is the maximum operating power of locomotives, and P is the
power of the power supply arm calculated by measuring the voltage and current of the
power supply arm. Based on the positive, negative, and zero values of P, the locomotive’s
operating conditions can be distinguished, which are namely, traction, braking, and no-load.
In cases where P ≤ 0, if there is remaining capacity in the battery, it can be used to absorb
the energy generated by the braking of the locomotive, as well as the energy provided
by the PV system; In cases where P > 0 but the total power generated from the PV and
battery systems is still lower than Pload, the RPC system will operate under the power
compensation scheme. However, if the traction substation experiences a fault or the output
power generated from the PV and battery systems goes beyond Pload, the RPC system will
automatically switch to the emergency power supply scheme in order to utilize the PV
and battery systems for the locomotive traction. Furthermore, the state-of-charge (SOC)
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threshold value is considered to prevent over-charging and over-discharging from affecting
the battery life.

This article focuses on the study of using PV and battery systems for emergency loco-
motive traction. For different working conditions, such as different levels of irradiance and
state-of-charge (SOC), the proposed emergency power supply scheme includes different
working modes as follows:

Mode One: When the PV power generation is much greater than the sum of the
maximum operating power of the load and the lithium battery charging power, i.e.,
PPV � PLoad + PBat, and the SOC is less than 90%, the PV system can be used to provide the
locomotive’s traction and simultaneously charge the battery. When PPV � PLoad + PBat but
the SOC is above 95%, in order to prevent the battery from over-charging, the PV system
will be responsible for the locomotive’s traction while the battery will be on standby.

Mode Two: When the PV power generation is slightly greater than the maximum
operating power of the load but there is no additional power to charge the battery, that is,
PLoad < PPV ≤ PLoad + PBat, and the SOC is less than 90%, the PV system will only supply
power to the locomotive, and the battery will be on standby.

Mode Three: When the PV power generation is less than the maximum operating
power of the load, that is, PPV < PLoad < PPV + PBat, and the battery’s SOC is higher
than 5%, the PV and battery will work in voltage control mode to jointly provide the
locomotive’s traction.

Mode Four: When the PV power generation approaches zero, that is, PPV < PLoad <
PPV + PBat, and the battery’s SOC is higher than 5%, the PV system will be on standby, and
the battery will provide the locomotive’s traction.

The system topologies under the above four modes are different, meaning that it will
be time-consuming and complex to analyze the system stability from the RPC AC side by
using the impedance method. However, the operating conditions of the PV and battery
combined locomotive traction under mode three are relatively common. Meanwhile, when
carrying out RPC DC bus segmentation modeling, since the control method of each mode’s
DC converter is similar to mode three, the parallel connection or split of the DC converter
output impedance is equivalent to the switching of modes, and the impedance resolution
of the other modes becomes a high-proportion intersection or a subset of mode three,
which is convenient to quickly reveal the factors and regularity affecting the stability under
multiple working modes. The next section builds a mathematical model for the “PV–battery
locomotive network” coupling system using the specific control method of mode three.

2.2. Impedance Modeling of Proposed Emergency Power Supply Scheme
2.2.1. PV and Battery Power Generation Systems

Due to how the topology and control of PV and battery systems are similar, this
section will describe and establish the impedance model of the power generation system
simultaneously. As shown in Figure 3, in the Boost circuit, uPV is the output voltage of the
PV side; iPV is the output current of the PV side; iLPV is the inductor current of the PV side;
uBus and iBus are the DC bus voltage and current; LPV is the energy storage inductor of the
PV side; CPV is the support capacitor of the PV side; CBus1 is the DC-side capacitor of the
RPC; dPV is the duty cycle of the Boost converter’s switching tube, d*PV = 1 − dPV; and u*Bus
and i*LPV are the reference signals for their corresponding variables. In the DC/DC circuit,
uBat is the output voltage of the lithium battery side, iBat is the output current of the lithium
battery, LBat is the energy storage inductor, CBus2 is the DC-side capacitor of the RPC, dBat
is the duty cycle of the T1 switching tube, and the T2 switching tube is complementary
to the T1 switching tube. In addition, u*Bus and i*Bat are the reference signals for their
corresponding variables.
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Figure 3. Topology and control of DC converters under mode three. (a) PV boost converter; (b) battery
DC/DC converter.

The state equations for the PV and battery systems are given by Equations (1) and (2),
respectively. ⎧⎪⎪⎨⎪⎪⎩

LPV
diLPV

dt + RPV·iLPV = uPV − d∗PV·uBus

CBus1
duBus

dt = d∗PV·iLPV − iBus

iPV = iLPV + CPV
duPV

dt

(1)

{
LBat

diBat
dt + RBat·iBat = uBat − dBatuBus

CBus2
duBus

dt = dBatiBat − iBus
(2)

With small signal linearizing Equations (1) and (2), we obtain Equations (3) and (4):⎧⎪⎨⎪⎩
(sLPV + RPV)·ΔiLPV = −D∗

PV·ΔuBus + UBus·ΔdPV + Δupv

sCBus1·ΔuBus = D∗
PV·ΔiLPV − ILPV·ΔdPV − ΔiBus

ΔiPV = ΔiLPV + sCPV·ΔuPV

(3)
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{
(sLBat + RBat)ΔiBat = −DBat·ΔuBus − UBus·ΔdBat + ΔuBat

sCBus2ΔuBus = DBat·ΔiBat + IBat·ΔdBat − ΔiBus
(4)

According to the superposition theorem, the transfer functions between each variable
of the PV and battery systems can be obtained from Equations (3) and (4), and the specific
expressions are shown in Appendix A, where Equation (A1) includes the transfer function
expansion of the PV system, and Equation (A2) includes the transfer function expansion of
the battery system. Then, based on the control strategies of the PV and battery systems,
draw the closed-loop block diagrams of the small signal transfer functions as shown in
Figure 4.
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Figure 4. Small-signal closed-loop control block diagram. (a) PV transfer function; (b) battery
transfer function.

Using the Mason’s formula, the output impedances of the PV and battery systems are,
respectively:

ZPV(s) =
ΔuBus

ΔiBus
=

GPVBB + GPVBBGPViGPVLP − GPVLBGPViGPVBP

1 + GPViGPVLP + GPVuGPViGPVBP
(5)

ZBat(s) =
ΔuBus

ΔiBus
=

GBiB + GBiBGBiGiBd − GiBiGBdBGBi

1 + GBiGiBd + GBuGBiGBdB
(6)

2.2.2. Locomotive Network and Railway Power Conditioner

In the study of the low-frequency stability of locomotive network coupling systems,
two-level locomotives are often considered. The China railway high-speed 3 (CRH3)
locomotive with four power units is the research object of this paper. In [32], the impedance
expression of a single power unit is presented. After converting the impedance of the China
Railway High-speed 3 (CRH3) locomotive to the RPC AC side, the expression is:

ZCRH3(s) =
ka

2kb
2Us2

4Is2
=

ka
2kb

2[1 + GKGPWMGLn(GCRH3upGCRH3uiGswitchGcircuit + GCRH3ui)
]

4GLn(1 − GdelayGPWM)
(7)

where the transformation ratio of the onboard transformer is ka and the transformation
ratio of the RPC-side step-up transformer is kb.

At present, the equivalent circuit model is commonly used in low-frequency stability
analysis of traction networks [31] and its expression corresponds to the RPC AC side:

Zs(s) = k2
b

[
Rs + sLs

ω0Ls

−ω0Ls
Rs + sLs

]
(8)

The equivalent impedance of the locomotive network converted to the RPC AC side is
recorded as Zload (s), where Zload (s) = Zs (s) + ZCRH3 (s).
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RPC impedance modeling is conducted on the DC port of the inverter, that is, the
input impedance of the RPC is studied. Considering that the back-to-back inverter in the
RPC has a symmetrical structure and the impedance calculation and modeling method
are similar, the β power supply arm is selected as the research object. For the emergency
power supply scheme, the specific control method and topology of the inverter are shown
in Figure 5.
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Figure 5. RPC inverter main circuit topology and control.

In the above figure, Zload is the equivalent impedance of the locomotive network
converted to the RPC AC side; Um is the amplitude of the modulated wave signal; and
sinωt is the sine wave frequency reference signal. Linearization is performed on the DC
side and the variables are decomposed into a closed-loop impedance model in the dq
coordinate system. According to the main circuit, the state equation under dq decoupling
can be derived by: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Linv
diLd
dt = Uid − U0d + ωLinv ILq

Linv
diLq
dt = Uiq − U0q − ωLinv ILd

Cinv
du0d

dt = ILd − I0d + ωCinvU0q

Cinv
du0q

dt = ILq − I0q − ωCinvU0d

U0d = Zload·I0d

U0q = Zload·I0q

(9)

Based on the basic derivation process of SPWM, the relationship between the output
voltage Ui before filtering and the modulation wave Um can be obtained using the switch
average period method: {

Uid = 0.5UdcUmd/Utri

Uiq = 0.5UdcUmq/Utri
(10)

In Equation (10), Utri is the amplitude of the triangular carrier wave, and the remaining
symbols are the system variables under dq decoupling. In the dual-loop control strategy,
the response speed of the inner loop is much faster than that of the outer loop. This article
assumes that the response of the current inner loop is approximately the same within the
average time of a single switching cycle. Due to the PI controller used in the voltage outer
loop, the input–output relationship of the controller is:{

(kinvp + kinvi/s)·(U∗
vd − U0d) = Umd

(kinvp + kinvi/s)·(U∗
vq − U0q) = Umq

(11)

161



Energies 2023, 16, 4814

where U*vd and U*vq are the product of the effective value of the voltage outer-loop output
and the reference sine signal; kinvp and kinvi are proportional integral parameters of the
voltage outer-loop PI controller.

According to the input power and output power of the RPC that are equal:

Udc Idc = 1.5(U0d I0d + U0q I0q) (12)

After processing the small signal in Equation (12), the following is obtained:[
Idc

Udc

]T[ Δudc
Δidc

]
= 1.5(

[
U0d
U0q

]T[ Δi0d
Δi0q

]
+

[
I0d
I0q

]T[ Δu0d
Δu0q

]
) (13)

Equations (9) to (11) can be substituted into Equation (13) to obtain the input admit-
tance on the DC side of the β arm inverter:

Yinv =
Δidc
Δudc

=
3

2Udc
(

[
U0d
U0q

]T

(GZload + GT
Zload)

[ Δu0d
Δudc
Δu0q
Δudc

]
)− Idc

Udc
(14)

As output impedance is the reciprocal of admittance, it can be inferred that Zinv = 1/Yinv
and the variables in Equation (14) are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣ Δu0d
Δudc
Δu0q
Δudc

⎤⎦ = 0.5[GLinv(GCinv + GZload) + E − 0.5UdcGPI]
−1
[

Umd
Umq

]

GPI =

[
s

ω

−ω

s

]−1[ −(sKinvp + Kinvi)

−ωKinvp

ωKinvp

−(sKinvp + Kinvi)

]

GLinv =

[
sLinv

ωLinv

−ωLinv

sLinv

]

GCinv =

[
sCinv

ωCinv

−ωCinv

sCinv

]

GZload =

[
Zload

0

0

Zload

]−1

(15)

2.2.3. Verification of Established Impedance Model

To verify the established one-dimensional impedance model, the disturbance injection
method was used for the simulation measurements [33]. By injecting disturbance signals
with specific frequencies during the steady-state state of the system and using the Fourier
transform to process these signals, the impedances of the three ports of the “PV–battery
locomotive network” can be simultaneously measured at specific frequencies, and it should
be noted that the impedances of the three ports of the “PV-battery locomotive network”
refer to the output impedances ZPV towards the PV boost circuit port, ZBat towards the
battery DC/DC circuit port, and Zinv towards the inverter DC port. We will validate
whether the theoretical deduced values of these impedances in the frequency domain
match the simulation results.

Validation results are shown in Figure 6, the first row shows the corresponding
impedance function’s Bode plot, and the second row is the corresponding phase plot,
with the blue curves representing the theoretical values of the model and the red circles
representing the actual measured values. It can be seen that the modeling of the PV and
battery system’s output impedance and RPC’s input impedance is consistent with the
simulation test results.
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Figure 6. Three-port impedance verification.

2.3. Low-Frequency Stability Analysis of Proposed Emergency Power Supply System
2.3.1. Stability Judgment Based on Generalized Nyquist Criterion

According to the mathematical model established earlier, the impedance equivalent
circuit of the PV and battery locomotive traction is shown in Figure 7a, where Z0 is equal to
the parallel value of ZPV and ZBat, and Zg is the impedance of the traditional locomotive
network system source side. Due to the PI controller parameters of the converters in PV
and battery systems that affect the output impedance of the system, Z0, ZPV, and ZBat are
different from Zg because the value of Zg depends on factors such as the material of the
transmission line, its length, and the capacity of transformers, which are difficult to adjust
in practical operation. In comparison, the values of Z0, ZPV, and ZBat are related to the
parameters of the PI controller, and adjusting the control parameters of the PI controller is
less costly as well as more simple and fast. The introduction of a controllable equivalent
impedance may exacerbate the LFO of the system or prevent system instability caused
by impedance mismatch; this characteristic makes it particularly important to explore the
impact of the control parameters and number of PV and battery parallel connections on the
system’s low-frequency stability. This section uses stability judgment methods based on
impedance ratio criteria to conduct the research [27,28].

Firstly, it must be ensured that there are no RHP poles for Z0, ZPV, ZBat, and Yinv and
that each subsystem can operate independently and stably in the simulation. Under differ-
ent traction modes, applying the one-dimensional impedance model established earlier, the
Nyquisit curve based on the impedance ratio of Z0/Zinv, ZPV/Zinv, and ZBat/Zinv can be
obtained. Taking Z0/Zinv as an example, the expression for the system’s impedance ratio
can be represented by a transfer function of G(s) = Z0/Zinv. The stability of the system can
be measured by plotting the Nyquist curve of G(s) and determining whether it encircles
(−1, j0). Additionally, the variations in parameter values based on the impedance model
discussed earlier can affect Z0, thus, modifying the Nyquist curve of G(s). Therefore, the
parameters of each variable may have some effect on the stability of the system. Meanwhile,
due to the lack of a clear concept of the stability margin in the impedance ratio criterion for
MIMO equivalent systems, and to showcase the analysis process concisely and clearly, the
critical amplitude margin (CAM) is defined to quantitatively analyze the system stability
in order to reveal sensitive parameters and their influence laws. If CAM ≥ 0, the system is
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stable; if CAM < 0, the system is unstable. The Nyquist plot of the impedance ratio transfer
function for this system may change due to the effect of different parameters, leading to
two different scenarios, as shown in Figure 7b.
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Figure 7. (a) System impedance equivalent circuit; (b) CAM value scenario diagram.

Scenario 1: When the curve surrounds (−1, j0), the distance from the intersection point
of the real axis of the curve to (−1, j0) is expressed as η1, CAM = −η1;

Scenario 2: When the curve does not surround (−1, j0), the corresponding distance is
expressed as η2, CAM = η2.

In summary, changes in system variables can affect the Nyquist curve of G(s), thus,
impacting the stability of the system. Such an impact can be translated into changes in
CAM values to quantify the effect of a particular variable on the stability of the system. To
further reveal the main controller parameters that affect the system stability, this article
defines the sensitivity of the parameters as:

ε =
CAMn

(ks − ky)/ky
× 100% (16)

where ky is a certain original parameter in Table 1, ks is the value of the critical instability
parameter with the smallest change from ky, (ks − ky)/ky is the multiple of the minimum
change in the original parameters when the system is in critical instability, and CAMn is
the critical amplitude margin corresponding to the original parameter ky under different
operating conditions. The introduction of CAMn is aimed at correcting the sensitivity under
different traction conditions (PV traction, battery traction, PV, and battery co-traction). This
expression can be simply understood as the sensitivity to the electrical instability of the
nearest value of the original parameter.
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Table 1. Original simulation system parameters.

Subsystem Parameter Description Value

Traction net

Rs Grid-side equivalent resistance 0.2 Ω

Ls Grid-side equivalent inductance 6 mH

es Traction net voltage RMS 27.5 kV

ω0 Net-side angle frequency 314 rad·s−1

Railway power
conditioner

Linv Filter inductance 0.04 mH

Cinv Filter capacitors 6 mF

Cbus DC-side capacitance 300 mF

u*bus DC-side voltage reference value 2000 V

ω Reference angle frequency 314 rad·s−1

kinvp Voltage-loop proportional gain 40

kinvi Voltage-loop integral gain 20

kb Step-up transformer ratio 1500/27,500

PV
subsystem

RPV PV-side resistance 1 mΩ

LPV PV-side energy storage inductance 0.3 mH

CPV PV-side support capacitor 2.2 mF

kPVup Voltage-loop scaling factor 4

kPVui Voltage-loop integration factor 20

kPVip Current-loop scaling factor 0.4

kPVii Current-loop integration factor 5

Battery subsystem

RBat Energy-storage-side resistance 1 mΩ

LBat Energy storage inductance 1 mH

kBup Voltage-loop scaling factor 15

kBui Voltage-loop integration factor 2

kBip Current-loop scaling factor 0.02

kBii Current-loop integration factor 1

CRH3

ka On-board transformer ratio 27,500/1500

Ln leakage inductance of transformer 2 mH

LCRH3 DC-side filter inductance 0.84 mH

CCRH3 DC-side filter capacitors 3 mF

Cd DC side supports the capacitor 6 mF

kPWM PWM equivalent gain 1

kCRH3up Voltage-loop scaling factor 0.1

kCRH3ui Voltage-loop integration factor 10

kCRH3ip Current-loop scaling factor 1

2.3.2. Influence of DC Converter and RPC Parameters on the Low-Frequency Stability of
the Proposed System

Based on the method proposed in Section 2.3.1, Figure 8a shows the electrical sen-
sitivity bar chart of the control parameters of the DC converter and RPC inverter under
three different traction modes when the ratio between the PV module, battery module, and
CRH3 locomotive is 1:1:1. Due to the sensitivity of the inner-loop control parameters of
the system under this scheme being less than 1%, the Nyquist curve hardly changes with
the changes in the parameters, and the corresponding test shows that the system remains
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stable even after a large number of changes in the inner-loop control parameters; therefore,
it is not included in the research object. The bar chart shows that the proportional gain of
the outer ring is more sensitive to the system stability and the combined traction of the PV
and battery will reduce the parameter sensitivity.

k k k
k k kε

 

k
k

k

k

k
k

Figure 8. (a) Parameter sensitivity of the RPC and DC converters; (b) CAM change law of the
control parameters.

The corresponding parameter influence law is shown in Figure 8b. Within the range
of −0.9 to 2 times the original parameter value, the proportional gain of the outer ring of
each converter exhibits monotonic, identical laws under different operating conditions,
and the sensitivity (i.e., slope) is relatively high. However, the sensitivity of the integral
gain of the outer ring is low, and the impact of the integral gain on the stability of the
system exhibits diversification and non-monotonic characteristics under different traction
conditions. Therefore, the outer-loop proportional gain of the system can be more easily
used to control or prevent system impedance mismatch instability. The specific parameter
adjustment criterion and case verification are expounded in Section 2.3.3.
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In addition, LFO in locomotive network systems always occurs when the Nyquist
curve of the impedance ratio (Zg/ZCRH3) passes through (−1, j0). To investigate whether
the occurrence of LFO under the topology and control scheme proposed in this paper is
consistent with the theoretical analysis of locomotive network systems when the locomotive
is separately tractioned by the PV or battery, the impedance ratio expression for the PV
traction locomotive is ZPV/Zinv, and the expression for battery traction locomotive is
ZBat/Zinv, where ZPV, ZBat, and Zinv come from Equations (5), (6), and (14), and these
impedance ratio expressions are used to plot Nyquist curves under different traction
conditions. Then adjust the high sensitivity parameters kPVup and kBup so that the Nyquist
curve just surrounds (−1, j0), thereby obtaining the Nyquist curve shown in Figure 9 and
the test waveform shown in Figure 10. The results show that when the Nyquist curve of the
impedance ratio for the system described in this paper precisely intersects the (−1, j0) point,
LFO at around 9.6 Hz also occurs. The principle and testing results are consistent under
other parameters in Figure 8 but due to the large number of parameters, they are not listed
in detail.

Figure 9. Nyquist curve before and after changes in high-sensitivity parameters: (a) working condi-
tions of PV locomotive traction; (b) working conditions of battery locomotive traction.
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Figure 10. (a) Experimental waveform of the critical instability of photovoltaic locomotive traction;
(b) experimental waveform of the critical instability of battery pack locomotive traction.

2.3.3. Parameter Adjustment Criterion and Case

Usually, an increase in the transformer capacity and the addition of other types of
equipment such as static synchronous reactive power compensators on the source side
are considered in locomotive network systems to address LFO caused by impedance
mismatch. Such problems also exist in systems under emergency power supply schemes.
However, when using PV and battery locomotive traction, based on the stability law of
the control parameters revealed in Section 2.3.2, the goal can be achieved by adjusting the
converter parameters accordingly. The specific parameter adjustment criteria are as follows:
Firstly, if the system experiences instability, consider lowering the PV boost converter
kPVup, battery DC/DC converter kBup, and RPC single-phase inverter kinvp. Secondly,
consider slightly lowering the kinvi during PV and battery co-traction or battery traction,
and slightly increasing the kinvi during PV traction. It is worth noting that the RPC outer-
loop proportional gain seriously affects the control accuracy (i.e., voltage amplitude);
therefore, prioritize adjusting the proportional gain of the PV and battery DC converters
unless faced with a situation that has special requirements. Taking the ratio of PV modules
to battery modules as 1:1 as an example, the following explains the methods of parameter
adjustment and governance in three cases. The Nyquist curve of Case 1 is shown in
Figure 11a. When using the PV and battery locomotive co-traction, the battery system’s
energy storage inductance deteriorates from 1 mH to 1.23 mH, and the curve surrounds
(−1, j0); at this time, the adjustment kBup is reduced from 15 to 5, and the Nyquist criterion
shows that the system will return to stability. The theoretical curve of Case 2 is shown in
Figure 11b. When the kPVup of the PV locomotive traction deteriorates, it causes a critical
oscillation in the system. The kBup is adjusted and connected to the battery system; at
this time, the PV and battery combined locomotive traction are stable. The test validation
waveforms of the parameter adjustment criteria and related conclusions described in this
section will be presented in Section 3.2.1.
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Figure 11. (a) Nyquist curve for Case 1; (b) Nyquist curve for Case 2.

2.3.4. The Influence of Mixed Proportional Parallel Numbers of PV and Battery Modules
on System Stability

The number of PV and battery hybrid proportional parallel connections will also
change the source-side impedance model to weaken or improve the stability of the system.
Therefore, the original parameters were substituted into the hybrid parallel connection
system. Based on the generalized Nyquist criterion, the bar chart shown in Figure 12a was
obtained. The results show that the system operated stably under different PV and battery
module proportions. To reveal its stability mechanism, the number of PV and battery
modules were introduced as system variables, and because all the modules are connected
in parallel, thus, expanding the impedance ratio expression Z0/Zinv in Section 2.3.1, we
achieve the following formula:

Lhui =

⎛⎝ ZpvZBat
npvnbat

Zpv
npv

+ Zbat
nbat

⎞⎠/Zinv (17)

where npv represents the number of PV modules, and nbat represents the number of
battery modules.
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Figure 12. (a) The proportion of stable system operation when the PV and battery modules were
connected in parallel; (b) analysis results of the passive criterion when the ratio of modules was 1:1.

If npv = nbat = n, the expression is rewritten as Lhui = (Z0/Zinv)/n, which is equivalent
to proportionally reducing the Nyquist function curve (Lhui) by n times. Systems that do
not originally include (−1, j0) will be more stable. In the previous work, it was proven
and verified that the system was stable when the PV traction module ratio was 1:0, the
battery traction module ratio was 0:1, and the PV and battery co-traction module ratio was
1:1 under the original parameters; therefore, the stability of the system with the PV and
battery module ratios of 4:0, 0:4, and 3:3 in Figure 12a is explained. However, it is complex
and difficult to give an answer for the stability mechanism of non 1:1, 1:0 systems using
the impedance ratio criterion, since it changes a variable to directly judge the stability of
the overall system. Therefore, this paper introduces a passive criterion applicable to the
stability analysis of variables, subsystems, and overall systems. The judgment criterion is
as follows: if the sum of the real parts of the total admittance of all parallel systems in the
bus is guaranteed to be constantly greater than 0, all subsystems can operate stably at the
same time. This passive criterion was proposed and verified by Riccobono A. in 2012 [34]
but compared to the impedance ratio criterion, it is less used. Based on the “PV–battery
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locomotive network” coupling system, this article additionally provides the proof process
of the passive criterion from the perspective of dissipative system stability, as shown in
Appendix B. The criterion combines Equations (5), (6), and (14) and Figure 7a, resulting in
the following expression:

Re[Ytot(s)] = Re
[
npvYPV(s) + nbatYBat(s) + Yinv(s)

] ≥ 0

= Re
[

npv
ZPV(s)

+ nbat
ZBat(s)

+ 1
Zinv(s)

]
≥ 0

(18)

Applying Equation (18), the function curve is plotted under the original parameters
when the locomotive traction has a PV and battery module ratio of 1:1, as shown in
Figure 12b. At this time, the real parts of the admittance of the PV and battery modules
are both greater than 0 in the entire frequency band. If the subsystem is paralleled in any
proportion, it will increase the distance between Re[Ytot(s)] and the horizontal axis, and
the system will obtain an additional stability margin to maintain stability. This reveals
the reason why the system always maintains stability after the PV and battery module
mixing ratio is paralleled. Based on the above analysis, the problem of LFO in PV and
battery locomotive co-traction under specific working conditions can also be solved by
using the law of the influence of the number of module parallel connections on stability to
reshape the system impedance from the main circuit structure through the passive criterion.
In Section 3.2.2 Case 1, we designed experiments and demonstrated the validity of the
theoretical analysis.

Increasing the number of PV battery parallel connections in a targeted manner can
address instability caused by multiple locomotives running together or unreasonable RPC
parameter settings but it is difficult to use this method to solve instability caused by the
deterioration of the system. The instability process of this phenomenon can be revealed
using passive criteria, as shown in Figure 13, which shows the criterion curve after the
1:1 parameters of the PV and battery modules deteriorate. Increasing npv and nbat will
cause Re[YPV(s)], Re[Ybat(s)], and Re[Ytot(s)] to extend towards negative infinity, thereby
exacerbating the system instability, and this was validated in Section 3.2.2 Case 2.

Figure 13. Passive criterion analysis results after deterioration of the system parameters.

Based on the research in this section, it is recommended to ensure that the real part of
the admittance of the PV and battery subsystem is always greater than 0 during the design.
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2.3.5. Passive Criterion Is Used to Reveal the Influence Law of Parameters on Stability

As shown in Section 2.3.4, the passive criterion based on the DC bus has clear boundary
conditions and judgment criteria, which makes it easier to explore the law of the influence of
parameters on the stability of the system, in comparison with the Nyquist criterion. This is
reflected in the bivariate function curve, which directly shows the influence of a parameter
of the system on its stability. This means that the law of stability near the original parameter
will no longer be experimentally searched as before, and the three-dimensional plotting of
the function can immediately reveal the influence of arbitrary values of a parameter on the
stability of the original system. In order to verify the above analysis, passive criteria are
used to reveal the stability influence laws of kPVup and kBup, which have been verified before.
By taking kPVup and kBup as variables, we can obtain functions similar to Equation (19) but
because the expressions are verbose, they are presented in the form of graphs, as shown in
Figures 14 and 15, where the z axis is Re[Ytot(s)].

Re[Ytot(s)] = F(k, ω) (19)

(a) 

 
(b) 

Figure 14. The influence of kPVup on the system stability: (a) global diagram; (b) local diagram of the
system instability.
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(a) 

 
(b) 

Figure 15. The influence of kBup on the system stability: (a) global diagram; (b) local diagram of the
system instability.

Figures 14a and 15a show that with the increase in kPVup and kBup, the surface gradu-
ally extends to the negative plane; in other words, the system gradually becomes unstable,
which is consistent with the results obtained using Nyquist’s criterion and in the semi-
physical simulation, however, we are more concerned about the LFO phenomenon that
often occurs in actual railway systems, that is, the critical instability of the system. Ac-
cordingly, the local amplification when the corresponding parameter is unstable is shown
in Figures 14b and 15b, and the values of the LFO parameters given by the criterion are
kPVup = 5.679 or kBup = 31.8, which are obviously lower than the values given by the gener-
alized Nyquist criterion, as shown in Figure 10b. The system ran stably in the simulation
experiment under these parameters. It is also necessary to continue to increase the parame-
ter values to cause LFO. This is caused by the large conservatism of the passive criterion.
Assuming that the law revealed by the criterion is used to control the LFO, if the stability
of a parameter affecting the law is not monotonic and there are lots of extreme points, this
situation may lead to a counterproductive parameter adjustment. Here, the law revealed
by the criterion is more suitable when parametric influences are monotonic over a large
scale. However, in the system design, the conservativeness of the criterion is favorable, and
it will leave a certain stability margin.
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In addition, by applying passive criteria to the AC bus, the designed virtual impedance
compensator successfully suppresses LFO [17] but the specific proof process in the AC
system and its conservative improvement are the next research foci concerning this criterion.

3. Results and Discussion

3.1. Emergency Power Supply Scheme Testing

To verify the feasibility of the proposed emergency power supply scheme and the ac-
curacy of the stability analysis, a simulation model of the PV and battery power generation
systems, RPC, and CRH3 locomotive, as shown in Figure 1, was built based on Starsim. Fig-
ure 16 shows Shanghai Yuankuan Energy’s Starsim HIL real-time simulation software 5.0
and HIL real-time simulator (Modeling Tech, Shanghai, China). This system can perform
small-step real-time testing on power electronic models based on state equations, switch
averaging, and modeling of large and small resistors. In this paper, the model was verified
using a real-time test system (MT 6020) with a 5 μs step size and 20 kHz sampling frequency.

 
Figure 16. Hardware-in-the-loop real-time testing platform.

Here are the model parameters in the above-mentioned testing system, as shown in
Table 1. In this paper, the parameters in Table 1 are referred to as the original parameters.
Unless otherwise specified, analysis or testing will default to using the original parameters.

3.1.1. Emergency Traction Test based on Locomotive Power Failure

The upper computer calculation display is shown in Figure 17a, where PRPC is the
output power of the PV and battery, Pnet is the output power of the substation, and PCRH3
is the absorbed power of one locomotive. At 1 s, the traction network unexpectedly lost
power to the locomotive; after a short response time, the RPC identified the operation
status of the PV and battery devices and switched to the corresponding mode to achieve the
emergency power supply for the locomotive. At 2 s, the power supply to the substation was
restored; to ensure passenger safety, the RPC delayed the power outage. Finally, at 2.5 s,
the RPC exited the power supply or returned to the power compensation scheme. During
this power outage process, the locomotive remained running, as shown in Figure 17b. If
emergency-response-type locomotive traction is started in actual engineering, it can provide
on-site measured data support and technical guidance for future new energy self-sufficient
traction. For example, the working conditions of delayed power outages are equivalent to
the actual test of changing to the substation supply when the new energy self-sufficient
traction encounters an accident.
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Figure 17. Emergency response traction power supply: (a) system energy flow; (b) locomotive voltage
and current.

3.1.2. Coordinated Traction Test

The test setup of the operating power Pload of the high-speed locomotive is set to
3.6 MW, and the light intensity will continue to rise, as shown in Figure 18 obtained from the
upper computer. Among the modes, mode four to mode one correspond to battery traction,
PV and battery co-traction, PV traction, and PV locomotive traction and battery charging.
By switching operation modes under different working conditions, the locomotive traction
power can be stabilized while charging the battery. Under this scheme, the renewable
energy continuous closed-loop power supply allows the locomotive to remain “low-carbon”
for a long time, and a substation can be used for backup power in case of accidents.
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Figure 18. Energy self-sufficient traction power supply: (a) multi-mode power flow conditions;
(b) voltage waveform on both sides of the RPC.

3.2. Verification of Low-Frequency Stability Analysis

The main purpose of this section is to verify the results of the low-frequency stability
analysis in Section 2.3 to ensure the correctness of the analysis. The following subsections
will present corresponding test results in the order of the analysis in Section 2.3.

3.2.1. Verification of Parameter Adjustment Criterion

1. Case 1: Adjusting control parameters to address instability caused by deteriorating
circuit parameters. Under the original parameters, the PV and battery stably provided
co-traction for the locomotive, which is verified in Figure 18. However, at this time,
the parameters of the energy storage inductor Lbat deteriorated. The waveform of
the traction-network-side voltage Uac and current Iac is shown in Figure 19b. The
system experienced a low-frequency constant-amplitude oscillation of 5.7 Hz after 2 s,
and after kBup decreased after 2 s, the system was stabilized and restored. This case
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demonstrates that numerically adjustable control parameters can govern LFO caused
by the deterioration of topology circuit parameters.

U I

Figure 19. Waveform for parameter adjustment after the deterioration of the main circuit parameters:
(a) global diagram; (b) local diagram.

2. Case 2: Connecting a parameter-adjusted other-source subsystem to address single-
source traction instability. Due to the unreasonable setting of kPVup during the PV
locomotive traction, the system became unstable. Finally, a parameter-adjusted battery
system was connected to control the constant-amplitude oscillation. The experimental
waveform is shown in Figure 20, where udc and u0 are the output voltages of the
RPC DC and AC sides, respectively. By comparing and observing the oscilloscope,
it was found that a lower value of kBup made the bus voltage fluctuation smaller
and smoother when the battery system was connected. The reason for the successful
governance of the parameter adjustment, in this case, is reflected in the addition of
the circuit topology of the battery subsystem and the parameter setting under the
parameter adjustment criteria, which improved the impedance matching relationship.
At the same time, the relatively lower electrical sensitivity under the combined traction
of the PV and battery provided the control parameters with a wider range of choices
in the stable domain.
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Figure 20. When the PV locomotive traction is unstable, it can be corrected by connecting a parameter-
adjusted battery subsystem: (a) experimental waveform after the battery was connected when
kBup = 5; (b) experimental waveform after the battery was connected when kBup = 15.

3. Case 3: Adjusting the control parameters to govern LFO caused by multi-locomotive
operation (heavy load). The impedance ratio criterion mechanism shows that the
smaller the load-side impedance, the more unstable the system will be. Therefore,
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many studies on locomotive network systems have found that multi-locomotive
operation or mixed operation is an important factor inducing LFO. The problem
of heavy loads reducing the stability of traction power supply systems also exists
in the study of PV and battery locomotive traction but the parameter-adjustable
“artificially controllable traction network impedance” has a certain adaptability. The
CRH3 high-speed locomotive was used as the research object, and the simulation
waveform is shown in Figure 21, which includes the locomotive DC-side voltage
UCRH3dc, locomotive-network-side voltage UCRH3ac, and locomotive-network-side
current ICRH3ac. After 2.5 s, the addition of three high-speed locomotives caused a
4Hz low-frequency constant-amplitude oscillation among the high-speed locomotives.
According to the parameter adjustment criteria, kPVup and kBup were decreased after
2.5 s, and then the locomotives were stabilized.

k
k

U U I

 

Figure 21. Adjustment of the parameters to control system instability caused by multi-locomotive
parallel connection: (a) global diagram; (b) local diagram.

3.2.2. The Impact of Parallel Connections of PV and Battery Modules

1. Case 1: Worsening RPC parameters and overloading lead to LFO and then an increase
in the number of parallel connections of the PV and battery modules. According
to the passive criterion, overloading and deteriorating RPC parameters will cause
Re[Yinv(s)] to extend towards the negative plane until the system experiences critical
instability. According to the impedance ratio criterion, overloading is equivalent to
proportionally amplifying the Nyquist curve until it envelops (−1, j0). Under this
operating condition, it will cause low-frequency divergent oscillations, as shown in
Figure 22a, where Udc and U0 are the voltages on both the RPC DC and AC sides,
respectively. Increasing the number of parallel PV battery modules and reshaping
the impedance to provide an additional stability margin can compensate for this, as
shown in Figure 22b. In this case, the system can regain stability after 1.6 s.

2. Case 2: Increasing the number of parallel modules after the module parameters
deteriorate. As shown in Figure 23, multiple increases in the number of module
parallel connections after the PV and energy storage inductance parameters and
control parameters deteriorate will actually exacerbate the system instability.
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Figure 22. (a) Overloading and worsening RPC parameters lead to system instability: (b) the
ratio of PV and battery module parallel connections can multiply and increase to reshape the sys-
tem impedance.

Figure 23. Deterioration of the system parameters leads to instability and multiple increases in the
ratio of modules will aggravate the voltage oscillation.

4. Discussion

This paper mainly proposes an emergency power supply scheme to solve the problem
of interruption in train power supply caused by unexpected faults in traction substations.
The solution coordinates with the PV and battery systems to achieve emergency traction
of locomotives, thereby expanding the functions of the railway power conditioner (RPC).
Meanwhile, this paper proves through theoretical modeling and verification tests that the
PV and battery traction locomotive additionally have the problem of low-frequency oscilla-
tion. To curb low-frequency oscillation occurring during the emergency power supply, this
paper quantitatively analyzes the influence law of PI control parameters and topological
structures on the low-frequency stability of the system, proposes a design method for the
impedance real part greater than 0 of the PV and battery systems module, and provides
parameter adjustment criteria to suppress or even prevent low-frequency oscillations.
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Most studies on the integration of PV and battery into electrified railways focus
on RPC grid compensation of traction power and harmonic governance. However, it is
necessary to make RPC multifunctional, and few of the literature studies the coordinated
control scheme of PV and battery for emergency train traction. If the majority of current
RPC research’s control strategies, such as the ones described in references [16,31], are
used to independently traction the locomotive, the lack of phase information obtained
by the phase-locked loop will cause the frequency and current of the traction network to
be incorrect, forcing the locomotive to stop running. Therefore, this paper proposes the
use of a dual-mode RPC with an independent power supply function, which can not only
compensate for the power of the traction power supply system but also provide emergency
traction for the locomotive.

Meanwhile, current research of the literature applies various criteria to analyze the
low-frequency stability of a system. However, many research methods and processes in
the literature are rather similar, in that they require graph redrawing every time a variable
is modified to display the corresponding result [18,27,28]. This process is not intuitive
enough and does not facilitate a thorough investigation of the impact of parameters on
the stability and sensitivity of the system, simultaneously considering that there is little
research on the low-frequency stability of the PV–battery locomotive network coupling
system. Therefore, this paper defines CAM to quantify system stability and provides a
method to calculate the sensitivity ε of parameters, which can weigh the importance of
different parameters under different working conditions and explore the main influencing
parameters and their influence laws. This paper also proposes the use of a passive criterion
to reveal the influence mechanism of the number of PV and battery modules in parallel
on system stability. Moreover, it finds that it has great potential for exploring parameter
influence laws, it can intuitively give the law that a variable affects system stability within
any value range through functions or three-dimensional drawings, however, the passive
criterion still needs some improvement to achieve analysis accuracy similar to that of the
Nyquist criterion.

Furthermore, PV and battery co-traction locomotives are environmentally friendly,
because almost all of the electricity comes from renewable energy sources. Based on the
research results of this article, further optimization and improvements in the power supply
scheme of emergency traction locomotives, and exploring the impact of more variables on
the low-frequency stability of the system, such as different types of locomotives running
together under different working conditions, and conducting comprehensive research
on the simultaneous impact of multiple parameters on the system, all have a profound
significance and great value. Meanwhile, issues such as whether the emergency power
supply scheme proposed in this article be used for long-term traction locomotives persist.
How to configure the capacity of the PV and battery, whether the PV resources can be
recycled by the power grid while the supply arm is idle and the locomotive is running, etc.,
are also the focus of future research. Compared to the traditional AC-electrified railway, the
fact that the output of both PV and energy storage is DC suggests that there may be broader
application prospects for PV and battery traction locomotives in DC railways and urban
rail transit systems, and how to further explore its specific scheme and system stability are
yet to be discussed.

5. Conclusions

This work demonstrates that it is feasible to independently drive locomotives using PV
and battery equipment under different working conditions during the day and night, and
it established a one-dimensional impedance model for a PV–battery locomotive network
system from the DC side. At the same time, this study suggests that low-frequency stability
analysis of the system of the PV–battery locomotive network may be very important. On
this basis, the stability of the system was studied using the generalized Nyquist criterion
and a passive criterion. The critical amplitude margin (CAM) and the sensitivity of the
controller parameters were proposed to quantitatively evaluate the influence law of the
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source-side DC converter control parameters and RPC control parameters on this system
stability under different emergency traction modes, and corresponding parameter tuning
criteria and design suggestions were provided to improve the stability of the system. Finally,
the findings were verified through time-domain simulation models and semi-physical
testing. The main research conclusions are as follows:

(1) Proposal of a coordinated control strategy, achieving locomotives emergency traction
by using PV and battery, thus, increasing the function of the RPC.

(2) When the locomotive is co-tractioned by the PV and battery, the sensitivity of the
control parameters is reduced compared to when the locomotive is powered by a
single source. Moreover, the parameter selection in the stable region is more extensive,
and the control accuracy is higher. In addition, the influence of the proportional
gain parameters of the outer loop of the PV and battery DC converters on the system
stability is consistent under different traction conditions. Compared to the RPC control
parameters and the integral gain sensitivity of the outer loop of the PV and battery DC
converter controller, it is more reasonable to improve the system stability by adjusting
the proportional gain of the PV and battery DC converters. Priority should be given
to reducing the proportional coefficient kPVup and kBup to improve the stability of
the system.

(3) The numerical value of the connection ratio between the PV modules and battery
modules has a significant impact on the low-frequency stability of the system. If the
output admittance of the PV and battery modules is less than 0, increasing the number
of parallel connections will weaken the system stability; if it is greater than 0, the
stability margin will be increased to a certain extent. By utilizing this feature, the
impedance can be reshaped during system design and operation.
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Appendix A⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GPVBB = ΔuBus
ΔiBus

= s2LPVCPV+sRPVCPV+1
s3LPVCPVCBus1+s2RPVCPVCBus1+s(CBus1+CPVD∗2

PV)

GPVBP = ΔuBus
ΔdPV

=
−s2RPVCPVCBus1+s(CPVD∗

PVUBus1−RPVLPVCPV)−ILPV

s3LPVCPVCBus1+s2RPVCPVCBus1+s(CBus1+CPVD∗2
PV)

GPVLB = ΔiLPV
ΔiBus

=
sCPVD∗

PV
s3LPVCPVCBus1+s2RPVCPVCBus1+s(CBus1+CPVD∗2

PV)

GPVLP = ΔiLPV
ΔdPV

=
s2CPVCBus1UBus+sLPVCPVD∗

PV
s3LPVCPVCBus1+s2RPVCPVCBus1+s(CBus1+CPVD∗2

PV)

GPVu = kPVup + kPVui
s

GPVi = kPVip + kPVii
s

(A1)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GBiB = ΔuBus
ΔiBus

= sLBat+RBat
s2LBatCBus2+sRBatCBus2+D2

Bat

GBdB = ΔuBus
ΔdBat

= (sLBat+RBat)IBat−DBatUBus
s2LBatCBus2+sRBatCBus2+D2

Bat

GiBi =
ΔiBat
ΔiBus

= DBat
s2LBatCBus2+sRBatCBus2+D2

Bat

GiBd = ΔiBat
ΔdBat

= sUBusCBus2+DBatLBat
s2LBatCBus2+sRBatCBus2+D2

Bat

GBu = kBup + kBui
s

GBi = kBip + kBii
s

(A2)

Appendix B

The passive criterion is additionally proven from the perspective of the dissipative system:
Based on the DC bus, the equivalent impedance circuit of “PV-Battery-locomotive

network” is obtained by using Thevenin’s and Norton theorems, as shown in Figure A1,
where u(t) = Udc.

Ud Ud

Z nZ n
ZU

i t

Z nZ n Zu t
U

Figure A1. “PV-Battery-locomotive network” equivalent impedance circuit.

The energy function is listed using the output current and voltage, as shown in the
following equation.

ρ(t) =
∫ +∞

−∞
u(t)i(t)dt (A3)

When the above equation is always greater than zero, the system is a dissipative
system and remains stable at all times. According to Passerval’s theorem, the conversion to
the frequency domain yields:∫ +∞

−∞ u(t)i(t)dt = 1
2π

∫ +∞
0 (u∗(ω)i(ω) + u(ω)i∗(ω))dω

= 1
2π

∫ +∞
0 (u(ω))2(Ytot(ω) + Ytot

∗(ω))dω
(A4)

Among them, * represents conjugation, Ytot represents the sum of the admittance
realities of the optical storage network, and ensuring that the above equation is greater
than 0 is ensuring that the admittance Ytot real part is greater than 0.
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Abstract: Electric vehicles and the charging stations and their operation require a thorough exam-
ination to evaluate the effects on the electrical network. This becomes particularly challenging in
the case of high photovoltaic penetration, due to the variability of the solar resource and vehicle
connection patterns, which cater to individual user preferences. The current study investigates the
impact of harmonics generated by charging stations and electric vehicles on different photovoltaic
penetration scenarios within an electrical distribution system. DC and AC charging stations are
analyzed. The findings reveal a third harmonic magnitude increase exceeding 300% compared to
other cases. Furthermore, this study demonstrates the effects of current and voltage variations on
end-users and substation transformers. The impact of harmonics on the hosting capacity of the
network is also analyzed, resulting in a 37.5% reduction in the number of vehicles.

Keywords: electric vehicle; charging stations; photovoltaic generation; distribution system; harmonics

1. Introduction

Over the past 5 years, there has been significant growth in the adoption of electric
vehicles (EVs). However, integrating EVs into electrical distribution systems involves a
thorough examination of their impact on the electrical network. The connection of EVs to
the power grid may cause an elevation in voltage and current harmonic distortion, as well
as a decrease in the lifespan of distribution transformers due to elevated temperatures [1].
In addition, harmonic distortion can also arise from the inverters of grid-connected photo-
voltaic (PV) systems, with some harmonics reaching high levels [2]. The integration of EVs
with a high penetration of PV systems can create challenges for electrical distribution grids.
Additionally, a large quantity of electric vehicles may result in power quality issues, such
as service interruptions, fluctuations in voltage and current, and harmonic distortion [3].
Hence, it is crucial to carefully plan the integration of electric vehicles into PV-dependent
systems to prevent any undesirable disruptions to the distribution system.

Several studies have investigated the influence of EVs on electrical distribution sys-
tems, analyzing both EV penetration and PV systems [3–7]. However, there are only a few
case studies that investigate the integration of these technologies in electrical grids with
a high concentration of PV systems. It has been demonstrated that the presence of EVs
in the electrical grid has an impact on total harmonic distortion (THD). In [8], the effect
of level two fast chargers on the grid was investigated. As the penetration of EVs on a
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feeder rises, the degree of harmonic distortion also rises, as observed. Furthermore, the
study investigated the impact of the electric vehicle supply equipment (EVSE)’s location
on the feeder. The outcomes indicated that the highest THD value was at the end of the
feeder, and the voltage at the user’s terminals decreased when the EVSE was located further
from the feeder’s origin. These findings have significant implications for the deployment
of EV charging infrastructure in the power grid, as careful EVSE placement can mitigate
the negative effects of EVs on harmonic distortion. Moreover, these findings emphasize
the necessity for additional research on the influence of EVs on the electrical grid and the
development of strategies to guarantee the dependable and effective integration of electric
vehicles into the grid.

It has also been observed that the individual harmonic distortion caused by EVs
limits the capacity of the electrical grid. In a study conducted by the authors in [9], a
sensitivity analysis of models with uncertainty in medium voltage networks was assessed.
The results showed that individual harmonics cause a decrease in the hosting capacity
due to the probability of exceeding technical limits by approximately 67%. These findings
underscore the need for careful consideration of the impact of EVs on the electrical grid and
the potential limitations that may arise. It is essential to ensure the reliability and efficiency
of the electrical grid as EV adoption continues to increase. Further research on the impact of
EVs on the electrical grid’s hosting capacity and the development of strategies to mitigate
the negative effects of harmonic distortion will be crucial in facilitating the integration of
EVs into the electrical grid.

This study focuses on investigating the harmonic effects of EV charging stations in
an electrical distribution grid with high PV penetration, considering both peak and valley
demand. To determine the actual harmonic values, the power quality of fast-charging
stations employing direct current (DC) and slow-charging stations using alternating current
(AC) for KIA- and BYD-brand vehicles was measured. Subsequently, the system was
simulated utilizing OpenDSS, and validation was carried out using the IEEE European
low-voltage test feeder case.

The current study is an extension of the article titled “Harmonic Impact of Electric
Vehicles in Electrical Distribution Systems with High Photovoltaic Penetration”, presented
at the V Ibero-American Congress of Smart Cities.

This article’s key contributions include (a) a comprehensive analysis and assessment
of the impact and distinct levels of harmonics on the behavior of distribution systems
with high PV penetration and EV loads, proposing that a high penetration of photovoltaic
generators and EVs has a direct relationship with amplified harmonics and (b) indicating
that THD effects on voltage values at loads are significant and must be considered.

2. Methodology

The electrical parameters for this study were acquired by measuring two EV brands
and charging stations under real charging conditions. Furthermore, the charging stations
and electric vehicles were modeled as both storage components and sources of harmonic
generation. The specific modeling of EVs as storage components was deemed necessary due
to the standard model available in OpenDSS, which permits the configuration of various
efficiency parameters, including state of charge or discharge and power control. However,
as there is no specific model designed for EVs, MATLAB must be employed to control their
operations. In contrast, the standard OpenDSS model was deemed sufficient for modeling
PV systems, enabling the incorporation of a wide range of parameters, including irradiance,
efficiency, and temperature effects. Lastly, a standard electrical IEEE standard case study
was utilized to conduct the simulations.

2.1. Charging Stations and Electric Vehicles

Tests were carried out at the University of Cuenca’s laboratory [10], using a Fluke
435 II power quality analyzer, to gather real data on current harmonics. The measurements
were conducted on a BYD T3 and Kia Soul EVs, as well as on a 7.2 kW AeroVironment

186



Electronics 2023, 12, 2415

RS 25 AC electric vehicle supply equipment (EVSE) (sourced from California, USA) and a
50 kW Circontrol Raption 50 model (sourced from Barcelona, Spain) fast DC EVSE (refer to
Figure 1).

 
 

(a) (b) 

Figure 1. Measurement equipment: (a) connection diagram; (b) EV and EVSE.

The laboratory measurements of voltage harmonics, encompassing both magnitude
and angle, yielded the results that are shown in Table 1. Additionally, the values obtained
from prior studies available in the literature involving other models of EVs have also been
included. Table 1 shows the results of the laboratory measurements up to the eleventh
harmonic for the parameters (param) in magnitude and phase angle of voltage. It presents
the harmonics generated by an electric vehicle charger (EV charger), a Nissan Leaf vehicle,
a BYD-brand vehicle with an alternating current charging station (BYD AC) and direct
current (BYD DC), as well as a Kia-brand vehicle, likewise with an alternating current
charging station (Kia AC) and a direct current one (Kia DC).

Table 1. Harmonics magnitude and angles obtained from measurements and other studies.

No. Param EV Charger [6] Nissan Leaf [5] BYD AC Kia AC BYD DC Kia DC

1
Mag. 100 100 100 100 100 100

Angle −55 −26 136 143 8.6 28.6

3
Mag. 9.20 25.00 9.91 6.31 2.40 6.22

Angle 120.00 −94.00 98.00 102.00 6.50 32.00

5
Mag. 62.20 17.00 8.47 1.15 1.73 14.55

Angle 255.00 −96.00 120.00 131.00 7.20 36.00

7
Mag. 41.80 14.20 8.11 0.83 2.14 5.61

Angle −28.00 −72.00 146.00 153.00 6.80 31.00

9
Mag. 1.48 9.69 7.30 0.49 1.13 4.34

Angle −3.00 −68.00 152.00 161.00 5.70 34.00

11
Mag. 7.08 5.04 6.92 0.64 2.45 5.06

Angle −2.00 −49.00 168.00 182.00 5.60 35.00

Charge Efficiency - - 92.90% 89.80% 94.60% 91.70%

Additionally, measurements were carried out to evaluate the efficiency of both the
charging station and the internal converter of the vehicle. The performance of an EVSE was
assessed using instrumentation to ensure accurate measurements. An AC power quality
analyzer Fluke 435 II was utilized at the input of the station to monitor critical electrical
parameters, such as the current, voltage, and harmonics in both magnitude and angle.
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Furthermore, a Hioki PW3337 DC (sourced from Nagano, Japan) power quality analyzer
was connected to the internal charger circuit and the EV battery to obtain the charging
efficiency. The charging processes of EVs were tested from a state of charge (SOC) of 10%
to 95% to ensure a comprehensive analysis of charging performance. The experiment was
conducted in the University of Cuenca’s laboratory. The efficiency of EVSEs was examined
in both AC and DC charging modes, with the highest efficiency observed during DC
charging at 94.6%, while the lowest efficiency was recorded during AC charging at 89.8%.

2.2. Simulation Characteristics

OpenDSS was utilized for simulation purposes, wherein EVs were represented as
storage elements and were dispersed across different phases of the system, while also
acting as a source of harmonics. The simulation process involved the use of two distinct
models, one for the EV and another for the PV. The EV was accurately modeled as a battery
with a charge controller, customizable efficiency settings, and a current source to generate
harmonic waves. The model employed consists of a battery storage element connected
to each load bus of the system. It utilizes a two-phase model, with each phase operating
at 230 VAC and a power factor of 1. The specific spectrum and load curve for the model
can be found in the study’s repository, specifically in the Input_data/circuit/autos folder.
Similarly, the PV system was designed to operate with a DC-to-AC converter, which served
as the control signal for a harmonic current source. Standard values were employed for
efficiency, temperature, and irradiation to ensure consistency throughout the simulation
process (see Figure 2). The PV system in OpenDSS is defined as a PVSystem element,
connected to the system buses according to each scenario. It is configured as a single-phase
system operating at 230 VAC and an operating temperature of 25 ◦C. Additionally, the
irradiation, efficiency, harmonic spectrum, and power–temperature adjustment curve are
defined in the repository files, specifically in the Input_data/circuit/fotovoltaico folder.

  
(a) (b) 

Figure 2. Simulation models. (a) Electric Vehicle. (b) PV generator.

The models employed for the EV and PV generator incorporate series and parallel
impedances, specifically series RL and parallel RL. To accurately align with the power
profile, OpenDSS computes the values of conductance (G), susceptance (jB), and impedance
(R+jX) for both the vehicle’s power consumption and the generator’s power generation
requirements according to its power delivery requirements. Regarding the harmonic
spectrum, the harmonic values obtained from Table 1 are applied to EVs, whereas default
values from OpenDSS are utilized for PV generators. Furthermore, the efficiencies (%
efficiency) indicated in Table 1 are incorporated into the EV model, and ideal idling losses
are assumed.

This approach enables the accurate modeling and analysis of harmonics impact of EVs
and PV systems. A critical consideration during the simulation process was the connection
time of EVs, which could significantly impact the results of the analysis. To precisely
reflect the behavior of EV connections, a multimodal probability distribution function
(PDF) was employed. Such a PDF accounts for multiple modes or peaks that demonstrate
the connection of electric vehicles at various times of the day. For residential EVSEs, it is
worth noting that, while the connection can be established at any point during the day,
the maximum modes transpire at 08:00 and 18:00. These timeframes coincide with when
users typically return home with their EVs and proceed to connect them for charging
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purposes [11]. The function used was designed with modes at 02:00, 08:00, and 19:00, and
standard deviations of 2 h, to generate a realistic representation of EV connection behaviors
(see Figure 3). In the simulation, EVs maintain a charging regimen lasting between 6 and
8 h, reaching a SOC ranging from 80% to 100%. This encompasses up to 55 distinct charging
behaviors, depending on the specific scenario being analyzed. The OpenDSS file utilized
to describe the charging duration, as well as the connection and disconnection times, can
be downloaded from the repository associated with this study. It is located within the
Input_data/circuit/autos folder.

Figure 3. Electric vehicle connection probability distribution function used in simulation.

To automate the simulation process in OpenDSS, MATLAB was employed as a tool for
controlling the timing of both customer load profiles and EV connections. The integration
of MATLAB with OpenDSS allowed for a streamlined and efficient simulation process,
which ultimately facilitated the accurate analysis of the performance of EVSEs.

2.3. Application Scenarios

To evaluate the impact of harmonics, a simulation was conducted utilizing the IEEE
European low-voltage test feeder model. Three scenarios were analyzed based on the
PV generation location: (1) 14 distributed PV systems with a capacity of 5 kW each and
14 EVSEs with a capacity of 7.2 kW each; (2) a central PV system with a capacity of 70 kW
and 14 EVSEs with a capacity of 7.2 kW each, as illustrated in Figure 4; and (3) PV and EV
distributed across all loads. The harmonic spectrum from Table 1 was assigned randomly to
each scenario, while for the PV generators, the harmonic spectrum from [12] was employed.
A clear sky irradiance profile was applied to the PV systems. The study examined the
following scenarios:

• The initial test case solely examines residential loads within the system, devoid of EVs
or PVs (Case 1).

• EVs connected without PV generation and without harmonic effects (Case 2).
• EVs connected with distributed PV generation and without harmonic effects (Case 3).
• EVs connected with single PV generation and without harmonic effects (Case 4).
• EVs and PV generation distributed across the loads without harmonic effects (Case 5).
• EVs connected without distributed PV generation and with harmonic effects (Case 6).
• EVs connected with distributed PV generation and with harmonic effects (Case 7).
• EVs connected with single PV generation and with harmonic effects (Case 8).
• EVs and PV generation distributed across the loads with harmonic effects (Case 9).
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(a) (b) 

Figure 4. Test cases analyzed: (a) distributed EV and distributed PV systems; (b) distributed EV and
single PV system.

The analysis focused on observing the impact on the substation response, the maxi-
mum total harmonic distortion (THD), and the voltage and current at the client terminals.

3. Results

During the simulation, the power rating of the transformer in the substation, as well
as the highest and lowest voltages recorded across the loads, were taken into account.
Moreover, the maximum THD in the loads was also considered.

3.1. Power of the Substation Transformer

Initially, the power of the substation transformer was analyzed for the scenarios
outlined in Section 2.3. Figure 5 illustrates that the power of the substation transformer
fluctuates as EVs are introduced into the network and the impact of harmonics caused
by the EVs is taken into consideration. Case 2 without harmonics exhibits the lowest
power value, whereas the highest power value among all scenarios is observed when
harmonics are introduced into the network. The high current resulting from harmonics
saturates the system’s conductors, which diminishes the effect of power injection by the PV
generation. Additionally, the situation deteriorates when there is only one PV generation
in the distribution system. Likewise, an analysis of the network’s performance in Cases 5
and 9, which include distributed PV and EV systems, reveals a distinct impact of harmonic
distortions. Specifically, the presence of harmonics causes a reduction in the current output
of the PV systems.

The power with harmonics is internally calculated by OpenDSS through multiple
simultaneous simulations. First, the power of the fundamental component is computed,
followed by repeated simulations for each of the harmonic components configured in the
spectrum file. Consequently, OpenDSS provides separate power results for each harmonic,
and in MATLAB, the contribution of each harmonic is summed. Equation (1) illustrates the
outcome of this calculation.

P =
m

∑
n=1

Vn In

2
cos(θn − ϕn) (1)

where:

P is the active power;
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n is the harmonic;
Vn is the voltage of nth harmonic;
In is the current of nth harmonic;
θn is the voltage angle of nth harmonic;
ϕn is the current angle of nth harmonic.

Figure 5. Substation transformer power curve for each case.

3.2. Load Voltages

This study examined the behavior of maximum and minimum voltages across the
loads (customers) in the network to ensure that they meet the limit values prescribed by the
ANSI C84.1-2006 standard for each simulation scenario. A base RMS voltage of 240 VAC
was assumed for the network, and the standard limits of 0.9 pu and 1.05 pu were used,
which correspond to 216 VAC and 252 VAC, respectively. The simulations showed that
Cases 5 and 9 had lower RMS voltage values than case 8, which had the highest voltage at
the customer terminal connected to the PV generator. It was observed that high voltage
values coincided across different simulation cases (see Figure 6). Notably, minimum voltage
values were found to be within the standard limits across all simulation scenarios.

 
(a) (b) 

Figure 6. Voltages at customer bars. (a) Maximum values on all customers by selected case. (b) Mini-
mum values on all customers by selected case.

Table 2 displays the highest and lowest power values of the substation transformer,
along with the voltage and current at the customer’s terminals. It is evident that in Case 2
with harmonics, the transformer requires the most power, both in terms of maximum and
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minimum power during the 24 h period. With regard to voltage, scenarios with harmonics
do not seem to have a significant impact. However, the current remains at a high level
during the minimum of Case 2 with harmonics.

Table 2. Power, current, and voltage obtained from the analyzed scenarios.

Case Transformer Power (kW) Load Voltage (V)

(1) Base
Max 48.95 243.67

Min 4.81 225.50

(2) Only EVs
Max 48.95 243.99

Min 4.81 238.89

(3) EV and distributed PV
Max 43.29 249.01

Min −47.06 223.07

(4) EV and single PV
Max 43.29 291.93

Min −52.75 215.76

(5) Distributed EV and distributed PV
Max 45.76 260.91

Min −209.20 224.01

(6) Case 2 plus harmonics
Max 54.48 244.02

Min 5.79 221.02

(7) Case 3 plus harmonics
Max 43.29 249.02

Min −44.94 223.23

(8) Case 4 plus harmonics
Max 43.29 291.97

Min −50.28 215.95

(9) Case 5 plus harmonics
Max 83.81 260.94

Min −209.20 224.04

3.3. Load Harmonics

Through a comprehensive analysis of the system’s response to specific injected har-
monics throughout a 24 h duration in each case, notable observations were made. The
findings revealed that the third harmonic held a dominant presence, aligning with the mea-
surements conducted in controlled laboratory settings. The obtained results exhibit distinct
harmonic profiles for Case 6 and Case 7, showcasing interesting trends in the magnitudes
of various harmonics. In Case 6, the analysis unveiled a maximum value of 2.5% for the
third harmonic, indicating its prominent influence on the system. On the other hand, the
seventh harmonic exhibited the lowest magnitude, with a minimum value of 0.3%. Case 7
demonstrated a similar pattern, with the third harmonic maintaining its position as the
most significant harmonic in terms of magnitude, while the seventh harmonic retained
its status as the least influential. Moreover, it is worth noting that the minimum values of
the fifth harmonic displayed a noticeable increase of approximately 30% compared to the
other harmonics. This observation suggests a distinct behavior and potential sources of
harmonics within the system, warranting further investigation into the underlying causes
and implications of this phenomenon.

These findings shed light on the harmonic characteristics of the system under inves-
tigation, highlighting the prevalence of the third harmonic and the varying magnitudes
across different harmonics. This analysis provides valuable insights into the harmonic
composition and distribution within the network, aiding in the identification of potential
sources and facilitating the development of appropriate mitigation strategies.

The behavior in Case 8 was comparable; however, the minimums of the third, fifth,
and seventh harmonics (H3, H5, and H7) increased by up to 60% in comparison to previous
cases. Finally, Case 9 demonstrated the most significant harmonic behavior, with the
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dominance continuing in the third harmonic and its peaks reaching a magnitude of 4.5%.
Moreover, the increase in the minimum values was substantial, reaching up to 300%
compared to other cases (refer to Figure 7a). The analysis of the maximum THD behavior in
loads, as depicted in Figure 7b, revealed that Cases 6 and 7 exhibited higher harmonic levels
compared to other cases. Conversely, during the connections of EVs, Case 9 displayed a
lower THD value.

 
(a) 

 
(b) 

Figure 7. Harmonic behavior. (a) Case 9; (b) THD.

3.4. Hosting Capacity Limited by Harmonics

One crucial parameter in an electric distribution network with distributed generators
and loads such as electric vehicles is the determination of hosting capacity. Traditionally,
the analysis of this parameter relies on the limits of power supply quality and the thermal
limits of network components. However, there is a limited number of studies addressing
hosting capacity specifically considering harmonics.

Within the scope of this study, a hosting capacity analysis was undertaken to assess the
influence of harmonic values recorded at customers’ premises on the power distribution
network. The analysis focused on a specific scenario, namely, Case 9, which encompasses
a diverse distribution of both PV system EVs across the network’s loads. By examining
this particular case, this study aimed to examine the potential repercussions of harmonics
on the network’s overall performance and functionality. A base case was established with
55 EVs, each with a nominal power rating of 7.2 kW and an average energy consumption of
50.4 kWh, and 55 PV systems, each with a nominal power rating of 5 kW. Through MATLAB
simulations, the number of EVs in the system was increased in multiples of their nominal
power ratings while ensuring that the maximum THD and individual harmonic distortions
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remained in compliance with the IEEE 519-2022 standard (see Table 3). The results indicate
that while the system can accommodate the connection of up to 104 EVs, the limitation
on the third harmonic restricts the number of vehicles that can be connected to 65. The
analysis also considered the probability function of connecting vehicles at different times.

Table 3. Maximum Load Total Harmonic Distortion.

EVs Connected Max THD (%)
Max Harmonic (%)

3th 5th 7th 9th 11th

55 2.64 1.61 1.66 0.71 1.18 0.71

65 5.44 4.73 3.51 1.93 1.48 0.77

104 8.08 7.05 4.95 3.33 1.65 0.82

4. Conclusions and Future Work

This study aimed to investigate the impact of harmonics produced by EV charging
stations on an electric distribution network with a high level of photovoltaic generation.
Two distinct scenarios were examined, one with distributed photovoltaic power generation
and the other with centralized generation. The results indicate that the scenario with single
photovoltaic generation and EVs distributed throughout the system had the poorest perfor-
mance. Overvoltages were observed at the terminals of nearby users, while undervoltages
were observed at nodes further away from the system. When the harmonic analysis was
added, it was found that undervoltages improved in this case. However, overvoltages
were still observed at the terminals, and it was also observed that THD was higher at
all nodes in the system. These findings highlight the importance of considering multiple
factors when evaluating the performance of an electrical system with distributed electric
vehicles and photovoltaic generation. The analysis of both voltage and harmonic distortion
is crucial in identifying potential issues and developing strategies to address them. Further
research is necessary to investigate the interaction between electric vehicles, photovoltaic
generation, and other components of the electrical grid, such as energy storage systems,
and to develop more comprehensive approaches for evaluating the performance of these
systems. This research reveals that harmonics resulted in considerable variations in the
voltage, current, and power of the substation transformer, with the magnitude of the third
harmonic exceeding 300% compared to other cases. This study also collected information
on the magnitude and angle values of harmonics for EVs and charging stations by directly
measuring them at the battery terminals, enabling a comprehensive analysis of the entire
energy conversion system of both the station and the EV. Upon reviewing the hosting
capacity of Case 9, considering harmonics, it was observed that the high values obtained
from the third harmonic decrease the total number of electric vehicles that the network can
accommodate by 37.5% in comparison with a grid without PV and harmonics. Expanding
the harmonic analysis with a greater number of electric vehicle brands is required, and
it is also important to examine the effect of charging station efficiency. Additionally, it is
necessary to conduct an analysis involving a wider variety of load types to verify their
interaction with EVs, such as heat pumps, motors, and thermal generators, among others.
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Abstract: This work investigates how to balance the electricity supply and demand in a carbon-neutral
northern Europe. Applying a cost-minimizing electricity system model including options to invest in
eleven different flexibility measures, and cost-efficient combinations of strategies to manage variations
were identified. The results of the model were post-processed using a novel method to map the net
load before and after flexibility measures were applied to reveal the contribution of each flexibility
measure. The net load was mapped in the space spanned by the amplitude, duration and number of
occurrences. The mapping shows that, depending on cost structure, flexibility measures contribute to
reduce the net load in three different ways; (1) by reducing variations with a long duration but low
amplitude, (2) by reducing variations with a high amplitude but short duration and low occurrence
or (3) by reducing variations with a high amplitude, short duration and high occurrence. It was found
that cost-efficient variation management was achieved by combining wind and solar power and
by combining strategies (1–3) to manage the variations. The cost-efficient combination of strategies
depends on electricity system context where electricity trade, flexible hydrogen and heat production
(1) manage the majority of the variations in regions with good conditions for wind power while
stationary batteries (3) were the main contributors in regions with good conditions for solar power.

Keywords: flexibility measures; variation management; VRE; electricity system modeling; wind
power integration; solar power integration; sector coupling

1. Introduction

The aim of this work is to visualize how variations in a future northern European
electricity system can be cost-efficiently managed. The work first examines climate neutral
energy systems with extensive electrification of the industry, transport and heating sectors.
Outlooks for Nordic [1], northern European [2,3] and European [4] electricity systems have
been presented in recent years. The common features of these outlooks are a substantial
increase in electricity demand which, to a large extent, is supplied by wind and solar power.
Given the varying generation of wind and solar power, the ability of the electricity system
to manage these variations have become a question of high priority [5].

There exists a wide range of technologies and strategies to provide flexibility, ranging
from shifting the electricity demand for heat pumps in time in single-family dwellings by
exploiting the thermal inertia of buildings, to using large-scale underground storage of
hydrogen produced for industrial applications. Lund and Lindgren [6] have compiled a
comprehensive overview of the different approaches for increasing energy system flexibility.
Flexibility measures serve two main purposes: to assure the reliability or increase the cost
efficiency of a given electricity system. This work concerns the latter subset, i.e., flexibility
measures with the purpose to manage variability such that the social cost of electricity
is reduced. This subset is referred to as variation management strategies (VMSs) [7,8].
The potential of flexibility measures to reduce the social cost of meeting the demand
for electricity is well documented. Previous work investigating the impact of flexibility
measures on the operation of a given electricity system reported reduced costs because
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of reduced curtailment [7,9] and because of reduced operation of peak generation units
in favor of varying renewable electricity (VRE) and base load generation [10]. Studies
on the impact of flexibility measures on the cost-optimal system composition reported
reduced costs as investments in varying renewable electricity generation capacity replace
investments in more expensive electricity generation options [8,11]. Johansson et al. [8]
investigated the impact of a range of variation management strategies on the cost-optimal
system composition of electricity systems with different preconditions for VRE. It was found
that different strategies influenced the operation of the electricity system and investment
in electricity generation capacity in different ways. In addition, it was found that the cost-
optimal investments in variation management strategies depends on the preconditions for
VRE generation. These findings indicate that there are different types of variability which
need to be matched with the most cost-efficient strategies for each type. It is reasonable to
assume that all types of variations are present in all electricity systems, albeit to different
degrees, and what we look for is a balanced combination of strategies adequate for the
given electricity system.

Few outlooks for the northern European electricity system address in detail how
variations in the electricity system can be met cost efficiently. Pursiheimo and Kiviluoma [3]
analyzed electrification scenarios for northern Europe with a focus on Finland. They
applied the model of Backbone [12], an investment model with a high time resolution and
consequentially with the ability to balance options to cost-efficiently manage variations.
Variation management was addressed by illustrating the dispatch of one winter week and
one summer week for the Finnish electricity system. The illustrations of the dispatch of
electricity systems provided a detailed understanding of how the demand for electricity
was met every hour, including how variations were managed when plotted for a limited
time span such as a couple of weeks. However, to give an overview of how variations are
managed more generally across one or several years, other options for visualization are
needed. Several efforts have been made to measure and graphically represent flexibility
provision in the electricity system. IEA [13] proposed a flexibility assessment tool (FAST)
to estimate if there is sufficient flexibility in a given electricity system to accommodate
additional wind and solar power, accounting for flexibility on the demand and supply side
as well as the storage and interconnection capacity. Yasuda and Carlini [14] introduced
flexibility charts which map the capacity for flexible generation and interconnections
relative to the peak capacity of a given electricity system. The tools by IEA and Yasuda
et al. rely on statistics which are easy to access to give a first idea of the ability of a
given electricity system to manage variations. Using time series from actual or modelled
electricity system operations, the contribution of each flexibility supplier can be assessed
in more detail. Heggarty and Bourmaud [15] introduce two graphical tools, the flexibility
solution modulation stacks and the flexibility solution contribution distribution, to visualize
the contribution of flexibility suppliers on annual, weekly and daily timescales.

This paper adds to the previous outlooks for future northern European electricity
systems by focusing on how variations in the electricity system are managed using a
novel approach of visualizing the net load variability and the contribution of different
strategies to reduce this net load. A cost-efficient combination of strategies to manage the
net load was derived using a cost-minimizing electricity system model with high temporal
resolution representing 11 strategies to manage variations on the demand side and the
generation side, as well as pure storage technologies. The contribution of each strategy was
visualized using a novel graphical representation in the space spanned by the amplitude,
duration and the number of occurrences of the net load variations. Based on the results, the
functionality of different strategies to manage variations can be generalized and connected
to a functionality-based framework for strategies to manage variations which facilitate the
choice of a strategy for a given electricity system context.
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2. Method

To find cost-efficient strategies to meet the demand for electricity, heat and hydrogen
in a carbon-neutral northern Europe, the cost-minimizing electricity system model ENODE
was applied. Given a time-resolved demand for electricity, heat and hydrogen, together
with costs and technical limitations of generation and storage technologies, ENODE gener-
ates investments in and operations of technologies for generating and storing electricity,
heat and hydrogen. From these results, net loads (i.e., electricity demand which cannot be
moved in time, reduced by wind and solar power generation) for each region with and
without accounting for strategies to manage variations were produced to visualize the role
of each strategy in a carbon-neutral northern Europe.

2.1. Electricity System Investment Model

In this work, cost-efficient deployment of variation management strategies was identi-
fied using the cost-minimizing electricity system investment model ENODE. The objective
of the ENODE model is to minimize the cost of investments and operation while meeting a
given demand for electricity, heat and electricity-based hydrogen. The ENODE model was
first presented in [16] and further developed in [8,17] to include more options to manage
variations and to better represent the heat sector. The model has a high temporal resolution
and a detailed technology description, while the temporal scope is limited to 1–2 years. As
such, the model results provide a good understanding of the interplay between electricity
generation technologies and variation management strategies on the timescale of hours to
seasons. In this work, the model was run with a 3 h time resolution for two years (with
investment costs represented as annualized costs) representing the year 2050 in terms of
technology costs and carbon emission limitation, i.e., only technologies without net carbon
dioxide emissions were included as investment options. Existing hydropower was assumed
to remain in place together with the new nuclear power in Finland and the nuclear power
under construction in the UK.

In this work, the ENODE model was applied to northern Europe subdivided into
14 regions as given by the map in Appendix A Figure A1. The demand for electricity, heat
and hydrogen must be met in each region at every timestep. Electricity could be traded
between regions. The existing transmission grid was assumed to remain in place and
additional investments in transmission capacity of up to 5 GW per connection was allowed.

On the supply side, nine technology options were included including thermal base
load generation such as nuclear power, biomass-based combined heat and power and bio-
blended coal with carbon capture and storage as well as thermal peak generation in terms of
biogas open-cycle and combined-cycle gas turbines. A total list of the technologies together
with their cost properties are given in Appendix B. On- and offshore wind power and solar
PV were represented using time-resolved wind and solar power production potential for the
investigated regions. The power production potential was derived using [18] which relies
on ECMWF ERA5 [19] and the Global Wind Atlas [20] for the historical years 1991–1992.
These two years were chosen since they represent one year with a lower hydropower inflow
in the Nordic countries (1991) and one year with a higher hydropower inflow in the Nordic
countries (1992). The potential for wind and solar PV investments per region together
with their respective full load hours are given in Appendix B. The electricity demand
corresponding to temperature variations in the historical years 1991–1992 was also derived
using [18].

This work investigated a future northern European electricity system assuming a
carbon-neutral energy system which was targeted to be attained by the European Union by
around 2050 [4]. By 2050, it is expected that we will have already experienced a significant
increase in temperature due to global warming [9]. Thus, in this work, we assumed an
increase in global mean temperature of 2 degrees. In northern Europe, a warmer climate is
expected to mainly impact the energy system through altered hydropower inflow, reduced
demand for heating and increased number of incidents induced by extreme weather [21].
In this work, we accounted for the two former factors based on [22] which showed an
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increased annual average hydropower production distributed more evenly across the year
in the Nordic countries together with reduced demand for district heating and electricity
for heating purposes in the wintertime.

In this work, an electrification of the transport sector and the industry sector was
assumed together with a shift from natural gas for heating purposes to individual heat
pumps in Germany, the Netherlands, Poland and the UK. The electricity demand for the
heating of single-family dwellings was calculated according to Nyholm [23], accounting for
energy efficiency improvements. In addition, there was a heat demand corresponding to
the demand for district heating in the investigated regions [24]. The heat demand could be
met by heat-only boilers, but also combined heat and power plants (CHP), heat pumps and
electric boilers. The inclusion of thermal energy storage enabled a temporal decoupling be-
tween heat production and electricity production/consumption and facilitated an adapted
heat production which offered flexibility to the electricity system.

The electrification of industry includes electrification of steel, cement and ammonia.
The total production of steel, cement and ammonia in the investigated regions was assumed
to remain at today’s levels. In cement production, we assumed plasma burners were
used for high temperature heating with a continuous demand for electricity over time.
There was an exogenous demand for electricity-based hydrogen (i.e., hydrogen produced
from electricity) corresponding to the electricity demand from the steel industry and
the ammonia industry. The hydrogen demand was a simplified representation of an
electrification of industry and was distributed evenly across all hours of the year, assuming
a continuous operation of industrial processes. By overinvesting in the electrolyzer capacity
and hydrogen storage, an adapted hydrogen production, which offers flexibility to the
electricity system, can be achieved.

A full electrification of the road transport was assumed. The majority of vehicles were
assumed to charge as they are parked. However, 30% of the cars charged flexibly over time
and could also discharge back to the grid. Vehicle charging was implemented as described
by Taljegard [25]. It should be noted that flexible cars were also constrained to meet the
demand for transportation as defined by the vehicle movement data collected by Kullingsjö
and Karlsson [26].

Furthermore, the model included the option to invest in stationary batteries to manage
variations as well as fuel cells to regenerate electricity stored as hydrogen. Thus, the strate-
gies to manage the variations included in this work encompassed supply side, demand-side,
and pure storage options. Table 1 list the strategies to manage variations included in this
work together with the technologies they involve.
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Table 1. Strategies to manage variations included in this work together with the technologies involved
and their key properties. CCGT = Combined Cycle Gas turbine, CHP = Combined Heat and Power
Plant.

Strategy Technology
Investment Cost
[kEUR/MW(h)]

Efficiency
[%]

Fixed O&M Costs
[kEUR/MW(h),

year]

Lifetime
[year]

Charging or discharging of
electric vehicles - - - -

Charging or discharging
Li-Ion batteries

Charge/discharge 80 1 1 25

Storage capacity 70 25

Charging or discharging
hydrogen storage system

Fuel cell 500 50 55 10

Electrolyzer 390 79 18 20

Hydrogen storage 10 100 - 40

Adapted
hydrogen production

Electrolyzer 390 79 18 20

Hydrogen storage 11 100 - 50

Adapted heat production
Heat pump 1000 300 8 25

Tank storage 3 80 - 25

Opportunistic
heat production Electric boiler 50 100 - 20

Opportunistic biogas open-cycle
electricity production Gas turbine 450 42 17 30

Adapted biogas combined-cycle
electricity production CCGT 900 61 15 30

Adapted biomass combined heat
and power production

CHP 3260 30 105 40

Tank storage 3 80 - 25

Adapted biomass electricity
production Steam turbine 1980 35 52 40

Adapted nuclear power
production Steam turbine 3980 33 123 60

2.2. Visualizing the Net Load

The method to visualize the net load suggested in this work is based on the proposition
that variability can be defined by its amplitude, duration and number of occurrences. Here,
we refer to number of occurrences as how often variations with a certain amplitude and
duration takes place. According to time series analyses, any time series in a linear system
can be described in two dimensions: amplitude and frequency. Weather systems, wind
speeds and thus the net load in electricity systems supplied to a large extent by wind
power, are composed of a combination of linear and non-linear phenomena. For this reason,
we find it practical to subdivide the frequency into duration and number of occurrences
and we will refer to the three-dimensional space spanned by the amplitude, duration and
number of occurrences as the variation space.

Algorithm 1 describes how to map the net load of any electricity system into the varia-
tion space in six steps. The resulting plot illustrates to which extent the net load variations
to be managed are variations with a high amplitude, long duration, high occurrence or
any combination of these. We refer to the map of the net load in the variation space as the
variation profile of the electricity system. An overview of the variation profile is a first step
in identifying cost-efficient strategies to manage the net load variations.

To understand the role of different strategies to manage variations in an existing
electricity system, or a future system proposed by electricity system models, the remaining
net load after the strategy is applied is calculated and plotted. By comparing the original
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variability profile and the variability profile after a strategy has been applied, it is possible
to identify to which extent the strategy reduces variations with a high amplitude, long
duration or high number of occurrences.

Algorithm 1. Creating the Variability Profile.

1:
Calculate the net load nt ∈ N as the total electricity demand fixed in time and reduced by non-dispatchable generation for
every timestep t ∈ T.

2:
Define a list L:= (min N:max N, s) where the step length s is small enough to give a high resolution of the amplitude in the
plots. Here, we use s = 0.1 GW.

3:

Make a vector cl,t which counts up as long as the net load n is above amplitude l ∈ L (or as long as net load n is below
amplitude l for negative net loads).

For l ∈ L:
For nt ∈ N:

if l > 0 and nt < l:
cl,t = cl,t−1 + 1

else if l < 0 and nt > l:
cl,t = cl,t−1 + 1

nt = nt+1
l = l + s

4:

Find the end of each variation interval and obtain the duration dl,t.
For l ∈ L:

For nt ∈ N:
if l > 0 and nt−1 > l and nt < l :

dl,t = cl,t
else if l < 0 and nt−1 < l and nt > l :

dl,t = cl,t
nt = nt+1

l = l + s

5:

Count the number of occurrences ol,d for a certain combination of duration and amplitude.
For d ∈ T:

ol,d = ∑
t

dl,t

d = d + 1
6: Plot occurrences of variations with amplitude l on the x-axis, duration d on the y-axis and occurrences o on the z-axis.

3. Results

Figure 1 shows the annual electricity demand for the investigated regions. The historic
electricity demand (grey) represents the electricity demand prior to electrification. The
direct electricity demand from the transport (yellow) and industry sectors (green) and the
electricity for hydrogen production (blue) are a consequence of the assumptions and input
data presented in the Section 2. The electricity demand for heating (orange) corresponds to
electricity for individual heat pumps replacing natural gas, which is given exogenously, but
also electricity demand for district heating, which can be met by combined heat and power
plants and heat-only boilers as well as heat pumps and electric boilers. The total electricity
demand for heating was thus a result of the optimization. For the case investigated, the
increase in electricity demand from electrification corresponded to an increase in the annual
electricity demand of around 80% in northern Europe. As illustrated in Figure 1, the
electricity demand following the electrification of the transport sector was particularly
high in the regions with a high population density such as southern Germany (DE_S),
southern Poland (PO_S) and southern UK (UK_S). The electricity for hydrogen production
was located in regions with an extensive industrial sector (Sweden, Germany, Poland, the
BENELUX region and the UK).

Figure 2 shows the annual electricity production in the investigated regions calculated
by the electricity system model presented in the Section 2. Applying the costs presented in
the Appendix, it was found to be cost-efficient to meet 2/3 of the annual electricity demand
in northern Europe with wind power (blue). As illustrated in Figure 2, there were two
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major clusters of offshore wind power in northern Europe: one off the coast of northern
Germany, the Netherlands and Denmark and one off the coast of the UK. With very good
conditions for wind power but a limited electricity-intensive industry, Denmark was the
single largest exporter of electricity (DK exports 90 TWh/year). The opposite was true
for southern Germany which imported 165 TWh/year for the investigated years. Solar
PV energy supplied 1/5 of the electricity demand in northern Europe and was mainly
located in the southmost regions (southern Germany and southern Poland) from which
other regions imported solar power. The southern UK also had large solar PV investments
to complement wind power since import capacity from continental Europe was limited.
The model was limited to northern Europe and trade outside the modeled scope was
omitted. In reality, there is significant transmission capacity between northern Europe and
continental Europe and the results for regions on the border with central Europe (southern
Germany and southern Poland) should be viewed with this simplification in mind.

Figure 3 shows the installed capacity of energy storage for the investigated regions.
The total energy storage capacity in northern Europe corresponded to 11 TWh. The volume
of energy storage capacity reflected the investment cost of energy storage capacity. Tank
heat storages were the cheapest energy storage option but were only relevant in regions
with district heating (district heating is very limited in Norway and the UK). Hydrogen
storage was the second cheapest option for energy storage, and was relevant to regions
with a demand for hydrogen. Batteries were significantly more expensive and battery
investments were mainly located in regions with substantial electricity supplies from
solar PV energy. To investigate the role of energy storage in the different regions and
how electricity demand and supply was balanced every hour, four regions with different
conditions for wind and solar power and different access to flexibility measures were
further investigated.

Figure 1. Annual electricity demand for northern Europe as a whole (left), together with electricity
demand by region investigated in this work (right), subdivided into electricity demand of today
(grey), electricity demand for heat pumps in district heating systems (orange), for new individual
heat pumps replacing natural gas (yellow), for hydrogen production (blue), for light vehicles (light
green) and for trucks and buses (dark green).
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Figure 2. Annual electricity production in northern Europe (left) and by region (right).
ST&CHP = steam turbine and combined heat and power, CCS = carbon capture and storage, GT = gas
turbine (open cycle and combined cycle).

Figure 3. Installed energy storage capacity for northern Europe (left) and by investigated region
(right), subdivided into underground lined-rock cavern hydrogen storage (blue), stationary lithium-
ion batteries (yellow) and hot water tank storage in district heating systems (orange).

Figures 4a, 5a, 6a and 7a show the variation profile for DE_S, DK, UK_S and SE_S
as defined in the Section 2. These four regions represent four different types of regions
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observed in the model of northern Europe; regions with extensive solar PV capacity (DE_S
and PO_S), regions with extensive wind power for domestic use and export (DK, BAL,
PO_N and UK_N), regions with a combination of wind and solar power (UK_S, BENELUX
and DE_N) and regions with access to hydropower (SE_S, SE_N, FI, NO_N and NO_S).
The color scale was limited at 50 occurrences, implying that the number of occurrences
may be higher in the deep red fields. The y-axis was limited at 168 h (one week). Some
variations with a longer duration occurred and plots with a y-axis of 300 h for all regions
are shown in Appendix C (Figures A2–A15).

As Figures 4a, 5a, 6a and 7a show, net load variations were very different between
the investigated regions. Net load variations in Denmark (Figure 5a), with a supply side
dominated by wind power, had a low amplitude and number of occurrences but long
duration. This was contrasted by net load variations of southern Germany (Figure 4a)
with a high amplitude and high number of occurrences but few variations with a long
duration. The pattern of the variations in solar power dominated Germany and represented
the nature of solar PV energy with a high occurrence in positive net load at a duration
of 12–15 h corresponding to night, high number of occurrences in positive net load with
high amplitude and a duration of a few hours corresponding to afternoon peaks and
high number of occurrences of negative net load with a duration of 2–10 h and varying
amplitude corresponding to daytime solar PV production. Variations with a longer duration
reoccurred with 24 h intervals and corresponded to cloudy days. The variation profile of
southern UK (UK_S) was a combination of the variation profile of southern Germany and
Denmark, with the typical pattern of solar PV variations, but with lower amplitudes and
lower number of occurrences than those in southern Germany due to a lower total installed
capacity, but there were also positive and negative variations with a longer duration which
are characteristic of wind power. The variation profile of southern Sweden (SE_S) resembles
the one of Denmark, indicating a wind-dominated net load. However, the net load was
oriented towards positive amplitudes corresponding to a need for additional generation
capacity to complement the wind power to meet the load.

Figures 4–7 illustrate how strategies to manage variations reduced the net load vari-
ability in the four example regions. The 11 strategies in Table 1 were aggregated into
six groups of strategies to facilitate an overview. Here, the category Thermal includes
all thermal electricity generation options except open-cycle gas turbines (adapted biogas
combined-cycle electricity production, adapted biomass combined heat and power produc-
tion, adapted biomass electricity production, adapted nuclear power production). Based
on the electricity generation supplied by different sources (see Figure 2), nuclear power
dominated this group of strategies. Batteries included stationary batteries and charging of
electric vehicles since previous work showed that these strategies act on the same timescales
in the electricity system [2]. This implies that we added a load, which was fixed to 70% and
flexible to 30% according to assumptions, together with the charging and discharging of
stationary batteries. Finally, here, Heat includes both heat production with heat pumps
and electric boilers connected to the district heating system (adapted heat production
and opportunistic heat production in Table 1). However, this group mainly represents
variation management by heat pumps since electric boilers played a very minor role in all
investigated regions.

Figure 4b–g shows the net load reduction by six different strategies for southern
Germany. Electricity was imported to solar PV-dominated southern Germany, reducing
the positive nighttime net load. The positive net load was further reduced by base load
generation (Figure 4d). At the same time, base load generation increased the negative net
load with long durations. Due to the limited flexibility of nuclear power, production was
not only added when needed but also during hours of low net load. The negative net load
with a long duration caused by base load generation was reduced by adapted production of
hydrogen and heat (Figure 4f–g). However, in the solar PV-dominated southern Germany,
the strategy with the largest impact on the net load was batteries (Figure 4e). Stationary
batteries matched the charging of electric vehicles (in this work, 70% of the vehicle charging

205



Energies 2023, 16, 3548

was fixed in time) to the solar PV generation and thereby reduced the net load variations.
Batteries have a relatively low cost of charging and discharging power and high efficiency
which makes them well suited for the solar PV variations with a high amplitude and
high number of occurrences. In general, it can be observed that investments in stationary
batteries were particularly substantial in regions with a large demand for electricity for
transport (cf. Figures 1 and 3) and that solar PV generation was high in the same regions
(Figure 2). The net load variations with a low amplitude, duration and a low number of
occurrences which remained in Figure 4f was supplied by biogas open-cycle gas turbines.

Figure 5b–g shows the gradual net load reduction by the six strategies to manage the
variations in Denmark. Denmark has some of the best conditions for offshore wind power
in northern Europe and together with its central location between the Nordic countries and
continental Europe it becomes an ideal exporter of electricity. The majority of this electricity
was exported to northern Germany and onwards to load centers in southern Germany. The
extensive export results in a strong reduction of the wind-dominated net load variations
(Figure 5b). Trade with Germany also introduced solar variations in Denmark, as seen in
Figure 5b. These variations were efficiently reduced by batteries. The remaining net load
variations had a low amplitude but sometimes had a long duration. In Denmark, these
variations were primarily reduced by heat pumps in the district heating system (Figure 5g).

Figure 6b–f shows the net load reduction by strategies to manage variations in the
southern UK. The system composition here was a combination of wind and solar power,
as illustrated in Figure 2, and the net load had both variations with a long duration and
variations with a high amplitude and a high number of occurrences. It is important to note
that by combining wind and solar power in the electricity mix, net load variations were, to
some extent, already reduced from the start. In particular, solar PV production reduced the
duration of low wind events and wind power reduced the positive nighttime net load of
solar power. These complementary effects can be visualized by comparing the net loads in
Figure 6a to those in Figures 4a and 5a. Trade, primarily with northern UK, further reduced
net load variations with a 20–24 h duration. However, it was by combining wind and solar
power together with the use of batteries for variations with a high amplitude and high
number of occurrences that the majority of the variations in this region were managed.
Some variations with a low duration and low number of occurrences were managed by
adapted production of hydrogen. The net load which remained in Figure 5f was managed
by biogas open-cycle gas turbines.

Figure 7b–f illustrates how the net load was reduced by five different strategies to
manage variations in southern Sweden. Figure 7b shows the net load reduced by trade
(except for northern Sweden). As the figure shows, trade shifted the net load to the
left, indicating that southern Sweden imported electricity. However, since the electricity
was mainly imported from Denmark, which is wind-dominated like southern Sweden, the
variability of the net load curve was similar after accounting for trade. Some solar variations
with a high number of occurrences and high amplitude but short duration were introduced
with the trade. Figure 7c shows the net load reduced by trade and hydropower, including
trade with northern Sweden. Even though electricity demand in northern Sweden increased
substantially, hydropower from the north was exported to southern Sweden during low
wind events since the demand in the north was predominantly composed of electricity for
hydrogen production which was avoided during low wind events. As the figure shows,
the positive net load was drastically reduced by hydropower and hydropower managed
positive net loads of any duration. Batteries and the charging of electric vehicles reduced
the amplitude of the remaining negative net load (Figure 4e). The remaining net load had a
low amplitude and any duration which was managed by adapted production of hydrogen
(Figure 4f) and heat (Figure 4g). With the high cost of electricity consumption capacity
(electrolyzer and heat pump) but low cost of energy storage (underground hydrogen
storage and storage of hot water), variations with a low amplitude but long duration
matched the cost structure of these strategies. It is important to note that adding electricity
consumption adapted to the net load, i.e., adapted production of heat and hydrogen, does
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not only imply that “excess” electricity was consumed. These flexible electricity demands
stimulated investments in wind power production without increasing consumption during
low wind events. Since there was also some wind power production during low wind
events, adapted consumption of hydrogen and heat reduced the net load during these
events. The little remaining net load visible in Figure 7f was met by open-cycle gas turbines.

Figure 4. Net load of southern Germany (DE_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields. The y-axis was limited at 168 h (one week).

Figure 5. Net load of Denmark (DK_T) (a) reduced by (b) trade, (c) trade and hydropower, (d) trade,
hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade, hydropower,
base load, batteries and adapted hydrogen production and (g) trade, hydropower, base load, batteries,
adapted hydrogen production and adapted heat production. The color scale indicates number of
(#) occurrences and was limited to 50 occurrences, implying that the number of occurrences may be
higher in the deep red fields. The y-axis was limited at 168 h (one week).
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Figure 6. Net load in southern UK (UK_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields. The y-axis was limited at 168 h (one week).

Figure 7. Net load in southern Sweden (SE_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields. The y-axis was limited at 168 h (one week).
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4. Categorizing the Cost-Efficient Contribution of Variation Management Strategies

The results confirm that different variation management strategies contributed with
different functionalities in the electricity system. At the same time, the contribution from
each strategy, in terms of reduction in net load amplitude and number of occurrences on
different timescales, was qualitatively similar in the four investigated regions. However,
the size of the investments in different strategies and their quantitative contribution was
different in the different system contexts.

As the objective of the model applied in this work was to minimize the total cost of
the electricity system, the investments in, and operation of, the variation management
strategies as given in this work was cost efficient given the available options. That is, the
functionality provided was motivated by the cost structure and technical limitations of
each strategy. High reductions in the amplitude of recurring variations were cost-efficiently
supplied by strategies with a low cost of charging and/or discharging power, such as
batteries. To manage variations over longer timescales, a low cost of energy storage is
required. In the examples given in this work, the cost of hydrogen storage represents the
cost of storing hydrogen in large-scale underground caverns, which is low compared to
energy storage in batteries. The cost of storing heat in tank storages is even lower. The cost
of storing fuel for thermal generation was omitted in the model, which allows combined-
cycle gas turbines and combined heat and power plants to manage the variations with a
long duration. Variations with a low number of occurrences were managed most efficiently
using strategies with a low investment cost, such as open-cycle gas turbines. With a low
number of occurrences a high running cost is acceptable.

The roles identified by these measures can form the basis for a functionality-based
categorization of strategies to manage variations. Whereas previous categorizations of
strategies to manage variations were based on the technical properties of the strategies,
a categorization supporting the understanding of the functionality of the strategies to
manage variations in the electricity system should rely on the cost structure. Based on the
above reasoning and the work by [7,8], the following categories are proposed:

• Peaking strategies, which manage variations with a low number of occurrences. Sim-
ilar to peak production plants, peaking variation management strategies have low
investment costs in terms of charging, discharging and storage capacity. However, the
low investment cost is typically accompanied by a high operational cost, i.e., a high
cost of electricity discharged or low value of electricity charged.

• Shifting strategies, which reduce recurring variability on shorter timescales. These
strategies are associated with a low cost of charging and discharging capacity and a
low cost of operation, since variability on shorter timescales have high amplitude and
high number of occurrences. However, a low cost of charging and discharging capacity
is typically associated with a high cost or a limited capacity to store energy. Thus,
these strategies are mainly applied for shifting loads or production during shorter
time intervals.

• Complementing strategies, which manage recurring variations on longer timescales.
These strategies are associated with a low cost of energy storage. However, since
the amplitude of variations on longer timescales is lower, a higher cost associated
with the charging and discharging power is acceptable. A low to medium cost of
operation is required from these strategies since the variations being managed have a
long duration and medium recurrence. This category could be further subdivided to
differentiate between complementing strategies managing variations on weekly and
seasonal timescales.

A categorization based on the cost structure has the advantage that the category
reveals the functionality of the strategy. This categorization thus facilitates the choice of
variation management strategies for different system services and contexts.
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5. Discussion and Limitations

In this work, net load variations were plotted in the space spanned by amplitude,
duration and number of occurrences (i.e., the variation space) to better understand how
different strategies to manage variations complement each other. For this analysis, the
cost-efficient combination of a large set of strategies provided by the electricity system
investment model was required. However, plotting a gradually reduced net load in the
variation space can also be useful to understand how variations are managed in an existing
system, using electricity production data.

Applying the method proposed to map the contribution of flexibility measures to
reduce the net load, functionality-based categories of variation management strategies can
be identified. The vast majority of previous categorizations have focused on the technical
properties of the flexibility measures. For example, Fuchs and Lunz [27] and Zhao and
Wu [28] subdivided electricity storage systems into electrical, mechanical, chemical and
thermal storage units, while Sauer [29] differentiated between electricity-to-electricity stor-
age, electricity-to-anything storage and anything-to-electricity storage systems. Palizban
and Kauhaniemi [30] have mapped energy storage systems with respect to those appli-
cations for which they are suitable and unsuitable for, using a color-coded matrix. Other
categorizations have focused on the motive for the investment, such as single-use/double-
use [31] which distinguished between investments that are actively made and are dedicated
to provide flexibility in the electricity system (single-use) and those cases in which assets
that are already integrated in the electricity system for other purposes are used (double-use).
While all these categorizations support the understanding of flexibility measures, measures
with the same functionality in the electricity system are distributed between the categories
in the above-mentioned frameworks. A previous work by the author [7] proposed instead
a functionality-based framework, organizing variation management strategies according
to the service they provide in the electricity system. This work further developed this
framework.

The strategies applied in the regions modeled in this work are cost efficient from an
energy-only perspective. However, without the perfect foresight of the modelled world,
flexibility markets may be needed to stimulate investments prior to large electricity price
variations. In the design of flexibility markets, a market for each of the above-mentioned
categories would assure competition between strategies providing the same function to the
electricity system and stimulate investments in a balanced set of strategies. The size of the
different markets should be defined by the electricity system context, i.e., the need for the
different functionalities based on the variability profile of the present and future electricity
systems.

This work investigates strategies to manage variations on the timescale of hours to a
couple of years. Variations within the hour as well as variations with very a low number of
occurrences (e.g., once every ten or thirty years) is outside the scope of this work. Meng and
Zafar [32] provided an overview on how variations on very short timescales, to recover the
frequency after faults, can be managed in electricity systems with a high share of wind and
solar power. They concluded that batteries with grid-forming converters, with the ability
to provide active power very rapidly, are able to replace synchronous generators while
maintaining the ability to recover the frequency after a fault. However, if synchronous
generators can be replaced completely remains to be investigated. Ullmark [33] showed
that if batteries are allowed to meet the demand for variations within the hour, these
variations can be managed at a low cost (<1% of total system cost).

Ruhnau and Qvist [34] investigate the impact of variations in the German electricity
system over a 30-year period and found that there were low wind events with a long
duration (60 days with short periods of interruption) which occurred very rarely. As
shown in this work, the choice of strategy for a certain type of variation depends on the
cost structure. Variations with a long duration and low number of occurrences are cost-
efficiently managed by strategies with a low cost of storage and low investment cost. A
cost-efficient strategy to manage the variations identified by [34] would thus be biogas
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gas-turbines with a sufficiently large storage of biogas. Sufficient biogas turbine capacity is
likely to already be available to the electricity system to manage variations with a shorter
duration occurring on a yearly basis. The fuel costs during the 60-day period would be
significant but, since these events occur very rarely, this fuel cost would have a low impact
on the total system cost and the overall electricity system composition.

6. Conclusions

In this work, a novel tool to map variations in electricity systems was applied to
visualize how variations can be cost-efficiently managed in a future northern Europe. The
results show that cost-efficient variation management depends on the system context. More
specifically, it depends on the nature of the variations present in the electricity system
as well as the context-specific prerequisites for variation management, such as extensive
demand for hydrogen from industry, availability of district heating grids or access to
hydropower. In particular, the access to strategies suitable to manage variations with a
long duration varied between the investigated regions. As a consequence, the dominant
strategy to manage variations with a long duration varied between, for example, Denmark,
where adapted heat production has an important role, and southern Sweden, which relies
more on hydropower and adapted hydrogen production to manage these variations.

Electricity systems with good conditions for solar power and extensive electricity
demand for transportation were subject to variations with a high amplitude and high
number of occurrences which can be cost-efficiently managed using batteries with a low
cost of charging and discharging power and low losses per cycle. Examples of such regions
in northern Europe were southern Germany and southern Poland, with inland locations
and high population densities. In these regions, there may also be potential for some base
load generation.

Electricity systems with good conditions for wind power, such as Demark, the Nether-
lands and northern Germany, managed variations through trade, including import of solar
PV energy and adapted production of hydrogen and/or heat. Extensive industrial hydro-
gen demand or district heating systems facilitated the integration of wind power since
wind variations have long durations and hydrogen and heat can be stored at a relatively
low cost.

In regions with good conditions for wind power but limited trade, such as the UK,
it was cost efficient to combine wind power capacity with solar PV capacity to reduce
the duration of low wind events. It was often cost efficient to combine hydropower with
batteries, where the former managed the positive net loads with short and long durations
but the latter managed variations with a high amplitude including negative net load. In
general, cost-efficient variation management was achieved by combining wind and solar
power, and with strategies to manage variations with different cost structures.
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Appendix A

Figure A1. Northern Europe subdivided into 14 regions as applied in this work.

Appendix B

Table A1 shows the investment costs together with the operation and maintenance
costs (O&M) for electricity and heat generation applied in this work. The costs are based
on IEA [35] and the Danish Energy Agency [36], except for nuclear power and wind power
with low specific power (SP). The investment costs for nuclear power were estimated after
dialogues with experts. It corresponds to the average investment cost in the case where
several units are invested in and is lower compared to levels given for Europe by the
IEA. The cost to manage waste (today 4 EUR/MWh in Sweden) was expressed as a small
addition to the variable cost (0.5 EUR/MWh) to manage fuel waste and a larger fixed cost
to manage the plant at the time of decommissioning (corresponding to 3.5 EUR/MWh
after 60 years with 90% utilization) were allocated to fixed O&M. Nuclear energy was
assumed to be able to vary its output between 70–100% of rated power. The majority of
wind turbines today have a specific power around 300 W/m2. However, turbines with
a lower specific power (generator capacity over swept rotor area) are advantageous for
sites with lower average wind speeds and offshore locations. Hodel and Göransson [37]
assessed cost-efficient turbine designs in different system contexts using a cost model to
assess the cost of a range of wind turbine designs. Investment costs for onshore wind
turbines with a specific power of 100 W/m2 and tower height of 150 m and for offshore
wind turbines with 200 W/m2 and 150 m tower height were based on their work.

Table A2 shows the cost and properties of the energy storage options. These costs were
based on the Danish Energy Agency [36]. The cost of transmission capacity was assumed
to 2k EUR/MW and km, where the distance is taken as the distance between a point in
each region with extensive grid capacity. The calculations applied annual investment costs
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which were derived using a 5% interest rate and technical lifetimes as given in Table A1.
Table A3 shows the fuel costs applied in this work.

Table A1. Costs and properties of electricity and heat generation units. CHP = Combined Heat and
Power, CCS = Carbon Capture and Storage, CCGT = Combined Cycle Gas Turbine, OCGT = Open
Cycle Gas Turbine.

Technology
Investment Cost
[MEUR/MW(h)]

Variable O&M
Cost [EUR/MWh]

Fixed O&M Cost
[kEUR/MW, year]

Technical
Lifetime

[year]

Efficiency
[%]

Biomass steam 2.0 2.1 52 40 35

Biomass CHP 3.3 2.1 105 40 30

Coal w. CCS 1 3.5 2.1 107 40 40

Biogas CCGT 0.90 0.8 17 30 61

Biogas
OCGT 0.45 0.4 15 30 42

Nuclear power 4.0 7.1 123 60 33

Solar PV power 0.3 0.5 7 40 100

Onshore wind power
(100 W/m2 150 m) 1.65 1.1 13 30 100

Onshore wind power
(300 W/m2 100 m) 1.0 1.1 13 30 100

Offshore wind power
(200 W/m2 150 m) 1.75 1.1 36 30 100

Heat pump 0.9 2.2 2 25 3

Electric boiler 0.1 1 1 20 1
1 Coal was assumed to be mixed with biomass in order to compensate for emissions which are not captured.

Table A2. Costs and properties of storage technologies. Investment costs for batteries (power),
electrolysis and fuel cells are given in MEUR/MW while costs for batteries (energy) hydrogen storage
and heat storage are given in MEUR/MWh.

Technology
Investment Cost
[MEUR/MW(h)]

Efficiency
(ch/disch)

[%]

Fixed O&M Cost
[kEUR/MW(h), year]

Technical Lifetime
[year]

Battery, Li-ion (energy) 0.08 96/96 - 25

Battery, Li-ion (power) 0.07 100 0.5 25

Electrolysis 0.4 70 18 20

Fuel cell 0.5 50 55 10

Hydrogen storage 0.011 100 - 40

Heat storage 0.003 100 1 0.009 25
1 Heat storages have a continuous loss corresponding to 0.023% per unit of time and energy stored.
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Table A3. Cost of fuel applied in the calculations.

Fuel
Fuel Cost

[EUR/MWhth]

Biomass 40

Biogas 77

Uranium 1.65

Coal w. biomass blend 7.5

On- and offshore wind power and solar PV power were represented using time-
resolved wind and solar power production potential for the investigated regions derived
using [18] which rely on ECMWF ERA5 [19] and the Global Wind Atlas [20] for the historical
years 1991–1992. These two years were chosen since they represent one year with a lower
hydropower inflow in the Nordic countries (1991) and one year with a higher hydropower
inflow in the Nordic countries (1992). The potential for wind and solar PV investments per
region together with their respective full load hours are given in Tables A4 and A5. Elec-
tricity demand corresponding to temperature variations in the historical years 1991–1992
was also derived using [18]. After the removal of unsuitable and protected areas, the
potentials for onshore wind power, offshore wind power and solar power were derived
applying an assumed factor of social acceptability. For offshore wind power and solar PV
power, 33% and 5% of the share of the remaining land was assumed to be available in all
regions, respectively. For onshore wind power, 8% of the remaining land was assumed to
be available except for Norway (1%), Sweden, the UK and Ireland (4%) where acceptance
for wind power investments has proven to be low. The potential area for wind power was
subdivided into five wind classes for each region representing different wind conditions.
Wind turbine technologies were chosen to match the conditions of their respective area,
with wind turbines with 100 SP (Specific Power, i.e., generator capacity relative to swept
rotor area in W/m2) and 150 m hub height for onshore sites with low average wind speeds
(i.e., wind class 1–3), 300 SP and 100 m hub height for areas with high average wind speeds
(i.e., wind class 4–5) and 200 SP and 150 m hub height for offshore wind turbines.

Table A4. Potential for electricity production (GW) for the five classes of onshore wind power
(WON1-WON5), the five classes of offshore wind power (WOFF1–WOFF5) and solar PV parks (PV)
for the regions considered in this work. SP = Specific Power, i.e., generator capacity relative to swept
rotor area in W/m2.

Region
WON1
100SP

WON2
100SP

WON3
100SP

WON4
300SP

WON5
300SP

WOFF1
200SP

WOFF2
200SP

WOFF3
200SP

WOFF4
200SP

WOFF5
200SP

PV

SE_N 0.7 5.1 5.3 3.4 2.1 0.0 0.0 1.7 16.3 2.8 86.3
SE_S 0.2 1.5 7.0 8.2 0.9 0.0 0.0 0.1 22.9 47.7 44.1

DE_N 0.0 0.0 2.9 18.7 9.6 0.0 0.0 0.0 0.0 29.4 161.4
DE_S 1.0 5.1 6.7 10.1 0.6 0.0 0.0 0.0 0.0 0.0 180.2
BAL 0.0 0.0 7.3 34.9 0.5 0.0 0.0 0.0 10.5 41.9 193.5
PO_S 0.1 0.9 8.4 27.3 0.1 0.0 0.0 0.0 0.0 0.0 256.3

NO_N 0.1 0.3 0.5 1.8 2.0 0.1 0.7 1.3 4.9 7.9 194.5
DK_T 0.0 0.0 0.0 1.1 10.8 0.0 0.0 0.0 0.1 77.4 53.2

BENELUX 0.0 0.0 0.4 6.2 4.2 0.0 0.0 0.0 0.0 83.5 51.3
FI 0.0 7.1 26.1 7.7 0.9 0.0 0.0 1.4 27.3 31.6 43.7

NO1 0.4 0.6 0.6 1.1 1.0 0.0 0.0 0.1 2.2 18.3 125.0
PO3 0.0 0.1 4.2 27.4 0.4 0.0 0.0 0.0 1.0 17.5 160.2
UK1 0.0 0.0 0.1 5.4 12.2 0.0 0.0 0.0 0.8 134.5 181.6
UK2 0.0 0.0 0.2 2.9 9.5 0.0 0.0 0.0 0.3 46.7 85.6
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Table A5. Full load hours before curtailment for the five classes of onshore wind power (WON1-
WON5), the five classes of offshore wind power (WOFF1–WOFF2) and solar PV parks (PV) for the
regions considered in this work. SP = Specific Power, i.e., generator capacity relative to swept rotor
area in W/m2.

Region
WON1
100SP

WON2
100SP

WON3
100SP

WON4
300SP

WON5
300SP

WOFF4
200SP

WOFF5
200SP

PV

SE_N 4127 5062 - - 4244 - - 1006
SE_S 4162 5178 5823 3451 4131 5159 5348 1233

DE_N - 4932 5734 3556 4265 5338 5577 1263
DE_S 3313 4560 5190 3417 3987 - - 1320
BAL - 5387 5799 3407 4076 5256 - -
PO_S 3762 4808 5644 3364 4006 - - 1288

NO_N 3614 - - - 4393 - - -
DK_T - - - 3823 4270 - 5555 1299

BENELUX - 5020 5475 3483 4106 - 5198 1267
FI 4607 5470 5852 - 4340 - - 998

NO1 3319 - - 3429 4251 - 4869 1156
PO3 - 5424 5838 3490 4086 5215 5390 1271
UK1 0 0 5303 0 4254 5026 5237 1237
UK2 0 4933 5345 3624 4558 0 5501 1087

Appendix C

Appendix C.1 Solar PV Dominated Regions (DE_S, PO_S)

Figure A2. Net load in southern Germany (DE_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.
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Figure A3. Net load in southern Poland (PO_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.

Appendix C.2 Wind Dominated Exporting Regions (DK_T, BAL, PO3, UK_N)

Figure A4. Net load in Denmark (DK_T) (a) reduced by (b) trade, (c) trade and hydropower, (d) trade,
hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade, hydropower,
base load, batteries and adapted hydrogen production and (g) trade, hydropower, base load, batteries,
adapted hydrogen production and adapted heat production. The color scale indicates number of
(#) occurrences and was limited to 50 occurrences, implying that the number of occurrences may be
higher in the deep red fields.
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Figure A5. Net load in Estonia, Latvia and Lithuania (BAL) (a) reduced by (b) trade, (c) trade and
hydropower, (d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries,
(f) trade, hydropower, base load, batteries and adapted hydrogen production and (g) trade, hy-
dropower, base load, batteries, adapted hydrogen production and adapted heat production. The
color scale indicates number of (#) occurrences and was limited to 50 occurrences, implying that the
number of occurrences may be higher in the deep red fields.

Figure A6. Net load in northern Poland (PO_N) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.
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Figure A7. Net load in northern UK (UK_N) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.

Appendix C.3 Regions with Wind and Solar Power (UK_S, DE_N, BENELUX)

Figure A8. Net load in southern UK (UK_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.
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Figure A9. Net load in northern Germany (DE_N) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.

Figure A10. Net load in Belgium, the Netherlands and Luxemburg (BENELUX) (a) reduced by
(b) trade, (c) trade and hydropower, (d) trade, hydropower and base load, (e) trade, hydropower,
base load and batteries, (f) trade, hydropower, base load, batteries and adapted hydrogen production
and (g) trade, hydropower, base load, batteries, adapted hydrogen production and adapted heat
production. The color scale indicates number of (#) occurrences and was limited to 50 occurrences,
implying that the number of occurrences may be higher in the deep red fields.
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Appendix C.4 Regions with Access to Hydropower (SE_S, FI, NO1, SE_N, NO_N)

Figure A11. Net load in southern Sweden (SE_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.

Figure A12. Net load in northern Sweden (SE_N) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.
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Figure A13. Net load in Finland (FI) (a) reduced by (b) trade, (c) trade and hydropower, (d) trade,
hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade, hydropower,
base load, batteries and adapted hydrogen production and (g) trade, hydropower, base load, batteries,
adapted hydrogen production and adapted heat production. The color scale indicates number of
(#) occurrences and was limited to 50 occurrences, implying that the number of occurrences may be
higher in the deep red fields.

Figure A14. Net load in southern Norway (NO_S) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.
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Figure A15. Net load in northern Norway (NO_N) (a) reduced by (b) trade, (c) trade and hydropower,
(d) trade, hydropower and base load, (e) trade, hydropower, base load and batteries, (f) trade,
hydropower, base load, batteries and adapted hydrogen production and (g) trade, hydropower,
base load, batteries, adapted hydrogen production and adapted heat production. The color scale
indicates number of (#) occurrences and was limited to 50 occurrences, implying that the number of
occurrences may be higher in the deep red fields.
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Abstract: This paper provides an overview of the development of a 3D formed and metal-based
facade element that combines a custom design and solar thermal functionality. To achieve this, a
novel simplified solar thermal collector structure was developed using formed sheet metal half-shells
with an integrated channel structure on the inside and a special absorber coating on the outside. The
sheet metal half-shells were manufactured by highly innovative incremental sheet forming (ISF),
which allows seamless integration into existing facades. As a part of this paper, the initial test results
on thermal efficiency and the energy accumulation of the new collector type are presented.

Keywords: absorbance coating; facade elements; sheet metal design; solar thermal collector

1. Introduction

The reduction of harmful greenhouse gases is one of the biggest challenges of our time.
The use of unlimited available solar thermal power as renewable energy can help to support
efforts to reduce CO2 emissions worldwide. More than 40% of the total energy consumption
in Europe can be allocated to heating, hot water, and illumination [1]. This corresponds to
almost 20% of the total CO2 emissions. Especially in the building industry, reducing CO2
emissions is one of the main drivers. By using modern building envelopes, the required
energy for heating and cooling can be minimized [2]. The major goal is the realization of
affordable zero-energy buildings. One effective way of achieving these objectives is the use
of solar thermal energy. The solar radiation at our latitudes is perfectly suited for thermal
use.

In central Europe, solar radiation produces, on a 1 m2 area, 1000 kWh/year to
1100 kWh/year [3], which is equivalent to 100 L of fuel oil or 100 m3 of natural gas.
For this reason, the building sector has a strongly growing interest in facade-integrated
solar thermal absorbers, which shall be presented in this paper.

A broad range of solar thermal collectors have been available on the market for
decades worldwide. These products are credible and generally made to a high technical
standard, especially in Europe with a homogeneous market. However, there is a shortage
in the field of solar thermal products that are suited for building envelope integration to
create high-quality architecture [4,5]. Functional and constructive aspects, together with
aesthetics, have to be considered. State-of-the-art solar thermal collectors are not flexible in
shape and size due to the hydraulic fluid circuits fixed to solar absorbers. Architectural
requests for design freedom require the hydraulic system concept to be redesigned, which
is generally difficult and expensive for conventional means of production. Conventional
production methods for absorbers limit the flexibility in collector design [6] and such a lack
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of flexibility significantly reduces the potential application of solar thermal systems [7]. The
production of solar collectors in sheet metal half-shell design by means of hydroforming
was investigated in the European Union (EU) project with the acronym “BIONICOL” [8]
and in “Industrielle Gemeinschaftsforschung” (IGF) project No. 339 ZN [9]. However,
curved surfaces cannot be obtained with the shown technologies and the channel structures
can only be manufactured on both sides, which has a disadvantageous effect on the design
freedom of the facade. The integration of flat-plate solar thermal collectors is only possible
for opaque envelopes (roofs and facades) so far [10]. The structure of evacuated tubes
allows mounting on transparent envelopes as sun shading, but this kind of application is
rare. The application potential of incremental sheet forming (ISF) in solar absorbers was
demonstrated in [11] by the production of absorber lamellae using incremental forming
technology.

The thickness of solar collectors affects their integration, especially for facades. Thick
solar thermal collectors are difficult to implement as functional elements or as sun shading.
The appearance of solar collectors is affected by the glass (glazed collector) and absorber
surface treatment. State-of-art collectors apply highly transparent, low-iron glass for
glazing and black or dark-blue spectrally selective coatings with high absorptance (0.95)
and low emittance (0.05). Solar collectors integrated into facades are more conspicuous
than collectors installed on rooftops. Many studies and surveys have shown that architects
prefer a large variety of absorber colors [12], and they even regard the possibility of a
custom color choice as essential. Manufacturers can meet the demand for a variety of
absorber colors by means of solar paint coatings, but such collectors show considerably
reduced thermal performance compared with quality selective coatings in the usual solar
collectors commercially available in Europe [13].

This paper presents a new design of a solar thermal collector. The focus of this
paper is fabrication with ISF, concepts for integration into facade systems, possible design
arrangements, and the development of the absorber coating. Furthermore, initial results
on the thermal efficiency and performance of the new collector type are presented and
evaluated.

2. Materials and Methods

2.1. Principal Collector Design

Figure 1 shows the layout of the developed collector design, which consists of two
layers of cold-rolled deep-drawing steel DC06 (t = 0.8 mm) joined together in a fluid-tight
manner by laser welding.

(a) (b) 

 

Figure 1. Principal collector design: (a) CAD model of the assembled collector and (b) drawing of the
inner sheet with the channel structure.
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The three-dimensional shaped outer sheet is designed as a closed cassette with inte-
grated notches for hooking into the façade’s substructure. To integrate the solar thermal
functionality, the flat inner sheet has a two-dimensional channel structure and is attached
to the outer sheet. The use of this simple geometry for the inner sheet ensures a good
fit between the two components, which is essential for the joining process. The channel
structure chosen was a harp structure, which has also been used in commercially available
flat plate collectors. With this structure, the area to be cooled can be efficiently passed
through with low pressure loss at the same time. For hydraulic connection, parallel planar
surfaces were proposed in the inlet and outlet areas for the easy integration of conventional
fittings.

The representative design of the geometry of the exterior sheet was determined by the
results of the solar gain analysis, the architectural design boundaries, and the constraints of
the forming process, which are described in the following sections.

2.2. Architectural Aspects and Facade Integration
2.2.1. Necessity of Research into Solar Thermal Facade Elements in Architecture

Endeavoring to be part of the solution, the publicly funded research project “FutureFa-
cade” strives to do its part for climate protection in the construction industry by utilizing
the inextricable connection to resource and energy efficiency. The integration of solar ther-
mal energy into facades holds great potential for generating solar yields that have, so far,
remained largely untapped. Although a study by the Leibniz Institute for Ecological and
Regional Development (IÖR) shows that a total of 12,000 km2 of facade area in Germany
can be used for solar energy, no architecturally sophisticated solar thermal facade elements
exist yet [14,15]. The combination of solar thermal energy with inner-city building surfaces
can be used for domestic hot water, heating support, and cooling. Regarding unforesee-
able developments in the cost of all fuels, solar thermal energy offers a sustainable and
cost-effective alternative.

2.2.2. Architectural Innovation

While conventional collectors are visually recognizable by the glass and the dark-blue
absorber surface, more complex appearances can be created using mono-material panels
made of metal. Hence, through innovating solar modules, a novel structure was created
in this project. Linking architectural aspiration and sustainability was paramount. The
functional integration, which was not visible on the outside, was achieved by two combined
sheet metal panels invisibly welded together.

2.2.3. Design Criteria for the Collector Geometry based on Solar Thermal Aspects

Optimizing the geometry of the outer panel was most important in order to adapt the
modules as efficiently as possible to the irradiation conditions using site-specific weather
data while also taking into account the manufacturing constraints (e.g., maximum wall
angle and minimal radius). The adjustment of the module geometry and, thus, the solar-
active area and the irradiation angle was regulated by a digital parametric design tool. This
allowed the yields to be controlled and optimized, which is a pioneering development in
sustainable building construction.

The solar gain analysis showed that the chosen shape could provide 792 kWh/m2

per year for a southern orientation using the Chemnitz, Germany, region as an example
(Figure 2). Different rectangular-based shapes were tested throughout the project. The
analysis showed that flat collectors had the lowest potential for solar gain. Plenty of design
studies have been conducted. Round, triangular, rectangular, and hexagonal formats were
also tested as irregular freeform shapes. In the end, the final polygonal shape lent itself
best to the chosen forming technique and the solar gains that were to be achieved. The
rectangular base allowed standardized substructures to be used. The rather simple basic
shape contained a lot of freedom in the arrangement and variation of the geometry as a
pattern, ensuring that design freedom could be kept (Figure 3). Compared with the chosen
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polygonal shape, there would be a loss of 165 kWh/m2 per year. Round double-curved
shapes had the best solar-gain effect (809 kWh/m2 per year), but were excluded due to the
manufacturing technique after some forming tests, as there was a large spring-back effect
after forming. Therefore, the polygonal shape was optimal from all tested design studies
(Figure 2).

(a) 

 
(b) 

 

Figure 2. Solar gain analysis (a) of different shapes (b) with a rectangular base performed with the
energy-simulation engine EnergyPlus™ in combination with the Grasshopper plugin Ladybug for
Rhinoceros® 3D.

 

Figure 3. Variations and patterns of polygonal panels.
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2.2.4. Facade Construction and Hydraulic System

The facade panel was designed as a simple standardized cassette and could thus be
hooked into the bolt suspension. (Figure 4b). Owing to the standardized system used, it
was possible to use facade (under-) constructions from various manufacturers. (Figure 4a).
By using a standardized substructure, the effort required for assembly and maintenance
can be decreased and the economic efficiency can be increased.

(a) (b) 

 

Figure 4. Visualization of facade construction (a) and under-construction detail (b).

The facade panel was a mono-material system. There was an outer panel and an
inner panel welded together. The inner panel represented the channel structure, which was
designed as a common harp shape. (Figure 5a) With regard to the most energy-efficient
design of the fluid channels within the facade elements, computational fluid dynamics
(CFD) simulations were carried out to achieve optimized performance for the facade
element.

(a) (b) (c) 

   

hydraulic 
connection 

bolt holder 

U-profiles 

solar 
module 

panel 

Figure 5. Schematic illustration of the addition of the panels (a), schematic illustration of facade
construction (b), and schematic illustration of panel function (c).

To build a facade system that can operate as a power plant, the panels were connected
in series and formed one module when connected in a mirrored position. (Figure 5c). One
module at a time was then connected to the vertical cable routing. (Figure 5b). A pump
ensured the circulation of the fluid in the facade. A heat exchanger provided the energy to
the heating units, so the facade system became its own sustainable power plant to harvest
renewable heat.

2.2.5. Architectural Results

The designed panel holds the potential to create new appearances for urban spaces
and positively influence the use of renewable energy. (Figure 6) The panel can be used
for new construction and existing projects. It can be used on large-scale installations in
rural areas, as well as on urban facades, and thus has multiple applications. Therefore,
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the project is a huge step in Mono-Material Design, facade design, architecture, and the
building industry and renewable energies in general.

 

Figure 6. Visualization of a sample façade.

2.3. Demonstrator Manufacturing
2.3.1. Forming

For the manufacturing of the solar collector sheets, incremental sheet metal forming
(ISF) in combination with subsequently performed bending operations (only for the outer
sheet) was used. With ISF, the final part of the geometry is successively formed by the CNC-
controlled movement of a forming stylus over a counter die (Figure 7a). In comparison
with conventional forming methods (e.g., deep drawing), this reduces tool costs and the
time required to achieve the first finished part.

(a) (b) (c) 

 

Figure 7. Incremental sheet forming: (a) process principle, (b) clamped outer sheet after forming, and
(c) clamped inner sheet after forming.

For the forming of the test components, a polyurethane counter-die (material:
obomodulan® 1600 sand) was used, in which the cut-to-size sheets were clamped by
means of a blank holder (Figure 7b,c). As a lubricant, Raziol CLF 125F was used for all
forming trials.

To avoid wrinkling during forming, the outer sheet was formed in two steps. In the
first step, a stylus diameter of 100 mm with a z-increment of 0.2 mm was used. In the
second step, the final shape was formed with a stylus diameter of 6 mm and an increment
of 0.2 mm. For both steps, a z-constant tool path in helix design was chosen, with a total
forming time of approx. 2 h. After unclamping, the edges of the outer sheet were folded and
mechanically joined at the corners to create the closed cassette design shown in Figure 1.

The shape of the inner sheet could be formed in one step with a forming stylus
diameter of 6 mm, a z-increment of 0.2 mm, and a forming time of approx. 45 min, also by
using a z-constant tool path in helix design. With these parameters, the inner and outer
sheets could be successfully formed without failures. For both geometries, the global shape
deviation was approx. 1 mm compared with the original CAD geometry which is within
the common tolerances for facade panels.
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2.3.2. Joining

A welding Nd:YAG laser of 3 kW mounted on a robot was used for the assembly of the
inner and outer formed sheets. The experimental set-up is presented in Figure 8a. Specific
tools were used to optimize the contact between the welded surfaces and to prevent gaps
from forming between the steel sheets; otherwise, the upper sheet could be pierced by
the laser beam. The first tool (Figure 8b) was developed to allow the welding of the outer
contour of deformed panels, and the second one (Figure 8c) was designed for the welding
of lines between the channels, allowing the passage of fluid through the drawn network
and avoiding the swelling of the panels. Finally, the fluid connectors were fixed using
manual tungsten inert gas (TIG) welding (Figure 8d).

(a) (b) (c) (d) 

Figure 8. Laser welding setup: (a) laser head mounted on a robot, (b) clamped tool for outer contour,
(c) clamped tool for inner channels; (d) TIG welding for fluid connectors.

Laser welding requires a compromise between the thermal load and the welding
speed in order to limit damage to the outer sheet’s steel surface. The laser beam must
cross the top sheet and penetrate the bottom one without crossing it. Figure 9a shows a
cross-section micrograph of the welding of two steel sheets. The focal spot is in the range
of 0.8 mm to 1 mm for the following welding parameters: laser head speed of 3 m/min,
steel sheet thickness of 0.8 mm, and laser power of 1.4 kW. Various parameters, such as
the accuracy of the robot trajectory, the variation in the steel thickness generated by the
incremental forming, as well as the distance between the steel sheets, can influence the
welding beam penetration, leading to marks on the back side of the panel. Figure 9b (left)
shows the impact of the welding beam on the back side of the panel. However, additional
surface treatment, such as sandblasting, can remove the oxides generated by the laser beam
overheating and can also considerably decrease the thermal stress near the welding lines.
Figure 9b (right) shows the same surface as Figure 9b (left) after sandblasting.

A potential optimization requires an increase in the thickness of the back metal sheet
to decrease the thermal effect and to increase the welding process parameters. However, for
this project, the choice to simplify the assembly system drove the use of the same material
and same thickness for both the inner and outer shaped steel sheets.

(a) 

 

(b) 

 

Figure 9. (a) Cross-section micrograph of the welding of two steel sheets and (b) welding lines on the
front side of the panel: as initially welded (left) and after sand-basting (right).
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2.3.3. Strategies and Concepts for Absorbing Coatings

The design of a non-glazed solar absorber for practical application requires the devel-
opment of a robust coating applied by low-cost techniques. This coating must exhibit high
absorption efficiency in the ultraviolet and visible regions of the solar radiation spectrum.
Therefore, the reflectance should be minimized in these regions of the solar spectrum.
Additionally, the loss of heat to the surroundings via convection or conduction should be re-
duced as much as possible. Thus, there are conflicting requirements for strong absorption in
the solar spectrum, with minimum emission in the infrared range. The use of deep-drawing
steel DC06 as a substrate requires additional corrosion protection. The outer formed steel
sheet was protected by an 80 μm-thick aluminum coating deposited by the twin arc-wire
thermal spray technique. The role of this additional coating is to prevent steel corrosion
in case of surface scratches during the manipulation of the panels. Thermally sprayed
aluminum, in combination with organic and ceramic coatings, is a common method used
for corrosion protection for bridges, ships, and oil and gas installations. These systems are
supposed to provide a long lifetime (>20 years) and, with that, be both cost-effective and
environmentally friendly [16]. The sand-blasting used to remove the welding defects on the
outer steel formed surface is a convenient surface treatment for the thermal spray arc-wire
coating of aluminum. The twin arc-wire system was the PERFECT Spray from SMS Group,
Düsseldorf, Germany. The typical conditions for arc spraying were arc parameters of 28 V
and 90 A, and a wire speed of 2 m/min. The diameter of the aluminum wire was 1.6 mm.
The coating was sprayed uniformly over all of the surface of the outer formed steel sheet.

A black absorbing coating was applied to the outer formed steel sheet by spraying,
followed by curing at 300 ◦C. The benefits of such surfaces are their comparative simplicity
to produce and the potential for cost-effectiveness. This novel coating chemistry combines
high solar-absorbing performance, high thermal resistance to withstand excessive heat
from the metal surface, and good resistance to UV and humid conditions to ensure a long
service life. The coating thickness can be controlled in the range of a few micrometers to
several tens of microns by using several steps of spraying and drying. The reflectance
spectrum of the coating deposited as a solar absorber is presented in Figure 10. The solar
absorptance in the UV-VIS-NIR spectra is 95% and can slightly change depending on the
surface roughness and the coating thickness. The emissivity of the coating was relatively
high, as the solar absorbance was low in the NIR region of the spectrum, leading to the
solar absorber exhibiting non-selective behavior.

 

Figure 10. Reflectance spectrum of the silica–carbon sol-gel coating applied as the solar absorber.

2.4. Collector Testing Setup

A solar thermal collector integrating incremental formed panels coated with sol-gel
absorbing layers was manufactured for thermal testing. The collector contained eight
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panels to generate a surface of 1.6 m2, comparable to solar thermal collectors available on
the market. Figure 11a shows a view of the rear side of the solar collector as manufactured,
while Figure 11b shows the same view with insulation. The insulation material installed
on the back of the solar panels was PIR foam boards laminated with aluminum foil, 4 cm
thick, from IKO Enertherm (thermal conductivity 0.022 W/m·K). The flexible pipes were
insulated with polyethylene slotted-pipe lagging (inner diameter 15 mm, wall thickness
13 mm, and thermal conductivity 0.036 W/m·K). Leakage tests were performed to confirm
the quality of the welding and the connections of the flexible fluid pipes.

(a) 

 

(b) 

 

Figure 11. Pictures of the solar collector as manufactured without insulation (a) and with rear
insulation (b).

3. Collector Characterization

A schematic diagram of the experimental set-up is presented in Figure 12. This system
provides the fluid to the thermal panels via insulated pipes equipped with measurement
probes and a circulator. The probes are placed directly at the inlet and outlet of the panel in
order to minimize the losses and errors of measurements related to the pipes. The flow rate
is adjusted via a manual valve in series on the sample supply circuit. The temperatures are
measured at the inlet and outlet of the panel via thermocouples. In order to achieve very
good stability for the inlet temperature, the measuring system has a large buffer tank and an
internal temperature regulation system. This system is cooled via an external water cooling
unit (chiller). The storage tank is equipped with a water-mixing unit to guarantee the
homogeneity of the temperature. The heat output of the panel is determined by considering
the characteristics of the fluid, the temperature variation, and the flow rate. The thermal
conversion efficiencies of the panel are determined by controlling the flux density of the
radiation source and knowing the active surface of the panel.

Figure 12. Schematic diagram of experimental test for thermal characterization.
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The thermal performance tests were carried out in collaboration with ELIOSYS SA,
Liege, Belgium. The investigated heat transfer fluid was water without glycol. As the
thermal characteristics of the thermal solar collector were multifactorial, we decided to
fix certain parameters. The sample inlet temperature was fixed at room temperature to
avoid losses between the pipes and the environment. The measurement of the ambient
temperature was carried out in a ventilated enclosure and by obscuring solar irradiance.
The measurement time was at least 15 min in steady state. The irradiance measurement was
carried out during all tests using a calibrated pyranometer and the thermal environment
was controlled by a pyrgeometer. The stability of the irradiation was 0.1% for the duration
of the test. Figure 13a shows the experimental setup. Knowing the characteristics of the
heat transfer fluid, temperature variations, and flow rate, it was possible to determine the
heat output of the system. By controlling the stability of the surface power of the radiation
source and knowing the active surface of the sample, it was possible to calculate the thermal
conversion efficiencies of the sample. The source of the irradiation was a continuous solar
simulator capable of creating irradiation of 200 W/m2 to 1100 W/m2 with a maximum
variation of less than 1% over 1 h. The spectrum of this simulator was classified B for
the wavelength from 800 nm to 900 nm and A for all other wavelengths according to IEC
60904-9 [17].

(a) (b) 

  

Figure 13. Experimental setup, including the solar collector and irradiance lamps (a) and infrared
camera image of the solar collector in operation (b).

Figure 13b shows an example of thermal imaging, helping to visualize the intercon-
nection of panels. The first panel (top right) was cooler than the last panel in the chain
(bottom right). The irradiation power was fixed at 1000 W/m2 and the water temperature
input was fixed at 30 ◦C +/− 0.2 ◦C in the panel located at the top-right and exits at the
temperature given at the bottom-right. Outside the cooled areas of the panels, a significant
increase in temperature was detected, contributed by thermal conduction to the increase in
fluid temperature.

3.1. Thermal Power

The thermal power of the collector was determined for various irradiance values
(Figure 14a). For a typical irradiance of 1000 W/m2 and a cooling water flow of
3.7 L/min, the total output power of the collector was 745 W/m2. This graph also shows
that the thermal conversion was better at low irradiance than at high irradiance. This
phenomenon was slight and mainly originated from first- and second-order thermal losses,
which increased with the temperature difference between the collector and the environment.
The tilt angle of the collector significantly influenced the thermal power, as presented in
Figure 14b). Indeed, the installation of the collector in a vertical orientation decreased the
output power to around 17% compared with the horizontal orientation.
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(a) (b) 

 

Figure 14. Variation in the thermal power of the collector versus the irradiance for a constant water
flow rate of 3.7 L/min (a) and variation in the thermal power versus the irradiance angle (b).

3.2. Thermal Efficiency

The European standard EN 12975 [18] defines the efficiency η of a thermal collector on
the basis of four parameters according to Equations (1) and (2):

η = η0

(
a1·ΔT

E0

)
−
(

a2·ΔT2

E0

)
(1)

ΔT = Twater out − Twater in (2)

where:
η—collector efficiency;
η0—optical efficiency;
a1 and a2—heat loss coefficients;
E0—solar radiation;
ΔT—Temperature difference of the solar fluid between the inlet and outlet of the

collector.
The overall efficiency η is, therefore, not a single value, but a characteristic curve.

The optical efficiency η0 represents the maximum efficiency of the thermal collector when
the temperature of the fluid is at ambient temperature (no thermal losses). Measured
under standardized test conditions (AM1.5 spectrum, solar irradiation E0 = 1000 W/m2,
perpendicular to the sensor), the efficiency of a thermal collector depends on the properties
of the glazing and/or the selectivity of the absorber. Figure 15 shows the variation in the
collector efficiency as a function of the flow rate of the cooling fluid. The thermal insulation
of the collector slightly influenced its efficiency. On the characteristic curve, the stagnation
temperature of the collector was defined as the temperature difference at which the solar
gains could not compensate for the thermal losses.

Figure 15. Collector efficiency with and without back insulation for E0 = 1000 W/m2.
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4. Economic Analysis

An economic feasibility study was carried out to estimate the manufacturing costs of
the new type of collector. To show the influence of the forming technology used on the total
manufacturing costs, ISF was compared with a conventional deep drawing for quantities n
of 1 and 1000 pieces.

The starting point for the cost calculation was the scaled collector geometry shown in
Figure 1 and the consideration of the process chain described in Figure 16.

Figure 16. Simplified process chain for the manufacture of the collector.

In this simplified representation of the manufacturing process, the steps of the single-
part production of the inner and outer sheets are summarized in the first three superordinate
processes of blank trimming, forming, and trimming.

In addition to the main forming costs, the one-time costs for the formation of simu-
lation (deep drawing), as well as the path generation (ISF), are included in the forming
process step. All trimming and joining operations were performed using a laser. The
coating process itself was divided into the sub-processes of corrosion protection and solar
coating.

The assumed boundary conditions and the determined costs for each (sub-)process
step are given in Table 1.

Table 1. Boundary conditions and detailed cost distribution by process step for collector-
manufacturing depending on the formation technology and quantity n.

Process Sub Process
ISF Deep Drawing

n = 1 n = 1000 n = 1 n = 1000

Raw material
(inner + outer sheet) - ≈16 € ≈16 €

Forming
(inner + outer sheet)

Simulation (one-time) - ≈800 €
Tool-path generation
(one time) ≈200 € -

Tooling costs (one time) ≈1500 € ≈20,000 €
Manufacturing time per
collector ≈2.9 h ≈0.09 h

Forming cost per
collector ≈292 € ≈22 €

Total forming cost per
collector ≈2192 € ≈294 € ≈21,622 € ≈43 €

Trimming
(inner + outer sheet)

Jig costs (one-time) ≈250 € ≈250 €
Laser trimming cost per
collector ≈4.20 € ≈4.20 €

Total trimming cost per
collector ≈254 € ≈5 € ≈254 € ≈5 €

Joining Total joining cost per
collector ≈270 € ≈25 € ≈270 € ≈25 €

Coating

Costs of corrosion
protection (Al-Zn) ≈245 € ≈20 € ≈245 € ≈20 €

Costs of solar coating
(sol-gel) ≈37 € ≈17 € ≈37 € ≈17 €

Total coating cost per
collector ≈282 € ≈37 € ≈282 € ≈37 €

Total manufacturing costs per collector ≈3014 € ≈376 € 22,444 € 126 €
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The results of the process chain analysis show that the formation and associated
tooling investment costs were the drivers for all process variants investigated. As expected,
for small quantities, ISF can take advantage of its universal forming stylus and low overall
tooling costs. With total manufacturing costs per collector of approx. 3014 € for a quantity of
one, the costs of ISF were 87% lower compared with the use of conventional deep-drawing
technology. In contrast, deep drawing has advantages for larger quantities due to the
significantly short process times. When considering a number of 1000 pieces, the unit
price per collector of 126 € for the deep drawing variant was 33% lower than that of the
ISF variant. For large quantities, conventional forming is clearly preferable. In the case of
prototypes or small quantities, however, ISF is an interesting alternative. In this specific
case, the break-even would be at 73 collectors. From this point on, the manufacturing costs
for deep drawing are lower than those for ISF.

In view of the large-scale production capability of the collector type presented, the
graphical representation of the cost distribution in Table 2 shows that, in addition to
formation, coating and joining account for the largest shares in terms of total costs. In the
deep drawing scenario at a quantity of n = 1000, the share of formation is approx. 34%,
followed by coating (≈29%) and joining (≈20%).

Table 2. Overview of the estimated manufacturing costs per collector depending on the forming
technology and quantity n.
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If the costs are related to the collector area, the costs for the new collector type were
approx. 625 €/m2 under the assumptions made. In combination with the degree of design
freedom made possible for the first time, the type of collector presented represents an
interesting addition and extension to existing systems.

5. Discussion

As shown above, there is good potential for all-sheet metal solar collectors, as the
thermal performance and cost were comparable to those of modern flat plate collectors,
with the added benefit of three-dimensional design freedom for seamless integration into
facade systems.
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It was demonstrated that the manufacture of complex collector geometry with the
chosen parameters without cracks was possible by ISF. However, as expected, the cost
analysis showed that the area of application for this manufacturing technology was only
limited to small quantities (e.g., prototypes or individualized elements) due to the long
manufacturing time. For large quantities with recurring geometries, it would make more
economic sense to use conventional forming technologies with high output rates. The
high quantities amortize the initial investment costs in the forming tools and enable low
marketable unit costs.

Laser welding was proven to be an efficient method for the assembly of an all-sheet
metal collector, despite the 3D complex shape. However, the increase in the metal thickness
could considerably improve the welding robustness influenced by sheet formation.

The use of sol-gel painting spray was an efficient and low-cost way to deposit the
solar-absorbing layer on a complex-shaped surface. The high solar absorptance and high
emissivity of the solar layer could generate a high thermal efficiency of the solar collector at
a low temperature. The overheating effect of the present thermal panels was significantly
reduced, as the maximum heating temperature was under 100 ◦C. Indeed, the overheating
effect observed in the case of fluid stagnation (e.g., power cut, failure of the primary pump,
or when the heat demand is low) for conventional glazed thermal panels using selective
absorbing layers generates a high increase in the fluid temperature (>150 ◦C), leading to
premature component degradation. The large surface available for the implementation
of these new solar facades, combined with their high efficiency at low temperature, can
generate an economical approach to saving energy. However, the coating design could be
improved to decrease the surface emissivity and, consequently, to increase the efficiency
at higher temperatures; however, this can be achieved only by using complementary
antireflective coatings.

6. Conclusions

This project has shown that, within the research project “FutureFacade”, new potential
for renewable energies in cities can be created. Solar thermal-active facades are particularly
suitable for large buildings with large facade areas, as these are the first places where it
becomes economically viable.

The approach of using standardized facade substructures was proven successful. How-
ever, this project still has a lot of development potential. With regard to the manufacturing
process, it is advisable to switch to the more economical manufacturing process for sub-
sequent projects. This would also make the production of smaller facades and quantities
more economical. The material could also be changed to aluminum instead of steel in
order to minimize the weight of the facade construction. Changes in material and forming
technology also allow new design freedom in the geometry of further developed facade
panels, which can be further extended by adapting the coating. In terms of appearance,
it would be desirable to be able to create more variance in color with the same or similar
efficiency. In terms of efficiency, it would also be advisable to further develop the channel
structure professionally with the help of meaningful CFD simulations. When considering
the efficiency, its ratio with the absorber surface must always be taken into account. With
regard to the panel size, adjustments could be made in the future. As long as the absorber
surface area is 2 m2, the collector remains comparable to conventional absorbers.

All in all, the “FutureFacade” approach has brought many new insights and provides
new stimuli for further research on solar thermal facades.
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Abstract: This study addresses the use of former gas storage facilities as short-term storage for
renewable energy through power-to-gas (PtG) technology in Germany. Three test cases with coupled
thermal-hydromechanical (THM) modelling were conducted to evaluate short-term injection and
production schedules. The operating rates were controlled by the upper and lower limits of the
wellbore pressure. The maximum difference in pore pressure and effective stress was 0.6 MPa in all
cases. Fault reactivation analysis was performed on the THM models to estimate fault stability. The
critical pore pressure for safe reservoir operation was determined to be 1.25 times the original pore
pressure, corresponding to a WBHP value of 20.25 MPa. The upper limit of the gas injection rate
for safe storage operation was estimated to be between 100,000 and 150,000 m3/day. The thermal
stresses were found to be negligible for short-term cases. The storage capacity of PtG technology
was reported to be up to 1,322,400 kWh/d of renewable electricity, which can contribute to Germany
becoming a greenhouse gas neutral country by 2050. The workflows and results of the study are
applicable to all gas storage in a porous medium, including methane, CO2, and hydrogen.

Keywords: THM modelling; short term underground gas storage; dynamic modelling; “battery” for
power-to-gas

1. Introduction

High energy demand has intensified research into the “underground gas storage”
(UGS) discipline [1]. As a result, both long-term (seasonal) and short-term (weekly) gas
storage projects have gained the attention of UGS researchers [1]. An idea in this context is
to store methane produced by “power-to-gas (PtG)” technology from excessive electricity
produced by renewable sources, such as solar and wind. The stored gas can then be reused
for power generation whenever needed. Thus, UGS is used as a kind of “battery” for
surplus green energy.

Short-term storage cycles may cause some geomechanical issues in the porous reservoir.
The pore fluid pressure in the reservoir fluctuates due to intensive gas injection and
withdrawal phases. These fluctuations in fluid pressure change the effective stresses in
the reservoir and may also change the in-situ stress state outside the reservoir area [2].
These changes have implications for geomechanical phenomena related to fault stability,
caprock integrity, and surface deformation. Numerical modelling, e.g., 3D geomechanical
modelling, provides a platform to integrate lithological and mechanical heterogeneities
and investigate stress state changes during injection-production cycles of high frequency.

This study concentrates on a geomechanical assessment of a former gas field in the
Bavarian Molasse Basin east of Munich (Germany) for which a hypothetical transforma-
tion into an UGS site is investigated. Various scenarios with variable short-term (weekly)
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schedules to test cases for gas storage and withdrawal are considered to evaluate stresses
(e.g., effective stress) and deformation due to pressure changes with high-frequency injec-
tion/production cycles. German data for excess electricity from renewable energy sources
(such as solar and wind) throughout the calendar year 2017 are also considered in two cases
to address the issue of irregular schedules in gas supply (via PtG) and energy demand.

The modelling results provide information about the stress state within and around
the reservoir because of the production and injection of each selected time step, and they
are compared with the stress states at the depletion and replenishment stages. The pro-
duction history of the reservoir (porous media) is categorically useful to determine stress
paths within and around the reservoir and wellbore periphery, as well as caprock integrity.
Further, the modelling results provide information about ground surface subsidence during
peak depletion and replenishment time steps, which can be useful to minimize geomechan-
ical risks to any gas storage facility, not only for methane or CO2 but also for hydrogen.
Finally, fault reactivation analyses are also incorporated to obtain a safe gas injection rate
for safe storage capacity.

The most popular gas storage method is underground gas storage among others, such
as liquefied natural gas (LNG), storage tanks, and pipeline storage [3,4]. Two important
issues are associated with UGS. First, it relies on gas imports due to increased demand
for power generation (gas-to-power) and other domestic usages. Second, any damage to
infrastructure could lead to higher gas prices or disruption of supply, with unpredictable,
costly consequences for customers [1]. To address these challenges, various research
has suggested using depleted gas/oil porous reservoirs or aquifers as UGS, with which
significant volumes can be strategically stored [1,5].

One of the main advantages of depleted gas reservoirs is that they allow convenient
and cost-effective gas storage, as they have suitable permeability properties and pore
connections [6,7]. Some vital data, such as geological and geophysical characteristics, petro-
physical properties, storage capacity, pressure, and the production history of depleted gas
reservoirs, have been thoroughly studied and well recorded during the development phase
of the reservoir field, enabling numerical modelling to simulate the injection-production
process of underground gas reservoirs [3,6,8].

Water encroachment occurs in the porous reservoir vertically and laterally during the
development phase of the gas reservoir. This water invasion causes fewer porous spaces
in the reservoir, and different fluid distribution areas are formed in the longitudinal and
traverse planes of the reservoir. During the injection and production operations of gas
storage, the gas-water interface moves downward when gas is injected and moves upward
when gas is produced [9]. Furthermore, as the foreign gas is injected into the reservoir,
which has a different temperature than the reservoir’s actual temperature, these thermal
changes in the reservoir also cause some thermal stress changes in the reservoir, which
is not the case in the reservoir exploitation phase. Therefore, it is necessary to conduct a
systematic modelling study of the changes in the thermal-hydraulic-mechanical properties
of UGS due to repeated water intrusion and multiphase seepage rules during high-speed
injection production operations. The state-of-the-art thermal-hydro-mechanical (THM)
modelling provides a platform to analyse and investigate all these issues related to porous
UGS systems discussed above. THM models are typically derived from a wide range of
geological, geophysical, and engineering data, including field measurements, core tests,
well logs, drilling, and production data. After calibration, these THM models can be used
for ground surface subsidence, thermal stress changes, maximum safe storage capacity,
and maximum threshold pressure, avoiding fault reactivation and maintaining caprock
integrity [10–12].

This modelling case study is a THM assessment of a former depleted gas reservoir
field from the Molasse Basin in South Germany and has been presented in [10]. This
dynamic modelling study addresses the following issues related to short-term and long-
term operations of UGS: (1) the storage capacity of the reservoir; (2) thermal analysis
with changing temperatures of the reservoir due to the injection of gas; (3) potential fault
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reactivation analysis; and (4) stress path changes due to changes in pore pressure because
of short-term production/injection cycles. These types of THM models, particularly short-
term scheduled models, have implications for PtG technology in which simulations help us
to understand that excess power from renewable resources can be stored in underground
gas storage reservoirs and vice versa.

2. Methodology

2.1. Hydraulic Model

The flow simulation accounts for multiphase fluid flow in porous media. A hydraulic
model is usually conducted by reservoir simulation, i.e., a form of numerical modelling
in which physical phenomena are quantified and interpreted throughout the history of
a reservoir and beyond, with the ability to extend this model to future performances.
Reservoir simulation is a proven and effective method for dealing with uncertainties
during exploration and production [13]. It is also helpful to determine the amount of
gas that can be stored in each underground gas (CO2, hydrogen, or methane) storage
reservoir [13]. The physical phenomenon behind (fluid flow) reservoir simulations are
based mainly Darcy’s law and mass material balance [10].

The composition of the fluid can be treated in different ways in reservoir simulations.
Black oil simulators assume oil and gas phases to be one component through space and
time. The properties of this component can change with pressure and temperature, while
the composition does not change [13]. Thereby, the behaviour of the multiphase system
can be described by complex PVT (pressure, volume, temperature) and SCAL (special core
analysis) relations [13].

As a general solution method, the reservoir is divided into several cells with provided
petrophysical properties, such as porosity and permeability. Then, the wells are placed
within cells, and production rates are provided with different time steps. Last, the equations
are solved to determine the pressure, temperature, and saturation for each cell. Each cell is
solved simultaneously; therefore, the number of cells in the reservoir simulation is directly
related to the time required to solve a time step [13].

2.2. Thermal Model

The thermal-flow-stress simulation model considers the proportional heat transfer
in porous media when considering the multi-fluid flow concept in a THM simulation.
The thermal flow model is usually performed by numerical modelling, in which the
thermal hydraulic aspects are quantified together with the geomechanical simulation and
interpreted throughout the history of a reservoir and storage operations in underground
gas storage facilities. The main governing law in the thermal modelling is Fourier’s law,
also known as the law of heat conduction. The law states that the rate of heat transfer
through a material is proportional to the negative temperature gradient and to the area
at right angles to that gradient through which the heat flows. The governing equation of
Fourier’s law describes that the local heat flux density (qh) is equal to the product of the
thermal conductivity (kt) and the negative local temperature gradient (−∇T) [14]:

qh = −kt∇T, (1)

where qh is in (W/m2), kt is in (W/m. K), and ∇T is in (K/m). Fourier’s law can also be
used in uni-dimensional form in any direction, i, j, k; for that reason, the equation becomes:

qh = −kt
dT

d(i, j, k)
, (2)

2.3. Coupled Thermal-Hydraulic-Mechanical (THM) Modelling

The coupling of a reservoir simulator with a geomechanics module is an integral
component for analysing hydrocarbon reservoirs in petroleum, underground gas storage,
and the geothermal industry. A conventional geomechanical simulator provides surface
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subsidence, which is often estimated using a simple mechanical formula without knowing
the full geomechanical response. The only geomechanical parameter considered may be
the pore compressibility, which is not sufficient to reproduce the changes in pore volume
caused by complex pressure and temperature variations [15,16]. For some problems, such
as primary production and linear elastic responses of reservoirs, subsidence calculated by a
reservoir simulator alone can produce results comparable to coupled solutions [16,17].

In a coupled simulator, flow can be strongly influenced by the stress and strain
distributions that lead to changes in porosity and permeability, but effective stress changes
are ignored in conventional simulation methods. Such approaches cannot provide adequate
predictions when considering a stress-sensitive reservoir (e.g., underground gas storage
reservoir) [15,18]. There are two main components of coupling: volume coupling and fluid
flow coupling according to [15,17].

In volume coupling, the changes in pore volume occur in response to variations in
stress, pressure, and temperature. For convergence, the calculated pore volume changes
should be the same in both the fluid flow model and the geomechanical model. The pore
volume changes of the geomechanical model are usually more accurate than those of the
fluid flow model because they are calculated by volumetric strain via a more realistic
complex material constitutive model. This method is well suited to shear and plastic
deformation, which involve large changes in pore volume or porosity. These problems
are common in unconsolidated heavy oils and oil sands, North Sea chalk, Californian
diatomite, and possibly some other materials [15,17].

In case of fluid flow coupling, the changes in permeability and relative permeability
are related to the changes in stress, shear stress, and compaction. Material parameters,
such as permeability, relative permeability, compressibility, and others, change when
conditions encounter a shear fracture. This fact is important in some reservoirs where the
rock compressibility does not play a significant role in volumetric behaviour, such as gas
reservoirs where volume coupling is not important. Another example is cold water/fluid
injection, which leads to a thermally-induced decrease in horizontal stress until the injection
pressure increases the minimum horizontal stress [19].

To achieve the stress states of the reservoir and surrounding formations throughout
history, as well as during future gas storage operations, the fluid flow and the geomechan-
ical simulation must be coupled. The pore pressure controls the effective stresses and,
hence, deformation, in turn changing rock porosity and permeability, which again affect
fluid flow.

2.3.1. Effective Stress and Poroelasticity

The effective stress for incompressible rock and the concept of one-dimensional con-
solidation are the fundamentals of poroelasticity formulated by Terzaghi in 1923 [17].
Successively, using the basic principles of continuum mechanics and applying the con-
cept of the coupling of stress and pore pressure in a porous medium, Biot developed a
comprehensive three-dimensional theory of consolidation [17,20]. Biot’s theory and the
papers that he published are more aligned towards geomechanics than flow models, due to
which they are rarely compatible with the coupling of geomechanics and flow models. By
introducing the so-called Skempton pore pressure parameters (A and B), Skempton in 1954
procured a relationship between the total stress and the pore pressure under undrained
initial loading [17,21]. Later, however, the relationships among pore pressure, stress, and
volume and the concept of compressibility in a porous medium were better clarified by
Geerstma in 1957 [17,22]. Later, Van der Knaap (1959) extended Geerstma’s work to nonlin-
ear elastic geomaterials only for dense and uncemented sands [17,23]. By applying Biot’s
theory, Geerstma in 1966 examined subsidence problems in oil fields and published proto-
type geomechanical modelling, which is probably the first-ever coupled analysis of fluid
flow [17,20]. Nur and Byerlee (1971) demonstrated that the effective stress law proposed by
Biot is far more general and precise than that proposed by Terzaghi [17,24]. Nevertheless,
there are certain limitations (one-dimensional analysis, neglect of the compressibility of
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fluids and rocks, etc.) that Terzaghi recognized in the assumptions that he made in the 1920s
to solve problems of applied rock mechanics in clay consolidation [17]. Later in the 1970s,
there were further developments on coupled flow stress issues; e.g., fluid compressibility
was introduced into the classical soil mechanical consolidation theory of Ghaboussi and
Wilson [17,25]. Rice and Cleary (1976) showed how poroelasticity problems could be solved
using pore pressure and stress as primary variables, instead of the displacements used by
Biot [17,26].

2.3.2. Simulation Concept and Governing Equations

The numerical modelling of an underground gas reservoir can contribute to the
understanding of the interaction mechanisms between the injected gas and the deformation
of the reservoir. The injection of cold foreign gas into the reservoir leads to thermal and
mechanical disequilibrium in the reservoir by altering the transport properties, including
porosity and permeability. A three-dimensional THM coupling model of a reservoir is
created by incorporating the mechanical equilibrium equation, the fluid flow or seepage
equation (Darcy equation), the heat transfer equation (Fourier equation) of the formation’s
rock matrix, and the THM stress equation. These equations are based on the porosity,
permeability, thermal diffusivity, and other physical and mechanical parameters of the
sandstone formation [27].

The mechanical equilibrium equation can be expressed as follows [27]:

Si,j,j + fi = 0, (3)

where, Si,j,j is the total stress tensor (N/m2), and fi is the body force (N/m3). The equation
of the continuity of the fluid flow in the rock can be written as [27]:

∂ρl
∂t

+
∂(ρlrvr)

r∂r
+

∂(ρlvθ)

r∂θ
+

∂(ρlw)

∂z
= 0, (4)

In this equation vr, vθ , and w are the Darcy velocities (m/s) along the radial, hoop, and
well-depth directions, respectively, in the porous reservoir. The relationship between stress
and porosity/permeability changes in porous rock can be described with the following
equations [27,28],

φ = φr + (φ0 − φr)exp(e.SM), (5)

k = k0 exp(c.(
φ

φ0
− 1)), (6)

In the above equations, SM denotes mean effective stress; φ0 and k0 are the porosity
and permeability at zero stress, respectively; φr represents the residual porosity at high
stress; and the exponents e and c are determined experimentally.

The heat transfer process and the total energy conservation can be express by rewriting
the Fourier equation [29]:

(ρc)t
∂T
∂t

− 1
r

∂

∂r
(ktr

∂T
∂t

)− 1
r2

∂

∂θ
(kt

∂T
∂θ

)− ∂

∂z
(kt

∂T
∂z

)− qtr = 0, (7)

(ρc)t = (1 − φ)csρs + φc f ρ f , (8)

ktotal = φk f + (1 − φ)ks, (9)

In the above equations, the total heat capacity of the solid and fluid phases is denoted
by (pc)t in units (J/(m3.◦C)); ktotal is the total thermal conductivity (J/(m.s.◦C)); qt is the
intensity of the internal heat source (J/(m3.s)); cs and cf are the specific heat capacities of the
formation and the fluid, respectively (J/kg.K); ρs and ρ f are the density of the formation
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and the fluid (Kg/m3), respectively; and ks and k f are the thermal conductivity of the
formation and the fluid (W/(m·K)), respectively [29].

Finally, the governing equation involving all important thermal-hydro-mechanical
parameters is as follows [30]:

2α
(1 − 2ν)

1 + ν
∇2 p + 6βKB

(1 − 2ν)

1 + ν
∇2T −∇. f − 3

(1 − ν)

1 + ν
∇2Sm(total) = 0, (10)

where Sm(total) is the mean total stress (MPa), ν is the Poisson’s ratio of the rock mass, α is
the Biot coefficient, β is the coefficient of linear thermal expansion (1/◦C), and KB is the bulk
modulus of the rock (MPa). The term (2α

(1−2ν)
1+ν ∇2 p) describes the effect of poroelastic stress;

(6βKB
(1−2ν)

1+ν ∇2T) represents thermalelastic stress; and the term (∇. f − 3 (1−ν)
1+ν ∇2Sm(total))

shows the body force [30].

2.4. ECLIPSETM_VISAGETM THM Modelling

The THM modelling is performed using two commercial software packages, referred
to here as the ECLIPSE™-VISAGE™ coupling. ECLIPSE™ is a conventional reservoir
simulator used as the flow simulator for the multiphase flow processes. In the following
study, the ECLIPSE™ 100 finite difference black oil simulator is used for the flow calcula-
tions. VISAGE™ is one of the most advanced and comprehensive stress analysis simulators
commercially available. It is designed for applications in which nonlinear mechanics play
a greater role, for example, in disciplines such as rock mechanics and geomechanics. It
is flexible and can also be used in many other scientific disciplines, e.g., fluid mechanics,
heat transfer, materials science, etc. The system provides high computational power and
sophisticated modelling for many analytical situations, which currently include mining,
civil engineering, reservoir engineering, and geothermal energy.

The advanced and comprehensive finite element code (VISAGE™) has been cou-
pled with the ECLIPSE™ reservoir simulator to include geomechanical processes in this
modelling study. Fluid flow is first calculated in ECLIPSE™, and the results are then
transferred from ECLIPSE™ to VISAGE™ via the ECL2VIS interface for specified time
steps. Updates of porosity and permeability can be calculated via constitutive relations,
e.g., Kozeny–Carman.

The coupled THM models are based on three fundamental laws, namely Hooke’s law
of elasticity, Fourier’s law of heat conduction, and Darcy’s law of fluid flow in porous
media. The governing equations are discussed above.

One-way coupling is usually sufficient for THM modelling of gas reservoirs, as gas
compressibility dominates the bulk rock compressibility, and the mass balance is mainly
controlled by gas pressure rather than by the stresses of solid rock [31]. The THM-coupled
model presented in this paper is a one-way coupled model. With this approach, pressure
data are transferred from the reservoir simulator (fluid flow simulator) ECLIPSE™ to
the mechanical finite element simulator (geomechanical simulator) VISAGE™ at regular
and/or critical times. The fluid pressure drives the geomechanics, but mechanically induced
changes in porosity and permeability are not fed back into the dynamic reservoir simulation.
It is therefore assumed that permeability and porosity are the same for each time step in the
modelling and are not influenced by changes in stresses or ageing effects of the reservoir.
This type of approach is feasible in this case study due to the high permeability of up to
80 mD, which is characteristic of the reservoir.

3. Case Study

The presented modelling study is a working example of how to set up and populate a
3D coupled thermal-hydraulic-mechanical model of an underground gas storage site. The
case study reservoir is a depleted gas reservoir located about 65 km east of Munich in the
Central Molasse Basin. It is an anticlinal structural trap bounded by a normal fault. The
reservoir formation is mainly Early Cenozoic Chattian sand, with 85-m thick, three gas-
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bearing layers, found at a depth of 1770 m (1200 m below sea level). The initial gas-water
contact is at 1239 m below sea level (BSL). The reservoir has produced 528 million m3 of
gas over 18 years from 1958 till 1976; replenishment started in 1978 and has continued to
the present, and the reservoir has not been in operation to date [10]. The modelling study
uses pore pressure development during the production history and subsequent shut-in
phase to calibrate the dynamic reservoir fluid model.

The 3D MEM model is built using a hydraulic model (green area in Figure 1), which
comprises a high-resolution reservoir section and regions of lower resolution away from
the reservoir section, called the sideburden, overburden, and underburden sections. Topog-
raphy is extracted from the elevation maps of the ground level to include the top surface of
the model. The horizons bounding the reservoir are used to make overburden layers and
underburden layers. The basal unit of the model comprises crystalline basement rocks at a
depth of about 5 km. However, as none of the wells has reached this depth, this information
is inferred from regional geological knowledge. The final 3D THM model consists of
12 horizons and 11 lithostratigraphic units with dimensions of about 30 × 24 × 5 km3 in
the X, Y, and Z directions, respectively. The grid of the THM with the reservoir model em-
bedded is shown in Figure 1. The higher resolution in the area of interest (reservoir) and the
lower resolution outside make up a grid that creates balance between simulation precision
and computational demand. The initial pore pressures and elastic properties are upscaled
and interpolated from the 1D MEM’s. The calculated and calibrated log-derived properties,
including pore pressure, Young’s modulus, Poisson’s ratio, and density, are upscaled from
the well locations to the entire model domain. The Kriging interpolation method is used to
populate the 3D geomechanical model. The precision is of course decreasing away from
the wells, but the model fits well with overall trends.

Figure 1. Reservoir model proper embedded in 3D geomechanical model with reservoir, overburden,
underburden, and sideburden zones: (a) is the top view, and (b) is the oblique view, the arrows
represent north direction [10].

Further details regarding the model setup, population of the model from 1D MEMs,
history match, etc., are explained in our previous publication [10]. The starting point of the
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further modelling study in the following sections is the state after the replenishment phase,
achieved by a history match of the production and pressure data from the production and
subsequent shut-in phases, respectively.

4. Modelling

4.1. Modelling Scenarios

The following section describes the dynamic fluid flow models setup for future sce-
nario testing cases designed for short-term (weekly) gas storage operations. The pressure
profile of different future testing scenarios can be coupled with and incorporated into the
THM model. The concept for these scenario tests is to evaluate geomechanical stresses on
the reservoir due to pressure changes with intensive injection/production cycles. There
are various models with different short-term cases that have been considered. German
data for excess electricity throughout 2017 have also been considered in one case to address
the issues of renewable energy aspects. This case implies that the excess of power energy
(electricity) in Germany can be stored in underground gas storage with the power-to-gas
(PtG) concept, and then the stored gas can be reused for power generation (gas-to-power)
when needed. All the cases are summarized in Table 1. The starting pressure point of
these future scenario testing cases is the end point pressure of the replenishment phase,
i.e., ~15.8 MPa.

Table 1. All modelling scenarios with input parameters. WBHP is well bottom hole pressure, WGIR
is well gas injection rate, and WGPR is well gas production rate.

Modelling
Scenarios

Subdivisions Input Parameters

WBHP
upper limit

(MPa)

WBHP
lower limit

(MPa)
WGIR

(m3/day)
WGPR

(m3/day)

Short-term
(weekly)

cases

Case A
(with

water-cut
5 m3/day)

With
three wells

(two vertical
wells,

one horizontal
well)

18.8 13.8 100,000 100,000

Case B
(without
limited

water-cut)

With
three wells

(two vertical
wells and

one horizontal
well)

18.8 13.8 100,000 100,000

Real-
world
cases

Case C
(with

water-cut
5 m3/day)

With one well 18.8 13.8 100,000 100,000

Case D
(without
limited

water-cut)
With one well 18.8 13.8 100,000 100,000

Short-term scenario cases represent weekly storage operations. The scenario scheme
has been designed to compensate for the excess power produced in a season and to store
power-to-gas energy into same underground gas storage. A short-term cycle consists of
phases of one week of injection, one week of shut in, two weeks of production, and one week
of shut (1wkInj-1wkShut-2wkProd-1wkShut) for one year. During the injection week, gas
is injected into the reservoir, which builds up field pressure (but again limited by 18.8 MPa,
the upper limit of WBHP); then, one week of shut in maintains the pressure, followed by a
two-week production phase to withdraw gas, which drops the field pressure (lower limit
constraint to 13.8 MPa), and again a shut in phase to maintain the well bore pressure.
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4.2. Case A

There are three wells considered for this scenario: two wells are vertical wells (X2
and X6), and one is a horizontal well (H1). All the wells have been considered to have
the same short-term weekly schedule as discussed above. This case comprises the same
schedule as discussed above, but the well water production rate (WWPR) is limited to
5 m3/day to take into consideration the economic aspects of operating the gas storage.
The commercial storage industry limits the water production rates to minimize operating
costs and enhance economic returns. Therefore, this aspect has also been considered in
this case study. The gas rate for injection and production both is 100,000 m3/day. Bottom
hole pressure is constrained by an upper limit of 18.8 MPa and a lower limit of 13.8 MPa in
cases of injection and production, respectively. The water cut-off is again 5 m3/day in the
production phase to limit the production of water from each well.

The FPR profile for this case is shown in Figure 2. The progressive oscillation cycles of
FPR are injection (upward) and production (downward) phases. The overall upward trend
of FPR from its initial pressure of ~15.39 MPa represents the buildup pressure with each
passing schedule cycle.

Figure 2. Field pressure (FPR) profiles of all three wells (X2, X6, and H1) with schedule 1wkInj-
1wkShut-2wkProd-1wkShut for one year.

The upward trend of FPR throughout the schedule year is due to the well water
production rate (WWPR) (Figure 3d), and as a result, the field pressure is not stabilized
in such a short time span. To maintain material balance in this scenario, the injection rate
should be lowered to the actual production rates of each cycle.

The comparison of the properties of all three wells is summarized in Figure 3. The
WBHP of X6 reaches the maximum limit of 18.8 MPa at the end of each injection cycle
and drops back to ~15 MPa at the end of the production phase. The WBHP of X2 also
shows similar behaviour but at a lower pressure; e.g., it varies between 16 MPa and 17 MPa
at the end of each injection phase and drops back to the same level of ~15 MPa. The
WBHP behaviour of H1 is however different from that of both X2 and X6. It reaches a
maximum value of 16 MPa at the peak injection time and drops to the lowest level of
~14 MPa (Figure 3a). The WGPR behaviour of all three wells is similar with respect to
linear increases with each increasing cycle. However, the rates are completely different for
each well. The WGPR of well X2 ranges within ~10,000–11,000 m3/day during the initial
cycles but reaches up to 18,000 m3/day at the end of the schedule. Contrarily, the WGPR
of well X6 ranges within ~5000–6000 m3/day during the initial cycles but reaches up to
~9000 m3/day at the last cycle. An entirely different behaviour of WGPR is exhibited by
well H1, showing ~50 m3/day during the initial cycles but reaching up to ~1100 m3/day at
the end of the schedule year (Figure 3b).
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Figure 3. Well properties comparison of the three-well case scenario with the short-term schedule
1wkInj-1wkShut-2wkProd-1wkShut for one year. X2 and X6 are vertical wells, and H1 is the horizontal
well: (a) well bottom hole pressure (WBHP) of all wells; (b) production gas rates (WGPRs) for all
three wells; (c) injection gas rates (WGIRs) for all three wells and; (d) well water production rate
(WWPR) for all the wells.

The WGIR profile of each well is completely different from the profile of the WGPR;
the WGIR of well H1 shows the highest WGIR rates among other vertical wells (X2 and X6).
The WGIR of H1 reaches to the maximum rate of 100,000 m3/day. The WGIR of well X2
and X6 reach a maximum of 40,000 m3/day and 50,000 m3/day, respectively (Figure 3c).

The comparison shows that the horizontal well allows more gas injection and less gas
production than the vertical wells and vice versa.

Results

The modelling results of this case are presented in the form of pore pressure and
effective stress changes of the top layer of the reservoir. Two-time steps have been selected
for the analyses of changes in pore pressure and effective stresses acting on the reservoir.
Time step t1 (16 December 2020) represents the lowest pressure during the production
phase of the schedule cycle, and t2 (23 December 2020) indicates the maximum injection
pressure. The fluctuations in pore pressure and effective stress on the reservoir during t1
and t2 are the main results of this model.

Figure 4 shows the locations of three wells, which are denoted by H1, X2, and X6.
The pore pressures at t1 and t2 for the well H1 are ~15.0 MPa and ~15.3 MPa, respectively,
whereas the effective stress values are ~29.3 MPa at t1 and about 29.0 MPa at t2. There is a
difference of about ~0.3 MPa for both pore pressure and effective stress from t1 to t2.

The vertical wells X2 and X6 are close to each other; therefore, the differences in the
change in pore pressure and effective stress at these well locations are negligible. The values
of pore pressure at both well locations at t1 and t2 are about 15.4 MPa and ~15.7 MPa,
respectively. The effective stresses at t1 and t2 are ~28.5 and ~28.2 MPa, respectively, at
both well locations. There is an increase in pore pressure of ~0.3 MPa from t1 to t2 and a
decrease in effective stress of about 0.3 MPa.
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Figure 4. Pore pressure (Pp) and effective stress (Se f f ec) changes from t1 (16 December 2020) to t2
(23 December 2020) in the short-term case with three wells (X2, X6, and H1) with a water cut-off rate
of 5 m3/day. The arrows show the location of maximum observed fluctuations in Pp and Se f f ec from
t1 to t2. The color scale is in MPa. (a) is pore pressure at time t1; (b) is pore pressure at time t2; (c) is
effective stress at time t1; (d) is effective stress at time t2.

4.3. Case B

Three wells are considered for this scenario, two of which are vertical wells (X2 and
X6), and one is a horizontal well (H1). All wells are assumed to have the same short-
term weekly schedule as described above. WGIR and WGPR both have same value of
100,000 m3/day; however, they are constrained by the upper limit of BHP of 18.8 MPa and
the lower limit of BHP of 13.8 MPa in the cases of injection and production, respectively.

The FPR profile for this case is shown in Figure 5. The progressive oscillation cycles of
the FPR are injection (upward) and production (downward) phases. The general trend of
the FPR remains within the limits of ~15.85 MPa and ~15.375 MPa during the injection and
production phases, respectively.

The comparison of the properties of all three wells is summarized in Figure 6. The
WBHP of X6 reaches the maximum limit of 18.8 MPa at the end of each injection cycle and
falls back to ~13.8 MPa at the end of the production phase. The WBHP of X2 also shows
almost similar behaviour. However, the WBHP behaviour of H1 is different from both X2
and X6. It reaches a maximum value of 17.4 MPa at peak injection time and drops to the
lowest level of ~13.8 MPa (Figure 6a). The WGPR behaviour of all three wells is similar
in terms of linear increase with each increasing cycle. However, the rates are completely
different for each well. The WGPR of well X2 is ~12,000–16,000 m3/day during the initial
cycles but reaches up to 24,000 m3/day at the end of the schedule. In contrast, the WGPR
of well X6 varies between 14,000 and 15,000 m3/day during the initial cycles and reaches
up to 22,000 m3/day at the end of the last schedule cycle. The WGPR of well H1 is entirely
different from the other two wells because it shows ~400–500 m3/day during the initial
cycles but reaches up to ~70,000 m3/day at the end of the schedule year (Figure 6b).
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Figure 5. Field pressure (FPR) profile of all three wells (X2, X6, and H1) with schedule 1wkInj-
1wkShut-2wkProd-1wkShut for 1 year.

Figure 6. Well properties comparison of the three-well case scenario with short-term schedule 1wkInj-
1wkShut-2wkProd-1wkShut 1 year. X2 and X6 are vertical wells, and H1 is the horizontal well:
(a) well bottom hole pressure (WBHP) of all wells; (b) production gas rate (WGPR) for all three wells;
(c) injection gas rate (WGIR) for all three wells and; (d) well water production rate (WWPR) for all
the wells.

The WGIR profile of each well is completely different from the WGPR profile; the
WGIR of well H1 shows the highest WGIR among the other vertical wells (X2 and X6).
The WGIR of well H1 reaches the maximum value of 100,000 m3/day. The WGIRs of
wells X2 and X6 reach maximum values of 44,000 m3/day and 45,000 m3/day, respectively
(Figure 6c). The comparison shows that the horizontal wells allow for higher WGIR and
WGPR than the vertical wells under the same WBHP conditions.

The WWPR of well X2 allows a maximum rate of 5 m3/day throughout schedule
year, and the WWPR of well X6 also remain constant over the schedule year with a rate of
10 m3/day, while the WWPR of well H1 remains higher, within the range of 250 m3/day
to 310 m3/day (Figure 6d).
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4.3.1. Results

The modelling results of this case are presented in the form of pore pressure and
effective stress changes of the top layer of the reservoir. Two time steps with the greatest
fluctuations in pore pressure have been selected. Time step t1 (9 December 2020) corre-
sponds to the lowest pore pressure point, and t2 (23 December 2020) corresponds to the
highest pore pressure point of the schedule cycle. The fluctuation in pore pressure and the
effective stress on the reservoir during time t1 and t2 are the main results of this model.

Figure 7 shows the locations of three wells, which are denoted by H1, X2, and X6.
These three wells are the operating wells for this scenario. The main changes in pore
pressure, along with the effective stress, occur around these wells. The pore pressures at
t1 and t2 for well H1 are ~15.5 MPa and ~15.4 MPa, respectively, whereas the effective
stress values are ~29.1 MPa at t1 and about ~28.7 MPa at t2. There is a difference of about
~0.4 MPa for both pore pressure and effective stress at t1 and t2.

 

Figure 7. Pore pressure (Pp) and effective stress (Se f f ec) changes from t1 (9 December 2020) to t2
(23 December 2020) in the short-term case with three wells (X2, X6, and H1) without a water cut-off
rate of 5 m3/day. The arrows show the location of maximum observed changes in Pp and Se f f ec from
t1 to t2. The color scale is in MPa. (a) is pore pressure at time t1; (b) is pore pressure at time t2; (c) is
effective stress at time t1; (d) is effective stress at time t2.

4.3.2. Real World Cases

The excess of electricity produced [32,33] in Germany could be stored in underground
gas storage by converting the power energy into gas (Power-to-Gas). PtG is a process of
generation of a gas with high energy density through the electrolysis of water. The first
intermediate product is power-to-hydrogen, which can be converted into synthetic methane
gas power-to-methane in a subsequent methanation process that requires injection of CO2.
In this way, the same seasonal underground gas storage can also be used as a battery for
excess energy in a calendar year. Figure 8 shows Germany’s data on excess electricity
produced in calendar year 2017. It can be seen from the data that, during the summertime
(from March till August), electricity produced from renewable sources, such as wind and
solar, increases enormously. The combined wind energy (onshore and offshore) shows high
variation during the first and fourth quarters of the year, meaning this high variation of
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electricity production from renewable sources can be stored (power-to-gas) and reused
(gas-to-power) in cases of excesses and shortages of electricity, respectively.

 

Figure 8. Data show the consumption of total electricity in Germany, along with electricity produced
from renewable energy sources (such as wind, either offshore or onshore, and solar) in calendar year
2017 [32,33].

These scenarios have been performed on well X6. The schedule is based on the data
shown in Figure 8. The baseline of 10 GW is the shut-in period. Greater than the 10-GW
baseline is considered to have an excess of electricity that can be used as injection periods
for power-to-gas storage, and less than the limit of 10 GW is a shortage of electricity. These
periods have been considered for the production of gas for gas-to-power conversion. These
data [32,33] on excess electricity from Germany have been used to conduct two short-term
real world case schedule cases: one with limited water cut-off and one without limited
water cut-off.

4.4. Case C

This scenario has been performed on vertical well X6. The schedule timeline of one
year has been adopted from Figure 8. The well water production rate (WWPR) is restricted
to 5 m3/day (Figure 9c). The FPR eventually increases in this case to up to 15.72 MPa with
slight variations during the gas production cycles. Gas injection succeeds to maintain the
pressure, and it increases from ~15.39 MPa and reaches approximately ~15.72 MPa at the
end of the one-year period (Figure 9a). The variability in WBHP is directly proportional
to the gas production cycles. As shown in Figure 9a, as the gas production increases, the
well bottom-hole pressure decreases even as the gas injection continues. The maximum
WBHP reaches a value of 18.8 MPa, the minimum WBHP reaches a value of 14.4 MPa, and
these maximum and minimum pressure values represent injection and production cycles
(Figure 9b). The well gas injection rate (WGIR) varies during the year, having a minimum
injection rate of approximately 32,000 m3/day and a maximum rate of about 66,000 m3/day.
In contrast, the well gas production rate (WGPR) has minimum and maximum values of
4300 m3/day and 19,000 m3/day, respectively (Figure 9d). The lower WGPR compared
to the WGIR is due to the limited WWPR, which does not allow the well to produce at a
higher WGPR.
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Figure 9. The fluctuation in electricity produced in Germany from renewable sources in 2017 is
modelled into a future scenario testing case with limited water cut-off (5 m3/day). The excess of
energy can be stored in UGS and can be used when needed. This schedule is helpful to understand
in which month of the year energy can be stored as gas in UGS and in which month of the year this
energy can be utilized when shortage occurs: (a) field pressure (FPR) profile for these cycles; (b) well
bottom hole pressure (WBHP) of well X6; (c) well water production rate (WWPR) for well X6; and
(d) well gas injection rate (WGIR) and well gas production rate (WGPR) for well X6.

Results

The modelling results of this case are presented in the form of the pore pressure and
effective stress changes in the top layer of the reservoir. Two time steps have been selected
for the conclusion of the results for this model. Time step t1 is the starting point of the
schedule case, i.e., 1 January 2020, and t2 is the end schedule point (31 December 2020).
The pore pressure at the well X6 location is about 15.2 MPa at t1 and increases to about
15.8 MPa at t2; simultaneously, the effective stresses at well X6 is about 28.6 MPa, and it
decreases to about 28.0 MPa at time steps t1 and t2 (Figure 10). There is an increase of
0.6 MPa in pore pressure and decrease of 0.6 MPa in effective stress at the top surface of
the reservoir layer near well X6 from t1 to t2.

Figure 10. Cont.
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Figure 10. Pore pressure (Pp) and effective stress (Se f f ec) changes from t1 (1 January 2020) to t2
(31 December 2020) in the short-term case with one well (X6) with a water cut-off rate of 5 m3/day
and a random schedule. The arrows show the location of the maximum observed fluctuation in Pp

and Se f f ec from t1 to t2. The color scale is in MPa. (a) is pore pressure at time t1; (b) is pore pressure
at time t2; (c) is effective stress at time t1; (d) is effective stress at time t2.

4.5. Case D

This scenario has been performed on vertical well X6. The schedule timeline of one
year has been adopted from Figure 8. There was no water cut-off rate limit set in this
scenario; hence, the maximum water production rate (WWPR) increases up to 43 m3/day
and remains less than 20 m3/day throughout the production and injection period of one
year, respectively (Figure 11c). The FPR is sustained in this case by gas injection and
increases to up to a maximum value of 15.62 MPa with slight variation during the gas
production cycles in the one-year period (Figure 11a). The alteration in WBHP is directly
proportional to the gas production cycles without a water cut-off limit. As shown in
Figure 11b, the WBHP reaches a maximum value of 18.8 MPa and a minimum value of
approximately 13.8 MPa. The well gas injection rate (WGIR) varies during the year, having
a minimum injection rate of approximately 32,000 m3/day and a maximum rate of about
60,000 m3/day, whereas the well gas production rate (WGPR) has minimum and maximum
values of 16,000 m3/day and 40,000 m3/day, respectively (Figure 11d).

Results

The modelling results of this case are presented in the form of pore pressure and
effective stress changes of the top layer of the reservoir. Two time steps have been selected
for the conclusion of the results for this model. Time step t1 is the starting point of the
schedule case, i.e., 1 January 20, and t2 is the end schedule point (31 December 2020). The
pore pressure at the well X6 location is about 15.1 MPa at t1 and increases to about 15.7 MPa
at t2, whereas the effective stress at well X6 is about 28.7 MPa, and it decreases to about
28.1 MPa at time steps t1 and t2. There is an increase of 0.6 MPa in pore pressure and a
decrease of 0.6 MPa in effective stress at the top layer of the reservoir around well X6 from
t1 to t2 (Figure 12).
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Figure 11. The fluctuation of electricity produced in German from renewable sources in 2017 is
modelled into a future scenario testing case without limited water cut-off. The excess of energy can
be stored in UGS reservoirs and can be used when needed. This schedule is helpful to understand
which month of the year’s energy can be stored as gas in UGS and in which month of the year this
energy can be utilized when shortages occur: (a) field pressure (FPR) profile for these cycles; (b) well
bottom hole pressure (WBHP) of well X6; (c) well water production rate (WWPR) for well X6; and
(d) injection (WGIR) and production (WGPR) gas rates for well X6.

 

Figure 12. Pore pressure (Pp) and effective stress (Se f f ec) changes from t1 (1 January 2020) to t2
(31 December 2020) in short-term case with one well (X6) without a water cut-off rate of 5 m3/day
with a random schedule. The arrows show the location of the maximum observed fluctuation in Pp

and Se f f ec from t1 to t2. The color scale is in MPa. (a) is pore pressure at time t1; (b) is pore pressure
at time t2; (c) is effective stress at time t1; (d) is effective stress at time t2.
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The summary of all the results is compiled in Table 2 to have better understanding of
pore pressure and effective stress changes of all future testing cases with time (t1 to t2).

Table 2. Summary of results for all future test scenarios. The sign + in the pore pressure changes
indicates a positive change or an increase in pore pressure from time step t1 to t2, while the sign—in
the changes in effective stresses denotes a decrease in magnitudes of effective stresses for time step t1
to t2. These two quantities are inversely proportional to each other and are expressed in MPa and
KPa for a better understanding of the changes.

Modelling
Scenarios

Subdivisions Results

Pore pressure
changes

ΔPp

Effective stress
changes
ΔSe f f ec

Short-term
(weekly) cases

Case A
With three wells

(two vertical wells,
one horizontal well)

+0.3 MPa
+300 KPa

−0.3 MPa
−300 KPa

Case B
With three wells

(two vertical wells,
one horizontal well)

+0.4 MPa
+400 KPa

−0.4 MPa
−400 KPa

Real-world cases
Case C With one well +0.6 MPa

+600 KPa
−0.6 MPa
−600 KPa

Case D With one well +0.6 MPa
+600 KPa

−0.6 MPa
−600 KPa

5. Thermal Analysis

The same dynamic model has been used for thermal analyses. Since long-term injection
would impact the thermal changes in the reservoir significantly, a long-term seasonal case is
used to analyse the temperature changes within the reservoir if a foreign gas is injected into
it. Therefore, six months of gas injection and six months of gas withdrawal are considered
in this modelling case. The initial reservoir temperature is ~45 ◦C, and the foreign gas
temperature is 25 ◦C. Two cycles have been considered to analyse the temperature changes
during these injection/production operations. Gas is injected into the reservoir for the first
half year and produced in the second half of the year. Two wells, X2 and X6, are considered
to analyse the temperature changes around the well bore vicinity. The bottom hole pressure
(WBHP) for both wells is set to an upper limit of 18.8 MPa and a lower limit of 13.8 MPa in
case of the injection and production phases, respectively. These pressure limits are set in
place to avoid fault reactivation or fracture-inducing phenomena during the injection phase,
as well as to avoid sand production or contraction of the reservoir during the production
phase. The WGIR and WGPR are set to 100,000 m3/day for both wells.

Thermal stresses are the stresses that occur due to the change in temperature in the
system, i.e., original temperature minus final temperature. If foreign gas is injected into
the underground gas reservoir, the temperature in the reservoir changes, which causes
thermal-related stress changes in the reservoir. The relationship of temperature changes
and thermal stress is expressed by the following equation [34]:

St = E ∗ αt(Tf − T0) = E ∗ αt(ΔT), (11)

In the above equation, St is thermal stress, E is the Young’s modulus, αt is the thermal
coefficient, Tf is the final temperature of the reservoir, T0 is the original temperature of the
reservoir, and ΔT is the temperature difference in the reservoir. Less ΔT causes less thermal
stress in the reservoir and vice versa.

The following section describes the results, i.e., temperature changes with injection
of colder foreign gas (25 ◦C) into the reservoir (i.e., about 45 ◦C) through space and time
with seasonal cyclic injection/production phases. The top view of the reservoir surface is
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shown in the figure at different time steps (Figure 13). Two injection/production cycles
with four-time steps have been selected to show thermal changes in the reservoir with
injection and production phases. Time step t1 (1 January 2020) is the pre-operational history
temperature of the reservoir at wells X2 and X6 (Figure 13a). Time step t2 (1 July 2020)
represents the end of the injection time of colder foreign gas (25 ◦C), which is injected for
the first half of 2020 (Figure 13b). Time step t3 (1 January 2021) is the end of the production
period of the cycle (Figure 13c), and t4 (1 July 2021) is again the end of injection phase of
the second cycle (Figure 13d).

 

Figure 13. Temperature changes around wells X2 and X6 by injecting colder foreign gas at different
time steps (t1, t2, t3, and t4). Time steps t1, t2, t3, and t4 correspond to 1 January 2020, 1 July 2020,
1 January 2021, and 1 July 2021, respectively. The arrows show the exact location of significant
temperature differences during injection/production phases. The colour scale is in ◦C, whereas the
arrows with N indicate a northward direction. (a) is temperature at time t1; (b) is temperature at time
t2; (c) is temperature at time t3; (d) is temperature at time t4.

The reservoir temperature is 45 ◦C at time step t1, which is the pre-operational tem-
perature. The temperature decreases to about 43 ◦C at well X6 and 42.5 ◦C at well X2 at
time step t2 after constant injection of colder gas (25 ◦C), with a well gas injection rate
(WGIR) of 100,000 m3/day for six months. The temperature increases to about 43.5 ◦C and
~43 ◦C at wells X6 and X2, respectively, at time step t3. There is only about a 0.5 ◦C increase
in temperature from t2 to t3. Temperatures at well X6 and X2 decrease to about 41.5 ◦C
and 42 ◦C, respectively, again in the second cycle of injection at t4. Thermal changes are
minor and occur only at the vicinity and around the well locations. The thermal effects
on the stress are not significant in the reservoir even after injection of 100,000 m3/day
of colder gas for about a half year. This outcome shows that the thermal changes in the
short-term cases are negligible for analysing the geomechanical stresses on the reservoir in
storage operations.

6. Potential Fault Reactivation Analyses

6.1. Model Setup

Fault reactivation is the possibility of failure in geomechanical assessment of the
reservoir, which can risk operational safety, cause micro seismicity within and around
reservoirs, and provide a leakage path for gas to escape. Fault reactivation occurs when
the shear stress acting on the fault planes exceeds the shear strength of the fault. The
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Mohr–Coulomb failure criterion relationship of pore pressure and the principal stresses of
this case study reservoir (lies in normal stress regime) are expressed by this equation [35]:

Pp =
1
α
[
1
2
(Sv + Shmin) +

1
2
(Sv − Shmin) cos 2θ − 1

2
(Sv − Shmin)

sin 2θ

μ
], (12)

where α is the Biot coefficient (assumed 1), Sv is the vertical and maximum principal stress,
Shmin is the minimum horizontal stress, θ is the angle between the dip line of the fault and
the Shmin direction, Pp is the critical pore pressure, and μ is the coefficient of friction.

These analyses include the calculation of the critical pore pressure with the aim
of observing possible differences in pore pressure required for fault reactivation. The
pore pressure derived from the history matching scenario is multiplied by a fixed factor
controlled by gas rates until fault reactivation occurs. The upper limit of the BHP is removed
to obtain a higher pore pressure. The factors used for this operation are 1.15, 1.25, and 1.5
(Figure 14). It is then possible to evaluate pressure changes in the reservoir required to
reactivate the fault, as well as the safe storage capacity of the reservoir.

 

Figure 14. Pressure profiles for the history matching scenario and scenarios multiplied by fixed
factors (Pp , Pp X 1.15, Pp X 1.25, and Pp X 1.5) controlled by gas injection rates until fault
reactivation occurs.

Figure 14 shows different pressure profiles based on distinct gas injection scenarios.
The Pp (history match pressure) curve exhibits a maximum value of ~16.2 MPa with
gas injected at a rate of 100,000 m3/day for one year, whereas to reach a pressure value
1.15 times the actual history match pressure case, 175,000 m3/day of gas are injected for
1 year. The pressure increased up to 18.6 MPa. In case Pp X 1.25, 240,000 m3/day is injected
to reach a pressure of about 20.25 MPa. Similarly, in case of Pp X 1.5, a gas volume of
560,000 m3/day is injected (for one year), which increases the pressure up to 24.3 MPa.

6.2. Results

The results of this section are based on the model setup explained in the above section.
The methodology follows the different cases in which the initial reservoir pore pressure
is multiplied by a factor of 1, 1.15, 1.25, and 1.5, corresponding to pore pressure values of
~16.2 MPa, ~18.6 MPa, ~20.25 MPa and ~24.3 MPa, respectively. The results display the
oblique view of the topmost layer of the reservoir (Figure 15). The Mohr circles correspond
to the well X6 location near the main fault (Figure 15). Two time steps have been considered
for all the cases: t1 (1 January 2020) is the starting time step, and t2 (1 January 2021) is the
end time step of the schedule year.
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Figure 15. The computation of fault reactivation for initial pore pressure multiplied by a factor of
1 (a), 1.15 (b), 1.25 (c), and 1.5 (d) is shown on the left side. White boxes show the cells with stress
states exceeding the failure criterion (arrows show northward direction). On the right side of the
figure are the shear stress Ss vs. normal stress Sn diagrams, showing the Mohr–Coulomb failure
criterion at the well X6 location (which is nearest the main fault of the reservoir). Time steps t1 and
t2 correspond to the starting (1 January 2020) and final (1 January 2021) time steps of the tested
cases, respectively. The increase in pore pressure leads to a decrease in effective stresses, causing the
corresponding Mohr circle to shift to the left. If the failure line is finally touched, plastic straining
and—in case of a fault zone—fault reactivation occur.

Fault reactivation is observed already at Pp X 1.25 (~20.25 MPa) (Figure 15b), at which
the corresponding Mohr circle has just touched the tensile failure line. The amount of
failure in the cells becomes more prominent as pore pressure increases to greater than the
pore pressure factor of 1.25 (i.e., Pp X 1.5), and it causes the corresponding Mohr circles to
move further left (Figure 15c,d). The increase in pore pressure causes decreases in effective
stress, causing the Mohr circles to move to the tensile failure line. Thereafter, the material
enters the plastic regime; therefore, in case of failure, fault reactivation occurs.
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6.3. Safe Injection Rate for Safe Storage Capacity

The pore pressures for fault reactivation for the different scenarios calculated in the
numerical modelling analysis provide an estimate of the pressure at different injection rates.
The injection rate (in terms of volume rate) to achieve a perfect history match (16.2 MPa)
is about 100,000 m3/day, and fault reactivation is already observed at Pp times 1.25, i.e.,
about 20.25 MPa at an injection rate of 240,000 m3/day. With the determination of the
critical pore pressure, it is also possible to derive an upper limit for the injection rate to
be selected for injection processes. By considering the highest safety margin, the injection
rate between 100,000 m3/day and 150,000 m3/day would be the considered safe injection
rate for safe storage for the case study reservoir. A gas injection rate greater than this
threshold value can have a significant impact on the risk management and operational
setup of underground gas storage.

6.4. Storage Capacity of Power-to-Gas and Gas-to-Power

Regarding the storage capacity of power-to-gas technologies, the case study reservoir
can store 881,600 kWh/d up to maximum of 1,322,400 kWh/d of power from renewable or
other resources with respect to the conversion of a natural gas volume of 100,000 m3/day
to a maximum of 150,000 m3/day, respectively. Power-to-gas and gas-to-power convertible
units are summarized in Table 3.

Table 3. Power-to-gas and gas-to-power convertible units.

m3 Natural Gas kWh Power

1 8.816
0.113 1

7. Discussions

7.1. Hydraulic Model

The results of the hydraulic model show variations in gas saturation at different
phases during short-term injection-production cycles. Figure 16 shows that the injection-
production cycle increases the gas saturation during the later cycles, as more gas is produced
with increasing cycles until convergence is reached. This outcome indicates the adoption of
high-speed multicycle injection-production in UGS with time. This characteristic of UGS
indicates the increase in gas-containing pore space with time and explains encroachment
of gas flow continuously into the ground water zone for production in the pore throat
development area, as the injection-production cycle increases. Meanwhile, under the
wetting function, the water film is concentrated in the small pore space compared to the
larger pore space; the storage space occupied by the formation of water and dead gas zones
is released by the gas execution. Further analysis of the data shows notable findings on the
correlation between the time and the amplitude of the gas saturation increase, as shown in
Figure 16.

During injection and production cycles, gas saturation increases from ~35% to ~50%
from the first cycle to the sixth cycle. Therefore, it appears that, during multi-cycle injection
and production in the pre-UGS gas zone, the pore gas storage space in reservoirs with
low permeability generally increases sharply, as evident from the correlation between low
permeability and high initial water saturation (according to [6]). Moreover, the higher the
relative quantity of liquid phase that is continuously transported and dried during high
velocity development, the greater the increase in gas saturation.
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Figure 16. Gas saturation (%) during injection-production cycles.

The gas injection production capacity tends to improve in the UGS gas zone when gas
production is increased during the injection production cycle. Further investigation of the
UGS gas zone shows that the degree of gas production also increases with the injection-
production cycle, but the degree of gas production varies according to the different physical
properties and connectivity of the pore spaces [6]. Strong seepage is observed in reservoirs
with high permeability, and the gas production and degree of gas recovery are also high
under the same injection-production conditions [6].

The gas saturation first decreases in the pre UGS phase and then increases significantly
during multi-cycle injection and production, showing the decrease in gas saturation and
gas storage space when the gas-drive water zone (gas-water zone, where gas saturation is
more dominant) is converted into gas storage. Due to the intrusion of lateral and bottom
water, part of the gas storage space is occupied by water during the slow exploitation
phase, and a capillary trap for the gas-containing space is also created. Further data show
that higher permeability causes water to penetrate, leading to an even greater reduction
in gas saturation. During the multi-cycle injection and production phase in UGS, there is
no water encroachment, or the part where water encroachment occurs is displaced in the
initial gas injection phase of gas storage into the gas-drive water zone. In contrast, under
the influence of high velocity injection and production cycle extraction, residual water is
produced that is like that in the gas zone before UGS [6]. The experimental analysis shows
that the gas-drive water zone is the main expansion zone of the UGS, as the storage space
and storage capacity are greatly increased in this gas-drive water zone [6].

The variation of gas saturation in the gas-drive water zone shows the same trends
compared to both the trend in the single core experiment and the trends of average gas
saturation in the parallel multicore experiment. However, in the multicore parallel experi-
ment, the reduction in gas saturation caused by water encroachment is relatively small [6].
The distinctive feature of reservoir heterogeneity, a formation with high permeability, has
a great impact on the water body as it promotes water intrusion, while formations with
medium and low permeability are less affected by water intrusion. During high veloc-
ity injection and production, the gas preferentially percolates into the high permeability
formation, resulting in gas saturation recovery in the high permeability reservoir.

The gas permeability of the reservoir may also decrease due to clay minerals in the
reservoir, which may expand when they encounter water, thereby occupying the pore space.
For this reason, gas production and gas content are relatively low in the first injection and
production cycle. Meanwhile, the gas recovery level and gas production level are low due
to lower vertical permeability [6]. Furthermore, gas production and injection increase with
increasing permeability.

The transition of the reservoir characteristic of the gas-water transition may indicate
that water intrusion is caused not only by exploitation of the gas field but also by the
gas storage cycle in the operational phase. In general, the gas saturation decreases both
in operational zones of the reservoir and in the gas-water zone. However, the effects of
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physical properties and heterogeneity, wettability, and capillary pressure of the reservoir
make the production mechanism of multicycle injection complex. The relationship between
gas and water in the gas-water transition zone tends to be rational, and the gas saturation
tends to plateau during multicycle injection production [6]. Alternatively, residual gas
and trapped gas are effectively reduced due to the back-and-forth movement of gas and
water through the gas-containing spaces, but the changes in gas saturation are small
throughout the reservoirs. Conversely, in high-speed injection and production, water is
still continuously transported into the pore throat for production, but in gas storage, the
main discharge concerns water in the large pore throat because it is difficult to displace
water in the micropores. For this reason, gas saturation tends to plateau in the gas-water
transition zone. Due to the reduction in water intrusion energy, gas saturation increases
slightly in the subsequent phases of injection and production operations.

These results show that low gas saturation and poor recovery are observed in the
gas-water transition zone of UGS and that effective exploitation of the gas-water transition
zone is affected by reservoir heterogeneity [6]. Therefore, the effective utilization of the
gas-containing pore space under the high-speed injection and production conditions of gas
storage is significantly different from the utilization of the gas reservoir. For that reason,
the optimal design of UGS capacity and calculation of gas storage parameters should be
founded on the effective utilization of the gas-containing pore space, as well as on the
effective pore space of the reservoir structure in different zones [6].

7.2. THM Coupled Modelling

The geomechanical approach presented in this paper allows for characterization,
from a geomechanical point of view, of the target reservoir in a very understandable
way. The coupled simulation of one-way flow and geomechanics (VISAGETM) focuses on
understanding the variation in effective stresses due to pressure changes associated with
gas injection into the subsurface reservoir. In other words, the focus is on the pore pressure
changes during operation. The VISAGETM model is created directly from the geological
model and can therefore be considered more accurate in terms of geometry compared to
another finite element model, such as an ANSYSTM model. The material properties in
the VISAGETM model are scaled up from borehole logs, and their population contains
information about the original vertical and horizontal variations. The VISAGETM simulator
treats faults as 3D cells with different material parameters in relation to the surrounding
rock. The output of the VISAGETM model is continuous through space, and the presence
of faults can be detected by an abrupt change in depth at the point of displacement, even
if the horizon is technically not present at that point. Therefore, VISAGETM is used for
ECLIPSETM-VISAGETM coupling to build a coupled THM model to achieve the desired
geomechanical results.

THM coupled modelling involves coupling of static geomechanical model with dy-
namic fluid (hydraulic) modelling. The geomechanical stresses of the reservoir change in
space and time when coupled with pore pressure, either from reservoir history or from
future testing scenarios. In general, these dynamic models are based on the concept of
effective stress to characterize the effects of pore pressure changes on reservoir and caprock
integrity, as well as fault stability. Simplified geomechanical models rely mainly on the con-
cept of effective stress to distinguish the effects of pore fluid changes on reservoir integrity
and fault stability. Terzaghi [36] proposed this effective stress concept for soil systems. The
result of the increase in pore fluid pressure is equal to the decreased effective stress on the
rock mass, and conversely, this concept implies that the effective stress experienced by the
rock framework is due to the changes in fluid pressure, with the absolute magnitudes of
the principal in situ stresses themselves remaining unaltered.

From a classical point of view from Terzaghi [36], changes in vertical stress can be
predicted as the effective vertical stress increases and decreases during withdrawal and
injection, while the reservoir stress path effect can clearly distinguish the changes in the
effective minimum horizontal stresses. As a result of the increased fluid pressure, the Mohr
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circle drifts to the left, in turn reducing the diameter of the circle, implying that the fault is
under a lower differential stress. The theoretical viewpoint consolidates only the concept of
effective stress, and the assumption can be made that the stress path during compression is
parallel to the failure envelope rather than towards it [2]. A steeper stress path during the
injection process is the result of a small Poisson’s ratio, a large Biot coefficient, a large shear
modulus, and a shallower reservoir, further causing drift away from the failure envelope.

At the case study reservoir, reactivation of the fault with increasing fluid pressure
would not be possible if the stress path could be assumed to be exactly linear to higher
fluid pressures. The magnitude of the stress path in the reservoir is an absolute criterion to
ensure that the faults are not tapered by pressurization or depressurization. Furthermore,
this linear extrapolation of the stress path is obviously only suitable for moderate fluid
pressure levels. During pressurization of the system, there are some points at which the
horizontal stress becomes the maximum principal stress instead of the vertical stress. This
outcome shows that, in the absence of stress path effects, the stress path changes and moves
towards the failure criterion.

One of the main aspects of the THM modelling results is the deformation within and
outside of the reservoir formation because of injection and withdrawal of fluid/gas in
reservoirs. Pressurization and depressurization cause deformations in both the reservoir
and the overburden, which are part of the effective results of geomechanical modelling.
During overpressure or underpressure, the elastic or non-elastic expansion or contraction
of the rock mass causes such deformations. The reactivation of faults and the integrity of
the rock may be affected by deformations within the reservoir. In addition, deformations
associated with reservoir depletion can also pose a serious problem in terms of casing
collapse and can become a major obstacle to subsequent drilling [37].

The main risks related to pressurization and depressurization of a field during injec-
tion and withdrawal periods, respectively, are fault reactivation and associated permeable
leakages. During gas injection and production phases, reactivation of the fault and asso-
ciated permeable pathways is one of the main risks associated with pressurization and
depressurization. The classical fault model would predict that, as the fault approaches
shear reactivation, there will be an increase in fluid pressure that would reduce the effective
normal stress on the fault. However, the stability of the fault is significantly affected by the
progression of reservoir stresses through the effects on horizontal stress magnitudes. As
discussed in the above section, the simulation results of the THM model predict decreases
in effective stresses but increases in pore pressure in various short-term storage cases. If
this difference in effective stresses and consequently in pore pressures is very small, no
significant stress perturbations would occur. However, if this difference is large, i.e., if the
pore pressure in the reservoir is large, then there is a high probability of fault reactivation
with increasing pore pressure, as described in the above regarding the various fault reac-
tivation cases. Fault reactivation occurs in the reservoir already at 1.25 times the initial
pore pressure of the reservoir, indicating that the Mohr circle reaches the failure line at
this pressure.

Distinguishing deformations above and at the surface of the reservoir is also important
for surface monitoring and for potential reactivation of faults in the reservoir section. These
deformations (either elastic or sometimes plastic) occur due to contraction and expansion
of the rock mass during over-pressuring and under-pressuring phases. Over- and under-
pressuring of reservoirs are directly related to large amounts of gas injection and production
rates, respectively. For this reason, the upper (18.8 MPa) and lower (13.8 MPa) limits of
bottom hole pressure (BHP) are considered, which do not allow the pressure to rise or drop
below the designated pressure limits. The deformation caused by this over-pressuring
and under-pressuring of reservoirs could initiate fault reactivation and may affect caprock
integrity. The significant drop in reservoir pressure due to rapid depletion may damage the
casing and induce drilling complications for newly planned wells in the reservoir [37].

This study does not include a sensitivity analysis to determine the stress field or
displacement of the ground surface when elastic properties vary. Due to the poor correlation
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between the mechanical properties of the rock and the porosity in the individual wells,
there can be considerable variation in the construction of the static geomechanical model,
which can affect the distribution of the mechanical properties, rather than the magnitudes.
In contrast, the successive calibration of the sonic logs and the mechanical tests themselves
appear to have close correlations, demonstrating their accuracy. However, it is possible that
the actual values for Poisson’s ratio and Young’s modulus may differ slightly from those
used in the modelling. There are several studies have already been performed on these
parameter studies and the effects of parameter variation on geomechanical stresses and
ground surface displacement [38]. Chen (2012) modelled the pressurization of a reservoir
at 600 m of depth by 1 MPa using Young’s modulus and Poisson’s ratio values close to our
case study reservoir. This modelling study suggests reducing the stiffness of the reservoir;
i.e., reducing the value of Young’s modulus from 5 GPa to 3 GPa, the vertical displacement
increases from 0.08 to 0.12 mm [38]. Similarly, a reduction in the Poisson ratio from 0.3
to 0.2 results in an increase in the ground surface displacement from 0.11 to 0.13 mm [38].
It should be borne in mind that the sensitivity of these parameters is highly dependent
on several different factors, including the depth and size of the reservoir, the stress field,
and the properties attributed to the surrounding formations [38]. However, the work
presented by Chen gives a rough idea of the types of variations that might be expected
from such modelling.

8. Conclusions

THM modelling provide important results for short term gas storage, e.g., conversion
of the former gas field to a storage site with short-term (weekly) injection-production
schedules. There have been three cases tested for future scenarios with short-term oper-
ations. German surplus energy data from renewable energy sources (such as wind and
solar energy) from 2017 have also been incorporated into these future testing cases to
implement PtG technology on former gas reservoirs to meet Germany’s future energy
demand. The operating volumes in these cases are controlled by the upper (18.8 MPa) and
lower limits (13.8 MPa) of well bottom hole pressure (WBHP). The results of the coupled
THM modelling of these cases show that the maximum difference in pore pressure and
subsequently effective stress is observed to be 0.6 MPa among all tested cases.

Fault reactivation analyses are performed on the THM models, which evaluate various
gas injection scenarios without any upper limit of WBHP. The quantified stresses are then
examined against Mohr–Coulomb failure criterion to estimate fault stability. This goal is
achieved by including faults with specific properties in the 3D geomechanical model. The
stress state of the 3D cells with fault properties exceeding the shear failure line is observed
against different gas injection volumes. Fault reactivation occurred at the gas injection rate
of 240,000 m3/day, yielding a value of critical pore pressure. This critical pore pressure
was observed to be 1.25 times the original pore pressure, which is equivalent to the WBHP
value of 20.25 MPa. With the determination of pore pressure, it is also possible to estimate
an upper limit of the gas injection rate for safe storage operation, which in this case study
is observed to be in the range between 100,000 and 150,000 m3/day.

In this study, the critical pore pressure is calculated at the well location, whereas
the reference location for further studies can be anywhere in the reservoir, and the high
permeability of the reservoir can reduce possible differences in the reference sites. Analysis
of the case study numerical modelling results shows that a 4-MPa increase in pore pressure
would be sufficient to trigger fault failure.

Thermal stresses depend merely upon the thermal-dynamic processes in the system.
Therefore, one case (seasonal) has been tested for thermal stress analysis using the same
THM model. The original reservoir temperature is 45 ◦C, and the injected gas temperature
is set at 25 ◦C. The thermal changes are small (0.5 ◦C) and occur only near and around
the wellbore. The thermal effects on stress are not significant in the reservoir, even after
injecting 100,000 m3/day of colder gas for about half a year. This outcome suggests that
the thermal changes in the short-term cases are negligible to be considered in the analysis
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of geomechanical stresses in the reservoir during storage operations. This finding is due to
the low operating volumes and short time cycles for injection production (weekly schedule)
in short-term cases.

In terms of storage capacity of PtG technologies, the case study storage can store up to
maximum of 1,322,400 kWh/d of electricity from renewable or other resources, converting
the maximum gas volume of 150,000 m3/day. This amount of energy storage can at least
contribute to Germany becoming a greenhouse gas neutral country (GHGND) in 2050,
corresponding to an energy demand of 1600 TWh of electricity.

The entire workflow outlined and tested in this study is not site specific but generally
applicable to any gas storage in a porous medium including methane, CO2, and hydrogen.

Perspectives

The modelling schemes described in this study provide a thermal-hydraulic-geome-
chanical assessment consistent with the observational data presently available. This THM
modelling study can be used to assess borehole stability, which can be achieved by analysing
the hydraulic and mechanical limits of the borehole walls. Another application of the model
can be a fully coupled model, in which geomechanical and hydraulic models are coupled
in such a way that both can receive and process the required parameters simultaneously
(explained in the last paragraph). This modelling study can also serve as a benchmark for
the use of UGS as a seasonal battery for PtG technologies. In this way, the excess energy
can be stored as gas in the UGS and later converted back into electricity when needed.

The rock properties of the reservoir have an important influence on the estimated
amount of subsidence. For future modelling, it would be useful to conduct detailed
rock mechanics experiments with representative samples from the deposits in the region.
It is important to have as much reliable data as possible on vertical elevation changes
in the region to test different hypotheses related to subsidence. Such data could come
from repeated surveys of existing first-order contour lines, GPS, or InSAR observations.
In addition, sensitivity analyses or parameter studies to determine the stress field or
displacement of the ground surface as elastic properties vary would be useful to understand
the reservoir behaviour in response to changes in, for example, Young’s modulus or
Poisson’s ratio.

THM modelling in this study uses a one-way coupling simulation approach. The
coupling between dynamic fluid flow and geomechanical simulation can improved by
adopting two-way or even fully coupled simulations. Such a simulation means that
not only the pore pressure is passed from the fluid flow model to the geomechanical
model, but also properties from the geomechanical model, such as porosity, permeability,
and rock compressibility, are passed back to the fluid flow model to obtain continuously
updated accurate modelling results. Two-way and fully coupled simulation approaches
would also be useful to analyse ageing effects in reservoirs due to long- and short-term
storage operations.
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Abstract: In the context of energy transformation, the importance of energy storage devices in
regional integrated energy systems (RIESs) is becoming increasingly prominent. To explore the
impact of energy storage devices on the design and operation of RIESs, this paper first establishes a
bi-level dynamic optimization model with the total system cost as the optimization objective. The
optimization model is used to optimize the design of three RIESs with different energy storage devices,
including System 1 without an energy storage device, System 2 with a thermal energy storage (TES)
device, and System 3 with TES and electrical energy storage (EES) devices. According to the design
and operation results, the impact of energy storage devices on the operational performance of RIESs is
analyzed. The results show that under the design conditions, energy storage devices can significantly
increase the capacity of the combined heating and power units and absorption chillers in System 2
and System 3 and reduce the capacity of the ground source heat pumps and gas boilers; the impact of
the TES device on System 3 is more significant. Affected by systems’ configuration, the operating cost,
carbon tax, and total cost of System 2 are reduced by 2.9%, 5.5%, and 1.5% compared with System
1, respectively. The EES device can more significantly reduce the operating cost of System 3, with a
reduced rate of 5.7% compared with that in System 1. However, the higher equipment cost makes
the total cost reduction rate of System 3 less than that of System 1, which is 1.75%. Similar to the
design conditions, under the operation conditions, the TES device can effectively reduce the carbon
tax, operating cost, and total cost of System 2, while System 3 with an EES device can significantly
reduce its operating cost regardless of whether the energy price changes or not. To some extent,
this study systematically elucidated the impact of TES and EES devices on the optimal design and
operation performance of RIESs and provided a certain reference for the configuration of energy
storage devices.

Keywords: regional integrated energy system; energy storage device; Bi-level dynamic optimization
model; optimal design; operational analysis

1. Introduction

In recent years, the sustainable development of energy has received extensive attention.
Regional integrated energy systems (RIESs) are expected to become an important way to
improve the energy structure and achieve sustainable energy development [1]. However,
the intermittency and volatility of renewable energy have brought certain challenges to the
stable operation of RIESs [2,3]. With the rapid development of energy storage technology,
the development of RIESs with hybrid energy storage has become the main way to solve
the volatility of renewable energy and alleviate the contradiction between supply and
demand [4,5].

To explore the performance of the integrated energy system with hybrid energy
storage, the studies shown in Table 1 have conducted in-depth research on RIESs from
aspects of system structure, operation strategy, and optimization model. Different from the
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traditional energy system, the RIES involves the deep coupling of multiple heterogeneous
energy sources. The modeling idea of the Energy Hub (EH) proposed by Geidl et al. [6] was
used to describe the relationship between energy conversion and conservation. However,
this modeling idea is not conducive to the RIES’s extension and matrix representation in the
model. To improve the model portability, an EH modeling method based on graph theory
was proposed [7]. Based on this modeling idea, Ma et al. [8] adopted the static equipment
model to establish the coupling system optimization model with the total system cost as
the optimization objective. User-side energy saving and load management are also one of
the main ways to reduce the total cost of RIESs [9–11]. To make full use of the flexibility
of loads, Liu et al. [12] established a coupling system optimization model considering the
comprehensive demand response. At the same time, this model is also used to explore the
impact of energy storage devices on the design and operation of a RIES [13]. The static
system optimization model cannot reflect the off-design characteristics of the equipment.
To address the issue, a dynamic system optimization model, considering the off-design
characteristics of the equipment, was established [14]. On this basis, Mansouri et al. [15]
established a dynamic multi-objective optimization model and used it to optimize the
design of a RIES with power-gas (P-G) technology. The results showed that the gas storage
device could effectively improve the utilization of renewable energy. Unfortunately, none
of the above optimization models realizes the decoupling of design and operation.

To achieve the decoupling of design and operation, Mago et al. proposed the following
electric load (FEL), following thermal load (FTL), and following hybrid electric-heating
load (FHL) strategies according to the role of the combined heating and power (CHP) unit
in RIESs [16,17]. Based on the above strategies, Kang et al. [18] explored the operational per-
formance of a RIES under different loads. Wang et al. [19] investigated the impact of energy
storage characteristics on the system optimization results based on the system optimization
model with the total system cost as the optimization objective. To take the economic,
energy-saving, and environmental performance of systems into account, a weighted multi-
objective optimization model was established for the optimal design of RIESs [20]. Based
on the weighted multi-objective optimization model, Zeng et al. [21,22] used the static and
dynamic equipment models to optimize the coupling systems of CCHP and ground source
heat pump(GSHP), respectively. However, the value of weight is often subjective. Thus, a
multi-objective optimization model with the optimization objectives of cost-saving rate,
primary energy saving rate, and CO2 emission reduction rate was proposed for the optimal
design of a RIES [23]. Zhai et al. [24,25] used this model to explore the impact of building
types on the operational performance of RIESs. Different types of building loads have
certain complementary characteristics. For this reason, Li et al. [26] explored the impact of
loads’ complementary characteristics on optimization results and operational performance
of a RIES. The research showed that the complementary characteristics of loads could
reduce the capacity of energy storage devices to a certain extent. In addition, the equipment
model and operation strategy also have a certain impact on the optimization results of
RIESs. Therefore, Deng et al. [27] established a dynamic multi-objective optimization model
based on the dynamic equipment model. Han et al. [28] used a dynamic multi-objective
optimization model to optimize the design of a RIES with hybrid, compressed air energy
storage. To improve the operational performance of RIESs, an improved FEL strategy was
used in the optimal design of a RIES [29]. Compared with the traditional FEL strategy, the
improved operation strategy could effectively reduce the energy consumption, operating
cost, and CO2 emission of the RIES. At the same time, the adaptive operation strategy,
based on user load, was proposed successively to improve the operational performance of
RIESs [30]. However, the relatively fixed operation strategy could not realize the flexible
scheduling of RIESs. Hence, Luo et al. [31] adopted the decision tree method to formulate
the operation strategy of RIESs. Nonetheless, machine learning greatly relies on building
historical load data. To avoid this problem and achieve the flexible scheduling of RIESs, a
bi-level optimization model was proposed where the upper-level optimization model is
used to determine the optimal configuration of systems, and the lower-level optimization
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model is used to realize the flexible scheduling of systems [32]. Based on the bi-level
optimization model, Luo et al. [33] optimized the standalone renewable energy system with
the total system cost as the optimization objective. Energy storage devices can improve the
penetration rate of renewable energy. Li et al. [34] used the bi-level optimization model
to optimize the design of an electricity-hydrogen RIES. Ma et al. [35] used this model to
explore the impact of shared energy storage on the renewable energy utilization rate and
operating cost of RIESs. Although the bi-level optimization model has been widely used
in the optimization design and operation analysis of the integrated energy system with
energy storage devices, few studies have systematically explored the effects of different
energy storage devices on the optimal design and operational performance of the system
by the bi-level dynamic optimization model.

Table 1. Literature review of the integrated energy system with energy storage.

Ref.
Renewable

Energy
Energy Storage

Device
Operation
Strategy

Equipment Model
System Optimization

Model

[8] Solar and
wind energy EES, TES / Static model Coupled single objective

optimization

[13] Wind energy EES, TES / Static model Coupled single objective
optimization

[14] Solar and
wind energy EES, TES, Fuel cell / Dynamic model Coupled single objective

optimization

[15] Wind energy EES, HES / Dynamic model Coupled multi-objective
optimization

[18] Geothermal energy / FEL
FTL Static model Weak decoupling single

objective optimization

[21] Geothermal energy TES FEL
FTL Static model Weak decoupling weighted

multi-objective optimization

[22] Geothermal energy TES FEL
FTL Dynamic model Weak decoupling weighted

multi-objective optimization

[24] Solar energy TES FEL
FTL Static model Weakly decoupled

multi-objective optimization

[25] Solar energy
Geothermal energy

EES
TES

FEL
FTL
FHL

Static model Weakly decoupled
multi-objective optimization

[27] Geothermal energy TES FEL
FTL

Dynamic
model

Weakly decoupled
multi-objective optimization

[30] Solar, wind and
geothermal energy

EES
TES FSF Dynamic

model
Weakly decoupled

multi-objective optimization

[31] Solar energy EES
TES Dynamic strategy Dynamic

model
Weakly decoupled

multi-objective optimization

[34] Solar, wind and
geothermal energy

EES, hydrogen
storage FOF Static model Bi-level optimization model

[35] Solar and
wind energy SES FOF Static model Bi-level optimization model

Different energy storage devices can realize the time-series transfer of different en-
ergies. To explore the impact of energy storage devices on the design and operation of
RIESs, this paper optimizes three RIESs with different energy storage devices and compares
their operational performance according to a public building load in Changsha. The main
contributions of this paper are as follows: (1) A bi-level dynamic optimization model is
established based on the dynamic equipment model; (2) Three RIESs with different energy
storage devices are optimally designed; (3) According to the optimization results, the oper-
ational performance of three RIESs with different energy storage devices is compared. The
remainder of this study is organized as follows: Part II is the introduction and equipment
modeling of RIESs with different energy storage devices; Part III is the establishment of the
bi-level system optimization model; Part IV presents the impact of different energy storage
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devices on the optimal design and operational performance of the integrated energy system
based on the case results; and the conclusions of this work are drawn in Part V.

2. Modeling of RIESs

2.1. Basic structure of RIESs

RIESs can not only realize efficient energy conversion but also gratify the cooling,
heating, and electricity needs of users simultaneously. In the RIES shown in Figure 1, the
input energy mainly comes from grid electricity, municipal gas, and regional renewable
energy (such as solar and geothermal energy). Energy conversion equipment is used to
realize the conversion of input energy to output energy, mainly including the transformer,
photovoltaic (PV) arrays, CHP unit, gas boiler, GSHP, and absorption chiller (ABC). There-
fore, the power, heating, and cooling hubs are introduced in the modeling idea of EH to
realize the collection and distribution of different energies and ensure the balance of the
supply and demand for energy. In addition, to explore the influence of energy storage
devices on the optimal design and operational performance of RIESs, three RIESs with
different energy storage devices are considered, and their energy storage configurations
are shown in Table 2.

Figure 1. The basic structure of RIESs.

Table 2. Three RIESs with different energy storage devices.

System Name TES Device EES Device

System 1 � �

System 2 � �

System 3 � �

2.2. Equipment Mathematical Model
2.2.1. Energy Conversion Device

The equipment model is the basis of system design and operation optimization. In the
RIES shown in Figure 1, the PV arrays are one of the effective ways to utilize solar energy,
and its power generation is usually affected by the ambient temperature, solar irradiation
intensity, and power generation efficiency. Compared with PV arrays, the CHP unit can not
only generate electricity, but also the waste heat can be used to meet the cooling and heating
needs of buildings. Other than that, the rest of the building’s cooling and heating loads
are met by the GSHP and gas boiler. When constructing mathematical models for the CHP
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unit and cooling and heating equipment, relevant studies generally adopt the black-box
model based on energy efficiency. The model is usually divided into two types: the static
equipment model and the dynamic equipment model. The static model assumes that the
operating efficiency of the equipment is constant. The dynamic equipment model considers
the influence of equipment partial load rate on its efficiency. To accurately describe the
operation performance of the equipment, the dynamic equipment model will be established
in this paper, and the specific expressions for different equipment dynamic models are
shown in Table 3.

Table 3. Equipment dynamic model.

Items Mathematical Models Ref.

PV Ppv(t) = Apv·ηpv·I(t)·(1 − 0.005 × (ta(t)− 25)),
ηpv = 0.165. [36]

CHP unit

Pchp,e = Fchp·ηchp.e, Pchp,h = Fchp·
(

1 − ηchp,e − ηloss

)
ηchp,e =

{
0 PLRchp < 0.2

a0 + a1·PLRchp + a2·PLR2
chp PLRchp ≥ 0.2

PLRchp = Echp/Echp,r, a0 = 0.1, a1 = 0.4, a2= −0.2.

[37]

GB

Pgb = Ggb ∗ ηgb,
PLR = Pout

gb /Pout
gb,r , PLF = ηgb/ηgb,r,

ηgb,r = 0.9, PLFgb = −0.046PLRgb + 1.046,
0.1 ≤ PLRgb ≤ 1.

[38]

GSHP

Pgshp = Egshp ∗ COPgshp,
PLRgshp = Pgshp/Pgshp,r , PLFgshp = COPgshp/COPgshp,r,

COPgshp,r = 4.5,

PLFgshp = PLRgshp/
(
−0.2137PLR2

gshp + 1.119PLRgshp + 0.1007
)

,
0.1 ≤ PLRgshp ≤ 1.

[38]

ABC

Pabc,c = Pabc,h ∗ ηabc,
PLRabc = Pabc/Pabc,r , PLF = ηabc/ηabc,r,

ηabc,r = 0.9,
PLFabc = PLRabc/

(
0.75PLR2

abc + 0.0195PLRabc + 0.213
)
,

0.2 ≤ PLRabc ≤ 1.

[39]

2.2.2. Energy Storage Devices

On the basis of System 1, this paper investigates the impact of energy storage devices
on the optimization and operation of RIESs by sequentially configuring TES and EES
devices in System 2 and System 3. Different from the energy conversion equipment, the
source-load duality of energy storage devices allows it to achieve the time-series transfer of
energy to meet the supply-demand balance of RIESs. Therefore, the mathematical model of
energy storage devices can be expressed by the charging and discharging state and power,
and its specific expression is shown as follows [40]:

Sk(t + 1) = Sk(t) +
(

Pch,k(t)ηch,k −
Pdis,k(t)

ηdis,k

)
Δt (1)

where Sk(t + 1) and Sk(t) are the energies stored in energy storage device k at time t + 1
and t, respectively; ηch,k and ηdis,k are the charging and discharging efficiency of energy
storage device k; and Pch,k(t) and Pdis,k(t) are the charging and discharging powers of
energy storage device k at time t.

3. Bi-Level Optimization Model

Energy storage devices not only affect the optimal design of RIESs but also affect their
operational performance. To explore the impact of energy storage devices on the optimal
design and operation of RIESs, a bi-level dynamic optimization model is established in this
paper. In this model, the upper-level optimized configuration model takes the system’s total
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cost as the optimization objective to determine the equipment capacity of RIESs. The lower-
level optimal scheduling model takes the operating cost as the optimization objective to
determine the reasonable scheduling scheme. To facilitate the understanding of the solution
process of this model, the optimization process is drawn in Figure 2. Firstly, based on the
outdoor design parameters, the design and operating loads of the building are calculated
by Energy Plus. Secondly, the constraints of the upper-level and lower-level optimization
models are established according to the design loads and the EH model. Among them, the
main constraints of the upper-level optimized configuration model include the maximum
equipment capacity and the design load in winter. And the constraints of the lower-level
scheduling model include energy conservation and equipment operating power. Finally,
the design load, outdoor parameters, and economic parameters are imported into the
bi-level optimization model for solving to obtain the equipment capacity of three RIESs.
With the equipment capacity known, this paper uses the lower-level scheduling model to
optimize the operation of three RIESs and analyzes the impact of energy storage devices on
their operational performance.

 

Figure 2. Flow chart of system optimization configuration and operation analysis.

3.1. Upper-Level Optimal Configuration Model
3.1.1. Optimization Objective

To determine the equipment capacity of the three RIESs, this paper optimizes them
with the minimum total cost as the optimization objective. In this study, the total cost
mainly includes the system equipment cost, operating cost, and carbon tax. The specific
calculation expressions are shown below:

min Ctotal = Cequ + Ctax + Cop (2)

where Ctotal is the total cost; Cequ is the equipment cost; Ctax is the carbon tax; and Cop is
the operating cost, the values can be obtained from the lower-level scheduling model.

The system equipment cost mainly includes the initial investment and equipment
maintenance cost. The initial investment in equipment depends on its capacity and the
initial unit investment. The initial unit investment in the RIESs, showed Figure 1, is listed
in Table 4. Under the condition that the initial unit investment of equipment is known,
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the initial investment of RIESs on the design day can be determined by the following
formula [41].

Cinv =
k

∑
k=1

(
i(1 + i)n

(1 + i)n − 1
·Capk·Ck)/365 (3)

where i is the annual interest rate, which is 0.08 in this paper; n is the planning period,
which is 20 years; Capk is the design capacity of the equipment k; and Ck is the initial unit
investment in the equipment k. As the initial investment in the system’s equipment is
known, the maintenance cost of the system’s equipment can be estimated at 2% of its initial
investment [42].

Table 4. The initial unit investment in equipment Reproduced from [43,44].

Equipment Name Unit Price Equipment Name Unit Price

PV 2315 (CNY/m2) CHP unit 6812 (CNY/kW)
Boiler 790 (CNY/kW) GSHP 2782 (CNY/kW)
ABC 1436 (CNY/kW) TES device 358 (CNY/kW)

EES device 1794 (CNY/kW)

In the context of peak carbon dioxide emissions and carbon neutrality, carbon tax
compensation has become an effective means to limit greenhouse gas emissions. In the
RIESs shown in Figure 1, CO2 emissions mainly come from grid power and gas, so the
carbon tax cost can be calculated by the following formula.

Ctax = ϑtax

24

∑
t=1

(
Pgrid(t)·λCO2,grid + Pgas(t)·λCO2,gas

)
(4)

where ϑtax is the carbon tax price; λCO2,grid and λCO2,gas are the equivalent CO2 emissions
of coal power and gas, which are 0.968 kg/kWh and 0.220 kg/kWh, respectively [45]; and
Pgrid(t) and Pgas(t) are the consumption of grid power and gas at time t, which can be
obtained from the lower-level scheduling model.

3.1.2. Optimization Variables and Constraints

In the upper-level optimization model, the optimization variable is the capacity of
the candidate equipment. Considering the equipment installation conditions and building
loads, its optimization variables must satisfy the following constraints.

0 ≤ Capk ≤ Capmax
k (5)

where Capmax
k is the maximum design capacity of equipment k, whose value is usually the

maximum value of the corresponding load.
In addition, this study uses the design-daily load in summer as the design parameter.

To gratify the load demand in winter, the maximum heat production capacity of the system
must be greater than the maximal heating load.

Pmax
gshp,h + Pmax

chp,h + Pmax
gb,h ≥ Lmax

user,h (6)

where Pmax
gshp,h is the maximum heat production of the GSHP; Pmax

chp,h is the maximum heat
production of the CHP unit; Pmax

gb,h is the maximum heat production of the gas boiler; and
Lmax

user,h is the maximum heating load in winter.
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3.2. Lower-Level Optimal Scheduling Model
3.2.1. Optimization Objective

To achieve flexible scheduling, the minimum operating cost is used as the optimization
objective to optimize the operation of three RIESs. The operating cost mainly comes from
the electricity and gas costs, whose values can be determined by the following formula:

minCop =
24

∑
t=1

(
Pgrid(t)·ϑgrid(t) + Pgas(t)·ϑgas

)
(7)

where ϑgrid is the time-of-use (TOU) electricity price; and ϑgas is the gas price.

3.2.2. Optimization Variables and Constraints

In the lower-level optimization model, the main optimization variable is the operating
power of the equipment. The operating power should not only gratify the capacity con-
straints of the upper-level equipment but also meet the supply-demand balance constraints
of the EH.

1. Equipment operating power constraints

(1) Energy conversion equipment

The operating power of the energy conversion equipment is both restricted by the
capacity of the upper-level equipment and affected by the start-up and shutdown of the
equipment. Therefore, the operating power is a semi-continuous variable whose range is
shown in the following formula:{

0 PLRk < PLRmin
k

Pmin
k ≤ Pk ≤ Pmax

k PLRk ≥ PLRmin
k

(8)

where PLRk is the part-load ratio of equipment k; PLRmin
k is the minimum part-load ratio

for the start-up of equipment k; and Pmin
k and Pmax

k are the minimum and maximum output
power of equipment k in the operating state.

(2) Energy storage equipment

Different from energy conversion equipment, energy storage devices should not
only gratify the charging and discharging power constraints but also the charging and
discharging state constraints, which are specifically expressed as follows:

0 ≤ Pch,k(t) ≤ uk·γmax
ch,k ·Sk (9)

0 ≤ Pdis,k(t) ≤ (1 − uk)·γmax
dis,k·Sk (10)

αmin
k ·Sk ≤ Sk(t) ≤ αmax

k ·Sk (11)

where uk is a variable of 0 or 1, which is introduced to ensure that the charging process
and discharging process will not happen simultaneously; γmax

ch,k and γmax
dis,k are the maximum

charging and discharging ratios of energy storage device k; αmin
k and αmax

k are the minimum
and the maximum energy storage ratios of energy storage device k, respectively; and Sk is
the capacity of energy storage device k.

2. Energy balance constraint

During the operation of RIESs, the EH is only used for energy collection and distri-
bution. Therefore, the three energy hubs must maintain a balance between supply and
demand, with the balance constraint shown below.

Pgrid(t) + Pchp,e(t) + Ppv(t) + Pdis,ees(t) = Luser,e(t) + Pgshp,e(t) + Pch,ees(t) (12)

Pgshp,c(t) + Pabc,c(t) = Luser,c(t) (13)
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Pchp,h(t) + Pgb(t) + Pdis.tes(t) = Luser,h(t) + Pabc,h(t) + Pch.tes(t) (14)

where Pgshp,e is the electricity consumption of GSHP; Pgshp,c is the cooling power of GSHP;
Pabc,c is the cooling power of ABC; Pabc,h is the heat consumption of ABC; and Pgb is the
heat production of the gas boiler.

3.3. Model Solving

The solution methods of the bi-level optimization model usually include classical math-
ematical programming theory and the combination of intelligent optimization algorithms
and classical mathematical programming theory [46,47]. In this study, the lower-level
scheduling model takes into account the off-design characteristics of the equipment, which
makes the lower-level scheduling model non-convex and nonlinear, and thus makes it
difficult for classical mathematical programming theory to solve the bi-level dynamic opti-
mization model. Therefore, this study will adopt the method of combining an intelligent
optimization algorithm and classical mathematical programming theory to solve it, in
which the upper-level optimization model is solved by a genetic algorithm. However,
the calculation of the upper-level optimization objective often depends on the solution
of the lower-level model. To realize the fast and accurate solution of the lower-level op-
timization model, this paper performs piecewise linearization on the performance curve
of the equipment and calls Gurobi’s non-convex solver to solve it to obtain the minimum
operating cost and operating energy consumption. The lower-level optimization model
transfers the optimization results to the upper-level optimization model to calculate the
total cost of the system, while the upper-level optimization model transfers the optimized
equipment capacity to the lower optimization model to constrain its scheduling. After
repeated iterations, the optimal configuration and scheduling schemes of three RIESs can
be obtained. Figure 3 shows the flow chart of the bi-level dynamic optimization model.

 

Figure 3. Solution flow chart of the bi-level optimization model.

4. Case Study

This paper takes a public building in Changsha as an example to explore the impact
of energy storage equipment on the optimal design and operation results of RIESs. The
building consists of two parts, the main building and the podium building, of which the
main building has twelve floors, and the podium building has five floors, covering a total
area of 2500 m2. Considering the energy-saving requirements of the building, its envelope
adopts the standard building envelope structure in hot-summer and cold-winter climates.
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4.1. System Design Parameters

In the process of the optimization of RIESs, outdoor meteorological parameters and
design load are the basis of system optimization design. Therefore, through relevant
literature, this paper determines the outdoor design temperature of air conditioning in
Changsha and the average water temperature of the Xiangjiang River, whose values are
shown in Table 5. Unlike the heat load in winter, the cooling load calculation in summer
is usually transient. For this reason, this paper corrects the outdoor design temperature
of air conditioning in summer, and the hourly outdoor design temperatures and solar
radiation intensities obtained from the correction are shown in Figure 4a. Based on the
above design parameters, this paper uses Energy Plus to calculate the design load of the
building, and the result is shown in Figure 4b. On summer design days, the heating load is
mainly domestic hot water load, while the winter heating load includes air conditioning
heating load and domestic hot water load. When the design load is known, this paper
determines the equipment capacity optimization range, shown in Table 6, according to the
design load and equipment installation requirements.

Table 5. Air conditioning outdoor design temperature and groundwater temperature Reproduced
from [48,49].

Design Conditions Design Dry-Bulb Temperature Groundwater Temperature

Summer 36 °C 17 °C
Winter −1 °C 11 °C

  
(a) (b) 

Figure 4. Outdoor parameters and building load under design conditions: (a) Hourly outdoor design
temperature and solar radiation intensity in summer; (b) Cooling, heating, and electric load on the
design day.

Table 6. Optimization range of equipment capacity.

Equipment Name Symbol Unit Limitations

CHP unit Capchp kW [0,2000]
Boiler Capgb kW [0,1000]
GSHP Capgshp kW [0,2300]

TES device Captes kW·h [0,1000]
EES device Capees kW·h [0,1000]

PV Apv m2 [0,1500]

In addition, the energy price and carbon tax price are also indispensable input param-
eters for calculating the optimization objectives. For this reason, this paper determines the
energy and carbon tax prices shown in Table 7 according to relevant literature.
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Table 7. Energy price and carbon tax Reproduced from [50–52].

Item Unit Price (CNY/kWh) Time Period Description

Gas 0.3275 – –

Electricity

1.224 20:00–23:00 Peak hours

0.911 9:00–12:00,
16:00–20:00 High hours

0.68 8:00–9:00, 12:00–16:00 Flat hours
0.306 0:00–8:00, 23:00–24:00 Valley hours

Carbon tax 0.3 (CNY/kgCO2) – –

4.2. System Optimization Results and Analysis
4.2.1. Optimization Results

Based on the above inputs, this paper takes the total cost as the optimization objective
and adopts the bi-level dynamic optimization model to optimize the design of three RIESs.
The equipment capacity obtained by optimization is shown in Table 8. Compared with
System 1, the TES device can significantly increase the capacity of the CHP unit and ABC in
System 2 and reduce the capacity of the GSHP and boiler. Identically to the TES device, the
EES device can also increase the capacity of the CHP unit and ABC in System 3. However,
the EES device has less impact on the capacity of energy conversion equipment than the
TES device.

Table 8. System equipment capacity.

System
Name

Capchp
(kW)

Capgb
(kW)

Capgshp
(kW)

Capabc
(kW)

Captes
(kW · h)

Capees
(kW · h)

Apv(
m2
)

System 1 1122 205 1780 520 0 0 1500
System 2 1265 0 1682 618 961 0 1500
System 3 1272 0 1678 622 947 926 1500

The difference in equipment capacity affects the equipment cost and operational per-
formance of RIESs. Figure 5 shows the equipment costs, carbon taxes, operating costs, and
total costs of the three systems under the design conditions. The difference in equipment
capacity makes the equipment cost of System 2 and System 3 larger than that of System 1,
with increasing rates of 5.7% and 17.8%, respectively. In comparison to the TES device, the
EES device will significantly increase the equipment cost of System 3. Different from the
equipment cost, the carbon tax, operating cost, and total cost of System 2 and System 3 are
all less than that of System 1. Compared with System 1, the carbon tax, operating cost, and
total cost of System 2 decreased by 5.5%, 2.9%, and 1.5%, respectively.The EES device can
significantly reduce the operating cost of System 3, with a reduction of 5.7% compared with
System 1. However, affected by the equipment cost, the total cost reduction rate of System
3 compared with System 1 is only 1.75%. It can be seen that under the design conditions,
the TES and EES devices can reduce the operating cost, carbon tax, and total cost of the
RIES to different degrees. However, the EES device has less impact on the carbon tax and
total cost of RIESs.
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Figure 5. Cost differences between the three systems.

4.2.2. Analysis of Results

The energy utilization cost directly affects the operational performance of RIESs. To
analyze the influence of energy storage devices on the operating cost, this paper first
calculates the electric load supply-demand relationship and the part-load ratio of the CHP
unit in System 1 under design operating conditions. As seen from Figure 6, during the
low tariff hours, the grid power consumption is larger than gas-fired generation, and the
CHP unit is at the minimum part-load ratio. However, the CHP unit is operating at full
load during other hours. This shows that the electricity cost from the grid is less than the
utilization cost of gas during the low tariff hours, while during other hours, the electricity
cost from the grid is greater than the utilization cost of gas.

Luser,e Pgshp,e Pgrid Pchp,e Ppv

Figure 6. Electric load supply−demand relationship and part-load rate of CHP unit in System 1.

On the premise that the difference in energy utilization cost is known, this paper
compares the scheduling process of System 1 and System 2 under the design conditions, as
displayed in Figure 7. Figure 7a depicts the cooling load supply-demand relationship of
the two systems. First, during the low tariff hours, the cooling load of the two systems is
gratified by the GSHP. During other hours, the cooling load is met by the GSHP and ABC.
However, the difference in equipment capacity makes the cooling power of the GSHP in
System 2 less than that in System 1. Secondly, as seen in Figure 8, the operating efficiency
of the GSHP in System 2 is greater than in System 1. The electric load of System 2 is less
than System 1 due to the higher operating efficiency and lower cooling power. As shown
in Figure 7b, the heating load of System 1 is gratified by the CHP unit and the gas boiler,
while the heating load of System 2 is gratified by the CHP unit under the action of the
TES device. This ensures the efficient use of gas while avoiding the use of the gas boiler in
System 2. When combined with the relationship between supply-demand of electric load
shown in Figure 7c, the larger capacity of the CHP unit can effectively reduce the power
purchased from the grid during other hours for System 2. Based on the above analysis, the
TES device can improve the overall energy efficiency of System 2 and reduce the electric
load. Moreover, it increases the power generation of the CHP unit and reduces the grid
power consumption, especially during other hours. Therefore, the carbon tax and operating
costs of System 2 are less than System 1.
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Pgshp,c Pabc,c Luser,c

Pgshp,c Pabc,c Luser,c

 
(a) 

Pchp,h Pgb Pdis,tes Luser,h Pabc,h Pch,tes

Pchp Pgb Pdis,tes Luser,h Pabc,h Pch,tes

 
(b) 

Pgrid Pchp,e Ppv Luser,e Pgshp,e

Egrid Echp Epv Luser,e Pgshp,e

 
(c) 

Figure 7. Scheduling process of System 1 and System 2 in design conditions: (a) Cooling load; (b)
Heating load; (c) Electric load.

Figure 8. The efficiency of GSHP in System 1 and System 2.
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To analyze the difference between the impact of the TES and EES devices on RIESs,
this paper compares the electric load supply-demand relationship in System 2 and System
3 under the design conditions, as illustrated in Figure 9. First, the smaller capacity of the
GSHP makes the electric load of System 3 less than that of System 2, while the larger CHP
unit increases the power generation of the CHP unit in System 3. However, the carbon
tax of System 3 is slightly less than that of System 2 due to the slight capacity difference
between the GSHP and CHP units between System 2 and System 3. Secondly, the EES
device can increase the grid power consumption during flat and valley hours and reduce
the grid power consumption during high and peak hours. The difference in grid power
consumption during different hours makes the operating cost of System 3 less than that of
System 2.

Pgrid Pchp,e Ppv Luser,e Pgshp,e

Pgrid Pchp,e Ppv Pdis,es Luser,e
Pgshp,e Pch,es 

Figure 9. Electricity scheduling process of system 2 and system 3.

4.3. System Operation Result and Analysis
4.3.1. Calculation of Operating Load

The purpose of optimization design is to improve the operational performance of
RIESs. To compare the operational performance of the three systems, the annual operating
load was calculated by Energy Plus based on the typical annual outdoor meteorological
parameters shown in Figure 10a, as shown in Figure 10b. In Changsha, which is hot in
summer and cold in winter, the cooling load of the building is much greater than the
heating load. Under summer operating conditions, the system cooling load is the building
cooling load, and the heating load is the domestic hot water load. However, under winter
operating conditions, the system heating load includes the building heating load and
domestic hot water load. In addition, since the design parameters are determined by the
method of non-guarantee days, the operating load may be greater than the design load
most of the time. However, to ensure the feasibility of operation optimization, this study
only considers days when the operating load is less than or equal to the design load.

 
(a) (b) 

Figure 10. Outdoor parameters and building load under the operating conditions: (a) Annual outdoor
meteorological parameters; (b) Building load under operating conditions.
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4.3.2. Operation Results

Based on the above operating loads, the carbon taxes, operating costs, and total costs
of the three systems are calculated under winter and summer operating conditions, and
the results are shown in Table 9. Under the summer operating conditions, the carbon tax,
operating cost, and total costs of System 2 and System 3 are less than those of System 1.
Compared with the carbon tax, operating cost, and total cost of System 1, the corresponding
costs in System 2 are reduced by 3.2%, 1.5%, and 0.3%, respectively. Different from System
2, since the carbon tax of System 3 is larger than that of System 2, the carbon tax reduction
rate of System 3 compared with System 1 is smaller, only 2.7%. However, the EES device
can significantly reduce the operating cost of System 3, which results in a 6.2% reduction in
the operating cost of System 3 compared to System 1. Affected by the difference in building
loads between winter and summer, the carbon taxes, operating costs, and total costs of
the three systems under winter operating conditions are less than those under summer
operating conditions. Under winter operating conditions, the carbon tax, operating cost,
and total cost reduction rates of System 2 compared with System 1 are greater, whose values
are 5.5%, 7.3%, and 2.8%, respectively. Similar to the summer operating conditions, System
3 can significantly reduce operating costs compared to System 2 but can also increase its
carbon tax. Therefore, under operating conditions, compared with System 1, the TES device
can significantly reduce the carbon tax, operating cost, and total cost of System 2, while the
EES device can reduce the operating cost of System 3 even more significantly.

Table 9. Costs of three systems under winter and summer operating conditions.

Operating
Condition

Summer Winter

Ctax (CNY) Cop (CNY) Ctotal (CNY) Ctax (CNY) Cop (CNY) Ctotal (CNY)

System 1 526,636 1,582,405 2,672,662 301,465 774,952 1,581,733
System 2 509,527 1,558,375 2,663,411 285,012 718,724 1,537,640
System 3 512,367 1,484,274 2,660,567 294,405 688,785 1,578,434

4.3.3. Operation Result Analysis

According to the analysis of the design condition results, the performance difference
of RIESs is mainly affected by energy consumption and the consumption of different types
of energy. To analyze the energy consumption of the three systems, this paper compares the
average operation efficiency of the GSHPs and CHP units under the operating conditions,
as shown in Figure 11. Firstly, under winter and summer operating conditions, the average
operation efficiency of the GSHP in System 1, System 2, and System 3 increases sequentially
due to the influence of energy storage devices. However, there is little difference between
the average operation efficiency of the GSHP in System 2 and System 3. Secondly, the
average operation efficiency of the CHP unit in System 2 is greater than in System 1 and
System 3, especially in winter operating conditions. This shows that the TES device can
significantly improve the operation efficiency of the GSHP and the CHP unit. In addition,
the average operation efficiency of the CHP unit in System 3 is greater than that in System 1
under summer operating conditions, while under winter operating conditions, the average
operating efficiency of the CHP unit in System 3 is approximately the same as that in
System 1. The higher the average operation efficiency of the GSHP and the CHP units,
the lower the energy consumption. Therefore, under the operating conditions, the energy
consumption of System 2 and System 3 is less than that of System 1.
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Figure 11. The average efficiency of GSHPs and CHP units under two operating conditions.

In the RIESs, carbon tax not only depends on the energy consumption of systems but
is also affected by the ratio of different energy consumptions. To this end, different power
consumption ratios of the three systems under winter and summer operating conditions are
counted in this paper, and the results are shown in Figure 12. Under summer and winter
operating conditions, the ratio of grid power consumption in System 1 is greater than that
of System 2 and System 3; hence the carbon tax of System 2 and System 3 is less than that
of System 1. Although there is a slight difference in the ratio of grid power consumption
between System 2 and System 3 under summer operating conditions, the average operation
efficiency of the CHP unit in System 3 is lower than that in System 2. Therefore, under
summer operating conditions, the carbon tax of System 3 is slightly larger than System
2. Different from the summer operating conditions, the grid power consumption ratio of
System 2 is significantly smaller than for System 3 under the winter operating conditions.
As a result, the carbon taxes of System 2 and System 3 are greater than that of System 1,
especially System 2.

 
Figure 12. Different power consumption ratios under two operating conditions.

The system’s operating cost is closely related to the TOU power price. To analyze
the operating cost difference between the three systems, this paper draws the power
consumption ratio of the three systems under TOU price hours, as shown in Figure 13.
Under the summer operating conditions, the grid power consumption ratios of System
2 and System 3 during high and peak hours are less than that of System 1, especially for
System 3, which accounts for only 22.12% during high and peak hours. Similar to the
summer operating conditions, the power consumption ratios of System 2 and System 3
during high and peak hours are less than that of System 1 under winter operating conditions.
However, under winter operating conditions, the difference in the grid power consumption
ratio between System 1 and System 2 is greater than that between System 2 and System 3
during high and peak hours. Therefore, under winter and summer operating conditions,
the operating costs of System 2 and System 3 are greater than that of System 1, and the
operating cost of System 3 is the lowest, especially under winter operating conditions.
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Figure 13. The ratio of grid power consumption under the TOU power price.

The above analysis shows that the carbon taxes and operating costs of System 2 and
System 3 are less than those of System 1 under winter and summer operating conditions
due to the impact of the average efficiency of the equipment, the ratio of different energy
consumptions, and the grid power consumption ratio under the TOU power price. The
smaller carbon tax and operating cost make the total cost of Systems 2 and System 3 less
than that of System 1. However, affected by the equipment cost, the total cost reduction
rate difference between System 2 and System 3 compared with System 1 is not so obvious.
In addition, under winter operating conditions, the total cost of System 3 is greater than
that of System 2 due to the lower operating cost difference between System 2 and System 3.

4.4. Uncertainty Analysis of Energy Price

In the actual operation process, the price of grid power and gas directly affected the
operation result of the system. To explore the impact of energy price uncertainty on system
operation results, this study increases or decreases the energy prices to ±30% in a 10%
step, based on the energy prices in the design conditions. The three systems are optimized
for operation according to different energy prices. Based on optimization results, the cost
reduction rates of System 2 and System 3 compared with System 1 are calculated, as shown
in Figure 14. In the case of changes in energy prices, the reduction rates of the carbon
tax, operating cost, and total cost of System 2 compared with System 1 are greater than
zero. Different from System 2, the operating cost reduction rate of System 3 compared
with System 1 is larger, while the carbon tax and total cost reduction rates are lower. Even
under partial energy prices, the carbon tax and total cost of System 3 are greater than they
are for System 1. Under different energy prices, the TES device can effectively reduce the
operating cost, carbon tax, and total cost of the RIES, while the EES device can significantly
reduce the system operating cost.

Ctax Cop Ctotal Ctax Cop Ctotal Ctax Cop Ctotal Ctax Cop Ctotal

(a) (b) 

Figure 14. Cost reduction rates of system 2 and system 3 compared with system 1 under changes in
electricity and gas prices: (a) Affected by changes in electricity prices; (b) Affected by changes in gas
prices.
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5. Conclusions

The purpose of this study is to explore the impact of energy storage devices on the
optimal design and operation of RIESs. For this purpose, a bi-level dynamic optimization
model was first established based on the dynamic equipment model. Then, the bi-level
dynamic optimization model was used to optimize the design of RIESs with different
energy storage devices, and the optimization results are System 1, System 2, and System 3,
respectively. According to the optimization results, the impact of energy storage devices on
system performance is compared and analyzed. The main conclusions of this study include
the following three points:

1. Compared with System 1 without energy storage devices, energy storage devices
can increase the capacity of CHP units and ABCs in System 2 and System 3 and
reduce the capacity of GSHPs and gas boilers, especially the TES device. Affected by
the equipment capacity, the equipment cost increase rates of System 2 and System 3
compared with System 1 are 5.7% and 17.8%, respectively. This shows that the EES
device will significantly increase the equipment cost of System 3.

2. The difference in equipment capacity affects not only the equipment cost but also the
operation performance of the system. Under the design conditions, higher equipment
operation efficiency and lower grid power consumption make the operation cost,
carbon tax, and total cost of System 2 lower than that of System 1, with reductions
of 2.9%, 5.5%, and 1.5%, respectively. Under the influence of TOU electricity price,
the EES device can significantly reduce the operating cost of System 3, which is 5.7%
lower than that of System 1.

3. Under the operating conditions, the operating cost, carbon tax, and total cost of
System 2 and System 3 remain lower than that of System 1, even if the energy price
changes. Therefore, in the design of future RIESs, energy storage devices, especially
TES devices, can be used to improve the energy efficiency of RIESs and reduce the
operation cost and total cost.
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Nomenclature

Nomenclature Greek symbols

Abbreviation η Charging and discharging efficiency
A Area ϑ Energy price/ carbon tax price
ABC Absorption chiller α Energy storage ratios
Cap Capacity λ Carbon dioxide emissions factor
CCHP Combined cooling heating and power γ Charging and discharging ratios
CHP Combined heating and power Subscript

COP Coefficient of performance a Ambient
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EES Electrical energy storage abc Absorption chiller
EH Energy hub c Cooling
FEL Following electric load ch Charge
FHL Following hybrid electric-heating load chp Combined heating and power
FOF Following objective function CO2 carbon dioxide
FSF Following system flexibility dis Discharge
FTL Following thermal load e Electricity
GA Genetic algorithm equ Equipment
GB Gas boiler ees Electrical energy storage
GSHP Ground source heat pump gas Natural gas
HES Hydrogen energy storage gb Gas boiler
L Load gshp Ground source heat pump
P Power grid Grid power
P-G Power-gas h Heating
PLF Part-load ratio inv Initial investment
PLR Part-load factor k Device type
PV Photovoltaic op Operating
RIES Regional integrated energy system pv Photovoltaic
S Energy storage device status r Rated
SES Share energy storage tes Thermal energy storage
t Temperature/Time Superscript

TES Thermal energy storage max Maximum
TOU Time-of-use min Minimum
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Abstract: The highly variable power generated from a battery energy storage system (BESS)–
photovoltaic distributed generation (PVDG) causes harmonic distortions in distribution systems
(DSs) due to the intermittent nature of solar energy and high voltage rises or falls in the BESS.
Harmonic distortions are major concerns in the DS, especially when the sizes and locations of these
resources are sub-optimal. As a result, many studies are being performed on the optimal allocation of
BESS/PVDG systems in distribution network systems. In this regard, this paper seeks to review the
existing planning models, optimization methods and renewable energy resources that uncertainty
models have employed in solving BESS/PVDGs allocation problems in terms of obtaining optimal
solutions/allocations and curtailing the harmonic contents of the DSs. However, studies on optimal
allocation planning of BESS/PVDGs have achieved minimum cost but were not able to meet the
standard harmonic level of the DSs. The results identified GA, PSO and AIS as some of the most used
methodologies while LP, MILP and different configurations of NLP were used in the model formula-
tions of BESS/PVDGs problems. The results also revealed DC-link voltage and switching and grid
voltage harmonics as the notable causes and sources of harmonic distortions in BESS/PVDG systems.
The current allocation models presented in the recent literature for the planning of BESS/PVDGs do
not include the variables necessary for curtailing the harmonic contents in their planning formula-
tions. This paper, therefore, recommends an improved and all-encompassing planning model with an
efficient intelligent search algorithm capable of obtaining a global optimum solution and curtailing
harmonic distortions from the BESS/PVDG-connected DSs.

Keywords: photovoltaic distributed generation; battery energy storage system; distribution network
system; optimization methodologies; harmonic distortions

1. Introduction

The rapid expansion in socioeconomics has led to increasing global energy demand
and usage. To balance the resulting widening energy deficiency, renewable energy dis-
tributed generation (REDG) is considered as an effective approach to solve the rising energy
demand and other power system issues that are technical, economic and environmental in
nature [1–3]. REDGs are generation technologies integrated at distribution networks near
load users to satisfy immediate power demand, defer network upgrade, enhance power
quality and reliability, diversify energy resources, and to reduce power losses, distribu-
tion and transmission loading, distribution and transmission costs and on-peak operating
costs [4].

The battery energy storage system–photovoltaic DG (BESS/PVDG) is a viable re-
newable option because the resources are inexhaustible, complementary, economically
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profitable, environmentally friendly and bi-directional [5–8]. However, the power gen-
erated from BESS/PVDG depends on charge and discharge schedules of BESS, which is
associated with high voltage rise or fall, and temperature and irradiation of solar energy
that is intermittent in nature [6,9–11]. Hence, a substantial number of research studies have
unanimously agreed/concurred that harmonics occur in the distribution system when
BESS/PVDG units are absorbed due to the intermittent and variable nature of PVDG
output power and the high variability of voltage and frequency of BESS schedules. In
essence, current harmonics occur as a result of sudden disparity between the aggregate
output power of BESS/PVDGs and other generations and the total power demand at an
instant in a distribution system. The high rises and falls of the voltage and frequency from
battery charge/discharge schedules may result in voltage harmonics [11].

The harmonic distortions are a troubling power quality issue for BESS/PVDG power
generation, and they have significant consequences on the DNs. The extent of current har-
monics is determined by the active output power from BESS/PVDGs. Thus, the magnitudes
of current harmonics are enormous at utility-scale BESS/PVDGs penetration levels. The in-
termittency of PVDG units and the high voltage rise or fall from BESS/PVDG raise concerns
on distribution system harmonic distortions, which have negative effects on power quality,
stability and reliability of distribution systems [6,12,13]. The high harmonic contents in the
power system lead to increased losses in system elements such as transformers and generat-
ing plants; economic costs such as productivity, energy and device/equipment losses; and
fire hazards due to overheating of system elements [7,14,15]. The issues mentioned make
the integration of a large-scale BESS/PVDG into the distribution systems difficult [6,15,16].
Meanwhile, the locations and sizes of BESS/PVDG units could either improve or impair the
magnitudes current and voltage harmonic levels of the networks [17–19]. The mentioned
issues make the solution of BESS/PVDG allocation problems formulated using simple
mathematical models unrealistic. A realistic model, therefore, requires a dynamic model
representation of the network, the use of multi-period planning horizon as well as all the
necessary constraints. The problem then becomes a multi-objective one with a maximi-
sation of renewable active and reactive powers into the DNs and a minimisation of the
total cost subject to the capacity, investment, technical, stability and harmonic constraints
throughout the planning horizon.

Several studies have been performed to proffer optimal solutions for the planning
allocation of BESS/PVDG in distribution systems [11,13,16,20–23]. The studies on op-
timal planning of REDG allocation warrant detailed investigations on the prospects of
BESS/PVDGs for generating power, the impact on the DNs, and the effects on the in-
adequate availability and rising cost of energy, the global economy and environment.
Various researchers have reviewed some aspects of the BESS/PVDG allocation planning
(BESS/PVDGs-AP) problem. Many solution algorithms, planning models, and emerging
technologies deployed in BESS/PVDG-AP have been presented [24–28]. Zahraee et al. [24]
presented an analysis of some artificial intelligence optimum plans used in the optimization
and sizing of hybrid renewable energy systems. The main contribution of this work is
the extensive penetration of renewable energy features for economic performance of the
systems. The authors in [25] dealt with the review of some solutions that were used to
improve the ability of the distribution system to cope with variable renewable energy
source unpredictability such as energy storage technologies, PV and wind energy systems.
This study concluded that battery energy storage and pump hydro energy storage are
the most used technologies to improve the impact of the variable renewable power on
distribution systems. A review presented by Hannan et al. [26] on the planning of BESS and
renewable energy hybrid DGs discussed the optimal sizing objectives, various optimization
models, the BESS system constraints together with their advantages and weaknesses. A
detailed discussion of the BESS applications and shortage of optimal BESS sizing models
could be identified as the strong point of this study. In [27], a review of the latest research
developments and challenges on optimal planning of a BESS-PVDG connected distribution
system was presented. The authors suggested key parameters in the process of optimal
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planning for a PV–battery system such as economic and technical data, objective functions,
energy management schemes, design constraints, optimization algorithms, and electricity
pricing regimes.

In view of the contribution of the existing review works on the BESS/PVDGs-AP
problem, this study is distinct in these ways:

• Based on the authors’ awareness, no literature has presented the evaluation of harmonic
components of BESS/PVDGs during integration into distribution networks/systems.

• Unlike the existing reviews, this review presents an overview of harmonic distortions
in battery energy storage–photovoltaic hybrid distributed generation systems.

• This study provides a methodology for curtailing harmonic distortions from the
BESS/PVDGs-connected distribution systems.

• Moreover, a substantial and diverse number of optimization/solution algorithms
deployed in solving the BESS/PVDGs allocation problem is surveyed, comparing
all their characteristics to assist the researchers to utilize them successfully and in a
cost-effective way.

Despite numerous reviews and studies on BESS/PVDGs, some aspects have not been
adequately captured for investigation, review and research. These themes, bulleted above,
are comprehensively treated in this paper.

The remaining parts of this paper are organized as follows: Section 2 presents the
overview of harmonic components in the BESS/PVDG connected distribution networks.
Section 3 details a review of various optimization models and techniques published in
the existing research works and some promising algorithms that are recently introduced
and used for solving BESS/PVDG allocation optimization problems. The methodological
approach for curtailing the harmonic distortions in a BESS/PVDG connected distribution
system is presented in Section 4. The characteristics of all the models and techniques are
compared, and their shortcomings are discussed under Results and Discussion in Section 5,
to assist the researchers in choosing and applying them successfully and in a cost-effective
way. Section 6 is the concluding part of the paper, and the recommendations for future
research directions are also presented here.

2. Overview of Harmonic Components in BESS/PVDG Systems

Power system harmonic distortion is a major issue for power utilities throughout
the world. In recent times, statistical analysis reports have revealed that power system
harmonics has become a very troubling power quality issue in BESS/PVDG systems. These
harmonics have resonating impacts in generating other power quality problems in large-
scale BESS/PVDG [7,15,29–31]. The sources of harmonics produced in BESS/PVDGs are
broadly classified into DC-link voltage harmonics, switching harmonics and grid voltage
harmonics [7,32].

2.1. DC-Link Voltage Harmonics

The DC-link voltage ripples have become a major source of harmonics produced
by BESS/PVDGs [32]. The DC-link voltage harmonics are generated by PVDGs due to
solar irradiation intermittency and the high rises or falls of BESS voltage. Du et al. [32]
illustrated this phenomenon with the experimental setup simulated in MATLAB Simulink.
The experimental results in Figure 1 show that the harmonic distortion increases as DC-
link voltage increases. However, these harmonics are usually taken as constant in the
analyses and designs of BESS/PVDG inverters. They are not always so in the practical
sense. This accounts for the odd harmonic frequencies discovered in the spectrum of
BESS/PVDG inverter’s output current [33]. In addition, Mansor et al. [34] investigated
harmonic generation in three-phase BESS/PVDG inverters and found that the second-
order harmonics in the DC link produced the third-order harmonic discovered on the
AC side of the inverter. [34]. Many methods have been proposed by the researchers to
eliminate the current harmonics generated by the DC-link voltage ripple [35–39]. Some of
the proposed methods reduced the dynamic performance of the system, and many lack
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quality information on the connection between the output current harmonics and DC-link
voltage ripples [32].

Figure 1. Impact of BESS/PVDG DC-link voltage ripples on harmonics [32].

2.2. Switching Harmonics

Switching harmonics is one other cause of current harmonics in BESS/PVDG inverter
output. It occurs due to a mismatch in thee generation of switching pulses. The switching
harmonics in PWM inverters always double their switching frequency [40,41]. Switching
harmonics are very difficult to control and require an appropriate control strategy and
optimized BESS/PVDG units; otherwise, system instabilities, harmonic generation and
power losses ensue [32,42,43]. Various researchers have presented different methods to
control or eliminate the switching harmonics of BESS/PVDG inverters [40,44,45].

Other research works maintained that the effects of quantization and resolution on con-
trol systems’ measuring instruments are another potent source of harmonics in BESS/PVDG
systems [44,46]. Also listed are the inadequacies of the current controllers of inverters in
reducing harmonic contents and the positioning of sensors and locations of BESS and
PVDG units in the distribution networks [47–49]. The outer voltage control loop of a two-
series control algorithm and the PLL system could be another cause of reference current
harmonics. In addition, output current harmonics could emerge from the dead time for
switching pulse of the BESS/PVDG inverters [32,43].

2.3. Grid Voltage Harmonics

The BESS/PVDG inverter output current is produced due to the variation between
the inverter’s AC output voltage and the distribution network voltage. The output current
harmonics are generated from the grid voltage when the grid voltage waveform includes
harmonic components. The field measurements and research literature revealed that
the grid voltages consistently have harmonics in varying degrees at different locations
of the network [7,31,42,43]. For example, Figure 2a,b show the measured individual
voltage harmonics up to the 31st order for one PVDG inverter at phase B of the grid
and the combination of one PVDG and one BESS inverter for harmonics up to order 25
at phase B [31]. Grid voltage harmonics are usually low orders and are very difficult
to annihilate by the filters. Numerous methods have been presented to control current
harmonics generated from the grid voltage harmonics [50–53]. Du et al. [43] stated that the
current harmonics sourced from grid background voltage do not depend on the magnitude
of inverter output power. The grid voltage harmonics only reflect the magnitude of output
current harmonics [43].
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(a) 

 
(b) 

Figure 2. Individual voltage harmonics of phase B at (a) PVDG, (b) BESS outputs [31].

2.4. Harmonic Standards for Large-Scale BESS/PVDGs

Power quality is a power system requirement stipulated in all the international stan-
dards governing the grid connection of BESS/PVDG systems. Table 1 shows the IEEE
1547 and IEC 61727 standards as related to the requirements for current harmonics of the
grid-connected BESS/PVDG systems [42,54,55]. The total harmonic distortion (THD) of
generated current should not exceed 5% limit.

Table 1. Current harmonics limits by IEEE 1547 and IEC 61727 standards [54].

Harmonics Orders (IH) Corresponding to Fundamental (%)

A. Odd Harmonics

3, 5, 7, 9 Less than 4%
11, 13, 15 Less than 2%
17, 19, 21 Less than 1.5%
23, 25, 27, 29, 31, 33 Less than 0.6%
>33 Less than 0.3%

B. Even Harmonics (All) Less than 25% of various Odd harmonics

Total Harmonic Distortion (THD) Less than 5%
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During the conversion processes, the total harmonics produced by a BESS/PVDG sys-
tem are in high quantity, despite that the inverters are parallel connected and
multileveled [48,54]. This is a big issue when such inverter outputs are delivered into
the distribution network. The current magnitude of many high-power inverters together
with their harmonic contents can release large quantities of harmonics into a distribution
system. This is because the magnitudes of current harmonics is proportional to the active
output power of the BESS/PVDG system [7,31]. The loss of power in BESS/PVDG is
mostly due to harmonics produced during the BESS/PVDG power conversions. In this
sense, the proper location of BESS/PVDG units in the DN will result in network harmonic
reduction due to harmonic cancellation effects. Power losses as a result of harmonics is
seen as a very challenging issue worldwide due to technical damage and economic losses it
causes. The economic losses related to harmonics have been geometrically growing at a
high rate in recent years because of the high penetration of large-scale BESS/PVDGs into
the distribution system. Consequently, re-evaluating the existing optimization models and
algorithms used in the planning allocation of BESS/PVDGs to determine their effectiveness in
curtailing the harmonics produced by the BESS/PVDGs is important, while taking cognizance
of the huge amount of technical damage and economic losses occasioned by the harmonics.

3. Framework for Optimizing BESS/PVDGs into Distribution Networks

BESS/PVDG optimization is the methodological approach for obtaining optimal
locations, sizes and times of BESS and PVDG units and installing them in a distribution
network under network operating, investment and BESS/PVDG capacity constraints. The
sizing and placement of BESS/PVDG units is a highly constrained, complex, nonlinear,
mixed-integer and multi-objective optimization problem whose global optimum solution
is very hard to find. The optimization of hybrid BESS/PVDGs involves considering
contradicting objective functions such as maximising BESS/PVDG capacity and minimising
power quality index; complex decision variables such as DG type, size, location and time;
constraints such as network harmonic limits, DG voltage limit and power flow constraint;
and the required conditions for modelling the uncertainties, especially the intermittency of
the constituent distributed units (inaccurate mathematical model) [4,6,56]. Figure 1 provides
the framework for optimizing BESS/PVDG into the distribution networks.

3.1. Optimization Objectives

The BESS/PVDG optimization objective functions can be either a single objective or
multi-objective. The common single-objective functions used in the recent research works
are minimisation of costs, energy losses, power losses, copper losses, emissions, voltage
deviations, total harmonic distortions level (voltage and current); maximisation of benefits,
profits, revenue of distribution system, DG capacity, reliability metric; enhancement of
voltage profile, voltage stability; etc. The formulation of single-objective optimization prob-
lem can be from the perspectives of distribution system operator (DSO), the distribution
energy resources developer, etc. [2,4,6,57]. A multi-objective function optimization problem
requires the addition or combination of many single objectives that are conflicting and from
which a single solution obtained may not be able to solve all the different objectives. The
multi-objective function optimization involves simultaneous minimisation or maximisation
of decision variables to obtain a single-objective formulation.

3.2. Decision Variables for BESS/PVDG Optimization

The decision variables are the unknown design variables that are determined during
BESS/PVDG optimization procedures. The BESS/PVDG decision variables are formed
from one or an amalgamation of size, location, number of DG, DG type, generated power of
DG, installation year, real power and reactive power of DG or storage device, bus voltage
angle and bus voltage magnitude [2,4,6]. The bus voltage angle and magnitude are the
variables used for the decisions on the stability and power quality of the network.
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3.3. Constraints for BESS/PVDG Optimization

Constraints are used in DG optimization problems to impose restrictions on some
decision variables during the optimization of the objective function. Some of the commonly
applied constraints in the formulation of DG allocation problems are as grouped [2,4,57].

3.3.1. Investment Constraints

They are constraints enforced on investment variables. Investment constraints can
take on continuous, discrete or binary values. For example, the inequality constraints
imposed on budget limit, divestment and investment options.

3.3.2. Safety Constraints

These are constraints to guarantee network and people’s safety. Examples are the
inequality constraints imposed for right of way in the installation of DG units, etc.

3.3.3. Technical Constraints

These are the power generation, network power flow and reliability constraints. These
guarantee constant and continuous generation, transmission and distribution of power to
the consumers. Some of the technical constraints are:

• The equality constraints for power balance that are imposed on active and reactive
power of each network bus.

• The inequality constraints imposed on generations from DG units. e.g., DG penetration
limits, discrete sizes of DG units, DG capacity limits, DG unit’s constant power factor,
maximum number of DGs, etc.

• The inequality constraints imposed on transmission lines and other network equip-
ment/elements, e.g., transmission supply limits, transformer or line-overloading
limits, dedicated buses for DG installations, transformer or line capacity limit, etc.

• The inequality constraints imposed on the transmission of power to the consumers,
e.g., short-circuit constraints, maximum SAIDI, and radiality constraints.

3.3.4. Network Stability Constraints

Network stability constraints are imposed on the system to ensure power system
stability. They are the constraints imposed on voltage drop, bus voltage magnitude, volt-
age angle, etc. The network stability constraints are formulated based on two network
variables—voltage magnitude and voltage angle.

• The voltage magnitude constraints are imposed in the networks to ensure voltage
stability. Inappropriate voltage magnitude could lead to voltage instabilities in power
systems and cause damage to customers’ devices, equipment and apparatuses.

Vi(min) ≤ Vi ≤ Vi(max) OR ΔVi(min) ≤ ΔVi ≤ ΔVi(max); i = 1, 2, . . . n. (1)

The inequality constraint presented in (1) is imposed on all the network buses to
enforce voltage stability of the network.

• The phase angle constraints are imposed on the network based on some stability
conditions to ensure dynamic stability such as small signal stability of the network.
Voltage angle limits are crucial to dynamic stability, as the voltage magnitude is related
to voltage stability of the network. Failure to maintain appropriate voltage angle
limits can cause enormous dynamic instabilities that can result in total power outage
and other serious economic losses. However, almost all the works on distributed
generation allocation expansion planning do not utilize voltage angle constraints in
the formulation models.

θmin ≤ | ∠Vi − ∠Vj | ≤ θmax; OR θmin ≤ θij ≤ θmax (2)
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This constraint (2) is imposed on all the network buses to enforce some stability
criteria.

3.3.5. Power Quality Constraints

These power quality constraints are imposed to ensure the quality of power integrated
into the distribution system. Different power quality indices such as total harmonic distor-
tion (THD), total demand distortion (TDD), displacement power factor (DPF), oscillation
power factor (OsPF) and transmission efficiency power factor (TEPF) could be used for
power quality evaluation. A single power quality index that represents these indices could
be formulated to evaluate the power quality of the distribution systems.

• The inequality constraints include voltage rise limits, voltage and current total har-
monic distortion (THD) bounds, voltage sag bounds, etc.

• The harmonic constraints can be formulated based on the most important distribu-
tion network’ constraints such as the voltage magnitude limits and voltage angle
constraints.

The voltage magnitude constraints of the system can be reformulated and extended
to impose constraints on the voltage harmonics of the distribution system during the
integration of BESS/PVDG systems.

THDv =

√
∑∞

h=2 V2
h

V1
(3)

Vh(min) ≤ Vh ≤ Vh(max) ; h = 1, . . . N (4)

Similarly, the phase angle constraints could be formulated considering some parame-
ters and assumptions that relate phase angle to active power (current) and can be extended
to distribution networks if current harmonics are expected to be curtailed.

THDI =

√
∑∞

h=2 I2
h

I1
(5)

θh(min) ≤ θh ≤ θh(max) ; h = 1, . . . N (6)

3.4. Modelling the Uncertainty of BESS/PVDGs

Modelling the uncertainties of BESS/PVDG units, including BESS and solar PV units,
and the uncertainties of loads are very important to obtaining accurate solutions for a
BESS/PVDG optimal allocation problem. The uncertain parameters that can be modelled in
the planning of an electric power system for accounting the uncertainties in the distribution
system are also presented in Figure 3. However, several previous research works place
the uncertainties of these resources into consideration in their formulation models. Some
of the uncertainties that are being considered and modelled in BESS/PVDG optimization
studies include uncertainties of solar irradiance, wind speed, PV modules, wind and solar
DG units, uncertainties of fuel, generated power, electricity market price, uncertainty of
BESS and uncertainty of loads [1,4,14].
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Figure 3. Framework for optimizing BESS/PVDG into distribution networks.

4. Optimization Models and Methods for BESS/PVDGs Allocation

The design and planning of battery energy storage system–photovoltaic distributed
generation system is a research area that has continued to generate a lot of interest from
many researchers, hence the large number of literature studies on the topic. The planning
problem mentioned above concerns the hybrid energy systems that have optimal patterns
and whose optimal sizes, placement/location and type of generation components/units can
be assigned with minimum costs over the lifetime of the technologies. Therefore, the planning
by the minimum net present value (NPV) of cost is called the optimal planning or optimal
allocation of all probable hybrid technologies that are in optimal transition [11,24,56,58].

There are several methods for obtaining an optimal planning solution and many real-
time, commercially available software applications for energy systems integration. In addi-
tion, various researchers have applied different optimal techniques to solve BESS/PVDG
allocation problems. Different optimization methods, such as conventional methods,
population-based intelligence search methods, some promising heuristic intelligence search
approaches and commercial software applications, have been applied by the researchers to
optimize hybrid BESS/PV distributed generation systems.

4.1. Conventional Optimization Methods

Conventional optimization methods are analytical and numerical techniques that
usually present numerical equations to resolve optimal allocation problems. The meth-
ods involve computations, mathematical and theoretical analysis. The accuracy of these
methods greatly depends on the efficacy of the model formulated. The advantages of these
methods are the ease of implementation and short computation time to obtain convergence
for the problem. However, under a complex problem, the accuracy of the solution may not
be satisfactory because of the hypotheses used in simplifying the problem. Some of the
conventional methods are discussed as [2,57–59].

4.1.1. Sensitivity Analysis Methods

Sensitivity-analysis-based methods use sensitivity indices used to optimally allocate
DG units. In these methods, the original nonlinear equations are linearized about their
starting operating points to lower the numbers of feasible solutions in the search space. The
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advantages of sensitivity analysis methods are reduced computation time, which is critical
for large practical systems, and good ability to assess the uncertainties of renewable energy
resources. Anuradha et al. [60] present a loss-voltage sensitivity index for optimizing the
renewable DG size, BESS capacities and power dispatch in distribution networks. The
objective is to simultaneously evaluate both minimum effects of network losses and voltage
variations for optimizing the DG size [60]. A hybrid of loss sensitivity analysis methods
and novel voltage stability index is applied by Murty and Kumar [61] to find optimal
sizes and locations of active and reactive power DGs. The objective is to minimise copper
losses and enhance network voltage profile. In Saini and Gidwani [62], a comprehensive
assessment of battery energy storage system installation and the placement of photovoltaic
(PV) units in a radial distribution network is performed utilizing different load models.
The objective is to minimise annual energy losses, control overvoltage and reverse power
flow problems in a distribution network. Nevertheless, the solutions obtained from the
sensitivity analysis methods solely found optimal placements of distributed generators,
but the levels of optimality of such solutions are not known [4,58].

4.1.2. Linear Programming

Linear programming (LP) is a method that uses a mathematical model with linear
mathematical relationships for optimizing the objective function(s). LP is used in power
system optimization problems to obtain optimal sizes of DG units, because it provides
precise solutions [2,56,57]. In Altintas et al. [63], the authors proposed a two-objective LP
algorithm to incorporate solar and wind renewable DGs as well as BESS into distribution
system expansion planning. The objective minimises the total cost of investment and
carbon emissions. This algorithm performed a sensitivity analysis test on the effect of
investment costs with respect to wind and solar DGs and BESS. Alturki et al. [64] presented
an LP method to obtain optimal hosting capacity of a distribution grid with the objective
to maximise the PVDG power using some fundamental variables and to minimise total
cost using some uncertain criteria. The results revealed that the computation time for the
proposed LP algorithm was very small, especially for large-scale problems. However, the
network harmonic level and stability were not considered for evaluation in these works.

4.1.3. Mixed-Integer Linear Programming

The mixed-integer linear programming (MILP) method uses a mathematical model
with linear objective function and linear constraints in which, at the minimum, one design
variable must be an integer. The implementation of MILP is difficult in large-scale problems
because it uses too much computation time. In Santos et al. [1], MILP is applied to determine
the optimal locations, sizes and timing of smart-grid technologies for minimising the net
present value of the total cost and for maximising the renewable DG integration. In
Mishra et al. [65], a chance-constrained stochastic MILP algorithm is modelled to determine
optimal investment decisions of DGs considering operational uncertainties, while an
evolutionary vertical sequencing protocol algorithm is used to further optimize the objective
function that minimises the total cost of investment and operation. Santos et al. [66]
proposed an improved model aimed at optimizing the system operation in a coordinated
way, where distributed renewable energy sources (DRES), energy storage systems (ESS)
and distribution network system reconfiguration (DNSR) are considered along with the
uncertainty of the resources. The objective function was modelled to incentivize the uptake
of DRES by considering the cost of emissions to decarbonize the power system. In Ajeigbe
et al. [67,68], the authors applied the MILP algorithm to maximise the optimal allocation of
solar, wind and biomass DGs into the distribution system by minimising the NPV of total
cost and by confining the small signal stability of the networks to a required level. All the
works reviewed here modelled uncertainties of renewable energy resources and evaluated
voltage stability of the network but were not able to evaluate the impact of BESS/RERDG
powers on the harmonic contents of the networks. Likewise, their results did not report
global optimal solutions to BESS/PVDG optimal allocation problems.
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LP and MILP suffer from a lack of flexibility. They normally require pre-conditions
such as convexity, linearity and continuity of objective functions, which are difficult to meet
in practice [2,57].

4.1.4. Nonlinear Programming

Nonlinear programming (NLP) is a mathematical programming method that uses
nonlinear objective function and solely continuous variables and constraints. The NLP
computation involves the differentials of objective functions and constraints. In solving
nonlinear problems, a search path is selected iteratively by defining the starting partial
differentials of the problem equation. This approach could be based on first-order or higher-
order methods such as the reduced gradient method [69,70] and other search methods [71,72],
Newton Raphson method [73] and successive quadratic programming [74,75] which are
used for solving DG allocation planning problems.

4.1.5. Mixed-Integer Nonlinear Programming

Mixed-integer nonlinear programming (MINLP) utilizes a mathematical model with
nonlinear objective functions and constraints and both continuous and discrete variables.
MINLP algorithms have been applied in power systems to determine the optimal sizes and
locations of DGs and BESSs. Some of the disadvantages of MINLP are long computation
time and a very large number of decision variables [2,56,57]. Salyani et al. [76] applied
MINLP in the mathematical modelling for the simultaneous optimal allocation planning
of high- and medium-voltage substations, robust medium-voltage feeder routing and re-
newable DG units. The authors used adaptive GA to find optimal locations and sizes while
the uncertainties of renewable DGs, fuel prices, electricity and demand were evaluated.
A mixed-integer nonlinear programming-model-based methodology is presented in Va-
lencia et al. [11] for the optimal location, selection, and operation of BESSs and renewable
distributed generators (DGs) in medium–low-voltage distribution systems.

4.1.6. Fuzzy Logic

The fuzzy logic (FL) method was developed in 1979 to solve power system problems.
The FL method is based on the concept of a classical set, such as the identification of a
membership function that is associated with each member as indicated by a binary number
0 and 1 [77]. The membership function dictates the resemblance level of a member in a
fuzzy subset. Some of the common membership functions are the triangular, trapezoidal,
piecewise-linear and Gaussian functions [2,57,59]. In Injeti and Kumar [78], FL is applied
to DG allocation problems, with minimisation of power losses and improvement in voltage
profiles as the objective function. Sharma et al. [79] proposed a FL controller in determining
the optimal sizes and locations of DGs in order to minimise power losses and to enhance
loadability and voltage profiles of distribution networks. However, the results from these
works did not report the optimality of their solutions, the evaluation of network stability or
harmonic contents.

The works discussed thus far on FL have not considered the impact of DGs and BESS
on the oscillatory modes and harmonic contents of the distribution networks. To achieve
practical solutions, dynamic networks must be simulated for the evaluation of distribution
system stability and harmonic contents.

4.2. Intelligence Search Methods for BESS/PV Distributed Generations

Artificial intelligence (AI) is the application of human intelligence to perform tasks
in machines [59]. AI is applied in the intelligence search methods (ISM) used in power
systems for optimal sizing and placement of DGs. Intelligence search methods are heuristics
algorithms that fasten up the processes of obtaining near-optimal solutions for complex and
large DG problems. The advantages of intelligence search methods over other conventional
methods is the simplicity of implementation and robustness. However, the accuracy and
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precision of ISMs are not reliable. They usually take much computation effort [2,56,57,80].
Some of intelligence search methods are presented below.

4.2.1. Genetic Algorithm

Genetic algorithm (GA) is an intelligence search algorithm that was introduced earlier
to solve optimization problems. GA is developed from natural selection and genetics
principles such as selection, mutation, inheritance and crossover [56,57]. In GA, a set of
selection rules is specified to allow a population to achieve a maximum state of fitness.
Then, the elements in a population are integrated into chromosomes to enable the potential
elements to achieve a better state. The first population of elements evolved through
the evolution of generations. The principle of mutation is applied to modify the chosen
element to evolve into a new population. The algorithm repeats this procedures until
an acceptable solution or the highest number of iterations is attained. [4,6,56]. Genetic
algorithms utilize continuous and discrete variables for implementation and work better at
obtaining global optimums of various functions. GAs can effectively solve poorly defined
and complex problems. GA is the most used optimization method to find optimal locations
and sizes of DGs in the literature [22,81,82]. In Liu et al. [22], the authors presented a
mixed-integer GA to obtain optimal sizes and locations of hybrid battery energy storage
and renewable energy DGs units with objective aiming to minimise system total cost, end-
user satisfaction loss caused by demand side management, and tie-line power fluctuation.
The methodology in Liu et al. effectively determined the solution of the multi-objective
optimization problem compared to others validated with it. However, neither uncertainties
of the renewable energy sources nor the voltage variability of the BESS were modelled. In
addition, the requirements for the evaluation of network stability and harmonic contents
were not included in the proposed methodology. Moreover, genetic algorithms have the
disadvantage of evaluating the repeated fitness functions that are time intensive for large
and complex problems. The various configurations of GA that are proposed to improve the
performance of the GA method in the DG allocation problems are quantum GA (QGA) [83],
adaptive genetic algorithm (AGA) [84], etc.

4.2.2. Simulated Annealing

Simulated annealing (SA) uses an iterative procedure for solving combinatory opti-
mization problems. SA employs the process of crystallization at a discrete search space of a
physical system [57]. The SA algorithm depends on the cooling criterion and uses initial
temperature (T), final temperature (Tmin) and cooling rate (β) variables. SA algorithms are
extensively proposed in the literature to allocate DG units at lower computational time.
Simulated annealing algorithms perform effectively in solving reliability-criteria-based
optimization problems [2,57]. The advantages of SA algorithms are robustness, simplicity
of implementation, and capability to provide feasible solutions to combinatorial problems.
Nevertheless, SA algorithms have large computation times without upper limits, terminate
at local minimums and lack details on the level of variation between a local minimum and
global minimum [56,85]. In Koziel et al. [86], the authors presented a feasibility-preserving
SA algorithm to obtain DN reconfiguration with the objective to minimise power loss and
improve voltage profile. This study concluded that the proposed algorithm was more
efficient than some published population-based intelligence search methods with respect
to computational cost and solution repeatability. However, the optimality of the solution
was not reported, and the harmonic contents and dynamic stability of the networks were
not evaluated in the proposed work.

4.2.3. Particle Swarm Optimization

Particle swarm optimization (PSO) methods are developed based on the social adap-
tation of flocking bird and schooling fish. In PSO, single intersection of all dimensions
produces a particle, and these particles move randomly in a complex search space. The sys-
tem is then adjusted using a number of solutions that are randomly selected. During each
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iteration, the particles use their fitness level to assess their positions. Then, the contiguous
particles update their previous “best” position to upgrade the final solution [2,57,87]. The
advantages of PSO are robustness, simple implementation and running simultaneous com-
putations in less computation time. PSO algorithms use a couple of parameters to modify
and converge faster. PSO can also be effectively used to solve DG allocation problems with
inaccurate mathematical models. However, the initial design parameter are difficult to
define with PSO. During complex DG allocation problems, PSO may converge prematurely
and terminate at the local minimum [6,56]. In Prabpal et al. [88], the PSO technique was
applied to obtain optimal sizes and locations of multiple BESS and PVDG units with the
objective to minimise total cost, minimise the impact of large-scale penetration of BESS,
improve voltage profile and increase the stability of the power system. The results showed
that PSO and GA methods equally performed better in achieving fewer numbers of iter-
ations and quality of solutions. Shahzad et al. [23], Jamian et al. [89], Rathore et al. [90]
and Zeinalzadeh et al. [91] proposed multi-objective PSO methods for determining optimal
locations and sizes of BESSs/PVDGs to minimise power losses and improve voltage pro-
files. However, the uncertainties of the intermittent DGs and BESSs were not modelled,
and the impact of their variable output power on the dynamic stabilities and harmonic
contents of the distribution networks was not considered. Only the uncertainties related to
BESS/PVDG market scenarios were evaluated in Rathore et al. [90].

4.3. Promising Intelligence Search Methods

Promising intelligence search methods are the additional optimization algorithms
developed to effectively solve distributed generation optimization problems. Some of these
methods are as stated [2,57,59].

4.3.1. Artificial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm was developed from the searching behaviour
of a swarm of honeybees. Khasanov et al. [16] proposed an application of hybrid teaching-
learning and artificial bee colony (TLABC) technique for determining the optimal allocation
of PV-based distributed generation and battery energy storage units in a distribution
system with the aim of minimising the total power losses. ABC algorithms are applied in
Mohandas et al. [92] and Dixit et al. [93] to find optimal DGs locations and sizes with the
objective of minimising power losses and of improving voltage stability of the network.
In Abu-Mouti and El-Hawary [94], the authors proposed an algorithm of ABC to adjust
the control inputs, iteration number and colony size in the DG allocation optimization. El-
Zonkoly and Kefayat et al. [95,96] utilized ABC algorithms to solve distribution expansion
planning problems and to obtain optimal reinforcement and commitment scheduling for
PVDG allocation. Padma Lalitha et al. [97] presented and compared the ABC and PSO
algorithms. The authors observed that the ABC algorithm outperformed PSO, having better
solutions and convergence. Notwithstanding, the works discussed here do not provide
indices to evaluate harmonic contents and dynamic stabilities of the systems.

4.3.2. Ant Colony Algorithm

The ant colony (AC) algorithm is adapted from ants’ social behaviours in searching for
the shortest route to obtain food. The AC algorithm process begins with random solutions
obtained from the ants’ random searches in their movements. Ants share information
about their movements by leaving chromosome trails behind during their movements.
Consequently, a path with trail density becomes the shorter path. This knowledge is utilized
in the optimization search to obtain feasible solutions [57]. The advantages of AC algorithms
are the ability to discover good solutions and guarantee convergence and the ability to
search among a population simultaneously and adapt to changes such as new distances.
However, AC optimization algorithms are weak in changing probability distribution,
uncertainty of convergence time, sequences of random decisions and theoretical analysis,
since they are highly experimental researches. These algorithms are variously used in
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the literature for optimal allocation of DGs [6,56]. In Gomez et al. [98], Vlachogiannis
et al. [99], Wang and Singh [100] and Amohadi and Fotuhi-Firuzabad [101], the variant of
AC and ant colony system (ACS) algorithms were presented. They found optimal sizes
of DGs, locations of DGs and re-closers in the radial DNs with an objective to use the
composite reliability index. Transient stability and reliability of the distribution systems
were evaluated to validate the proposed methods. ACS algorithms were observed to be
more satisfactory in many engineering applications. However, these works did not include
the installation of renewable DGs and could not access the impacts of integrating BESS/PV-
distributed generations on the harmonic distortion and oscillation of the networks.

4.3.3. Artificial Immune System Algorithm

The artificial immune system (AIS) algorithm is adapted from immunology, the im-
portance of the immune system and their values in the natural world [102]. The immune
system is an indispensable defence against self-approach to protect human health from
pathogens such as viruses and microbes. The procedure differentiates between self-cells
and non-self-cells. Thereafter, the immune system effects immune actions to destroy the
non-self-cells [103–105]. To apply the AIS optimization process in solving DG allocation
problems, the instructions in the search area (objective functions, design variables, con-
straints, etc.) are encrypted in an antigen population of an AIS algorithm. AIS algorithms
are proposed in Aghaebrahimi et al. [106] and Hatata et al. [107] to find the optimal lo-
cations and sizes of the DGs, with the objective to minimise the power losses of the DN
considering bus voltage limits and line current. Souza et al. [108] proposed an AIS algo-
rithm in expansion planning to allocate DG units into distribution network considering the
uncertainty of load demands.

4.4. Probable Hybrid Intelligence Search Methods

Hybrid optimization methods are a useful combination or collaboration of more
than one different intelligence search method. These approaches extract the benefits of
the component methods to obtain an optimum solution for a specific planning problem.
The allocation expansion planning of BESS/PVDGs problems is multi-objective in nature.
Hence, applying a hybrid method in their investigation begets an excellent planning
objective and a suitable alternative algorithm to solve the problems that involve better
understanding of the methods.

A summary of the various optimization techniques that are developed and applied by
the researchers for BESS/PVDGs allocation is presented in Table 2.

Table 2. Summary of optimization methods.

Optimization Method Optimized Factor Comment

Conventional Method
• Sensitivity Analysis [60–62]
• Linear Programming (LP)

[63,64]
• Mixed Integer Linear

Programming [65–68]
• Nonlinear Programming (NLP)

[69–75]
• Mixed-Integer Nonlinear

Programming (MINLP) [76]
• Fuzzy Logic [77–79]

Hybrid renewable energy sources
(solar, wind) and battery energy
storage, and cost

Using numerical equations that can be
applied to optimization problems due
to their capability to provide accurate
mathematical model formulation

Intelligence Search
• Genetic Algorithm [81–84]
• Simulated Annealing [85,86]
• Particle Swamp [87–91]
• Artificial Bee Colony [92–97]
• Artificial Immune System

[102–108]
• Ant Colony [98–101]

Hybrid renewable energy sources
(solar, wind) and battery energy
storage, and cost

Using the exhibition of intelligence in
machines to determine optimal
locations and sizes of hybrid DGs in
power system

Deterministic Approaches [59–63]
Standalone renewable energy sources
(solar, wind) with battery energy
storage, and cost

Using mathematical equations for
determining particular values when
fixed factors are set
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Table 2. Cont.

Optimization Method Optimized Factor Comment

Probabilistic Approaches [63–67,74,75]

• Efficiency of hybrid renewable
energy systems, and cost

• Uncertain parameters in power
system

Using statistical data gathering
methods for finding optimized factors

Software Based Methods [109–116]
• HOMER
• HYBRIDS, etc.

Hybrid solar/wind and or diesel
generators with battery energy storage

Using software applications that uses
input file with all necessary data

4.5. Commercial Software Applications for Allocation of (BESS/PV) Hybrid DG Systems

Several software applications have been developed and applied for the sizing of hybrid
renewable energy systems (HRESs) such as HOMER [109–111], HYBRIDS [112], HYBRID
2 [113], RET Screen [114], TRNSYS [115] and IHOA [116].

Comparatively, HOMER has a significant application in optimal sizing of HRESs
because of its capacity to quickly obtain optimal sizes of energy systems. In addition, it is
useful in investigating sensitivity analyses of some uncertainty parameters and changing
factors related to the HRESs. However, the mentioned software tools are incapacitated to
investigate major network system issues related to the integration of distributed HRESs
(DHRESs) such as harmonics and small signal and transient stabilities. A list of commer-
cially available software for the planning of HRES is presented in Table 3.

Table 3. Software applications for optimizing BESS/PVDGs.

Name of Software Optimization Input Optimized Output

HOMER

• Load command
• Resource input
• Cost details (capital, O&M,

replacement costs
• System control

• Optimize unit size(s)
• NPV and energy cost

HYBRIDS
• Wind turbine size(s) and type
• Solar size(s)
• Type and number of battery

storage

• NPV and energy cost
• Amount of green-house gases

HYBRID 2
• Resources input
• Load demand
• Cost details (O&M,

investment, components costs)

• Optimize unit size(s)
• NPV and energy cost
• Proportion of green-house

gases released.
• System payback time

RET SCREEN

• Load command
• Solar size(s)
• Climate data input
• Invention and hydrology data

input

• NPV and energy costs
• Economic capability
• Production rate
• Risk analysis
• Energy used and saved

IHOGA
• Load command
• Resources data input
• Components and economic

factors

• Improve multi-objective
optimization

• Cost of energy
• Life cycle release

TRYSYS • Climate data
• Ingrained models

• Dynamic simulation of
renewable energy resources

5. Results and Discussion

The increasing needs for energy and the resultant environmental issues arising from
fossil energy utilization have encouraged the extensive study of renewable energy tech-
nologies in place of traditional fossil fuels. Precisely, hybrid distributed generations, which
have been described as a collaboration of renewable energies and support systems, are a
significant alternative to confront the concerns over sustainability of energy demands and
environmental safety. The planning and optimization of hybrid distributed power systems
can meet the essential requirements of a geographical location in terms of availability of
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potential energy resources, area topography and various kinds of energy demands. Conse-
quently, the optimal allocation of renewable energy sources and storage systems relating to
environmentally friendly hybrid distributed systems considerably improves the technical
and economic aspects of the power supply system. The addition of storage technologies in
the allocation of distributed generations can smoothen output power and reduce REHDG
intermittent effects in the network. Including storage devices in the DGs allocation prob-
lems provides supporting services to the optimal solutions by eliminating the effects of
intermittency in the renewable sources power output. Several allocation methodologies
have been proposed to determine the best hybrid renewable energy system with respect
to the economy and technology. Determining the optimal allocation of hybrid battery
storage and PV-distributed generation systems and other hybrid renewable energy systems
is important to increase the technical and economic efficiency of the power distribution
system and to encourage the extensive use of environmentally friendly resources.

Various allocation methodologies presented in the recent literature with different
optimization algorithms are reviewed here. The GA, PSO, SA and AIS are some of the
feasible artificial intelligence algorithms used to investigate the planning and optimization
of DG allocation problems. The most important benefit of GAs are the ordered capability
to find the global optimal and the ease of achieving a local minimum when used in hybrid
system allocation. Another advantage that makes GA suitable for allocation planning
studies is code-ability because it is not accessible in other methods such as PSO. For
instance, when at most three parameters are to be coded such as in a wind/PV/BESS
system, both GA and PSO can perform effectively. However, when more than three
elements are involved, only the GA method would be more capable of obtaining optimal
solutions. Some other times, PSO has some advantages over GA, although both are very
effective in utilizing the same repeatable search approach. Moreover, employing SA in
hybrid distributed systems is not as common as GA and PSO methods, but presently,
SA is generating more research interest in some approved areas of application. The ACS
algorithms have been presented to reduce power losses and to improve power system
factors of a radial distributed system. Similar to GA, the AIS optimization algorithm
has “collection” and “transformation” operatives which improve the probability of the
algorithm to find the global optimum point.

AIS is bound to have a high application in sizing studies because it is similar to GA
and can be effective in finding the global optimum in difficult problems. However, GA
has greater application than AIS, especially in addressing a large number of parameters.
In addition, conventional methods such as LP, MILP and NLP are still being applied in
existing studies to detail the features of any physical system into a mathematical model
formulation. Often, hybrid optimization methods are applied by combining two or more
methods to take beneficial advantage of them in terms of their convergence time during the
optimization process. Hybrid methods are characterized due to their dynamic flexibility
during the allocation process. Hence, they are the most applied allocation methods.

The intermittent nature of photovoltaic and wind output power and the high voltage
rise and fall from BESS cause harmonic distortions which have a negative impact on the
power quality, reliability and stability of the distribution networks. The majority of the
current works do not include the uncertainties of the renewable and battery storage power
sources in their formulation models. They did not combine all the associated investment,
technical, safety, DG capacity, network stability, power quality and reliability constraints
in the formulation models for the DG allocation problems. In most of these works, the
minimum harmonic level and dynamic stability of the network are not constrained but
are only assumed, while the constraints for the right of way are neglected for the required
buses. All these necessary and associated constraints need to be incorporated to obtain a
practical solution from the REHDG allocation models. In essence, future research studies
should give adequate consideration to modelling of the impacts of renewable energy
intermittencies and the resulting variable output power to culminate in more feasible
solutions to BESS/PVDG optimization problems.
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In addition, the operations of hybrid DG systems are dynamic. Hence, the planning
and design of optimal sizes and placement of RERDGs should be optimized on dynamic
networks but not on static ones, as they are mostly performed in the existing planning
models. The dynamical issues such as harmonic and system instabilities are very visible
while using dynamic networks, since the real power networks are dynamic networks
whose load profile periods are estimated hourly during a dynamic planning horizon.
Future research needs to focus on the use of dynamic networks to entirely incorporate the
intrinsic characteristics of the distribution network such as the harmonic components and
dynamic stability of the network.

Moreover, the sizes and locations of battery energy storage, photovoltaic and wind
DG units in the distribution network (DN) affect the network harmonic contents by having
either positive or negative impacts on the magnitude of the current and voltage harmonics
of the networks.

6. Conclusions

This study presents a review of prior research on the optimization methodologies for
designing and planning hybrid renewable energy resource distributed generation such as
hybrid battery energy storage–photovoltaic DG and other hybrid distributed systems. This
paper reviewed more than one hundred papers published by renowned referenced journals
on battery energy storage systems and renewable energy resources as well as on robust
and efficient optimization methods for solving hybrid DG allocation planning problems.
Optimization studies, in the last decade, on DG allocation planning using conventional and
intelligence search methods have been analysed, and hybrid optimization algorithms have
been presented.

Intelligence search methods have been mostly used in the last decade due to their
capacity for shorter computation times, and because they provide better accuracy and have
better convergence than the conventional methods. In conclusion, at the beginning, this
study investigated a number of research works that have applied optimization methods to
solve renewable energy DG allocation problems, including solar, wind and battery energy
systems. Many research works use intelligence search methods, most especially GA, PSO
and AIS, to solve these allocation problems. Notwithstanding, conventional methods,
especially LP and MILP and different configurations of NLP methods are still being used in
current studies. In the case of curtailing harmonic distortions of the DNs, which indicate the
strength of this study, an optimal planning model is yet to be developed for optimal sizing,
placement and timing of renewable DGs and battery energy storage systems. Although,
in most cases, the optimal sizing and placement of BESS/REDGs may have attained a
minimum cost, the requirements for minimum harmonic levels are yet to be achieved. These
requirements are merely presumed in the existing works. Further research is required in
this regard to improve the current expansion planning model to obtain optimal allocation
of BESS and renewable energy DGs and to constrain the decision variables related to
harmonic distortions to a required level. A more comprehensive expansion planning model
together with an efficient intelligence search algorithm that has that capability to obtain a
global optimum solution is an important approach towards solving optimal BESS/PVDG
allocation problems and towards reducing harmonic components of distribution systems
during the integration of hybrid battery energy storage systems and photovoltaic DGs.
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Abstract: Hydro generation is the simplest and oldest method of electricity generation, with a century
of successful operation. Using a pump as a turbine (PAT) is an optimal solution for minimizing the cost,
particularly in low-head and small-scale hydro plants. Commercially available centrifugal pumps have
become a popular solution for small-scale hydro and pumped-hydro facilities owing to their simple
geometry, ease of operation, maintenance, and abundant availability in local markets. Variations in
the water flow in hydro facilities, such as pumped-hydro and small-scale hydro facilities, are common;
however, a PAT is unable to respond to variable flows because it is a fixed-speed device. To overcome
this problem, different techniques have been suggested by researchers: (a) a system of parallel PATs;
(b) geometrical modifications in the impeller of the PAT; and (c) power electronics-based variable
frequency drives. All the aforementioned techniques have limitations, such as low output, high cost,
complexity, transportation, and operation and maintenance. In this study, a simple and economical
technique is proposed to smooth the output of a PAT on variable/decreasing water flow profiles. In the
proposed technique, water columns connected in parallel (PWCs) are used to produce a pressurized
water flow, as they have a convergent nozzle at the outlet. The PWC creates more space for water, and
this additional mass of water boosts the water flow at the outlet. In this manner, the PWC technique
maintains the flow at the inlet of the turbine. A serial integration of five PWCs with the same dimensions
was conducted to inject the additional flow into the existing PAT penstock, governing a 37-kW generator.
The design flow was maintained at 192.1 L/s without any additional power usage at the inlet of the PAT,
and the output was smoothed even at the minimum water flow/head. Pump design and computational
fluid dynamics simulations were performed using ANSYS software, whereas generator simulations
were performed using MATLAB/Simulink software.

Keywords: energy resources; hydropower generation; small hydro; pump as turbine; PWC technique;
smooth output power

1. Introduction

Environmental effects, fear of the extinction of conventional energy sources (such as oil,
gas, nuclear, and coal), and the high running costs of these costs have compelled planners
toward renewable energy sources [1–4]. Among these resources, hydro energy contributes
to nearly 16% of the global energy mix [5,6]. However, extensive capital costs, danger to
aquatic life, significantly long construction times, and limited locations are the drawbacks
of hydro-generation technology. To overcome these drawbacks, new arrangements for
hydro facility construction, such as run-of-river, small hydro, and mini, micro, and pico-
hydro plants, have been studied [7–9]. These new arrangements of hydro technology have
reduced the initial cost, construction time, and environmental effects while increasing the
location spectrum for the construction of hydro plants.
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In pumped hydro storage (PHS) and small-scale hydro plants, using pumps in reverse
(PAT) instead of conventional turbines is preferable to minimize the capital cost [10–12].
However, commercially available pumps are not designed to function in reverse mode, and
if this mode is exercised, the pumps prove to be low-efficiency devices. Despite their low
efficiency, PATs are used in small-scale hydro-generation and PHS facilities [13]. The use of
PATs is abundant for numerous reasons, such as their low cost, bulk availability in local
markets, and ease of installation. Furthermore, no specialty is required for operation and
maintenance [14]. However, small-scale PHS and hydro-generation plants encounter flow
fluctuations for several reasons, including intermittent upstream inflows and the decrement
of the head in the upper reservoir of the PHS facility during generation. A PAT is unable
to respond to these flow fluctuations owing to its simple geometry, and the output of the
plant decreases. The design flow, which is obtained by the design head, determines the
maximum efficiency of a PAT. Variations in the flow from its original design flow, for any
reason, have an adverse effect on the output [15].

Researchers have adopted various methods to mitigate the adverse effects of flow
fluctuations on the output, such as parallel PATs of different capacities, geometrical modifi-
cations of a PAT, and power electronics-based variable frequency drives (VFDs). In parallel
PATs, when the flow is reduced and a PAT with a large capacity cannot deliver its rated
output, it is either manually or automatically turned off. A PAT with a lower capacity is op-
erated to minimize the adverse effects of flow fluctuations. However, the output is reduced
by the newly available water flow, and the cost increases owing to paralleling, thereby
making the design more complex [13,16]. Regarding the geometrical modifications of PATs,
different researchers have suggested certain design modifications of the impeller [13,17–22],
which better manage the variable flows. However, these modifications are unable to
manage all the flow variations, and the cost is increased. Power electronics-based VFDs
can provide any speed profile of variable flow inputs [23,24]. When the flow decreases,
which affects the output of the plant, the VFD changes the speed of the generator, and the
output of the plant becomes smooth. However, this method is significantly costly because
devices with high ratings are required, causing installation, operational, maintenance, and
transportation problems.

In this study, a simple technique is proposed to mitigate the adverse effects of flow
variations on the output of a plant. This study is novel because a parallel water column
(PWC) technique is used to smooth the output of a PAT system while maintaining the
water flow at the inlet of the PAT by acting as an auxiliary penstock. With this technique,
water columns connected in parallel are used with the existing penstock of a plant to inject
additional flow at the inlet of the PAT in the event of a decreasing flow. This additional
flow will maintain the smooth rated output of the plant, even at the minimum head. The
effectiveness of the PWC technique was confirmed by performing a simulation using
ANSYS software for the case study of a variable flow profile. Subsequently, based on the
output obtained from the PAT, the electrical output of the generator was analyzed using
MATLAB/Simulink software.

2. Materials and Methods

The details of the adverse effects of the flow fluctuations on the output of the PAT are
discussed herein, along with the basic concepts of the PWC theory for a better understand-
ing of the proposed PWC technique.

2.1. Effect of Flow Variations on the Output of PAT

The output of any hydro system is solely determined by the water flow, as given
below [14,25]:

Pout = ηρgHQ (1)

where Pout is the output power, η is the efficiency, ρ is the density of water, g is the
gravitational acceleration due to gravity (9.81 m/s2), H is the head, and Q is the water flow.
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The fluctuation of the flow “Q” varies the output of the hydro system. A smooth
output can be achieved while maintaining a constant flow, which can be accomplished
using the aforementioned techniques. A smooth output makes the system more efficient.
The effects of flow fluctuations on the efficiency of PAT are shown in Figure 1, in which
five scenarios were considered for the calculations based on a previous study [15]. Notably,
the total reduction in flow is 38.4 L/s, which causes a significant decrease of 6.62% in the
efficiency of the system. This decrease in plant efficiency is dangerous for the stability of
the system.

 
Figure 1. Effect of flow variations on efficiency.

The reduction in flow can be eliminated using the PWC technique. The basics of this
newly proposed technique are discussed herein.

2.2. Water Column Theory

The atmospheric pressure (0.1 MPa) is created by a column of air over the surface of
the earth. Similarly, water exerts pressure at its bottom, owing to the weight of water acting
vertically downward. A water column having a height of 10.3 m creates pressure that is
equal to the atmospheric pressure, that is, 101 kPa [26]; pressure is the force acting on an
area. Mathematically,

P = F/A (2)

where P is the pressure, F is the force, and A is the area. In this study, “A” indicates the
area of the water discharge. If the area of discharge decreases, then the pressure will
increase while the force remains constant, which is the weight of water working vertically
downward and is indicated by the following:

w = mg (3)

where w is the weight of water, m is the mass of water, and g is the gravitational acceleration.
Here, “g” is a constant, and the mass of water should be increased to increase the weight.
Traditionally, no arrangement can be used for the increment of the mass of water because
the penstock is a fixed entity and functions as a singular body. Therefore, flow fluctuations
threaten the stability of the system. Therefore, the PWC technique is presented in this
study. Increasing the number of PWCs allows more space for a larger mass of water, which
increases the force at the same height. In particular, the PWC technique makes the penstock
more flexible and can manage increased flows per the requirements.
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Alternatively, the pressure is inversely proportional to the area of the discharge area.
Therefore, to increase the pressure, the discharge area must be reduced. This reduction was
achieved using a nozzle to increase the pressure, which boosted the velocity of the water.

As the PAT is a low-head device, and this study is regarding low heads, only the Q
parameter, which indicates the discharge/flow of water, in Equation (1) can increase the
output of the PAT system. Mathematically,

Q = Av (4)

where Q is the water discharge, A is the area of the water discharge, and v is the velocity
of the water. According to the continuity equation, the flow in a closed system is always
constant. Mathematically,

Qı = Q2 (5)

where Qı is the flow through point 1, and Q2 is the flow through point 2. Furthermore,

Aı vı = A2 v2 => v2 = A1v1/A2 (6)

The inlet of the PAT is constant since it is a fixed body, and the only option for increas-
ing the value of Q through the PAT while maintaining the same height is by increasing the
velocity. The nozzle at the bottom, which has a velocity of “v2”, as indicated in Equation
(6), will increase the velocity of water, which will in turn increase the value of ‘Q’.

In this manner, as the number of water columns increases, Aı increases, which increases
v2. The PWC technique injects the additional flow at the inlet of the PAT in the event of
a flow decrease with the existing penstock of a plant; the adverse effects of the flow
fluctuations are filtered, which smooths the output of the PAT.

2.3. PWC Technique with the Design of Experiment

The PWC follows certain rules to produce an output. To understand the behavior
of the PWC, an experiment in which five water columns were connected in parallel was
conducted. This experimental design is called a “double-nozzle setup”, in which one nozzle
makes the main outlet, which injects the additional water into the existing penstock of the
PAT, while each water column has a separate nozzle. Computational fluid dynamics (CFD)
simulations were performed using ANSYS software R1 2021 [27]. The dimensions of the
PWC and specifications of the FLUENT solver are listed in Table 1.

Table 1. Dimension of the water columns and solver settings.

Dimensions/Settings Values

Head 10 m
Diameter of the outlet nozzle 0.0635 m

Upper diameter of each water column 0.4572 m
Diameter of the nozzle used at the bottom of

each water column 0.2286 m

Working fluid Water (liquid)
Outlet pressure 0 Pascals

Turbulence model k-ω (SST)
Density of water 1000 kg/m3

Boundaries
Inlet Velocity inlet

Outlet Pressure outlet
Wall function Standard

The geometrical dimensions of the PWC were composed in a design modeler, and the
settings were changed from solid to fluid, while meshing of the PWC was performed using
ANSYS meshing. A tetrahedral mesh was created using a patch-confirming algorithm, and
the span angle center was set to fine. Meshing of the PWC is shown in Figure 2, the details
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of which are provided in Table 2, including the meshing method, inflation layers, element
size, and number of elements per PWC.

 

Figure 2. Meshing of PWCs.

Table 2. Mesh report of PWC.

No. of PWC Element Size Method of Meshing Inflation Layers No. of Elements

1 40 Tetrahedrons 7 274,274

2 40 Tetrahedrons 7 358,456

3 40 Tetrahedrons 7 543,020

4 40 Tetrahedrons 7 736,088

5 40 Tetrahedrons 7 926,713

A mesh independence test was performed for two PWCs to obtain the optimal element
size and number of elements. Element sizes of 20, 30, 40, 50, 60, 70, 80, and 90 mm
were applied to create 1,477,215, 655,237, 358,456, 237,308, 174,459, 138,933, 100,099, and
77,206 mesh elements, respectively. The optimal element size was 40 mm, which was
selected for all the PWC simulation cases. A size of 40 mm yielded 358,456 elements for the
two PWCs, as proven by the grid independence test shown in Figure 3.
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Figure 3. Grid independence test of the two PWCs.

In the experimental design, the dimensions of the PWCs were kept constant, while
the number of PWCs was increased individually. The velocity inlet was assigned as the
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boundary condition at the inlet of the PWCs, whereas the pressure outlet was assigned
at the outlet. The velocity and pressure produced in each case, which were processed in
CFD-Post, are illustrated in (a–e) of Figure 4.

Figure 4. Velocity and pressure produced by (a) one water column, (b) two water columns,
(c) three water columns, (b) four water columns, and (e) five water columns.
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Two types of results were obtained from the experimental design study. First, the
output behavior of the PWC was determined, and a mathematical model was developed. If
the dimensions and output of the water column are known, the optimal number of PWCs
can be derived for any flow, velocity, or pressure profile. Second, the optimal number of
PWCs was derived for the aforementioned PAT, the water flow of which was variable at its
inlet owing to the variations in the head of the upper reservoir during generation.

The results of the flow, outlet velocity, and pressure were calculated in CFD-Post with
a function calculator, while the dimensions of the PWC were maintained to be the same;
only the number of PWCs was increased individually according to the requirements of the
design flow, as shown in Figure 5.
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Figure 5. Variations in the pressure, flow, and velocity as the number of PWCs increases.

2.4. Findings from the Design Experiment

The findings obtained from the design experiment are presented (Figure 5) while
developing a mathematical model to determine the output of the PWC.

Finding 1: Flow

The flow graph shown in Figure 5 demonstrates that the flow increases linearly as the
number of water columns increases. Mathematically,

F = Fi × n (7)

where F is the flow of water, Fi is the flow obtained from one water column, and n is the
number of PWCs used.

Finding 2: Velocity

The velocity of water also increases linearly as the number of water columns increases,
as shown in the velocity graph (Figure 5). The mathematical relationship between the
velocity and PWCs is as follows:

v = vi × n (8)

where v is the velocity at the outlet, vi is the velocity obtained from one water column, and
n is the number of PWCs used.

Finding 3: Pressure

The water pressure at the nozzle inlet increases with the square of the number of water
columns, which increases the water flow at the nozzle outlet. The pressure graph (Figure 5)
describes the mathematical relationship between the PWC and the generated pressure.
Mathematically,

P = Pi× n2 (9)

where P is the total generated pressure, Pi is the pressure obtained from one water column,
and n is the number of PWCs used in any setup.

321



Appl. Sci. 2023, 13, 3232

3. Optimal Number of PWCs for a Smooth Output of the PAT

Based on Section 2.1, the decrease in the flow of the PAT is 38.4 L/s, for which,
according to Equation (7), a total of five PWCs with a flow of 8 L/s each are required to
smooth the flow at the inlet of the PAT. The PWC dimensions used for this purpose were
the same as those shown in Table 1. Thus, the outlet nozzle of the PWC design becomes an
additional inlet of the PAT, injecting the flow into the existing penstock, which is required
for a particular stage of operation. Initially, the flow through the turbine was a design
flow, and no change was required. As the flow decreases, the output also decreases. One
water column is added by the system to acquire the design flow; if the new flow through
the turbine meets the design flow, no further water column will be added by the system.
However, considering a further deviation from the smooth output, another water column
is added to the system to check whether the new scenario provides a smooth output. No
changes are required if the new output is smooth. These five PWC were added to the
system according to the flowchart shown in Figure 6.

 

Figure 6. Integration of the PWC to maintain the flow.

The integration of the five PWCs with the existing PAT penstock and the injection of
an additional flow at the inlet were conducted in ANSYS, as shown in Figure 7.

 

 

Figure 7. Integration of the PWC with the existing penstock.

As the number of PWCs is increased according to the demand, the flow is maintained
at approximately the designed value, as listed in Table 3.
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Table 3. Flow profile of PAT before and after the addition of the PWCs.

Flow (L/s) Reduced Flow (L/s)
PWC Added
(8 L/s Each)

Additional
Flow (L/s)

New Flow (L/s)

192.1 Nil No Nil 192.1
182.2 9.9 1 8 190.2
172.9 19.2 2 16 188.9
167.1 25 3 24 191.7
153.7 38.4 5 40 193.7

4. Torque Calculation and Generator Behavior

The aforementioned flow profile produces torque in the PAT, which is applied as an
input to the generator to monitor its output. Simulations were performed using ANSYS
and MATLAB software.

4.1. Torque Produced by PAT on Different Flow Values

A pump with a flow of 192.1 L/s was designed using the ANSYS (Vista CPD) tool,
consisting of a volute and impeller with six blades, as shown in Figure 8. A flow analysis
through PAT was conducted in ANSYS CFX [13,28], in which water was used as the
material, and the standard atmospheric pressure was considered to be one atm.

 

Figure 8. Side views of the pump designed in Vista CPD.

The pump was meshed using TURBO GRID, while the impeller and volute were
separately meshed, achieving a good quality mesh, as shown in Figure 9.

Figure 9. Meshing of the impeller and volute.

A detailed mesh report is provided in Table 4, which demonstrates the domains of the
analysis, location of the domains, number of nodes, and number of elements.
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Table 4. Mesh report of the pump.

Domain Nodes Elements Tetrahedra Wedges Hexahedra

R1(Passage) 663,175 627,640 0 0 627,640
S1(B75) 82,927 258,746 165,196 93,550 0

All Domains 746,102 886,386 165,196 93,550 627,640

The mesh independence is checked for the pump and eight different cases with regard
to. element numbers, which are obtained by changing the element size and global size
factor for the volute and impeller, respectively. Element sizes of 15, 20, 25, 30, 35, 40, 45,
and 50 mm were applied for the volute in meshing, yielding 330,438, 281,176, 258,746,
248,172, 240,762, 237,168, 234,902, and 232,452 elements, respectively. In contrast, the
global size factor was the main parameter that was manipulated for impeller meshing,
achieving a range of eight element numbers. Different global size factors for the impeller
were assigned in TURBO GRID; the 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 sizes produced
141,792, 203,553, 280,080, 385,118, 501,128, 781,482, and 1,019,900 elements, respectively.
The output parameter was the velocity at the outlet, which is demonstrated by the mesh
independence test shown in Figure 10; 886,386 elements were selected for the simulations,
which were produced by a 25-mm element size and a 1.3 global size factor.
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Figure 10. Meshing independency test of the pump.

The steady-state boundary conditions for this simulation were set for the PAT. The
stationary (S1) domain is the volute, while the rotating (R1) domain is the impeller of the
pump. The inlet was assigned a boundary condition for the mass flow, while the outlet was
the pressure, and the standard atmospheric pressure was assigned. The blade and all other
boundary walls were assigned a boundary condition (no slip). A frozen-rotor mixing model
was adopted for the interface between S1 and R1. The SST turbulence model was applied
for the flow analysis, while in the solver control panel, a high resolution was applied as
an advection scheme, 1.0 × 10−5 for convergence, first order for numeric turbulence, and
SIMPLEC [27,29,30]. Transient or unsteady simulations were also performed after steady
simulations. The total time was set to 1 s, the time step to 0.0001 s, and the initial time value
to 0 s for the transient case. The transient rotor-stator mixing model was assigned to the
interface between S1 and R1. Cartesian velocity components were selected as u = 0 m/s,
v = 0 m/s, and z = 0 m/s for the global initialization [31].

Here, the pump functions as a turbine; therefore, the outlet of the pump is the inlet of
the PAT, and the direction of the flow of water through the PAT is shown in Figure 11.
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Figure 11. Direction of the flow of water for the PAT.

As indicated in Section 2.1, the torque produced by the variable water flow was calcu-
lated using ANSYS CFD-Post, which is a function calculator. A graphical representation of
the flow and the produced torque is shown in Figure 12a. When the PWC is integrated, and
a new range of flows at the inlet of the PAT is obtained, the model is simulated once again
to calculate the new torque produced by the new values of the water flow. A graphical
representation of the new flow and torque produced is shown in Figure 12b.

Figure 12. Torque produced by PAT (a) before PWC integration and (b) after PWC integration.

The torque produced by the PAT at variable and smooth flows is compared in Table 5,
along with the deviations given before and after the integration of the PWC. These results
clearly demonstrate that the values of the produced torque decrease with decreasing flow.
Hence, fluctuations in the flow rate significantly affect the torque of the PAT. When the flow
rate is kept constant with the integration of the PWC, the torque of the PAT is smoothed
and maximized according to the design flow.
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Table 5. Torque of PAT regarding different flow values.

Before PWC Integration After PWC Integration

Flow (L/s) Torque (Nm) Deviation (%) Flow (L/s) Torque (Nm) Deviation (%)

192.1 226.559 0 192.1 226.559 0
182.5 204.519 9.73 190.2 222.105 1.97
172.9 183.693 18.92 188.9 219.085 3.3
167.1 171.664 24.23 191.7 225.619 0.41
153.7 145.042 35.98 193.7 230.342 1.64

4.2. Generator Behavior on the Variable and Smooth Torque

Although a smooth torque is obtained, which ultimately smooths the output of the
PAT, in most cases, the PAT and generator are directly coupled. However, a Simulink model
was developed to observe the behavior of the generator with variable and smooth torques,
as shown in Figure 13.

 

Figure 13. Overall system to observe the behavior of the generator.

A built-in asynchronous machine block rated at 37 kW was selected from the Simulink
library to simulate the behavior of the generator. This block can simulate both motors
and generators, using (+) and (−) signs with the torque, respectively. The variable and
smoothed torques obtained from ANSYS CFX, as shown in Figure 14, were used as the
input signals in the Simulink model [32,33]. The model was simulated for 25 s, and each
duration of five seconds corresponds to a different torque value.

Figure 14. Torque input signal to the generator.
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The simulation results of the peak value of the generator current are shown in Figure 15,
which demonstrates the variations in the current with respect to the torque obtained from
the PAT. In a hydro system, the torque varies with the flow variation. The current depends
on the torque value. Therefore, any fluctuation in the flow rate affects the output current of
the generator. However, the PWC technique provides a smooth flow, which results in a
smooth output.

Figure 15. Output current of the generator for both variable and smooth torques.

5. Conclusions

A simple and economical PWC technique was proposed in this study to maintain the
design flow at the inlet of a PAT under variable flow conditions. The proposed technique
employs the series integration of parallel water columns with the same dimensions using
a double-nozzle design. Paralleling the water columns creates more space for water to
provide the design flow at the outlet. When water flow is decreased owing to a decrease in
the upstream flow or in a PHS facility, the PWC maintains a flow at the inlet of the PAT by
acting as an axillary penstock.

The design of the experiment and its findings indicate that, for a given case, the
designed flow of 192.1 L/s can create a maximum torque of 226.559 Nm. The reduction
in the flow to 153.7 L/s produced a reduced torque of 145.042 Nm. A total reduction of
38.4 L/s in the water flow was compensated for by integrating five PWCs, each having a
flow capacity of 8 L/s. After the integration, the new flow and torque values were 193.7 L/s
and 230.342 Nm, respectively, which were nearly identical to the designed values with a
deviation of only 1.64%. Furthermore, based on the smooth output of the PAT, the generator
output was confirmed. Thus, integration of the PWC using a double-nozzle design is an
effective technique for maintaining smooth output of the PAT and generator.
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Nomenclature

A area of water discharge [m2]
F force [N]
g gravitational acceleration [m/s2]
H head height [m]
m mass of water [kg]
n number of water columns
P pressure [Pa]
Pout output power [W]
PAT pump as turbine
PWC parallel water columns
Q flow of water [L/s]
v velocity of water [m/s]
w weight of water
η efficiency [%]
ρ density of water [kg/m3]
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Abstract: In this paper, a method for rationally allocating energy storage capacity in a high-permeability
distribution network is proposed. By constructing a bi-level programming model, the optimal capacity
of energy storage connected to the distribution network is allocated by considering the operating cost,
load fluctuation, and battery charging and discharging strategy. By constructing four scenarios with
energy storage in the distribution network with a photovoltaic permeability of 29%, it was found
that the bi-level decision-making model proposed in this paper saves 2346.66 yuan and 2055.05 yuan,
respectively, in daily operation cost compared to the scenario without energy storage and the scenario
with single-layer energy storage. After accessing IEEE-33 nodes for simulation verification, it was
found that the bi-level decision-making model proposed in this paper has a good inhibition effect on
voltage fluctuation and load fluctuation after energy storage configuration. In addition, this paper
analyzes the energy storage that can be accessed by photovoltaic distribution networks with different
permeability and finds that when photovoltaic permeability reaches 45% and corresponding energy
storage is configured, the economic and energy storage benefits of the system are the best.

Keywords: high PV penetration; energy storage; optimal configuration; bi-level decision-making
models

1. Introduction

In recent years, with global carbon dioxide emissions hitting record highs, China
has proposed a "two-carbon" target to tackle environmental problems. Promoting the
development of new energy and the transformation of energy structures has become an
important part of global development. Due to abundant reserves and easy access, solar
energy has been developing rapidly in recent years, and its proportion in the power grid
has been increasing year by year [1]. While improving energy utilization, this has brought
a lot of trouble to the power distribution network. With the continuous increase in the
penetration rate of photovoltaics integrated into the power distribution network, problems
such as voltage collapse may occur, which has a serious impact on the safe and stable
operation of the system [2].

Studies have shown that a large number of photovoltaics connected to the distribution
network will also increase the number of system equipment, which will bring a burden to
the system and easily generate harmonic interference. In addition, the retrograde power
generated by the grid connection is prone to exceed the limit of the system node voltage,
which not only reduces the power quality but also deteriorates the user experience. When
high-penetration photovoltaics are connected to the grid, the uncertainty of output cannot
be matched with the load of the distribution network in real-time, which will affect the
power balance of the system. When the photovoltaic output fluctuates greatly due to the
change in environment and climate, the stability of the system will be affected [3]. In
addition, the high-penetration photovoltaic grid connection requires a large number of
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power electronic equipment to join the distribution network, which leads to the existence
of harmonics and affects the power quality [4], and the dispatching flexibility of the
distribution network is greatly reduced, which makes it more difficult for the power system
to develop a power generation plan. If such problems cannot be properly solved, it will not
only seriously threaten the safe and stable operation of the system but also cause a waste of
energy and limit the future development of photovoltaic power generation [5].

The authors in [6–8] analyze the influence of photovoltaic systems from the aspects
of voltage fluctuation, voltage amplitude, and frequency. From the perspective of stabil-
ity, Rasoul proposed a new framework to analyze the influence of different photovoltaic
permeability on voltage stability [9]. During the study, Zetty found that in a high perme-
ability renewable energy distribution network, load fluctuation is the main factor leading
to the voltage fluctuation of the system, and the realization of various fluctuations in the
high-light voltage permeability distribution network is important content to achieve the
increase of photovoltaic permeability in the distribution network [10]. The introduction of
energy storage devices improves the power quality while improving the photovoltaic stable
output [11–13]. Through reasonable regulation and control of a BESS, the absorption of
new energy on the power generation side can be completed, the permeability of distributed
power supply on the transmission side and distribution side can be improved, and the safe,
stable, and economic operation of the system can be ensured [14,15]. The authors in [16–18]
studied the working principle and characteristic analysis of different types of energy stor-
age devices and different types of BESSs and discussed the practicability of combining
BESS energy storage and generation measurement. From the perspective of photovoltaic
and load output prediction, Rahman and Zhao verified the feasibility of combining energy
storage optimization configuration with the prediction by comparing scenarios with or
without prediction [19,20]. In order to meet the photovoltaic energy storage demand in
the distribution network, Wang’s multiple operation scenarios of energy storage were
divided into grid scenarios to obtain the demand relationship of energy storage capacity
under different operating conditions and to complete the calculation of energy storage
capacity [21].

Access to energy storage equipment requires considerable capital investment in actual
project construction and operation and maintenance. Therefore, the demand response for
energy storage capacity is important content in optimizing energy storage configuration.
In [22], Balouch proposed an optimization goal of matching demand and supply. Based
on the analysis of line planning, low-cost scheduling, and demand response, the energy
utilization efficiency and comprehensive operating cost of a smart grid were optimized.
The authors in [23,24] introduced the improved optimization algorithm to improve the
optimization ability so as to determine the optimal scheme of energy storage optimization
configuration and realize a higher degree of response between demand and supply by
analyzing various indicators of access to the power grid. In [23], Balouch optimized a
response scheduling scheme by introducing the GWCSO algorithm. Higher robustness and
computational efficiency of the algorithm make the optimization results more advantageous
in power cost and peaking ratio. In [24], Mostafa improves the PSO algorithm, improves
the accuracy and effectiveness of the algorithm, and optimizes the location and capacity
allocation of energy storage in distributed networks. While the optimization objects are
complex and diverse when connecting to the power system, the choice and update of the
Pareto optimal solution will determine the quality of the final optimization result [25].

In the existing studies, it seems obvious for everyone to apply energy storage in high-
permeability photovoltaic distribution networks [26–32]. In the case of low photovoltaic
permeability, access to energy storage can indeed improve photovoltaic output and power
quality. However, few researchers have analyzed whether energy storage can still meet
expectations in the scenario of high photovoltaic permeability, and how to rationally
allocate energy storage in a distribution network with high photovoltaic permeability. In
this paper, the application of energy storage in a high permeability photovoltaic scenario is
analyzed, and the energy storage in a high-light volt distribution network is configured by
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establishing a two-layer planning model of the distribution network. The optimal size of
energy storage was configured considering the fluctuation of power grid voltage and load,
economic benefits and energy storage benefits, and the working condition of energy storage
in the scenario of high-light voltage permeability, and the improvement of benefits in all
aspects of the distribution network were studied. Finally, the feasibility of the proposed
method was verified in the IEEE-33 node system.

The main contributions of this study are summarized below:

• Proposed a method for optimal allocation of energy storage capacity of a distribution
network based on a two-layer programming model and verified its feasibility.

• Used the K-means method to complete an analysis of the uncertain photovoltaic
output into the deterministic scenario.

• The multi-objective particle swarm optimization algorithm was improved to solve the
optimal configuration, and the advantages of the improved algorithm were compared.

• By constructing different scenarios, it was verified that energy storage can still improve
the power quality in the distribution network with high-light voltage and permeability.

• Through analysis of the optimal configuration of energy storage in the distribution
network with different photovoltaic permeabilities, the optimal economic photovoltaic
permeability was concluded.

The rest of this paper is organized as follows: The treatment method for the PV
uncertainty and the selection of the PV working curve is introduced in Section 2. In
Sections 3 and 4, the bi-level decision-making programming model is constructed and
solved to realize the addressing and capacity selection of the energy storage device. At
the same time, in the fourth section, the specific content of particle swarm optimization is
described. In Section 5, four scenarios are constructed to discuss the benefits generated by
energy storage configuration and optimization benefits brought by algorithm improvement.
Finally, in Section 6, we summarize the content of the thesis.

2. Analysis of Photovoltaic Output Characteristic

Due to the great influence of light and the environment, photovoltaic power generation
is full of uncertainties. For further analysis, we collected the annual daily output data of
photovoltaic power stations (annual output of an operational photovoltaic power station
in Henan Province from June 2019 to July 2020), as shown in Figure 1. When considering
energy storage benefits, excessive uncertainty in output will lead to uncertainty in energy
storage benefits. In order to avoid this influence, this paper will process various output
curves by clustering the division method, summarizing the photovoltaic output with high
uncertainty into six typical output scenarios and analyzing them, and transforming the
uncertainty into a deterministic analysis.

2.1. K-Means Cluster Analysis Method

The K-means clustering method is a classical clustering analysis method based on the
iterative method which has the advantages of high efficiency and convenience in processing
large-scale uncertain data [33]. Through the K-means clustering method, a large number
of output data can be refined and extracted, and fewer typical output scenarios can be
obtained that can represent the output of photovoltaic power stations.

The K-means algorithm sets an initial cluster center in all scenes and iterates clustering
for a large number of scenes based on the optimal distance. The iteration is not finished
until the clustering presents a steady-state equilibrium. The iteration results are shown
in Figure 2. After the whole process is complete, the center of each cluster scene is set as
the partition scene, and the probability of each cluster scene is set as the required partition
probability Pr(s).

333



Energies 2023, 16, 2168

Figure 1. Annual daily output curve of photovoltaic power plants.

Figure 2. K-means clustering method results.

Set the number of initial scenarios ξs(s = 1, 2 . . . N) to Ns. The number of target
scenarios is Ms, and the entire calculation procedure is as follows:

1© Ms target scenes with random data are set as the cluster center, and the set of these
scenes is Center =

{
ξCenter

s
}
(s = 1, 2 . . . Ms).

2© Excluding the cluster center set, the other scene set is set as Member = {ξCenter
s } (s = 1,

2 . . . Ms), and the distance from the other scene set to the cluster center scene set is

calculated:

{
DTs,s′ = DT

(
ξCenter

s , ξMember
s

)
= ||ξCenter

s − ξMember
s ||2

s = 1, 2 . . . Ms , s′ = 1, 2 . . . Ns − Ms
3© The other scene sets excluding the cluster center set are divided into the nearest

cluster center according to the distance calculated in 2©. We obtain the cluster set
Cluster = {Ci}, i = 1, 2 . . . Ms, where Ci is a set of similar scenarios.

4© Set the same cluster Ci including Ls scenarios. Add the distances from each scenarios
to the others: CTs = ∑Ls

s′=1
s′ 	=s

||ξs − ξs′ ||2, and scene ξk in CTs = Min(CTs) is selected as
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the clustering center of the next iteration. This is used to calculate the next iteration
cluster center set.

5© At this point, stable cluster centers and clustering results can be obtained by repeating
steps 2©– 4©. The probability number of each type of scenario is the probability number
of a single scenario in that type of scenario.

The process of the clustering algorithm to reduce the scene is shown in Figure 3.

Figure 3. Cluster reduction flowchart.

2.2. Selection of Typical Output Scenarios

After data processing and division by the K-means clustering method, six output
scenarios as shown in Figure 4 can be obtained. The occurrence probability and the number
of curves of each output scenario are shown in Table 1.

Table 1. Typical scenario probability.

Scenario
Number of

Curves
Probability Scenario

Number of
Curves

Probability

1 35 0.0959 4 24 0.0658
2 7 0.0192 5 127 0.3479
3 75 0.2055 6 97 0.2658
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Figure 4. Clustering of typical scenarios.

As can be seen from Figure 4 and Table 1, the photovoltaic output power in Scenario
1 is low, while the output in Scenario 2 has great fluctuation and uncertainty. The inter-
mediate level of output in Scenarios 3 and 4 cannot represent photovoltaic output, and
Scenarios 5 and 6 have a high probability and good output curve. In contrast, Scenario
5 with the maximum annual output is selected as the typical photovoltaic output curve,
which can better reflect the output characteristics of photovoltaic power generation. In
order to facilitate the analysis of the combined effect of photovoltaic and energy stor-
age under different permeability, in this paper, we will only select Scenario 5, which is
the most representative and has the highest probability of occurrence at the same time,
as the analysis object to study the influence of energy storage access to the power grid
during daily operation on voltage fluctuation, operation cost, and other benefits of the
distribution network.

3. BESS Bi-Level Decision-Making Model Configuration

Due to the mutual influence between the optimal configuration of the energy storage
system and the stable operation of the distribution network, this will bring difficulties to
the dispatching of the energy storage devices and will cause the operation stability of the
distribution network to decline. Therefore, it is necessary to consider a reasonable location
and capacity while taking into account the operation economy of the distribution network.
The bi-level decision-making model relies on its own two-level hierarchical structure to
optimize the system objectives hierarchically. The upper and lower levels influence each
other and seek the overall optimal solution according to the independent objective function
and the corresponding constraints [34,35].

3.1. Upper-Level Model Objective Function

In the upper-level optimization, energy storage configuration location, rated power,
and installed capacity are considered to reduce the total cost of the energy storage system
and distribution network investment and maintenance. The installation location and
capacity of the BESS are optimized. After the optimal configuration of energy storage
is obtained, the information is transmitted to the lower level to adjust the charge and
discharge power of energy storage.{

Fmin = fsto + fope
s.t.g(X) ≤ 0

(1)
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where Fmin is the minimum daily total cost after the energy storage is connected; fope is the
total cost of distribution network operation investment. fsto is the input costs for energy
storage construction. X = [x1, x2, x3], and x1, x2, x3, respectively, represent the BESS input
node, power, and capacity.

3.2. Lower Objective Function

In the lower-level optimization, due to the influence of the energy storage installation
location and capacity selection on the energy storage life, the lower-level decision-making
model fully considers the change of the energy storage charging and discharging power to
realize the economical operation mode of the distribution network and achieve the smallest
fluctuation range of node voltage and load. The lower optimization objective function is
as follows: {

min
(

fope, f2, f3
)

s.t.h(y) ≤ 0
(2)

where f2 is the amplitude of the voltage fluctuation of the distribution network node caused
by the access to energy storage, f3 is the amplitude of the load fluctuation of the distribution
network, and y = [y1, y1, y2 . . . y24] is the average hourly charging and discharging power
of the energy storage system throughout the day.

(1) The voltage fluctuation of distribution network nodes caused by energy storage access
can be expressed as:

min f2 =
24

∑
t=1

N

∑
k=1

[
uk(t)− ukn

Δukmax

]2
(3)

where N indicates the number of system nodes, and uk(t) indicates the voltage value
of node k at time t.

(2) The load fluctuation of the distribution network caused by access to energy storage
can be expressed as:

min f3 =
1
T

T

∑
t=1

[
P′

load(t)− P′
ave
]2 (4)

where P′
ave represents the average load in a period of time when energy storage

is connected.

3.3. Constraints

(1) Constraints at the BESS access node

1 ≤ x1 ≤ Nmax (5)

where x1 are nodes invested in energy storage, and Nmax is the maximum number of
nodes expressed as energy storage input.

(2) The constraints of power rating and capacity energy storage devices can be ex-
pressed as {

Pmin
ess ≤ Pessn ≤ Pmax

ess
Emin

ess ≤ Eessn ≤ Emax
ess

(6)

where Pmax
ess and Pmin

ess is the maximum and minimum value of the rated output of the
energy storage, and Emax

ess and Emin
ess are the maximum and minimum values of the

energy storage input capacity.
(3) Power balance constraints

Pgrid + Pgv = Pload + Ploss + Pess (7)

where Pgrid is the power value received by the grid, Pgv is the PV output power, Pload
is the output power, Ploss is the network loss, and Pess is the BESS input power.
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(5) BESS charge and discharge power constraints{
0 ≤ Pcha

ess (t) ≤ Pessn
−Pessn ≤ Pcha

ess (t) ≤ 0
(8)

(6) Voltage constraints in distribution network nodes

umin
k ≤ uk(t) ≤ umax

k (9)

where umin
k and umax

k are the minimum and maximum voltages of node k at time t.
Energy storage system SOC constraints

SOC(t) =
E(t)
Esn

= SOC0 +
∑t

k=1

{
d1(t)Pcha

ess (t)nc

}
Δt + ∑t

k=1

{
d2(t)Pcha

ess (t)/nd

}
Δt

Essn
(10)

where SOC0 is the initial state of the energy storage system, including power and
capacity. Essn is the rated capacity of the energy storage battery.

(7) Supplementary constraints

1© Due to the limitation of the SOC range of the BESS, there will be a large number
of infeasible solutions during the recovery of its all-day charging and discharging
power. If its charge and discharge power is processed, this will greatly improve the
convergence rate in the solution process and reduce the amount of calculation.

P′
ess =

{
Pess(t) SOCmin ≤ SOC(t) ≤ SOCmax

0 otherwise
(11)

where P′
ess(t) is the energy storage charge and discharge power value that has been

processed at time t. In this way, the infeasible solution is transformed into an effective
feasible solution, and the charging and discharging power that is not within the SOC
range of the energy storage is changed to 0.

2© Using the penalty function method to deal with the constraints that are not within the
valid range:

F(x, M) = f (x) + M
r

∑
i=1

max(gi(x), 0)− M
s

∑
i=1

min(hi(x), 0) + M
t

∑
i=1

|ki(x)| (12)

where M is the penalty coefficient. gi(x) indicates the negative inequality constraint.
hi(x) indicates the positive inequality constraints. ki(x) indicates the equality con-
straint at zero. r, s, t are the number of constraints.

4. Solution of Model

For the bi-level programming model, this paper selects the genetic algorithm (GA)
for the optimization of the upper layer and improved multi-objective particle swarm
optimization (IMOPSO) for the optimization of the lower level. The calculation process is
as follows:
1© Input the demand parameters of the distribution network into the system.
2© Initialize the decision variables for the upper level (including BESS installation lo-

cation, power rating, and capacity). Under the constraint, the population and other
parameters of the GA algorithm are initialized.

3© Initialize the decision variables of the lower level, including the BESS charge–discharge
method. Under its constraints, the IMOPSO algorithm population and other related
parameters are initialized to solve the initial fitness of each optimization objective.

4© After the optimization of the lower layer is completed, the TOPSIS multi-attribute
decision-making method is used to select the upper Pareto solution set obtained, and
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the best scheme is selected and fed back to the upper layer to solve the fitness of the
upper layer target.

5© The upper-level GA algorithm population is updated, and the third and fourth steps
are continuously executed until the upper-level optimization is completed.

6© The optimal BESS configuration scheme of the upper layer, the corresponding optimal
charge-discharge method of the lower layer, and the optimal Pareto solution set
are obtained.

The calculation process is shown in Figure 5. In the following sections, we will
give a specific description of the improvement content of the multi-objective particle
swarm optimization.

Figure 5. Calculation process.

4.1. Improved PSO Algorithm

The particle swarm optimization (PSO) algorithm is an iterative optimization algo-
rithm. By converting the target into a certain number of particles, the position is updated
in each iteration, and the optimal solution is searched through continuous iteration. The
updating method is as follows:

vk+1
id = wvk

id + c1r1

(
p(k)id − x(k)id

)
+ c2r2

(
g(k)d − x(k)id

)
(13)

x(k+1)
id = x(k)id + v(k+1)

id (14)

where w represents inertia weight; c1, c2 are acceleration coefficients of particle motion
respectively. r1, r2 are randomly selected in the range of 0 to 1; P(k)

id represents the d-
dimensional component of the particle numbered i in the optimal position vector at time k;
and g(k)d represents the d-dimensional component of the optimal position of all particles at
time k.

In the process of iterative optimization, the traditional muti-objective particle swarm
optimization algorithm is prone to fall into local optimal and appear ‘Premature conver-
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gence’. Therefore, this paper cross-mutates the prescribed bit vectors of particles to prevent
them from falling into the local optimum.

Xi,d = Xmin + (Xmax − Xmin)r (15)

where Xmin represents the minimum position variable of the particle; r represents any value
between 0 and 1.

Random cross variation is carried out when the probability distribution P < Pm is
satisfied. When the fitness of particles tends to be the same or locally optimal, the w will
increase. Otherwise, the w will decrease as the particles tend to disperse [36].

w =

{
wmax − (wmax−wmin)( fi− favg)

fmax− favg
fi ≥ favg

wmax fi ≤ favg
(16)

where fi is the fitness value of the particle i, wmax,wmin are the maximum and minimum of
w, and fmax, fmin, favg are the average and maximum, minimum, and average fitness of all
particles at present, respectively.

In order to make the optimal solution distributed evenly in a certain range, the Pareto
solution set should be optimized step by step. In this paper, a dynamic image Pareto
solution set updating method is adopted, as is shown in Figure 6. In the initial distribution
stage of particles, referring to all particles of the original comparison rule, an image ViD is
established with the optimal particle as an optimal Pareto solution set. With the progress
of iteration, the average value of particles is obtained between every two images, and the
optimal solution is used to make the speed and position of particles updated at this time so
that the particle population moves towards the target direction. In the whole process, new
particles constantly exchange information with image particles and update data in image
particles continuously until the end of iteration:

Vt+1
iD = wvt+1

iD + c1rand1

(
piD − Xt+1

iD

)
+ c2rand2

(
Average

(
pbestp

)− xt
iD
)

(17)

xk+1
iD = xk

iD + vk+1
iD (18)

where t is the number of iterations; D is the dimension of the decision variable; piD is the
best historical value of single particle i; and pbestp is the optimal particle of the current
Pareto solution set in the image. Average

(
pbestp

)
is the superior particle of the optimal

Pareto solution set in the two images.

Figure 6. Dynamic image Pareto solution updates schematic.
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There are differences in the selection of the optimal solutions between the multi-
objective particle swarm optimization and single-objective particle swarm optimization,
and the results obtained are complementary dominated Pareto solutions, which cannot be
obtained by direct comparison of the particle fitness function. Therefore, in this section, the
first 20% Pareto solutions with lower crowding distances and higher priority orders are
randomly selected to guide the iterative updating of the particle population.

4.2. Multi-Attribute Decision-Making Based on TOPSIS Method

After solving the lower multi-objective optimization problem, the optimal solution
obtained by the IMOPSO algorithm is a set of Pareto solutions, and the selection of the
optimal solution is essentially a multi-attribute decision problem. TOPSIS is a method for
ordering by similarity to an ideal solution, it selects the optimal solution set and the worst
solution set through the established initial decision matrix, then compares the distance
between the two solution sets and the evaluation index with the optimal solution set and
finally sorts them to evaluate the pros and cons of the scheme. The TOPSIS method has
high strict requirements in selecting weights. In this paper, the information entropy method
is used to determine the weight of each target value. The information entropy method
determines w by the difference of the target value in the Pareto solution, improves the
accuracy of the final decision, reduces the difference, and ensures the objectivity of the
decision. By using the TOPSIS method, we can determine a set of optimal Pareto solutions
to guide us to choose an energy storage configuration scheme.

The optimal solution of the Pareto solution set obtained is selected from X1 ∼ XN
and combined into N alternative schemes. The scheme Xi is selected from N records. It is
the composition of some optimal solutions in the Pareto solution set. gm(Xi) represents the
value of the mth attribute of the scheme Xi. Since each attribute is different, it should be
unified and changed into the same type. The new attribute value is Gm(Xi) , which can be
expressed as:

Gm(Xi) =
gm(Xi)√

1
N ∑N

i=1 g2
m(Xi)

(19)

d(xi) =
d+(xi)

d+(xi) + d−(xi)
(20)

d+(xi) =

√
n

∑
m=1

[
λmg′m(xi)− λmg′m+

]2 (21)

d−(xi) =

√
n

∑
m=1

[
λmg′m(xi)− λmg′m−

]2 (22)

where d(xi) is the relative distance of scheme xi; d+(xi) represents the distance between
scheme xi and the optimal solution. d−(xi) represents the distance from solution xi, the
negative worst solution. λm indicates the weight value of gm(Xi), which is randomly set
between 0 and 1. g′m+ and g′m− indicate the optimal and worst values of all schemes gm.

5. Analysis and Discussion

5.1. Case Description

In this paper, the proposed scheme is tested on the IEEE-33 node distribution net-
work [37]. In addition, the structure of the system is shown in Figure 7.

In this paper, the rated voltage of the selected distribution network is 12.66 kV, and
the total load is 3715 kW + j2300 kvar. The upper and lower limits of the node voltage are
specified as not exceeding ±5% of the rated voltage. Node 1 is a balance node, which is
connected to the upper-level distribution network for power transmission. Taking into
account the actual work and construction of photovoltaic power generation connected to
the distribution network, photovoltaic power generation is connected to Node 9, and its
installed power generation capacity is 1.077 MW (29% penetration rate).
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Figure 7. The topology diagram of IEEE-33 bus system.

The typical PV output curve selected by the method in Section 2 is shown in Figure 8.
The typical daily load curve in this area is shown in Figure 9.

Figure 8. Photovoltaic typical sunrise force curve.

Figure 9. Typical daily characteristic curve of load.

In this paper, the battery is used as the energy storage system for research and intro-
duces the time-of-use pricing strategy proposed in [38]. The specific time-of-use price is
shown in Table 2. The energy storage control parameters are shown in Table 3. The specific
setting parameters of the energy storage configuration optimization simulation are shown
in Table 4.
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Table 2. Time-of-use electricity price table.

Type Period Electricity Price (yuan/kWh)

Peak time 17:00–22:00 0.9796

Normal time 8:00–17:00
22:00–00:00 0.6570

Trough time 00:00–8:00 0.35

Table 3. Energy storage control parameter table.

Energy Storage Control Parameters Data

Service life (year) 11
Discount Rate 0.02

Rated power cost (yuan/kW) 1000
Installation cost (yuan/kW) 2500

Operation and maintenance cost (yuan/kW) 0.05
State of charge SOC range 20–90%

Rated power upper limit (MW) 1
Maximum installed capacity (MWh) 5

Table 4. Simulation parameter settings.

Parameter Data

Power purchase cost of grid 0.35
Expansion cost 1000

Expansion annual profit margin 8%
Load annual growth rate 1.5%

Genetic algorithm population size/number of iterations 60/200
IMOPSO algorithm population size/number of iterations 100/200

Crossover/variation rate 0.1/0.05
Inertia weight range 0.4–0.9

Threshold for difference X 0.1
The size of the Pareto solution set 100

In order to study the actual effect of energy storage configuration, we first analyzed the
specific benefits of a photovoltaic distribution network connecting to energy storage config-
uration and demonstrated that energy storage still has good benefits in the high-light volt
distribution network. Then, we compared the photovoltaic distribution network scenarios
under different permeability and analyzed and compared the change of photovoltaic per-
meability with the corresponding change of optimal energy storage configuration scheme.
The specific analysis content is introduced in the following section.

5.2. Energy Storage Optimization Scenario Division

Analyze the effectiveness of the method proposed in this paper, set different conditions,
divide it into four scenarios, and compare them one by one to verify the feasibility of
the method:

Scenario 1: No energy storage.
Scenario 2: With access to energy storage, use the IMOPSO algorithm in this paper to solve

the optimization objective of lower-level model in the bi-level decision-making
model; introduce the charging and discharging strategy of the energy storage
system to simulate and analyze it.

Scenario 3: When solving its single-level model, ignore the charging and discharging
management strategy of energy storage in the lower model, and only the energy
storage system and distribution network are considered to have the lowest total
cost. At the same time, in the time-of-use electricity price model, the energy
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storage system is charged and discharged at a constant power regardless of the
high or low electricity price.

Scenario 4: The optimal configuration result of energy storage in Scenario 2 is used as
the constraint condition of this scenario, and the traditional multi-objective
PSO algorithm is used to simulate and analyze the lower model in the optimal
configuration model of the energy storage double-level. Node voltage curves
and load curves in different scenarios are shown in Figures 10 and 11 below,
and Table 5 shows the optimization results of different scenarios.

Figure 10. System node voltage curve in different scenarios.

Table 5. Optimization results in different scenarios.

Scenario
Node/Power
(kw)/Capacity

(kwh)

Cost of
Investment

Distribution
Network

Operating
Costs (Yuan)

Voltage
Fluctuation

Value

Load
Variance

Total Cost
(Yuan)

Degrees of
Savings

1 - 0 16,703.6 70.21 36,5721.76 16,703.6 1.77%
2 14,650,3392 1879.32 14,532.67 63.52 15,3971.12 16,411.99 0%
3 20,273,2733 1497.62 15,717.64 64.98 24,9754.21 17,215.26 4.89%
4 14,650,3392 1879.32 14,767.71 64.85 15,9894.09 16,647.03 1.43%
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Figure 11. Load curve in different scenarios.

By comparing Scenario 1 and Scenario 2, it can be found that the voltage amplitude
curve of the photovoltaic distribution network is smoother after the energy storage is
connected, and the voltage fluctuation and load fluctuation are reduced to a large extent,
which indicates that the BESS plays a good role in suppressing the node voltage fluctuation
and load fluctuation when it is connected to the distribution network. Compared with
Scenario 3, the load fluctuation range of Scenario 2 is smaller, and the load smoothing
capacity is better. At the same time, the total cost of Scenario 2 is 803.27 yuan lower than that
of Scenario 3 economically, which verifies the good characteristics of the model proposed
in this paper.

The optimal Pareto solution set distribution of Scenario 2 and Scenario 4 is shown in
Figure 12. Scenario 2 adopts the improved IMOPSO algorithm in this paper to solve the
inner model, and Scenario 4 adopts the unimproved MOPSO algorithm to solve it. The
Pareto solution set in Scene 2 is more evenly distributed than that in Scene 4 due to the
introduction of particle cross mutation, adaptive inertia weight, and the Pareto solution set
update method of the dynamic image. Moreover, Scene 2 adopts multi-attribute decisions
based on the TOPSIS method, resulting in a more diverse solution set.

Figure 12. Pareto solution set distribution.
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Through the comparison of scenes, it is obvious that the optimization results of the
IMOPSO algorithm are obviously better than the MOPSO algorithm, and the search accu-
racy is higher. In order to compare the performance of the two algorithms, the external
solution set and the spacing S are used in this paper to measure the optimization perfor-
mance of the two algorithms. The S index refers to whether the particles in the Pareto
solution set are evenly distributed in space. The mean variance of the particle density dis-
tance is used in this paper to characterize the uniformity and global nature of the population
particles, as shown in Equation (23).

S =

√√√√ 1
N

N

∑
i=1

[I(xi)− I]2 (23)

where I represents the average of all particles I(xi) in the Pareto solution set.
According to the different internal environments of the two algorithms, after 20 cycles,

the node voltage and load fluctuations in the optimization target are taken as the research
object, as shown in Figure 13 and Table 6.

Figure 13. Convergence curves of external solutions for different objectives.

Table 6. Algorithm performance comparison.

Algorithm

External Solution

Distance ‘S’Node Voltage
Fluctuation

Load Fluctuation

MOPSO 0.8869 0.2103 0.0485
IMOPSO 0.7154 0.1226 0.0317

By combining and comparing the charts, it was concluded that the IMOPSO algorithm
proposed in this paper reduces the number of iterations in the node voltage fluctuation and
load fluctuation, and the convergence performance is obviously better than the MOPSO
algorithm. In addition, the improved algorithm and Pareto solution set update strategy
make the solution set distribution more uniform and the type of solution set more diverse,
and the improved MOPSO has better robustness and convergence.

5.3. Energy Storage Benefit Analysis under Different Photovoltaic Permeability

In order to verify the effectiveness of the dual-layer multi-objective optimal config-
uration model of the energy storage system proposed in this paper in the high-light volt
permeability distribution network, the upper limit of photovoltaic power generation per-
meability was set at 60%, and the verification started from 30% permeability. Using the
optimal configuration strategy of the BESS, the curve as shown in Figure 14 was obtained.
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Figure 14. Changes in energy storage capacity and power under different photovoltaic
penetration rates.

When the photovoltaic permeability increases from 30% to 60%, the capacity and
power of the energy storage system have an obvious rising trend. When the photovoltaic
permeability reaches 50%, the growth slows down and tends to remain unchanged. In
other words, it is of little significance to increase the capacity of the energy storage system
when the permeability reaches a certain level.

Figure 15 below shows the variation trend of energy storage investment and the
total cost of distribution network operation under different photovoltaic permeability.
It can be clearly seen that the total cost of the system decreases first and then increases
when the photovoltaic permeability increases, and the total cost is the minimum when
the permeability is 45%. As the cost of photovoltaic power generation decreases with the
continuous increase of the permeability but is limited by the load level, the cost of the
energy storage system increases with the increase of the capacity. The interaction between
the two makes the total cost of the system decrease to the minimum when the photovoltaic
permeability is 45%. When the permeability increases again, the system’s total cost will
keep rising, and the system operation economy will be seriously affected.

Based on the discussion of the above two legends, it is found that the total capacity of
the BESS should be controlled in the optimal range according to the actual situation, and
the photovoltaic permeability should also be controlled at a certain value so as to ensure the
system operation economy while ensuring the safe and stable operation of the system. In
order to improve the overall economy of the system, this paper selected 45% photovoltaic
permeability to verify and analyze the two-layer programming model of the energy storage
system proposed in this paper.

As shown in Figure 16 below, after optimizing the configuration of the energy storage
system with 45% photovoltaic permeability, the load curve of the distribution network
presents an obvious smoothing trend, and the peak–valley difference decreases. The
sufficiency proves that the two-layer optimal configuration model of energy storage can
still effectively improve the off-peak load, reduce the peak load of the distribution network,
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and increase the scheduling flexibility of the distribution network under the condition of
high photovoltaic permeability.

Figure 15. Total cost curve under different PV penetration rates.

Figure 16. Distribution network load curve before and after energy storage configuration optimization
under 45% photovoltaic penetration rate.
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6. Conclusions

In order to ensure the power quality and scheduling flexibility of the photovoltaic
distribution network with increasing permeability, this paper proposes a joint optimization
operation mode of optical storage. Firstly, the PV output model was analyzed, and the
scenario planning method was applied. The K-means clustering algorithm was used to
divide the output scenarios, and the typical output scenarios were selected for analysis.
A BESS two-layer decision model was established, and the improved IMOPSO algorithm
was used to solve the two-layer model. The IEEE-33 node example was adopted, and the
simulation verification was carried out based on the current feed-in price, selected energy
storage parameters, and other parameters. The simulation analysis results are as follows:
1© Access to energy storage can effectively smooth the load fluctuation and voltage

fluctuation of system nodes in a photovoltaic distribution network. In a distribution
network with high-light volt permeability, energy storage can effectively improve the
off-peak load of the distribution network and reduce the peak load, thus increasing
the scheduling flexibility of the distribution network.

2© The bi-level programming model proposed in this paper has a good optimization
ability for the rational allocation of energy storage.

3© The improved IMOPSO in this paper has good convergence performance and robust-
ness and has good applicability in application optimization

4© When the optimal energy storage capacity under different photovoltaic permeability is
configured, the total cost of the system is optimal when the photovoltaic permeability
is 45%, and when the permeability increases again, the total cost of the system will
keep rising and seriously affect the operation economy of the system. The analysis
of this paper provides a theoretical basis for the optimal configuration of the energy
storage system and an important reference for the safe, stable, and economic operation
of a high permeability photovoltaic distribution network.

7. Future Work

In this paper, only batteries are considered in the selection of batteries in the energy
storage system. However, with a wider application of energy storage, a single energy
storage system may not be able to meet the actual demand in the future. In subsequent
research, we will combine other types of energy storage for optimization analysis of hybrid
energy storage.

At the same time, because of the variety of renewable energy, more and more dis-
tributed power is connected to the distribution network. This paper only analyzes access
to photovoltaic power generation. In a follow-up study, we will conduct a further study on
scenarios with access to various energy sources.

In addition to the voltage fluctuation and load fluctuation considered in this paper,
the power system with energy storage access has more indicators to measure security. In a
follow-up study, we will also analyze the improvement and influence of energy storage
access on various indicators.
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