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Abstract: One of the urgent tasks of applied materials science is the creation of novel high-effective
materials with target properties. In the area of energy systems, there is a problem in the conversion of
chemical energy to electricity without mechanical work. Hydrogen energy provides a way using elec-
trochemical devices such as protonic ceramic fuel cells. Novel advanced proton-conducting materials
with the top characteristics of target properties are strictly needed. Layered perovskites are a novel
and promising class of protonic conductors. In this work, the layered perovskite BaLa0.9Pr0.1InO4

was obtained and investigated as a protonic conductor for the first time. The possibility for water
intercalation and proton transport is proved. It was shown that isovalent doping Pr3+ → La3+ leads
to an increase in the crystal lattice size, proton concentration and proton mobility. The proton conduc-
tivity value for doped BaLa0.9Pr0.1InO4 composition is 18 times greater than for undoped BaLaInO4

composition. Layered perovskites based on BaLaInO4 are promising materials for application in
proton-conducting electrochemical devices.

Keywords: layered perovskite; oxygen-ion conductivity; proton conductivity; hydrogen energy;
Ruddlesden–Popper structure

1. Introduction

Applied materials science plays an important role in the development of various areas
of human life. Critical areas such as medicine, energy and mechanical engineering cannot
develop without the creation of new materials with targeted properties. Ceramic materials
are required for very different needs such as medical applications (endoprosthetics) [1–6]
and components for various electrochemical devices [7–12], as examples. The high priority
of sustainable development necessitates the development of advanced energy technolo-
gies, one of them being hydrogen energy [13–16]. The switchover to renewable energy
is, actually, not only for increasing energetically efficiency, but, also, due to the pursuit
in decreasing climate changes and the lowering of cases of respiratory diseases [17–23].
Hydrogen energy is considered as an actual, sustainable and promising approach for energy
generation [24–35]. This industry includes aspects such as the production, transportation
and use of hydrogen as an energy source. The conversion of the chemical energy of hy-
drogen oxidation to electrical energy can be implemented using electrochemical devices
such as protonic ceramic fuel cells [36–41]. This requires new high-effective materials
such as electrodes, electrolytes and interconnectors with good compatibility between each
other. The traditional and most investigated proton-conducting materials are barium cerate
zirconates BaCeO3-BaZrO3, which are characterized by perovskite structure [42,43]. How-
ever, they are characterized by a relatively low concentration of protons and low chemical
resistance to carbon dioxide. Consequently, novel advanced proton-conducting materials
with top characteristics of target properties are strictly needed.

Layered perovskite structure is related to classical perovskite structure. The main dif-
ference is the separation of the perovskite framework by the layers with different structures.
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Layered perovskites with the general formula AA’nBnO3n+1 belong to members of layered
perovskite family such as compositions with the Ruddlesden–Popper structure. Perovskite
slabs A’BO3 are divided by the rock salt layers AO in this structural type, and the existence
of compositions with a different “n” is possible. Layered structures provide a concentration
of protons an order of magnitude higher than that of classic perovskites. The realization
of proton transport was proved for monolayer perovskites such as BaNdInO4 [44–48],
BaNdScO4 [49], SrLaInO4 [50–54], BaLaInO4 [55–60] and compositions based on them in
the last few years [61]. Such compositions can be potentially used as electrolytic materi-
als in the proton-conducting fuel cells. Various types of doping, including cationic [62]
and oxyanionic [63], were investigated. However, the substitutions were implemented
by the ions with a stable oxidation state. Meanwhile, the introduction of ions capable of
changing their valence can provide control over the contributions of the electronic and
ionic components of conductivity. In the future, this can ensure the creation of electrode
and electrolyte materials with the same crystal structure and similar chemical composition,
which should provide excellent compatibility. In this work, a Pr-doped ceramic material
based on BaLaInO4 was obtained and investigated for the first time. The possibility of
protonic transport was revealed.

2. Experimental Procedure

The phase BaLa0.9Pr0.1InO4 was synthesized via the nitrate–citrate route according
to [52]. The starting reagents Ba(NO3)2, In(NO3)3·6H2O, Pr(NO3)3·6H2O and
La(NO3)3·9H2O were used. The X-ray diffraction analysis (XRD) was implemented at
the Cu Kα diffractometer Bruker Advance D8. The full profile Le Bail regiments were
implemented via the FullProf Suite software. The method of scanning electron microscopy
(SEM) of powder and ceramic samples was realized using microscope VEGA3 TESCAN
coupled with an energy-dispersive X-ray spectroscopy system (EDS).

The thermogravimetry (TG) measurements were implemented by the Netzsch Anal-
yser STA 409 PC. The samples were initially hydrated using the method of cooling from
1000 to 150 ◦C (0.5 ◦C/min) at wet Ar flow. During TG-measurements, the samples were
heated from 40 to 1000 ◦C with the speed 10 ◦C/min at dry Ar flow.

The resistance of ceramic samples was collected via the impedance spectrometer Elins
Z-1000P. The ceramic pellets with a 10 mm diameter and 2 mm thickness were pressed
for the investigations. Pt-electrodes were applied on the surfaces of the samples. The
temperature range 200–1000 ◦C was covered, and the speed of cooling was 1◦/min. The
dry atmosphere was obtained by the circulating of air or Ar through phosphorus pentoxide
(pH2O = 3.5 × 10−5 atm). The wet atmosphere was obtained by the passing of air or Ar
through a saturated solution of potassium bromide (pH2O = 2 × 10−2 atm).

3. Results and Discussions

The phase characterization of composition BaLa0.9Pr0.1InO4 was made using XRD
analysis. Figure 1a represents the Le Bail refinement of the X-ray obtained data. The
composition is single phase and it has orthorhombic symmetry (Pbca space group). The
image of the crystal structure of the monolayer perovskite is presented in the inset of
Figure 1a. The introduction of Pr3+ ions into the La3+ sublattice (isovalent doping) leads
to the expansion of the crystal lattice (Table 1). An increase in the size of the unit cell
is observed during doping despite the close ionic radii of trivalent metals Pr3+ and La3+

(rLa3+ = 1.216 Å, rPr3+ = 1.179 Å [64]). The presence of ions with different electronegativity
(χLa = 1.10, χPr = 1.13 [65]) could be the cause of the changes in the local structure and
in the interatomic distances due to the additional repulsion effects. A similar effect was
observed for another doped composition based on BaLaInO4 [59,60], and the presence of
ions with different electronegativity in the same sublattice can be considered as the reason
of the changes in the crystal lattice size.
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Figure 1. The results of the XRD—(a) (Rp = 2.11, Rwp = 2.25, χ2 = 1.32) and SEM-investigations
(b,c) for the composition BaLa0.9Pr0.1InO4.

Table 1. The geometric characteristics of the crystal lattice for the compositions BaLa0.9Pr0.1InO4

and BaLaInO4.

Composition a, Å b, Å c, Å V, (Å3)

BaLa0.9Pr0.1InO4 12.968 (1) 5.911 (9) 5.917 (9) 453.17 (7)
BaLaInO4 [56] 12.932 (3) 5.906 (0) 5.894 (2) 450.19 (5)

The morphology of the obtained sample was checked using scanning electron mi-
croscopy. Composition BaLa0.9Pr0.1InO4 consists of grains (~3–5 μm) agglomerated in the
particles with the size ~10 μm (Figure 1b,c). The elemental composition was proved via
EDS analysis. The average element ratios for BaLa0.9Pr0.1InO4 composition are presented in
Table 2. The good agreement between theoretical and experimental values was confirmed.

Table 2. The results of the energy-dispersive analysis for the composition BaLa0.9Pr0.1InO4 (theoretical
values in atomic % are provided in the brackets).

Metal Barium Lanthanum Praseodymium Indium

Content
33.4 29.9 3.2 33.5

(33.3) (30.0) (3.3) (33.4)

The amount of water uptake was measured via thermogravimetry (TG) coupled with
the differential scanning calorimetry (DSC) method. The results are presented in Figure 2.
As we can see, the initially hydrated composition loses mass due to water release that was
confirmed by MS-results. No other volatile components were detected. The main mass
loss happens at ~ 200–400 ◦C, which is confirmed by the signal on the DSC-curve (green
line in Figure 2). The dissociative water intercalation into the crystal structure of layered
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perovskites is possible due to the placement of hydroxyl groups in the rock salt space of
the layered framework [62]:

H2O + Ox
o ⇔ (OH)•o + (OH )

′
i (1)

Figure 2. The TG, DSC and MS results for the composition BaLa0.9Pr0.1InO4.

Consequently, the increasing of the crystal lattice size should lead to the increasing
of the water uptake [62]. As we can see, the water uptake for the Pr-doped composition
is about 1 mol water per formula unit (Figure 2), which is bigger than 0.62 mol registered
for undoped BaLaInO4 composition [62]. In other words, a good correlation between the
changes of the geometric characteristics of the unit cell and water uptake is observed.

The electrotransport properties of the Pr-doped composition were investigated via
the impedance spectroscopy method. Nyquist plots under dry and wet air at 400 ◦C are
presented in Figure 3a as an example of collected data. The calculation of conductivity
values was made using the resistance value obtained by extrapolating the high-frequency
semicircle to the abscissa axis (capacitance ~10−12 F/cm). The effect of variation in oxygen
partial pressure to the conductivity values is presented in Figure 3b. As we can see, the
electrical conductivity is mixed hole ionic at dry oxidizing conditions. The share of oxygen
ionic transport does not change at the temperature variation, and it is around 25%, which is
comparable with the value (20%) for undoped BaLaInO4 composition [56]. We can suggest
that the dopant concentration of 0.1 mol is not enough to have a meaningful impact on
the conductivity nature. At the same time, the nature of dopant is also a possible reason
for the absence of significant changes in the nature of conductivity. However, a significant
increase in the conductivity values (~1.5 orders of magnitude) during doping is observed
(Figure 3c,d). The most probable reason for the increase in the mobility of oxygen ions is
due to the increase in the size of the crystal lattice and space for ionic transport. It should
be noted that the conductivity values from the electrolytic area (oxygen ionic conductivity,
pO2 < 10−5) do correlate well with the conductivity values obtained at the Ar atmosphere.
This allows us to consider the values obtained in argon as ionic conductivity values.
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Figure 3. The Nyquist plots for the composition BaLa0.9Pr0.1InO4 obtained under dry and wet air
at 400 ◦C (a), the dependencies σ – pO2 for the composition BaLa0.9Pr0.1InO4 (violet symbols) at
dry (closed symbols) and wet (open symbols) atmospheres (b), the dependencies σ –1000/T for the
compositions BaLa0.9Pr0.1InO4 (c) and BaLaInO4 [56] (d).

The humidity of the atmosphere affects the conductivity values below 600 ◦C. The
proton concentration increases with temperature decreases. This is because of the increase
of the conductivity under wet conditions in comparison with dry conditions (Figure 3b,c).
The proton conductivity was calculated as the difference between conductivity values
obtained under wet Ar and dry Ar:

σH+ = σwet Ar − σdry Ar = σion
wet − σion

dry (2)
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and its temperature dependencies are shown in Figure 4a. As we can see, the pro-
tonic conductivity for the Pr-doped composition is higher than the undoped sample by
~1.5 orders of magnitude. This increase is due to the increase in both the proton con-
centration and proton mobility (Figure 4b). The proton conductivity value for doped
BaLa0.9Pr0.1InO4 composition is 5.0 × 10−6 S/cm (T = 400 ◦C) in comparison with
2.7 ×·10−7 S/cm for BaLaInO4 composition that is 18 times greater. It can be suggested that
the change in the dopant concentration and dopant nature can lead to significant changes
in the nature of electrical conductivity.

Figure 4. The dependencies of conductivity (a) and mobility (b) of protons vs. temperature for the
compositions BaLa0.9Pr0.1InO4 and BaLaInO4 [56].

4. Conclusions

The layered perovskite BaLa0.9Pr0.1InO4 was obtained and investigated as a pro-
tonic conductor for the first time. The possibility of proton transport is shown. It was
proved that isovalent doping Pr3+ → La3+ leads to an increase in the crystal lattice size,
proton concentration and proton mobility. The proton conductivity value for the doped
BaLa0.9Pr0.1InO4 composition is 5.0 ×·10−6 S/cm (T = 400 ◦C), in comparison with the
2.7·× 10−7 S/cm for BaLaInO4 composition that is 18 times greater. Further research for a
dopant capable of a significant change in its electrical conductivity nature is relevant. Lay-
ered perovskites based on BaLaInO4 are promising materials for application in proton con-
ducting
electrochemical devices.
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Abstract: The purpose of this study is to develop an effective control method for a hybrid energy
storage system composed by a flow battery for daily energy balancing and a lithium-ion battery
to provide peak power. It is assumed that the system operates behind the meter, the goal is to
minimize the energy cost in the presence of a PV installation (as an example of a local renewable
source) and energy prices are determined by 3-zone tariffs. The article presents the application of
an optimization method to schedule the operation of each battery in the system. The authors have
defined an optimization method aimed at minimizing the total cost of the system, taking into account
energy costs and batteries depreciation. The techno-economical model of the system, including
battery degradation, is constructed and the cost optimization methods are implemented in Python.
The results are validated with real energy and price profiles and compared with conventional control
strategies. The advantages of optimization in terms of energy cost are discussed. The experiment
shows that not only is a hybrid energy system successful in lowering the total operation cost and in
increasing self-consumption but also that the implemented methods have slightly different properties,
benefits and issues.

Keywords: hybrid energy storage system; optimization algorithm; peak shaving

1. Introduction

Large scale deployment of energy storage systems (ESS) is seen as a cost-effective
solution for deep decarbonization of electric power systems, which also allows the system
stability in the presence of intermittent renewable energy sources (RES) to be maintained [1].
ESS are also seen as part of the solution to reduce the reliance on external fossil fuel imports
and high electricity prices [2]. Among available technologies, pumped hydro is still leading;
however, grid-scale battery storage is gaining momentum with lithium-ion technology
leading and flow batteries emerging [3]. In [4], the overview of technologies, optimization
objectives and approaches regarding battery energy storage systems are presented.

Each battery technology is suited for different applications, ranging from short term
power system stabilization requiring high power [5] to energy balancing on a daily basis
that requires high capacity [6]. The most popular goal of using ESS is the reduction of the
operation costs and the maximization of the self-consumption from RES. The profitability
aspects are key for the practical popularization of energy storage. An ESS enhances the
possibilities of the system by introducing the possibility of shifting part of the energy
usage from the moments when cheap or surplus energy is available to the times when it
is most needed and/or most costly. The economic outcome is one of the most popular
optimization goals realized by a number of methods using classic, e.g., mixed-integer linear
programming [7] and heuristic methods, e.g., deep reinforcement learning [8], genetic
algorithm and particle swarm optimization [9].

Energy storage is usually just an element of a more complex system that manages
the installations and the whole microgrid. Such systems need to be governed by so called
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energy management systems (EMS), which have been developed for a long time in various
configurations. The key to battery functionality and long life depends largely on the battery
management system (BMS) and the EMS [9]. Many such models have been developed;
some focus on a very detailed model that includes temperatures, voltages, currents and
state of charge, e.g., [10], while others use less detailed models but consider the long-term
behavior of the system [11].

Basic concepts and different topologies of EMS are presented in [12]; the review
of the different approaches can be found in [13,14]. In [15], an EMS, including battery
management, which was tested in a real-life environment, is presented.

Hybrid energy storage systems (HESS), consisting of at least two battery types with
complementary characteristics, are seen as a comprehensive solution in many applica-
tions [16]. Specifically, stationary microgrids seem to benefit from HESS integration [17];
their role may include energy balancing [18], power quality improvement [19] and off-grid
operation [20]. Although most of the articles that focus on the energy management of HESS
refer to electric vehicles and battery/supercapacitor combination, stationary applications
are less explored.

In the review [21], the general classification of energy management systems that are
focused on hybrid energy storages is presented. The types of management systems are
divided by the objectives and by types, with two general categories: a classical approach
and an intelligent approach. There are a few publications regarding EMS that consider
hybrid energy storage. In [22], the application of a hybrid storage, consisting of a flow
battery and a lithium battery, were simulated for a setup with off-grid renewable power.
Ref. [23] shows the advantages of heterogeneous energy storage systems but also explains
the possible problems with the implementation of EMS in such a setup, especially when
the characteristics of the batteries are substantially different.

The challenge in developing a HESS is to create a more optimal environment for bat-
teries of different technologies in order to maximize their lifetime and the benefits resulting
from their operation. We approach this by enclosing the different battery technologies in a
single system, a sort of energy storage black box from outside, which automatically creates
the best possible environment and usage patterns for the contained technologies.

In order to make the hybrid battery work, a modular EMS is created that consists
of two parts: an optimizer that uses predictions and an online controller that copes with
deviations from the predictions. The optimizer needs the prediction of both the energy
usage and the energy production in order to determine the charging schedule for the next
time frame. However, predictions are always prone to uncertainty, so an online controller
considers the predictions and adjusts them for the reality of the moment.

In this work, the focus is on a method to optimally determine the operation of the
HESS applied to historical data rather than predictions. The reason for this is that it will
show us the possibilities and impacts of the batteries, not only for peak-shaving purposes
but also for economic purposes. In particular, that latter aspect is of importance: showing
the economic viability of the hybrid battery on historical data allows for verification against
the true results and can be used as justification for the hybrid battery concept.

The goal of the presented work is to develop a control strategy for an EMS that
schedules HESS with the aim of minimizing energy cost. The original contribution of this
work is:

• Design and implementation of a techno-economical model of a HESS operating in
a microgrid;

• The creation of a model that includes two battery types with their respective round trip
efficiencies and costs of depreciation related to battery degradation during cycling;

• The design of an optimization method that calculates a schedule for each battery in a
24 h window;

• The validation and comparative analysis of a proposed method with a benchmark
approach based on real life energy usage and production data of a research centre
in Poland;
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• The novelty of the proposed method is the considering of the multi-battery setup
and the inclusion of battery depreciation cost related to its degradation, so that total
operating costs are minimized.

2. Materials and Methods

2.1. HESS Model

The setup considered in this work was a scenario of a microgrid that is equipped with
RES; in the presented case, this was in the form of a photovoltaic (PV) installation. The
system was equipped with a behind-the-meter HESS as shown in Figure 1.

Figure 1. The schematic model of the HESS operating in a microgrid.

Energy profiles were extracted from the historical data recorded by power analyzers
at the KEZO Research Centre, Jabłonna, Poland. The usage was gathered from 3 buildings,
which had laboratories, conference rooms, kitchens, bathrooms, administration offices,
hotel rooms and a server room. The annual consumption was around 221 MWh; it was
characterized with irregular patterns of usage—there were long intervals with a very high
level of usage, but also non regularly appearing peaks. The usage was variable, ranging
from 10 kW to 60 kW, with two dominating values around 20 kW and 38 kW (Figure 2). The
centre was equipped with PV installations amassing 180 kWp in total, generating 144 MWh
annually. The profiles of power generation and usage were aggregated in 15 min intervals,
which is a commonly used interval of energy data gathering and it is consistent with the
standard output of the energy meters. The usage and production aggregated per month is
presented in Figure 3.

The HESS installed and used in the KEZO power system and modelled in this work
consisted of a vanadium redox flow battery (VRFB) and a lithium-iron-phosphate (LFP)
battery. The parameters of HESS batteries used for simulations are given in Table 1.
Generalized battery cost and performance (number of cycles, efficiency) data were based
on [24]. The batteries were connected logically in one network and were managed by the
EMS system installed on an industrial computer.
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Figure 2. The histogram of power of consumption in the used example in KEZO Research Centre.

Figure 3. The energy of usage and production aggregated by month (data from the KEZO Re-
search Centre).

Table 1. Hybrid energy storage system parameters assumed for the simulation.

Parameter Symbol Unit VRFB LFP

Installed capacity Ebol kWh 100 54

Max. continuous power Pmax kW 15 32

Allowed depth of discharge DoD % 100 80

Nominal number of cycles NoC - 5200 2000

Round trip efficiency RTE % 68 86

Battery block replacement cost ReC PLN/system 166,000 60,750

The model included linear battery degradation, which reflected the battery capacity
loss during its usage and the cost of replacing the battery block (ReCi) after exceeding
nominal energy throughput (Thi). To evaluate depreciation cost of operating the battery,
the degradation cost was calculated by multiplying discharge energy by a degradation cost
factor (DCF). This factor was calculated as follows for each of the batteries (i—index of each
battery in the HESS):

DCFi = ReCi/Thi (1)
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where:
Thi = NoCi ∗ (DoDi ∗ Ebol,i) (2)

The Thi is the nominal throughput of the storage calculated as the multiplication of
number of cycles (NoC), depth of discharge (DoD) and the nominal capacity (Ebol)—the
values for the considered setup are presented in Table 1.

The battery model also accounted for energy losses in the batteries. At the battery
charging instants, a round trip efficiency (RTE) factor was applied to calculate the energy
available for discharge.

For the sake of model simplification and reduction of computational burden, efficiency
and degradation remained independent of the battery’s operational parameters, such as
temperature, current and DoD.

The model was simulated with up-to-date Polish market prices in tariff B23, which is a
real tariff for this type of building and usage. The energy tariff has three zones: the morning
peak (from 7:00 until 12:00)—2.53 PLN/kWh, the evening peak (varies between seasons
but ranges from 16:00 until 22:00)—3.43 PLN/kWh and the off-peak—1.96 PLN/kWh [25].
Surplus of energy was sold at the flat rate of 0.472 PLN/kWh [26]. The price profiles are
depicted in Figure 4.

Figure 4. The price tariff for the selling and purchase of energy to/from the grid for months
October–March.

The aim was to show that the HESS can be economically justifiable and that it increases
the self-consumption of the energy produced from the RES. The aim of the implemented
optimization method was solely to minimize the cost of operation, a problem for which a
solver was used. A simple control method—energy balancing—was given as a benchmark.
Control methods are described in detail in the following sections. We assumed that the
usage and production of the energy was not subject to changes. The only thing that changed
the balance at the point of coupling with the grid was the operation of the HESS.

2.2. Energy Balancing

The benchmark method was chosen to represent the most simplistic operation of the
ESS in the given setup. The idea of the basic energy balancing was very simple: the energy
storage charges when production exceeds load and discharges when power was imported
from the grid [27]. This control method minimized the exchange of energy with the
external grid and did so without considering tariffs or even energy prices, thus foregoing
possibilities for price arbitrage. On the other hand, such a method was guaranteed to use
as much of the local RES overproduction as possible, in which case it potentially managed
to increase self-consumption. In periods with low production from RES, the energy storage
may not have a chance to charge. In our model, which assumed PV sources, this occurred
in times with less sunshine, and, as a consequence, the HESS spent most of the winter time
in a discharged state, thus not helping to decrease the costs of energy. On the upside, not
using the battery implied that there is no degradation cost—the model is simplified and did
not consider any degradation that might be caused by leaving the battery in an extremely
low state of charge.
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2.3. Economic Optimization

The operation of the HESS is described by its average power in a time period t and
denoted as pHESS(t) = ∑i∈{LFP, VRFB} pi(t). The optimization happened in a time window,
which had T periods. Any length of time window can be chosen, but the size of this time
window correlated with the duration of the computation: the longer the total time, the
longer the computation will be. As we assumed that energy comes from PV and, in general,
daily cycles are observed in usage patterns, it made sense to choose the total duration of T as
24 h. To speed up the calculation of the solver, an initial solution was calculated and passed
to the optimizer; this was a vector of length T of values pi(t), where i ∈ {LFP, VRFB}.
This initial solution suggested discharging at times of high-price tariff and charging in the
low-price tariff. The gain in the time of calculation was small and neglectable. The grid
balance at time t was denoted by pgrid(t). The general rule was that the energy sent from
the installation to the grid and the energy from the installation to the battery was positive;
the energy taken from grid and the energy taken from the battery was negative.

The aim was to minimize the total balance that is influenced by the battery operation;
therefore, the goal function fi was:

fi =
T

∑
t=0

⎧⎨⎩
∣∣∣pgrid(t) + pi(t)

∣∣∣ ∗ cbuy(t) + degri(t), i f
(

pgrid(t) + pi(t)
)
> 0∣∣∣pgrid(t) + pi(t)

∣∣∣ ∗ csell(t) + degri(t), i f
(

pgrid(t) + pi(t)
)
≤ 0

(3)

degr(t) =
{

pi(t) ∗ DCFi, i f xi(t) < 0
0, i f xi(t) > 0

(4)

The goal function includes the tariffs: cbuy(t) is the unit cost for buying energy from
the grid for the given time frame t, and csell(t) is the unit profit for selling energy to the
grid. As we assumed that the tariff can change in each t, the main difference with peak
shaving was that now it was not just the amount of energy that mattered at a time t, but
this amount was linked via the tariff with the time at which it occurred. This combined
energy with price, allowing an optimization for the general idea of reducing the amount of
energy bought during price peaks with the aim of reducing the cost.

The constraints included the limitation for charging power:

∀t : pi(t) + pchg,i > 0 (5)

where pchg,i is the maximum power allowed for charging the battery.
Symmetrically there is a limitation for discharging power:

∀t : pdchg,i − pi(t) > 0 (6)

where pdchg,i is the maximum power allowed for discharging the battery. In the examples,
pchg,i = pdchg,i = Pmax,i.

Constraints of the state-of-charge (SOC) values were defined for each of the consecutive
power values for energy storage at each time t. For not exceeding maximum state of charge,
constraints were defined as follows:

∀t : (Ebol,i − ei(t))−
t

∑
j=0

ei(j) > 0 (7)

There are T-1 such constraints for charging the energy storage as power had to be
recalculated to the equivalent energy e(t) that was inserted into the battery. The charging
energy was multiplied by the RTE value.

For not exceeding minimum state of charge, constraints were defined as follows:

∀t :
(

ei(t)− Ebol,i ∗
(

SOCmin,i

100

))
+

t

∑
j=0

ei(j) > 0 (8)
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In this equation e(t) is the energy that is discharged or charged, in case the charging
of the RTE value is considered.

2.4. Implementation

The model was implemented in Python [28] as it is one of the popular languages with
many well-implemented libraries. The libraries used were: pandas (which contains the very
useful DataFrame structure that allows for database-like operation on data), numpy [29] (a
package that contains a wide number of data structures and functions for data analysis and
scientific methods), scipy [30] (which is equipped with a set of well-known optimization
methods and also methods for interpolation and statistical analysis) and datetime (library
for advanced operations on date–time formats).

The scheme of the software developed by the authors to run the technical and economic
models, to calculate the optimization algorithm and to analyze and plot the results is
illustrated in Figure 5. The model was designed to analyze the long-term (yearly) operation
of the installation, and for that purpose a 15 min time-step was chosen, as it is a standard
resolution of energy meters in Poland. This strictly binds the model to the data gathered in
real systems.

Figure 5. The general scheme of the operation of the optimization method.

The input data for the program were:

• The initial setup parameters, which included the general description of the microgrid
parameters and date range for the simulation—the program allowed us to calculate
the optimization for any data from a database or csv files.

• The information regarding energy prices—for the calculation of costs and revenues,
it was necessary to have the full information regarding the zones, which can change
monthly, and the prices of tariffs. The program has the ability to read the prices from a
csv file in case there are dynamic tariffs; for the purpose of the project, the most typical
Polish tariffs were implemented.

• The setup of the HESS—the parameters relevant for cost calculation and optimization
of each battery that constitutes HESS had to be defined. The parameters were: the
capacity, the maximum power of charging and of discharging, depth-of-discharge
(DoD), number of cycles limit (NoC), round-trip efficiency (RTE), the capex cost and
the cost ReC of replacing the battery unit when it reaches the end of its life.

• Time series of load and generation values for the installation—the required format
consisted of separate files with a timestamp and average power in a row of csv files.

• The tariff profile file that consisted of a timestamp, the price for purchasing energy
from the grid (or other entity in future, e.g., an aggregator) in PLN per kWh, the price
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for selling energy to the grid (or other) in PLN per kWh. It can represent dynamic
tariffs [31] related to market or fixed peak hours tariffs. We assumed that changes can
occur after a 15 min interval.

The data flow of the implemented model is schematically presented in Figure 5. The
first stage is the initialization of a single DataFrame type structure with all the data indexed
by a timestamp. Thanks to this, it is possible to make fast operations on columns and rows
without the danger of missing the time alignment of the data. The program calculates initial
balances of the energy pgrid that result from local load pload and generation pPV profiles and
initializes structures for energy storage operation. The output data are the input to the
optimization algorithm, which sequentially calculates the battery levels.

The program divides the data into 1-day-long chunks (starting from midnight) as
daily patterns in usage are very often present and the production from PV modules has, by
default, strong daily patterns.

Many different solvers were tested, the COBYLA [32] solver was the fastest in execu-
tion, but there were small fluctuations in the result that were not explainable in context of
the test case. We chose SLSQP [33] as it is based on verified methods; for the considered
problem, it should be effective in finding an optimal solution—if there is one—in reasonable
time, without the need for extensive adjustments of the solver’s parameters. The SLSQP
optimizer is a sequential least squares programming algorithm, it applies the Han–Powell
quasi-Newton method with a Broyden–Fletcher–Goldfarb–Shanno algorithm update of the
B-matrix and an L1-test function in the step-length algorithm. Its implementation contains
a modified version of Lawson and Hanson’s nonlinear least-squares solver. The original
source code was provided by Dieter Kraft in 1991, based on his work presented in [34].
The SLSQP was used in many publications in the domain of energy, e.g., [35,36]. The
convergence and properties of the SLSQP are described in [37] and [38]. The parameters of
the solver in this implementation were: maximum 500 iterations and the precision goal for
the value of the goal function in the stopping criterion equals 0.1.

The optimization algorithm was called for each 24 h time window independently; only
the final state of charge of each battery within HESS was passed to the next iteration. The
outcome of the optimization was a time-series of the HESS operation—its discharge and
charging power, change in the state of charge and amount of losses. Losses of the battery
were defined as impacting the energy while charging—the program subtracts part of the
energy that was equivalent to the 1–RTE.

The order of calculating the energy storage was defined by the durability of the battery,
which was the nominal number of cycles NoC. The storage was ranked with this parameter,
and the one with the highest value was considered first. This approach was chosen as a
method to maximize overall durability of the HESS. When the first energy storage was
calculated, the program recalculated the balances to include the energy storage impact on
the installation. Then, the optimizer started with the next battery in line. Due to the nature
of applied batteries it was assumed that priority would go to VRFB because of its high
cycle life, low power and large capacity. The LFP battery was calculated in the second step
to supplement operation of energy storage when higher power was needed. After each
round, the details on the operation of each battery were saved and were also aggregated to
the operation of the whole hybrid storage, which consisted of the sum of charging power,
discharging power and losses.

The last step was calculating the economic balance of the costs and revenues from
the installation. This was calculated for two cases: (a) with HESS and (b) without HESS.
On the side of the revenues was the energy that was sold to the grid, which was solely
overproduction from the local energy sources. On the cost side was the energy that had to
be bought from the grid, as well as the cost of the degradation of the batteries, which was
calculated proportionally to the battery throughput.

The analysis of the complexity was performed. We used the O-notation, as defined
in [39], as it is a known standard in the defining of algorithm’s complexity. In the balancing
algorithm, the complexity depended only on the number of considered batteries (Nb) and
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number of days the calculation was performed for (n), the complexity is O(Nb×n) as the
time of calculation of the operation plan for a battery was constant. The optimization
method was different—it used a solver and the number of iterations varied depending on
the shape of the goal function. The worst case scenario was when there was no convergence
and solver reached the maximum number of iterations, which was set to 500. Given that
the maximum number of iterations was limited, this can be treated as a constant factor, and
according to the O-notation this means the complexity of the operation was also O(Nb×n).

To estimate the mean time of calculation, we checked the distribution of the number
of iterations—the histogram is presented in Figure 6. The number of iterations in time for
both batteries is presented in Figure 7. On average, the simulation takes 186 iterations for
each 24h window, per battery.

Figure 6. The histogram of the number of iterations for the cost optimization method.

LFP VRFB

Figure 7. The number of iterations for each day of calculation for the cost optimization method.

3. Results

The annual energy balance without an energy storage system is presented in Figure 3.
In the following sections, a series of the graphs to visualize the performance of the behavior
of the HESS operating for a full year are presented. The performance of HESS governed by
different algorithms is analyzed in daily and seasonal horizons. Annual results for each
algorithm are summarized and discussed in Section 4.

To describe the context, the situation of energy flows and costs without any battery
system is presented in Figure 8. It is clearly visible that in winter, the purchase of energy in
different tariff zones is comparable to the duration of those zones in a day. In the summer
months, the photovoltaic installation is producing enough energy to cover the morning
peaks almost completely. However, the production cannot cover the evening peak tariffs.
The overall cost balance for the year is PLN 295,000, which includes the purchase of energy
and the selling of surpluses from PV production.
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(a) (b)

Figure 8. Monthly economic indicators for the setup without HESS or any other energy storage:
(a) purchase cost classified by tariff zones (tariff prices), (b) costs, profits and financial balance.

3.1. Energy Balancing

The first set presents the operation of the simple energy balancing algorithm. Figure 9
presents the performance indicators aggregated per month to give an overview of the
whole year’s operation. It is clearly visible that in winter months (November to February)
the role of the production from photovoltaic is marginal and almost all of the produced
energy is used for the self-consumption. In winter, the energy storage has no chance to
charge as there is no surplus of energy. From March to October the activity of the energy
storage is substantial, yet still, the storage is not able to completely rule out any purchase
energy from the grid for June and July. Figure 9d represents the monthly aggregation of
the energy bought and sold; in summer both can occur: sale and purchase can be present
in the same month as one month can contain days when there is enough power from RES
to cover the usage and sell, but the month can also contain days that might be too cloudy,
making it necessary to buy energy.

(a) (b)

(c) (d)

Figure 9. Results for the energy balancing method, aggregated monthly: (a) grid energy balance,
(b) energy usage and production (input data), (c) activity of the energy storage, (d) cost of purchased
energy and profit for sold energy.

The more detailed view of each month gives a much better picture of the actual HESS
performance. In Figures 10 and 11, the two different months are presented—January is
the month with minimal energy storage activity, and July is the month when a surplus
of produced energy allows the storage to cover the energy use in the evenings. On the 1
January, due to the initial settings of the simulation, the batteries are charged up to 50%,
which causes the discharge of the battery immediately. In the other days in January, PV
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generation does not exceed the load, so there is no ESS activity. In July, however, the
situation is much more interesting—there are days where there is no need to buy energy
from the grid (Figure 10d), which shows the real usefulness of the energy storage.

(a) (b)

(c) (d)

Figure 10. Results for the energy balancing method—data for the month of January, aggregated per
day: (a) grid energy balance, (b) energy usage and production (input data), (c) activity of the energy
storage, (d) cost of purchased energy and profit for sold energy.

(a) (b)

(c) (d)

Figure 11. Results for the energy balancing method—data for the month of July, aggregated per
day: (a) grid energy balance, (b) energy usage and production (input data), (c) activity of the energy
storage, (d) cost of purchased energy and profit for sold energy.

The following figures illustrate daily power profiles of the microgrid, including HESS.
To fully illustrate behavior of control algorithms under different conditions, three days are
chosen: 27 July with high PV generation (Figure 12), 4 October with medium PV generation
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(Figure 13) and 6 February with almost no PV generation (Figure 14). The dynamics of the
different types of batteries are clearly visible—the VRFB has more capacity, which cannot be
fully used due to its lower power. Very visible is the non-optimal behavior of immediately
discharging the storage at the beginning of the day in case the batteries have not discharged
during previous day. Night time is related to lowest energy prices, so such behavior is not
economically justifiable.

(a) (b)

(c) (d)

Figure 12. Results for the energy balancing method—data for 27 July: (a) grid power balance,
(b) energy usage and production (input data), (c) batteries power, (d) batteries state of charge.

(a) (b)

(c) (d)

Figure 13. Results for the energy balancing method—data for 4 October: (a) grid power balance,
(b) energy usage and production (input data), (c) batteries power, (d) batteries state of charge.

(a) (b)

(c) (d)

Figure 14. Results for the energy balancing method—data for 6 February: (a) grid power balance,
(b) energy usage and production (input data), (c) batteries power, (d) batteries state of charge.

In October, the situation is similar to the summer time—there is still enough PV produc-
tion that allows using both batteries to reduce the power exchange with the grid—first the
VRFB is discharging, later the LFP takes over.

374



Appl. Sci. 2023, 13, 518

In winter (Figure 14), the energy storage is not active as there is little overproduction
to be used.

Figure 15 summarizes the financial aspect of the HESS operation. Figure 15a depicts
cost of energy purchased in each tariff zone, which clearly demonstrates that the high
afternoon peak is not avoided, especially in winter months. In summer months, the PV
production combined with the storage can substantially reduce the exchange with the
grid. The overall costs and profits are presented in Figure 15b showing that the overall
financial outcome is positive in June. Figure 15c gives the values of the surplus RES energy
used directly or captured by the HESS. It is calculated as the costs that would have been if
there was no energy production. In Figure 15d, the costs saved by the energy storage are
presented, this includes the costs that are caused by the degradation of the storage—it is
calculated from the difference of the total outcome with and without HESS. The overall
cost balance has substantially decreased compared to the situation without the batteries at
all, the value is PLN 266,028. This clearly shows that even the simple algorithm of battery
management can lower the yearly costs of the operation of the facility.

(a) (b)

(c) (d)

Figure 15. Results for the energy balancing method—monthly economic indicators: (a) purchase
cost classified by tariff zones (tariff prices), (b) costs, profits and financial balance, (c) costs of energy
saved by PV generation, (d) costs of energy saved by HESS operation.

3.2. Economic Optimization

The method of economic optimization is focused on reducing the overall cost of operating
of the facility; it should use the energy storage to decrease the usage during peak times and
charge in case of surplus or during low-zones of the tariffs. Before the run of the experiments, an
analysis of the tariff prices and the degradation costs showed that, according to the calculations,
the VRFB should be profitable to use for arbitrage when low tariff and evening peak tariff is
considered. It is not profitable to use this storage to move energy from the morning peak to
evening peak. The LFP battery has a different degradation cost and RTE, which makes it useful
to move energy from the low and morning peak tariff to the evening peak. The using of batteries
to increase the surplus of energy produced by PV is always profitable. The execution of the
program showed that, very rarely, there is problem with convergence, especially in days with
high production from PV modules. On such days there is an excess of energy, which generally
creates the multiple solutions that are equivalent for the optimizer.

A comparison of the balancing method and the economic optimization method showed
that the latter uses HESS all year round (see Figure 16c). However, the energy purchase costs
and sell profits are not much different compared to the balancing algorithm (Figure 16d).
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(a) (b)

(c) (d)

Figure 16. Results for the economic optimization method, aggregated monthly: (a) grid energy
balance, (b) energy usage and production (input data), (c) activity of the energy storage, (d) cost of
purchased energy and profit for sold energy.

The more detailed view of each month provides a much better picture of the actual
performance. In January, the HESS uses a lot of the batteries but only to move energy from
the expensive time of the day to the cheaper tariff times. There is almost no difference in
the cash flow of selling energy, but there is a visible difference when the cost of buying
energy from the grid is considered (Figure 17d).

(a) (b)

(c) (d)

Figure 17. Results for the economic optimization method—data for the month of January, aggregated
per day: (a) grid energy balance, (b) energy usage and production (input data), (c) activity of the
energy storage, (d) cost of purchased energy and profit for sold energy.

In July, the situation is very different—the energy storage reduces bought energy and
consumes less from the surplus of the produced energy (Figure 18a). The total sell profits
are higher, but also the cost of import from the grid is higher (Figure 18d). The economic
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optimization method in certain situations is more costly compared to the energy balancing
method; it is due to the limitation of the optimization process to 24 h; this is the reason for
the modified economic optimization, which is described further in the next section.

(a) (b)

(c) (d)

Figure 18. Results for the economic optimization method—data for the month of July, aggregated per
day: (a) grid energy balance, (b) energy usage and production (input data), (c) activity of the energy
storage, (d) cost of purchased energy and profit for sold energy.

Checking the details of the algorithms, a very clear difference can be seen in the
example day in July (Figure 19)—the batteries are discharged slowly and their energy is
almost uniformly distributed over the whole period where there is a need to decrease
energy usage. Similarly, charging shows no extremes, the speed of charging is decreased
but maintained for a longer time. Analyzing the behavior day by day, it is clear that the
optimizer is considering the degradation costs—the batteries are charged only to the point
that is necessary to cover the single day. On 27 July and 4 October, it is especially visible
(Figure 20) that the state of charge of the batteries is not reaching the maximum levels,
even when it is possible to fully charge from the surplus of produced energy. Generally,
the optimizer finds solutions that require smaller power to charge or discharge batteries,
which is positive from the durability of the batteries but does not use the full capacity of
the batteries when it is possible to charge from the PVs.

(a) (b)

(c) (d)

Figure 19. Results for the economic optimization method—data for 27 July: (a) grid power balance,
(b) energy usage and production (input data), (c) batteries power, (d) batteries state of charge.
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(a) (b)

(c) (d)

Figure 20. Results for the economic optimization method—data for 4 October: (a) grid power balance,
(b) energy usage and production (input data), (c) batteries power, (d) batteries state of charge.

During winter (Figure 21), the behavior of the batteries shows the typical schedule of
the HESS operation used for price arbitrage. Batteries are being charged during off-peak
hours, even if it means importing extra amounts of energy from the grid. During the
morning peak, the HESS power remains close to zero, while in the evening peak the highest
priced batteries are being discharged. Both the VRFB and the LFP battery follow similar
patterns. This behavior is consistent with our assumptions, based on the difference in prices
between the price zones in the tariff.

(a) (b)

(c) (d)

Figure 21. Results for the economic optimization method—data for 6 February: (a) grid power balance,
(b) energy usage and production (input data), (c) batteries power, (d) batteries state of charge.

The economic factors clearly show that the economic algorithm that reduces the
purchase of energy is the highest tariff (Figure 22a), at the same time increasing the use of
energy from the lowest tariff, especially in winter months. The general costs of the system
are smaller when compared to the situation without any energy storage and also lower
than the benchmark. The arbitrage in winter is decreasing the overall cost of operation of
the whole facility. The experiments revealed a problem in which the batteries do not charge
fully in case of a surplus of energy (this situation is visible on Figure 19b). This is caused
by the fact that there is no value for the optimizer to keep a higher state of charge of the
batteries at the end of the day. To solve the issue, the obvious action would be to run the
optimization for a longer period (e.g., a week, a month) but then the number of changing
variables would be significantly increased, which would bring two problems: the problem
with convergence and the extended time of computations.
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(a) (b)

(c) (d)

Figure 22. Results for the economic optimization method—monthly economic indicators: (a) purchase
cost classified by tariff zones (tariff prices), (b) costs, profits and financial balance, (c) costs of energy
saved by PV generation, (d) costs of energy saved by HESS operation.

3.3. Modified Economic Optimization

To deal with the problem of single-day optimization, a modification is proposed—the
optimizer does not care about the state of charge of the battery at the end of the day, but for
the next day it would be generally beneficial to have a higher state of charge, especially
when there is a surplus of production that could have been used. To implement that, an
extra rule was enforced after the optimization stage: when there is surplus of energy from
the renewable sources, the battery will always try to use as much of this surplus as possible
to charge. This modifies the solution returned by the solver in a way that the energy storage
reaches the full state of charge faster and more often, which, in consequence, causes an
increased state of charge of the energy storage at the end of the day. For the following day,
the optimizer will be given this raised state of charge to start its calculations. We tested
the solution and present the outcome on the following graphs—Figures 23–29. Figure 23
presents the monthly aggregated data—the increase in the operation of the energy storage in
the summer months is clearly visible in comparison with the optimization method without
modification. What is more, the import of energy has decreased, and, as a consequence, the
cost of imported energy is also lower.

The more detailed view of each month gives a much better picture of the actual
performance. In January (Figure 24), there are no changes in comparison to the optimization
method as there is no surplus of energy.

For the summer months, the differences are much more visible; the graph for July
shows the reduction in import and export of energy from and to the grid (Figure 25a). The
batteries are charging and discharging more (Figure 25c) and the cost of energy import has
dropped (Figure 25d). In this case, the difference between the energy balancing method and
the modified economic optimization is very small and is mainly caused by small oscillations
of the solutions given by the optimizer when it failed to reach the optimum solution in the
defined number of iterations.

In July, the increase in the amount and duration of the charging of both batteries is
visible. More of the surplus from the PV production is used. By the end of the day, the state
of charge of the VRFB is higher in comparison to economic optimization (Figure 26).
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(a) (b)

(c) (d)

Figure 23. Results for the economic optimization method with modifications, aggregated monthly:
(a) grid energy balance, (b) energy usage and production (input data), (c) activity of the energy
storage, (d) cost of purchased energy and profit for sold energy.

(a) (b)

(c) (d)

Figure 24. Results for the economic optimization method with modifications—data for the month of
January, aggregated per day: (a) grid energy balance, (b) energy usage and production (input data),
(c) activity of the energy storage, (d) cost of purchased energy and profit for sold energy.

The operation on 4 October (Figure 27) and 6 February (Figure 28) is almost the same
as in the economic optimization without modifications.

The economic indicators show very interesting changes—the modification is reducing
the use of the energy from the evening peak tariff, decreasing the overall energy costs for
the facility and increasing the savings from the PV production and the operation of the
HESS. The differences are not very significant, but the improvement is very clear, albeit
only in summer months.
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(a) (b)

(c) (d)

Figure 25. Results for the economic optimization method with modifications—data for the month
of July, aggregated per day: (a) grid energy balance, (b) energy usage and production (input data),
(c) activity of the energy storage, (d) cost of purchased energy and profit for sold energy.

(a) (b)

(c) (d)

Figure 26. Results for the economic optimization method with modifications—data for 27 July:
(a) grid power balance, (b) energy usage and production (input data), (c) batteries power, (d) batteries
state of charge.

(a) (b)

(c) (d)

Figure 27. Results for the economic optimization method with modifications—data for 4 October:
(a) grid power balance, (b) energy usage and production (input data), (c) batteries power, (d) batteries
state of charge.
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(a) (b)

(c) (d)

Figure 28. Results for the economic optimization method with modifications—data for 6 February:
(a) grid power balance, (b) energy usage and production (input data), (c) batteries power, (d) batteries
state of charge.

(a) (b)

(c) (d)

Figure 29. Results for the economic optimization method with modifications—monthly economic
indicators: (a) purchase cost classified by tariff zones (tariff prices), (b) costs, profits and financial
balance, (c) costs of energy saved by PV generation, (d) costs of energy saved by HESS operation.

4. Discussion

The overall aim of this work is to present an economic optimization algorithm for
hybrid energy storage that will improve the financial outcome of the setup and show that
the hybrid energy storage is a feasible solution to improve the self-consumption of energy
from PV installation. The results of the simulations for the benchmark and the proposed
HESS control strategies are summarized in Table 2.

The first part of the table focuses on the energy between the facility and the power grid.
The batteries generally decrease the import and export of energy; the energy balancing
approach is the most limited, due to the fact that it only operates on the surplus of the
energy produced by the PV installation. The economic optimizations are realizing arbitrage
all year round—buying energy when it is cheap and using it during peak times. The
self-consumption rates are interesting—this is the percentage of the energy produced by
the PV installation that was used within the installation, which show that, thanks to the
batteries, over 77% of the produced energy is either directly consumed or stored for later
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use. The difference between the storage management methods in this context is very small,
which shows that any storage increases the use of energy from PV and that the optimization
algorithms are rationally using the surplus from the PV production.

Table 2. Comparison of the control methods and the setup without storage.

Unit Without HESS
Energy

Balancing
Economic

Optimization

Modified
Economic

Optimization

Import of energy [MWh] 138.4 115.86 123.59 122.38
Export of energy [MWh] −61.5 −30.68 −32.84 −31.08

Self-consumption rate [%] 57.3 78.7 77.8 79.3
Energy balance [MWh] 76.8 85.19 90.75 91.3

Cost of import [PLN] 324,091 270,695 261,351 258,820
Profit from export [PLN] 29,060 14,478 15,502 14,671

VRFB Charge energy [MWh] 23.11 35.88 37.71
VRFB Discharge energy [MWh] − 15.78 24.45 25.71
VRFB Equivalent cycles - − 158 244 257
VRFB Expected Lifetime [years] − 33 21 20
VRFB Depreciation cost [PLN] 5038 7804 8207

LFP Charge energy [MWh] 7.78 17.78 18.21
LFP Discharge energy [MWh] − 6.79 15.33 15.78
LFP Equivalent cycles - − 126 284 292
LFP Expected Lifetime [years] − 16 7 7
LFP Depreciation cost [PLN] 4773 10,778 11,096

Energy cost [PLN] 295,031 256,217 245,850 244,150
Financial outcome
(including battery

depreciation)
[PLN] 295,031 266,028 264,432 263,453

The second section of Table 2 presents the costs of import and profit from the export of
energy. Although profits from exports are clearly correlated with the self-consumption rate,
the cost of imports are affected by the cost in tariff zones. Here, the energy balancing method
has the highest cost but uses the lowest amounts of import, which clearly demonstrates
that economic optimization methods manage to shift energy between the zones.

The subsequent section presents the summary of the batteries’ operation. Battery
charge and discharge energy is accumulated over the year to estimate the annual through-
put and calculate energy losses. Equivalent cycles are calculated using discharge energy,
nominal capacity and DoD. This, in turn, is used to estimate the lifetime of each battery
within HESS, allowing the estimation of the point in the investment horizon that replaces
the battery blocks. The economic optimization approaches make much more use of the
energy storage, and thus also shorten its lifetime.

The financial outcome accounts for energy trading costs (which include battery losses)
and for the depreciation of each battery (to account for the cost of battery block replacement
at the end of the expected battery lifetime). For comparison, the values of financial outcome
without depreciation costs was presented as this better shows how much the depreciation
of the battery costs.

Energy balancing uses every opportunity to charge batteries with surplus generation
that would be exported otherwise. As soon as the load is larger than generation, stored
energy is used to supply loads. Energy balancing does not cycle batteries at all in winter
time, when the PV installation does not generate surplus energy. It can be assumed that a
single battery performs on average one cycle every two days. As a result, the balancing
algorithm generates almost no cost savings in the winter months when the HESS stays in
an idle state.
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By contrast, the economic optimization methods leads to heavy balancing of the
batteries, resulting in the shortening of the expected lifetime. Additional cycles are caused
by the fact that cost optimization implies time-of-use strategy that charges a battery in an
off-peak tariff to use it during peaks. This results in increased energy losses and battery
depreciation. The advantages of including time-of-use strategy are seen in the financial
outcome. Figures 21 and 29 confirm that the majority of energy consumed is drawn from
the grid in the off-peak tariff. The HESS leads to cost savings all year round.

The optimization method has another significant advantage over the balancing al-
gorithms that was not reflected in the costs: it results in the operation of the LFP battery
with relatively lower power. This leads to operation of the battery at lower temperature,
and thus to an increased lifespan. This phenomenon has not been captured by the model
applied but is an important point to investigate in future works.

The modification of the optimization method was introduced to partly overcome the
problems connected to optimizing in 24 h windows. This 24 h window limits the horizon of
the optimizer to the end of the day, and as such the optimizer is unable to increase the state
of charge of the HESS, even if this would be beneficial for the next day. The implemented
modification improved the solution, but there might still be a slight improvement if the
optimization was calculated using longer time windows.

In this work, we limited the calculations to a 24 h window because the optimizer was
also intended to perform the on-line optimization for the continuous management of an
energy storage using forecasts; reliable forecasts can, however, only be obtained for the
next day. Additionally, we considered a single day time rational in the case of a setup with
a PV installation. The calculations were performed on standard desktop computers (CPU
i5 3.2 GHz, 16 GB RAM) and while the balancing algorithm calculation time was below a
minute, the simulation of an entire year using the economic optimization methods took
24 h. There is no possibility to parallelize the computations for this simulation as the state
of charge of the storage at the end of the day is an input for the next-day computation.

5. Conclusions

A valuable tool has been implemented to test, simulate and analyze the behavior of
the modelled HESS with battery models. The tool integrates a techno-economical model
of a microgrid, including loads and RES. The model includes two battery types with their
respective round trip efficiencies and costs of depreciation related to battery degradation
during cycling. This simulation tool facilitates the sizing of the HESS installation, as well as
the development and testing of control algorithms for scheduling the HESS operation. The
graphical interface allows easy provisioning of input data while also allowing a visualiza-
tion and analysis of the output data. The authors have implemented HESS control methods,
including a simple energy balancing algorithm and using an energy cost optimization. The
model and methods have been tested with real energy profiles recorded at a research centre.

The results explain the difference between the tested methods. The simple balancing
algorithm stores surplus RES energy in the HESS and increases self-consumption rate
to reduce the cost of energy; it does not do arbitrage as such, as it does not care about
prices or tariffs. The advantage of this algorithm is its simplicity and moderate financial
outcomes–using energy storages with such an algorithm brings profits in comparison to
the setup without storage. The disadvantage is that this approach relies on the surplus of
RES energy, otherwise the batteries are not used at all. Such an algorithm can be profitable
when the averaged production from RES exceeds the usage of the facility. The economical
optimization method on the other hand minimizes the costs of the operation during a single
day. It uses the fact that there is a sufficient difference in cost of energy in different zones of
the tariffs–using batteries for arbitrage can become profitable.

The total cost of using the VRFB battery (taking into account depreciation cost and
losses related to the round trip efficiency) is not compensated by the difference between
the prices in morning peak and off peak tariff zones. Adding an LFP battery, which has
different properties and therefor cost balance, allows for reducing usage in all price peaks.
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The combination of both batteries allow to improve the cost balance of the operation and
prolong the lifetime of the batteries.

In the presence of overproduction of PV installation, the simple balancing algorithm
at times outperformed the economical optimization method. The reason for this is that the
methods employ a 24 h time window, during which the simple balancing algorithm tried to
charge the battery as much as possible (it did not count the cost), whereas the economical
optimization limited the charging to what was necessary for this day. This meant that in
the economical optimization, a subsequent day might start with a lower SOC level, even
though there was the potential to charge them the day before. To compensate for this, a
modification of the economic optimization was performed, where the surplus of energy in
a day was used to charge the HESS as much as possible. This modification improved the
economical optimization method compared to the simple balancing algorithm.

The economical optimization method uses the HESS for arbitrage and, as a result,
causes a more intense cycling of both batteries within the HESS. The simulation with
realistic technical and economic data show that the arbitrage introduced by the economic
optimization method has a small effect on the overall financial result. Although the energy
consumption in the peak hours, and thus the energy cost, is reduced, there are additional
costs of battery depreciation and energy losses in the batteries. The potential for energy
price reduction comes at a cost—the final economic result is only slightly better than the
simple energy balancing when the battery depreciation cost is included. It should be noted
that the impact of leaving a battery in a discharged state, which happens during winter
months in the simple energy balancing, is not considered in the model.

Obviously, the financial results depend on a variety of factors, such as battery perfor-
mance and cost, energy usage and generation patterns and most of all energy price profiles.
For this reason, future work includes analyzing different HESS operating scenarios and
adjusting the optimization method to take into account additional services that the HESS
can provide.

The designed methods will be tested in a real environment with forecasted profiles
being the basis for the optimizer. What is more, we plan to test the optimizer on the prices
from the day-ahead market, where both the purchase and selling prices are changing every
hour. The tool is intended to be further developed into a commercial tool for ESS installation
planning and management. The tool will be modified to work with the predictions of load
and production rather than with historic data, then it will become a scheduler that can be
used to manage the operation of the energy storage, together with a real-time controller.
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Abstract: This study aims at investigating the improvement in the thermal performance of energy
storage for a hydronic system when it is equipped with evacuated tubes integrated within a hot
water tank. The PCM shell in the bottom section is thicker than at the top to maintain a uniform,
minimal water temperature difference of 5 ◦C between the top and bottom sections of the hot water
tank. The thermal performance of the system was analyzed in diverse months when the ambient
temperature fluctuated. The results have revealed that the thermal performance in December, March,
and June was 80%, 81%, and 84%, respectively, meaning that the thermal performance is optimal
in warm weather. The results confirmed that the system had boosted the presence of hot water
throughout the whole day, including the time of the sun’s absence, due to the release of stored PCM
latent heat. The designed system solves the overheating problem and expands the availability of hot
water through the cold weather. The system is characterized by lower heat losses because the average
water temperature has decreased.

Keywords: phase change material; solar energy; thermal energy storage; hydronic solar system;
paraffin wax

1. Introduction

Intensive combustion processes of conventional petroleum-based fuels pose a signif-
icant impact on the environment in the long term and in the vicinity of residential areas
due to exposure to harmful concentrations of gaseous emissions, namely COx, SOx, and
NOx. As a result, stringent environmental regulations against these gaseous emissions
and the operability of thermal combustion facilities to reduce environmental impacts are
legitimized [1]. Due to the rising costs of petroleum end-products and increased demands
in thermal applications by the residential and industrial sectors, researchers have been
encouraged to investigate new resources of renewable energies (REs) and develop eco-
environmentally friendly REs such as photovoltaics (PVs) and thermal solar panels (SPs).
The installation of solar panels on wide terrain is intended to collect solar energy during the
day. Moreover, the current thermal energy demands strongly encourage researchers to ex-
plore promising engineering solutions for effective thermal energy depots and dispatching
solutions. Thermal energy storage has become increasingly crucial, owing to its interaction
with variable production resources, the increase in the demand for conventional fuels for
the combustion process, and the adverse environmental impact of other RE sources. There-
fore, the ideal way to balance thermal energy is for it to be stored in conservative depots
utilizing phase change materials such as paraffin based PCMs, which are ecologically and
economically ideal.
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Thermal energy storage is a feasible compensation for fluctuations between produc-
tion and consumption rates during peak demand periods through thermal energy depot
facilities that could be integrated within RE producers’ and consumers’ buildups. The
integration of PCMs with an energy storage system has several potential applications,
including the intensive and cumulative latent heat of phase changes. Furthermore, the
phase change process is compatible and better monitored, since it occurs ideally at isother-
mal temperatures [2]. Despite these REs’ potential, they possess a few deficiencies, such
as crisp efficiency and less availability than other RE sources such as wind, traditional
solar, and substrates for biofuel production [3]. The availability of sunlight varies across
continents and between the earth’s upper and lower hemispheres, potentially influencing
energy availability.

The PCM products can be classified into three categories: eutectic, organic, and
inorganic materials [4–9]. Organic PCMs include paraffin and non-paraffin. The main ad-
vantages of organic materials are changing their phase without segregation and latent heat
degradation; self-nucleation; non-corrosiveness; chemical stability and safety. Inorganic
PCMs include salts, hydrates, and metallic materials. They have a high storage density,
high thermal conductivity, are non-flammable, and are readily available, but they need a
nucleation agent and have a super-cooling problem in the phase transition. Eutectics are
mixtures of two or more components [4–9].

Hydronic systems are usually associated with liquid water as a heat transfer medium
for the cooling and heating processes. A hydronic system typically includes both cooled
and heated water cycles to allow for separate heat transfer. Typical temperature differ-
ences of such systems are within the range of 0 and 15 ◦C for cooling and between 20 and
100 ◦C for heating [10–12]. Recently, solar water collectors have been considered a signifi-
cant alternative to traditional electric heaters in meeting domestic hot water requirements.
Although solar water heaters are composed of various types, passive or natural convection
types are used widely due to their simplicity and operational efficiency [13,14].

The development of traditional solar heating and cooling systems was reviewed in
Ge et al., 2018; storing excess heat for further applications was recommended, and
enhancements to the solar energy storage system were highlighted [15]. Moreover,
Buker et al., 2015 discussed improvements in solar panel design, such as panel surface, tilt,
and shading, that could have a significant influence on the performance of the integrated
hydronic systems [16]. Nevertheless, the obstacle that limits the solar water collectors is
the scarcity of matching demand and supply throughout the day. The operation of solar
water collectors depends on the availability of the sun [17] and heat losses [18].

Several researchers have confirmed that thermal energy storage is an essential issue
by using appropriate thermal storage material within the solar energy system, which could
be incorporated in a storage tank [19–21] or with collector tubes [22,23]. Recently, the
heat that is absorbed or released during a phase change of PCMs has been employed as
a thermal storage battery, due to its higher latent heat, wide operating temperatures, and
very good thermal properties [24–31]. A PCM absorbs and stores thermal energy during
the sunny hours of the day; later, it releases the stored energy after the sun’s absence,
which improves the solar system’s efficiency. Organic PCMs, such as paraffin wax, are
best known for storing a large amount of energy due to their high latent heat, thermal
and chemical durability, little sub-cooling, and non-toxicity [32,33]. In the recent liter-
ature, the thermal behavior of paraffin-based PCMs was studied for the energy depot
process. Murali et al., 2015 have examined the effectiveness of flat-plate solar water col-
lectors incorporating paraffin as a PCM in a container placed in the top section of the
water tank. Their findings appear to improve the performance of the solar system [34].
Kumar et al., 2020 have investigated the behavior and effect of applying synthesized
nano-PCMs on the energy storage of evacuated solar water heating systems. According
to their findings, PCMs were filled in evacuated solar tubes, which were connected to
cylindrical containers placed inside the water tank [21], and such PCMs flowed as liquid
inside and served as an energy storage medium to heat the water inside the main tank. In
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a previous study, we investigated the thermo-physical properties of PCMs by studying
the enhancement of the thermal conductivity of the heat transfer medium of a PCM with
the addition of carbon nanotubes (CNT) and graphite nanoparticles (GNP) as nanofillers
to PCM composites [35]. So, future outcomes will focus on the enhancement of the per-
formance efficiency of the solar system by adding nanoparticles to the PCM, which are
then incorporated into the system. In this context, prior studies [36–38] have addressed
the application of a shell and tube thermal storage heat exchanger equipped with finned
outer walls for the tubes, and the enthalpy-porosity method was utilized to reveal the
transient behavior of the PCMs’ melting process. This approach could be subject to various
complexities, and several criteria must be met to apply the proposed enthalpy-porosity
method. In addition, the wavy annulus tubes could cause apparent vortices inside the heat
exchanger that affect the natural convection of heat transfer.

Generally, the reviewed studies imply that the integration of PCMs within a solar
system could ameliorate the performance of the thermal mass, maximize operational
simplicity, and recover the thermal energy of the hydronic solar system for off-peak periods.
It could be understood that few attempts were made to establish an in-field hydronic system
that has a potential application of heating water in residential and industrial premises and
to replace conventional electrical/fuel-based water heating systems, thereby improving
energy storage efficiency during off-peak periods and reducing relevant energy expenses
in premises. This study may offer guidance for future research and the thermal design
of domestic hydronic solar systems. The performance of the system is assessed with an
integrated PCM that is distributed on the shell side of the water storage tank, such that the
PCM shell has a different thickness at the top and bottom of the storage tank (the bottom
portion is thicker than the top). The effect of the PCM in a natural circulation solar water
collector was examined through normal domestic hot water consumption, complete and
sudden emptying of the hot water storage tank, and no hot water consumption.

2. Methodology

2.1. Experimental Setup

The manufactured hydronic solar system is located on the Jordan University of Sci-
ence and Technology campus. Its geographic coordinates are 32.49◦ N (latitude) and
35.99◦ E (longitude). The solar collector that was used is an evacuated tube setup with an
inclined angle of 45◦. The inclined angle was chosen after making calculations to obtain
higher gains in energy in the winter and solve the overheating problem in the summer. The
main features of the evacuated tube of the solar collector are presented in Table 1.

Table 1. Features of the evacuated tube of the solar collector.

Parameter Value

Number of tubes 20

Outer diameter 0.058 m

Inner diameter 0.047 m

Length 1.8 m

Tube material Borosilicate glass

Absorptivity coefficient 95%

Emissivity coefficient 5%

In addition to evacuated tubes, the system contains a water storage tank with a total
capacity of 0.200 m3, a length of 1.6 m, and a diameter of 0.45 m. It is made of galvanized
steel with an outer shell with a diameter of 0.53 m and contains paraffin wax as PCM with
a thickness of 2 cm at the top and 4 cm in the bottom portion; such an asymmetric design is
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believed to assist in charging and discharging heat into the system since it provides more
effective buoyancy motion for the liquid PCM. The tank was thermally insulated by rock
wool to reduce the loss of energy. The insulation shell is covered with galvanized steel
sheet. All specifications of the storage tank are shown in Figure 1.

 
Figure 1. Schematic representation of the storage tank with instrumentation.

The phase change material that was used in this system was paraffin wax with
a melting temperature of 48 ◦C. It was chosen due to its thermal stability, low price,
no sub-cooling problem, and suitable latent heat. The thermal specifications of paraffin
wax are presented in Table 2.

Table 2. Thermal specifications of paraffin wax [39].

PCM Melting Temperature [◦C] Latent Heat [kJ/kg]
Specific Heat

[kJ/kg·◦C]
Thermal Conductivity

[W/m·◦C]

Paraffin wax 48 210 2.4 (liquid)
2.1 (Solid) 0.24

Additionally, the system consists of a solenoid valve that is programmed to meet
the level of family consumption of hot water throughout the day. This valve withdraws
hot water at specific times; the following diagram shows the proposed water consump-
tion pattern, which presents the distribution of hot water throughout the day. Figure 2
shows a daily water consumption pattern according to real observed consumption and
required estimations.

The system contains a cold water tank to recover hot water discharged from the
hot water tank. Thermocouples (Type K) were fixed through the storage tank to notice
and record water and PCM temperatures during the heating process. Thermocouples
were installed in the system to detect the temperatures of the water, PCM, and ambient.
They were placed in the water region in three positions: two at the top and one at the
bottom. Additionally, other thermocouples were placed in three positions throughout the
PCM region: two at the top and one at the bottom. One thermocouple reads the ambient
temperature. All thermocouples were connected to a converter that gives temperature
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readings in Celsius. The data logger was connected to read and record the temperatures
with Windows software easily plugged into a computer. For measuring irradiance (w/m2),
a pyranometer was used. The data was acquired and stored every 4 min. An additional
experiment was performed every 5 s and the reading was recorded. The hot water tank
was discharged completely in the evening (specifically at sunset) to investigate the water
and PCM temperature behavior in this case.
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Figure 2. The hot water consumption pattern throughout the day.

As for the hot water region, the PCM region was also equipped with two holes and
a lid to fill and discharge the PCM at any time based on necessity. Moreover, the problem of
high pressure throughout the system is resolved by setting up vents for both the water and
the PCM regions. A photographic view and schematic diagram of the system are presented
in Figure 3. The water is replenished from the water supply tank. The hot water storage
cylinder receives hot water passively from the evacuated tube, whereas the hot water flows
up to the tank naturally due to thermosiphon circulation. The hot water was then used for
domestic use, and hot water consumption was recovered by the water supply tank. When
water gains heat from solar energy, it conductively exchanges this energy with the PCM.
Conversely, as the temperature of water decreases, the latent heat will be released to the
water from the PCM during the liquid phase until solidification in the absence of the sun.

2.2. Thermal Model

Energy balance is applied to both parts of the hydronic solar system under steady-state
conditions: the evacuated tube and hot water storage tank. The useful energy gained from
solar radiation by evacuated tubes can be expressed by [40,41]:

Quse f ul = I Ac (τα)e f f kθi − Qloss (1)

and
Qloss, tube = UL,tube Ac (Tw − Ta), (2)

where I represents a global solar irradiance, Ac represents a solar collector area, (τα)eff repre-
sents an effective transmissivity-absorptivity product coefficient, kθi represents an incident
angle modifier, UL,tube. represents an over-all heat transfer coefficient of heat loss from the
evacuated tubes, and Tw and Ta. represent water and ambient temperatures, respectively.
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The solar collector’s efficiency  . is determined by the value of the ratio between
useful energy and solar radiation that falls on the collector. This can be expressed by:

 =
Quse f ul

I Ac
(3)

Solar collector efficiency (evacuated tubes) can be explained by:

 
collector = (τα)e f f kθi −

UL,tube (Tw − Ta)

I
(4)

  
(a) (b) 

Figure 3. Hydronic evacuated tube solar system with a PCM: (a) photographic view;
(b) schematic diagram.

The following equation clarifies how the useful energy leaving the evacuated tubes
moves to the water tank, which transfers to paraffin, giving rise to temperature changes:

QPCM =
(
mPCM cp, PCM ΔT

)
solid + mPCM λPCM +

(
mPCM cp, PCM ΔT

)
liquid (5)

Energy balance in the water tank can be expressed by:

Eaccumulation = Quse f ul ± QPCM − Qload − Qloss,tank (6)

Useful energy, load energy, and the heat loss of the water tank can be calculated by:

Quse f ul = mw, tank ·cp, w ·(Tout, w − Tin, w) (7)

Qload = mw,load ·cp, w ·(Tw − Ta) (8)

Qloss, tank = UL, tank Atank (Tw − Ta) (9)
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The overall heat transfer coefficient of energy losses in the system (UL,sys) is equivalent
to the losses of both the evacuated tube and the water tank. This can be expressed by:

UL,sys = UL,tube + UL, tank (10)

The efficiency of the system with paraffin as the PCM is:

 system =  
collector ·  PCM (11)

 system =

[
(τα)e f f kθi −

UL,sys
(
TH2O − Ta

)
I

]
·
[

QPCM
I Ac

]
(12)

The domestic hydronic solar system was evaluated according to EN 12976 standards,
where the solar radiation, water temperature, ambient, and PCM temperatures were
recorded for more than 9 months consecutively under two test types: with PCMs and
without PCMs. According to ISO 9459-5 DST, the withdrawals of hot water from the
storage tank depended on family consumption patterns throughout the testing period.
Thermal output characterization tests were conducted according to the results of calculating
instantaneous system performance experimentally and theoretically and calculating water
storage tank heat losses. The hydronic solar system’s thermal performance was measured
on days with daily solar radiation and temperatures recorded over consecutive months
at different water storage inlet temperatures. Protection against overheating and pressure
resistance standards were considered necessary to save the system from deformation.

3. Results and Discussion

The average values of the solar radiation at the JUST campus throughout the year
are shown in Figure 4. The temperature distributions of the ambient, water, and PCM
at the storage tank were recorded during system testing. All parameters of the sys-
tem were studied for many months over a year to investigate the effect under different
weather conditions.
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Figure 4. Measured monthly radiation data.

3.1. Temperature Distributions

The temperature distributions of the ambient, PCM, and water at the storage tank
(average) with and without PCMs are shown in Figures 5–7. In these figures, it is noticeable
that the water temperature increases from sunrise until it reaches the melting temperature of
paraffin. The water temperature remains at a fixed value until the paraffin melts completely,
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at which point it increases to a specific value. The temperatures decrease with the decrease
in energy gained from the sun at the end of the day. While the water temperature rises
through circulation in the evacuated tubes, water flows into a storage tank where thermal
energy exchange starts between hot water and paraffin, which further raises the paraffin’s
temperature. So, the temperature of the paraffin at the beginning of the day increases
gradually with the increasing water temperature that comes from the evacuated tubes.
When paraffin reaches its melting point, the temperature stays constant, increases to the
maximum specified value, and then gradually decreases at night as a result of the absence
of energy from solar radiation. At the melting and solidification temperature of the PCM,
the water temperature stays at a fixed value, which can be observed in Figures 5–7.
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Figure 5. Temperature distribution of the system through December 2021: (a) using paraffin as PCM;
(b) without PCM.
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Figure 6. Temperature distribution of the system through March 2022: (a) using paraffin as PCM;
(b) without PCM.

The following can be observed by using a PCM case: when the PCM temperature
reaches its melting point throughout the day, the stored energy begins the PCM phase
change from a solid to a liquid. This stored energy is used as released energy in water to
maintain its temperature within the domestic usage range.

The temperatures of paraffin decrease constantly in the afternoon to reach a solidifica-
tion point and stay at the same temperature for a short period, with an exchange of latent
heat that is released in water. This process is reflected in the values of water temperatures,
where the decrease is very small. Energy loss during the late afternoon and night hours
is higher than at any other time during the day. The water temperatures are in the range
for domestic use, which is the main goal of the system. The thermal energy that transfers
between water and paraffin depends on the temperature difference between them and on
the phase of paraffin (liquid or solid). Throughout the day, with the presence of solar energy,
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the glazing temperature, energy collected, and water temperature increase. Approximately
at solar noon, water temperatures reach their maximum.
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Figure 7. Temperature distribution of the system through June 2022: (a) using paraffin as PCM;
(b) without PCM.

It can be observed in Figures 5–7 that water temperatures at solar noon without
using a PCM case are higher than those with PCMs. Higher values due to the transfer of
energy from water to PCMs mean a reduction in overheating problems in the water tank.
Conversely, through early morning and late afternoon, the water temperatures are lower
than those reached when using paraffin as a PCM.

Figure 8 shows different temperature distributions, and the experiment of discharging
the storage tank of hot water completely was performed. This experiment was conducted
to study the behavior of the PCM and heat exchange with water by discharging all amounts
of hot water in the water tank at 4:00 PM. The withdrawal of hot water is replaced by cold
water. It is evident from Figure 8 that the water temperature decreases sharply through
the discharge process, along with the PCM temperature. After that, the water temperature
begins to rise as a result of the heat exchange from the PCM.
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Figure 8. Temperature history of the system through complete hot water consumption.

The water and PCM reach the same temperature at a specific point in time. Addition-
ally, the temperature of the water in the domestic use range can be considered optimal. This
experiment shows the exchange of stored thermal energy in PCMs with water and its effect
on water temperature. This experiment explains the family’s sudden and complete drain of
the hot water from the water storage tank and how the PCM raises the water temperature
by 10 ◦C over a short period of time.

Furthermore, Figure 9 shows the temperature distributions of hot water, PCM, and
ambient temperature in the absence of hot water consumption throughout the day. This
experiment was performed in approximately similar weather conditions to the previous
one. It can be noticed that higher values of hot water and PCM temperatures are due to the
absence of load energy. Moreover, it is clear that the temperature difference between water
and paraffin is small; this difference is less than 1 ◦C in the morning hours with increasing
gains in energy.
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Figure 9. Temperature history of the system through no hot water consumption.
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Due to the design of the storage tank, the thickness of the PCM layer on the top and
bottom of the tank was different. The thickness at the bottom is higher than the top, which
means more mass of PCM and more stored energy through the sun’s presence. This stored
energy is released in the water at the bottom of the tank, which has a lower temperature than
that in the top region. Releasing energy from PCMs means heating water, which makes the
water through the whole tank have similar or small differences in temperature, especially
in the late afternoon hours. Figure 10 presents the temperature distribution of water on
the top and bottom regions; as can be seen, the maximum difference is approximately
5 ◦C during the daybreak hours. It can be observed that the water temperatures at the
top and bottom of the tank are the same at solar noon. This study shows a decrease in
water temperature compared with a hydronic solar system without a PCM, which is an
advantage to reducing heat losses from the system and avoiding superheating through the
tank. Furthermore, Azimi et al., 2015 found that the water temperature at the bottom of the
tank is close to ambient temperature without PCMs [42].
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Figure 10. Temperature distribution of water through the top and bottom of the storage tank [42].

Figure 10 presents a comparison and disparity between our study and that of
Azimi et al. Not only do our results demonstrate a decrease in the difference between
hot water and temperature at the top and bottom of the storage tank greater than that of
Azimi et al., but they also show a decrease in the hot water in the system (within domestic
use), which means less thermal energy losses and covers the hours of solar absence.

3.2. System Efficiency

The results of our experiments and theoretical calculations are summarized in
Tables 3–5. The results show useful gains and losses in energy with the water temperature
in the water storage tank for the clear days of December, March, and June. The lowest
rate of useful energy is in the evening and morning. However, the highest value of useful
energy at solar noon is due to the increasing gain in solar energy. Due to the greater
temperature difference between the water and the ambient, heat loss is greater at noon than
in the morning and evening. The experimental efficiency of the hydronic solar system was

estimated by (
Quse f ul

I Ac
). It is clear from the tables that the system efficiency rises progressively

from sunrise to solar noon, the maximum value, then falls off. The maximum experimental
efficiency is around 80% in December, 81% in March, and 84% in June. The instantaneous
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efficiency of the system without using PCMs is around 60%. So, the positive effect of using
PCMs on the performance of the hydronic solar system is clear.

Figure 11 illustrates the relationship between the system’s thermal efficiency (  system)
and the temperature difference between hot water and ambient (ΔT/I), based on the data
for December, March, and June. The relationship shows a straight line with the overall heat
loss coefficient as a slope. The optical efficiency of the hydronic system is the intercept of
the straight line. The values of the determining factor of the relation (R2 > 0.9) point out
an intense correlation between both parameters. Each figure shows the comparison of the
relationship between systems with and without PCM. It can be concluded from Figure 11
that the case of PCM has higher efficiency than that without PCM.

Table 3. Experimental and calculated results for December 2021 with paraffin.

Local
Time

Tw (K) Ta (K) I (w/m2.5) Quseful (w) Qloss, sys
(w)

ΔT/I
(K·m2/w)

system

Experimental Theoretical

7:00 AM 313.65 285.55 42.09 201.25 92.41 0.37 0.43 0.14

8:00 AM 311.25 285.95 206.47 527.41 82.98 0.12 0.62 0.39

9:00 AM 314.45 288.35 449.72 1170.86 86.23 0.06 0.75 0.46

10:00 AM 316.35 290.35 657.35 1730.45 86.37 0.04 0.77 0.58

11:00 AM 321.15 292.15 660.99 2017.54 97.07 0.04 0.79 0.61

12:00 PM 326.15 293.45 770.52 1540.62 110.55 0.04 0.8 0.6

1:00 PM 330.45 294.25 592.19 924.34 123.29 0.06 0.73 0.55

2:00 PM 334.35 294.75 361.18 311.50 135.52 0.11 0.64 0.47

3:00 PM 336.55 294.45 131.38 194.21 104.64 0.32 0.51 0.1

4:00 PM 336.15 293.05 88.21 141.14 92.41 0.5 0.38 0.05

Table 4. Experimental and calculated results for March 2022 with paraffin.

Local
Time

Tw (K) Ta (K) I (w/m2) Quseful (w) Qloss, sys
(w)

ΔT/I
(K·m2/w)

system

Experimental Theoretical

7:00 AM 312.15 290.65 67.82 162.47 63.84 0.32 0.48 0.17

8:00 AM 314.35 291.05 121.32 302.60 69.39 0.19 0.55 0.32

9:00 AM 317.35 293.45 239.80 615.55 71.69 0.1 0.64 0.47

10:00 AM 321.35 297.35 465.14 1211.92 72.73 0.05 0.7 0.55

11:00 AM 329.95 298.75 671.44 1751.12 95.73 0.05 0.8 0.55

12:00 PM 333.95 300.75 795.03 2075.75 102.87 0.04 0.81 0.6

1:00 PM 337.55 301.95 798.70 2082.36 111.08 0.04 0.79 0.62

2:00 PM 340.55 301.75 681.87 1769.23 121.40 0.06 0.77 0.61

3:00 PM 342.25 299.35 480.51 1231.29 134.41 0.09 0.66 0.56

4:00 PM 342.55 298.15 256.79 636.88 119.08 0.17 0.58 0.34

5:00 PM 343.15 296.25 111.33 249.13 96.66 0.42 0.36 0.08

6:00 PM 339.45 295.35 89.32 190.98 67.18 0.58 0.3 0.03
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Table 5. Experimental and calculated results for June 2022 with paraffin.

Local
Time

Tw (K) Ta (K) I (w/m2) Quseful (w) Qloss, sys
(w)

ΔT/I
(K·m2/w)

system

Experimental Theoretical

7:00 AM 320.45 290.65 124.60 305.87 101.62 0.41 0.21 0.04

8:00 AM 323.55 291.05 138.30 339.54 104.03 0.24 0.46 0.13

9:00 AM 326.45 293.45 145.10 356.24 104.86 0.23 0.55 0.15

10:00 AM 330.25 297.35 401.15 1733.79 127.29 0.1 0.76 0.5

11:00 AM 338.25 298.75 665.25 2138.88 132.21 0.08 0.82 0.54

12:00 PM 341.35 300.75 820.88 2132.10 136.54 0.06 0.84 0.59

1:00 PM 343.65 301.95 819.26 1719.74 145.85 0.05 0.81 0.57

2:00 PM 346.25 301.75 664.39 1045.19 143.57 0.05 0.76 0.5

3:00 PM 343.35 299.35 410.99 565.76 134.29 0.07 0.67 0.46

4:00 PM 339.55 298.15 229.66 272.33 118.24 0.11 0.62 0.42

5:00 PM 333.15 296.25 117.68 248.26 119.90 0.18 0.51 0.3

6:00 PM 332.75 295.35 106.39 117.31 83.18 0.31 0.42 0.04

  
(a) (b) 
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Figure 11. Efficiency of the system versus ΔT/I with and without PCM; (a) December, (b) March and
(c) June.
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Situta-Olcha et al., 2021 [43] examined the thermal efficiency of the solar system with
a heat pipe without a PCM under weather conditions similar to December. Their results
show less than 40% thermal efficiency. Moreover, the results of Azimi et al., 2015 and
Tong et al., 2016 [42,44] present lower thermal efficiency than that achieved in this study,
which was less than 70% and 80%, respectively. Kumar et al., 2020 [21] investigated adding
paraffin wax as a PCM inside a cylindrical container through a hot water storage tank. One
case of their study was carried out under conditions similar to our study through June; the
daily efficiency was less than 70%.

Some of the virtues of the current work are attracting promising investment opportuni-
ties, improving the infrastructure of local residential areas and rural regimes, and providing
customizability in the energy sector for the benefit of the individual market with innovative
products and dependable services.

4. Conclusions

A hydronic evacuated tube solar heating system is fabricated and installed to match
the domestic requirements and uses throughout the day by using PCM latent heat. In the
analysis of the hydronic solar system, the influence of the weather and operating conditions
was considered. The thickness of the PCM shell in the bottom portion is greater than that
of the top, minimizing the water temperature difference at the top and bottom to 5 ◦C.

The water and ambient temperatures through the system testing are presented and
discussed in three cases: the first one was at normal conditions on clear days with water
consumption, the second was without water consumption, and the final case was the effect
of sudden and complete consumption of hot water while observing the behavior of PCMs
in heated water. The results show increasing water temperature after a short period for
domestic water temperature values.

The thermal efficiency of the hydronic solar system in December, March, and June
was 80%, 81%, and 84%, respectively. This conclusion is higher than that of the experi-
ments conducted by Kumar et al., 2020 [21]. Thermal efficiency depends linearly on ( Δ T

I ).
The hot water for domestic use is available throughout the day, which is achieved by
using PCMs.
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Nomenclature

T Temperature: K
Ac Solar collector area, m2

Cp Specific heat, kJ/kg·K
I Global solar irradiance, w/m2

kθi Incident angle modifier
m Mass flow rate, kg/s
QPCM Phase change material energy, w
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QLoad Load energy, w
Qloss energy losses, w
Quse f ul Useful energy, w
UL Over-all heat transfer coefficient of heat loss, W/m2·K
rin Inner radius of the hot water tank, m
ro Outer radius of the hot water tank, m
(τα)eff Effective transmissivity-absorptivity product coefficient
λ Latent heat, kJ/kg
η Thermal efficiency, %
Subscripts

a Ambient
w water
tube Evacuated tube solar collector
tank Hot water tank
sys system
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Abstract: In recent years, the goal of lowering emissions to minimize the harmful impacts of climate
change has emerged as a consensus objective among members of the international community
through the increase in renewable energy sources (RES), as a step toward net-zero emissions. The
drawbacks of these energy sources are unpredictability and dependence on nature, leading to
unstable load power supply risk. One way to overcome instability in the power supply is by using a
battery energy storage system (BESS). Therefore, this study provides a detailed and critical review
of sizing and siting optimization of BESS, their application challenges, and a new perspective on
the consequence of degradation from the ambient temperature. It also reviews advanced battery
optimization planning that considers battery degradation, technologies, degradation, objective
function, and design constraints. Furthermore, it examines the challenges encountered in developing
the BESS optimization model and evaluates the scope of the proposed future direction to improve the
optimized BESS, especially its battery.

Keywords: battery energy storage system; sizing; optimal planning; battery degradation; ambient
temperature; renewable energy sources

1. Introduction

Lately, there has been a growing consensus among people worldwide regarding the
importance of reducing emissions to mitigate the adverse effects of climate change. Several
nations and companies globally are beginning to commit to net-zero emissions. Despite
its vulnerability to climate change, it is also realized by Indonesia, which is Although
vulnerable to climate change, this is also realized by Indonesia, which is an archipelago
country country [1]. The utilization of alternative or renewable energy sources (RES) is
one of the most effective ways to reduce emissions generated from fossil fuels. Solar
photovoltaic (PV) is the most extensively utilized RES owing to its installation simplicity,
low cost, and scalability [2]. However, problems arise because the RES generation is
unpredictable and highly dependent on nature, resulting in an unstable power supply to
the load [3]. Due to its high penetration, the uncertainty of PV plants expose the power
grid to many challenges, such as voltage, frequency fluctuations, reverse power flow, and
harmonics [4]. The successful integration of RES into the planning and operating model of
an electric power system on a grid-scale increases the flexibility of the battery [5].

The battery energy storage system (BESS) helps ease the unpredictability of electrical
power output in RES facilities which is mainly dependent on climatic conditions. The
integration of BESS in RES power plants boost PV penetration rates [6], thereby improving
the efficiency and reliability of the generating system [7]. Furthermore, BESS plays an

Batteries 2022, 8, 290. https://doi.org/10.3390/batteries8120290 https://www.mdpi.com/journal/batteries
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essential role in distribution networks, where it is used to assist auxiliary services, load
shifting and leveling, backup power, peak shaving, demand response, renewable energy in-
tegration, frequency control, voltage management, long-term, and seasonal storages [8–10].
Therefore, its optimization is essential.

BESS capacity and its ideal location are both determined by its optimization indicator.
The performance of the electric power system is also significantly improved by its optimiza-
tion in terms of establishing the appropriate capacity and rating. Meanwhile, inadequate
capacities and ratings tend to result in greater power losses and increased costs for both the
investment and operation of the power system [11]. BESS capacity needs to be optimized
to ensure continuous electric power alongside robust and economical operation [12]. Its
optimal placement is also extremely relevant on grid-scale networks. This is because it
affects BESS costs and services by delaying investment from peak loads, improving the
response to changes in electrical energy generation and demand, reducing transmission
and distribution losses, as well as restrictions on RES generation [13]. One of the most
significant decisions to make is planning to optimize the performance of the RES system
to achieve profitable investments. The optimization of BESS capacity and placement is a
significant problem due to the need for ideal energy exchange equilibrium [14] and the
total cost of installation [15].

BESS technology includes the use of lithium-ion (Li-Ion), lead-acid (LA), sodium-
sulfur (NaS), zinc-bromine (ZBB), nickel-cadmium (Ni-Cd), vanadium-redox (VRB), and
polysulfide bromine batteries (PSB) [16,17]. These are typically used for load leveling,
power quality, grid extension and support, demand management, and voltage regulation.
One of the major advantages of LA is that it has relatively low investment opportunities,
and expensive to operate with limited energy density. Although the Li-Ion batteries have
high energy and power densities with long-lasting life cycle and excellent efficiency, it is
an expensive investment [18]. This battery type is also manufactured as packs, organized
in series or parallel to realize the necessary current, voltage, and power. Throughout the
development of this battery, large-scale battery packs were built as power walls [19].

Li-Ion batteries’ performance deteriorated over time and is referred to as calendar and
cycle life [20]. This is due to two causes, first is the loss of Li-Ion triggered by the formation
of a solid electrolyte contact (SEI). Second is the loss of electrode sites [21], which increases
internal resistance, lowers capacitance and efficiency, and diminishes battery life [22,23].
Consequently, battery deterioration always impacts the optimal operation and longevity of
Li-Ion battery energy storage, particularly the percentage of power systems [24]. It also
predicts battery life, maximum charge or discharge cycles, or Ah-overall. The data is then
used for cost or benefit analysis [25].

The degradation costs for a charge or discharge cycles need to be considered when
analyzing real-time energy management challenges. In this case, the energy management
running expenditures tend to grow because of battery life and actual unrepresented elec-
tricity prices [26]. According to Cardoso et al. [27] the overall annual power cost reductions
from PV and storage systems can be reduced by 5–12% if the battery deterioration limits
are considered. Ren et al. [28] stated that it significantly reduces the system’s electrical per-
formance and increases unanticipated maintenance expenditures. Battery failure is usually
due to deterioration caused by increased rate of usage, and this can limit its lifespan and
potentially lead to significant accidents. Likewise, battery degradation significantly reduces
the system’s electrical performance and increases unanticipated maintenance expenditures.
Severson et al. [29] stated that the prediction of battery life facilitates new production, use,
and optimization opportunities. If one can accurately anticipate the lifespan of a battery,
then they can create new uses as well as optimize its performance. This leads to innovative
opportunities for the manufacturing process and optimization.

The present study examines the optimization plan for the BESS system problem by
considering battery degradation due to ambient temperature. It serves as a reference for
investigating areas of electrification using renewable energy sources. This engineering topic
covers BESS planning in relation to deterioration from a practical standpoint. However, this

408



Batteries 2022, 8, 290

static problem involves battery capacity and location to attain the desired goals. These tend
to be influenced by technological and economic concerns, as well as other factors such as re-
liability. As a result, BESS planners encounter certain challenges in gathering and inputting
data, dealing with design constraints, and implementing effective energy management.

The following are the key contributions of this research:

• Explain the state-of-the-art expansion planning with BESS optimization.
• Explain how battery degradation due to ambient temperature can affect BESS.
• To study different technologies, objectives, and constraints of BESS.
• Review the challenges and future scopes encountered in developing BESS optimization.

The present research is arranged as follows. Section 2 outlines the methods used
to review the literature. Section 3 investigates BESS with respect to expansion planning.
Sections 4 and 5 reviewed its application and battery technology, respectively. Section 6
focuses on the study of battery degradation. Meanwhile, Section 7 reviews the objective
function, design constraint, and algorithm of BESS optimization. Section 8 discusses the
issues and challenges of BESS, while Section 9 concludes the research and provides areas
for future works.

2. Methodology

The systematic literature review (SLR) was summarized using the preferred reporting
items for systematic reviews and meta-analyses (PRISMA) approach. Data were selected
from the Scopus, Science Direct, IEEE Xplore and Web of Science databases in three stages,
namely identification, screening, and reporting. Figure 1, shows the identification stage,
which is carried out by searching for related articles in each database, as illustrated in Table 1.
The strategy adopted at the time of initial screening on the database is in accordance with
the provision of the title, abstract, and keyword. This led to the realization of 1584 articles,
of which 824, 352, 187, and 221 were from Scopus, Science Direct, IEEE Xplore, and Web of
Science concerning the optimization of BESS and battery degradation, respectively.

Table 1. Search term selection.

Search Term Descriptor

Database Scopus, Science Direct, IEEE Xplore, and Web of Science

Keyword Fields Battery Energy Storage System; Sizing; Battery Degradation;
Battery Aging

Year Publication 2018–2022
Document Type Article

After checking and removing duplicate reports and records marked as ineligible by
automation tools, 139 papers were obtained for screening. The papers were selected in
accordance with exclusion and inclusion criteria based on Table 2. Incidentally, 42 records
were excluded, 12 were not retrieved, and 15 reports were omitted due to inclusion and
exclusion criteria at the screening stage. Finally, the total number of comprehensive SLR
articles to be reviewed are 69.

Table 2. Criteria for the systematic literature review.

Criteria Description

Inclusion

A journal that has the highest relevance with BESS and battery
degradation due to ambient temperature

Has an impact factor Q1
Paper publication 2018 to 2022

Exclusion
Studies that have information relatable to support

state-of-the-art BESS or battery degradation
Paper publication 2018 to 2022
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Figure 1. Block diagram selection based on PRISMA flow diagram approach [30].

As a result, this SLR was carried out to respond to the following research objectives
and questions.

1. How does the development of BESS optimization affect expansion planning and the
impact of the BSS applications on the grid or microgrid?

2. How does the battery technologies use affect BESS? And what can affect battery degradation?
3. How does battery degradation due to ambient temperature affect BESS optimization?
4. What are the main parameters and variables in BESS optimization planning?

The number of publications on this topic has increased over the past five years, as
shown in Figure 2. For example, from 2018 to 2021 there were 53 articles, with 16 new
publications in October 2022.
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Figure 2. Number of BESS-related publications eligible for review in the last five years.

Meanwhile, 69 comprehensive articles have been selected for review. The acquired
data has a Q1 journaling tool from the Scimago Journal Rank (SJR). Table 3 shows the list of
publications or journals selected for review.

Table 3. Distribution of articles in each journal.

Journal Name Scimago Journal Rank Impact Score Number of Articles

IEEE Transactions on Smart Grid 5.25 11.95 1
IEEE Transactions on Power Systems 4.64 8.42 2

IEEE Transactions on Industrial Informatics 4.33 12.03 2
IEEE Transactions on Sustainable Energy 4.16 9 3

Applied Energy 3.06 11.3 9
IEEE Transactions on Transportation Electrification 2.17 7.64 1

IEEE Transactions on Energy Conversion 2.09 5.79 1
Energy 2.04 8.51 4

IEEE Transactions on Industry Applications 1.98 5.21 2
Journal of Power Sources 1.98 9.07 2

Journal of Cleaner Production 1.92 10.96 3
Renewable Energy 1.88 8.65 3

IEEE Transactions on Green Communications and Networking 1.87 3.88 1
Energy and Buildings 1.68 7.13 1

International Journal of Electrical Power and Energy Systems 1.54 6.06 1
Journal of Energy Storage 1.35 8.78 5

Electric Power Systems Research 1.11 4.39 3
MRS Energy and Sustainability 1.03 2.2 1

IEEE Access 0.93 4.3 4
Batteries 0.87 5.77 4

PLoS ONE 0.85 3.58 1
International Journal of Energy Research 0.81 5.81 1

Sustainability (Switzerland) 0.66 4.17 1
Energies 0.65 3.54 11

Automotive Innovation 0.4 1.99 1
International Journal of Renewable Energy Research 0.3 1.61 1

Brief Review

Until now, the trends of BESS have been widely studied in several aspects. As ex-
plained in Table 4, a BESS is often applied to solve microgrid, grid-scale, and hybrid
renewable energy system (HRES) problems. However, to obtain economical results, its
sizing and siting was optimally analyzed with a significant dependence on the problem
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to be solved. BESS is usually used to solve problems related to system flexibility, such as
demand load shifting, loss of load, avoidance of RES curtailment, and RES peak shaving. As
its research progresses, it becomes increasingly important to consider the impact on battery
health, as well as the choice of battery technology used, which can affect the system and
its economic value. Battery health needs to be considered to ensure it does not experience
degradation, when the BESS needs to be replaced. In general, the battery degradation
factors considered during the optimization process are SOC, DOD, cycle number, and
battery lifetime. Furthermore, studies have also been developed on the use of recycled
batteries from electric vehicles with BESS integrated into the microgrid system. Research
on the effect of temperature on the optimization of BESS was also considered recently. The
temperature factor that affects BESS consists of operating temperature and ambient temper-
ature. However, little research has been carried out on the effect of BESS environmental
temperature optimization. Yuhan Wu et al. [31] conducted research on optimizing BESS
considering the ambient temperature. However, in this research the temperature variable
was not explained in sufficient detail.

Table 4. Review of a recently published article on BESS optimization.

Ref Research Topics Research Gaps

Cardoso et al. (2018) [27] BESS optimization was discussed while taking battery
degradation and micro sizing problems into account

Investigate the operating temperature of the BESS
because it has a significant impact on battery health

Alsaidan et al. (2018) [32]

Using BESS to find a solution to the specific problem of
microgrid expansion. Considering the characteristics of

various technologies, a distributed deployment,
considering the impact of in-depth discharge, and the

number of charging and discharging cycles

The challenges in BESS optimal sizing are brought on by
the need to use the it for multiple applications and the

use of linear power flow model to calculate the angle and
voltage magnitude at each bus as well as the active and

reactive power flow

Talal Alharbi, et al.
(2019) [33]

Framework for the planning and operation of the BESS is
based on recycled batteries from electric vehicles

The problem of optimizing BESS requires reducing the
computation complexity and incorporating more

dynamic decision variables, both of which can benefit
from the application of decomposition methods

A. Pena-Bello et al.
(2019) [34]

Develop an optimization framework to determine the
most suitable battery PV self-consumption. The

avoidance of PV curtailment, demand peak shaving,
demand load-shifting, and technology depending on

the size

The proposed challenge is to extend the optimization
framework to more regions, while considering transport
demand and trade-offs as well as incorporating heat and

electric vehicles

Timur Sayfutdinov et al.
(2020) [35]

The most optimal placement, sizing, and technology
choice for BESS was discussed, by considering the

degradation obtained from the state of charge and the
depth of discharge

Although the constraint of BESS degradation taking SOC
and DOD into consideration has been provided, the
temperature value was still fixed when the model

was developed

G. Mohy-Ud-Din et al.
(2020) [36]

The energy management strategy that has been described
is used to optimize the functioning industrial microgrids,
with the BESS scalability serving as a limiting factor due

to the presence of uncertainties

The challenges of integrating many decentralized energy
sources into a microgrid controller in a way that allows it

to be used in an economic dispatch

Yunfang Zhang et al.
(2021) [37]

An optimal sizing model was presented for grid-scale
BESS, taking into consideration its operation under

uncertainties induced by volatile wind generation. The
cycle life model of batteries was evaluated, and marginal

economic utility analysis performed

Studies on BESS allocation planning needs to consider
the decision regarding installation location

Mohammad Amini et al.
(2021) [38]

A description of the optimal BESS size, technology, depth
of discharge, and replacement year was provided,

reckoning the system’s technical characteristics, service
life, and capacity degradation. This was conducted to

reduce the total cost of MG scheduling while
simultaneously improving the BESS’s precision and

economic feasibility

The temperature factor has not been taken into
consideration in the BESS degradation model
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Table 4. Cont.

Ref Research Topics Research Gaps

Rehman et al. (2022) [39]

Presented optimal sizing for a BESS and PV system in an
extremely fast charging station (XFCS) to reduce the

annualized total cost. This was carried out with
consideration given to evaluating optimal energy

management for the station as well as energy arbitrage

This research proposed a model of battery degradation;
however, the lifetime project only used one year and did

not consider replacement batteries

Yuhan Wu et al.
(2022) [31]

Examined the algorithm for optimal capacity allocation
of BESS in contemporary distribution networks, while

considering the ambient temperature

A model of battery degradation, which concerns the
ambient temperature has been developed. However, the

variable of temperature has not been described in
sufficient detail

This review provides a discussion about the expansion planning with BESS opti-
mization by considering battery degradation due to ambient temperature to fill in the
research gaps. Figure 3 shows the mind map of BESS relating to the application, batteries
energy storage technologies, battery degradation, objective function, design constraints,
optimization algorithms, and challenges used in this review.
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Figure 3. Mind map of BESS optimization.
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3. Expansion Planning Overview

A combination of BESS technology and expansion planning is frequently adopted to
overcome the issues of VRE integration. For example, generation expansion planning (GEP)
tries to meet energy demands alongside several economic and technological restrictions. It
determines the generating capacity of an ideal investment plan during a specific study period.
Governments and decision-makers routinely utilize GEPs to select when and where to invest in
generating technologies. Based on the decision factors, energy expansion approaches are broadly
classified as GEP and transmission expansion planning (TEP). However, storage expansion
planning (SEP) is widely used when dealing with BESS investment choices. In reality, creating,
transmitting, and storing processes tend to be synchronized [5].

The main challenge of GEP is determining the appropriate capacity size, generating
unit, and timing of a new facility’s building to fulfill the electric power requirement, at least
during the planning period. GEP models are made more versatile by considering numerous
goal functions and constraints as shown in Table 5. Its goal function typically consists of
two major components, namely, investment and operation. To establish an optimal GEP
strategy, different restrictions that impact the execution of the plan must be considered.
There are two types of constraints, namely required and discretionary. One of the relevant
limitations is ensuring the balance of electricity demand. Therefore, there is a possibility
that minimizing total expenditures for a GEP project is not an effective target function,
especially if there are other fascinating aspects that compete for attention. Consequently,
issues related to GEP are frequently posed as a multi-objective optimization process. This
approach can handle the simultaneous compromising of multiple goal-planning functions
to determine which alternative capacity is the most effective. Several of these goals are
intertwined, such as incorporating DSM and RES in the generating mix, reducing pollution,
reliability, fuel consumption, costs associated with the intermittent nature of RES, and the
risk of fluctuations in energy expenditure. All these are carried out to improve the flexibility
of the GEP model [40–42].

Table 5. Generic objective function, constraint, and uncertatnties in GEP [40–42].

Categories in
GEP Problem

Objectives Constraint Uncertainties

Social-Economic Emission Cost Peak Demand Electrical price variability
Energy Cost Spin Reserve Public Health

Emission Cost Emission Level Social Acceptance
Fuel cost Generator Capacity Behavior Shift

Electric Vehicle Cost Renewable Penetration Level Demand Growth Rates
Storage Cost Interest Rates

Electricity Price Fuel Cost fluctuation
Renewable Cost Carbon Prices

Social acceptance

Policy Target Energy Governmental Policy National Energy Policies
Target Renewable Penetration Industrial Policy International climate agreements

Target Environmental Regulation Carbon Market Taxation regime
Target Access to Energy Resources Environmental Regulation Energy Security

Renewable Supporting Schemes International Climate Agreements

Technical Increasing Energy Penetration
With Other Energy Sectors Renewable Curtailment Ramping Capability

Ancillary Services Flexibility and Reliability Learning Rate Evolution For
Energy Supply Technologies

Target Ageing Infrastructure Grid curtailment Flexibility and Reliability Needs
Forced outages

Reliability Margin
Energy Balance

Network Constraint
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Table 5. Cont.

Categories in
GEP Problem

Objectives Constraint Uncertainties

Climate/Envir-
onmental

Target Renewable
Energy Generation Renewables Availability Renewables Variability

Target Life-Cycle Infrastructure Climate Change Natural Disaster
Use of Fossil Fuels Life-Cycle Assessment Extreme Climatic Events

Resource Allocation
Retirement or Lifespan

Peak Energy Generation

SEP can be categorized by its storage capacity, geographical distribution, and mo-
bility, in addition to the kind and quantity of BESS. Furthermore, energy storage systems
are classified as either short or long-term, depending on their capacity. Short-term
appliances, such as capacitors, flywheels, compressed air energy techniques, and BESS,
stores energy from seconds to days. Certain long-term appliances, such as hydrogen
storage and water reservoirs, can supply energy from one week to an entire season. BESS
can also be classified as centralized or dispersed. When categorized by centralized, it
refers to a single place. Even though most BESS are either centralized or dispersed, BESS
can categorized by mobility such as on electric vehicles (EVs) [5].

The primary goal of decoupling is to ensure that cost-cutting initiatives are carried
out by central planners (vertically integrated electrical firms) or politicians, as opposed
to private investors. In the SEP model, reliability indices account for expected energy
not served (EENS) or loss of load probability or expectation (LOLP/LOLE). There is
also a possibility of adding any necessary technical constraints for unit commitment
(UC) that are essential for scheduling the operation of the producing sector. These
include minimal timeframes between turning on and off, beginning and shutting down,
ramping up and down, as well as the least power outputs. There is a possibility that
further operational reserve limits, such as the spinning types, alongside frequency and
voltage support replacements, are imposed on the way the system operates [5].

4. BESS Application Overview

BESS delivers various services to network operators, DG plants, energy retailers, and
consumers. Figure 4 categorizes its applications in in the grid based time scale. Additionally,
BESS consumption is classified in accordance with the time scale of its deployment, which
ranges from milliseconds to hours. Its applications in grids or microgrids tend to improve
power quality, voltage management, peak shaving, load smoothing, frequency control, and
energy arbitrage [43].
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Figure 4. Application of BESS based on time scale [43,44].

4.1. Power Quality

The power quality index is used to measure voltage and current waveform distortions
in pure sinusoidal ideals [43]. Variations in solar irradiance and wind speed trigger the
negative effect of high-variance DG plants. Consequently, the BESS added to the DG plant
has the potential to smoothen temporary power fluctuations. In this situation, it is viewed
as an extra cost component with respect to the RES plant that serves as a revenue system.
The provision of economic incentives to plant owners to reduce power fluctuations is a
technique used to compensate for revenue losses [45,46].

4.2. Voltage Control

Capacitor banks, tap changers, voltage regulators, and static VAR compensators are
equipment used to manage voltage during grid distribution. This is because DG injection
makes the regulation of equipment at the substations useless, such as transformer tap
changers, with many units scattered around the network selectively creating reactive
power to allow for simpler voltage management. For example, a PV generator produces
overvoltage at the network’s end [43]. Therefore, implementing BESS in such cases has
been proven to be effective and potentially reduce overvoltage [47,48].

4.3. Peak Shaving and Load Smoothing

Both peak shaving and load smoothing aim to reduce the maximum amount of power
visible to the system by striking a balance between the generation profile and demand.
This approach produces real-time network congestion solutions by minimizing conductor
overloads caused by the generation of peak power loads. Furthermore, peak shaving and
load smoothing help to reduce network losses. BESS operations also reduce system losses
by increasing load-to-local-generation profile matching [43,49].

4.4. Frequency Regulation

In an auxiliary service market, frequency regulation is typically provided by gener-
ators connected to a transmission network. Interestingly, it is described as a commercial
offering. However, in recent years, generators and energy storage devices connected to the
distribution network also provided this service. This is possible because the distribution
network has become more decentralized. Additionally, the increasing demand for renew-
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able energy brought about the modification of this policy. Both the generator and BESS use
drop control to monitor the frequency and adjust the power output appropriately. In this
scenario, BESS allows restrictions to be specified by the state charges (SOC) [50,51].

4.5. Energy Arbitrage

Energy arbitrage is the process of simultaneously purchasing and offering energy
supplies in the marketplace. It was only initiated by commercial users because the power
sectors of most countries do not have any form of regulation. The application of BESS
pairs with DG or load, in which storage units are utilized to redirect energy production
or generation, is aimed at maximizing profit irrespective of the fluctuations in market
prices [43,52]

5. Battery Energy Storage Technologies

LA, Li-Ion, NaS, and RF are grid applications’ most common battery technologies.
These are classified according to their energy density, efficiency, lifespan, and cost when
coupled to a storage network, as shown in Tables 6–8. The LA battery has high efficiency
between 80 and 90% and low costs within the range of 50 to 600 $/kWh [52,53] However,
when compared to other technologies, it has a significant disadvantage in terms of lifespan
(approximately 2500 cycles) [54] and low energy density (within the range of 20 and
30 Wh/kg). A high discharge depth shortens an LA battery‘s life [52,55].

The characteristics of Li-Ion batteries are based on the chemical composition of both
the cathode and anode, which typically consists of graphite and lithium metal oxide. In-
terestingly, the cathode and anode give the battery its name and power, respectively. This
technique is highly efficient, with a maximum efficiency of approximately 90%. On the
other hand, some commercial devices boast reported round trip efficiencies of more than
95% with energy density within the range of 90 to 190 Wh/kg [56] and extended service life
of relatively 10,000 cycles [54]. Cell temperature, an essential element in the deterioration
process, significantly affects the battery life [30]. Li-Ion batteries are commonly found in
electronic devices and recently emerged as the industry standard for EV. This technology
is suitable for grid-connected network applications, even though it is still somewhat ex-
pensive. Presently, there are several Li-Ion technologies, for example, lithium manganese
oxide (LiMn2O4), lithium cobalt oxide (LiCoO2), lithium nickel cobalt aluminum oxide
(LiNiCoAlO2), lithium iron phosphate (LiFePO4), and cobalt-based Lithium nickel man-
ganese oxide (LiNiMnCoO2) [57]. Tables 7 and 8 show details of the Li-Ion and nickel-based
battery specifications, respectively.

NaS batteries have a high working temperature (approximately 300 ◦C), efficiency
(>80%), energy density within the range of 150 to 240 Wh/kg, and a long lifespan of
relatively 4500 cycles [58,59] As a result, this technique has been utilized to lessen the
effect of renewable energy-based generators as an in-grid [58,60]. Vanadium redox flow
batteries (VRB) batteries comprise two containers, one containing two chemical reagents
and the other two electrodes partitioned by a membrane. Incidentally, when the two
components combine, it results in an oxidation reaction. One of the containers holds
the chemical reagents, while the other contains the electrodes. The amount of stored
chemicals contributes to the flow cell’s total energy capacity. Meanwhile, the electrodes and
membrane filtering system are responsible for individual energy capacity flow cell. The
power and energy ratings are separated, resulting in the increased design and operational
flexibility. The energy density of VRB is relatively low, ranging from 15 to 30 Wh/kg, and
its efficiency is approximately 75% in some cases [61]. On the other hand, they are not
constrained by reactant life cycles or discharge depth [62]. Due to the low costs involved in
their maintenance and operation, VRB have been suggested as viable options for large-scale
grid-based energy storage [63]. The reactants have been investigated, and several chemical
compositions have been proposed. The most utilized ones are vanadium and Zn-Br [64].
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Table 6. Review of technology BESS [65–69].

Technology
Efficiency

(%)
Life Cycle

(DOD 80%)
Battery Energy
Density (Wh/L)

Battery
Power Density

(W/L)

Application
Battery

Benefits Disadvantage

Lead Acid
(LA) 75–85 300–3000 50–90 10–400

Diesel electric-
powered

submarines,
electric motors

Cheap
Low energy

density, limited
cycling ability

Lithium Ion
(Li-Ion) 90–99 3000–10,000 200–500 1500–10,000 Laptops, mobile

phones, EV

Fast response
time, high

efficiency, and
energy density

Some security
issues depend on

the type

Sodium Sulfur
(NaS) 75–90 4500 150–300 140–180

Load
residential,

support ups

High efficiency
and life cycle

High maintenance
and operating
temperatures

Nickel
Batteries 15–400 500–3000 10–150 50–1200

Mobile phones,
emergency

lighting

High reliability
and energy

density, long
cycle life,

Environmental
hazards,

influenced by the
memory effect

Zinc Bromine
(ZnBr) 2000 30–65 <25 65–80 Diesel electric-

powered

Long lifetime,
high energy
density, and

deep discharge
capacity,

Dendrite
formation,

corrosivity, require
working

temperature, and
low cycle
efficiency

Polysulfide
Bromine (PSB) - 20–30 <2 60–75

Electrical
vehicle, support

ups

Fast reaction
speed

No large-scale
application

experience, and
environmental

issues,

Vanadium
Redox Flow

(VRB)
65–85 2000–20,000 40 -

Electrical
vehicle,

support ups

Stability for
large scale

Difficult
maintenance,

complex battery

Table 7. Specification of technology lithium-ion batteries [70,71].

Technology Efficiency (%)
Life Cycle

(DOD 80%)
Battery Energy
Density (Wh/L)

Battery Power
Density (W/L)

Lithium Iron Phosphate (LiFePO4) 92 >2000 90–120 1932

Lithium Cobalt Oxide (LiCoO2) 95.7–98.4 500–1000 150–200 2710

Lithium Nickel Manganese Cobalt
Oxide (Li(NixMnyCo1−x−y)O2) 90 1000–2000 150–220 -

Lithium Nickel Cobalt Aluminum
Oxide (Li(NixCoyAl1−x−y)O2) - 500 200–260 -

Lithium Manganese Oxide
(LiMn2O4) - 300–700 100–150 -

Lithium Titanate (Li4Ti5O12) 98 3000–7000 50–80 -

Table 8. Specification of technology nickel batteries [69].

Technology Efficiency (%)
Life Cycle

(DOD 80%)
Battery Energy
Density (Wh/L)

Battery Power
Density (W/L)

Ni-Cd 70–90 2000–2500 15–150 75–700
Ni-MH 90 700–1000 38.9–350 7.8–588
Ni-Zn <87 >5000 80–400 121.38
Ni-Fe <65 - 25–80 12.68–35.18
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6. Battery Degradation

Battery degradation leads to a reduction in its capacity and efficiency and even safety
problems. The term cycle life refers to the total number of times a battery can be discharged
or charged before it is replaced [72]. Nonlinearity in battery degradation can be traced to a
variety of causes, such as SOC, high temperature, depth of discharge (DOD), and charge
or discharge current rate [73], as shown in Figure 5. One of the issues contributing to the
short lifespan of Li-Ion batteries, for example, is the highly utilized DOD, which tends to
significantly reduce the total number of cycles [74,75].

Figure 5. Relationship between battery capacity and SOC, DOD, and cycle life Li-Ion battery [38].

The remaining useful life (RUL) and state of health (SOH) are the most critical factors
in predicting Li-Ion battery degeneration. Generally, usage capacity, energy, and accessible
power, which diminish with battery age, influence SOH and RUL [76]. Although SOH tests
detect a decrease in performance, they also prevent potential accidents [77]. The accuracy
with which one may anticipate the RUL of a given battery capacity relies on several factors,
and the most important is the ability to calculate the SOH. Managing discharge problems,
improved performance, and optimized operation requires precise and reliable prediction
algorithms to determine a battery SOH and RUL.

SOH refers to the percentage of a battery cell’s capacity that is still usable and used to
quantify the entire aging degree. This value is expressed as a percentage [78] and ideally,
the SOH of the new battery should be 100%. The decreasing trend of SOH is due to the
accelerated aging of the battery, which is one of the reasons of the increased cycle times.
When the state of health reaches the failure threshold, the battery becomes ineffective [79].
The formula for SOH is written in Equation (1).

SOH(t) =
Ct

C0
(1)

where Ct and C0 denote the t-th cycle and initial battery capacity. The maximum capacity
of the battery tends to drop in accordance with the number of times it is cycled, with
continuous increase in the battery’s internal resistance. Generally, a battery fails when
its internal impedance increases to a level that is twice as high as its initial impedance.
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Several performance parameters, such as power and the number of charge and discharge
cycles, can also be used to define SOH. Further studies must utilize a wide variety of
methods or models to estimate SOH, such as the use of direct measurement and indirect
analysis. By measuring the standard aging characteristic parameters of the battery, the direct
measurement technique determines the value of its current capacity, internal resistance,
cycle times, etc. This is the technique through which the values of the current state’s
identifying parameters are determined. Examples of direct measurements are counting
ampere hours, cycle numbers, measuring internal resistance and impedance. The indirect
analysis consists of obtaining the SOH value by estimation based on online observable
data from health indicators that have a high link with the performance and characteristic
parameter degradation that occurs with the SOH condition. Model-based analysis, data-
driven analysis, and hybrid analysis are examples of indirect analysis [80].

Wei J et al. [81] monitored the estimated diagnosis of battery SOH with three stages.
In the initial stage, a particle filter (PF) technique was initiated, followed by the execution
of a procedure to update the particle’s time. The support vector regression (SVR) model
was also used to estimate the capacity in each battery cycle number in the second stage.
This SVR model is trained with characteristics collected from sensor data during constant-
voltage (CV) charging mode at cycle number, to determine the charged capacity. The third
stage updated the particle constitutes, which can be resampled based on their normalized
importance weights. In accordance with the PF-based estimator, the anticipated capacity
at the cycle number is considered as a Gaussian distribution, whose variance and mean
are obtained. SOH is further defined as the ratio between the capacity of a new battery
and the expected capacity. In general, the SOH estimation flowchart can be seen in the
flowchart in Figure 6.

Oflline Model Development Online Model Development

Dataset Historical 
Parameter Battery Feature Extraction

Normalization Data

Offline model aprroach 
(mathematic; data-

driven; hybrid)

Ageing Battery Model

Sensor Measured 
Data Battery

Normalization/
Scaling Data

Ageing Estimation Model

State of Health

Time Update

 

Figure 6. Block diagram of SOH estimation in general.

RUL refers to the information on the remaining life of a battery. It is imperative
to change old and damaged batteries whose SOH has reached 0%, to guarantee the
safety of the system and hence prevent problems [80,82]. The formula for RUL is written
in Equation (2):

RUL(t) = t − teol (2)

where t and teol denote the t-th and number of cycles remaining at the completion of a
battery’s life. It is difficult to compute the RUL of a battery due to several variables, such as
its present health condition, historical data, and failure. Therefore, further study needs to
be conducted on the prediction of batteries’ RUL. Presently, there is no standard framework
that is considered the optimal model for estimating RUL due to a lack of available data,
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model complexity, and system limitations. In general, RUL prediction methods can be
categorized as physics-based, mathematical, data-driven, or hybrids [80].

Wei J et al. [81] also predicted the RUL of a battery using the SVR-based model using
a flowchart as shown in Figure 7. Monitoring the prediction of RUL starts with developing
a model that has been trained using extracted sensor data features and predicted capacity
for SVR-based input models. Wei J. et al. applied the average degradation parameter to
characterize the expected capacity distribution in this section. The result showed that RUL
is considered the n + 1 after the predicted capacity has reached the EOL threshold.

Oflline Model Development Online Model Development

Dataset Historical 
Parameter Battery Feature Extraction

Normalization Data

Offline model aprroach 
(mathematic; data-

driven; hybrid)

Lifetime Battery Model

Sensor Measured 
Data Battery

Normalization/
Scaling Data

Lifetime Prediction Model

Remaining Useful Life (Lifetime/ Cycle Battery)

Cycle Update

 

Figure 7. Block diagram of RUL prediction in general.

The diagram in Figure 8 illustrates the connection between SOH, RUL, and the model-
ing of battery degradation. Some preliminary research developed a battery deterioration
mechanism model using a framework that incorporated SOH and RUL [76]. The ele-
ments that influence general battery deterioration and failure were further explained in
the SOH estimation model. Furthermore, its diagnostics and estimation help boost RUL
battery modeling by determining how much time or cycles are left to attain 80% SOH.
As a result, the reliable prediction of SOH and RUL is required for modeling battery
deterioration behavior.

Battery Parameter

Temperature
SOC
DOD

Current Rate
Voltage Range
Charging Time

Discharging Time
Internal Resistance

Capacity
Cycling Number

Battery Degradation Model

SOH Model 
Estimation

Historical Data

SOH Value (%) Threshold 
<SOH 80%

Battery Failure/
EOL

yes

No

RUL Model 
Estimation

Remaining 
Lifetime/Cycle 

Battery

SOH Steps

RUL Steps

Diagnostics Prognostics

 

Figure 8. Relationship battery degradation models.
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The SOH of a battery is measured in terms of its present ability to supply a certain
quantity of energy in comparison to the initial capacity. At the same time, the RUL is
helpful for monitoring the state of the battery and is also essential for executing operations
that evaluate its degeneration. Due to the nonlinear nature of battery deterioration, it is
necessary to have appropriate RUL estimations that are based on aging processes and
suitable life models at various fading stages [76]. This entails calculating the time until
a battery reaches its EOL. It tends to occur when the battery has reached the failure
threshold. Moreover, the time left and the total number of charge-discharge cycles are
considered [83]. The RUL estimation and degradation process are intimately linked to
the working circumstances and dependability of Li-Ion batteries. Previous studies have
reported that the successful prediction of the RUL prevents failure and timely functional
maintenance without irreversibly harming the battery [84].

Scholars estimated the RUL using several different methodologies, as shown in
Figure 9. These tend to be broken down into one of the four categories, namely based
on physics, mathematics, data, or hybrid models. The amount of time a battery is going
to be valuable is evaluated using a model-based technique. Therefore, a model that is
representative of a battery application found in the real world, as well as an estimated
algorithm used to predict voltage or other characteristics, needs to be developed. Empirical,
analogous circuit and electrochemical models, including Kalman filters, are a few examples
of the various methods that fall under this category. Data-driven RUL estimation is a pre-
diction method that collects excess information and continues recording until battery health
reaches its limit. Meanwhile, applying a hybrid model implies combining a model-based
method with a data-driven model [76].

Battery SOH and RUL Estimation Method

Direct Assessment Approach/
Physics Based 

The model approach is carried out 
directly from the characteristics of 
the degradation battery. For now, 

this method is only used for 
estimating SOH.

Method
Coloumb Counting
Open Circuit Voltage
Impedance Spectroscopy
Incremental Capacity
Differential Voltage

Advantages
Simple model
High precision
Fast response

Disadvantages
Complex parameter
Difficulty to modelling

Adaptive/ Mathematical Approach

Specialized models and equations 
obtained through the process of 
fitting the data from battery 
experiments

Method
Kalman Filtering
Particle Filtering
Least Square

Advantages
Low difficulty to modeling
Good performance
Simple structure model

Disadvantages
Low robustness
The physical model is sometimes 
unclear
Depends on operating conditions

Data-Driven

The model approach combines 
specific battery data that includes 
all factors and synthesizes a model

Method
Fuzzy Logic
Neural Network
Support Vector Machine
XGBoost
Particle Swarm Optimization

Advantages
Robust
High accuracy
Good Performance
Relative low complex

Disadvantages
Sometime the model make 
computational burden
Sensitive to the quality and 
quantity of data

Hybrid

Approach through a combination 
of data-driven screening techniques 
and empirical models

Method
Open Circuit Voltage-Neural 
Network
Particle Filtering-Particle Swarm 
Optimzation

Advantages
Improves performance and 
accuracy
Model parameters and thresholds 
are optimized.

Disadvantages
High computational is required
Sensitive to the quality and 
quantity of data

 

Figure 9. Classification method estimation RUL battery [76,82].

Table 9 reviews variables used to optimize BESS capacity size and placement with
battery degradation models, which vary in different studies. Aside from the SOH and
RUL models, preliminary research also used fading capacity and residual battery life for
BESS optimization. Table 10 reviews the algorithm used for battery degradation models for
BESS optimization.

422



Batteries 2022, 8, 290

Table 9. Review of variable features used in battery degradation models for optimization of BESS
sizing and siting.

Author

Feature Variables for Battery Degradation Model
Model Battery
DegradationSOC DOD Temperature Cycle Life

Charging/
Discharging

Alsaidan I et al. [32] � � Lifetime
Khezri R, et al. [85] � � Capacity fade

Sayfutdinov T, et al. [86] � � � Capacity fade
Cardoso G, et al. [27] � � Capacity fade, lifetime

Hernandez J, C, et al. [87] � � � � � Lifetime
Garrido A.G, et al. [88] � � Capacity fade, SOH, lifetime

Shin H et al. [46] � � � Capacity fade, SOH
Arias N.B et al. [89] � RUL
Amini M, et al. [38] � � Capacity fade, lifetime

Mulleriyawage
U.G.K, et al. [90] � � SOH

Wu Y, et al. [91] � � � SOH, capacity fade

Table 10. Advantages and disadvantages of battery degradation algorithm for BESS optimization.

Author
Battery

Degradation
Factors

Algorithm
Battery

Degradation
Advantages Disadvantages

Alsaidan, et al.
(2018) [32]

Energy capacity fading,
cycle battery

Piecewise linear
approximation

Easy to apply in small
data on time to the

events provided

When much data
requires many limits

Timur Sayfutdinov, et al.
(2020) [86]

Energy capacity fading,
calendar aging,
cycling aging

Least-squares fitting Simple, easy to apply

Very sensitive to
outliers, tendency to

overfit, unreliable
when the data
distribution is

not normal

Mohammad Amini et al.
(2021) [38]

Energy capacity fading,
calendar aging, cycling
aging, lifetime battery

Mathematical model
Simple structure, low
model difficulty, and

fast performance

Less robust and
significantly affected by

operating conditions

Hunyong Shin, et al.
(2022) [92]

Energy capacity fading,
SOH, operating

temperature,
cycle battery

Rainflow-counting
algorithm

Estimation of model
parameters is based on

linear regression
analysis, which can be
carried out with simple

hand calculations.

Requires a lot of
experimental data

application of
parameters based

on estimates

Battery lifespan is influenced by calendar and cycling aging. However, this is also
determined by cycle or float lives [93]. Even though the computation of the BESS life value
tends to be inaccurate, its datasheet is dependent on two limits, cycle and float lives. Both
restrictions are measured in years, and when the BESS maximum life is equal to or exceeded
by its float life, it is said to have a floating life equal to or exceeds its maximum life. The
cycle life is represented as the maximum number of charge and discharge cycles that can
occur prior to the BESS failing, and it varies depending on the technology of both the BES
and the DOD [38].

6.1. Battery Degradation Due to Changes in Ambient Temperature

The performance of lithium-ion batteries and their lifespan is significantly influenced
by temperature. When exposed to high temperatures, its rate of degradation is significantly
accelerated. Li-Ion batteries are temperature-sensitive [9], and their performance is affected
not only by the temperature of the cell itself but also by the environment in which it is
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located. Battery degradation is caused by a combination of the SEI and the loss of active
material. The one brought about by SEI is the most common and fundamental cause of
capacity fade rate in batteries. As a result of the high temperature, the surface particles of
the electron undergo a rapid development of SEI, thereby causing the battery’s capacity to
reduce [94]. According to some literature [95] on the systematic establishment of the theory
on SEI growth and reduction in battery capacity, it was asserted that temperature changes
trigger capacity fade due to alterations in the SEI layer. Incidentally, SEI growth can occur
in idle situations, during the cycle, and during temperature changes. Some literature [96]
clearly stated that temperature changes severely affect battery degradation. This process is
of two types, namely actual and temporary capacity fading and loss. The actual capacity
fading suggests that there has been irreversible cell loss due to the ingestion of lithium-ion.
The high temperature of the battery accelerates the rapid rate of cell deterioration. On the
other hand, a temporary capacity loss is caused by a drop in temperature during a specific
cycle. It can be restored if the battery temperature returns to a certain level.

The literature [97] focuses on the ambient temperature impact on a battery’s lifespan.
The formation of the film on the electrodes of Li-Ion batteries explains the effect that the
surrounding temperature has on its lifespan. This is because of the oxidation of the cell,
proven by the film produced on the electrodes. It causes an irreversible increase in the
Li-Ion battery’s internal resistance, ultimately leading to damage. The findings on the
simulation process show that higher temperatures during idle battery scenarios resulted in
extreme capacity loss and self-discharge.

Some studies on calendar aging reported that it is related to temperature. Battery
aging testing is performed at different temperatures, SOC, and end-of-life. The tests were
conducted in a laboratory with temperature control facilities and charging or discharge
operations. In reality, the battery is in extremely harsh operational conditions. The results
of Li-Ion testing for EVs are reported to last 2000 and 800 cycles at temperatures of 25 ◦C
and 55 ◦C, respectively [98]. Additionally, testing the influence of battery temperature
due to discharge rate differences such as 1C, 2C, 3C, and 4C was also conducted [99]. It is
possible to determine the varying contours due to the changing temperatures of the battery
cells and their discharge at a consistent rate.

The pace at which capacity is lost is significantly affected by the temperature of the
surrounding environment. Meanwhile, when it is greater than 35 degrees Celsius, it triggers
more changes in the composition of the electrolyte due to the substantial temperature rise.
This causes the process at which active lithium is utilized to quickly move forward [100].
As a result, the battery’s capacity starts to decrease at various room temperatures, as shown
in Figure 10. It is evident that when the perimeter temperature is greater than 35 ◦C, the
capacity fades level drops significantly during the first 50 cycles. This phenomenon occurs
while the battery is being used. When the temperature is 55 ◦C, the maximum capacity
fades, while the temperatures of 25 ◦C and 35 ◦C are projected to be the same [100].

Characteristics of the capacity fade rate of the battery which is affected by the ambient
temperature as shown in Figure 11. Yuhan Wu et al. [31] stated that LiFePO4 battery
degradation caused by the average temperature in BESS is modeled by combining cal-
endar and cycle aging. This model is depicted by a single operating cycle, as shown in
Equations (3)–(8). By knowing the characteristics of the battery aging cycle to set the opti-
mal operating temperature of BESS, it can reduce the battery degradation rate so that the
battery life is longer.

ξ = ξcal + ξcyc (3)

ξcyc = fd,soc
(
SOCavg

)
(4)

ξcal = ∑n
i=1 fd,dod(DODi) fd,T

(
Ti,avg

)
(5)

fd,soc
(
SOCavg

)
= k1SOC2

avg + k2SOCavg (6)

fd,dod(DODi) = k3DOD2 + k4DOD (7)
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fd,T
(
Ti,avg

)
=

{
ek5/T/k6, 298K ≥ T ≥ 273K
ek7/T/k8, 333K ≥ T ≥ 298K

(8)

where ξ represent of battery degradation from calendar aging (ξcal) and cyclic aging (ξcyc).
n is the number of cycles charged or discharged in one day. SOCavg represents the average
SOC, DODi depicts the difference between the i-th charge and discharge cycles DOD, and
Ti,avg is the average temperature in BESS. In most cases, the value of the k parameter is
determined by the experimental observation [31,35].

Figure 10. Capacity fade rate of LiFePO4 battery at each temperature during cycling [100].

Figure 11. Characteristic cycle aging battery [31].
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6.2. Battery Thermal Management

Complex electrochemical reactions and electric-to-thermal conversion determine the
thermal characteristics of a battery [101]. The production of heat by Li-Ion batteries is a
complex process that involves a knowledge of how the rate of electrochemical reaction
varies with time and temperature, in addition to how current flows within the battery [102].
Simply, heat generation of the battery is written as Equation (9):

Q = I(U − V)− I
(

T
dU
dT

)
(9)

where Q denotes the rate of heat generation, I denotes the electric current flowing through
the cell, U denotes the open-circuit voltage, and V represents the voltage of each individual
cell in the Li-Ion batteries. In general, the thermal model of a battery has been examined
according to the dimensions of the battery as well as the physical mechanism (electro-
thermal model, electrochemical thermal model, and thermal runaway propagation model)
(lumped model, 1D, 2D, and 3D). In most cases, the charging and discharging procedures for
Li-Ion batteries result in the production of three distinct types of heat. These forms of heat
include activation of irreversible heat as a result of the polarization of an electrochemical
reaction, joule heating as a result of ohmic losses, and reversible reaction heat as a result
of the change in entropy that takes place during the charging and discharging processes.
Consequently, if the heat created by the battery while charging or discharging is not
correctly dissipated, the temperature of the battery may grow because of heat accumulation,
which may have a severe influence on the battery’s performance, life, and safety [102].

The thermal management process, which is a critical component of the battery man-
agement system, is most concerned with estimating the precise state of temperature (SOT).
Using more traditional measurement methods, such as thermocouples, it is simple to obtain
an accurate reading of the temperature at the surface of the battery. Nevertheless, the
temperature on the inside of the cell during transients is significantly different [103]. In
general, the SOT estimation methods can be broken down into four categories: the direct
measurement method, the electrochemical impedance-based method, the model-based
estimation method, and the data-driven method.

Using a direct measurement methodology, researchers proposed ways for monitoring
the temperature of a battery’s internal layers. Temperature micro-sensors are integrated into
the interior layers of the battery cells in these technologies. Thermocouples and resistance
thermometers are the two most common types of sensors used to indicate the temperature
of a battery’s interior. The model-based estimation approach typically makes extensive
use of numerical thermoelectric and thermal models when attempting to determine an
object’s internal temperature. To construct thermoelectric and thermal models such as the
lumped-parameter battery model and the distributed battery thermal model, it is very
required to understand heat generation, conduction, dissipation, balancing, and thermal
boundary conditions. A few different approaches for calculating the temperature of a
battery based on electrochemical impedance spectroscopy EIS measurements have been
proposed in the electrochemical impedance-based approach without first constructing a
thermal model. Temperature can be linked to impedance indicators acquired via EIS. These
indicators include phase shift, real part amplitude, and imaginary part amplitude, per
the most recent data-driven strategies. Data-driven approaches were used to estimate the
temperature of the batteries inside [103].

7. Objective, Design Constraint, and Algorithm BESS Optimization

This section explains the objective functions frequently reported by previous studies,
design constraints, algorithms used for BESS optimization, and a review of its state-the-art
development. The steps involved in BESS optimization are depicted in the flowchart shown
in Figure 12. This starts with collecting input system data, then determining the direction of
the model development, selecting an objective function and design constraints, optimizing
strategy and algorithm, and finally evaluating the optimization results.
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Figure 12. Flowchart of optimization of BESS.

7.1. Objective Function BESS

Since BESS plays an important role, its sizing is essential to ensure the normal func-
tioning of distribution networks. An accurate and realistic model improves the operating
systems from an economic and safety standpoint [104]. BESS optimum sizing is centered
on finding its optimal capacity and the ability to minimize distribution network operating
costs while meeting performance goals. Its investment cost is an essential component in
calculating the distribution network operating expense. Moreover, this is affected by the
investment payback period. As a result, BESS life is significant, and the number of cycles it
can complete as well as the SOC at which it runs, are the two most important parameters
used to determine the longevity of the battery. To assess the expenses linked to BESS, the
anticipated lifespan was used [105]. In [106], the lifetime was determined by predictive
models. The main objective of the study is to reduce costs, integrate RES, analyze its effects,
and obtain benefits for the network.

7.1.1. Objective Function BESS to Reduce Total Cost Storage Expansion Planning

In the literature [32] the objective function was considered to reduce the total cost of
storage expansion planning on the microgrid. It is defined as follows

Min ∑
i∈G

∑
d

∑
h

Fi

(
Pidh(), Iidh()

)
+ ∑

d
∑
h

ρdhPM
dh()

+∑
s

prs ∑
b∈K

∑
d

∑
h

LSbdhsv

+∑i∈B ∑b∈K
(

PR
ib
(
CPa

i + CMi
)
+ CR

ib
(
CEa

i + CIa
i
))

(10)

The first two-term Equation (10) indicates the operating cost of the microgrid when
connected to the grid. Where b, d, h, i, l, s and B are the bus, day, hour, distributed energy
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resources, lines, scenarios, and battery technologies indices, respectively. Fi represents
the microgrid local DG units cost function, Pidh() is DG output power, Iidh() depicts the
commitment state of dispatchable units, ρdh is electricity market price ($/kWh), and PM

dh()
illustrates the power transferred to and from the utility grid. The third term accounts for
the costs of dissatisfying the requirements of the MG demand. Due to insignificant changes
in the demand for microgrids, the output of generators distributed at the price of electricity
during the planning period need to consider the historical data of one year. Where prs is
the probability of islanding scenarios, LSbdhs depicts load curtailment, and v represents
the value of lost load ($/kWh). Incidentally, the value of lost load (VOLL) measures the
economic losses associated with underserved energy. It depicts the willingness of customers
to pay for reliable electrical services. This number is not dependent on the time or length
of the outage rather, it is determined by the kind of consumer and location. The last term
reflects the costs of BESS. Where CR

ib, PR
ib is BESS rated energy and power, CEa

i , CPa
i depicts

annualized energy or power investment cost of BESS, CIa
i is the cost of BESS installation

on an annualized basis and CMi represents the annual operating and maintenance cost
of BESS.

In addition, there is also a BESS objective function to be applied in storage expansion
planning on the grid. Based on the literature [35], it is stated as follows

min ∑s∈S πs ∑t∈T

[
∑i∈I AG

i PG
s,i,t

2 − BG
i PG

s,i,t + ∑km∈Br

(
F2

s,km,t
Rkm

V2
km

CAPL

)]
Δt + ∑k∈K ∑j∈J

EES
j,k CE

j + PES
j,k CP

j

365 TLt
j

(11)

Equation (11) shows the objective function that considers the exchange between
investment costs and BESS operations. Due to this, BESS can demonstrate energy time-
shift applications, which, in turn, contributes to the reduction in the day-to-day running
expenses of the network. This is accomplished through a series of hypothetical situations
that reflects the whole life span of BESS. The first group indicates the total operating cost
of DG, where S represent the set of future network operation scenarios, T is the time
intervals, πs depicts the probability value of the scenario s, I represent the generation units,
AG

i , BG
i illustrates a generation cost function, and Ps,i, it is the scheduled power output of a

thermal unit. The second term shows active power losses on the network, Fkm, Rkm, Vkm
depicting thermal limit, resistance, and the voltage level of the line. Br is an index of
branches connecting pairs of nodes km, while CAPL represent energy price for active power
losses. The last term illustrates the investment cost of BESS, where K represent of index of
transmission grid nodes, J is the set of energy storage technologies, PES

j,k , EES
j,k represents the

rated power and energy capacity of BESS, CE
j , CP

j depicts the investment costs of battery

technology, and TLt
j is the service lifetime battery.

7.1.2. Objective Function BESS of Life Cycle Cost Energy System

This energy system objective Life Cycle Cost (LCC) is used to minimize the total
planning costs calculated only from BESS [91]. It is defined by some literature as follows:

Min LCC = Cbatt + CO−M (12)

CO−M =
∑Y

y=1(1 + r)Y−y[∑8760
t=1 (Cout.y(t) + Cf it.y(t) + ξCbatt]

(1 + r)Y (13)

Cbatt = Capbat μbatt (14)

Cout.y(t) =
(

Pg−b
y (t) + Pg−l

y (t)
)

Δt ∅buy (15)

Cf it.y(t) =
(

Pb−g
y (t) + Ppv−g

y (t)
)

Δt ∅sell (16)
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Equation (12) is an LCC consisting of the initial investment cost of BESS (Cbatt), in-
cluding the cost of operation and maintenance BESS (CO−M). Furthermore, Equation (13)
is used to obtain the operation and maintenance costs where y and t is the index year,
and time interval respectively, Cout.y(t) depicts electricity bills, and Cf it.y(t) is the benefit
from selling electricity to the grid. Equation (14) represents the initial investment cost of
BESS, where Capbat depicts the capacity of the battery, and μbatt is the unit capacity price.
Additionally, Equation (15) is used to calculate the electricity bills where Pg−b

y (t) represents

the power flow from grid to BESS (kW), Pg−l
y (t) is the power flow grid to the line, and

∅buy depicts electricity price. Equation (16) is the profit realized from selling electricity to

the grid, where Pb−g
y (t) represents power flow battery to the grid, Ppv−g

y (t) illustrates the
power flow PV to the grid, and ∅sell is feed-in tariff.

7.1.3. Objective Function BESS for Battery Degradation Cost

According to the literature [107], the optimal scheduling of BESS is supposed to
minimize the degradation costs, which are the proposed objective function. The intended
degradation charge model accounts for the nonlinearities of battery life. As a result, the
ideal SOC profile is the same regardless of the degradation cost model if the pricing pattern
is either too flat or there are excessive disparities between the maximum and minimum
prices. The objective function is stated in the following equation:

Min ∑t(
(

λtPgrid,t

)
+ CE(SoCaux

t )− CE(SoCt−1) (17)

Equation (17), is the optimal cost scheduling of BESS. It consists of power grid expense
and degradation cost function for optimal scheduling, where t represents index of time
interval, λt is electricity price, Pgrid,t represents the power from the grid, CE denotes
degradation cost for scheduling, SoCaux

t , SoC is auxiliary and actual SOC BESS.

7.2. Design Constraint

In an arbitrary situation, the requirements or needs that must be considered are re-
ferred to as constraints. The power balance between the consumption and generation aspect
is the most important constraint [108]. In distribution networks, electricity is imported or ex-
ported to the major grid, although this is often limited [109], to BESS-based operations [31].
The following are the most important limitations in maximizing the BESS size.

7.2.1. BESS Operation Constraint

The most common operational constraints when sizing BESS optimization techniques
are charge or discharge or SOC constraints. In addition, battery degradation rate and
life span needs to be regarded. The literature published by [110–113] reported other-
wise, that the optimization of the BESS must consider the SOC. This constraint was taken
into [114–118] consideration by maximizing BESS power loss, capacity, method, power
balance, and battery lifecycle. In [32], the impact of BESS operation constraints is analyzed
based on microgrid application and stated as follows

Pmin
i xib ≤ PR

ib ≤ Pmax
i xib (18)

αmin
i PR

ib ≤ CR
ib ≤ αmax

i PR
ib (19)

PR
ib , CR

ib denote power and energy rating BESS. The maximum and lowest BESS power
ratings of Pmin

i , Pmax
i are represented by Equation (18). To determine the current investment

status of BES technology, the binary variable x is used. Equation (19) utilized the power
capacity to compute the maximum discharge time and measure the BESS capacity, where
αmax

i , αmin
i indicates the highest and lowest possible energy to power rating ratios for

the BES.
0 ≤ Pdch

ibdhs ≤ PR
ib uibdhs (20)
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− PR
ib(1 − uibdhs) ≤ Pch

ibdhs ≤ 0 (21)

The charging or discharge power of BESS Pch
ibdhs, Pdch

ibdhs is limited depicted in
Equations (20) and (21), where i, b, d, h, and s denote the distributed energy resources,
bus, day, hour, and scenarios indices, respectively. uibdhs is BES operating state. BESS power
turns negative and positive while charging and discharging, respectively. The current state
of the BESS operation is determined by the value of the binary variable u. BESS can only
flow when it is equal to one, and charges when it is equivalent to zero. The magnitude
of the discharge has a direct bearing on the BESS life cycle, which varies from the diverse
technologies. The BESS cycle refers to a complete one that includes both charging and
discharging of the battery.

ξibdhs =
(

uibdhs − uibd(h−1)s

)
uibdhs (22)

∑d ∑h prsξibdhs ≤ 1
T ∑m∈N KimWibm (23)

Equation (22) is used to determine the BESS cycle, where ξibdhs is BESS cycle indicator.
Every time the charging process begins, the value is bound to be one, otherwise, it is zero.
During the planned time horizon, the total BES cycle need not exceed the specified lifespan
regarding the determined maximum DOD and the life project stated in Equation (23),
where Kim is BESS lifecycle, and Wibm represents a binary variable that reflects the value of
the BESS maximum DOD.

∑m∈N Wibm ≤ xib (24)

Cibdhs = Cibd(h−1)s −
Pdch

ibdhsT
ηi

− Pch
ibdhsT (25)

(1 − ∑m∈N YibmWibm)CR
ib ≤ Cibdhs ≤ CR

ib (26)

Equation (24), assures that for each BESS deployed, only one maximum depth of
discharge value is evaluated. According to Equation (25), the energy stored at each time
interval is equal to the preceding period minus the discarded or charged energy, where
Cibdhs is stored energy BESS during each interval. Meanwhile in Equation (26), BESS cannot
be discharged with less energy than the minimum value specified by the maximum depth.
This is not indicated by the discharge, nor can it be charged with more energy than its rated
capacity allows during the process. Where Yibm is maximum DOD BESS.

7.2.2. Battery Degradation of BESS Constraint

Battery degradation in BESS is important to consider. Cardoso et al. [27], stated that
the total annual electricity cost savings from PV and BESS can be reduced by 5–12% by
solely considering the battery degradation constraint limitations. Furthermore, some litera-
ture [35] stated that a battery degradation model is based on cycling and aging conditions.
Afterwards, it is used in the BESS operation constraint to support its optimization by
lowering the planning cost of energy storage.

γIdl
(

SoCj,k

)
= AIdl

j SoC2
j,k + BIdl

j SoCj,k + Cidl
j (27)

γCyc
(

DoDj,k,n

)
= ACyc

j DoD2
j,k,n + BCyc

j DoDj,k,n (28)

Equations (27) and (28) are capacity fade rates during idling and cycling conditions
resulting from historical data on battery characteristics and adjusted to the least squares
fitting method [35]. Where j, k, n are the battery technology, transmission grid nodes, and
charge/discharge cycles indices, respectively. γIdl , γCyc is the capacity fade rate during the
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idling condition, and AIdl
b , BIdl

b , CIdl
b , ACyc

b , BCyc
b is a quadratic, linear, and constant of the

degradation functions during idling and cycling.

0 ≤ EBESS
s,j,k,t ≤ EBESS

j,k

[
1 −
(

γIdl
(

SoCj,k

)
+ ∑n ynγCyc

(
DoDj,k,n

))
Y(s)

]
(29)

BESS charging is limited to the energy rating of those batteries which continues to fade
due to the life horizon, depicted in the Equation (20), where EBESS

b,i,y,d,t is the BESS continuity

energy, and EBESS
b,i represents the installed BESS Energy. The value can be 0.5 for half cycles

and 1.0 for full ones yn. Y represents years for the number of the scenario s.

remj,k = 1 −
(

γIdl
(

SoCj.k

)
+ ∑n ynγCyc

(
DoDj.k,n

))
TLt

j (30)

EoLj ≤ remj.k ≤ 1 (31)

Equation (30), remj,k is a formulation of the remaining BESS capacity at the end of
battery service life due to idling degradation and cycling. TLt

j represents service lifetime
period BESS of a manufacturer. The selected operating strategy is dependent on the
remaining BESS capacity. remj.k ensures that the remaining capacity is not less than the
EOL threshold, moreover a constraint is applied in Equation (31).

7.2.3. Power and Energy Balance Constraint

When it comes to BESS size, the power, and energy balance between demand and
generation is crucial. In the following literatures [112,116,118–122], the energy and power
balance are constraints in the process of optimizing the size of the BESS. Based on [32], the
power and energy balance constraints are expressed as follows

∑g∈[G,W]
μibPidhs + ∑b∈B

(
Pch

ibdhs + Pdch
ibdhs

)
+ ∑i∈I ψib fidhs + PM

dhs + LSbdhs = Dbdh (32)

The balance of power and energy constraints are stated in Equation (32). This guaran-
tees the amount of power provided by the distributed energy resources (DER) installed on
that bus, plus or minus the amount of electricity going into or emanating from it, is equal
to the quantity of power locally needed on that bus. If there is not enough generation to
maintain BESS balance, the load is reduced, and the strength tends to be positive while the
system is discharging and negative while it is charging. However, if the power is flowing
from the utility grid into the microgrid, then it has a positive value, otherwise, it is negative.
Where i, b, d, h, and s are the distributed energy resources, bus, day, hour, and scenarios
indices, respectively. μib is a generation-bus incidence matrix element, Pidhs is DER output
power, Pch

ibdhs, Pdch
ibdhs depicts BESS charging and discharging power, ψib represents a line-bus

matrix element (one if line l is connected to bus b, 0 if otherwise), fidhs denotes distribution
line power flow, PM

dhs is electricity moved to and from the utility grid, LSbdh is the load
shedding cost, and Dbdh is total load demand.

− PM,maxzdhs ≤ PM
ds ≤ PM,maxzdhs (33)

0 ≤ LSbdh ≤ (Dbdh − CDbdh) (34)

− f max
l ≤ fidhs ≤ f max

l (35)

Equation (33) is the limitation of a microgrid network of power transfer to the grid.
Furthermore, Equation (34) is the limit for load reduction, where PM,max denotes the
maximum power capacity of the microgrid to the utility grid, zdhs is microgrid/utility grid
status, Dbdh, CDbdh represents the sum of all load demands as well as the critical load
demand. Equation (35) is the amount of power that flows through a distribution network
microgrid due to channel capacity constraints, where f max

l is the maximum power capacity
of distribution line.
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7.3. Optimization Strategy and Algorithm

Size, capacity, cost, and lifetime are all aspects of the BESS that need to be improved.
Existing research on BESS sizing-related problems is categorized according to grid scenario,
goals that need to be achieved, the strategy applied, test bus, and various advantages and
limitations to optimize the different algorithms. These include genetic algorithms (GA),
particle swarm optimization (PSO), dynamic programming (DP), taboo search, fuzzy PSO,
and bat algorithm. Simulation and modeling technologies such as PSLF, MATLAB, CPLEX,
OpenDSS, GAMS, Gurobi, PowerFactory, and DIgSILENT are extensively used to improve
BESS sizes. MATLAB is also a viable choice. Moreover, several research use a test bus
from the IEEE study case to evaluate the system’s performance instead of the current test
systems [44]. The following are some of the most often used algorithms for predicting
BESS size.

7.3.1. Probabilistic

Since several parameters tend to be improved, the probabilistic technique is regarded
as one of the simplest ways of measuring BESS. The fundamental constraint of such a
method is the number of parameters that need to be examined. Based on preliminary
research, the probabilistic method was discovered to be the most useful approach for
calculating the uncertainty parameter of the optimization process to obtain the best BESS
measure [123–129]. Its key benefit is the need for a small amount of data to conclude. As a
result, probabilistic approaches are excellent in circumstances where information is scarce.

7.3.2. Deterministic

The deterministic techniques examine various electrical configurations, system com-
ponents being altered, and how they need to be optimized based on preset principles. A
deterministic technique is a direct approach to cost [130] and capacity [131,132] alongside
the optimization process investigated by some other analysis.

7.3.3. Rule-Based Optimization

The rule-based optimization (RBO) method defines an expected solution, such as
fuzzy logic. In accordance with the following literature [131,133–136], optimization of BESS
sizing is realized using fuzzy logic. Based on the research, a fuzzy-based method was
adopted to reduce both the RES and the cost of BESS [137]. According to the data, an ideal
BESS reduces microgrid costs by 3.2 percent, and battery longevity significantly affects
MG costs. The primary advantage of utilizing a fuzzy optimizer is that either the total
number of parameters is unknown or the scale of the optimization issue is unaffected by
any change [138].

7.3.4. Mathematical-Based Optimization

The most comprehensive method is mathematical modeling when it comes to finding
the solution to the BESS sizing-related problem. This approach for determining the optimal
size of the BESS is categorized as linear programming (LP), nonlinear, or mixed-integer
programming (MILP). Mathematical optimization is approached in three different ways,
namely DP, convex programming (CP), and second-order cone programming (SOCP). Since
the DP model separates this process into several different time slots, and the solutions are
recognized at each level, it is both possible and advantageous to combine time-varying
elements. In some literature, this model was used to maximize BESS size [111,139–141].
The CP technique also has the advantage of discretionary independence. Furthermore,
its optimization strategy is employed in [142,143], to achieve the best possible results
in minimizing the linear objective function. It is necessary to intersect the affine linear
manifold with the product of second-order cones. Based on the literature published
by [144,145], SOCP is used to size BESS.
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7.3.5. Heuristics

Heuristic strategies allow suitable, non-ideal arrangements to be applied in real time.
There is no mathematical foundation that is effective in obtaining optimal solutions, instead,
approaches such as nature-inspired algorithms are used. These include GA [146], PSO [147],
bat algorithm [148], and taboo search [149]. The key benefits of using heuristic approaches
are flexibility, high accuracy, and computation timelessness.

7.4. Review of Existing Studies BESS

A state-of-the-art review of BESS optimization considering battery degradation was
conducted to discover new perspectives in terms of developing its models. Table 11
summarizes several selected studies that can be distinguished based on main objectives,
design constraints, algorithms, and battery degradation factors. It is evident that the
perspective of battery degradation in BESS optimization is getting deeper. Its factors
vary, such as energy capacity fading, calendar, and cycling aging, battery lifetime, cycle
battery, and temperature. The development of the BESS optimization model considering
battery degradation due to temperature is an interesting and rare study. There are certain
related studies [27,35] in terms of developing a battery degradation model for optimal BESS
using a fixed value of battery temperature. Meanwhile, literature [31] tends to develop
a degradation battery model due to ambient temperature with dynamic values during
the winter. Based on the study of the optimal BESS, ambient temperature affects battery
degradation, according to the literature [100] The capacity fade level drops significantly
when the perimeter temperature exceeds 35 ◦C. Therefore, the development of a battery
degradation model due to ambient temperature is a new perspective in optimizing BESS.

Table 11. Literature review of studies of the BESS optimization effect considering battery degradation.

Author
Main

Objective
Constraint

Battery
Technology

Case Study
Algorithm/Method
Optimization

BESS

Battery
Degradation

Factors

Algorithm
Battery

Degradation

Ting Qiu, et al.
(2017) [150]

Sizing BESS for
co-planning the

transmission model
of expansion

CDC, CC, PEBC,
PELC, RCC Li-Ion

Modified
IEEE-RTS

24-bus system
MILP

Energy capacity
fading, calendar,

and cycling aging

Flat rate
degradation

Cardoso, et al.
(2018) [27]

Sizing BESS by
considering the linear
battery degradation

model for
microgrid problem

CDC, PEBC, FC Li-Ion San Francisco MILP

Capacity loss,
battery lifetime,

and cycle,
operating

temperature

Mathematical
model

Alsaidan, et al.
(2018) [32]

Optimal sizing BESS
for microgrid

expansion problem
by considering

technology, cycle life,
and maximum depth

of discharge

CDC, CC, PELC,
PEBC, RCC Li-Ion Modified

IEEE-5 bus MINLP
Energy capacity

fading, cycle
battery

Piecewise linear
approximation

A. Pena-Bello, et al.
(2019) [34]

Sizing BESS by
considering

self-consumption,
demand load-shifting,

demand peak
shaving and
avoidance of

PV curtailment.

CDC, PELC,
PEBC, EFC

NCA, NMC,
LFP, LTO,

VRLA, & ALA

Austin (US),
Geneva

(Switzerland)
MILP N/A N/A

G. Mohy-Ud-Din,
et al. (2020) [36]

Energy management
system for industrial

microgrids with
optimal size BESS

CDC, PELC,
EFC Li-Ion Australia

two–stage
energy

management
strategy

(single-stage
linear program)

Energy capacity
fading, cycle

battery

Mathematical
model

V.V. S. N. Murty, et al.
(2020) [151]

Microgrid energy
management by

considering
multi-objective

solution and optimal
sizing BESS

CDC, PELC,
PEBC Li-Ion N/A Multi-Objective

(MILP, Fuzzy) cycling aging Mathematical
model
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Table 11. Cont.

Author
Main

Objective
Constraint

Battery
Technology

Case Study
Algorithm/Method
Optimization

BESS

Battery
Degradation

Factors

Algorithm
Battery

Degradation

Timur
Sayfutdinov, et al.

(2020) [35]

Optimal siting,
sizing, and

technology selection
of BESS

CDC, CC,
PEBC, PELC

LFP, LMO,
NMC, LTO

Modified
IEEE-9 bus,

14 bus, 24 bus,
39 bus

Mixed Integer
Convex

Programming
(MICP)

Energy capacity
fading, calendar,

and cycling aging,
cycle battery

Least-squares
fitting

Yang Li, et al.
(2020) [25]

Application of Li-Ion
for optimal sizing of
BESS in renewable

power plant

CDC, CC Li-Ion
A hypothetical
100-MW wind

farm

Particle Swarm
Optimization

Energy capacity
fading, SOH, state

of energy (SOE)
Physics-based

Hunyong Shin, et al.
(2020) [92]

The process of sizing
BESS for renewable

power plant is
becoming economical

CDC, CC, FC Li-Ion

RES with
storage power

plants in
South Korea

battery
augmentation
scheme (BAS)

Energy capacity
fading, SOH,

operating
temperature,
cycle battery

Rainflow-
counting
algorithm

Mattia Secchi, et al.
(2021) [152]

Multi-objective sizing
BESS for renewable

energy with
communities

CDC, PEBC Li-Ion

Modified IEEE
906-bus

European Low
Voltage

NSGA-II N/A Mathematical
model

Farihan
Mohamad, et al.

(2021) [153]

Sizing and Siting
BESS to minimize

solar energy
curtailment

CDC, CC,
PEBC, PELC Li-Ion

IEEE 24-bus
reliability test

network (RTN)

GA dan
Sequential

Monte Carlo
(SMC)

N/A Mathematical
model

Nataly Bañol
Arias, et al.
(2021) [89]

Sizing BESS by
considering

frequency regulation
and peak shaving

CC, PEBC,
PELC Li-Ion

240-node
three-phase
distribution

system

Pareto optimal
Energy capacity

fading, cycle
battery

Mathematical
model

Yunfang Zhang,
et al. (2021) [37]

Optimal Sizing BESS
for grid scale by

considering
uncertainties and
wind generation

CDC, CC,
PEBC, PELC Li-Ion Modified IEEE

RTS-24
Two-level

model (MILP) N/A N/A

Mohammad
Amini, et al.
(2021) [38]

Sizing BESS for
flexible, effective,

efficient and better
microgrid

performance

CDC, CC,
PEBC, RCC,

PELC

NaS, Li-Ion,
Lead-Acid,

Nicd

Connected/Islanded
Microgrid MILP

Energy capacity
fading, calendar,

and cycling aging,
battery lifetime

Mathematical
model

U.G.K.
Mulleriyawage,

et al. (2021) [154]

Optimal sizing BESS
by considering the

demand and
management

attributes

CDC, CC,
PELC, PEBC Li-Ion

A
grid-connected
residential DC

microgrid

MILP

Energy capacity
fading, calendar,

and cycling
aging, SOH, EOL

Physics-based

Yuhan Wu, et al.
(2021) [31]

Optimal capacity
location BESS by
considering the

ambient temperature

CDC, CC,
PEBC, PELC LiFePO4

modified IEEE
33 distribution

network

Bi-level (GA,
simulated
annealing

algorithm (SA))

Energy capacity
fading, calendar

and cycling
aging, ambient

temperature

Rainflow-
counting
algorithm

Yaling Wu, et al.
(2022) [91]

Sizing BESS by
considering the

long-term battery
degradation

CDC, CC,
PEBC, PELC Li-Ion Connected/Islanded

Microgrid

two-layer
optimization

method
(MINLP)

Energy capacity
fading, calendar,

and cycling
aging, SOH

Mathematical
model

Davide Fioriti, et al.
(2022) [155]

Multi-year sizing
BESS for residential

applications

CDC, CC,
PEBC, PELC Li-Ion

Residential
grid-connected

(399
Italian

households in
different regions
(North, Center,

South, and
islands))

Heuristic
optimization

Energy capacity
fading, calendar

and cycling
aging, operating

temperature

Rainflow-
counting
algorithm

Waqas ur
Rehman et al.

(2022) [39]

Optimal sizing BESS
and solar generation
system in an extreme
fast charging station

to reduce the
annualized cost

CDC, CC,
PEBC, PELC Li-Ion

Extreme fast
charging station
(XFCS) demand

modeling

MILP
Energy capacity

fading, cycle
battery

Mathematical
model
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Table 11. Cont.

Author
Main

Objective
Constraint

Battery
Technology

Case Study
Algorithm/Method
Optimization

BESS

Battery
Degradation

Factors

Algorithm
Battery

Degradation

Mohammad-Ali
Hamidan, et al.

(2022) [156]

Optimal sizing BESS
for loss reduction and

reliability
improvement

CDC, CC, PEBC,
PELC Li-Ion

30-bus radial
distribution

network, 69-bus
radial

distribution
network

Evolutionary
algorithm
based on

decomposition
(MOEA/D)

N/A N/A

Noman Shabbir, et al.
(2022) [157]

Optimal sizing BESS
for solar PV systems
to be self-sufficient

and sustainable

CDC, CC, PEBC,
PELC, FC Li-Ion

Estonian low-
distribution

network

Heuristic
optimization

Energy capacity
fading, cycle

battery

Mathematical
model

CC, capacity constraint, CDC, charging and discharging constraint, PEBC, power and energy balance constraint,
PELC, power and energy limit constraint, EC, environmental constraint, RCC, ramping capability, EFC; efficiency
losses constraint, FC, financial constraint.

In addition, the battery degradation algorithm needs to be considered. Similar models
are generally mathematical, physics-based, data-driven, and hybrid. Algorithm battery
degradation affects the speed and convergence of BESS optimization. Therefore, several
studies still utilize mathematical algorithm models because they are simple and exhibit
rapid performance. However, data-driven models are flexible in modeling battery degra-
dation due to several factors. Examples are piecewise linear approximation, least-squares
fitting, and the rainflow-counting algorithm.

8. Issues and Challenge BESS

In terms of optimizing BESS sizing and location, several factors need to be considered
by the expected operating objectives. To reduce the investment cost BESS not only makes
it cost-effective. But, can be adjusted to boost reliability, power and voltage quality, peak
shaving, load smoothing, frequency control, and energy arbitrage. One of the challenges of
BESS optimization is battery degradation. The selection of battery technology is essential
and BESS optimization solutions need to be assessed.

8.1. Economic Analysis

The economic aspect of building a BESS system is perhaps the most challenging. Pre-
liminary studies created a BESS sizing and siting system to reduce investment costs or
optimize profits received once it was implemented. Its cost is determined by numerous
aspects, including the type of BESS technology selected, the number of energy source inte-
grations, geographical conditions, features of the deployed region, installation expenses,
and maintenance expenses. Technology types differ depending on energy density, efficiency,
battery longevity, and cost. Installation and maintenance expenses include the capital for
converter interface power, such as energy costs for storage capacity investment, replace-
ment, annual operating and maintenance expenditures. Furthermore, various factors
influence the cost of the BESS system, including service life, battery capacity, degradation
rate, power loss, and SOC. As a result, its capacity and placement must be properly speci-
fied to minimize the installation cost. A BESS capacity that is extremely large is bound to
raise the total cost of the system, thereby resulting in power loss. Assuming it is extremely
tiny, it reduces efficiency and creates an imbalance in supply and demand.

The uncertainty of the RES system influences BESS cost optimization, such as peak
shaving and load shifting. Peak shaving is an efficient method of lowering demand costs
by leveling the highest electricity consumption. Meanwhile, load shifting is a temporary
reduction in power used followed by subsequent production increases when prices are low.
As a result, advanced optimization of the BESS model is required in conjunction with the
uncertainty of RES to achieve optimal system planning and operational costs.
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8.2. Technology Battery Storage Selection

Some of the battery technologies for BESS include LA, Li-Ion, Nickel Batteries, ZnBr,
NaS, PSB and VRB. The appropriate one can be employed to optimize the system planning
or operational costs. Energy density, extended discharge time, battery efficiency, longevity,
and life cycle are all factors that determine technology selection. This battery is great
for power quality and frequency management applications. It is due to the high-power
density possessed as well as the lightning-fast response time. Although this type of battery,
with its high energy density and longer discharge time, is ideally suited for long-term
applications, it can also be used in certain circumstances to enable peak shaving and load
shifting. This is because of the battery’s extended discharge period. Therefore, the selection
of battery technology is critical to supporting its applications and indirectly impacts the
cost of installing BESS.

8.3. Optimal Charge or Discharge

Selecting the optimal BESS charge or discharge strategy is an important aspect of
optimal sizing and tends to influence the life cycle of the battery. When determining the
ideal size of a BESS, the most important parameters to take into consideration are speed
of charging, rate of discharging, efficiency, and length of service life. Additionally, the
effective control of the BESS charge and discharge can contribute to developing more
advanced models.

8.4. Degradation of Battery Due to Ambient Temperature

Due to calendar and cycle aging, the amount of time a battery has been in use impacts
how old it appears. Even though its life is determined by calendar aging, the BESS datasheet
includes two limits cycle and float life. The likely computation of the BESS life value being
accurate is low since battery life is dependent on cycle or float life. This is unlikely to
affect the computation process. The term float life refers to the length of time that a BES
is guaranteed to operate at its maximum capacity. When designing a BES system, the
impacts of battery aging need to be considered with respect to the overall cost. High
operating temperature, SOC, DOD, and charge or discharge current rate are all nonlinear
factors that influence battery degeneration. The aging of the battery has an impact on the
BESS performance and the cost of the electric power system. The major parameters of
its deterioration capacity are voltage, current, charge or discharge cycle, and battery life.
Generally, two things contribute to battery degeneration. First, there is loss of lithium ions
as a result of SEI production. Second, it is caused by the loss of electrode particles. This is
because the battery experiences an increase in its internal resistance. It causes a decrease in
the battery’s capacity as well as its efficiency, which eventually results in a shorter lifespan.

The battery performance and life cycle of Li-Ion batteries are susceptible to high
temperatures, which tend to accelerate degradation significantly. This triggers the rapid
growth of SEI on the surface of electron particles, leading to a loss in battery capacity. It
is since the rapid growth of SEI on the surface of electron particles causes a decrease in
battery capacity. In addition to this, the temperature of the surrounding environment has
a significant bearing on the rate at which capacity is lost. The temperature of the battery
cell and the high ambient contribute to the rapid growth of SEI on the surface of electron
particles. Its development also contributes to a decrease in the capacity of the battery.
According to the literature [100], when the ambient temperature exceeds 35 ◦C, changes in
electrolyte composition increase. This is due to a significant temperature rise, accelerating
active lithium consumption rate. Therefore, ambient temperature considerations can be
challenging in influencing BESS battery degradation.

8.5. Retired Batteries for BESS

Hazardous chemical waste on BESS construction cells significantly affects the en-
vironment. Damaged batteries can be recycled and reused. Approximately 95% of the
main material in LA batteries are recyclable and reusable [15,158]. In the past ten years,
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approximately five million EVs and 400 GWh of lithium-ion batteries have been sold all
over the world [159]. The development of the EV market will eventually result in a large
flow of retired batteries. Meanwhile, Li-Ion recycling is likely feasible, battery reuse and
recycling are complementary processes that only slow down the cycle of excess resources.
lion recycling has proven to be uneconomical [160]. The repurposing of retired batteries
from EVs as BESS is a new challenge. To reduce battery disposal problems due to EOL [161]
in electric power systems, BESS can be built to provide related services from EOL batter-
ies. This is because these batteries tend to qualify for less-demanding grid services [162].
Retired BESS can increase the RES penetration of the electric power system for reverse
spinning [163] with relatively cheaper installation costs.

8.6. Flexibility of Variable Renewable Energy Sources

Because of nature intermittency, RES such as solar PV and wind energy are inextricably
connected to uncertainty. Higher renewable penetration rates substantially influence
microgrid or grid system operation, data transfer, and handling, including remote sensing,
decision-making, and system control. Therefore, this RES requires storage facilities such as
BESS to store and supply electricity as needed. Most studies generate RES variability data
using probabilistic methods such as Monte Carlo simulations, analytical and approximation
models. However, these methods are insufficient for expressing random variables. These
processes are also computationally challenging and need large amounts of historical data,
extended run times, and precise mathematical premises. As a result, precise modeling
and analytical treatment of this uncertainty while considering the geographic situation
are crucial to making the best operational and financial decisions during microgrid or
grid applications.

9. Conclusions

This study reviews the state-of-art BESS optimization methods considering battery
degradation in connection to its diverse technologies. A comprehensive analysis of the
development of the current BESS modeling approach with the objective function, battery
degradation characteristics, and design constraints was employed. BESS is related to
expansion planning, often called SEP. Its primary goal is to ensure that central planners,
such as vertically integrated power companies and policymakers from governments or
groups of countries responsible for minimizing costs rather than maximizing the benefits
to private investors. Additionally, the use of BESS on the grid or microgrid is adopted to
improve power quality, voltage and frequency control, peak shaving, load smoothing, and
energy arbitrage.

LA, Li-Ion, NaS, and VRB are grid applications most common battery technologies.
The energy density, efficiency, longevity, and cost of batteries linked to a storage network
are all classed. Battery degradation reduces power efficiency in BESS. As a result, its dete-
rioration needs to be considered during BESS optimization. The degradation of batteries
owing to ambient temperature is currently understudied. Lithium-ion batteries’ perfor-
mance and life cycle are extremely temperature sensitive. In addition, high temperatures
greatly accelerate battery degradation. The ambient temperature has a significant influence
on the capacity fading rate, especially when it surpasses 35 ◦C, the composition of the
electrolyte changes because of the large increase in temperature.

Generally, the objective function of optimizing BESS is to reduce the total cost of
planning. The objective function and design constraints of BESS are highly dependent on the
purpose for which BESS is used. BESS objective function is used to reduce LCC and battery
degradation costs to minimize the total cost of system planning. The only components
that make up this LCC are the costs of operation and maintenance, as well as the initial
investment in the BESS. Based on the study of the optimal BESS, ambient temperature
affects battery degradation. The development of its model due to ambient temperature can
be a new perspective in optimizing BESS. The battery degradation algorithm affects the
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speed and convergence of BESS optimization. The determination of the model algorithm
and battery degradation factors needs to be appropriately considered.

The challenges that need to be faced and the scope of future research in optimizing
BESS by considering battery degradation of ambient temperature are the economic analysis,
utilizing proper battery storage technology, and developing optimal charge or discharge
model. Others include developing model degradation due to ambient temperature of BESS,
considering retired batteries for BESS, and using the RES variable due to the uncertainty of
natural conditions.
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Abbreviations

The following are some of the abbreviations that can be found in this manuscript:

BESS Battery Energy Storage System
CV Constant-Voltage
CP Convex Programming
DER Distributed Energy Resources
DG Diesel Generator
DOD Depth Of Discharge
DP Dynamic Programming
EENS Expected Energy Not Served
EIS Electrochemical Impedance Spectroscopy
EOL End-Of-Life
EV Electric Vehicles
GA Genetic Algorithms
GEP Generation Expansion Planning
LA Lead-Acid
LCC Life Cycle Cost
LiCoO2 Lithium Cobalt Oxide
LiFePO4 Lithium Iron Phosphate
Li-Ion Lithium-Ion
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LiMn2O4 Lithium Manganese Oxide
LiNiCoAlO2 Lithium Nickel Cobalt Aluminum Oxide
LiNiMnCoO2 Cobalt-Based Lithium Nickel Manganese Oxide
LOLP/LOLE Loss Of Load Probability Or Expectation
LP Linear Programming
MILP Mixed-Integer Programming
NAS Sodium-Sulfur
Ni-Cd Nickel-Cadmium
PRISMA Preferred Reporting Items For Systematic Reviews And Meta-Analyses
PSB Polysulfide Bromine Batteries
PSO Particle Swarm Optimization
PF Particle Filter
PV Photovoltaic
RBO Rule-Based Optimization
RES Renewable Energy Sources
RF Redox Flow
RUL Remaining Useful Life
SEP Storage Expansion Planning
SJR Scimago Journal Rank
SLR Systematic Literature Review
SOC State Of Charges
SOCP Second-Order Cone Programming
SOH State Of Health
SOT State Of Temperature
SVR Support Vector Regression
TEP Transmission Expansion Planning
UC Unit Commitment
VOLL Value Of Lost Load
VRB Vanadium-Redox
ZBB Zinc-Bromine
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Abstract: There is a rising trend to integrate different types of distributed generation (DG), especially
photovoltaic (PV) systems, on the roofs of existing consumers, who then become prosumers. One
of the prosumer impacts is voltage violations, which conventional strategies find hard to solve.
However, some prosumers, such as those with PV with inverters in their configurations, can actively
participate in voltage optimization. To help find the optimal PV inverter setting with the objective
of voltage optimization, an optimal power flow (OPF) can be a promising and reliable tool. This
paper tries to shed light on the complex problem of voltage optimization in distribution networks
(DNs) with PV prosumers. Relevant scientific papers are analyzed and optimization characteristics
such as objective functions, variables, and constraints are summarized. Special attention is given
to the systematization and classification of papers according to the mathematical formulation of
the optimization problem (linear, nonlinear, integer, etc.) and the applied solving methods. Both
analytical and computational intelligence optimization methods as well as their advantages and
limitations are considered. Papers are also categorized according to the distribution network model
used for testing the developed solutions.

Keywords: active distribution networks; optimal power flow; prosumers; PV inverter volt/VAR
optimization; review

1. Introduction

The participation of renewable energy sources (RESs), battery storage systems, and
other flexible loads, commonly referred to as prosumers, changes the character of distri-
bution networks (DNs) from passive to active. For this reason, both generating units and
loads are included in the determination of power flow and voltage profile. The nature
of prosumers is unpredictable and intermittent, so existing DNs are not adapted to their
influence. This is particularly evident in frequent voltage violations [1]. A voltage rise is
addressed as a major issue caused by prosumers and impacts DNs [2]. The distribution
system operator (DSO) is responsible for maintaining voltage within the allowable limits
for the secure operation of DNs [3]. However, voltage control mechanisms that were once
applicable in passive DNs become less valid and new mechanisms are required [4–6].

While DG can cause voltage violation in the DN, the same DG can help solve the
problem of voltage violation, for example by managing active or reactive power. This
problem/solution principle is especially interesting in the case of reactive power manage-
ment [7]. When it comes to RESs in DNs, the main representative is a photovoltaic (PV)
system [8,9]. Traditionally, most DSOs require PVs to operate with the unit or fixed power
factor [1]. PV inverters have several modes of operation, but volt–VAR control has become
certainly significant for voltage optimization. A major advantage of using a PV inverter
and volt–VAR control is that reactive power can be injected/absorbed even where there
is no production. Since prosumers contribute to the complexity and unpredictability of
such DNs, it is crucial to use optimization methods and analyzed software tools that allow
DN monitoring and finding suitable and optimal set points for PV inverters. In addition,
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optimal power flow (OPF) has proven to be an efficient tool for the operation of active
DNs. In order to illustrate the problem/solution principle of PV inverters, a case study is
developed in this paper presenting the low voltage DN with the connected PVs. Different
power flow simulations are presented and they include:

• the situation when PVs production is maximal and voltage rise along the feeder
is present;

• the situation when PV inverters inject reactive power.

Nowadays, optimal management of active DNs represents an attractive topic, and a
large and growing body of literature focuses on this topic. Some related reviews on the
optimization DNs are listed in Table 1. Refs. [10,11] show the impact of PV on DNs, the
related problems, and possible solutions. Refs. [12–14] study voltage violation mitigation
and voltage control strategies. Ref. [12] deals with voltage control methods in DNs with
PVs and their advantages and disadvantages. In addition to [12], a comprehensive review
of voltage control methods is given in [13]. In [14], voltage control models and methods
are divided according to the communication strategy. The application of OPF in DNs is
discussed in [15,16]. The researchers in [15] address a probabilistic approach to solving
OPF in active DN. The authors in [16] study OPF in smart DNs and microgrids according
to objectives, methods, and future challenges.

Table 1. Related review papers on the optimization of DNs.

Review Paper Year Focused Topics Prosumer Notes

[10] 2016 Impact of distributed generation
(DG) on voltage control on DNs Yes

Reviewed voltage control with DG with a
focus on smart network

technologies—demand side management
(DSM) and energy storage systems (ESS)

[11] 2016
PV impact on DNs including voltage

regulation issues, harmonic, and
islanding operation

Yes

Reviewed issues caused by PV penetration
in DN insight voltage regulation, harmonic,

and islanding operation, and proposed
technical solution

[14] 2017 Distributed and decentralized
voltage control in smart DNs Yes

Reviewed smart DNs according to
communication systems, control models,

and methods

[16] 2017 Application of OPF in smart DNs
and microgrids Yes Reviewed OPF according to objectives,

constraints, methods, and challenges

[12] 2018 Mitigation methods for voltage
regulation in DNs with PV Yes

Discussed ESS strategies, active power
curtailment-based strategies, and reactive

power control strategies

[13] 2020 Mitigation methods for voltage
violation in DNs with PV systems Yes

Presented different mitigation methods for
voltage regulation in DNs and their merits

and shortcomings

[15] 2022 Probabilistic OPF in active DNs Yes Scientometric review of OPF in active
DNs—characteristics and challenges

While refs. [15,16] present interesting and useful reviews of OPF application to modern
DNs, they are mainly focused on active power objectives [16] and probabilistic OPF [15].
So far, the research gap is present in the area of voltage optimization objectives in the case
of using PV inverters for reactive power management. The problem/solution principle of
using PV inverter reactive power for voltage mitigation motivated the authors of this paper
to focus their review on scientific papers that applies OPF for voltage optimization in the
DN using PV inverter reactive powers. The contributions of this review paper are:

1. Summary and classification of OPF objectives and variables in the case of voltage
optimization in the DNs using PVs reactive power.
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2. Comparison of the used mathematical formulations of the OPFs and their connections
to analytical or computational intelligence solution methods.

3. Review of the different DN examples that are used for testing the developed optimiza-
tion solutions.

This paper aims to provide the readers with starting points for OPF applications in
PV-rich DNs and, in some way, to compare with conventional OPF. Therefore, the authors
searched several bibliographical databases—IEEE Xplore, ScienceDirect, and MDPI.

The paper is structured as follows: Section 2 gives a prosumer definition, describes the
voltage control capabilities of PV inverter, and presents the case study that illustrates the
impact of PVs on the DN voltages. Section 3 addresses OPF in PV-rich DN—objectives and
variables. OPF formulation and solution methods are discussed in Section 4. Test network
models used in the literature are presented in Section 4. Conclusions with a note on future
research are given in Section 5.

2. PV Prosumers in Distribution Network

In this section, various definitions and configurations of prosumers are presented.
Then, the focus is on PVs and their voltage control capabilities. Finally, theoretical founda-
tions are supported by the case study in which the part of the low voltage DN is presented
and various cases are simulated.

2.1. Prosumer Definition and Configuration

Historically, the term “prosumer” was first mentioned in 1980 in Alvin Toffler’s book
The Third Wave [17]. In this book, the author discusses the transition of society from an
Industrial Era in which production and consumption were separated to the Information
Era. In this new concept of society, the term prosumer is created by combining a producer
and a consumer. Nowadays, with the increase of integration of PVs in DNs, the notion
of prosumer and prosumerism has become increasingly significant in electrical engineer-
ing [18]. Therefore, many authors propose the definition of a prosumer. The authors
in [19–21] define a prosumer as an end-user that consumes electrical energy, acts as an
energy producer, and shares surplus energy with utility networks and other consumers.
In [22], prosumers are described as energy consumers or energy producers in different
periods depending on their electricity demand and price. The focus is on the prosumer that
only generates electricity. In [23,24], the authors include a facility for electricity generation
and energy storage systems in the prosumer definition. The definition of prosumer was
expanded in [25,26] and includes consumers that generate electricity and/or contain in
their configuration home energy management systems (EMS), ESS, electric vehicles (EVs),
and electric vehicle-to-grid (V2G) systems. In [27], a prosumer has been deemed as a
consumer or an electricity producer and can be actively managed.

The European Union defined an active consumer uniform in its 2016 directive [28]. Ac-
cording to [28,29], an active consumer is “a customer or a group of jointly acting customers
who consume, store or sell electricity generated on their premises, including through aggre-
gators, or participate in demand response or energy efficiency schemes provided that these
activities do not constitute their primary commercial or professional activity”.

While a variety of definitions of the term prosumer have been suggested, this paper
uses the following definition: a prosumer is an entity that not only withdraws/retracts
energy from a network but also produces energy that can be consumed, stored or sold to
the network and other consumers and actively participates in providing more flexibility
such as voltage and reactive power control.

Prosumer configuration and interconnection with DN is shown in Figure 1. The main
representative of distributed generation is the PV system. It often includes an ESS such as a
battery in its configuration and together forms a hybrid system. EVs, electric V2G vehicles,
smart home EMS, and other flexible loads represent demand-side management (DSM).
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Figure 1. Prosumer configuration and interconnection with DNs.

2.2. PV System Capabilities for Voltage Optimization

This paper deals with PV prosumers with reactive power capability, i.e., other pro-
sumer types are not considered. DSOs have the main responsibility for voltage opti-
mization in DNs. Traditionally, the available variables are limited to the capacitor bank
placement, tap changing transformer, network reconfiguration, cross-section enhancement,
etc. However, some researchers [30,31] suggest that the aforementioned strategies may
not be effective for prosumer-based DNs due to their slow response. The application of
PV inverters represents a promising solution and in combination with already present
control mechanisms can give results, so several studies have proposed their use for voltage
optimization [32–36]. Different modes of operation are possible for PV inverters and the
authors of [30] distinguish the following:

• fixed power factor mode;
• volt–VAR control;
• volt–watt control;
• mode for power rate limit;
• voltage balance mode.

In the fixed power factor mode, the power factor is maintained at a constant value
and thus voltages are directly affected. Voltage control in the volt–watt control mode is
achieved by active power from PVs. In the power rate limit mode, the rate of active power
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output from the PV inverter is limited. In volt–VAR control, reactive power from the PV
inverter is used for voltage optimization. The general operating principle of volt–VAR
control is described using a volt–VAR curve shown in Figure 2 [37]. The volt–VAR curve
represents a relation between a voltage value at the point of common coupling (PCC) and
reactive power from the PV inverter. If the voltage value on PCC is lower than the specific
threshold, the PV inverter injects reactive power. On the other hand, in the case of the
higher voltage value on PCC, reactive power is absorbed.

Figure 2. Volt–VAR curve of the PV inverter. Inductive reactive power reduces voltage value while
capacitive reactive power increases the voltage value.

Reactive power capability determines the amount of reactive power available from
the inverter [38]. Figure 3 represents reactive power capability determined with vectors
of apparent power S and active power P [8,38,39]. The reactive power of the PV inverter
depends on the active power and can be determined as:

Q2
1 ≤

√
S2

1 − P2
1 (1)

Figure 3. Power capability curve of PV inverter.

2.3. PV Inverter Impact on Distribution Feeder Voltage Profile

To provide a better insight into the voltage problem in DN caused by PVs, a case
study is carried out. Two PV inverter control modes are chosen to clarify its capabilities for
voltage optimization. The DN model, presented in Figure 4 [40], consists of three radial
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feeders supplied by a 10/0.4 kV substation. Each feeder supplies 20 residential consumers.
More information about the network model can be found in [40]. It is assumed that half of
the residential consumers have PV systems on their rooftops. The nominal power of each
PV plant is 5 kW. The case studied in the simulations corresponds to maximum production
and consumption of 0.2 kW with an inductive power factor of 0.9.

Figure 4. Model of DN used in the case study.

DIgSILENT PowerFactory [41] software is used for case study implementation and
the conventional power flow is analyzed. Two modes of PV inverter operation are used
in simulations: fixed power factor mode and volt–VAR control mode. The results for the
fixed power factor mode are presented in Figure 5. The power factor range is taken from a
real-life example of an inverter [42]. The voltage profiles at different power factor values
are compared. There is an increase in the voltage profile at the unit power factor. The
voltage profile is corrected by changing the power factor.

The comparison of voltage profiles at the unit power factor and the applied volt–VAR
control mode is shown in Figure 6. In the case without voltage control (unit power factor),
there is a voltage rise in the distribution feeder caused by PVs. The voltage values are in
the range of 1.005 p.u. to 1.05 p.u. In the volt–VAR control mode, the voltage values are
lower than the unit power factor and are in the narrower range of 0.992 p.u. to 1.005 p.u.
These values are more acceptable for the operation of DN, i.e., voltage deviation is smaller.
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Figure 5. Voltage profile in a distribution feeder obtained using the fixed power factor control mode.

Figure 6. Voltage profile in the distribution feeder obtained using the volt–VAR control mode.

The obtained results show an improvement in the voltage profile of DN compared to
the case without voltage control (unit power factor of the PV inverter). Voltage control in
PV prosumer-rich DNs has a positive impact. The case study shows the possibilities of
PV inverters regarding voltage control and the situation when there are lots of inverters
placed at different positions in the DN. Determining the optimal operating point of the PV
inverters imposes using optimization algorithms from which the OPF are imposed as a
logical solution.

3. Voltage Optimization in PV-Rich Distribution Networks—Objectives and Variables

The OPF concept was proposed in the early 1960s [43] as an enhancement of economic
dispatch to find the optimal solution for controlling variable settings under different
constraints. The OPF is used as a universal term for problems associated with network
optimization [44–47]. The OPF is ordinarily modeled to the appliance on transmission level
considering large generating units. Besides the fundamental variables, the OPF model may
contain ancillary generation units and variables representing the other segments of the
power system used for optimal operation.

The transmission network (TN) diverges from DN in topology, nature, electrical
parameters, power flow values, and a number of control devices. Unlike TNs, DNs are
inherently unbalanced and more complex [48]. The reason for the imbalance is that the DN
supplies unequal single-phase loads and contains unequal conductor interspace of three-
phase segments [49,50]. The R/X ratio is high in DNs and contributes to the complexity of
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control and optimization. In contrast, the R/X ratio is low for TNs. Compared to DNs, TNs
have a few direct consumers. The simple control and a well-built communication system
of TNs are the main reasons why OPF has applied only at the transmission level. The
integration of DGs and flexible loads such as EVs makes OPF feasible in DN optimization.
To incorporate unpredictable DG and to exploit the potential of flexible loads, OPF became
imminent for DNs [51]. Although there is no official record in the literature of the beginning
of the application of OPF in DNs, it can be said it started with the integration of different
types of prosumers in DNs [48].

3.1. General Formulation—Objectives and Variables

The OPF problem can be described as minimizing the objective function while taking
equality and inequality constraints into account [48]:

minF(x,u) = 0 (2)

g(x,u) = 0 (3)

h(x,u) ≤ 0 (4)

where F(x,u) represents the objective function and g(x,u) represents nonlinear equality
constraints i.e., power flow equations, h(x,u) represents nonlinear inequality constraints.
The vectors x and u present state variables, and control variables, respectively.

In [48], the generally used objectives for OPF formulation are given. It should
be noted that the objectives and constraints must be modeled accurately to obtain a
satisfactory solution.

Scientific papers are included in this review if at least one of the objectives is voltage
optimization and if one of the optimization variables is PV inverter reactive power injection.
Furthermore, the voltage optimization problem is mostly described as the objective of volt-
age deviation (VD) minimization, i.e., maintaining voltages within boundaries determined
by grid codes. The general mathematical expression for VD is:

Vdev = ∑
i∈N

(Vi − Vnom)2 (5)

where:
Vdev—voltage deviation;
Vi—voltage at bus i;
Vnom—nominal voltage.
Another objective that appears is related to the voltage unbalance, commonly pre-

sented as the voltage unbalance factor (VUF). The definition of VUF is given in [52] as
the ratio of negative V−

sequence and positive V+
sequence voltage sequences and is most often

expressed in percentages:

VUF =
V−

sequence

V+
sequence

. (6)

In addition to voltage optimization, the following objectives also appear: (i) power
loss minimization [53–55], (ii) on load tap changer (OLTC) switching operation mini-
mization [56], (iii) PV cost minimization [38], (iv) reactive power injection/absorption
minimization [57], (v) active power curtailment (APC) minimization [58], (vi) cost of pur-
chased energy minimization [59], (vii) peak shaving minimization [59], and (viii) security
margin index (SMI) minimization [59]. The mathematical expressions of the commonly
used objectives are given in Table 2.
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Table 2. Mathematical expressions of the commonly used objectives in voltage optimization problems.

Objective Formulation Explanation

Power loss minimization [53–55] ∑N
k=i gik(V2

i + V2
k − 2ViVk cos θik)

∑(i,k)∈B riklik,t

Vi, Vk—voltage magnitude at i th and k th
buses

θik—phase angle ith and kth elements of
conductance gik

lik,t and rik—square value of current and
resistance of branch line from bus i to

bus k

OLTC tap operation minimization [56] ∑M
m=1 sm,t

M—number of discrete devices
sm,t—status of discrete device m at time t

APC minimization [58] ∑N
i=1 |PPV,curt

t,i | PPV,curt
t,i —curtailed active power of PV at

time t

PV inverter loss minimization [38] ∑3
p=1 ∑i∈γ(k

p
i1Sp

PVi
2
+ kp

i2Sp
PVi + kp

i3)

p—phases
γ—set of buses with PVs
Sp

PVi—apparent power
kp

i1, kp
i2, kp

i3—coefficients of each inverter’s
efficiency data

Reactive power inj./abs.
minimization [57] |Qinj.|/|Qabs.| Qinj. and Qabs.—injected/absorbed

reactive power

Cost of energy minimization [59] ∑t∈T αtP1,tΔt

αt—price of energy at tth time
P1,t—active power imported from the

external network at time t
Δt—duration of time intervals

Security margin maximization [59] ∑t∈T(1 − min| Il,t−Ir
l

Ir
l

|) Il,t—line current in lth line at time t
Ir
l —ampacity of line current in lth line

In power systems, the conventional power flow is both nonlinear and nonconvex
and commonly solved by the Newton–Raphson iterative method. In constrained OPF
applications, equality constraints incorporate conventional power flow equations and other
constraints to ensure balance. A detailed version of the power flow is named AC power
flow [60]. AC power flow as a constraint in OPF is most often formulated in the polar
form [60]:

Pi =
N

∑
k=i

|Vi||Vk||Yik| cos(δi − δk − θik) (7)

Qi =
N

∑
k=i

|Vi||Vk||Yik| sin(δi − δk − θik) (8)

where:
Pi—active power at bus i;
Qi—reactive power at bus i;
Vi—voltage magnitude at bus i;
Vk—voltage magnitude at bus k;
Yik—ikth element of bus admittance matrix Ybus;
δi—voltage phase angle at ith bus;
δk—voltage phase angle at kth bus;
θik—phase angle of ikth element of bus admittance matrix Ybus.
Besides AC power flow, the authors use two other formulation approaches: decoupled

AC power flow [49] and DC power flow [50]. In decoupled AC power flow, active and
reactive powers are decoupled as a function of voltage angle and voltage magnitude, respec-
tively. Assumptions made for the DC power flow formulation include purely imaginary
elements of Y and a small difference between two voltage angles of two adjacent busses.

Various inequality constraints are given in [48,61]:
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• control variables limit;
• limits for power generation (active and reactive power upper and lower limits);
• network operational limit determined in the network analysis (e.g., MVA limit).

Voltage optimization needs to meet the following constraint requirements:

1. Power flow equations given as Equations (7) and (8);
2. Voltage constraint

Vmin
i ≤ Vi ≤ Vmax

i (9)

where Vmin
i and Vmax

i are the lower and upper voltage limits.
3. PV active and reactive power constraint

0 ≤ PPV,i ≤ PPV,av,i (10)

−
√

S2
PV,i − P2

PV,i ≤ QPV,i ≤
√

S2
PV,i − P2

PV,i (11)

where PPV,i, , QPVi , and SPV,i are active, reactive, and apparent powers at bus i. PPV,av,i
is available active power at bus i.

4. Line current (thermal) constraint

Imin
ik ≤ Iik ≤ Imax

ik (12)

where Imin
ik and Imax

ik are the lower and upper limits of the line current between buses i
and k.

5. OLTC tap position constraint (if it is included)

Tmin
i ≤ Ti ≤ Tmax

i (13)

where Tmin
i and Tmax

i are the lower and upper positions of OLTC tap at bus i.
6. Capacitor constraint (if it is included)

Qmin
Ci ≤ QCi ≤ Qmax

Ci (14)

where Qmin
Ci and Qmax

Ci are the lower and upper limits of capacitor reactive power at
bus i.

7. Energy storage constraint (if it is included)

SoCmin
i,t ≤ SoCi,t ≤ SoCi, tmax (15)

where SoCmin
i,t and SoCmax

i,t are the lower and upper limits of the charge state of the
storage system at time t.

The voltage optimization problem can be single-objective or multi-objective. OPF
objectives and variables used in the review papers are categorized and summarized in
Table 3.

Table 3. Overview of objectives and variables.

Reference
Single/

Multi-Objective
Objectives Variables

[62] multi-objective min VD from 0.95 pu threshold, min losses,
min reactive power from capacitors PV inverter reactive power, OLTC, SC, and

[63] multi-objective min losses, min VD—DN, min active power
curtailed from available power—prosumer PV active and reactive power

[64] multi-objective min VD from expected CVR voltage,
min losses

PV inverter reactive power, OLTC/AVR,
and CBs
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Table 3. Cont.

Reference
Single/

Multi-Objective
Objectives Variables

[65] single-objective min VD PV inverter reactive power, OLTC

[38] multi-objective min losses, min VD, min VUF, min PV
generation cost, min PV APC cost PV inverter reactive power

[66] multi-objective min losses, min VD, improvement VSI PV inverter reactive power and static
compensator

[53,54,67–69] multi-objective min losses, min VD PV inverter reactive power
[70] multi-objective min VD, min losses PV inverter reactive power, CBs, and OLTC

[71] single-objective min VUF PV inverter active and reactive power, power
injected by TS

[72] single-objective min VD PV inverter reactive power

[73] multi-objective
min losses, min cost of APC and

generated/consumed reactive power, min
VD

PV inverter reactive power

[74] multi-objective min VD, min voltage unbalance PV inverter reactive power, OLTC, VR, and
CB

[75] multi-objective min losses, min VD, min VUF PV inverter reactive power
[32] single-objective min VUF PV inverter reactive power
[76] single-objective min VD PV inverter reactive power, OLTC

[77] multi-objective min losses, min VD, min control action of
OLTC and SC PV inverter reactive power, OLTC, SC

[78] single-objective min VD PV inverter reactive power, OLTC
[79] multi-objective min VD, min losses PV inverter reactive power, OLTC, and SC

[57] multi-objective min VD, min losses, min reactive power
injection, and absorption PV inverter reactive power

[80] multi-objective min VD, min losses PV inverter reactive power, OLTC
[81] single-objective min VD PV inverter reactive power, OLTC, and VR
[58] multi-objective min VD, min losses, min APC PV inverter reactive power, OLTC and CB

[55] multi-objective min VD, min losses PV and EV inverter reactive power, the
compensation device

[56] multi-objective min VD, min OLTC tap operation PV inverter reactive power, OLTC

[82] single-objective min VD PV inverter reactive power,
charge/discharge rate of ESS

[83] multi-objective min losses, min VUF PV inverter reactive power

[34] multi-objective min cost, min losses, min cost associated
with active power setpoints, min VD PV inverter active and reactive power

[84] multi-objective min active and reactive power output, min
VD PV inverter active and reactive power

[37] multi-objective min VD, min losses, min peak of reactive
power PV inverter reactive power

[85] multi-objective min VD, min losses PV inverter reactive power, OLTC, CB

[59] multi-objective min VUF, min cost of purchased energy, min
peak shaving, min losses, min SMI, min VD

PV inverter reactive power, EV active and
reactive power, bus voltages at all time

intervals of the day
[86] multi-objective min VUF, min losses PV inverter reactive power, OLTC, CB
[87] single-objective min VD PV inverter reactive power
[88] multi-objective min VD, min losses PV inverter reactive power, SC, OLTC, ESS

[89] multi-objective
min VD, min losses, min number of

switching operations of OLTC and CB, min
APC

PV inverter active and reactive power, CB,
OLTC

[90] multi-objective min VD, min operational cost PV inverter active and reactive power, CB,
OLTC, ESS

[91] multi-objective min VD, min losses, min peak of reactive
power PV reactive power

[39] single-objective min VD PV inverter reactive power

The abbreviations are as follows: CVR: conservation voltage reduction; VSI: voltage stability index; SC: shunt
capacitor; AVR/VR: automatic voltage regulator; CB: capacitor bank.
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According to the literature review, the multi-objective problem prevails.
Besides PV inverter reactive power, other variables include: (i) PV active power,

(ii) OLTC, (iii) CB, (iv) static compensator, (v) reactive power from the substation, (vi) VRs,
(vii) charge/discharge rate of ESS, (viii) EV active power, and (ix) SC.

3.2. Objectives and Variables—Discussion

Figure 7 represents objectives quantitatively. Almost all objectives include VD. In
multi-objective problems, VD is most combined with losses, however, many other objectives
also appear.

If OPF is regarded as a part of the distribution energy management system (DEMS),
the dominance of the multi-objective formulation of OPFs is logical. DSO tries to reach
the optimal operation point regarding several objectives and the most commonly used
ones are loss minimization together with voltage deviation minimization. Additionally,
active power curtailment (APC) minimization is frequently a combined objective with the
minimization of voltage deviations. Other objectives are rare and they are used only in a
few papers.

The variables are presented quantitatively in Figure 8.
A similar conclusion can be made regarding optimization variables. DSO tries to

utilize all the available controls such as OLTC tap settings, CB reactive power, and ESS
variables. Some of the variables are continuous but some are discrete (such as OLTC tap
settings), which will affect the formulation of the OPF problem (the appearance of integer
variables) and largely the choice of the solution method.

Figure 7. Quantitative presentation of the objectives.

Figure 8. Quantitative presentation of the variables.
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4. Voltage Optimization in PV-Rich Distribution Networks—Formulation and
Solution Methods

The complexity of the OPF depends on the power flow formulation approach. If the
original AC power flow equations are used for OPF formulation, an optimization problem
is nonlinear and hard to solve. Thus, many researchers try to simplify OPF formulation in
order to obtain a linear or quadratic optimization problem that is easier to solve. According
to [60], the OPF formulation can be classified into:

• nonlinear programming (NLP);
• linear programming (LP);
• quadratic programming (QP);
• mixed-integer linear programming (MILP);
• mixed-integer nonlinear programming (MINLP).

In early papers, continuous NLP formulation is used. All discrete variables are
approximated as continuous for simplicity. This formulation includes nonlinear objectives
and constraints. The LP formulation uses the DC power flow approach, i.e., both the
objectives and the constraints are linear. Due to its simplicity, robustness, speed, and well-
developed solution methods, it is an attractive OPF formulation, especially for industry [51].
However, due to the modeling assumptions, LP is not adequate for problems such as
minimizing power losses, and a global optimum cannot be guaranteed. QP is a special case
of NLP with quadratic objective and linear constraints and represents an alternative to LP.
The inclusion of discrete variables (transformer tap settings, shunt capacitor settings, etc.)
in NLP results in MINLP being the most realistic and accurate formulation of OPF, but also
the most complex and difficult to solve. However, there is a trade-off between the system
description and the tractability of the problem. One way is to linearize and apply MILP.
For more details, see [60,92].

The OPF formulation determines which solution method is used. Figure 9 presents
the mathematical formulation and solution methods. For each solution method in Figure 9,
a scientific paper in which it is applied is listed. The basic categorization of OPF solu-
tion methods is divided into analytical methods and computational intelligence methods.
The most commonly used analytical methods for linear OPF are the well-developed sim-
plex methods [93], sequential linear programming (SLP) [94], and interior point methods
(IPMs) [95]. In the first period, analytical iterative methods were applied to the NLP OPF.
They were Newton-based methods [96]; gradient methods—reduced gradient method
(RG) [97], conjugate gradient method (CG) [98], and generalized reduced gradient method
(GRG) [99]; IPMs [100]; sequential quadratic programming (SQP) [101]. Recently, computa-
tional intelligence methods have been applied to solving OPF problems. Computational
intelligence methods have been developed to overcome the weak capabilities of analyti-
cal methods for solving global optimization [102]. Although computational intelligence
methods do not require a precise mathematical formulation of the OPF problem, the au-
thors include them in the group of solution methods that can solve nonlinear and integer
formulations of the OPF since they can take into account nonlinearities in the original prob-
lem. Computational intelligence methods include artificial neural networks (ANNs) [103],
genetic algorithms (GAs) [104], particle swarm optimization (PSO) [105,106], ant colony op-
timization (ACO) [107,108], bacterial foraging algorithm (BFA) [109], simulated annealing
(SA) [110], tabu search (TS) [111], and fuzzy logic (FL) [112].
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Figure 9. Mathematical formulation and solution methods used in OPF solving.

4.1. Analytical Methods

Classical analytical methods are used in multi-field optimization problems. In addition
to the basic methods such as LP, QP [69], NLP, MINLP [76], and MILP, some papers deal
with problems that reduce to the basic ones (see Table 4). In [65], SLP is developed to
solve the optimization problem in real time. To obtain global optima, SQP has been
developed in [38]. The iterative gradient projection method is implemented to specify
VAR outputs for voltage optimization in [87] and additionally, active power outputs
in [84]. A method for solving linear and nonlinear optimization problems was developed
in [34,78]. The alternating direction method of multipliers (ADMM), which is one of the
augmented Lagrangian-based methods, was developed as one of the most used methods for
a network optimization problem. In ADMM, the optimization problem is decomposed into
subproblems to deal with it. The subproblems are coordinated to seek the global optimal
solution. The authors in [70,72,73] solve the voltage optimization problem using ADMM.

Table 4. Overview of formulation and analytical methods.

Formulation Analytical Methods Reference

NLP
ADMM-based method

IPM
SQP

[69]
[36]
[54]

LP SLP [63]

QP
QP

Gradient projection methods
ADMM-based method

[52,53,74]
[59,82]
[70,71]

MILP MILP [58]

MINLP QP
IPM

[74]
[76]
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4.2. Computational Intelligence Methods

In recent years, computational intelligence methods have been increasingly used to
solve voltage optimization problems. One of the main advantages of computational intelli-
gence methods is that they do not require a mathematical formulation of the optimization
problem. For the sake of unification and formality, the authors keep the formulation of
the OPF problem in Table 5 even though it is not required for computational intelligence
methods. The most commonly used methods are GA [37,57,62,83] and PSO [64,82,85,88].
Other computational intelligence methods that appear in the literature are the sine-cosine al-
gorithm (SCA) [66], feasibility pump (FP) method [67], sparrow search algorithm (SSA) [74],
pattern search algorithm [80], and grey wolf optimization (GWO) [81]. In some papers,
hybrid methods are applied. In [79], a GA is applied to solve the day-ahead scheduling
optimization problem in the first stage, while the pattern search algorithm (PSA) is used
to solve the real-time optimization problem in the second stage. The branch-bound algo-
rithm is combined with the IPM in [86] to solve the discrete problem. The combination
of modified PSO and direct load flow (DLF) is used in [75]. DLF is used for power flow
analysis and according to obtained data and PSO is used to evaluate network performance.
In [77], the authors used both computational intelligence methods and analytical methods.
In [55], five multi-objective evolution algorithms (MOEAs), named promising-region-based
evolutionary many-objective algorithm (PREA), strength Pareto evolutionary algorithm 2
(SPEA 2), nondominated sorting genetic algorithm II (NSGA-II), nondominated sorting
genetic algorithm III (NSGA-III), and two-phase framework (ToP), are used to determine
the reactive power capacity of PVs and EVs. The results obtained by MOEAs are used
to train a deep deconvolution neural network (DDNN) to solve the problem of voltage
deviation and loss minimization. For inverter coordination, the authors in [113] use deep
deterministic policy gradient (DDPG).

Table 5. Overview of formulation and computational intelligence methods.

Formulation
Computational Intelligence

Methods
Reference

NLP GA [37,57]
MINLP GA [62]

NLP NDSGA II [83]
NLP PSO [68,82]

MINLP PSO [64,85,88,114]
NLP SCA [66]

MINLP C&CG algorithm [53]
NLP SSA [74]

MINLP GWO [81]
MINLP Modified PSO, DLF algorithm [75]
MINLP MOPSO, IPM [77]
MINLP GA,PSA [79]

NLP PREA, SPEA2, NSGA-II,
NSGA-III, ToP, DDNN [55]

MINLP FP [67]
MINLP PSA [80]
MINLP NSGA-III [89]
MINLP ε-constrained method and FL [90]
MINLP DDPG [113]
MINLP ANN [114]

4.3. Formulation and Solution Methods—Discussion

Analytical solution methods require a strictly mathematical formulation of the OPF
problem, which can then be solved by an appropriate analytical method. Since there
are a few effective analytical algorithms for solving nonlinear problems (especially with
integer variables), most of the papers in which analytical methods are used transform the
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original NLP (or MINLP) into some of the more convenient forms—usually QP or MIQP.
Transformations into a linear form (LP or MILP) are very rare due to the nature of the
problem, i.e., the quadratic function of voltage deviation and poor performance of DC
power flows in the environment of the DN (ratio R/X is not as small as in the TN).

According to Table 5, the popularity of computational intelligence methods can be
observed. According to Figure 10, a decision about which solution method would be used
depends on the objective and mathematical formulation. To briefly address Table 3, multi-
objective optimization problems dominate. In single-objective problems, analytical solution
methods prevail. Analytical methods require that a multi-objective (usually known as
Pareto optimization) problem transforms (scalarizes) into a single-objective using weighting
coefficients, which is not a straightforward procedure. Computational intelligence methods
are most used for multi-objective problems. A comparison of analytical and computational
intelligence methods is presented in Table 6.

Analytical methods are well-developed and applicable in systems where the require-
ments of modeling accuracy are low. Analytical methods are able to straightforwardly find
an optimal solution but there is no guarantee that the optimum is global. If multiple local
optima exist, global optima cannot be guaranteed and the analytical method can stuck in
local optima. To apply the analytical method, it is necessary to perform a transformation
of the original problem to a level that it can solve. This is where the problem of trade-off
comes in. On the one hand, there is an accurate real-life system description and, on the
other hand, there is an applicable solution method. Some shortcomings of analytical meth-
ods are solved by computational intelligence methods. These methods do not depend on
mathematical formulation because they required only parameters that can be calculated
separately (for example solution of the power flows). Compared to analytical methods, a
hard computational effort is required and there is no guarantee of finding an optimal solu-
tion thus some expert knowledge of the system is needed. In recent years, computational
intelligence methods are used in co-simulation with proven power flow tools DIgSILENT
PowerFactory [41], DLF [75], OpenDSS [115], etc. This approach simplified the application
of computational intelligence methods for large-scale DNs.

(a) (b)

(c)

Figure 10. Solution methods for different objectives and formulations. (a) Multi-objective problem
and continuous formulation. (b) Multi-objective problem including integer variables. (c) Single-
objective problem.
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Table 6. Comparison of analytical and computational intelligence methods.

Advantages Shortcomings

Analytical methods
(simplex method, SLP, SQP, ADMM,

gradient projection method, IPM)

- well-developed methods
- fast computational performance of

linear methods and IPMs

- stuck in local optima
- modeling accuracy problem
- the sensibility of initial conditions
- cannot handle the multi-objective

problem properly
Computational intelligence methods
(evolutionary and biologically inspired

methods, artificial intelligence
methods, FL)

- do not depend on mathematical for-
mulation

- convergence is easier to set up com-
pared to analytical methods

- hard computational effort
- do not guarantee optima

4.4. Test Network Models

To validate the efficiency of different solution methods for the voltage optimization
problem, the authors use test network models that can be divided into a standard test
model and a test model based on real-life examples. The most common test network
models used in literature represent IEEE test network models which, depending on the
number of buses, can be IEEE–13 bus, IEEE–15 bus, IEEE–33 bus, IEEE–34 bus, IEEE–37
bus, IEEE–69 bus, IEEE–123 bus, and IEEE–8500 bus. Almost all have radial topology.
According to the processed problem, some authors modify standard test models. For
instance, the standard test model [70] is modified according to balance. Real-life-based
models represent urban residential feeders located in the US, China, Italy, Egypt, Australia,
Ireland, and the UK. Unbalanced networks are mostly low voltage and belong to real-life
models. In Table 7, test network models, their voltage level, and balance are summarized.
According to the reviewed literature, more authors utilize standard test network models
IEEE–33 bus, IEEE–69 bus, and IEEE–123 bus node due to their flexibility and robustness.
One possible problem that can appear is the OPF application for unbalanced DNs. For
instance, the authors in [72] reduce an unbalanced system to a balanced assuming that
voltage magnitudes between phases are analogous and phase angles on nodes are not
drastic. Therefore, an unbalance between phases is low, and almost balanced. For more,
see [72].

Table 7. Overview of test network models.

Reference Test Network Model Voltage Level Balanced/Unbalanced

[32,79,80] IEEE–34 bus MV–24.9 kV and 4.16 kV Balanced

[70] IEEE–34 bus modified according
to balance MV–24.9 kV and 4.16 kV Unbalanced

[55,63,67,81,82,85,89,90] IEEE–33 bus MV–12.66 kV Balanced
[63] Real–266 bus, Shenzen, China MV–20 kV Balanced

[53,64,83,88,113] IEEE-123 bus MV–4.16 kV Unbalanced

[70,72] IEEE–123 bus modified according
to balance MV–4.16 kV Balanced

[65] Real distribution feeder–187 bus MV–12.47 kV and LV–120/240 V Balanced
[38,75] Perth Solar City–101 bus LV–415/240 V Unbalanced

[66] Tala City, Egypt–37 bus MV–11 kV Balanced
[67,76,78,81] IEEE–69 bus MV–12.66 kV Balanced

[32,57] IEEE–13 bus MV–4.16 kV Balanced
[70] IEEE–13 bus MV–4.16 kV Unbalanced
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Table 7. Cont.

Reference Test Network Model Voltage Level Balanced/Unbalanced

[71] Real UK l LV–0.4 kV Unbalanced
[72] IEEE–15 bus MV–11 kV Unbalanced
[74] IEEE–8500 bus MV and LV Both
[75] Real Australian–565 bus MV–22 kV and LV–415 V Both
[68] 22 bus MV–11.4 kV Balanced
[78] 17 bus MV–25 kV Balanced

[56,113] IEEE–37 bus MV–4.16 kV Unbalanced

[56] Real Californian utility
feeder–2884 bus N/A Unbalanced

[34] Illustrative model LV N/A

[84] K1 feeder–1747 bus in the
southeastern US MV and LV N/A

[69,116] 33 bus MV–12.66 kV N/A
[69] 830 bus N/A N/A

[37,91] Real South Korean–20 bus MV–22.9 kV Balanced
[59] Real South Italian–16 bus LV Unbalanced
[39] Real Irish suburban–85 bus LV N/A
[58] Modified PG&E–69 bus MV Balanced

[114] CIGRE–12 bus MV N/A
[116] 118 bus MV N/A

5. Conclusions

This paper aims to systematize and categorize scientific papers that are dealing with
the optimization of voltage in the DN using the reactive power management of PV in-
verters. Additionally, the papers are categorized according to the optimization problem
formulation and applied solution methods. It can be observed that the original voltage
optimization problem is nonlinear due to a quadratic objective function and nonlinear
power flow equations. Additionally, some authors propose a mixed-integer nonlinear
formulation due to integer variables such as the OLTC tap setting. To solve such complex
optimization problems, some authors use analytical methods and some use computational
ones. In this review paper, the authors tried to point out the advantages and shortcomings
of both approaches without favoring one. When analytical methods are used, the compro-
mise regarding the transformation of the original problem into a standard one is present
but the analytical approach enables the straightforward method to find the optimum of a
well-defined optimization problem (although special attention is required in order to deter-
mine whether a calculated optimum is local or global). On the other hand, computational
intelligence methods can solve complex optimization problems without the transformation
of the original formulation but they required higher computational performance as well
as more computational time. One of the trends in applying computational intelligence
methods is using well-known power flow calculation tools in order to feed the computa-
tional intelligence method with multiple power flow solutions. This principle is recognized
as co-simulation.

The research potential of the reviewed field lies in the fact that more and more inverter-
based sources are installed in distribution networks worldwide. The importance of voltage
optimization is specifically stressed in microgrids where voltage supports depend mainly
on the inverter-based source. Since the PV active power production depends on variable
and stochastic sun irradiation, further research direction in the field of voltage optimization
will strive to create an adequate probabilistic formulation of the OPF problem which is
computationally more demanding since large numbers of possible scenarios need to be
analyzed. Some probabilistic OPF solutions are already created for the transmission system
environment but their replication in the distribution network (or microgrid) is not straight-
forward. It is hard to foresee which solution methodology (analytical or computational
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intelligence) will show better performance in a probabilistic environment and there is still
plenty of research challenges and gaps present for further research.

Author Contributions: Conceptualization, M.D. and K.F.; methodology, M.D. and K.F.; formal
analysis, M.D., K.F. and D.T.; investigation, M.D.; writing—original draft preparation, M.D., K.F. and
D.T.; writing—review and editing, D.T. and M.B.; funding acquisition, D.T. All authors have read and
agreed to the published version of the manuscript.

Funding: The APC was funded by Croatian Science Foundation under the project “Prosumer-rich
distribution power network” (project number: UIP-2020-02-5796).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The work of doctoral student Marina Dubravac has been fully supported/supported
in part by the “Young researchers’ career development project—training of doctoral students”
(DOK-2021-02-1257) of the Croatian Science Foundation. This work was founded by the Croat-
ian Science Foundation under the project “Prosumer-rich distribution power network” (project
number: UIP-2020-02-5796).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Carvalho, P.M.S.; Correia, P.F.; Ferreira, L.A.F.M. Distributed reactive power generation control for voltage rise mitigation in
distribution networks. IEEE Trans. Power Syst. 2008, 23, 766–772. [CrossRef]

2. Kjaer, S.B.; Lazar, R.D.; Constantin, A.; Ballegaard, H.P.; Yang, G.; Østergaard, J.; Ipsen, H.H.; Frederiksen, K.H.B. Voltage control
in low voltage networks by photovoltaic inverters—PVNET.DK. In Proceedings of the 28th European Photovoltaic Solar Energy
Conference and Exhibition (28th EU PVSEC), Villepinte, France, 30 September–4 October 2013.

3. Mokhtari, G.; Nourbakhsh, G.; Zare, F.; Ghosh, A. Overvoltage prevention in LV smart grid using customer resources coordination.
Energy Build. 2013, 61, 387–395. [CrossRef]

4. Xu, T.; Taylor, P.C. Voltage control techniques for electrical distribution networks including distributed generation. IFAC Proc. Vol.
2008, 41, 11967–11971. [CrossRef]

5. Juamperez, M.; Yang, G.; Kjær, S.B. Voltage regulation in LV grids by coordinated volt-var control strategies. J. Mod. Power Syst.
Clean Energy 2014, 2, 319–328. [CrossRef]

6. Jamsek, S.; Tot, S.; Lasic, M.; Perisa, I.; Miklavcic, M. Regionaly important sincro.grid smart grid project. J. Energy Energ. 2018, 67,
86–93. [CrossRef]

7. Turitsyn, K.; Šulc, P.; Backhaus, S.; Chertkov, M. Options for control of reactive power by distributed photovoltaic generators.
Proc. IEEE 2011, 99, 1063–1073. [CrossRef]

8. Takasawa, Y.; Akagi, S.; Yoshizawa, S.; Ishii, H.; Hayashi, Y. Effectiveness of updating the parameters of the Volt-VAR con-
trol depending on the PV penetration rate and weather conditions. In Proceedings of the 2017 IEEE Innovative Smart Grid
Technologies–Asia (ISGT-Asia), Asia Smart Grid Smart Community, Auckland, New Zealand, 4–7 December 2017; pp. 1–5.

9. Culjak, M.; Beus, M.; Pandzic, H. Development of a LabVIEW - Based Data Logging and Monitoring Application for a Photovoltaic
Power Plant at FER. J. Energy Energ. 2022, 211, 14–18. [CrossRef]

10. Petinrin, J.O.; Shaabanb, M. Impact of renewable generation on voltage control in distribution systems. Renew. Sustain. Energy
Rev. 2016, 65, 770–783. [CrossRef]

11. Karimi, M.; Mokhlis, H.; Naidu, K.; Uddin, S.; Bakar, A.H.A. Photovoltaic penetration issues and impacts in distribution
network—A review. Renew. Sustain. Energy Rev. 2016, 53, 594–605. [CrossRef]

12. Chaudhary, P.; Rizwan, M. Voltage regulation mitigation techniques in distribution system with high PV penetration: A review.
Renew. Sustain. Energy Rev. 2018, 82, 3279–3287. [CrossRef]

13. Nour, A.M.M.; Hatata, A.Y.; Helal, A.A.; El-Saadawi, M.M. Review on voltage-violation mitigation techniques of distribution
networks with distributed rooftop PV systems. IET Gener. Transm. Distrib. 2020, 14, 349–361. [CrossRef]

14. Antoniadou-Plytaria, K.E.A.; Kouveliotis-Lysikatos, I.N.; Georgilakis, P.S.; Hatziargyriou, N.D. Distributed and decentralized
voltage control of smart distribution networks: Models, methods, and future research. IEEE Trans. Smart Grid 2017, 8, 2999–3008.
[CrossRef]

15. Ullah, Z.; Wang, S.; Wu, G.; Hasanien, H.M.; Jabbar, M.W.; Qazi, H.S.; Tostado-Véliz, M.; Turky, R.A.; Elkadeem, M.R. Advanced
studies for probabilistic optimal power flow in active distribution networks: A scientometric review. IET Gener. Transm. Distrib.
2022, 16, 3579–3604. [CrossRef]

16. Abdi, H.; Beigvand, S.D.; La Scala, M. N.D. A review of optimal power flow studies applied to smart grids and microgrids. Renew.
Sustain. Energy Rev. 2017, 71, 742–766. [CrossRef]

465



Appl. Sci. 2022, 12, 12426

17. Toffler, A. The Third Wave: Learning for Tomorrow, the Futurists, the Schoolhouse and the City, 1st ed.; William Morrow and Company,
Inc.: New York, NY, USA, 1980.

18. Korotko, T.; Rosin, A.; Ahmadiahangar, R. Development of prosumer logical structure and object modeling. In Proceedings of
the 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG),
Sonderborg, Denmark, 23–25 April 2019.

19. Cao, J.; Bu, Z.; Wang, Y.; Jiang, J.; Li, H.J. Detecting prosumer-community groups in smart grids from the multiagent perspective.
IEEE Trans. Syst. Man. Cybern. Syst. 2019, 49, 1652–1664. [CrossRef]

20. Rathnayaka, A.J.D.; Potdar, V.M.; Dillon, T.S.; Hussain, O.K.; Chang, E. A methodology to find influential prosumers in prosumer
community groups. IEEE Trans. Ind. Inform. 2014, 10, 706–713. [CrossRef]

21. Yang, H.; Xiong, T.; Qiu, J.; Qiu, D.; Dong, Z.Y. Optimal operation of DES/CCHP based regional multi-energy prosumer with
demand response. Appl. Energy 2016, 167, 353–365. [CrossRef]

22. Liu, N.; Cheng, M.; Yu, X.; Zhong, J.; Lei, J. Energy-sharing provider for PV prosumer clusters: A hybrid approach using stochastic
programming and Stackelberg game. IEEE Trans. Ind. Electron. 2018, 65, 6740–6750. [CrossRef]

23. Ghosh, A.; Aggarwal, V.; Wan, H. Exchange of renewable energy among prosumers using blockchain with dynamic pricing. arXiv
2018, arXiv:1804.08184v1.

24. El Rahi, G.; Etesami, S.R.; Saad, W.; Mandayam, N.B.; Poor, H.V. Managing price uncertainty in prosumer-centric energy trading:
A prospect-theoretic Stackelberg game approach. IEEE Trans. Smart Grid. 2019, 10, 702–713. [CrossRef]

25. Garijalva, S.; Tariq, M.U. Prosumer-based smart grid architecture enables a flat, sustainable electricity industry. In Proceedings of
the Innovative Smart Grid Technologies (ISGT), Sonderborg, Denmark, 23–25 April 2011.

26. Lavrijssen, S.; Parra, A.C. Radical prosumer innovations in the electricity sector and the impact on prosumer regulation.
Sustainability 2017, 9, 1207. [CrossRef]

27. Merino, J.; Gómez, I.; Fraile-Ardanuy, J.; Santos, M.; Cortés, A.F.; Jimeno, B.J.; Madina, C. Chapter 6—Fostering DER integration
in the electricity markets. In Distributed Energy Resources in Local Integrated Energy Systems; Graditi, G., Di Somma, M., Eds.;
Elsevier: Amsterdam, The Netherlands, 2021.

28. European Parliament DIRECTIVE (EU) 2019/944 of the European Parliament and of the Council on Common Rules for the
Internal Market for Electricity and Amending Directive 2012/27/EU. Off. J. Eur. Union 2019, 125–199. Available online:
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32019L0944 (accessed on 15 June 2022).
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Featured Application: The developed solar air heater can be applied in drying and space heating

applications from 50 ◦C to 90 ◦C. The solar collector could be modular, so it can be coupled to a

variety of processes.

Abstract: Solar air heaters can reduce climate change by replacing conventional fossil fuel-burning
technologies in drying and space heating applications. Concentrating solar technologies, such as
compound parabolic concentrators, allow air temperatures up to 120 ◦C; however, it is desirable to
improve their heat transfer to reduce the space requirements for their installation. In this work, a
parabolic concentrator composed of a flat receiver designed to recover heat from the cover–receiver–
reflectors cavity is analyzed, operating it as a U-shape double pass solar heater. With this operation,
first, the air flows through the cavity, and then it is incorporated into the duct, where the dominant
heat gain occurs due to the capture of solar radiation. Thus, four input–output configurations in the
cavity were modeled through dynamic simulations to determine the influence of the inlet and outlet
air flow positions on the solar concentrator outlet temperature. Therefore, the incorporation of the first
pass has a contribution of between 36% and 45% in useful energy gain, showing that this appropriate
and relatively simple strategy can be implemented to improve the thermal performance of solar air
collectors, resulting in instantaneous efficiencies higher than 75%. However, the simulation results
demonstrate that the position of the inlets and outlets does not significantly impact the efficiency and
outlet temperature.

Keywords: solar energy; CPC; solar heating; solar drying; industrial process; solar air heater;
space heating

1. Introduction

Air heating is used for various applications, such as heating and air conditioning of
buildings or drying of food and industrial products, among others. Air can be heated with
electric heaters or by directly burning fuels such as gas; however, their use implies the
emission of greenhouse gases and their consequent contribution to climate change. One
way to minimize fossil fuel burning is to use solar collectors to directly heat the air, ranging
from flat-plate collectors to solar concentrators.

According to the International Energy Agency, 985 MWth of solar air collectors were
installed by the end of 2020, and the global market was around 12 MWth [1]. As of March
2022, 41 solar air collector systems producing solar process heat are registered, with a
cumulative capacity of 6 MWth [1]. Thus, the direct application of solar collectors for
air heating is low due to the boost that low fossil fuel prices give to using conventional
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technologies [2], so it is essential to develop reliable and economically efficient solar air
heating technologies. Flat-plate solar collectors are recommended for temperatures below
70 ◦C because of their ease of manufacture and operation. For higher temperatures, it
is necessary to use some solar concentrating technology, such as compound parabolic
concentrators (CPCs), which allow fluid heating temperatures up to 120 ◦C, depending on
their design, and are easy to operate and maintain.

However, to ensure good efficiency of CPCs, it is necessary to perform an optimal
optical design and minimize thermal losses or improve heat transfer. Strategies to reduce
convection losses in the receiver of a solar collector include using evacuated tubes or
filling the CPC cavity with gases such as Argon and Krypton [3,4], which are denser gases
and have lower thermal conductivity than air, or even applying a vacuum throughout
the cavity [5]. In contrast, double absorbers have been proposed to reduce conduction
losses [6].

In other technologies, such as flat-plate solar air heaters, it has been proposed to
increase the heat transfer rate by incorporating multiple passages, including extended
surfaces, artificial roughness, and packed mesh [7]. This multi-pass strategy is used in
hybrid CPCs (PV/T) to cool the photovoltaic cells on the flat-plate receiver with fins on the
back side [8].

In the general design of solar collectors, computational fluid dynamics (CFD) tools
can be used to reliably estimate their thermo-hydraulic performance before building them,
saving time and resources. Several analyses of solar collectors by computational fluid
dynamics (CFD) can be found in the literature, both for liquid and air heating. Table 1
provides an overview of the different solar collector models and assumptions found in the
literature review.

Table 1. Solar collectors CFD and radiation models in the literature review.

Reference Solar Technology TES Fluid CFD Model Radiation Model

[9] Flat-plate Air in gap of upper part
2D model

Newtonian and incompressible gas
Boussinesq approximation

ER: Constant radiative flux

[10] Heat-pipe evacuated
tube (HPETC)

Water in heat pipe
Air or OCMs in inner

evacuated tube

3D model
Boussinesq approximation

ER: Time-dependent polynomial
function for the solar irradiance data

as a boundary condition

[11]
Evacuated tubes with
and without circular

ribs
Air

3D steady-state model
RNG k-ε turbulence model with
enhanced wall treatment model
under periodic flow conditions

ER: Uniform and constant heat input
as a boundary condition

[12]
Flat plates with

selective surfaces and
rectangular fins

Air

3D steady-state model
Incompressible air

Boussinesq approximation
Standard k–ε turbulence model

IR: Discrete ordinates model
ER: Constant solar heat flux

[13]
CPC with a

single-pass evacuated
tube receiver

Air 3D steady-state model
k–ε turbulence model

ER: Ray-tracing and finite volume
solver to determine the non-uniform

solar flux distribution on the
absorber surface

[14] CPCs with three types
of tubular receiver Water

3D transient-state model
Incompressible fluid

Spalart-Allmaras turbulence model

ER: Ray-tracing and finite element
solver to determine the incident solar

flux on the absorber surface

[15]
CPCs with tubular
receivers (with and
without ETFE foil)

Water in absorber
Air in cavity

3D steady-state model
Boussinesq approximation

Standard k-ε turbulence model

IR: S2S radiation model
ER: Ray-tracing used to determine a
correlation of absorbed solar energy

as a function of angle
along perimeter
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Table 1. Cont.

Reference Solar Technology TES Fluid CFD Model Radiation Model

[16]
CPCs with tubular

receivers and
flat-plate receiver

Air in cavity

2D pseudo-transient model
Incompressible ideal gas

Buoyancy forces
k–ε turbulent model

IR: S2S radiation model
ER: Solar radiation is

completely absorbed by the receiver

[17] Panels of CPCs with
tubular receiver Air in cavity

2D pseudo-transient model
Incompressible ideal gas

k-ε turbulent model with the
enhanced wall treatment

IR: S2S radiation model
ER: Receiver temperature as a

boundary condition (solar radiation
is not simulated)

[18] CPC with
flat-plate receiver Air in cavity

3D steady-state model
Incompressible ideal gas

Thermo-physical
properties constants

Non-Bousinessq approximation
Standard k–ε turbulence model with

enhanced wall treatment

IR: Discrete-ordinate radiation model
ER: Thermal boundary condition

with the surface external
emissivity specified

[19] Multi-pass flat-plates Air

2D and 3D steady-state models
k–ε turbulent model

Standard k–ε turbulent model with
realizability constraints in the

vicinity of walls

IR: S2S radiation model
ER: External Radiation Source

sub-node is applied to contribute to
the incident radiative heat flux on

the solar spectral bands

[20]
Three-pass and
quadruple-pass

flat-plates
Air 3D steady-state model

k–ε turbulence model Not specified

[21] Double-pass flat-plate Air 3D steady-state model
RNG k–ε turbulence model

IR: Discrete-ordinate radiation model
ER: Energy equation and Discrete

Transfer radiation model

[22] Double-pass
flat-plates Air

2D steady-state model
Incompressible flow

k–ε turbulence model
ER: Uniform heat flux

[23]
Double-pass

flat-plates with three
fin configurations

Air 2D steady-state model
RNG k–ε turbulence model ER: Constant heat flux

[24] Double-pass curved
collectors Air 2D steady-state model

k-ε turbulence model ER: Constant solar radiation flux

IR: Internal radiation; ER: External radiation.

Thus, Mekahlia et al. determined the influence of the thickness and number of
transparent covers to reduce the heat losses of a flat-plate solar collector [9], and Pawar
and Sobhansarbandi modeled an evacuated heat-pipe solar collector with and without
integrated phase change materials as a thermal storage medium [10]. In the particular
case of solar air collectors, Singla et al. analyzed an evacuated tube collector with ribs of
different roughness [11]. At the same time, Ammar et al. performed a three-dimensional
CFD model to optimize the design of a solar air collector with an extended surface area by
a different number of rectangular fins [12]. In addition, they analyzed the effect of adding a
selective surface on the absorber.

Regarding the analysis of CPC collectors, Li et al. analyzed by CFD the thermal behav-
ior of an evacuated tube collector as a receiver of a compound parabolic concentrator, and
the simulation was validated with experimental data [13]. Barrón-Díaz et al. performed the
numerical simulation of CPCs with tubular receivers, with and without fins, for residential
water heating [14]. This study focused on the ray-tracing analysis of radiation and heat
transfer by coupled finite element and CFD methods. In addition, Yuan et al. developed
two simplified computational fluid dynamics models to determine the temperature and
velocity distribution in two almost identical parabolic tube-receiver CPCs [15]. One had a
transparent ETFE sheet around the receiver to reduce convective heat losses. The models
included the reflector, receiver, cover, and back insulating material and allowed the analysis
of both air movement in the cavity and water movement in the absorber tube. Ray tracing
was applied to analyze the radiation distribution on the receiver tube at normal incidence,
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with a correlation of the absorbed solar energy as a function of the angle along the perimeter
of the tube. Both models were experimentally validated, and relative errors of less than
3.7% in temperature and 1% in efficiency were obtained.

On the other hand, Antonelli et al. analyzed the air heat transfer inside the cavity
of a collector with a tubular receiver and with a flat-plate receiver and developed some
correlations to express the Nusselt over the receiver [16]. Subsequently, Francesconi and
Antonelli performed the numerical analysis of a panel with several tubular receiver CPCs
to determine the influence on the thermal efficiency of the number and position of the
CPCs along the panel, the use of a second transparent cover, the spacing between collectors,
and the truncation of the reflectors [17]. For their part, Reddy et al. performed three-
dimensional modeling of a flat-plate receiver CPC to determine the thermal losses in the
cavity as a function of its aspect ratio and tilt, the optical properties of the materials, and
the absorber and ambient temperatures [18]. To model the internal radiative heat transfer,
they used a discrete ordinary radiation model, and for the external one, they established
the thermal boundary conditions and emissivity.

As mentioned above, another strategy to improve the efficiency of solar air heating
collectors is to increase the number of passes. Thus, Al-Damook et al. analyzed the
effect of double-pass configuration in a solar air heater when operating in concurrent
parallel flow, parallel in counterflow, and double U-pass [19]; the latter presented the best
thermal performance. Tuncer et al. analyzed, through CFD simulation, two flat-plate solar
collectors for air heating with three and four passes and determined which one had the
best performance to evaluate it experimentally [20]. In both solar collectors analyzed, air
enters through the lower pass and exits through the upper pass, which has the radiant heat
gain. They found that the four-pass collector has a heat gain 3 ◦C higher than that obtained
with the three-pass collector and that the maximum deviation between the CFD model and
the experimental results was 10%. In addition, Mutabilwa and Nwaigwe performed a CFD
analysis of a two-covers, double-pass flat-plate solar collector for air heating, which was
validated with experimental results [21]. The air enters through the space between the two
covers and returns between the second cover and the absorber plate. The temperatures on
the absorber plate obtained with the model had a standard deviation from experimental
results between 1.05 K and 4.65 K, while for the cover, it was between 0.1 K and 0.45 K.

Likewise, improved surfaces or novel geometries have been incorporated in multi-
passes solar collectors, such as the work of Desisa and Shekata [22]; they analyzed the
impact of using smooth, rough, and corrugated surfaces in a double-pass flat-plate air solar
collector and obtained average thermal efficiencies of 78%, 62%, and 90%, respectively.
On the other hand, Singh determined the performance of double-pass flat-plate air solar
collectors with different fin configurations [23]. They varied in size, angle, arrangements
(in-line, staggered, and hybrid), and hydraulic diameter. Finally, Kumar et al. proposed a
curved air heater with asymmetric double-pass counterflow turbulators, whose design was
determined from CFD analysis by comparing various flow configurations and geometric
parameters [24].

Two or more pass technologies have been applied in flat-plate solar collectors to
improve their efficiency; however, this strategy has not been applied in CPCs for air
heating. This study proposes the CFD analysis of a CPC-type solar air heater with U-shape
double-pass airflow. The air first circulates through the trapezoidal cavity contained in the
volume formed by the cover, the reflecting walls of the CPC, and the flat-plate receiver
and then circulates in counterflow through the receiver’s duct interior. The objective of
the numerical analysis presented is to test different inlet and outlet configurations in the
CPC array to determine how these configurations influence the velocity distribution, outlet
temperature, and instantaneous efficiency of the U-shape double-pass CPC solar heater.

Section 2 of this manuscript describes the main characteristics of the U-shape double-
pass CPC and the four air inlet/outlet configurations considered in its design. It also
defines the mesh design to perform the CFD simulation, the mathematical model for such
simulation, the boundary conditions applied in the study, and the methodology followed
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to estimate the thermal efficiency of the U-shape double-pass CPC. Section 3 includes a
summary of the simulation results obtained and their discussion and concludes with a
summary of the efficiencies calculated for each of the four configurations analyzed.

2. Materials and Methods

2.1. U-Shape Double-Pass CPC Description and Physical Model

The proposed solar air heater is a variant of the flat-plate receiver Compound Parabolic
Concentrator (CPC) conceptualized as a U-shape double-pass heat exchanger. Figure 1a
shows the evaluated geometry dimensions and the inlet and outlet positions, whereas, in
Figure 1b, the CPC cross-section is shown. The CPC is tilted 24◦ since it is the latitude of
the City of interest (Durango, Mexico) and consists of a flat-plate receiver, two reflectors, a
cover, and a duct. The first pass of the airflow inside the CPC occurs in the cavity formed
by the receiver, two reflectors, and the cover, while the second pass is in the duct section.
The aperture area where the solar radiation enters the CPC is 0.42 m2, while the area where
it is absorbed is 0.20 m2.

(a) 

(b) 

Figure 1. U-shape double-pass CPC solar heater. (a) Geometry; (b) Cross-section.

The analysis of the position of the air inlet and outlet in the cavity consisted of the
study of four configurations that were positioned concerning the height of the cavity (hcav):
(a) inlet 1

4 hcav-outlet 1
4 hcav (Down–Down), (b) inlet 1

4 hcav-outlet 3
4 hcav (Down–Up), (c) inlet

3
4 hcav-outlet 3

4 hcav (Up–Up), and (d) inlet 3
4 hcav-outlet 1

4 hcav (Up–Down). The air inlet and
outlet configurations are shown in Figure 2.
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Figure 2. Inlet and outlet studied configurations of U-shape double-pass CPC.

The properties were considered constant in the solid (Table 2). The reflector is made of
anodized aluminum, while the other components of the U-shape double-pass CPC, shown
in Table 2, were considered in the CFD simulation with a certain thickness to model the
conduction. The duct is made of aluminum, and the receiver substrate has a selective
surface; this surface has high absorptivity in the solar spectrum and low emissivity in
the infrared to avoid losses due to thermal radiation. Finally, the cover is made of solid
polycarbonate, and an insulating material (EPS) was considered outside the reflector and
the duct to avoid thermal losses from the surface exposed to the environment.

Table 2. Material properties of the U-shape double-pass CPC elements.

Material
Thickness

(m)
Thermal Conductivity

(W/m·K)
Density
(kg/m3)

Specific Heat Capacity
(J/kg·K)

Aluminum
(receiver, duct) 0.001 237 2702 903

Expanded polystyrene (EPS)
(insulation) 0.050 0.046 14 1210

Polycarbonate
(cover) 0.003 0.210 1200 1300

For air, the density, thermal conductivity, and viscosity were considered as polynomial
functions of temperature, and the specific heat as a piecewise-linear function (Table 3).

Table 3. Thermal properties of air.

Property Type Coefficients/Interval
Temperature Interval of

Validity (K)

Density *, ρ, kg/m3 Polynomial 2.1781T − 0.0033 273.15–393.15
Thermal conductivity *, k, W/(m K) Polynomial 0.003792T + 7.3e−5 273.15–393.15
Molecular viscosity *, μ, kg/(m s) Polynomial 5.141e−6T + 4.5e−8 273.15–393.15

Specific heat, Cp, J/(kg K) Piecewise-linear

1006@273.15 K;

273.15–398.15
1007@288.15 K;
1008@353.15 K;
1011@398.15 K

* The polynomial functions were obtained with data from [25].
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2.1.1. Computational Domain

The fluid and solid domains were generated in the SolidWorks 2013 SP2.0 software.
The solid domain simulated the absorber plate, while the fluid domain was sectioned into
three volumes to facilitate meshing: (a) inlet section, (b) cavity, and (c) elbow-duct.

2.1.2. Mesh

A hexahedral structured mesh was generated according to the proposed computational
domain. The near-wall model approach was used to accurately predict the hydrodynamic
behavior of the flow and the heat transfer in the system. The method was to implement
15 cells to cover the viscous and buffer sublayer to have accurate results in a reasonable
computation time.

The mesh refinement was carried out considering the shear stress for the hydrody-
namic phenomenon and the Nusselt number (Nu) for the thermal boundary layer. The
Nusselt number represents the dimensionless temperature gradient in the wall of interest.

The mesh size was refined until the variation of the shear stress and the average Nu
was less than 1%. Next, the size of the viscous sublayer and the buffer sublayer were
calculated for the interval 0.5 < y+ < 5 using Equation (1), and for the thermal sublayer,
the Nu was monitored. In addition, y+ values of 35 and 60 were applied to the turbulent
sublayer to carry out the mesh independence study; this monitoring was carried out to
describe the viscous sublayer. Then, to obtain the final mesh size used in this work, the
mesh was refined in the z-axis from 100 divisions to 1600. Through the analysis, Nu varied
0.2% with y+ values of 0.8 and 0.5, selecting y+ 0.8.

y =
y+μ

ρuT
(1)

Additionally, the mesh size was verified in the direction of the entrance flow with a
cavity mesh refinement in the longitudinal axis (z-axis), as shown in Figure 3. The analysis
found that the Nusselt had a variation of less than 0.1% from 550 divisions onwards. In
Figure 3a, a cross-section of the U-shape double-pass CPC solar heater is shown, with
the magnified detail of the mesh in the receiver. Figure 3(b1,b2) present the longitudinal
section, where the coarse and refined mesh in the cavity are presented.

The k-ω models are y+ insensitive treatments; therefore, the ω-equation can be inte-
grated without additional terms through the viscous sublayer. Nevertheless, the Transition
SST k-ω model requires a more stringent grid resolution to solve the thin laminar boundary
layer upstream of the transition location. For this reason, using a near-wall mesh with
y+ ≈ 1, especially for heat transfer predictions, is recommended [26].

2.2. Mathematical Model

The mathematical model had the subsequent considerations for the governing equa-
tions: steady state, Newtonian fluid, incompressible flow, and transition turbulence regime;
therefore, the governing equations for the U-shape double-pass solar heater are as follows.

∂ρ

∂t
+∇ ·

(
ρ
→
v
)
= 0 (2)

∂

∂t

(
ρ
→
v
)
+∇ ·

(
ρ
→
v
→
v
)
= −∇p +∇ ·

(
=
τ
)
+ ρ

→
g +

→
F (3)

∂(ρE)
∂t

+∇ ·
(→

v (ρE + P)
)
= ∇ · (∑

j
h′ j Jj) (4)
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(a) 

  
(b1) (b2) 

Figure 3. Solar collector mesh. (a) Transversal section; (b1) coarse mesh in longitudinal section;
(b2) refined mesh in longitudinal section.

2.2.1. Turbulence Model

A preliminary hydrodynamic analysis performed in the SolidWorks 2013 SP2.0 soft-
ware determined that the flow separates due to the sudden expansion at the cavity inlet.
Furthermore, the flow was found to be under development (Lh,turbulent < Lcollector), and
the calculated average Reynolds numbers (Re) were very low (for flow 1 (0.01 kg/s) was
Recav-1 = 2972, and for flow 2 (0.02 kg/s) was Recav-2 = 5961). The k-ω turbulence models
are better at predicting adverse pressure gradient boundary layer flows and separation,
and they also have the ability to simulate the laminar–turbulent transition of wall boundary
layers [26]. Additionally, the k-ω models have low-Reynolds number terms (Re < 104)
that mimic laminar–turbulent transition processes. However, this function is not widely
calibrated in the SST k-ω model; therefore, it is recommended to use the Transition SST
k-ω model [27,28].

The Transition SST model was selected based on the described above and considering
the required accuracy to predict heat transfer from the absorber plate to the air as the
flow. Furthermore, the buoyancy effects were adjusted to full, and the viscous heating was
activated. The turbulence modeling consisted of implementing the Transition SST k-omega
model described in Equations (5)–(12). Equation (5) corresponds to the transport equation
for intermittency (γ), whereas Equations (6) and (7) represent the transition sources Pγ1
and Eγ1, respectively; and Equations (8) and (9), the destruction/re-laminarization sources
Pγ2 and Eγ2.
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Flows 1 and 2 were selected based on a preliminary analysis using the thermal model
described in [29]; among those flows, the best balance between air outlet temperature
and thermal efficiency was found. In the calculation of the Reynolds number, the cav-
ity was approximated as a trapezoidal cross-section duct for calculating the hydraulic
diameter (Dh).

∂(ργ)

∂t
+

∂
(
ρUjγ

)
∂xj

= Pγ1 − Eγ1 + Pγ2 − Eγ2 +
∂

∂xj

[(
μ +

μt

σγ

)
∂

∂xj

]
(5)

Pγ1 = Ca1FlengthρS[γFonset]
cγ3 (6)

Eγ1 = Ce1Pγ1γ (7)

Pγ2 = Ca2ρΩγFturb (8)

Eγ2 = Ce2Pγ2γ (9)

On the other hand, Equation (10) refers to the interaction of the transition model with
the SST turbulence model by modifying equation k, where G∗

k and Y∗
k are the original

production and destruction terms of the SST model [28].

∂(ρk)
∂t

+
∂(ρkui)

∂xj
=

∂

∂xj

(
Γk

∂k
∂xj

)
+ G∗

k − Y∗
k (10)

G∗
k = γe f f G̃k (11)

Y∗
k = min

(
max

(
γe f f , 0.1

)
, 1.0
)

Yk (12)

The pressure-based solver with the Coupled scheme was selected, and a second-order
spatial discretization scheme was implemented. The gradient evaluation method selected
was based on Least Squares Cell-Based, and the high-order term relaxation option was
used. The pressure factor was adjusted to 0.1, and the Flow Courant Number to 4.

2.2.2. Boundary Conditions

The momentum boundary conditions in the walls were considered no-slip stationary
with a constant rugosity of 0.5. The thermal boundary conditions modeled the incident
solar radiation on the cover and the absorber plate as a heat generation source, calculated
using Equations (13) and (14).

qc(t) =
(

I(t)
[
αc + αcτc�p�

2〈n〉
r

] Ac

Ap

)
/wc (13)

qp(t) =
(

I(t) τc�n
r Pg

[
αp + αp�p�c�2〈n〉

r
Ap

Ac

]
Ac

Ap

)
/wp (14)

where q(t) is the heat generation, I(t) is the solar irradiance, Pg is the gap loss factor (0.96), α
is the absorptivity, τ is the transmissivity, ρ is the reflectivity, Ac is the cover area, Ap is the
absorber plate area, and wc and wg, are the thickness of the cover and plate, respectively.
The optical properties of the cover are αc = 0.05, τc = 0.89 y ρc = 0.05, the receiver are
αp = 0.95 and ρp = 0.05, and from the reflector ρr = 0.91.

The heat transfer coefficient from the cover to the environment (HTCc-a) was obtained
by applying the flow around finite flat-plates methodology reported in [30], while the
convection losses of the external walls were calculated using the heat transfer coefficient
(HTCb) correlation proposed by [31]. Additionally, in laminar flow, the heat transfer coeffi-
cient from the flat-plate receiver to the fluid in the cavity (HTCp-cav) was estimated using
the discretized Fourier’s law, considering the local temperature normal to the wall [26].
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Moreover, in turbulent flow, the HTCp-cav was determined using the law of the wall for
estimating the local temperature of the fluid by applying the Reynolds analogy [26].

The heat conduction in the exterior walls of the CPC was modeled as shell conduction,
whereas the radiation losses in the cover were calculated with an emissivity value of
εc = 0.81, and the sky temperature (Ts) was calculated with the correlation proposed by
Swinbank (Equation (15)), reported in [32], where Ta refers to the ambient temperature.

Ts = 0.0552T1.5
a (15)

Regarding the turbulence parameters, a turbulence intensity of 5% and a turbulent
viscosity ratio of 10 were applied. Table 4 summarizes the parameters of the boundary
conditions of the CFD modeling.

Table 4. Boundary conditions considered in the CFD modeling of the U-shape double-pass CPC.

Boundary Type of Boundary Characteristics

Inlet Inlet-vent Tps1,in = 298.15 K

Outlet Mass flow
.

m1 = 0.01 kg/s
.

m2 = 0.02 kg/s

Cover
Wall

Mixed (convection, radiation,
and heat generation)

qc = 37.37 kW/m3

HTCc–a = 8.27 W/m·K
Ta = 298.15 K
Ts = 280.05 K

Bottom duct
Wall

Convection
Conduction

HTCb = 0.6 W/m·K

Absorber plate Wall
Heat generation

I = 900 W/m2

εp = 0.35
qp = 13,481 kW/m3

Fluid interfaces: Coupled wall -
- cavity-absorber plate
- duct-absorber plate

The pressure-based solver with the Coupled scheme was selected. In addition, a
Second-Order scheme for spatial discretization was implemented because of numerical
simulation stability. The formal truncation errors of individual terms in the governing
equations were calculated; the error for the HTCp-cav was 1.27%, 0.051% for the shear stress,
and 0.05% for the Nusselt number (with a security factor of Fs = 3) [32]. In addition, values
of 1 × 10−4 for the mass residual and a mass imbalance of 5.3 × 10−8% and 2 × 10−7

energy residual were accomplished. The verification of the results was carried out by
quantifying the uncertainty of the numerical calculations. For Nu, the spatial error of 0.51%
was obtained, while for HTCp-cav and shear stress were 0.66% and 0.37%, respectively. The
grid convergence index was also verified, finding out 0.05% for Nu, 0.19% for shear stress,
and 0.09% for HTCp-cav.

2.3. Efficiency Calculation

The thermal efficiency of the collector is calculated as the ratio between the useful
energy gained by the fluid on the collector’s cavity and absorber and the net solar energy
on the collector’s aperture, using Equation (16):

η =
Qu

Ac I
(16)
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The heat transfer of the analyzed solar collector resembles a counterflow heat ex-
changer, where the cold fluid flows through the cavity, and the hot fluid flows through the
duct. Therefore, the useful energy gain of the collector is calculated using Equation (17).

Qu =
.

mCp,avg
(
Tps2,out − Tps1,in

)
(17)

3. Results and Discussion

Once the simulation model of the four CPC configurations with different inlet and
outlet positions was implemented (see Figure 2), simulations were carried out considering
the boundary conditions for two different values of mass flow rates to analyze: 0.01 kg/s
and 0.02 kg/s. The materials, air properties, and boundary conditions are presented in
Tables 2–4, respectively. In addition, the results of the hydraulic and thermal behavior of
the air in the cavity of the CPC for each of these configurations are presented below.

3.1. Hydraulic Behavior

Figures 4 and 5 show the velocity streamlines with the two analyzed air mass flow
rates (flow 1: 0.01 kg/s and flow 2: 0.02 kg/s, respectively). In Figure 4 (flow 1: 0.01
kg/s), the configurations with an inlet from below (a and b), a sudden expansion occurs
near the inlet of the cavity, forming an eddy in the upper part of the collector. While in
the configurations with the entrance at the top (c and d), the eddy forms at the bottom.
Further, in all configurations except (b), it is observed that after the air enters the cavity,
several families of eddies form until the end of the collector (z = 2.0 m). On the other hand,
in configuration (b), a large eddy is observed in the first half of the cavity, and then the
formation of some smaller eddies. Finally, it is essential to note that the highest magnitude
velocities are generated at the elbow and at the beginning of the duct (second pass).

  
(a) (b) 

  
(c) (d) 

Figure 4. Streamlines at the collector cross-section with air mass flow 1: 0.01 kg/s. (a) Down–Down;
(b) Down–Up; (c) Up–Up; (d) Up–Down.
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(a) (b) 

 
(c) (d) 

Figure 5. Streamlines at the collector cross-section with air mass flow 2: 0.02 kg/s. (a) Down–Down;
(b) Down–Up; (c) Up–Up; (d) Up–Down.

In Figure 5, a similar behavior to the one described for flow 1 is shown for flow 2 (0.02
kg/s), where a sudden expansion of air near the inlets occurs. For configurations (a) and
(b) (inlet from the bottom), a visible jet can be observed at the bottom of the cavity; here,
an eddy at the upper region can also be observed. Contrarily, in the configurations with
an inlet from above, the jet is formed at the top, whereas the eddy occurs at the bottom
region. Additionally, in configurations (a) and (c) (either both inlet and outlet from above
or below), there is a primary air current with high speed. In configuration (a), the current
goes up and down the cavity, generating several eddies at the upper and bottom sides
opposite to the main flow. Contrarily, in configurations (b) and (d), which have inlet and
outlet in opposite positions on the y-axis, a large eddy is formed near the cavity inlet,
observing a larger eddy in configuration (b) that moves towards the exit in a disorderly
manner. Moreover, the largest speed occurs at the elbow of the collector, having higher
speeds in the configurations with a bottom outlet.

One reason that explains a disordered and asymmetric flow is because of the collector
tilt (see Figure 1). In addition, the pressure increase justifies the phenomenon of the
sudden air contraction caused by the elbow area reduction. Furthermore, a higher mass
flow influences the amplitude and turbulence of the eddies found in the first section of
the cavity.

3.2. Thermal Behavior

Figures 6 and 7 show the temperature fields of the four analyzed configurations. In
Figure 6, for flow 1, it is observed that there is an extended region at low temperatures
for all configurations in the cavity inlet, which is related to the air inlet in the form of a jet
described in Figure 4. In all configurations, a region with low temperature is generated
related to the jet of cold air that enters the cavity. For the configurations with an inlet from
the bottom, the zone is located in the upper left corner. This is due to the presence of the
primary eddies observed in the hydrodynamic behavior of the fluid (Figures 4 and 5). In
configurations with a top inlet, the area is also extended towards the middle of the cavity,
which is related to less turbulence in the movement of the fluid.
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(a) (b) 

 
(c) (d) 

Figure 6. Air temperature fields at the collector cross-section with air mass flow 1: 0.01 kg/s.
(a) Down–Down; (b) Down–Up; (c) Up–Up; (d) Up–Down.

 
(a) (b) 

 
(c) (d) 

Figure 7. Air temperature fields at the collector cross-section with air mass flow 2: 0.02 kg/s.
(a) Down–Down; (b) Down–Up; (c) Up–Up; (d) Up–Down.

When the air enters from above, a zone of hot air is generated in the region near the
entrance and another near the exit, while configurations with a bottom inlet have a heat
recovery since the air enters the cavity.
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For all configurations, the region with the highest temperature is located in the proxim-
ity of the receiver, and it is related to the heat generation on the receiver plate. Consequently,
in the final part of the duct, there is another region with high temperatures. High tempera-
tures are highly desirable since heat is extracted from the plate to the working fluid.

In Figure 7 (flow 2: 0.02 kg/s), the temperatures are lower than the ones observed in
flow 1 (0.01 kg/s). In the four configurations, the temperature fields are highly dependent
on the movement of the fluid in the cavity. The phenomena that drive the low temperatures
in the section near the cavity inlet are the presence of a cold air jet from the inlet air and the
consequent formation of eddies throughout the cavity. In the configurations with an inlet
from below (a and b), there is another circumstance that causes the low temperatures, and
it is due to the formation of the main eddy in the upper part of the cavity that promotes the
stagnation of cold air in this section. Similar to the behavior described for temperatures of
flow 1, for flow 2, the highest temperatures are always found in the regions neighboring
the receiving duct.

Figures 8 and 9 show the four configurations of the flat plate receiver temperature
contours at flow 1 (0.01 kg/s) and flow 2 (0.02 kg/s), respectively.

Figure 8. Temperature contours in the flat plate receiver, first pass (Flow 1: 0.01 kg/s).

Figure 9. Temperature contours in the flat plate receiver, first pass (Flow 2: 0.02 kg/s).
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Figure 8 (flow 1: 0.01 kg/s) shows that when the air enters from below (configurations a
and b), it removes heat from the first part of the receiver since it enters the cavity. In contrast,
when the air enters from above (configurations c and d), the zones with lower temperatures
are displaced from around positions z = 0.30 m to z = 0.65 m. The displacement of the
presence of the lower temperature zones is a direct consequence of the formation of the main
eddy, which helps to remove heat from the receiver. On the other hand, in configuration
(a) Down–Down, a higher temperature of around 370 K is observed, indicating that the
heat would not be uniformly removed in the first pass. This high-temperature zone is
explained by contrasting with the hydrodynamic behavior observed in Figure 4, since when
the air enters from the bottom, it heats up when it comes into contact with the receiver
and rises, then continues its movement mainly through the upper part and then descend
when looking for the exit that is in the lower part of the cavity. In contrast, configurations
(b), (c), and (d) have a medium–high temperature zone in the center of the receiver. When
the air leaves the collector cavity (z = 2.0 m), low-temperature zones are generated in the
configurations with an outlet from below (configurations (a) and (d)).

In contrast, in configurations (c) and (d), the existence of two zones of low and
medium–high temperature indicates that although heat removal is heterogeneous, energy
is recovered in the zone between z = 0.30 m and z = 0.8 m, which is related to the presence
of a large eddy in the inlet zone surroundings. In configuration (b), two low-temperature
zones are observed at the inlet and outlet of the collector and a medium–high temperature
zone in the center.

In Figure 9, similar temperatures but lesser magnitude can be observed, correspond-
ing to the prevalence of high velocities due to the application of a large mass flow rate
(0.02 kg/s). Low-temperature regions are observed near the inlets in the receiver plates
of configurations (a) and (b), where the inlet is from below. Configurations (a) and (d),
with outlets from below, have low-temperature regions near the outlets meaning that heat
removal mainly occurs in those sections. On the other hand, configurations (a) and (b) have
a sizeable high-temperature area in their central zone, noting that this area comprises most
of the receiver plate extension. For configuration (c), a zone from z = 0.2 m to z = 1.0 m
with lower temperatures is observed, and even though its outlet is from above; it also has a
small region with low temperatures near the exit. Contrastingly, configuration (d) has most
of its receiver flat-plate with high temperatures, except for its final part (around z = 1.7 m
to z = 2.0 m). Still, it is essential to note that the high temperatures observed for the receiver
plates of Figure 9 (around 345 K) are of lesser magnitude than those observed in Figure 8
(around 370 K), and thus higher heat removal was accomplished with the application of
flow 2 (0.02 kg/s).

Table 5 shows the average temperatures in the flat plate receiver (Tp,avg) for both
airflow rates. The highest temperature, as expected, is obtained with flow 1, 362.2 K with
configuration (a); the lowest is obtained with flow 2, with configuration (c), of 338.5 K. The
flat-plate temperature differences between flows 1 and 2 are greater than 19.7 K.

Table 5. Mean temperatures in the flat plate receiver of the U-shape double-pass CPC.

Mean Temperature, Tp,avg (K)

Configuration Flow 1: 0.01 kg/s Flow 2: 0.02 kg/s

(a) Down–Down 362.17 340.77

(b) Down–Up 360.83 341.08

(c) Up–Up 362.03 338.51

(d) Up–Down 359.92 340.00
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Figure 10 displays the first and second pass air temperature profiles for the four
analyzed configurations. The blue line represents the air temperature profile in the first
pass, and the red line is the profile of the second pass. In addition, the scale of the horizontal
axis of the graphs (z-position) is inverted to facilitate the interpretation of the results since
it allows visualizing the air outlet of the collector on the far right.

 
(a) (b) 

 
(c) (d) 

Figure 10. Air temperature profiles. (a) Down–Down; (b) Down–Up; (c) Up–Up; (d) Up–Down.

In the first pass for the configurations with the inlet from the bottom, (a) Down–Down
and (b) Down–Up, the temperature profile has a slight increase near the entrance (z = 0.1 m),
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then it continues to increase until near the end of the cavity (z = 1.9 m) where it has another
sharp increase. In the configurations that have an entrance to the cavity from the top,
(c) Up–Up and (d) Up–Down, it is observed that in the first pass, there is a sudden increase
in temperature in the section close to the entrance of the cavity (z = 0.1 m). In addition,
all the temperature profiles are smooth for both flow rates; nevertheless, the temperature
profiles have a less pronounced slope for configurations (a), (c), and (d).

Furthermore, in the second pass of all configurations, the temperature profile is smooth,
with a sustained increase in temperature, reaching similar outlet temperatures of 327 K for
flow 1 and 313 K for flow 2.

In the second pass for all the studied configurations, the temperature profile steadily
increases from z = 2.0 m to z = 0.0 m, where it is observed that the temperature profiles
are smooth for both flow rates. The differences in the behavior among the configurations
in the second pass are only slight differences in the temperatures at the inlet and outlet,
where the lowest inlet temperature is found in configuration (c) Up–Up, and the highest in
(a) Down–Down.

On the other hand, the configurations that have an outlet from above, (b) Down–Up
and (c) Up–Up, present a higher temperature at the outlet end of the cavity (end of the first
pass) than at the entrance to the duct (beginning of the second pass). The phenomenon is
caused by stratification in the cavity, so the air enters the connecting elbow at a temperature
lower than that shown in Figure 10 (See Table 6). This occurs with both flows but is more
significant with 0.01 kg/s due to the greater air stagnation in the cavity.

Table 6. Air temperatures in the elbow inlet and outlet of the U-shape double-pass CPC.

Flow 1: 0.01 kg/s Flow 2: 0.02 kg/s

Configuration Telb,in (K) Telb,out (K) Telb,in (K) Telb,out (K)

(a) Down–Down 308.7 311.0 303.2 304.9

(b) Down–UP 309.7 310.5 303.8 304.1

(c) Up–Up 308.2 308.5 303.5 304.0

(d) Up–Down 307.8 309.8 302.9 304.4

Table 6 shows the elbow inlet and outlet temperatures for both air flow rates. The
presented elbow inlet temperature refers to the average temperature at the outlet of the
cavity (z = 2.0 m) in positions y = 0.1255 m to y = 0.1645 m, where the height of the elbow is
0.036 m. As expected, the temperatures corresponding to flow 1 (0.01 kg/s) are higher than
flow 2 (0.02 kg/s). Therefore, all the air temperatures at the elbow inlet are lower than the
air temperatures at the outlet of the cavity z = 2.0 m. On the other hand, the elbow outlet
air temperatures and the duct inlet air temperatures are the same.

Figure 11 shows the heat transfer coefficients (HTCp-cav) in the cavity for both air flow
rates. As expected, the coefficients are lower when the airflow is lower and higher when
the air flow rate is higher. Configurations with an inlet from below ((a) and (b)) have a
high coefficient at the entry, which decreases to subsequently increase until it reaches a
maximum near the outlet for configuration (a) and at the outlet (z = 2.0 m) for configuration
(b). It is also noted that configuration (a) has a sharp increase and then a decrease from z
= 0.2 m to z = 0.8 m, which is caused by the rise of the jet until it reaches the cover (see
Figures 4a and 5a). In contrast, configurations with an inlet from the top (c and d) have
an increase in the HTCp-cav in the region near the entry; then, it sharply declines to later
gradually increase towards the region near the outlet where it reaches its maximum value.
For example, the maximum HTCp-cav values with flow 1 are 15.0 W/(m2 K), 15.8 W/(m2 K),
16.0 W/(m2 K), and 15.9 W/(m2 K), while for flow 2 of 24.4 W/(m2 K), 22.3 W/(m2 K),
21.9 W/(m2 K), and 25.0 W/(m2 K), for configurations (a), (b), (c) and (d).
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(a) (b) 

 
(c) (d) 

Figure 11. Flat-plate receiver heat transfer coefficients (HTCp-cav). (a) Down–Down; (b) Down–Up;
(c) Up–Up; (d) Up–Down.

In configurations where the air enters from the top ((c) and (d)), there is a high HTCp-cav
at z = 0.1 m; nevertheless, all configurations have the maximum HTCp-cav in the region
near the outlet. The above observations indicate that the HTC p-cav maximums correspond
to the presence of the eddies produced by the sudden expansion at the inlet. While in the
region near the outlet, there are also high HTCp-cav at z = 2.0 m in configuration (b), but in
configurations (a), (c), and (d), it occurs around z = 1.8 m to z = 1.9 m. For configurations
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(c) and (d), this occurs because the fluid becomes turbulent in the final region of the cavity
as air is forced out of the manifold elbow.

Table 7 shows the pressure drop in each configuration for the two mass flow rates. First,
the highest pressure drop is seen in the bottom outlet configurations (a and d). Moreover,
the pressure drop increases three to four times with the highest air flow rate.

Table 7. Pressure drop in the system.

Pressure Drop (Pa)

Configuration Flow 1: 0.01 kg/s Flow 2: 0.02 kg/s

(a) Down–Down 10.97 36.85

(b) Down–Up 9.01 31.31

(c) Up–Up 8.84 31.33

(d) Up–Down 10.70 37.58

3.3. Efficiency

Table 8 shows the temperature increments in the first and second passes and the
outlet temperature for each configuration. The temperature increase resulting from the first
pass (ΔTps1) and the second pass (ΔTps2) are more significant with flow 1. Moreover, for
each flow, the U-shape double-pass CPC collector outlet temperature (Tps2,out) of all the
configurations is very similar, with differences between 0.7 K and less.

Table 8. U-shape double-pass CPC temperature increments and outlet temperature (Tf1,in = 298.15 K).

Flow 1: 0.01 kg/s Flow 2: 0.02 kg/s

Configuration ΔTps1 (K) ΔTps2 (K) Tps2,out (K) ΔTps1 (K) ΔTps2 (K) Tps2,out (K)

(a) Down–Down 12.84 16.10 327.09 6.74 8.33 313.22

(b) Down–Up 12.31 15.90 326.36 5.98 8.99 313.12

(c) Up–Up 10.30 17.94 326.39 5.87 8.54 312.57

(d) Up–Down 11.62 16.60 326.37 6.29 8.66 313.10

Table 9 shows the contribution of the first pass (cavity) and second pass (receiver duct)
to the useful energy gain inside the U-shape double-pass CPC collector and the efficiency
for each configuration applying Equations (16) and (17). For instance, in configurations (a)
and (b), between 40% and 45% of the total heat is extracted in the first pass with both flows.
While in configurations (c) and (d), the heat recovery depends on the operating flow and is
between 36% and 42% in the first pass.

Moreover, the efficiencies are higher with flow 2 due to the better heat transfer and
lower heat losses to the ambient. In addition, it is observed that configuration (a) Down–
Down is the most efficient, while configuration (c) Up–Up provides the lower efficiency of
the cases analyzed at flow 2.

Configuration (a) has the highest efficiency because the air flows predominantly
through the bottom section of the cavity, which is closest to the receiver plate. This surface
has the highest temperature, thus is where heat recovery is desired. In addition, as the
air descends, the final part of the cavity recovers heat since the fluid is forced to exit from
the bottom.
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Table 9. U-shape double-pass CPC useful energy gain percentage and thermal efficiency
(Tf1,in = 298.15 K).

Flow 1: 0.01 kg/s Flow 2: 0.02 kg/s

Configuration Qu,ps1 (%) Qu,ps2 (%) η (%) Qu,ps1 (%) Qu,ps2 (%) η (%)

(a) Down–Down 44.37 55.63 77.31 44.75 55.25 80.52

(b) Down–Up 43.64 56.36 75.37 39.93 60.07 80.01

(c) Up–Up 36.47 63.53 75.44 40.75 59.25 77.02

(d) Up–Down 41.18 58.82 75.40 42.09 57.91 79.88

4. Conclusions

This work investigates a compound parabolic concentrator (CPC) design for air heating
with a double U-pass configuration. The double pass is incorporated to recover part of the
heat lost by the flat plate receiver inside the CPC cavity. Overall, four configurations have
been studied, and they are differentiated by the position of the air inlet into the cavity and
the position of the air outlet of the cavity towards the receiving duct that constitutes the
second pass of the collector.

In general, adding the first pass through the CPC cavity significantly increases the air
temperature. Hence, by making the air circulate first through the CPC cavity, instead of a
conventional manner where it only circulates through the duct, an increase in temperature
is accomplished before entering the receiving duct. As a result, an average increase in air
temperature of 11.8 K at a mass flow rate of 0.01 kg/s and 6.2 K at a mass flow rate of
0.02 kg/s was achieved. This represents a minimum temperature rise of 36% (0.01 kg/s)
and 40% (0.02 kg/s) when only the first pass is used.

In addition, the analysis showed that the positions of the air inlet and outlet in the
cavity do not influence the outlet temperature of the U-shape double pass CPC solar heater
due to an efficiency difference of up to 3.5% being achieved. The Down–Down configuration
is the one that provides slight outlet temperature and thermal efficiency increases. With this
configuration, an air temperature increase from the U-shape double-pass CPC inlet to the
outlet of 28.9 K and an efficiency of 77.3% are obtained when the airflow rate is 0.01 kg/s,
and 15.1 K and 80.5% when the flow rate is 0.02 kg/s. This is because the air heated in
the cavity is transported more effectively, as it is a more homogeneous flow and the heat
transfer coefficient in the flat-plate receiver is high.

The first pass allows an extraction between 36% and 45% of the total heat, justifying
its inclusion into the solar collector. Although configuration (a) Down–Down presents a
slightly higher efficiency with both studied flows, the difference between the values of
configurations (b), (c), and (d) seems irrelevant. Therefore, the decision of the configuration
should be based on other aspects such as the manufacture of the collector, air pumping
requirements, and the design of the collectors’ array, which are highly dependent on the
application conditions and needs.

In the case of the (a) Down–Down configuration, including elements that restrict air
circulation from the cavity to the area near the flat-plate receiver could be explored to
encourage contact with the hot surface. Strategies to accomplish this are to add a second
cover close to the receiver inside the cavity or to increase the truncation of the collector
reflectors. Finally, the structural design and financial analysis remain as future work to
determine the potential application of this technology.
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Nomenclature

<n> Average reflections number, dimensionless
A Area, m2

C Constant
Cp Specific heat, J/(kg K)
Dh Hydraulic diameter, m
E Relaminarization source
F Empirical correlation of length of the transition region, m
→
F Force vector, N
→
g Gravitational acceleration, m/s2

Gk Generation of turbulence kinetic energy due to mean velocity gradients, J/kg
Gw Generation of specific dissipation rate, 1/s
h Height, m
h′ Species enthalpy, J/kg
I Solar irradiance, W/m2

J Mass flux, kg/m2

k Turbulent kinetic energy, J
L Length, m
ṁ Mass flow rate, kg/s
Nu Nusselt number, dimensionless
P Pressure, Pa
Pg Gap loss factor, dimensionless
q Heat generation, W/m3

Qu Useful heat gain, W
Re Reynolds number, dimensionless
S Strain rate magnitude
t Time, s
T Temperature, K
u Velocity magnitude, m/s
U Local velocity, m/s
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uT Friction velocity, m/s
V Free-stream speed, m/s
v Wind velocity above cover, m/s
w Width, m
x Velocity field coordinate
y Wall-normal distance, m
Y Destruction term of SST turbulence model, m2/s3

y+ Dimensionless distance in wall coordinates
Greek letters
α Absorptance, dimensionless
γ Intermittency
Γ Effective diffusivity, dimensionless
ε Emittance, dimensionless
η Thermal efficiency, dimensionless
μ Molecular viscosity of air, kg/(m s)
ρ Air density, kg/m3

ρ Reflectance, dimensionless
τ Transmittance, dimensionless
=
τ Stress tensor, Pa
υ Eddy viscosity, m2/s
Ω Vorticity magnitude, 1/s
Subscripts
a Ambient
a1, a2 Turbulence damping constants
ap Aperture
avg Average
b Bottom duct
c Cover
cav Cavity
collector Collector
duct Duct
elb Elbow
e1, e2 Dissipation
h Hydrodynamic
i, j Orthogonal coordinate
in Inlet
k Turbulence kinetic energy
length Length
out Outlet
p Flat plate receiver
ps1 Pass 1 (Through the cavity)
ps2 Pass 2 (Through the duct)
r Reflectors
s Sky
turb Turbulent
γ1, γ2 Intermittence
Acronyms
CFD Computational fluid dynamics
CPC Compound parabolic concentrator
EPS Expanded polystyrene
ETFE Ethylene tetrafluoroethylene (fluorine-based plastic)
HTC Heat transfer coefficient, W/(m2 K)
PV/T Photovoltaic/Thermal
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Abstract: Replacing the traditional rotating generators with renewable energy will reduce the grid’s
inertia and with it the minimum frequency when N-1 contingency occurs triggering an Under-
Frequency Load Shedding (UFLS). This study proposes a method for the energy storage system
(ESS) to simultaneously provide energy arbitrage, reserve capacity, and assist N-1 contingency, by
modifying the restriction formula of economic dispatch (ED) and limiting the SOC range of the ESS.
Let the ESS join the Spinning Reserve. Through the PSS®E iterative ESS charging power required at
moments when the frequency of contingency is too low in the ED. Let the ESS act as a N-1 contingency
extra frequency reserve. This would prevent UFLS and still maintain the demand. The proposed
method is applicable to different types of ESS. The method allows energy storages, originally designed
for energy arbitrage, to participate in frequency support and spinning reserve.

Keywords: energy storage system; renewable energy; economic dispatch; security constraint; PSS®E

1. Introduction

When the power generation and the power consumption are not equal, the frequency
will deviate from the nominal value [1]. In the power system, if one of the generators fails,
it will cause an energy mismatch and the frequency will begin to drop. The system needs
to provide for the missing power generation immediately. There are frequency control
responses that can be applied during generator contingency. First is the inertia response
which comes from the rotating synchronous generator connected to the grid. When the
frequency drops, the rotational inertia will be converted from kinetic energy into electrical
energy and input into the grid instantly, reducing RoCoF (Rate of Change of Frequency).
The second response is the droop control of some generators wherein the governor is
controlled automatically to respond when the frequency starts to deviate [2]. This control
allows more steam to enter the turbine to generate electricity, matching the grid energy
for a few seconds, preventing frequency reduction, and using renewable energy instead of
traditional rotation.

In the case of system energy imbalance, the rotational kinetic energy stored in the
rotor of the traditional synchronous generator is used to provide inertial support for the
power grid, keeping the minimum frequency of accidents at a certain level. However, most
inverter-based sources (IBRs) such as wind or solar cannot provide inertia [3]. Replacing
traditional generators with IBRs will reduce the inertia of the system, causing a larger
RoCoF and a lower minimum frequency when the generator trips [4].

In the past, the power system usually used under-frequency load shedding (UFLS)
to balance the insufficient power generation when the generator contingency caused the
reduction of supply [4–7]. Some literatures [8–13] used RoCoF and the lowest frequency
point to estimate the energy storage system (ESS) capacity and location for the frequency
regulation required by the system.
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In [10,14], the virtual inertia and the primary frequency response (PFR) provided by
the ESS are taken into account to estimate the required ESS power and capacity. These two
studies consider ESSs that can quickly respond to frequencies, but according to [15] not all
ESSs have the ability to adjust the frequency.

In [16–18], ESS was added to the economic dispatch (ED) to deal with a high penetra-
tion of renewable energy. These two papers used ESS for peak shaving but did not consider
frequency stability.

In [19], an ED considering automatic generation control (AGC) is proposed when the
proportion of renewable energy is high, but peak shaving ESS is not considered. In [20],
it is proposed to consider both PFR and secondary frequency response (SFR) in the unit
commitment (UC) and consider the cost rate of ancillary services in different regions to
propose a new market settlement strategy to compensate for the regional marginal cost of
providing frequency reserves.

At present, most of the ED studies that consider security constraints do not include ESS.
Further, most of the EDs that include ESS do not consider frequency security constraints.
Therefore, this study proposes a method to incorporate both security constraints and ESS
into the ED to find a safe and economical schedule.

In this study, the ESS was first added to the spinning reserve in the ED, which could
reduce the generator’s online time and thus reduce the cost. The base models are described
in [21] with the addition of the ESS. With the inclusion of the ESS, the ESS will reduce the
cost in the ED through its charging and discharging, and will automatically perform energy
arbitrage, thereby providing two functions at the same time. However, due to the high
penetration of renewable energy, the occurrence of N-1 contingency during certain periods
will result in very low frequency. It is, therefore, important to calculate how much the ESS
needs to be charged during these periods.

When an N-1 contingency occurs, the charging of the ESS can be cut off immediately
to compensate for insufficient power generation and not trigger the UFLS during the low
frequency. The addition of security constraints in the ED would find a safe ED to schedule.

PSS®E is a software from Siemens widely used in the analysis of power systems [22–24].
The N-1 contingency minimum frequency was also calculated using PSS®E in papers [22,23]
and was used in this study. PSS®E mainly uses the dynamic reduction method to calculate
contingency minimum frequency [25,26].

The content of the paper is as follows: Section 2 describes the proposed strategy;
Section 3 describes the constraints of ED; Section 4 describes the simulation scenarios;
Section 5 shows the simulation results; Section 6 is the discussions; and Section 7 is the
conclusion.

2. Proposed Preventive Control Strategy

The flowchart shown in Figure 1, shows the flow of the simulations for the proposed
preventive control strategy. The hourly power generation and hourly forecasted data of
renewable energy will be first read to calculate the net load. Then, using the MILP, an ED
for the new generator and ESS will be determined for the next 24 h. The scheduled ED will
be used to determine the minimum frequency (Fnadir) that will be calculated at each hour
using the PSS®E software. If the minimum frequency is lower than the set value (Fmin),
then the charging power of the ESS will be calculated by adding 0.1 MW in that hour to
meet the Fmin requirement. This charge will be added to the ED constraint and rescheduled
until the minimum frequency per hour is higher than the set value. If the maximum charge
of the ESS is reached, one generator will be added to the schedule and the ED will again
be computed. An additional charge will again be included in the ESS schedule to make
sure that the new minimum frequency is greater than the set value. In other words, the
minimum frequency of N-1 contingency should always be higher than the set value every
hour to make sure that the charge from the ESS can support a sudden drop in frequency.

496



Appl. Sci. 2022, 12, 11953

 

Figure 1. Flow chart.

3. Constraints of Economic Dispatch

3.1. Objective Function

The objective function is to minimize the operating cost, as shown in Equation (1).
CL(t) represents the total fuel cost of all diesel generator sets at time t, Cst(t) is the total
startup cost of all diesel generator sets at time t, and Cbatt(t) represents the ESS cost. The
power generation cost of PV in this study is set to 0. F represents the total economic cost.

Min F =
24

∑
t=1

[CL(t) + Cst(t) + Cbatt(t)] (1)

3.2. Diesel Generator

Equation (2) indicates the total fuel cost of a diesel generator in quadratic form, where
FCn represents the fuel cost of the nth diesel generator. The an, bn and cn represents the
quadratic fuel cost constants of the nth diesel generator. Pn(t) is the power generated by
the nth diesel generator at time t. Figure 2 shows a typical fuel cost in quadratic form.
However, because MILP is used, the quadratic curve needs to be linearized. In order to
have a linear equation that is near the quadratic form, the curve is divided into segments
and a line is drawn in each segment as the linear representation of the fuel cost curve for
the ith segment.

FCn(Pn(t)) = an + bnPn(t) + cnPn(t)2 (2)
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Figure 2. Typical generator cost curve with piecewise linearization.

Equations (3)–(5) are limits on the amount of electricity generated by the generator,
where Pn_i_max and Pn_i_min are the maximum and minimum power generation in the ith
line segment of the n generator set, respectively. Bn_i(t) is a binary integer representing
whether diesel generator n is running in the ith linear interval at time t. Pn_i(t) is the
amount of electricity generated in line segment i. The i represents the number of the line
segment in the quadratic curve. Inequality (5) ensures that only one line segment is selected
for the nth generator at any given time t.

Bni (t)Pnim
≤ Pni (t) < Bn_i(t) Pn_i_max (3)

Pn(t) =
I

∑
i=1

Pn_i(t) (4)

I

∑
i=1

Bni (t) ≤ 1 (5)

The total fuel cost of all generators set at time t is expressed in Equation (6). Un(t)
represents a binary integer variable of whether the nth diesel generator is turned on at time
t. N represents the total number of diesel generators. αn_i and βn_i represent the slope and
intercept, respectively, of the linear fuel cost when the nth diesel generator operates on line
segment i at time t.

CL(t) =
N

∑
n=1

I

∑
i=1

Un(t)Bni (t) [αni Pni (t) + βn_i] (6)

Equation (7) represents the total startup cost of N diesel generators at time t. STprice
represents the startup cost of generators.

Cst(t) =
N

∑
n=1

STprice(Un(t)− Un(t − 1)) (7)

3.3. ESS

Inequalities (8) and (9) limit the charge and discharge power of the ESS so that it
does not exceed the limit of the maximum charge and discharge power. The Bbatt_dis(t)
and Bbatt_ch(t) are binary integers representing the discharge or charge states of the ESS at
time t while. The Pbatt_dis_max and Pbatt_ch_max on the other hand represent the maximum
discharge power and the maximum charging power of the battery ESS, respectively.

0 ≤ Pbattdis
(t) ≤ Pbatt_dis_maxBbatt_dis(t) (8)
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− Pbatt_ch_maxBbatt_ch(t) ≤ Pbattch
(t) ≤ 0 (9)

Inequality (10) is used to ensure that a single ESS cannot be charged and discharged at
the same time.

Bbatt_dis(t) + Bbatt_ch(t) ≤ 1 (10)

Equation (11) describes the charge and discharge cost of the ESS. The purpose is to
prevent the ESS from charging and discharging at an unnecessary time. Because if the
battery ESS does not add the cost of charging and discharging. It may be charged and
discharged in two time periods with the same electricity price. For example, if the average
power generation cost of the first hour and the fifth hour is both 4. The battery ESS may be
fully charged in the first hour and fully discharged in the fifth hour. This will not affect
the final cost. However, this phenomenon is unreasonable in scheduling. Therefore, it is
appropriate to add some small costs to the charging and discharging of the ESS to resolve
this. Where COSTbatt represents the cost of the battery ESS per unit of charge and discharge.
In this study, it is set to 0.1 NTD/kWh

Cbatt(t) =
(

Pbattdis
(t) + Pbattch

(t)
)× COSTbatt (11)

Equation (12) is mainly to calculate the power of the battery ESS at time t. SOC(t)
represents the state of charge(SOC) of ESS at time t, δt is the time interval, ηInd and
ηInc represent discharge and charge efficiency of the ESS, respectively, and Pbatt_capacity
represents the capacity of the ESS.

In inequality (13), SOCmin and SOCmax represent the minimum and maximum value
of SOC. Table 1 shows the specifications of the different ESSs used for this study. As seen in
the table, since different energy storages have different capacities and power characteristics,
the two energy storages will not be able to charge or discharge full power when they are
close to their full energy or almost no energy [27,28].

Table 1. ESS specification.

Type Specification Original Function SOCmin SOCmax

ESS1 lithium ion 2 MW/1 MWh frequency regulation x x
ESS2 sodium-sulfur 1.8 MW/10.8 MWh energy arbitrage 19% 81%
ESS3 not yet announced 4 MW/24 MWh energy arbitrage 19% 81%

Originally, the SOCmin and SOCmax for both ESS2 and ESS3 are 10 and 90%, respec-
tively. However, for this study, it would be set to 19 and 81%, respectively. These two
values were adjusted because when an N-1 contingency occurs, the energy storage takes
about half an hour (for the case of Kinmen Island) of continuous charging or discharging
before a new generator is turned on. This charge or discharge decreases the SOC by 8.33%.
Therefore, in order for the ESS2 and ESS3 to join the spinning reserve, their SOCmin should
be set to 19% and SOCmax is set to 81% to make sure that the 8.33% of SOC for the N-1
contingency is always on standby and available at any time period.

In Equation (14), the final SOC must return to its initial value. SOCini and SOCend
represent the initial and end SOC, respectively.

SOC(t) = SOC(t − 1)− δt

(
Pbattdis

(t)
ηInd × Pbattcapacity

+
ηInc × Pbatt_ch(t)

Pbatt_capacity

)
(12)

SOCmin ≤ SOC(t) ≤ SOCmax (13)

SOCini = SOCend (14)
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3.4. Power Balance Constraint

Shown in Equation (15) is the power balance constraint of the power system. Where
PPV(t) represents the total power generation of renewable energy at time t. Ptolerance(t)
represents the allowable error value for the solution. PL(t) is the total load at time t.

PPV(t) + PInv(t) +
N

∑
n=1

Pn(t) + Ptolerance(t) = PL(t) (15)

3.5. Spinning Reserve Constraint

In inequality (16), the ESS available power is added to the spinning reserve to improve
the reliability of the power grid. Pn_max(t) in (12) represents the maximum power generation
of the nth generator while Pspin_reserve is the required standby capacity of the overall system.
The current maximum generating capacity of the system at time t is used as the reserve
capacity limit, representing the left side of the Equation (16).

N

∑
n=1

Un(t)(Pn_max(t)− Pn(t)) + Pbatt_dis_max(t)− Pbattdis
(t) + Pbattch

(t) ≥ Pspin_reserve (16)

3.6. Ramp Rate Constraint

In inequality (17), Rrate_n(t) represents the ramp rate of the nth diesel generator per
second at the tth time. Rrate_min represents the minimum required ramp-up and ramp-down
per second of the grid.

N

∑
n=1

Un(t)Rrate_n(t) ≥ Rrate_min (17)

3.7. PV Curtailment Constraint

Curtailment of generated power is required when the penetration rate is too high. The
scheduled PV generation needs to be less than the predicted generation, as shown in (18).

0 ≤ PPV(t) ≤ PPV_predict(t) (18)

3.8. Security Constraints

ESS charging power is used to increase the minimum frequency when the grid is
vulnerable. The inequality is shown in Equation (19). Pbatt_ch_ESS2(t) and Pbatt_ch_ESS3(t)
represent the respective charge amounts of the two ESSs specifically used for energy
arbitrage. The Pconstraint_batt_ch(t) represents the minimum total charge required to support
the N-1 contingency for these two ESSs at time t.

|Pbatt_ch_ESS2(t)|+ |Pbatt_ch_ESS3(t)| ≥ |Pconstraint_batt_ch(t)| (19)

4. Description and Introduction of Simulation Environment

4.1. System Model and Settings

This study takes the Kinmen grid as the system under study. Kinmen Island is a small
island west of Taichung City (R.O.C.), Taiwan, very close to mainland China. The winter
load is about 21.9 to 42.95 MW while the summer load is about 43.26 to 73.81 MW.

Kinmen Island uses diesel to generate electricity making its cost usually higher because
of the cost of transporting fuel. On the other hand, solar energy is a cheaper replacement
for fossil fuel.

Currently Kinmen Island has two power plants and a 12.3 MW PV plant. Power plant
1 has 10 heavy oil diesel generators. Power plant 2 has 6 light oil generators and 2 ESSs.
ESS1 is 2 MW/1 MWh lithium-ion batteries used for frequency regulation, while ESS2 is
1.8 MW/10.8 MWh sodium-sulfur batteries used for energy arbitrage. It is expected that an
additional 4 MW/24 MWh ESS will be built in 2023 for energy arbitrage.
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This study considers the future winter conditions of Kinmen Island. Only heavy
oil diesel generators will be used because of the low operational cost of heavy oil diesel
generator. There is a 27 MW PV plant with the three ESSs mentioned in the previous
paragraph. The system has 4–22.8 kV busbars, 4–11.4 kV busbars, 4 main transformer loads,
and 2 substations. A simplified schematic diagram of connections between all facilities is
shown in Figure 3. The trip settings for the underfrequency relays has four levels, 57.3, 57.0,
56.5, and 56.0 Hz. After triggering the underfrequency relay, it takes about 5–6 cycles to
open the circuit breaker [5,29]. In this study, Fnadir is set to 57.3 Hz, in order not to trigger
UFLS.

Figure 3. System diagram.

The ED is solved using mixed integer linear programming (MILP) using the IBM
CPLEX 12.10.0 solver. The computer used is for these simulations is an Intel Core (TM)
i5-7500 CPU @ 3.4 GHz. 16G RAM. PSS®E version is 33.4.0. It is coded in a Python program
for automated simulation.

4.2. Generator ED Model

Various parameters of diesel generators and upper and lower limits of power genera-
tion in ED is shown in Table 2.

Table 2. Parameters of diesel generators.

Units
Capacity
(MVA)

Minimum Power
Generation (MW)

Maximum Power
Generation (MW)

Plant1 #1–4 10.2 4 7.7
Plant1 #5–8 9.7 4.1 7.8
Plant1 #9–10 13.8 5.5 10.5
Plant2 #1–6 4.36 1.5 3.488

The fuel cost coefficients an, bn, and cn of the hypothetical heavy oil diesel generator
are shown in Table 3. The generator fuel cost after piecewise linearity is shown in Table 4.

Table 3. Diesel generator cost factor and startup cost.

Units an bn cn Start-Up Cost

Plant1 #1–4 15 1.9161 0.0661 7
Plant1 #5–8 13 1.8518 0.0657 7
Plant1 #9–10 12 1.7966 0.0615 10
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Table 4. Diesel Generator Linear Fuel Cost.

Units Segment 1 Segment 2 Segment 3

Plant1 #1–4 2.526x + 13.617 2.690x + 12.763 2.853x + 11.709
Plant1 #5–8 2.471x + 11.564 2.634x + 10.699 2.796x + 9.635
Plant1 #9–10 2.576x + 9.576 2.781x + 8.107 2.986x + 6.296

According to the government website [30], it is assumed that the ramp-up and ramp-
down rate per sec of each generator set is shown in Table 5. In this study, this value was
set to 430 kW/s. Since the highest ramp-up and ramp-down value of a single generator to
420 kW/s, the value of 430 kW/sec is chosen here to ensure that at least two generator sets
will be running at any point in time. Two generators are needed because if the system trips
contingency, at least one generator can provide the reactive power required for the grid to
maintain voltage stability.

Table 5. The ramping rate of the generator set.

Units Ramping Rate (kW/s)

Plant 1 #1–4 15
Plant 1 #5–8 15
Plant 1 #9–10 420

4.3. Selection of Diesel Generator Model in PSS®E

The generator model selected in PSS®E is as shown in Table 6. All ESS models use
second generation ESS general model of Western Electricity Coordinating Council (WECC).
It consists of REPC_A, REEC_A and REGC_A.

Table 6. Diesel Generator model in PSS®E.

Units Dynamic Models Excitation System Model Governor Model

Plant1 #1–4 GENSAL ESAC8B DEGOV
Plant1 #5–8 GENSAL IEEEX1 DEGOV1
Plant1 #9–10 GNSAE AC7B DEGOV1

4.4. ESS’s Response in Trip Contingency

Different ESSs will respond differently when a N-1 contingency fault occurs. The
following will show the grid frequency and the actual power output of the two ESSs when
a N-1 contingency fault occurs.

4.4.1. ESS1(Frequency Regulation)

ESS1 is used for frequency regulation. When the frequency exceeds the deadband
(59.85–60.12 Hz), the ESS will start to discharge power. The rising time from 0 to full output
is 167 ms. The response is shown in Figure 4.

Using the calibrated generator parameters set in Section 4.3, as also use in the pa-
per [29], the ESS1 response can be replicated using the PSS®E, as shown in Figure 5. Figure 5
shows the data measured during an N-1 contingency when the load is 36.3 MW on 13
December 2019. At this time, the ESS1 and ESS2 has not been completed. Figure 6 shows
the frequency measurement and simulation results for this N-1 contingency. A good match
exists of Fnadir between calibrated simulation and measurement.
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Figure 4. ESS1 real power output and grid frequency when N-1 contingency occurs.

 

Figure 5. Output response of ESS1 to an N-1 contingency from PSSE and as measured from phasor
measurement Unit (PMU).

 

Figure 6. Frequency response simulation (PSSE) of ESS2 and ESS3 to a N-1 contingency and as
measured from PMU.

4.4.2. ESS 2 and ESS 3 (Energy Arbitrage)

The responses of ESS2 and ESS3 during charging and discharging are as follows:
When the ESS is charging and a fault occurs, the ESS will quickly stop charging using

low frequency relay tripping. As shown in Figure 7.
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Figure 7. ESS 2 and ESS 3 grid frequency and real power output when N-1 contingency occurs while
charging.

When the ESS is discharging and a fault occurs, the ESS will keep discharging. As
shown in Figure 8.There would be a time delay of 83.33 ms from exceeding the deadband
(59.85–60.12 Hz) to cutting off the ESS.

 

Figure 8. Grid frequency and real power output when contingency occurs during ESS2 and ESS3
discharge.

When ESS2 and ESS3 are discharging and the contingency occurs. As long as the
voltage does not exceed the allowable range of high voltage ride through (HVRT) and low
voltage ride through (LVRT), the ESS will continue to discharge and not cut off from the
grid.

The transient performance of ESS2 and ESS3 depends on the circuit breaker, it is
assumed that the local circuit breaker can cut off the electricity after about 5 cycles [27]. It
can be seen from the picture that the simulated energy storage transient output and the
lowest frequency of the contingency have a good match with the actual measurement.

5. Simulation Results

5.1. Case 1: Multi-Function ESS (Proposed Method)

Figure 9 show the results of the first ED or the initial ED. The N-1 contingency
minimum frequency per hour is shown in Figure 10 with a blue line. Two generators
are operating on at the 9th hour, with values of 6.4 and 7.1 MW. In the 15th hour, two
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generators are operating with output of 6.6 and 7.1 MW. The N-1 contingency minimum
frequency for the 9th and 15th hours are 56.079 and 56.074 Hz, respectively.

  
(a) (b) 

Figure 9. Case 1: result of first ED of (a) PV generation and the charge and discharge of ESS and (b)
the power output of the diesel generators.

 

Figure 10. Minimum frequency of N-1 contingency per hour for three schedules of case 1.

The 9th hour frequency simulation results with generator active power outputs are
shown in Appendix A. The ESS2 and ESS3 were not charged in both hours. The total
cost of this third ED is 2422 kNTD. Using the process flow as discussed in Figure 1, the
ESS requires 1.7 MW to charge at 9th hour and 1.7 MW to charge at 15th hour to get the
frequency above the set value, equivalent to the 8.33% of SOC. Adding these two limits for
the said hours, the second ED is rescheduled.

The results of the second ED are shown in the Figure 11. Case 1: result of second ED
of (a) PV generation and the charge and discharge of ESS and (b) the power output of the
diesel generators.
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(a) (b) 

Figure 11. Case 1: result of second ED of (a) PV generation and the charge and discharge of ESS and
(b) the power output of the diesel generators.

The minimum frequency of the N-1 contingency per hour is shown in Figure 10 in the
orange line. Notice that the minimum frequency touches the set value of the frequency.
The minimum frequency of N-1 contingency for the 9th hour and the 15th hour are 57.287
and 57.287 Hz, respectively. Using the proposed procedure to determine the required ESS
charging for the 9th and 15th hours, the charging power required are 1.8 MW for the 9th
hour and 1.8 MW for the 15th. Again, it is required to add this in the charging limits for the
next ED. The total cost of this third ED is 2422 kNTD.

The result of the third ED is shown in Figure 12. The minimum frequency of N-1
contingency per hour is shown in Figure 10 in the green line. The 9th hour frequency
simulation results with generator active power outputs are shown in the Appendix A. The
minimum frequency of each hour is higher than the set value. Therefore, this is the final
ED to support the N-1 contingency. The total cost of this third ED is 2422 kNTD.

  
(a) (b) 

Figure 12. Case 1: result of third ED of (a) PV generation and the charge and discharge of ESS and (b)
the power output of the diesel generators.
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The Figure 13 shows the changes in ED of the ESS2 and ESS3. In the second and third
results, the two energy storages are in the state of charge and discharge at the 9th and 15th
hours, so that Fnadir can be increased, and keep close to the original total output of that
hour.

 
Figure 13. ED results of the ESSs (a)Result of 1st ED (b) Result of 2nd ED (c) Result of 3rd ED.

5.2. Case 2: ESS Functioning as a Frequency Support

Removing the two ESS, that function as energy arbitrage, verifies energy arbitrage
function of our proposed method. The Figure 14 shows the ED result when the ESS2 and
ESS3 are removed. According to the system conditions, two generators must be turned on
to maintain the system stability.

  
(a) (b) 

Figure 14. Case 2: Result of the scenario without ESS for (a) the PV generation and (b) the power
output of the diesel generators.

Since there are no ESS performing energy arbitrage, low net load causes the PV power
generation to be curtailed, as shown in the Figure 14a, as the pink bar is lower than the red
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bar. Furthermore, without energy arbitrage, the total operating cost raises to 2555 kNTD
from 2422 kNTD.

6. Discussion

It can also be found from the simulation results that when N-1 contingency occurs, the
most dangerous instance is not necessarily when the penetration of renewable energy is
the highest, but tends to occur in the midway from zero penetration to highest penetration.

The reason may be that when the penetration of renewable energy at its peak, the ESS
will be charged more. If a contingency occurs, it can quickly trip and reduce a lot of energy
use. The lowest point of the frequency is related to the amount of power generation that is
tripped. When the penetration rate is the highest, the generators are almost always lightly
loaded, so the reduced power generation of the contingency is relatively small. Therefore,
even if the system inertia at that time is small, the lowest frequency may not be the lowest
during this period.

Furthermore, in theory the outcome of stopping the charging of EVs would be similar
to cutting off the ESS from charging in this study, probably also increasing the minimum
frequency of N-1 1 contingency. The results of this study can be used to set the time price of
electric vehicles to charge, so that more EVs can be charged when the power grid is weak.

In the picture., two ESSs are used to charge and discharge, respectively, to improve
the safety of the N-1 contingency. In the real world, energy loss will occur due to the
round-trip efficiency of the ESS. This situation can be understood as exchanging energy for
N-1 contingency resiliency. May be especially suitable for pumped-storage power plants
when rainwater is abundant.

7. Conclusions

This paper proposes a method by which energy arbitrage energy storage can help the
N-1 contingency. The frequency regulation ESS and the energy arbitrage ESS are considered
in the simulation. PSS®E is used to verify that the energy arbitrage ESS disconnected from
charging can increase the minimum frequency when contingency occurs. In this way, the
ESS can provide spinning reserve, energy arbitrage, and help N-1 contingency at the same
time. This method is also not only suitable for lithium-ion batteries, but for all battery
types. It can also be applied to various ESSs, such as flow batteries, pumped storage power,
etc. The simulation results show that the proposed method can effectively improve the
minimum contingency frequency higher than the set value.
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Appendix A

Figure A1. N-1 contingency frequency at 9th hour of first ED.

 

Figure A2. Generators active power at the 9th hour of the first ED.

Figure A3. N-1 contingency frequency at 9th hour of 3rd ED.

 
Figure A4. Generator power at the 9th hour of the 3rd ED.
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Abstract: This paper proposes a method of energy storage capacity planning for improving offshore
wind power consumption. Firstly, an optimization model of offshore wind power storage capacity
planning is established, which takes into account the annual load development demand, the uncer-
tainty of offshore wind power, various types of power sources and line structure. The model aims
at the lowest cost of investment, operation and maintenance of the system, and takes lower than a
certain abandoned wind level as the strict constraint to obtain two parameters of power capacity
and energy capacity of energy storage on the source side. Secondly, taking a coastal power grid as a
typical case, the energy storage capacity planning method is verified. Finally, the key factors affecting
offshore wind power consumption are summarized, and the sensitivity analysis is carried out from
the point of view of the transmission protocol of the transmission lines outside the province and the
capacity allocation of the tie lines in the province. This study will be helpful for the planning and
operation of the high-proportion of offshore wind energy power systems.

Keywords: offshore wind power; energy storage system; wind power consumption; planning
optimization model

1. Introduction

With the development of the economy, fossil energy is decreasing and environmental
pollution is increasing day by day. In order to alleviate the pressure of energy shortages
and environmental deterioration, various countries are committed to the development and
utilization of clean energy. The proposal of the carbon peaking and carbon neutrality goals
demonstrates China’s determination to actively respond to climate change and achieve
high-quality economic development. To further accelerate the development and utilization
of non-fossil energy, especially new energy represented by wind and solar energy, is
an important measure to achieve the arduous task of the carbon peaking and carbon
neutrality goals.

Compared with other clean energy sources, wind power has greater development
advantages and competitive potential. In the last 10 years, global onshore wind power has
achieved rapid development, and the development of onshore wind power in some coun-
tries has become saturated. At present, there is an urgent demand for offshore wind power
development and application all over the world [1]. China’s offshore wind power has
great development potential and good development prospects. To develop a high-quality
offshore wind power industry and accelerate the development of offshore wind power
from near-sea to deep-sea to far-sea, promoting the large-scale, intensive and sustainable
development of offshore wind power is an important support to promote the adjustment
of China’s energy structure and achieve the carbon peaking and carbon neutrality goals [2].
Compared with onshore wind power, offshore wind power has three outstanding charac-
teristics: (1) The offshore wind energy resources in the southeast coastal areas of China are

Sustainability 2022, 14, 14589. https://doi.org/10.3390/su142114589 https://www.mdpi.com/journal/sustainability
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abundant and close to the power load center, which is convenient for the consumption and
utilization of the power grid. However, transmission cables need to be configured; (2) The
overall output level of offshore wind farms is higher, with higher annual power generation
utilization hours; (3) The transmission mode of offshore wind power is more flexible and
does not need to occupy land resources.

The cost of transmission cable is high, and it is often difficult to send it complete.
On the one hand, offshore wind power connected to the grid for operation will cause
abandoned wind due to transmission congestion in part of the overall output. On the other
hand, it will bring severe challenges to the peak regulation of the power grid. The lack of
peak regulation capacity of the power grid leads to abandoned wind. The installation of an
energy storage system is flexible, and the configuration of energy storage for an offshore
wind power station can promote it to become a high-quality power supply. The source-side
energy storage mainly works out a charge and discharge scheme to stabilize the fluctuation
of its output power to achieve a higher proportion of offshore wind power consumption.
However, there are some problems, such as the high cost of the energy storage configuration,
the mismatch between energy storage technology and offshore applications, and so on.
The improper use of energy storage equipment limits the appropriate absorption of wind
power and increases the cost. The optimal allocation of energy storage capacity has always
attracted much attention, and domestic and foreign researchers have carried out a lot of
research on this issue.

The current research is mainly focused on energy storage capacity planning [3–6]
and wind–storage operation optimization [7–10], and there is little research in [11,12]
considering the interaction between the energy storage system planning and operation at
the same time; a two-layer collaborative optimization model for energy storage capacity
planning and operation is proposed. Starting from the wind power delivery channel, based
on multi-stage stochastic programming and sequential Monte Carlo simulation, an optimal
energy storage allocation method for wind farm stations considering energy storage life
loss and delivery channels is proposed in [13]. Based on the characteristics of the wind
farm, references [14–16] determined the energy storage allocation method based on a wind
power prediction error, wind farm generation curve deviation correction, and wind farm
output smoothing, respectively, but the work done in these references does not take into
account the influence of the power grid peak regulation capacity. References [17–19] put
forward the optimal allocation method of energy storage from the point of view of the
influence of insufficient peak regulation capacity of grid-connected wind power, so that
the power grid has a more downward regulation capacity to accept wind power, but only
the performance of thermal power peak regulation is considered. The work done in these
references does not consider the comprehensive effects of many types of power sources.

Reference [20] studies the feasibility and rationality of wind–storage combined power
generation under current market conditions from the point of view of a technical and
economic evaluation, which provides a reference for an optimal allocation in a wind–
storage combined power generation system. References [21,22] fully consider the operation
characteristics of the energy storage system and determine the energy storage allocation
method based on the dynamic adjustment of charge state and a variable life model. The
joint planning model of energy storage and the transmission network for improving the
receptive capacity of wind power is established in [23], but the focus is on the power
capacity of the energy storage, and the energy capacity is not mentioned. Based on the
characteristics of offshore wind power, an optimal scheduling method for the joint operation
of offshore wind power and seawater-pumped storage power stations is proposed in [24],
but the work done in the reference only mentions optimization and does not involve the
optimal allocation of offshore energy storage units. There is little research on offshore wind
power and energy storage. A physical model combining offshore wind power generation
with an underwater compressed air energy storage system was established in [25]. In [26],
an optimal energy storage allocation model was constructed based on the improved scene
clustering algorithm under the application scenario of smoothing the offshore wind power
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output fluctuation. A new multi-objective programming framework is proposed in [27]
to determine the optimal capacity of battery energy storage systems in the cooperative
operation of large offshore wind farms and battery energy storage systems. The cited
references present the different technologies of energy storage. Their characteristics are
shown in Table 1.

Table 1. The characteristics of common energy storage types.

Types Advantages Drawbacks Efficiency Application

pumped hydro
storage

Mature
technology, large

capacity, low
cost and long

life.

The installation position
has special

requirements, and the
conveying loss is large.

65−75%

improve the
capacity of new

energy
consumption;

smooth the
short-term

fluctuations of
new energy

output;
provide capacity

reserve and
power grid peak

and frequency
modulation

services.

lithium battery

High energy
density and fast

charge and
discharge.

High production cost
and a special charging
circuit is required to
avoid overheating.

85−98%

lead–acid
battery

Mature
technology, easy

availability of
raw materials
and low cost.

Low energy density and
short life during deep
charge and discharge.

80−90%

sodium-sulfur
battery

High energy
density and fast
response time.

Electrode materials are
flammable and there are

risks in
high-temperature

operation.

75−90%

liquid flow
battery

Large capacity,
good safety and
long cycle life.

High maintenance cost
and low energy density. 75−85%

Pumped hydro storage is the most reliable, economical, large capacity and most
mature energy storage device in the power system. It has the advantages of flexible start-
up, fast climbing speed, peak cutting and valley filling, and it is an important part of
the development of new energy. However, it depends on geographical conditions and
needs high hydropower stations. It has a great impact on geography and terrain, and
the construction cost is high. Large-scale battery energy storage systems can be used
for power grid energy management and peak regulation, and the technology is quite
mature. Moreover, it has a fast load response and daily regulation ability, so it is suitable
for large-scale wind power generation.

This paper presents two innovative points: based on the idea of combining planning
and operation through operation simulation, an optimization model of offshore wind
energy storage capacity planning is established, which aims to minimize the total national
economic expenditure of the system. It considers the offshore wind power transmission
channel constraint and uses the abandoned wind rate below a certain level as a strict
constraint. Further, based on 24 scenarios for the optimization model and the contour line
of annual cost and the contour line of abandoned wind rate, an energy storage capacity
planning method for improving offshore wind power consumption is proposed, which can
obtain a reasonable economic and optimal energy storage configuration scheme quickly.

The rest of the paper is organized as follows. The optimization model of offshore wind
energy storage capacity planning is established and the principal block diagram of the
planning and optimization process is shown in Section 2. The case study and data analysis
for the optimization model for offshore wind energy storage capacity planning are carried
out and an energy storage capacity planning method for improving offshore wind power
consumption is proposed in Section 3. Finally, Section 4 concludes the paper.
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2. Model and Methods

At present, electrochemical energy storage systems are the most widely used tech-
nology on the source side of offshore wind farms. Small-scale battery storage systems are
generally used in ships and offshore platforms, while large-scale battery storage systems are
mainly used in islands and coastal areas. This paper takes electrochemical energy storage
systems as an example to conduct relevant research on the energy storage technology of
offshore wind farms [28–33].

The electrochemical energy storage for offshore wind farms is required to meet the
applicable conditions of environmental temperature; it is not easy to maintain the working
temperature of high-temperature sodium-sulfur batteries and liquid metal batteries in the
sea environment. It is required that the mechanical moving parts of the energy storage
device should be as few as possible, so as not to be damaged by corrosion or wave impact
in the marine environment. The liquid flow battery should not be adopted because of its
electrode characteristics with many such parts. It is required that the leakage of battery
materials has no obvious harm to prevent pollution of the marine environment, so lead–acid
batteries, lithium-ion batteries, seawater batteries and silver–zinc batteries can be used for
offshore wind farms [34]. Offshore energy storage needs to be resistant to wind and wave
impact, seawater immersion, seawater corrosion, and so on. Therefore, developing offshore
energy storage systems tends to be more costly than developing onshore energy storage
systems. It is necessary to configure suitable offshore energy storage capacities for offshore
wind power to avoid excessive costs.

2.1. Optimization Model of Offshore Wind Energy Storage Capacity Planning
2.1.1. Objective Function

On the premise of satisfying the system demand and all kinds of constraint conditions,
the system can minimize the total national economic expenditure in the whole planning
period. The objective function of the model can be expressed as:

MinFΣ =
Nm

∑
t=1

Ct(1 + i)Nm−t +
NT

∑
t=1

(
Fgt + Fkt + Ot − Bt

) · (1 + i)−NT (1)

where Nm is the construction cycle of the newly invested energy storage power station, Ct
is the investment cost of the newly invested energy storage power station at the beginning
of the year t, and Fgt and Fkt are the fixed operation and maintenance costs and fuel costs of
the system in year t, respectively. Ot is the outage loss cost of the system in year t, and Bt is
the benefit obtained by the system in year t, except for power generation. NT is the number
of planning years and i is the discount rate.

Taking the first year as the base year, when the construction process of the newly
invested energy storage power station is simplified, it can be considered that the power
station generates investment costs at the beginning of the first year of the planning period,
and the loss of power outage and other benefits are ignored. The total calculated cost of the
planning period can be equivalent to the annual cost. It means that the investment cost of
the new power station at the beginning of the first year can be evenly allocated to each year
of the planning period, and then added to the annual operating cost. Then the objective
function can be expressed as:

MinF =
i(1 + i)NT

(1 + i)NT − 1
× Cess +

(
Fg + Fk

)
(2)

Cess, the investment cost of the energy storage power station, can be expressed as:

Cess = λpPess + λeEess (3)

Eess = PessTess (4)
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where Pess and Eess are the rated power capacity and energy capacity of the energy storage,
respectively, Tess is the charging and discharging time of energy storage, and λp and λe are
the cost per unit power capacity and the cost per unit energy capacity, respectively.

The annual fixed operation and maintenance cost Fg consists of a conventional thermal
power station Fg1 and an energy storage station Fg2, which can be expressed as:

Fg1 = αg1 · Cg1 (5)

Fg2 = αg2 · Pess (6)

Fg = Fg1 + Fg2 (7)

where Cg1 is the total investment cost of a conventional thermal power station, αg1 is the
annual fixed operation and maintenance cost rate of the power station, and αg2 is the fixed
operation and maintenance cost of energy storage per unit power.

The thermal power station’s annual operating fuel cost Fk can be expressed as:

Fk = βk · Ek (8)

where Ek is the annual energy yield of a conventional thermal power station, and βk is the
fuel cost of the unit energy yield of the power station.

2.1.2. Constraint

In comprehensively considering a variety of power supply types, including wind
power, photovoltaic, hydropower, thermal power, pumped storage and new energy storage
units, the electricity transmitted by the inter-provincial tie lines and the transmission lines
outside the province can be classified into the load demand, and the constraint conditions
to be met are shown in the following equations.
1© Constraints on system power balance:

Pesst + P0t = LDt(1 + ρ + σ) (9)

where Pesst represents the output of the newly invested energy storage system at time t, P0t
represents the output of the original power station of the system at time t, LDt is the load
value of the system at time t, and ρ and σ are the power consumption rate and system line
loss rate, respectively.
2© Maximum and minimum output constraints of power station:

Pkmin ≤ Pk ≤ Pkmax (10)

where Pkmin and Pkmax are the minimum and maximum technical outputs of unit k.
3© Thermal power fuel consumption constraints:

τ

∑
t=1

Eitβi ≤ Aiτ (11)

where Eit is the generating capacity of the thermal power plant i at time t, Aiτ is the fuel
consumption limit of power plant i in the period τ, and βi is the average fuel consumption
per unit of power plant i.

4© Climbing constraints of thermal power units:

Ui
tDRi ≤ Pi(t)− Pi(t − 1) ≤ Ui

tURi (12)

where URi and DRi are the loading and unloading rate of unit i, respectively, and Ui
t

represents the start-stop state of thermal power unit i at time t, which is 0–1. The start-up is
1, and others are 0.
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5© Constraints on the start and stop of thermal power units:

t+TS−1

∑
k=t

(1 − Ui
k) ≥ TS(Ui

t−1 − Ui
t) (13)

t+TO−1

∑
k=t

Ui
k ≥ TO(Ui

t − Ui
t−1) (14)

where TS and TO are the minimum shutdown and start-up time of the thermal power unit,
respectively.
6© Constraints on the generating capacity of hydropower units:

τ

∑
t=1

Ejtβ j ≤ Wjτ (15)

where Ejt is the generating capacity of the hydropower plant j at time t, Wjτ is the available
water limit of power plant j in the period τ, and βj is the average water consumption per
unit of power plant j.
7© Constraints on pumped storage units:

EjG = ηjEjP (16)

CP.t = mPPS.P.N (17)

where ηj is the pumping-power generation conversion efficiency of pumped storage power
station j, and EjG and EjP are the generating capacity and pumping load capacity of the
pumped storage power station j, respectively, within its dispatching period τ. The pumped
power of a pumped storage power station at a certain period of time must be an integer
multiple of its single capacity. CP.t is the pumping capacity of the pumped storage power
station at time t, and PPS.P.N is the rated pumping capacity of the pumped storage unit.
8© Energy storage operation constraints:

− Pcmax_ESS ≤ Pout_ESS ≤ Pdmax_ESS (18)

Emin ≤ Et ≤ Emax (19)

Eess(0) = Eess(T) (20)

where Pcmax_ESS and Pdmax_ESS are the maximum charge and discharge power, respectively.
Pout_ESS is the real-time output power, and Et is the real-time energy capacity.

9© Standby constraints:
N

∑
i=1

Ui
t(Pi,max − Pi(t)) ≥ urN(t) (21)

N

∑
i=1

Pi,max ≥ αLDmax (22)

where N units are providing a certain reserve capacity, urN(t) represents the spinning
reserve of N units at time t, α is the total reserve rate, and LDmax is the maximum load.

 Offshore wind power transmission channel constraints:

Ppass ≤ ηPWN (23)

where Ppass is the maximum transmission capacity of the offshore wind power transmission
channel. PWN is the rated installed capacity of the offshore wind farm, and η is the
transmission channel ratio.
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2.2. Principal Block Diagram of Planning and Optimization Process

A typical case of a coastal power grid is taken to verify the effectiveness of the energy
storage capacity planning method. First, the methods of cluster analysis and probabilistic
modeling are adopted to consider the uncertainty of offshore wind power, and the annual
output characteristic curves are shown in Figure 1.
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Figure 1. Offshore wind power output curve clustering scenario set.

The principal block diagram of offshore wind power storage capacity planning and
optimization is shown in Figure 2. The long-term operation data of the combined wind–
storage system can be obtained through operation simulation, and the consumption index
of offshore wind power can be calculated. After a comprehensive optimization comparison
and sensitivity analysis, the optimal planning results can be outputted.
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Figure 2. Principal block diagram of offshore wind energy storage capacity planning and optimization.
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3. Results and Discussion

3.1. Description of the Basic Conditions of the Example

It is expected that by 2025, the annual maximum load of the power grid in this coastal
area will be 0.0111 billion kW, with a total power consumption of 59.2 billion kWh, and
the total installed offshore wind power will reach 9176.5 MW. The transmission channel
ratio η = 0.8, and this means that the maximum capacity of the transmission channel will
be 7341.2 MW.

The multi-type power supply and line structure in this coastal area are shown in
Figure 3. The installed capacity of the multi-type power supply corresponding to Figure 3
is shown in Table 2. The installed capacity of offshore energy storage needs to be planned
and then configured. Load characteristics are described by an annual maximum load curve,
typical weekly maximum load curve and typical daily load curve. Load data are shown in
Figure 4.

 

Figure 3. Power supply and line structure in this coastal area.

Table 2. The installed capacity of various power sources of the coastal power grid.

Power
Sources

Offshore
Wind Power

Photovoltaic
Thermal

Power
Hydropower

Pumped
Storage

Capacity/MW 9176.5 8220.7 9490 772.5 2400
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Figure 4. Annual load characteristic curves.
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We used the Gurobi solver to solve the model in the MATLAB programming envi-
ronment. The simulation was carried out with the year as the cycle and the day as the
unit. Inputs should be the load curves and offshore wind power output curves of the
coastal area based on historical data, combined with the power installation structure and
the grid structure inside and outside of the province. The monthly statistics of offshore
wind power and abandoned wind power in this coastal area can be obtained without new
energy storage, as shown in Figure 5.
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Figure 5. Annual utilization of offshore wind power in this coastal area.

All of the offshore wind farms in this coastal area can generate 25,441.25 GWh of
electricity in a year. The practical electricity is 24,085.76 GWh, and the abandoned wind
power is 1355.49 GWh. The abandoned wind rate is 5.33%, and the utilization hours of
offshore wind power are 2625 h. Further, the utilization hours of the transmission channels
are 3281 h. It can be seen from Figure 5 that the abandoned wind power of offshore wind
power is mainly concentrated from January to April, with the most serious abandoned
wind in February and a little abandoned wind in November and December.

For lead–acid battery and lithium-ion battery energy storage systems, the cost coeffi-
cients per unit of energy capacity, per unit power capacity, the operation and maintenance
costs and engineering life obtained, are shown in Table 3.

Table 3. Related parameters of energy storage.

Type λp (104 Yuan/MWh) λe (104 Yuan/MW)
αg2

104 Yuan/(MW×Year)
Engineering Life

(Years)

rich liquid lead–acid 150 125 15 20
lithium-ion battery 500 175 20 20

According to relevant parameters, the planning period is selected as 20 years, and the
comprehensive discount rate for the whole society is 10%. According to the offshore wind
energy storage capacity planning optimization model, the next step is to set up the energy
storage configuration. The offshore wind farms are configured with an energy storage
capacity of 10% to 40% of their rated installed capacity. Therefore, the rated power capacity
of the energy storage system is described as 0.1~0.4 in the following. The installed capacity
of energy storage under different configuration schemes is shown in Table 4. With daily
cycle adjustments of energy storage devices, the charging and discharging time is set from
1 to 6 h, respectively, and the 24 energy storage configuration schemes are combined with
different power P and charging and discharging time T.
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Table 4. Storage capacity configuration of offshore wind farms.

Configuration Ratio 10% 20% 30% 40%

Capacity (MW) 917.65 1835.3 2752.95 3670.6

3.2. Example Analysis of Simulation Results

Based on the energy storage configuration scheme, the annual electricity balance
of operation simulation from the planning level is conducted to obtain the operation
simulation results of the coastal area. The relationship between the abandoned wind rate of
the offshore wind power and the energy storage configuration scheme is shown in Table 5.
Thus, with the further increase in new energy storage power capacity and energy capacity,
the abandoned wind rate of offshore wind power gradually decreases.

Table 5. Relationship between the abandoned wind rate of offshore wind power and the energy
storage configuration scheme in this region.

(P/T) Without Storage 0.1 0.2 0.3 0.4

1

5.33%

5.31% 5.08% 4.78% 4.67%
2 5.18% 4.88% 4.67% 4.41%
3 5.10% 4.82% 4.44% 4.04%
4 5.04% 4.62% 4.21% 3.97%
5 5.02% 4.51% 4.15% 4.10%
6 4.90% 4.43% 4.07% 4.11%

Here, when the lithium-ion battery energy storage system with a scale of 917.65 MW/
917.65 MWh is configured in the offshore wind farm of this coastal area, the annual cost is
analyzed, as shown in Table 6.

Table 6. Composition of annual expenses (104 Yuan).

Annual Value
of Energy
Storage

Investment
Costs

Annual
Operation and
Maintenance

Cost of Energy
Storage

Annual
Operating and
Maintenance

Cost of Thermal
Power

Annual Fuel
Cost for

Thermal Power
Operation

Annual Total
Cost

72,756.1 13,764.8 1,933,090 5,431,380 7,450,990.9

Based on this, the relationship between different energy storage configuration schemes
and the annual costs can be obtained, as shown in Table 7. It can be seen that with the
further increase in new energy storage power capacity and energy capacity, the annual
system costs gradually increase. Therefore, the decrease in the abandoned wind rate of
offshore wind power is accompanied by an increase in the annual system cost. This paper
studies the method to achieve the lowest annual cost while meeting the strict constraints
below a certain curtailment level.

Table 7. Annual total cost under different schemes.

107 Yuan Without Storage 0.1 0.2 0.3 0.4

1

7343.4

7451 7516.9 7597.8 7684.2
2 7496 7634.6 7778.3 7905.5
3 7550.2 7741.5 7924.8 8118.2
4 7602.2 7847.3 8096.9 8330.4
5 7655.8 7953.1 8255.7 8545.5
6 7708.6 8058.5 8416.0 8761.9
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Based on Tables 5 and 7, contour lines of wind curtailment rate and annual cost can be
drawn on a two-dimensional plane, as shown in Figures 6 and 7, respectively. The curve of
wind curtailment rate indicates that different energy storage configurations can bring the
same consumption effect of offshore wind power.

Figure 6. Contour lines of abandoned wind rates of offshore wind power.

 
Figure 7. Contour lines of the annual cost of the planning scheme.

In order to find the optimal economic scheme combined with the annual cost contour
line, it can be known that when the abandoned wind rate is at a certain standard level,
different annual cost contour lines are used to be tangent to the determined abandoned
wind rate contour line, and the tangent point (power P, charge and discharge time T) is the
best scheme.

In practical application, 5% of new energy is allowed to abandon power, which is sci-
entifically reasonable. Therefore, the alternative energy storage configuration schemes are
(0.3, 1), (0.2, 2), (0.1, 6), etc. According to this method, the best energy storage configuration
scheme is (0.3, 1). It means that the scale of the lithium-ion battery energy storage system
configured for the offshore wind farm with a total installed capacity of 9176.5 MW in the
coastal area is 2752.95 MW/2752.95 MWh.

At this time, the practical electrical output of the offshore wind farm is 24,225.85 GWh.
The abandoned wind power quantity is 1215.4 GWh, and the abandoned wind rate is 4.78%.
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The utilization hours of offshore wind power are 2640 h, and the utilization hours of the
transmission channel are 3300 h. Further, the annual cost is 75.978 billion yuan.

For this study, only 24 scenarios, based on the optimization model to present the
energy storage capacity allocation method, were used. By using fast computer calculation,
the step size of the configuration scheme is further reduced. Based on the energy storage
capacity planning method proposed in this paper, the configuration scheme with the best
economy and applicability can be obtained more quickly and accurately.

3.3. Sensitivity Analysis

According to the above scheme, the configuration of a 2752.95 MW/2752.95 MWh
lithium-ion battery energy storage system is relatively large in terms of the annual cost
from 73.434 billion yuan to 75.978 billion yuan. This section studies the factors influencing
the abandoned wind rate of offshore wind power from other perspectives, exploring
feasible schemes to reduce the abandoned wind rate, and further allocating the source-side
energy storage, paving the way to reduce the power capacity and energy capacity of the
energy storage system configuration, thus reducing the investment costs and operation and
maintenance costs, and improving the economic performance.

As shown in Figure 3, the consumption and utilization of offshore wind power in this
coastal area are not only related to the installed scale of the power structure, including
offshore wind power and energy storage but it is also affected by the transmission agree-
ment signed with other provinces and the exchange of electricity in contact lines with other
regions in the province. Therefore, a sensitivity analysis is carried out from the transmission
agreement of the transmission lines outside of the province and the capacity allocation of
the link line within the province.

3.3.1. Influence of Transmission Line Agreement

Out-of-province transmission line refers to a power transmission line from another
province to the coastal area, with a maximum transmission capacity of 760 MW, which is
sent to the coastal area in accordance with the transmission agreement signed with another
province and given priority to use. Taking the daily transmission curve as an example, the
transmission agreement can be adjusted to 1.1 times the original transmission agreement,
the original transmission agreement, 0.9 times the original transmission agreement, and
0.8 times the original transmission agreement, as shown in Figure 8.
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Figure 8. Schematic diagram of different transmission protocols.

The original transmission agreement refers to the existing transmission agreement
between the grid in the coastal area and another province. Under the existing transmission
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agreement, this paper adjusts it to 1.1 times, 0.9 times and 0.8 times, and then obtains
the utilization of offshore wind power according to the optimization model, and analyzes
the reasons for this situation. After the operation simulation, the changes in the offshore
abandoned wind power rate under different transmission agreements can be compared
and analyzed, and the results are shown in Table 8.

Table 8. Utilization of offshore wind power under different transmission agreements.

Transmission
Scenario

Consumption Power
(GWh)

Abandoned Power
(GWh)

The Abandoned
Wind Rate

1.1 times 24,053.65 1387.61 5.45%
the original
agreement 24,085.76 1355.49 5.33%

0.9 times 24,119.29 1321.96 5.20%
0.8 times 24,362.69 1078.56 4.24%

Therefore, it can be seen that the electricity sent by the out-of-province transmission
lines in this coastal area is too much, which affects the consumption and utilization of
internal offshore wind power. Therefore, the transmission agreement can be optimized in
the direction of reduction without additional cost.

3.3.2. Capacity Allocation of Tie Lines

There is a contact exchange between this coastal area and other areas A and B in the
province. The maximum exchange capacity of the contact line between this coastal area and
area A or area B is 3000 MW. This means that the total capacity of the external contact line
in this coastal area is 6000 MW. This is because the total annual load demand power ratio
of region A and region B is 1:1.2. Without changing the coastal area foreign link under the
premise of a total exchange capacity of 6000 MW, the capacity ratio of the two contact lines
is adjusted, and the changes in the abandoned wind rate of the offshore wind power under
different capacity ratios of the contact line are compared and analyzed after the operation
simulation. The results are shown in Table 9.

Table 9. Utilization of offshore wind power under different capacity ratios of tie lines.

The Total Capacity (MW)
Transmission Ratio The Total

The Coastal Area-Area A The Coastal Area-Area B Abandoned Wind Rate

6000

1 1 5.33%
1 1.2 5.27%
1 1.4 5.23%
1 1.6 5.20%
1 2 5.13%
1 3 5.09%

Therefore, the capacity ratio of the contact line can be optimized according to the load
demand of the contact area. This is to reduce the maximum exchange capacity of the contact
line between the coastal area and area A with low electrical demand, to limit and reduce
the amount of electricity fed back to the coastal area, and promote the absorption and
utilization of internal offshore wind power. Increasing the maximum exchange capacity
of the link line between the coastal area and region B with a high electricity demand can
effectively export the electrical power of the coastal area, and further export and utilize the
offshore wind power that is difficult to be absorbed internally when needed.

On one hand, the abandonment of offshore wind power comes from transmission
congestion in the transmission channel, and on the other hand, it comes from the lack of
peak regulation capacity of the system. When the transmission protocol or tie line capacity
ratio is optimized, the source-side energy storage can be further configured according to
the method described in this paper, which can reduce the energy storage investment costs
and operation and maintenance costs, and improve the economic performance.
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4. Conclusions

This paper studies an energy storage capacity planning method for improving offshore
wind energy consumption, and the conclusions are as follows:

(1) An optimization model for offshore wind power storage capacity planning is estab-
lished to seek an economic and reasonable energy storage power construction and
configuration scheme within the planning period, on the premise of meeting the
system’s annual load development needs and other various constraints;

(2) Based on the power supply and line structure of the power grid in a coastal area, an
example analysis of offshore wind power storage planning was conducted. According
to this method, the best energy storage configuration scheme was (0.3, 1), at an annual
cost of 75.978 billion yuan. In order to fully utilize offshore wind power and further
improve economic performance, the sensitivity analysis of the abandoned wind rate
of offshore wind power in this coastal area was carried out. The result proved that the
reasonable optimization of the transmission agreement and the capacity ratio of tie
lines can improve the acceptance capacity of the power grid to offshore wind power.

The results of this paper can provide some reference value for further research on
capacity planning and the optimal operation of offshore wind energy storage. However,
this paper sets a fixed value for the capacity of the offshore transmission channel, without
joint planning of the offshore energy storage and the offshore transmission channel.
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Abstract: The poor operational stability of electrolytes is a persistent impediment in building redox
flow battery technology; choosing suitable stability additives is usually the research direction to solve
this problem. The effects of five phosphate containing additives (including 1-hydroxyethylidene-1,1-
diphosphonic acid (HEDP), hexamethylene diamine tetramethylene phosphonic acid (HDTMPA),
amino trimethylene phosphonic acid (ATMPA), sodium ethylenediamine tetramethylene phospho-
nate (EDTMPS), and diethyl triamine pentamethylene phosphonic acid (DTPMP)) on the thermal
stability and electrochemical performance of the positive electrolyte of vanadium redox flow battery
were investigated. With 0.5 wt% addition, most of the selected additives were able to improve the
thermal stability of the electrolyte. HEDP and HDTMPA extended the stability time of the pentavalent
vanadium electrolyte at 50 ◦C from 5 days (blank sample) to 30 days and 15 days, respectively. The
electrochemical performance of the electrolyte was further investigated by cyclic voltammetry, steady
state polarization, and electrochemical impedance spectroscopy tests. It was found that most of
the additives enhanced the electrochemical activity of the positive electrolyte, and the diffusion
coefficients, exchange current densities, and reaction rate constants of V(IV) species became larger
with the addition of these additives. It is verified that the thermal stability and electrochemical
stability of the electrolyte are significantly improved by the combination of ATMPA + HEDP or
ATMPA + HDTMPA. This study provides a new approach to improve the stability of the positive
electrolyte for vanadium redox flow battery.

Keywords: vanadium redox flow battery; positive electrolyte; phosphate containing additives;
stability; electrochemical behavior

1. Introduction

The vanadium redox flow battery (VRFB), proposed by Maria Skyllas-Kazacos and
dating back to 1970, is considered the most promising renewable energy storage system,
with the advantages of high capacity, excellent stability, high operation security, and long
cycle, and it has attracted widespread attention and been investigated worldwide [1].
The positive and negative electrolytes of VRFB are stored in two separate tanks, and
they flow through a separate half-cell during operation and then return to the tank for
recirculation. Each half-cell of VRFB consists of an electrode and bipolar plate, and two
half-cells are separated by a membrane that allows selective ion exchange while preventing
cross-contamination of the electrolyte [2]. The chemical reactions occurring at the electrodes
of positive and negative half-cell, as well as the overall cell reaction, are as follows:
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Positive cell reaction:

VO+
2 + 2H+ + e− � VO2+ + H2O (1)

Negative cell reaction:
V2+ � V3+ + e− (2)

Overall cell reaction:

VO+
2 + V2+ + 2H+ � VO2+ + V3+ + H2O (3)

Under the fully discharged circumstance, the positive and negative electrolytes contain
only V(IV) (VO2+) and V(III), respectively. During charging, the V(III) ions in the negative
electrolyte are reduced to V(II), and the VO2+ ions in the positive electrolyte are oxidized to
V(V) (VO2

+). The electrons move through the bipolar plate from the positive electrode to
the negative electrode, causing hydrogen ions (H+) to diffuse across the membrane to the
negative electrode. The same reaction occurs in reverse when discharging [3].

Despite the rapid development of VRFB in recent years, some issues limiting its
commercialization need to be addressed, one of which is the fact that the vanadium
compound, as the active substance in the electrolyte, accounts for a substantial part of
the capital cost (40%) [4]. In addition, the battery capacity depends on the vanadium
concentration, and the pentavalent vanadium species have a low solubility in sulfuric acid
(<2 M) and a narrow operating temperature window (10–40 ◦C), thus limiting the energy
density of the battery (typically < 25 Wh L−1) [5]. At higher temperatures (>40 ◦C), the
precipitation of V5+ in the positive electrolyte is as follows [6]:

2[VO 2(H 2 O)3
]+ → 2VO(OH)3 + 2H2O + 2H+ (4)

2VO(OH)3 → V2O5 + 3H2O (5)

The precipitation process of V2O5 is irreversible, which is mainly responsible for the
loss of battery capacity. In order to improve the solubility of vanadium compounds in the
sulfuric acid electrolyte, the introduction of additives is commonly performed. Owing
to their being cost-effective and not interfering with electrolyte performance, they have
been investigated widely nowadays [7]. Skyllas-Kazacos et al. used phosphoric acid and
ammonium phosphate as additives. The results show that phosphate anions enhance
the stability of V(V) compounds at high temperatures, whereas for ammonium cations,
the opposite is true—ammonium cations stabilize the negative half-cell electrolyte at low
temperatures. The effects of sodium triphosphate and sodium hexametaphosphate as
additives were also studied; they both retarded the precipitation to a certain extent [8,9].
Roznyatovskaya et al. investigated the mechanism of precipitation retarding by phosphate
in the vanadium electrolyte using nuclear magnetic resonance (NMR) spectroscopy and dy-
namic light scattering (DLS). It was concluded that the electrolyte stabilization mechanism
by phosphoric acid at high temperatures could be attributed to the interaction between
them and V(V) monomers or dimers forming two phosphate-containing substances, thus
retarding the V2O5 precipitation [10]. Park et al. used 0.05 M sodium pyrophosphate as an
additive in the positive electrolyte with 2.0 M V(V) and 4.0 M H2SO4, and the long-term
stability of electrolyte was improved compared with the blank solution. In addition, none
of the new precipitation was proved to have been generated in the electrolyte. Nonetheless,
its electrochemical cycling performance was optimized [11]. Zhang et al. investigated
the effect of Na3PO4 as an electrolyte additive and found that it indeed delayed the V2O5
precipitation, but the VOPO4·2H2O precipitation was detected on the positive graphite mat
after several cycle tests [12]. Li et al. reported some organic additives containing hydroxyl
(–OH), such as sorbitol, mannitol, glucose, and fructose, and elaborated their stabilizing
mechanism, indicating that these organic additives can clad the hydrated V(V) species and
thus inhibit the formation of precipitation [13]. Zhang et al. selected 1 wt% HEDP as an
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electrolyte additive and confirmed that it can improve the electrolyte thermal stability and
battery cycle efficiency of VRFB. Besides, the research confirmed in two ways (the Job plot
and the Benesi–Hildebrand plot methods) that HEDP interacts with VO2

+ in a 1:1 binding
stoichiometry, which is the reason for the enhancement in the stability of the electrolyte [14].
Through the above studies, it is found that both phosphate and –OH have a good effect on
stabilizing pentavalent vanadium. In summary, some research results on additives of the
positive electrolyte are summarized in Table 1.

Table 1. Some research results on additives of the VRFB positive electrolyte.

Additive Amount V(V)/M H2SO4/M Temperature/◦C
Effect of
Thermal
Stability

References

Sodium tripolyphosphate 1 wt% 2 - 44 Improved [8]
Sodium hexametaphosphate 1 wt% 2 - 44 Improved [9]

Sodium pyrophosphate 0.05 M 2 4 25 Improved [11]
glucose 1 wt% 1.8 4.8 20–60 Improved [13]
K3PO4 1 wt% 3 5 30/50 Improved [15]

Polyacrylic acid 0.5 wt/vol% 4.7 6 50 Slightly
improved [16]

(NH4)2SO4 2 wt% 1.8 5 50 Improved [17]

H3PO4 1 wt% 2 5 50 Significantly
improved [17]

CH3SO3H 2.1–3 wt% 2 5 40 Improved [12]
Hexadecyl trimethyl ammonium

bromide (CTAB)
0.00106–0.0053

M 1.5 4.5 45 Improved [18]

Phytic acid N/A 1.8 3 25–60 Improved [19]

In the present work, five additives containing both phosphate and more –OH, includ-
ing 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), hexamethylene diamine tetra-
methylene phosphonic acid (HDTMPA), amino trimethylene phosphonic acid (ATMPA),
sodium ethylenediamine tetramethylene phosphonate (EDTMPS), and diethyl triamine
pentamethylene phosphonic acid (DTPMP), were selected and added into the V(V) elec-
trolyte to investigate their effects on precipitation inhibition and electrochemical behavior,
and the obtained results were compared with those of the original blank electrolyte. Among
the five selected additives, except HEDP, other additives have not been used and discussed
in such studies. The novelty of this paper is that this research has explored five kinds
of phosphate containing positive electrolyte additives and their effects on stability and
electrochemical performance and found two combinations that can improve the thermal
stability and electrochemical performance of the electrolyte at the same time.

2. Materials and Methods

2.1. Materials

VOSO4·3.5H2O (99%) was provided by Shenyang Haizhongtian Fine Chemical
Co., Ltd.(Shenyang, China). The additives are listed in Table 2. HEDP (60% in water),
ATMPA (50% in water), EDTMPS (98%), and DTPMP (50% in water) were purchased from
Shanghai Aladdin Bio-Chem Technology Co., Ltd., Shanghai, China. HDTPMA (>98%)
was obtained from Adamas-beta Co., Ltd.(Shanghai, China). Other chemicals used in
the experiment are of analytical grade. The previous experiment shows that, under the
experimental conditions selected in this study, the five additives are stable.

2.2. Preparation of the V(V) Electrolyte Solution

VOSO4·3.5H2O (99%) was dissolved in a 3 M H2SO4 solution to prepare 2 M VOSO4
solution, and the prepared V(IV) electrolyte solution was placed in a double-chamber
electrolytic cell with 50 mL and 25 mL of positive and negative electrolyte tank capacity,
respectively. The electrolyte was then charged (cut-off potential: 1.55 V, stepwise current

529



Energies 2022, 15, 7829

density: 200−10 mA cm−2) until the V(IV) ions in the positive electrolyte were converted
to V(V) and the V(IV) ions in the negative electrolyte were converted to V(II). When the
electrolysis was done, the total vanadium concentration in the positive electrolyte was
determined by redox titration using a potentiometric titrator (PHS-3C, Shanghai Leici
Co., Ltd., Shanghai, China).

Table 2. Molecular structure of the studied organic additives.

Chemical Name (Short Form) Molecular Structure

Hexamethylenediamine tetramethylene phosphonic acid
(HDTMPA)

1-hydroxyethylidene-1,1-diphosphonic acid (HEDP)

Amino trimethylene phosphonic acid (ATMPA)

Sodium ethylenediamine tetramethylene phosphonate
(EDTMPS)

Diethyl triamine pentamethylene phosphonic acid (DTPMP)

2.3. Thermal Stability Test of V(V)

To investigate the effect of various phosphonates additives on the long-term stability
of the V(V) electrolyte, electrolyte samples containing 0.05 wt% additives and blank sample
were stored in a sealed oven at 50 ◦C until measurable orange precipitation was observed.
All thermal stability tests were performed without any agitation. Each sample was visually
monitored more than twice a day during the test to record the V2O5 precipitation and the
change in solution color. The samples were filtered and their equilibrium concentrations of
vanadium were determined by redox titration again, at the end of the 30-day test.

2.4. Electrochemical Tests

The CV cycle test and steady-state polarization curve test of the electrolyte were
performed using a CHI 760B electrochemical workstation (Shanghai Chenhua Instrument,
Shanghai, China). We recorded the current versus potential curves using a three-electrode
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electrochemical cell in the CV cycling test with a scan rate range of 10–200 mV s−1 in a
potential range of −0.6–1.8 V at 25 ◦C, in which the graphite electrode (surface area of
3.14 mm2), saturated calomel electrode, and platinum electrode (surface area of 1 cm2)
are the working electrode, reference electrode, and counter electrode, respectively. The
steady-state polarization curve was tested with a potential range of 0.49–0.56 V and a
scan rate of 1 mV s−1, because the current and voltage are closer to a straight line under
the condition of lower potential. Electrochemical impedance spectroscopy (EIS) was also
obtained at room temperature with the sinusoidal excitation voltage of the electrolyte of
5 mV and the frequency range between 0.01 Hz and 100 kHz. Prior to each electrochemical
measurement, the working electrode was polished with SiC paper and then washed with
distilled water. The reference electrode was washed with distilled water and the solution
in salt bridge was replaced before use. Platinum plate electrode is cleaned with distilled
water and ultrasonically treated.

3. Results and Discussion

3.1. Effect of Additives on the Stability of the V(V) Electrolyte

The effect of different additives (Table 1) on the thermal stability of the V(V) electrolyte
was investigated by adding 0.5 wt% of additives at 50 ◦C. Table 3 shows the very time
when V2O5 started to precipitate in the V(V) electrolyte samples with different additives
and the V(V) concentration in the positive electrolyte after 30 days.

Table 3. Effect of several additives (dosage 0.5 wt%, 50 ◦C) on the thermal stability of the
2 M V(V)/3 M H2SO4 electrolyte.

Blank HDTMPA HEDP ATMPA EDTMPS DTPMP

Time to precipitation 5 days 15 days 30 days 4 days 10 days 12 days
V(V) concentration after 30 days 1.27 M 1.46 M 1.86 M 1.20 M 1.40 M 1.44 M

It was observed that the selected additives, except for ATMPA, delayed the precipita-
tion of V(V) in the electrolyte under the same experimental conditions. The blank sample
started to precipitate after 5 days and the retarding effect for the additives follows the
order: HEDP (30d) > HDTMPA (15d) > DTPMP (12d) > EDTMPS (10d) > ATMPA (4d). The
remaining V(V) concentration in the electrolyte after 30 days showed the same variation pat-
tern as the initial time of precipitation. The remaining V(V) concentration in the electrolyte
with HEDP was 1.86 M, followed by 1.46 M for HDTMPA, and that of the blank electrolyte
sample was 1.27 M after 30 days. As for ATMPA, it was 1.20 M, which had a negative effect
in this test. The vanadium concentration in the electrolyte directly determines the energy
density and capacity of the battery [20], and the experimental results show that the thermal
stability of the V(V) electrolyte is improved by the additives (except ATMPA). This means
that these additives facilitate the VRFB to improve its energy density and capacity.

The stabilizing mechanism of HEDP for the electrolyte might be attributed to the
synergism of –OH and phosphate. –OH could clad the hydrated penta-coordinate V(IV)
vanadate, which prevents it from being oxidized at a low concentration and inhibits its
precipitation [9,21]. Phosphate could interact with V(V) monomers or dimers, forming a
stable phosphate-containing substance, and thus retarding the precipitation [10]. Similarly,
the stabilizing capability of HDTMPA and DTPMP is probably due to the presence of
more phosphate. The EDTMPS, with good chemical stability and temperature resistance,
is soluble in water, non-toxic, and environmentally friendly. It can dissociate into eight
anions/cations in aqueous solution, and thus chelate with multiple V(V) ions, forming mul-
tiple monomeric structured reticular macromolecular complexes that are loosely dispersed
in water, so the normal precipitation process of V(V) was disrupted [22]. Although ATMPA
was reported to have low limit inhibition, good chelation, and lattice distortion effects [23],
it exhibited the worst effect on the thermal stability, which was likely due to the formation
of chelate, which is not conductive to solution stability.
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3.2. CV Test

Figure 1 shows the CV curves of V(IV) electrolyte samples with additives and blank
one, and it can be observed that all CV curves show the similar peak position and one pair
of redox peaks with a similar shape. The additives slightly changed the shape and position
of the peak, which means that these additives will affect the reversibility of V(IV)/V(V)
redox pairs to some extent [19]. The relevant data derived from Figure 1 are summarized
in Table 4. The effect of additives on the V(IV)/V(V) redox coupling is characterized by
IpO/IpR (ratio of the oxidation peak current to reduction peak current) and ΔVp (separation
between the oxidation and reduction peak potential). The HDTMPA just incurred a minor
decrease in the ΔVp of the electrolyte and a small increment in the IpO/IpR as if it had little
effect on the reversibility of the V(IV)/V(V) redox pair. In addition, it had a small effect on
the oxidation peak current and reduction peak current as well as the overall peak shape of
the curve, indicating that its effect on the electrode reaction kinetics of the electrolyte was
not that significant either [24]. The addition of HEDP increased the ΔVp of the electrolyte
while decreasing IpO/IpR significantly. The addition of HEDP, DTPMP, ATMPA, and
EDTMPS had a greater effect on the reversibility of V(V)/V(IV) redox pairs, and the HEDP
significantly increased the peak oxidation current and peak reduction current, indicating
that it might enhance the electrode reaction kinetics of the electrolyte. The main reason for
the improvement in electrode reaction kinetics by HEDP might be attributed to the fact
that the –OH could complex with V(IV)/V(V) ions, which provide more available –OH to
the stable electrode reaction of V(IV)/V(V) for ion exchange on the electrode surface, thus
resulting in a higher oxidation peak current and reduction in peak current [25]. Among all
additives, ATMPA best enhanced the electrode reaction kinetics of electrolyte, but it caused
a decrease in electrolyte thermal stability. HDTMPA, EDTMPS, and DTPMP probably
affect the cyclic reversibility performance and electrode reaction kinetics of the electrolyte
by, firstly, phosphate and, secondly, according to calculations, the C atoms adjacent to
N atoms have a high positive charge density, counteracting the strong electron affinity
of N atoms [26], and the positively charged C atoms activated by the N atoms can work
as an active site, affecting electron distribution, thereby improving the electrochemical
performance. In addition, EDTMPS benefits from its Na+ ions, increasing the number of
ionizable cations in the solution, which enhances the electrode reaction kinetics [12]. As
for HDTMPA, its large groups slightly hinder the ion exchange and charge transfer on the
electrode surface owing to the steric hindrance, which is obviously unfavorable [18]. When
ATMPA and HDTMPA are used in combination, ΔVp of the electrolyte declined compared
with the blank sample and IpO/IpR displayed a small change. The combination of ATMPA
and HEDP also showed the same performance. At the same time, compared with the
CV curve of the blank sample, the peak current and the peak area of these two complex
schemes are larger, which indicates that the electrolytes affected by these two schemes have
better electrochemical performance.

A series of CV curves on graphite electrode for the blank electrolyte and the electrolyte
with different additives at different scan rates are depicted in Figure 2, which further reveals
the effect of additives on the electrode reaction kinetics. The peak potential of the anode
and cathode varies gradually with the scan rate, presenting the typical characteristics of a
quasi-reversible single-electron process [27]. The diffusion coefficient of the quasi-reversible
reaction (D) is between that of the reversible reaction (D1) and irreversible reaction (D2) [28].
As for the reversible and irreversible one-step single-electron reactions, their peak current
(ip) can be represented as follows [29]:

ip = 0.4463(F3/RT)
1/2

CAn3/2v1/2D1
1/2 (Reversible reaction) (6)

ip = 0.4958(F3/RT)
1/2

CAα1/2n3/2v1/2D2
1/2 (Irreversible reaction) (7)

where R is the universal gas constant; F is the Faraday constant; T is the Kelvin temperature;
n is the amount of substance of transferred electrons during electrode reaction; A is the
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surface area of working electrode; C is the bulk concentration of primary reactant; v is the
scanning rate; α is the transfer coefficient for an irreversible reaction; and D1 and D2 are the
diffusion coefficients of reversible and irreversible reactions, respectively.

For a single-electron reaction at room temperature, Equations (6) and (7) can be
simplified as follows:

ip = 2.69 × 105 ACD1/2
1 v1/2 (8)

ip = 2.99 × 105α1/2 ACD1/2
2 v1/2 (9)

According to the present experimental conditions, Equations (10) and (11) can be
further derived from Equation (8) and Equation (9), respectively:

ip/A = 538D1v1/2 = v1/2k (10)

ip/A = 598D1/2
2 v1/2 = v1/2k (11)

Equations (10) and (11) indicate that the current density (ip/A) is linearly related to
the square root of scan rate (v1/2) and k denotes the slope of this line, illustrated in Figure 3,
thus D1 and D2 were calculated. The values of k for the blank electrolyte and those with 0.5
wt% of different additives are concluded in Table 5.

D1 = 3.45 × 10−6k2 (12)

D2 = 2.80 × 10−6k2 (13)

 
Figure 1. CV curves of the electrolyte (2.0 M V(IV)/3.0 M H2SO4) with additives (0.5 wt%) and the
blank one at a scan rate of 20 mV s−1 at room temperature.

Table 4. ΔVp and IpO/IpR of the electrolyte (2.0 M V(IV)/3.0 M H2SO4) with additives (0.5 wt%) and
the blank one on the graphite electrode.

Additives Blank HDTMPA HEDP DTPMP ATMPA EDTMPS ATMPA + HEDP ATMPA + HDTMPA

ΔVp/V 0.241 0.231 0.340 0.320 0.275 0.285 0.208 0.200
IpO/IpR 1.462 1.496 1.242 1.299 1.432 1.246 1.470 1.474
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Figure 2. CV curves of the electrolyte (2.0 M V(IV)/3.0 M H2SO4) with/without additives ((a) blank
sample; (b) HDTMPA; (c) HEDP; (d) DTPMP; (e) ATMPA; (f) EDTMPS; (g) ATMPA + HDTMPA;
(h) ATMPA + HEDP) on the graphite electrode at different scan rates at room temperature.
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Figure 3. Linear plot of ip versus v1/2.

Table 5. Diffusion coefficients (D1 and D2) of V(IV) species at 25 ◦C.

Additives
Diffusion Coefficient D1 and D2 of V(IV) Species (cm2 s−1)

D1 D2 Error (%)

Blank 2.20 × 10−7 1.88 × 10−7 1.9
HDTMPA 2.26 × 10−7 1.84 × 10−7 1.3

HEDP 3.89 × 10−7 3.15 × 10−7 1.5
DTPMP 4.86 × 10−7 3.94 × 10−7 1.3
ATMPA 6.80 × 10−7 5.52 × 10−7 1.3

EDTMPS 3.48 × 10−7 2.83 × 10−7 1.6
ATMPA + HDTMPA 4.34 × 10−7 3.53 × 10−7 1.8

ATMPA + HEDP 5.43 × 10−7 4.40 × 10−7 1.7

In fact, the diffusion coefficient of the electrolyte is between D1 and D2 for the quasi-
reversible process. Under the present experimental conditions, the diffusion coefficient
is 1.88–2.20 × 10−7 for the blank electrolyte and 1.84–2.26 × 10−7 for the sample with
HDTMPA, and the result of the latter is close to that of the blank electrolyte. When it
comes to the rest, their diffusion coefficients are 3.15–3.89 × 10−7 (HEDP), 3.94–4.86 ×
10−7 (DTPMP), 5.52–6.80 × 10−7 (ATMPA), and 2.83–3.48 × 10−7 (EDTMPS), respectively.
These increased diffusion coefficients of the electrolyte with additives indicate that the
additives (except HDTMPA) can effectively improve the diffusion of vanadium species at
the electrodes and enhance the mass transfer and charge transfer of the V(V)/V(IV) redox
pair, thus increasing the corresponding reactivity. Compared with the blank sample, the
combination of ATMPA + HDTMPA and ATMPA + HEDP also have a larger diffusion
coefficient, showing that the compounding scheme has played a positive role in mass
transfer and charge transfer in the electrolyte.

3.3. Steady-State Polarization Test

The steady-state polarization curve of the V(IV) electrolyte allows the determination of
the polarization resistance, the exchange current density, and the electrochemical reaction
rate constant.
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In the relatively-low-overvoltage region, the overvoltage and current density are
approximately linearly correlated [6]. These parameters can be calculated by Equation (14).

Rct =
η

i
, i0 =

RT
nFRct

, k0 =
i0

nFC0
(14)

where Rct, i0, and k0 refer to the charge-transfer resistance, exchange current density,
and rate constant, respectively; R, T, n, F, and C0 are the universal gas constant, Kelvin
temperature, amount of transferred electrons in the electrode reaction, Faraday constant,
and solution concentration, respectively [30].

The steady-state polarization curves of the 2.0 M VOSO4/3.0 M H2SO4 electrolyte
with different additives on graphite electrode are demonstrated in Figure 4, and the cor-
responding parameters derived from Equation (14) are listed in Table 6. One can see that
the charge transfer resistance of electrolyte samples with additives decreased and the elec-
trochemical reaction rate constant and the exchange current density increased compared
with the blank sample. The charge transfer resistance of the electrolyte with EDTMPS
and DTPMP, for example, decreased from 12.40 Ω cm2 (blank sample) to 8.15 Ω cm2 and
8.84 Ω cm2, respectively, at 25 ◦C, while the exchange current density of these two samples
increased from 2.07 mA cm2 (blank sample) to 3.15 mA cm2 and 2.91 mA cm2, respectively.
The corresponding electrochemical reaction rate constant increased from 1.07 × 105 cm s−1

(blank sample) to 1.63 × 105 cm s−1 and 1.51 × 105 cm s−1, respectively, at 25 ◦C. The
other additives also accelerated the chemical reaction process of V(IV) on the electrode
surface to varying degrees. The rest of the selected additives also accelerated the kinetics
process of V(IV) species on the electrode surface to a certain level. Compared with the
blank sample, the combination of ATMPA + HDTMPA and ATMPA + HEDP also had lower
charge transfer resistance and higher exchange current density and electrochemical reaction
rate constant, which was consistent with the CV tests.

 

Figure 4. Steady-state polarization curves for the 2.0 M V(IV)/3.0 M H2SO4 blank electrolyte and
those with 0.5 wt% additives on graphite electrode at a scan rate of 1 mV s−1.

Table 6. Kinetic parameters for the 2.0 M VOSO4/3.0 M H2SO4 experimental electrolyte with different
additives on the graphite electrode.

Additives Rct (Ω cm2) i0 (mA cm−2) k0 (10−5 cm s−1)

Blank 12.40 2.07 1.07
HDTMPA 11.48 2.24 1.16

HEDP 9.40 2.73 1.42
DTPMP 8.84 2.91 1.51
ATMPA 9.01 2.85 1.48

EDTMPS 8.15 3.15 1.63
ATMPA + HDTMPA 10.35 2.48 1.29

ATMPA + HEDP 9.11 2.82 1.46
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3.4. Electrochemical Impedance Spectroscopy Test

For the further analysis of the electrode reaction diffusion kinetics of vanadium and
the charge transfer and mass transfer of the V(IV)/V(V) redox pair, Nyquist plots of the
eight (including two compound schemes) V(IV) electrolyte samples at room temperature
were recorded by electrochemical impedance spectroscopy. Figure 5 shows that each
plot consists of a semicircle in the high-frequency region and a diagonal line in the low-
frequency region, indicating that the redox reaction of the V(IV)/V(V) pair is controlled
by both high-frequency charge transfer and low-frequency diffusion. The radius of the
semicircle corresponds to the charge transfer resistance and the linear part relates to the
diffusion of vanadium species on the electrode [31]. The equivalent circuits of these Nyquist
plots were fitted, and the corresponding parameters were obtained using ZView software,
which are listed in Table 7. In the equivalent circuit, R1 is the resistance consisting of the
solution resistance, electrode resistance, and contact resistance, and R2 and W0 represent
the charge transfer resistance and diffusion impedance, respectively. The constant phase
element (CPE) represents the bilayer capacitance at the electrode–electrolyte interface.

 

Figure 5. Nyquist plots of the 2.0 M V(IV) electrolyte on the graphite plate and the corresponding
equivalent circuit.

Table 7. Model parameters of equivalent circuits corresponding to Nyquist plots.

Additives R1/Ω cm2
CPE/S sn cm−2

R2/Ω cm2 W0, Y0,2/S s−5 cm−2

Y0,1 n

Blank 0.218 5.33 × 10−3 0.775 0.168 0.409
HDTMPA 0.223 9.11 × 10−3 0.727 0.215 0.411

HEDP 0.268 10.85 ×
10−3 0.707 0.205 0.397

DTPMP 0.268 8.18 × 10−3 0.737 0.152 0.397
ATMPA 0.286 8.70 × 10−3 0.727 0.154 0.408

EDTMPS 0.279 5.61 × 10−3 0.769 0.116 0.390
ATMPA +
HDTMPA 0.276 16.87 ×

10−3 0.621 0.206 0.283

ATMPA +
HEDP 0.282 18.63 ×

10−3 0.552 0.186 0.288

The additives slightly increased the contact resistance of the electrolyte, and all addi-
tives except HDTMPA and HEDP decreased the charge transfer resistance of the solution.
The decrease in charge transfer resistance implies a faster charge transfer process, which is
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consistent with the above study. All of the additives except HDTMPA decrease the diffu-
sion resistance of the electrolyte, which facilitates the diffusion process on the electrode
surface and enhances the electrochemical reaction kinetics. In addition, all additives lead
to an increase in the CPE parameter Y0,1, indicating an enhanced bilayer capacitance at
the electrode–electrolyte interface. n represents the index of CPE, ranging from 0 to 1. The
larger the n, the higher the capacitive property and the lower the resistive property of CPE.

Compared with the samples using HDTMPA and HEDP additives alone, the charge trans-
fer resistance of the two compounding schemes (ATMPA + HDTMPA and ATMPA + HEDP)
is reduced, which accelerates the charge transfer in the solution, indicating that the com-
pounding schemes (HDTMPA + ATMPA and HEDP + ATMPA) improve the electrochemical
performance of the electrolyte.

After the above experimental investigation, it was found that the different additives
selected could have a positive effect on the positive electrolyte of VRFB in terms of thermal
stability and electrochemical performance. In future studies, it is expected that these
additives may work better if used in combination, rendering these additives potential and
promising for development.

4. Conclusions

In this study, five phosphate-containing scale inhibitions, including HDTMPA, HEDP,
DTPMP, ATMPA, and EDTMPS, were employed as additives for the VRFB positive elec-
trolyte and their effects on the electrolyte thermal stability and electrochemical performance
were investigated. HDTMPA has a great positive effect on the thermal stability of the elec-
trolyte, extending the time at which the electrolyte begins to precipitate to 15 days, while
it has a lesser effect on the electrochemical performance; HEDP, DTPMP, and EDTMPS
effectively improve the thermal stability of electrolyte and simultaneously accelerate its
electrochemical reaction kinetics, but they have a greater effect on the cyclic reversibility
of electrolyte, among which HEDP extended the time at which the electrolyte began to
precipitate to 30 days, and the charge transfer resistance of the electrolyte decreased to
9.40 Ω cm2; and the addition of ATMPA greatly improves the mass transfer kinetics of
the electrolyte, increasing the electrolyte diffusion coefficient on the electrode surface to
6.80 × 10−7, simultaneously causing poor thermal stability of the electrolyte. In addition,
the compounding effect of additives was studied. It was verified that the compounding
combination of ATMPA + HDTMPA and ATMPA + HEDP had a good effect on the elec-
trochemical performance of the electrolyte. In conclusion, most of the additives selected
in this study have positive effects on the positive electrolyte of VRFB in terms of ther-
mal stability and electrochemical performance; the diffusion coefficients of the electrolyte
were 4.34 × 10−7 and 5.43 × 10−7, respectively. The necessity of combined utilization of
these additives should be recognized, which may work better and has great potential for
future development.
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Abstract: This article analyzes the relationship between artificial intelligence (AI) and photovoltaic
(PV) systems. Solar energy is one of the most important renewable energies, and the investment of
businesses and governments is increasing every year. AI is used to solve the most important problems
found in PV systems, such as the tracking of the Max Power Point of the PV modules, the forecasting
of the energy produced by the PV system, the estimation of the parameters of the equivalent model
of PV modules or the detection of faults found in PV modules or cells. AI techniques perform better
than classical approaches, even though they have some limitations such as the amount of data and
the high computation times needed for performing the training. Research is still being conducted
in order to solve these problems and find techniques with better performance. This article analyzes
the most relevant scientific works that use artificial intelligence to deal with the key PV problems by
searching terms related with artificial intelligence and photovoltaic systems in the most important
academic research databases. The number of publications shows that this field is of great interest to
researchers. The findings also show that these kinds of algorithms really have helped to solve these
issues or to improve the previous solutions in terms of efficiency or accuracy.

Keywords: PV; artificial intelligence; MPPT; forecasting; parameter estimation; faults detection

1. Introduction

Energy is essential in our society, being the motor of almost every sector. Fossil-fuels
are historically the most important source of energy, representing 80.2% in 2019 [1] These
kinds of energies have different problems; one of them is their scarcity, since they are
limited resources that have been exploited for a long time. Another critical problem is
the pollution caused by the burning and extraction of these fuels, which is hazardous for
people [2] and the environment [3]. To solve these problems, other energy sources can
be used. These alternative energies, renewable energies, have two main benefits. First
of all, they are based on unlimited resources that will not run out, even with extensive
exploitation. Their exploitation is also nonpolluting. Investment in these energies has been
rising in the last years, even with a crisis such as the COVID-19 pandemic [1,4].

One of the most important green energies is solar energy. This energy is composed
of solar, thermal and photovoltaic (PV). The latter has been found to be more useful and
profitable for industry production [5,6] and has been growing steadily in recent years. As
we can see in Figure 1, the share of PV systems is increasing, and it is expected to be one of
the prime energy sources in the next years [7].

PV energy is produced by photovoltaic modules. Each module is composed of different
sub-units, called solar cells, which absorb the energy emitted by the sun [8]. PV panels
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are usually connected in series to each other, this is known as a PV array. Each PV array
is connected to a power inverter to control the production and check the performance
of the array [9]. PV farms (also known as PV plants) are usually composed of many PV
arrays. The maintenance of these factories is extremely complex. The production of the
modules depends on different conditions, this makes mechanisms of control to optimize
the production necessary. Solar modules are also vulnerable to physical defects, which can
reduce or even nullify the production of one cell, or even the whole modules in the worst
cases. This is usually dealt with by human labor, checking each module in a certain period
of time.

Figure 1. Evolution of the importance of PV sector (adapted from [7]). (a) Evolution of the energy
share of PV systems; (b) evolution of the investment in PV energy; (c) evolution of employment in
the PV sector.

Solutions to maintenance problems in PV systems have been traditionally circumscribed
either to simplistic automatic supervision approaches [10] or costly direct human supervision.

In the past recent years, however, artificial intelligence (AI)-based approaches have
emerged. AI techniques are being applied in almost every research field or industry to
improve services or solve problems which are impossible for traditional methods [11].

These techniques can also be applied to solve the problems of PV systems. In this
review, we analyze how AI is being applied to the PV sector. PV systems face different
problems during installation but also during exploitation, since PV modules are vulnerable
to the climate conditions’ unpredictable events. An analysis of the problems found in PV
plants can be found in [12,13]; also, the maintenance of the modules is key in order to
secure maximum production and to improve the security of the installations [14]. In order
to reduce the scope of this review, only the four most critical problems related to energy
optimization and maintenance are considered:

• Max Power Point Tracking: Vital for optimizing the production.
• Output Power Forecasting: Critical for predicting possible problems in production

related to climate conditions.
• Parameter Estimation: Extremely important for optimizing the production of PV modules.
• Defect Detection: Important for finding bad-performing modules or faults that can

be fatal for overall system performance and security.

The most important problems and the technologies that have been used for dealing
with each one of these problems are addressed. The final objective of this review is to
analyze the most important techniques used and how they have improved the solutions of
the problems in order to have a clear understanding of the state of the art in the area.

The paper is structured as follows: First, an explanation of the problem is described in
Section 2, in order to provide more information to readers who are not familiarized with
this topic. After that, the artificial intelligence techniques used of each of the problems are
explained. The Maximum Power Point Tracking is discussed in Section 3.2; Section 3.3 is
about the forecasting; Section 3.4 presents the parameter estimation, and defect detection
problems are discussed in Section 3.5. Finally, an analysis of the different problems is
performed in Section 4, identifying the tendencies and flaws in the research of each one
of them.
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2. Relevant PV Problems

As we explained before, PV installations have to face a large amount of problems.
The most important ones are related to optimizing energy production, since it is the final
objective of an energy installation. They are also related to the maintenance of equipment,
mostly the solar modules. In this section, four problems related to this issue are explained
in order to give the reader a basic context of the different problems.

2.1. Maximum Power Point Tracking (MPPT)

PV cells have a complex relationship between their environment and the power they
can produce. Along the IV curve (Figure 2) of solar cells there is a point where the power
will be maximized, this is called the Maximum Power Point (MPP). This point usually
changes depending on conditions such as irradiation, temperature or the state of the PV
cell. These conditions can change the shape of the curve, making the problem nonlinear
and time-varying due to the changes produced by the atmospheric and load conditions.

Another problem is that it is not possible to directly obtain the IV curve of a single PV
cell. The IV curves are usually taken from one single module or even from a PV array. The
measured curves are more complex than the IV curve of a cell. The more complex a curve
is, the harder it is to track the MPP.

Figure 2. Different IV curves. Green circle: Max Power Point; Red Star: Open-Circuit Voltage (VOC);
Yellow Square: Short-Circuit Current (ISC).

The algorithms to solve this problem can be classified according to different criteria;
one of the most important ones is according to the number of variables used for measuring
the tension. Another interesting approach is to classify the method according to the control
strategy used. A brief explanation of the most important traditional methods can be found
in Table 1, and more information can be found in works such as [15,16].
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Table 1. Traditional Methods for MPPT.

Methods Features

Perturbation and Observation [15,16]

This algorithm does not depend on previous
knowledge, it is the simplest and is widely
used due to its balance between efficiency and
simplicity. It disturbs the operating point of the
system, causing the PV voltage to fluctuate
near the MPP voltage.

Incremental Conductance [15,16]

This method is based on the basis that the slope
of a PV curve is zero at MPP. The algorithm
tracks the MPP by searching for the peak of the
PV curves. This algorithm uses the
instantaneous conductance I/V and the
incremental conductance dI/dV.

Curve Fitting [15,16]

This method implements a mathematical
function to describe the output of the generator.
The disadvantage of this method is that it
requires a high memory capacity and is not
optimum for high-speed changes in
the irradiance.

Open Circuit [15,16]

This method implements a mathematical
function to describe the output of the generator.
The disadvantage of this method is that it
requires a high memory capacity and is not
optimum for high-speed changes in the
irradiance. This method is simple, and it uses a
single control loop.

Feedback Tension [15,16]

This method can be used with the feedback of
the voltage of the panels, which is compared
with the tension of constant reference to adjust
the word cycle. This system is unable to adapt
to changes in irradiance or climate.

Measurement of the Current of the PV
Generator [15,16]

This method is based on one variable, the
output current of the PV Generator, which is
the input current of the generator. The control
of the output optimizes the maximum
output current.

2.2. Forecasting Problems

There are several variants of the forecasting problem which arise in PV: weather
forecasting, solar irradiance forecasting and energy production forecasting, which is to
estimate the energy production of the system. This is really important to optimize the
real-time management of systems that use this kind of energy (smart cities, villages, etc.).
This problem has high priority for electric companies because they want a more robust and
reliable system to predict the changes in energy loads and demands. Another important
aspect is the amount of time that has to be predicted.

• Short-term forecasting is usually from 1 hour to a week ahead and is used for schedul-
ing energy transfer, economic load dispatch and demand response.

• Mid-term forecasting is usually considered between 1 month and 1 year ahead, usually
for planning the near-forthcoming power plans and to show the dynamics of the
system in that interval.

• Long-term forecasting is considered between 1 year and 10 years. Its function is to
plan the generation power plant so as to satisfy future requirements and cost efficiency.

Another important factor for forecasting is the number of parameters, the amount of
information and data is key when it comes to obtaining a precise forecasting model, but it
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is also true that sometimes too much data can provide noise or misleading information that
can injure performance.

Each kind of forecasting is usually tacked as a different problem, since the amount of
data and precision required are highly different. More information about forecasting can
be found in [17].

2.3. Estimation of Parameters of Model Circuits

The simulation of PV systems is important to optimize the production of the real
systems. It is know that any PV can be modeled and represented by an equivalent electric
circuit, whose parameters control the predicted or estimates operation of the PV cell or
module. The single-diode circuit presents five unknown parameters [18,19] (Iph, Isd, Rl , Rsh
and n), and the output current is evaluated as follows:

I = Iph − Isd ×
[

exp
(

q × (VL + Rs × IL)

n × k × T

)
− 1
]
− VL + RS × IL

Rsh

where IL, Iph, Id and Ish are the solar cell output current, total current, diode current and
shunt current, respectively. Rs represents the series, and Rsh denotes the shunt resistances.
In addition, VL means the cell output voltage; n is the ideal factor of diode. k represents the
Boltzmann constant, which is set as 1.3806503 × 1023 J/K; q is set as 1.60217646 × 1019 C,
which is the electron charge, and T means the cell absolute temperature.

The double-diode model presents seven unknown parameters [18,19] (Iph, Isd1, Isd2, Rl , Rsh,
n1 and n2 ), and the output current is evaluated as follows:

IL =Iph − Isd1 ×
[

exp
(

q × (VL + Rs × IL)

n1 × k × T

)
− 1
]

− Isd2 ×
[

exp
(

q × (VL + Rs × IL)

n2 × k × T

)
− 1
]
− VL + RS × IL

Rsh

where Isd1 and Isd2 represent the diffusion and saturation currents, while n1 and n2 represent the
ideal factors of diffusion and recombination diode. The other parameters have the same meaning
as the previous equation.

This problem is presented as a optimization problem, where the output to optimize is IL,
and the variables to be found are the unknown parameters.

2.4. Defect Detection

Solar modules are vulnerable to modifications in their surface; therefore, it is required to
have a system to find faults. These kinds of faults and defects affect to the production of the
module, making it not work at all in the worst cases. The problem is that the majority of faults
are not detected with typical cameras (Figure 3), so it is necessary to apply different techniques
such as thermography (Figure 3) or electroluminiscence (Figure 3).

The traditional way of finding faults is by performing a manual visual inspection, but
the size of the solar farms has made this method almost unmanageable. In order to solve this
problem, different techniques have been proposed, most of them using electroluminiscence.
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Figure 3. Different techniques for photography modules. (a) Visual spectrum; (b) thermography; (c) electro-
luminiscence.

3. Artificial Intelligence Applied to PV Systems

3.1. Methodology

With an intention to provide the most relevant and comprehensive review, a proper selection
criterion is needed; therefore, different bibliographic databases were searched: Web of Science,
Scopus, Google Researcher and Arxiv. With the aim of finding relevant works, a selection was
performed searching keywords related with AI and PV systems. The articles with fewer than
8 citations were excluded since they were not considered relevant enough to the state of the art.
As a exception to this rule, the articles published in 2021 were selected even if they did not have
enough citations. After removing duplicates and nonrelated papers, 250 articles were obtained.
The articles tackled different problems found in PV systems, but most of them were focused on
four different problems due to their importance:

• Max Power Point Tracking.
• Forecasting of the energy production.
• Estimation of parameters of model circuits.
• Detection of defects and faults in solar modules.

In this section, these different problems are addressed by explaining the contributions of
each paper in order to provide a global vision of the state of the art of each problem.

3.2. Maximum Power Point Tracking (MMPT)

The tracking of the Maximum Power Point is vital to optimize the PV systems, and it is
probably the most interesting problem for research. Different techniques have been used to
solve this problem, as it can be seen in Figure 4. Some classical techniques include Incremental
Conductance and Perturb and Observe. Recent trends show that AI techniques are also used to
solve this problem. Metaheuristics and Neural Networks were found as the most used techniques
after surveying the literature.
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Figure 4. Taxonomy of most used IA method for MPPT.

3.2.1. Fuzzy Logic

Traditional Logic [20] is limited to only two values of truth (True and False), this limits its
versatility and makes it difficult to model some systems. Fuzzy Logic (FL) [21] is an extension of
Traditional Logic. The main benefit of FL is that it can give a true value between 0 and 1. FL is
specialized in addressing uncertainty in inputs and obtaining high performance under rapidly
changing conditions, such as atmospheric ones. These kinds of techniques can also be used to
aid other systems in order to improve their performance. In this section, the most important
techniques related to FL are reviewed.

The first implementation focused on MPPT can be found in [22]. This system uses 7 mem-
bership functions for each variable with two input variables: error in the power and the change
in error; the output inferred by the fuzzy system is the change in duty cycle that controls the
pulse width generation block. The main benefit of FL control is that it does not require changes
or variations in its membership functions.

In order to evolve these systems, it was necessary to find a method to modify the parameters
of the fuzzy systems. In [23], a Fuzzy Controller that is able to perform online parameter auto-
tuning is found. This system used 2 kinds of control. First, a traditional PID control to manage
the small deviations and an Adaptive Fuzzy Controller to deal with the larger deviations, since
this system is ideal for obtaining rapid responses. A switching function was set to determine the
controller to be used. The initial fuzzy controller used triangular-shape functions as membership
functions, changing the curve depending on the error. This system reduces the oscillation near
the Maximum Power Point, reducing the loss of power.

Another implementation of the adaptive behavior can be found in [24]. This proposal
combines Fuzzy Cognitive Networks (FCN) with Fuzzy Logic Control (FLC). FCN is constructed
as an extension of another system called Fuzzy Cognitive Maps (FCM) [25]. FCMs are composed
of nodes and weighted arcs. Nodes represent the concepts represented, and the arcs represent the
causal relationships between them. FCN relies on the knowledge of experts for the description of
the nodes and the construction of the graph but does not need an initial estimation of the weights
of the arcs. The combination of FLC and FCN makes the system able to track and adapt to any
kind of physical variation. A Fuzzy controller needed 12 iterations to reach the same MPP that
this algorithm found with 5.
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In order to further improve the tracking speed and accuracy of FLC, the classic Open-Circuit
Technique [26] is used to find an initial estimation of the MPP voltage. The implemented system
showed a good response even under variable atmospheric conditions.

The work in [27] used Type-2 Fuzzy Logic [28], an extension of classical FL [29]. The main
feature of Type-2 FL is that membership functions are also fuzzy, and it is used in applications
where determining the exact function of a set is difficult [30]. The Type-2 FL functions are three-
dimensional, they depend on three different parameters, allowing them to directly model and
handle uncertainties. The changes in PV power and voltage are set as the input variables, each one
using seven membership functions. The simulation showed that the system tracked MPPT even
in irradiance and load variation. Oscillations around MPPT are greatly reduced and are useful for
rapidly changing conditions. The overall output energy due to the proposed MPPT method was
around 27.7%. The implementation and simulation were performed with MATLAB/Simulink
simulation studies [31]. Type-2 Fuzzy Logic is also used for MPPT in [27,32–34].

Another important FL extension used in MPPT is the Takagi–Sugeno Fuzzy Model (T-S
FM) [35–37], T-S FM [38] is usually used in approximating complex nonlinear systems [39] and is
really important due to the fact that they enable a kind of control called parallel distributed control.
The results of these systems present better settling time than classical FL, fewer oscillations
and accurate output. The tracking is achieved even for abrupt insulation variations. The
implementation and simulation are usually conducted with MATLAB.

One of the most popular trends is to use fuzzy logic as a complement of other techniques.
In [40], it is used to tune the PID controller parameter. In [41], the fuzzy behavior of the
PSO algorithms improves the system. Fuzzy Logic has also been used along with Neural
Networks [42–45]. These works demonstrate that this combination improves the original
algorithms, improving the results of the fuzzy systems but reducing the data and time needed
to train neural networks.

A summary of the Fuzzy Logic methods applied to MPPT can be seen in Table 2.

Table 2. Fuzzy Methods for MPPT.

Method Features

FLC [22–24,26,46]

FLC systems provide quick responses to changes
and low oscillations near MPPT that reduce the
power loss compared with traditional systems.
The combination with FCN or the initial
estimation of the MPP voltage further improves
the results.

Type-2 [27,32–34]
Type-2 FL provides the methods to model and
handle uncertainties, boosting the robustness of
the system and hence its results.

T-S [35–37]

The parallel distributed control provided by the
T-S FL further improves the results of FL systems,
having an acceptable settling time, less oscillations
and an accurate output.

Combined with other methods [40–45] Other methods can take advantage of the benefits
of FLC systems to improve their results in MPPT.

3.2.2. Metaheuristics

Metaheuristics [47] are algorithmic approaches specialized in solving problems that are
not possible to directly find the best solution in a feasible amount of time. They will search the
solution space in order to identify the best solution that they can find. In this section, the most
important metaheuristics applied to this problem are reviewed. These kinds of algorithms can be
used alone or with the aid of other algorithms.

One of the most common classifications for metaheuristics [47] is the differentiation between
the algorithms that try to imitate the behavior of animals or things of nature (ants, bees, particles,
etc.) and the algorithms which are focused on imitating the basis of genetics.
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Genetic Algorithms (GA) [48] are one of the most important genetic metaheuristics because
of their capacity to find great solutions to many problems, commonly used as a way to improve
the performance of other Artificial Intelligence techniques. In [49], GA are used to optimize the
training data for an ANN of 5 hidden nodes. The objective of the GA was to produce a smaller
and more effective input dataset. The GA is used to remove the unnecessary data, reducing the
error at the end of the network training. This technique can be also used with other techniques,
as it is independent of the model that is applied afterward. In [50], a GA is used to determine the
number of neurons of an ANN. The number of hidden neurons is one of the key problems of
optimizing an ANN since it can improve its performance but can also slow its training. Three
different objective functions were tried on the GA. The best neural network was found with
5 hidden nodes. In [51], they are used to optimize the membership functions on an FLC system.
The chromosomes decode the shape of these functions; the algorithm will try to minimize the
quadratic function based on the error between the desired power and the maximum power
delivered by the system. The results show faster convergence and a more stable tracking, which
leads to reduced oscillations.

Behavior-oriented metaheuristics can also be used to solve MPPT. Particle Swarm Opti-
mization (PSO) [52] is also used for this. Each particle is initialized with a value in the voltage
search interval. Each particle is evaluated by the inverse of the PV power; after that, each
particle will have its position and velocity updated. Finally, a new evaluation will be performed
until all iterations have been carried out. Ref. [53] showed a better performance than other
methods, being able to operate even on rapidly changing atmospheric conditions. The work
by [54] proposed the use of an Accelerated PSO. This algorithm combines PSO and Permute
and Observe to accelerate MPP searching. It also offers a higher convergence speed and better
dynamic response compared with PSO.

Another important metaheuristic is the Firefly Algorithm (FA), developed by [55] for solving
multimodal problems, and it has also been used to solve MPPT. The algorithm mimics how
fireflies interact with each other using their lights. The attractiveness of the light will depend
on its brightness and distance. For solving MPPT, the position of the firefly is related to the PV
voltage [56]. This algorithm assures fast convergence, with almost zero steady-state oscillations,
providing good tracking speed.

Artificial Bee Colony (ABC) [57] is focused on simulating the behavior of honey bees and
was used for MPPT in [58,59]. ABC consists of three different kinds of agents: workers, onlookers
and scouts. First of all, worker bees go to the food sources, estimate their utility value and dance
back in the hive. Every onlooker observes the dances, chooses one of their sources and goes there.
Abandoned food sources are located by scouts and are exchanged with the new food sources
found by them. The fitness function is set as the generated power when this algorithm is used
for MPPT. The algorithm will continue until the solutions do not change. The main advantage of
ABC is that it does not need hyper-parameter tuning as in the case of other metaheuristics such
as GA. In MPPT, this algorithm provides quick convergence and accuracy in tracking.

Ant Colony Optimization (ACO) [60] is used in [61] for optimizing neural networks in
order to solve the MPPT problem more efficiently. The ACO method was adopted in the learning
algorithms for adjusting the weights and biases of the neurons in the process of training. The
final network had a single hidden layer with 20 nodes. The results show an improvement over
the networks which are not optimized and over other traditional methods.

Other metaheuristics have been used for MPPT as can be seen in other reviews, such
as [62,63]. A summary of the commented methods can be found in Table 3.
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Table 3. Metaheuristic Algorithms for MPPT.

Algorithm Features

GA [49–51] Genetic Algorithms improves the results of other
methods such as ANN or FPSO

PSO [53,54] PSO is used to optimize Neural Network learning

FA [56]
This algorithm is used directly to solve MPPT. It
assures fast convergence with almost zero
oscillations

ABC [58,59,64] In MPPT, this algorithm provides quick converge
and accuracy in tracking.

ACO [62]
ACO is used in the learning process for adjusting
weights and biases or the neural networks in other
to improve its results

3.2.3. Neural Networks

Neural Networks have shown excellent adequacy and high capabilities for complex learning
problems and, thus, they are ideal for tracking the Max Power Point. They can be used alone
or helped by other methods. The hybrid techniques are usually focused on improving the
performance of the neural networks by optimizing the hyper-parameters of the networks since
it is a really complex task. In [65], the proposed NN was composed of a single hidden layer
of twenty nodes, two inputs and one or two outputs, all of them using tangent sigmoid. Two
networks are built, one for approximating the voltage and current curves and the second for
estimating the optimal voltage factors. The input of both networks is temperature modules and
solar irradiation. The outputs for the first networks are the optimal PV voltage and optimal PV
and optimal voltage factor for the second. This method improves the deficiency of traditional
algorithms and improves its results.

The work in [49] presents an NN composed of 5 nodes on a single hidden layer but with the
novelty of prepossessing of the data via genetic algorithms, using the same inputs (irradiance and
temperature) but with only one output: the Voltage at VMPP. The model improves the transitional
state and reduces the oscillations in the steady state compared with traditional methods.

The approach presented by [66] uses a hyperbolic activation function. The structure is
defined by 4 inputs, 1 output and 3 hidden layers with 8,7,7 neurons, respectively. The inputs are
composed of three irradiation levels and the temperature. The output is a prediction of the PV
voltage corresponding to the MPP; this output goes to a calculation block where it is converted
for the traditional P&O algorithm. The training was carried out with a Bayesian regulated
back-propagation, which performed better than standard BP. The results provide better efficiency
compared with classical methods, even under partial shading. The authors used MATLAB for
the implementation and simulations.

The technique presented in [67] combines Fuzzy Logic and Neural Networks, building the
system known as the Adaptive Neural Fuzzy System Interface (ANFIS). The ANFIS does not
need any prior knowledge of the system like the other NN methods. The structure is composed
of 5 layers: inputs (irradiance and temperature), output and three intermediate layers which
maintain the fuzzy logic system and provide the output based on the rules. Each input has
three membership functions that are generated by the ANFIS method. The results show that
the system is efficient to track MPP even under varying weather conditions. The method was
designed with MATLAB/Simulink.

The work in [40] provides a different approach using recurrent neural networks along with
fuzzy logic. The structure of the networks is composed by a hidden layer, a context layer storing
the results of the previous outputs of the hidden layers, the output layer (solar radiation intensity)
and the input layer (voltage of PV cell and the current of PV cell at the operational point. With
the solar radiation intensity and temperature, the VMPP is computed using the mathematical
model. Another improvement found in this work is how a metaheuristic is used to optimize
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the structure and the weights/bias of the RNN. The results show an improvement over other
competitive methods.

Another important hybrid is the method in [68], which combines ANN with Support
Vector Machines (SVM) [69]. The Course Gaussian Support Vector Machine (CGSVM) is used to
improve the dataset before sending the dataset to the neural network. The CGSVM is a type of
nonlinear SVM and is usually used on optimization tasks. The NN was composed of 2 inputs
(temperature and irradiance), 1 output (PV current) and a single hidden layer with 13 neurons.
The results are slightly worse on power than the ANFIS, but the required time was significantly
less than the ANFIS.

The work presented in [41] shows a new way of optimizing the ANN for MPPT. The
ANN is composed of a 2-3-3-1 structure in order to make real-time applications and to avoid
memorization events. The ANN takes input as irradiance and temperature and gives output as
maximum voltage and is optimized with a metaheuristic called FPSOGSA. The method compares
different activation functions in order to maximize performance. The results are compared with
P&O and traditional NN; it is found that the method provides more stability and efficiency. A
similar approach is presented in [70]. A PSO algorithm is used to find the best topology, find the
best 20 hidden nodes and to optimize the initial weights of the neural network. Two inputs are
used (G—level of irradiance and T—temperature), and a single output (predicting power of PV
array at MPP). The model proved to be more effective under various weather conditions than
other ANN or FLC techniques.

The work in [61] attempts to optimize an ANN using ACO. Using this algorithm for ANN
training results in quicker training. Tangent sigmoid is chosen as the activation function. Six
different topologies were evaluated in order to find the best structure, the best being a single
hidden layer with 20 neurons. Two inputs are transmitted to the ANN, PV array voltage and
current. The output is set as the duty cycle (d). The model tracks MPP efficiently even under
irradiation changes.

The approach found in [71] uses the concept of Deep Reinforcement Learning (DRL), which
tries to implement Reinforcement Learning (RL) through NN. The advantage of RL for MPPT is
that RL techniques are model-free, they do not require knowing the behavior of the PV source or
predefining its dynamics. A continuous state space is defined, corresponding to the current (I)
values. The action space is also continuous, so it contains all the actions that can be applied to
generate a change in the system. Finally, the reward function is computed directly proportional
to the power, and no prior knowledge about the system is needed to define it. The system uses
four networks, one for computing the policy, one for the critic and two called targets that are used
to stabilize the learning procedure. The model can learn highly efficient policies from scratch,
and the results show higher performance than other models.

With the aim of improving ANFIS, a new hybrid was proposed in [42]. The ANFIS is trained
using the BAT algorithm [72]. The use of metaheuristic improves the training of metaheuristic
compared with back-propagation; the BAT algorithm provides better convergence, simplicity
and faster tracking speed than other techniques. The results show an improvement over standard
ANFIS or ANFIS optimized with other metaheuristics such as PSO. Similar work is found in [73],
where an ANFIS-CPHO is presented. The Crowded Plant Height Optimization [74] is in charge
of training the ANFIS. The results are compared with standard ANFIS and show an increase in
the speed and efficiency of the tracker.

A summary of the analyzed models in this section can be found in Table 4.
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Table 4. Neural Network Models for MPPT.

Type Reference Features

FeedForward
Neural Network

[65] 2 networks. Each one with a single hidden layer of
20 nodes.

[49] 5 Nodes on a single layer. Data preprocessed by Genetic
Algorithm.

[66] Three hidden layers with 8,7,7 nodes, respectively.
Bayesian-Regulated back-propagation for training.

[68] A Single hidden layer with 13 neurons. Data created by a
Course Gaussian Support Vector Machine.

[41] 2-3-3-1 structure. The NN is optimized by FPSOGSA.

[70] The topology and best weights are optimized by a PSO
algorithm.

[61] ACO is used to optimize the neural network.

Adaptive Neural Fuzzy
System Interface

[42] Bat Algorithm is used to train the network.

[73] Crowded Plant Height Optimization is in charge of
performing the learning of the network.

[67]
Combines Fuzzy Logic and Neural Networks. Three
intermediate layers in which the output is based on fuzzy
rules.

Recurrent Neural Network [40]
A hidden layer and a context layer storing the results of
the previous outputs of the hidden layer. A metaheuristic
is used to optimize the structure and weights.

Deep Reinforcement
Learning [71]

Four networks, one for computing the policy, one for the
critic and two called targets that are used to stabilize the
learning procedure

3.3. Forecasting

Energy production forecasting has been an important problem, even in traditional systems,
and it has been tackled with different techniques, as it can be seen in Figure 5.

In [75], we found a system that uses Support Vector Machines (SVM) [69]. SVM is mostly
used for regression. The model uses two different inputs: solar irradiance and environmental
temperature, with energy production as the output. This work included the use of a parameter
to tune the number of support vectors during the training. The results show a low error, with a
Mean Absolute Percentage Error (MAPE) of 0.1143, but it was really intolerant at errors in the
input data. The method was implemented using MATLAB. Another approach related with SVM
is found in [76]. The authors propose a multi-input support vector. Three different inputs were
tested. Only solar power, solar power and solar irradiance combined and finally solar power,
temperature and irradiance. The best predictions were made when the third vector was used
to train the network with. The model showed better results than analytical methods with a
MAPE of 36%, but it was found that it was weak against changes in the climate. The method
was implemented using MATLAB.

In [77], a Neural Network was used for Short-Term Forecasting. The input data were
composed of the the deviation of load power and temperature of 30 days before the forecast day
and the same data of 60 days before and after the forecast day in the previous year. If the forecast
day is changed, the neural network needs to be retrained. The network is composed of 9 inputs
nodes, 20 hidden nodes and one output neuron. The results show a Mean Absolute Percentage
Error (MAPE) of 1.63% on average.
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Figure 5. Taxonomy of most used IA methods for forecasting.

The work of [78] tries to go further, presenting a neural network of 2 hidden layers, one of
6 nodes and the second with 4. This model has nine inputs (Day, Time, Cloud Cover Index, Air
Temperature, Wind speed, Air Humidity, UV index, precipitation and air pressure) and is trained
using a hybrid metaheuristic, which combines PSO and GA [79]. This hybrid is faster and more
robust than back-propagation for this problem.

Neural Networks have been found to be sensitive to many factors, including the architecture
or the initialization of weights. Combining different NNs in an ensemble has been found to
be a strategy to reduce these problems. The work of [80] tested different combinations using
temperature and solar irradiance as inputs. Every combination was found to be better than using
only a single NN. The data were composed of 7300 data from 365 different days. The findings
were that the best architecture for forecasting is the one which uses an iterative methodology to
find the outputs, forecasting one at a time with a Mean Absolute Error (MAE) of 51.48% and
Mean Relative Error (MRE) of 17.24%.

The work in [81] used a fixed methodology, changing activation functions, learning rules
and architecture in order to find the best neural network for their dataset. The data were acquired
along a period of 70 days, obtaining 11,200 examples. The best network had 1 hidden layer
with a Linear Sigmoid Activation Function. The learning rule as Conjugate Gradient [82], which
uses second derivatives to determinate the weight update, inputs temperature and photovoltaic
power and outputs next-day forecasting of PV power output. The validation study indicates that
this network is simple and versatile and can precisely forecast with a minimum MAPE of 0.8655.
The experiments were implemented using the NeuroSolutions [83].

Another problem of NN is that training can be slow since back-propagation is highly
demanding. For solving this problem, the work in [84] used the extreme learning machine (ELM)
technique to train the network. ELM [85] has a faster learning speed while obtaining better
generalization performance, and it also optimizes the number of hidden neurons. The system is
composed of three networks, one for each kind of weather. The network is trained with the PV
output history and the weather history data. Based on the weather report of the next day, the
model is chosen to forecast the day-ahead PV. The results show that ELM networks outperformed
BP networks with a MAPE of 2.78% in the best case. The experiments were implemented using
MATLAB.

Another improvement can be found in [86]; the neural network is aided by a technique
known as Wavelet Transform (WT) [87]. This algorithm is specialized in isolating the spikes
produced by continuous fluctuations of the PV data. It has two stages: decomposition of the
input signal, which is performed before the neural networks, and reconstruction, which is
performed with the output of the NN. The model used is a Radial Basic Neural Networks
(RBNN) [88], which needs less computation time and is more effective than Back-propagation
Neural Networks and takes as input the PV, solar irradiance and temperature of the current
hour, twelve hours before and twenty hours before in order to predict the one-hour-ahead power
output. The results show that the proposed model outperformed RBNN without WT for hourly
PV for the horizon of 12 hours with a MAPE of 2.38% in the best case.
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WT is used along other architectures as in [89]. RNNs are probed to be useful in order
to predict from time series and WT deals with the fluctuations on the data provided by the
meteorological time series obtained from sampling at intervals of 10 min and stored as time
series. This combination proved to be able to forecast 2 days ahead more accurately than other
Neural Networks.

A recent use of WT is found in [90]. This work presents a hybrid algorithm composed of WT,
PSO and RBFNN used to forecast from 1 to 6 hours ahead. The inputs that are used in the model
are set as Actual PV, irradiance and temperature. The WT is used to perform an data filtering on
the past 15 days before the forecast day. The RBFNN is optimized by the PSO algorithm. The
network performed better than the compared methods, with an MAE of 4.22% on average for a
1-hour-ahead forecast, 7.04% for a 3-hour-ahead one and 9.13% for 6-hour- ahead one.

Recurrent Neural Networks are also used in [91]. Deep Recurrent Neural Networks
(DRNN), RNNs with many hidden layers, are used to forecast. These networks are capable of
representing complex functions more efficiently than RNNs. The input data are composed of
high-resolution time series, which are preprocessed and normalized to obtain a high-resolution
time-series dataset of four different days. The architecture used was a DRNN with Long Short-
Term Memory (LSMT) [92] units with two hidden layers of 35 neurons. Other models showed
lower accuracies and more bias error than the proposed method that obtained an RMSE of 0.086.
The experiments were implemented using MATLAB and the Keras library (now on tensorflow)
in Python.

Another RNN method is found in [93]. The authors compared 5 different architectures of
RNN: A basic LSTM, an LSTM with the window technique, an LSTM with time steps, an LSTM
with memory between batches and stacked LSTMs with memory between batches. Two datasets
of different cities were used to test the 3 models. The results show the third proposal with an
RMSE of 82.15 in the first dataset and an RMSE of 136.87 in the second, which uses prior time
steps in the PV series as inputs, is the most accurate and reliable, even compared with other
methods such as ANN. The experiments were implemented using Keras.

The authors of [94] present an interesting modification of RNN. This work used the net-
works know as Echo State Network [95]. ESN presented a dynamical reservoir instead of the
traditional hidden layers of RNN. Their main advantage is that only the output weights need
to be trained since the reservoir and input ones are random. These networks can obtain better
results than typical RNN. A restricted Boltzmann machine (RBM) [96] and principal component
analysis (PCA) [97] are used in order to determine the number of reservoirs and inputs. The
network parameters are found by a DFP Quasi-Newton algorithm [98]. Compared with other
PV forecasting methods, the results show that the proposed model could outperform other
forecasting systems with a MAPE of 0.00195%.

A complex hybrid is found in [99]. This system uses NN aided by different algorithms
trained on data obtained during a year. Random Forest (RF) [100] is used to rank the different
factors that affect PV in order to eliminate the less important ones. This importance degree,
computed by RF, is transferred to Improved Gray Ideal Value Approximation (IGIVA) [101] as
weights to determine the similar days of different climates type. The objective of this is to improve
the quality of datasets. After that, the original sequence is decomposed by Complementary
Ensemble Empirical Mode Decomposition (CEEMD) [102] to reduce the fluctuation of the original
data. Finally, the neural network is optimized by a modification of PSO known as dynamic
inertial factor particle swarm optimization (DIFPSO) [103,104]. The proposed model reduced
training time and improved the forecasting accuracy with an MAE of 2.84 on sunny days, 10.12
on cloudy days and 13.01 on rainy or snowy days.

Another interesting approach is the Neuro-Fuzzy hybrid found in [105]. Fuzzy Logic is
applied as a filter to the input data obtained in the energy production and weather forecast for
12 months (day, irradiance, temperature, humidity, pressure, wind speed and cloud clover) in
order to speed up the system. The neural structure is composed of 7 inputs, 2 hidden layers of 9
and 5 nodes, respectively, and input. The network is trained by BP aided by a combination of
PSO and GA, known as Genetic Swarm Optimization [106]. This method improved convergence
speed and the predictive performance over other hourly forecast methods. The experiments
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were implemented using MATLAB Convolutional Neural Networks have also been applied to
time-series data since they are able to learn filters that represent repeated patterns in the data
without needing any prior knowledge. They also work well with noisy data. In [107], CNNs are
applied for forecasting PV power using Solar Data and Electricity Data as inputs. The CNNs used
the ReLu activation function, Adam optimizer and dropout to avoid overfitting. The parameters
were selected by testing different architectures and choosing the most promising. The models
were compared of an FFNN and an RNN of 128 hidden nodes. The results show that CNN
performed similarly to LSTM and better than MLP with an MAE of 114.38.

An interesting approach mixing Big Data and Deep Learning is found in [108]. This method
was used to next-day-ahead forecast in 30 min intervals. It used a multistep methodology that
decomposes the forecasting problem in different subproblems. For the Big Data, Spark Apache
was used. The neural Network parameters were searched using the grid search strategy. The
best structure was found with 3 hidden layers with between 12 and 32 neurons. The method
demonstrated that DL is suitable for big solar data since it has a linear increase in training time
and performs better than other methods.

The work of [109] makes use of a new kind of Neural Network, the Dendritic Neuron
Network [110], in order to forecast PV power. These kinds of neurons have 4 types of layers:
synaptic layer, branch layer, membrane layer and cell-body layer. The input data (temperature
and irradiance of the actual moment and the last) are transferred to the synaptic layers where
they are converted by the sigmoid function and summarized to the branch layer. The results
are transported to the cell-body layer for numerical judgment. This layer will transmit the data
thought the axon to other neurons when the data exceed a given threshold. This new kind of
network provides higher convergence speed and enhanced fitting ability. The network is also
aided by WT. The results show that the model outperformed typical Feed-Forward models
with an average MAPE of 10.9, with strong fluctuations and 4.55 on weak fluctuations. The
experiments were run using MATLAB.

In Table 5, a summary of the reviewed models is presented.

Table 5. Models for forecasting.

Type Features

Feed-Forward Neural Network

Nine inputs, 20 hidden nodes on a single
layer. [77]
Nine inputs, 2 hidden layers with 6 and 4 nodes,
respectively. Trained by a hybrid PSO GA
algorithm. [78]
Two inputs, creates ensembles of neural
networks. [80]
Two inputs, 1 hidden layer, Conjugate Gradient as
learning rule. [81]
Three neural networks, one for each kind of
weather. Uses Extreme Learning to optimize the
parameters and architecture. [84]
Fuzzy Logic is applied as a filter to the input data.
Seven inputs, 2 hidden layers of 9 and 5 nodes,
respectively. Trained by a hybrid of PSO and
GA. [105]
Uses Big Data. Multistep methodology
decomposes the problems into subproblems. [108]
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Table 5. Cont.

Type Features

Convolutional Neural Networks Two inputs. Parameters are selected by testing
different combinations. [107]

Dendritic Neural Networks Aided by WT. Provides better convergence speed
and better fitting ability. [109]

Radial Basis Network

Two inputs, aided by Wavelet Transform to
preprocess the input data. [86]
High-resolution time series as input. Aided by
Wavelet Transform to preprocess input data and
PSO to optimize the neural network. [90]

Recurrent Neural Network

Aided by Wavelet Transform to deal with
fluctuation in time series input data. [89]
Preprocessed and normalized high-resolution
time series as input. Two hidden layers of
35 neurons. [91]
Tested Different RRN architectures. LSTM, which
uses previous time steps, found the best one. [93]
Uses Echo State Networks aided by Restricted
Boltzmann Machine, Principal Component
Analysis and DFP Quasi-Newton Algorithm to
optimize the network. [94]

Support Vector Machines

Two inputs. A parameter to tune the number of
SVM during training. [75]
SMV compared with KNN. SMV was found to be
better. [111]
Multi-input SV. Different combinations of inputs
were tested. Three inputs was the best one
found. [76]

3.4. Parameter Estimation

Finding the parameters of the PV models is vital to simulate their behavior and to optimize
their production. This problem is simplified by finding the unknown parameters in order to
optimize the output power. Different techniques, most of them metaheuristics, have been used
to solve this problem, as can be seen in Figure 6.

Figure 6. Taxonomy of most used metaheuristics for parameter estimation.

Metaheuristics are the most used techniques to estimate PV parameters. Different kinds
of algorithms have been evaluated in recent years. The work in [112] compares different
evolutionary algorithms, comparing Genetic Algorithms [48], Particle Swarm Optimization [52]
and differential evolution [113]. DE is an evolutionary algorithm similar to Genetic Algorithms
but which uses real numbers to codify the problem, this solves the problem of GA when it
comes to converging speed. The fitness function was computed as the sum of the absolute errors
in current and voltage. The findings showed that the best results were given by DE and the
worst ones by GA. The authors also implemented different hybrids: Tabu Search [114] assisted
differential evolution to avoid falling in local minimums, PSO assisted DE in which PSO is
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activated after 5 generations of DE and DE assisted by Tabu Search where DE is used to search
for the optimal solution in a subset of the whole search space, while TS is used to move the local
search within the global space. These hybrids performed better than the originals and provided
more stability. DE assisted TS and provided the best results, and it was the fastest.

In [18], an ABC-based approach is proposed. This method combines Extreme Optimization
(EO) with 2 different versions of ABC. EO provides new insights into the optimization of
metaheuristics due to the fact that only the worst variables in the suboptimal solutions are
selected to be mutated, instead of favoring the good ones; this is provided by the strong local-
search capability of EO. The introduction of EO to ABC is applied when the global optimum
is not becoming better for several iterations. The results show that the addition of EO to ABC
outperformed other metaheuristics such as PSO on the single-diode model (mean RSME of
1.1678 × 10−3) and on the double-diode model (mean RSME of 1.1479 × 10−3). The major
drawback is that EO has a higher computation cost than other methods. The experiments were
run in MATLAB.

The authors of [115] presented a variant of the Covariance Matrix Adaptation Evolu-
tion Strategy. CMA-ES is an efficient derivative-free optimization algorithm. It operates
using the 3 typical evolutionary operations (recombination, mutation and selection). The
proposed variant combines CMA-ES with 2 strategies that can adjust the evolutionary
directions and enrich the population diversity (Anisotropic Eigenvalue Adaptation and
Local Search). The results show that the algorithm was competitive in terms of convergence
efficiency and accuracy, with a mean RSME of 9.8603 × 10−4 and Standard Deviation of
1.6550 × 10−17 on the single-diode model and mean RSME of 9.8402 × 10−4 and Standard
Deviation of 1.3398 × 10−12 on the double-diode model. It also had a good balance of
exploration and exploitation. The simulation and experiments were implemented with
MATLAB.

The Whale Optimization Algorithm is a recent metaheuristic that simulates the hunting
behavior of humpback whales. The basic WOA is composed of three consecutive stages:
encircling prey, bubble-net attacking and searching for prey. In [116], a variant of WOA is
used to estimate the parameters of a PV system. The proposed method, RLWOA, adopts a
modified conversion parameter update rule and relies on the Logistic Model to balance
between exploration and exploitation. This algorithm mitigates the slow convergence
and ease of being trapped in local optima of the original. The results show that RLWOA
performed better or at least competitively with standard WOA, other WOA variants and
other metaheuristics with a mean RSME of 9.8602 × 10−4 on single-diode. The experiments
were run in MATLAB.

The work in [117] presents a new optimization method called backtracking search
algorithm with competitive learning (CBSA). The principle basis of BSA is composed of
4 parts: the initialization of the population, selection, genetic operators such as mutation or
crossover and second selection in order to select the best candidate. The main idea of CBSA
is to increase the chance of the backtracking algorithm to jump out of the local optimum by
the designed competitive learning machine. Each population is divided in two subgroups,
then each subgroup has three different search operations in order to update its individuals.
Unlike other metaheuristics, CSBA does not need any extra control parameters. The results
show the superiority of CBSA for complex optimization problems with a mean RSME of
9.8602 × 10−4 on the single-diode model. The experimentation was performed in MATLAB.

Another interesting metaheuristic is found in [118]. The author presents an advanced
version of the Gray Wolf Optimizer [119] applied to parameter estimation. GWO is moti-
vated by gray wolf behavior. Wolves are divided into four categories: Alpha wolves, which
are dominant, and beta wolves, which are used to assist alpha wolves in decision making
or in other activities. The order given by alpha and beta is followed by the delta wolves.
Finally, the omega wolves play the role of scapegoat. The presented method is known as
the Intelligent Gray Wolf Optimizer, which incorporates sinusoidal truncated functions as
a bridging mechanism and opposition-based learning. The results show that the algorithm
was competitive with other optimizers, with a mean error of 4.65 × 10−13 on single-diode
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mono-crystalline, a mean error of 1.07 × 10−12 on double-diode mono-crystalline, a mean
error of 8.50 × 10−12 on single-diode poly-crystalline and a mean error of 1.95 × 10−12 on
double-diode poly-crystalline. Additionally, execution time was not compromised.

A hybrid between PSO and GWO is found in [120]. The fundamental principle of this
hybridization is to ingrate the social thing capability of PSO with the local search ability of
GWO. After performing PSO, each particle position with a certain probability is updated
using the average of the three best wolves. This method reduces the drawbacks of PSO,
increasing the possibility of the running of local optimums and improving the balance
between exploration and exploitation. The results confirm the superiority of PSO–GWO
compared with other competitive methods, with an RMSE of 3.06 × 10−3 and an MAE of
2.43 × 10−3 on a PV module model.

In [121], a variant of the Chicken Swarm Optimization is used to solve this problem.
CSO [122] is inspired by the foraging behavior and hierarchy of chicken flocks. In CSO,
each chicken is considered a potential solution. The chicken flock is divided into the rooster
subflock, hen subflock and chick subflock according to the fitness of each individual. Each
group uses a different update mechanism to update its position. The algorithm is upgraded
by using a Spiral Movement Strategy. The spiral movement allows each hen to bypass the
rooster and explore a wider space instead of being limited to the search space between
them. The experimental results show that the algorithm performs better in robustness
and accuracy than other metaheuristics with a mean RSME of 9.8602 × 10−4 and standard
deviation of 2.3517 × 10−12 on a single-diode model and a mean RSME of 9.8366 × 10−4

and standard deviation of 1.4171 × 10−6 on single-diode model.The experimentation was
performed in MATLAB.

Another interesting proposal is found in [123]. An Enhanced JAYA (EJAYA) is pre-
sented. The basis of the original JAYA [124] algorithm is as follows: After initializing the
solutions, the algorithm identifies the best and worst solutions and modifies all the solu-
tions based on them. All of the solutions that have better performance than the originals
are kept. This process is repeated until the stop criteria are achieved. EJAYA presents three
improvements: A modified evolution operator to increase the probability of approaching
the victory. A simple deterministic population resizing to control the convergence rate
during the search and a generalized opposition-based learning mechanism to avoid being
trapped on local optima. The results indicate that the algorithm can estimate the most
accurate model parameters with a mean RSME of 9.8602 × 10−4 on a single-diode model
and a mean RSME of 9.8248 × 10−4 on a double-diode model. It also provided a high
computational efficiency among the compared methods.The method was implemented in
MATLAB.

The work in [125] presents a Marine Predator Algorithm [126] applied to parameter
estimation. The optimization process of MPA is divided into three main phases: The first is
in high-velocity ratio or when prey is moving faster than the predator. The second is when
both are moving at the same pace and the third is in a low-velocity ratio when the predator
is faster than the prey. The algorithm extracted PV parameters in an accurate manner, fast
speed, less time of computation and high reliability and robustness with a mean RSME of
7.73 × 10−4 on a single-diode for a France Solar cell and a mean RSME of 7.65 × 10−4 on
double-diode for a France Solar cell. The examination and test occurred via MATLAB.

A novel approach is found in [127] presenting a variant of P system Optimization
Algorithms (POAs). POAs are helpful and reliable search techniques that abstract the
structure and function of living cells. The proposed Micro-change Field Effect P System is a
deeper exploration of the standard POA. The experiments showed that the method can pro-
duce solutions of high quality and has great stability with a mean RSME of 9.8606 × 10−4

on the single-diode model and a mean RSME of 9.8256 × 10−4 on the double-diode model.
The method was implemented in MATLAB.

In the Table 6, a summary of the reviewed models is presented.
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Table 6. Models for parameter estimation. SD: single diode, DD: double diode, MC: monocrystalline,
PC: polycrystalline.

Type Features Error

ABC and CE

Combines Extreme
Optimization with ABC. EO is
introduced in ABC when the
global optimum is not
improving. EO has a high
computation cost. [18]

RMSE: SD: 1.1678 × 10−3 DD:
1.1479 × 10−3

CMA-ES

This evolutionary algorithm
brings a good balance
between exploration and
exploitation and is
competitive with other
methods. [115]

RMSE: SD: 9.8603 × 10−4 DD:
9.8402 × 10−4

WOA and LM

A variant RLWOA changes
the parameter update rule and
relies on the Logistic Model to
balance exploration and
exploitation [116]

RMSE: SD: 9.8602 × 10−4 DD:
—

CBSA

Combines the exploratory
capacities of WOA and
convergence capacities of
Social Group Optimization.
[117]

RMSE: SD:9.8602 × 10−4 DD:

GWO

Improves basic GWO with a
new bridging mechanism and
opposition-based
learning. [118]

MAE: SD-MC: 4.65 × 10−13

DD-MC: 1.07 × 10−12 SD-PC:
8.50 × 10−12 DD-PC:
1.95 × 10−12

GWO and PSO

This method combines the
social thing capability of PSO
with the local search ability of
GWO. [120]

RMSE: SD: 3.06 × 10−3 DD: —

CSO
CSO is improved by a Spiral
Movement Strategy in order
to improve the results. [121]

RMSE: SD: 1.1678 × 10−3 DD:
—

JAYA

This method improves basic
JAYA with an improved
evolution operator, control of
the size of the population and
generalized opposition-based
learning. [123]

RMSE: SD: 9.8602 × 10−4 DD:
9.8248 × 10−4

MPA

The algorithm extracted the
parameters faster and with
high reliability and
robustness. [125]

RMSE: SD: 7.73 × 10−4 DD:
7.65 × 10−4

POA

Proposes an extension of
standard POA. The results
show that the method
produces solutions of high
quality. [127]

RMSE: SD: 9.8606 × 10−4 DD:
9.8256 × 10−4

GA, PSO, DE and others

Propose a comparison of
different algorithms and
crossover between them;
differential evolution assisted
by Tabu Search is found to be
the best. [112]

RMSE:— SD: — DD: —
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3.5. Defects Detection

Finding defects on the surface of the PV cells is a problem completely related to com-
puter vision. As observed in the bibliography, the most used technique for photographing
the images is electroluminescence. The datasets are usually private, but there are some
exceptions. We can see in Figure 7 the most used techniques for detecting defects.

Figure 7. Most used IA method for defect detection.

Classical approaches as found in [128], which tried to detect defects in the solar
modules using image processing techniques. In order to segment the different modules,
they used the first derivative of the statistic curve in order to find the division line between
each chip. After that, they used another technique, the otsu method, to obtain a binary
image. Finally, the algorithm tries to identify the state of the module using the geometry
of the resulting image. This algorithm produced interesting results, with a recognition
rate of 80% on cracked modules, 95% on fragmented and 99% on good state modules.
The recognition was also quite fast. The algorithms were implemented and applied via
MATLAB.

Another approach is found in [129]. This method combines the image processing
techniques with Support Vector Machines. The dataset featured 13,392 samples of EL
images of solar cells. The images are preprocessed in order to reduce spatial noises and
to accurately highlight crack pixels in images. After that, binary processing is performed,
and finally, the features are extracted from the image. These features are used by different
SVMs in order to classify the cells. The results present that the SVM with penalty parameter
weighting is the best SVM, with a correct detection rate of 91%, with specificity and accuracy
of more than 97%. The experiments were run in MATLAB.

In [130], the author compare Convolutional Neural Networks with SVM. The SVM
is trained with data from the ELPV dataset, composed of 2624 EL images of solar cells,
obtained by finding the features of the images using different feature descriptors. The
CNN used was a pretrained VGG19 with the upper layers changed and trained with
the examples. The models were tested with both monocrystalline and polycrystalline
modules. The results show that both classifiers were useful for visual inspection, both with
an average accuracy of 82.4%. The algorithms were implemented in Python, using Keras
for the Neural Network.

The work in [131] presented a similar approach using SVM and CNN. The CNN was
composed of two convolutional layers with leaky-relu and max-pooling. The convolutional
part was aided by two leaky-relu dense layers and the output layer. The SVM was trained
with different features extracted from the images. The dataset was built with 90 images of
full-sized commercial modules that were segmented afterward, obtaining 540 cells. The
results show similar behavior in both methods, with an accuracy of 98%. The article also
tackled unsupervised learning, trying to cluster the images by two features. This resulted
in a model that was able to assign the correct label in 66% of cases.The algorithms were
implemented in Python, using Tensorflow and OpenCV.

The work found in [132] presents a CNN with 13 convolutional layers, an adaptation
of the VGG16 architecture. The dataset was obtained by photographing solar modules of
6 × 12 cells with an EL camera. The network was trained using oversampling and data
augmentation in order to reduce the error. The results show that the network performed
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the best when both oversampling and data augmentation were presented with a Balance
Error Rate of 7.73% on binary classification problems of quick convergence. The method
was implemented with Keras. The preprocessing was performed with OpenCV.

The authors of [133] present new models that are trained not only with images with
cracks but also with corrosion. The images were obtained by photographing modules with the
EL technique and performing segmentation afterward, obtaining 5400 images. The models
are SVM and CNN. The CNN is composed of two convolutional layers. The SVM parameters
are optimized by a grid search. The results show a precision of 99%, an improvement over
other methods. The experiments were conducted via Keras and Tensorflow.

A variation of convolutional networks is found in [134]. A multichannel CNN is
presented. This network has different convolutional layers for each kind of input. This
network also can use inputs of different sizes. After each convolutional layer, a dense layer
is applied. Finally, a final dense layer combines all the previous data in order to classify the
image. This multichannel CNN improves the feature extraction of single-channel CNNs.
The dataset was made by 8301 different EL images of cells. The results show a 96.76%
accuracy, much more than the 86% presented by single-channel CNNs. The algorithms
were implemented in Python using Keras.

The model presented in [135] is composed of six convolutional layers using different
regularization techniques such as batch optimization. The dataset used was the ELPV
dataset, with 2624 images. The resulting network is a light architecture that achieved high
performance using few parameters with an accuracy of 93%.The experiments were run
on Tensorflow.

In order to further improve the results, a new approach is presented in [136]. The
authors use Fully Convolutional Neural Networks. An FCNN is a CNN without any dense
layer. The model used is the U-net, which has been used previously in biomedical image
problems with low data. This dataset was composed of 542 EL images. It is composed
of 21 convolutional layers of different sizes. The results show that it was better to accept
a slight decrease in the performance in order to improve the speed of the system. The
algorithms were implemented in python using Keras and Tensorflow.

Wavelet Transform is used in [137]. This method combines two kinds of WT: Discrete
WT and Stationary WT in order to extract textural and edge features from solar cells that
have been previously preprocessed. The dataset was composed of 2300 EL images. Finally,
two different classifiers are used: An SVM and an FFNN. The best model was the FFNN
with 93.6% accuracy, over the 92.6% presented by the SVM.

Another Neural Network used is the Complementary Attention Network in [138].
The CAN is composed of a channel-wise attention subnetwork connected with a spatial
attention subnetwork. This CAN can be grouped with any CNN, Fast R CNN [139] being
the one chosen by the authors. Two datasets were used, one composed of 2029 images
and another of 2129 EL images. The network was used for classification and detection,
obtaining an accuracy of 99.17% for classification and a mean average precision of 87.38%.
The network was faster and had similar parameter numbers to other commercial methods.
The algorithms were implemented using Python.

A very interesting approach is presented in [140]. This method is Deep-Feature-Based,
extracting features through convolutional neural networks that are classified afterward for
classification algorithms such as SVM, KNN or FNN. The particularity of this system is
that it used features from different networks. These features are combined using minimum
redundancy and maximum relevance for feature selection. The dataset used was the ELPV
dataset, with 2624 images. The selected CNNs for feature extraction are Resnet-50, VGG-16,
VGG-19 and DarkNet-19. The best method was found with SVM, selecting 2000 features
with an accuracy of 94.52% in two-class classification and 89.63% in four-class classification.

In the Table 7, a summary of the reviewed models is presented.
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Table 7. Models for detection of faults.

Type Features Accuracy Dataset Size

Image Processing Techniques

Segmentation +
obtention of binary
image +
classification. [128]

from 80% to 99% —

SVM + Image Processing Techniques

Images are preprocessed
and features are
extracted from the
image. These features
are used in an SVM with
penalty parameter
weighting. [129]

97% 13,392

SVM and CNN

Pretrained VGG19 using
different feature
descriptors. Similar
results for both
methods. [130]

82.4% 2624

CNN is composed of
2 layers using leaky-relu.
SVM trained with
different features
extracted from the
images. Similar behavior
in both models. [131]

98% 540

CNN is composed of
2 convolutional layers.
SVM parameters
optimized by search
grid. [133]

96%. 2840

CNN

Thirteen convolutional
layers, an adaptation of
VGG16. Uses
oversampling and data
augmentation. [132]

Uses a different
measurement 5400

Multichannel CNN.
Accepts inputs of
different sizes. Improves
the feature extraction of
single-channel
CNN. [134]

96.76% 8301

Six convolutional layers.
Regulation techniques
such as batch
optimization. [135]

93% 2624

Fully Convolutional
Neural Network.
Pretrained u-net,
composed of
21 convolutional layers.
[136]

Uses a different
measurement 542

CNN aided by a
Complementary
Attention Network,
composed of a
channel-wise attention
subnetwork connected
with a spatial attention
subnetwork. Usable
with different
CNNs. [138]

99.17% 2300

WT+ SVM and FFNN

Combines discrete WT
and stationary WT to
extract features and
SVM and FFNN to
classify them. [137]

93.6% 2029

CNN + SVM, KNN, etc.

Extracts features from
different networks,
combining them with
minimum redundancy
and maximum relevance
for feature selection.
Uses Resnet-50, VGG-16,
VGG-19 and
DarkNet-19. [140]

94.52% 2624
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4. Discussion

In Section 3, the different IA techniques applied are reviewed for each problem by
explaining various important works. In this section, a discussion about the state of the
art is performed, summarizing the trends of research and some possible new approaches
to consider.

The tracking of the Maximum Power Point has been considered in numerous ways,
from traditional and simple methods to methods that use complex technology such as
neural networks. The most simple methods still have importance, since a large amount of
systems do not need complex MPPT algorithms in order to optimize production. The most
complex algorithms are used only in the biggest power plants, where the configuration of
the PV arrays, and the large amount of them, makes the process of tracking the Maximum
Power Point more complex. Comparing the different techniques presented, it is clear that
the most used technologies are the Feed-Forward Neural Networks and the FLC systems
(Figure 8). Neural Networks perform better than Logic Systems, but they have some flaws.
Neural Networks are highly demanding in terms of computational cost compared with FL
systems. The need for large amounts of data is an intrinsic problem of Neural Networks,
but it is not as important as it used to be thanks to the high availability of data. Another
important problem is the complexity in the optimization of the hyper-parameters, since
Neural Networks have a large amount of them. The solution has been found by using
optimization algorithms, such as metaheuristics. These algorithms can be used to find the
best combinations of parameters or even to find the optimal architecture. As we observed,
the problem is still regarded nowadays, since there are ways to improve the efficiency and
performance of the most complex systems. To fulfill this objective, more of the newest
technologies applied in other sectors should be tried, since as it has been confirmed with the
previous works that these kinds of algorithms perform really well on this problem. The FL
methods and metaheuristics are usually implemented with MATLAB, but Neural Networks
can be implemented with Python as well, using libraries such as Tensorflow [141].

(a) (b)

(c) (d)

Figure 8. Different algorithms for each of the problems. (a) MPPT; (b) forecasting; (c) parameter
estimation; (d) defects detection.
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Forecasting is a key problem in PV systems. The estimation of the energy produced by
solar plants has been approached as a regression problem in the majority of papers. Due to
the availability of data, neural models are highly suitable for solving this problem (Figure 8).
The trend is to use the newest neural architectures while optimizing their parameters and
their architectures using other methods such as metaheuristics. As observed, an increase
in the complexity of the networks improves the results, but this is not the only way of
increasing performance. The combination with other systems such as Wavelet Transform
increases reliability. Alternative network systems such as Recurrent Networks or Dentritic
Networks further improve the results of traditional Neural Networks. This area also has
some room for improvement since forecasting is a tricky problem due to its dependence
on a large amount of variables. For future research, it would be interesting to test a
new combination of parameters, improve the datasets or even try the most innovative
technologies that have been used in similar problems. Most of the works are run on
MATLAB, but there is an increase in the presence of Python in the latest years due to the
Deep Learning Libraries.

Estimating the parameters of the PV models has been conducted with a large number
of different algorithms, most of them from the family of metaheuristics (Figure 8). The
results are quite similar between them in terms of error (Figure 9); this fact shows that
trying to further minimize error is not a worthy effort. The most promising works present
a mixture of different metaheuristics, solving the problems or flaws of one metaheuristic
by using others. The focus of research should be moved towards finding algorithms with
lower computational cost while maintaining the same levels of error. The majority of the
methods can be found implemented in MATLAB [141].

(a) (b)

Figure 9. RMSE of the different models for parameter estimation. (a) Single-diode; (b) double-diode.

Analyzing the state of modules or cells has always been important for optimizing
production since damaged modules are not as productive as they should be. As it seen, this
problem has been applied mostly to the cell level, segmenting images previously taken of
solar modules. Some author have even presented open datasets in order to test the models
with a more regular amount of data. The main reason for this problem is related to its
nature. The majority of models are trained with unbalanced datasets since the number
of damaged modules is usually considerably smaller than good state modules. Another
different way of improving the neural models is using pretrained neural networks such
as VGG-19 in order to make use of the patterns found in other datasets. Even with their
problems, in the bibliography, a considerable amount of models are presented, and they
obtain good results (Figure 10); the Convolutional Neural Networks being the most used
ones (Figure 8). However, there is a lot to do in this area, mostly, all of the models only use
electroluminescence images; the utilization of other techniques such as thermography could
bring more information and better results to the models. Another interesting new approach
could be fixing the unbalance in the data. Some studies have tried to use simple methods
such as flips or rotations, but it is necessary to implement more complex algorithms to
generate images that can be used to better train the models. The deep learning methods are
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mostly implemented with Tensorflow, and OpenCV is usually used for preprocessing the
images. MATLAB is used for traditional methods.

Figure 10. Accuracy of the different models for detection.

5. Conclusions

In this article, the relationship between Artificial Intelligence and Photovoltaic Systems
is explained. Numerous problems in this sector can be solved with the use of AI techniques.
These techniques present better performance than traditional methods.

Different techniques are applied to the MPPT problem, Neural Networks being the
ones which provided better results, even considering their limitations such as high compu-
tational requirements or the need for large amounts of data, other approaches involve Fuzzy
Logic and Metaheuristics. The forecasting problem is key for PV installations, different
models have been created to solve this problem, most of them related to Artificial Neural
Networks. These models are usually aided by other algorithms such as metaheuristics to
optimize the architecture or the hyperparameters. The estimation of model parameters is
also a really important problem, a large variety of metaheuristics have been used to solve
this problem with notably good results in terms of error and efficiency. The detection of
faults in PV modules has been proved to be vital for the maintenance of PV installations.
This is mostly conducted at the cell level and usually only with electroluminescence images.
Convolutional Neural Networks are the most used technology for the classification of
images, but they need to be empowered with some techniques such as Data Augmentation
or Knowledge Transfer.

Research in these areas is not finished, and it is still a hot topic nowadays as it can be
seen from the number of publications in recent years; the ways of improving performance
and efficiency are still being researched to adapt to every Photovoltaic System. It is observed
that one of the most important issues is the quality and quantity of the data. Machine
Learning methods need big amounts of data to be able to find patterns for predicting. This
issue is even more critical in Deep Learning methods. This research group is addressing
this issue for defect detection, creating synthetic EL images of photovoltaic cells to obtain
more examples to train models. These images could even be used in other problems of
PV systems.
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Abstract: Electrical energy is critical to the advancement of both social and economic growth. Be-
cause of its importance, the electricity industry has historically been controlled and operated by
governmental entities. The power market is being deregulated, and it has been modified throughout
time. Both regulated and deregulated electricity markets have benefits and pitfalls in terms of energy
costs, efficiency, and environmental repercussions. In regulated markets, policy-based strategies are
often used to deal with the costs of fossil fuel resources and increase the feasibility of renewable
energy sources. Renewables may be incorporated into deregulated markets by a mix of regulatory
and market-based approaches, as described in this paper, to increase the systems economic stability.
As the demand for energy has increased substantially in recent decades, particularly in developing
nations, the quantity of greenhouse gas emissions has increased fast, as have fuel prices, which are
the primary motivators for programmers to use renewable energy sources more effectively. Despite
its obvious benefits, renewable energy has considerable drawbacks, such as irregularity in genera-
tion, because most renewable energy supplies are climate-dependent, demanding complex design,
planning, and control optimization approaches. Several optimization solutions have been used in the
renewable-integrated deregulated power system. Energy storage technology has risen in relevance as
the usage of renewable energy has expanded, since these devices may absorb electricity generated
by renewables during off-peak demand hours and feed it back into the grid during peak demand
hours. Using renewable energy and storing it for future use instead of expanding fossil fuel power
can assist in reducing greenhouse gas emissions. There is a desire to maximize the societal benefit of
a deregulated system by better using existing power system capacity through the implementation
of an energy storage system (ESS). As a result, good ESS device placement offers innovative control
capabilities in steady-state power flow regulation as well as dynamic stability management. This
paper examines numerous elements of renewable integrated deregulated power systems and gives
a comprehensive overview of the most current research breakthroughs in this field. The main ob-
jectives of the reviews are the maximization of system profit, maximization of social welfare and
minimization of system generation cost and loss by optimal placement of energy storage devices
and renewable energy systems. This study will be very helpful for the power production companies
who want to build new renewable-based power plant by sighted the present status of renewable
energy sources along with the details of several EES systems. The incorporation of storage devices in
the renewable-incorporated deregulated system will provide maximum social benefit by supplying
additional power to the thermal power plant with minimum cost.

Keywords: regulated system; deregulated system; energy storage devices; modern power system;
profit; compressed air energy storage
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1. Introduction

Electrical energy storage (EES) systems have demonstrated unique skills in coping
with several important aspects of electricity, for instance, hourly changes in demand and
pricing [1]. Firstly, EES saves power costs by storing electricity obtained during off-peak
hours when its price goes down, for use at peak hours, rather than electricity purchased
then at higher costs [2]. Second, in order to increase power supply stability, EES systems
assist users when electricity network disruptions occur as a result of natural catastrophes,
for example. Thirdly, it preserves and enhances power quality, frequency, and voltage [2].
Electric vehicles with batteries are the most potential off-grid method for replacing the
conventional sources with renewable energy [3]. Smart grid relates to power grid updates.
Smart grid technology integration makes the grid more adaptable and responsive, with the
potential to provide real-time feedback by sharing data among electricity producers and
consumers to provide a more sustainable and efficient power supply. EES is one of the key
elements in developing a smart grid [4].

1.1. Role of EES

Two properties of electricity cause challenges with its usage while also creating market
demand for EES. To begin with, power is consumed at the same moment it is created. To
fulfill the shifting demand, the appropriate amount of power must constantly be given.
The second trait is that power plants are often positioned distant from where electricity is
utilized [5].

1. Because power lines are constantly required, if a line fails (due to congestion or any
other reason), the provision of energy is halted; also, because lines are always required,
delivering power to mobile applications is problematic.

2. Depending on the locations and amounts of power supply and demand, a large
amount of power flow may be focused onto a single transmission line, causing
congestion.

1.1.1. Optimization: High Generation Cost during Peak Hours

Generation costs vary across periods. Power suppliers should supplement base-load
power plants with less cost-effective but more adaptable kinds of production, such as oil-
and gas-fired generators, during peak hours. Costly methods of generating can be shut
down during off-peak hours. This surplus can be held in EES and used to lower generating
costs. In contrast, EES can reduce energy cost for customers because it can store energy
purchased at cheap off-peak prices and use it during prime times in place of costly power.
During off-peak time, users can recharge batteries and may also sell to utilities or to other
users during peak time [5–7].

1. From the standpoint of utilities, there is a significant opportunity to lower total
generating costs by storing electricity during the off-peak hours and reintroducing it
into the power system during hours of maximum demand.

2. During peak periods of higher-than-average energy use, power suppliers must sup-
plement the conventional base-load power facilities with less costly but more flexible
sources of production, such as oil- and gas-turbine generators.

3. Conversely, from the perspective of customers, EES can cut down the financial burden
since it can store electricity purchased at cheap rates during off-peak and use it during
peak hours, which would have been costlier if purchased during peak hours.

1.1.2. Continuous and Flexible Supply: Need of the Hour

The main issue for utilities is delivering a consistent and adaptable power supply
for consumers, which is a critical quality of energy. If the proper amount of electricity
is not accessible when consumers need it, power quality will suffer and service will be
disrupted in the worst-case situation. To meet fluctuating power consumption, sufficient
amounts of energy should be produced on a regular basis, based on an accurate assessment
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of demand variations [1,2]. Power generators require two extra functions in addition to the
basic generating function. Firstly, producing facilities must have a “kilowatt function” that
permits them to generate enough power (kW) as per requirement. Secondly, generating
facilities must feature a frequency control mechanism that adjusts the output to fit minute-
by-minute variations. To take care of the fluctuating power consumption, adequate amounts
of energy should be generated and be available, based on an accurate estimate of demand
fluctuations. Such issues are intended to be addressed by EES. When produced electricity
is in low supply, pumped hydro has been routinely employed to deliver a huge amount of
power [7].

1.1.3. Distance between Generation and Consumer: A Deciding Factor

Consumers’ premises are usually located far from power-producing facilities, increas-
ing the likelihood of a power failure [8]. Natural calamities and causes due to human
factors trigger system failures that interrupt power supply and have the potential to affect
broad areas [9]. When power failures occur, EES will support consumers by continuing
to provide electricity. Semiconductor and LCD manufacturing are two industries where
voltage sag for just a few milliseconds has an impact on product quality, employ EES [10].

1.1.4. Power Grid Congestion: A Point of Concern

The power flow in transmission networks is determined by the demand and supply.
Power congestion can occur during the process of balancing supply and demand [11].
Utility companies strive to avoid future bottlenecks by moving generating output or estab-
lishing additional transmission connections. EES, when installed at appropriate places such
as substations at the extremities of heavily loaded lines, can help to reduce congestion [12].
This method also helps utilities delay or cease power network reinforcement.

1.1.5. Transmission by Cable: Point of Difficulty

Because power transmission usually entails the use of cables, supplying power to
mobile applications and isolated areas is difficult. EES technology, with its mobility and
charging functionality, can be beneficial to address this issue. It may be difficult to charge
an EV in remote places without access to a power grid, but EES can aid in the creation of a
green transportation system that does not rely on traditional IC engines [13].

1.2. Emerging Needs for EES

Two key market needs for EES as a critical and evolving technology are: (i) the use of
more renewable energy and lower consumption of conventional fuel and (ii) a future smart
grid [1] (shown in Figure 1).

1.2.1. A Step towards Greener Earth: More Renewable Energy, Less Fossil Fuel
On Grid Areas

The variability in the output of renewable sources makes it challenging to regulate the
frequency of the system, and if the frequency deviation is too great, system performance
may suffer [14].

Thermal generators are not operated at full capacity but rather with a positive and
negative output margin (i.e., output increases and decreases) that is utilized to change
frequency. If EES can reduce output variation, thermal generator margins can be decreased,
and they can run more efficiently [6].
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Figure 1. EES: Sustainable option towards greener earth.

Off-Grid Areas

Fossil energy should be replaced with non-fossil energy. This not only eliminates the
prohibitive initial costs but also provides a good clean alternative. In particular, low-carbon
power produced primarily from renewables ought to take the place of fossil fuels.

1.2.2. Smart Grid

Existing equipment may be energized with EES and be included into the smart grid.
By employing a home energy management system to track their actual usage in real
time, residential consumers will take an active role in changing their energy consumption
patterns [15]. EVs are projected to be a new source of electricity as well as a potential storage
medium in a smart grid that uses a portable, distributed energy resource as a load-shifting
function, allowing utilities to continue delivering power even as electricity costs rise.

2. Types of Electrical Energy Storage System (EES)

EES systems classified on the basis of the kind of energy consumed are: (i) mechanical,
(ii) electrochemical, (iii) chemical, (iv) electrical, (v) thermal and (vi) superconducting
magnetic categories [8,12,16]. The classification of EES based on type of energy consumed
is shown in Figure 2.

576



Batteries 2022, 8, 124

Mechanical

P,^

CAE^

&E^

Chemical

,2

&uel Cell

^N'

Electrical

D>C

^ME^

Thermal

^ensible ,eat 
^toraŐe

>atent ,eat 
^toraŐe

Thermochemical 
Absorption

Electrochemical

>ead 
acid

NiCd

>i

Na^

Redox 
&low

,ybrid 
&low

^uperconductinŐ 
MaŐnetic

Figure 2. Classification of EES based on type of energy consumed.

3. Working of Electrical Energy Storage System (EES)

3.1. Mechanical Storage Systems

Mechanical energy storage devices store received energy by utilizing kinetic or gravi-
tational forces. These systems are useful in real-world applications due to quality materials,
advanced computer control systems, and imaginative design [17]. Mechanical energy
storage operates in complicated systems that employ heat, water, or air in conjunction with
compressors, turbines, and other machinery.

3.1.1. Pumped Hydro Storage (PHS)

Pumped hydro storage power plants provide for more than 95% of the world’s current
electrical storage capacity [18]. In pumped hydro storage systems, two water reservoirs
at different heights are utilized to pump water during off-peak hours (charging), and as
needed, water flows downstream from the top pool to the lower reservoir, driving a turbine
that produces electricity (discharging). The efficiency of the PHS plant ranges from 70% to
85% [19]. The main benefits of this system are long life and almost unlimited cycle stability,
while its drawbacks are its topography and heavy land use. The world’s largest PHS plants
have installed capacity of 3003 MW and 2400 MW (as of December 2021), respectively.

3.1.2. Compressed Air Energy Storage (CAES)

CAES has been used in a range of industrial applications since the eighteenth century.
Electricity is used to compress air and store it in a subsurface construction or an above-
ground system of containers or lines. Subsurface storage options include tunnels, aquifers,
and abandoned mines. Diabatic technology is well proven; the plants are highly reliable
and can operate without external power [20] (shown in Figure 3). CAES has a large
capacity, but it has drawbacks such as low round-trip performance (less than 50%) and
geographical constraints.

577



Batteries 2022, 8, 124

Figure 3. Compressed air energy storage system schematic.

3.1.3. Flywheel Energy Storage (FES)

In flywheel energy storage, kinetic energy is stored in an accelerated rotor which is
a massive rotating cylinder. Electricity is supplied to the flywheel using a transmission
mechanism and with rise in the speed, amount of stored energy increases [17]. Flywheels
are commonly utilized for power quality in industrial and other applications. Flywheels
have advantages of exceptional cycle stability and long life, low maintenance, greater power
density and the use of environmentally friendly materials. However, it has demerits such
as high self-discharge and poor current efficiency [21]. Efforts are focused on improving
the management of flywheels as power storage devices for usage in cars and industries for
long operation hours (shown in Figure 4).

Figure 4. Flywheel energy storage system schematic.

3.2. Electrochemical Storage Systems

Electrochemical energy storage devices have the ability to make a major contribution to
the deployment of sustainable energy. Electrochemical energy storage is based on systems
with high energy density (batteries) or power density (electrochemical capacitors). High
energy and high power densities in the same material are increasingly required in current
and near-future applications [17,22]. These are categorized in two types: secondary batteries
and flow batteries. The secondary batteries have again classified into following types: lead–
acid, NiCd/NiMH, Li-ion, metal–air, sodium–sulfur and sodium–nickel chloride [22].
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3.2.1. Secondary Batteries

A secondary battery, or charge accumulator, is a cell or set of cells with reversible cell
processes. This implies that the original chemical conditions inside the cell can be restored
by allowing current to flow into it, i.e., charging from outside [22].

Lead–Acid Battery (LA)

Lead–acid batteries are the most widely used form of battery in the world, dating back
to roughly 1890. Service life is typically 6–15 years, with a service life of 1500 cycles at a
% depth of discharge and a cycle efficiency of 80–90% [22–24]. The downsides are lower
energy density and the use of lead, a dangerous element that is prohibited or restricted in
some locations. Advantages include a good cost/performance ratio, simple recyclability,
and a simple charging method. The current focus of lead–acid battery development is to
improve their efficiency for micro-hybrid electric vehicles.

Nickel–Cadmium and Nickel–Metal Hydride Battery (NiCd, NiMH)

Before the commercial launch of nickel–metal hydride (NiMH) batteries in 1995, nickel–
cadmium (NiCd) batteries had been in use since around 1915. NiMH batteries contain all of
the advantages of NiCd batteries, such as greater power density, marginally better energy
density, and a larger number of cycles, with the exception of a 10-fold lower maximum
nominal capacity. They are far more robust and secure than lithium-ion batteries. However,
due to the toxicity of cadmium, they have been limited for consumer use since 2006. NiMH
batteries are currently about the same cost as Li-ion battery packs [22].

Lithium-Ion Battery (Li-Ion)

Lithium-ion batteries have been the most important form of storage in portable and
mobile applications since about the year 2000. With a cell voltage of only 1.2 Volts, one
lithium-ion cell may substitute three NiCd or NiMH batteries [22]. The most significant
impediment is the high cost of the unique packaging and incorporated overload protection
circuits. Safety is a serious problem in lithium-ion battery technology. Most metal oxide
electrodes are thermally unstable and can melt at high temperatures. Lithium-ion batteries
feature a monitoring device that prevents overcharging and discharging to lessen this
risk [22]. A voltage regulation circuit is often provided to monitor and avoid voltage
changes in each individual cell. Lithium-ion battery technology is constantly improving,
with plenty of possibilities for advancement. The evolution of cathode materials is being
studied [22–26]. The construction of typical Li-ion battery module is depicted in Figure 5.

Metal–Air Battery

A metal–air electrochemical cell’s anode is made of pure metal, while the cathode is
connected to an infinite supply of air. In the electrochemical process, only oxygen from
the air is used. Because of its greater specific energy excluding oxygen (theoretically 11.14
kWh/kg), the lithium air battery is the most enticing of the several metal–air battery
chemical couples [22]. Due to lithium’s high reactivity to air and humidity, it can catch fire,
creating a serious safety risk. Only a zinc–air battery with a theoretical specific energy of 1.35
kWh/kg (without oxygen) is theoretically practical at the moment. It is difficult to design
rechargeable zinc–air cells since zinc precipitation from the water-based electrolyte must be
properly handled. Although a viable, electrically rechargeable metal–air system could offer
low material costs and high specific energy, none has yet attained marketability [22–26].

Sodium–Sulphur Battery (NaS)

In sodium–sulfur batteries, a solid beta-alumina ceramic electrolyte isolates the active
constituents (molten sulfur at the anode and molten sodium at the cathode). NaS batteries
have a discharge time of 6.0 to 7.2 h and a standard life cycle of around 4500. They are
both effective and quick to respond (round-trip efficiency based on AC is around 75%) [23].
Over 200 places in Japan have tested the NaS battery technology, largely for peak shaving.
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Many countries employ NaS batteries as well. Although the lack of a heat source is a
significant drawback, with correctly sized insulation, the heat developed in the battery
may be managed in frequent use by its own reaction heat. These batteries are suited for
high-frequency cycling applications [27,28]. The construction of typical NaS battery module
is depicts in Figure 6.

Figure 5. Typical Li-ion battery module.

 

Figure 6. NaS battery system.
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Sodium–Nickel Chloride Battery (NaNiCl)

The sodium–nickel chloride (NaNiCl) battery, also known as the ZEBRA battery is a
high-temperature (HT) battery that, like the NaS battery, has been available on the market
since approximately 1995 [24]. NaNiCl batteries outperform NaS batteries in terms of
safety and cell voltage, and they can withstand limited overload and discharge. These
batteries have been employed effectively in a variety of electric vehicle designs, and they
are a viable alternative for fleet applications. Upgraded variants of the ZEBRA battery with
greater power density values for hybrid electric vehicles, as well as high-energy versions
for conserving renewable power for load-leveling and industrial purposes, are presently
being developed.

3.2.2. Flow Batteries

NASA invented flow batteries in the early 1970s as an EES for long-term space
flights [25]. They have the potential to store energy for hours or days and have a power
of many megawatts. Flow batteries are of two types: redox flow batteries and hybrid
flow batteries.

Redox Flow Battery (RFB)

The electrolytes present at the negative and positive electrodes of a redox flow battery
are anolyte and catholyte. During discharge, electrodes are continually provided with
dissolved active masses from the tanks; once converted, the product is returned to the tank.
During the charge exchange, a current flows between the electrodes, which may be used
by a battery-powered device. Redox flow batteries are being studied for use in electric
vehicles; however, electrolyte energy density has proved too low thus far. An RFB may
potentially be “refilled” in minutes by draining out the emptied electrolyte and replacing it
with recharged electrolyte. In RFBs today, many redox couples, such as a Fe-Ti system or a
poly S-Br system, have been investigated and tested (shown in Figure 7) [27,28].

Figure 7. Schematic of redox flow battery.

Hybrid Flow Battery (HFB)

One active mass in a hybrid flow battery (HFB) is kept within the electrochemical
cell, while the other is kept externally. The benefits of classic secondary batteries and
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RFBs are combined in HFBs. HFBs include the Zn-Ce and Zn-Br systems. The anolyte
is a Zn2+ ion-acid solution, and the electrodes are primarily carbon-plastic composites.
Exxon pioneered the Zn-Br hybrid flow battery in the early 1970s, and it is now being
commercialized by a variety of companies. In addition, 5 kW/20 kWh community energy
storage devices are also being developed [22,28].

3.3. Chemical Energy Storage

A chemical energy storage system is the only idea that allows for the long-term storage
of significant amounts of energy, up to TWh, even as periodic accumulation. SNG and
hydrogen may be used in a range of industries, including commuting, movement, heating,
and the chemical industry. They have lesser overall efficiency than PHS and Li-ion storage
technologies, but are more cost efficient and effective than ordinary batteries [26].

3.3.1. Hydrogen (H2)

An electrolyzer is a type of electrochemical converter that splits water into hydrogen
and oxygen using electricity. It is an endothermic reaction, which indicates that heat is
required throughout the process. Hydrogen may be stored under pressure in gas bottles or
tanks for nearly indefinite periods of time. Electrolysis releases oxygen into the environment
rather than retaining it, and oxygen from the air is utilized to create electricity [26].

3.3.2. Synthetic Natural Gas (SNG)

Methane (synthetic natural gas or SNG) may be synthesized to store energy. SNG can
be stored in pressure tanks, underground, or fed directly into the gas infrastructure. To
prevent energy losses, CO2 and H2 transport to the methanation plant should be avoided.
The fundamental drawback of SNG is its low efficiency as a result of conversion losses
in electrolysis, methanation, storage, transport, and power production [27]. The overall
AC-AC efficiency of 35% is significantly lower than that of hydrogen [13].

3.4. Electrical Storage Systems

The classifications of EES are as follows:

3.4.1. Double-Layer Capacitors (DLC)

DLCs, also known as super-capacitors, are a 60-year-old electrochemical double-layer
capacitor (DLC) technology. The extremely high capacitance values, on the order of thou-
sands of farads, and the capability to charge and discharge very fast due to extremely low
inner resistance are the two important properties. This technology offers a lot of space for
advancement because it might result in substantially greater capacitance and energy density
than standard capacitors, permitting for more compact designs. Durability, dependability,
no maintenance, prolonged lifetime, and functioning across a wide temperature range are
further benefits. With the exception of the chemical used in capacitors, which deteriorate
in 5–6 years regardless of the number of cycles, the lifetime surpasses one million cycles
without degradation. The efficiency is often more than 90%, with discharge times varying
from seconds to hours. DLCs are not suitable for long-term energy storage due to their
high self-discharge rate, low energy density, and hefty investment needs [28]. As a UPS, a
DLC is excellent for bridging small power disruptions. The electric automobile might be
used in a unique way, as a buffer system for acceleration and regenerative braking [4].

3.4.2. Superconducting Magnetic Energy Storage (SMES)

SMES devices store magnetic energy in a magnetic field that is generated by a su-
perconducting coil held less than its critical temperature. A temperature of around 4 ◦K
was required at the early age but now materials with higher critical temperatures (about
100 ◦K) have been developed and are now accessible. Particle detectors for high-energy
scientific experiments and nuclear fusion use large SMES systems with more than 10 MW of
power [29]. The main benefits of SMES are high overall round-trip efficiency (85–90%), the
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extremely high power output and the extremely fast reaction time: the required power is
practically instantly accessible [30]. The energy can be stored basically as long as the cooling
system is running, but longer storage times are restricted by the refrigeration system’s
energy demand.

3.5. Thermal Storage Systems

Thermal storage systems capture heat from a wide range of sources and preserve it in
an insulated storage for later use in industrial and residential applications. Thermal storage
systems are used to act as an intermediary between thermal energy demand and supply,
making them crucial for the integration of renewable energy sources [31].

There are three forms of thermal storage: sensible heat storage, latent heat storage and
thermochemical adsorption and absorption storage [17]. A storage medium can be a liquid
or a solid. Thermal energy can only be stored by varying the temperature of the storage
medium. A storage system’s capacity is determined by the specific heat capacity and mass
of the medium used. For latent heat storage, phase change materials (PCMs) are utilized
as storage media. Organic (paraffins) and inorganic PCMs (salt hydrates) are also viable
options for such storage systems. Latent heat is the energy transmitted during a phase
transition, e.g., ice melting [17]. It is also referred to as “hidden” heat since there is no
temperature difference during energy transmission. The most well-known latent heat—or
cold—storage method is the ice cooler, which uses ice in an insulated container or chamber
to keep food cool on hot days. The solid–liquid phase shift is used in the majority of PCMs
currently in operation, such as molten salts as a thermal storage device for concentrated
solar power (CSP) plants [32–41].

3.6. Superconducting Magnetic Energy Storage

A superconducting magnetic energy storage system (SMES) is a tools that stores
electricity from the electrical grid within the magnetic field of a coil contained of super-
conducting wire with very little energy loss. The SMES systems are categorized into three
groups: power supply, control systems and contingency systems [16].

4. Review: A Journey towards the Future with Guidance from the Past

A detailed literature review was conducted on deregulated power systems with the
integration of renewable energy sources and energy storage devices. The main objectives
of the reviews are the maximization of system profit, maximization of social welfare,
and minimization of system generation cost and loss by optimal placement of energy
storage devices.

K.C. Divya’s study [42] focuses on the incorporation of non-conventional energy
sources into the power grid and the usage of energy storage devices for profit maximiza-
tion. The role of electric hybrid car battery storage systems has been considered. This
article proposed that energy storage using battery will play an important role in the sus-
tainable and cost-effective functioning of smart electric grids integrated with renewable
energy. There is no single storage system that can fulfill all of the criteria for an ideal EES.
Various storage systems are compared by Chen in terms of technological specifications
and characteristics, applications, and implementation status [43]. Among the developed
technologies, CAES is beneficial in terms of the lowest capital cost. R. Banos looked at
some of the major difficulties of renewable energy sources in this research [44], such as
generation discontinuity, which is an environment-dependent and continuous develop-
ment in optimization techniques utilizing computing resources. The current state of the art
computational optimization methods is reviewed in this paper, providing a comprehensive
picture of the most recent research developments in this subject. Heuristic techniques,
Pareto-based multi-objective optimization, and parallel processing have all been discovered
to be interesting study areas in the realm of renewable and sustainable energy. In the
article [45], Aqeel Ahmed Bazmi discusses the importance of modeling and optimization in
the power and supply sectors, as well as the future prospects of optimization modeling
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as a tool for sustainable energy systems. Modeling and optimization have been found
to be effective and valuable methods for solution development in the power and supply
sector, particularly for policymakers establishing policies based on extensive assessments
of competing technologies and large quantities of scenario studies.

Zhimin Wang [46] developed a unique methodology for energy management in home
area using EESs to facilitate energy storage, with the goal of providing wholesale energy at
reduced cost and supporting LV distribution networks for network investment reduction.
The aim is to create the optimum possible DRs-to-energy-price and network-congestion
balance feasible, hence improving customer and network operator advantages. The authors
of this work [46] suggest a novel dispatch approach for consumers and DNOs to share
ownership of residential energy storage batteries. Ref. [47] discusses various applications
of EES technologies in power systems, with a focus on their collaboration with renewable
energy sources. The function of ESSs in intelligent micro power grids is also highlighted,
as the stochastic nature of renewable energy sources might have an impact on power
quality. Each type’s applicability in power systems is examined and compared to others.
An energy storage system’s technological and physical features are also examined in depth.
Yanine and Sauma’s [48] research focuses on supervisory management of micro-generation
systems when connected to the grid and when energy storage is not involved. The goal is
to increase energy efficiency, thriftiness, and sustainability. Suggestions have been made
that future advancements in smart micro-grid operation should be increasingly focused on
recognizing that SHES can be intelligent. Mwasilu [49] conducted a complete evaluation
and appraisal of the most recent research and advancements in electric vehicles (EVs)
interaction with smart grid, depicting the future electric power system model. The smart
V2G system’s viability is also addressed. The interactions of electric vehicles with the smart
grid as a future energy system model are thoroughly examined in this work.

Zhang [50] presented a two-stage EES-based optimum wind power dispatch system
with risk analysis to increase financial advantages through day-ahead operations. Through
simulations, the suggested strategy demonstrated promising outcomes in terms of im-
proving financial benefits and risk-reduction capability. Muruganantham, Gnanadass, and
Padhy’s research [51] demonstrates the several obstacles that DN suffers while adopting
RES. This research investigates the significance of energy storage in distributed networks
and how to manage the demand. This research provides a high-level overview of the DN’s
evolution and issues. This provides a quick overview of distribution power flow algo-
rithms, electricity pricing systems and the simultaneous working of DGs and DN. Huang,
Xu and Courcoubetis [52] conducted an investigation on three joint market mechanisms
to analyze EES investment and operation for locational marginal pricing. The numerical
analysis brings out the significance of building integrated storage investment and working
mechanisms, while market regulation/schemes focusing simply on EES are unable to
produce socially optimal solutions. Das and Bass [53] presented an overview of optimal
ESS deployment, size, and operation in power networks in their study. Flywheel energy
storage (FES) should also be considered in several distribution network situations. There
are many different types of ESSs, each with its own set of benefits and drawbacks. The best
ESS for you will be determined by the projected performance improvements, features, and
application types. Researchers have already devised various meta-heuristic methodologies
for optimization, but there is always room for improvement. Thopil, Bansal, Zhang, and
Sharma observed in their research [54] that the abundance of coal-powered generation is
not practical, mostly because renewable energy is not yet ready to be the dominant source
of energy. Adopting a hybrid and bidirectional energy paradigm, in which customers
remain connected to the grid while being fueled by renewable energy sources via small-
and medium-scale distributed generators that may be put within the consumer’s premises,
is suggested as a realistic alternative.

Hirsch (a) defines a microgrid and (b) gives a multidisciplinary portrayal of today’s
microgrid drivers, practical applications, problems, and future possibilities in the review
paper [55]. Proper planning and understanding is needed well in advance to find the most
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suitable architecture to integrate various distributed energy resources. Various factors in-
cluding regulations, legal issues, quality of power and financial benefits, etc. will play major
roles in deciding the sustainability of microgrids in the long run. Howlader’s work [56] on
independent ESS to minimize profit uncertainty for retailers in the ISO Market highlighted
the problem of financial burden of hour ahead considering load mismatch. This has also
concentrated on lowering the cost of IESS installation. This study demonstrates a novel en-
ergy market model where IESS is used to compensate for power adjustments. Furthermore,
these IESS may be utilized to compensate for predicting errors and solve a variety of other
problems. Kong and Jung’s research [57] study presents a way for estimating the amount
of ESS when there is inadequate data for future PV and WT providers. The predicted ESS
size differs from the optimal size with the least amount of error. For future RES suppliers
to enhance their profitability, the suggested approach employing polynomial regression is
utilized to predict the ESS magnitude. Akbari-Dibavar [58] explored the suitable energy
managing techniques of a net-zero emission MPGS incorporating RERs, hydrogen energy
systems, and storage units in a deregulate scenario. The robust optimization technique was
used to analyze the impacts of wind power uncertainty in order to provide an acceptable
level of resilience for the system. Solar and wind power are employed for clean energy
generation due to the sustainability characteristic of the micro power grid system (MPGS).
Ahmad, Zhang, and Yan [59] provide unique insights into a critical and systematic review
of renewable energy and power projection models used as an energy planning tool. The ap-
proaches are assessed in terms of prediction applicability, spatial and temporal forecasting
accuracy, and relevance to policy and planning objectives. The study’s findings help in the
recognition of prediction methodologies and allow users to choose the best methods for
meeting their intended aims and forecasting criteria. Forecasting capabilities are improving,
and some countries are coming closer to developing fully automated smart grids.

Liu, Hu, Kimber and Wang’s research gives a complete categorization and assessment
of ESS electric grid applications [60]. The most recent optimization and control approaches
for each application category were examined. In addition, a cost–benefit analysis for three
categories of investors as well as a detailed comparison of market policies regarding ESS
involvement in various wholesale markets has been performed. Given the vast variety
of improvements in energy storage technologies, the energy storage technologies were
critically analyzed in depth and then classified, and comparative studies were conducted
to understand the features, limits, and benefits of each energy storage system. Tan, Ra-
machandaramurthy, Solanki, and Raveendran proposed alternative energy storage system
frameworks based on their application [61]. This evaluation included several HESS com-
binations in which multiple ESS types were blended to provide a better form of energy
storage. Mcllwaine, Morrow, Al Kez, and Best [62] undertook a rigorous study of EES and
quality of power at the distribution level. The research combined with a Pugh analysis
emphasized worldwide trends in power markets with increased renewable energy penetra-
tion. The investigation’s findings suggest that further study is needed to classify, quantify,
and evaluate the installing of bulk energy storage, during distribution.

When RE penetration is low, the electrical market functions efficiently; however, when
RE penetration is high, the market is frequently disrupted. Divya Asija threw light on the
advancement of renewable energy generation, the inclusion of renewables into the current
unregulated power sector, the composition of present power market, main obstacles with
RE integration in deregulated power markets, and driving factors [63]. A research study
investigated the involvement of a composite energy system comprising wind energy and
CAES in the electricity market from the standpoint of a private owner [64]. Due to the high
level of unpredictability linked with market values, wind power levels, and regulatory
inputs, the problem was modelled using distributionally robust optimization (DRO). The
ideal outputs indicate DRO’s performance in terms of higher realized earnings and less
conservative results. Another study looks at the prospects, problems, and technologies of
EVs in a V2G linking system in depth [65]. M.A. Hannan’s study demonstrates the benefits
of both the EV owners and the power system, as well as relevant suggestions for the future
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research areas to address existing research gaps and challenges. Dhillon, Kumar, and
Singal [66] conducted a detailed analysis of the fundamentals of wind energy, PSP, Wind–
PSP System and their present state, applications, and issues with operation in a deregulated
market, as well as optimization strategies employed in the advance planning of Wind–PSP
System. The researchers proposed optimization strategies such as EA-based, GA with LVQ,
HIDSS, and NSGA-II to identify the best feasible solution of complicated computational
problems with instabilities for Wind–PSP operation. Global market participants may create
a new electricity market architecture in order to reap the benefits of long-term agreements
with stakeholders.

Wind energy system modeling is a goal oriented problem that can be solved utilizing
advanced computer methodologies. Many algorithms only engage with a sub-model and
do not capture the entire picture. The research by Chinmoy, Iniyan, and Goic [67] has
focused on essential cost modeling for wind energy projects as well as market associated
risk and its mitigation issues. A thorough research on the use of approaches in power
balancing in microgrids with renewable generators by Komala, Kumar, and Cherukuri
categorized the methods into distinct categories depending on their principle of operation,
infrastructure required, and component of the microgrid [68]. The different methodologies,
as well as their mathematical models and virtues and drawbacks in application to power
balancing in microgrids, have been evaluated. During a literature review, it was discovered
that optimal usage of all forms of sustainable energy resources is critical to achieving
sustainable energy development (SED). The key problem for SEH modelling is determining
the best design/sizing and operating strategy for system components depending on the un-
predictability of renewable sources, demand, energy market spot prices, and so on. Lasemi,
Arabkoohsar, Hajizadeh, and Mohammadi-ivatloo discovered that uncertainty modelling
based on RO and scenario-based stochastic optimization are the most common for SEH
modelling [69]. Due to worst-case scenario analysis, a robust method would provide the
greatest answer for risk-averse decision makers, whereas a probabilistic approach would
provide the optimal answer for risk-neutral decision makers.

Singh and Parida [70] conducted an extensive study on the betterment of the integra-
tion of flexible demand as demand response, demand-side management (DSM), and grid
proficiency. The evaluation of important data revealed that effective DG allocation will
be good for the environment as well as economically favorable for utilities and customers.
When DGs are incorporated into the system, the passive distribution or sub-transmission
network becomes active, resulting in various technical and economic challenges. Khare,
Nema, and Baredar [71] conducted a detailed evaluation of many facets of HRES, focusing
on pre-feasibility analysis, optimal size, modeling, control features, and reliability issues.
The use of evolutionary techniques and game theory in hybrid renewable energy systems
has also been emphasized. Another study looked at current global PHES capacity, techno-
logical progress, and hybrid systems (wind-hydro, solar pv-hydro, and wind-pv-hydro)
and offered the best options. According to Rehman and Al Hadhrami’s research, PHES
is the ideal technology for tiny autonomous island grids and huge energy storage, with
PHES’s efficiency fluctuating in practice between 70% and 80%, with some estimating up
to 87% [72]. PHES sizes vary from 1000–1500 MW to 2000–3000 MW across the world.
Photovoltaic-based pumped storage systems have only been used on a small scale (few
homes only).

The purpose of this study is to provide a complete analysis of current improvements
in the ADS’s (Active Distribution Systems) operation from the perspective of operational
time-hierarchy. In contrast to earlier review publications, prospective applications of ADS
devices are evaluated in terms of operating time periods. This study by Ghadi and Ghavidel
covers real-world system operations in which network components are initially planned
for the stated period ahead, and then their operational status deviations from reference
points are updated throughout three time intervals encompassing static, dynamic, and
transient periods [73]. There is always a need for DN organizations to investigate current
facilities and management systems and then provide some unique practical solutions in
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the related areas. A critical analysis conducted by Banshwar and Sharma [74] examined
the prospects of RES in energy and Ancillary Services (AS) markets and concluded that
changes in market designs and norms are still needed in the existing electrical market to
integrate energy, AS, and variable energy sources. In another work by Kim and Suharto,
storage methods and additional assessments of similar technologies conducted by other
scholars were examined [75]. The work has explained the solution techniques to address
different difficulties using a case study and also reviewed the assessment parameters.

Tables 1–3 display the summary of reports for considered objective functions, applied
system details, and used optimization techniques for the considered pieces of literature.
Ghadi and Rajabi’s [76] insightful work on the transformation of traditional passive DNs
into ADSs, as well as the study based on grid operational features engaged in deregulated
electricity market at the distribution level, has provided a new perspective. This study
underlines the need to optimize current facility capacity through creative management
strategies and practical solutions. Saboori and Hemmati [77] evaluated the challenges of
optimal bus position, power rating and energy capacity estimation in distribution networks
to improve the functioning of the optimal planning process. While analyzing, energy
storage systems and models, as well as their applications and related objective functions,
network modelling, solution methodologies and problem uncertainty management, were
all taken into account. Zhou and Li’s work provides an insight of the design and functional
modules of smart HEMS [78], which is critical for a more secure and environmentally
friendly energy supply for smart grids. For the purposes of analysis, various non-traditional
sources have been considered.

Carreiro and Jorge underline the importance of energy management system aggre-
gators in the Smart Grid framework, particularly in conjunction with demand response
programs and technologies that include end-user participation in the provision of ancillary
services [79]. They suggest that establishing algorithms, technological benchmarks, and
low-cost systems requires deliberate collaboration among academics, industry, and regu-
lators. Modern power management evaluates the performance of various green energy
sources against several criteria rather than focusing on a single factor—consumption [80].
This study by Bhowmik and Ray examines the diverse work on separate techniques, in-
tegrated approaches, multi-criteria decision-making methodologies, and so on for the
green energy planning and scheduling challenge. This study not only confirms that en-
ergy management tactics are superior to previous ways, but it also assists scholars and
policymakers in implementing the processes. Sundararagavan, Sandhya’s research [81]
examines the prices of several energy storage systems and identifies the critical aspects
that influence their economic feasibility. Rong-Gang Cong [82] identifies several important
factors affecting the expansion of renewable energy generation in this article based on
a review of current research. Following extensive research, a novel optimization model
is developed to optimize future renewable energy generation through the best capacity
planning, while taking into account various constraints such as economic, technological,
and others. In paper [83], Helder Lopes extensively analyzed several energy storage devices
with varying attributes and degrees of maturity. Power rating, discharge duration, energy
density in terms of weight and volume, power density, effectiveness, time and cycle dura-
bility, and availability have all been compared. Aggarwal, Sanjeev Kumar [84] provides an
overview of several price-forecasting approaches used in deregulated systems, as well as
an analysis of important difficulties. Lixin Tang [85] presented a policy for a deregulated
method to decrease CO2 emissions in generator scheduling for thermal power stations in
his study. The proposal called for a new penalty component depending on emissions. The
scheduling maximizes generation profitability based on income gained from sales, cost of
generating, and the emissions penalty. Enrique B. CEDEO [86] examines the numerous
relationships between the various sections of the deregulated power industry, proposing an
integrated model for increasing generation and transmission capacity. The purpose of this
methodology is to evaluate and find the best macroeconomic indicative investment ideas.
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Table 1. Summary of reports for considered objective function in the literature.

Paper ID
Type Objective Function

Regulated Deregulated Profit Max. Loss Min. Gen. Cost Min Social Welfare Max.

[42]
√ √

[43]
√

[44]
√ √

[45]
√ √

[46]
√ √ √ √

[47]
√ √

[48]
√ √

[49]
√ √ √

[50]
√ √ √

[51]
√ √

[52]
√ √ √ √

[53]
√ √ √

[54]
√ √ √

[56]
√ √ √

[57]
√ √

[58]
√ √

[59]
√

[60]
√

[63]
√

[65]
√ √

[66]
√

[67]
√ √

[68]
√ √

[69]
√

[70]
√

[72]
√ √

[73]
√

[74]
√ √

[75]
√

[76]
√

[78]
√

[80]
√

[81]
√ √

In paper [87], Pavlos S. Georgilakis proposes a genetic algorithm (GA) solution to
the price-based unit commitment problem, which is used by each producing business
to maximize its profit in a deregulated market by optimizing its generation schedule.
Luo Xing’s [88] provides a comprehensive comparison of the most cutting-edge energy
storage methods. The study helps to alleviate the problem of selecting acceptable EES
technology for a given application and deciding where they would be best integrated
into a power generation and distribution system. In his work, Moein Parastegari [89]
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develops an optimization model for the energy market that includes auxiliary services. The
model is used to jointly operate wind farms (WF), pump-storage units (PSU), photovoltaic
(PV), and energy storage devices (ESD). The model takes into account WPG, energy and
reserve prices, and PV generation unpredictability. A. Zahedi [90] investigated the potential
benefits of grid-connected renewable energy-distributed generating in this review paper
(RE-DG). It also looked at the factors that are driving the rising use of RE-DG, the technical
challenges that come with high RE-DG penetration, and the effect of RE-DG connection
points on system voltage. Piyasak Poonpun provided a study on the life-cycle cost of
several grid-connected electric energy storage systems in the paper [91]. The results are
given as a cost per kilowatt hour of stored and released power. Das [92] how energy storage
can curtail risk factors in a competitive power system. In this study, Stephen Frank [93]
examines numerous optimization algorithms that have been utilized to achieve optimal
power flow (OPF), with an emphasis on their benefits, downsides, and computational
aspects. It begins with an overview and then delves into the deterministic optimization
methodologies utilized on OPF.

Table 2. Summary of reports for considered system details along with energy storage and renewable
energy sources.

Paper ID
Renewable Energy Sources Energy Storage

Wind Solar Hydro Others Generalized PSH Battery CAES Others Generalized

[42] EDV
√

[43]
√ √ √

[44]
√ √ √ Bio, Geo,

Hybrid
√ √

[45]
√ √ √

Bio, Geo
√

[46]
√

[47]
√ √ flywheel storage,

electrochemical storage

[48]
√ √

[49]
√ √ √

EV

[50]
√ √

[51]
√ √ √ √

EV

[52]
√ √ √ √ √ √

[53]
√ √ √

[54]
√

[56]
√ √ √ √

[57]
√ √ √

[58]
√ Fuel cell, Hydrogen

energy storage

[59]
√ √

Geothermal

[60]
√ √ √ √

[63]
√ √ √ √

Flywheel, thermal

[65]
√ √

[66]
√

[67]
√ √

[68]
√

[69]
√ √ √ √ √ √

[70]
√ √
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Table 2. Cont.

Paper ID
Renewable Energy Sources Energy Storage

Wind Solar Hydro Others Generalized PSH Battery CAES Others Generalized

[72]
√ √ √

[73]
√

[74]
√ √

[75]
√ √

[76]
√ √

[78]
√ √

[80]
√ √ √

[81]
√ √

Table 3. Summary of reports for used optimization techniques in the literature.

Paper ID
Optimization Techniques

PSO ABC BAT GA Heuristic Others

[44]
√ √ √

Lagrangian relaxation, quadratic programming and
Nelder–Mead Simplex search; heuristic optimization

methods, especially genetic algorithms and particle swarm
optimization; Pareto-based multi-objective optimization

[45]
√ √ simplex method, dynamic programming, Lagrangian

relaxation, sequential quadratic programming, Newton’s
method and reduced gradient method

[50]
√

LMP

[51]
√

[53]
√ √

[57]
√

[58] adjustable robust optimization

[65] robust optimization

[67]
√

[70] Monte Carlo

[72]
√ √

Game theory

[81]
√ √

MOCPSO

Ramesh Kumar Selvaraju [94] investigated the efficacy of a deregulated electricity
system combined with various energy storage technologies in this study. For determining
the LFC controller gain values in a deregulated environment, the Artificial Cooperative
Search technique, a new two-population-based optimization strategy, is devised. In pa-
per [95], Patil examines the impact of wind energy system on a deregulated energy market
from different perspectives. Bus sensitivity factor and locational marginal pricing have
been given special attention. Different optimization algorithms have been investigated
and slime mold algorithm has been implemented for the first time in this field. In another
work [96], same author examines a hybrid system with energy storage and studies profit
maximization in deregulated energy market with imbalance cost improvement. It also
covers value at risk and cumulative value at risk factors. In paper [97], Ustun examined
integration of EV storage with local solar generation to maximize renewable energy capture
without overburdening local distribution network. Driving patterns and solar generation
profile are studied along with local load profile to actively control EV batteries to maximize
local renewable energy capture,
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5. Facts and Analysis of Renewable Energy: A Glimpse

A more significant change in the generating mix is hidden by the total power gener-
ation’s comparatively high resilience. In particular, generation from renewable sources
(wind, solar, biofuels, and geothermal energy, etc.) saw its greatest ever growth despite the
decline in overall power consumption. Strong gains in the generation of wind and solar
energy were the main drivers of this expansion [98].

The proportion of renewable energy in the world’s generation has increased at its
quickest rate ever. Around 60% of the increase in worldwide power output over the
previous five years has come from renewable sources, with wind and solar power being
major among them (shown in Figure 8) [98,99].

 

Figure 8. Transition of renewable energy generation around the world.

An emerging market economy is a developing country’s economy that is getting
increasingly involved in global markets as it expands. A developing economy is one with a
low human development index, low growth, low per capita income, and a preference for
agriculture-based activities over industrialization and entrepreneurship. In other terms,
a developing economy is also known as a developing country or a less developed econ-
omy. With increased infrastructure expenditure in Europe, China, and the United States,
investments in power networks are anticipated to increase by 10% in future after dropping
for the fourth straight year in 2020 due to the COVID-19 epidemic. As part of the effort to
attain carbon-free power generation, measures to build more robust and digital grids are
being incorporated with ambitious growth and recovery plans.

However, in the Net Zero Emissions by 2050 Scenario, the level of grid investment
triples by 2030, particularly for smart grids and digital investments, which should make up
around 40% of all investments in this decade (shown in Table 4 and Figure 9) [98,99].
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Table 4. Investment spending in electricity networks by region, 2016–2021 in USD billion.

Region 2016 2017 2018 2019 2020 2021

USA 63.1 65 66 71 75.8 77.1

China 86.9 83.7 83.2 76.6 70.7 82.6

Emerging market and
developing economies 93.9 88.2 81.1 63.5 53.5 60

Europe 50 48.7 49.5 48.5 51.8 56.7

Rest of the world 17 17.5 15.9 12.6 10.8 12.6

 

Figure 9. Investment spending in electricity networks by region.

The maximum net generating capacity of power plants and other facilities that employ
renewable energy sources to create electricity is used to measure the capability of renewable
power generation. The data shows the installed and connected capacity at the end of the
calendar year for the majority of nations and technologies (shown in Figures 10 and 11) [99–101].

 

Figure 10. Worldwide renewable electricity capacity (MW) statistics.
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Figure 11. Worldwide renewable electricity generation (MW) statistics.

Comprehensive Energy Storage Roadmap (India)

India has set a target of 40% non-fossil power production in the energy mix by 2030
and is dedicated to lowering GHG emission intensity by 33 to 35% from the level in 2005.
In order to achieve this, the percentage of renewable energy (RE) must be scaled up above
and above the current goal of 175 GW by 2022. In the upcoming years, grid operators will
face a challenge in ensuring grid reliability and the supply of 24 × 7 quality power due
to the increased penetration of renewable energy sources and electric vehicles (EV). This
will open the door for the deployment of energy storage systems for grid support [102,103].
This will enable utilities to understand the economic opportunities of such systems at
various levels of RE and EV penetrations, as well as their impact on grid reliability (shown
in Figure 12) [104].

 

Figure 12. Comprehensive energy storage roadmap of India.

From this section, it is observed that the use of renewable energy system is not an op-
tion, it is essential [105]. Due to the discontinuous availability of renewable energy sources,
energy storage system is essential for any renewable integrated power system [106,107].
This is especially true for off-grid systems that are more vulnerable to system devia-
tions [108–118]. It may come in different forms, such as hydrogen storage [119], EV battery
applications [120] or together with other novel devices such as smart inverters [121–124] In
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this scenario, this paper provides the clear idea about the different types of energy storage
system with the constructions and applications [125].

6. Comparative Study of EES Systems

The comparative study of different types of EEs systems are depicted in Table 5 [126–129]
and Table 6 [130–132]. The efficiency, discharge time, cost, and environmental impacts of EES
systems are considered for this study.

Table 5. Comparison of EES Systems in terms of efficiency, discharge time and cost [126–129].

System
Max. Power

Rating (MW)
Efficiency

(%)
Discharge

Time
Cost/KW

(USD)
Cost/KWh

(USD)
Energy Density

(Wh/L)

PHS 3000 70–85 4 h–16 h 600–2000 5–100 0.2–2

CAES 1000 40–70 2 h–30 h 400–800 2–50 2–6

FES 20 70–95 sec–mins 250–350 1000–5000 20–80

Lead-acid 100 80–90 1 min–8 h 300–600 200–400 50–80

NiCd/NiMH 40 sec–hours 500–1500 800–1500 60–150

Li-ion 100 85–95 1 min–8 h 1200–4000 600–2500 200–400

Metal-air 0.01 50 secs–day 100–250 10–60 500–10,000

Sodium-sulfur 0.05–8 75–90 sec–hours 1000–3000 300–500 150–250

RFB/HFB 100 60–85 hours 700–2500 150–1000 20–70

H2 100 25–45 min–week 10 600

Fuel Cell 50 60–80 secs–day 10,000 500–3000

SMES 10 MW 95 millisec–secs 200–300 1000–10,000 0.2–2.5

Thermal 150 80–90 hours 200–300 30–60 70–210

Table 6. Comparison of EES Systems in terms environmental impact [130–132].

System Life Time/Cycles Environmental Impact Description of Impact

PHS 30–60 years -ve Cutting trees and landscapes for reservoirs

CAES 20–40 years -ve Remains from fossil fuel

FES 20,000–100,000 Negligible

Lead-acid 6–40 years -ve Toxic residues

NiCd/NiMH 10–20 years -ve Toxic residues

Li-ion 1000–10,000 -ve Toxic residues

Metal-air 100–300 Very small Slight residues

Sodium-sulphur 10–15 years -ve Toxic residues

RFB/HFB 12,000–14,000 -ve Toxic residues

H2 5–30 years Yes
Emission of hydrogen in atmosphere can create
disturb in distribution of methane and ozone;

thereby causing imbalance.

Fuel Cell 5–15 years -ve Remains from fossil fuel

SMES 20 years -ve High magnetic field

Thermal 30 years Small Releasing charge into atmosphere

7. Conclusions

Presently, while the entire world is concerned about the future of the planet in terms
of reducing the carbon footprint and making it a greener one, the electricity industry is
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focusing on more efficient and sustainable power supply, judicious consumption of energy
and CO2 reduction. While doing so, main areas of research are identified as anticipated
growth of renewable generation, design of renewable technology for better performance,
design and implementation of smart grids, integration of RNE into smart grid for better
energy demand management by optimization techniques.

The followings are important in the present scenario of the electrical system:

• Energy storage systems will play a pivotal role for managing contingency situations
apart from acting as integrated part of smart grid.

• The modest and scattered EES market is likely to be large when the smart grid and
microgrids are implemented.

• The market for EES systems, particularly small and distributed ones, is growing and
will grow in tandem with the renewable energy sector.

• Technical challenges, and also cost and compatibility/sustainability, are potentially
critical topics for future initiatives.

• There is scope to work on optimization, power quality and safety issues.
• Upon comparison of different optimization techniques, it has been found that meta-

heuristic algorithms outperformed heuristic and linear optimization techniques with
the considered objective functions.

Considering the future and investors’ interest, it is obvious that the maximization of
system profit and minimization of system generation cost and loss will help in increasing
societal benefit. This study examines numerous aspects of renewable integrated deregulated
power systems and provides an in-depth appraisal of the most recent research advances
in this sector. In this context, this study will be helpful in understanding, analyzing and
applying the EES technologies for a better tomorrow.
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Abstract: This paper proposes a new method to determine the optimal size of a photovoltaic (PV) and
battery energy storage system (BESS) in a grid-connected microgrid (MG). Energy cost minimization
is selected as an objective function. Optimum BESS and PV size are determined via a novel energy
management method and particle swarm optimization (PSO) algorithm to obtain minimum total cost.
The MG was designed to use its own energy as much as possible, which is produced from renewable
energy resources. Since it is a grid-connected system, it can demand energy from the grid within
the determined limit with penalty. It differs from the studies in the literature in terms of optimizing
both parameters such as PV and BESS size, being a grid-connected self-contained MG structure and
controlling the grid energy by an energy management algorithm and optimizing the parameter via
PSO with an energy management system (EMS). Results are compared for different PV and BESS.
Moreover, effectiveness of the novel energy management method with PSO is compared with the
genetic algorithm, which is the one of the well-known optimization algorithms. The results show
that the proposed algorithm can achieve optimum PV and BESS size with minimum cost by using
the new energy management method with the PSO algorithm.

Keywords: energy management; energy storage; microgrid; particle swarm optimization; photo-
voltaic systems

1. Introduction

Today, fossil fuels such as coal, oil and natural gas are the main sources of electrical
energy generation. However, these fuels cause greenhouse gas emissions and environ-
mental pollution. In addition, while the world energy demand is increasing year by year,
fossil fuels’ reserves are limited and are about to deplete. Nevertheless, new restrictions are
performed by environmental policies to reduce greenhouse gases emissions [1]. The Paris
agreement, which was signed by 192 countries plus the European Union, is a promising
example to deal with climate change. Countries that signed the agreement are planning to
reduce their greenhouse gases emissions [2]. Renewable energy resources (RESs) such as
photovoltaic and wind energy systems are environmentally friendly and good alternatives
to fossil fuel since they do not cause any harmful gas emissions.

The number of grid-connected RES installations has been increasing year by year.
Along with many advantages, these systems have some disadvantages such as inter-
mittency that can cause scheduling, frequency, and voltage regulation problems on the
grid [3,4]. Conventional generation systems with fossil fuels have slower responses to
regulate frequency deviation in the short term [5]. With the increase in the number and
total capacity of the RES installation, these problems and risk on power system stability
have become more severe. Installing larger RES systems may overcome this problem [4].
However, it results in high investment cost. Battery energy storage systems (BESS) show up
as an effective solution for this problem [3]. A BESS can be advantageous to maintain the
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balance between supply and demand with its fast dynamic response characteristics com-
pared to conventional generators or other types of energy storage systems [6]. Particularly
modern distribution networks are attracting attention for the solution of nanogrid (NG)
and microgrid (MG) challenges. Hereby, BESSs are considered as a significant element of
modern MGs and smart grids [7].

The MG is a concept that enables effective integration of distributed generation (DG) re-
sources [8]. It is a controllable small network that combines RESs, conventional sources and
loads in both grid-connected (on-grid) and island mode (off-grid) [9]. Figure 1 demonstrates
a typical MG with these two operation modes [10]. Since DGs’ power output characteristics
are different from conventional generation systems, the MG should handle power quality
problems by itself such as unpredicted fluctuation, robustness of reactive power support,
resilience and a reliable system. The BESS is a good choice for maintaining resiliency and
reliability with fast and adaptable characteristics. BESS can store the remaining power for
later use, thus compensating for unexpected power outages and fluctuations in the RES.
Although BESSs and PVs have great advantages in the MG system, they also have some
disadvantages. Size and cost are gaining importance as high capacity causes increases in
cost and size, while low capacity may not be enough to prevent unexpected power prob-
lems and may not meet load demand. Consequently, BESS size must be carefully calculated
to determine the optimum size for a given system [8]. Moreover, research has shown that
BESSs that are optimally sized for the current loads provide the best performance [11].
Thus, system designers need to find the optimal BESS size according to the specific system
to obtain an efficient, reliable, and economical MG system [9].

 

Figure 1. The structure of an AC microgrid.

In the literature, generally one parameter is kept constant and the other parameter
is optimized in PV and BESS optimization studies. In most PV and BESS systems, the
PV size is kept constant and the BESS size is optimized. A similar approach is used for
structures with an energy management system (EMS), and most of them are proposed
for island mode operation. BESS sizing is performed according to the system parameters
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with various methods. Some of the methods can be performed identically to any sized
system [10]. Mathematical-based optimization methods are also used for sizing problems.
Dynamic programming (DP) and linear programming (LP) are examples of mathematical
methods [10]. DP is used in [12], but it is difficult to apply to large-scale systems [13]. LP
optimization is chosen as a simpler method in [13], and it is implemented for a small energy
storage system (ESS) in [14]. However, it has some problems when it is applied to large
scale systems. As a result, LP and DP are not good tools for complex systems [10]. As a
remedy, different optimization techniques that are named as probabilistic methods (PMs)
have been developed. The Markov chain decision method (MCDM) is one of them and is
used for battery sizing optimization due to its simple structure. Energy storage devices are
scheduled optimally with an MCDM in [15]. However, probabilistic methods are effective
when the number of optimized criteria is less (generally one) [10]. These methods are
not suitable for optimizing the two parameters together in interaction with the energy
management system in the structure that is the subject of this study.

Since RES output is uncertain, metaheuristic approaches are suggested in many ap-
plications. Metaheuristic methods give more accurate results on large and nonlinear
optimization problems [16,17]. The Genetic Algorithm (GA) is used for cost reduction and
optimization of the energy storage system in a hybrid energy system in [18]. The bottleneck
of GA is that its results are not conclusive [13]. The Bat Algorithm (BA) is used to find opti-
mum BESS size for a grid-connected low-voltage MG in [19]. The Grey Wolf Optimization
(GWO) algorithm is chosen for optimum BESS sizing and decreasing fuel usage, and GWO
performance is compared with BA and PSO in [20]. The Artificial Bee Colony algorithm
(ABC) is used to calculation of optimal battery size and operation for revenue increasing in
a hybrid power system [21]. The Grasshopper Optimization Algorithm (GOA) is another
method used for optimal battery, PV, wind, and diesel sizing in a microgrid [22]. Particle
Swarm Optimization (PSO) has simplicity and ease of use among other metaheuristic
optimization algorithms, yet it can present a high convergence rate [8]. Its robustness of
convergence comes from being less dependent on setting initial points among other meth-
ods. The PSO algorithm also needs less parameters than other metaheuristic algorithms. In
addition to these, it needs lower data storage [8]. The PSO-based frequency control method
for an off-grid microgrid is implemented to evaluate optimum BESS size and reduction in
cost [23]. The PSO algorithm is used to find optimum battery size and minimum cost for a
grid-connected residential system that currently has an available PV system [24]. Similarly,
PSO is selected for battery capacity optimization and effective battery installation for an
island mode microgrid in [25]. PSO is used for optimal sizing of wind, PV and tidal as a
primary and battery as an auxiliary source considering the reliability index [25]. PSO is also
proposed to determine optimal BESS with load shedding [5]. The objective of this paper is
to enhance frequency control by load shedding, and thus, operation cost reduces. The cost
optimization of a PV and BESS system in the grid-connected MG using PSO is proposed
in [26]. However, this study does not use an energy management system.

In this paper, optimum energy storage and PV size considering cost minimization
is determined based on the novel energy management method, and the PSO algorithm
is proposed for a grid-connected microgrid. In past studies, various algorithms were
used for different systems for optimization. According to the literature study, although
the PSO algorithm is a common and well-known algorithm, it has not been used as an
optimization algorithm for both PV and BESS sizing. In the majority of studies, one of
the parameters is kept constant (mostly PV size), and the remaining parameters (mostly
battery size) are optimized. In a limited number of studies, the PSO algorithm is used
to determine optimal size of the PV system and BESS but only for island mode systems.
Most of the remaining studies have not used cost minimization as an objective function
or energy management system. A limited number of studies used cost minimization
as an objective function or energy management system but with different optimization
algorithms [1,8,9,11–13,15,16,18–27]. This paper presents cost minimization as an objective
function by finding both optimum PV and BESS sizes and proposes a new optimal energy
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management method for a grid-connected MG. It is applied to a grid-connected microgrid
that consists of a PV system with battery storage. MG is allowed to import energy from the
grid with penalty. Thus, by allowing a limited amount of energy to be taken from the grid,
it provides a more optimum structure by minimizing the effects of possible instantaneous
high power demands. This paper focuses on determining the optimum PV and BESS sizes
when the MG supplies energy as much as possible to its loads. The purpose is to create
self-sufficient MG with limited grid support by considering cost minimization and defining
optimum BESS and PV sizes. Studies are carried out for two different scenarios. In addition,
the proposed energy management system with a PSO-based method is compared with
GA, which is a well-known optimization algorithms. The results show that the proposed
algorithm can achieve optimum PV and BESS size with minimum cost by using the new
energy management method with a PSO algorithm. The proposed energy management
method provides more flexibility to system designers for various system constraints. This
can be accomplished by its configurable parameters. Thus, the new energy management
method with PSO can be applied for various systems.

2. System Configuration and Modelling

The grid connected microgrid structure used in this paper is shown in Figure 2. It
consists of the BESS, PV, AC bus, grid and load. It is connected to the grid via the AC
bus. The battery and PV are connected to the DC bus via DC/DC converters that charge
the battery from the PV throughout the DC bus. The DC bus is connected to the AC
bus through the DC/AC inverter. The energy management system tracks load demand,
available PV power and battery energy level, and it controls charge/discharge status of the
battery and decides whether to demand energy from the grid.

 

Figure 2. The architecture of the microgrid system.

Solar PV module performance is affected by irradiation, pollution, aging, shading and
ambient temperature. Since the aim of this study is not maximum power point tracking
design, the effects of these parameters will not be examined, and the net output power of
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the system will be used directly from the previously obtained data. Two different data sets
were used to create different scenarios: case 1 and case 2. The data sets used in this study,
which show the relationship between the power produced by the PV system and the load
demand, are given in Figure 3a,b. The PV data in Figure 3a are obtained by taking the daily
average of the annual data of the International Energy Agency (IEA) future prospect. To
test the proposed system for another scenario, the PV and load data in Figure 3b are scaled
from data published by the Belgian electricity system operator.

Figure 3. Average load demand and single PV module output for: (a) case 1; (b) case 2.

The converter efficiency that affects the amount of energy from the PV to the load is
given as 95%. Thus, total PV output to load is:

Ppv(t) = Ppvgen(t)× ηconv (1)

where Ppvgen(t) is generated power from the PV modules during time interval t, ηconv is
the converter efficiency, and Ppv(t) is transferred power from the PV to load during time
interval t.

The power generation capabilities of PV modules deteriorate from year to year due
to aging. Thus, the economic life of a PV is considered as 25 years in this study, and PV
modules are considered, as they will not be replaced during system cost calculation. The
cost and other parameters are listed in Table 1.

Table 1. PV cost parameters.

Parameter Value Unit

Efficiency (nPV) 95 %
Capital, Operation and Maintenance Cost 97 USD/Unit

As is known, the minimum and maximum of battery state of charge (Bsoc) should be
defined to prevent shortening the battery life. Bsoc can be given as:

Bsoc(t) = [Ebat(t)/Ebat,rated(t)]× 100% (2)

where Ebat(t) is battery energy level and Ebat,rated(t) is rated energy capacity [28]. Overcharg-
ing and deep discharging of the battery should be prevented, as it will reduce its lifespan
and cycle life. Thus, the following limits are defined:

Ebat,min(t) ≤ Ebat(t) ≤ Ebat,max(t) (3)

where Ebat,min(t) is minimum energy limit, and it is defined as 0.48 kWh. Ebat,max(t) is a
single battery module’s maximum energy limit and it is defined as 2.4 kWh.
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Battery charging and discharging action defined as below, respectively [28]:

Ebat(t)[EPV(t)− ELoad(t)/ηinv]× ηBch (4)

Ebat(t)[ELoad(t)/ηinv − EPV(t)]× ηBdch (5)

where EPV(t) is the generated energy, and ELoad(t) is the load demand during time interval t.
ηBch, ηBdch and ηinv are battery charging, discharging and inverter efficiencies, respectively,
which are defined as 95%.

The capacity of battery modules will also decrease over time. In this work, battery
module life is taken as 8 years. Battery modules are replaced three times during system
cost calculation. Accordingly, BESS cost and other parameters are given in Table 2.

Table 2. BESS cost parameters.

Parameter Value Unit

Efficiency (nBESS) 95 %
Capital, Operation and Maintenance and Replacement Cost 493 USD/Unit

Changes in the efficiency of system elements can cause errors. In addition, since the
battery capacity and PV must be a certain level as an integer (selected unit has a certain
value), it will cause some errors. They can be minimized by reducing the PV unit power
and battery unit capacity values. However, using a small PV module and batteries with
small capacities may not be both practical and economical. More precisely, this is another
optimization problem.

3. Proposed Algorithm

The proposed algorithm will be given in sequence as the objective function, energy
management strategy for grid-connected and island modes and the proposed PSO algo-
rithm. First, the PSO algorithm generates random PV and BESS sizes. The proposed energy
management algorithm, which also will be explained later, uses these sizing values and
generates PV and BESS power output according to the inputs and constraints.

3.1. Objective Function

In this study, the energy cost is chosen as an objective function. The goal is to obtain
minimum total energy cost for the MG without compromising defined constraints; thus,
the optimum PV and BESS size can be found.

The energy cost (EC) is calculated as:

EC = (PVTotal,energy × PVcos t) + (BESSTotal,energy × BESScos t) (6)

Here, PVTotal,energy and BESSTotal,energy are total output energy of PV and BESS, respec-
tively. They are generated from the energy management algorithm in a defined time span.
PVcos t and BESScos t are the cost of PV and BESS, which include the capital, replacement,
operation and maintenance costs.

3.2. Energy Management Strategy

The management of the power flow is an important process for optimizing the system
components and the efficient operation of the system. The proposed energy management
strategy can be divided into two parts as island mode and grid-connected mode operation.
Figure 4 shows the flowchart of the proposed energy management strategy.

606



Appl. Sci. 2022, 12, 8247

 

Figure 4. Proposed energy management flowchart.

In the island mode, the MG operates without grid support. The load demand can be sat-
isfied by PV generation and/or BESS available capacity. There is always a balance between
the available PV power, BESS capacity and load. Net energy (Enet(t) = EPV(t) − ELoad(t)) is
followed, and it is decided that the battery is charged if Enet(t) > 0 and BSOC(t) < Ebat,max(t).
Batteries are charged with EBch(t) until their Ebat,max(t) level. If BESS reaches its charge
limit and there is still available power in the PV system, this remaining power cannot be
used or sold to the grid due to the island mode operation. If Enet(t) = 0, then there is no
excess energy, and thus, load demand is equal to PV generation. If there is not enough PV
generation to satisfy load demand (Enet(t) < 0), EMS controls Bsoc(t) level at that time. If
BESS has available energy, batteries can be discharged until their Ebat,min(t) level. Finally, if
both Enet(t) < 0 and BSOC(t) < ELoad(t), but there is still some available PV power generation
(that is, 0 < EPV(t) < ELoad(t)), then batteries are charged by PV power.
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For the grid-connected mode operation, the MG operates with grid support. In this
study, the aim is to find optimum PV and BESS size for mostly self-sufficient MG in a yearly
period. The grid energy is only used for supplying load demand if there is not enough
energy in the PV and batteries. In this study, the grid is not used for charging batteries. It is
assumed that it is costly to obtain energy from the grid. Thus, there is a grid cost limitation.
The MG can be partially or fully supplied from the grid only for a limited time when there
is either no or not enough energy in the BESS and PV. The EMS tracks the current energy
level of the system components, the status of the PV system and BESS, and if there is not
enough energy to be able to supply the load demand (EPV(t) + BSOC(t) < ELoad(t)), then the
MG can obtain energy from the grid with penalty. There is a flag that holds the record of
obtained energy from the grid. If energy from the grid exceeds a previously defined limit
value, the flag increases. Hence, the PSO algorithm, which is explained below, decides to
increase the PV or BESS module capacity to minimize the dependency of grid connectivity
by considering the total installation cost.

3.3. PSO Algorithm

The PSO algorithm presents a model of flight patterns of birds and their social be-
havior for the optimization model, which was proposed by J. Kennedy and R. Eberhart in
1995 [29,30]. Its ties artificial life to the behavior of animal groups, such as bird flocking,
fish schooling and swarming theory [30]. The simple explanation of the PSO model can be
explained as follows. Each single bird is pointed in the Cartesian Coordinate System (CCS).
Their initial location and velocity are assigned randomly. Then, the algorithm is executed
with “the nearest proximity velocity match rule”; thus, every bird has the same speed
as their closest neighbor. Since iteration maintains in the same direction, all the points
will have the same velocity. Because of the simplicity of this structure and not exactly the
same as in real situations, a random variable is added to the speed point. In each iteration,
aside from meeting “the nearest proximity velocity match”, each speed will be added with
a random variable that provides convergence to the real case. In this model, every bird
can find their maximum points. These can only be local maximum points. After every
bird meets, in other words, birds finish their movement on the coordinate system, all the
maximum points will be found. The highest value of these maximum points is the global
maximum point [31,32].

In this study, PSO is used to find the minimum points, meaning minimum cost.
Particles represent PV and BESS module counts (or sizes), and they are initialized randomly
in the CCS. nPop is the swarm size, and it is defined as 50, which means 50 particles. The
maximum iteration, MaxIt, count is set to 100. The inertia coefficient is set to 1. There are
two acceleration coefficients, and both of them are selected as 2.5. Each particle’s velocity is
zero at the beginning. The objective function, which is explained in the previous section, is
called in every iteration to calculate the particle’s total cost. Each particle’s cost is compared
with each other’s and the best cost, which is the minimum, is saved as the global best cost.
In every iteration, PSO generates random PV and BESS sizes, and their costs are compared
with the global best. The lowest value is saved as the new global best. At the end of all
iterations’ location, which means PV and BESS sizes, of the global best cost is the optimal
point [16,33]. Each PV and BESS has a position, and these positions have a velocity. The
velocity of the kth particle is:

vj
k,new = wvj

k,old + c1r1(xj
k,pbest − xj

k) + c2r2 (7)

where vj
k,new refers to the recent velocity of the kth particle at jth iteration, the w refers to

the inertia weight, vj
k,old refers to previous velocity of the kth particle at the jth iteration, c1

and c2 are the acceleration constants, and r1 and r2 pair are randomly determined numbers
between 0 and 1. The position of the kth particle is renewed as below [16]:

xj
k,new = xj−1

k,old + vj
k,new (8)

608



Appl. Sci. 2022, 12, 8247

where xj−1
k,old is the previous position of the kth particle from the past iteration [16]. The posi-

tion x is the size of PV and BESS, and in this study, their minimum value is VarMin = 1 and
maximum value is VarMax = 50. Figure 5 shows the flowchart of the applied PSO algorithm.

Figure 5. Proposed PSO algorithm flowchart.

4. Results and Discussion

In this paper, optimal sizing of the PV and BESS for MG, which can be operated in
island mode and grid-tied mode, is carried out with two different data sets. The data are

609



Appl. Sci. 2022, 12, 8247

yearly average of a single PV output and the load. Yearly PV generation data have been
taken from the IEA database. Then, they are degraded to 24 h by calculating average values
for every hour. Yearly load data have also been taken from the IEA database, but some
arbitrary changes have been applied on that data to create the desired test system. Then,
they have been degraded to 24 h by calculating average values for every hour for case 1. In
the second scenario, the data published by the Belgian electricity system operator is used
by scaling. For each case, island and grid-connected mode operations are performed at
the same time. The optimization algorithm computes the optimum PV and BESS size with
regard to optimization parameters and the total cost of the system for case 1 and case 2.
The total system cost includes cost of energy, battery and PV module cost, installation cost,
battery degradation, and battery and PV lifetime/replacement cost.

First, the PSO algorithm generates a random PV and battery module size between
1 and 50. The first module (or particle) count is equal to npop; thus, it is 50. That is,
50 parameters are spread out to different locations randomly at the beginning. Within each
iteration, this spreading continues with different velocities depending on c1, c2, w, and
wdamp (damping ratio) values. These are the values that affect the speed and accuracy of the
parameter reaching the optimum point. They can be close to the optimum point at the end,
but they may take a long time to reach the optimum point due to their slowness. Contrarily,
they can find the optimum point fast, but accuracy may not be guaranteed.

The PSO parameters are chosen to obtain faster and more accurate results. The
population size is set to 50, the maximum number of iterations is set to 200, c1 and c2
are set to 2.5, and wdamp is set to 0.99. The number of battery and PV modules is limited
from 1 to 50. Then, the novel energy management algorithm calculates total PV and BESS
power outputs and how much energy is needed from the grid to supply loads. Here,
providing uninterrupted power to the loads is the main concern. For this purpose, the
energy management algorithm can decide to demand energy from the grid. However, it
should be a limited time and level that is defined by the grid total cost parameter at the
system design stage. If the MG loads cannot be supplied by any source, there will be a
large increase in the total cost. This effect is controlled by another parameter such as the
penalty parameter, and thus, the cost increases. The algorithm selects an optimum level
of the PV system and BESS capacity to supply the load with the energy required in a day.
After the energy management algorithm is calculated for daily total average PV and BESS
energy output, total energy cost can be found. The calculated energy cost is compared by
the PSO algorithm for every particle, which equals npop = 50, along with iterations. The
best particle cost over 50 particles (npop count) is found, and this is called the “particle best
cost”. This is saved for the next iterations. The particle best cost can be updated with a new
value at the next iteration by a particle that holds lower cost. Thus, after all iterations are
completed, the best updated “particle best cost” value will be the “global best”. This shows
the calculated optimum PV and BESS size with minimum cost with defined constraints.
The best particle costs between each of the 50 particles inside an iteration and every best
cost throughout the iterations can be seen in Figure 6a,b for case 1 and case 2.

At the first iterations, the PSO algorithm generates lower PV and BESS module counts,
which means that the PV and the BESS particles are far from the optimum point. (Cost can
be seen on the second y-axis in Figure 6a,b. The y1-axis and y2-axis scales are different).
Since loads are supplied mostly from the grid, the cost is increasing. After defined the
maximum grid cost is exceeded, the total system cost increases faster due to the penalty
factor, and the system can obtain supply mostly from renewable energy resources (because
increasing the rate of renewable energy use decreases the system total cost). After 200 itera-
tions, calculations were performed by the energy management algorithm. It was found that
the optimum PV and BESS module counts were 47 and 28, respectively, and the total cost
was USD 40.972 for case 1. Similarly, it was found that the optimum PV and BESS module
counts were 24 and 28, respectively, and the total cost was USD 24.186 for case 2.

To prove the results obtained from the proposed method, the total cost variation of
the system according to different PV and battery sizes and penalty factor are given in
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Figure 7a,b, respectively. At the first point in Figure 7a, there are 45 PV modules and
five battery modules. The total system cost at this first point is USD 49.993. In the first
area (depicted in Figure 7a), while the number of PV modules is decreasing, the number
of battery modules is increasing. It should be considered that the energy cost penalty
highly affects the total system cost. The total system cost is increasing slowly until the
sixth calculation point. Then, when the number of PV modules is too low, the system cost
increases rapidly. At the eighth calculation point, there are five PV modules and 40 battery
modules, and this is the highest cost in the figure, which is USD 127.040. At this point, there
are not enough PV modules to supply the loads, and there are not enough PV modules to
charge this amount of battery modules. Thus, the loads are supplied from the grid for a
longer period. At this longer period, as an option, the cost can be increased excessively
or the maximum limit can be set in order to prevent taking more energy from the grid.
In this study, the maximum level of energy cost that can be taken from the grid has been
determined. After reaching the maximum allowable grid supply limit cost, the energy
management algorithm cuts off the electricity. Eventually, the total cost will be high in this
situation. In the second area, while the number of PV modules has increased, the number of
battery modules is low. In this case, the total cost is decreasing because there will be more
PV modules to generate energy to supply the loads in the daytime. PV modules can also
charge batteries when the number of PV and battery modules are closer to the optimum
point. Thus, BESS can supply the loads at night when there is no PV energy. In the third
area, both the number of PV and battery modules are increased. The total cost decreases,
but at the 18th point, it increases again due to the increased number of battery modules. At
the fourth calculation area, both the numbers of PV and battery modules are decreased,
and the total cost also starts to decrease. Finally, the number of PV and battery modules
reaches the optimum point, such that the total cost is at the lowest value at the 20th point.
There are 47 PV modules and 28 battery modules. Total system cost is USD 40.972 at the
20th point. The same study was carried out for case 2. It can be seen from Figure 7b that
the cost of the system for 24 PV modules and 28 batteries is USD 24.186. This means that
the loads of the MG can be fully supplied by PV and BESS in the daytime, and they can be
supplied by BESS most of the night. Therefore, MG can be supplied mostly by its RES, and
its dependency to the grid is low. However, the total system cost rises as the number of
battery and PV modules continues to decrease because the system needs to import more
energy from the grid, which increases the grid supply cost. Another reason is that as the
number of both PV and battery modules continues to decrease, the longer the blackout
durations occur and thus the penalty cost increases.

  
(a) (b) 

Figure 6. Particle best cost per iteration and best costs through all iterations of the proposed energy
management method with PSO: (a) case 1; (b) case 2.
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(a) 

 
(b) 

Figure 7. System total cost for various PV and BESS module combinations: (a) case 1; (b) case 2.

As can be seen, this process is not simple, such as defining the number of PV and
battery modules regarding the known changing load demand. PV generation changes
according to irradiation and weather conditions. There is an allowed grid supply limit that
is defined at the system design stage. Therefore, the energy management algorithm should
decide when to charge and discharge the batteries, and when to obtain energy from the grid
by considering cost. Eventually, the results show that the proposed optimization algorithm
correctly determines the optimum PV and BESS size within the defined constraints. The
proposed energy management system with the PSO algorithm has some advantages and
superiorities. It also needs only a few initial parameters. In addition, it can be used
with different algorithms. Furthermore, the constraints and parameters used in the energy
management strategy are also configurable such that they can be easily adapted for different
systems. The flexible nature of the proposed approach is its most important strength.
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In order to test the performance of the PSO-based method with the energy management
algorithm, its performance is compared with GA, which is the one of the well-known
optimization algorithms. The obtained results with the GA are shown in Figure 8a,b for
case 1 and case 2, respectively. The parameters used in the GA algorithm are as follows:
the population size is set to 50, the maximum number of iterations is set to 200, crossover
rate = 1, mutation rate = 0.04, and the number of battery and PV module is limited from
1 to 50. As can be seen in Figure 8a,b, the novel energy management method with the
PSO algorithm gives better performance than the novel energy management method with
the GA algorithm. In addition, the energy management method with GA found that the
optimum PV and BESS modules count as 47 and 28, respectively, and the total cost is
USD 40.972 at the 192nd iteration for case 1 and the PV and BESS modules count as 24
and 28, respectively, and the total cost is USD 24.186 at the 187th iteration for case 2. It
takes more time to find the global point than the proposed algorithm. Furthermore, this
comparison is proven that the proposed novel energy management system can also work
with other algorithms.

  
(a) (b) 

Figure 8. Obtained best cost results obtained from the proposed energy management method with
GA: (a) case1; (b) case2.

Comparisons between existing studies and the proposed study are given in Table 3.
A close examination of Table 3 provides an idea of the difference between the proposed
system and the other algorithms. In past studies, various algorithms have been used for
different systems for optimization. This study differs from other studies in the following
aspects. As can be seen from the table, some of the studies in the literature do not use the
PSO algorithm for both PV and BESS sizing. In most of the studies, one of the PV and BESS
parameters was kept constant, and the other parameter was optimized. Although the PSO
optimization algorithm has been proposed for both PV and BESS in a limited number of
studies, they have only been used for island mode systems. Most of the remaining studies
did not use cost minimization as an objective function or energy management system. A
limited number of studies have used cost minimization as an objective function or energy
management system, but with different optimization algorithms.
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5. Conclusions

This study presents a PSO-based algorithm with a new energy management strategy
to find the optimum PV and BESS size for a grid-connected MG. The MG can operate in
island mode and, if necessary, in grid-connected mode with some limitations. The MG
structure is designed in such a way that it can demand energy from the grid when there is
not enough energy in the PV system and BESS. However, the amount of demanded energy
is limited by the system authorities. The aim is to find an optimum PV and BESS size by
considering the defined energy cost. This allows the microgrid to be supported from the
grid in critical situations, although supplying loads from the RES has priority, regardless of
whether the system will demand energy from the grid and/or the amount of energy to be
demanded from the grid can be configured with the proposed energy management method.
Therefore, the energy management algorithm can be reconfigured and used for various
systems and different constraints. To validate the proposed approach, various calculations
are carried out for different PV and BESS sizes. Furthermore, to prove the effectiveness of
the new energy management method with PSO, it has been compared with GA. Results
show that the PSO-based algorithm with the energy management strategy can determine
the optimum PV and BESS size, with the minimum cost defining the system constraints.
Consequently, PV and battery sizes have been optimized together with the proposed PSO
algorithm and novel energy management system. The effectiveness of the system is also
explained by comparing the results with different algorithms.
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Nomenclature

ABC Artificial Bee Colony
BA Bat Algorithm
BESS Battery energy storage system
BESSTotal,energy Output energy of BESS
Bsoc Battery state of charge
CCS Cartesian Coordinate System
COE Cost of energy
c1, c2 Acceleration constants
DPSP Deficiency of power supply probability
DG Distributed generation
DP Dynamic programming
Ebat Battery energy level
Ebat,max Battery module’s maximum energy limit
Ebat,min Battery minimum energy limit
Ebat,rated Battery rated energy capacity
EC Energy cost
ELoad Load demand energy
EMS Energy management system
Enet Net energy
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EPV PV generated energy
ESS Energy storage system
GA Genetic Algorithm
GOA Grasshopper Optimization Algorithm
GW Grey Wolf Optimization
IEA International Energy Agency
LP Linear programming
MaxIt Maximum iteration count
MCDM Markov chain decision method
MG Microgrid
NG Nanogrid
npop Particle population count
PBAT Battery power
PGRID Grid power
PINV-Load Inverter power
PM Probabilistic methods
PPV PV power
Ppvgen Generated power from PV
PREN Renewable power
PSO Particle Swarm Optimization
PV Photovoltaic
PVTotal,energy Output energy of PV
RES Renewable energy sources
SOC State of charge
V Velocity
VarMax Maximum value of the size of PV and BESS
VarMin Minimum value of the size of PV and BESS
w Inertia weight
wdamp Damping ratio
ηBch Battery charging efficiency
ηBdch Battery discharging efficiency
ηconv Converter efficiency
ηBES Battery energy storage efficiency
ηinv Inverter efficiency
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Abstract: Within this study, single-cable propagation facilitated by PV strings’ wiring characteristics
is considered for an adapted design of PLC electronics. We propose to close the communications
signal path, resulting in a ring topology where a resonance condition could be implemented. A
PLC topology using the resulting circular closed-loop path of a PV series string as its physical
communication support is designed and leveraged for practical use. When the path length or the
number of transceivers is changed, the resonance properties that come with the circular path as
the physical support are affected but are shown to be preserved with the application of automatic
adjustable tuning. This automatic tuning guarantees that the resonance improves propagation
parameters and reverts the system to its optimal values at the chosen carrier frequency.

Keywords: loop antenna; power line communication; resonance; single-wire transmission; tuning

1. Introduction

Monitoring and maintenance tasks within solar plants are becoming the focus of many
research efforts, and a growing number of sensors and measuring devices are proposed
to be installed along different points of the solar module associations, even within each
solar module [1]. In this scenario, communications between solar modules and central-
ization points (combiner boxes) become an essential subject for research. Considering the
year-on-year growing amount of solar modules within modern solar plants, the cost of
the communications elements (module transceivers, wiring, etc.) becomes a key point in
constructing optimal designs for future practical communication implementations. Regard-
ing the cabling, an ideal solution would be a power line communication (PLC) system in
order to use the same power cables already installed as a communications physical support,
bypassing the need for extra communications wiring.

Some authors have developed works where PLC is used as an automatic transfer
switch (ATS); ATS selects the electrical connection circuit in the solar plant [2]. In [3], PLC
is used to send the data from the photovoltaic plant through the AC power line. Ref. [4]
employs a PLC-based system to avoid the islanding of the PV solar plant; in this work, the
authors propose the control of the connection and disconnection devices. Ref. [5] employs
a PLC-based communication and control system to control cascade inverters.

Most of the literature regarding PLC over the DC power lines within a photovoltaic
(PV) plant makes use of circuitry and several components designed initially for the standard
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physical support of traditional PLC systems [6,7], namely power wires with two conductors
that run parallel to each other. Transmission in these kinds of lines is performed by means
of TEM or quasi-TEM modes, and the traditional transmission lines theory is applicable,
with of course some limitations, such as the nonuniformity of the distributed parameters.
Ref. [8] presents an intelligent PV module monitoring scheme based on a parallel resonant
coupling unit, which uses the DC bus as the communication channel and modulates the
monitoring data into a 200 KHz carrier for communication. However, the topology of the
power cables in each string of PV plants is essentially different since there is a single cable
connecting the PV modules in series that runs away from other sections of the line, at least
in parts of it. This part of the power line can be modelled as a single cable line, where the
propagation mode cannot be TEM and where the classic transmission line theory is not
applicable. This difference suggests that the optimal electronics, carrier frequencies and
general strategy could be different than the ones intended for traditional PLC systems.

This single-wire topology is imposed by the inherent characteristics of the power
wiring within each PV string. As such, in this work, we propose an adapted strategy with
electronics for implementing PLC communications over this cabling topology of a single
PV string, where we start considering this essential difference from classic PLC standards,
since the two-wire physical support common for classic PLC applications is absent in
this configuration.

One of the first studies focused within the area of single-cable transmission was
performed by G. Goubau [9] in 1950, based on a previous study of A. Sommerfeld from
1899 [10]. These studies showed the possibility of radiofrequency propagation via a sur-
face wave guided by a single conductor, in conjunction with the formulation of a TM
propagation mode for the signal. By 2008, Corridor Systems, Inc. (Santa Rosa, United
States)registered a patent application [11] for a single-cable transmission line proposed for
carrier frequencies from 50 MHz to 20 GHz. Later studies have been published adding
updated formulations of the single-cable transmission phenomena [12] and complementing
the theory with the calculation of ohmic currents’ distributions, losses and characteristic
impedance or even creating a classic two-wire-line equivalent model for the single-cable
propagation [13]. One of the most interesting conclusions of these works is the possibil-
ity of a very-low-loss propagation over a single cable. Therefore, this study evaluates
the performance and accompanying possible benefit of the propagation mode of the PV
plant single-cable segment and the need for compensatory electronics to sustain the innate
benefits of the behaviour of the mode in the event where the cable is altered.

Our proposal for the PV string PLC communications system is to close the single-cable
signal path by means of a capacitor connected between the combiner box terminals, in such
a way that the line becomes a ring-shaped path for the communications signal, susceptible
to being pushed to a loop-antenna-like resonance, improving the signal levels along the
line. This work is structured as follows: Section 2 shows the theoretical frame and materials,
Section 3 presents the results and Section 4 shows the conclusions and future work.

2. Theoretical Frame and Materials

This section presents the theoretical framework on which the presented work is based
as well as the materials used in it.

2.1. Theoretical Frame

The previous documents mentioned regarding single-cable transmission in Section 1
considered frequencies of transmission above 50 MHz (higher than the ones we worked
with in this first demonstration stage for our PV–PLC system), whose current distribution
is expected to be flowing superficially or in a thin layer close to the surface of the cable
(skin effect), with propagation described to be carried out by a surface wave whose phase
velocity is c (the speed of light). Our direct measurements of the phase velocity over a line
of single PV cable at a frequency of 20 MHz showed speeds around 0.6 c, closer to what
is observed in typical coaxial cables [14], even when the propagation mode is different in
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our single-cable medium (TM) than the one in coaxial cables (TEM). The lower frequency
used in our single-cable support suggests that the current distribution flows in a thicker
layer inside the conductor, and the influence of the material lowers the phase velocity with
respect to the previously mentioned Sommerfeld surface wave. As a result, the single-cable
analogy applied to the PV plant cable cannot allow us to assume the same propagation
mode described in Section 1, and since our aim with this document is not to establish a
theoretical background but to develop a practical approach for implementing a working
PLC system specific for PV plants, we assumed the measured phase velocity of 0.6 c and
tried to start from a simple model to characterize our system.

The influence of the topology of the physical wiring in the previous literature on PLC
systems for PV strings is not usually discussed, probably because the low-frequency carriers
proposed do not show limitations related to higher frequencies, such as interferences or
resonance issues. Some previous works use an open line topology [7,15,16] and some
others propose a current loop topology [17]. The frequencies are normally in the order of
100 kHz or less, that is to say, considering the assumed phase velocity (0.6 c) wavelengths
are around 1800 m, much bigger than the usual length of the string. With this work, we
try to explore the possibility of setting the carriers of higher frequencies (from 1 MHz on),
analysing the effects of the increased frequency and offering a practical solution, which
inevitably leads to considering the physical topology of the wiring.

In a single PV string, the power wires starting from a combiner box return to the same
box after connecting the modules in series. In essence, it is easy to establish a circular
communications path by means of a capacitor connected between the two cables arriving
at the combiner box and to bypass capacitors connected through each PV module. This
allows for a cable loop configuration to be a communications physical support for a single
string. The choice of a closed-loop configuration for the signal path has several advantages
for communications purposes. This topology sets all the points along the circular line at
the same level regarding attenuation, so differences in reception levels are reduced to a
minimum and it allows for a resonance condition to be established for the signal along the
loop, since there is a natural reactive impedance associated with a cable loop depending on
the relationship between the wavelength and the physical length of the loop, which can be
compensated for by some added lumped reactive impedance, leaving only a low-resistance
path for the signal.

Adding the ring topology proposed to the aforementioned assumption about phase
velocity = 0.6 c, a simple propagation model can be considered. Our starting point is the
schematic in Figure 1.

Figure 1. Schematic of the communications loop (signal path) excited by a current generator (I), with
a perimeter d.
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The cable ring of perimeter d represents a simplified sketch of the signal path, includ-
ing the PV cable line and bypass capacitors (with enough capacitance for presenting a very
low impedance at our working frequency), where the I/O impedance of the transceivers
located along the ring is neglected for a first approximation. It is excited by a current
generator (which in practice could be the secondary binding of a transformer). A general
expression of the current wave along this loop is:

I(x) = I
(

A e−jkx + B ejkx
)

(1)

Representing the sum of two waves moving in opposite directions along the ring,
where I is the current amplitude with its time dependency:

I = I0 e−jwt (2)

Here, x is a coordinate indicating the distance along the loop measured clockwise from
the generator position and k is the wavevector depending on the frequency (f) and phase
velocity (0.6 c) and A and B are constants (which could be complex) to be determined.

The boundary conditions imposed are related to the continuity of the current at the
generator thus:

I(0) = I (A + B) = I(d) = I
(

A e−jkd + B ejkd
)
= I (3)

leading to
A + B = 1 ; A e−jkd + B ejkd = 1 (4)

In general, the solutions of this system of equations lead to (complex) values of A and
B different from zero and thus to a stationary wave pattern for the current distribution.
These solutions are not desirable to implement a communications system because stationary
waves give rise to maximum and minimum current amplitude points along the loop, which
means different reception levels since a transceiver could be located at any point in the ring.
For the case where

kd = π(1 + 2n) (5)

where n is an integer value, this system of equations is incompatible and there is no solution,
representing a destructive interference between clockwise and anticlockwise waves. The
optimal solutions for our purpose are those where A = 0 or B = 0, which leads to a travelling
wave solution of the form:

I(x) = I e−jkx or I(x) = I ejkx (6)

not presenting maximum or minimum current amplitude points. To obtain these kinds of
solutions, it is mandatory that:

kd = 2 π n (7)

that is to say, the perimeter of the loop is an integer multiple of the wavelength.
However, even when the above condition is satisfied, there are stationary wave

solutions (A and B 	= zero) satisfying only the extra condition A + B = 1. In order to
determine the actual spatial current distribution over a typical PV cable loop, we built
a setup comprising 20 m of cable from our real test PV plant (Figure 6, show later) and
measured and assessed the string as one single conductor line travelling in a straight fashion
from the positive lead of one signal generator to the end of the PV array arrangement where
it then turned around, coming back as a loop at a distance of one metre apart from the
initiated point at the positive lead, finishing in the negative lead of the signal generator. The
topology of the circuit is thus a loop-like one, but the shape is elongated from a circular one.
The generator was adjusted for a sinusoidal signal of 9.142 MHz (determined as the signal
corresponding to a wavelength equal to the loop length, fulfilling the above condition) and
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10 volts of amplitude. The validation of the system in short wire installations is interesting,
since for longer installation lengths resonance can be achieved at the same frequency by
means of higher-order modes, where more than one wavelength is present in the line.
Essentially, if it works for our 20 m loop, it will work also in loops which are 40 m, 60 m,
etc., and the fine adjusting for intermediate lengths can be easily achieved by the tuning
circuit designed (see Section 2.2).

The current measurements were made in a low-invasive fashion at different points
along the loop, sensing the AC magnetic field associated by means of a toroidal ferrite core
surrounding the cable, with a 30-turn enamelled cable wiring. This way, an induced AC
voltage proportional to the AC current in the line can be measured with an oscilloscope
across the terminals of the wiring. The high input impedance of the oscilloscope guarantees
that a very low current will flow through the wiring, so a negligible inductance was added
to the loop during measurements. Figure 2 shows the results of these measurements taken
every metre along the loop, and it shows a clear stationary wave pattern. These results
agree with the literature about the current distribution on loop antennas, the theory of
which is close to the one here considered.

Figure 2. Current amplitude distribution along the loop (normalised (%); measurement points and
fitting to a stationary wave envelope function).

The difference between the maximum (100%) and minimum (21%) current amplitude
levels from the measurements represents 13.55 dB, which can be managed easily by an au-
tomatic gain control (AGC) within receptors. There are two possibilities for fully exploiting
the advantages of a resonant loop for communications avoiding significant differences in
the signal levels along the loop: (I) Find a simple way to excite only the travelling wave
mode over a one-wavelength ring (optimal). (II) Work at carrier frequencies low enough in
a fashion that the loop length is a fraction of 1⁄4 of the wavelength or less. This is the slower
option, but it still leads to carrier frequencies over 2 MHz (assuming a propagation speed of
0.6 c and a loop length of 20 m), significantly higher than the average previously reported.

Regarding solution I, some authors have faced the theory of travelling wave solutions
for loop antennas [18], compared with standing wave solutions [19], and even have de-
termined the necessary conditions for exciting the travelling wave modes [11]. All this
work, however, is focused on antenna design and consequently looks for the best radiation
properties. For our application, radiation losses are not desired, since they mean power
losses and could affect the electromagnetic compatibility of the system. Fortunately, the
drastic reduction in the loop area due to the particular shape of our setup will prevent the
system from great radiation losses, since radiation integrals obtain contributions of opposite
current elements much closer to each other [20]. The travelling wave or quasitravelling
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wave mode of propagation for our system could be achieved by fulfilling some of the
conditions exposed in [18,21].

However, these conditions are not easily applicable in a practical environment, so
the insertion in series of a nonreciprocal device is proposed. These kinds of devices will
attenuate the waves travelling in one direction, leaving unaffected ones travelling in the
opposite direction, leading to a travelling wave propagation mode. Some of the possible
practical devices that could accomplish this task are magnetic-circulator-based isolators or
unity gain amplifiers referenced to Earth in such a way that waves arriving towards the
output will find very low impedances to Earth, being attenuated, but the ones arriving
towards the input will find very high impedances and will progress to the output almost
unaffected. In this work, we focus on resonance control, and isolator insertion is left for
future research.

Regarding solution II, if we work at wavelengths four times the length of the loop or
bigger, the phase changes along the loop in π/4 radians maximum. For a loop length of
1⁄4 wavelength, the general solution for its current wave is:

A =
1 + J

2
, B =

1 − J
2

, I(x) = I
(

Ae−jkx + Bejkx
)

(8)

where kx goes from 0 to π/2 along the loop length, so the maximum change in the current
wave amplitude is:

Imax

Imin
=

√
2 ,

Imax

Imin
= 1.5 dB (9)

This value is small enough to avoid AGC systems in receptors and simplifies the
electronics, allowing carrier frequencies over 2 MHz as explained before. This carrier
(depending on the modulation system) can lead to baud rates around 200 kbps, which are
higher than the previous baud rates reported in the literature for PLC within PV plants, so
even when this mode of propagation represents the lower baud rate for our model, it still
supposedly should provide an improvement on the speeds previously reported.

In addition, the resonance condition can still be achieved for this case because even
when the impedance variations related to auto interference are almost not present, there is
an inductance associated with the line and reactive impedances representing the transceivers
(capacitive or inductive depending on the coupling chosen) that must be compensated for
with a lumped element in order to push the loop to resonance. For the higher-frequency
(lower-wavelength) option, as a starting point, we can consider a model of signal propaga-
tion along a closed loop similar to the ones previously mentioned regarding loop antennas,
which show series resonances (impedance close to zero) at frequencies whose wavelengths
are integer fractions of the loop lengths [20]. In this way, a constructive interference gives
rise to a spatial resonance, and a maximum in the signal amplitude is observed. Since
one key goal of a communications system is the integrity of the signal, we must satisfy
the above condition in our cable loop in order to work at an optimal point with the best
SNR possible.

For a chosen carrier frequency, a loop length is fixed to fulfil the above condition;
however, the length of the loop is an imposed parameter depending on the physical
dimensions of the installation, and therefore it is necessary to find a way to adjust the
natural loop resonance to match the frequency of the carrier. The insertion of a coil in
series with the cable loop has the effect of increasing the electrical length seen by the signal
(length expressed as a wavelength multiple), that is to say, the loop will resonate at lower
frequencies. The opposite of this behaviour is seen with the insertion of a capacitor. As
such, the insertion of a reactive component in series with the loop could be used to perform
the matching between the carrier and loop resonance frequencies. This effect is shown
in Figure 3 from our measurements over a typical PV string cable loop 20 m long with a
vector network analyser (VNA) connected to the loop, where the resonance condition is
recognized by the minimum in the modulus of the S11 scattering parameter (maximum
power sent to the loop) and a sudden change in its phase. Figure 3 shows curves around
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the first resonance frequency (9.192 MHz without compensation) corresponding to the
connection in series of a coil, three values of capacitors and the raw cable.

(a) 

(b) 

Figure 3. The shift of the loop resonance frequency with the addition of a reactance in series: the
modulus (a) and phase (b) of the scattering parameter-1 measured with a VNA connected to the raw
cable loop and with the addition in series of a coil and three increasing values of capacitors.

These measurements have been used to determine more precisely the phase velocity
in our PV cable. Since the first cable resonance (9.192 MHz) corresponds to one wavelength
in the 20 m long cable:

λ =
Vf

f
⇒ Vf = 20mx f = 20 ∗ 9192000 = 0.613c (10)

2.2. Materials

Even though a preinstallation length compensation is feasible (installing a fixed re-
active series component), employing automatic adjustable tuning would more so be con-
venient in confining the transmission around an optimal point, in order to account for
the inevitable occurrence of small variations in the loop (for example, the addition of one
more PV module to a string, which would increase the loop physical length). For this
purpose, a simple tuning circuit was designed which was able to show either capacitive or
inductive impedance by means of a control voltage. The basic variable component used
was a varicap diode whose capacity could be adjusted depending on the inverse voltage
applied. The circuit is shown in Figure 4a, and it is composed of a toroidal transformer
with the primary (L2) connected to the cable loop and the secondary (L1) connected to
the variable capacitor (C) (voltage controlled). The actual implementation circuit for the
voltage-controlled capacitor is shown in Figure 4b.
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(a) (b) 

 
(c) 

Figure 4. Schematic of tuning circuit in (a) its generic representation and (b) actual implementation,
and (c) schematic of voltage doubler detection circuit.

The network analysis of the circuit in Figure 4a leads to an impedance seen from the
primary port:

Z = jwL2(1 − w2 L1C (1 − K2))÷ (1 − w2L1C) (11)

where the mutual inductance coefficient in the transformer is expressed by:

M = K
√

L1L2 (12)

and K is the coupling coefficient, showing a parallel resonance at

w1 = 1 ÷
√

L1C (13)

and a series resonance at
w2 = w1 ÷

√
1 − K2 (14)

This impedance has two inductive regions, (w < w1) and (w > w2), and one capacitive
region: (w1 < w < w2). In the centre of the capacitive region with a good coupling in the
transformer (1 − K2 << 1), we have (1 >> w2 L1C (1 − K2) and (1 << w2L1C), so

Z ≈ 1 ÷
(

jwC
L1

L2

)
(15)

and our circuit works as a capacitor multiplier by the factor L1
L2

, which can be very useful
for loops requiring high-capacitive compensation with values higher than the maximum
achieved by the varicap diode, for example, for loops with high inductance in series (the
inductive coupling of the transceivers).

For loops with low series inductance (the capacitive coupling of transceivers), the usual
length of a typical PV string and carrier frequencies over 5 MHz, our circuit is better used
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in the region around the higher frequency of resonance w2, where the impedance is close to
zero, and for frequencies lower than w2 the impedance is capacitive, and for frequencies
higher than w2 the impedance is inductive. Around this region and (1 � w2L1C), the
impedance can be expressed as:

Z = jwL2(1 − K2)− jL2 ÷ (wL1C) (16)

equivalent to a series LC circuit with

Lequ = L2(1 − K2) (17)

and
Cequ =

L1

L2
C (18)

resonant at w2. Since the capacitor C can be dynamically adjusted, connecting this circuit
in series with the cable loop, we can add series inductance, capacitance or none of them
depending on what is required by the loop, and the dynamic adjusting range can be selected
with the value of L2 since it is a common factor in the expression of Z around w2. The
possibility of the capacitance control varying a biasing inverse voltage on the varicap diode
allows us to implement a microcontroller-based tuning system that will also require some
kind of detection of the resonance condition in the loop.

The carrier amplitude through the primary coil in the circuit in Figure 4a will show
a maximum if the loop is pushed to resonance, so if this signal is used as an input for a
voltage doubler detection circuit (Figure 4c), we will obtain at the output a DC voltage
proportional to the amplitude of the carrier in the loop and the resonance can be detected
as a maximum in the DC voltage output. Finally, automatic resonance adjusting can be
implemented by sampling the detector DC output with an analogue-to-digital converter
(ADC) integrated in the microcontroller (MCU), where the convenient firmware will search
for a maximum outputting a DC voltage sweep towards the tuning circuit.

Figure 5 shows the real implementation of the circuits proposed, with all the com-
ponents labelled. Figure 5a shows the front side of the board and Figure 5b shows the
back side.

  
(a) (b) 

Figure 5. Picture of the electronics developed for loop automatic tuning: (a) front side; (b) back side.

The PV plant used is shown in Figure 6. This plant is located on the facilities of the
Duques de Soria campus of the University of Valladolid. The campus is in the city of Soria,
Spain. The modules used in this article for the communication line are those on the upper
row. Each module has the characteristics shown in Table 1.
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Figure 6. PV plant on Duques de Soria campus of the University of Valladolid.

Table 1. Technical characteristics of the PV module.

Model Cells Power/W VOC/V ISC/A VMPP/V IMPP/A

Eoply 72 cells 175 44.35 5.45 36.26 4.83

3. Results

Figure 7 shows the action of the compensation described, where a 20-m-long loop
was kept in resonance at 9.5 MHz initially with the corresponding control voltage of 5 V.
Then, the length of the loop was shortened to 15.10 m, and with the resonance control
electronics off, the resonance frequency was displaced to 11.1 MHz. If we then switched on
the electronics, the control voltage was readjusted by the MCU to get the resonance back to
9.5 MHz. All the electronics described above could work to keep the resonance condition
on any of the two modes described in Section 2. The S21 modulus was measured with a
VNA connected in series with the loop, the tuning circuit and a 50-ohm load. Maximums
show the frequencies of minimal attenuation of the propagation along the (loop)-(tuning
circuit) chain. The black trace corresponds to the 20 m cable with a control voltage of 5 V
in the tuning circuit, where the maximum is over the chosen carrier frequency (9.5 MHz).
The blue solid trace corresponds to a variation in the loop length from 20.00 m to 15.10 m
with no change in control voltage, and the new maximum is over 11.1 MHz and the carrier
(9.5 MHz) is attenuated from |S21| = 0.228 to 0.100. The blue dashed trace corresponds to
the new loop length (15.10 m) after the tuning circuit action for compensation, leading to a
control voltage of 0.9 V, and the maximum is back over the carrier at 9.5 MHz.

Figure 7. Effect of microcontroller action to retune the loop, in response to variations in cable distance.

During the current distribution measurements in the one-wavelength loop presented
before (Figure 2), with an exciting signal of 10 volts in amplitude, the absolute voltages
measured across the current sensor were between 70 and 330 mV, which, considering that
the sensor sensibility is 10 Volts/Amp, indicates averaged current amplitude values in the
order of 200 mA. This suggests that with much lower exciting voltages, communication
with reasonable SNRs is possible due to loop resonance, making simpler and low-cost
transceivers conceivable.
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As a validation of the current levels present in the short-loop configuration (1⁄4 wave-
length), measurements were made over an experimental setup composed of a cable loop
20 m long with ten capacitors and ten small toroidal transformers distributed evenly in se-
ries simulating the bypass capacitors and the transceiver inductively coupled and installed
within each PV module in a real installation. The toroidal transformers had a transforma-
tion ratio of 30:1 with the secondary connected to the loop, and their inductances were
adjusted to form with the bypass capacitors LC resonators at the carrier frequency, in such
a way that the transceivers were LC resonators at the same frequency as the loop resonance.
The control electronics were also placed in series with the loop. A carrier frequency of
1 MHz was chosen, fulfilling the condition of a loop shorter than 1⁄4 wavelength, and was
injected in the primary of one of the transformers with an amplitude of 5 volts, simulating
a transmission from one of the transceivers towards the others. The voltage amplitude
measurements at the primaries of the ten transformers receiving the signal are shown in
Table 2.

Table 2. Voltage amplitude measurements of the 1⁄4 wavelength configuration.

Receiver Voltage Amplitude (V)

1 32.3

2 32.1

3 32.3

4 33.5

5 34.6

6 34.0

7 33.5

8 32.7

9 32.5

10 32.8

4. Conclusions and Future Works

An analysis of a ring topology as physical support for a PLC system specially intended
for PV strings has been presented, proposing that pushing this loop to resonance optimises
the reception levels along the cable. Previous works on this subject had proposed resonant
circuits for coupling to the line; we added here to this feature the possibility of working
with the whole loop under resonance, improving even more the signal levels along the
line. In addition, the conditions needed for the levels to be reasonably equalised has
been derived. Control electronics have been designed to keep the communications signal
path on resonance, making the system flexible and able to self-adapt to different specific
installations or changes within the same setup. As this check and adaptation to resonance is
a task that does not need to be accomplished continuously (it would be enough to execute
it once per day), the MCU that controls all the communications in a final application could
be the same, allowing a lower-cost system.

The insertion of transmission (TX) and reception (RX) circuits along the loop shows
reactive impedances (inductive or capacitive coupled to the line) or even small resistances,
consequently modifying the resonance condition on the loop; nonetheless, our tests have
shown that the addition of the compensation reactance supplied by the circuit described
before is able to return the loop to the optimal working point of resonance. The approach
here presented is useful as a starting point for further research that could determine the
precise influence of lumped impedances along the loop in the communications performance,
but for moderate reactances in the TX/RX circuits (enough for signal injection and recovery),
the compensation circuit is enough, with only small deviations compared to the behaviour
of the raw cable loop.
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Two options regarding the relationship between the loop length and the wavelength
have been presented: a loop with one wavelength perimeter and a loop with 1⁄4 wavelength
perimeter or less. The measurement levels in the loop have shown the possibility of working
with relatively low signal levels without compromising the SNR in both options, allowing
the design of cheaper and simpler transceivers. The main line of research from our results
must be to explore and test for future work the ways proposed to excite the travelling wave
mode in the one wavelength loop, which in essence could suppose a great leap forward
for equalising the signal levels working at carrier frequencies over 5 MHz, leading to baud
rates close to or even over 1 Mbps (depending on the spectral efficiency of the modulation
scheme chosen), keeping all the advantages of working in resonance.
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Abstract: Heat is the largest energy end-use sector, accounting for half of the global final energy
consumption and more than 40% of energy-related CO2 emissions. China produces more than
one-quarter of global heat. Policy interventions are of great necessity to overcome the economic and
non-economic barriers the sector encounters. The purpose of this study is to explore the evolution
history of China’s renewable heat policies over the last 20 years and to assess the effectiveness
of the current policy system. The evolution of the policies is strongly linked to China’s socio-
economic background and is driven by various factors at each stage. A policy intensity index model
is formulated to further dive into the dynamic characteristics of renewable heating. The results
indicate that regulation-based instruments are always preferred, with varying degrees of lag for
the other three types of instrument. Since the inception of the clean heating program in 2017, the
intensity of renewable heating has increased dramatically, revealing that renewable heating has
received increasing policy attention and is gradually becoming a key pillar in the context of climate
change targets.

Keywords: renewable heating; policy; instrument

1. Introduction

China has committed to peaking carbon emissions by 2030 and achieving carbon neu-
trality by 2060 (“30/60 targets”). Reaching the 30/60 targets demands a dramatic scaling
up of clean energy. Heating is the largest energy end-use sector, accounting for half of the
global final energy consumption and more than 40% (13.1 Gt) of worldwide energy-related
CO2 emissions in 2020 [1]. More than one-quarter of global heat is produced and consumed
in China, where the heat sector remains heavily reliant on fossil energy [2]. Renewable en-
ergy plays a critical role in decarbonizing and providing a greener energy supply option [3].
However, for a long time, renewable energy sources of heating (renewable heating) have
been neglected in favor of a focus on renewable electricity, with less than 10% of energy
supply coming from renewable energy sources.

The deployment of renewable energy in the heating sector should be accelerated to
meet 30/60 targets, which will also bring additional benefits, including decreasing air
pollution emissions and enhancing energy security [4]. However, there are still many
obstacles to overcome, such as high capital costs, low prices of fossil fuels, and subsidies
for fossil fuels. Policy intervention is needed to overcome the economic and non-economic
barriers faced by the sector. In the past 20 years, China has already formulated some
policies to support the deployment of renewable energy in the heating sector; however,
there have been few systematic reviews of the existing renewable heating policies, and the
key factors in designing the policies are still not well understood.

Besides, the majority of literature on renewable heating focus on specific renewable
modes, e.g., geothermal, biomass, wind power heating etc. [5–7], analysis of the effec-
tiveness of renewable heating systems [8–11], and evaluation of the impact of policies on
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energy use, climate change, and technology penetration [12–14]. These efforts have assisted
in gaining a better understanding of the renewable heating system; however, the policy
itself is rarely studied, especially when it comes to the implementation level. In China,
policy implementation is crucial due to its special administrative structure [15]. Zhang et al.
evaluated the energy saving and environmental policies in China, and proposed that the
effectiveness of these policies are largely determined by the implementation level factors,
including the instruments applied and the intensity of the policy itself [16,17]. However,
few studies have evaluated renewable heat policies from these perspectives.

To fill the aforementioned research gaps, this study covers three aspects. Firstly, the
development and framework of renewable heat policies formulated in the last 20 years
are reviewed to construct a broad picture of the policy system. Secondly, the policies are
clustered according to the instruments applied to bolster a quantitative analysis and obtain
an in-depth insight into the dynamic development process. Finally, suggestions to establish
a more efficient renewable heat policy system are provided. The results of this study will
contribute to a comprehensive understanding of China’s renewable heat policy and will
shed light on policy design and implementation in the future.

2. Methods

In this study, a systematic review of renewable heat policies in China, spanning from
2000 to 2021, is conducted to understand the framework of China’s renewable heat policy
and to determine the key drivers in policy making. The review approach is developed
by referencing several studies, including Zhu Bei et al. [18], Liu Junxia et al. [15], and
Chul Kim [19].

To quantify the effectiveness of existing policies, a policy intensity index (PII) model
is employed. A policy intensity index is developed based on the game theory of public
policy to quantify the impact of policies. The index was first developed by Libecap [20]
in 1978, and then widely used to quantify policy effectiveness. The structure of the PII in
this paper is established based on previous studies concerning China’s energy saving and
clean heating policies [16–18,21], and specific modifications are made to precisely reflect
the characteristics of renewable heat policy. The modification contains 2 aspects. Firstly,
the score scope is narrowed down to 3 degrees. Secondly, the policies are classified into
3 categories instead of 5 categories, to simplify the evaluation.

Table 1 shows a breakdown of the index indicators, which includes 2 primary aspects:
issuance level and target level. The policy’s authority level is measured by the level of
issuance. The issuance level aims to measure the authority degree of the policy through
3 sub-indicators: document type, issuer level, and coverage of the policy. The target level
includes 2 indicators, the refinement and the duration of the targets, with the purpose of
assessing the stringency degree of the targets in the policy. Each sub-indicator is endowed
with the same score rules, from 1 to 3.

In terms of data processing, we gathered policy documents from official government
websites, such as the official websites of the state council (SC), the National Development
and Reform Commission (NDRC), the Ministry of Ecology and Environment (MEE), and rel-
evant policy databases. A total of 146 relevant policies were collected. The keywords for text
analysis included “policy,” “regulation,” “renewable heating,” “geothermal,” “biomass,”
“wind power heating,” “clean heating,” and “solar heating”. Screen criteria was identified
to ensure that the policy type was in the form of law, regulation, opinion, measure, or
notice. The collected policies were standardized for further quantitative analysis by issue
time, issuer, the number of issuers, target type, coverage, etc. The timeline ranged from
2000 to 2021, with the consideration that few policies were released before 2000.
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Table 1. The breakdown of PPI indicators.

Indicator Sub-Indicator Score Rules

1. Issuance level

1.1. Document type (P1)

� Law: 3
� Strategy, guidance opinion, plan, and

action plan: 2
� The announcement, notification, and

implementation measures: 1

1.2. Coverage (P2)
� National level: 3
� Provincial level: 2
� City level: 1

1.3. Issuer level (P3)

� State council: 3
� Ministries (more than 3): 2
� Less than 2 ministries or provincial

governments: 1

2. Target level

2.1. Refinement of targets (P4)
� Specific quantitative targets: 3
� Only overall targets: 2
� Only qualitative targets: 1

2.2. Duration of targets(P5)
� More than 5 years: 3
� 3–5 years: 2
� One year or less: 1

After each indicator was scored, the policy intensity for a policy was calculated by
multiplying all the sub-indicators. The model is shown in the following formula.

Pi = ∑N
j

(
P1j,i × P2j,i × P3j,i × P4j,i × P5j,i

)
, i = [2000, 2021] (1)

Pi represents the policy intensity of year i, while j represents the ordinal number of the
policy in year i. P1j,i to P5j,i represent the score of the sub-indicator in a specific year of
policy j.

3. Development of China’s Renewable Heat Policy

3.1. Architecture of Renewable Heat Policies in China

China’s current renewable heat policy system has been formed from scratch after more
than 20 years of efforts. The architecture of the system is illustrated in Figure 1, to elucidate
the inner relationship of the policies. Generally, policies can be classified into several levels.
The first level is law, which lays out a fundamental legal framework for the development
of renewable heating. The second level is medium- to long-term strategies or plans. The
third level focuses on short-term comprehensive plans, including conventional plans and
unconventional plans. The fourth level is sub-plans and special policies. The fifth level
refers to local plans and policies.

China introduced the Renewable Energy Law in 2005, and since then renewable energy
has become a preferential area for energy development. Renewable law lays a legal basis
for renewable heating development. To implement the renewable heating law, central and
local governments have formulated a series of policies.

Under the renewable law, medium- to long-term strategies are made. “The Medium-
and Long-Term Renewable Development Plan” [22] and the relevant climate and environ-
ment strategy mainly addressed the principles and priority tasks for making short-term
national renewable energy plans in China.
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Figure 1. The structure of the renewable policy in China.

Based on strategy and high-level guidance, central governments usually make con-
ventional plans to guide the next five years of development. The first renewable energy
development plan was issued in 2012, and China has since began to promulgate a renew-
able development plan for each five-year period. These plans generally include mandatory
goals that should be achieved by the end of the fifth year. Alongside conventional plans,
some unconventional plans were also promulgated to address important and urgent issues.
In 2017, the Clean Heating Plan for Northern China (2017–2021) (clean heating plan) was
released jointly by nine ministries to facilitate the transformation of clean heating, and to
control air pollution caused by coal-fired boilers [23]. The implementation of the clean
heating plan spanned three years until the end of 2021 and covered “2 + 26” cities in
Northern China.

The targets in these comprehensive plans are usually broken down into more specific
targets and presented in sub-plans with specific measures. China has issued special plans
for geothermal energy heating, biomass energy heating, renewable electricity heating, solar
water, and heating policies [24–28]. Additionally, it is of significance to engage in the
implementation of comprehensive plans and supporting policies, such as subsidies and tax
credits, to show sufficient support and attention.

Local governments commonly release renewable heat policies according to local
conditions under the umbrella of national policies. For example, Inner Mongolia issued the
“Notice on wind power for heating to support the utilization of wind power for heating in
winter seasons” [29]. Furthermore, local governments are also encouraged to formulate
local standards to enhance the implementation of renewable policies and regulations. As of
2015, more than 28 provinces had already issued compulsory regulations requiring new
buildings to install solar heating systems [30].

3.2. The Development of Renewable Heating in China

When the cost of solar water heating systems dropped significantly in the 2000s,
renewable heating started to receive more attention from policymakers [30]. Since then,
progress in policies has been accelerated to push forward the deployment of renewable
energy in the heating sector. The evolution of renewable heat policies has been closely
associated with the socio-economic context of the last 20 years [24]. The development of
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renewable heating policies can be divided into four stages, as shown in Table 2. The key
drivers and the role of renewable heating are different in different stages.

Table 2. The four stages of renewable heating development.

Projection Period
Stage 1 Stage 2 Stage 3 Stage 4

2000–2013 2013–2016 2017–2020 2021–Present

Key driver Increasing demand for
consumption Air pollution issues

Clean heating program
to achieve higher

air quality

New climate change
goals and the need for
the energy transition

Key policy
Renewable law, solar

heating incentives, and
compulsory standards

12th and 13th five-year
plans for

renewable heating

Plan for clean heating
in Northern China

(2017–2021)

Notice on
implementing
renewable heat

according to
local conditions

Policy goals No specific goals for
renewable heating

Quantitative goals:
substitution of coal

achieving 100 million
by the end of 2015 and
400 million m2 for solar
heating 580 million m2

Quantitative goals: one
billion square meters of
geothermal, 2.1 billion

square meters of
biomass, and 50 million

square meters of
solar energy

Quantitative goals: the
scale of geothermal

heating, biomass
heating, biomass fuels,

solar thermal
utilization, and other

non-electric utilization
reached 60 million tons
of standard coal by the

end of 2025

Role of renewable
heating at the
policy level

A supplement to
energy use especially

in household

A supplement when
coal is replaced

One of the main
sources of clean
heating supply

Imperative solution for
climate change goals

• Stage 1: driven by household demand, from 2000 to 2013

Since 2000, China has undergone rapid urbanization, along with a rapid increase in
the application of domestic solar water systems. Strong demand from the consumption
side drove the significant growth of the installation of solar water heating systems, which
achieved 323.1 million m2 by the end of 2012 [4]. Incentive measures, i.e., subsidies,
tax credit, and compulsory standards greatly promoted the deployment of solar heating.
The solar heating market expanded rapidly with strong responses, since solar heating
was integrated into the energy saving livelihood program (China started to implement
the energy saving livelihood program in 2012, by providing subsidies for energy-saving
products, including solar water products). This required direct delivery of subsidies
for households that were equipped with solar heating systems. However, the year 2014
witnessed the beginning of a decline in the growth rate due to the expiration of the program.
The market progress of solar heating is described in Figure 2.

In this stage, solar heating dominated the renewable heating market, with other
renewable heating technologies accounting for little market share. This stage is marked by
an initial stage of renewable heating, with household demand as the key driving factor.
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Figure 2. The development of the solar heating market in China.

• Stage 2: driven by air pollution issues, from 2013 to 2017

In 2013, extreme haze weather hit northern areas of China with a high frequency.
The increasing environmental awareness of the public and concerns over air pollution
instigated heating reform focusing on clean energy transition [31]. In 2013, the state council
(SC) issued the Air Pollution Prevention and Control Action Plan [32]. Following this,
regulations on the substitution of coal for residential heating became a vital part of national
air pollution control and environmental supervision. Moreover, renewable heat policies
were introduced accordingly in this stage, focusing on specific technologies, such as biomass
and geothermal energy. In 2013, a special policy titled “Guidance opinions on promoting
utilization of geothermal energy” [24] was released, clarifying the main objectives, key
tasks, and measures required to foster the geothermal heating industry. It is also worth
noting that the first renewable heating target for the whole country was confirmed at this
stage. In the 12th Five-Year Renewable Energy Development Plan [33], a quantitative
indicator for renewable heating, namely the amount of substitution of fossil energy, was
established. Subsequently, in the 13th Five-Year Renewable Energy Development Plan, the
targets were further enhanced, from 10 billion tce by 2015 to 15 billion tce by 2020 [34].

At this stage, policies on renewable heating began to be more vigorously implemented,
and specific quantitative targets for renewable heating development were determined
for the first time. The primary policy measures in this stage were aimed at providing
resolutions to air pollution issues, and renewable heating was deemed as a supplementary
solution to replacing coal.

• Stage 3: driven by demand of higher air quality

In 2017, 10 ministries and commissions jointly promulgated the Plan for Clean Heating
in Northern China (2017–2021) [23], which formally defined the energy sources of clean
heating, including geothermal energy, biomass, solar energy, natural gas, electricity, indus-
trial waste heat, clean coal combustion, nuclear energy, etc. In the policy, an ambitious
target was proposed, striving to achieve a 50% clean heating rate by 2019 and 70% by 2021.
Furthermore, renewable heating was for the first time identified as the main source of clean
heating energy rather than playing a supplementary role in the previous stage. Specific
goals were given for each renewable heating technology, i.e., one billion square meters for
geothermal energy, 2.1 billion square meters for biomass, and 50 million square meters for
solar energy by the end of 2021.

To ensure the implementation of the plan, regulations on subsidies and price mecha-
nisms were also released at this stage. In 2017, the Ministry of Finance provided subsidies
to 43 pilot cities, with an annual subsidy of one billion RMB for municipalities, 700 million
RMB for provincial capitals, as well as 500 million RMB for other cities [35]. Following
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this, the National Development and Reform Commission (NDRC) issued a policy titled
“Opinions on Clean Heating Price in North China” to overcome the issue of price distortion,
clarifying that renewable energy should be given high priority in heating energy supply
and linkage of electric heating, wind, and solar power generation curtailment should be es-
tablished [36]. Thereafter, the 13th Five-Year Development Plan of Geothermal Energy [37]
specified the goals and strengthened the measures, in which specific geothermal modes,
shallow geothermal systems, and hot rock geothermal systems were introduced to solve
the problem of winter heating where applicable. Meanwhile, in the 13th Five-Year Devel-
opment Plan of Biomass Energy [26], biomass heating, especially biomass co-generation,
was highlighted to supplement the energy supply with regard to the implementation of
“coal to gas” or “coal to electricity” policies.

At this stage, renewable heating was formally integrated into the clean heating system
as a main source of energy supply, rather than a supplement. Applying more diverse policy
instruments could contribute to ensuring the implementation of the clean heating plan.

• Stage 4: driven by ambitious climate change goals, 2021–

In 2021, a comprehensive policy titled “Notice on advancing the development of
renewable heating according to local conditions” was launched [38], consisting of six
aspects: (1) release special plans for renewable heating, including specific renewable heating
goals aligned with the requirements of climate change goals; (2) promote various types
of renewable heating technologies according to local conditions; (3) continue promoting
pilot demonstration work and major project construction; (4) guarantee policy support of
renewable heat; (5) strengthen R&D support for key technical equipment; and (6) improve
the government management system for renewable heat. The policy symbolized the
significant achievements of clean heating policies in China and initiated a new era of
renewable heating development. The 30/60 targets served as the dominant driver for this
stage. Subsequently, a series of policies concerning renewable heating were released. The
most recent policy is “Several opinions on promoting the development and utilization of
geothermal energy” [25], jointly issued by eight ministries, which highlights the importance
of geothermal utilization.

In summary, the year 2021 witnessed the transformation of renewable heat policy with
the release of a comprehensive renewable heating program. This indicates that renewable
heating in China has been formally integrated into the energy transition system as a key
measure to address climate change.

4. Evaluation of Renewable Heat Policy

In China, policies have varying impacts according to the authority level of the issuer.
Regulations issued by the state council generally have the highest authority, followed
by regulations or policies jointly issued by multiple ministries. Policies released by the
signal ministry or province (autonomous region, municipality) have the lowest authority.
Furthermore, the efficacy of a policy is also greatly related to the document type, i.e., law
has the highest efficacy, followed by strategy.

A policy instrument provides the link between policy formulation and policy im-
plementation. The instrument used in a policy has a significant impact on how well it is
implemented [39]. Policies can be divided into four categories using the instrument applied:
regulation-based policy, fiscal instrument-based policy, price mechanism-based policy, and
financial instrument-based policy. Regulation-based instruments include targets, planning,
compulsory standards, etc. Fiscal instruments commonly include subsidies, grants, tax
credits, etc. Price-based instruments include heat-trading mechanisms, carbon markets, etc.
Typical financial instruments are bonds, loans, and direct equity investments [4].

In this section, renewable heat policies are evaluated from two perspectives. First, we
focus on the instrument in the policies to find out how the policy is implemented. Second,
PII is used to further understand the intensity of the existing policies and their efficacy.
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4.1. The Instruments of Renewable Heat Policies

In this paper, the cumulative number is used to quantify the instrument applied in
policies. To be specific, policies are classified according to the type of instrument and a
specific instrument that appeared in a specific year was counted in the subsequent years.
Policies that use several instruments are counted into primary instrument types to avoid
double counting. The cumulative numbers of the four types of policies according to
instruments applied from 2000 to 2021 are illustrated in Figure 3.

 

Figure 3. Development of policies according to instruments.

Overall, it demonstrated an upward tendency of all four types of renewable policies
since stage 2, particularly for regulation-based policies, which increased from 20 to more
than 100 over seven years. Comparatively, it can be seen that the other three types all
showed some degree of delay. The amount of fiscal incentive policies has grown moderately
since 2015, while the price and financial instrument-based policies began to increase steadily
only after 2017.

In terms of the amount of the four types of policies, regulation-based policies are
largest with a share of approximately 70% by 2021. Fiscal incentives began to increase
in 2017, leading to a share of 11% by the end of 2021, with the remaining two types at
less than 20%. Regulation-based policies are preferred, with an amount much higher
than the other three instruments, showing a structured imbalance in the application of
different instruments.

4.2. Evaluation of Policy Intensity

To further illustrate the dynamic changes in renewable heat policies over the last
20 years, the policy intensity index from 2012–2021 was gained using the model introduced
in Section 2. The results are shown in a bubbling figure (Figure 4), where the size of the
bubble represents the intensity of the policies of a specific year.

It can be seen that the intensity of the four types of policies showed different patterns,
among which regulation-based policies showed the strongest intensity of all four stages.
The intensity of regulation-based policies reached the highest level in the year 2017, which
can be attributed to a series of policies issued by high-level authorities, including the
SC. Fiscal relevant policies followed after and financial instrument-based policies had the
lowest intensity. The years following 2017 witnessed an increase in the intensity of the four
types of policies, indicating the increasing political will for renewable heating from the
policy maker.
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Figure 4. Policy intensity index of the four types of policies.

For the four types of policy instruments, the following can be found if Figures 3 and 4
are combined:

Regulation-based policies dominated in the policy system, which were both largest
in amount and strongest in stringency. The high-frequency application of regulation-
based instruments in renewable heat policies reflects that the renewable heating market
is still primarily driven by governments and is still at an initial stage, where mandatory
regulations are greatly needed. However, it is not recommended that regulation-based
policies are applied long term, due to the lack of flexibility and cost effectiveness.

Fiscal incentives have been implemented since 2017 when the clean heating program
was initiated, marking a major step. However, the incentive options are limited, and
subsidy is the most common approach. Fiscal instruments can play a great role in the initial
stages by supplementing the capital cost, but put great pressure on the government. More
diverse instruments can be deployed when providing fiscal support. One example is the
renewable heating incentive (RHI) from the United Kingdom, which is similar to the tariff
mechanism in the generation market. The tariff mechanism can be more result-orientated
and flexible compared to subsidy.

Market-based policies, including price mechanism and financial incentives, are least
used. Market-based policies are seen as the most cost-efficient way to foster a renewable
market by internalizing the environmental and economic cost. The application of market-
based policies should be greatly accelerated.

5. Conclusions and Suggestions

5.1. Conclusions

China’s renewable heat policies have advanced quickly in the last two decades. Numer-
ous policies have been implemented. However, few studies have examined the evolution
of these policies. We used the PII model to present the dynamic changes in the renewable
heat policies and three conclusions were summarized as follows.

Firstly, we systematically reviewed and illustrated the overall development of re-
newable heat policies from 2000 to 2021. China has established a renewable heat policy
system, which consists of five levels of policy, each with different power and authority.
The top levels are law, strategies, and plans, which provide macro guidance for long-term
development. The middle levels are comprehensive policies and regulations in the form
of five-year plans, special plans, etc., to further specify targets and measures. The policies
at the bottom levels are commonly designed for guiding implementation, including sup-
porting policies with incentives, special plans, or regulations, targeting specific renewable
heating technology models and local policies.
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Secondly, the 20 years were divided into four stages. In stage 1, the main driver was
the increasing heating demand from households, when the market for solar water heating
soared quickly. In this stage, regulation-based policies, such as compulsory standards,
pushed the expansion of the market. Furthermore, incentives also played an important
role. The second stage began in 2013. In this stage, issues with air pollution pushed
the development of renewable heating, with more political attention paid to renewable
heating to supplement the coal-to-gas program in fighting against air pollution. In 2017,
China initiated its clean heating plan, when renewable heating began to formally integrate
into the clean heating system. The fourth stage was driven by new climate change goals.
In this stage, the development of renewable heating became a certainty. The renewable
heating development of the past 20 years has a strong link with the socio-economic context,
showing various features in different stages. Thirdly, to further dive into the renewable
heat policy, we classified the existing renewable heat policies into four categories according
to the instruments applied. The results showed that the structure of the four instruments
were in disproportion, with regulation-based instruments the most preferred. While the
government began to apply other instruments to overcome price distortion and other
issues, the impact is still limited. The number of policies with all four instruments increased
dramatically since stage 3, when China began to implement its clean heating program. To
enhance the implementation of the 30/60 targets, the application of market-based policies
are greatly needed.

5.2. Policy Suggestions

To further accelerate the deployment of renewable energy in the heating sector, the
following suggestions are proposed:

Firstly, multiple barriers in the renewable heating sector call for a range of policy
instruments, often in combination. Regulation-based instruments, which generally lack
flexibility and cost-effectiveness, should be supplemented by other policies, especially
market-orientated policies. The application of regulation instruments can be strengthened
by increasing the application of other types of policy instruments. Instrument diversifica-
tion is required to strike a balance between cost, adaptability, and efficacy.

Secondly, the incentive system for renewable heating needs to be strengthened. The
externality of renewable heating can be partially compensated by incentives. Instead of
relying solely on subsidies, the government can use a variety of incentives, such as tax
breaks, tariffs for renewable heating sources, etc., to alleviate the financial load. Addition-
ally, innovative measures, such as result-based incentives and loan guarantees, can also be
applied when applicable.

Thirdly, market-orientated instruments should be further enhanced in policies. Car-
bon market and green finance instruments have great potential in further enhancing the
development of the renewable heating market. Financial instruments should be more
embodied in future policies, such as green loans and green bonds.

Finally, policy coordination should be further strengthened. Coordination can improve
the efficiency of resource allocation, as well as avoid unnecessary conflict in implementation.

The present work provides a first and comprehensive review of China’s renewable
heating policy at the national level. Further research regarding the role of the policy’s
executor, the local government, would be of great help in understanding the effectiveness
of renewable heating. In addition, a considerable amount of work is needed to evaluate
the impact of renewable heating on energy transition and carbon emission, to examine
the evolution of household heating patterns, and to explore the possible demand-side
management option using an experimental approach.
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Abstract: Recycling of problematic photovoltaic modules as raw materials requires considerable
energy. The technology to restore cells in hotspot modules at a relatively low cost is more economical
than replacing them with new modules. Moreover, a technology that restores power by replacing
a cell-in-hotspot of a photovoltaic module with a new cell rather than replacing the whole module
is useful for operating power plants. In particular, power plants that receive government subsidies
have to use certified modules of specific models; the modules cannot be replaced with other modules.
Before putting resources into module restoration, predicting the power of a module to be restored
by replacing a cracked cell with a new cell is essential. Therefore, in this study, the module output
amount after restoration was calculated using the previously proposed relative power loss analysis
method and the recently proposed cell-to-module factor analysis method. In addition, the long-
term degradation coefficient of the initial cell and the loss due to the electrical mismatch between
the initial and new cell were considered. The output of the initial cell was estimated by inversely
calculating the cell-to-module factor. The differences between the power prediction value and the
actual experimental result were 1.12% and 3.20% for samples 190 A and 190 B, respectively. When the
initial rating power and tolerance of the module were corrected, the differences decreased to 0.10%
and 2.01%, respectively. The positive mismatch, which restores cells with a higher power, has no
loss due to the reverse current; thus, the efficiency of the modules is proportional to the average
efficiency of each cell. In this experiment, the electrical mismatches were only 0.37% and 0.34%. This
study confirmed that even if a replacement cell has a higher power (<20%) than the existing cell, the
power loss is not significantly affected, and heat generation of the existing normal cell is not observed.
Hence, it was concluded that when some cells are damaged in a crystalline solar cell, the module
could be restored by replacing only those cells instead of disposing of the entire module. However,
for commercialization of the proposed method, a long-term reliability test of the module repaired
using this method must be performed to confirm the results. Following this, recycling cells instead of
recycling modules will be an economical and eco-friendly alternative.

Keywords: cell-in-hotspot; cell replacement; module repair; restoration technology; module recovery;
power prediction; electrical mismatch; CTM factor analysis

1. Introduction

Renewable energy, including photovoltaic power generation, has steadily increased
globally through [1,2] continuous cost-cutting efforts based on eco-friendly elements and
low maintenance costs [3,4], despite the high costs and relatively low economy in the
early stages of its implementation [5]. Owing to economic security and increased supply
of renewable energy [6,7], the achievement of grid parity has recently accelerated [8,9],
with a certain percentage of fossil fuel usage steadily being replaced by renewable energy
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usage, and hence, the total use of renewable energy has increased over the past decade [10].
Expanding the solar energy supply may reduce carbon dioxide emissions and achieve
a healthy mix of energy sources to overcome the climate crisis [11,12]. However, the
increasing demand for solar energy may cause shortages of the resources used in the
advanced production of solar modules [13–15]. In particular, owing to the scarcity of
resources such as silver, indium, and bismuth, target material consumptions of 2, 0.38,
and 1.8 mg/Wp [16,17], respectively, have been proposed; thus, a significant reduction in
material consumption is required to expand renewable energy supply [18].

The large-scale installation of photovoltaic modules results in the problems of eco-
nomic use of resources during production and processing of waste modules after use [19,20].
By 2050, 80 million tons of accumulated photovoltaic modules are expected to reach their
service life worldwide, with 10 million tons in the US alone [21]. With the rapid increase
in the installation of photovoltaic modules in countries such as China, the collection and
recycling of end-of-life photovoltaic modules is becoming an important task, and various
methods of building efficient recycling systems are being investigated [22]. According
to previous studies, the predicted accumulated waste that will be generated from 2020
to 2080 in existing solar power plants varies in proportion to solar installations, and is
expected to peak at 130,000 tons in 2051 and 141,297 tons in 2054 [23]. Currently, the life
of a photovoltaic module is approximately 20–30 years; therefore, the life of photovoltaic
modules installed in the early 2000s will expire on a large scale, and the disposal of waste
modules will increase rapidly. Photovoltaic modules consist of expensive materials, such
as aluminum, silver, copper, tin, and silicon wafers. In addition, they can be used as
highly attractive recycled materials in terms of the environmental charges imposed when
filling landfills. In the recycling process of a general photovoltaic module, research has
primarily focused on recycling by collecting silicon wafers and refabricating them into opti-
mized silicon solar cells [24,25], pyrolyzing organic materials such as ethylene vinyl acetate
(EVA) [26], and removing organic materials such as glass and ribbon metals [27,28]. As a
research example on recovering the performance of photovoltaic modules, a technology
for recovering the insulation resistance of aging modules by injecting coatings based on
polyurethane, epoxy, silicone, and synthetic rubber of crystalline photovoltaic modules was
introduced [29,30]. However, recycling or reuse technology generally involves removal of
frames, junction boxes, or cables, etc., from crystalline photovoltaic modules, followed by
thermal or chemical decomposition of the laminated module to collect glass, silicon, metal,
and polymer [31,32].

This recycling technology is not currently widely used because it is expensive and the
return on investment (ROI) is less than approximately −0.25 as of 2022 [33]. In addition, the
recycling method, which involves collecting the raw materials separately, is not applicable
to the recovery of damaged modules in an operating power plant because the failure
of a part of the module results in the crushing of other usable parts. Accordingly, this
paper proposes a technology to recover photovoltaic modules at the same or a higher
level of the initial power value by replacing cells at a safety risk, such as power loss and
hotspots, owing to damage to some cells of an aged silicon photovoltaic module. Most
commercial solar power plants receive subsidies from the government. In this case, only
certified modules of a particular model should be used during the generation period. If
the module fails, it cannot be replaced by another model. Moreover, owing to the rapid
improvement in cell efficiency every year [34,35], the module model continues to change.
In commercial power plants, restoring the output of a module by cell replacement is very
useful. Technological advancements in the restoration of the module result in a power
deviation between the initial and new cell [36,37]. Therefore, when replacing a cell with
a new cell having a higher power, the possibility of an electrical mismatch loss occurring
should be considered, and the long-term power degradation of the initial cell should be
confirmed. Hence, the purpose of the experiment was to determine the extent to which
the output improvement of the new cell is reflected in the output of the module to be
restored. Previous studies have shown that the prediction of power mainly includes power
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degradation in modules with hotspots or how much power decreases as a result of EL in
modules with potential-induced degradation (PID) [38,39]. However, the purpose of this
study was to predict the improvement to power through replacement of damaged cells
in a module, which has not been attempted before. The results of this study suggest that
the energy and environmental costs of recycling modules can be significantly reduced by
reusing waste modules in more diverse states.

2. Experiments

2.1. Methods and Procedures

The overall experiment was conducted in the following order: module power output
and defect verification, calculation of grade of originally applied cells, grade verification
of replacement cells, power prediction, module power recovery, comparison of predicted
power output and experimental results, and application of correction values. First, the
defects and power output of the module to be recovered were checked via electrolumi-
nescence (EL) measurement and a sun-simulator. EL measurements are used to identify
internal defects that cannot be visually identified using EL in solar cells. Table 1 provides
the nomenclature for the electrical characteristics of the module.

Table 1. Nomenclature for the electrical characteristics of the module.

Isc Short-circuit current Imp Current at the maximum power output
Voc Open-circuit voltage Vmp Voltage at the maximum power output

Pmax Maximum power output FF Filling coefficient factor

The current corresponding to the cell Isc and the voltage at the same level as the
module Voc were applied for the measurement. EL images of the module were captured
in several parts of a darkroom, recollected, and displayed on a screen. The EL equipment
manufactured by MC Science in Korea was used for the measurements. The simulator
measures the module’s Isc, Voc, Pmax, etc., under the standard test condition (STC) at 25 ◦C,
1 Sun (1000 W/m2), and air mass 1.5, and corrects the actual temperature to output the
calculated value to the screen. The equipment used in this study was a Spire-Nissinbo
Sun Simulator. The equipment was calibrated for proper use in the certification test of the
photovoltaic module by receiving the AAA in three evaluation items: uniformity, stability,
and spectrum. Measurements of power output from equipment are displayed in various
ways, i.e., 1–4 digits after the decimal point; however, in this study, the third digit after
the decimal point was rounded to two digits to maintain consistency. The CTM (cell to
module) factor calculation method was applied to the power analysis of the cells used at
the time of manufacturing the target samples and the review of the cells to be replaced [40].
The grade of the applied cell was inversely calculated based on the initial power output of
the module disclosed on the Internet by the manufacturer. The module power after cell
replacement was predicted after checking the grade of the cell to be replaced.

The CTM coefficient k-factor calculation method was used to analyze the power of
the original cell of the target samples and review the replacement cell. Manufacturing
modules from cells, models, and formulas for classifying the CTM coefficient k-factor,
which affects efficiency or power, and analyzing loss or acquisition mechanisms have been
presented in previous research [41,42]. If the dimension data and rated power of a module
released by the module manufacturer are the initial power outputs of the module, the
module efficiency is calculated to be 13.6%. Because the module power output is calculated
from the sum of the CTM coefficient k factor and the initial solar cell power in the module
power output calculation model, the power output of the module can be calculated using
Equations (1) and (2) [41,43]. The factors i and m in Equations (1) and (2) are variables of
the routinely used pie function, and refer to the extension of the CTM factor. The CTM
k-factor consisted of 15 types: k1 (module margin), k2 (cell spacing), k3 (cover reflection),
k4 (cover absorption), k5 (cover/encapsulant reflection), k6 (encapsulant absorption), k7
(interconnection shading), k8 (cell/encapsulant coupling), k9 (finger coupling), k10 (intercon-
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nector coupling), k11 (cover coupling), k12 (cell interconnection), k13 (string interconnection),
k14 (electrical mismatch), and k15 (junction box and cabling). The meaning of I = 3−m in
the ∏-function of Equation (1) means CTM k-factor from k3 to k15. Then, the sum of the
cell power outputs from j = 1−n from the ∑-function is the number n of cells applied to
the module.

Pmodule =
m

∏
i=3

ki·
n

∑
i=1

Pcell.j (1)

CTMpower=
m

∏
i=3

ki (2)

In terms of module efficiency, factors affecting the entire area of a gap module between
modules are important; however, when a module is produced from a cell, a design margin
(k1) to ensure an electrical insulation distance and a loss factor (k2) owing to the cell
interval are not related to a power change. The module efficiency can be expressed by
Equations (3) and (4) [41].

ηmodule =
Pmodule

ESTC·(Amodule + Acell spacing + Acells)
(3)

ηmodule = ηc·(k1 + k2 − 1)·
m

∏
i=3

ki (4)

Therefore, according to this model, the module efficiency is proportional to the average
efficiency of the cell rather than being dominantly affected by the lowest efficiency. The
average efficiency of the cell was calculated by considering the electrical mismatch loss (k14)
of the cell to predict the power output of the module to be restored. For the loss caused
by the electrical mismatch of cells, studies were published prior to research on the CTM
factor, and the widely known definition of RPL is expressed as the difference between the
maximum power (Pmpc) of n individual cells connected in series to form a cell string or
module. RPL can be expressed as Equation (5) from the difference between the sum of the
maximum power of all cells and the maximum power of the module.

RPL =
∑n

i=1 ·Pmpci − Pmodule

∑n
i=1 ·Pmpci

(5)

In theory, when individual cells operate completely independently, the maximum
power output is denoted as P′

max, and when the average cell power output value in a
group is Pmax, the calculation of RPLB (relative power loss of a module using Bucciarelli’s
equation) is as shown in Equation (6).

RPLB =
P′

max − Pmodule

n·I−mpV−
mp

(6)

The power output after cell replacement and the state inside the module were also
confirmed using the EL and Sun simulators. The cell replacement process is discussed in
the next section. After cell replacement, the gain factor (power increment of the replacement
cell), loss factor (long-term degradation, electrical mismatch), and unidentified tolerance
parts of the module track the experimental results and apply the same to the two samples,
correct the power predictions, and finally compare them with the results.

2.2. Experiments

Figure 1 presents an EL image of a 6-inch 54-cell 3BB polycrystalline silicon solar
module, where the hose power degrades owing to cell damage. Figure 1a shows the
first sample of 190-Wp grade, referred to as 190 A for convenience, and its appearance.
Figure 1b–d depict EL images of 190 A, the second sample of the 190-Wp class (190 B),
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and 190 B, respectively. As shown in images (a) and (c), a weak yellowish appearance,
which was not severe, was observed. In addition, approximately six to nine dark areas
were observed in the EL image (Figure 1b) and approximately six dark areas were observed
at 190 B (Figure 1d). In the green-marked cell of (d), the dark area in the cell occurred
because of poor soldering between the mutual connector and the busbar.

 
Figure 1. Module appearance and EL images with degraded power output due to cell breakage. (a) is
the appearance of 190 A, (b) is the EL image of 190 A, (c) is the appearance of B, and finally (d) is the
EL image of 190 B.

The modules used in this study included samples collected from commercially op-
erated power plants; however, the current–voltage (I–V) data at the time of manufacture
were unknown. Therefore, the electrical characteristics of the model disclosed by the
manufacturer were assumed as the initial electrical performance.

Table 2 lists the initial electrical specifications of samples 190 A and 190 B and the
electrical data of the failed samples after a certain period of operation. As confirmed in the
EL image, the FF was severely degraded by the damaged cells in the middle of the string.
For 190 A and 190 B, the power decreased by −21.69% and −26.47%, respectively.

Table 2. Electrical data of the modules in the initial stage and after use.

Sample Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) FF Tolerance

190 A 54 cells initial 190.00 7.89 33.00 7.31 26.00 0.73 ±3%
failed 148.80 8.16 32.77 5.16 28.84 0.56

190 B 54 cells initial 190.00 7.89 33.00 7.31 26.00 0.73 ±3%
failed 139.70 7.95 32.67 5.67 24.66 0.54

Figure 2 displays the I–V and voltage–power (V–P) curves of modules 190 A and 190 B.
The I–V curves appear step-shaped, while the V–P curves have two or more multi-peaks,
which is a typical form caused by the decrease in Isc due to the cracking of a specific cell in
a cell string [44].
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Figure 2. I–V and V–P curves of modules with degraded power output owing to cell breakage.

Figure 3 shows the process of removing the broken cells of 190 A and 190 B cells and
replacing them with new cells. (a) First, the module is placed on a hot plate to heat the
sun-side and soften the EVA, then, the back sheet is removed from the edge. (b) When
the back sheet is completely peeled off, (c) the tape attached to fix the cell-string gap was
removed. If it is a material such as EVA, it does not require removal; however, for a tape
using polyethylene terephthalate (PET) as a basic material, a gap is formed between the
tape and cell owing to the loss of adhesion.

When cleaning the back sheet removal surface or the cell removal area using ethanol
or isopropyl alcohol (IPA), the permeated organic solvent may cause solvothermal swelling
in the lamination process, or gas may accumulate to cause swelling [32].
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Figure 3. Module recovery process by replacing broken cells. (d) Next, the EVA along the boundary
of the cell to be removed was cut, and the tab of the cell to be removed was cut by 15 mm or more
for electrical connection during recovery. (e) Subsequently, the broken cell was removed using a
scraper with a blade. (f) The remaining EVA was trimmed to the interface of the adjacent cells, and
the removed surface was washed. After cell removal, the module was removed from the hot plate
and cooled to room temperature. (g) EVA was placed between the glass and the new cell to connect it
to the module. Here, the size of the EVA is important because it should be perfectly connected to the
first EVA of the existing module without leaving a bubble after lamination of the module. Thus, the
EVA should be cut accurately with an error of less than 1 mm. If it is larger than the removal surface,
stress is applied to the replacement cell, which can cause the cell edge to crack during the lamination
process. (h) Subsequently, while electrically connecting the new cell and the existing adjacent cell
through re-soldering, insulation was applied to prevent the first EVA from melting in the heat. (i) The
second EVA was slightly thicker than the original size. (j) A margin of less than 5 mm should be
given, and if it is more than that, the overlapping part of the edge EVA of the cell replaced after
lamination is exposed, causing a repair mark. (k) Finally, the EVA and new back sheet covering the
entire module were laid up. (l) The electrical connection was checked, and the lamination process
was completed.

3. Result and Discussion

3.1. Power Output Analysis of Initial Cells Applied to Each Sample and Specification of
Replacement Cells

The initial CTM of the cells analyzed above was approximately 1.78% based on power,
with the median value of 0.9%, as suggested in the optimized module process published
in a previous study, and 2.72% of the CTM value of a general photovoltaic module [41].
The calculated power output of the individual cells was approximately 3.6 Wp, which is
approximately 14.8% in terms of cell efficiency. Table 3 lists the initial power output of the
cell applied to the module using Equations (1) and (2).
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Table 3. Initial applied cell grade analysis of sample modules (190 A, 190 B) to be recovered.

CTM Factor (k) K conventional (%) CTM power Ratio Initial CTM power of 190 A, 190 B

Module efficiency (STC)/Power 18.31 98.23% 190.0
k15 (junction box and cabling) −0.05 −0.23% −0.45
k14 (electrical mismatch) −0.04 −0.19% −0.36
k13 (string interconnection) −0.03 −0.14% −0.27
k12 (cell interconnection) −0.037 −0.17% −0.33
k11 (cover coupling) 0.28 1.30% 2.51
k10 (interconnector coupling) 0.09 0.42% 0.81
k9 (finger coupling) 0.17 0.79% 1.52
k8 (cell/encapsulant coupling) 0.16 0.74% 1.43
k7 (interconnection shading) −0.44 −2.04% −3.94
k6 (encapsulant absorption) −0.03 −0.14% −0.27
k5 (cover/encapsulant reflection) −0.01 −0.02% −0.05
k4 (cover absorption) −0.14 −0.65% −1.26
k3 (cover reflection) −0.31 −1.44% −2.78
Cell efficiency (STC)/Power 21.58 100.00% 193.45

As cells of the same grade were already discontinued, a module was repaired using
the 3-bus bar cell, which had the lowest power among the cells currently in use. The Pmax
and cell efficiency of the cell used in the initial manufacture of the module are listed in
Table 2. Assuming that the FFs of the module and cell were the same, the cell Vmp and Voc
were calculated by considering the number of cells from the module Vmp and Voc, and Isc
and Imp were determined using Pmax and FF of the cell.

The electrical characteristics of the initial and replacement cells used to restore the
modules are presented in Table 4. The tolerance of the initial cell follows that of the module
specification sheet.

Table 4. Electrical data of initial cell and replacement cell.

Item Eff. Cell Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) FF Tolerance

Initial cell 14.80 3.58 8.07 0.61 7.32 0.49 0.73 ±3%
Replacement cell 17.60 4.28 8.62 0.63 8.39 0.51 0.78 ±3%

3.2. Predicting the Power Output of the Restore Module When Applying A Replacement Cell

The following are the considerations for predicting the power of a module to be
recovered when a new cell is installed: the first element is the deviation between the actual
power output of the initial module and rated power output. This part was expected to be
within the initial tolerance range, and after module recovery, the results and discussion
were verified. Next, the power increase of the replacement cell should be added and
the value of the field-aged power degradation rate from the initial power of the existing
cell should be deducted. Moreover, the loss from the electrical mismatch between the
cells should also be considered. The increase in the power of the replacement cell can be
easily calculated using Equations (2) and (4). The next part to be considered is the loss
caused by the electrical mismatch. A recent study reported that the result of power loss
from the electrical mismatch of cells within a module was difficult to determine; however,
when the direct parallel configuration of modules was different, the relative power loss
(RPL) of the array due to electrical mismatch was 1.3–2.6% [45]. In previous studies, the
power loss caused by the electrical mismatch of cells was reported to be approximately
0.009–0.19% [46]; thus, it is already reflected as −0.19% in the CTM factor; therefore, it
should be applied conservatively. In the prediction of the power output, the final part to
be considered is the loss from power degradation owing to the field aging factor of the
existing cell. In general, the rate of power output degradation guaranteed by a module
manufacturer is 0.7%/year, which is a guaranteed limit design considering the power
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degradation caused by the failure of some modules in PV power plants. Referring to the
results reported in a previous study, the actual power output degradation rate of more
than 80% for crystalline PV modules in PV power plants that have been operated for more
than 10 years is approximately 0.27%/year on average [47]. This figure is significantly
lower than the limit guaranteed by manufacturers. In this study, we applied this figure to
calculate the power output prediction. Table 5 lists the power output predictions for the
recovered modules.

Table 5. Power output prediction for recovered modules.

CTM Factor (k) CTM Power Ratio 190 A (10 New Cells) 190 B (6 New Cells)

Module efficiency (STC)/Power 98.23% 196.40 193.50

Long term degradation of used cell −0.27%
× (% of remaining cell) −0.34(−0.17%) −0.47(−0.24%)

k15 (junction box and cabling) −0.23% −0.46 −0.46
k14 (electrical mismatch) −0.19% −0.37 −0.37
k13 (string interconnection) −0.14% −0.28 −0.28
k12 (cell interconnection) −0.17% −0.34 −0.34
k11 (cover coupling) 1.30% 2.60 2.56
k10 (interconnector coupling) 0.42% 0.84 0.82
k9 (finger coupling) 0.79% 1.58 1.56
k8 (cell/encapsulant coupling) 0.74% 1.49 1.46
k7 (interconnection shading) −2.04% −4.08 −4.03
k6 (encapsulant absorption) −0.14% −0.28 −0.28
k5 (cover/encapsulant reflection) −0.02% −0.05 −0.05
k4 (cover absorption) −0.65% −1.30 −1.28
k3 (cover reflection) −1.44% −2.88 −2.84
Cell power (STC, + power gain) 100.00% 200.32 197.52

For 190 A, 10 broken cells were replaced; thus, (10 × 4.28 Wp) + (44 × 3.58 Wp) = 42.8
+ 157.52 = 200.32 Wp is the total power output value of the cell. In 190 B, six cells were
replaced: (6 × 4.28 Wp) + (48 × 3.58 Wp) = 25.68 + 171.84 = 197.52 Wp. The results are
presented in Table 4. Through the calculation, the predicted power output values of 190 A
and 190 B were calculated as 196.40 Wp and 193.50 Wp, respectively. The CTM factor ki
values ranging from k1 to k15, and k3 to k15 are shown in the table; however, k1 and k2 values
are not shown in the table nor described here. The CTM factor k1 is the module margin,
which is approximately −2.03% in a typical module, and k2 is the cell spacing, which is also
generally −0.53%. This value is a design factor for the module area and depends on module
dimensions. However, the module margin or cell interval for insulation distance affects
only the area efficiency of the module and does not produce power by itself; therefore, the
calculation of CTM power was excluded from previous research.

3.3. Results of Power Recovery by Cell Replacement of 190 A and 190 B Samples

Figure 4 shows a comparison of the EL images of the modules before and after repair.
In Figure 4c,d, the relatively bright cells are the newly replaced cells. In Figure 4a,

when replacing cells of the 190 A sample, one more cell was replaced by damaging adjacent
cells while removing the cells from the hot plate, and as the cell replacement operation was
repeated, the same mistake was not repeated. Some small cracks not shown in Figure 4a are
observed in Figure 4b, which are defects occurring during manual cell removal. However,
the result shown in Figure 4d is not much different from that in Figure 4c because cell
replacement has become familiar and cell removal progressed much more easily. For an
easy recovery process, care should be taken to prevent additional cell cracks when collecting
and reinstalling the modules to be repaired.
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Figure 4. EL images in modules before and after recovery. (190 A, 190 B). (a) Among a total of 54 cells
from 190 A, 10 cells with a severe crack degree were removed and (b) replaced with a new cell to
recover. (c) Sample 190 B exhibited severe power degradation in approximately six cells, and hot
spots due to pore soldering also occurred in the busbar–interconnector connection. (d) However,
both the power and FF were recovered after cell replacement and pore soldering repair.

Table 6 lists the electrical characteristics of the module before and after recovery.
The module power increased by approximately 4.50% to 198.60 Wp from the rated power
for 190 A, and by approximately 5.10% to 199.70 Wp for 190 B. We verified that, considering
the loss of electrical mismatch between the existing cell and the new cell, the higher power
of individual cells had a greater effect on the power of the module.

Table 6. Electrical data of modules before and after recovery.

Item Replacement Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) FF Initial Comparison

190 A 10 cells before 148.80 8.16 32.77 5.16 28.84 0.56 −21.69%
recovery 198.60 8.11 32.95 7.54 26.35 0.74 +4.53%

190 B 6 cells before 139.70 7.95 32.67 5.67 24.67 0.54 −26.47%
recovery 199.70 7.99 32.89 7.50 26.64 0.76 +5.11%

As mentioned in Section 3.2, when the difference in cell mismatch is not large, the loss
due to mismatch is insignificant in the range 0.10–0.19%, and most (>80%) of crystalline
photovoltaic modules are only approximately 0.27%/year on average. Therefore, it matches
well with the result that predicted that the gain factor would have a greater impact on the
final power output of the module than the loss factor [46,47].

Figures 5 and 6 show the I–V curves before and after power recovery for 190 A
and 190 B, respectively. The results in Figures 5 and 6 show that Isc and Voc do not change
significantly before and after module restoration and that the V–P curve is deformed by
cell breakage, the FF is recovered, and the power of the module is restored.
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Figure 5. I–V and V–P curves before and after power recovery for sample 190 A.

Figure 6. I–V and V–P curves before and after power recovery for sample 190 B.

As shown in Figures 5 and 6, both the cell-in-hotspot-specific stepped I–V and
multipeak-shaped V–P curves are recovered.

Figures 7 and 8 show a brief circuit diagram of module 190 A before and after recovery,
respectively. In the figures, Iph represents the solar irradiance and Ipv represents the power
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output current. D1, D2, and D3 denote bypass diodes #1–#3, respectively, and Rs denotes
the series resistance.

Figure 7. Sub-circuit diagram of 190 A before recovery.

Figure 8. Sub-circuit diagram of module 190 A after recovery.

In the EL image of Figure 7, nine cells were cracked, resulting in resistance loss. In
this case, the ratio of shaded (or inactive) areas causing hot spots in the cell increased
proportionally with the range of inactive areas between 20% and 50%. If the resistance
becomes excessively large over a greater range or if the bypass diode is short-circuited [48],
it causes 100% power loss to the entire connected string [49,50]. A part looks relatively
brighter around the interconnector immediately next to the dark area of the damaged cell,
and the current is concentrated on a part of a cell with relatively low resistance owing to
cracks; thus, power loss occurs in the shaded and connected cells.

Figure 8 shows the EL of the module whose power was recovered after the cell
replacement of the 190 A sample and its diagram. The picture for 190 B is repeated, so I
omit it.
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3.4. Comparative Analysis of Power Recovery Results and Predicted Values

Table 7 shows the difference between the predicted power output value obtained using
the CTM analysis before module recovery and the value measured after cell replacement.

Table 7. Comparison of predicted and experimental values.

Item
Before

Recovery
Predicted

Value
Experimental

Value
Difference Tolerance

190 A 148.80 196.40 198.60 +1.12% ±3%
190 B 139.70 193.50 199.70 +3.20% ±3%

Even when applying the power deviation when manufacturing a module, both cases
exhibited a positive deviation; therefore, the loss, such as electrical mismatch, in the CTM
factor was considered conservative among the possible ranges. The CTM power analysis
results at 190 A are shown in Figure 9.

 
Figure 9. CTM power analysis for a recovered module (190 A).

The sum of the power of the initial and replacement cells was defined as 200.32 Wp
using the values calculated in Equation (1) and Table 4, and when CTM factors were applied,
the predicted value of 198.60 Wp was determined. Here, if 2.20 Wp, i.e., the difference
from the experimental results, was reflected, it was analyzed, as shown in Figure 9. The
difference between the predicted and experimental result for 190 A was 1.12%, which fell
within 3% of the power output tolerance value of the initial module. The analysis result of
sample 190 B indicated that the error was larger. Figure 10 shows the CTM power analysis
of the recovered module (190 B).

Sample 190 B was of the same grade as 190 A, and because there were fewer replace-
ment cells (six), the power acquisition from the replacement cell was smaller than that
at 190 A; therefore, the total power output of the cell was calculated as 197.52 Wp. In addi-
tion, the numbers of remaining cells in 190 A and 190 B were 44 and 48 cells, respectively;
thus, the long-term degradation was then calculated to be −0.47 Wp, which is greater
than −0.34 Wp for 190 A. The experimental value was 199.70 Wp, i.e., 6.20 Wp higher than
the predicted value of 193.50 Wp. This is approximately 3.20% higher than the predicted
value of 3% or more, which is the power output tolerance value of the initial module.
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Figure 10. CTM power analysis for a recovered module (190 B).

3.5. Analysis of Prediction Error and Correction of Prediction Value Reflecting Initial Tolerance

The error begins with the sum of the cell power output values. The final power
value was 199.70 Wp, and the sum of the calculated cell power values was 197.52 Wp,
which began with a difference of 2.18 Wp even if the CTM was assumed to be “0.” The
value 2.18 Wp was 1.15% of the initial rated power value of 190 Wp, which was within
the allowable tolerance range of the module. Therefore, assuming that the initial use cells
of 190 A and 190 B were the same, sample 190 B corrected the experimental deviation
of 2.18 Wp. Those of 190 A were calculated by adjusting the number of cells to calculate
the correction value of 2.00 Wp. Accordingly, the predicted power output values of 190 A
and 190 B could be recalculated as listed in Table 8. The initial power output prediction
value of sample 190 A was 196.4 Wp. For the power correction value of 1.998 Wp within the
tolerance shown in the experimental result, the correction prediction value was 198.4 Wp.
Additionally, the error decreased to 0.10% with the final experiment result of 198.6 Wp.
When the initial power output prediction value of 193.5 Wp was corrected for 190 B, the
corrected prediction value was 195.68 Wp, which was approximately 2.13% lower than the
experimental result for 199.7 Wp.

Table 8. Analysis of predicted and experimental values.

Item
Predicted

Value
Tolerance

Calibration
Correction

Experimental
Value

Difference

190 A 196.40 2.00 198.40 198.60 +0.10%
190 B 193.50 2.18 195.68 199.70 +2.01%

When the tolerance value calculated above was added to the initial rated power, the
initial power of the module was approximately 192.45 Wp. Based on this, the power before
and after module recovery owing to cell damage and the recovery trend of the FF are shown
in Figure 11.
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Figure 11. Result of module recovery via cell replacement (power and FF).

Table 9 summarizes the initial, failed (before recovery), and recovered (after recovery)
values of the power degradation module owing to cell cracking.

Table 9. Electrical data deviation of initial, faulty, and recovered module.

Item Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) FF Tolerance

54 cells initial 190.00 7.89 33.00 7.31 26.00 0.73 ±3%

190 A
failed 148.80 8.16 32.77 5.16 28.84 0.56 −

recovered 198.60 8.11 32.95 7.54 26.35 0.74
Rate of decline (initial) +4.53% +3.55% −0.16% +3.13% +1.36% +1.92%

190 B
failed 139.70 7.95 32.67 5.67 24.67 0.54 −

recovered 199.70 7.99 32.89 7.50 26.64 0.76 −
Rate of decline (initial) +5.11% +1.28% −0.33% +2.57% +2.42% +4.11%

The characteristic of the recovery of the cell in the hotspot module by cell replacement
is that the Voc value hardly changes step-by-step but decreases within the error range by
step. The largest negative mismatch factor in the phase of the power drop to the cell in
the hotspot was Imp, exhibiting a 29.43% decrease at 190 A compared with the initial value,
which had the greatest impact on the power decrease of −21.69%. Even in sample 190 B,
Imp degradation caused a −22.48% decrease in the cell in the hot spot stage, and a power
degradation of −26.47% was also the largest factor. For a positive mismatch with a high
power, the Isc and Imp values both increased, and the Vmp value decreased step-by-step
at 190 A; thus, the factor that most affected the positive mismatch was the increase in Isc
and Imp; the increase in Imp, in particular, was the largest factor. Figure 12 shows the EL
images of samples (a) 190 A and (b) 190 B recovered by cell replacement, and (c) IR images
measuring whether the module generated heat by installing them again in the power plant.
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Figure 12. Images of the recovered module (190 A, 190 B). (a) is an EL image of the repaired 190A
module, and (b) is an EL image of the repaired 190B module. (c) is an IR image of 190A and 190B
re-installed at the plant.

A difference in brightness was observed between the replaced and existing cells in
the EL images shown in Figure 12a,b, but in Figure 12c, no significant heat generation was
observed in the IR image at the installation site. The IR camera used to measure cell heat
generation was a Ti400 FLUKE equipment.

Thus, we confirmed the restoration potential of modules that are underpowered by
cells in hotspots in commercial power plants. When some cells are damaged in a crystalline
PV module, the module can be restored by replacing those cells instead of discarding
the entire module. Assuming that this method restores more than 180 sheets per day on
a 200-Wp module basis, the cost of restoring the module is approximately 0.17 $/Wp. This
is slightly more than half of the recent crystalline module price of 0.30 $/Wp. However, for
commercial use, a long-term reliability test of a module repaired using this method must
be performed to confirm the results. Accordingly, reuse of modules instead of recycling
will be an economical and eco-friendly alternative.

4. Conclusions

In this study, the power loss caused by the damage of a cell in a module was de-
termined through EL images and I–V and V–P curves of the module, and research was
conducted to recover only the damaged cells to be equal to or higher than the initial power
of the module. The recovery of modules is important in the electrical serial–parallel design
and application of existing structures in PV power plants. Therefore, the grade of the cell
applied at the time of module production was calculated using the CTM factor analysis
method and applied considering the dimensions and tolerance of the specification sheet of
the module presented by the manufacturer. To predict the power of the recovered module,
the power degradation factor from the aging factor of the module, not in the existing
CTM formula, and the mismatch loss of the cell were checked again and recalculated. The
results of the power output prediction calculated using the formula and the power output
of the recovered module measured as the experimental result had an error of 1.12% in
sample 190 A and 3.20% in sample 190 B. This was determined to be an error, assuming that
the rated power output was the initial power output, because the accurate power output
of the initial module was unknown. As a result of calibrating the power of approximately
2 Wp by feeding back the initial tolerance from the recovered module power output, the
revised prediction was calculated as 198.40 Wp in 190 A and 195.68 Wp in 190 B, and the
experimental results indicated error rates of 0.10% and 2.01%, respectively. This study
confirmed that even when a replacement cell applied to the recovered module had an
average power output of approximately 19.60% (4.28 Wp) higher than that of the existing
cell, and Isc had an average value of approximately 8.98% higher (8.62 A), the loss of
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electrical mismatch did not significantly affect the power, and heat generation of existing
normal cells was not observed. In addition, even for modules operated for a long time
(>10 years), the power reduction rate is significantly smaller than the 0.70%/year suggested
by the module manufacturers. Even if a degradation of approximately 2.40% over 10 years
was applied, there was no significant error in the power prediction. As the life of a PV
module increases, the recovery technology for discontinued modules becomes a very im-
portant economic factor for PV power plants with a considerable remaining operating
period. Module recovery technology through cell replacement is useful as an economical
reuse and high-value-added technology to prevent power degradation in an operating
power plant. A technology to recover a module function by selectively replacing only the
necessary cells and recovering a module function, even when it has expired commercially,
would be significantly more economical than decomposing and collecting it as raw material.
We believe that in future studies, work should continue to verify the effect of electrical
mismatch in a wider range of cells on modules as well as the long-term reliability to predict
the lifetime of restored modules.
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Abstract: With the development of 1500 V photovoltaic (PV) systems in recent decades, multilevel
inverters such as the five-level inverter have gained much attention for their higher equivalent output
frequency and low semiconductor devices’ voltage stress. Among five-level inverters, the active
neutral-point-clamped five-level (ANPC-5L) inverter is very competitive due to its simple structure
and control methods. However, with its conventional commutation strategy, the topology of the
ANPC five-level converter has the security risk of overvoltage in the power device when switching to
dead time under special conditions, which affects the reliability and safety of the switch state switch-
ing process. In this paper, this issue is analyzed in detail and a modified commutation strategy is
proposed. Meanwhile, a novel soft start-up method adopted to an ANPC-5L inverter is also proposed.
A prototype is also set up to analyze the issue of traditional switching commutation strategies and to
verify the effectiveness of the proposed commutation strategy and the soft start-up method.

Keywords: ANPC-5L converter; reliable switching state; modulation; PV grid-tied inverter

1. Introduction

Photovoltaic generation has been paid more attention recently because of the shortage
of fossil fuels and the increasingly serious levels of environmental pollution, which play
an important role in PV systems [1]. Compared with previous 1000 V systems, the 1500 V
system reduces the number of cables and PV plants, and decreases the line cost and
conduction loss [2,3]. Moreover, it provides more voltage range which is used to ensure
maximum power point (MPPT) availability by controlling front-end circuits or adjusting
the grid-connected voltage [4,5].

Nowadays, multilevel inverters such as the five-level inverter have gained much
attention for their high equivalent switching frequency and low voltage stress, which
are benefits for increasing the inverter’s power density [6,7]. The neutral-point-clamped
(NPC) inverter, flying capacitor (FC) inverter and T-type inverter are traditional three-level
inverters which have been widely employed in industrial application. The NPC inverter
is generally adopted in centralized PV grid-tied inverters because of its simple operation
principle and high power level capability [8,9], which are different from the demands of PV
string inverters. When used in low bus voltage applications, the T-type inverter is suitable
on account that it can reach a higher work frequency, higher conversion efficiency, and
higher power density [10,11]. The unbalance of neutral-point voltage is the main issue in
multilevel inverters, except in the FC inverter [12]. However, one more floating capacitor is
added in each phase, resulting in a larger volume and poorer power density, and its control
scheme is more complex.
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Many efforts have been made on topologies for photovoltaic multilevel inverters.
Five-level topology reduces both the voltage stress of semiconductor devices and the
volume of filter inductance compared with three-level topology due to its better harmonic
performance, which may lead to loss reduction and system cost reduction. NPC-5L is
the usual topology used for five-level topology [13], in addition to other topologies such
as cascaded H-bridge five-level (CHB-5L) and FC five-level (FC-5L). Problems such as
relatively large switching losses, unbalanced voltages of capacitors, and poor stability have
promoted research into five-level topologies [14]. Other different topologies of multilevel
inverters have also been adopted in industrial application: the stacked multi-cell (SMC) [15],
the H-bridge NPC (H-NPC) [16], the neutral-point piloted (NPP) [17], and the modular
multilevel converter (MMC).

The ANPC-5L converter, as shown in Figure 1, has been paid more and more attention
since it was proposed [18,19], and is the combination of two types of inverters. One is the
FC three-level inverter, the other is the active NPC three-level inverter. The advantages of
this inverter consist of low switching losses and the convenience of capacitor voltage bal-
ance [20,21]. Switches which are connected in series in this topology switch at fundamental
frequency, while the others switch at carrier frequency. Meanwhile, the switching cost of
this topology is low because the stress of the switches is VDC/4, while VDC is the voltage of
DC-link. Moreover, if different switching states are chosen appropriately, the voltage of
floating capacitors is easy to balance.

Figure 1. Topology of the ANPC-5L inverter.

Researchers have carried out a lot of work on ANPC-5L modulation technology,
flying capacitor voltage control, neutral-point voltage control, and other issues [22,23].
The modulation strategy of the ANPC-5L inverter is simple and reliable most of the time.
However, less attention has been paid to the voltage stress of switching devices in ANPC-5L
converters, and the voltage stress of switching devices is very important for the safe and
reliable operation of inverters. Document [24] analyzes the operation state of inverters
based on space vector pulse-width modulation, including 125 vector combinations, and
limits the stress of the switching devices by using the safe switching state switching process.
Meanwhile, under the conventional modulation scheme, the analyzed inverter has the
security risk of overvoltage in the power device when switching to dead time at the
zero-crossing point of voltage when the output current is inductive, which affects the
commutation safety [25].

In this article, this issue is analyzed in detail and a modified modulation strategy is
proposed. In comparison with other modulations, this method provides several free degrees
which are used to ensure the elimination of the voltage stress of power devices by choosing
favorable circuit states and controlling current commutations. Additionally, it can realize
the flying capacitor voltage balance in several carrier wave periods. The implementation of
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the proposed strategy in digital systems is rather simple. Meanwhile, a novel soft start-up
method adopted to the ANPC-5L inverter is also proposed. Experimental results prove
that the proposed strategy is valid.

The rest of the paper is organized as follows. Section 2 presents the traditional
switching states. Section 3 analyzes the power device’s overvoltage issue in detail. Section 4
proposes the modified modulation strategy to solve the potential safety hazards. Section 5
proposes a control method for soft start-up. Section 6 illustrates an inverter prototype for
analysis verification. The conclusions are given in Section 7.

2. Traditional Modulation Strategy

As shown in Figure 1, the ANPC five-level inverter has eight power switches S1–S8,
a floating capacitor CF, a upper capacitor CUP, and a lower capacitor CDOWN. For the
ANPC-5L inverter, as shown in Table 1, the conventional modulation scheme uses eight
basic switching states to produce five voltage levels. There are redundant states at the +E
and −E levels (E is 1/4 of bus voltage VDC) which affect the charging or discharging states
of the floating capacitors. The balance of the floating capacitor voltages can be realized by
choosing appropriate switching states.

Table 1. Traditional switching states of the ANPC-5L inverter.

State S1 S2 S3 S4 S5 S6 S7 S8 Vo
Vcf

Io > 0 Io < 0

V1 0 1 0 1 0 1 0 1 −2E - -

V2-1 0 1 1 0 0 1 0 1 −1E C D

V3 1 0 0 1 0 1 0 1 −1E D C

V4-1 1 0 1 0 0 1 0 1 −0 - -

V5-1 0 1 0 1 1 0 1 0 +0 - -

V6 0 1 1 0 1 0 1 0 +1E D C

V7-1 1 0 0 1 1 0 1 0 +1E C D

V8 1 0 1 0 1 0 1 0 +2E - -

The harmonics of the phase disposition (PD) contain a few carrier harmonics because
of the different phases of the four carrier waves, as well as DC components, fundamental
components, and carrier sidebands. However, some other modulation schemes, such as
alternative phase opposition disposition (APOD), phase opposition disposition (POD),
and two kinds of phase-shift carriers (PSC), have no carrier harmonics. In terms of single-
phase inverters, the harmonic performance of the above-mentioned modulation is just
the same due to the signal–energy conservation law. As far as the three-phase system is
concerned, the harmonics are quite different. When the carrier waves of the three-phase
system are synchronous, the carrier harmonics of the adjacent phases will exactly coincide,
which represents that this harmonic will not appear in line voltage. However, carrier
sidebands have no similar features. The harmonic performance of PD is the best. The
next is APOD and PSC. The worst is POD. The characteristics of line voltage spectrums
are far more diverse in the cause of common mode voltage. Eventually, considering the
harmonic performance, the PD-PWM method is preferable among various methods. Under
the traditional PD modulation of the ANPC-5L inverter, there are four cascaded carrier
waves. As shown in Figure 2, comparison with the first carrier wave makes the output
voltage change between +2E and +E. Switching between these states changes only two
switch devices, and the switching processes are safe. Similarly, the switching processes in
comparison with the other carrier waves are also reliable.
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Figure 2. Traditional modulation strategy of the ANPC-5L inverter.

3. Overvoltage Issue of Traditional Modulation

However, there are potential overvoltage issues in the conventional modulation
scheme. As shown in Figure 3, according to the counter mode of up–down or down–
up, the output voltage will change from +E to −0 or from +0 to −E. Unlike the former
switching process, switching between these two states changes six switch devices. Al-
though the dead time of each pair of devices’ switch exists, there will be safety problems
under certain circumstances.

Figure 3. Switching process at zero crossing point.

As shown in Figures 4 and 5, taking the change from +0 to −E as an example, the
circuit changes from state V5-1 to V2-1. Due to the existence of the dead zone, all the
devices are turned off and there will be an intermediate state (VDANGER (S1-S8:01000000)),
which will cause the overvoltage issue.

Figure 4. Traditional switching process of the ANPC-5L inverter.
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Figure 5. Switching states V5-1 and V2-1 at zero crossing point. (a) Switching states V5-1. (b) Switch-
ing states V2-1.

A detailed analysis is presented as below. In the state of V5-1, the initial states of the
parasitic capacitance of the MOSFETs are shown in Figure 6; S3 has a potential difference of
E while S6 has 2E. During the dead time of S5, assuming the output current IO is greater
than zero, S3 and S4 are all off. The continuous current path is shown in Figure 6, and the
final states of the parasitic capacitance decide the safety of the commutation process.

Figure 6. (a) Initial potential difference of V5-1. (b) Potential difference of VDANGER. (c) Equivalent
circuit of the charging process from V5-1 to VDANGER.

During the dead time, S3, S5 and S6 are all off, closed switches equivalent to parasitic
capacitances. Therefore, as shown in Figure 6, the equivalent circuit of the switching
process is equal to the charging of parasitic capacitances.

Because of the charge–balance principle, increased charge on S3 should be equal to the
summation of increased charge on S5 and reduced charge on S6. Moreover, the sum of the
voltages of the S5 and S6 constants is equal to 2E, and the increased voltage on S5 is equal
to the reduced voltage on S6. According to the capacitance definition:

dQ = C · dU (1)
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Equation (2) can be obtained:

Cp · dUS5 + Cp · dUS6 = Cp · dUS6 + Cp · dUS6 = 2Cp · dUS3 (2)

The voltage of endpoint O changes from +E to −E by focusing on the steady state of
−E, and according to Kirchhoff’s Voltage Law (KVL) Equation (3) can be obtained:

2E − dUS6 = E + dUS3 + (−E) (3)

Combining the above two formulas, increased voltage on S3 can be obtained:

dUS3 = E (4)

Therefore, as shown in Figure 7, the final voltage of S3 will be 2E. The voltage stress
will be higher than the voltage the device can withstand, which may cause overvoltage
breakdown and influence the normal operation of the circuit.

Figure 7. The overvoltage stress issue. (a) Experimental waveforms. (b) Experimental circuit.

Before the switching process of S5, there are three possible states for S3 and S4. As
shown in Figure 8, when S4 is on and S3 is off, or S3 and S4 are both off, assuming the
output current IO is greater than zero, the conduction path and the charging process are
analyzed as above.

Figure 8. Conduction path of S3 and S4 equals to 0.1 or 0.0. (a) Positive current. (b) Negative current.

However, when S4 is off and S3 is on, as shown in Figure 9, the switching process is
different. If the IO is greater than zero, turning off S5 causes the conduction of S6’s reverse
diode, the voltage of point O changes from +E to −E and the initial voltage on S8 is 2E.
The process seems similar to the above situation, but the direction of S4 decides that the
charging current IC reduces its voltage to zero; then, the reverse diode will conduct and
there will be no overvoltage risk. However, the output voltage goes through 0, +E, −E. The
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ideal process is 0 to −E, although the commutation is not perfect. Therefore, a modified
switching method is proposed to achieve the best commutation.

Figure 9. (a) Conduction path and potential difference when S3, S4 equals to 1.0 (b) Equivalent circuit
of the charging process.

4. Proposed Modified Modulation Strategy

The conventional modulation scheme only considers eight simple states. After analyz-
ing the switching states and overvoltage issues, eight other states (V2-2, V2-3, V4-2, V4-3,
V5-2, V5-2, V7-2, V7-3) are obtained, as shown in Table 2, which can be included in the
state cutover.

Table 2. The ANPC-5L converter’s switching states and influence on the voltage of the flying capacitors.

State Sx1–Sx8
Vcf

Vox Level
Io > 0 Io < 0

V1 01010101 − − −Vdc/2 −2

V2-1 01100101

C a D −Vdc/4 −1V2-2 01100100

V2-3 01110100

V3 10010101 D C −Vdc/4 −1

V4-1 10100101

− − 0 0V4-2 10100100

V4-3 10110100

V5-1 01011010

− − 0 0V5-2 01010010

V5-3 01110010

V6 01101010 D C Vdc/4 1

V7-1 10011010

C D Vdc/4 1V7-2 10010010

V7-3 10110010

V8 10101010 − − Vdc/2 2
a C: charging; D: discharging.

By combining additional circuit states, a modified modulation strategy and complete
state machine are proposed, as shown in Figure 10. Under the proposed modulation
scheme, a safe switching process within a power circle can be achieved and there will be no
overvoltage stress, as shown in Figure 11.
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Figure 10. Complete state machine for the ANPC-5L process.

Figure 11. Reliable switching process of proposed modified modulation strategy.

The presented modulation strategy for the ANPC-5L converter is deeply researched in
this section. Consisting of modulation signal, output current, driving signal and the voltage
of the flying capacitors, Figure 4 shows the schematic diagram. With the scheme that is
proposed, the switches, which are series-connected in the ANPC-5L converter, switch at
fundamental frequency while the others switch at carrier frequency, which results in low
switching losses. In the meantime, low switching and conduction loss can be achieved
because the stress of all devices can be restricted to Vdc/4.

A. Flying capacitor voltage balance

The voltage of floating capacitors can be affected by different circuit states. One is E
and the other is −E (V6, V7-1 and V2-1, V3), which can cause the capacitor to charge or
discharge. To go a step further, we can use +E and −E levels within a sinusoidal voltage
wave. If circuit states are selected appropriately, the balance of the voltage of FC will be
achieved during the whole cycle.

Figure 12 shows that with a positive output current in V6, the flying capacitor is
charging, and with a negative output current in V7-1 the flying capacitor is in a discharging
state. With the increasing carrier frequency in each fundamental period, the balance of
FC voltage will be better controlled in several carrier periods. Because the carrier wave
period is much shorter than the fundamental period, the capacity value of the flying
capacitor in the ANPC-5L inverter can be significantly reduced for a definite maximal
permissible voltage range, compared with those inverters controlling a fundamental period.
Ultimately, with the reduced volume of the flying capacitor, the power density of the
inverter increases significantly.
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Figure 12. The waveform of the floating capacitor voltage.

B. Commutation

The inverter should always be in the state of safety switch during the commutation
process, so the problems of shoot-through and high voltage stress during state cutover
should be avoided. To distinguish positive current flow from negative current flow, the
circuit can be separated into two parts to comprehend the state commutation.

1. V8 to V6: As shown in Figure 13a, S1 is turned off and after the turn-off delay S2
is turned on. Moreover, with the positive phase current, the state change, current
commutation and switching loss occurs at S1 OFF. In contrast, with the negative phase
current, the commutation of current and switching loss occurs at S2 ON;

2. V8 to V7-1: As shown in Figure 13b, it is inevitable to turn off S3 and turn on S4. If
the phase current is positive, the commutation of current and switching loss occurs at
S3 OFF;

3. V6 to V5-1: As shown in Figure 13c, it is inevitable to turn off S3 and turn on S4,and if
the phase current is positive, the commutation of current and switching loss occurs at
S3 OFF;

4. V5-1 to V7-1: As shown in Figure 13d, it is inevitable to turn off S2 and turn on S1;
5. V5-1 to V2-1: As shown in Figure 13e, it is inevitable to turn off S5, S7, and S4 and turn

on S3, S6, and S8 in the cutover from V5-1 to V2-1. If the phase current is negative, the
middle state VM5 generates zero voltage level, not −E voltage level.

Moreover, as shown in Figure 12, under the conduction of the state machine, the
switching frequency of switch S5 to S8 is the same as modulation frequency, while switching
frequency of switch S1 to S4 is the same as carrier frequency. Moreover, the voltage stress
of power devices can be limited to Vdc/4. To sum up, shoot-through problems and
overvoltage issues will not be caused by the commutation of current and state cutover.
Accordingly, the modulation scheme which is proposed in this section is appropriate for
the ANPC-5L inverter.
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Figure 13. State cutover and current commutation. (a) V8 to V6. (b) V8 to V7-1. (c) V6 to V5-1.
(d) V5-1 to V7-1. (e) V5-1 to V2-1.

5. Proposed Control Method for Soft Start-Up

The overvoltage issue of the ANPC-5L inverter includes two kinds of problems causing
high voltage stress. The first kind is caused by the dead zone of the output voltage switching
stage of the half-bridge circuit in series, and the second kind is caused by the soft start
process. In the traditional inverter’s soft start-up scheme, the dynamic change in voltage
may lead to the overvoltage of low-voltage devices.

Start-up is an indispensable process in the control of the photovoltaic inverters, es-
pecially among power converters with flying capacitors. There will be very large current
stresses on DC-bus capacitors, flying capacitors, and voltage stresses on power switches
during the buildup of capacitor voltage if the procedure is not well controlled. Connecting
current-limiting resistance in series with voltage sources can limit these stresses in conven-
tional ways. In addition, when bus capacitors are pre-charged but flying capacitors are not
fully charged, the voltage stress of several switches will increase by using normal working
states, as shown in Figure 14.

Motor windings are used as part of a boost circuit to build up the voltage of flying
capacitors with a constant pre-charging current for ANPC-5L converters, and the voltage
stress of several switches will double. A pre-charge method applied to flying capacitor
multilevel inverters is proposed in [26]; however, it requires plenty of AC contactors and
even low-voltage DC power supply, which is not suitable for photovoltaic application.

It is clear that further efforts need to be made to reduce the voltage stress of power
devices in the process of soft start-up, as well as to produce flying capacitor pre-charging
means with less additional auxiliary circuits. The following part presents an analysis and
proposes methods to settle these challenges.
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Figure 14. High voltage stress without optimal control.

As shown in Figure 15, there are twelve devices in each phase and switches S3, S4,
S5 and S8 are used to connect CF with CUP and CDOWN in parallel. Then, these capacitors
can be charged by the DC-link voltage source in the meantime. Assuming the DC-link
voltage source is constant, by controlling the main switches S3, S4, S5 and S8, the voltage
of the flying capacitor CF takes priority over the voltage of CUP and CDOWN, reaching its
reference voltage to ensure that the voltage stress of the switches is not higher than VDC/4.

Figure 15. Proposed soft start-up process. (a) State 1. (b) State 2. (c) State 3. (d) Sequence diagram.

In a summary, the proposed soft start-up method can be divided into three states, as
follows:

• State 1: When the upper bus capacitance CUP and the lower bus capacitance CDOWN
are zero, and the flying capacitor Cf is not charged and the contactors K1 and K2 are
disconnected, the ANPC five-level single-phase converter is in the initial condition
with no energy in the capacitors. As shown in Figure 15a, since the main switches S3,
S4, S5 and S8 are turned on and the contactor K2 is connected, the DC-link voltage

675



Electronics 2022, 11, 2289

source charges the upper bus capacitor CUP, the lower bus capacitor CDOWN, and the
flying capacitor Cf simultaneously through the current limiting resistance R1. The
voltage-divider resistances, R2 and R3, are placed in parallel with each bus capacitor
to avoid the influence of the unbalanced characteristics of the upper and lower bus
capacitors. In Figure 15d, the voltage of the flying capacitor Cf and bus capacitors
increases gradually from t1 to t2;

• State 2: Until the voltage of Cf arrives at E, a quarter of the total bus voltage and power
devices S3, S4, S5 and S8 are turned off and the voltage of bus capacitors will be half
of flying capacitor voltage. Thus, the voltage stress of power switches is not higher
than VDC/4 in the entire stage, which meets its request. As shown in Figure 15b, the
DC-link capacitors are going to be charged by the DC-link voltage source at the same
time with the voltage divider resistances in parallel with each bus capacitor to avoid
the influence of the unbalanced characteristics of the bus capacitors;

• State 3: The voltage of CUP and CDOWN increases gradually until they reach their
reference value 2E, as shown in Figure 15d from t2 to t3. When CUP and CDOWN are
fully charged, the contactor K1 is connected and K2 is disconnected. Then, the ANPC
five-level single-phase converter starts up well with enough energy in the capacitors,
as shown in Figure 15c and is ready to work.

The proposed method is applicable to the single-phase of the ANPC-5L inverter and
pre-charges through the original PV DC voltage source in the photovoltaic application. The
power resistance R1 has an impact on the charge current of the whole startup process, but
will not influence the final capacitor voltage. While the converter is in H-bridge topology or
in three phase topology, it is still sufficiently practical for the tolerance of the voltage stresses.
This method uses the DC side power supply to charge the capacitor in the converter, and
has the advantages of simple structure, convenient control, fewer additional auxiliary
branches, and reliable soft start-up.

6. Experimental Results

To further verify the feasibility of the proposed strategy and theoretical analysis, a low-
power prototype was established in the laboratory. Table 3 lists the electrical parameters of
the prototype.

Table 3. Electrical parameters of the prototype.

Parameters Values

Inverter DC-bus voltage 400 V

Output frequency 50 Hz

Converter rating 1 kVA

Switching frequency 10 kHz

Inductance of filter 0.3 mH

Capacitance of DC-link capacitor 2 mF

Capacitance of flying capacitor 660 μF

Figure 16 shows the proposed control scheme for the soft start-up and modulation
scheme. Vf is sensed for the balance of the flying capacitor voltage, and iL is sensed
to judge the output current direction. Meanwhile, Vf is sensed for the soft start-up of
the inverter. The proposed control scheme can be digitally realized in DSP or CPLD
collaborative controllers.
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Figure 16. Proposed control scheme for soft start-up and modulation scheme.

The voltage of the DC-bus is 400 V, output voltage is 100 Vac and the switching device
is 650 V MOSFET IPW60R190Z. As shown in Figure 17, under the traditional modulation
strategy, there exists an overvoltage issue in the dead time at the zero crossing point of
the waveform. Under the 400 V DC-bus, the voltage stress is about 300 V due to voltage
ringing, and if the device is used under a normal bus of 800 V DC, there will be a risk
of breakdown.

Figure 17. The overvoltage stress issue. (a) Under fundamental frequency. (b) Under multiple
switching cycles. (c) Under single switching cycle.

To solve the overvoltage stress issue, the driving signal shown in Figure 18 is applied.
As shown in Figure 18, there will be no overvoltage stress or output voltage level jump
during the same switching process.
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Figure 18. (a) Traditional and (b) modified modulation strategy.

As shown in Figure 19, under the proposed modified modulation strategy, there is no
overvoltage issue in the dead time at zero crossing point of the waveform.

Figure 19. The waveform under the proposed modified modulation strategy. (a) Under fundamental
frequency. (b) Under multiple switching cycles. (c) Under single switching cycle.

Figure 20 shows the experimental waveforms of Vc_up, Vc_down and VFc during the
soft start-up of the inverter under different charging resistances. As discussed in Section 5,
the flying capacitor and DC-link capacitor are charged by the DC-link voltage source in the
meantime until the flying capacitor reaches its reference voltage Vdc/4 and the DC-link
capacitor is charged to the bus voltage continually by controlling several main switches.

The experimental results have demonstrated that, by using the proposed method, the
switching frequency of S5–S8 is the same as the fundamental frequency while the switching
frequency of the other switches will switch at carrier frequency. Moreover, the stress of
power devices can be no more than Vdc/4. By controlling the main switches S3, S4, S5
and S8, the flying capacitor and bus capacitor are fully charged without the overvoltage
problem of the switches.
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Figure 20. Soft start-up under different charging resistance. (a) R1 = 500 Ohms; (b) R1 = 50 Ohms.

7. Conclusions

For the ANPC-5L inverter, the traditional modulation strategy has the security risk of
the overvoltage of the power device in the switching dead time when the output current
is inductive, which affects the commutation safety and leads to an overvoltage issue. In
this paper, the overvoltage mechanism is deduced through the voltage stress analysis of
different switching states. Meanwhile, a modified modulation strategy is proposed to
solve this issue. In comparison with other modulations, this method provides several free
degrees which are used to ensure the elimination of the voltage stress of power devices
by choosing favorable circuit states and controlling current commutations. Additionally,
it can realize the flying capacitor voltage balance in several carrier wave periods. The
implementation of the proposed strategy in the digital system is rather simple. Meanwhile,
a novel soft start-up method adapted to the ANPC-5L inverter is also proposed. In addition,
an experimental prototype is also built to verify the issue of traditional modulation strategy
and the validity and feasibility of the proposed modulation strategy.
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Abstract: Increasing wind generation insertion levels on electrical grids through power converters
may cause instabilities in the AC grid due to the intermittent wind nature. Integrating a Battery
Electric Energy Storage System (BESS) in wind generation can smooth the power injection at the
Common Coupling Point (PCC), contributing to the power system voltage and frequency stability.
In this article, it is proposed to analyze the operation of a lithium-ion battery technology based
1 MW/1.29 MWh BESS connected in parallel with wind generation with a capacity of 50.4 MW. The
main characteristics investigated are power smoothing and power factor correction. Experimental
results show that BESS contributes to smoothing the active power and correcting the power factor of
wind generation, improving the quality of electrical energy at the PCC.

Keywords: storage system; batteries; power smoothing; power factor correction; wind generation;
power converter; stability; electrical power quality

1. Introduction

The growing concern about the environment and the depletion of fossil fuels has given
rise to a new scenario to meet the energy needs of society: renewable sources [1,2]. Among
the various renewable sources of electricity, wind generation has been presented as the
most interesting and the fastest growing in the world [2,3]. According to the Global Wind
Energy Council (GWEC) 2022 report, the wind industry had its second-best year in 2021,
with nearly 94 GW of capacity added globally. Total global wind power capacity is now
up to 837 GW, helping the world avoid more than 1.2 billion tons of CO2 annually—the
equivalent of South America’s annual carbon emissions.

The growth of wind energy in the world energy matrix is due to its advantages,
such as: it does not emit greenhouse gases; it takes little time to build wind farms; it
diversifies the electricity matrix; it is independent of the variation in fuel prices; it is easy
to expand the capacity of wind farms; it provides new markets etc. [2]. However, due to
the highly uncertain and variable nature of the wind, wind energy can present undesirable
characteristics in its generation and impact the Electric Power Systems (EPSs). With an
increasing share of EPSs, the uncertainty of wind energy and its power fluctuation will
affect the ability of grid operators to balance generation and demand. Furthermore, the
significant penetration of wind generation in the grid can harm the Power Quality, the
dynamics, and the system reliability [2,4].
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According to [2,5], the main concerns regarding the connection of wind generation in
electrical systems are related to the impact on the stability and Power Quality of the grid,
the ability to compensate for active power fluctuations, and the impact on grid voltage,
both short-term and long-term. To minimize some of these problems, additional flexible
resources must be used to manage the variability and uncertainty of wind generation.
Battery Energy Storage Systems (BESS) can be used to reduce power fluctuations, as well
as provide ancillary services (voltage and frequency regulation), manage energy during
disturbances (short circuits), and increase network reliability.

There is a wide range of possible BESS applications in the electrical sector, such
as power generation, transmission, and distribution, and direct applications to the final
consumer. However, it can be said that the attractiveness of each specific solution depends
on the characteristics and needs of the applications. For example, BESS can be used for
short-term power smoothing in wind farms in a generation. Using BESS, it is possible to
mitigate the adverse effects of the power fluctuation in wind generation and, consequently,
improve the Electrical Power Quality (EPQ) and the power grid operation. As for the
final consumer, BESS can be used to perform arbitrage, charging the batteries during
lower-priced hours, and discharging during higher-priced hours (i.e., during peak hours).

The BESS can be idle for a significant fraction of time, depending on the application.
Thus, to make this solution more viable, it is possible to merge different applications. For
example, BESS systems installed in more robust systems, such as the Brazilian National
Interconnected System (SIN), can implement other services such as arbitrage, operating re-
serve, frequency control, voltage control, and black start. Thus, the merging of applications
increases the use of BESS over time.

Energy storage systems have been widely simulated to reduce power fluctuations
from wind generation with different control strategies [6–9], and [10] proposed using a
storage system integrated into a wind system to reduce high-frequency fluctuations in the
generated power, using filters to separate the operation of the inverter controllers and the
storage system in the frequency domain. In [11], it is seen that to provide constant supply
from a 39.6 MW wind farm, a 2 MWh capacity energy storage system was used to maintain
consistent production for one hour and up to 103 MWh to provide consistent output for
one day.

In [12], it is seen that the intermittent operation of renewable energy sources, faults
occurrences, or PCC disturbances can cause voltage or frequency deviations, resulting in
instability problems, which can become severe in weak power networks. In [12], a storage
system was used to regulate voltage and frequency in microgrids.

There are many different papers which evaluate the power smoothing of wind genera-
tion through BESS. Among the recent papers, there are relevant talks about the problem of
the power fluctuation in many different contexts and settings, such as the power smoothing
in the context of transmission or distribution, different technologies of BESS, different types
of power control for BESS, complementary applications for power smoothing, different
settings of connection of BESS, and different ways to evaluate and present the results [2].
However, considering these different contexts and settings there are still topics to be ex-
plored and improved. Several papers do not verify the effects of power smoothing in wind
generation, as well as do not use numerical indicators to evaluate the performance of the
power smoothing techniques. Thus, the main contribution of this article is to analyze the
effects of power smoothing in wind generation in a case study at the Campo dos Ventos
Wind Complex located in João Câmara, Rio Grande do Norte (RN)—Brazil. The numerical
indicator of Maximum Variation Power (MVP) is also used to evaluate the performance of
the power smoothing techniques. The MVP indicator quantifies the largest power of wind
generation within a predefined time interval.

Furthermore, this paper addresses, in a complementary way, the application of power
smoothing, the analysis of the storage system operating in the power factor correction mode,
and its impact on Power Quality for the Campo dos Ventos Wind Complex. Experimental
results are performed to validate the performance of BESS.
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2. Project Description

The purpose of the Research and Development R&D Project PA3026, entitled “Impact
Analysis of a Battery Energy Storage System Connected in Parallel to a Wind Farm”, is to
study energy storage applications from different qualitative and quantitative perspectives.
This project is formed by the group of institutions CPFL Energy (Light and Power Com-
pany of Sao Paulo State), Institute of Technology Edson Mororó Moura (ITEMM), Federal
University of Pernambuco (UFPE), and PSR—Energy Consulting and Analytics.

Brazil still presents a relatively immature environment for the development of energy
storage technologies. Faced with regulatory and even non-regulatory gaps, the R&D Project
PA3026 seeks to resolve existing uncertainties about the applicability and effectiveness of
services and assist recognition through adequate remuneration for these storage systems.

From this perspective, the project proposes to investigate the operationalization of
several actions applied to a real wind farm. Among the main functions destined for the
storage system identified in the project are produced power smoothing and power factor
correction. These two proposals are tested with the operation of a BESS composed, among
other components, by a set of Lithium Iron Phosphate (LFP) batteries, which is a lithium-ion
battery technology with a capacity of 1 MW/1.29 MWh integrated into an electric power
substation of a wind farm. The choice of this technology was due to the benefits that the LFP
battery presents, such as: (1) high energy density (about 1932 W/L) [13], (2) high conversion
efficiency (90~95%) [14], (3) low self-discharge rate, and (4) fast response time [13]. It should
be noted that the service life (>2000 cycles) still needs to be improved and there are potential
fire hazards [13,14].

According to [13], flow batteries are safe as they are non-flammable and have a long
cycle life (2000 to 20,000 cycles) and do not depend on the depth of discharge. However,
the energy density is low, occupies a large amount of land, and the conversion efficiency is
low (65–85%) [15]. Hydrogen batteries have the highest specific energy (500–3000 Wh/L)
compared to other storage systems and have a high cycle life (about 20,000 cycles). Although
hydrogen batteries have a long-life cycle, they have a high initial cost [13]. The lead-acid
battery is safe and reliable, but its energy density is low and its cycle times (300–3000 cycles)
are limited [16].

The wind farm choice considered the capacity and arrangement of machines with
different technologies. The Campo dos Ventos Wind Complex, located at João Câmara—Rio
Grande do Norte (RN)—Brazil, a synchronous generator with a full converter and Double
Powered Induction Generators (DFIG), was chosen. This farm has twenty-four turbines,
each with 2.1 MW rated power, totaling 50.4 MW. Therefore, the 1 MW/1.29 MWh capacity
BESS can be analyzed in terms of its real impact on the proposed objectives. The turbines
and BESS are connected through a SCADA system. The simplified single-line diagram for
the Campo dos Ventos Wind Complex is shown in Figure 1. The installation of BESS at the
Campo dos Ventos Electric Substation (ES) is illustrated in Figure 2.

The main objectives of using the storage system are to smooth the wind production
through instantaneous power injection and instantaneous power consumption, counterbal-
ancing its instantaneous output and, consequently, removing variations introduced by the
wind intermittence acting on each other the wind turbine.

Considering other storage system application options, it is expected to use the remain-
ing storage capacity for reactive power compensation, firstly, to improve the power factor
and, secondly, to improve the voltage with the consequent reactive power control.
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Figure 1. Single-line diagram of the Campo dos Ventos Wind Complex.

 
Figure 2. Installation of BESS in the Campo dos Ventos Substation.

3. Battery Energy Storage System (BESS)

3.1. General View

In general, the main components of BESS are batteries, battery management system
(BMS), energy management system (EMS), power conversion system (PCS), fire detection
and suppression system, heating system, ventilation, air conditioning (HVAC), Uninter-
ruptible Power Supply (UPS), container, transformer (if voltage increase is required), cables
(primary and secondary) and other auxiliary systems. Figure 3 shows the BESS and some
of these components. The system installed at the Campo dos Ventos Wind Complex has
two 500 kW PCSs that convert DC energy into AC or vice versa and is connected to the DC
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side batteries and connected in parallel to the AC side wind generation bus. EMS controls
PCSs and communicates with BMS and SCADA and contains all system applications.

 
Figure 3. Schematic of BESS and its components [17]. Reprinted from [17] with permission (License
1431469) from U.S. Department of Energy Office of Scientific and Technical Information [17,18].

3.2. Batteries

The battery is one of the main components of the BESS. It is in the battery that
energy is stored. There are various battery types integrated into generation, transmission,
distribution, and end-consumer worldwide. Each type may use the system differently.
Battery selection is mainly focused on the BESS application (e.g., applications that demand
more power and energy) and cost-effectiveness ratio due to the high proportion of the
battery’s monetary value to the total cost of the project (about 50–60%) [19].

LFP batteries were used in the BESS. The LFP battery pack has an output voltage of
51.2 V and a capacity of 180 Ah. Fourteen battery packs are grouped in series in a cluster,
totaling an output voltage of 716.8 V and a capacity of 180 Ah. The BESS contains 10 clusters
in parallel, leading to an output voltage of 716.8 V and a capacity of 1800 Ah.

3.3. BMS

The BMS plays a vital role in the BESS. The integration of the BESS with the wind
generation bus means that multiple batteries are connected in parallel, improving safety
and reliability.

The BMS is designed to provide safe operations by monitoring the voltages, currents,
and temperature of the cells in the batteries. In addition, the BMS offers the following
functions [19–21]:

• Protection for battery cells;
• Evaluation of battery cell recharge and health status;
• Energy balancing between battery cells (including battery charging and discharg-

ing patterns).

3.4. EMS

The EMS is responsible for continuously relevant BESS data acquisition and storage,
such as voltage, frequency, active and reactive power, power factor, battery cell voltage,
etc. This data acquisition and storage can be either in local or remote forms. Additionally,
the EMS receives the control setpoints to allow changes in the BESS operating modes and
subsystems. The BESS applications of this project are power smoothing, frequency control,
voltage control, and power factor correction. Lastly, it contains manual control for active
and reactive power injection and absorption.
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EMS controls BESS to regulate battery recharges and discharges to achieve optimal
efficiency generation requirements. All battery cells are individually monitored to ensure
any deviation in performance is detected and corrected before problem occurrences. The
EMS can be viewed remotely as needed and communicate with CPFL’s local SCADA.

3.5. PCSs

The current project BESS contains two bidirectional PCSs to perform DC/AC and
AC/DC conversions. In addition, it controls voltage and frequency, ensuring that the
electricity output meets desired connection requirements.

The BESS uses two bidirectional 500 kW PCSs, connected on the DC side to the power
bank battery. The PCSs in question contain anti-islanding protection, in which the inverter
detects problems in the electrical grid, such as a power outage, and switches off to interrupt
the supply. This protection is needed because, after electrical grid problem occurrences, it
is assumed that workers will be dispatched to deal with the issue; therefore, it is necessary
that the electric power lines are entirely safe and electric current free.

Another functionality of PCSs is stability for under and over voltage/frequency ranges,
in which the inverter does not trip if the anomaly duration exceeds a specific period. This
function is an essential feature to improve grid stability.

The PCSs’ operating modes are:

• P-Q Control mode is when a reference voltage and a constant frequency are supplied
by another source (usually the electrical grid). The inverter can change the active and
reactive power.

• V-F Control mode (Autonomous Mode): V-F control mode occurs when, regardless of
the varying inverter power, the amplitude and frequency of the output voltage are
constant. The inverter with V-F control can provide voltage and frequency support
to the microgrid during island operation. The inverter acts as a voltage source. The
current amplitude and the power factor (PF) will be determined by the sum of the
generation (if any) and the consumption load.

The PCSs’ operating modes are in four quadrants, as illustrated in Figure 4, both in
on-grid and off-grid modes, which means that active power and reactive power can be in
four characteristics:

• Consumes active power plus inductive reactive power;
• Consumes active power plus capacitive reactive power;
• Provides active power plus inductive reactive power;
• Provides active power plus capacitive reactive power.

Figure 4. Four-quadrant operation of PCSs.
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Control System

The PCS installed on the BESS operates in grid-connected and islanded mode. Active
and reactive power control (P-Q Control) is used in grid-connected mode, while constant
voltage and frequency control (V-F Control) is employed in islanded mode. These two
control strategies are based on [22] and detailed below.

(a) P-Q Control

When the PCS is connected to the electrical grid, it operates in P-Q Control mode.
Active and reactive power based on instantaneous active and reactive power theory are
shown in Equation (1) [22]. {

p = 1.5
(
νdid + νqiq

)
q = 1.5

(
νqid − νdiq

) (1)

When the q component of the voltage is zero and assuming that the voltage vector is
in the d-axis direction, Equation (1) can be represented by:{

p = 1.5νdid
q = −1.5νdiq

(2)

The reference current can be calculated by:⎧⎨⎩ idre f =
Pre f

1.5νd

iqre f = − Qre f
1.5νd

(3)

where Pre f represents active power and Qre f represents reactive power, the expected output
values. Figure 5 illustrates the simplified P-Q Control block diagram.

Figure 5. Block diagram of the P-Q Control structure [22]. Reprinted from [22] with permission
(License 978-1-4799-7720-8/14) from U.S. Department of Energy Office of Scientific and Technical
Information [22].

(b) V-F Control

In the islanded mode operation of PCS, it is controlled as the main power source to
supply constant voltage and frequency (V-F Control). To obtain constant V-F Control, a
closed loop voltage control structure was adopted. The closed loop voltage control equation
using a PI controller is described below [22]:⎧⎨⎩νdr = kp

(
1 + 1

Ti s

)
∗
(

νdre f − νd

)
νqr = kp

(
1 + 1

Ti s

)
∗
(

νqre f − νq

) (4)

where the proportional gain is represented by kp and the integral time constant of the
voltage loop controller is represented by Ti, vd and vq are the voltages after the coordinate
transform, from abc to dq, where these are the components of the d and q axes, respectively.
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While vdre f and vqre f are the voltages after the coordinate transform, also components of
the d and q axes, but these represent the component of the reference voltage (vare f , vbre f
and vcre f ). Figure 6 illustrates the block diagram of the V-F Control which is equivalent to
Equation (4).

Figure 6. Block diagram of the V-F Control structure [22]. Reprinted from [22] with permission
(License 978-1-4799-7720-8/14) from U.S. Department of Energy Office of Scientific and Technical
Information [22].

3.6. Fire Detection and Suppression System

The fire detection and suppression system are a set of components used to ensure the
safety of the place where it is installed, as well as that of people who transit internally and
in the vicinity of the BESS. For this, the system is configured to have quick and efficient
responses, ensuring agility to contain/extinguish the fire, as well as ensuring the evacuation
of individuals.

The minimum elements that the fire detection and suppression system must in-
clude are:

• Control panel or alarm center: equipment responsible for interconnecting all the
elements of the system; in other words, it receives and sends warning signals and
activation of fire protection devices.

• Sensors/detectors: precision devices that evaluate the conditions of the place where it
is installed. The main ones are:

� Smoke detector;
� Temperature detector;
� H2 and H2S detector if the technology is lead.

• Audible alarm: device responsible for emitting audible signals when fire is detected.
• Emergency lights: it is a type of visual alarm, which helps individuals to find the exit

from the place.
• Signage: the presence of signs, stickers, and other visual alarms is required, which

inform and assist in directing the emergency exit(s).

3.7. HVAC

The HVAC system regards the basic functions of the climatization system, allowing
the environment to be in the right conditions for safe and efficient operation. Among the
components that make up the HVAC are:

• Heating (H): function of keeping the place at the correct system operating temperature
for regions that have low temperature days. Furthermore, it is used to maintain the
relative humidity of the air;

• Ventilation (V): used for the renewal of oxygen and air circulation, avoiding the
concentration of undesirable gases, as well as removing and/or reducing odors and
impurities from the place;
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• Air conditioning (AC): used to artificially cool the place, controlling the temperature,
and preventing it from becoming high. In addition, this equipment usually has filters,
which carry out the removal of impurities and contaminants from the air.

These systems are essential for the proper functioning of the BESS, since by controlling
the temperature, leaving it close to the most efficient temperature of the components (25 ◦C),
it increases the productivity of the system. Furthermore, it promotes oxygenation of the
place, air filtration, and reduction of air pollutants and the proliferation of fungi/mold.

3.8. UPS

The UPS is a secondary power system, which provides emergency power to the load
when the primary supply is interrupted. As opposed to generators, the UPS operates very
quickly, avoiding interruptions in the power supply.

In general terms, the UPS is made up of converters and batteries, which may or may
not have a bypass switch. With respect to BESS, its load is not all the components of the
system, but those that must always be kept in operation, allowing that in case of failure
some action can be taken.

4. Results and Discussion

In this topic, the power smoothing and power factor correction functions are analyzed,
as well as the approach of results and discussions of the data obtained using the two
operating modes.

4.1. Power Smoothing Application

The results related to power smoothing are analyzed mathematically through the
Maximum Power Variation (MVP) indicator. The active power smoothing technique
performance of wind turbines is numerically evaluated. The MVP indicator corresponds to
the maximum power variation in the wind generation rated power within an established
time interval. Energy companies and system operators widely use this indicator from
different European countries to restrict wind generation fluctuations, limiting the MVP to
10% in 1 min and 10 min intervals [23,24].

In the present article, a 5 min time interval (MVP5) is used, in which the calculation
is performed from the difference between the maximum and the minimum power curve
values in the specified interval and, according to that, the rated power of the generation
to which the BESS that is connected is obtained. For example, considering a 50 MW wind
generation rated power and a power curve whose difference between the highest and
lowest value is 10 MW during the 5 min interval, the MVP is 20%. Thus, the lower the MVP
value, the better the power smoothing quality. In an ideal case (i.e., a constant curve), the
MVP would be 0% for any evaluated interval.

The BESS operating principle is performed through the EMS control system for the
power smoothing function. The generation active power on the bus where the BESS is
connected is verified. When the EMS verifies the 500 kW variation in a 60 s window, the
system acts, absorbing or supplying active power, depending on the current generation
status, that is, increasing or decreasing. Figure 7 illustrates a BESS operation based on the
power wind generation variation.

In Figure 7, when the wind generation (blue curve) decreases in an interval of 60 s,
the BESS supplies active power (orange curve). When wind generation increases, the BESS
absorbs active power. The negative sign of active power means that the BESS is providing
power and the positive sign of power implies that BESS is absorbing power.

The BESS performance operating in power smoothing mode connected in parallel to a
group of wind turbines with 50.4 MW rated active power is illustrated in Figures 8 and 9.
These figures show the generation curve behavior and its smoothing. Data from different
days are shown.
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Figure 7. Real-time BESS operation based on power generation variation. The measurement was
carried out on 28 July 2021.

Figure 8. Active power of smoothed wind generation. Real-time measurement performed on
31 August 2021.
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Figure 9. Active Power of Smoothed Wind Generation. Real-time measurement performed on
6 September 2021.

The blue curve indicates the power of the generation without BESS usage, while the
smoothed curve is shown in orange. It is observed that the smoothed curves have smaller
peaks and valleys and more attenuated curves.

The MVP index is used to evaluate wind generation power smoothing numerically.
This analysis has better precision to evaluate power smoothing performed by the BESS
in the present wind farm. Thus, in percentage terms, the smoothing effect results with
the most significant gains points are presented in Table 1 (measurement in Figure 8) and
Table 2 (measurement in Figure 9).

It can be seen from Table 1 that the MVP5 index, with the application of BESS, showed
a considerable improvement in different time intervals. The best-obtained result for the
31 August 2021 day was an approximate 3.97% power fluctuation reduction, from 11:20 to
11:25 and 13:10 to 13:15. On the 6 September 2021 day (Table 2), the best result was a 3.97%
reduction from 12:25 to 12:30. Different time intervals can be seen in Figures 8 and 9.

Table 1. Main indicators from the 31 August 2021 day.

Case Time Interval
Maximum Power

Value (MW)
Minimum Power

Value (MW)
Wind Generation Rated

Power (MW)
% Value

Without BESS
operation

07:35 to 07:40 39.29 32.00 50.4 14.46%
09:45 to 09:50 43.71 37.62 50.4 12.08%
10:20 to 10:25 42.66 35.72 50.4 13.77%
11:20 to 11:25 43.86 35.99 50.4 15.62%
11:40 to 11:45 42.35 34.19 50.4 16.19%
11:45 to 11:50 43.62 34.45 50.4 18.19%
12:30 to 12:35 33.72 26.67 50.4 13.99%
13:10 to 13:15 38.37 22.70 50.4 31.09%
13:30 to 13:35 40.03 28.84 50.4 22.20%
13:40 to 13:45 34.25 25.39 50.4 17.58%
17:45 to 17:50 46.05 41.87 50.4 8.29%
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Table 1. Cont.

Case Time Interval
Maximum Power

Value (MW)
Minimum Power

Value (MW)
Wind Generation Rated

Power (MW)
% Value

With BESS
operation

07:35 to 07:40 38.29 32.83 50.4 10.83%
09:45 to 09:50 43.52 38.62 50.4 9.72%
10:20 to 10:25 42.13 36.72 50.4 10.73%
11:20 to 11:25 42.86 36.99 50.4 11.65%
11:40 to 11:45 41.53 35.19 50.4 12.58%
11:45 to 11:50 42.89 35.45 50.4 14.76%
12:30 to 12:35 32.72 26.76 50.4 11.83%
13:10 to 13:15 37.37 23.70 50.4 27.12%
13:30 to 13:35 39.53 29.84 50.4 19.23%
13:40 to 13:45 33.72 26.39 50.4 14.54%
17:45 to 17:50 45.69 42.56 50.4 6.21%

Table 2. Main indicators from the 6 September 2021 day.

Case Time Interval
Maximum Power

Value (MW)
Minimum Power

Value (MW)
Wind Generation Rated

Power (MW)
% Value

Without BESS
operation

12:00 to 12:05 34.29 22 50.4 24.38%
12:05 to 12:10 39.43 26.87 50.4 24.92%
12:25 to 12:30 38.09 26.73 50.4 22.54%
13:25 to 13:30 31.22 21.76 50.4 18.77%
13:30 to 13:35 35.22 25.84 50.4 18.61%
13:55 to 14:00 36.81 25.64 50.4 22.16%
14:00 to 14:05 37.23 26.87 50.4 20.56%
15:30 to 15:35 42.31 36.86 50.4 10.81%
16:15 to 16:20 44.44 36.84 50.4 15.08%
19:25 to 19:30 37.72 32.07 50.4 11.21%
20:40 to 20:45 41.95 35.86 50.4 12.08%

With BESS
operation

12:00 to 12:05 33.29 23.00 50.4 20.42%
12:05 to 12:10 39.43 27.87 50.4 22.94%
12:25 to 12:30 37.09 27.73 50.4 18.57%
13:25 to 13:30 30.46 22.76 50.4 15.28%
13:30 to 13:35 34.22 26.40 50.4 15.52%
13:55 to 14:00 35.81 26.20 50.4 19.07%
14:00 to 14:05 36.51 27.87 50.4 17.14%
15:30 to 15:35 41.64 37.86 50.4 7.50%
16:15 to 16:20 43.71 37.84 50.4 11.65%
19:25 to 19:30 36.72 32.72 50.4 7.94%
20:40 to 20:45 40.95 36.75 50.4 8.33%

4.2. Power Factor Correction Application

The power factor is an energy utilization index whose adequate control in wind
generation is significant, not only from an electrical energy point of view but also because it
is monitored, in the case of Brazil, by the National Electric System Operator, and the power
generator may incur fines. In this case, the BESS compensates for the excess reactive power,
bringing the power factor within the regulatory limit (currently, in Brazil, the limit power
factor is 0.95 in the PCC between wind generation and the transmission grid).

The EMS checks the power factor information generated by the wind turbines in
the bus connected to the storage system. A power factor reduction (less than 1.00) acti-
vates BESS to operate with capacitive or inductive characteristics, depending on the wind
generation power factor behavior (inductive or capacitive).

Figure 10 illustrates the BESS operation behaving with capacitive characteristics when
the power factor measured at the bus is less than one (1.00). Therefore, according to the
EMS programming, the system acts by injecting reactive power, trying to correct the power
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factor to the unit value (1.00). In Figure 10, the left scale refers to the system’s reactive
power (blue legend), and the right scale refers to the power factor value (orange legend)
measured on the bus that connects the BESS to the group of wind turbines. It should
be noted that the negative sign for reactive power means that the BESS is operating in
capacitive mode and the positive sign in inductive mode.

 

Figure 10. Real-time BESS operation in the power factor correction function. The measurement was
carried out on 25 March 2021.

Figure 11 illustrates the BESS operation on 23 March 2021, where it is seen that the
system remains without acting while the power factor is unity (1.00). The BESS works by
compensating reactive power when there is a drop in the power factor, aiming to establish
the unit value. Figure 12 illustrates the operation of BESS on 19 April 2021, where it is seen
that the system operates in both capacitive and inductive modes.

 

Figure 11. Real-time BESS operation in the power factor correction function. The measurement was
carried out on 23 March 2021.
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Figure 12. Real-time BESS operation in the power factor correction function. The measurement was
carried out on 19 April 2021.

From the 19 April 2021 measurement data (Figure 12), it is possible to graphically
characterize the resulting power factor behavior, considering the BESS performance, as
illustrated in Figure 13. It can be seen from Figure 13 that the BESS corrects the power factor
at different instances of time, aiming at the unit value (1.00), and thus helps to prevent the
power factor from falling below 0.95.

Figure 13. Power factor resulting from the application of BESS. The measurement was carried out on
19 April 2021.

5. Conclusions

From the measurement analysis, it is observed that the power smoothing function
implemented in the EMS does not present problems regarding the operating logic and
operating time and shows satisfactory results. It was seen that the BESS manages to
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smooth the wind generation power with gains of up to 3.97% (measurements recorded
in Tables 1 and 2) according to the MPV5 indicator. It is noteworthy that this result is
considered satisfactory since the BESS rated power is 1 MW, and it is connected to a
50.4 MW wind generation.

From the measurements, it is observed that the BESS usage in power smoothing mode
contributes to reducing power fluctuations at the point that connects the power output
of the wind farm and the transmission line, generating improvements in the wind farm
energy quality.

The power factor correction function performance analysis implemented in the BESS
EMS shows that this function does not present problems regarding its operating logic
and operating time. It was seen that BESS acted by correcting the power factor whenever
necessary, reducing losses to the wind farm.

It should be noted that the constant growth of wind generation should amplify the
effect of power fluctuation in transmission, distribution, and microgrid systems. Thus,
wind generation should increasingly impact the operation and energy quality of electrical
systems. The use of a BESS operating in active power smoothing mode represents a way to
circumvent this problem and enable the use of intermittent renewable energy sources.
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Abstract: The capacity aging of lithium-ion energy storage systems is inevitable under long-term
use. It has been found in the literature that the aging performance is closely related to battery
usage and the current aging state. It follows that different frequency regulation services, C-rates,
and maintaining levels of SOC during operation will produce different battery aging rates. In the
simulations, the researchers used real frequency data to generate SOC curves based on the Taiwan
frequency regulation services under different C-rates and different battery SOC target levels. Then,
the aging formula of lithium iron batteries (LiFePO4 battery, LFP battery) and the proposed improved
rainflow counting algorithm were used. The capacity aging situation and economy under different
usage scenarios were analyzed. The simulation results showed that using a high C-rate and a low
SOC level had a higher net profit, and the income of dReg was more than that of sReg. The SOC of
BESS has an important impact on the life cycle. Keeping the SOC at a lower level will help prolong
the life cycle and increase the net income. In dReg0.5, maintaining the SOC at 30% would yield 8.5%
more lifetimes than 50%, 20.6% more lifetimes than 70%.

Keywords: battery energy storage system (BESS); frequency regulation service; battery degradation;
automatic frequency control

1. Introduction

In Taiwan, frequency regulation services can be roughly divided into two categories:
dynamic regulation (dReg) and static regulation (sReg). There are currently three different
modes on the power trading platform, dReg0.5, dReg0.25, and sReg. Applying the three
different modes mentioned, there are three different outputs under the same grid frequency.
Under long-term operation, the three different modes will obtain completely different state
of charge (SOC) battery curves. In the study of [1], the authors said that the higher the
SOC, the faster the aging of the battery, which is consistent with the experimental results
of [2].Therefore, the aging behavior of the battery energy storage system(BESS) has a great
relationship with the SOC curves. It follows that the aging speed of the batteries following
the different frequency regulation modes will have completely different aging behavior.

The global energy storage ancillary services market has grown rapidly in recent years,
with few large-scale battery storage systems operating and reaching the end of their life
cycle so far. Thus, the effect of different ancillary services and control methods on the
aging of the BESS is still unknown. Market managers and market participants need a more
accurate economic analysis to formulate better market structures or make better bidding
strategies [3]. Researchers in [4] evaluated the optimal battery capacity configuration for
the frequency regulation market in Germany but not the different frequency regulation
services. In [5], the frequency support technoeconomic analysis of energy storage working
in conjunction with wind power plants but not pure energy storage plants was evaluated.
For this reason, this study proposes to evaluate the aging situation of BESS which is used
with different ancillary services and control methods. In this way, this research can help
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market managers formulate reasonable bidding prices and can help market participants
make the best investment decisions.

The aging speed of a battery affects the profit of the system operators due to differences
in battery life. The purpose of this paper is to establish a battery aging model based on the
SOC curves simulated by different frequency modulation modes and the ratio of different
rated capacity to total battery energy, find out its aging characteristics, and evaluate battery
aging in each situation.

2. BESS and Frequency Regulation Service

2.1. BESS

BESS includes batteries, battery management systems (BMS), power conditioning sys-
tems (PCS), and energy management systems (EMS). Applications of lithium-ion batteries
are very common nowadays due to their several advantages, such as high energy and
power densities and longer lifetime than that of other technologies [6]. Specifically, the
lithium ternary battery (LiNiMnCoO2 battery, NMC battery) and the lithium iron phos-
phate battery (LiFePO4 battery, LFP battery) are in the mainstream of MW-level battery
energy storage systems.

The main applications of BESS can be roughly classified into five categories: large-scale
energy services, ancillary services, services for transmission and distribution, client services,
and renewable energy integration. Specifically, renewable energy smoothing, frequency
regulation services, voltage regulation services, peak-shaving, and load-shifting are some
of the most common applications in modern life [7,8]. This study will focus on frequency
regulation services, which is going to be discussed in detail in the following section.

2.2. Frequency Regulation Service

Presently, the frequency regulation services that the Taiwan Power Company (TPC)
promotes include two different types, namely, dReg and sReg; each service has its corre-
sponding efficiency offer price [9]. The efficiency offer prices corresponding to the frequency
regulation are shown in Table 1.

Table 1. Efficiency level and the price of each mode.

Efficiency Level Frequency Regulation Mode Efficiency Offer Price ( NTD
MWh ·Wh)

1 dReg0.25 350
2 dReg0.5, sReg 275

2.2.1. Dynamic Regulation (dReg)

dReg can dynamically follow the grid frequency and actively provide corresponding
power every second based on the current grid frequency to help maintain the stability of
the power system frequency. Such a service is required to respond within a second.

Depending on the corresponding system frequency range and operating power, it
can be divided into two types: dReg0.25 and dReg0.5. To be more specific, the operating
frequency range of dReg0.25 is from 59.75 to 60.25 Hz, while that of dReg0.25 is from 59.5 to
60.5 Hz. Figure 1 shows the response curve of dReg, and Figure 2 shows its corresponding
parameters [9]. The blue area in Figure 1 is the deadband, where the BESS can charge and
discharge to maintain the SOC.

2.2.2. Static Regulation (sReg)

sReg does not need to respond as fast as dReg but is required to output 100% of
its rated power within ten seconds when the frequency drops to a certain value. The
output should return to zero once the frequency increases and reaches a certain frequency.
Furthermore, the system is not allowed to start the charging operation until the frequency
is over 60 Hz. Figures 3 and 4 show the detailed specifications of sReg [9].
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Figure 1. The response curve of the dReg mode.

Figure 2. The response table of the dReg mode.

Figure 3. The response table of the sReg mode.

Figure 4. The response curve of the sReg mode.
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3. Aging of Lithium-Ion Batteries

3.1. Aging Mechanisms of Lithium-Ion Batteries

The aging mechanisms of lithium-ion batteries are very complicated. With use, various
aging mechanisms lead to the loss of active materials and the increase of internal resistance.
Tracing back to the sources, the interaction between the electrolyte, the anode, and the
cathode, as well as the degradation of the electrolyte itself, are where the aging phenomenon
mainly comes from.

Since the aging behavior of batteries has a lot to do with the current degradation status,
even if the operating conditions remain the same throughout, they will be completely
different at every moment. Based on some research, it can be classified into two categories
according to the features of use: calendar aging and cycling aging [10–12], and the aging
formula of the lithium iron phosphate battery (LFP battery) quoted in this article can refer
to Equations (1) and (2) [13].

3.2. Calendar Aging

Calendar aging refers to the degradation behaviors of capacity and power capability
with saving under the same SOC level for a long period. Moreover, calendar aging is closely
related to environmental conditions such as storage temperature; that is, the speed of aging
varies according to the conditions mentioned above.

According to the study in [13], under 25 degrees Celsius, the capacity fade can be
described in Equation (1).

Cf _cal = 0.1723·e0.007388·SOC·t0.8 (1)

where Cf _cal represents the percentage of capacity fade, SOC refers to the storage SOC level,
and t represents the storage period (month).

Figure 5 shows the calendar aging curve drawn by Equation (1). From this figure, it
can be seen that the curve is nonlinear and tends to be flat as the storage time increases. In
other words, the higher the storage SOC level is, the faster the aging rate will be.

 
Figure 5. Calendar aging curves.

3.3. Cycling Aging

Cyclic aging refers to the aging caused by the charging and discharging cycle of the
battery, and its aging performance has a great relationship with cycle depth (CD). Cycle
depth indicates the change in charge state during a cycle and is related to the amount of
charge gained or lost during the charge and discharge process.
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Based on the research in [13], the relationship between capacity fade and the operation
conditions, including cycle depth, average SOC, and the number of cycles (NC), under the
conditions of 25 ◦C storage temperature, is shown in Equation (2):

Cf _cyc = 0.021·e−0.01943·SOC·cd0.7162·nc0.5 (2)

where Cf _cyc represents the percentage of capacity fade caused by cycling aging, SOC
represents the average SOC level during the cycle, and cd and nc represent the cycle depth
and the number of cycles, respectively. Figure 6 shows the calendar aging curve drawn by
Equation (2).

Figure 6. Cycling aging curves.

Compared with calendar aging, the rising slope of cycle aging curve is steeper when
the number of cycles is low but tends to be flat when the number of cycles increases. In
some cases, the batteries with a deeper cycle depth will have a faster aging rate than the
ones with a shallower cycle depth. Sometimes, the difference can be several-fold.

4. Aging Model Establishment

4.1. Introduction of the Aging Model

Since the aging of a battery is a nonlinear problem, it is difficult to apply the traditional
mathematical programming method. This research proposes the use of the rain flow algorithm,
which has been widely used in the technical and economic analysis of BESS [2,14,15] to solve
this nonlinear problem. It extracts the aging features from SOC curves. For details, please
refer to Section 4.2.

The aging model of lithium-ion batteries in this study can be roughly divided into two
parts: the extraction of aging features and the superposition of aging quantity.

In cycle aging, the feature values of each cycle, such as cycle depth, cycle average SOC,
and cycle times, were extracted and recorded as cycle aging events. Meanwhile, in calendar
aging, the continuous SOC and its duration were recorded as calendar aging events.

The behavior of battery aging has a lot to do with the current aging state of the
batteries; thus, even if the operating conditions remain the same, different aging results
will be obtained corresponding to the state of aging. Therefore, it is vital to arrange the
aging event sequence in the correct order.

After the extraction, the aging features should be quantified and superpositioned.
Seeing that the result from each aging event can not be superpositioned directly because
the aging curves are not linear, this study proposed a method named the mapping super-
position method to solve the problem.
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4.2. The Rainflow Cycle Counting Method

In this study, the four-point algorithm [16] of the rainflow counting method [17] was
applied to extract the cycle depth and cycle times.

In the beginning, four consecutive points in the series must be identified and specified
as A1, A2, A3, and A4.Then, calculate the distances S1, S2, and S3 between every two
adjacent points. The schematic is shown in Figure 7.

S1 = |A1 − A2| (3)

S2 = |A2 − A3| (4)

S3 = |A3 − A4| (5)

Figure 7. A schematic diagram for the four-point algorithm.

If it meets the condition:

S2 ≤ S1 and S2 ≤ S3 (6)

then A2 and A3 will be extracted from the series.
Then, the following four adjacent points will be repositioned, operating again until

there are no more adjacent four points in the series that meet the conditions. Finally, the
remaining sequence will be copied and attached to the end of itself, and then repeated.
Examples are described in Appendix A.

4.3. Aging Features’ Extraction

Before the calculation, aging features must be extracted. Figure 8 shows the schematic
diagram of the extraction architecture.

According to the concept of the rainflow counting method mentioned in [18], the
continuous SOC curve is processed to remove unnecessary values, leaving only the relative
peaks and relative valleys in the series. Therefore, the original SOC curve is filtered twice,
and then the rainflow counting algorithm is used. The schematic is shown in Figure 9.

The original input SOC data has a resolution of 0.5%. Through the first filtering, we
can separate the continuous parts of the SOC value from the original SOC sequence and
record it as calendar aging events, including the placing time and storage SOC. Since the
values between the relative maximums and relative minimums are not meaningful during
the rainflow cycle counting method, these values should be removed from the sequence first
in the following second filtering to generate a new one with only the relative maximums
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and minimums. In the final stage, cycling aging features such as cycle depth, the number
of cycles, and the average SOC of the cycle will be identified through the rainflow counting
algorithm and recorded as cycling aging events in sequence.

Figure 8. A schematic diagram for aging feature extraction.

Figure 9. A schematic diagram of the applied rainflow counting method of SOC. (a) Raw SOC curve.
(b) Curve After filtering continuous values. (c) Only the relative peaks and valleys are left, and the
values between the peaks and valleys are removed. (d) Start rainflow cycle counting method.

4.4. Superposition

Because the aging behavior of batteries is nonlinear and is affected by more than one
variable, the capacity decay caused by aging cannot be superposed directly. Such as the
example shown in Figure 10, we can regard the aging event that “maintains the SOC-level
at 50% for three months” as three identical continuous aging events that “maintains the
SOC-level at 50% for one month”. If we apply the direct superposition method on the latter,
which means to superpose the capacity decay by directly adding them together, we will
obtain a result that has a considerable disparity from the result of the former.

Seeing the incompleteness of the direct superposition method, another method, named
the mapping superposition method, is proposed in this study, as shown in Figure 11. In
other words, before the superposition, the equivalent quantity of aging features should be
calculated according to its former state of the amount capacity fade.
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Figure 10. A schematic diagram for direct superposition.

 

Figure 11. A schematic diagram for superposition.

In calendar aging, the former decay quantity must be “mapped” to the curve corre-
sponding to the SOC level of the aging event to be superposed, so as to obtain the equivalent
placing time. The equivalent placing time plus the placing time of this aging event is the
equivalent total placing time, which can be used to calculate the aging quantity further.

The relevant calculation formula can be derived from Equation (1):

teq = 9.00831·Cf ,cal
1.25·e−0.009235·SOC (7)

C′
f ,cal = 0.1723·e0.007388·SOC·(teq + Δt)0.8 (8)

In Equation (7), teq represents the equivalent placing time, Cf ,cal represents the former
calendar aging amount, and SOC represents the storage SOC level of this aging event.
According to this formula, the equivalent placing time teq under the conditions of the aging
event can be derived. Meanwhile, in Equation (8), C′

f ,cal and Δt represent the final calendar
aging capacity fade after superposing and the placing time in the aging event, respectively.

On the other hand, in the case of cycling aging, the former aging amount should be
“mapped” to the curve corresponding to the conditions including cycle depth and the
average SOC of the aging event to be superposed, so that the equivalent number of cycles
can be derived. The equivalent number of cycles plus the number of cycles of this aging
event is the equivalent total number of cycles, which can be used to calculate the aging
amount further.

nceq = 2267.573696·Cf ,cyc
2·e0.03886·SOC·cd−1.4324 (9)

C′
f ,cyc = 0.021·e−0.01943·SOC·cd0.7162·(nceq + Δnc

)0.5 (10)

Similarly, in Equation (9), nceq, Cf ,cyc, cd, and SOC represent the equivalent number of
cycles, the former cycling aging amount, the cycle depth, and the average SOC of this aging

704



Appl. Sci. 2022, 12, 6111

event, respectively. In Equation (10), C′
f ,cyc stands for the capacity fade after superposing,

while Δnc refers to the number of cycles of the aging event.
Applying the mapping superposition method, a result closer to the theoretical values

than that when using the direct superposition method can be obtained, as shown in
Figure 12.

Figure 12. A schematic diagram for mapping superposition.

5. Result of Simulation

5.1. Simulation Scenario

Under the same frequency, different frequency regulation modes will have their
required output so that their corresponding SOC curves can be generated. Then, the
different aging features can be extracted and recorded from each by implementing the
aging model.

Based on the aging results of dReg0.25, dReg0.5, and sReg under different BESS
system parameters, including the rated power and the storage capacity, this study will
iterate them repeatedly in three months until the capacity fade reaches 20%, i.e., the end-of-
life (EOL) criteria. This paper uses SOC curves under nine different scenarios of different
modes and different BESS system parameters to simulate the aging results, then discuss
the performances of each. Table 2 shows each scenarios.The real frequency data of Taiwan
in three different seasons, December 2019, March 2020, and May 2020, were used as input
data for every scenario. The frequency distribution and features of the SOC curves are
described in Appendix B.

Table 2. Specification of simulation scenarios.

Scenario Mode Spec. of BESS SOC Level Target

1 dReg0.5 5 MW/6.25 MWh 70%
2 dReg0.5 5 MW/6.25 MWh 50%
3 dReg0.5 5 MW/6.25 MWh 30%
4 dReg0.5 5 MW/3.125 MWh 50%
5 dReg0.25 5 MW/6.25 MWh 50%
6 dReg0.25 5 MW/3.125 MWh 50%
7 sReg 5 MW/6.25 MWh 90%
8 sReg 5 MW/12.5 MWh 90%
9 sReg 5 MW/6.25 MWh 70%

5.2. Result and Discussion of Each Scenario

This section compares the battery aging results under each scenario, discussing the
relationship between the capacity fade behavior and the system conditions, including the
frequency regulation service mode, the rated power, and the storage capacity. Table 3
shows the detailed information of the comparisons.
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Table 3. Overview of comparison between scenarios.

Battery Life Comparison Scenarios for Comparison

A dReg0.5 with different SOC level targets 1,2,3

B dReg under different C-rates 2,4(dReg0.5)
5,6(dReg0.25)

C dReg0.5 and dReg0.25under the same spec. 2,5
D sReg under different C-rates 7,8
E sReg under different SOC level targets 7,9

A. dReg0.5 with the same rated capacity and battery energy but a different SOC level target:

Scenario 1, 2, and 3 were all in dReg0.5 mode with a 5 MW/6.25 MWh BESS. The only
difference was the SOC level targets, with 70%, 50%, and 30%, respectively. As shown in
Figure 13, Scenario 1, the one that had the highest SOC level target had the shortest lifetime,
as described in Section 3.2.

Figure 13. The result under different SOC levels (dReg0.5).

Calendar aging was the main source of capacity fade of the three scenarios, as shown in
Figure 14. Since the SOC level target of Scenario 1 was the highest, its capacity fade caused
by calendar aging was the highest among the three. Calendar aging was continuously
accumulating, so the higher the calendar aging rate, the shorter the life it had. This was
probably the reason why Scenario 1 reached its end-of-life the earliest. Maintaining the
SOC at 30% yielded 8.5% more lifetimes than 50%, 20.6% more lifetimes than 70%.

B. dReg with the same rated capacity but a different battery energy:

Both Scenarios 2 and 4 used the dReg0.5 mode with the same rated power of 5 MW
but had different storage energies of 6.25 and 3.125 MWh, respectively, with the results
shown in Figure 15. Similarly, both Scenarios 5 and 6 used the dReg0.25 mode but also
differed in the storage energy.

As shown in Figure 16, although most of the aging in the four different situations came
from calendar aging, the fade caused by cycling aging in Scenario 4 was significantly higher
than that in Scenario 2, and in Scenario 6 it was also higher than that in Scenario 5. Since
the SOC level target was 50% for each scenario in this comparison, theoretically, the rate of
calendar aging should not have been significantly different. Therefore, it was estimated
that with the same SOC level target, the cycle times and depth of the scenario with a higher
C-rate would be more than that of the one with a lower C-rate, and thus, it would reach
EOL faster.
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Figure 14. The aging ratio of Scenarios 1 to 4.

Figure 15. The result under different C-rates using dReg0.5 and dReg0.25.

 

Figure 16. The aging ratio of Scenarios 5 and 6.

C. dReg0.5 and dReg0.25 with the same rated capacity and battery energy:

Scenario 2 and Scenario 5 were dReg0.5 and dReg0.25 at 5 MW/6.25 MWh, respectively,
with the results shown in Figure 17. In this case, it can be estimated that for the energy
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storage system with the same rated capacity and the same total battery energy, the battery
lifetime of dReg0.5 mode would be longer than that of dReg0.25.

Figure 17. The result under dReg0.5 and dReg0.25.

Compared with dReg0.5, dReg0.25 often needs to carry out more output outside the
deadband, so the cycle depth of dReg0.25 is higher than that of dReg0.5 under the same
frequency conditions. Therefore, the capacity fade rate caused by cycling aging of dReg0.25
is much faster than that of dReg0.5, which indirectly leads to dReg0.25 reaching the end of
battery life faster.

D. sReg with the same rated capacity and SOC level target but different battery energy:

As shown in Figure 18, Scenario 8 with a lower C-rate did lived longer than with a
higher C-rate (Scenario 7), but the difference was almost negligible. Considering the cost of
installation, the total battery energy of Scenario 8 was twice that of Scenario 7, which may
not be economical.

Figure 18. The result under different C-rates (sReg).

As shown in Figure 19, in the scenarios of the sReg mode with the SOC level target
at 90%, the proportion of calendar aging was significantly higher than that of cycle aging,
especially in the case of Scenario 8, which almost dominated the battery life. Outputting
the same power, the SOC variation of the scenario with a lower C-rate will be lower than
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that of the one with a higher C-rate, so in the long run, the overall capacity fade caused by
cycling aging will indeed be lower. However, as the proportion of cycling aging in these
scenarios was not high, the effect of reduced cycle aging on the overall battery life was
not significant.

Figure 19. The aging ratio of Scenarios 7 and 8.

E. sReg with the same rated capacity and battery energy but different SOC level target:

As shown in Figure 20, Scenario 7, which had a SOC level target of 90%, reached its
end-of-life after only 159 months, while Scenario 9, with a 70% SOC level target, reached
EOL through 180 months of use. In conclusion, it could be preliminarily supposed that
those with a lower SOC level target had a longer battery life.

Figure 20. The result under different SOC levels (sReg).

As shown in Figure 21, in Scenario 7, because the SOC level target was higher than
that of Scenario 9, the calendar aging rate was higher, which made it reach the end-of-life
faster. Simply by lowering the SOC level target, the battery life of Scenario 9 would be
about 20 months longer than that of Scenario 7. Therefore, if the SOC level target could be
as low as possible within the allowable range, the battery could have a longer lifetime.

Table 4 shows the battery life of all the scenarios. From (Scenario 1, 2, 3), (Scenario 7,
9) it was found that lowering the SOC level significantly improved battery life. From
(Scenario 3, 4), (Scenario 5, 6), and (Scenario 7, 8) it was found that the battery life with a
lower capacity was shorter.
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Figure 21. The aging ratio of Scenarios 7 and 9.

Table 4. Battery life overview for each scenario.

Scenario Mode Spec. (Pr/Er) SOC Level mEOL(Month)

1 dReg0.5 5 MW/6.25 MWh 70% 189
2 dReg0.5 5 MW/6.25 MWh 50% 210
3 dReg0.5 5 MW/6.25 MWh 30% 228
4 dReg0.5 5 MW/3.125 MWh 50% 195
5 dReg0.25 5 MW/6.25 MWh 50% 189
6 dReg0.25 5 MW/3.125 MWh 50% 165
7 sReg 5 MW/6.25 MWh 90% 159
8 sReg 5 MW/12.5 MWh 90% 162
9 sReg 5 MW/6.25 MWh 70% 180

5.3. Profit Estimation and Comparison

Table 5 is a rough estimate of the system construction costs based on the statistics of
the data from various manufacturers [19]. CSB

t , CSBOS
t , and CPE

t represent the cost of the
storage block (SB), storage-balance of system (SBOS), and power equipment (PE), while Pr
and Er stand for the rated power and battery energy, and finally, CBESS

t refers to the cost of
the entire BESS.

Table 5. Establishment cost estimation of each scenario.

Scenario
Pr

(MW)
Er

(MWh)
CSB

t
(Thousand NTD)

CSBOS
t

(Thousand NTD)
CPE

t
(Thousand NTD)

CBESS
t

(Thousand NTD)

1 5 6.25 31,850 7350 11,900 51,100
2 5 6.25 31,850 7350 11,900 51,100
3 5 6.25 31,850 7350 11,900 51,100
4 5 3.125 15,925 3675 11,900 31,500
5 5 6.25 31,850 7350 11,900 51,100
6 5 3.125 15,925 3675 11,900 31,500
7 5 6.25 31,850 7350 11,900 51,100
8 5 12.5 63,700 14,700 11,900 90,300
9 5 6.25 31,850 7350 11,900 51,100

This study calculated the profit earned until EOL in each situation, and the related
formulas are shown in Equations (11) and (12). To simplify the calculation, there were some
simple assumptions in this paper:

REOL
t =

mEOL

∑
m=1

dm

∑
d=1

24

∑
h=1

(
pcap(m, d, h) + pe f f (m, d, h)

)
× q(m, d, h) (11)
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REOL
net = REOL

t − CESS
t (12)

q(m, d, h) = 1 {m , d, h |1 ≤ m ≤ mEOL, 1 ≤ d ≤ dm, 1 ≤ h ≤ 24} (13)

where REOL
t and REOL

net represent the total revenue and net profit estimated until the battery’s
EOL; mEOL represents the number of months until the battery reaches its EOL. pcap, pe f f ,
and q represent the capacity offer price described in Table 1, the efficiency offer price varying
with the market bidding price every day, and the quality factor of operation, respectively.

A. dReg0.5 with the same rated capacity and battery energy but different SOC level target:

As shown in Figure 22, Scenario 3 had the highest net profit among the three. The
BESS specifications of the three Scenarios were the same so that the construction cost was
also the same. Scenario 3 had the longest battery life and could thus earn the most profit.

Figure 22. Net profit under different SOC levels (dReg0.5).

B. dReg with the same rated capacity but different battery energy:

As shown in Figure 23, either under the dReg0.5 or dReg0.25 mode, those with a higher
C-rate had a higher net profit in the simulation results of this study. Although the battery
life of those with a higher C-rate was shorter, the construction cost of their BESS was lower.
Therefore, the net profit was still higher than that of those with a lower C-rate. However,
these results are only the conclusion from the simulated data in this study; thus, the real
results may vary due to the actual construction cost of actual sites and many other factors.

Figure 23. Net profit under different C-rates using dReg0.5 and dReg0.25.
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C. dReg0.5 and dReg0.25 with the same rated capacity and battery energy:

As shown in Figure 24, the net profit difference between Scenario 2 and Scenario 5
was small. The two scenarios had the same specifications of BESS, so the construction
cost was similar, but dReg0.5 (Scenario 2) had a slightly longer life. dReg0.5 and dReg0.25
have different efficiency offer prices, which is one of the main factors that determine the
profits; thus, in this case, the one that had a longer battery life did not necessarily give more
net profit.

Figure 24. Net profit under dReg0.5 and dReg0.25.

D. sReg with the same rated capacity and SOC level target but different battery energy:

As shown in Figure 25, the battery life in Scenario 8 was slightly longer than that in
Scenario 7, but the difference was almost ignorable, so the total revenue should have been
about the same. Since the construction cost of Scenario 8 was significantly higher than that
of Scenario 7, the former had a dramatically lower net revenue than the latter.

Figure 25. Net profit under different C-rates (sReg).

E. sReg with the same rated capacity and battery energy but different SOC level target:

Figure 26 shows that a lower SOC level target led to a higher net profit because of its
longer battery life; thus, Scenario 9 had a higher net profit than Scenario 7 did.
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Figure 26. Net profit under different SOC levels (sReg).

For the results of this study, considering the operational requirements of dReg0.5 and
dReg0.25 modes, it was not necessary to maintain SOC at a high level. On the contrary,
a high SOC level target was necessary for the sReg mode to cope with the situation of
long-time full-power output.

Figure 27 shows the net profit curves of all scenarios. The net profits of the scenarios
under dReg0.5 were close to those under dReg0.25, but they were all generally higher than
that under sReg.

Figure 27. Net profit overview under each scenario.

From this simulation, it was estimated that for either dReg0.5 or dReg0.25 modes, the
net profits of those with a higher C-rate would indeed be higher than that of those with a
lower C-rate, but the effect did not seem to be that significant. Under the sReg mode, the
reduction of C-rate did not bring much benefit to the battery life but led to a significant
decrease in net profit due to the increased construction cost. Finally, SOC-level-targeting
had a significant impact on overall net profits regardless of what the frequency regulation
mode was, so evaluating to which level to set the SOC target is critical to enhancing
the profits.

6. Discussion

From (Scenario 1, 2, 3), (Scenario 7, 9) it was be found that a low SOC level gave a
higher net profit. Therefore, market participants can increase revenue by reducing the SOC
level. From (Scenario 3, 4), (Scenario 5, 6), and (Scenario 7, 8), it was found that no matter
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how the price changed, the income of a high-C-rate battery was always relatively high
and its construction cost was relatively low. It could be inferred that this market is more
suitable for high-C-rate batteries. The net profit in Scenario 8 was below zero most of the
time, which meant that if the capacity selection is wrong, it may lead to loss of money in
the sReg market.

7. Conclusions

This research has shown that there are differences in battery life under different
frequency regulation. The following can be observed for each type of frequency regulation:

For systems under dReg0.5, those with a lower SOC level target had a longer battery
life and, thus, a higher net profit.

Then, comparing the systems in dReg0.5 and dReg0.25 modes, although the battery
life of the system with a lower C-rate was longer, when considering the construction cost, it
did not mean that the net profit would be more than that of the system with a higher C-rate.

Finally, for the sReg, since most of the aging comes from calendar aging, the SOC level
maintained for a long time seriously affected its battery life. Furthermore, the lower the
SOC level, the longer the life. In addition, the effect of a low-C-rate battery on increasing
the lifetime was not significant, and the cost was relatively high, so the high C-rate scenario
had higher net profit. For a BESS with the same rated power and the same total energy
capacity, due to sReg usually being used in response to possible emergencies which needs
BESS to maintain a higher SOC level than that in the other two services, it results in a
shorter battery life and a lower net income for the batteries operating with sReg.

The limitation of the proposed method is that even for batteries of the same chemical
material, batteries manufactured by different battery manufacturers will still have differ-
ent aging properties, and the parameters of the model need to be adjusted according to
different batteries.

Future research will focus on evaluating the optimal capacity configuration of BESS
in various ancillary services. Because the BESS of more than hundreds of MW will be
composed of dozens of PCS with batteries of a specific capacity, the overall C-rate can be
very fine; any number between 0.25–1C is possible, and it is not limited to a specific C-rate.
It depends on how many PCS and how many batteries are used. The method proposed
in this study can iterate the most suitable configuration according to various regions and
various auxiliary services.
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Appendix A

Figures A1 and A2 show the iteration procedure of the rainflow cycle counting algorithm.
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Figure A1. Example of extracting a single cycle using the rainflow counting algorithm. (a) It shows a
line graph of the original sequence [4, 7, 2, 10, 5, 9, 4, 6] (b) Using rainflow counting method extract
cycle: 5-9, the depth of this cycle is 4, the average is 7. (c) It shows the sequence after the extraction
(d) Concatenate the original sequence with other sequences.

Figure A2. Example of extracting several cycles using the rainflow counting algorithm. (a) Extract
the cycle of the blue triangle and use the red dotted line to fill the interval, the cycle depth is 2, the
average is 5. (b)Using the same method to extract cycle [4,7], depth is 3, average is 5.5. (c) Use the
same method to extract cycle [2,10], depth is 8, average is 6. (d) Sequence after Extraction.
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Appendix B

Figure A3. Frequency distribution of December 2019.

Figure A4. Frequency distribution of March 2020.

Figure A5. Frequency distribution of May 2020.

Features of SOC Curves

The aging features extracted from SOC curves could be roughly classified into two
types, one about cycle depth, and another about storage SOC, which closely relate to
cycling aging and calendar aging, respectively. Figures A6–A8 show the SOC curves for
the simulations of Scenarios 2, 5, and 7 based on the three-month frequency, as described in
Section 5.2, and the distribution charts of the two main feature types mentioned above.
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Figure A6. SOC curve and aging features of Scenario 2.

Figure A7. SOC curve and aging features of Scenario 5.

717



Appl. Sci. 2022, 12, 6111

Figure A8. SOC curve and aging features of Scenario 7.
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Abstract: The first hard rock shallow-lined underground CAES cavern in China has been excavated
to conduct a thermodynamic process and heat exchange system for practice. The thermodynamic
equations for the solid and air region are compiled into the fluent two-dimensional axisymmetric
model through user-defined functions. The temperature regulation model and experimental study
results show that the charging time determines the air temperature and fluctuates dramatically under
different charging flow rates. The average air temperature increases with increasing charging flow
and decreasing charging time, fluctuating between 62.5 ◦C and −40.4 ◦C during the charging and
discharging processes. The temperature would reach above 40 ◦C within the first 40 min of the initial
pressurization stage, and the humidity decreases rapidly within a short time. The use of the heat
exchange system can effectively control the cavern temperature within a small range (20–40 ◦C).
The temperature rises and regularly falls with the control system’s switch. An inverse relationship
between the temperature and humidity and water vapor can be seen in the first hour of the initial
discharging. The maximum noise is 92 and 87 decibels in the deflation process.

Keywords: compressed air energy storage; heat exchange system; thermodynamic response; high
pressure; charging process; temperature regulation

1. Introduction

With the gradual development of global carbon emission reduction actions, vigorously
developing renewable energy has become an inevitable choice in the new situation. Re-
newable energy has the advantage of being clean and pollution-free. It has many defects
such as instability and difficulty in storage which urgently need corresponding energy
storage technology innovation to match. Compressed air energy storage (CAES) is one
of the most promising large-scale energy storage technologies. Compared with pumped
hydroelectric storage (PHS), CAES is not limited by water source and is a better choice for
efficient storage and utilization of clean energy [1].

Today, two existing commercial CAES plants are in operation: a 290 MW unit built
in Huntorf, Germany, in 1978, and a 110 MW unit built in McIntosh, AL, USA, in 1991 [2];
the monitoring data of their successful operation bring some valuable validation data
for the research related to compressed air energy storage caverns [3]. The research and
development progress on energy storage technologies in China has also developed more
rapidly [4]. The grid connection of the Feicheng salt cavern advanced CAES plant was
realized in 2021 [5]. Other caverns, such as salt caverns [6], abandoned mine caverns [7],
underground aquifers [8], and artificial rock-lined caverns [9], can also be used as gas
storage design alternatives. Moreover, compared with natural reservoir caverns, artificial
caverns with lining, which are more flexible in site selection and more adaptable to the
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design of large-scale energy storage, are one of the preferred options for achieving energy
storage in the future.

Kushnir et al. [10] derived an analytical solution for the temperature and pressure
variation of the air in the cavern in adiabatic mode. Then, the theoretical solution for
the thermodynamics of the cavern in the heat transfer model was derived based on the
air mass and energy conservation equations considering the heat transfer at the cavern
wall. It significantly affects the air temperature and pressure variation compared to the
adiabatic model [11]. Many scholars also cite this calculation model, and the calculation
results are compared with the test data of the Huntorf power station [12]. Kim et al. [13]
applied TOUGH-FLAC to study the thermodynamic and mechanical response of lined
caverns, and Zhou et al. [14] calculated the heat–flow–solid (THM) coupling process of
lined caverns based on COMSOL. Many thermodynamic simulations of CAES caverns
show that the temperature field inside the air storage caverns is unevenly distributed
and may form extremely high temperatures locally, which poses a significant threat to
the lining and surrounding rocks [15]. At the same time, the gas inside the cavern may
produce significant temperature fluctuations during the cyclic gas filling and discharging
process of the air storage caverns. Under the coupling effect of cyclic temperature and
stress, the chambers are prone to thermal stress disasters and safety risks in long-term
operation [16]. One of the significant problems of CAES systems is the air temperature rise
or fall during the compression or expansion operation, resulting in low efficiency. Some
works of literature describe enhancing heat transfer by implementing thermal management
measures [17]. Others use numerical and experimental methods to characterize fluid flow
patterns and heat transfer behavior at the local level [18–20]. GOUDA proposed a 3D CFD
model to simulate the air compression process to achieve near-isothermal operation [21].
It is essential to carry out a thermodynamic simulation of the cavern chamber filling
and discharging process and to intervene manually in the possible extreme temperature
conditions to realize piezo gas storage power generation [22].

In order to gain insight into the thermodynamic and mechanical response of the opera-
tion process of CAES caverns, many countries internationally have carried out experimental
cavern tests. Ishihata et al. [23] tested the sealability of a deeply buried underground gas
storage reservoir with a test air pressure of 0.9 MPa. However, the test results showed
severe cracking of the sealing layer. Swedish scholars GEISSBÜ conducted AA-CAES
demonstration plant gas storage adiabatic mode thermal storage test. Due to concrete plug
leakage, the air pressure only reached 7 bar, and the thermodynamic response was consis-
tent with the simulation results [24]. An underground lined rock cavern for small-scale
pressure gas storage tests as a storage reservoir was tested by Kim. At 100 m underground
burial depth, the radius of the cylindrical tunnel designed for gas storage was 2.5 m, and
the maximum gas storage pressure was 5 MPa [13]. It is a tremendous challenge for a
compressed air energy storage plant to determine whether the test can be conducted for
high internal pressure in an underground storage cavern without guaranteeing leakage.

Taking the exploration tunnel of Pingjiang Pumped Storage Plants in Hunan Province,
China’s first underground gas storage test cavern with a shallowly buried lining of hard rock
has been reconstructed to realize the gas storage test with a high internal pressure of 10 MPa.
In this paper, we would like to develop a temperature field analysis model for a model
underground high-pressure air storage cavern, analyze the temperature fluctuation law
of the gas filling and discharging process, and design a heat transfer system in the cavern.
Based on thermodynamic, heat transfer, and numerical heat transfer methods, air charging
and discharging and heat transfer performance tests in the cavern will be conducted.

2. CAES Cavern Design

The test cavern established in this study is located in the exploration tunnel (PD4) of
the underground powerhouse of the Pingjiang Pumped Storage Power Station in China.
The design of the cavern is shown in Figure 1. The buried depth of the testing cavern
was about 110 m. The length, the inner diameter, the volume, and the inner surface area
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were 5.0 m, 2.9 m, 28.8 m3, and 50.6 m2, respectively. A concrete lining of 0.5 m was set in
the testing cavern with a fiber-reinforced plastic (FRP) sealing layer on the surface of the
lining. A plug was set at the inlet end of the test chamber to bear the thrust of high-pressure
compressed air (maximum design pressure was 10.0 MPa). The test system includes a
vehicle-mounted air compressor pressurization system, a charging and discharging pipeline
system, cavern gas storage, sealing, and measurement system. The surrounding rock in
the flat exploration cave was mainly granite and granite gneiss with a mean value of
elastic modulus, deformation modulus, and compressive strength of 63.62 GPa, 35.59 GPa,
and 78~130 MPa, respectively. The location of the rock mass was of good quality. The
fundamental physical parameters such as density, specific heat, and thermal conductivity
of solid materials are shown in Table 1. It was assumed that the changes in solid physical
parameters within the calculation temperature range are small and have little effect on
the results. The air compressor was designed with a heat storage device to cool down
gradually, and the outlet temperature would be cooled down to 30 ◦C.

Figure 1. Schematic diagram of the Pingjiang CAES cavern. (Unit: mm).

Table 1. Physical parameters of solid materials.

Material
Young’s Modulus

(GPa)
Poisson’s Ratio

Density
(kg/m3)

Specific Heat
(J/kg/K)

Coefficient of Thermal Conductivity
(W/m/K)

FRP 2.9 0.3 1800 1260 0.52
Concrete 28 0.167 2500 920 1.74

Rock 18 0.2 2800 920 3.49
Steel door 200 0.3 8030 502.48 16.27

3. Numerical Models of Thermodynamic Processes

3.1. Modeling

The simplified axisymmetric numerical calculation physical model was established
according to the CAES cavern structure diagram shown in Figure 2. Considering the low
thermal conductivity and small thermal diffusivity of the surrounding rock and concrete
layer and the limited influence of the air temperature change in the cavern, the surrounding
rock, and concrete areas were simplified to a certain extent. The calculation results had little
affection. Because of the small calculation area, the calculation speed would be accelerated,
and the calculation cost would be saved. The calculated thickness of the surrounding rock
and the cylindrical concrete layer was 1000 mm and 480 mm, respectively.
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Figure 2. Axisymmetric simplified thermodynamic calculation model: (a) charging process; (b) dis-
charging process.

The charging–maintaining–discharging of the underground CAES cavern was a com-
plex thermodynamic process coupled with multiple physical phenomena, as shown in
Figure 2. The process includes: air compression (charging process)/expansion (discharging
process) in the cavern, convection heat transfer between high-pressure air and the wall
of the glass fiber-reinforced plastic cylinder, heat conduction inside the solid area such as
the glass fiber-reinforced plastic cylinder, concrete layer and surrounding rock, the area
absorbs or releases heat due to its heat capacity, as well as convection heat exchange with
the outside air in the FRP door area. Considering that the air pressure and temperature
fields in the cavern were approximately uniform, a simplified thermodynamic equilibrium
equation could be adopted to obtain the internal air’s average temperature and pressure.
The solid region heat conduction model was coupled to form a complete thermodynamic
model of the air storage cavern.

In order to study the thermodynamic process of the gas and solid in the cavern during
different charging and discharging processes, numerical simulations were carried out
for different charging and discharging flow rates (1000 Nm3/h, 500 Nm3/h). The initial
temperature field was set to 298 K. Before charging, the pressure of the cavern was 0.1 MPa,
and the maximum air pressure was about 10.0 MPa. The gas storage time was two hours,
and then the gas was released at (1000 Nm3/h, 500 Nm3/h) until the pressure in the cave
was close to 0.1 MPa.

According to the conservation of energy, the change of the total internal energy of
the air in the cavern is equal to the total enthalpy of the charged/discharged air and the
coupled heat transfer between the cylinder wall and the air:

∂(Mu)
∂t

= kwall Awall(Twall − Tair) +
∂m
∂t

hTair ,Pair (1)

∂(Mu)
∂t

= kwall Awall(Twall − Tair) +
∂m
∂t

hTair ,Pair (2)

where u is the unit internal energy of air, M is the total volume of air at the current moment,
hTair ,Pair is the unit enthalpy of air, ∂m/∂t is the air flow rate, which is negative when
discharged, kwall is the convective heat transfer coefficient between the wall of the cavern
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and the air, Tair is the air temperature, Twall is the average temperature of the cavern
surface, Qwall is the coupling heat exchange between the cavern surface and the air, and
Qwall = kwall Awall(Twall − Tair).

From Equation (1), the unit internal energy change can be obtained as:

Δu =
kwall Awall(Twall − Tair) + Δm·hTair ,Pair

M + Δm
(3)

High pressure air temperature increment can be obtained as:

ΔT =
Δu
cv

∣∣∣∣
Pair

(4)

The unit internal energy, temperature, and density of the gas at the moment t + Δt are:

u(t+Δt) = ut + Δu

T(t+Δt) = Tt + ΔT

ρ(t+Δt) = ρt=0 +

.
m·t
V

(5)

The pressure value of the compressed air can be calculated by the Peng–Robinson equation:

a = 0.45723553
R2T2

c
Pc

b = 0.07779607
RTc

Pc

κ = 0.37464 + 1.54226ω − 0.26993ω2

α =
(

1 + κ
(

1 −
√

T/Tc

))2
(6)

ΔP =
RT

(vm − b)
− αa

v2
m + 2bvm − b2 (7)

where R is the universal gas constant and R = 8314.47
(

J·kmol−1·K−1
)

, Tc is the air temper-
ature in the critical state and Tc = 132.5306 K, Pc is the air pressure in the critical state and
Pc = 3.79 MPa, ω is the eccentricity factor and ω = 0.0335, vm is the unit molar volume of
air and vm = MM/ρ

(
m3/kmol

)
, MM is the air molar mass and MM = 28.95 (kg/kmol).

In solid areas, such as glass fiber-reinforced plastic cylinders, concrete lining, sur-
rounding rock, and steel doors, the temperature change can be obtained by solving the
two-dimensional axisymmetric unsteady heat conduction energy equation:

ρsc
∂T
∂t

=
1
r

∂

∂r

(
λsr

∂T
∂r

)
+

∂

∂x

(
λsr

∂T
∂x

)
+

.
Q (8)

where λs is the thermal conductivity, ρs is the density,
.

Q is the internal heat source, which is
taken as 0 in this project, the r direction is the radial, and the x-direction is the axial direction.

The boundary condition settings include thermal boundary conditions for the solid re-
gion, where the outer surfaces of the surrounding rock and concrete can be set as isothermal
wall boundary conditions:

T = T∞ (9)

where T∞ = 298 K is the ambient temperature.
The outer surface of the steel door can be set as the convective heat transfer bound-

ary condition:
q′′ = k∞(T − T∞) (10)
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where k∞ is the convective heat transfer coefficient between the steel door and the air in
the access hole, which can be taken as a constant, k∞ = 8 W/m2K. The inner surface of the
FRP cylinder is the convection heat transfer boundary condition of the inner surface of the
FRP cylinder and can be described as:

q′′ = kwall(Twall − Tair) (11)

where kwall is the average convective heat transfer coefficient between the wall and the
compressed air. According to the formula for the heat transfer coefficient of gas-filled
convection in a closed storage tank proposed by Heath et al. [25] and Bourgeois et al. [26],
the heat exchange system can be calculated by the following formula:

Nu = u(d/D)0.5R0.67
e + 0.104R0.352

a (12)

where Nu is the Nusselt number, the first term on the right is the convective heat transfer
effect, which is related to the size of the inlet pipe, and the second term is the natural
convection heat transfer effect, which is related to the Rayleigh number Ra = GrPr. The
outgassing process only needs to consider the effects of natural convection.

The relationship between the convective heat transfer coefficient and Nu can be de-
scribed as:

k =
Nu·λair

D
u(d/D)0.5 (13)

The above equations can be compiled into the fluent two-dimensional axisymmetric
solid thermal conductivity model through a user-defined function (UDF), and the values
can be updated after the calculation of each time step to realize the calculation of the
temperature field in the entire cavern area.

3.2. Simulated Result

The variation law of air average temperature, inner cavern surface average tempera-
ture, and air pressure over time in the whole process obtained by numerical calculation is
shown in Figure 3. It can be seen that the whole process is divided into the charging stage,
the pressure-holding stage, the discharging stage, and the stop stage. The temperature and
pressure changes in each stage have apparent characteristics.

 
(a) (b) 

Figure 3. Temperature and pressure variation: (a) flow rate of 1000 Nm3/h; (b) flow rate of 500 Nm3/h.

The average air pressure rises steadily during the charging process. For the two
charging and discharging processes with a flow rate of 1000 Nm3/h and 500 Nm3/h, the
time used to charge the air with 10 MPa is 9542 s and 19,684 s, respectively. The air and
cavern temperature increases rapidly at the beginning of the charging, especially in the
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first 100~200 s. Due to the low air pressure and small total mass in the storage cavern,
the compression effect is powerful, and the air temperature rises rapidly from 25 ◦C to
about 50 ◦C. After that, the air temperature gradually slowed down due to the relative
weakening of the compression effect and the combined effect of the high-temperature
air on the increase of heat dissipation on the cavern surface. At the end of the charging,
the average air temperature reached 62.5 ◦C and 52.4 ◦C, and the average cavern surface
temperature reached 58.0 ◦C and 49.4 ◦C, respectively. In the pressure-holding stage, the
inlet pipe is neither filled with air nor released and does not perform work on the air.

At this time, since the air with a higher temperature continues to dissipate heat to
the wall with a lower temperature, the average temperature of the air begins to drop
continuously, and the inner cavern surface passes the heat through. The heat is transferred
to the lower temperature solid area, and the average temperature of the inner cavern
surface also continues to drop and gradually approaches the air temperature. After the
holding stage, the average air temperature is 43.0 ◦C and 40.3 ◦C, respectively, and the
average wall temperature is 41.9 ◦C and 39.5 ◦C. As the average air temperature dropped,
the air pressure in the cave also dropped slightly. During the discharging stage, the average
temperature and pressure of the air in the cave dropped rapidly.

Moreover, the air temperature drops rapidly below the average temperature of the
inner cavern surface. The cavern surface begins to provide heat for the air, but the heat
transfer from the cavern surface is limited. At the end of the discharging stage, the air
pressure drops to 0.1 MPa (due to the pressure gradient on the outlet pipe under actual
conditions, the pressure in the cavern should be slightly higher than the atmospheric
pressure). According to the equation of state, a decrease in air pressure results in a decrease
in temperature, and the rate of temperature decrease is proportional to the rate of decrease
in air pressure. The average air temperature drops to −40.4 ◦C and −20.9 ◦C, and the
average temperature of the inner cavern decreases to 1.9 ◦C and 8.5 ◦C, respectively.
The hot cylinder cavern and surrounding rock heat the air at the stop stage. Both air
temperature and pressure increase slightly. The slower the discharging rate, the more heat
the compressed air gets from the cavern surface and surrounding rock, and the lower the
rate of air temperature drop. It can be seen from the simulation of the air storage process
that the temperature in the cavern during the charging and discharging process fluctuates
wildly, which brings security risks to the safety and stability of the cavern. It is necessary to
control the heat transfer of the air temperature in the cavern.

4. Heat Exchange System Design

Figure 4 shows the schematic diagram of thermodynamics in the air storage cavern
with a heat exchange circulation system. With the influx of external air during the charging
process, the internal energy gradually increases with air temperature. Part of the heat is
transferred to the FRP cylinder through the convection heat exchange between the cavern
surface and the air, and then it dissipates through the FRP cylinder and the concrete.
Another part of the heat is transferred to the circulating cooling water in the tube. The
heated circulating cooling water loses heat through the circulating cooling tower. During
the discharging process, the internal energy and air temperature gradually decrease with
the release of the air. Due to the temperature difference, the cavern surface and the hot
water in the tube transfer heat to the air. In order to maintain the stable air temperature in
the cavern, the outside (cavern surface or heat exchange tube) needs to transfer a certain
amount of heat to the air or take away a certain amount of heat.
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Figure 4. Thermodynamics in the air storage cavern with a heat exchange circulation system:
(a) charging process; (b) discharging process.

The energy conservation equation for the whole thermodynamic system can be ex-
pressed as:

∂(Mu)
∂t

= ktube Atubeη(Twater − Tair) + kwall(Twall − Tair) +
∂m
∂t

hTair ,Pair (14)

where ktube is the convective heat transfer coefficient of the heat exchange tube wall, and
Twater is the temperature of the water in the heat exchange tube.

Therefore, the heat transferred from the hot water in the heat exchange tube to the air
can be obtained:

ktube Atubeη(Twater − Tair) =
∂m
∂t
(
uTair ,Pair − hTair ,Pair

)
+ M

∂u
∂t

− kwall(Twall − Tair) (15)

where kwall(Twall − Tair) is the heat transfer from the cavern surface to the air, ∂(Mu)/∂t is
the total internal energy change of the air in the tube, u·∂m/∂t is the total mass change of
air, (M·∂u/∂t) is the internal energy change per unit of air,

(
hTair ,Pair ·∂m/∂t

)
is the energy

of the outlet air.
Assuming the air temperature control in the cylinder is stable at 25 ◦C, which means

the temperature change is equal to 0 and the temperature difference between the cavern
surface and the air is also kept at 0, the heat transferred from the cavern surface to the air is
close to zero:

∂u
∂t

= cv
∂T
∂t

= 0 (16)

Twall − Tair = 0 (17)

In order to keep the air temperature stable, the heat exchange power that the heat
exchange tube needs to provide should satisfy the following equation:

ktube Atubeη(Twater − Tair) =
∂m
∂t
(
uTair ,Pair − hTair ,Pair

)
(18)

The additional heat required from the heat exchanger piping to maintain a constant
air temperature of 25 ◦C at different pressures is essentially the same. The heating powers
for different flow rates are between 30.4 kW~30.7 kW (1000 Nm3/h) and 15.2 kW~15.3 kW
(500 Nm3/h), respectively.

Typical finned heat exchanger tube dimensions are shown in Figure 5.
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Figure 5. Schematic diagram of finned heat exchange tube structure.

The heat exchange power can be calculated as:

Q =
Twater − Tair

Ri + Rtube + Ro
(19)

where Q is the heat exchange power, Ri is the thermal resistance of the water in the tube
and Ri = (1/kwater)·(ro/ri), kwater is the convective heat transfer coefficient between water
and the inner wall of the heat exchange tube and k = (Nu·Di)/λwater, Rtube is the thermal
resistance of the tube, Ro is the external thermal resistance.

According to the Gnielinski equation, the turbulent convective heat transfer Nussle
number, Nu, can be calculated as [27]:

Nu =
( f /8)(Re − 1000)Pr f

1 + 12.7
√

f /8
(

P2/3
r f − 1

)[1 +
(

d
l

)2/3
]( Pr f

Prw

)0.11

(20)

( Pr f

Prw

= 0.05 ∼ 20
)

(21)

where the friction factor f can be calculated the turbulent flow resistance coefficient and
f = (1.82lgRe − 1.64)−2.

The fluid resistance in a straight tube section can be calculated as:

ΔP = f · l
Di

·ρv2

2
(22)

The thermal resistance of the tube be calculated as:

Rtube =
ln(r2/r1)

2πλtubel
(23)

where λtube is thermal conductivity of the tube.
The outer surface of the tube can be calculated according to natural convection, and

the convection intensity can be characterized by the Grashof number Gr:

Gr =
gβΔtD3

o
υ2 =

gβ|Ttube − Tair|D3
o

υ2 (24)

β = −1
ρ

(
∂ρ

∂T

)
p
≈ 1

Tair
(25)

where ρ is the density (kg/m3), υ is the viscosity (kg/ms), g is gravity acceleration (m/s2),
β is the thermal expansion coefficient, Tair is the temperature of the air (K), and Ttube is the
temperature of the tube (K).
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The Nussle number, Nun , and the heat transfer coefficient, kn, can be calculated as:

Nun = C(Gr·Pr)
n (26)

kn =
Nun ·λ

D
(27)

where C and n are constants, when 104 < Gr < 5.76 × 108, C = 0.48 and n = 0.25; when
5.76 × 108 < Gr < 4.65 × 109, C = 0.0445 and n = 0.37; when Gr > 4.65 × 109, C = 0.1 and
n = 0.333.

The fin efficiency η f can be obtained through Figure 6 [28]:

η f =
th(mH′)

mH′ (28)

H′ = Hf ·
(

1 + 0.35ln
ro + Hf

ro

)
(29)

where H′ = H + δ/2, AL = H′δ, r2
r1

= r1+H′
r1

, mH = (H′)3/2[h/(λAL)]
1/2.

Figure 6. Efficiency curve of Annular Rectangular Rib.

The external thermal resistance Ro can be obtained as:

Ro =

(
kn·

η f A f + Ao

Ao

)−1

(30)

where Ao is the outside surface area of tube and Ao = π·Do·l, A f is the fin area and

A f = 0.5π·
[(

Do + 2Hf

)2 − D2
i

]
· 1

P , Do is the outside diameter of the tube, Di is the inside

diameter of the tube, l is the tube length, P is the fin spacing, and Hf is the fin height.
The heat exchange heat is all carried out by the circulating cooling water, and the

internal energy added by the circulating water at the inlet and outlet is equal to the heat
exchange power:

Q = cw
.

mw(Tw,i − Tw,o) = cw
.

mwΔTw (31)

The heat exchange area can be maintained by increasing the number of tubes. The
water circuit can be divided into N processes in parallel to control the flow speed and
reduce the flow resistance to less than 50 kPa.

The flow of each waterway can be obtained as:

.
mw =

.
mw,t

N
(32)
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where
.

mw,t is the water flow rate.
Two types of finned tubes with fin height H = 12 mm, fin thickness δ = 0.5 mm, fin

pitch P = 6 mm, and tube thickness (r2 − r1) = 8 mm are selected (pipe outer diameter is
50 mm and 40 mm, respectively) to calculate the required heat exchange area and waterway
loss. The two-way parallel connection method is adopted, and the air temperature, water
temperature difference, and water flow rate are 25 ◦C, 4 ◦C, and 6.6 t/h, respectively. The
calculation results are shown in Figure 7.

  
(a) (b) 

Figure 7. Influence law of heat exchange system parameters: (a) Twater = 45 ◦C; (b) Twater = 50 ◦C.

It can be seen from Figure 7 that the tube temperature decreases significantly with the
increase of pressure. The higher the circulating water temperature, the higher the tube’s
temperature. The heat transfer coefficient also increases as the pressure increases, and the
higher the water temperature, the greater the heat transfer coefficient. The outer surface
area of the tube, the number of ribs, and the fluid resistance decrease rapidly and then
slowly with the increase of pressure.

Two schemes have been calculated here to ensure the efficient operation of the heat
exchange system. Based on a two-way parallel finned tube system with a single tube length
of 4 m, the number of loop tubes needs to be 10 and 13, respectively, for a tube diameter of
50 mm and 40 mm. To provide circulating hot water through an electric heater, it should
meet the following requirements: the electric heater must meet the heating power of not
less than 47 kW (considering the heat dissipation loss outside the cave), and the heating
temperature should not be lower than 50 ◦C. The water volume of the pump is not less than
10.0 t h−1, and the water head should be equal to the flow resistance of the tube outside the
cavern plus 50 kPa.

According to the design and calculation results of the heat exchange system, combined
with the internal dimensions of the Pingjiang CAES cavern and the processing limitations
of the finned tubes, the final selected finned tubes had an outer diameter of 51 mm, an
inner diameter of 40 mm, a fin height of 11 mm, a fin thickness of 1 mm, and a pitch of
5 mm. The structure of the heat exchange system is shown in Figure 8.

The thermodynamic and heat transfer calculations were carried out for the air tem-
perature change in the cavern during the charging–maintaining–discharging of the heat
exchange system. The calculation results are shown in Figure 9. Since the heat exchange
system could use the circulating water at room temperature to take away a large amount
of compression heat generated by air compression during the charging stage. Except that
the large amount of heat generated by the severe compression in the early stage could
not be quickly discharged, the air temperature in the cave was significantly reduced and
stabilized at 35 ± 3 ◦C (1000 Nm3/h) and 30 ± 3 ◦C (500 Nm3/h). At the same time, due to
the decrease in air temperature, the time of the compression stage was prolonged, and the
amount of air stored in the cave increased. In the discharging stage, the heated circulating
cooling water could continue to provide heat for the low-temperature air to expand and
cool. The heat could not be replenished in time due to the violent expansion in the later
stage of discharging. The air temperature in the cavern was maintained at about 30 ◦C
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(1000 Nm3/h) and 25 ◦C (500 Nm3/h). A stable temperature was maintained, and air
temperatures below 0 ◦C could be avoided. From the calculation results of the complete
charging and discharging cycle, the air temperature was maintained between 20–40 ◦C
(1000 Nm3/h) and 20–40 ◦C (500 Nm3/h). In particular, when the pressure was greater
than 1.6 MPa, the temperature range was controlled between 25−38 ◦C (1000 Nm3/h) and
25–31 ◦C (500 Nm3/h). The heat exchange system can sufficiently suppress the temperature
fluctuation during the charging and discharging process.

 
Figure 8. The structure of the heat exchange system in Pingjiang CAES cavern.

 
(a) (b) 

Figure 9. The temperature controlling effect of the heat exchange system: (a) flow rate of 1000 Nm3/ h;
(b) flow rate of 500 Nm3/h.

5. Experimental Testing of CAES Cavern Heat Exchange System

5.1. Installation of Heat Exchange System

The tube of the heat exchange system was processed following Figure 8. Then it was
transported to the on-site cavern for welding and connection one by one (Figure 10). In
the welding process, an electric welding cloth was arranged on the entire wall surface
to avoid damage to the glass fiber-reinforced plastic by high-temperature welding slag
and flame. Due to the heavy weight of the steel tube, a tendon plate should be placed
between the outriggers of the temperature control tube and the FRP at different contact
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positions (left, right, and bottom of the cavern) to protect the FRP from being crushed. Since
the temperature-controlled tube was subjected to an external pressure of 10 MPa, if there
were a defect in the welding seam, the water in the pipe would be pressed out to form a
high-pressure water hammer flow, which was quite dangerous. Therefore, all welds were
subjected to penetration non-destructive testing to ensure that the test was 100% qualified.
If the weld was defective, repair welding must be carried out.

  
(a) (b) 

Figure 10. In situ heat exchange system: (a) inside the cavern; (b) outside the cavern.

A cube temperature-controlled pool with a side length of 2 m was built outside the
CAES cavern. The pool was composed of an upper water outlet pipe, a lower water inlet
pipe, a heater, and a vertical water pump. The high-temperature water heated by the heater
would be circulated into the compressed air chamber to increase the air temperature to
avoid freezing in the cavern. The heating tube of the heater was 1.9 m long, only the lower
part of 1.7 m could generate heat, and it would be under the water during operation. The
pool’s water level was stable at 1.75 m~1.85 m.

5.2. Heat Exchange Test Results

In order to test the operational performance of the heat exchange system, it was
designed to turn on the temperature control when the temperature reaches above 40 ◦C in
the charging process. The heating water cycle would be turned on when the temperature
drops below 10 ◦C, and the heater would be turned off, but the water cycle system would
be maintained during the discharging process.

The barometer was welded to the charging and discharging pipes next to the test
cavern to collect the air pressure. Two sets of thermocouples were used to measure the
temperature at 10 positions at different depths (0 m, 1 m, 2 m, 3 m, 4 m, 5 m) in the wall
and the middle of the cavern. The hygrometer sensor probe was mounted on the steel door
of the plenum inside the hole.

Figure 11 shows the results of the temperature control test during the two CAES
conditions. In the initial pressurization stage (when the pressure is less than 1 MPa),
regardless of the speed of the pressurization rate, the temperature reaches above 40 ◦C, and
the humidity decreases rapidly within a short time (40 min).
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(a) (b) 

Figure 11. Experimental results of heat exchange system: (a) Maximum charging pressure of 8 MPa;
(b) Maximum charging pressure of 10 MPa.

When the temperature reached above 40 ◦C, the temperature control system was
turned on according to the test plan. There was no significant change in the air pressure and
the pressurization rate, but the temperature dropped rapidly, and the humidity increased
slightly. During the pressurization stage, the opening temperature of the heat exchange
system decreases, and the closing temperature of the heat exchange system increases,
showing a reasonable regularity. The air pressure decreased very little during the pressure
stabilization stage. Moreover, the temperature decrease was mainly caused by the heat
transfer of FRP to the outside. The humidity also increased at this time. Temperature and
humidity were inversely related. When the discharging process began, the temperature
decreased rapidly, and the humidity increased. After the temperature control system was
turned on, the temperature drop could be controlled and even have a recovery trend.
However, there was no change in the trend of pressure changes. There was still an inverse
relationship between temperature and humidity. There would be noise during the deflation
process, with the maximum noise being 92 and 87 decibels, respectively, and water vapor
could be seen in the first hour of the initial discharging.

6. Conclusions

In this study, a simulation of the temperature variation law of the underground CAES
cavern in the whole cycle of charging–high pressure air storage–discharging was carried
out based on thermodynamics and numerical heat transfer methods. Moreover, a pilot
cavern was excavated to conduct a thermodynamic process and heat exchange system for
practice. Based on the obtained results, the following conclusions can be drawn:

(1) According to the conservation of energy, the thermodynamic equations for the solid
and air region were compiled into the fluent two-dimensional axisymmetric model
through a user-defined function (UDF), and the values were updated after the calcula-
tion of each time step to realizing the calculation of the temperature field in the entire
cavern area. The average air pressure rises steadily during the charging process, and
the air temperature rises rapidly from room temperature to about 50 ◦C in the very
first moment. At the end of the charging, the average air temperature reached 62.5 ◦C.
At the end of the discharging stage, the average air temperature drops to −40.4 ◦C,
showing a wild fluctuation.

(2) A two-way parallel finned tube heat exchange system of the Pingjiang CAES cavern
was designed to provide circulating hot/cool water. The tube temperature decreases
significantly with the increase of pressure. Two designing schemes were calculated
to ensure the efficient operation of the heat exchange system. A stable temperature
was maintained, and air temperatures below zero degrees could be avoided. The air
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temperature was maintained between 25 ◦C and 38 ◦C when the pressure was greater
than 1.6 MPa. The heat exchange system can sufficiently suppress the temperature
fluctuation during the charging and discharging process.

(3) According to the experimental testing results of the CAES cavern heat exchange sys-
tem, it was designed to turn on the temperature control when the temperature reaches
above 40 ◦C in the charging process and below 10 ◦C in the discharging process.
There was no significant change in the air pressure and the pressurization rate, but the
temperature dropped rapidly, which means that the heat exchange system can control
the temperature within a small range (20–40 ◦C) without affecting the air charging
efficiency. Temperature and humidity were inversely related, and water vapor could
be seen in the first hour of the initial discharging. There would be noise during the
deflation process, and the maximum noise was 92 and 87 decibels, respectively.
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