
Edited by

Advances in Artificial
Intelligence
Models, Optimization, and
Machine Learning

Florin Leon, Mircea Hulea and Marius Gavrilescu

Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics

Advances in Artificial Intelligence:
Models, Optimization, and
Machine Learning

Advances in Artificial Intelligence:
Models, Optimization, and
Machine Learning

Editors

Florin Leon

Mircea Hulea

Marius Gavrilescu

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editors

Florin Leon

“Gheorghe Asachi” Technical

University of Ias, i

Romania

Mircea Hulea

“Gheorghe Asachi” Technical

University of Ias, i

Romania

Marius Gavrilescu

“Gheorghe Asachi” Technical

University of Ias, i

Romania

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/journal/mathematics/special

issues/Artificial Intelligence Models Optimization Machine Learning).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-4515-8 (Hbk)

ISBN 978-3-0365-4516-5 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editors . vii

Florin Leon, Mircea Hulea and Marius Gavrilescu

Preface to the Special Issue on “Advances in Artificial Intelligence: Models, Optimization, and
Machine Learning”
Reprinted from: Mathematics 2022, 10, 1721, doi:10.3390/math10101721 1

Silvia Curteanu, Florin Leon, Andra-Maria Mircea-Vicoveanu and Doina Logofătu

Regression Methods Based on Nearest Neighbors with Adaptive Distance Metrics Applied to a
Polymerization Process
Reprinted from: Mathematics 2021, 9, 547, doi:10.3390/math9050547 5

Florin Leon and Marius Gavrilescu

A Review of Tracking and Trajectory Prediction Methods for Autonomous Driving
Reprinted from: Mathematics 2021, 9, 660, doi:10.3390/math9060660 25

Jui-Sheng Chou, Dinh-Nhat Truong and Chih-Fong Tsai

Solving Regression Problems with Intelligent Machine Learner for Engineering Informatics
Reprinted from: Mathematics 2021, 9, 686, doi:10.3390/math9060686 63

Carlos M. Castorena, Itzel M. Abundez, Roberto Alejo, Everardo E. Granda-Gutiérrez,

Eréndira Rendón and Octavio Villegas

Deep Neural Network for Gender-Based Violence Detection on Twitter Messages
Reprinted from: Mathematics 2021, 9, 807, doi:10.3390/math9080807 89

Seokho Kang

k-Nearest Neighbor Learning with Graph Neural Networks
Reprinted from: Mathematics 2021, 9, 830, doi:10.3390/math9080830 101

Ángel Luis Muñoz Castañeda, Noemı́ DeCastro-Garcı́a and David Escudero Garcı́a

RHOASo: An Early Stop Hyper-Parameter Optimization Algorithm
Reprinted from: Mathematics 2021, 9, 2334, doi:10.3390/math9182334 113

Elena Niculina Dragoi and Vlad Dafinescu

Review of Metaheuristics Inspired from the Animal Kingdom
Reprinted from: Mathematics 2021, 9, 2335, doi:10.3390/math9182335 165

Xinglong Feng, Xianwen Gao and Ling Luo

A ResNet50-Based Method for Classifying Surface Defects in Hot-Rolled Strip Steel
Reprinted from: Mathematics 2021, 9, 2359, doi:10.3390/math9192359 217

Amelia Bădică and Costin Bădică and Ion Buligiu and Liviu Ion Ciora and Doina Logofătu

Dynamic Programming Algorithms for Computing Optimal Knockout Tournaments
Reprinted from: Mathematics 2021, 9, 2480, doi:10.3390/math9192480 233

Krešimir Kušić, Edouard Ivanjko, Filip Vrbanić, Martin Gregurić and Ivana Dusparic

Spatial-Temporal Traffic Flow Control on Motorways Using Distributed Multi-Agent
Reinforcement Learning
Reprinted from: Mathematics 2021, 9, 3081, doi:10.3390/math9233081 257

Florin Leon

ActressMAS, a .NET Multi-Agent Framework Inspired by the Actor Model
Reprinted from: Mathematics 2022, 10, 382, doi:10.3390/math10030382 285

v

Fahman Saeed, Muhammad Hussain and Hatim A. Aboalsamh

Automatic Fingerprint Classification Using Deep Learning Technology (DeepFKTNet)
Reprinted from: Mathematics 2022, 10, 1285, doi:10.3390/math10081285 319

Subhajit Chatterjee, Debapriya Hazra, Yung-Cheol Byun and Yong-Woon Kim

Enhancement of Image Classification Using Transfer Learning and GAN-Based Synthetic Data
Augmentation
Reprinted from: Mathematics 2022, 10, 1541, doi:10.3390/math10091541 337

vi

About the Editors

Florin Leon

Florin Leon, Ph.D., is currently a Full Professor at the Department of Computer Science and

Engineering of the “Gheorghe Asachi” University of Iasi, Romania. He received a doctoral degree

in computer science from the same university, followed by a postdoctoral fellowship completed

in 2007. In 2015, he defended his habilitation thesis. He has authored and co-authored more than

180 journal articles, book chapters and conference papers, and 14 books. He has 629 citations with

an h-index of 12 according to Scopus. He was a member of the guest editorial boards for three

journal Special Issues, and he has participated in 29 national and international research projects, 3

of which were as the principal investigator. His scientific interests include: artificial intelligence,

machine learning, multiagent systems and software design. In his research, he used various machine

learning techniques for modelling, such as simple, stacked and deep neural networks, instance-based

methods, and large-margin nearest neighbor regression. He also addressed optimization problems

using different types of evolutionary algorithms, quantum-inspired algorithms and combinations of

global and local search methods. Moreover, he studied multiagent systems with complex behaviors

and performed various agent-based simulations. Prof. Leon was a member of the organizing

committees or program committee chair of five conferences. He is currently a member of IEEE

Systems, Man and Cybernetics Society: Computational Collective Intelligence Technical Community

and the Romanian Association for Artificial Intelligence.

Mircea Hulea

Mircea Hulea, Ph.D., is currently an Associate Professor at the Department of Computer Science

and Engineering of the “Gheorghe Asachi” Technical University of Iasi, Romania. He received his

M.S. and Ph.D. degrees in Computer Engineering and Automatic Control from the same university,

in 2004 and 2008, respectively. In this institution, he was also a Postdoctoral Researcher when

he worked on the project of Biomimetic hardware and software systems and their applications,

from 2010 to 2013. He is the author of over 40 technical publications, proceedings, editorials and

books, with more than 20 being indexed in the Web of Science. His research interests include brain

modelling, humanoid robotics and optical wireless communications. He is the coordinator of the

collaborative research network on spiking neural networks at the host university, and a member in

the management committee of the European project COST Action 19111 (NEWFOCUS).

Marius Gavrilescu

Marius Gavrilescu, Ph.D., is a Lecturer at the Department of Computer Science and Engineering

of the “Gheorghe Asachi” Technical University of Iasi, Romania. His research activity and interests

involve the following: machine learning—classification and regression models, object recognition,

deep learning neural network architectures applied mainly for the processing of medical images

and data originating from natural sciences; computer graphics and data visualization: visual

representations and rendering of multidimensional data from medical imaging; volume graphics;

GPU programming and parallel algorithms; filtering, enhancement and analysis of images from

the automotive field, natural sciences, climatology and meteorology; modelling and simulation of

physical phenomena: fluid dynamics, collisions, optical models based on ray tracing or path tracing,

real-time graphics and physics engines.

vii

Citation: Leon, F.; Hulea, M.;

Gavrilescu, M. Preface to the Special

Issue on “Advances in Artificial

Intelligence: Models, Optimization,

and Machine Learning”. Mathematics

2022, 10, 1721. https://doi.org/

10.3390/math10101721

Received: 15 May 2022

Accepted: 16 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Editorial

Preface to the Special Issue on “Advances in Artificial
Intelligence: Models, Optimization, and Machine Learning”

Florin Leon *, Mircea Hulea * and Marius Gavrilescu *

Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University of Iasi,
Bd. Mangeron 27, 700050 Iasi, Romania
* Correspondence: florin.leon@academic.tuiasi.ro (F.L.); mircea.hulea@academic.tuiasi.ro (M.H.);

marius.gavrilescu@academic.tuiasi.ro (M.G.)

Recent advancements in artificial intelligence and machine learning have led to the
development of powerful tools for use in problem solving in a wide array of scientific and
technical fields. In particular, supervised models allow for the searching, optimization,
and classification of data with high complexity, high dimensionality, and vast solution
spaces. Problems that had proven challenging or nearly impossible are now solvable given
sufficient training time and computational resources, allowing for learning, knowledge
discovery, and decision making that easily outperform human abilities. In particular,
machine learning models obtained using high-complexity deep neural networks have seen
a huge increase in popularity due to their ability to learn functions, rules, and correlations
within massive and diverse data sets. Currently, machine learning has demonstrated
and is continually demonstrating its potential to solve complex and important real-world
problems. Consequently, following a careful and thorough peer-review process, this Special
Issue offers valuable contributions to modeling, optimization, classification, and regression
for solving problems in a wide variety of technical fields, using modern artificial intelligence
and machine learning means.

In the following paragraphs, we provide summaries of these contributions.
Curteanu et al. [1] perform an extensive comparative study between three regression

algorithms for the prediction of monomer conversion, numerical average molecular weight,
and gravimetrical average molecular weight for the free radical polymerization of methyl
methacrylate achieved in a batch bulk process. The first two algorithms are based on the
concept of a large margin, typical of support vector machines, but used here for regression in
conjunction with an instance-based method, where the learning of problem-specific distance
metrics can be achieved either with an evolutionary algorithm or with an approximate
differential approach. Another original regression method is based on the idea of denoising
autoencoders, i.e., prototype weights and positions are set in such a way as to minimize the
error on a slightly corrupted version of the training set.

Leon and Gavrilescu [2] provide a survey of modern methods for prediction and
tracking in automotive applications. The paper covers a wide range of methods applied in
various scenarios, where pedestrians, vehicles, and other obstacles are found in difficult-to-
handle configurations. The scientific contributions analyzed in the survey offer methods
using deep neural networks, stochastic methods, motion models, as well as many hybrid
approaches to solve problems within scenarios comprising multiple interacting agents with
variable or multi-modal behavior, occlusion, high reaction times, and, generally speaking,
any contexts encountered within autonomous driving. While the current state of the art
generally favors neural-network-based approaches, many non-neural-network solutions
are explored as well.

The work by Chou et al. [3] uses an intelligent machine learner to build prediction
models with applications in industrial experiments such as resource planning for software
projects, the comparison of processor performance, and the estimation of bicycle rentals per

Mathematics 2022, 10, 1721. https://doi.org/10.3390/math10101721 https://www.mdpi.com/journal/mathematics1

Mathematics 2022, 10, 1721

day and resources demand for increasing productivity and efficient customer service. The
proposed approach matches or obtains better results than the existing methods reported in
the literature for the same applications.

The problem of the detection of gender-based violence is tackled by Castorena et al. [4]
based on language used on Twitter. The artificial intelligence systems used for this goal are
deep neural networks that require minimal preprocessing of data based on feature extrac-
tion. The success rate of the proposed method in identifying gender-based violence in the
Spanish language in Mexico is about 80%, which is encouraging for future improvements
of the proposed method.

Kang [5] proposes an improvement of the k-nearest neighbors (kNN) algorithm using
a graph neural network (GNN) to improve the learning process. The resulting contribution
is called kNNGNN and consists of generating a GNN that learns kNN rules from a graph
representation of the data. The author evaluates both weighted and unweighted versions
of kNN using various similarity metrics and demonstrates the applicability of the proposed
method for both classification and regression problems.

The work by Muñoz Castañeda et al. [6] describes a new algorithm for the hyper-
parameter optimization (HPO) of machine learning algorithms based on the conditional
optimization of concave asymptotic functions. It is shown that the size of the data subset
does not have a great impact on its performance, and the algorithm only requires an upper
bound on the number of iterations to perform.

Drăgoi and Dafinescu [7] review a large number of metaheuristic optimization algo-
rithms inspired by animal behavior, both vertebrates and invertebrates, proposed between
2006 and 2021. The authors note that despite many critiques of the metaheuristic commu-
nity, the trend of proposing algorithms based on new sources of inspiration remains stable
because of the many areas of applicability and the tendency to offer the source code in
order to increase the ease of use. Exotic inspiration sources and uncommon behaviors seem
to have a greater probability of devising new optimization techniques.

Feng et al. [8] use a model based on the ResNet50 architecture to identify surface
defects on rolled strip steel for automotive manufacturing. ResNet50 is combined with
other models such as the convolutional block attention module (CBAM) and FcaNet for
improved accuracy. The resulting hybrid method is tested using a data set exhibiting
defect patterns such as surface scratches, cracks, tears, spots, or oxidation layers. The
proposed hybrid model performs slightly better than similar approaches. However, as the
authors themselves note, the method requires more computational power than competing
lightweight models, considering that the rolled steel coils are evaluated using images
acquired in real time at very high rates.

Bădică et al. [9] study hierarchically shaped single-elimination tournaments and
propose a dynamic programming algorithm for use in computing optimal tournaments
that maximize attractiveness, e.g., where the best players have the chance to meet in the
later stages of the competition. The authors also develop more efficient deterministic and
sub-optimal stochastic versions of the algorithm.

The goal of the paper by Kušić et al. [10] is to improve artificial intelligence techniques
for traffic control by dynamically setting zones with variable speed limits. In addition,
method validation is performed using four agents instead of two, as in previous research.
This work is important in reducing traffic congestion by automatically adjusting the speed
limits and the position of these zones.

In his work, Leon [11] describes the architecture of ActressMAS, a .NET multi-agent
framework which allows the implementation of two sub-paradigms in multi-agent systems,
i.e., one focused on autonomy and planning, and another focused on interactions and
emergent behaviors in agent simulations. Its main advantages are conceptual simplicity
and ease of use, which make it particularly suitable for teaching agent-based concepts.
However, the framework proves to be sufficiently powerful to implement a large number of
algorithms, protocols, and simulations characteristic of intelligent agents and multi-agent
systems. The framework and the examples are open-source and publicly available.

2

Mathematics 2022, 10, 1721

The paper by Saeed et al. [12] presents a method to optimize the structure of con-
volutional neural networks (CNNs) by determining the number of filters and layers for
the classification of fingerprints using multiple sensors. This research is important for
improving the cost and response time of systems based on CNNs.

Chatterjee et al. [13] propose a method for the automatic identification of plastic bottles
from images for recycling purposes. To this end, a model based on a generative adversarial
network (GAN) augments a data set consisting of a few original images, while the actual
classification is handled by an ensemble based on transfer learning from the InceptionV3
and Xception models. The proposed solution is shown to have very high accuracy, and it
is worth mentioning that it seems to handle rotation and translation quite well. However,
both training and evaluation are carried out on relatively simple images, each containing a
single plastic bottle against a relatively homogeneous background. It would be interesting
to see whether in future work the authors will improve their method to handle more diverse
and realistic scenarios, such as plastic bottles found among other waste, multiple plastic
bottles arranged in piles where they occlude one another, etc.

These 13 papers in this Special Issue have been selected following a process with an
acceptance rate of 62%. The authors’ geographical distribution is displayed in Table 1,
which shows 42 authors from 12 countries.

Table 1. Geographic distribution of authors by country.

Country Number of Authors

China 3
Croatia 4

Germany 2
India 2

Ireland 1
Mexico 6

Romania 12
Saudi Arabia 3
South Korea 3

Spain 3
Taiwan 2
Vietnam 1

The guest editors wish to thank the authors for their contributions and for their
commitment to improving their work, the reviewers for investing time and effort into
analyzing and providing valuable comments and corrections, and last but not least, the
editorial staff for managing the review and publication process efficiently and thoroughly.
We hope that the selected publications will have a lasting impact on the scientific community
and that they will be motivating factors for other researchers to pursue their scientific goals.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Curteanu, S.; Leon, F.; Mircea-Vicoveanu, A.; Logofătu, D. Regression Methods Based on Nearest Neighbors with Adaptive
Distance Metrics Applied to a Polymerization Process. Mathematics 2021, 9, 547. [CrossRef]

2. Leon, F.; Gavrilescu, M. A Review of Tracking and Trajectory Prediction Methods for Autonomous Driving. Mathematics 2021,
9, 660. [CrossRef]

3. Chou, J.; Truong, D.; Tsai, C. Solving Regression Problems with Intelligent Machine Learner for Engineering Informatics.
Mathematics 2021, 9, 686. [CrossRef]

4. Castorena, C.; Abundez, I.; Alejo, R.; Granda-Gutiérrez, E.; Rendón, E.; Villegas, O. Deep Neural Network for Gender-Based
Violence Detection on Twitter Messages. Mathematics 2021, 9, 807. [CrossRef]

5. Kang, S. k-Nearest Neighbor Learning with Graph Neural Networks. Mathematics 2021, 9, 830. [CrossRef]
6. Muñoz Castañeda, Á.; DeCastro-García, N.; Escudero García, D. RHOASo: An Early Stop Hyper-Parameter Optimization

Algorithm. Mathematics 2021, 9, 2334. [CrossRef]

3

Mathematics 2022, 10, 1721

7. Drăgoi, E.; Dafinescu, V. Review of Metaheuristics Inspired from the Animal Kingdom. Mathematics 2021, 9, 2335. [CrossRef]
8. Feng, X.; Gao, X.; Luo, L. A ResNet50-Based Method for Classifying Surface Defects in Hot-Rolled Strip Steel. Mathematics 2021,

9, 2359. [CrossRef]
9. Bădică, A.; Bădică, C.; Buligiu, I.; Ciora, L.; Logofătu, D. Dynamic Programming Algorithms for Computing Optimal Knockout

Tournaments. Mathematics 2021, 9, 2480. [CrossRef]
10. Kušić, K.; Ivanjko, E.; Vrbanić, F.; Gregurić, M.; Dusparic, I. Spatial-Temporal Traffic Flow Control on Motorways Using

Distributed Multi-Agent Reinforcement Learning. Mathematics 2021, 9, 3081. [CrossRef]
11. Leon, F. ActressMAS, a .NET Multi-Agent Framework Inspired by the Actor Model. Mathematics 2022, 10, 382. [CrossRef]
12. Saeed, F.; Hussain, M.; Aboalsamh, H. Automatic Fingerprint Classification Using Deep Learning Technology (DeepFKTNet).

Mathematics 2022, 10, 1285. [CrossRef]
13. Chatterjee, S.; Hazra, D.; Byun, Y.; Kim, Y. Enhancement of Image Classification Using Transfer Learning and GAN-Based

Synthetic Data Augmentation. Mathematics 2022, 10, 1541. [CrossRef]

4

mathematics

Article

Regression Methods Based on Nearest Neighbors with
Adaptive Distance Metrics Applied to a Polymerization Process

Silvia Curteanu 1, Florin Leon 2,*, Andra-Maria Mircea-Vicoveanu 1 and Doina Logofătu 3

Citation: Curteanu, S.; Leon, F.;

Mircea-Vicoveanu, A.-M.; Logofătu,

D. Regression Methods Based on

Nearest Neighbors with Adaptive

Distance Metrics Applied to a

Polymerization Process. Mathematics

2021, 9, 547. https://doi.org/

10.3390/math9050547

Academic Editor: Radi Romansky

Received: 28 January 2021

Accepted: 1 March 2021

Published: 5 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Ias, i,
Bd. Mangeron 73, 700050 Ias, i, Romania; scurtean@ch.tuiasi.ro (S.C.); andramircea@yahoo.com (A.-M.M.-V.)

2 Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University of Ias, i,
Bd. Mangeron 27, 700050 Ias, i, Romania

3 Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, Nibelungenplatz 1,
60318 Frankfurt am Main, Germany; logofatu@fb2.fra-uas.de

* Correspondence: florin.leon@academic.tuiasi.ro

Abstract: Empirical models based on sampled data can be useful for complex chemical engineering
processes such as the free radical polymerization of methyl methacrylate achieved in a batch bulk
process. In this case, the goal is to predict the monomer conversion, the numerical average molecular
weight and the gravimetrical average molecular weight. This process is characterized by non-linear
gel and glass effects caused by the sharp increase in the viscosity as the reaction progresses. To
increase accuracy, one needs more samples in the areas with higher variation and this is achieved
with adaptive sampling. An extensive comparative study is performed between three regression
algorithms for this chemical process. The first two are based on the concept of a large margin,
typical of support vector machines, but used for regression, in conjunction with an instance-based
method. The learning of problem-specific distance metrics can be performed by means of either an
evolutionary algorithm or an approximate differential approach. Having a set of prototypes with
different distance metrics is especially useful when a large number of instances should be handled.
Another original regression method is based on the idea of denoising autoencoders, i.e., the prototype
weights and positions are set in such a way as to minimize the mean square error on a slightly
corrupted version of the training set, where the instances inputs are slightly changed with a small
random quantity. Several combinations of parameters and ways of splitting the data into training
and testing sets are used in order to assess the performance of the algorithms in different scenarios.

Keywords: large margin nearest neighbor regression; distance metrics; prototypes; evolutionary
algorithm; approximate differential optimization; multiple point hill climbing; adaptive sampling;
free radical polymerization

1. Introduction

There are many situations when one needs to discover a relationship between one
or more independent variables, the inputs, and one real-valued dependent variable, i.e.,
the output—from data samples. This type of problem is known as regression, and a large
number of algorithms have been proposed by researchers. Among the most popular ones,
one can mention neural networks, support vector machine regression (ε-SVR, ν-SVR),
decision trees (M5P, random forest, REPTree) or methods based on instances (k-nearest
neighbor) or rules (M5, decision table).

The Large Margin Nearest Neighbor for Regression (LMNNR) algorithm [1] has been
used in several studies so far for a variety of applications and its performance has been
compared to that of classic regression methods implemented in the popular collection of
machine learning algorithms Weka [2]. Thus, in [1,3], it was used for the prediction of
corrosion resistance of some alloys containing titanium and molybdenum, widely used in

Mathematics 2021, 9, 547. https://doi.org/10.3390/math9050547 https://www.mdpi.com/journal/mathematics5

Mathematics 2021, 9, 547

dental applications. The material corrosion was quantified by the polarization resistance of
the TiMo alloys.

The LMNNR algorithm was also applied in a different field, that of predicting stu-
dents’ performance based on their active use of social media tools during the learning
process [4,5]. The training data were collected over six winter semesters in consecutive
years, from a total of 343 students. Almost 19,000 social media contributions were recorded
and used to compute 14 numeric features for each student. Based on these, the final grade
was predicted.

The results of LMNNR have been generally shown to be better than those of the other
regression algorithms used for comparison. Although more variants for model training
and model representation have been proposed, its main disadvantage is that its sensitivity
to local optimal often requires multiple runs, and thus increases the training time.

In [6], a modified nearest-neighbor regression method (kNN) is proposed for modeling
the photocatalytic degradation of the Reactive Red 184 dye for which insufficient data
are available. It can handle partial information without “filling in” additional computed
values (mean values) or ignoring the incomplete instances. In the case of the photocatalytic
degradation process, the kNN method recorded correlations of over 0.9.

A study based on an adaptive regression model appropriate for cases with insufficient
or missing data was also performed in [7]. Its aim was to investigate the electrochemical
behavior of ZrTi alloys in artificial saliva. This method has only one internal parameter
whose optimal value is found automatically.

The prediction of the sublimation rate of naphthalene in various working conditions
was studied in [8]. Different regression methods were applied and the performance of the
original Large Margin Nearest Neighbor Regression algorithm (LMNNR) proved superior
to those of other classical ones.

In the present study, three regression variants are applied for the free radical poly-
merization of methyl methacrylate (MMA) achieved in a batch bulk process. The first two
variants are based on LMNNR trained either with an evolutionary algorithm or by gradient
descent, where the derivatives are approximated by means of the central difference method.
This is the first time that LMNNR has been applied for this process. Its difficulty is caused
by the gel effect, corresponding to an abrupt conversion and molecular mass jump which
may be missed by less accurate regression techniques. The third variant is a new, original
algorithm named Nearest Neighbor Regression with Adaptive Distance Metrics Trained by
Multiple Point Hill Climbing on Noisy Training Set Error (RADIAN) which is not based
on the concept of a large margin but is inspired by denoising autoencoders used in deep
learning [9], where the input data are slightly corrupted, and the model is forced to learn
the correct data from the corrupted version in order to prevent overfitting.

Regarding the results obtained for the polymerization of MMA with the above-
mentioned methods, it is important to point out not only that they are very good, but
also that they follow previous sustained efforts, made with different other methods whose
results were inferior to those reported here.

2. Dataset

In order to test the functionality of the regression algorithms mentioned in the article,
a real-world problem, namely the free radical polymerization of methyl methacrylate, was
chosen as a case study. Two reasons justify this choice: the complexity of the process, so
the difficulties in modeling and also the fact that our group has tried different modeling
methods for this system, so that the obtained results can be compared with those reported
in this paper.

Polymerization reactions present some difficulties in modeling and optimization
actions, because of their specific features, as well as the general characteristics of the
chemical processes. Reactions are complex and their mechanism is often not fully known.
Developing accurate models implies precise knowledge of the phenomenology of the
process, as well as of the physical and chemical laws that govern them. A series of approxi-

6

Mathematics 2021, 9, 547

mations are often needed, influencing the accuracy of the model results. In addition, the
complexity of the mathematical models causes supplementary difficulties regarding the
solution mode and the time required for this operation, given the requirement of using the
models in online optimal control procedures. Under these conditions, empirical models
that use input–output data sets can be considered a preferable alternative to mechanistic
models, both in terms of working methodology and the accuracy of results.

The free radical polymerization is characterized by diffusion-controlled effects. As
the viscosity of the reaction mass increases, there is a sudden increase in the conversion
and molecular masses, as a result of the diffusion difficulties encountered by the increasing
macroradicals. The so-called glass and gel phenomena appear as a result of decreasing the
values of the propagation and termination rate constants. The result of the manifestation of
controlled diffusion phenomena is the end of polymerization reaction before the complete
consumption of the reactants.

From the point of view of the modeling action, the diffusion-controlled effects are
more difficult to model, especially since their phenomenology is not completely elucidated.
Various models have been proposed, with a pronounced empirical character, e.g., [10]
or [11], but their efficiency and application are limited. In addition, they have a pronounced
empirical character, including many constants that can be determined by matching the
experimental data, which means their dependence on each set of reaction conditions
(temperature, concentrations of reactants etc.).

Some of the reasons listed above involve the need to apply modeling methods leading
to better results, a variant being represented by neural networks, applied in the form
of different methodologies. The following examples belong to our working group and
have the role of justifying the new methodology described and applied in this paper and
highlighting the results obtained, better than in the previous approaches. Therefore, several
previous results will be presented.

The first series of attempts [12,13] implied the design of neural networks of feed-
forward type, by the method of successive trials, to correlate the conversion and molecular
masses with the reaction conditions. If satisfactory results were obtained for the conversion,
for the molecular masses, especially for the average gravimetric molecular mass, the
accuracy was below the minimum required. A more complex approach, which led to
better results [14] was based on combining a simplified phenomenological model with
neural networks, obtaining hybrid models. Several modeling modalities were considered,
namely the neural networks have replaced different parts of the model—in general the
parts difficult to model due to diffusion-controlled phenomena. The results obtained were
much better than the models represented by single neural networks, but also not very
satisfactory for gravimetrical molecular weight.

Another example is represented by the use of a hybrid stacked recurrent neural
model for a batch MMA polymerization reactor [15]. Stacked recurrent neural networks
are developed for modeling the gel effect, and they are associated with a simplified phe-
nomenological model to obtain a complete model, improved in performance and robustness
because of the multiple neural networks included in the model. The results are satisfactory,
but there is still room for improvement.

Regarding the mentioned methods, their complexity should be noted, deriving from the
need to determine optimal neural networks and their combination with other instruments.

3. Standard and Large Margin Nearest Neighbor Methods

3.1. Standard Nearest Neighbor-Based Regression

Learning methods based on instances are among the simplest machine learning al-
gorithms but provide remarkable results for a large variety of tasks, especially when the
training data are not affected by noise and when there is a proper correspondence between
the dimensionality of the problem and the size of the training dataset. For regression prob-
lems, the goal is to approximate a function between a real-valued dependent variable given
one or more independent variables based on a training set of examples S = {x1, . . . , xm}.

7

Mathematics 2021, 9, 547

In this case, k-Nearest Neighbor (kNN), the value of a query instance can be computed as
the mean value of the function of the nearest neighbors:

f̃ (x) =
1
k ∑

x′∈N(x)

f (x′), (1)

where N(x) ⊆ S is the set of the closest k instances (i.e., neighbors) of x in the dataset S.
Nevertheless, finding the most appropriate value of k may not be straightforward, so

another possibility is to give weights to the training instances such that the weights of each
neighbor depend on the distance to the query point:

f̃ (x) =
1
z ∑

x′∈S
wd(x, x′) · f (x′), (2)

where z is a normalization factor. The inverse of the square Euclidean distance is often
used to determine these weights:

wd(x, x′) =
1

d(x, x′)2 =
1

n
∑

i=1
(xi − x′ i)

2
. (3)

kNN works well for many problems, especially when the number of instances is
large, the dimensionality of the data is not too big and there is little noise in the data. A
crucial component of such a method is the distance metric, because the new instances are
evaluated based on their similarity to the training instances. The Euclidean distance is the
most common, but different particularizations of the general Minkowski distance, such
as the Manhattan distance, or more advanced distance metrics such as the exponentially
negative distance function, can also be used [16,17].

However, the standard approach does not take into account problem-specific informa-
tion, but only considers some general optimizations, such as choosing the best number of
neighbors k by cross-validation, or normalizing instance values on each dimension. There
is little problem-specific knowledge embedded into the method.

3.2. Large Margin Nearest Neighbor for Classification

To increase performance, researchers have tried to find various methods to tune the
distance metric for the different problems being considered. Problem-specific distance
metrics have been recognized as capable of significantly improving the results. This process
is known as distance metric learning. In general, distance metric learning can be defined
as finding a linear transformation x′ = Lx, which transforms the distance between two
vectors xi and xj to:

dL(xi, xj) = ‖L
(
xi − xj

)
‖2. (4)

Since all operations in classification or regression based on k nearest neighbors can be
performed with square distances, a transformation based on a square matrix may be easier
to use: M = LT L, such that the square distance becomes:

dM(xi, xj) =
(
xi − xj

)T
M
(
xi − xj

)
. (5)

In the following algorithms, we investigate the use of the concept of “large margins”,
well known from the support vectors machines (SVM). We adapt it for regression problems,
from ideas pertaining to classification problems.

As presented above, a problem-specific distance metric means that the actual distance
is multiplied by a matrix that is computed from the training set, resulting in warping the
problem space such that, e.g., for a classification problem, the instances that belong to the
same class are closer together than the instances that belong to different classes, and also
possibly insuring an arbitrary separation margin between classes.

8

Mathematics 2021, 9, 547

The idea of a large margin was transferred from the SVM domain to kNN to perform
classification tasks in the Large-Margin Nearest Neighbor algorithm (LMNN) [18]. The
optimization problem is solved by semi-defined programming and the method can be
extended to be invariant to multivariate polynomial transformations [19].

In [18], the M matrix is computed such that the distance between an instance xi and
its k neighbors from the same class xj (named a “target”) is minimized. However, this is
not sufficient, because reducing all distances to 0 would satisfy this condition. The second
constraint is that the distance between instance xi and its k neighbors from a different class
xl (named an “imposter”) is maximized. An additional idea is that the minimum distance
to an imposter should be greater than any distance to a target plus some additional value:

dM(xi, xl) ≥ 1 + dM(xi, xj), (6)

where 1 is arbitrary and has the significance of an imposed margin between the classes.
These two constraints are conflicting; therefore the authors introduce some weights,

following an analogy from physics regarding forces of attraction and repulsion. Ultimately,
in their examples, they consider the weights of the constraints to be equal.

3.3. Large Margin Nearest Neighbor for Regression

For a regression problem, the same concept can be applied by taking into account the
actual real values of the output instead of discrete class values. This is the main idea of
the Large Margin Nearest Neighbor for Regression (LMNNR) algorithm [3]. The distance
metric is computed by optimizing an objective function composed of two conflicting
criteria which can be given different weights in the final objective functions or can be
scaled using different functions [5]. LMNNR also allows that different matrices can be
used for different regions of the problem space, identified by special points known as
prototypes. The locations of the prototypes can be statically initialized, e.g., by using a
clustering algorithm such as k-means [3] or dynamically learned, together with the distance
metrics [1].

The optimization of the objective function can be carried out either using an evolu-
tionary algorithm [3], which can be rather slow, but has a good chance of finding a global
optimum, or by using an approach based on gradient descent [1], which is much faster, but
may need several different runs in order to converge to a good solution.

We assume that M is a diagonal matrix. This has the advantage that the mii elements
can be interpreted as the weights of the inputs. Because of the definition M = LTL, M must
be symmetrical and positive semidefinite. Using M, Equation (3) is still valid, but becomes:

wdM (x, x′) =
1

dM(x, x′)
=

1
n
∑

i=1
mii · (xi − x′ i)

2
. (7)

In this formulation, there is a single M for all instances. However, it is possible to
use different distance metrics for different groups of instances identified by special center
points which we call prototypes. Each prototype P can have its own matrix MP. When
calculating the weight of the distance for a new point, an instance will use the weights for
the closest prototype mP

ii instead of mii in Equation (7). The optimization problem assumes
the minimization of the following objective function:

F = φ1(F1) + φ2(F1) + φ3(F3), (8)

in which φi(·) are custom functions, e.g., in the simplest case, φi(x) = wi · x.
We will use the following notations when defining the components of F: dij = dM

(
xi, xj

)
,

dik = dM(xi, xk), gij =
∣∣ f (xi)− f (xj)

∣∣ and gik = | f (xi)− f (xk)|.

9

Mathematics 2021, 9, 547

Thus, the first criterion is:

F1 =
n

∑
i=1

∑
j∈N(i)

dij ·
(
1 − gij

)
, (9)

where N(i) is the set of the k nearest neighbors for an instance i (e.g., k = 3). It ensures
that the closer the instances in the input space, the closer their output values should be.
Conversely, distant instances should have different output values.

The second criterion is:

F2 =
n

∑
i=1

∑
j∈N(i)

∑
l∈N(i)

Δdijl · Δyijl ·
(

1 +
1

Δdijl · Δyijl + ε

)
, (10)

where Δdijl = max
(
dil − dij, 0

)
, Δyijl = max

(
gij − gil , 0

)
and where ε is a small positive

real number. This criterion imposes penalties when the “proximity order” is violated, i.e.,
when gij < gik but dij > dik. It attempts to minimize the proximity order breaks [20], i.e., the
cases when gij < gik but dij > dik. Given an instance i, the optimization reduces the number
of situations when another instance l is farther than another one j, but its output value is
closer to that of i than the output value of j.

The third criterion can be optionally used for regularization:

F3 =
np

∑
j=1

ni

∑
i=1

mii(j). (11)

From our experimental studies, we empirically found that a good objective function is:

F = F1 +
√

F2, (12)

because F2 is usually larger than F1. Additionally, it was found that regularization was not
needed for the presented case studies.

In the following sections, we will give a complete description of two algorithms
which implement the LMNNR idea, together with a third algorithm which relies on a
different principle.

4. Description of the Algorithms

4.1. Large Margin Nearest Neighbor Regression Trained with an Evolutionary Algorithm
(LMNNR-EA)

The first method solves the problem defined by Equation (7) by means of an evolution-
ary algorithm. The advantages of applying an evolutionary algorithm for optimization is
that prototypes, with different weight values, can be used instead of a single set of weights.
The prototype positions are precomputed using the k-means algorithm. Since the resulting
clusters tend to be (hyper-)spherical, the method is suitable for the complex problems
addressed, as the distances are computed with different variants of Euclidean metrics.

4.2. Large Margin Nearest Neighbor Regression Trained with Approximate Gradient Descent
(LMNNR-AGD)

Gradient descent optimization is a more-or-less de facto standard for recent machine
learning methods, especially (deep) neural networks. It is usually faster than evolutionary
optimization, however it is sensitive to the initial value estimate which may cause it to
converge to a local optimum.

For the problems addressed here, the standard gradient descent method cannot be
applied for several reasons. First, the objective function is not continuous because of
the max function in Equation (10). In addition, for the expressions of the components
of the objective functions defined by Equations (9) and (10) the analytical form of the

10

Mathematics 2021, 9, 547

gradient is difficult to express. Thirdly, the positions of the prototypes need to be optimized
simultaneously with the weights.

In the evolutionary approach, the space of the problem has proved to be large enough
so that finding the position of the prototypes is not feasible, and that is why the compro-
mise solution using clustering was used. With gradient-based optimization this becomes
possible. Still, when the position of the prototypes changes, the neighbor instances also
change. Therefore, the objective function is calculated differently, considering different or
similar instances, with different weights. This is also difficult to express in the analytical
formulation of the gradient.

Thus, we decided to use an approximate differential method, following the definition
of the central difference for the derivative. That is, for a very small value ε:

f ′(x) ≈ f (x + ε)− f (x − ε)

2ε
, (13)

in which the truncation error is O(ε2).
The value of the step size γ is very important for the convergence speed. Therefore,

it can be dynamically adjusted, so that it is higher at the beginning and decreasing as the
algorithm approaches the solution. It was considered that the value of the step starts from
about 1 and then decreases with the number of iterations, following a quadratic reciprocal
evolution, but preventing it from going below 0.1:

γn = max
(

1
a + bn + cn2 , 0.1

)
, (14)

where n is the number of iterations, and the values of the a, b and c parameters can be set
to adjust the slope of the curve.

4.3. Nearest Neighbor Regression with Adaptive Distance Metrics Trained by Multiple Point Hill
Climbing on Noisy Training Set Error (RADIAN)

The Nearest Neighbor Regression with Adaptive Distance Metrics Trained by Multiple
Point Hill Climbing on Noisy Training Set Error (RADIAN) algorithm is not based on the
concept of a large margin but is inspired by a technique used in deep learning, i.e., denoising
autoencoders. This is a type of deep network that learns the presented data itself, but
transfers it through an intermediate layer, usually a bottleneck with a number of neurons
smaller than the dimensionality of the problem, so this layer will capture the essential
characteristics of the data. In order to prevent the phenomenon of overfitting, the input
data are slightly corrupted and the autoencoder is forced to learn the correct data from the
corrupted version.

The overall concept of learning a distance metric and the distribution of the prototypes
in the problem space are the same as for the previous algorithms. However, the prototype
weights and positions are set so as to minimize the mean square error on a slightly corrupted
version of the training set, where the instances inputs are slightly changed with a small
random quantity:

x′ij = xij + 2(r − 1/2) · ε, (15)

where xij is the value of the data, r is a random uniform number in the [0, 1) interval and ε
is a small number, e.g., ε = 0.001.

The minimization is performed here by multiple point hill climbing. This method
combines the approach of gradient descent with the search for a solution from multiple
initial points, similar in a way to the parallel search performed by evolutionary algorithms.
In standard hill climbing, several neighbors of the current point are generated, e.g., by
an equation similar to (15). The point with a better (lower) objective function is selected
as the new current point and the procedure is repeated for a number of steps. However,
this behavior is similar to gradient descent, which is prone to local optima. Therefore,

11

Mathematics 2021, 9, 547

the search is performed from multiple starting points, so the probability of starting in a
neighborhood of the global optimum is increased.

An idea for future investigation is to initialize the positions of the prototypes using
the k-means clustering algorithm, instead of random initialization, such that they fill the
problem space more uniformly.

From the initial results, it seems that this simple algorithm outperforms the other two
for the problems under study.

5. Modeling Methodology

The free radical polymerization of methyl methacrylate achieved in a batch bulk
process has non-linear gel and glass effects, i.e., regions where the values of the output
parameters have a high variation. The data necessary for the application of the regression
methods were obtained on a simulator [21], and their number is very large if we consider
the faithful rendering of the gel effect corresponding to an abrupt conversion and molecular
mass jump. Using constant sampling may miss these regions. In order to address this
problem, an adaptive sampling technique was devised [22], which can select more samples
around the critical regions. This algorithm first computes the local differences between
successive points in the output function. This has the same meaning as a derivative. Then,
it uses a running sum to determine whether the next point will be sampled. In regions with
approximately constant values, the derivative is small, therefore the space between the
sampled points will be larger. In regions with high variation, the derivative will be higher,
and thus more points will be sampled. A number of points between 300 and 400 were
obtained for all modeled parameters, instead of thousands of data when a constant step is
applied. Monomer conversion (x), numerical average molecular weight (Mn), gravimetrical
average molecular weight (Mw) are determined as function of reaction conditions (initiator
concentration I0, temperature T and time t).

Figures 1 and 2 show two examples of applying the adaptive procedure for two of the
considered outputs, x and Mn. The input conditions of the reaction are I0 = 15 mol/m3 and
T = 343 K.

0

0͘1

0͘2

0͘3

0͘4

0͘5

0͘6

0͘7

0͘8

0͘9

1

0 10͕000 20͕000 30͕000 40͕000 50͕000 60͕000

Figure 1. Adaptively sampled points (337) for the monomer conversion (x).

12

Mathematics 2021, 9, 547

0͘0

0͘5

1͘0

1͘5

2͘0

2͘5

3͘0

3͘5

4͘0

0 10͕000 20͕000 30͕000 40͕000 50͕000 60͕000

Figure 2. Adaptively sampled points (414) for the numerical average molecular weight (Mn).

6. Results and Discussion

In a previous study [22] we compared the results of several well-known algorithms
from the Weka collection [2] with those of LMNNR for the three formulated problems, i.e.,
the conversion, average numerical and gravimetric molecular weights. The algorithms
considered from Weka were: kNN, random forest, REPTree, M5 rules, additive regression,
ε-SVR and ν-SVR, each with different values for their parameters. The data were split into
2/3 for training and 1/3 for testing. Table 1 presents a concise comparison between the best
classical algorithm (random forest) and LMNNR (with one prototype, five optimization
neighbors and five regression neighbors) in terms of the coefficient of determination (R2)
obtained for both the training and testing sets.

Table 1. Performance of the best Weka algorithm for the monomer conversion (x), numerical average
molecular weight (Mn) and gravimetrical average molecular weight (Mw) vs. Large Margin Nearest
Neighbor for Regression (LMNNR).

Algorithm
Training

x
Testing

x
Training

Mn

Testing
Mn

Training
Mw

Testing
Mw

Random forest
with 100 trees 0.999800 0.999800 0.999400 0.998600 0.999800 0.999600

LMNNR 1 0.999953 1 0.999638 1 0.999816

The fact that LMNNR obtains a perfect correlation for the training set is not surprising,
since it is an instance-based method. It is, however, commendable that it outperforms
the best Weka algorithm on the testing set. Therefore, in the present study, we focus only
on the results of LMNNR in two variants and the newly introduced algorithm RADIAN
and perform a comprehensive experimental study with different settings regarding the
distribution of data and the parameters of the algorithms.

In order to assess the performance of the algorithms, cross-validation was used. The
most common method is to split the data into ten groups (or bins) and use nine groups
for training and one group for testing, and repeat the process ten times, every time with
a different test group. In this study, in order to assess different aspects of the learning
process, we use three cross-validation variants:

13

Mathematics 2021, 9, 547

• Standard cross-validation with 10 groups, and in each step the data are split 90% for
training and 10% for testing;

• Cross-validation with three groups, and in each step the data are split 67% for training
and 33% for testing: this is similar to the simpler 2/3–1/3 split (e.g., used in [22],
but more relevant statistically. This is a means to roughly compare results to those
obtained in the previous work. However, a direct comparison is not possible;

• A cross-validation-like procedure with 10 groups, and in each step the data are split
10% for training and 90% for testing. This scenario is used to assess the generalization
capability of the models more “aggressively”.

In terms of the parameters used for the algorithms, two settings were used, as dis-
played in Table 2:

• Setting 1: the parameters allow for greater, more general search capabilities, the values
are larger, but this leads to a longer execution time;

• Setting 2: the values of the parameters are smaller. This setting allows us to see
whether a shorter execution time can still provide acceptable results.

Table 2. The settings of the three regression algorithms. LMNNR-EA: Large Margin Nearest Neighbor Regression Trained
with an Evolutionary Algorithm; LMNNR-AGD: Large Margin Nearest Neighbor Regression Trained with Approximate
Gradient Descent; RADIAN: Nearest Neighbor Regression with Adaptive Distance Metrics Trained by Multiple Point Hill
Climbing on Noisy Training Set Error.

Algorithm 1:
LMNNR-EA

Algorithm 2:
LMNNR-AGD

Algorithm 3:
RADIAN

Setting 1

No. groups = 10
No. prototypes = 2

No. regression neighbors = 3
No. optimization neighbors = 3

No. trials = 20
Population size = 40

Min. gene value = 0.001
Max. gene value = 10
Tournament size = 2
Crossover rate = 0.95
Mutation rate = 0.05

No. generations = 500

No. groups = 10
No. prototypes = 2

No. regression neighbors = 3
No. optimization neighbors = 3

No. trials = 20
Epsilon = 0.000001
Learning rate = 0.1

Dynamic learning rate = 0
Max. gradient descent steps = 1000

No. groups = 10
No. prototypes = 2

No. starting points = 20
No. regression neighbors = 5
No. hill-climbing steps = 30

No. hill-climbing neighbors = 20
Training set noise = 0.001
Hill-climbing noise = 0.01

Noise on output = 1

Setting 2

No. groups = 10
No. prototypes = 1

No. regression neighbors = 3
No. optimization neighbors = 3

No. trials = 10
Population size = 30

Min. gene value = 0.001
Max. gene value = 10
Tournament size = 2
Crossover rate = 0.95
Mutation rate = 0.05

No. generations = 100

No. groups = 10
No. prototypes = 1

No. regression neighbors = 3
No. optimization neighbors = 3

No. trials = 10
Epsilon = 0.000001
Learning rate = 0.1

Dynamic learning rate = 0
Max. G.D. steps = 200

No. groups = 10
No. prototypes = 1

No. starting points = 10
No. regression neighbors = 3
No. hill-climbing steps = 10

No. hill-climbing neighbors = 10
Training set noise = 0.001
Hill-climbing noise = 0.01

Noise on output = 1

Tables 3 and 4 present the experimental results obtained for some combinations of
data splits and algorithm parameter configurations, for the three considered problems, i.e.,
x, Mn and Mw. Each algorithm was run ten times, and its best performance was evaluated
using the coefficient of correlation (r) and the mean squared error (MSE).

14

Mathematics 2021, 9, 547

Table 3. The results of the algorithms with setting 1. MSE: mean squared error; r: coefficient of correlation.

x Mn Mw

r MSE r MSE r MSE
Large training sets (90–10% data split)

Algorithm 1 0.999425 0.000124 0.999466 5.0707403 0.999459 78.1390448
Algorithm 2 0.999667 0.000074 0.999499 4.7406073 0.999680 46.6716341
Algorithm 3 0.999527 0.000120 0.999349 6.1569147 0.999396 79.0907101

Small training sets (10–90% data split)
Algorithm 1 0.962001 0.007573 0.987506 11.71332089 0.960302 566.565343
Algorithm 2 0.946293 0.010619 0.988202 11.08952839 0.959521 578.709620
Algorithm 3 0.91255 0.017117 0.986627 12.64085094 0.952598 574.958058

Table 4. The results of the algorithms with setting 2.

x Mn Mw

r MSE r MSE r MSE
Large training sets (90–10% data split)

Algorithm 1 0.999644 0.000080 0.999469 5.0488433 0.999548 66.0130052
Algorithm 2 0.999665 0.000075 0.999503 4.6982778 0.999667 48.5893648
Algorithm 3 0.999663 0.000078 0.999345 6.1986015 0.998214 66.1359322

Small training sets (10–90% data split)
Algorithm 1 0.958308 0.008293 0.987379 11.889027 0.961123 555.051717
Algorithm 2 0.944513 0.010950 0.988040 11.244562 0.962062 541.849968
Algorithm 3 0.920547 0.015464 0.982747 16.316099 0.957143 550.783154

Average training sets (67–33% data split)
Algorithm 1 0.998997 0.000222 0.999171 7.843631 0.999286 10.425242
Algorithm 2 0.999017 0.000216 0.999197 7.587175 0.999471 17.444913
Algorithm 3 0.999004 0.000221 0.999191 7.634568 0.998949 15.377001

The best results in these tables are emphasized with italic font. One can see that the
performance of the three algorithms is comparable, however, the third one is an order of
magnitude faster. The differential approach converges faster, that is why Algorithm 2 is
most of the time better than Algorithm 1.

Obviously, the best results are obtained if a comprehensive data set (data 1) and high
values of the parameters specific to each algorithm (settings 1) are used. Of the three output
parameters, the conversion has the best models, compared to the average molecular masses.

When only 10% of the data is used for training, the results are less accurate than those
obtained for 90%, but it must be underlined that they are still quite good, with a correlation
coefficient above 0.9. Finally, with the 67–33% split, the results are almost as good as those
obtained with the 90–10% split. This proves that the generalization capabilities of the
model are very good. It is important to mention that with the distributions 67–33% and
90–10%, good results are obtained even with setting 2 (shorter execution time).

The results obtained for different algorithms, parameter setting, data splitting or
amount of data are rendered suggestively in Figures 3–14 where predicted data are com-
pared with the experimental data.

15

Mathematics 2021, 9, 547

0

0͘1

0͘2

0͘3

0͘4

0͘5

0͘6

0͘7

0͘8

0͘9

1

0 0͘1 0͘2 0͘3 0͘4 0͘5 0͘6 0͘7 0͘8 0͘9 1

Figure 3. Predicted conversion with the LMNNR-EA algorithm versus experimental conversion,
setting 1, with data split into 90% for training and 10% for testing.

0

0͘1

0͘2

0͘3

0͘4

0͘5

0͘6

0͘7

0͘8

0͘9

1

0 0͘1 0͘2 0͘3 0͘4 0͘5 0͘6 0͘7 0͘8 0͘9 1

Figure 4. Predicted conversion with the RADIAN algorithm versus experimental conversion, setting
2, with data split into 90% for training and 10% for testing.

16

Mathematics 2021, 9, 547

0

0͘1

0͘2

0͘3

0͘4

0͘5

0͘6

0͘7

0͘8

0͘9

1

0 0͘1 0͘2 0͘3 0͘4 0͘5 0͘6 0͘7 0͘8 0͘9 1

Figure 5. Predicted conversion with the LMNNR-AGD algorithm versus experimental conversion,
setting 2, with data split into 10% for training and 90% for testing.

0

0͘1

0͘2

0͘3

0͘4

0͘5

0͘6

0͘7

0͘8

0͘9

1

0 0͘1 0͘2 0͘3 0͘4 0͘5 0͘6 0͘7 0͘8 0͘9 1

Figure 6. Predicted conversion with the RADIAN algorithm versus experimental conversion, setting
1, with data split into 10% for training and 90% for testing.

17

Mathematics 2021, 9, 547

0

0͘1

0͘2

0͘3

0͘4

0͘5

0͘6

0͘7

0͘8

0͘9

1

0 0͘1 0͘2 0͘3 0͘4 0͘5 0͘6 0͘7 0͘8 0͘9 1

Figure 7. Predicted conversion with the LMNNR-AGD algorithm versus experimental conversion,
setting 2, with data split into 67% for training and 33% for testing.

0

2

4

6

8

10

0 2 4 6 8 10

Figure 8. Predicted numerical average molecular weight with the RADIAN algorithm versus experi-
mental data, setting 1, with data split into 90% for training and 10% for testing.

For the conversion, very good results were obtained with all three algorithms, with
both types of settings. As shown in Figures 3–7, the best fit is obtained with the 90–10%
split. With setting 2, slightly better solutions are found. We consider that this is because
with two prototypes (i.e., setting 1), the search is being performed in a much larger space.
When only one prototype is used (i.e., setting 2), the results are also more continuous. With
a 10–90% split, the dispersion of the desired vs. predicted plot is greater. Visually, similar
outcomes are achieved for both the LMNNR and RADIAN algorithms. The distribution of
the 67–33% split, as seen in Tables 3 and 4, has an aspect more similar to the 90–10% than
to the 10–90% split, with an only slightly larger dispersion. This shows that training with

18

Mathematics 2021, 9, 547

two thirds of the data is enough for good generalization, compared with the extreme case
when training only with a tenth of the data (Figure 7 vs. Figure 5).

For molecular masses, the conclusions are similar to those obtained for the conversion,
with no significant differences between the algorithms. However, one can see here that
most of the data in the first half of the domain are much denser than the data from the
second half. For Mn, Figures 8–10 only display the performance of the RADIAN algorithm
(i.e., Algorithm 3). In this case, it is also the data split that has the strongest effect on
the results.

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

Figure 9. Predicted numerical average molecular weight with the RADIAN algorithm versus experi-
mental data, setting 2, with data split into 10% for training and 90% for testing.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Figure 10. Predicted numerical average molecular weight with the RADIAN algorithm versus
experimental data, setting 2, with data split into 67% for training and 33% for testing.

19

Mathematics 2021, 9, 547

0

0͘5

1

1͘5

2

2͘5

3

3͘5

0 0͘5 1 1͘5 2 2͘5 3 3͘5

Figure 11. Predicted gravimetrical average molecular weight with the LMNNR-EA algorithm versus
experimental data, setting 1, with data split into 90% for training and 10% for testing.

0

0͘5

1

1͘5

2

2͘5

3

3͘5

0 0͘5 1 1͘5 2 2͘5 3 3͘5

Figure 12. Predicted gravimetrical average molecular weight with the LMNNR-EA algorithm versus
experimental data, setting 2, with data split into 90% for training and 10% for testing.

20

Mathematics 2021, 9, 547

0

1

2

3

4

5

0 1 2 3 4 5

Figure 13. Predicted gravimetrical average molecular weight with the LMNNR-EA algorithm versus
experimental data, setting 2, with data split into 10% for training and 90% for testing.

0

0͘5

1

1͘5

2

2͘5

3

3͘5

4

0 0͘5 1 1͘5 2 2͘5 3 3͘5 4

Figure 14. Predicted gravimetrical average molecular weight with the LMNNR-EA algorithm versus
experimental data, setting 2, with data split into 67% for training and 33% for testing.

Very similar outcomes are encountered for the Mw output and the LMNNR-EA algo-
rithm (i.e., Algorithm 1). However, in this case, the dispersion of the graph for the 10–90%
split is less than those for x an Mn. This is in fact an indicator about the minimum amount
of training information needed in order to generalize well.

We remind the reader that the data presented in Figures 3–14 refer only to the test
data, i.e., the aggregated predictions of the models for the test groups.

The results obtained can also be analyzed in terms of variance of the performance
metrics. For all algorithms, the variance decreases when the size of the training set increases.
For example, for conversion, in the case of the 10–90% split, the standard deviation σ is

21

Mathematics 2021, 9, 547

about 3–5% of the mean value μ. In the case of the 67–33% split, it becomes 0.1–2% of the
mean value and decreases even more for the 90–10% split. The variance can be further
decreased by identifying outliers. Since the methods are heuristic, some runs simply fail
to provide good solutions. By removing data outside the μ ± 2σ range, the variance is
reduced especially for larger training sets, e.g., the new resulting standard deviation is
about 10 times smaller. Algorithm 1 has the largest variance among the three methods,
while algorithms 2 and 3 have comparable variance.

In terms of execution time, the computations take longer as the size of the training set
increases. For example, one fold of cross-validation for conversion takes about 6.7 s for the
10–90% split and 54 s for the 90–10% split for Algorithm 1. Algorithm 2 takes about 5 s and
32 s, respectively. Algorithm 3 requires about 0.7 s and 5.8 s, respectively. These studies
were made using a computer with a 4-core 2 GHz Intel processor and 8 GB of RAM. Of
course, specific times depend on the particular structure of the training data, especially the
number of attributes, and the parameters of the algorithms. In particular, the complexity
of Algorithm 1 mainly depends on the number of individuals in the population and
the number of generations of the evolutionary algorithm. The complexity of Algorithm 2
mainly depends on the number of iterations of the approximate gradient descent procedure.
The complexity of Algorithm 3 mainly depends on the number of hill-climbing steps and
the number of neighbors that are generated in each step.

7. Conclusions

Instance-based classification and regression algorithms can provide very good results
for complex decision boundaries, especially when the size of the training dataset is big
and the number of dimensions of the problem space is not very large. The distance metric
is crucial for this class of algorithms, and a significant increase in performance can be
achieved by changing it depending on the specific problem under study. The optimal
distance metric can be obtained by solving an optimization problem that tries to decrease
the distance between the instances with similar output values and increase the distance
between the instances with different output values. This process is actually equivalent to
maximizing the margin between the instances with different output values. In this way, the
concept of a large margin, introduced in the context of support vector machines, can also
be applied to instance-based regression. The LMNNR algorithm uses this idea together
with prototypes, where each prototype can have its own custom distance metric, which
can be helpful when a large number of instances are available.

The corresponding optimization problem can be solved either by an evolutionary
algorithm or by an approximate gradient descent method. The results are competitive
compared with those obtained by classical algorithms such as support vector machines,
k-nearest neighbor and random forest.

Another original regression method is designed by considering an idea from denoising
autoencoders, a kind of deep neural networks. In our case, the weights that define the
custom distance metric and the positions of the prototypes are computed so as to minimize
the mean square error on a corrupted version of the training data created by adding a small
amount of noise.

The quality of the results is also supported by the adaptive sampling technique that
provides the machine learning algorithms with the most relevant data by taking into
account the rate of variation of the outputs involved in the chemical process.

As future directions of research, one may investigate whether similar results can be
obtained using alternative techniques, e.g., principal analysis decomposition or (deep)
neural networks [9,23,24].

Concerning the case study of the free radical polymerization of MMA, the conclusions
that give the necessary practical indications are the following:

• The accuracy of the modeling for the variables of interest—monomer conversion
and molecular masses of the polymer—depends on the applied algorithm, the set-

22

Mathematics 2021, 9, 547

tings of their parameters and the way of splitting the data. The last factor has the
greater importance;

• Conversion is easier to model than molecular weights, but, with a proper combination
of settings and data sharing, very good results can be obtained for all parameters
of interest;

• Although good results have been identified for all three algorithms, RADIAN is
preferred because it is considerably faster than the other two, which is an important
factor for online optimal control procedures.

Author Contributions: Conceptualization and methodology, F.L., S.C.; software, F.L.; data curation,
S.C.; investigation: S.C., A.-M.M.-V., D.L.; writing, F.L., S.C.; funding acquisition, S.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by Exploratory Research Projects PN-III-P4-ID-PCE-2020-0551,
financed by UEFISCDI.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Leon, F.; Curteanu, S. Large Margin Nearest Neighbour Regression Using Different Optimization Techniques. J. Intell. Fuzzy Syst.
2017, 32, 1321–1332. [CrossRef]

2. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software: An Update.
Acm Sigkdd Explor. 2009, 11, 10–18. [CrossRef]

3. Leon, F.; Curteanu, S. Evolutionary Algorithm for Large Margin Nearest Neighbour Regression. In Proceedings of the 7th Interna-
tional Conference on Computational Collective Intelligence Technologies and Applications, Madrid, Spain, 21–23 September 2015.

4. Leon, F.; Popescu, E. Using Large Margin Nearest Neighbor Regression Algorithm to Predict Student Grades Based on Social
Media Traces. In Methodologies and Intelligent Systems for Technology Enhanced Learning; Vittorini, P., Gennari, R., Di Mascio, T.,
Rodríguez, S., De la Prieta, F., Ramos, C., Silveira, R.A., Eds.; MIS4TEL 2017; Book Series: Advances in Intelligent Systems and
Computing; Springer: Cham, Switzerland, 2017; Volume 617.

5. Popescu, E.; Leon, F. Predicting Academic Performance Based on Learner Traces in a Social Learning Environment. IEEE Access
2018, 6, 72774–72785. [CrossRef]

6. Leon, F.; Piuleac, C.G.; Curteanu, S.; Poulios, I. Instance-based regression with missing data applied to a photocatalitic oxidation
process. Cent. Eur. J. Chem. 2012, 10, 1149–1156.

7. Mareci, D.; Sutiman, D.; Chelariu, R.; Leon, F.; Curteanu, S. Evaluation of the corrosion resistance of new TiZr binary alloys by
experiment and simulation based on regression model with incomplete data. Corros. Sci. 2013, 73, 106–122. [CrossRef]

8. Curteanu, S.; Leon, F.; Lupu, A.S.; Floria, S.A.; Logofatu, D. An Evaluation of Regression Algorithms Performance for the
Chemical Process of Naphthalene Sublimation. In Proceedings of the 14th International Conference on Artificial Intelligence
Applications and Innovations (AIAI 2018), Rhodes, Greece, 25–27 May 2018; Volume 519, pp. 219–230.

9. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
10. Chiu, W.Y.; Carratt, G.M.; Soong, D.S. A computer model for the gel effect in free-radical polymerization. Macromolecules 1983, 16,

348–359. [CrossRef]
11. Curteanu, S.; Bulacovschi, V.; Lisa, C. Algorithms for using some models of gel and glass effects in free-radical polymerization of

methyl methacrylate. Polym. Plast. Technol. Eng. 1999, 38, 1121–1136. [CrossRef]
12. Curteanu, S.; Leon, F.; Gâlea, D. Neural network models for free radical polymerization of methyl methacrylate. Eurasian Chem.

Technol. J. 2003, 5, 225–231.
13. Curteanu, S. Direct and inverse neural network modeling in free radical polymerization. Cent. Eur. J. Chem. 2004, 2, 113–140. [CrossRef]
14. Curteanu, S.; Leon, F. Hybrid neural network models applied to a free radical polymerization process. Polym. Plast. Technol. Eng.

2006, 45, 1013–1023. [CrossRef]
15. Tian, Y.; Zhang, J.; Morris, J. Modeling and Optimal Control of a Batch Polymerization Reactor Using a Hybrid Stacked Recurrent

Neural Network Model. Ind. Eng. Chem. Res. 2001, 40, 4525–4535. [CrossRef]
16. Shepard, R.N. Psychological representations of speech sounds. In Human Communication: A Unified View; David, E.E., Denes, P.B.,

Eds.; McGraw-Hill: New York, NY, USA, 1972.
17. Rumelhart, D.E.; Abrahamsen, A.A. A model for analogical reasoning. Cognit. Psychol. 1973, 5, 1–28. [CrossRef]
18. Weinberger, K.Q.; Saul, L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009,

10, 207–244.
19. Kumar, M.P.; Torr, P.H.S.; Zisserman, A. An Invariant Large Margin Nearest Neighbour Classifier. In Proceedings of the IEEE

11th International Conference on Computer Vision (ICCV 2007), Rio de Janeiro, Brazil, 14–21 October 2007. [CrossRef]
20. Assi, K.C.; Labelle, H.; Cheriet, F. Modified large margin nearest neighbor metric learning for regression. IEEE Signal Process. Lett.

2014, 21, 292–296. [CrossRef]

23

Mathematics 2021, 9, 547

21. Curteanu, S.; Bulacovschi, V.; Constantinescu, M. Free radical polymerization of methyl methacrylate. Modelling and simulation
at high conversion. Hung. J. Ind. Chem. 1999, 27, 287–292.

22. Leon, F.; Curteanu, S. Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive
Sampling. In Proceedings of the 18th International Conference on Computational Intelligence and Systems Sciences, Prague,
Czechia, 18–22 November 2016.

23. Mercorelli, P. Biorthogonal wavelet trees in the classification of embedded signal classes for intelligent sensors using machine
learning applications. J. Frankl. Inst. 2007, 344, 813–829. [CrossRef]

24. Mercorelli, P. Denoising and harmonic detection using nonorthogonal wavelet packets in industrial applications. J. Syst. Sci.
Complex. 2007, 20, 325–343. [CrossRef]

24

mathematics

Review

A Review of Tracking and Trajectory Prediction Methods for
Autonomous Driving

Florin Leon and Marius Gavrilescu *

Citation: Leon, F.; Gavrilescu, M.

A Review of Tracking and Trajectory

Prediction Methods for Autonomous

Driving. Mathematics 2021, 9, 660.

https://doi.org/10.3390/math9060660

Academic Editor: Denis N. Sidorov

Received: 28 January 2021

Accepted: 17 March 2021

Published: 19 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University of Iaşi,
Bd. Mangeron 27, 700050 Iaşi, Romania; florin.leon@academic.tuiasi.ro
* Correspondence: marius.gavrilescu@academic.tuiasi.ro

Abstract: This paper provides a literature review of some of the most important concepts, techniques,
and methodologies used within autonomous car systems. Specifically, we focus on two aspects
extensively explored in the related literature: tracking, i.e., identifying pedestrians, cars or obstacles
from images, observations or sensor data, and prediction, i.e., anticipating the future trajectories
and motion of other vehicles in order to facilitate navigating through various traffic conditions.
Approaches based on deep neural networks and others, especially stochastic techniques, are reported.

Keywords: autonomous driving; object tracking; trajectory prediction; deep neural networks; stochas-
tic methods

1. Introduction

Autonomous car technology is already being developed by many companies on
different types of vehicles. Complete driverless systems are still at an advanced testing
phase, but partially automated systems have been around in the automotive industry for
the last few years. Autonomous driving technology has been the focus of multiple research
and development efforts by various car manufacturers, universities, and research centers,
since the middle 1980s.

A famous competition was the DARPA Urban Challenge in 2007. Other examples
include the European Land-Robot Trial, which has been held since 2006, the Intelligent
Vehicle Future Challenge, between 2009 and 2013, as well as the Autonomous Vehicle
Competition, held between 2009 and 2017. Since the early stages of autonomous driving
technology development, research in the related fields has been garnering significant
interest in universities and industry worldwide.

In this review, we focus on two aspects of an autonomous car system:

• Tracking: identifying traffic participants, i.e., cars, pedestrians, and obstacles from se-
quences of images, sensor data, or observations. It is assumed that some preprocessing
of sensor data and/or input images has already been done;

• Prediction: assessing the future motion of surrounding vehicles in order to navigate
through various traffic scenarios. Beside the prediction of the simple physical behavior
of the agents based on a set of past observations, an important issue is to take into
account their possible interactions.

The paper is composed of two main parts that focus on these topics.
Section 2 deals with tracking problems as addressed in the related literature. We

cover aspects concerning the extraction and use of various features for the detection of
pedestrians, vehicles, and obstacles across sequences of images and sensor data. Also,
we address the various ways in which authors tackle the problems of ensuring detection
consistency, temporal coherence, or occlusion handling. We present methods using deep
neural networks, but also alternative, conventional approaches.

Section 3 addresses the problem of motion and behavior prediction in traffic scenarios.
We discuss various solutions proposed in the related literature for predicting the trajectory

Mathematics 2021, 9, 660. https://doi.org/10.3390/math9060660 https://www.mdpi.com/journal/mathematics25

Mathematics 2021, 9, 660

of the ego car with respect to the behavior of other traffic participants. We address methods
based on deep neural networks and stochastic models, as well as various mixed approaches.

Section 4 contains some conclusions with regard to the aspects discussed throughout
the paper.

2. Tracking Methods

Object tracking is an important part of ensuring accurate and efficient autonomous
driving. The identification of objects such as pedestrians, cars, and various obstacles from
images and vehicle sensor data is a significant and complex interdisciplinary domain. It
involves contributions from computer vision, signal processing, and/or machine learning.
Object tracking is an essential part of ensuring safe autonomous driving, since it can aid in
obstacle avoidance, motion estimation, the prediction of the intentions of pedestrians and
other vehicles, as well as path planning. Most sensor data that have to be processed take
the form of point clouds, images, or a combination of the two. Point cloud data may be
handled in a multitude of ways, the most common of which is some form of 3D grid, where
a voxel engine is used to traverse the point space. Some situations call for a reconstruction
of the environment from the point cloud which involves various means of resampling and
filtering. In some instances, stereo visual information is available and disparities must
be computed from the left-right images. Stereo matching is not a trivial task and has the
drawback that the computations required for reasonable accuracy usually have a significant
impact on performance. In other cases, multiple types of sensor data are available, thereby
requiring registration, point matching, and image/point cloud fusion. The problem is
further complicated by the necessity to account for temporal cues and to estimate motion
from time-based frames.

The scenes involved in autonomous driving scenarios rarely feature a single individual
target. Most commonly, multiple objects must be identified and tracked concurrently, some
of which may be in motion relative to the vehicle and to each other. As such, most
approaches in the related literature handle more than one object and are therefore aimed at
solving multiple object tracking problems (MOT).

The tracking problem can be summarized as follows: a sequence of sensor data is
available from one or multiple vehicle-mounted acquisitions devices. Considering that
several observations are identified in all or some of the frames from the sequence, how can
the observations from each frame be associated with a set of objects (pedestrians, vehicles,
and various obstacles) and how can the trajectories of each such object be reconstructed
and predicted as accurately as possible?

Most related methods involve assigning an ID or identifying a response for all objects
detected within a frame, and then attempting to match the IDs across subsequent frames.
This is often a complex task, considering that the tracked objects may enter and leave the
frame at different timestamps. They may also be occluded by the environment or may
occlude each other. Additional problems may be caused by defects in the acquired images:
noise, sampling or compression artifacts, aliasing, or acquisition errors.

Object tracking for automated driving most commonly has to operate on real-time
video. As such, the objective is to correlate tracked objects across multiple video frames,
in addition to individual object identification. Accounting for variations in motion comes
with an additional set of pitfalls, such as when objects are affected by rotation or scal-
ing transformations, or when the movement speed of the objects is high relative to the
frame rate.

In the majority of cases, images are the primary modality for perceiving the scene.
As such, a lot of efforts from the related literature are in the direction of 2D MOT. These
methods are based on a succession of detection and tracking steps: consecutive detections
that are similarly classified are linked together to determine trajectories. A significant
challenge comes from the inevitable presence of noise in the acquired images, which may
adversely change the features of similar objects across multiple frames. Consequently, the
computation of robust features is an important aspect of object detection. Features are

26

Mathematics 2021, 9, 660

representative of a wide array of object properties: color, frequency and distribution, shape,
geometry, contours, or correlations within segmented objects. Nowadays, the most popular
feature detection methods involve supervised learning. Features start out as groups of
random values and are progressively refined using machine learning algorithms. Such
approaches require appropriate training data and a careful selection of hyperparameters,
often through trial-and-error. However, many results from the related literature show that
supervised classification and regression methods offer the best results both in terms of
accuracy and robustness to affine transformations, occlusion, and noise.

2.1. Methods Using Neural Networks

In terms of classifying objects from images, neural networks have seen a steady rise in
popularity in recent years, particularly the more elaborate and complex convolutional and
recurrent networks from the field of deep learning. Neural networks have the advantage
of being able to learn important and robust features given training data that is relevant and
in sufficient quantity. Considering that a significant percentage of automotive sensor data
consists of images, convolutional neural networks (CNNs) are seeing widespread use in the
related literature, for both classification and tracking problems. The advantage of CNNs
over more conventional classifiers lies in the convolutional layers, where various filters and
feature maps are obtained during training. CNNs are capable of learning object features
by means of multiple complex operations and optimizations. The appropriate choice of
network parameters and architecture can ensure that these features contain the most useful
correlations that are needed for the robust identification of the targeted objects. While this
choice is most often an empirical process, a wide assortment of network configurations
exist in the related literature that are aimed at solving classification and tracking problems,
with high accuracies claimed by the authors. Where object identification is concerned, in
some cases the output of the fully-connected component of the CNN is used, whereas in
other situations the values of the convolutional layers are exploited in conjunction with
other filtering and refining methods.

2.1.1. Learning Features from Convolutional Layers

Many results from the related literature systematically demonstrate that convolutional
features are more useful for tracking than other explicitly computed ones (Haar, Fused
Histogram of Oriented Gradients (FHOG), color labeling). An example in this sense is [1],
which handles MOT using combinations of values from convolutional layers located at mul-
tiple levels. The method is based on the notion that lower-level layers account for a larger
portion of the input image and therefore contain more details from the identified objects.
This makes them useful, for instance, for handling occlusion. Conversely, top-level layers
are more representative of semantics and are useful in distinguishing objects from the back-
ground. The proposed CNN architecture uses dual fully-connected components, for higher
and lower-level features, which handle instance-level and category-level classification
(Figure 2 in [1]). The proper identification of objects, particularly where occlusion events
occur, involves the generation of appearance models of the tracked objects. These often
result from the appropriate processing of the features learned within convolutional layers.

In [2], the authors note that the output of the fully-connected component of a CNN
is not suitable for handling infrared images. Their attempt to directly transfer CNNs
pretrained with traditional images for use with infrared sensor data is unsuccessful, since
only the information from the convolutional layers seem to be useful for this purpose.
Furthermore, the layer data itself require some level of adaptation to the specifics of infrared
images. Typically, infrared data offer much less spatial information than visual images.
It is much more suited, for example, in depth sensors for gathering distances to objects,
albeit at a significantly lower resolution compared to regular image acquisition. As such,
convolutional layers from infrared images are used in conjunction with correlation filters
to generate a set of weak trackers. This process provides response maps with regard to
the targets’ locations. The weak trackers are then combined in ensembles which form

27

Mathematics 2021, 9, 660

stronger response maps with a much greater tracking accuracy. The response map of an
image is, generally, an intensity image where higher values indicate a change or a desired
feature/shape/structure, as the original image is processed by an operator or correlation
filter of some kind. By matching or fusing responses from multiple images within a video
sequence, one could identify similar objects (i.e., the same pedestrian) across the sequence
and subsequently construct their trajectories.

The potential of correlation filters is also exploitable for regular images. These have
the potential to boost the information extracted from the activations of convolutional
layers. In [3] the authors find that by applying appropriate filters to information drawn
from shallow convolutional layers, a level of robustness similar to using deeper layers
or a combination of multiple layers can be achieved. In [4], the authors also note the
added robustness obtainable by post-filtering convolutional layers. By using particle and
correlation filters, basic geometric and spatial features can be deduced for the tracked
objects, which, together with a means of adaptively generating variable models, can be
made to handle both simple and complex scenes.

An alternative approach can be found in [5], where discriminative correlation filters
are used to generate an appearance model from a small number of samples. The overall
approach involves feature extraction, post-processing, and the generation of response maps
for carrying out better model updates within the neural network. Contrary to other similar
results, the correlation filters used throughout the system are learned within a one-layer
CNN, which eventually can be used to make predictions based on the response maps.
Furthermore, residual learning is employed in order to avoid model degradation, instead
of the much more frequently-used method of stacking multiple layers. Other tracking
methods learn a similar kind of mapping from samples in the vicinity of the target object
using deep regression [6,7], or by estimating and learning depth information [8].

The authors of [9] note that correlation filters have limitations imposed by the feature
map resolution. They propose a novel solution where features are learned in a continuous
domain, using an appropriate interpolation model. This allows for the more effective
resolution-independent compositing of multiple feature maps, resulting in superior classi-
fication results.

Methods based on discriminative correlation filters are notoriously prone to excessive
complexity and overfitting, and various means are available for optimizing the more
traditional methods. The most noteworthy in this sense is [10], who employs efficient
convolution operators, a training sample distribution scheme and an optimal update
strategy in an attempt to boost performance and reduce the number of parameters. A
promising result that demonstrates significant robustness and accuracy is [11], who use
a CNN where the first set of layers are shared, as in a standard CNN. These layers then
branch into multiple domain-specific ones. This approach has the benefit of splitting the
tracking problem into subproblems which are solved separately in their respective layer
sets. Each domain has its own training sequences and can be customized to address a
specific issue, such as distinguishing a target with specific shape parameters from the
background. A similar concept is exploited by [12], i.e., a network with components
distinctly trained for a specific problem. In this case, multiple recurrent layers are used to
model different structural properties of the tracked objects, which are incorporated into a
parent CNN with the same purpose of improving accuracy and robustness. The Recurrent
Neural Network (RNN) layers generate what the authors refer to as “structurally-aware
feature maps” which, when combined with pooled versions of their non-structurally aware
counterparts, significantly improve the classification results.

2.1.2. High-Level Features, Occlusion Handling, and Feature Fusion

Appearance models offer high-level features that are also used to account for occlusion
in much simpler and efficient systems. In [13], appearance descriptors are compounded
to form an appearance space. With properly-determined metrics, observations having
a similar appearance are identified using a nearest-neighbor approach. Switching from

28

Mathematics 2021, 9, 660

image-space to an appearance space seems to effectively handle occlusions, reducing their
negative impact at a negligible performance cost.

A possible alternative to appearance-based classification is the use of template-based
metrics. Such an approach uses a reference region of interest (ROI) drawn from one or
multiple frames and attempts to match it in subsequent frames using an appropriately-
constructed metric. Template-based methods perform well for partial detections, thereby
accounting for occlusion and/or noise. This is because the template need not be perfectly
or completely matched for a successful detection to occur. An example of a template-based
method is provided by [14], which involves three CNNs, one for template generation, one
dedicated to region searching and one for handling background areas. The method is
somewhat similar to what could be achieved by a generative adversarial network (GAN).
A “searcher” network attempts to fit multiple subimages within the positive detections
provided by the template component while simultaneously attempting to maximize the
distance to the negative background component. The candidate subimages generated by
the three components are fed through a loss function that is designed to favor candidates
closer to template regions than to background ones. Performance-wise, such an approach
is claimed to provide impressive framerates and care should be taken when using template
or reference-based methods. These are generally suited for situations where there is
no significant variation in the overall tone of the frames. Such methods have a much
higher failure rate when, for instance, the lighting conditions change during tracking. An
example of this phenomenon is when the tracked object moves from a brightly-lit area to a
shaded one.

An improvement on the use of appearance and shared tracking information is pro-
vided by [15] in the form of a CNN-based single object tracker that generates and adapts
the appearance models for multi-frame detection (Figure 3 in [15]). The use of pooling
layers and shared features accounts for drift effects caused by occlusion and inter-object
dependency. A spatial and temporal attention mechanism is responsible for dynamically
discriminating between training candidates based on the level of occlusion. Training sam-
ples are weighted based on their occlusion status, which optimizes the training process
where both classification accuracy and performance are concerned. Generally speaking,
pooling operations have two important effects: on the one hand, the subimage of the feature
map is increased, since a pooled feature map contains information from a larger area of
the originating image; on the other hand, the reduced size of a pooled map means fewer
computational resources are required to process it, which improves performance. The
major downside of pooling is that spatial positioning is further diluted with each additional
layer. Multiple related papers exploit the so called “ROI pooling”, which commonly refers
to a pooling operation being applied to the bounding box of an identified object. The
resulting reduced representation will hopefully be more robust to noise and geometric
variations across multiple frames. ROI pooling is successfully used by [16] to improve the
performance of their CNN-based classifier. The authors observe that positioning cues are
adversely affected by pooling. A potential solution is to reposition the misaligned ROIs via
bilinear interpolation. This reinterpretation of pooling is referred to as “ROI align”. The
gain in performance is significant, while the authors demonstrate that the positioning of
the ROIs is stabilized.

Tracking stabilization is fundamental in automotive application, where effects such as
jittering, camera shaking, and spatial/temporal noise commonly occur. Occlusion handling
plays an important role in ensuring ROI stability and accuracy. Some authors handle this
topic extensively, such as [17], who propose a deep neural network for tracking occluded
body parts, by processing features extracted from a VGG19 network. Some authors use
different interpretations of the feature concept, adapted to the specifics of autonomous
driving. Reference [18] creates custom feature maps by encoding various properties of the
detections in raster images (bounding boxes, positions, velocities, accelerations). These
images are sent through a CNN that generates raster features that the authors demonstrate

29

Mathematics 2021, 9, 660

to provide more reliable correlations and more accurate trajectories than using features
derived directly from raw data.

The idea of tracking robustness and stability is sometimes solvable using image and
object fusion. The related methods are referred to as being “instance-aware”. This concept
means that a targeted object is matched across the image space and across multiple frames
by fusing identified objects with similar characteristics. Reference [19] proposes a fusion-
based method that uses single-object tracking to identify multiple candidate instances.
Subsequently, it builds target models for potential objects by fusing information from
detection and background cues. The models are updated using a CNN, which ensures
robustness to noise, scaling, and minor variations of the targets’ appearance. As with many
other related approaches, an online implementation offloads most of the processing to
an external server leaving the embedded device from the vehicle to carry out only minor,
frequent tasks. Since quick reactions of the system are crucial for safe vehicle operation,
performance and a rapid response of the underlying software is essential, which is why the
online approach is popular in this field. Fusion methods are also applied for multimodal
inputs, such as in [20], who propose a model based on a convolutional autoencoder to
obtain features from a combination of multiple sensor sources, in order to account for
improved environment perception.

Also in the context of ensuring robustness and stability, some authors apply fusion
techniques to information extracted from convolutional layers. It has been previously
mentioned that important correlations can be drawn from deep and shallow layers that can
be exploited together for identifying robust features in the data. This principle is used for
instance in [21]. In order to ensure robustness and performance, various features extracted
from layers in different parts of a CNN are fused to form stronger characteristics that are
affected to a lesser degree by noise, spatial variations, and perturbations in the acquired
images. The identified relationships between CNN layers are exploited in order to account
for lost spatial information that occurs in deeper layers. The method is claimed to have
improved accuracy over the state-of-the-art of the time, which is consistent with the idea
of ensuring robustness and low failure rates. Deeper features are more consistent and
allow for stronger classification, while shallow features compensate for the detrimental
effects of filtering and pooling. This allows for deep features to be better integrated
into the spatial context of the images. On a similar note, in [22] features from multiple
layers that individually constitute weak trackers are combined to form a stronger one,
by means of a hedging algorithm. The practice of using multiple weak methods into
a more effective one has significant potential and is based on the principle that each
individual weak component contains some piece of meaningful information on the tracked
object, while also having useless data mostly found in the form of noise. By appropriately
combining the contributions of each weak component, a stronger one can be generated. As
such, methods that exploit compound classifiers typically show robustness to variances of
illumination, affine transforms, or camera shaking. The downside of such methods is that
multiple groups of weak features are needed, which causes penalties in real-time response.
Additionally, the fusion algorithm has its own performance-impacting overhead.

Alternative approaches exist which mitigate this to some extent. For example, the use
of multiple sensors directly supplies the necessary data, as opposed to relying on multiple
features computed from the same camera or pair of cameras. An example in this direction
is provided in [23], where an image gallery from a multi-camera system is fed into a
CNN in an attempt to solve multi-target multi-camera tracking and target re-identification
problems. For correct and consistent re-identification, an observation in a specific image is
matched against several ones from other cameras using correlations as part of a similarity
metric. Such correlation among images from multiple cameras are learned during training
and subsequently clustered to provide a unified agreement between them. Eventually,
after a training process that exploits a custom triplet loss function, features are obtained to
be further used in the identification process. In terms of performance, the method boasts
substantial accuracy considering the multi-camera setup. The idea of compositing robust

30

Mathematics 2021, 9, 660

features from a multi-faceted architecture is further exploited in works such as [24]. A
triple-net setup is used to generate features that account for appearance, spatial cues, and
temporal consistency.

2.1.3. Ensuring Temporal Coherence

One of the most significant challenges for autonomous driving is accounting for
temporal coherence in tracking. Nearly all automotive scenarios involve video and motion
across multiple frames. Consequently, handling image sequence data and accounting for
temporal consistency are key factors in ensuring successful predictions, accuracy, and
reliability. Essentially, solving temporal tracking is a compound problem. On the one hand,
it involves tracking objects in single images considering all the problems induced by noise,
geometry and the lack of spatial information. On the other hand, it should ensure that the
tracking is consistent across multiple frames. That is, assigning correct IDs to the same
objects in a continuous video sequence.

This presents a lot of challenges, for instance when objects become occluded in some
frames and are exposed in others. In some cases, the tracked objects suffer affine transfor-
mations across frames, of which rotation and shearing are notoriously difficult to handle.
Additionally, the objects may change shape due to noise, aliasing and other acquisition-
related artifacts that may be present in the images. Video is rarely if ever acquired at “high
enough” resolution and is in many cases in some lossy compressed format. As such, the
challenge is to identify features that are robust enough to handle proper classification
and to ensure temporal consistency considering all pitfalls associated with processing
video data. This often involves a “focus and context” approach: key targets are identified
based on features learned from current frames and from the context of the tracked object.
Processing a key frame in a video sequence provides the focus, while the information from
previous frames form the context.

For this type of problem, one popular approach is to integrate recurrent components
into the classifier, which inherently account for the context provided by a set of elements
from a sequence. Neural networks with recurrent layers, such as long short-term memory
(LSTM) and gated recurrent units (GRU), are commonly employed in the related literature
for the processing of temporal data. When training and exploiting recurrent layers to
classify sequences, the results from one frame carry over to the computations that take place
for subsequent frames. As such, when processing the current frame, resulting detections
also account for what was found in previous frames. For automotive applications, one
advantage of neural networks is that they can be trained off-site, while the resulting model
can be ported to the embedded device in the vehicle where predictions and tracking can
occur at usable speeds. While training a recurrent network or multiple collaborating
networks can be a lengthy process, forward-propagating new data can happen quite fast,
making these algorithms a good choice for real-time tracking.

Another concept that consistently appears in the related literature is “historical match-
ing”. The idea is to carry over part of the characteristics of tracked objects across multiple
frames, by building an affinity model from shape, appearance, positional, and motion cues.
This is achieved in [25] using dual CNNs with multistep training, which handle appear-
ance matching using various filtering operations and linearly composing the resulting
features across multiple timestamps. The notion of determining and preserving affinity is
also exploited in [26] where data consisting of frame pairs several timestamps apart are
fed into dual VGG networks (models based on convolutional neural networks with an
architecture designed for image recognition tasks). The resulting features are permuted
and incorporated into association matrices that are further used to compute object affinities.
This approach has the benefit of partially accounting for occlusion using only a limited
number of frames, since the affinity of an object that is partially occluded in one frame may
be preserved if it appears fully in the pair frame.

Ensuring the continuity of high-level features such as appearance models is not a
trivial task, and multiple solutions exist. For example [27] uses a CNN modified with a

31

Mathematics 2021, 9, 660

discriminative component intended to correct for temporal errors that may accumulate in
the appearance of tracked objects across multiple frames. Discriminative network behavior
is also exploited in [28] where selectively trained dual networks are used to generate and
correlate appearance with a motion stream. Also, decomposing the tracking problem into
localization and motion using multiple component networks is a frequently-encountered
solution, further exploited in works such as [29,30]. As such, using two networks that work
in tandem is a popular approach and seems to provide accurate results throughout the
available literature (Figure 2 in [30]).

In this context, siamese convolutional networks have the ability to learn similarities
by comparing features from dual-stream convolutional layers. One example is provided
by [31], where appearance and motion are handled by a combination of CNNs that work
together within a unified framework. The motion component uses spotlight filtering
over feature maps that result from subtracting features drawn from dual CNNs. A space-
invariant feature map is then generated using pooling and fusion operations. The other
component handles appearance by filtering and fusing features from a different arrange-
ment of convolutional layers. Data from ROIs in the acquired images are passed to both
components. Motion responses from one component are correlated with appearance
responses from the other. Both components produce feature maps that are composed
together to form space- and motion-invariant characteristics to be further used for target
identification. As such, a common functionality of such models is to feed the similarities
learned among different inputs to subsequent network components that carry out the
classification/detection task [32,33].

Some authors take this concept further by employing several network components [34],
each of which contributes features exhibiting specific and limited correlations. When joined
together, the features form a complete appearance model of the tracked objects. Other ap-
proaches map network components to flow graphs, the traversal of which enables optimal
cost-function and feature learning [35]. It is worthy of noting that the more complicated
the architecture of the classifier, the more elaborate the training process and the poorer
the performance. A careful balance should therefore be reached between the complexity
of the classifier, the completeness of the resulting features, and the amount of processing
and training data needed to produce high-accuracy results. All this should involve a
computational cost consistent with the needs of automotive applications. For instance,
in [36] the authors propose a lightweight solution where the feature extractor consists in
only two convolutional layers, while a careful selection of motion patterns solves the data
association problem.

In [37], the idea of object matching from frame pairs is further explored using a
three-component setup: a siamese network configuration handles single object tracking
and generates short-term cues in the form of tracklet images, while a modified version of
GoogleNet Inception-v4 generates re-identification features from multiple tracklets. The
third component is based on the idea that there may be a large overlap in the previously-
computed features, which are consequently treated as switcher candidates. As a result,
a switcher-aware logic handles the situation where IDs of different objects may be inter-
changed during frame sequences mainly as a result of partial occlusion.

As the difficulty of the tracking problem increases, so does the need to design systems
capable of learning increasingly useful and robust features. In this sense, many solutions
consist in models that extract features expressing increasingly abstract concepts, which
have the potential for greater generalization. Therefore, a lot of effort is directed toward
identifying object features that are higher-level, more abstract representations of how
the object fits within the overall context of the acquired video sequence. Examples of
such concept are the previously-mentioned “affinity”; another is “attention”, where some
authors propose neural-network-based solutions for estimating attention and generating
attention maps. Reference [15] computes attention features that are spatially and temporally
sound using an arrangement of ROI identification and pooling operations. Reference [38]
uses attention cues to handle the inherent noise from conventional detection methods,

32

Mathematics 2021, 9, 660

as well as to compensate for frequent interactions and overlaps among tracked targets.
A two-component system handles noise and occlusion, and produces spatial attention
maps by matching similar regions from pair frames. Temporal coherence is achieved by
weighing observations across the trajectory differently, thereby assigning them different
levels of attention. This process results is filtering criteria used to successfully account for
similar observations while eliminating dissimilar ones. Another noteworthy contribution
is [39], where attention maps are generated using reciprocative learning. The input frame
is sent back-and-forth through several convolutional layers: in the forward propagation
phase classification scores are generated, while the back-propagation produces attention
maps from the gradients of the previously-obtained scores. The computed maps are
further used as regularization terms within a classifier. The advantage of this approach
is its simplicity compared to other similar ones. The authors claim that their method
for generating attention features ensures long-term robustness. Other methods that use
frame pairs and no recurrent components do not seem to work as well for very long-
term sequences. Recently, attention mechanisms have been gaining significant ground for
solving temporal consistency problems, since they allow the underlying model the freedom
to weigh selective portions of a time-based sequence. Other noteworthy examples of works
where attention mechanisms are incorporated into a CNN-based detector are [40,41].

2.1.4. LSTM-Based Methods

Generally, methods that are based on non-recurrent CNN-only approaches are best
suited to handle short scenes where quick reactions are required in a brief situation that
can be captured in a limited number of frames. Various literature studies show that
LSTM-based methods have more potential to ensure the proper handling of long-term
dependencies while avoiding various mathematical pitfalls. One example in this sense is
the “vanishing gradient” problem, which in practice manifests as a mis-trained network
resulting in drift effects and false positives. Furthermore, handling long-term dependencies
means having to deal with occlusions to a greater extent than in shorter term scenarios.

Most approaches combine various classifiers that handle spatial and shape-based
classification with LSTM components that deal with temporal coherence. An early ex-
ample of an RNN implementation is [42], which uses an LSTM-based classifier to track
objects in time, across multiple frames (Figure 1 in [42]). The authors demonstrate that an
LSTM-based approach is better suited to removing and reinserting candidate observations
to account for objects that leave/reenter the visible area of the scene. This provides a
solution to the track initiation and termination problem based on data associations found
in features obtained from the LSTM layers. This concept is exploited further by [43] where
various cues are determined to assess long-term dependencies using a dual LSTM network.
One LSTM component tracks motion, while the other handles interactions, and the two
are combined to compute similarity scores between frames. The results show that using
recurrent components to handle lengthy sequences produces more reliable results than
other methods based on frame pairs. Some implementations using LSTM layers focus
on tracking-while-driving problems, which pose additional challenges compared to most
established benchmarks using static cameras. As an alternative to solutions that involve cre-
ating models of vehicle behavior, Reference [44] circumvent the need for vehicle modeling
by directly inputting sensor measurements into an LSTM network to predict future vehicle
positions and to analyze temporal behavior. A more elaborate attempt is [45] where instead
of raw sensor data, the authors establish several maneuver classes and feed maneuver
sequences to LSTM layers in order to generate probabilities for the occurrence of future
maneuver instances. Eventually, multiple such maneuvers can be used to construct the
trajectory and/or anticipate the intentions of the vehicles.

Furthermore, increasing the length of the sequence increases accuracy and stability
over time, up to a certain limit where the network saturates and no longer improves. A
solution to this problem would be to split the features into multiple sub-features, followed
by reconnecting them to form more coherent long-term trajectories. This is achieved in [46]

33

Mathematics 2021, 9, 660

where a combined CNN and RNN-based feature extractor generates tracklets over lengthy
sequences. The tracklets are split on frames that contain occlusions. A recombination
mechanism based on gated recurrent units (GRUs) recombines the tracklet pieces accord-
ing to their similarities, followed by the reconstruction of the complete trajectory using
polynomial curve fitting.

Some authors do further modifications to LSTM layers to produce classifiers that
generate abstract high-level features, such as those found in appearance models. A good ex-
ample in this sense is [47] where LSTM layers are modified to do multiplication operations
and use customized gating schemes between the recurrent hidden state and the derived fea-
tures. The newly-obtained LSTM layers are better at producing appearance-related features
than conventional LSTMs, which excel at motion prediction. Where trajectory estimation is
concerned, LSTM-based methods exploit the gating that takes place in the recurrent layers,
as opposed to regular RNNs, which pass candidate features into the next recurrent iteration
without discriminating between them. The filters inherently present in gated LSTMs have
the potential to eliminate unwanted feature candidates which may represent unwanted
trajectory paths. Candidates which eventually lead to correctly-estimated motion cues are
maintained. Furthermore, LSTMs demonstrate an inherent capability to predict trajectories
that are interrupted by occlusion events or by reduced acquisition capabilities. This idea
is exploited in order to find solutions to the problem of estimating the layout of a full
environment from limited sensor data, a concept referred to in the related literature as
“seeing beyond seeing” [48]. Given a set of sensors with limited capability, the idea is to
perform end-to-end tracking using raw sensor data without the need to explicitly identify
high-level features or to have a pre-existing detailed model of the environment. In this
sense, recurrent architectures have the potential to predict and reconstruct occluded parts
of a particular scene from incomplete or partial raw sensor output. The network is trained
with partial data and it is updated through a mapping mechanism that makes associations
with an unoccluded scene. Subsequently, the recurrent layers make their own internal
associations and become capable of filling in the missing gaps that the sensors have been
unable to acquire. Specifically, given a hidden state of the world that is not directly captured
by any sensor, an RNN is trained using sequences of partial observations in an attempt to
update its belief concerning the hidden parts of the world. The resulting information is
used to “unocclude” the scene that was initially only partially perceived through limited
sensor data. Upon training, the network is capable of defining its own interpretation of the
hidden state of the scene. The previously-mentioned result is elaborated upon by a group
that includes the same authors [49]. A similar approach previously applied in basic robot
guidance is extended for use in assisted driving. In this case, more complex information
can be inferred from raw sensor input, in the form of occupancy maps. Together with a
deep network-based architecture, these allow for predicting the probabilities of obstacle
presence even in occluded portions within the field of view. In [50], the idea of using LSTM
layers to process sensor data is depicted by modeling actor trajectories and activities based
on the output of an arrangement on inertial sensors. The proposed neural network learns
correlations among sensor outputs and consequently forms an inertial odometry model.

In more recent studies, authors tend to add supplementary processing stages to their
LSTM-based models. This additional effort seems to stem from the need to generate and
incorporate an increasingly-refined and abstract array of features into the tracking process.
As tracking scenarios increase in complexity, the resulting problem space increases in size
and dimensionality. This motivates the need for extending an LSTM-centered model by
incorporating it into a broader system. An example of such an approach is [51], where se-
quential dependencies are handled by LSTM layers as in commonly the case in such works.
While relying on convolutional feature maps in the initial phases of the tracking pipeline,
there is an additional mechanism for preparing selection proposals for the LSTM layers
to process. Additionally, the common problem of feature inadequacy and class imbalance
in the learning phase is handled by a GAN-based stage where the candidate samples are
augmented. It is worth mentioning that, as more and more layers of different types are

34

Mathematics 2021, 9, 660

added to such a system, the reliability of the selected features may increase together with
robustness to potential biases in the training data. However, at the same time, there is the
risk that training and validating such a system may become a tedious, time consuming
task. As the complexity increases, so does the need for extending the training data set
and supplement the required computational resources. Other efforts in the direction of
producing more usable features involve determining pedestrian intention as suggested
by [52]. In this scenario, an LSTM model is used in conjunction with an intention filter to
select suitable trajectory offset hypotheses so as to add to the reliability of the predicted
result. The use of intention as a defining concept for features is also explored by [53], who
enhance LSTM cells by introducing additional speed and correlation components. These
components serve to model the more complex interactions required to define intention.
In [54], instead of refining feature candidates using additional mechanisms, the authors
choose to change the representation of the respective features. Specifically, LSTM layers
are reconfigured and repurposed to handle multidimensional hidden states as opposed
to the 1D vectors used traditionally. This increases the ability of such layers to accurately
model spatial and temporal interactions among pedestrians. Conversely, in [55] the authors
adapt an arrangement of LSTM layers to process sparse 3D data structures as opposed
to changing internal data representation. The authors choose to model the interactions
among pedestrians using graphs and, consequently, graph convolutional networks. Such
systems still rely on LSTM layers to encode temporal dependencies. The spatial and
sequence-related relationships among the tracked actors (represented as nodes) is modeled
by determining connections in the form of graph edges [56,57].

2.1.5. Miscellaneous Neural Network-Based Methods

An interesting alternative to conventional deep learning architectures is the use of
GANs, as demonstrated in [58]. GANs train generative models and filter their results
using a discriminative component. GANs are notoriously difficult to train, which is one
of the reasons why they see seldom use in the related literature. In terms of tracking,
GANs alleviate the need to compute expensive appearance features and minimize the
fragmentation that typically occurs in more conventional trajectory prediction models.
A generative component produces and updates candidate observations, of which the
least updated are eliminated. The generative-discriminative model is used in conjunction
with an LSTM component to process and classify candidate sequences. This approach
has the potential to produce high-accuracy models of human behavior, especially group
behavior. At the same time, it is significantly more lightweight than previously-considered
CNN-based solutions.

Another “outlier” solution in the related literature is [59], one of the few efforts in-
volving reinforcement learning for MOT applications. The proposed model is split into
two parts: a predictive component based on a CNN, which treats pedestrian detections as
agents and determines the displacement of a target agent from its initial location; a decision
network, which uses the resulting predictions and detections within a deep reinforcement
learning network where the actions among the agents and their environment are rewarded
so as to maximize their shared utility. Consequently, the collaborative interactions of multi-
ple agents are exploited in order to simultaneously detect and track them more effectively.
Other driver-centric reinforcement learning-based solutions determine driving rules for
collision avoidance by weighing vehicle paths against potential pedestrian trajectories [60].

2.2. Other Techniques

While the current state-of-the art methods for MOT are mostly neural network-based,
there also exist a multitude of other approaches which exploit more traditional, unsuper-
vised means of providing reliable tracking. Neural networks gained popularity in recent
years due in no small part to the availability of more powerful hardware, particularly GPUs,
which allowed for training models capable of handling realistic scenarios in a reasonable
amount of time. Neural networks however have the downside of needing vast amounts

35

Mathematics 2021, 9, 660

of reliable training data. Also, they require a lot of experimentation and trial-and-error
before the right design and hyperparameter set is found for a particular scenario. There
are, however, situations where training data may not be readily available in sufficient
quantity and variety. Such cases call for a more straightforward design and a more intuitive
model that can provide reliable tracking without necessarily requiring supervised learning.
Neural network models are harder to understand in terms of how they function, and, while
as deterministic as their non-neural network-based counterparts, are less intuitive and
meant for use in a “black-box” manner. This is where other, more transparent methods
come into place.

The tracking problem can be formulated similarly to the neural-network case: given a
set of observations/appearances/segmented objects in multiple video frames, the task is
to develop a means of determining relationships among these elements across the frames
and to come up with a means of predicting their path. Various authors formulate this
problem differently, for instance some methods involve determining tracklets in each frame
and then assembling object trajectories in a full video sequence by combining tracklets
from all or some of the frames [61]. Traditional, non-NN-based approaches, especially non-
supervised ones, generally formulate much more straightforward models. Some are based
on a graph or flow-oriented interpretation of the tracked scene. Others rely on emitting
hypotheses as to the potential trajectories of the tracked targets, or otherwise formulating
some probabilistic approach to predicting the evolution of objects in time. It is worth
noting that many of the more conventional, unsupervised algorithms from the related
literature do not generalize the solution as well as a NN-based method. Consequently,
they are usable in a limited number of scenarios, by comparison. Some works attempt
to circumvent this problem using evolutionary algorithms as multicriteria optimization
methods [62]. However, while capable of covering a significant portion of the problem
space, such methods have the downside that the optimal trajectory needs to be periodically
recalculated, which can hinder performance especially for on-board-only systems. Also,
methods that attempt to account for temporal consistency do not handle time sequences as
lengthy as, for instance, an LSTM network. The likely explanation is that an unsupervised
method requires far more processing capabilities the more frame elements it is fed. In the
case of a properly-trained neural network, the amount of computational resources required
does not increase as much with the length of the associated sequence. However, in practice,
especially on an embedded device as required in automotive tracking, porting a more
conventional method may be more convenient in terms of implementation and platform
compatibility than running a pre-trained NN model.

Another important aspect worth mentioning is that conventional methods are much
more varied in terms of their underlying algorithms, as opposed to an NN-based architec-
ture which features various arrangements of the same two or three neural network types,
with additional processing of layer activations or outputs as the case may be. For this
reason, we do not attempt to cover all the approaches ever developed for object tracking,
but we rather focus on representative works featuring various successful attempts at MOT.

2.2.1. Traditional Algorithms and Methods Focusing on High-Performance

The Kalman filter is a popular method with many applications in navigation and
control, particularly with regard to predicting the future path of an object, associating
multiple objects with their trajectories, while demonstrating significant robustness to noise.
Generally, Kalman-based methods are used for simpler tracking, particularly in online
scenarios where the tracker only accesses a limited number of frames at a time, possibly
only the current and previous ones. An example of the use of the Kalman filter is [63],
where a combination of the aforementioned filter and the Munkres algorithm as the min-
cost estimator is used in a simple setup focusing on performance. The method requires
designing a dynamic model of the tracked objects’ motion, and is much more sensitive to
the type of detector. However the proper parameters are established, the simplicity of the
method allows for significant real-time performance.

36

Mathematics 2021, 9, 660

Similar methods are frequently used in simple scenarios where a limited number of
frames are available and the detections are accurate. In such situations, the simplicity of
the implementations allows for quick response times even on low-spec embedded client
devices. In the same spirit of providing an easy, straightforward method that works well for
simple scenarios, Reference [64] provides an approach based on bounding-box regression.
Given multiple object bounding boxes from a set of ordered frames, the authors use a
regression model to predict the positions of the objects’ bounding boxes in following frames.
An important restriction of such an approach is that it only successfully detects targets
that move only slightly across consecutive frames, making it reliable in scenarios where
the frame rate is high enough and relatively stable. Furthermore, a reliable detector is
a must in such situations, and crowded scenes with frequent occlusion events are not
handled properly. As with the previous approach, this is well suited for easy cases where
robust image acquisition is available and performance and implementation simplicity are a
priority. Unfortunately, noisy images are fairly common in automotive scenarios where,
for efficiency and cost reasons, a compromise may be made in terms of the quality and
performance of the cameras and sensors. It is often desirable that the software be robust to
noise so as to minimize the hardware costs.

In Reference [65], tracking is done by a particle filter for each track. The authors use
the Munkres assignment for bounding boxes within consecutive images for each track. A
cost matrix is then generated based on the associations made among bounding boxes from
current and previous images. Specifically, the cost of associating two bounding boxes is
determined from the Euclidean distance between the centers of the boxes, as well as their
size variation. This approach is simple to implement, but the assignment algorithm has an
O(n3) complexity, which is likely too high for real-time tracking.

Various attempts exist for improving noise robustness while maintaining performance,
for example in [66]. In this case, the lifetime of tracked objects is modeled using a Markov
Decision Process (MDP). The policy of the MDP is determined using reinforcement learn-
ing, whose objective is to learn a similarity function for associating tracked objects. The
positions and lifetimes of the objects are modeled using transitions between MDP states.
Reference [67] also use MDPs in a more generalized scheme, involving multiple sensors
and cameras and fusing the results from multiple MDP formulations. Note that Markov
models can be limiting when it comes to automotive tracking, since a typical scene with
multiple interacting targets does not exhibit the Markov property where the current state
only depends on the previous one. In this regard, the related literature features multiple
attempts to improve reliability. Reference [68] propose an elaborate pipeline featuring
multiview tracking, ground plane projection, maneuver recognition, and trajectory predic-
tion. The method involves an assortment of approaches, which include Hidden Markov
Models and Variational Gaussian mixture models. Such efforts show that an improvement
over traditional algorithms involves sequencing together multiple different methods, each
with its own role. As such, there is the risk that the overall resulting approach may be too
fragmented and too cumbersome to implement, interpret, and improve properly.

Works such as [69] attempt to circumvent such limitations by proposing alternatives
to tried-and-tested Markov models, in this case in the form of a system that determines
behavioral patterns in an effort to ensure global consistency for tracking results. There are
multiple ways to exploit behavior in order to guide the tracking process. For instance, a
possible solution would rely on learning and minimizing/maximizing an energy function
that associates behavioral patterns with potential trajectory candidates. This concept is
exemplified by [70], who propose a method based on minimizing a continuous energy
function aimed at handling the very large space of potential trajectory solutions. A limited,
discrete set of behavior patterns impose limitations on the energy function. While such
a limitation offers better guarantees that a global optimum will eventually be reached, it
may not allow for a complete representation of the system.

An alternative approach which is also designed to handle occlusions is [71], where
the divide-and-conquer paradigm is used to partition the solution space into smaller sub-

37

Mathematics 2021, 9, 660

sets, thereby optimizing the search for the optimal variant. The authors note that while
detections and their respective trajectories can be extracted rather efficiently from crowded
scenes, the presence of ambiguities induced by occlusion events may raise significant de-
tection errors. The proposed solution involves subdividing the object assignment problem
into subproblems, followed by a selective combination of the best features found within
the subdivisions (Figure 3 in [71]). The number and types of the features are variable,
thereby accounting for some level of flexibility for this approach. One particular downside
is that once the scene changes, the problem itself also changes and the subdivisions need
to reoccur and update, therefore making this method unsuitable for scenes acquired from
moving cameras.

A similar problem is posed in [61], where it is also noted that complex scenes pose
tracking difficulties due to occlusion events and similarities among different objects. This
issue is handled by subdividing object trajectories into multiple tracklets and subsequently
determining a confidence level for each such tracklet, based on its detectability and continu-
ity. Actual trajectories are then formed from tracklets connected based on their confidence
values. One advantage of this method in terms of performance is that tracklets can be
added to already-determined trajectories in real-time as they become available without
requiring complex processing or additional associations. Additionally, linear discrimi-
nant analysis is used to differentiate objects based on appearance criteria. The concept
of appearance is more extensively exploited by [72], who use motion dynamics to distin-
guish between targets with similar features. They approach the problem by determining
a dynamics-based similarity between tracklets using generalized linear assignment. As
such, targets are identified using motion cues, which are complementary to more well
established appearance models. While demonstrating adequate performance and accuracy,
it is worth mentioning that motion-based features are sensitive to camera movement and
are considerably more difficult to use in automotive situations. Motion assessment metrics
that work well for static cameras may be less reliable when the cameras are in motion and
image jittering and shaking occur.

The idea of generating appearance models using traditional means is exemplified
in [73], who use a combination appearance models learned using a regularized least squares
framework and a system for generating potential solution candidates in the form of a set
of track hypotheses for each successful detection. The hypotheses are arranged in trees,
each of which are scored and selected according to the best fit in terms of providing usable
trajectories. An alternative to constructing an elaborate appearance model is proposed
by [74], who directly involve the shape and geometry of the detections within the tracking
process, therefore using shape-based cost functions instead of ones based on pixel clusters.
Furthermore, results focusing on tracking-while-driving problems may opt for a vehicle
behavior model, or a kinematic model, as opposed to one that is based on appearance
criteria. Examples of such approaches are [75–77], where the authors build models of
vehicle behavior from parameters such as steering angles, headings, offset distances, and
relative positions. Note that kinematic and motion models are generally more suited
to situations where the input consists in data from radar, Light Detection and Ranging
(LiDAR) or Global Positioning Systems (GPS), as opposed to image sequences. In particular,
attempting to reconstruct visual information from LiDAR point clouds is not a trivial task
and may involve elaborate reconstruction, segmentation and registration preprocessing
before a suitable detection and tracking pipeline can be designed [78].

Another class of results from related literature follows a different paradigm. Instead
of employing complex energy minimization functions and/or statistical modeling, other
authors opt for a simpler, faster approach that works with a limited amount of information
drawn from the video frames. The motivation is that in some cases the scenarios may
be simple enough that a straightforward method that alleviates the need for extended
processing may prove just as effective as more complex and elaborate counterparts. An
example in this direction is [79] whose method is based on scoring detections by deter-
mining overlaps between their bounding boxes across multiple consecutive frames. A

38

Mathematics 2021, 9, 660

scoring system is then developed based on these overlaps and, depending on the resulting
scores, trajectories are formed from sets of successive overlaps of the same bounding boxes.
Such a method does not directly handle crowded scenes, occlusions or fast moving objects
whose positions are far apart in consecutive frames, however it may present a suitable
compromise in terms of accuracy in scenarios where performance is detrimental and the
embedded hardware may not allow for more complex processing. This is in contrast to
high-performance methods that use on-board hardware to provide a lot of the information
required for tracking, therefore reducing the reaction time of the underlying system in
high-speed scenarios [80]. An additional important consideration for this type of problem
is how the tracking method is evaluated.

Most authors use a common, established set of benchmarks which, while having a
certain degree of generality, cannot cover every situation that a vehicle might be found
in. As such, some authors such as [81] devote their work to developing performance
and evaluation metrics and data sets, which allow for covering a wide range of potential
problems that may arise in MOT scenarios. As such, the choice in the method used for
tracking is as much a consequence of the diversity of situations and events claimed to be
covered by the method, as it results from the evaluation performed by the authors. For
example, as was the case for NN-based methods, most evaluations are done for scenes with
static cameras, which are only partly relevant for automotive applications. The advantage
of the methods presented thus far lies in the fact that they generally outperform their
counterparts in terms of the required processing power and computational resources,
which is a plus for vehicle-based tracking where the client device is usually a low-power
solution. Furthermore, some methods can be extended rather easily, as the need may be,
for instance by incorporating additional features or criteria when assembling trajectories
from individual detections, by finding an optimizer that ensures additional robustness,
or, as is already the case with some of the previously-mentioned papers, by incorporating
a light-weight supervised classifier in order to boost detection and tracking accuracy.
Additionally, the problem of false or malicious information from other traffic participants
(for example in a multi-vehicle situation) has the potential to affect the accuracy of such
methods. One proposed solution to this issue is to cluster the observations drawn from
cooperative tracking according to their reliability and their potential to adversely affect the
tracking results [82].

2.2.2. Methods Based on Graphs and Flow Models

A significant number of results from the related literature present the tracking solution
as a graph search problem or otherwise model the tracking scene using a dependency graph
or flow model. There are multiple advantages to using such an approach: graph-based
models tailor well to the multi-tracking problem since, like a graph, it is formed from
inter-related nodes each with a distinct set of parameter values. The relationships that
can be determined among tracked objects or a set of trajectory candidates can be modeled
using edges with edge costs. Graph theory is well understood and graph traversal and
search algorithms can be widely found, with implementations readily available on most
platforms. Likewise, flow models can be seen as an alternative interpretation of graphs,
with node dependencies modeled through operators and dependency functions, forming an
interconnected system. Unlike a traditional graph, data from a flow model progresses in an
established direction that starts from initial components where acquired data are handled
as input; the data then traverse intermediate nodes where they are processed in some
manner and end up at terminal nodes where the results are obtained and exploited. Like
graphs, flow models allow for loops that implement refinement techniques and in-depth
processing via multiple local iterations.

Most methods that exploit graphs and flow models attempt to solve the tracking
problem using a minimum path or minimum cost-type approach. An example in this sense
is [83], where multi-object tracking is modeled using a network flow model subjected to
min-cost optimization. Each path through the flow model represents a potential trajectory,

39

Mathematics 2021, 9, 660

formed by concatenating individual detections from each frame. Occlusion events are
modeled as multiple potential directions arising from the occlusion node and the proposed
solution handles the resulting ambiguities by incorporating pairwise costs into the flow
network.

A more straightforward solution is presented by [84], who solve multi-tracking using
dynamic programming and formulate the scenario as a linear program. They subsequently
handle the large number of resulting variables and constraints using k-shortest paths.
One advantage of this method seems to be that it allows for reliable tracking from only
four overlapping low resolution low fps video streams, which is in line with the cost-
effectiveness required by automotive applications.

Another related solution is [85], where a cost function is developed from estimating the
number of potential trajectories as well as their origins and end frames. Then, the scenario
is handled as a shortest-path problem in a graph, which the authors solve using a greedy
algorithm. This approach has the advantage that it uses well-established methods, therefore
affording some level of simplicity to understanding and implementing the algorithms.

In [86], a similar graph-based solution divides the problem into multiple subproblems
by exploring several graph partitioning mechanisms and uses greedy search based on
Adaptive Label Iterative Conditional Modes. Partitioning allows for successful disassocia-
tion of object identities in circumstances where said identities might be confused with one
another. Also, methods based on solution space partitioning have the advantage of being
highly scalable, therefore allowing fine tuning of their parameters in order to achieve a
trade-off between accuracy and performance. Multiple extensions of the graph-based prob-
lem exist in the related literature, for instance, when multiple other criteria are incorporated
into the search method. Reference [87] incorporate appearance and motion-based cues into
their data association mechanism, which is modeled using a global graph representation
and makes use of generalized minimum clique graphs to locate representative tracklets in
each frame. Among other advantages, this allows for a longer time span to be handled,
albeit for each object individually.

Another related approach is provided in [88], where the solution consists in a col-
laborative model which makes use of a detector and multiple individual trackers, whose
interdependencies are determined by finding associations with key samples from each
detected region in the processed frames. These interdependencies are further exploited via
a sample selection method to generate and update appearance models for each tracker.

As extensions of the more traditional graph-based models that use greedy algorithms
to search for suitable candidate solutions and update the resulting models in subsequent
processing steps, some authors handle the problem using hypergraphs. These extend the
concept of classical graphs by generalizing the role of graph edges. In a conventional graph
an edge joins two nodes, while in a hypergraph edges are sets of arbitrary combinations
of nodes. Therefore an edge in a hypergraph connects to multiple nodes, instead of just
two as in the traditional case. This structure has the potential to form more extensive
and complete models using a singular unified concept and to alleviate the need for costly
solution space partitioning or subdivision mechanisms. Another use of the hypergraph
concept is provided by [89], who build a hypergraph-based model to generate meaningful
data associations capable of handling the problem of targets with similar appearance
and in close proximity to one-another, a situation frequently encountered in crowded
scenes. The hypergraph model allows for the formulation of higher-order relationships
among various detections, which, as mentioned in previous sections, have the potential
to ensure robustness against simple transformations, noise, and various other spatial and
temporal inaccuracies. The method is based on grouping dense neighborhoods of tracklets
hierarchically, forming multiple layers which enable more fine-grained descriptions of
the relationships that exists in each such neighborhood. A related but much more recent
result [90] is also based on the notion that hypergraphs allow for determining higher
order dependencies among tracklets, but in this case the parameters of the hypergraph
edges are learned using a structural support vector machine (SSVM), as opposed to being

40

Mathematics 2021, 9, 660

determined empirically. Trajectories are established as a result of determining higher order
dependencies by rearranging the edges of the hypergraph so as to conform to several
constraints and affinity criteria (Figure 1 in [90]). While demonstrating robustness to
affine transforms and noise, such methods still cannot handle complex crowded scenes
with multiple occlusions and, compared to previously-mentioned methods, suffer some
penalties in terms of performance, since updating the various parameters of hypergraph
edges can be computationally costly.

2.3. Discussion

Most of the results from the available literature focus on generating abstract, high-
level features of the observations found in the processed images, since, generally, the more
abstract the feature, the more robust it should be to transformations, noise, drift, and other
undesired artifacts and effects. Most authors rely on an arrangement of CNNs where
each component has a distinct role in the system, such as learning appearance models,
geometric and spatial patterns, or learning temporal dependencies. It is worth noting that a
strictly CNN-based method needs substantial tweaking and careful parameter adjustment
before it can accomplish the complex task of consistent detection in space and across
multiple frames.

LSTM-based architectures seem to show more promising results for ensuring long-
term temporal coherence, since this is what they were designed for, while also being
simpler to implement and train. For the purposes of autonomous driving, an LSTM-based
method shows promise, considering that training should happen offline and that a heavily-
optimized solution is needed to achieve a real-time response. Designing such a system also
requires a fair amount of trial-and-error since currently there is no well established manner
to predict which network architecture is suited to a particular purpose.

One particularly promising direction for automotive tracking are solutions that make
use of limited sensor data and that are able to efficiently predict the surrounding envi-
ronment without requiring a full representation or reconstruction of the scene. These
approaches circumvent the need for lengthy video sequences, heavy image processing and
the computation of complicated object features while being especially designed to handle
occlusion and objects outside of the immediate field of view. As such, where automotive
tracking is concerned, the available results from the state-of-the art seem to suggest that
an effective solution would make use of partial data while being able to handle temporal
correlations across lengthy sequences using an LSTM component.

Other, unsupervised approaches not reliant on neural networks offer a more straight-
forward model with an easier implementation. The downside often consists in the lack of
generalization that such systems are capable of. The features required for detection and
stability often have to be manually established, as opposed to supervised methods that can
learn meaningful features on their own. The choice in terms of the most useful and reliant
tracking model ultimately rests on many factors, among which we mention: the size and
complexity of the problem, the availability of training data, the available computational
resources, and, ultimately, the requirements in terms of accuracy, coherence, and stability.

We summarize our findings in Table 1, where we classify the works referenced in
this Section according to the main method and the general approach used throughout.
We choose to feature distinctive categories for solutions relying mainly on convolutional
layers and on recurrent ones. Other methods are grouped into their own category. This
choice is motivated by the fact that, as of yet, deep neural networks consistently show the
most promise for the problems described throughout this Section. Many authors have
found inventive and effective solutions to tracking problems using neural network-based
models, since they offer the most robust features while being natively designed to solve
focus-and-context problems in data sequences.

41

Mathematics 2021, 9, 660

Table 1. Classification of tracking solutions from existing works.

Category Strenghts/Weaknesses Overall Approach Contributions

Methods
based on
convolutional
neural
networks

Strengths:
- good at learning spatial,
shape and geometric features
- reduced computational load
compared to regular neural
networks
- translation invariance

Weaknesses:
- cannot determine temporal
dependencies in sequence
data without additional
mechanisms

Tracking from features directly learned by simple single-stream
convolutional layers [8,16,18]

Dual-stream CNNs with data associations performed by additional model
components [6,19,28,37]

Tracking using responses from convolutional features processed through
correlation filters [2–5,22,23]

Multistream CNNs that determine similarities between multiple ROIs and
target templates [14]

Models that determine appearance descriptors or that generate appearance
representations from convolutional features [1,13,25,27,32]

Convolutional models that account for temporal coherence using a
multi-network pipeline [24]

Tracking from features learned by fusing responses from dual stream
convolutional layers (Siamese CNNs) [26,30,31,38]

Models that generate features from convolutional layers and use attention
mechanisms for temporal coherence and matching [15,39–41]

Multi-stream convolutional layers used for detecting pedestrian poses [17]

Siamese networks combining convolutional features with complementary
features from image processing [33]

Methods
based on
recurrent
neural
networks

Strengths:
- good for processing data
series
- good for learning temporal
features and dependencies,
and for ensuring temporal
coherence

Weaknesses:
- cannot deduce interactions
without additional
mechanisms
- generally more difficult to
train

Models based on LSTM cell configurations that directly predict
vehicle/obstacle occupancy [44,49]

Model for motion prediction based on vehicle maneuvers [45]

LSTM-based architectures that generate appearance and motion models
and learn interaction information over extended sequences [43,47,51]

Multi-layer GRU-based architecture which splits and reconnects tracklets
generated from convolutional features [46]

Basic RNN that encodes information from multiple frame sequences [42,48]

LSTM layers that focus on learning and interpreting actor intentions [52,53]

LSTM-based object detection and tracking adapted for sequences of
higher-dimensional data [55]

LSTM models that encode relationships between actors using graph
representations [56,57]

LSTM model that uses multidimensional internal representations of data
sequences [54]

Methods not
relying on
neural
networks

Strengths:
- designing a working model
is more straightforward
compared to neural networks
- most are not training
data-dependent

Weaknesses:
- traditional, classic methods
do not model sequence
dependencies as effectively as
many RNN-based solutions

Models that represent and predict actor relationships using flow-networks
and graphs [83,85,89,90]

Models relying on geometric representations, kinematics and pose
estimations [74,75,77,91]

Models that ensure detection coherence using adaptive partitioning of the
problem space [71,86]

Methods relying on Markov models and Markov decision processes [66–68]

Methods that build appearance models and/or use appearance similarity
metrics [72,73,87,88]

Methods using a multi-stage tracking pipeline incorporating filtering,
segmentation, clustering and/or data association [76,78]

Methods relying on lightweight filtering and optimization for high-speed
high-performance applications [63,64,80,84]

42

Mathematics 2021, 9, 660

3. Trajectory Prediction Methods

In order to navigate through complex traffic scenarios safely and efficiently, au-
tonomous cars should be able to predict the way in which the other traffic participants
will behave in the near future with a sufficient degree of accuracy. The prediction of their
motion is especially difficult because there are usually multiple interacting agents in a scene.
Also, driver behavior is multi-modal, e.g., in different situations, from a certain common
past trajectory, several different future trajectories may emerge. An autonomous car must
also find a balance between the safety of people involved (its own passengers and other
human drivers, or pedestrians) and choosing an efficient speed to reach its destination,
without any perturbations to existing traffic. Predicting the future state of its environment
is particularly important when the autonomous vehicle should act proactively, e.g., when
changing lanes, overtaking other traffic participants and managing intersections [45].

Other difficulties come from the requirement that such a system must be prepared to
handle rare, exceptional situations. However, because of the great number of possibilities
involved, it should take into account only a reasonable subset of possible future scene
evolutions [92] and often, it is important to identify the most probable solution [93].

Reasoning about the intentions of other drivers is a particularly helpful ability. Trajec-
tory prediction can be treated on two different levels of abstraction. On the higher level,
one can identify the overall intentions regarding a discrete set of possible actions, e.g.,
changing a lane or moving left or right in an intersection. On the lower level, one can
predict the actual continuous trajectories of the road users [94].

Trajectory prediction needs to be precise but also computationally efficient [95]. The
latter requirement can be satisfied by recognizing some constraints that reduce the size
of the problem space. For example, the current speed of a vehicle affects its stopping
time or the allowed curvature of its future trajectory so as to maintain the stability of the
vehicle. Even if each driver has his/her own driving style, it is assumed that traffic rules
will be obeyed, at least to some extent, and this will constrain the set of possible future
trajectories [93].

A recent white paper [96] states that a solution for the prediction and planning tasks
of an autonomous car may consider a combination of the following properties:

• Predicting only a short time into the future. Given the probabilistic nature of trajectory
prediction, the farther one predicts into the future, the less certain the results become.
Moreover, the probability distribution of the predicted trajectories disperses and thus
becomes less useful altogether;

• Relying on physics where possible. Machine learning models, e.g., deep networks, can be
used to predict trajectories, but they can suffer from approximation errors. Especially
in simple, non-interactive scenarios, e.g., when the vehicles have constant speeds or
accelerate/decelerate in a foreseeable manner, using physics-based extrapolations can
provide more precise results. Also, each type of vehicle may have its own dynamics,
so the identification of the vehicle class before prediction is a necessary initial step;

• Considering whether road users obey traffic rules. The autonomous car may plan as if the
other traffic participants observed the imposed traffic rules, e.g., cars stopping at red
lights or pedestrians not crossing the street in forbidden areas. However, defensive
safety measures must be in place to prevent accidents with the so-called “vulnerable”
road users;

• Recognizing particular traffic situations. For example, the behavior of traffic participants
caught in a traffic jam differs from their behavior in flowing traffic.

Further, Reference [96] asserts that the self-driving car system should be prepared
not only for the worst-case illegal behavior of the other traffic participants, but also for
their worst-case legal behavior. The prediction system should be able to learn what the
“reasonable” conduct of the other drivers may be in various circumstances. This may also
depend on local conditions, such as different “driving cultures” in different countries.

43

Mathematics 2021, 9, 660

3.1. Problem Description

To tackle the trajectory prediction task, one needs to have access to real-time data
from sensors such as LiDAR, radar, or camera, and to a functioning system that allows
detection and tracking of traffic participants in real-time. Examples of pieces of information
that describe a traffic participant are: the bounding box, position, velocity, acceleration,
heading, and yaw rate, i.e., the change in the heading angle. It may also be needed to
have mapping data of the area where the ego car is driving, i.e., road and crosswalk
locations, lane directions, and other relevant map-related information. Past and future
positions are represented in an ego car-centric coordinate system. Also, one needs to
model the static context with road and crosswalk polygons, as well as lane directions and
boundaries [97]. An example of available information on which the prediction module can
operate is presented in Figure 1.3 in [98].

More formally, prediction can be defined as reasoning about probable outcomes based
on past observations [99]. Let Xi

t be a vector with the spatial coordinates of agent i at
observation time t, with t ∈ {1, 2, ..., Tobs}, where Tobs is the present time step in the series
of observations. The past trajectory of agent i is a sequence Xi = {Xi

1, Xi
2, ..., Xi

Tobs
}. Based

on the past trajectories of all agents, one needs to estimate the future trajectories of all
agents, i.e., Ŷi = {Ŷi

Tobs+1, Ŷi
Tobs+2, ..., Ŷi

Tpred
}.

It is also possible to first generate the trajectories in the Frenet coordinate system
along the current lane of the ego vehicle, and then convert it to the Cartesian coordinate
system [93]. The Frenet coordinate system is useful to simplify the motion equations when
cars travel on curved roads. It consists of longitudinal and lateral axes, denoted as s and d,
respectively. The curve that goes through the center of the road determines the s axis and
indicates how far along the car is on the road. The d axis indicates the lateral displacement
of the car. d is 0 on the center of the road and its absolute value increases with the distance
from the center. Also, it can be positive or negative, depending on the side of the road.

3.2. Classification of Methods

There are several classification approaches presented in the literature regarding trajec-
tory planning methods.

An online tutorial [100] distinguishes the following categories:

1. Model-based approaches. They identify common behaviors of the vehicle, e.g., changing
lane, turning left, turning right, determining the maximum turning speed, etc. A
model is created for each possible trajectory the vehicle can follow and then probabili-
ties are computed for all these models. One of the simplest approaches to compute the
probabilities is the autonomous multiple modal (AMM) algorithm. First, the states of
the vehicle at times t − 1 and t are observed. Then the process model is computed
at time t − 1 resulting in the expected states for time t. Then the likelihood of the
expected state with the observed state is compared, and the probability of the model
at time t is computed. Finally, the model with the highest probability is selected;

2. Data-driven approaches. In these approaches a black box model (usually a neural
network) is trained using a large quantity of training data. After training, the model
is applied to the observed behavior to make the prediction. The training of the model
is usually computationally expensive and is made offline. On the other hand, the
prediction of the trajectories, once the model is trained, is quite fast and can be made
online, i.e., in real-time. Some of these methods also employ unsupervised clustering
of trajectories using, e.g., spectral clustering or agglomerative clustering, and define a
trajectory pattern for each cluster. In the prediction stage, the partial trajectory of the
vehicle is observed, it is compared with the prototype trajectories, and the trajectory
most similar to a prototype is predicted.

A survey [101] proposes a different classification based on three increasingly
abstract levels:

44

Mathematics 2021, 9, 660

1. Physics-based motion models. They apply the laws of physics to estimate the trajectory
of a vehicle, by considering inputs such as steering, acceleration, weight, and even
the coefficient of friction of the pavement in order to predict outputs such as position,
speed, and heading. Challenges are related to noisy sensors and sensitivity to initial
conditions. Methods include Kalman filters and Monte Carlo sampling. Advantages.
Such models are very often used in the context of safety, as classic fail-safe methods
when more sophisticated approaches, such as those using machine learning, are
utilized for prediction. They can also be employed in situations that lack intricate
interactions between road users. These models do not have to be very simple, as
they can include detailed representations of vehicle kinematics, road geometry, etc.
Disadvantages. They are usually appropriate for short-term predictions, e.g., less than
a second, because they cannot predict maneuvers that aim to accomplish higher level
goals, e.g., slowing down to prepare to turn in an intersection or because the vehicle
in front is expecting a pedestrian to cross the street;

2. Maneuver-based motion models. They try to estimate the series of maneuvers that the
cars perform on their way, but consider each vehicle to be deciding independently
from the other traffic participants. These models attempt to identify such maneuvers
as early as possible, and then assume that the maneuvers continue into the near future
and estimate the corresponding trajectories. They use either prototype trajectories or
maneuver intention estimation. Challenges are related to occlusions and the complexity
of intentions. Methods include clustering, hidden Markov models, and reinforcement
learning. Advantages. The identified maneuvers serve as a priori information or
evidence that conditions future motion. Therefore, they tend to be more reliable
than the physics-based ones and their predictions remain relevant for longer periods
of time. Disadvantages. Because of the independence assumption, these models
cannot handle the ways in which the maneuvers of a car influence the behavior of
its neighbors. The interactions between traffic participants can be strong in scenarios
with a high density of agents, e.g., intersections, possibly with specific priority rules.
By ignoring the inter-agent interactions, these models tend to provide less accurate
interpretations of such situations;

3. Interaction-aware motion models. This is the most general class of models, where the ma-
neuvers of the vehicles are considered to be influenced by those of their neighboring
road users. These models use prototype trajectories or dynamic Bayesian networks.
Challenges refer to the ability to detect interactions and to a possible combinatorial
explosion. Methods include coupled hidden Markov models, dynamically-linked
hidden Markov models, and even rule-based systems. Advantages. The inclusion
of inter-agent dependencies contributes to a better understanding of the situation.
On the one hand, they facilitate longer-term predictions compared to physics-based
models. On the other hand, they can be more reliable than maneuver-based models.
Disadvantages. Because they often have to compute all possible trajectories, they can
be inefficient from the computational point of view. Therefore, they may not be
appropriate for real-time use cases.

The higher the level of abstraction of a prediction model, the more computationally
expensive the model tends to become. Therefore, algorithms have been proposed that focus
only on the most plausible trajectories. Also, the performance of the prediction methods are
highly coupled with risk estimation possibilities. Therefore, the authors of [101] consider
that successful approaches in this area should consider both vehicle motion modeling and
risk estimation.

A classification somewhat similar with the previous two is mentioned in [102], which
distinguishes the following motion prediction categories of methods:

1. Learning-based motion prediction: learning from the observation of the past movements
of vehicles in order to predict the future motion;

2. Model-based motion prediction: using motion models;
3. Motion prediction with a cognitive architecture: trying to reproduce human behavior.

45

Mathematics 2021, 9, 660

In the rest of this section, we present some specific approaches classified by their main
prediction “paradigm”, namely neural networks and other methods, most of which use
some kind of stochastic representation of the agents’ behavior in the environment. This is
especially useful since some works use the same model to address different abstraction
levels of the trajectory prediction task.

3.3. Methods Using Neural Networks

Many of the approaches presented in the literature that are based on neural networks
use either recurrent neural networks (RNNs), which explicitly take into account a history
composed of the past states of the agents, or simpler convolutional neural networks (CNNs).
Other authors use conditional variational autoencoders (CVAEs) or more recent methods
such as generative adversarial networks (GANs) and attention mechanisms.

A generative system is DESIRE [99], which has the goal of predicting the future
locations of multiple interacting agents in dynamic (driving) scenes. It can handle the
multi-modal nature of the prediction, i.e., for the same set of inputs, the predicted outputs
may have several distinct values (a one-to-many mapping). It also takes into account the
scene context and the interactions between traffic participants. It uses a single end-to-end
neural network model, which the authors report to be computationally efficient. Using a
deep learning framework, DESIRE can rank and refine the set of generated trajectories by
considering the long-term future values, i.e., the sum of discounted rewards.

The corresponding optimization problem tries to maximize the potential future reward
of the prediction, using the following mechanisms (Figure 2 in [99]):

1. Diverse sample generation: A conditional variational auto-encoder (CVAE) is used to
capture the multi-modal nature of future trajectories. It uses stochastic latent variables
which can be sampled to generate multiple possible future hypotheses for a single
set of past information. The CVAE is combined with an RNN that encodes the past
trajectories, to generate hypotheses using another RNN;

2. Inverse optimal control (IOC)-based ranking and refinement: After including the context
and the interactions, the most likely trajectories are identified using potential future
rewards, similar to inverse optimal control (IOC) or inverse reinforcement learning
(IRL). The agents maximize long-term values. The authors believe that in this way the
generalization capabilities of the model are improved and the model is more reliable
for longer-term predictions. Since a reward function is difficult to design for general
traffic scenarios, it is learned by means of IOC. The RNN model assigns rewards to
each prediction hypothesis and assesses its quality based on the accumulated long-
term rewards. In the testing phase, there are multiple iterations in order to obtain
more accurate refinements of the future prediction;

3. Scene context fusion: This module aggregates the agent interactions and the context
encoded by a CNN. Then this information is passed to an RNN scoring module which
computes the rewards.

In [103], a method to predict the trajectories of the neighboring traffic participants is
proposed using a long short-term memory (LSTM) network, with the goal of taking into
account the relationship between the ego car and surrounding vehicles. The LSTM is a type
of recurrent neural network (RNN) capable of learning long-term dependencies. Generally,
an RNN has a vanishing gradient problem. An LSTM is able to deal with this through
a forget gate, designed to control the information between the memory cells in order to
store the most relevant previous data. The proposed method considers the ego car and
four surrounding vehicles. It is assumed that drivers generally pay attention to the relative
distance and speed with respect to the other cars when they intend to change a lane. Based
on this assumption, the relative amounts between the target and the four surrounding
vehicles are used as the input of the LSTM network. The feature vector xt at time step t is
defined by twelve features: lateral position of target vehicle, longitudinal position of target
vehicle, lateral speed of target vehicle, longitudinal speed of target vehicle, relative distance
between target and preceding vehicle, relative speed between target and preceding vehicle,

46

Mathematics 2021, 9, 660

relative distance between target and following vehicle, relative speed between target and
following vehicle, relative distance between target and lead vehicle, relative speed between
target and lead vehicle, relative distance between target and ego vehicle, and relative speed
between target and ego vehicle. The input vector of the LSTM network is sequence data
with xt’s for past time steps. The output is the feature vector at the next time step t + 1. A
trajectory is predicted by iteratively using the output result of the network as the input
vector for the subsequent time step.

In [44], an efficient trajectory prediction framework is proposed, which is also based
on an LSTM. This approach is data-driven and learns complex behaviors of the vehicles
from a massive amount of trajectory data. The LSTM receives the coordinates and velocities
of the surrounding vehicles as inputs and produces probabilistic information about the
future positions of the traffic participants on an occupancy grid map (Figure 1 in [44]). The
proposed method is reported to have better prediction accuracy than Kalman filtering.

The occupancy grid map is widely adopted for probabilistic localization and mapping.
It reflects the uncertainty of the predicted trajectories. In [44], the occupancy grid map
is constructed by partitioning the range under consideration into several grid cells. The
grid size is determined such that a grid cell approximately covers a quarter of a lane to
recognize the movement of the vehicles on the same lane, as well as the lengths of the
vehicles (Figure 3 in [44]).

When predictions are needed for different time ranges, e.g., Δ = 0.5, 1, 2 s, the LSTM
is trained independently for each time range. The LSTM produces the probability of
occupancy for each grid cell. Let (x, y) be the identifier of a cell in the occupancy grid. Then
the softmax layer in LSTM i computes the probability Po(ix, iy) for the grid element (ix, iy).

Finally, the outputs of the n LSTMs are combined using Po(ix, iy) = 1−
n
∏
i=1

(
1 − P(i)

o (ix, iy)
)

.

The probability of occupancy Po(ix, iy) summarizes the prediction of the future trajectory
for all n vehicles in the single map.

Alternatively, the same LSTM architecture can be used to directly predict the coor-
dinates of a vehicle as a regression task. Instead of using the softmax layer to compute
probabilities, the system can produce two real coordinate values x and y.

In [45], another LSTM model is described for interaction-aware motion prediction.
Confidence values are assigned to the maneuvers that are performed by vehicles. Based on
them, a multi-modal distribution over future motions is computed. More specifically, the
model computes probabilities for each type of maneuver, based on six maneuver classes.
The input to the LSTM is represented by the past positions of the ego car and its neighbors,
and the geometry of the road lanes.

Social LSTM [104], used for predicting the trajectory of pedestrians, uses LSTM with
a social pooling layer which allows neighbors, up to a certain distance, to exchange
information. The hidden states of their corresponding LSTMs are pooled together and used
as an input for the following prediction step.

Taking into account the time constraints of a real-time system, Reference [97] uses a
simple feed-forward CNN architecture for the prediction task. The authors use an RGB
image to represent the scene context. However, a vector of velocity, acceleration, and yaw
rate can also be included. In this case, this vector is concatenated with the flattened output
of the CNN. Then, these aggregated features are sent to a fully connected layer.

A similar approach is used in [18], which predicts multiple possible trajectories to-
gether with their probabilities. The context is also encoded as an image that is passed to a
CNN. Given the raster image and the state estimates of agents at a time step, the CNN is
used to predict a multitude of possible future state sequences, as well as the probability of
each sequence.

As part of a complete software stack for autonomous driving, NVIDIA created a
system based on a CNN, called PilotNet [105], which outputs steering angles given images
of the road ahead. This system is trained using road images paired with the steering angles
generated by a human driving a car that collects data. The authors identified the elements

47

Mathematics 2021, 9, 660

of the road image that have the greatest effect on the steering decision. It seems that in
addition to learning the obvious features such as lane markings, edges of roads and other
cars, the system learns more subtle features that would be hard to anticipate and program
by engineers, e.g., bushes lining the edge of the road and atypical vehicle classes, while
ignoring structures in the camera images that are not relevant to driving. This capability is
derived from data without the need of hand-crafted rules.

In [94], the authors propose a learnable end-to-end model with a deep neural network
that reasons about both high level behavior and long-term trajectories. Inspired by how
humans perform this task, the network exploits motion and prior knowledge about the road
topology in the form of maps containing semantic elements such as lanes, intersections,
and traffic lights. The so-called IntentNet is a CNN that outputs three types of variables in
a single forward pass: the detection scores for vehicle and background classes, the action
probabilities corresponding to the discrete intentions, and bounding box regressions in the
current and future time steps representing the intended trajectory. This design enables the
system to propagate uncertainty through the different components and is reported to be
computationally efficient.

A sequence-to-sequence CNN architecture is also used in [95] for an end-to-end
trajectory prediction model. The authors say that the results are comparable to those
of other, more complex approaches using LSTMs. Trajectory histories are embedded by
means of a fully connected layer. Stacked convolutional layers are used to learn temporal
dependencies in a consistent manner. Then, the features from the final convolutional
layer are passed through a fully-connected layer to simultaneously generate all predicted
positions. The authors report that the results when only one time step at a time is predicted
are worse than the results when all future times are predicted at the same time.

The CoverNet model [106] uses a CNN in combination with a trajectory set gener-
ated from the input state containing, e.g., speed, acceleration, and yaw rate. The image
features pass though some fully-connected layers and produce probabilities for each mode
using softmax.

The Y-net model [107] uses the U-Net architecture [108] for the semantic segmentation
of the input image. It also computes a distribution for the future trajectories, where the
sampled points are clustered using k-means [109].

The TraPHic model [110] uses a hybrid LSTM-CNN network. The trajectory informa-
tion is passed through LSTMs to construct three maps for the horizon, neighbors, and ego
vehicle. The first two are further passed through different CNNs and concatenated with
the ego car tensor. The resulting latent representations are passed through another LSTM
to predict the ego trajectory.

The EvolveGraph approach [111] uses graphs to model the behavior of heterogeneous
agents. It proposes an observation graph, fully connected, to represent the agents in the
scene, and an interaction graph for the agent–agent and agent–context interactions. It
also employs an encoder–decoder technique, with the encoder using softmax for edge
classification and the decoder generating a Gaussian mixture distribution for prediction.

The TNT model [112] uses VectorNet [113], a hierarchical graph neural network, to
encode the context of a scene, including road lanes and the position of the traffic signs,
beside the trajectories of the agents. The generated set of trajectories is finally filtered to
reject similar instances.

Generative approaches are also used. For example, PRECOG [114] follows the idea of
identifying high-level goals and condition the predictions based on those. It employs CNNs
and RNNs, and also a generative model where the latent variables stand for plausible
behavior of the agents in a scene. Reference [115] uses a so-called “conditional flow”
variational autoencoder (CF-VAE) that can handle multi-modal conditional distributions.
PECNet [116] conditions the predicted trajectories on their endpoints with a conditional
variational autoencoder (CVAE) and proposes the “truncation trick”, i.e., truncating the
sampling distribution with a smaller standard deviation for cases with a few samples to
increase the diversity for multi-modal prediction.

48

Mathematics 2021, 9, 660

Several trajectory prediction models employ Generative Adversarial Networks
(GANs) [117]. This architecture has two components: a generator and a discriminator.
Instead of training the generator model to directly match the desired data distribution, in
this case the generator is trained so that it increases the error rate of the discriminator. In
turn, the discriminator tries to distinguish whether a given sample belongs to the true data
distribution or is generated by the generator. Both components are engaged in a compe-
tition to outsmart the other one, and from this process the generator learns to generate
data that resemble the true data distribution. In the domain of trajectory prediction, Social
GAN [118] uses a GAN where the generator is composed of an LSTM-based encoder, a
context-pooling module, and an LSTM-based decoder. The discriminator uses LSTMs as
well.

Other models employ GANs in conjunction with attention mechanisms.
AEE-GAN [119] uses attention in order to alleviate the issues given by the complexity
of a scene with many heterogeneous interacting agents. For trajectory encoding, it also
uses LSTMs. A characteristic feature is the enhanced attention module containing two
components: one for recurrent visual attention enforcement (RVAE) and one for social
enforcement (SE). The results of the RVAE are visualized with the Grad-Cam method [120],
which creates a heatmap with the attention weights of the image pixels.

Another GAN-based architecture is Social Ways [121], which uses three types of losses:
discrimination loss for the discriminator, adversarial loss for the generator, and information
loss for both. SoPhie [122] uses a GAN module together with a feature extractor module
composed of a CNN and several LSTMs encoders, and an attention module with two
components: physical attention and social attention.

Attention mechanisms are also used with techniques other than GANs.
MHA-JAM [123] uses a CNN for the transformation of the input image and LSTMs for
trajectory encoding, whose outputs then pass to several attention heads that provide the
data for the LSTM decoders.

Other authors rely on methods to handle graphs explicitly. For example,
DAG-NET [124] uses an attention-enhanced graph neural network (GNN) together with a
recurrent variational encoder (RVAE) composed of a variational autoencoder (VAE) and
a recurrent neural network (RNN). Multiverse [125] is also based on a graph attention
network that is used by a convolutional recurrent neural network (ConvRNN). Unlike
other approaches, it uses an occupancy grid for a coarse-grained prediction, which is fur-
ther refined by a fine-grained prediction. Graphs are also employed by Trajectron++ [126],
where a scene is represented as a spatio-temporal graph in which nodes denote the agents
and edges denote their interactions. A local map is processed by a CNN, trajectories are
encoded with LSTMs, multi-modal solutions are handled by means of a CVAE, and the
trajectory decoders are based on gated recurrent units (GRUs).

P2TIRL [127] uses similar techniques, i.e., attention, GRU, CNN, but it conditions
trajectories by means of a policy learned with inverse reinforcement learning (IRL) on a
grid that represents the scene.

3.4. Methods Using Stochastic Techniques

The authors of [128] use Partially Observable Markov Decision Processes (POMDPs)
for behavior prediction and nonlinear receding horizon control, or model predictive control,
for trajectory planning. The POMDP models the interactions between the ego vehicle
and the obstacles. The action space is discretized into: acceleration, deceleration, and
maintaining the current speed. For each of the obstacle vehicles, three types of intentions
are considered: going straight, turning, and stopping. The reward function is chosen so
that the agents make the maximum progress on the road while avoiding collisions. A
particle filter is implemented to update the belief of each motion intention for each obstacle
vehicle. For the ego car, the bicycle kinematic model is used to update the state.

Article [129] presents a method to predict trajectories in dense city environments. The
authors recorded the trajectories of cars comprising over 1000 h of driving in San Francisco

49

Mathematics 2021, 9, 660

and New York. By relating the current position of an observed car to this large dataset of
previously exhibited motion in the same area, the prediction of its future position can be
directly performed. Under the hypothesis that the car follows the same trajectory pattern as
one of the cars in the past at the same location had followed. This non-parametric method
improves over time as the amount of samples increases and avoids the need for more
complex models.

Paper [93] presents a trajectory prediction method that combines the constant yaw
rate and acceleration (CYRA) motion model with maneuver recognition. The maneuver
recognition module selects the current maneuver from a predefined set (e.g., keep lane,
change lane to the right or to the left, and turn at an intersection) by comparing the center
lines of the road lanes to a local curvilinear model of the path of the vehicle. The proposed
method combines the short-term accuracy of the former technique and the longer-term
accuracy of the latter. The authors use mathematical models that take into account the
position, speed, and acceleration of vehicles.

In [130], a method is presented that evaluates the probabilistic prediction of real
traffic scenes with varying start conditions. The prediction is based on a particle filter,
which estimates the behavior-describing parameters of a microscopic traffic model, i.e., the
driving style as a distribution of behavior parameters. This method seems to be applicable
for long-term trajectory planning. The driving style parameters of the intelligent driving
model (IDM) are continuously estimated, together with the relative motion between objects.
By measuring vehicle accelerations, a driving style estimation can be provided from the first
detection without the need of a long observation time before performing the prediction. By
using a particle filter, it is possible to handle continuous behavior changes with arbitrarily
shaped parameter distributions. Forward propagation using Monte Carlo simulation
provides an approximate probability density function of the future scene.

In first-order Markov models, a state prediction depends only on the previous ob-
served state, therefore, if the set of past trajectories has common subsequences, the quality
of future predictions may be poor. An additional problem is that the data obtained from
sensors can be affected by occlusions. The approaches based on Gaussian processes (GPs)
overcome this problem by modeling motion patterns as velocity flow fields and provide
good performance in the presence of noise. Another advantage is that the predictions have
a simple analytical form, and this can be used to assess the risk in traffic scenarios.

As the traffic participants have a mutual influence on one another, their interaction is
explicitly considered in [102], which is inspired by an optimization problem. For motion
prediction, the collision probability of a vehicle performing a certain maneuver is com-
puted. The prediction is performed based on the safety evaluation and the assumption
that drivers avoid collisions. This combination of the intention of each driver and the
driver’s local risk assessment to perform a maneuver leads to an interaction-aware motion
prediction. The authors compute the probability that a collision will occur anywhere in
the whole scene, considering that the number of different maneuvers is limited (e.g., lane
changes, acceleration, maintaining the speed, deceleration, and combinations), and then
the proposed system assesses the danger of possible future trajectories.

The same concept of considering risk is used in [92], which applies a Bayesian ap-
proach combined with maneuver-based trajectory prediction. First, a collection of high-
level driving maneuvers is assessed for each vehicle with inference in the Bayesian network
that models the traffic scene. Then, maneuver-based probabilistic trajectory prediction
models are employed to predict the configuration of each vehicle forward in time. The
proposed system has three main parts: the maneuver detection, the prediction, and the
criticality assessment. In the last part, the individual joint distributions are used together
with a parametric free space map-based representation of the environment with probability
distribution functions to estimate the probability of a collision between the ego car and any
of its neighbors within the prediction horizon via Monte Carlo simulation.

The authors of [68] propose a framework with three interacting modules: a trajectory
prediction module based on a motion-based interaction model combined with maneuver-

50

Mathematics 2021, 9, 660

specific variational Gaussian mixture models, a maneuver recognition module based on
hidden Markov models (HMMs) for assigning confidence values for maneuvers being
performed by surrounding vehicles, and a vehicle interaction module that handles the
context of the scene and assigns final predictions by minimizing an energy function based
on outputs of the other two modules. The paper defines ten maneuver classes defined by
combinations of lane passes, overtakes, cut-ins, and drifts into the ego lane. A correspond-
ing energy minimization problem is set so that the predictions where cars come too close
to one another are penalized.

3.5. Mixed Methods

The authors of [131] use a model-based approach relying on vehicle kinematics and
an assumption that drivers plan trajectories in such a way as to minimize an unknown cost
function. They introduce an IRL algorithm to learn the cost functions of other vehicles in
an energy-based generative model. Langevin sampling, a Monte Carlo-based sampling
algorithm, is used to directly sample the control sequence. Langevin sampling is shown to
generate better predictions with higher stability. It seems that this algorithm is more flexible
than standard IRL methods, and can learn higher-level, non-Markovian cost functions
defined over entire trajectories. The cost functions are extended with neural networks in
order to combine the advantages of both model-based and model-free learning. The study
uses both environment structure, in the form of kinematic vehicular constraints, which
can be modeled very accurately, and the assumption that human drivers optimize their
trajectories according to a subjective cost function.

Multiple deep neural network architectures are designed to learn the cost functions,
some of which augment a set of hand-crafted features. The human-crafted cost functions
are defined as ten components: the distance to the goal, the distance to the center of the
lane, the penalty of collision to other vehicles (inversely proportional to the distance to
other vehicles), the L2-norm of acceleration and steering, the L2-norm for the difference of
acceleration and steering between two frames, the heading angle to lane, and the difference
to the speed limit.

The application of deep learning and mixture models for the prediction of human
drivers in traffic is investigated in [132]. The chosen approach is a mixture density net-
work (MDN) where the neural model has LSTM units and the mixture model consists
of univariate Gaussian distributions. It applies multi-task learning, in that by sharing
the representation between multiple tasks, one enables the model to generalize better.
A limitation is that the tasks usually have to be related to some extent. For example, a
single neural network can predict both longitudinal and lateral accelerations from the same
input, where the first few layers in the network are shared between the two tasks, and then
separated into two different layers to produce the final outputs. To capture the intention of
the driver, another layer is used in parallel to the motion prediction layer after the LSTM
layers. This layer indicates if the driver intends to switch lane and remain there within the
next four seconds.

Another algorithm is the Predictron [133]. This architecture is an abstract model
based on a Markov reward process, which can be rolled forward for a series of “imagined”
planning steps. The predictron is trained end-to-end with the objective that the accumulated
values computed in each forward pass should approximate the true value function. It is
reported to demonstrate more accurate predictions than conventional deep neural network
architectures.

The Monte Carlo Tree Search (MCTS) [134] algorithm can also be used in the context
of trajectory planning. It simulates the possible future trajectories starting from the current
state, then it evaluates the performance of the leaves using an evaluation function, e.g.,
a “value network”, and finally it uses these evaluations to update the internal values
along the trajectory. The architecture presented in [135], called MCTSnet, incorporates
the simulation-based search into a neural network, working with vector embeddings. Its
advantage is that gradient-based optimization can be used to train the network end-to-end.

51

Mathematics 2021, 9, 660

However, internal action sequences directing the control flow of the network cannot be
differentiated. To address this, an approximate method for credit assignment is proposed
that allows to learn this part of the search network from data.

3.6. Discussion

We summarize the works and their specific techniques presented in the trajectory
prediction section in Table 2. The table is sorted by publication year in order to give the
reader an impression about the overall progress in this field.

The datasets that were used as benchmarks by the papers were also included. We
must mention that all authors report experimental results on some kind of datasets, e.g.,
driving data specifically collected in some areas of the world or synthetic data collected
from simulators. However, only the publicly available, real-world datasets were included
in the table.

Information about the general capabilities of the methods was included in terms of
the ability to provide multi-modal predictions and whether the social context, i.e., the
other agents in the scene, was taken into account. Here, we only mention the approaches
that handle the interactions and the context explicitly, e.g., with some kind of pooling
mechanism or graph representation, not those that just consider an image as the input,
which implicitly contains graphical depictions of all agents.

Some of the works also predict the trajectories of pedestrians, not only vehicles.
However, we do not distinguish between these case studies, but only mention the main
methods which can be used in both situations.

Table 2. Overview of trajectory prediction solutions.

Contribution Year Datasets Multi-Modal Social Context Methods

[93] 2013 physics model (CYRA),
maneuver recognition

[102] 2013 Yes
interaction-based, risk
estimation, discrete
maneauvers

[92] 2016 Yes

Bayesian networks,
maneuver-based, risk
estimation, Monte Carlo
simulation

Social LSTM [104] 2016 ETH, UCY Yes LSTM

DESIRE [99] 2017 KITTY, Stanford
Drone Yes Yes CVAE, GRU, IRL

[44] 2017
Yes (probabilities
of occupancy grid
cells)

Yes LSTM, occupancy grid,
softmax

PilotNet [105] 2017 CNN, outputs steering angles

[130] 2017 Yes
particle filter, IDM, driving
style estimation, Monte Carlo
simulation

Predictron [133] 2017
Markov reward process, DNN
(fully-connected deep neural
network)

[103] 2018 I-80 Yes (only four
neighbors) LSTM

[45] 2018 NGSIM, I-80 Yes Yes LSTM, maneuver-based

[97] 2018 CNN

[18] 2018 Yes CNN

52

Mathematics 2021, 9, 660

Table 2. Cont.

Contribution Year Datasets Multi-Modal Social Context Methods

IntentNet [94] 2018 Yes CNN, intention-based,
discrete intention set

[95] 2018 ETH, UCY CNN

[128] 2018 Yes POMDP, particle filter,
discrete states and actions

[129] 2018 probabilistic sampling

[68] 2018 Yes Gaussian mixture models,
HMM, discrete maneauvers

[132] 2018 NGSIM DNN, MDN, LSTM

MCTSNet [135] 2018 DNN, vector embeddings,
Monte Carlo tree search

Social GAN [118] 2018 ETH, UCY Yes Yes GAN, LSTM

[131] 2019 NGSIM IRL, Langevin sampling,
DNN

PRECOG [114] 2019 nuScenes Yes Yes GRU, CNN, generative model

Social Ways [121] 2019 ETH, UCY Yes Yes GAN, LSTM, generative
model, attention

SoPhie [122] 2019 ETH, UCY,
Stanford Drone Yes Yes GAN, attention, CNN, LSTM

TraPHic [110] 2019 NGSIM Yes LSTM-CNN hybrid network

MHA-JAM [123] 2020 nuScenes Yes Yes multi-head attention, LSTM,
CNN

AEE-GAN [119] 2020 Waymo, Stanford
Drone, ETH, UCY Yes Yes attention, GAN, LSTM

CF-VAE [115] 2020 Stanford Drone Yes Yes CF-VAE

CoverNet [106] 2020 nuScenes Yes softmax for discrete trajectory
set

DAG-NET [124] 2020 Stanford Drone,
SportVU Yes Yes VAE, RNN, attention, GNN

EvolveGraph [111] 2020
Honda 3D,
Stanford Drone,
SportVU

Yes Yes graphs, GRU, Gaussian
mixture

Multiverse [125] 2020 VIRAT/ActEV Yes ConvRNN, occupancy grid,
graph attention network

P2TIRL [127] 2020 Stanford Drone Yes IRL, attention, GRU, CNN

PECNet [116] 2020 Stanford Drone,
ETH, UCY Yes Yes CVAE (Endpoint VAE),

truncation trick

TNT [112] 2020
Argoverse,
Interaction,
Stanford Drone

Yes Yes VectorNet, MLP (classic
multilayer percepton)

Trajectron++ [126] 2020 ETH, UCY,
nuScenes Yes Yes LSTM, attention, GRU, CVAE,

Gaussian mixture model

Y-Net [107] 2020 Stanford Drone,
ETH, UCY Yes U-Net, k-means

In general, many authors use CNNs to process the graphical inputs, e.g., camera-
based images or maps, and LSTMs for trajectory encoding and decoding. Because of

53

Mathematics 2021, 9, 660

the constraints of real-time requirements, some works also use CNN architectures for
prediction [97]. They seem to be able to model complex relations and capture spatial
correlations in the data [136]. Some papers state that they are also competitive in modeling
temporal data [95], with performance comparable to that of the LSTMs, but with a much
simpler internal structure. Multi-modal predictions are often made with some kind of
generative models such as CVAE. The methods based on CNNs seem to be more lightweight
and fast than those containing LSTM and CVAE components. Still, a large number of
approaches combine these techniques in some way.

Other works employ more recent techniques such as GANs and graph representa-
tions in conjunction with neural networks. Attention mechanisms also seem promising to
distinguish the important features in the context of a complex scene with many interact-
ing agents.

The data themselves may cause difficulties, because a network only learns what is
present in the data, and hopefully generalizes well, but there may be situations where the
humans do not behave according to previous observations. This is one drawback of using
neural networks. However, it seems that the advantages of using data-driven approaches
outperform the disadvantages.

Many methods that belong to the stochastic paradigm try to estimate the probabilities
of discrete maneuvers. When using, e.g., hidden Markov models, the movement of the
traffic participants is evaluated independently, an assumption which is true only for simple
scenarios. Gaussian Process regression can quantify uncertainty, but it is also limited in its
ability to model complex interactions. For this purpose, other techniques such as Bayesian
networks can be used instead, with the disadvantage of an increased computation time
and thus a difficulty in handling real-time learning tasks [97].

Although it is possible to do multi-step prediction with a Kalman filter, it cannot be
extended far into the future with reasonable accuracy. A multi-step prediction done solely
by a Kalman filter was found to be accurate up until 10–15 time steps, after which the
predictions diverged and ended up being worse than constant velocity inference [132]. This
emphasizes the advantages of data-driven approaches, as it is possible to observe almost
an infinite number of variables that may all affect the driver, whereas the Kalman filter
relies solely on the physical movement of the vehicle.

Another approach is to learn policies in a supervised way, e.g., imitation learning. The
cost function of a human driver can be estimated with inverse reinforcement learning and
then a policy can be extracted from the cost function [136]. However, this may again be
inefficient for real-time applications [97].

In multi-agent contexts such as those defined by traffic scenarios, since an agent’s
actions depend on the other agents’ actions, uncertainty can propagate to future states with
the consequence that an agent completely stops because all possible actions are deemed as
unacceptably unsafe. This is known as the “freezing-robot” problem. Deadlock avoidance
and multi-objective decision making are very common in practice, e.g., in autonomous
robotics [137–139].

Finally, it should be mentioned that in this section, we have addressed the trajectory
prediction problem. A related, but distinct problem, is trajectory planning, i.e., finding
an optimal path from the current location to a given goal location. Its aim is to produce
smooth trajectories with small changes in curvature, so as to minimize both the lateral and
the longitudinal acceleration of the ego vehicle. For this purpose, there are several methods
reported in the literature, e.g., using cubic spline interpolation, trigonometric spline inter-
polation, Bézier curves, or clothoids, i.e., curves with a complex mathematical definition,
which have a linear relation between the curvature and the arc length, and allow smooth
transitions from a straight line to a circle arc or vice versa. Deep reinforcement learning
methods [140,141] such as policy gradients [142], deep Q-network [143], actor-critic [144],
asynchronous advantage actor-critic [145], proximal policy optimization [146], trust region
policy optimization [147], imagination-augmented agents [148], or proximal gradient tem-

54

Mathematics 2021, 9, 660

poral difference learning [149] can also be used to decide the possible maneuvers that the
ego car can make in order to optimize criteria related to risk and efficiency.

4. Conclusions

Learning-based approaches have basically become the norm for autonomous driving
problems. Although explicit rule-based methods may have an important advantage in the
form of explicit knowledge, hand-crafted rules usually take a considerable amount of effort
to devise and validate, and usually do not have satisfactory generalization capabilities
because of the great variability of situations that may appear in a driving context. Unfortu-
nately, techniques based on learning typically require large quantities of data in order to
cover a sufficiently large part of the space of possible driving behaviors.

Because they capture the generative structure of vehicle trajectories, model-based
methods can potentially learn more from fewer data than model-free methods. However,
good cost functions are challenging to learn, and simple, hand-crafted representations
may not generalize well across tasks and contexts. In general, model-based methods can
be less flexible and may underperform model-free methods in the limit of infinite data.
Model-free methods take a data-driven approach, aiming to learn predictive distributions
over trajectories directly from data. These approaches are more flexible and require less
knowledge engineering in terms of the type of vehicles, maneuvers, and scenarios, but the
amount of data they require may be very large.

The past three decades have seen increasingly rapid progress in driverless vehicle
technology. In addition to the advances in computing and perception hardware, this rapid
progress has been enabled by major theoretical progress in computational aspects. Au-
tonomous cars are complex systems that can be decomposed into a hierarchy of decision
making problems, where the solution of one problem is the input to the next. The break-
down into individual decision making problems has enabled the use of well-developed
methods and technologies from a variety of research areas.

This literature review has concentrated only on two aspects: tracking and trajectory
prediction. It can serve as a reference for assessing the computational tradeoffs between
various choices for algorithm design.

Author Contributions: Writing—Sections 1 and 2, M.G., Sections 3 and 4, F.L.; funding acquisition,
F.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Continental AG within the Proreta 5 project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We kindly thank Continental AG for their great cooperation within Proreta 5,
which is a joint research project of the Technical University of Darmstadt, University of Bremen,
“Gheorghe Asachi” Technical University of Iaşi and Continental AG.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, L.; Ai, H.; Shang, C.; Zhuang, Z.; Bai, B. Online multi-object tracking with convolutional neural networks. In Proceedings
of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 645–649.
[CrossRef]

2. Liu, Q.; Lu, X.; He, Z.; Zhang, C.; Chen, W.S. Deep Convolutional Neural Networks for Thermal Infrared Object Tracking.
Knowl.-Based Syst. 2017. [CrossRef]

3. Danelljan, M.; Häger, G.; Khan, F.S.; Felsberg, M. Convolutional Features for Correlation Filter Based Visual Tracking. In
Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 7–13 December
2015; pp. 621–629. [CrossRef]

55

Mathematics 2021, 9, 660

4. Mozhdehi, R.J.; Reznichenko, Y.; Siddique, A.; Medeiros, H. Deep Convolutional Particle Filter with Adaptive Correlation Maps
for Visual Tracking. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece,
7–10 October 2018; pp. 798–802. [CrossRef]

5. Song, Y.; Ma, C.; Gong, L.; Zhang, J.; Lau, R.W.H.; Yang, M.H. CREST: Convolutional Residual Learning for Visual Tracking.
In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp.
2574–2583.

6. Wang, C.; Galoogahi, H.K.; Lin, C.H.; Lucey, S. Deep-LK for Efficient Adaptive Object Tracking. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 627–634.

7. Du, M.; Ding, Y.; Meng, X.; Wei, H.L.; Zhao, Y. Distractor-Aware Deep Regression for Visual Tracking. Sensors 2019, 19, 387.
[CrossRef] [PubMed]

8. Zhou, H.; Ummenhofer, B.; Brox, T. DeepTAM: Deep Tracking and Mapping. In Computer Vision—ECCV 2018; Ferrari, V., Hebert,
M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 851–868.

9. Danelljan, M.; Robinson, A.; Khan, F.S.; Felsberg, M. Beyond Correlation Filters: Learning Continuous Convolution Operators for
Visual Tracking. In Proceedings of the Computer Vision—ECCV 2016—14th European Conference, Amsterdam, The Netherlands,
11–14 October 2016; pp. 472–488. [CrossRef]

10. Danelljan, M.; Bhat, G.; Khan, F.S.; Felsberg, M. ECO: Efficient Convolution Operators for Tracking. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 6931–6939.
[CrossRef]

11. Nam, H.; Han, B. Learning Multi-domain Convolutional Neural Networks for Visual Tracking. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4293–4302.

12. Fan, H.; Ling, H. SANet: Structure-Aware Network for Visual Tracking. In Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 2217–2224.

13. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017
IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [CrossRef]

14. Li, K.; Kong, Y.; Fu, Y. Multi-stream Deep Similarity Learning Networks for Visual Tracking. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, IJCAI’17, Melbourne, Australia, 19–25 August 2017; pp. 2166–2172.

15. Chu, Q.; Ouyang, W.; Li, H.; Wang, X.; Liu, B.; Yu, N. Online Multi-object Tracking Using CNN-Based Single Object Tracker with
Spatial-Temporal Attention Mechanism. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV),
Venice, Italy, 22–29 October 2017; pp. 4846–4855.

16. Cui, Z.; Lu, N.; Jing, X.; Shi, X. Fast Dynamic Convolutional Neural Networks for Visual Tracking. In Proceedings of the 10th
Asian Conference on Machine Learning, Beijing, China, 14–16 November 2018.

17. Fabbri, M.; Lanzi, F.; Calderara, S.; Palazzi, A.; Vezzani, R.; Cucchiara, R. Learning to Detect and Track Visible and Occluded Body
Joints in a Virtual World. In Proceedings of the Computer Vision—ECCV 2018—15th European Conference, Munich, Germany,
8–14 September 2018; pp. 450–466. [CrossRef]

18. Cui, H.; Radosavljevic, V.; Chou, F.; Lin, T.; Nguyen, T.; Huang, T.; Schneider, J.; Djuric, N. Multimodal Trajectory Predictions for
Autonomous Driving using Deep Convolutional Networks. In Proceedings of the 2019 International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2090-2096. [CrossRef]

19. Chu, P.; Fan, H.; Tan, C.C.; Ling, H. Online Multi-Object Tracking With Instance-Aware Tracker and Dynamic Model Refreshment.
In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 7–11
January 2019; pp. 161–170. [CrossRef]

20. Shahian Jahromi, B.; Tulabandhula, T.; Cetin, S. Real-Time Hybrid Multi-Sensor Fusion Framework for Perception in Autonomous
Vehicles. Sensors 2019, 19, 4357. [CrossRef] [PubMed]

21. Bhat, G.; Johnander, J.; Danelljan, M.; Khan, F.S.; Felsberg, M. Unveiling the Power of Deep Tracking. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

22. Qi, Y.; Zhang, S.; Qin, L.; Yao, H.; Huang, Q.; Lim, J.; Yang, M. Hedged Deep Tracking. In Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4303–4311. [CrossRef]

23. Ristani, E.; Tomasi, C. Features for Multi-target Multi-camera Tracking and Re-identification. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6036–6046.
[CrossRef]

24. Teng, Z.; Xing, J.; Wang, Q.; Lang, C.; Feng, S.; Jin, Y. Robust Object Tracking Based on Temporal and Spatial Deep Networks.
In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp.
1153–1162. [CrossRef]

25. Yoon, Y.C.; Boragule, A.; Yoon, K.; Jeon, M. Online Multi-Object Tracking with Historical Appearance Matching and Scene
Adaptive Detection Filtering. In Proceedings of the 2018 15th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), Auckland, New Zealand, 27–30 November 2018; pp. 1–6.

26. Sun, S.; Akhtar, N.; Song, H.; Mian, A.S.; Shah, M. Deep Affinity Network for Multiple Object Tracking. IEEE Trans. Pattern Anal.
Mach. Intell. 2021, 43, 104–119. [CrossRef] [PubMed]

27. Li, S.; Ma, B.; Chang, H.; Shan, S.; Chen, X. Continuity-Discrimination Convolutional Neural Network for Visual Object Tracking.
In Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018.

56

Mathematics 2021, 9, 660

28. Hahn, M.; Chen, S.; Dehghan, A. Deep Tracking: Visual Tracking Using Deep Convolutional Networks. CoRR 2015,
arXiv:1512.03993v1 [cs.CV].

29. Yang, L.; Liu, R.; Zhang, D.; Zhang, L. Deep Location-Specific Tracking. In Proceedings of the 25th ACM International Conference
on Multimedia, MM ’17, Mountain View, CA, USA, 23–27 October 2017; ACM: New York, NY, USA, 2017; pp. 1309–1317.
[CrossRef]

30. Feichtenhofer, C.; Pinz, A.; Zisserman, A. Detect to Track and Track to Detect. In Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3057–3065.

31. Jiang, X.; Zhen, X.; Zhang, B.; Yang, J.; Cao, X. Deep Collaborative Tracking Networks. In Proceedings of the 29th The British
Machine Vision Conference, Newcastle, UK, 3–6 September 2018.

32. Chen, L.; Lou, J.; Xu, F.; Ren, M. Grid-based multi-object tracking with Siamese CNN based appearance edge and access region
mechanism. Multimed. Tools Appl. 2020, 79. [CrossRef]

33. Zhang, W.; Du, Y.; Chen, Z.; Deng, J.; Liu, P. Robust adaptive learning with Siamese network architecture for visual tracking. Vis.
Comput. 2020. [CrossRef]

34. Son, J.; Baek, M.; Cho, M.; Han, B. Multi-object Tracking with Quadruplet Convolutional Neural Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3786–3795.
[CrossRef]

35. Schulter, S.; Vernaza, P.; Choi, W.; Chandraker, M.K. Deep Network Flow for Multi-object Tracking. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2730–2739.

36. Wang, N.; Zou, Q.; Ma, Q.; Huang, Y.; Luan, D. A light tracker for online multiple pedestrian tracking. J. Real-Time Image Process.
2021, 18, 1–17. [CrossRef]

37. Feng, W.; Hu, Z.; Wu, W.; Yan, J.; Ouyang, W. Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification.
CoRR 2019, arXiv:1901.06129v1 [cs.CV] .

38. Zhu, J.; Yang, H.; Liu, N.; Kim, M.; Zhang, W.; Yang, M.H. Online Multi-Object Tracking with Dual Matching Attention Networks.
In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Springer International Publishing:
Cham, Switzerland, 2018; pp. 379–396.

39. Pu, S.; Song, Y.; Ma, C.; Zhang, H.; Yang, M.H. Deep Attentive Tracking via Reciprocative Learning. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18, Montréal, QC, Canada, 3–8 December 2018.

40. Wang, Y.; Zhang, Z.; Zhang, N.; Zeng, D. Attention Modulated Multiple Object Tracking with Motion Enhancement and Dual
Correlation. Symmetry 2021, 13, 266. [CrossRef]

41. Meng, F.; Wang, X.; Wang, D.; Shao, F.; Fu, L. Spatial–Semantic and Temporal Attention Mechanism-Based Online Multi-Object
Tracking. Sensors 2020, 20, 1653. [CrossRef] [PubMed]

42. Milan, A.; Rezatofighi, S.H.; Dick, A.; Reid, I.; Schindler, K. Online Multi-Target Tracking using Recurrent Neural Networks. In
Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.

43. Sadeghian, A.; Alahi, A.; Savarese, S. Tracking the Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies.
In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
pp. 300–311.

44. Kim, B.; Kang, C.M.; Kim, J.; Lee, S.H.; Chung, C.C.; Choi, J.W. Probabilistic vehicle trajectory prediction over occupancy grid
map via recurrent neural network. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 399–404.

45. Deo, N.; Trivedi, M.M. Multi-Modal Trajectory Prediction of Surrounding Vehicles with Maneuver based LSTMs. In Proceedings
of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1179–1184.

46. Ma, C.; Yang, C.; Yang, F.; Zhuang, Y.; Zhang, Z.; Jia, H.; Xie, X. Trajectory Factory: Tracklet Cleaving and Re-Connection by Deep
Siamese Bi-GRU for Multiple Object Tracking. In Proceedings of the 2018 IEEE International Conference on Multimedia and
Expo (ICME), San Diego, CA, USA, 23–27 July 2018. [CrossRef]

47. Kim, C.; Li, F.; Rehg, J.M. Multi-object Tracking with Neural Gating Using Bilinear LSTM. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

48. Ondrúška, P.; Posner, I. Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, AAAI’16, Phoenix, AZ, USA, 12–17 February 2016.

49. Dequaire, J.; Ondruska, P.; Rao, D.; Wang, D.Z.; Posner, I. Deep tracking in the wild: End-to-end tracking using recurrent neural
networks. Int. J. Robot. Res. 2018, 37, 492–512. [CrossRef]

50. Chen, C.; Zhao, P.; Lu, C.; Wang, W.; Markham, A.; Trigoni, N. Deep-Learning-Based Pedestrian Inertial Navigation: Methods,
Data Set, and On-Device Inference. IEEE Internet Things J. 2020, 7, 4431–4441. [CrossRef]

51. Du, Y.; Yan, Y.; Chen, S.; Hua, Y. Object-adaptive LSTM network for real-time visual tracking with adversarial data augmentation.
Neurocomputing 2020, 384, 67–83. [CrossRef]

52. Huang, Z.; Hasan, A.; Shin, K.; Li, R.; Driggs-Campbell, K. Long-Term Pedestrian Trajectory Prediction Using Mutable Intention
Filter and Warp LSTM. IEEE Robot. Autom. Lett. 2021, 6, 542–549. [CrossRef]

53. Quan, R.; Zhu, L.; Wu, Y.; Yang, Y. Holistic LSTM for Pedestrian Trajectory Prediction. IEEE Trans. Image Process. 2021,
30, 3229–3239. [CrossRef] [PubMed]

57

Mathematics 2021, 9, 660

54. Song, X.; Chen, K.; Li, X.; Sun, J.; Hou, B.; Cui, Y.; Zhang, B.; Xiong, G.; Wang, Z. Pedestrian Trajectory Prediction Based on Deep
Convolutional LSTM Network. IEEE Trans. Intell. Transp. Syst. 2020, 1–18. [CrossRef]

55. Huang, R.; Zhang, W.; Kundu, A.; Pantofaru, C.; Ross, D.A.; Funkhouser, T.; Fathi, A. An LSTM Approach to Temporal 3D Object
Detection in LiDAR Point Clouds. In Computer Vision—ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer
International Publishing: Cham, Switzerland, 2020; pp. 266–282.

56. Dan, X. Spatial-Temporal Block and LSTM Network for Pedestrian Trajectories Prediction. arXiv 2020, arXiv:2009.10468.
57. Zhou, Y.; Wu, H.; Cheng, H.; Qi, K.; Hu, K.; Kang, C.; Zheng, J. Social graph convolutional LSTM for pedestrian trajectory

prediction. IET Intell. Transp. Syst. 2021, 15, 396–405. [CrossRef]
58. Fernando, T.; Denman, S.; Sridharan, S.; Fookes, C. Tracking by prediction: A deep generative model for multi-person localisation

and tracking. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV 2018), Lake Tahoe, NV,
USA, 12–15 March 2018; IEEE: Lake Tahoe, NV, USA, 2018; pp. 1122–1132. [CrossRef]

59. Ren, L.; Lu, J.; Wang, Z.; Tian, Q.; Zhou, J. Collaborative Deep Reinforcement Learning for Multi-Object Tracking. In Proceedings
of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

60. Li, J.; Yao, L.; Xu, X.; Cheng, B.; Ren, J. Deep reinforcement learning for pedestrian collision avoidance and human-machine
cooperative driving. Inf. Sci. 2020, 532, 110–124. [CrossRef]

61. Bae, S.; Yoon, K. Robust Online Multi-object Tracking Based on Tracklet Confidence and Online Discriminative Appearance
Learning. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28
June 2014; pp. 1218–1225. [CrossRef]

62. Receveur, J.B.; Victor, S.; Melchior, P. Autonomous car decision making and trajectory tracking based on genetic algorithms and
fractional potential fields. Intell. Serv. Robot. 2020, 13. [CrossRef]

63. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE
International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [CrossRef]

64. Bergmann, P.; Meinhardt, T.; Leal-Taixé, L. Tracking without bells and whistles. arXiv 2019, arXiv:1903.05625.
65. Mogelmose, A.; Trivedi, M.M.; Moeslund, T.B. Trajectory analysis and prediction for improved pedestrian safety: Integrated

framework and evaluations. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July
2015; pp. 330–335. [CrossRef]

66. Xiang, Y.; Alahi, A.; Savarese, S. Learning to Track: Online Multi-object Tracking by Decision Making. In Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 4705–4713. [CrossRef]

67. Rangesh, A.; Trivedi, M.M. No Blind Spots: Full-Surround Multi-Object Tracking for Autonomous Vehicles using Cameras and
LiDARs. arXiv 2019, arXiv:1802.08755.

68. Deo, N.; Rangesh, A.; Trivedi, M.M. How Would Surround Vehicles Move? A Unified Framework for Maneuver Classification
and Motion Prediction. IEEE Trans. Intell. Veh. 2018, 3, 129–140. [CrossRef]

69. Maksai, A.; Wang, X.; Fleuret, F.; Fua, P. Non-Markovian Globally Consistent Multi-object Tracking. In Proceedings of the 2017
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2563–2573. [CrossRef]

70. Milan, A.; Roth, S.; Schindler, K. Continuous Energy Minimization for Multitarget Tracking. IEEE TPAMI 2014, 36, 58–72.
[CrossRef] [PubMed]

71. Solera, F.; Calderara, S.; Cucchiara, R. Learning to Divide and Conquer for Online Multi-target Tracking. In Proceedings of the
2015 IEEE International Conference on Computer Vision (ICCV), ICCV ’15, Santiago, Chile, 7–13 December 2015; IEEE Computer
Society: Washington, DC, USA, 2015; pp. 4373–4381. [CrossRef]

72. Dicle, C.; Camps, O.I.; Sznaier, M. The Way They Move: Tracking Multiple Targets with Similar Appearance. In Proceedings
of the 2013 IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013; pp. 2304–2311.
[CrossRef]

73. Kim, C.; Li, F.; Ciptadi, A.; Rehg, J.M. Multiple Hypothesis Tracking Revisited. In Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 4696–4704. [CrossRef]

74. Sharma, S.; Ansari, J.A.; Murthy, J.K.; Krishna, K.M. Beyond Pixels: Leveraging Geometry and Shape Cues for Online Multi-
Object Tracking. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD,
Australia, 21–25 May 2018; pp. 3508–3515.

75. Andersen, H.; Chong, Z.J.; Eng, Y.H.; Pendleton, S.; Ang, M.H. Geometric path tracking algorithm for autonomous driving in
pedestrian environment. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM),
Banff, AB, Canada, 12–15 July 2016; pp. 1669–1674. [CrossRef]

76. Manjunath, A.; Liu, Y.; Henriques, B.; Engstle, A. Radar Based Object Detection and Tracking for Autonomous Driving. In
Proceedings of the 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Munich, Germany,
15–17 April 2018; pp. 1–4. [CrossRef]

77. Cao, J.; Song, C.; Peng, S.; Song, S.; Zhang, X.; Xiao, F. Trajectory Tracking Control Algorithm for Autonomous Vehicle Considering
Cornering Characteristics. IEEE Access 2020, 8, 59470–59484. [CrossRef]

78. Kampker, A.; Sefati, M.; Rachman, A.S.A.; Kreisköther, K.; Campoy, P. Towards Multi-Object Detection and Tracking in Urban
Scenario under Uncertainties. arXiv 2018, arXiv:1801.02686.

58

Mathematics 2021, 9, 660

79. Bochinski, E.; Eiselein, V.; Sikora, T. High-Speed tracking-by-detection without using image information. In Proceedings of the
2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy, 29 August–1
September 2017; pp. 1–6. [CrossRef]

80. Shan, Y.; Zheng, B.; Chen, L.; Chen, L.; Chen, D. A Reinforcement Learning-Based Adaptive Path Tracking Approach for
Autonomous Driving. IEEE Trans. Veh. Technol. 2020, 69, 10581–10595. [CrossRef]

81. Ristani, E.; Solera, F.; Zou, R.S.; Cucchiara, R.; Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera
Tracking. arXiv 2016, arXiv:1609.01775.

82. Pi, W.; Yang, P.; Duan, D.; Chen, C.; Cheng, X.; Yang, L.; Li, H. Malicious User Detection for Cooperative Mobility Tracking in
Autonomous Driving. IEEE Internet Things J. 2020, 7, 4922–4936. [CrossRef]

83. Chari, V.; Lacoste-Julien, S.; Laptev, I.; Sivic, J. On pairwise costs for network flow multi-object tracking. In Proceedings of the
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5537–5545.

84. Berclaz, J.; Fleuret, F.; Turetken, E.; Fua, P. Multiple Object Tracking Using K-Shortest Paths Optimization. IEEE Trans. Pattern
Anal. Mach. Intell. 2011, 33, 1806–1819. [CrossRef] [PubMed]

85. Pirsiavash, H.; Ramanan, D.; Fowlkes, C.C. Globally-optimal greedy algorithms for tracking a variable number of objects. In
Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1201–1208. [CrossRef]

86. Ristani, E.; Tomasi, C. Tracking Multiple People Online and in Real Time. In Proceedings of the 12th Asian Conference on
Computer Vision, Singapore, 1–5 November 2014.

87. Roshan Zamir, A.; Dehghan, A.; Shah, M. GMCP-Tracker: Global Multi-object Tracking Using Generalized Minimum Clique
Graphs. In Computer Vision—ECCV 2012; Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C., Eds.; Springer: Heidel-
berg/Berlin, Germany, 2012; pp. 343–356.

88. Naiel, M.A.; Ahmad, M.O.; Swamy, M.; Lim, J.; Yang, M.H. Online multi-object tracking via robust collaborative model and
sample selection. Comput. Vis. Image Underst. 2017, 154, 94–107. [CrossRef]

89. Wen, L.; Li, W.; Yan, J.; Lei, Z.; Yi, D.; Li, S.Z. Multiple Target Tracking Based on Undirected Hierarchical Relation Hypergraph. In
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 1282–1289. [CrossRef]

90. Wen, L.; Du, D.; Li, S.; Bian, X.; Lyu, S. Learning Non-Uniform Hypergraph for Multi-Object Tracking. In Proceedings of the
AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 8981–8988. [CrossRef]

91. Dolatabadi, M.; Elfring, J.; van de Molengraft, R. Multiple-Joint Pedestrian Tracking Using Periodic Models. Sensors 2020, 20, 6917.
[CrossRef] [PubMed]

92. Schreier, M.; Willert, V.; Adamy, J. An Integrated Approach to Maneuver-Based Trajectory Prediction and Criticality Assessment
in Arbitrary Road Environments. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2751–2766. [CrossRef]

93. Houenou, A.; Bonnifait, P.; Cherfaoui, V.; Yao, W. Vehicle trajectory prediction based on motion model and maneuver recognition.
In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November
2013; pp. 4363–4369. [CrossRef]

94. Casas, S.; Luo, W.; Urtasun, R. IntentNet: Learning to Predict Intention from Raw Sensor Data. In Proceedings of the 2nd Annual
Conference on Robot Learning, CoRL 2018, Zürich, Switzerland, 29–31 October 2018; pp. 947–956.

95. Nikhil, N.; Morris, B.T. Convolutional Neural Network for Trajectory Prediction. In Proceedings of the Computer Vision—ECCV
2018 Workshops, Munich, Germany, 8–14 September 2018; pp. 186–196. . [CrossRef]

96. Aptiv.; Audi.; Baidu.; BMW.; Continental.; Daimler.; Fiat.; Chrysler Automobiles.; HERE.; Infineon.; Intel.; Volkswagen. Safety
First for Automated Driving. Available online: https://www.daimler.com/documents/innovation/other/safety-first-for-
automated-driving.pdf (accessed on 2 July 2019).

97. Djuric, N.; Radosavljevic, V.; Cui, H.; Nguyen, T.; Chou, F.; Lin, T.; Schneider, J. Motion Prediction of Traffic Actors for
Autonomous Driving using Deep Convolutional Networks. CoRR 2018, arXiv:1808.05819v3 [cs.LG].

98. Ward, E. Models Supporting Trajectory Planning in Autonomous Vehicles. Ph.D. Thesis, KTH Royal Institute of Technology,
Stockholm, Sweden, 2018.

99. Lee, N.; Choi, W.; Vernaza, P.; Choy, C.B.; Torr, P.H.S.; Chandraker, M.K. DESIRE: Distant Future Prediction in Dynamic Scenes
with Interacting Agents. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 2165–2174. [CrossRef]

100. Singh, A. Prediction in Autonomous Vehicle–All You Need to Know. Available online: https://medium.com/m/global-identity?
redirectUrl=https%3A%2F%2Ftowardsdatascience.com%2Fprediction-in-autonomous-vehicle-all-you-need-to-know-d88117
95fcdc (accessed on 28 January 2021).

101. Lefèvre, S.; Vasquez, D.; Laugier, C. A survey on motion prediction and risk assessment for intelligent vehicles. Robomech J. 2014,
2014, 1–14. [CrossRef]

102. Lawitzky, A.; Althoff, D.; Passenberg, C.F.; Tanzmeister, G.; Wollherr, D.; Buss, M. Interactive scene prediction for automotive
applications. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013;
pp. 1028–1033. [CrossRef]

103. Woo, H.; Sugimoto, M.; Wu, J.; Tamura, Y.; Yamashita, A.; Asama, H. Trajectory Prediction of Surrounding Vehicles Using LSTM
Network. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 26–28 June 2013.

59

Mathematics 2021, 9, 660

104. Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Fei-Fei, L.; Savarese, S. Social LSTM: Human Trajectory Prediction in Crowded
Spaces. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
27–30 June 2016; pp. 961–971. [CrossRef]

105. Bojarski, M.; Yeres, P.; Choromanska, A.; Choromanski, K.; Firner, B.; Jackel, L.D.; Muller, U. Explaining How a Deep Neural
Network Trained with End-to-End Learning Steers a Car. CoRR 2017, arXiv:1704.07911v1 [cs.CV].

106. Phan-Minh, T.; Grigore, E.C.; Boulton, F.A.; Beijbom, O.; Wolff, E.M. CoverNet: Multimodal Behavior Prediction using Trajectory
Sets. arXiv 2020, arXiv:1911.10298.

107. Mangalam, K.; An, Y.; Girase, H.; Malik, J. From Goals, Waypoints and Paths to Long Term Human Trajectory Forecasting. arXiv
2020, arXiv:2012.01526.

108. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer
International Publishing: Cham, Switzerland, 2015; pp. 234–241.

109. MacQueen, J.B. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; pp. 281–297.

110. Chandra, R.; Bhattacharya, U.; Bera, A.; Manocha, D. TraPHic: Trajectory Prediction in Dense and Heterogeneous Traffic Using
Weighted Interactions. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 15–20 June 2019; pp. 8475–8484. [CrossRef]

111. Li, J.; Yang, F.; Tomizuka, M.; Choi, C. EvolveGraph: Multi-Agent Trajectory Prediction with Dynamic Relational Reasoning.
arXiv 2020, arXiv:2003.13924.

112. Zhao, H.; Gao, J.; Lan, T.; Sun, C.; Sapp, B.; Varadarajan, B.; Shen, Y.; Shen, Y.; Chai, Y.; Schmid, C.; et al. TNT: Target-driveN
Trajectory Prediction. arXiv 2020, arXiv:2008.08294.

113. Gao, J.; Sun, C.; Zhao, H.; Shen, Y.; Anguelov, D.; Li, C.; Schmid, C. VectorNet: Encoding HD Maps and Agent Dynamics from
Vectorized Representation. arXiv 2020, arXiv:2005.04259.

114. Rhinehart, N.; McAllister, R.; Kitani, K.; Levine, S. PRECOG: PREdiction Conditioned On Goals in Visual Multi-Agent Settings.
In Proceedings of the International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019.

115. Bhattacharyya, A.; Hanselmann, M.; Fritz, M.; Schiele, B.; Straehle, C.N. Conditional Flow Variational Autoencoders for
Structured Sequence Prediction. arXiv 2020, arXiv:1908.09008.

116. Mangalam, K.; Girase, H.; Agarwal, S.; Lee, K.H.; Adeli, E.; Malik, J.; Gaidon, A. It Is Not the Journey But the Destination:
Endpoint Conditioned Trajectory Prediction. In Computer Vision—ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.;
Springer International Publishing: Cham, Switzerland, 2020; pp. 759–776.

117. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Nets. In Advances in Neural Information Processing Systems; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger,
K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27.

118. Gupta, A.; Johnson, J.; Li, F.F.; Savarese, S.; Alahi, A. Social GAN: Socially Acceptable Trajectories with Generative Adversarial
Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), Salt Lake City, UT,
USA, 18–23 June 2018.

119. Lai, W.C.; Xia, Z.X.; Lin, H.S.; Hsu, L.F.; Shuai, H.H.; Jhuo, I.H.; Cheng, W.H. Trajectory Prediction in Heterogeneous Environment
via Attended Ecology Embedding. In Proceedings of the 28th ACM International Conference on Multimedia, MM ’20, Seattle,
WA, USA, 12–16 October 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 202–210. [CrossRef]

120. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017; pp. 618–626. [CrossRef]

121. Amirian, J.; Hayet, J.B.; Pettre, J. Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories with GANs. In
Proceedings of the CVPR Workshops, Long Beach, CA, USA, 16–20 June 2019.

122. Sadeghian, A.; Kosaraju, V.; Sadeghian, A.; Hirose, N.; Rezatofighi, H.; Savarese, S. SoPhie: An Attentive GAN for Predicting
Paths Compliant to Social and Physical Constraints. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 1349–1358. [CrossRef]

123. Messaoud, K.; Deo, N.; Trivedi, M.M.; Nashashibi, F. Trajectory Prediction for Autonomous Driving based on Multi-Head
Attention with Joint Agent-Map Representation. arXiv 2020, arXiv:2005.02545.

124. Monti, A.; Bertugli, A.; Calderara, S.; Cucchiara, R. DAG-Net: Double Attentive Graph Neural Network for Trajectory Forecasting.
arXiv 2020, arXiv:2005.12661.

125. Liang, J.; Jiang, L.; Murphy, K.; Yu, T.; Hauptmann, A. The Garden of Forking Paths: Towards Multi-Future Trajectory Prediction.
arXiv 2020, arXiv:1912.06445.

126. Salzmann, T.; Ivanovic, B.; Chakravarty, P.; Pavone, M. Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020.

127. Deo, N.; Trivedi, M.M. Trajectory Forecasts in Unknown Environments Conditioned on Grid-Based Plans. arXiv 2020,
arXiv:2001.00735.

60

Mathematics 2021, 9, 660

128. Zhou, B.; Schwarting, W.; Rus, D.; Alonso-Mora, J. Joint Multi-Policy Behavior Estimation and Receding-Horizon Trajectory
Planning for Automated Urban Driving. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 2388–2394. [CrossRef]

129. Suraj, M.S.; Grimmett, H.; Platinský, L.; Ondrúška, P. Predicting trajectories of vehicles using large-scale motion priors. In
Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1639–1644. [CrossRef]

130. Hoermann, S.; Stumper, D.; Dietmayer, K. Probabilistic long-term prediction for autonomous vehicles. In Proceedings of the
2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 237–243. [CrossRef]

131. Xu, Y.; Zhao, T.; Baker, C.; Zhao, Y.; Wu, Y.N. Learning Trajectory Prediction with Continuous Inverse Optimal Control via
Langevin Sampling of Energy-Based Models. CoRR 2019, arXiv:1904.05453v1 [cs.LG].

132. Andersson, J. Predicting Vehicle Motion and Driver Intent Using Deep Learning. Master’s Thesis, Chalmers University of
Technology, Göteborg, Sweden, 2018.

133. Silver, D.; van Hasselt, H.; Hessel, M.; Schaul, T.; Guez, A.; Harley, T.; Dulac-Arnold, G.; Reichert, D.; Rabinowitz, N.; Barreto,
A.; et al. The Predictron: End-To-End Learning and Planning. In Proceedings of the 34th International Conference on Machine
Learning, Sydney, Australi, 6–11 August 2017; pp. 3191–3199.

134. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 2016, 529, 484–489.
[CrossRef]

135. Guez, A.; Weber, T.; Antonoglou, I.; Simonyan, K.; Vinyals, O.; Wierstra, D.; Munos, R.; Silver, D. Learning to Search with
MCTSnets. CoRR 2018, arXiv:1802.04697v2 [cs.AI].

136. Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and Decision-Making for Autonomous Vehicles. Annu. Rev. Control Robot.
Auton. Syst. 2018, 1, 187–210. [CrossRef]

137. Zhou, Y.; Hu, H.; Liu, Y.; Lin, S.W.; Ding, Z. A distributed method to avoid higher-order deadlocks in multi-robot systems.
Automatica 2020, 112, 108706. [CrossRef]

138. Foumani, M.; Moeini, A.; Haythorpe, M.; Smith-Miles, K. A cross-entropy method for optimising robotic automated storage and
retrieval systems. Int. J. Prod. Res. 2018, 56, 6450–6472. [CrossRef]

139. Foumani, M.; Gunawan, I.; Smith-Miles, K. Resolution of deadlocks in a robotic cell scheduling problem with post-process
inspection system: Avoidance and recovery scenarios. In Proceedings of the 2015 IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM), Singapore, 6–9 December 2015; pp. 1107–1111. [CrossRef]

140. Sutton, R.S.; Barto, A.G. Reinforcement Learning; MIT Press: Cambridge, MA, USA, 2018.
141. Lapan, M. Deep Reinforcement Learning Hands-On; Packt Publishing: Birmingham, UK, 2018.
142. Grondman, I.; Busoniu, L.; Lopes, G.A.D.; Babuska, R. A Survey of Actor-Critic Reinforcement Learning: Standard and Natural

Policy Gradients. IEEE Trans. Syst. Man Cybern. Part (Appl. Rev.) 2012, 42, 1291–1307. [CrossRef]
143. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
144. Konda, V.R.; Tsitsiklis, J.N. Actor-Critic Algorithms. SIAM 2000, 42, 1008–1014.
145. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for

Deep Reinforcement Learning. arXiv 2016, arXiv:1602.01783.
146. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. CoRR 2017,

arXiv:1707.06347v2 [cs.LG].
147. Schulman, J.; Levine, S.; Moritz, P.; Jordan, M.I.; Abbeel, P. Trust Region Policy Optimization. CoRR 2015, arXiv:1502.05477v5 [cs.LG].
148. Weber, T.; Racanière, S.; Reichert, D.P.; Buesing, L.; Guez, A.; Rezende, D.J.; Badia, A.P.; Vinyals, O.; Heess, N.; Li, Y.; et al.

Imagination-Augmented Agents for Deep Reinforcement Learning. In Proceedings of the 31st International Conference on
Neural Information Processing, Long Beach, CA, USA, 4–9 December 2017; pp. 5694–5705. [CrossRef]

149. Liu, B.; Ghavamzadeh, M.; Gemp, I.; Liu, J.; Mahadevan, S.; Petrik, M. Proximal Gradient Temporal Difference Learning: Stable
Reinforcement Learning with Polynomial Sample Complexity. J. Artif. Intell. Res. 2018, 63, 461–494. [CrossRef]

61

mathematics

Article

Solving Regression Problems with Intelligent Machine Learner
for Engineering Informatics

Jui-Sheng Chou 1,*, Dinh-Nhat Truong 1,2 and Chih-Fong Tsai 3

Citation: Chou, J.-S.; Truong, D.-N.;

Tsai, C.-F. Solving Regression

Problems with Intelligent Machine

Learner for Engineering Informatics.

Mathematics 2021, 9, 686. https://

doi.org/10.3390/math9060686

Academic Editor: Florin Leon

Received: 18 February 2021

Accepted: 19 March 2021

Published: 23 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil and Construction Engineering, National Taiwan University of Science and Technology,
Taipei City 106335, Taiwan; d10605806@mail.ntust.edu.tw

2 Department of Civil Engineering, University of Architecture Ho Chi Minh City (UAH),
Ho Chi Minh City 700000, Vietnam

3 Department of Information Management, National Central University, Taoyuan City 320317, Taiwan;
cftsai@mgt.ncu.edu.tw

* Correspondence: jschou@mail.ntust.edu.tw

Abstract: Machine learning techniques have been used to develop many regression models to make
predictions based on experience and historical data. They might be used singly or in ensembles.
Single models are either classification or regression models that use one technique, while ensemble
models combine various single models. To construct or find the best model is very complex and
time-consuming, so this study develops a new platform, called intelligent Machine Learner (iML), to
automatically build popular models and identify the best one. The iML platform is benchmarked
with WEKA by analyzing publicly available datasets. After that, four industrial experiments are
conducted to evaluate the performance of iML. In all cases, the best models determined by iML are
superior to prior studies in terms of accuracy and computation time. Thus, the iML is a powerful
and efficient tool for solving regression problems in engineering informatics.

Keywords: applied machine learning; classification and regression; data mining; ensemble model;
engineering informatics

1. Introduction

Machine Learning (ML)-based methods for building prediction models have attracted
abundant scientific attention and are extensively used in industrial engineering [1–3], de-
sign optimization of electromagnetic devices, and other areas [4,5]. The ML-based methods
have been confirmed to be effective for solving real-world engineering problems [6–8].
Various supervised ML techniques (e.g., artificial neural network, support vector machine,
classification and regression tree, linear (ridge) regression, and logistic regression) are typi-
cally used individually to construct single models and ensemble models [9,10]. To construct
a series of models and identify the best one among these ML techniques, users need a
comprehensive knowledge of ML and spend a significant effort building advanced models.

The primary objective of this research is to develop a user-friendly and powerful ML
platform, called intelligent Machine Learner (iML), to help its users to solve real-world
engineering problems with a shorter training time and greater accuracy than before. The
iML can automatically build and scan all regression models, and then identify the best one.
Novice users with no experience of ML can easily use this system. Briefly, the iML (1) helps
users to make prediction model easily; (2) provides an overview of the parameter settings
for the purpose of making objective choices; and (3) yields clear performance indicators,
facilitating reading and understanding of the results, on which decisions can be based.

Four experiments were carried out to evaluate the performance of iML and were
compared with previous studies. In the first experiment, empirical data concerning enter-
prise resource planning (ERP) for software projects by a leading Taiwan software provider
over the last five years were collected and analyzed [1]. The datasets in the other three

Mathematics 2021, 9, 686. https://doi.org/10.3390/math9060686 https://www.mdpi.com/journal/mathematics63

Mathematics 2021, 9, 686

experiments were published on the UCI website [11–13]. Specifically, the purpose of the
second experiment was to train a regression model of comparing the performance of CPU
processors by using some characteristics as input. The third experiment involved forecast-
ing the demand supporting structured productivity and high levels of customer service,
and the fourth experiment involved estimating the total bikes rented per day.

The rest of this paper is organized as follows. Section 2 reviews application of machine
learning techniques in various disciplines. Section 3 presents the proposed methodology
and iML framework. Section 4 introduces the evaluation metrics to measure accuracy of
the developed system. Section 5 demonstrates iML’s interface. Section 6 shows benchmarks
between iML and WEKA (a free, open source program). Section 7 exhibits the applicability
of iML in numerical experiments. Section 8 draws conclusions, and provides managerial
implications and suggestions for future research.

2. Literature Review

Numerous researchers in various fields, such as ecology [14,15], materials proper-
ties [16–18], water resource [19], energy management [20], and decision support [21,22],
use data-mining techniques to solve regression problems, and especially project-related
problems [23,24]. Artificial neural network (ANN), support vector machine/regression
(SVM/SVR) classification and regression tree (CART), linear ridge regression (LRR), and
logistic regression (LgR) are the most commonly used methods for this purpose and are
all considered to be among the best machine learning techniques [25–27]. Similarly, four
popular ensemble models, including voting, bagging, stacking and tiering [28–30], can be
built based on the meta-combination rules of aforementioned single models.

Chou (2009) [31] developed a generalized linear model-based expert system for es-
timating the cost of transportation projects. Dandikas et al. (2018) [32] assessed the
advantages and disadvantages of regression models for predicting potential of biomethane.
The results indicated that the regression method could predict variations in the methane
yield and could be used to rank substrates for production quality. However, least squares-
based regression usually leads to overfitting a model, failure to find unique solutions, and
issues dealing with multicollinearity among the predictors [33], so ridge regression, another
type of regularized regression, is favorably integrated in this study to avoid the above
problems. Additionally, Sentas and Angelis (2006) [34] investigated the possibility of using
some machine learning methods for estimating categorical missing values in software cost
databases. They concluded that multinomial logistic regression was the best for imputation
owing to its superior accuracy.

The general regression neural network was originally designed chiefly to solve re-
gression problems [24,35]. Caputo and Pelagagge (2008) [36] compared the ANN with the
parametric methods for estimating the cost of manufacturing large, complex-shaped pres-
sure vessels in engineer-to-order manufacturing systems. Their comparison demonstrated
that the ANN was more effective than the parametric models, presumably because of its
better mapping capabilities. Rocabruno-Valdés et al. (2015) [37] developed models based
on ANN for predicting the density, dynamic viscosity, and cetane number of methyl esters
and biodiesel. Similarly, Ganesan et al. (2015) [38] used ANN to predict the performance
and exhaust emissions of a diesel electricity generator.

SVM was originally developed by Vapnik (1999) for classification (SVM) and regres-
sion (SVR) [39,40]. Jing et al. (2018) [41] used SVM to classify air balancing, which is a key
element for heating, ventilating, air-conditioning (HAVC), and variable air volume (VAV)
system installation, and is useful for improving the energy efficiency by minimizing unnec-
essary fresh air to the air-conditioned zones. The results demonstrated that SVM achieved
4.6% of relative error value and is a promising approach for air balancing. García-Floriano
et al. (2018) [42] used SVR to model software maintenance (SM) effort prediction. The SVR
model was superior to regression, neural networks, association rules and decision trees,
with 95% confidence level.

64

Mathematics 2021, 9, 686

The classification and regression tree method (CART), introduced by Breiman et al.
(2017) [43], is an effective method to solve classification and regression problems [42]. Choi
and Seo (2018) [44] predicted the fecal coliform in the North Han River, South Korea by
CART models, the test results showed the total correct classification rates of the four models
ranged from 83.7% to 93.0%. Ru et al. (2016) [45] used the CART model to predict cadmium
enrichment levels in reclaimed coastal soils. The results showed that cadmium enrichment
levels had an accuracy of 78.0%. Similarly, Li (2006) [16] used CART to predict materials
properties and behavior. Chou et al. (2014, 2017) [26,46] utilized the CART method to
modeling steel pitting risk and corrosion rate and forecasting project dispute resolutions.

In addition to the aforementioned single models, Elish (2013) [47] used voting ensem-
ble for estimating software development effort. The ensemble model outperformed all
the single models in terms of Mean Magnitude of Relative Error (MMRE), and achieved
competitive percentage of observations whose Magnitude of Relative Error (MRE) is less
than 0.25 (PRED (25)) and recently proposed Evaluation Function (EF) results. Wang at
el. (2018) demonstrated that ensemble bagging tree (EBT) model could accurately predict
hourly building energy usage with MAPE ranging from 2.97% to 4.63% [48]. Comparing
to the conventional single prediction model, EBT is superior in prediction accuracy and
stability. However, it requires more computation time and is short of interpretability owing
to its sophisticated model structure.

Chen et al. (2019) [49] showed that the stacking model outperformed the individual
models, achieving the highest R2 of 0.85, followed by XGBoost (0.84), AdaBoost (0.84) and
random forest (0.82). For the estimation of hourly PM2.5 in China, the stacking model
exhibited relatively high stability, with R2 ranging from 0.79 to 0.92. Basant at el. (2016) [50]
proposed a three-tier quantitative structure-activity relationship (QSAR) model. This model
can be used for the screening of chemicals for future drug design and development process
and safety assessment of the chemicals. In comparison with previously studies, the QSAR
models on the same endpoint property showed the encouraging statistical quality of the
proposed models.

According to the reviewed literature, various machine learning platforms have been
developed for the past decades, such as the Scikit-Learn Python libraries, Google’s Ten-
sorFlow, WEKA and Microsoft Research’s CNTK. Users can find it easy to use a machine
learning tool and/or framework to solve numerous problems as per their needs [51]. ML-
based approaches have been confirmed to be effective in providing decisive information.
Since there is no best model suitable to predict all problems (the “No Free Lunch” the-
orem [52,53]), a comprehensive comparison of single and ensemble models embedded
within an efficient forecasting platform for solving real-world engineering problems is
imperatively needed. The iML platform proposed in this study can efficiently address
this issue.

3. Applied Machine Learning

3.1. Classification and Regression Model
3.1.1. Artificial Neural Network (ANN)

Neural networks (or artificial neural networks) comprise information-processing
units, which are similar to the neurons in the human brain, except that a neural network
is composed of artificial neurons (Figure 1) [54]. Particular, back-propagation networks
(BPNNs) are widely used, and are known to be the most effective network models [55,56].

65

Mathematics 2021, 9, 686

Figure 1. Artificial neural network (ANN) model.

Equation (1) uses sigmoid function to activate each neuron in a hidden output layer,
and the Scaled Conjugate Gradient Algorithm is used to calculate the weights of the
network. BPNNs will be trained until the stopping criteria is reached by default settings
in MATLAB.

netk = ∑ wkjOj and yk = f (netk) =
1

1 + e−netk
(1)

where netk is the activation of the kth neuron; j is the set of neurons in the preceding layer;
wkj is the weight of the connection between neuron k and neuron j; Oj is the output neuron
j; and yk is the sigmoid or logistic transfer function.

3.1.2. Support Vector Machine (SVM) and Support Vector Regression (SVR)

Developed by Cortes and Vapnik (1995) [57], SVM is used for binary classification
problems. The SVM was created based on decision hyper-planes that determine decision
boundaries in an input space or a high-dimensional feature space [40,58]. Binary classifica-
tion can only classify samples into negative and positive while multi-class classification
problems are complex (Figure 2). In this study, One Against All (OAA) is used to solve
multiple classification problems.

Figure 2. Support Vector Machine (SVM) and Support Vector Regression (SVR) models.

The OAA-SVM constructs m SVM models for m-class classification problems, and the
ith SVM model is trained based on the dataset of the ith class which includes a positive

66

Mathematics 2021, 9, 686

class and a negative class. In training, a set of l data points (xi, yi)
l
i=1, where xi ∈ Rn the

input data, and yi ∈ (1, 2, . . . , m) is the class label of xi; the ith SVM model is solved using
the following optimization problem equation [59].

min
wi ,b,ξ

J
(

wi, b, ξ
)
=

1
2

(
wi
)T

wi + C
l

∑
i=1

ξ i
j (2)

subject to :

⎧⎪⎪⎨⎪⎪⎩
(
wi)T

ϕ
(

xj
)
+ bi ≥ 1 − ξ i

j, yj = i,(
wi)T

ϕ
(
xj
)
+ bi ≤ −1 + ξ i

j, yj 	= i,
ξ i

j ≥ 0, j = 1, . . . , l.

(3)

When the SVM models have been solved, the class label of example x is predicted
as follows:

y(x) = arg max
i=1...m

((
wi
)T

ϕ(x) + bi
)

(4)

where i is the ith SVM model; wi is a vector normal to the hyper-plane; bi is a bias, ϕ(x)
is a nonlinear function that maps x to a high-dimension feature space, ξ i is the error
in misclassification, and C ≥ 0 is a constant that specifies the trade-off between the
classification margin and the cost of misclassification.

To train the SVM model, radial basic function (RBF) kernel maps samples non-linearly
into a feature space with more dimensions. In this study, the RBF kernel is used as SVM
kernel function.

K
(
xi, xj

)
= exp

(
−‖xi − xj‖2

2σ2

)
(5)

where σ is a positive parameter that controls the radius of RBF kernel function.
Support vector regression (SVR) [40] is one version of SVM. SVR computes a linear

regression function for the new higher-dimensional feature space using ε-insensitive loss
while simultaneously reducing model complexity of the model by minimizing ‖w‖2. This
process can be implemented by introducing (non-negative) slack variables ξi, ξ∗i to measure
the deviation in training samples outside the ε-insensitive zone. The SVR can be formulated
as the minimization of the following equation:

min
w,b,ξ

J(w, b, ξ) =
1
2
(w)Tw + C

l

∑
i=1

(ξi + ξ∗i) (6)

subject to :

⎧⎨⎩
yi − f (xi, w) ≤ ε + ξ∗i
f (xi, w)− yi ≤ ε + ξi

ξ∗i , ξi ≥ 0, i = 1, . . . , n
(7)

When SVR model has been solved, the value of example x is predicted as follows.

f (x) = ∑(αi − α∗i)K(xi, x) + b (8)

where K(xi, x) is the kernel function and α∗i , αi are Lagrange multipliers in the dual function.

3.1.3. Classification and Regression Tree (CART)

Classification and regression tree technique is described as a tree on which each
internal (non-leaf) node represents a test of an attribute, each branch represents the test
result, and each leaf (or terminal) node has a class label and class result (Figure 3) [60]. The
tree is “trimmed” until total error is minimized to optimize the predictive accuracy of the
tree by minimizing the number of branches. The training CART is constructed through the
Gini index. The formulas are as follows.

67

Mathematics 2021, 9, 686

Figure 3. The classification and regression tree (CART) model.

g(t) = ∑
j 	=i

p(j|t)p(i|t) (9)

p(j|t) = p(j, t)
p(t)

(10)

p(j, t) =
p(j)Nj(t)

Nj
(11)

p(t) = ∑
j

p(j, t) (12)

Gini index = 1 − ∑ p(j, t)2 (13)

where i and j are the categorical variables in each item; Nj(t) is the recorded number of
nodes t in category j; and Nj. is the recorded number of the root nodes in category j; and
p(j) is the prior probability value for category j.

3.1.4. Linear Ridge Regression (LRR) and Logistic Regression (LgR)

Statistical models of the relationship between dependent variables (response variables)
and independent variables (explanatory variables) are developed using linear regression
(Figure 4). The general formula for multiple regression models is as follows.

y = f (x) = βo +
n

∑
j=1

β jxj + ε (14)

where y is a dependent variable; βo is a constant; β j is a regression coefficient (j =
1, 2, . . . , n), and ε is an error term.

Linear ridge regression (LRR) is a regularization technique that can be used together
with generic regression algorithms to model highly correlated data [61,62]. Least squares

68

Mathematics 2021, 9, 686

method is a powerful technique for training the LRR model, which denotes β to minimize
the Residual Sum Squares (RSS)-function. Therefore, the cost function is presented as below.

Cost(β) = RSS(β) =
l

∑
i=1

(
y − y′

)2
+ λ

(
n

∑
j=1

β2
j

)
(15)

y′ = β0 + ∑ β jxj (16)

where λ is a pre-chosen constant, which is the product of a penalty term and the squared
norm in the β vector of regression method, and y′ is the predicted values.

Figure 4. Linear Ridge Regression (LRR) and Logistic Regression (LgR) models.

Statistician David Cox developed logistic regression in 1958 [63]. An explanation of
logistic regression begins with an explanation of the standard logistic function. Equation
(17) mathematically represents the logistic regression model.

p(x) =
1

1 + e−(βo+∑n
j=1 β jxj)

(17)

where p(x) is the probability that the dependent variable equals a “success” or “case”
rather than a failure or non-case. βo and β j are found by minimizing cost function defined
in Equation (18).

Cost(β) = −
(

l

∑
i=1

(yi ln(p(xi)) + (1 − yi) ln(1 − p(xi)))

)
+

λ

2

n

∑
j=1

β2
j (18)

where yi is the observed outcome of case xi, having 0 or 1 as possible values [64]

3.2. Ensemble Regression Model

In this study, several ensemble schemes, including voting, bagging, stacking, and
tiering were investigated using the input data and described as below.

• Voting: The voting ensemble model combines the outputs of the single models using
a meta-rule. The mean of the output values is used in this study. According to the
adopted ML models, 11 voting models are trained in this study, including (1) ANN +
SVR, (2) ANN + CART, (3) ANN + LRR, (4) SVR + CART, (5) SVR + LRR, (6) CART +
LRR, (7) ANN + SVR + CART, (8) ANN + CART + LRR, (9) ANN + CART + LRR, (10)
SVR + CART + LRR, (11) ANN + SVR + CART + LRR. Figure 5a presents the voting
ensemble model.

• Bagging: The bagging ensemble model duplicates samples at random, and each
regression model predicts values from the samples independently. The meta-rule is

69

Mathematics 2021, 9, 686

applied to all of the outputs in this study. Bagging ensemble model is depicted at
Figure 5b.

• Stacking: The stacking ensemble model is a two-stage model, and Figure 5c describes
the principle of the model. In stage 1, each single model predicts one output value.
Then, these outputs are used as inputs to train a model by these machine learning
techniques again to make a meta-prediction in stage 2. There are four stacking models
herein, including ANN (ANN, SVR, CART, LRR); SVR (ANN, SVR, CART, LRR);
CART (ANN, SVR, CART, LRR); LRR (ANN, SVR, CART, LRR).

Figure 5. Ensemble models.

70

Mathematics 2021, 9, 686

• Tiering: Figure 5d illustrates the tiering ensemble model. There are two tiers inside a
tiering ensemble model in this study. The first tier is to classify data into k classes on
the basis of T value [18]. Machine learning technique in the first tier for classifying
data needs to be identified. After classifying the data, the regression machine learning
is used to train each data (Sub Data) of each class (second tier) to predict results. In
the iML, we developed three types of models, including 2-class, 3-class, and 4-class.
The equation for calculating T value is:

T =
ymax + ymin

k
(19)

where T is standard value, k is the number of classes, and ymax and ymin are the
maximum and minimum of actual values, respectively.

3.3. K-Fold Cross Validation

K-fold cross validation is used to compare two or more prediction models. This
method randomly divides a sample into a training sample and a test sample by splitting
into K subsets. K-1 subsets are selected to train the model while the other is used to test,
and this training process is repeated K times (Figure 6). To compare models, the average of
performance results (e.g., RMSE, and MAPE) is computed. Kohavi (1995) stated that K =
10 provides analytical validity, computational efficiency, and optimal deviation [65]. Thus,
K = 10 is used in this study. Performance metrics will be explained in details Section 4.

Figure 6. K-fold cross-validation method.

3.4. Intelligent Machine Learner Framework

Figure 7 presents the structure of iML. In stage 1 (data preprocessing), the data is
classified distinctly for particular use in the Tiering ensemble model. Meanwhile, all data
is divided into two main data groups, namely, learning data and test data, and the learning
data is duplicated for training ensemble models.

At the next stage, all retrieved data is automatically used for training models, which
include single models (ANN, SVR, LRR, and CART), and ensemble models (voting, bagging,
stacking, and tiering). Notably, the tiering ensemble model needs to employ a classification
technique to assign a class label to the original input at the first tier. A corresponding
regression model for the particular class is then adopted at the second tier to obtain the
predictive value [17,26].

71

Mathematics 2021, 9, 686

Figure 7. Intelligent machine leaner framework.

Finally, in stage 3 (find the best model), the predictive performances of all the models
learned (trained) in stage 2 using test dataset are compared to identify the best models.
Section 4 describes the performance evaluation metrics in detail.

4. Mathematical Formulas for Performance Measures

To measure the performance of classification models, the accuracy, precision, sensi-
tivity, specificity and the area under the curve (AUC) are calculated. For the regression
models, five-performance measures, (i.e., correlation coefficient (R), mean absolute error
(MAE), mean absolute percentage error (MAPE), root mean squared error (RMSE), and
total error rate (TER)) are calculated. Table 1 presents a confusion matrix and Table 2
exhibits those performance measures [17,66].

Table 1. Confusion matrix.

Actual Class

Positive Negative

Predicted class
Positive True positive False Negative

Negative False positive True negative

72

Mathematics 2021, 9, 686

In Table 2, MAE is the mean absolute difference between the prediction and the actual
value. MAPE represents the mean percentage error between prediction and actual value,
the smaller value of MAPE, the better prediction result achieved by the model. The MAPE
is the index typically used to evaluate the accuracy of prediction models. RMSE represents
the dispersion of errors by a prediction model. The statistical index that shows the linear
correlation between two variables is denoted as R. Lastly, TER is the total difference of
predicted and actual values [17].

Table 2. Mathematical formulas for performance measures.

Measure Formula Measure Formula

Accuracy Accuracy =
tp+tn

tp+fp+tn+fn Mean absolute error MAE = 1
n

n
∑

i=1

∣∣yi − y′i
∣∣

Precision Precision =
tp

tp+fp Mean absolute percentage error MAPE = 1
n

∣∣∣ yi−y′i
yi

∣∣∣
Sensitivity Sensitivity =

tp
tp+fn Root mean square error RMSE =

√
1
n

n
∑

i=1

(
yi − y′i

)2

Specificity Specificity = tn
tn+fp Correlation coefficient R =

n ∑ yi .y′i−(∑ yi)(∑ y′i)√
n(y2

i)−(∑ yi)
2
√

n(y′i
2)−(∑ y′i)

2

Area under the curve AUC = 1
2

[(
tp

tp+fn

)
+
(

tn
tn+fp

)]
Total error rate TER =

|∑n
i=1 y′i−∑n

i=1 yi |
∑n

i=1 yi

tp is the true positives (number of correctly recognized class examples); tn is the true negatives (number of correctly recognized examples
that do not belong to the class); fp is the number of false positives (number of examples that were incorrectly assigned to a class); fn is the
number of false negatives (number of examples that were not assigned to a class); yi is actual value; y′i is predicted value; n is sample size.

The goal is to identify the model that yields the lowest error of test data. To obtain a
comprehensive performance measure, the five statistical measures (RMSE, MAE, MAPE,
1-R, and TER) were combined into a synthesis index (SI) using Equation (20). Based on the
SI values, the best model is identified.

SI =
1

mp

mp

∑
i=1

(
Pi − Pmin,i

Pmax,i − Pmin,i

)
(20)

where mp = number of performance measures; Pi = ith performance measure; and Pmin,i
and Pmax,i are the maximum and minimum of ith measure. The SI range is 0–1; the SI value
close to 0 indicates a better accuracy of the predictive model.

5. Design and Implementation of iML Interface

The iML was developed in MATLAB R2016a on a PC with an Intel Core i5-750 CPU,
a clock speed of 3.4 GHz, and 8 GB of RAM, running Windows 10. Figure 8 presents
a user-friendly interface for iML. First, users select models on setting-parameters board
and set the parameters for the chosen models, which will be trained and analyzed. Next,
users choose whether to test with either “K-Fold Validation” or “Percentage Split” before
uploading the data. Notably, if “Percentage Split” is selected, the user only has to input
percentage value of learning data. Then, users click on the “Run” button to train the model.
Finally, the “Make Report” function is to create a report containing performance metrics of
all selected models and the identified best model. Figure 9 displays a snapshot of report
file in notepad.

73

Mathematics 2021, 9, 686

Figure 8. Snapshot of intelligent Machine Learner (iML) interface.

Figure 9. Snapshot of report file.

74

Mathematics 2021, 9, 686

6. Benchmarks between iML and WEKA

6.1. Publicly Available Datasets

Table 3 shows the publicly available datasets from the UCI Machine Learning Repos-
itory (https://archive.ics.uci.edu/mL/index.php; accessed 1 March 2021). The iML is
benchmarked with WEKA (a free, open source program) using hold-out validation and
K-fold cross-validation on the target datasets. All algorithm parameters are set default for
both iML and WEKA platforms.

Table 3. Characteristic of data from UCI Machine Learning Repository.

UCI Data Set No. of Samples No. of Attributes Output Information

Concrete Compressive Strength
(Yeh (2006) [67]) 1030 8 Concrete compressive strength (MPa)

Real estate valuation (Yeh and
Hsu (2018) [68]) 414 6

Y = house price of unit area (10,000 New
Taiwan Dollar/Ping, where Ping is a local

unit, 1 Ping = 3.3 m squared)

Energy efficiency (Tsanas and
Xifara (2012) [69]) 768 8

y1 Heating Load (kW)

y2 Cooling Load (kW)

Airfoil Self-Noise (Lau and López
(2009) [70]) 1503 5 Scaled sound pressure level (dB).

6.2. Hold-Out Validation

In this test, datasets are randomly partitioned into 80% and 20% for learning and
test, respectively. Tables 4–8 show the one-time performance results on these five datasets.
A model with a normalized SI value of 0.000 is the best prediction model among all the
models tested by iML and WEKA. Notably, the best model can be automatically identified
by iML with “one-click”. To train models with WEKA, the users need to build each model
individually. Moreover, iML gives better test results of single, voting and bagging models
than those of WEKA. Based on the benchmark results, iML is effective to find the best
model in the hold-out validation.

Table 4. Test results by WEKA and iML on concrete compressive strength dataset via hold-out validation.

Model

WEKA

SI (Ranking)

iML

SI (Ranking)
R

RMSE
(MPa)

MAE
(MPa)

MAPE
(%)

R
RMSE
(MPa)

MAE
(MPa)

MAPE
(%)

I. Single CART ANN
0.927 6.546 5.170 18.770 0.142 (7) 0.946 5.302 3.728 12.673 0.023 (3)

II. Voting ANN + CART ANN + CART
0.936 6.202 4.930 19.090 0.124 (6) 0.956 4.771 3.550 12.723 0.000 (1)

III. Bagging CART ANN
0.960 5.044 3.983 15.130 0.032 (4) 0.951 5.056 3.647 12.249 0.010 (2)

IV. Stacking (*) CART (*) LRR
0.939 5.986 4.792 17.520 0.104 (5) 0.444 14.829 11.779 56.775 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

75

Mathematics 2021, 9, 686

Table 5. Test results by WEKA and iML on real estate dataset via hold-out validation.

Model

WEKA

SI (Ranking)

iML

SI (Ranking)
R

RMSE
(U)

MAE
(U)

MAPE
(%)

R
RMSE

(U)
MAE
(U)

MAPE
(%)

I. Single CART ANN
0.740 10.762 5.882 13.210 0.321 (6) 0.871 6.630 4.912 13.591 0.049 (3)

II. Voting ANN + CART + LRR ANN + CART
0.745 11.054 5.908 12.780 0.327 (7) 0.877 6.615 4.739 12.867 0.030 (2)

III. Bagging CART CART
0.770 10.321 5.281 11.760 0.246 (4) 0.884 6.485 4.381 12.305 0.000 (1)

IV. Stacking (*) CART (*) ANN
0.744 10.748 5.774 12.940 0.311 (5) 0.391 12.638 10.411 33.807 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance; U: house price of unit area (10,000 New Taiwan
Dollar/Ping, where Ping is a local unit, 1 Ping = 3.3 m squared).

Table 6. Test results by WEKA and iML on energy efficiency data set (Heating load) via hold-out validation.

Model

WEKA

SI (Ranking)

iML

SI (Ranking)
R

RMSE
(kW)

MAE
(kW)

MAPE
(%)

R
RMSE
(kW)

MAE
(kW)

MAPE
(%)

I. Single CART ANN
0.996 0.914 0.646 3.300 0.418 (6) 0.999 0.488 0.354 1.700 0.046 (3)

II. Voting ANN + CART ANN + CART
0.996 0.929 0.729 3.820 0.449 (7) 0.999 0.495 0.336 1.617 0.045 (2)

III. Bagging CART ANN
0.997 0.870 0.619 3.210 0.354 (5) 0.999 0.426 0.311 1.519 0.000 (1)

IV. Stacking (*) CART (*) LRR
0.998 0.754 0.524 2.480 0.231 (4) 0.998 3.454 3.226 17.658 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

Table 7. Test results by WEKA and iML on energy efficiency dataset (Cooling load) via hold-out validation.

Model

WEKA

SI (Ranking)

iML

SI (Ranking)
R

RMSE
(kW)

MAE
(kW)

MAPE
(%)

R
RMSE
(kW)

MAE
(kW)

MAPE
(%)

I. Single CART ANN
0.986 1.524 1.006 3.900 0.320 (6) 0.992 1.231 0.884 3.577 0.038 (2)

II. Voting ANN + CART ANN + CART
0.987 1.504 1.064 4.330 0.293 (4) 0.988 1.509 0.982 3.544 0.222 (3)

III. Bagging CART ANN
0.986 1.565 1.046 4.030 0.358 (7) 0.993 1.177 0.809 3.165 0.000 (1)

IV. Stacking (*) SVR (*) LRR
0.986 1.537 0.979 3.700 0.314 (5) 0.989 4.290 3.762 17.305 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

76

Mathematics 2021, 9, 686

Table 8. Test results by WEKA and iML on airfoil self-noise dataset via hold-out validation.

Model

WEKA

SI (Ranking)

iML

SI (Ranking)
R

RMSE
(dB)

MAE
(dB)

MAPE
(%)

R
RMSE
(dB)

MAE
(dB)

MAPE
(%)

I. Single CART ANN
0.898 3.185 2.339 1.880 0.502 (6) 0.953 2.149 1.577 1.259 0.044 (2)

II. Voting ANN + CART ANN + CART
0.893 3.471 2.649 2.100 0.591 (7) 0.952 2.163 1.633 1.301 0.058 (3)

III. Bagging CART ANN
0.922 2.902 2.135 1.710 0.332 (4) 0.958 2.031 1.494 1.194 0.000 (1)

IV. Stacking (*) CART (*) LRR
0.905 3.082 2.271 1.820 0.450 (5) 0.952 7.050 5.648 4.613 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

6.3. K-Fold Cross-Validation

Tenfold cross-validation is used to evaluate the generalized performance of WEKA
and iML. Tables 9–13 show the average performance measures of five datasets, respectively.
Similarly, iML identifies better models in single, voting, and bagging schemes than those
trained by WEKA. The best model for each dataset is automatically determined by iML.
Therefore, iML is a powerful tool to find the best model in the cross-fold validation.

Table 9. Performance of WEKA and iML on concrete compressive strength dataset via tenfold cross-validation.

Model

WEKA

SI (Ranking)

iML

SI (Ranking)
R

RMSE
(MPa)

MAE
(MPa)

MAPE
(%)

R
RMSE
(MPa)

MAE
(MPa)

MAPE
(%)

I. Single CART ANN
0.923 6.434 4.810 15.510 0.228 (5) 0.946 5.411 4.003 13.866 0.154 (3)

II. Voting ANN + CART ANN + CART
0.917 6.823 5.213 17.230 0.265 (7) 0.955 4.903 3.506 12.397 0.111 (2)

III. Bagging CART CART
0.932 6.082 4.598 15.030 0.205 (4) 0.980 3.359 2.432 8.356 0.000 (1)

IV. Stacking (*) SVR (*) ANN
0.924 6.436 4.852 15.530 0.229 (6) 0.613 14.381 10.867 44.759 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

Table 10. Performance of WEKA and iML on real estate valuation dataset via tenfold cross-validation.

Model

WEKA

SI (Ranking)

iML

SI (Ranking)
R

RMSE
(U)

MAE
(U)

MAPE
(%)

R
RMSE

(U)
MAE
(U)

MAPE
(%)

I. Single CART ANN
0.807 8.021 5.197 15.270 0.314 (5) 0.813 8.011 5.388 14.991 0.315 (6)

II. Voting SVR + CART ANN + CART + LRR
0.805 8.091 5.198 15.090 0.315 (7) 0.821 7.878 5.376 15.116 0.308 (4)

III. Bagging CART CART
0.828 7.637 5.017 14.930 0.280 (2) 0.925 4.774 3.201 8.974 0.000 (1)

IV. Stacking (*) SVR (*) ANN
0.819 7.823 4.969 14.440 0.284 (3) 0.432 12.309 9.526 32.267 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance; U: house price of unit area (10,000 New Taiwan
Dollar/Ping, where Ping is a local unit, 1 Ping = 3.3 m squared).

77

Mathematics 2021, 9, 686

Table 11. Performance of WEKA and iML on energy efficiency dataset (Heating load) via tenfold cross-validation.

Model

WEKA

SI (Ranking)

iML

SI (Ranking)
R

RMSE
(kW)

MAE
(kW)

MAPE
(%)

R
RMSE
(kW)

MAE
(kW)

MAPE
(%)

I. Single CART ANN
0.995 1.046 0.712 3.200 0.459 (7) 0.999 0.484 0.360 1.722 0.049 (2)

II. Voting ANN + CART ANN + CART
0.997 0.853 0.641 3.190 0.309 (4) 0.999 0.497 0.352 1.602 0.053 (3)

III. Bagging CART ANN
0.997 0.915 0.633 2.890 0.324 (5) 0.999 0.384 0.291 1.409 0.000 (1)

IV. Stacking (*) SVR (*) LRR
0.996 0.872 0.639 2.990 0.337 (6) 0.998 3.522 3.226 18.181 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

Table 12. Performance of WEKA and iML on energy efficiency dataset (Cooling load) via tenfold cross-validation.

Model

WEKA

SI (Ranking)

iML

SI (Ranking)
R

RMSE
(kW)

MAE
(kW)

MAPE
(%)

R
RMSE
(kW)

MAE
(kW)

MAPE
(%)

I. Single CART ANN
0.982 1.812 1.183 4.160 0.460 (5) 0.993 1.140 0.799 3.161 0.150 (2)

II. Voting ANN + CART ANN + CART
0.982 1.831 1.276 4.770 0.491 (7) 0.989 1.415 0.900 3.206 0.250 (3)

III. Bagging CART ANN
0.983 1.785 1.160 4.070 0.444 (4) 0.997 0.808 0.556 2.129 0.000 (1)

IV. Stacking (*) SVR (*) LRR
0.982 1.827 1.195 4.210 0.465 (6) 0.989 4.108 3.619 17.253 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

Table 13. Performance of WEKA and iML on airfoil self-noise dataset via tenfold cross-validation.

Model

WEKA

SI (Ranking)

iML

SI (Ranking)
R

RMSE
(dB)

MAE
(dB)

MAPE
(%)

R
RMSE
(dB)

MAE
(dB)

MAPE
(%)

I. Single CART ANN
0.877 3.314 2.381 1.910 0.497 (5) 0.946 2.239 1.660 1.331 0.152 (2)

II. Voting ANN + CART ANN + CART
0.851 3.685 2.747 2.220 0.641 (7) 0.946 2.246 1.664 1.334 0.152 (3)

III. Bagging CART CART
0.911 2.906 2.160 1.730 0.352 (4) 0.971 1.727 1.271 1.023 0.000 (1)

IV. Stacking (*) LRR (*) LRR
0.874 3.374 2.494 1.990 0.525 (6) 0.946 6.894 5.587 4.562 1.000 (8)

Note: (*) is (ANN + SVR + CART + LRR); bold value denotes the best overall performance.

6.4. Discussion

Single, voting, bagging, and stacking models are compared using WEKA and iML,
except for the tiering method, which is not available in WEKA. Additionally, unlike manual
construction of individual models in WEKA interface, iML can automatically build and
identify the best model for the imported datasets. Hold-out validation and tenfold cross-
validation are used to evaluate the performance results (R, MAE, RMSE, and MAPE) in each
scheme (single, voting, bagging, and stacking). The analytical results of either validation

78

Mathematics 2021, 9, 686

show that most of the models trained by iML are superior to those trained by WEKA using
the same datasets. Hence, iML is an effective platform to solve regression problems.

7. Numerical Experiments

This section validates iML by using various industrial datasets, including (1) enterprise
resource planning data [1], (2) CPU computer performance data [12], (3) customer data for
a logistics company [13], and (4) daily data bike rentals [11]. Table 14 presents the initial
parameter settings for these problems.

Table 14. Parameter setting.

Experiment Model

ANN SVR and SVM LRR and LgR CART

Number of
Hidden Node

C Sigma Epsilon Lambda Min Leaf

1
Single regression model 30 7.3 × 106 45.67 1.0 × 10−5 1.0 × 10−8 1

Single classification model 30 41,703 3.67 - 1.0 × 10−5 1
Ensemble regression model 30 7.3 × 106 45.67 1.0 × 10−5 1.0 × 10−8 1

2
Single regression model 30 7.3 × 106 20.03 1.0 × 10−5 1.0 × 10−8 1

Single classification model 30 4200 3.40 - 1.0 × 10−5 1
Ensemble regression model 30 7.3 × 106 45.67 1.0 × 10−5 1.0 × 10−8 1

3
Single regression model 30 7.3 × 106 30.00 1.0 × 10−5 1.0 × 10−8 1

Single classification model 20 41,703 3.67 - 1.0 × 10−5 1
Ensemble regression model 30 7.3 × 106 30.00 1.0 × 10−5 1.0 × 10−8 1

4
Single regression model 15 7.3 × 106 45.67 1.0 × 10−5 1.0 × 10−8 1

Single classification model 15 41,703 3.67 - 1.0 × 10−5 1
Ensemble regression model 15 7.3 × 106 45.67 1.0 × 10−5 1.0 × 10−8 1

7.1. Enterprise Resource Planning Software Development Effort

Enterprise Resource Planning (ERP) data for 182 software projects of a leading Taiwan
software provider over the last five years was collected, analyzed, and tested with K-fold
cross validation.

7.1.1. Variable Selection

Experienced in-house project managers were interviewed to identify factors that
affect the ERP software development effort (SDE). There are 182 samples and 17 attributes,
and Table 15 summarizes the descriptive statistical data in details. The input and output
attributes are defined by Chou el at. (2012) [1].

7.1.2. iML Results

iML automatically trains the models and calculates the performance values. Then,
it compares the SI values (SIlocal and SIgloblal) among the selected modeling type (singe,
voting ensemble, bagging ensemble, stacking ensemble and tiering ensemble). Table
16 presents the detailed results of iML and Figure 10 plots the RMSE of best models for
the studied case. Both SIlocal and SIglobal values of bagging ANN ensemble are equal
to zero, which indicate that the bagging ANN ensemble is the best model in terms of
prediction accuracy.

79

Mathematics 2021, 9, 686

Table 15. Variables and descriptive statistics for predicting enterprise resource planning (ERP) software development effort.

Variable Min. Max. Mean
Standard Data
Deviation Type

Y: Software development effort
4 2694 258.55 394.69 Numerical(person-hour)

X1: Program type entry 0 1 Dummy variable Boolean
X2: Program type report 0 1 Dummy variable Boolean
X3: Program type batch 0 1 Dummy variable Boolean
X4: Program type query 0 1 Dummy variable Boolean

X5: Program type transaction 0 0 Referential category Boolean
X6: Number of programs 1 88 16.73 19.12 Numerical

X7: Number of zooms 0 2028 100.22 255.40 Numerical
X8: Number of columns in form 3 3216 397.75 548.06 Numerical

X9: Number of actions 0 1645 288.44 339.61 Numerical
X10: Number of signature tasks 0 15 0.39 1.77 Numerical

X11: Number of batch serial numbers 0 11 0.31 1.50 Numerical
X12: Number of multi-angle trade tasks 0 22 0.55 2.66 Numerical

X13: Number of multi-unit tasks 0 21 1.10 3.41 Numerical
X14: Number of reference calls 0 528 13.96 49.92 Numerical

X15: Number of confirmed tasks 0 21 1.50 3.99 Numerical
X16: Number of post tasks 0 12 0.23 1.33 Numerical

X17: Number of industry type tasks 0 21 0.80 2.97 Numerical

Table 16. Performances of predictive models for ERP software development effort.

No. Model
Learn Test SI and Ranking

RMSE MAE MAPE R TER RMSE MAE MAPE R TER SIlocal SIglobal

I Single

1 ANN 68.81 24.92 19.91% 0.98 1.49% 115.24 61.85 30.65% 0.95 9.86% 0.00 (1) 0.13 (2)
2 SVR 0.00 0.00 0.00% 1.00 0.00% 361.88 255.35 611.63% Inf 36.81% 0.89 (4)
3 CART 86.89 40.38 19.56% 0.97 0.00% 196.48 107.02 47.29% 0.85 12.77% 0.15 (2)
4 LRR 250.21 221.15 617.02% 0.84 48.77% 255.43 227.80 647.08% 0.78 63.59% 0.72 (3)

II Voting

1 (*) 73.30 62.90 157.96% 0.99 12.39% 185.39 139.02 321.77% 0.94 23.90% 0.34 (5)
2 ANN + CART + LRR 97.74 83.87 210.62% 0.98 16.52% 139.70 110.32 227.32% 0.94 22.01% 0.21 (2)
3 ANN + SVR + CART 39.95 19.33 11.22% 0.99 0.50% 181.63 117.20 215.13% 0.94 14.45% 0.22 (3)
4 ANN + SVR + LRR 87.66 76.90 207.61% 0.99 16.52% 202.91 158.85 419.21% 0.94 30.90% 0.46 (7)
5 SVR + CART + LRR 93.17 80.47 208.60% 0.99 16.26% 236.10 178.73 427.29% 0.89 32.97% 0.60 (10)
6 ANN + CART 59.92 28.99 16.83% 0.99 0.75% 123.43 68.46 33.90% 0.94 10.10% 0.01 (1) 0.15 (3)
7 ANN + LRR 131.49 115.35 311.42% 0.97 24.78% 152.57 129.46 326.55% 0.94 32.67% 0.34 (6)
8 ANN + SVR 34.40 12.46 9.96% 1.00 0.75% 199.24 135.42 307.89% 0.95 18.21% 0.31 (4)
9 SVR + CART 43.45 20.19 9.78% 0.99 0.00% 254.27 166.51 320.26% 0.85 21.09% 0.56 (9)
10 CART + LRR 139.76 120.71 312.91% 0.96 24.38% 190.91 151.58 337.64% 0.89 32.09% 0.48 (8)
11 SVR + LRR 125.10 110.57 308.51% 0.97 24.38% 287.41 230.03 626.83% 0.78 47.93% 1.00 (11)

III Bagging

1 ANN 70.28 33.48 21.45% 0.98 2.51% 65.58 40.51 19.50% 0.99 5.59% 0.00 (1) 0.00 (1)
2 SVR 174.56 92.31 231.82% 0.91 3.98% 162.38 99.02 87.79% 0.87 11.69% 0.47 (3)
3 CART 123.05 52.45 25.94% 0.94 2.19% 127.21 79.97 20.11% 0.96 8.58% 0.21 (2)
4 LRR 249.00 222.81 666.29% 0.88 59.61% 309.18 257.31 269.67% 0.71 10.90% 0.97 (4)

IV Stacking

1 (*) ANN 0.07 0.02 0.03% 1.00 0.00% 361.54 255.19 611.55% 0.71 36.77% 0.80 (2)
2 (*) SVR 0.00 0.00 0.00% 1.00 0.00% 361.76 255.53 612.78% NaN 36.76% 1.00 (4)
3 (*) CART 52.00 17.40 5.69% 0.99 0.00% 360.24 252.61 593.46% NaN 34.86% 0.81 (3)
4 (*) LRR 132.73 97.48 187.26% 0.95 23.62% 289.20 206.32 494.18% 0.62 34.11% 0.03 (1) 1.00 (5)

V Tiering

1 2-Class (**) 317.04 71.38 24.45% 0.58 20.48% 176.77 65.42 23.57% 0.79 16.13% 0.00 (1) 0.31 (4)
2 3-Class (***) 383.02 115.48 26.68% 0.30 36.54% 278.46 111.74 26.94% 0.51 28.64% 0.54 (2)
3 4-Class (****) 414.30 151.32 29.96% 0.10 49.11% 347.05 147.22 29.76% 0.26 43.00% 1.00 (3)

Note: (*) is (ANN + SVR + CART + LRR); (**) SVM-(ANN, SVR); (***) CART-(ANN, SVR, SVR); (****) CART-(CART, SVR, SVR, SVR);
(No.): Ranking.

80

Mathematics 2021, 9, 686

Figure 10. Root mean square errors of best models.

Three models (single, voting, and bagging) provided better results in terms of R (0.94
to 0.99) than the tiering and stacking ensemble models, which had the R values of 0.58 to
0.95. Among these three best models, in terms of MAPE, the bagging model exhibited the
best balance of MAPE results from learning and test data (21.45% and 19.50%, respectively).
The single and voting models depicted un-balanced MAPEs for training and test data
(19.91% and 30.65% for the single model; 16.83% and 33.90% for the voting model). Thus,
the bagging model was the best model to predict ERP.

The first experiment indicates that, the iML not only identifies the best model, but
also reports the performance values of all the training models. Chou et al. (2012) obtained
training and testing MAPEs of 26.8% and 27.3%, and RMSEs of 234.0157 h and 97.2667 h
using Evolutionary Support Vector Machine Inference Model (ESIM) [1]. The iML yields
the bagging ensemble model with MAPEs of 21.45% and 19.50%, and RMSEs of 70.28hr
and 65.58 h for the same training and test data, respectively. As a result, the iML is effective
to find the best model among the popular regression models.

7.2. Experiments on Industrial Datasets

Three additional experiments were performed to evaluate iML. To ensure a fair com-
parison, 70 % of the data was used for learning whereas the remaining 30% was utilized
for testing.

7.2.1. Performance of CPU Processors

This experiment is about the comparison of performance of CPU processors. The data
for this experiment was taken from Maurya and Gupta (2015) [12]. This dataset contained
209 samples with a total of 6 attributes (Table 17). The descriptions of the attributes are
as follows: X1: Machine cycle time in nanoseconds (integer, input); X2: Minimum main
memory in kilobytes (integer, input); X3: Maximum main memory in kilobytes (integer,
input); X4: Cache memory in kilobytes (integer, input); X5: Minimum channels in units
(integer, input); X6: Maximum channels in units (integer, input); and Y: Estimated relative
performance (integer, output).

Table 17. Descriptive statistics for CPU processors.

Statistic Value
Input Output

X1 X2 X3 X4 X5 X6 Y

Min 17 64 64 0 0 0 15
Max 1500 32,000 64,000 256 52 176 1238

Mean 203.82 2867.98 11,796.2 25.21 4.7 18.27 99.33
Std. 260.26 3878.74 11,726.6 40.63 6.82 26 154.76

81

Mathematics 2021, 9, 686

7.2.2. Daily Demand Forecasting Orders

This experiment is about the daily demand forecasting orders. The data used in this
experiment was taken from Ferreira et al. (2016) [13]. Table 18 shows a statistical analysis
of the data. There were 60 samples with 12 attributes, including X1: Week of the month
(first week, second, third or fourth week of month, input); X2: Day of the week (Monday to
Friday, input); X3: Urgent orders (integer, input); X4: Non-urgent orders (integer, input);
X5: Type A orders (integer, input); X6: Type B orders (integer, input); X7: Orders of type C
(integer, input); X8: Orders from the tax sector (integer, input); X9: Orders from the traffic
controller sector (integer, input); X10: Orders from the banking sector 1 (integer, input); X11:
Orders from the banking sector 2 (integer, input); X12: Banking orders 3 (integer, input);
and Y: Total orders (integer, output).

Table 18. Variables and descriptive statistics for daily demand forecasting orders.

Statistic Value
Input Output

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Y

Min 1 2 43.65 77.37 21.83 25.13 74.37 0 11,992 3452 16,411 7679 129.41
Max 5 6 435.30 223.27 118.18 267.34 302.45 865 71,772 210,508 188,411 73,839 616.45

Mean - - 172.55 118.92 52.11 109.23 139.53 77.4 44,504.4 46,640.8 79,401.5 23,114.6 300.87
Std. - - 69.51 27.17 18.83 50.74 41.44 186.5 12,197.9 45,220.7 40,504.4 13,148 89.6

7.2.3. Total Hourly-Shared Bike Rental per Days

The experiment is about the total hourly-shared bike rental per days. The data was
adopted from Fanaee-T and Gama (2014) [11], and statistically analyzed in Table 19. In
total, there were 731 samples and 11 attributes, defined as follows: X1: Season (1: spring, 2:
summer, 3: fall, 4: winter, input); X2: Month (1 to 12, input); X3: Year (0:2011, 1:2012, input);
X4: Weather day is holiday or not (input); X5: Day of the week (input); X6: Working day
if day is neither weekend nor holiday is 1, otherwise is 0 (input); X7: Weather condition
(1: Clear, Few clouds, partly cloudy; 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few
clouds, Mist; 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain +
Scattered clouds; 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog, input);
X8: Normalized temperature in Celsius. The values are divided to 41 (max) (input); X9:
Normalized feeling temperature in Celsius. The values are divided to 50 (max) (input);
X10: Normalized humidity. The values are divided to 100 (max) (input); X11: Normalized
wind speed. The values are divided to 67 (max) (input); and Y: Count of total rental bikes
including both casual and registered (output).

Table 19. Variables and descriptive statistics for total hourly-shared bike rental per days.

Statistic Value
Input Output

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 Y

Min 1 0 1 0 0 0 1 0.059 0.079 0 0.022 22
Max 4 1 12 1 6 1 3 0.862 0.841 0.973 0.507 8714

Mean - - - 0.029 2.997 0.684 1.395 0.495 0.474 0.628 0.19 4504.35
Std. - - - 0.167 2.005 0.465 0.545 0.183 0.163 0.142 0.077 1937.21

In this study, to calculate MAPE, the output was normalized and 0.1 was added to
prevent a zero value.

yi =
yi − ymin

ymax − ymin
+ 0.1 (21)

where yi, ymin, and ymax are actual value, minimum and maximum of actual value, respec-
tively.

82

Mathematics 2021, 9, 686

7.2.4. Performance Results

Table 20 presents the performance results of all models for the three additional datasets.
Using the same dataset in the experiment No. 2, Maurya and Gupta (2015) [12] trained ANN
models with the maximum R-learn and R-test values of 0.98146 and 0.98662, respectively.
Meanwhile, the iML identifies the ANN single model as the best model with R-learn and
R-test values of 0.99990 and 0.99629, respectively. The iML gives out a slightly better model
than those of the previous research in this numerical experiment.

Table 20. Performance results of three additional numerical experiments.

No. Model
Learn Test

RMSE MAE MAPE R TER RMSE MAE MAPE R TER

2 Single 2.462 0.569 1.015% 1.000 0.236% 8.738 3.683 3.775% 0.996 2.730%
Voting 17.509 4.965 2.808% 0.995 0.118% 13.087 5.173 5.685% 0.989 0.921%

Bagging 40.127 8.893 2.360% 0.981 3.015% 13.484 3.930 2.489% 0.996 3.795%
Stacking 40.428 9.030 3.389% 0.973 0.000% 64.782 43.615 104.992% 0.842 9.852%

Tiering-2class 163.338 26.947 3.229% 0.383 24.818% 18.196 5.822 4.629% 0.986 3.220%
Tiering-3class 167.093 29.784 3.856% 0.340 27.446% 76.406 12.698 5.268% 0.639 13.094%
Tiering-4class 182.572 44.722 7.970% 0.112 41.332% 91.701 21.089 8.342% 0.422 24.368%

3 Single 0.349 0.080 0.023% 1.000 0.021% 0.317 0.231 0.093% 1.000 0.042%
Voting 17.417 10.754 3.089% 0.985 0.010% 12.162 10.157 3.993% 0.951 0.867%

Bagging 0.917 0.399 0.110% 1.000 0.020% 0.296 0.221 0.087% 1.000 0.074%
Stacking 0.338 0.090 0.026% 1.000 0.014% 0.335 0.251 0.101% 1.000 0.042%

Tiering-2class 169.296 63.580 14.294% −0.399 21.483% 214.674 86.711 16.747% −0.704 27.688%
Tiering-3class 273.303 212.047 62.384% −0.664 71.449% 295.065 223.209 62.186% −0.570 71.054%
Tiering-4class 329.001 312.397 97.619% −0.304 99.023% 51.164 45.122 18.684% 0.706 11.339%

4 Single 0.046 0.030 6.670% 0.979 10.450% 0.105 0.073 14.120% 0.883 0.550%
Voting 0.052 0.037 7.850% 0.974 8.000% 0.080 0.056 10.750% 0.929 0.260%

Bagging 0.049 0.034 7.150% 0.977 6.930% 0.069 0.046 8.870% 0.948 0.190%
Stacking 0.005 0.003 0.700% 1.000 21.430% 0.214 0.169 38.680% 0.000 0.086%

Tiering-2class 0.580 0.432 57.620% −0.582 58.900% 0.589 0.451 61.410% −0.570 68.290%
Tiering-3class 0.639 0.568 84.420% −0.680 64.600% 0.646 0.565 82.110% −0.717 90.260%
Tiering-4class 0.648 0.596 92.370% −0.513 65.200% 0.652 0.584 87.400% −0.630 94.300%

Note: No. 2: CPU experiment dataset; No. 3: Customer experiment dataset; No. 4: Rental bike experiment dataset; the bold denotes the
best model in each experiment.

In the experiment No. 3, Ferreira et al. (2016) had an analytical result of MAPE 3.45%
and iML confirms ANN single model as the best model, with MAPE values for learning and
test of 0.023% and 0.093%, respectively [13]. The stacking ANN ensemble also performs
well with the MAPEs for the learning and test data by 0.026% and 0.010%, respectively.

Finally, in the experiment No. 4, iML achieves R-learn and R-test values of 0.97660
and 0.94790, with bagging ANN as the best model. In contrast, Fanaee-T and Gama (2014)
obtained a maximum R value of 0.91990 [11].

As shown in the above numerical experiments, iML trains and identifies the best
models which are better than those in the previous studies.

8. Conclusions and Future Work

This study develops an iML platform to efficiently operate data-mining techniques.
The iML is designed to be user-friendly, so users can get the results with only “One-Click”.
The numerical experiments have demonstrated that iML is a powerful soft computing to
identify the best prediction model by automating comparison among diverse machine
learning techniques.

To benchmark the effectiveness of iML with WEKA, five datasets collected from the
UCI Machine Learning Repository were analyzed via hold-out validation and tenfold cross
validation. The performance results indicate that iML can find a more accurate model
than that of WEKA in the publicly available datasets. The best prediction model identified
by iML is also the best model among all the models trained by iML and WEKA. Notably,
iML requires minimal effort from the users to build single, voting, bagging, and stacking
models in comparison with WEKA.

83

Mathematics 2021, 9, 686

Four industrial experiments were carried out to validate the performance of iML. The
first experiment involved training a model for prediction of ERP development effort, in
which iML yielded an RMSE for learning data with 70.28 h and for testing data with 65.58
h, by using the bagging ANN ensemble (best model). In contrast, Chou et al. (2012) [1]
obtained training and testing RMSE values of 234.0157 h and 97.2667 h, respectively.

In the second experiment on performance of CPU processors, iML yielded 0.99990
for R-learning and 0.99629 for R-testing, which are better than those reported in Maurya
and Gupta (2015) [12], and confirmed that single ANN was the best model. In the third
experiment of daily demand forecasting orders, iML achieved MAPE values of 0.026%
(learning) and 0.010% (testing). The results are as excellent as those obtained in Ferreira
et al. (2016) [13]. In the fourth experiment for total hourly-shared bike rental, R-learning
and R-testing values of 0.97660 and 0.94790 were reached using iML. The test performance
was 6% better than that obtained by Fanaee-T and Gama (2014) [11]. In addition to the
enhanced prediction performance, the iML possesses ability to determine the best models
on the basis of multiple evaluation metrics.

In conclusion, the iML is a powerful and promising prediction platform for solving
diverse engineering problems. Since the iML platform can only deal with regression
problems, future research should upgrade iML for solving complex classification and
time series problems by automatically presenting the alternative models for practical use
in engineering applications, as well as adding some other advanced ML methods (such
as deep learning models). Moreover, metaheuristic optimization algorithms could be
integrated with the iML to help the users finetune the hyperparameters of chosen machine
learning models.

Author Contributions: Conceptualization, J.-S.C.; data curation, D.-N.T.; formal analysis, J.-S.C. and
D.-N.T.; funding acquisition, J.-S.C.; investigation, J.-S.C., D.-N.T. and C.-F.T.; methodology, J.-S.C.
and C.-F.T.; project administration, J.-S.C.; resources, J.-S.C. and C.-F.T.; software, D.-N.T.; supervision,
J.-S.C.; validation, J.-S.C., D.-N.T. and C.-F.T.; visualization, J.-S.C. and D.-N.T.; writing—original
draft, J.-S.C., D.-N.T. and C.-F.T.; writing—review and editing, J.-S.C. and D.-N.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan, under grants
108-2221-E-011-003-MY3 and 107-2221-E-011-035-MY3.

Data Availability Statement: The data that support the findings of this study are available from the
UCI Machine Learning Repository or corresponding author upon reasonable request.

Acknowledgments: The authors would like to thank the Ministry of Science and Technology, Taiwan,
for financially supporting this research.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Chou, J.-S.; Cheng, M.-Y.; Wu, Y.-W.; Wu, C.-C. Forecasting enterprise resource planning software effort using evolutionary
support vector machine inference model. Int. J. Proj. Manag. 2012, 30, 967–977. [CrossRef]

2. Pham, A.-D.; Ngo, N.-T.; Nguyen, Q.-T.; Truong, N.-S. Hybrid machine learning for predicting strength of sustainable concrete.
Soft Comput. 2020. [CrossRef]

3. Cheng, M.-Y.; Chou, J.-S.; Cao, M.-T. Nature-inspired metaheuristic multivariate adaptive regression splines for predicting
refrigeration system performance. Soft Comput. 2015, 21, 477–489. [CrossRef]

4. Li, Y.; Lei, G.; Bramerdorfer, G.; Peng, S.; Sun, X.; Zhu, J. Machine Learning for Design Optimization of Electromagnetic Devices:
Recent Developments and Future Directions. Appl. Sci. 2021, 11, 1627. [CrossRef]

5. Piersanti, S.; Orlandi, A.; Paulis, F.d. Electromagnetic Absorbing Materials Design by Optimization Using a Machine Learning
Approach. IEEE Trans. Electromagn. Compat. 2018, 1–8. [CrossRef]

6. Chou, J.S.; Pham, A.D. Smart artificial firefly colony algorithm-based support vector regression for enhanced forecasting in civil
engineering. Comput.-Aided Civ. Infrastruct. Eng. 2015, 30, 715–732. [CrossRef]

84

Mathematics 2021, 9, 686

7. Cheng, M.-Y.; Prayogo, D.; Wu, Y.-W. A self-tuning least squares support vector machine for estimating the pavement rutting
behavior of asphalt mixtures. Soft Comput. 2019, 23, 7755–7768. [CrossRef]

8. Al-Ali, H.; Cuzzocrea, A.; Damiani, E.; Mizouni, R.; Tello, G. A composite machine-learning-based framework for supporting
low-level event logs to high-level business process model activities mappings enhanced by flexible BPMN model translation. Soft
Comput. 2019. [CrossRef]

9. López, J.; Maldonado, S.; Carrasco, M. A novel multi-class SVM model using second-order cone constraints. Appl. Intell. 2016,
44, 457–469. [CrossRef]

10. Bogawar, P.S.; Bhoyar, K.K. An improved multiclass support vector machine classifier using reduced hyper-plane with skewed
binary tree. Appl. Intell. 2018, 48, 4382–4391. [CrossRef]

11. Fanaee-T, H.; Gama, J. Event labeling combining ensemble detectors and background knowledge. Prog. Artif. Intell. 2014,
2, 113–127. [CrossRef]

12. Maurya, V.; Gupta, S.C. Comparative Analysis of Processors Performance Using ANN. In Proceedings of the 2015 5th International
Conference on IT Convergence and Security (ICITCS), Kuala Lumpur, Malaysia, 24–27 August 2015; pp. 1–5.

13. Ferreira, R.P.; Martiniano, A.; Ferreira, A.; Ferreira, A.; Sassi, R.J. Study on Daily Demand Forecasting Orders using Artificial
Neural Network. IEEE Lat. Am. Trans. 2016, 14, 1519–1525. [CrossRef]

14. De’ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis.
Ecology 2000, 81, 3178–3192. [CrossRef]

15. Li, H.; Wen, G. Modeling reverse thinking for machine learning. Soft Comput. 2020, 24, 1483–1496. [CrossRef]
16. Li, Y. Predicting materials properties and behavior using classification and regression trees. Mater. Sci. Eng. A 2006, 433, 261–268.

[CrossRef]
17. Chou, J.-S.; Yang, K.-H.; Lin, J.-Y. Peak Shear Strength of Discrete Fiber-Reinforced Soils Computed by Machine Learning and

Metaensemble Methods. J. Comput. Civ. Eng. 2016, 30, 04016036. [CrossRef]
18. Qi, C.; Tang, X. Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study.

Comput. Ind. Eng. 2018, 118, 112–122. [CrossRef]
19. Chou, J.-S.; Ho, C.-C.; Hoang, H.-S. Determining quality of water in reservoir using machine learning. Ecol. Inform. 2018, 44, 57–75.

[CrossRef]
20. Chou, J.-S.; Bui, D.-K. Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy

Build. 2014, 82, 437–446. [CrossRef]
21. Alkahtani, M.; Choudhary, A.; De, A.; Harding, J.A. A decision support system based on ontology and data mining to improve

design using warranty data. Comput. Ind. Eng. 2018. [CrossRef]
22. Daras, G.; Agard, B.; Penz, B. A spatial data pre-processing tool to improve the quality of the analysis and to reduce preparation

duration. Comput. Ind. Eng. 2018, 119, 219–232. [CrossRef]
23. Chou, J.-S.; Tsai, C.-F. Preliminary cost estimates for thin-film transistor liquid–crystal display inspection and repair equipment:

A hybrid hierarchical approach. Comput. Ind. Eng. 2012, 62, 661–669. [CrossRef]
24. Chen, T. An ANN approach for modeling the multisource yield learning process with semiconductor manufacturing as an

example. Comput. Ind. Eng. 2017, 103, 98–104. [CrossRef]
25. Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Philip, S.Y. Top 10 algorithms in

data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]
26. Chou, J.-S.; Ngo, N.-T.; Chong, W.K. The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate.

Eng. Appl. Artif. Intell. 2017, 65, 471–483. [CrossRef]
27. Das, D.; Pratihar, D.K.; Roy, G.G.; Pal, A.R. Phenomenological model-based study on electron beam welding process, and

input-output modeling using neural networks trained by back-propagation algorithm, genetic algorithms, particle swarm
optimization algorithm and bat algorithm. Appl. Intell. 2018, 48, 2698–2718. [CrossRef]

28. Tewari, S.; Dwivedi, U.D. Ensemble-based big data analytics of lithofacies for automatic development of petroleum reservoirs.
Comput. Ind. Eng. 2018. [CrossRef]

29. Priore, P.; Ponte, B.; Puente, J.; Gómez, A. Learning-based scheduling of flexible manufacturing systems using ensemble methods.
Comput. Ind. Eng. 2018, 126, 282–291. [CrossRef]

30. Fang, K.; Jiang, Y.; Song, M. Customer profitability forecasting using Big Data analytics: A case study of the insurance industry.
Comput. Ind. Eng. 2016, 101, 554–564. [CrossRef]

31. Chou, J.-S. Generalized linear model-based expert system for estimating the cost of transportation projects. Expert Syst. Appl.
2009, 36, 4253–4267. [CrossRef]

32. Dandikas, V.; Heuwinkel, H.; Lichti, F.; Drewes, J.E.; Koch, K. Predicting methane yield by linear regression models: A validation
study for grassland biomass. Bioresour. Technol. 2018, 265, 372–379. [CrossRef] [PubMed]

33. Ngo, S.H.; Kemény, S.; Deák, A. Performance of the ridge regression method as applied to complex linear and nonlinear models.
Chemom. Intell. Lab. Syst. 2003, 67, 69–78. [CrossRef]

34. Sentas, P.; Angelis, L. Categorical missing data imputation for software cost estimation by multinomial logistic regression. J. Syst.
Softw. 2006, 79, 404–414. [CrossRef]

85

Mathematics 2021, 9, 686

35. Slowik, A. Application of an Adaptive Differential Evolution Algorithm With Multiple Trial Vectors to Artificial Neural Network
Training. IEEE Trans. Ind. Electron. 2011, 58, 3160–3167. [CrossRef]

36. Caputo, A.C.; Pelagagge, P.M. Parametric and neural methods for cost estimation of process vessels. Int. J. Prod. Econ. 2008,
112, 934–954. [CrossRef]

37. Rocabruno-Valdés, C.I.; Ramírez-Verduzco, L.F.; Hernández, J.A. Artificial neural network models to predict density, dynamic
viscosity, and cetane number of biodiesel. Fuel 2015, 147, 9–17. [CrossRef]

38. Ganesan, P.; Rajakarunakaran, S.; Thirugnanasambandam, M.; Devaraj, D. Artificial neural network model to predict the diesel
electric generator performance and exhaust emissions. Energy 2015, 83, 115–124. [CrossRef]

39. Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [CrossRef]
40. Vapnik, V. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 2013.
41. Jing, G.; Cai, W.; Chen, H.; Zhai, D.; Cui, C.; Yin, X. An air balancing method using support vector machine for a ventilation

system. Build. Environ. 2018, 143, 487–495. [CrossRef]
42. García-Floriano, A.; López-Martín, C.; Yáñez-Márquez, C.; Abran, A. Support vector regression for predicting software enhance-

ment effort. Inf. Softw. Technol. 2018, 97, 99–109. [CrossRef]
43. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; Routledge: New York, NY, USA, 2017; p. 368.

[CrossRef]
44. Choi, S.Y.; Seo, I.W. Prediction of fecal coliform using logistic regression and tree-based classification models in the North Han

River, South Korea. J. Hydro-Environ. Res. 2018, 21, 96–108. [CrossRef]
45. Ru, F.; Yin, A.; Jin, J.; Zhang, X.; Yang, X.; Zhang, M.; Gao, C. Prediction of cadmium enrichment in reclaimed coastal soils by

classification and regression tree. Estuar. Coast. Shelf Sci. 2016, 177, 1–7. [CrossRef]
46. Chou, J.-S.; Tsai, C.-F.; Pham, A.-D.; Lu, Y.-H. Machine learning in concrete strength simulations: Multi-nation data analytics.

Constr. Build. Mater. 2014, 73, 771–780. [CrossRef]
47. Elish, M.O. Assessment of voting ensemble for estimating software development effort. In Proceedings of the 2013 IEEE

Symposium on Computational Intelligence and Data Mining (CIDM), Singapore, 16–19 April 2013; pp. 316–321.
48. Wang, Z.; Wang, Y.; Srinivasan, R.S. A novel ensemble learning approach to support building energy use prediction. Energy Build.

2018, 159, 109–122. [CrossRef]
49. Chen, J.; Yin, J.; Zang, L.; Zhang, T.; Zhao, M. Stacking machine learning model for estimating hourly PM2.5 in China based on

Himawari 8 aerosol optical depth data. Sci. Total Environ. 2019, 697, 134021. [CrossRef] [PubMed]
50. Basant, N.; Gupta, S.; Singh, K.P. A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals

in rabbit for regulatory purposes. Regul. Toxicol. Pharmacol. 2016, 77, 282–291. [CrossRef]
51. Lee, K.M.; Yoo, J.; Kim, S.-W.; Lee, J.-H.; Hong, J. Autonomic machine learning platform. Int. J. Inf. Manag. 2019, 49, 491–501.

[CrossRef]
52. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
53. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Search; Technical Report SFI-TR-95-02-010; Santa Fe Institute: Santa Fe,

NM, USA, 1995.
54. Cheng, D.; Shi, Y.; Gwee, B.; Toh, K.; Lin, T. A Hierarchical Multiclassifier System for Automated Analysis of Delayered IC Images.

IEEE Intell. Syst. 2019, 34, 36–43. [CrossRef]
55. Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods

2000, 43, 3–31. [CrossRef]
56. Jain, A.K.; Jianchang, M.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [CrossRef]
57. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
58. Chamasemani, F.F.; Singh, Y.P. Multi-class Support Vector Machine (SVM) Classifiers—An Application in Hypothyroid Detection

and Classification. In Proceedings of the 2011 Sixth International Conference on Bio-Inspired Computing: Theories and
Applications, Penang, Malaysia, 27–29 September 2011; pp. 351–356.

59. Yang, X.; Yu, Q.; He, L.; Guo, T. The one-against-all partition based binary tree support vector machine algorithms for multi-class
classification. Neurocomputing 2013, 113, 1–7. [CrossRef]

60. Tuv, E.; Runger, G.C. Scoring levels of categorical variables with heterogeneous data. IEEE Intell. Syst. 2004, 19, 14–19. [CrossRef]
61. Chiang, W.; Liu, X.; Zhang, T.; Yang, B. A Study of Exact Ridge Regression for Big Data. In Proceedings of the 2018 IEEE

International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 3821–3830.
62. Marquardt, D.W.; Snee, R.D. Ridge Regression in Practice. Am. Stat. 1975, 29, 3–20. [CrossRef]
63. Cox, D.R. The regression analysis of binary sequences. J. R. Stat. Society. Ser. B 1958, 20, 215–242. [CrossRef]
64. Jiang, F.; Guan, Z.; Li, Z.; Wang, X. A method of predicting visual detectability of low-velocity impact damage in composite

structures based on logistic regression model. Chin. J. Aeronaut. 2021, 34, 296–308. [CrossRef]
65. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the

International Joint Conference on Artificial Intelligence 1995, Montreal, QC, Canada, 20–25 August 1995; pp. 1137–1143.
66. Chou, J.; Truong, D.; Le, T. Interval Forecasting of Financial Time Series by Accelerated Particle Swarm-Optimized Multi-Output

Machine Learning System. IEEE Access 2020, 8, 14798–14808. [CrossRef]
67. Yeh, I.-C. Analysis of Strength of Concrete Using Design of Experiments and Neural Networks. J. Mater. Civ. Eng. 2006,

18, 597–604. [CrossRef]

86

Mathematics 2021, 9, 686

68. Yeh, I.C.; Hsu, T.-K. Building real estate valuation models with comparative approach through case-based reasoning. Appl. Soft
Comput. 2018, 65, 260–271. [CrossRef]

69. Tsanas, A.; Xifara, A. Accurate quantitative estimation of energy performance of residential buildings using statistical machine
learning tools. Energy Build. 2012, 49, 560–567. [CrossRef]

70. Lau, K.; López, R. A Neural Networks Approach to Aerofoil Noise Prediction; International Center for Numerical Methods in
Engineering: Barcelona, Spain, 2009.

87

mathematics

Article

Deep Neural Network for Gender-Based Violence Detection on
Twitter Messages

Carlos M. Castorena 1,†,‡, Itzel M. Abundez 1,†, Roberto Alejo 1,*,†,‡, Everardo E. Granda-Gutiérrez 2,†,

Eréndira Rendón 1,† and Octavio Villegas 1,†

Citation: Castorena, C.M.; Abundez,

I.M.; Alejo, R.; Granda-Gutiérrez, E.E.;

Rendón, E.; Villegas, O. Deep Neural

Network for Gender-Based Violence

Detection on Twitter Messages.

Mathematics 2021, 9, 807. https://

doi.org/10.3390/math9080807

Academic Editors: Florin Leon,

Mircea Hulea and Marius Gavrilescu

Received: 26 February 2021

Accepted: 6 April 2021

Published: 8 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Postgraduate Studies and Research, National Technological of Mexico, Instituto Tecnológico de
Toluca, Metepec 52149, Mexico; ccastorenal@toluca.tecnm.mx (C.M.C.); iabundezb@toluca.tecnm.mx (I.M.A.);
erendonl@toluca.tecnm.mx (E.R.); ovillegasc@toluca.tecnm.mx (O.V.)

2 UAEM University Center at Atlacomulco, Autonomous University of the State of Mexico,
Toluca 50450, Mexico; eegrandag@uaemex.mx

* Correspondence: ralejoe@toluca.tecnm.mx; Tel.: +52-722-2816463
† Current address: Av. Tecnológico s/n, Agrícola Bellavista, Metepec 52149, Mexico.
‡ These authors contributed equally to this work.

Abstract: The problem of gender-based violence in Mexico has been increased considerably. Many
social associations and governmental institutions have addressed this problem in different ways. In
the context of computer science, some effort has been developed to deal with this problem through
the use of machine learning approaches to strengthen the strategic decision making. In this work,
a deep learning neural network application to identify gender-based violence on Twitter messages
is presented. A total of 1,857,450 messages (generated in Mexico) were downloaded from Twitter:
61,604 of them were manually tagged by human volunteers as negative, positive or neutral messages,
to serve as training and test data sets. Results presented in this paper show the effectiveness of deep
neural network (about 80% of the area under the receiver operating characteristic) in detection of
gender violence on Twitter messages. The main contribution of this investigation is that the data
set was minimally pre-processed (as a difference versus most state-of-the-art approaches). Thus,
the original messages were converted into a numerical vector in accordance to the frequency of
word’s appearance and only adverbs, conjunctions and prepositions were deleted (which occur very
frequently in text and we think that these words do not contribute to discriminatory messages on
Twitter). Finally, this work contributes to dealing with gender violence in Mexico, which is an issue
that needs to be faced immediately.

Keywords: gender-based violence in Mexico; twitter messages; deep neural networks; class imbalance

1. Introduction

Gender-based violence (GBV) is a big concern around the globe [1]. The United Nations
(UN) recognized GBV as a problem involving health and development [2]. A UN declaration
about GBV, specifically the cause to women, describes it as all those acts of violence that
results or potentially could lead into physical, psychological or sexual damage or suffering;
it also includes the menacing of doing such acts, coercion to perform them and arbitrary
deprivation of liberty, no matter if this is done in public or private circumstances [3].

Mexico has shown an escalation in the number of victims of GBV due to its social,
economic and political context [4,5]. Moreover, crisis like the recent novel coronavirus
disease (COVID-19) outbreak have exposed critical inequalities in the social and economic
environments, as well as the health system, which have negatively contributed to the GBV
problem [6].

Efforts of scholars and activists have increasingly turned society and government
attention to this problem, warning about how certain conditions of power or privilege tend
to reproduce broader relations of inequality, domination, exploitation, victimization and,

Mathematics 2021, 9, 807. https://doi.org/10.3390/math9080807 https://www.mdpi.com/journal/mathematics89

Mathematics 2021, 9, 807

finally, loss of humanity [1]. In this respect, computer science researchers have developed
algorithms and methodologies based on machine learning to address the GBV problem.
For example, Ref. [7] presents a camouflaged electronic device to help potential victims of
GBV; it allows to send a voice command and Global Positioning System (GPS) location via
smartphone to a Control Center, which analyzes the message to properly assist the victim. A
similar but more sophisticated work is presented in [8]; it uses two psychological sensors
to identify GBV through a robust speaker identification system, based on the evaluation of
speech stress conditions by using data augmentation techniques. Rodríguez-Rodríguez
et al. [9] used historic open access data to model and forecast GBV through machine
learning methods; their methodology produced successful results in three specific Spanish
territories with different populations.

GBV has affected many women around the world in online social network environ-
ments [10] and several works have been developed to tackle this problem. In Ref. [11], a
classification of cyber-bullying detection methods in online social networks was presented;
it shows a survey of techniques to automatically identify cyber-bullying through the ma-
chine learning algorithms. Another interesting approach is MANDOLA [12]; it is a big-data
processing system intended to evaluate the proliferation and effect of online hate-related
speech, which is generally inspired by religion beliefs, ethnicity or gender. Gutiérrez-
Esparza et al. [13] studied two machine learning algorithms, and the variable importance
measures (VIMs) method, to select the best features from the data set, in order to classify
situations of cyber-aggression on Facebook for Spanish-language users from Mexico. They
collected 2000 Facebook comments, which were manually labeled as racism, violence
based on sexual orientation and violence against women, by a group of three machine
learning teachers which supported the psychologists who specialized in evaluation and
intervention of bullying situation in high schools. Experimental results of these works
showed a classification performance greater than 90% in accuracy.

Twitter has been a scenario where violence against women, indigenous, minorities
and migrants, is frequent. Consequently, much work has been focused on this problem and
the potential use of machine learning has been demonstrated as a methodology in Ref. [14].
In addition, data-mining [15] has been used to detect domestic violence. Other works have
been performed for automatic detection of sexual violence [16], cyber-bullying [17], hate
expressions [18], offensive or aggressiveness [13,19,20] on the twitter messages’ content, in
which the feature extraction method, including the appropriate collection of expressions
(words), is essential.

On the specific attention to GBV, much research has been performed. Ref. [21] exhibited
the use of machine learning methods on Twitter to study about the circumstances implicated
in the #MeToo movement (an initiative to denounce GBV), mainly those related to business
and marketing activities.

Ref. [22] presented the automatic detection and categorization of misogynous lan-
guage in Twitter by using different supervised classifiers. Techniques like N-grams, lin-
guistic, syntactic and embedding were used in order to build the feature space of the
training data set. One of the main contributions of these work was to make available to the
research community a data set of corpus of misogynistic tweets. Ref. [22], and similarly [23]
who collect data from Twitter from frequent words in domestic violence, highlighted the
importance of building a data set corpus of misogynistic tweets and consider the language
regionalization, i.e., the data corpus should be in accordance with regional context [13].

Xue et al. [15] evidenced the viability of employing topic-modeling methods for
data-mining on Twitter to identify GBV. An unsupervised algorithm to discover hidden
topics in the tweets was used. Twitter messages were converted into a document-term
matrix by applying the CountVectorizer method [24], in order to collect words that appear
more frequently in domestic violence, which are related to GBV.

In Ref. [16], a deep neural network was applied to identify the risk factor associated
with sexual violence on Twitter; however, it did not explain how the messages were
pre-processed.

90

Mathematics 2021, 9, 807

Mohammed et al. [17] recommended an array of unique features obtained from Twitter
(based on network, activity type, user as well as the content of the tweet) for the detection
of cyber-bullying (which has a direct relationship with GBV). Results showed an AUC
of 0.943 indicating that this set of features provides an effective approach for detecting
cyber-bullying.

In Ref. [18], an approach to automatic detection of hate expressions on Twitter was
shown. Authors collected offensive or hateful expressions for hate speech detection. The
pre-processing stage consisted of a cleaning up of the tweets, tokenization, generation of
negation expressions (e.g., “not”, “never”, etc.) and detection of the broadcast of these
words. In addition, a feature selection process was done.

Ref. [23] exhibited a technique for detection of xenophobia and misogyny in tweets by
using computing methodologies. Authors created a suitable language resource for hate
speech recognition in Spanish (Spain), highlighting the importance of language regional-
ization, i.e., whether it is Spanish from Spain or Mexico.

In [19], an Arabic offensive tweet detector was built. An inherent complexity to classify
tweets is noticeable, which is in accordance with the particular language.

In the Mexican Spanish context in Twitter, a few works have been performed for
automatic identification of GBV. Most of them have been focused on detection of aggres-
siveness. Alvarez-Carmona et al. [25] presented an overview of results from MEX-A3T
competition (2018), which is addressed to automatic identification of aggressiveness in
Mexican Spanish tweets. The competition included two tracks: in the first, author profiling,
the aim is to identify the place of residence and occupation of the users; in the second,
the goal was detection of aggressiveness in the message. Results showed 76.4% accuracy
in the aggressiveness identification task. Results of the deep learning methods used in
MEX-A3T did not overcome 68% accuracy [20]. Ref. [20] analyzed the performance of two
deep learning models for automatic classification of aggressive Mexican Spanish tweets.
It highlighted the low performance of studied deep learning neural networks to identify
aggression in Mexican Spanish tweets, i.e., there are still open issues to better understand
this topic, thus, they should be addressed.

Based on the previous works, two essential components were identified in the analysis
of content in Twitter messages: (a) the suitable collect of expressions (words) related to
the topic under study in accordance to regional context, and (b) the extraction features
stage by simple techniques like the CountVectorizer method [24], which transforms tweet
content into vectors by counting occurrences of each word in each tweet, but also the use
of sophisticated methodologies like those presented in [18] or [25].

In relation to the pre-processing stage, it was noted that most of the works need a
complex pre-processing or specialized group to manually tag the comments (or use small
data sets).

As a relevant concern, it was observed that most recent advances are developed for
the English language [25], but the few works performed for other languages agree with the
importance of the regional context of the messages in their original tongue [19,23].

In this paper, a simple methodology to identify GBV in Mexican Spanish Twitter
messages is studied, which includes three common extraction feature methods: CountVec-
torizer, TfidfVectorizer and HashingVectorizer. In contrast with other state-of-the-art works,
our proposal does not employ a stage to collect expressions related to GBV, but only give
to the classifier enough samples previously labeled by human volunteers of tweets con-
taining evidence of GBV or not containing GBV. Thus, the significance of this work can be
highlighted as follows:

1. This research contributes to the automatic detection of GBV in Mexican Spanish
tweets (specifically contextualized to Mexican language jargon), which is a little faced
issue, with the potential use of this work in the early attention of dangerous behaviors
in the users.

91

Mathematics 2021, 9, 807

2. It shows encouraging results in classification of tweets related to GBV. Area under the
receiver operating characteristic (AUC) obtained is about 80% by using a deep neural
network.

3. Feature extraction method used in this work is very simple, i.e., a minimal pre-
processing of the data is needed to classify tweets, which only implies to clean (delete
articles, numbers, symbols, conjunction and nonsense words) and tokenize (by means
of CountVectorizer, TfidfVectorizer and HashingVectorizer methods) tweets’ content.

2. Deep Learning Multilayer Perceptron

Deep learning neural networks are characterized by the increase of the network depth,
i.e., the number of hidden layers; then, the multilayer perceptron is a general and intuitive
architecture to be transformed to the deep learning multilayer perceptron (DL-MLP) with
two or more hidden layers [26].

DL-MLP tries to find a relation between a set of input vectors x and labels id by
modifying the parameters linking those sets. The output yj is a function of x and weight
w so that if w is modified, the difference z between the system output and target id could
be minimized. DL-MLP uses two or more hidden layers constituted of nodes or neurons.
Each neuron is connected with the neurons of the previous layer and the output signal
is calculated by combining all the inputs from the preceding layer [27]. The connections
between nodes use a neuronal weight (w) to modify the output signal before getting in the
neuron; this transformation corresponds to multiply the respective signal (xi) times the
weight (wi).

The use of multiple layers generates a more complex optimization problem, but gains
a reduction in the number of nodes per layer inside the architecture [28]. However, the
increase of the computational effort can be overcome by the availability of advanced
frameworks like Spark [29] and Tensorflow [30] that provide tools to optimize the cost
function of the perceptron. The use of such tools makes possible that the DL-MLP could
be used increasingly in big-data problems [31,32], and also increases the capability of
abstraction of DL-MLP to complex problems [28].

Usually, DL-MLPs are trained by means the back-propagation algorithm (based on
the stochastic gradient descent) [33–35] and initial weights are randomly assigned. One of
the most common algorithms of descending gradient optimization is Adam [36], which is
based on adaptive estimation of first-order and second-order moments [37]. This algorithm
reduces the error between the f (x, w) and f̂ (x, w).

Typically, DL-MLP includes different activation functions that modify the linear space
to a nonlinear space of the samples x in each hidden layer, namely: Rectified Linear Unit
(ReLU) f (z) = max(0, z), tangent function f (z) = tanh(z), Exponential Linear Unit (ELu)
f (z) = z ≥ 0 → z, z < 0 → (ez − 1) and sigmoid function f (z) = 1/(1 + e−z).

3. Deep Learning for Natural Language Processing and Sentiment Analysis

The advent of the world wide web and search engines brought with it the emergence
of natural language processing (NLP) [38], which allows a machine to process a natural
human language and then translates it into a format that is processable and understandable
to a computer [39]. This field has received a lot of attention due to the efficiency in language
modeling. Some of the NLP models have been applied in various areas, as they provide
great mechanisms to analyze text in real time, in addition to the reliability that they also
demonstrate in different tasks [40].

Due to the rapid growth of the Internet, the use of social networks, forums, blogs
and other platforms where people from all over the world share their ideas, opinions and
comments on multiple topics, has increased. Politics, cinema, sports, music, among others,
have given rise to a great deal of unstructured information [41]. For this reason, sentiment
analysis has become one of the main challenges addressed by NLP, whose main objective
is to extract feelings, opinions, attitudes and emotions from the users [42] through a series
of methods, techniques and tools on the detection and extraction of subjective information

92

Mathematics 2021, 9, 807

to detect the polarity of the text, that is, to determine if the given text is positive, negative
or neutral [43].

Sentiment analysis has been positioned as one of the essential tools to transform
the emotions and attitudes of a text into actionable and understandable information for
a machine [44]. It is so important within the NLP that this area has been addressed at
3 different levels [42]: (1) the document level, focused on determining whether an opinion
document expresses a positive or negative sentiment, (2) the sentence level, whose task is
to check whether each sentence expresses a positive, negative or neutral opinion and (3)
the aspect level, responsible for looking directly at the opinion itself.

To address the problems of sentiment analysis, previously, approaches based on
machine learning algorithms and the sentiment lexicon have been used. However, these
methods have limitations such as limited data, word order and a large number of tagged
texts that make them ineffective for NLP tasks [45]. However, for some of these problems,
models based on deep learning have been the solution, these methods have been gaining
popularity, thus proving to be a better option to face the problem of sentiment analysis and
this is attributed to the high performance they show in different tasks of the NLP [46].

For years, the implementation of a deep learning or pattern recognition system in NLP
has required careful engineering and extensive experience to design a feature extraction
system that can transform raw data into appropriate internal data or in a vector of charac-
teristics that a learning subsystem, generally a classifier, could use to detect patterns [47].
Feature extraction, as a data preprocessing method in the learning algorithm, contributes
to performance improvement. The extraction methods used for this task range from simple
approaches, such as those based on the bag of words model (like CountVectorizer [24],
TfidfVectorizer [48] or HashingVectorizer [49], to more sophisticated approaches, such as
transformers [50–53].

3.1. Text Feature Extraction

The CountVectorizer method converts a document d into a numeric vector
d = {u1, u2, . . . , ui, . . . , uT}, where (ui) is the weight of the word with the number i in
the document d. The feature i of the document will be the sum of the times that the word i
appears in it; seen in another way, ui will be made up of the frequency of appearance of
each word i in the document d [48].

TfidfVectorizer method uses the CountVectorizer matrix and applies a term frequency-
inverse document frequency transformation (TFIDF), which takes a frequency of the word
i, and the inverse frequency of occurrences in the document d (Equation (1)), instead of the
raw frequencies of occurrence of a token [54].

ui = TFi ∗ IDFi, (1)

where the weight (ui) is a function of TFi (term frequency), i.e., the appearance frequency
of the word i in a document d, and IDFi (inverse document frequency) which is:

IDFi = log(Total of documents/DFi), (2)

being DFi (document frequency) the quantity of documents in which the word i appears at
least once.

By using IDF, the weight of high frequency words that are not significant (like con-
junctions, prepositions or common words) is reduced, because these kinds of words will
appear in several documents allowing to identify those with specific relevance in certain
documents.

HashingVectorizer implementation works in a similar way to CountVectorizer, but it
employs the hashing trick to find the token string name to include integer index mapping,
normalized as token frequencies. Thus, there is no way to compute the inverse transforma-
tion, i.e., it does not consider inverse document frequency. However, it is very efficient for
large data sets [49].

93

Mathematics 2021, 9, 807

The CountVectorizer, HashingVectorizer and TfidfVectorizer methods can use different
forms of assigning the number of the words included in a token (this parameter is Ngram).
In the present work, tokens with 1, 2 or 3 words were used, which can give more relations
between the pattern of the data.

4. Methodology

The methodological aspects of the work are exhibited in this section. Details about
data collection, pre-processing, classifier parameters and assessment test are explained in
order to allow the replication of the experiments. The source code for this work is accessible
through https://github.com/ccastore/GenderViolence (accessed on 1 January 2021).

4.1. Data Collection

Data were collected by using the twlets (http://twlets.com) tool. Twitter messages
were collected from 18–19 May 2019, taking tweets comments in Spanish language and
located in Mexico (coordinates −118.599, 14.388 to −86.493, 32.718). In order to select
tweets related to GBV, messages from individual users, companies and organizations that
contained words or phrases related to diverse forms of possible GBV were selected. In
addition, news pages and political figures were considered.

A total of 1,857,450 messages were retrieved from Twitter. 61,604 of them were manually
tagged by human volunteers as follows: messages referring to GBV (those containing
possible intention of GBV) and messages not referring to GBV, resulting in 1604 positive
and 60,000 negative tweets.

4.2. Data Pre-Processing

Once the messages were retrieved from the Twitter stream, they were pre-processed
to transform the input text to a normalized, comprehensible model of numbers sequence,
proceeding as follows:

• Cleaning. Deletion of URLs (starting with “http://” or “https://”), tags (“@user”),
articles and unrelated expressions (for example words written in languages outside of
ANSI coding), exclamation marks, question marks, full stop marks, quotes and others
symbols.

• Convert text to uppercase.
• Transform text to matrix of numbers, using CountVectorizer [24], TfidfVectorizer [48]

and HashingVectorizer [49] methods, using a Ngram token with 1, 2 or 3 words.

Finally, a matrix obtained by CountVectorize, TfidfVectorizer and HashingVectorizer
methods were used to build and test the classifier. For this, the hold-out method [27] was
applied; it randomly split the original matrix on training (TDS) 70% and testing (TS) 30%
data sets, where TDS ∩ TS = ∅.

4.3. Sampling Methods

Oversampling methods are popular and successful techniques to deal with the class
imbalance [55]. The most common algorithms are: (a) Random Over Sampling (ROS), that
randomly duplicates samples from the minority class to mitigate the class imbalance, and
(b) SMOTE, which produces artificial samples in the minority class by interpolation of near
occurrences [56]. Specifically, for each minority class, they find the k intra-class nearest
neighbors and generate synthetic samples in the direction of those nearest neighbors. In
this work, k was set to five in SMOTE (as in Ref. [57]) and ROS and SMOTE were applied
to the data set to achieve a relatively balanced class distribution.

In particular, for this work, TDS obtained from CountVectorize, TfidfVectorizer
and HashingVectorizer methods contains 1122 GBV and 42,000 non-GBV samples (see
Sections 4.1 and 4.2); thus, the resultant over-sampled TDS by SMOTE and ROS is com-
posed of 42,000 GBV and 42,000 non-GBV samples approximately, i.e., those methods
balance the class distribution.

94

Mathematics 2021, 9, 807

4.4. Neural Network Set-Up

DL-MLP was developed on Tensorflow 2.0 and Keras 2.3.1, and Adam algorithm [36]
was employed to train it. The Adam algorithm is used to calculate the adaptation of
the learning rate for each parameter, storing an exponentially decreasing average of past
gradients [30]. The learning rate (η) was established as 0.0006, meanwhile the stopping
criterion was 20 epochs with a batch size of 150.

DL-MLP was set-up through of the trial and error method, which is usual in neural
network environments. For this, we randomly take from TDS a subset ST (about of
20%), that was split into STtrain and STtest, where ST ⊆ TDS, and STtrain∩ STtest = ∅. In
this process, we use STtrain and STtest to assess different configurations of numbers of
hidden layers and neurons by layer, and the topology that produced the best classification
result was selected. Final architecture was a DL-MLP with six hidden layer and sigmoid
activation functions, and the number of hidden nodes for each layer was set as 6, 6, 5, 5, 4
and 3, respectively.

4.5. Classifier Performance

Classification accuracy and error rate are widely used to assess the performance of
learning models. Nevertheless, in class imbalanced scenarios these measures are biased
to majority classes or more represented classes (for example, in this work, there are much
more non-GBV tweets than GBV tweets). Thus, others metrics should be used.

The receiver operating characteristic curve (ROC) is an appropriate instrument to
evaluate the classifiers performance on imbalance scenarios, according to the trade-offs
between benefits (true positives) and costs (false positives). The quantitative depiction of
ROC is the area under the curve (AUC), calculated as AUC = (sensitivity + speci f icity)/2,
where sensitivity is the percentage of correctly predicted positive samples, and speci f icity
is the percentage of negative samples predicted correctly [58] (see Table 1). In this work,
sensitivity, speci f icity and the AUC were used to measure the effectiveness of deep learn-
ing neural network to identify GBV on Mexican tweets.

Table 1. Confusion matrix for binary classification.

Predicted Class

Positive Negative

True class

Positive True Positive (tp) False Negative (f n) sensitivity
tp

tp+ f n

Negative False Positive (f p) True Negative (tn) speci f icity
tn

tn+ f p

5. Experimental Results and Discussion

The main experimental results in identifying GBV in Mexican tweets are presented
in this section. Table 2 summarizes the results in term of features obtained for extraction
methods, classification performance measures sensitivity, speci f icity and AUC.

The number of features for HashingVectorizer method was calculated as trial-error for
this work. Several values were tested and the best value was determined to be 350 features.
For CountVectorizer and TfidVectorizer methods the default parameters were used. Thus,
the employed algorithms settled on number of features (see Section 3.1).

In Table 2, is noted that the class imbalance severely affects the classifier overall
performance. Results obtained without using any sampling method indicate that the
classifier does not learn the minority class (GBV tweets). Thus, this approach is not
appropriate to identify GBV on Mexican tweets.

95

Mathematics 2021, 9, 807

Table 2. Classification results obtained after applying feature extraction and two sampling methods, using a deep learning
multilayer perceptron (DL-MLP) as classifier. Best results (in bold) and the best AUC for each sampling method (marked
with a star) are also indicated.

Sampling
Feature

Extraction
Ngram Features Specificity Sensitivity AUC

1 1021 1.0000 0.0000 0.5000
CountVectorizer 1, 2 2124 1.0000 0.0000 0.5000

1, 2, 3 2915 1.0000 0.0000 0.5000

1 350 1.0000 0.0000 0.5000
N/A HashingVectorizer 1, 2 350 1.0000 0.0000 0.5000

1, 2, 3 350 1.0000 0.0000 0.5000

1 1027 1.0000 0.0000 0.5000
TfidVectorizer 1, 2 2152 1.0000 0.0000 0.5000

1, 2, 3 2836 1.0000 0.0000 0.5000

1 1016 0.8659 0.7562 0.8111 *
CountVectorizer 1, 2 2143 0.8906 0.6883 0.7895

1, 2, 3 2879 0.8921 0.7022 0.7972

1 350 0.7125 0.8067 0.7596
SMOTE HashingVectorizer 1, 2 350 0.7235 0.7490 0.7363

1, 2, 3 350 0.6773 0.7571 0.7172

1 1014 0.8714 0.7449 0.8082
TfidVectorizer 1, 2 2130 0.8970 0.6838 0.7904

1, 2, 3 2865 0.9012 0.6712 0.7862

1 1018 0.8926 0.7241 0.8083 *
CountVectorizer 1, 2 2108 0.9120 0.6506 0.7813

1, 2, 3 2881 0.8980 0.6779 0.7880

1 350 0.7017 0.8339 0.7678
ROS HashingVectorizer 1, 2 350 0.7500 0.7384 0.7442

1, 2, 3 350 0.7100 0.7108 0.7104

1 1010 0.8861 0.7291 0.8076
TfidVectorizer 1, 2 2137 0.9217 0.6279 0.7748

1, 2, 3 2933 0.9128 0.6544 0.7836

Results obtained by employing sampling methods (ROS and SMOTE) indicate that
the DL-MLP is effective to learn GBV tweets. However, Table 2 shows that when the
minority class has a best performance the majority class performance is reduced, as it
can be observed from the sensitivity and speci f icity values. For example, on ROS with
HashingVectorizer, and Ngram = 1, the high value of sensitivity is obtained simultaneously
with the worst speci f icity value. A similar performance is observed with SMOTE.

AUC gives a better understanding of the classifier performance for both classes than
the sensitivity and speci f icity measures. High AUC values imply a best trade-off between
benefits (GBV tweets correctly classify) and costs (GBV tweets incorrectly classify). In this
respect, it is observed in Table 2 that CountVectorizer with Ngram = 1 presents the best
AUC value. Then, it is suggested that the simplest method obtains the highest score.

A trend in the studied feature extraction methods is that the better values of speci f icity
and AUC are obtained when the Ngram = 1 is used than when applying other values. In
other words, experimental results of this work notice that to identify GBV on Mexican
tweets, the employment of only the mean of each word is an effective approach.

Table 2 shows that the worst AUC values correspond to the HashingVectorizer method.
However, this method was developed to work with big data sets; then, it could explain this
behavior because the data set used in this research contains only 61,604 samples.

Finally, with respect to the number of features obtained for the extraction methods
(CountVectorizer, HashingVectorizer and TfidVectorizer), there is not evidence in the

96

Mathematics 2021, 9, 807

obtained results about the relationship between the number of features used and the
classifier performance.

6. Conclusions

GBV is a problem that exist on the social network Twitter. Many works have been
performed to deal with it along with related issues like hate speech, xenophobia, misogyny,
domestic violence, among others. A main stage of that research is the collection of a corpus
of words related to particular situations and language. In the Mexican Spanish context,
few works have been developed to deal with GBV in Twitter messages and the language
regionalization has been recognized as critical. In addition, results of the most of those
works need to be improved.

Thus, in this paper, a study to identify GBV on Twitter messages in Mexico is presented.
Three common feature extraction methods were used (CountVectorizer, TfidfVectorizer
and HashingVectorizer) together with a deep learning multilayer perceptron as the clas-
sifier. A data set containing 1604 GBV tweets and 60,000 non-GBV tweets from a total of
1,857,450 messages retrieved from Twitter social network were labeled by human volun-
teers as GBV or non-GBV messages to train and test the proposed scheme.

Experimental results showed that the class imbalance problem significantly affects
the classification of GBV messages. In this sense, oversampling methods, mainly ROS and
SMOTE, are effective to overcome this problem. Thus, it was noticed that the CountVec-
torizer method (and a sampling method) allows DL-MLP to identify GBV on Mexican
tweets with about 80% AUC. As a remarkable result, it is worth to mention that only a
minimal data set pre-processing was applied to obtain important results. TfidfVectorizer
and HashingVectorizer methods show competitive results, but CountVectorizer presented
a trend to obtain the best results.

Results of this research give evidence that giving enough labeled samples, obtained
from Mexican Spanish Twitter messages and transformed by simple feature extraction
method like CountVectorizer to DL-MLP, can produce improved classification results.

GBV is an issue that must be immediately addressed. In this sense, this study could
potentially contribute to deal with gender violence in Mexico because it provides the
analysis of useful tools to identify GVB in online social networks despite the language
jargon. However, the classification results should be improved because the rate of GBV
tweets that have been predicted correctly (sensitivity) is still low. The analysis in specific
variants of Spanish of certain tools for the detection of GBV could help to push further
research needed to improve the studied strategies on the identification of GBV in Twitter
messages in Mexican Spanish.

Thus, future work should be addressed mainly to reduce the human effort to label the
GBV texts and to test advanced deep learning models in order to increase the classifier per-
formance, including more sophisticated natural language processing techniques. Currently,
we work in an application on streaming to identify GVB, which uses a DL-MLP with a
rejection option, i.e., when the classifier has doubts about a tweet’s content it is rejected
and sent to a human volunteer to be targeted and included in the training data set. We
consider that this procedure will allow to improve the classifier performance.

Author Contributions: C.M.C., R.A.: conceptualization, methodology and experiment; I.M.A.:
conceptualization and review; E.R.: supervision; R.A., E.E.G.-G.: writing—review and editing. O.V.:
Experiment. All authors have read and agreed to the published version of the manuscript.

Funding: This research did not receive external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work has been partially supported under grants of project 5046/2020CIC
from UAEMex.

97

Mathematics 2021, 9, 807

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sweeney, B.N. Gender-Based Violence and Rape Culture. In Companion to Women’s and Gender Studies; John Wiley & Sons, Ltd.:
Hoboken, NJ, USA, 2020; Chapter 15, pp. 285–302. [CrossRef]

2. Russo, N.F.; Pirlott, A. Gender-based violence: Concepts, methods, and findings. Ann. N. Y. Acad. Sci. 2006, 1087, 178–205.
[CrossRef]

3. UN. Declaration on the Elimination of Violence against Women; UN General Assembly: New York, NY, USA, 1993.
4. Hernández Castillo, R.A. Racialized Geographies and the “War on Drugs”: Gender Violence, Militarization, and Criminalization

of Indigenous Peoples. J. Lat. Am. Caribb. Anthropol. 2019, 24, 635–652. [CrossRef]
5. Sanchez, G. Victimization, Offending and Resistance in Mexico: Toward Critical Discourse and Grounded Methodologies in

Organized Crime Research. Vict. Offenders 2020, 15, 390–393. [CrossRef]
6. John, N.; Casey, S.E.; Carino, G.; McGovern, T. Lessons Never Learned: Crisis and gender-based violence. Dev. World Bioeth.

2020. [CrossRef]
7. Domínguez, M.A.; Palomeque, D.; Carrillo, J.M.; Valverde, J.M.; Duque, J.F.; Pérez, B.; Pérez-Aloe, R. Voice-Controlled Assistance

Device for Victims of Gender-Based Violence. In Developments and Advances in Defense and Security; Rocha, Á., Pereira, R.P., Eds.;
Springer: Singapore, 2020; pp. 397–407. [CrossRef]

8. Rituerto-González, E.; Mínguez-Sánchez, A.; Gallardo-Antolín, A.; Peláez-Moreno, C. Data Augmentation for Speaker Identifica-
tion under Stress Conditions to Combat Gender-Based Violence. Appl. Sci. 2019, 9, 2298. [CrossRef]

9. Rodrǵuez-Rodrǵuez, I.; José-Víctor, R.; Domingo-Javier, P.-Q.; Heras-González, P.; Chatzigiannakis, I. Modeling and Forecasting
Gender-Based Violence through Machine Learning Techniques. Appl. Sci. 2020, 10, 8244. [CrossRef]

10. Andrada, A.V.; Sanchez, J.J.; Sánchez-Serrano, J.L.S. Gender Violence and New Technologies. In Qualitative and Quantitative
Models in Socio-Economic Systems and Social Work; Springer International Publishing: Cham, Switzerland, 2020; pp. 375–390.
[CrossRef]

11. Vyawahare, M.; Chatterjee, M. Taxonomy of Cyberbullying Detection and Prediction Techniques in Online Social Networks. In
Data Communication and Networks; Jain, L.C., Tsihrintzis, G.A., Balas, V.E., Sharma, D.K., Eds.; Springer: Singapore, 2020; pp. 21–37.
[CrossRef]

12. Paschalides, D.; Stephanidis, D.; Andreou, A.; Orphanou, K.; Pallis, G.; Dikaiakos, M.D.; Markatos, E. MANDOLA: A Big-Data
Processing and Visualization Platform for Monitoring and Detecting Online Hate Speech. ACM Trans. Internet Technol. 2020, 20.
[CrossRef]

13. Gutiérrez-Esparza, G.O.; Vallejo-Allende, M.; Hernández-Torruco, J. Classification of Cyber-Aggression Cases Applying Machine
Learning. Appl. Sci. 2019, 9, 1828. [CrossRef]

14. Bellmore, A.; Calvin, A.J.; Xu, J.M.; Zhu, X. The five Ws of bullying on Twitter: Who, What, Why, Where, and When. Comput.
Hum. Behav. 2015, 44, 305–314. [CrossRef]

15. Xue, J.; Chen, J.; Gelles, R. Using Data Mining Techniques to Examine Domestic Violence Topics on Twitter. Violence Gend. 2019,
6, 105–114. [CrossRef]

16. Khatua, A.; Cambria, E.; Khatua, A. Sounds of Silence Breakers: Exploring Sexual Violence on Twitter. In Proceedings of the
2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Barcelona, Spain,
28–31 August 2018; pp. 397–400. [CrossRef]

17. Al-garadi, M.A.; Varathan, K.D.; Ravana, S.D. Cybercrime detection in online communications: The experimental case of
cyberbullying detection in the Twitter network. Comput. Hum. Behav. 2016, 63, 433–443. [CrossRef]

18. Watanabe, H.; Bouazizi, M.; Ohtsuki, T. Hate Speech on Twitter: A Pragmatic Approach to Collect Hateful and Offensive
Expressions and Perform Hate Speech Detection. IEEE Access 2018, 6, 13825–13835. [CrossRef]

19. Mubarak, H.; Rashed, A.; Darwish, K.; Samih, Y.; Abdelali, A. Arabic Offensive Language on Twitter: Analysis and Experiments.
arXiv 2020, arXiv:2004.02192.

20. Frenda, S.; Banerjee, S. Deep Analysis in Aggressive Mexican Tweets. In Proceedings of the Third Workshop on Evaluation of
Human Language Technologies for Iberian Languages (IberEval 2018) Co-Located with 34th Conference of the Spanish Society
for Natural Language Processing (SEPLN 2018), Sevilla, Spain, 18 September 2018; Volume 2150, pp. 108–113.

21. Reyes-Menendez, A.; Saura, J.R.; Ferrõ, F. Marketing challenges in the #MeToo era: Gaining business insights using an exploratory
sentiment analysis. Heliyon 2020, 6, e03626. [CrossRef] [PubMed]

22. Anzovino, M.; Fersini, E.; Rosso, P. Automatic Identification and Classification of Misogynistic Language on Twitter. In Natural
Language Processing and Information Systems; Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F., Eds.; Springer
International Publishing: Cham, Switzerland, 2018; pp. 57–64. [CrossRef]

23. Plaza-Del-Arco, F.M.; Molina-González, M.D.; Ureña López, L.A.; Martín-Valdivia, M.T. Detecting Misogyny and Xenophobia in
Spanish Tweets Using Language Technologies. ACM Trans. Internet Technol. 2020, 20. [CrossRef]

24. Garreta, R.; Moncecchi, G. Learning Scikit-Learn: Machine Learning in Python; Packt Publishing: Birmingham, UK, 2013.

98

Mathematics 2021, 9, 807

25. Aragón, M.E.; Alvarez, M.A.; Montes-y-Gómez, M.; Escalante, H.J.; Villaseñor, L.; Moctezuma, D. Overview of MEX-A3T at
IberLEF 2019: Authorship and Aggressiveness Analysis in Mexican Spanish Tweets. In Proceedings of the Iberian Languages
Evaluation Forum co-located with 35th Conference of the Spanish Society for Natural Language Processing, IberLEF@SEPLN
2019, Bilbao, Spain, 24 September 2019; Volume 2421, pp. 478–494.

26. Krig, S. Feature Learning and Deep Learning Architecture Survey. In Computer Vision Metrics; Springer International Publishing:
Cham, Switzerland, 2016; pp. 375–514. [CrossRef]

27. Haykin, S. Neural Networks. A Comprehensive Foundation, 2nd ed.; Pretince Hall: Upper Saddle River, NJ, USA, 1999.
28. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
29. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.

Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM 2016, 59, 56–65. [CrossRef]
30. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A

System for Large-scale Machine Learning. In OSDI’16: Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation; USENIX Association: Berkeley, CA, USA, 2016; pp. 265–283.

31. Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing
2016, 187, 27–48. [CrossRef]

32. Reyes-Nava, A.; Sánchez, J.; Alejo, R.; Flores-Fuentes, A.; Rendón-Lara, E. Performance Analysis of Deep Neural Networks for
Classification of Gene-Expression microarrays. In MCPR 2018: Pattern Recognition—10th Mexican Conference; Springer: Cham,
Switzerland, 2018; Volume 10880, pp. 105–115. [CrossRef]

33. Li, D.; Huang, F.; Yan, L.; Cao, Z.; Chen, J.; Ye, Z. Landslide Susceptibility Prediction Using Particle-Swarm-Optimized Multilayer
Perceptron: Comparisons with Multilayer-Perceptron-Only, BP Neural Network, and Information Value Models. Appl. Sci. 2019,
9, 3664. [CrossRef]

34. Pacheco-Sánchez, J.; Alejo, R.; Cruz-Reyes, H.; Álvarez-Ramírez, F. Neural networks to fit potential energy curves from
asphaltene-asphaltene interaction data. Fuel 2019, 236, 1117–1127. [CrossRef]

35. Looney, C.G. Pattern Recognition Using Neural Networks, 1st ed.; Oxford University Press: Oxford, UK, 1997.
36. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
37. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
38. Rao, J.S. A Survey on Sentiment Analysis and Opinion Mining. In Proceedings of the International Conference on Advances in

Information Communication Technology and Computing; Association for Computing Machinery: New York, NY, USA, 2016; [CrossRef]
39. Rajput, A. Chapter 3—Natural Language Processing, Sentiment Analysis, and Clinical Analytics. In Innovation in Health

Informatics; Lytras, M.D., Sarirete, A., Eds.; Next Gen Tech Driven Personalized Med and Smart Healthcare, Academic Press: New
York, NY, USA, 2020; pp. 79–97. [CrossRef]

40. Devika, M.D.; Sunitha, C.; Ganesh, A. Sentiment Analysis: A Comparative Study on Different Approaches. Procedia Comput. Sci.
2016, 87, 44–49. [CrossRef]

41. Dashtipour, K.; Ieracitano, C.; Morabito, F.C.; Raza, A.; Hussain, A. An Ensemble Based Classification Approach for Persian
Sentiment Analysis. In Progresses in Artificial Intelligence and Neural Systems; Springer: Singapore, 2021; pp. 207–215. [CrossRef]

42. Al-Bayati, A.; Al-Araji, A.; Ameen, S. Arabic Sentiment Analysis (ASA) Using Deep Learning Approach. J. Eng. 2020, 26, 85–93.
[CrossRef]

43. Mantyla, M.; Graziotin, D.; Kuutila, M. The Evolution of Sentiment Analysi—A Review of Research Topics, Venues, and Top
Cited Papers. Comput. Sci. Rev. 2016, 27, 16–32. [CrossRef]

44. Mishev, K.; Gjorgjevikj, A.; Vodenska, I.; Chitkushev, L.T.; Trajanov, D. Evaluation of Sentiment Analysis in Finance: From
Lexicons to Transformers. IEEE Access 2020, 8, 131662–131682. [CrossRef]

45. Lin, P.; Luo, X.; Fan, Y. A Survey of Sentiment Analysis Based on Deep Learning. Int. J. Comput. Inf. Eng. 2020, 14, 473–485.
46. Kapil, P.; Ekbal, A.; Das, D. Investigating Deep Learning Approaches for Hate Speech Detection in Social Media. arXiv 2020,

arXiv:2005.14690.
47. Liang, H.; Sun, X.; Sun, Y. Text feature extraction based on deep learning: A review. J. Wirel. Commun. Netw. 2017, 2017, 211.

[CrossRef]
48. Eshan, S.C.; Hasan, M.S. An application of machine learning to detect abusive Bengali text. In Proceedings of the 2017 20th

International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 22–24 December 2017; pp. 1–6.
49. Hasan, M.; Islam, I.; Hasan, K.M.A. Sentiment Analysis Using Out of Core Learning. In Proceedings of the 2019 International

Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’sBazar, Bangladesh, 7–9 February 2019;
pp. 1–6.

50. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

51. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, Q.V. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. arXiv 2019, arXiv:1906.08237.

52. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of
Language Representations. arXiv 2019, arXiv:1909.11942.

53. Clark, K.; Luong, M.T.; Le, Q.V.; Manning, C.D. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
arXiv 2020, arXiv:2003.10555.

99

Mathematics 2021, 9, 807

54. Uğuz, H. A two-stage feature selection method for text categorization by using information gain, principal component analysis
and genetic algorithm. Knowl.-Based Syst. 2011, 24, 1024–1032. [CrossRef]

55. Abdi, L.; Hashemi, S. To Combat Multi-class Imbalanced Problems by Means of Over-sampling Techniques. IEEE Trans. Knowl.
Data Eng. 2016, 28, 1041–4347. [CrossRef]

56. Fernandez, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for Learning from Imbalanced Data: Progress and Challenges,
Marking the 15-year Anniversary. J. Artif. Intell. Res. 2018, 61, 863–905. [CrossRef]

57. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

58. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009,
45, 427–437. [CrossRef]

100

mathematics

Article

k-Nearest Neighbor Learning with Graph Neural Networks

Seokho Kang

Citation: Kang, S. k-Nearest

Neighbor Learning with Graph

Neural Networks. Mathematics 2021,

9, 830. https://doi.org/10.3390/

math9080830

Academic Editor: Florin Leon

Received: 24 March 2021

Accepted: 9 April 2021

Published: 10 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Industrial Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu,
Suwon 16419, Korea; s.kang@skku.edu; Tel.: +82-31-290-7596

Abstract: k-nearest neighbor (kNN) is a widely used learning algorithm for supervised learning tasks.
In practice, the main challenge when using kNN is its high sensitivity to its hyperparameter setting,
including the number of nearest neighbors k, the distance function, and the weighting function. To
improve the robustness to hyperparameters, this study presents a novel kNN learning method based
on a graph neural network, named kNNGNN. Given training data, the method learns a task-specific
kNN rule in an end-to-end fashion by means of a graph neural network that takes the kNN graph of
an instance to predict the label of the instance. The distance and weighting functions are implicitly
embedded within the graph neural network. For a query instance, the prediction is obtained by
performing a kNN search from the training data to create a kNN graph and passing it through the
graph neural network. The effectiveness of the proposed method is demonstrated using various
benchmark datasets for classification and regression tasks.

Keywords: k-nearest neighbor; instance-based learning; graph neural network; deep learning

1. Introduction

The k-nearest neighbor (kNN) algorithm is one of the most widely used learning
algorithms in machine learning research [1,2]. The main concept of kNN is to predict
the label of a query instance based on the labels of k closest instances in the stored data,
assuming that the label of an instance is similar to that of its kNN instances. kNN is simple
and easy to implement, but is very effective in terms of prediction performance. kNN
makes no specific assumptions about the distribution of the data. Because it is an instance-
based learning algorithm that requires no training before making predictions, incremental
learning can be easily adopted. For these reasons, kNN has been actively applied to a
variety of supervised learning tasks including both classification and regression tasks.

The procedure for kNN learning is as follows. Suppose a training datasetD = {(xt, yt)}N
t=1

is given for a supervised learning task, where xt and yt are the input vector and the corre-
sponding label vector of the t-th instance. yt is assumed to be a one-hot vector in the case
of a classification task and a scalar value in the case of a regression task. In the training
phase, the dataset D is just stored without any explicit learning from the dataset. In the
inference phase, for each query instance x, kNN search is performed to retrieve kNN in-
stances N (xt) = {(x(i)t , y

(i)
t)}k

i=1 that are closest to x based on a distance function d. Then,
the predicted label ŷ is obtained as a weighted combination of the labels y(1), . . . , y(k) based
on a weighting function w along with the distance function d as follows:

ŷ = f (x;D) =
∑k

i=1 w(d(x, x(i))) · y(i)

∑k
i=1 w(d(x, x(i)))

(1)

The difficulty in using kNN is determining the hyperparameters. The three main
hyperparameters are the number of neighbors k, the distance function d, and the weighting
function w [3]. Firstly, in terms of k, a small k makes it capture a specific local structure in
the data, and thus, the outcome can be sensitive to noise, whereas a large k makes it more
concentrate on the global structure of the data and suppresses the effect of noise. Secondly,

Mathematics 2021, 9, 830. https://doi.org/10.3390/math9080830 https://www.mdpi.com/journal/mathematics101

Mathematics 2021, 9, 830

the distance function d determines how to calculate the distance between the input vectors
of a pair of instances with nearby instances having high relevance. Popular examples of
this function for kNN are the Manhattan, Euclidean, and Mahalanobis distances. Thirdly,
the weighting function w determines how much each kNN instance contributes to the
prediction. The standard kNN assigns the same weight to each kNN instance (i.e., w(d) =
1/k). It is known to be better to assign larger/smaller weights to closer/farther kNN
instances based on their distances to the query instance x using a non-uniform weighting
function (e.g., w(d) = 1/d). Thus, a kNN instance with a larger weight will contribute
more to the prediction for the instance.

The performance of kNN is known to be highly sensitive to hyperparameters, the best
setting of which depends on the characteristics of the data [3,4]. Thus, the hyperparameters
must be chosen appropriately to improve the prediction performance. Since this is a
challenging issue, considerable research efforts have been devoted to hyperparameter
optimization for kNN, which are introduced briefly in Section 2. Compared to related
work, the main aim of this study is end-to-end kNN learning toward improved robustness
to the hyperparameter setting and to make predictions for new data without additional
optimization procedures.

This study presents a novel end-to-end kNN learning method, named kNN graph
neural network (kNNGNN), which learns a task-specific kNN rule from the training dataset
in an end-to-end fashion based on a graph neural network. For each instance in the training
dataset and its kNN instances, a kNN graph is constructed with nodes representing the
label information of the instances and edges representing the distance information between
the instances. Then, a graph neural network is built to consider the kNN graph of an
instance to predict the label for the instance. The graph neural network can be regarded
as a data-driven implementation of implicit weight and distance functions. By doing so,
the prediction performance of kNN can be improved without careful consideration of its
hyperparameter setting. The proposed method is applicable to any type of supervised
learning task, including classification and regression. Furthermore, the proposed method
does not require any additional optimization procedure when making predictions for
new data, which is advantageous in terms of computational efficiency. To investigate the
effectiveness of the proposed method, experiments are conducted using various benchmark
datasets for classification and regression tasks.

2. Related Work

This section discusses related work on hyperparameter optimization for the kNN
algorithm, which has been actively studied by many researchers. As previously men-
tioned, kNN learning involves three main hyperparameters: the number of neighbors
k, the distance function d, and the weighting function w. A different dataset requires
a different hyperparameter setting, and no specific setting can universally be the best
for every application, as indicted by the no-free-lunch theorem [5]. Thus, the proper
choice of these hyperparameters is critical for obtaining a high prediction performance.
In practice, the best hyperparameter setting for a given dataset is usually determined by
performing a cross-validation procedure that searches over possible hyperparameter candi-
dates. Various search strategies are applicable, such as grid search, random search [6], and
Bayesian optimization [7]. They are time consuming and costly, especially for large-scale
datasets. Previous research efforts have focused on choosing the hyperparameters of kNN
in more intelligent ways based on heuristics or extra optimization procedures for each
query instance.

There are two main research approaches regarding the number of neighbors k. The
first approach is to assign different k values to different query instances based on their local
neighborhood information instead of a fixed k value [8–12]. The second approach is to
employ non-uniform weighting functions to reduce the effect of k on the prediction perfor-
mance.

102

Mathematics 2021, 9, 830

For the distance function d, one research approach is to learn task-specific distance
functions directly from data to improve the prediction performance, which is referred to as
distance metric learning [13,14]. Many methods for this approach were developed for use
in the classification settings [15–19], while some were developed for use in the regression
settings [20–22]. Another approach is to adjust the distance function in an adaptive manner
for each query instance [23–27]. This requires an extra optimization procedure, as well as a
kNN search when making a prediction for each query instance.

For the weighting function w, existing methods have focused on designing non-
uniform weighting functions that decay smoothly as the distance increases [4]. One main
research approach is to assign adaptive weights to the kNN instances of each query instance
by performing an extra optimization procedure [23,25–28], which also helps to reduce the
effect of k. Another approach is to develop fuzzy versions of the kNN algorithm [29–31].

The three hyperparameters affect each other, which means that the optimal choice of
one hyperparameter is dependent on the other hyperparameters. Therefore, they must be
considered simultaneously rather than independently. Moreover, the methods involving
costly extra optimization procedures when making predictions for query instances are
computationally expensive, which is undesirable in practice. In addition, the majority of
existing methods focus on specific settings, primarily classification tasks. Developing a
universal method that is efficient and applicable to various tasks is beneficial. To address
these concerns, this study proposes to jointly learn a distance function and a weighting
function using a graph neural network in an end-to-end manner, which aims to make it
robust to the choice of k in the prediction performance and is applicable to both classification
and regression tasks.

3. Method

3.1. Graph Representation of Data

Suppose that a training set D = {(xt, yt)}N
t=1 is given, where xt ∈ Rp is the t-th

input vector for the input variables and yt is the corresponding label vector for the output
variable. For a classification task with regard to c classes, yt is a c-dimensional one-hot
vector where the element corresponding to the target class is set to 1 and all the remaining
elements are set to 0. For a regression task with a single output, yt is a scalar representing
the target value.

The proposed method uses a transformation function g that transforms each input
vector xt into a graph Gt such that Gt = g(xt;D). Two hyperparameters need to be de-
termined: the number of nearest neighbors k and the distance function d. They are used
only to operate the transformation function g for kNN search from D; however, they
are not used explicitly in the learning procedure in Section 3.2. For each xt, its kNN
instances are searched from D \ {(xt, yt)} based on the distance function d, denoted by
N (xt) = {(x(i)t , y

(i)
t)}k

i=1. Then, the kNN graph Gt = (Vt, Et) is constructed as a fully
connected undirected graph with k + 1 nodes and k(k + 1)/2 edges as follows:

Vt = {vi
t|i ∈ {0, . . . , k}};

Et = {e
i,j
t |i ∈ {0, . . . , k}, j ∈ {0, . . . , k}, i 	= j},

(2)

where each node feature vector vi
t ∈ Rc+1 and edge feature vector e

i,j
t ∈ Rp are represented as:

vi
t =

{
(0, 1), if i = 0

(y
(i)
t , 0), otherwise

;

e
i,j
t = |x(i)t − x

(j)
t |,

(3)

where the t-th input vector xt is denoted by x
(0)
t for the simplicity of description. The

number c is set to the number of classes in the case of classification and is 1 in the case
of regression.

103

Mathematics 2021, 9, 830

In the graph Gt, the 0-th node corresponds to xt, and the other nodes correspond to
the kNN instances of xt. Each node feature vector vi

t represents the label information with
the last element set to zero, except that v0

t does not contain the label information and has
the last element set to one. Each edge feature vector e

i,j
t consists of the absolute difference

between each of the input variables x
(i)
t and x

(j)
t . Thus, Gt represents the labels of the kNN

instances and pairwise distances between the instances. It should be noted that Gt does
not contain yt because it needs to be unknown when making a prediction in a supervised
learning setting.

3.2. k-Nearest Neighbor Graph Neural Network

Here, the proposed method named kNNGNN is introduced, which implements kNN
learning in an end-to-end manner. It adapts the message-passing neural network architec-
ture [32], which can handle general node and edge features with isomorphic invariance,
to build a graph neural network for kNN learning. To learn a kNN rule from the training
dataset D, it builds a graph neural network that operates on the graph representation
G = g(x;D) for an input vector x given the training dataset D to predict the corresponding
label vector y as ŷ = f (G) = f (g(x;D)).

The model architecture used in this study is as follows. It first embeds each vi into
a p-dimensional initial node representation vector using an embedding function φ as
h(0),i = φ(vi), i = 0, . . . , k. A message-passing step for the graph G is then performed using
two main functions: message function M and update function U. The node representation
vectors h(l),i are updated as below:

m(l),i = ∑
j|vj∈V\vi

M(ei,j)h(l−1),j, ∀i,

h(l),i = U(h(l−1),i, m(l),i), ∀i.
(4)

After L time steps of message passing, a set of node representation vectors {h(l),i}L
l=0

per node is obtained. The set for the 0-th node {h(l),0}L
l=0 is then processed with the readout

function r to obtain the final prediction of the label y as:

ŷ = r({h(l),0}L
l=0). (5)

The component functions φ, M, U, and r are parameterized as neural networks,
mostly based on the idea presented in Gilmer et al. [32]. The function φ is a two-layer fully
connected neural network with p tanh units in each layer. The function M is a two-layer
fully connected neural network where the first layer consists of 2m tanh units and the
second layer outputs a m × m matrix. The function U is modeled as a recurrent neural
network with gated recurrent units (GRUs) [33], which pass the previous hidden state
h(l−1),i and the current input m(l),i to derive the current hidden state h(l),i at each time step
l. The function r is a two-layer fully connected neural network where the first layer consists
of p tanh units and the second layer outputs ŷ by softmax and linear units in the case of
classification and regression tasks, respectively. Different types of supervised learning
tasks can be addressed using different types of units in the last layer of r.

The model defined above is denoted as the function f . The model makes a prediction
from the input vector x and its kNN instances in D, i.e., ŷ = f (g(x;D)). The model
differs from conventional neural networks in that it does not directly learn the relationship
between input and output variables. In terms of kNN learning, the weight and distance
functions are embedded implicitly into the function f . Therefore, the function f can be
regarded as an implicit representation of a kNN rule, in which the functions M and U work
as implicit distance and weighting functions, respectively.

104

Mathematics 2021, 9, 830

3.3. Learning from Training Data

Given the training dataset D = {(xt, yt)}N
t=1, the proposed method learns a task-

specific kNN rule from D in the form of ŷ = f (g(x;D)). The prediction model f is trained
based on the graph representation g using the following objective function J :

J =
1
N ∑

(xt ,yt)∈D
L(yt, ŷt) =

1
N ∑

(xt ,yt)∈D
L(yt, f (g(xt;D))), (6)

where L is the loss function, the choice of which depends on the target task. The typical
choices of the loss function are cross-entropy and squared error for the classification and
regression tasks, respectively.

3.4. Prediction for New Data

Once the prediction model f is trained, it can be used to predict unknown labels for
new data. The prediction procedure is illustrated in Figure 1. Given a query instance x∗
whose label y∗ is unknown, its kNN instances N (x∗) = {(x(i)∗ , y

(i)
∗)}k

i=1 are searched from
the training dataset D based on the distance function d. Then, the corresponding graph
G∗ = g(x∗;D) is generated. The prediction of y∗, which is denoted by ŷ∗, is computed
using the model f as:

ŷ∗ = f (G∗) = f (g(x∗;D)). (7)

Figure 1. Schematic of the kNN graph neural network (kNNGNN) prediction procedure.

The proposed method does not require additional optimization procedures when
making predictions. The prediction for a query instance is simply conducted by performing
a kNN search to identify the kNN instances and then processing these instances with the
model. This is advantageous in terms of computational efficiency.

As the proposed method learns the kNN rule, incremental learning can be imple-
mented efficiently. This is the main advantage of the kNN algorithm compared to other
learning algorithms, especially when additional training data are collected over time after
the model is trained. When new labeled data are added to the training dataset D, the
prediction performance will be improved without updating the model.

4. Experimental Investigation

4.1. Datasets

The effectiveness of the proposed method was investigated through experiments on
various benchmark datasets. They contained 20 classification datasets, and twenty regression
datasets were collected from the UCI machine learning repository (http://archive.ics.uci.
edu/ml/ (accessed on 10 January 2021) and the StatLib datasets archive (http://lib.stat.
cmu.edu/datasets/(accessed on 10 January 2021)). The datasets used for classification
tasks were annealing, balance, breastcancer, carevaluation, ecoli, glass, heart, ionosphere, iris,

105

Mathematics 2021, 9, 830

landcover, movement, parkinsons, seed, segment, sonar, vehicle, vowel, wine, yeast, and zoo.
The datasets used for regression tasks were abalone, airfoil, appliances, autompg, bikesharing,
bodyfat, cadata, concretecs, cpusmall, efficiency, housing, mg, motorcycle, newspopularity, skillcraft,
spacega, superconductivity, telemonitoring, wine-red, and wine-white. Each dataset had a
different number of instances with a different dimensionality. For each dataset, one-
thousand instances were randomly sampled if the size of the dataset was greater than 1000.
All numeric variables were normalized into the range of [−1, 1]. The details of the datasets
used are listed in Tables 1 and 2.

Table 1. Summary statistics of the error rate over different hyperparameter settings on the classification datasets.

Dataset [Size × Dim.] No. of Classes
Uniform kNN Weighted kNN kNNGNN (Proposed)

Average Std. Dev. Best Average Std. Dev. Best Average Std. Dev. Best

annealing [898 × 38] 5 0.0724 0.0356 0.0175 0.0364 0.0146 0.0174 0.0254 0.0046 0.0189
balance [625 × 4] 3 0.1453 0.0356 0.1130 0.1436 0.0377 0.1098 0.1327 0.0235 0.1046
breastcancer [683 × 9] 2 0.0382 0.0051 0.0306 0.0381 0.0051 0.0305 0.0369 0.0051 0.0290
carevaluation [1000 × 6] 4 0.2035 0.0306 0.1619 0.1858 0.0326 0.1461 0.1110 0.0354 0.0717
ecoli [336 × 7] 8 0.1853 0.0350 0.1427 0.1703 0.0256 0.1422 0.1849 0.0238 0.1555
glass [214 × 9] 6 0.3808 0.0425 0.3196 0.3441 0.0229 0.3074 0.3703 0.0259 0.3244
heart [298 × 13] 2 0.2081 0.0311 0.1792 0.2093 0.0349 0.1684 0.2126 0.0366 0.1804
ionosphere [351 × 34] 2 0.1808 0.0448 0.1120 0.1790 0.0428 0.1120 0.0838 0.0122 0.0681
iris [150 × 4] 3 0.0886 0.0522 0.0407 0.0766 0.0417 0.0427 0.0573 0.0157 0.0413
landcover [675 × 147] 9 0.3550 0.2050 0.1950 0.3450 0.2023 0.1847 0.2187 0.0513 0.1767
movement [360 × 90] 15 0.4808 0.1436 0.2125 0.3679 0.1125 0.2125 0.3300 0.0375 0.2569
parkinsons [195 × 22] 2 0.1634 0.0458 0.0775 0.1373 0.0368 0.0775 0.1536 0.0253 0.0918
seed [210 × 7] 3 0.0809 0.0114 0.0590 0.0779 0.0090 0.0610 0.0840 0.0078 0.0619
segment [1000 × 19] 7 0.1021 0.0281 0.0594 0.0840 0.0184 0.0586 0.0749 0.0079 0.0586
sonar [208 × 60] 2 0.2929 0.0621 0.1706 0.2684 0.0556 0.1706 0.2387 0.0349 0.1837
vehicle [846 × 18] 4 0.2951 0.0469 0.2276 0.2880 0.0432 0.2239 0.2775 0.0391 0.2191
vowel [990 × 10] 11 0.2868 0.1367 0.0516 0.1450 0.0553 0.0516 0.1504 0.0404 0.0561
wine [178 × 13] 3 0.1035 0.1010 0.0316 0.0861 0.0759 0.0304 0.0522 0.0329 0.0270
yeast [1000 × 8] 10 0.4495 0.0218 0.4305 0.4369 0.0292 0.4116 0.4514 0.0284 0.4222
zoo [101 × 16] 7 0.2269 0.1656 0.0505 0.1145 0.0776 0.0484 0.1012 0.0462 0.0709

The lowest values for each dataset are presented in bold.

Table 2. Summary statistics of the RMSE over different hyperparameter settings on the regression datasets.

Dataset [Size × Dim.]
Uniform kNN Weighted kNN kNNGNN (Proposed)

Average Std. Dev. Best Average Std. Dev. Best Average Std. Dev. Best

abalone [1000 × 8] 0.2018 0.0183 0.1812 0.2006 0.0185 0.1804 0.1982 0.0103 0.1829
airfoil [1000 × 5] 0.2573 0.0185 0.2209 0.2270 0.0115 0.2060 0.1884 0.0125 0.1698
appliances [1000 × 25] 0.2663 0.0173 0.2533 0.2617 0.0190 0.2493 0.2601 0.0024 0.2563
autompg [392 × 7] 0.1846 0.0137 0.1642 0.1768 0.0139 0.1576 0.1821 0.0092 0.1715
bikesharing [1000 × 14] 0.1886 0.0315 0.1386 0.1813 0.0291 0.1348 0.0752 0.0481 0.0310
bodyfat [252 × 14] 0.1887 0.0345 0.1434 0.1855 0.0350 0.1416 0.1296 0.0459 0.0830
cadata [1000 × 8] 0.3384 0.0281 0.2999 0.3329 0.0285 0.2968 0.3153 0.0243 0.2848
concretecs [1000 × 8] 0.2566 0.0197 0.2237 0.2361 0.0197 0.2065 0.2036 0.0236 0.1804
cpusmall [1000 × 12] 0.1370 0.0503 0.0828 0.1247 0.0414 0.0810 0.0876 0.0143 0.0708
efficiency [768 × 8] 0.1468 0.0326 0.1077 0.1392 0.0346 0.0980 0.0700 0.0326 0.0483
housing [506 × 13] 0.2503 0.0197 0.2179 0.2333 0.0168 0.2038 0.2180 0.0199 0.1847
mg [1000 × 6] 0.2947 0.0249 0.2782 0.2891 0.0275 0.2697 0.2923 0.0181 0.2802
motorcycle [133 × 1] 0.2845 0.0473 0.2415 0.2862 0.0170 0.2730 0.2694 0.0195 0.2491
newspopularity [1000 × 58] 0.1242 0.0117 0.1156 0.1244 0.0117 0.1158 0.1218 0.0014 0.1200
skillcraft [1000 × 18] 0.3741 0.0435 0.3365 0.3734 0.0437 0.3354 0.3603 0.0241 0.3317
spacega [1000 × 6] 0.1576 0.0124 0.1415 0.1552 0.0131 0.1392 0.1556 0.0097 0.1421
superconductivity [1000 × 81] 0.2962 0.0449 0.2574 0.2790 0.0393 0.2454 0.2655 0.0105 0.2491
telemonitoring [1000 × 16] 0.4274 0.0363 0.3943 0.4235 0.0377 0.3905 0.4121 0.0125 0.3914
wine-red [1000 × 11] 0.2844 0.0234 0.2668 0.2751 0.0272 0.2547 0.2812 0.0088 0.2708
wine-white [1000 × 11] 0.2895 0.0232 0.2756 0.2832 0.0259 0.2671 0.2854 0.0077 0.2758

The lowest values for each dataset are presented in bold.

106

Mathematics 2021, 9, 830

4.2. Compared Methods

Three kNN methods that use different weighting schemes w were compared in the
experiments: uniform kNN, weighted kNN, and the proposed kNNGNN. The uniform
kNN and weighted kNN respectively used the following weighting functions:

wU(d(x, x′)) = 1/k;

wW(d(x, x′)) = 1/d(x, x′).
(8)

For kNNGNN, the weighting function is embedded implicitly.
For each method, the hyperparameter settings were varied to examine their effects.

The candidates for the distance function d were as follows:

Manhattan dL1(x, x′) = ||x − x′||1;

Euclidean dL2(x, x′) = ||x − x′||2 =
√
(x − x′)T(x − x′);

Mahalanobis dM(x, x′) =
√
(x − x′)TS−1(x − x′),

(9)

where S is the covariance matrix of the input variables calculated from the training dataset.
Accordingly, there were a total of nine combinations of distance and weighting func-

tions compared in the experiments, as summarized in Table 3. None of the methods used
any additional optimization procedures when making predictions. For kNNGNN, the
distance function was only explicitly used for the kNN search to generate graph represen-
tations of the data. For each combination, the effect of k was investigated on the prediction
performance by varying its value from 1, 3, 5, 7, 10, 15, 20, and 30.

Table 3. Methods compared in the experiments.

kNN Method (Weighting Function w)

Uniform kNN Weighted kNN kNNGNN (Proposed)

distance function d Manhattan (L1) kNN_L1 WkNN_L1 kNNGNN_L1
Euclidean (L2) kNN_L2 WkNN_L2 kNNGNN_L2

Mahalanobis (M) kNN_M WkNN_M kNNGNN_M

4.3. Experimental Settings

In the experiments, the performance of each method was evaluated using a two-fold
cross-validation procedure. In this procedure, the original dataset was divided into five
disjoint subsets. Then, two iterations were conducted, each of which used one subset and
the other subset as the training and test sets, respectively. As performance measures, the
misclassification error rate and root mean squared error (RMSE) were used for the classifi-
cation and regression tasks, respectively. Given a test set denoted by D′ = {(xt, yt)}N′

t=1,
the performance measures are calculated as:

ErrorRate =
1

N′ ∑
(xt ,yt)∈D′

I(argmax(yt) 	= argmax(ŷt));

RMSE =
1

N′ ∑
(xt ,yt)∈D′

(yt − ŷt)
2.

(10)

For the proposed method, each prediction model was built based on the following
configurations. In the objective function J , the loss function L used for the classification
and regression tasks was set to cross-entropy and squared error, respectively. For the
model, the hyperparameter L was set to 3, as Gilmer et al. [32] demonstrated any L ≥ 3
would work. The hyperparameter p was explored on {10, 20, 50} by holdout validation.
In the training phase, dropout was applied to the function r with a dropout rate of 0.1
for regularization [34]. During the training, eighty percent and 20% of the training set

107

Mathematics 2021, 9, 830

were used to train and validate the model, respectively. The model parameters were
updated using the Adam optimizer with a batch size of 20. The learning rate was set to
10−3 at the first training epoch and was reduced by a factor of 0.1 if no improvement in
the validation loss was observed for 10 consecutive epochs. The training was terminated
when the learning rate was decreased to 10−7 or the number of epochs reached 500. In
the inference phase, for each query instance, thirty different outputs were obtained by
performing stochastic forward passes through the trained model with the dropout turned
on [35]. The average of these outputs was then used to obtain the predicted label for
the instance.

All baseline methods were implemented using the scikit-learn package in Python. The
proposed method was implemented based on GPU-accelerated TensorFlow in Python. All
experiments were performed 10 times independently with different random seeds. For
the results, the average performance over the repetitions was compared. Then, for each of
the three weighting functions w, the summary statistics of the performance over different
settings of distance functions d and the number of neighbors k are reported.

4.4. Results and Discussion

Figure 2 shows the error rate comparison results of the baseline and proposed methods
with varying the hyperparameter settings on 20 classification datasets. Compared to the
baseline methods, kNNGNN overall yielded lower error rates at various values of k for most
datasets. For the results with different hyperparameters, the average, standard deviation,
and best error rate for each dataset are summarized in Table 1. kNNGNN yielded the
lowest average and standard deviation of the error rate over different hyperparameters
on most datasets, which indicated that the performance of kNNGNN was less sensitive to
its hyperparameter settings. In particular, kNNGNN was superior to the baseline method
when the hyperparameter k was larger.

Figure 3 compares the baseline and proposed methods in terms of the RMSE with
varying hyperparameter settings on 20 regression datasets. As shown in this figure, the
performance curves of kNNGNN flattened as k increased on most datasets, whereas the
RMSE of the baseline methods tended to increase at large k for some datasets. Table 2 shows
the average, standard deviation, and best RMSE for different hyperparameter settings
for each dataset. The behavior of kNNGNN was similar to that of the classification tasks.
kNNGNN showed stable performance against changes in the hyperparameter settings.
kNNGNN yielded the lowest average and standard deviation of the RMSE for the majority
of datasets.

In summary, the experimental results successfully demonstrated the effectiveness of
kNNGNN in improving the prediction performance for both classification and regression
tasks. Although kNNGNN failed to yield the lowest error for some datasets, kNNGNN
yielded high robustness to its hyperparameters. This indicated that kNNGNN would
provide comparable performance without carefully tuning its hyperparameters; thus, it can
be preferred in practice considering the difficulty of choosing the optimal hyperparameter
setting. Because the performance curve of kNNGNN flattened at large k values on most
datasets, setting a moderate k value around 15∼20 would be reasonable considering the
trade-off between the performance and computational cost.

108

Mathematics 2021, 9, 830

F
ig

u
re

2
.

Er
ro

r
ra

te
co

m
pa

ri
so

n
w

it
h

va
ry

in
g

hy
pe

rp
ar

am
et

er
se

tt
in

gs
on

cl
as

si
fic

at
io

n
da

ta
se

ts
.

109

Mathematics 2021, 9, 830

F
ig

u
re

3
.

R
M

SE
co

m
pa

ri
so

n
w

it
h

va
ry

in
g

hy
pe

rp
ar

am
et

er
s

on
re

gr
es

si
on

da
ta

se
ts

.

110

Mathematics 2021, 9, 830

5. Conclusions

This study presented kNNGNN, which learns a task-specific kNN rule from data in an
end-to-end fashion. The proposed method constructed the kNN rule in the form of a graph
neural network, in which the distance and weighting functions were embedded implicitly.
The graph neural network considered the kNN graph of an instance as the input to predict
the label of the instance. Owing to the flexibility of neural networks, the method can be
applied to any form of supervised learning tasks including classification and regression. It
does not require any extra optimization procedure when making predictions for new data,
which is beneficial in terms of computational efficiency. Moreover, as the method learns
the kNN rule instead of the explicit relationship between the input and output variables,
incremental learning can be implemented efficiently.

The effectiveness of the proposed method was demonstrated through experiments on
benchmark classification and regression datasets. The results showed that the proposed
method can yield comparable prediction performance with less sensitivity to the choice
of its hyperparameters. The proposed method allows more robust kNN learning without
carefully tuning the hyperparameters. The use of a graph neural network for kNN learning
may still have room for improvement and thus merits further investigation. One practical
concern is the high complexity of a graph neural network in terms of time and space, which
increases with k. A graph neural network cannot be trained in a reasonable amount of time
without using a GPU. Alleviation of complexity to improve learning efficiency will be an
avenue for future work.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT; Ministry of Science and ICT) (Nos. NRF-2019R1A4A1024732
and NRF-2020R1C1C1003232).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Philip, S.Y.; et al. Top 10
algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]

2. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
3. Jiang, L.; Cai, Z.; Wang, D.; Jiang, S. Survey of improving k-nearest-neighbor for classification. In Proceedings of the International

Conference on Fuzzy Systems and Knowledge Discovery, Haikou, China, 24–27 August 2007; pp. 679–683.
4. Atkeson, C.G.; Moore, A.W.; Schaal, S. Locally Weighted Learning. Artif. Intell. Rev. 1997, 11, 11–73. [CrossRef]
5. Wolpert, D.H. The lack of a priori distinctions between learning algorithms. Neural Comput. 1996, 8, 1341–1390. [CrossRef]
6. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
7. Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian optimization of machine learning algorithms. In Proceedings of the

Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 2951–2959.
8. Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Wang, R. Efficient kNN classification with different numbers of nearest neighbors. IEEE

Trans. Neural Netw. Learn. Syst. 2017, 29, 1774–1785. [CrossRef]
9. Zhang, S.; Cheng, D.; Deng, Z.; Zong, M.; Deng, X. A novel kNN algorithm with data-driven k parameter computation. Pattern

Recognit. Lett. 2018, 109, 44–54. [CrossRef]
10. Wang, J.; Neskovic, P.; Cooper, L.N. Neighborhood size selection in the k-nearest-neighbor rule using statistical confidence.

Pattern Recognit. 2006, 39, 417–423. [CrossRef]
11. García-Pedrajas, N.; del Castillo, J.A.R.; Cerruela-García, G. A proposal for local k values for k-nearest neighbor rule. IEEE Trans.

Neural Netw. Learn. Syst. 2015, 28, 470–475. [CrossRef]
12. Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Cheng, D. Learning k for kNN classification. ACM Trans. Intell. Syst. Technol. 2017, 8, 43.

[CrossRef]
13. Li, D.; Tian, Y. Survey and experimental study on metric learning methods. Neural Netw. 2018, 105, 447–462. [CrossRef] [PubMed]
14. Kulis, B. Metric Learning: A Survey. Found. Trends Mach. Learn. 2013, 5, 287–364. [CrossRef]

111

Mathematics 2021, 9, 830

15. Weinberger, K.Q.; Saul, L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009,
10, 207–244.

16. Goldberger, J.; Roweis, S.; Hinton, G.; Salakhutdinov, R. Neighbourhood components analysis. In Advances in Neural Information
Processing Systems; MIT Press: Cambridge, MA, USA, 2004; pp. 513–520.

17. Sugiyama, M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J. Mach. Learn. Res.
2007, 8, 1027–1061.

18. Davis, J.V.; Kulis, B.; Jain, P.; Sra, S.; Dhillon, I.S. Information-theoretic metric learning. In Proceedings of the International
Conference on Machine Learning, Cincinnati, OH, USA, 13–15 December 2007; pp. 209–216.

19. Wang, W.; Hu, B.G.; Wang, Z.F. Globality and locality incorporation in distance metric learning. Neurocomputing 2014, 129, 185–198.
[CrossRef]

20. Assi, K.C.; Labelle, H.; Cheriet, F. Modified large margin nearest neighbor metric learning for regression. IEEE Signal Process. Lett.
2014, 21, 292–296. [CrossRef]

21. Weinberger, K.Q.; Tesauro, G. Metric Learning for Kernel Regression. In Proceedings of the International Conference on Artificial
Intelligence and Statistics, San Juan, Puerto Rico, 21–24 March 2007; pp. 612–619.

22. Nguyen, B.; Morell, C.; De Baets, B. Large-scale distance metric learning for k-nearest neighbors regression. Neurocomputing 2016,
214, 805–814. [CrossRef]

23. Wang, J.; Neskovic, P.; Cooper, L.N. Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognit.
Lett. 2007, 28, 207–213. [CrossRef]

24. Zhou, C.Y.; Chen, Y.Q. Improving nearest neighbor classification with cam weighted distance. Pattern Recognit. 2006, 39, 635–645.
[CrossRef]

25. Jahromi, M.Z.; Parvinnia, E.; John, R. A method of learning weighted similarity function to improve the performance of nearest
neighbor. Inf. Sci. 2009, 179, 2964–2973. [CrossRef]

26. Paredes, R.; Vidal, E. Learning weighted metrics to minimize nearest-neighbor classification error. IEEE Trans. Pattern Anal. Mach.
Intell. 2006, 28, 1100–1110. [CrossRef]

27. Domeniconi, C.; Peng, J.; Gunopulos, D. Locally adaptive metric nearest-neighbor classification. IEEE Trans. Pattern Anal. Mach.
Intell. 2002, 24, 1281–1285. [CrossRef]

28. Kang, P.; Cho, S. Locally linear reconstruction for instance-based learning. Pattern Recognit. 2008, 41, 3507–3518. [CrossRef]
29. Keller, J.M.; Gray, M.R.; Givens, J.A. A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man, Cybern. 1985, SMC-15, 580–585.
30. Biswas, N.; Chakraborty, S.; Mullick, S.S.; Das, S. A parameter independent fuzzy weighted k-nearest neighbor classifier. Pattern

Recognit. Lett. 2018, 101, 80–87. [CrossRef]
31. Maillo, J.; García, S.; Luengo, J.; Herrera, F.; Triguero, I. Fast and scalable approaches to accelerate the fuzzy k-Nearest neighbors

classifier for big data. IEEE Trans. Fuzzy Syst. 2019, 28, 874–886. [CrossRef]
32. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of

the International Conference on Machine Learning, Sydney, Australia, 11–15 August 2017; pp. 1263–1272.
33. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

34. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

35. Gal, Y.; Ghahramani, Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In Proceedings
of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1050–1059.

112

mathematics

Article

RHOASo: An Early Stop Hyper-Parameter Optimization
Algorithm

Ángel Luis Muñoz Castañeda 1,2,*, Noemí DeCastro-García 1,2 and David Escudero García 2

Citation: Muñoz Castañeda, A.L.;

DeCastro-García, N.; Escudero García,

D. RHOASo: An Early Stop

Hyper-Parameter Optimization

Algorithm. Mathematics 2021, 9, 2334.

https://doi.org/10.3390/math9182334

Academic Editors: Florin Leon,

Mircea Hulea and Marius Gavrilescu

Received: 25 July 2021

Accepted: 16 September 2021

Published: 20 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Universidad de León, 24007 León, Spain; ncasg@unileon.es
2 Research Institute of Applied Sciences in Cybersecurity (RIASC), Universidad de León, 24007 León, Spain;

descg@unileon.es
* Correspondence: amunc@unileon.es

Abstract: This work proposes a new algorithm for optimizing hyper-parameters of a machine
learning algorithm, RHOASo, based on conditional optimization of concave asymptotic functions.
A comparative analysis of the algorithm is presented, giving particular emphasis to two important
properties: the capability of the algorithm to work efficiently with a small part of a dataset and to finish
the tuning process automatically, that is, without making explicit, by the user, the number of iterations
that the algorithm must perform. Statistical analyses over 16 public benchmark datasets comparing
the performance of seven hyper-parameter optimization algorithms with RHOASo were carried out.
The efficiency of RHOASo presents the positive statistically significant differences concerning the
other hyper-parameter optimization algorithms considered in the experiments. Furthermore, it is
shown that, on average, the algorithm needs around 70% of the iterations needed by other algorithms
to achieve competitive performance. The results show that the algorithm presents significant stability
regarding the size of the used dataset partition.

Keywords: hyperparameters; machine learning; optimization; inference

1. Introduction

Tuning the hyper-parameter configuration of a machine learning (ML) algorithm is a
recommended procedure to obtain a successful ML model for a given problem. Different
ML algorithms have specific hyper-parameters whose configuration requires a deep under-
standing of both the model and the task. Since the hyper-parameter configuration greatly
impacts the models’ performance, the research in automatic hyper-parameter optimization
(HPO) is focused on developing techniques that efficiently find optimal values for the
hyper-parameters, maximizing accuracy while avoiding complex and expensive operations.
However, this process remains a challenge because not all optimization methods are always
suitable for a given problem.

Although there are several methods for tuning both continuous and discrete hyper-
parameters, they do not perform equally for all ML algorithms, displaying different con-
sumption of computational resources and stability. The process becomes computationally
expensive if too many function evaluations of hyper-parameter values must be carried out
to obtain a suitable accuracy. Since the size of the dataset in the HPO phase influences the
dynamic complexity of the classifier but not its accuracy [1], another possible limitation is
that a HPO algorithm may require a large dataset to work efficiently. Finally, most HPO
algorithms are iterative, which suggests that stopping the algorithm when the expected
improvement of testing new configurations is low can be a good option [2]. Nevertheless,
the ML user does not have information about the rate of convergence and the loss func-
tion values. Therefore, the user usually tends to leave the default parameters (more than
50 iterations) or set a high number of iterations to assure good performance ([3]). This fact
implies that the algorithm may perform more iterations than needed to obtain an adequate
accuracy, with the consequent increased computational cost.

Mathematics 2021, 9, 2334. https://doi.org/10.3390/math9182334 https://www.mdpi.com/journal/mathematics113

Mathematics 2021, 9, 2334

This article proposes a novel early stop HPO algorithm, RHOASo (RIASC hyper-
optimization automatic software). The work aims to analyze RHOASo, compare its behavior
with different state-of-the-art HPO algorithms, and measure its early-stop feature, which
entails minimal human intervention.

The research questions that will be studied regarding this new algorithm are the following:
RQ1: Given a dataset, how good is the performance (accuracy, time complexity,

sensibility, and specificity) of a ML algorithm when RHOASo is applied?
RQ2: How many iterations does the algorithm need until it stops? How much faster

or slower is RHOASo, compared with the other HPO algorithms?
RQ3: Are there statistically meaningful differences between the performance of

RHOASo and other HPO algorithms?
RQ4: Are the above results consistent? That is, do they hold for different HPO algo-

rithms and different datasets with different characteristics (size, number of features, etc.)?
In order to test the behavior of RHOASo and answer the above questions, we have

evaluated the efficiency of the algorithm combined with three well-known classifier algo-
rithms: random forest (RF), gradient boosting (GB), and multi-layer perceptron (MLP). We
choose these three supervised models because each follows a different learning paradigm:
RF and GB are ensemble models (bagging and boosting models), and MLP is a type of
neural network. Therefore, it is possible to study whether a particular type of model works
better with the application of RHOASo.

We have measured the efficiency of RHOASo, by itself and carrying out statistical
inference to evaluate how well it performs compared with the other seven HPO algorithms
from several families (decision theoretic approaches, Bayesian optimization, evolutionary
strategies, etc). The variables considered in the article are the accuracy, the MCC (Matthews
correlation coefficient), the time complexity of the whole optimization (from initialization
to termination), the sensibility, and the specificity of the obtained models. These variables
are collected by applying HPOs over 16 well-known public datasets. Furthermore, the
algorithm’s performances are studied by working with four different size partitions of each
dataset to study their impact on the optimization performance. All of these comparisons
are studied through two experiments: (a) Experiment 1 in which RHOASo carries out the
number of iterations that it needs until it stops, and the other HPOs have a default input
(50 iterations); and (b) Experiment 2 in which the other HPOs perform the same number of
trials that RHOASo has conducted. This means that we avoid biased comparisons at the
same time that we evaluate RHOASo under the default number of evaluations that a user
could specify ([3]).

The results show that RHOASo works efficiently in low-dimension hyper-parameter
spaces, and it is competitive in terms of accuracy and computational cost. On average,
RHOASo achieves a statistically significant positive difference in terms of efficiency over
70% of the times that the algorithms are applied and obtains good results when it uses
small parts of the datasets. Sensitivity and specificity also show positive results in general,
although in some unbalanced datasets, there is a bias toward the majority class. Lastly, the
automatic early-stop feature of RHOASo lets it finish the tuning process before reaching
the fixed number of iterations given as input in the other hyper-parameter optimization
methods (Me = 34 vs. 50), with a 30% reduction. When fixing an equal number of iterations
for all algorithms, RHOASo loses the advantage decreasing its gain to 50% on average, but
remains competitive in two of the three evaluated models. It shows weakness when it is
applied with MLP in some datasets.

The article is organized as follows. In Section 2, we state the hyper-parameters
optimization problem when the size of the dataset is left as a variable, and we provide an
overview of the state-of-the-art methods. In Section 3, we describe the proposed algorithm.
First, we set and solve a conditional optimization problem for the logistic function. The
solution is a simple iterative algorithm whose discrete analogous is used as the base to
define RHOASo. In Section 4, we describe the experimental details of the study. Finally,
in Section 5, we develop the obtained results. We analyze the performance of RHOASo

114

Mathematics 2021, 9, 2334

when it is run together with the three ML algorithms mentioned above, and it is compared
with other HPO algorithms. This is done in two different ways. On one hand, we let the
number of iterations of the HPO algorithms have their default values. On the other hand,
we allow the HPO algorithms to be run for the same number of iterations that RHOASo
needs until it stops.

Additionally, we have included an appendix with the results concerning the first
experiment in which case the ML algorithms are decision tree (DT and K-nearest neighbor
(KNN). It is shown that the performance of RHOASo compared with the other HPO
algorithms is substantially better. Due to the superiority of the performance of RHOASo
with respect to the rest of the HPO algorithms when they are run with DT and KNN, we
have carried out the complete analysis only with the RF, GB and MLP algorithms.

In order to facilitate the reading of the article, we include below a scheme describing
the experimentation and validation phases that were carried out.

1) Description of RHOASo �� Mathematical Foundations �� Algorithm

2) Experimentation �� Applying RHOASo and other 7 HPO well-known algorithms ��

����

Over 16 public datasets (split on and complete)

��
Using three ML Models (RF,GB, and MLP)

Experiment 1 ��

��

Collect

��

Experiment 2��

��
Number of iterations of RHOASo: until it stops

��

Accuracy and Mathews Correlation Coefficient (MCC)

��

Number of iterations of RHOASo: until it stops

��
Number of iterations of the rest of algorithms: 50 Time complexity (TC)

��

Number of iterations of the rest of algorithms: equal to RHOASo

Sensitivity and Specificity

3) Validation of RHOASo

��
Analysis of performance of RHOASo

��

�� Descriptive analyses about...

��

�� Accuracy, MCC, TC, sensitivity, and specificity

Number of iterations

Comparisons with the other HPO algorithms

��

�� Inference analyses by gain levels ��

��

Accuracy and TC for balanced datasets

MCC and TC for unbalanced datasets

Consistency of the results �� Rates of superiority of RHOASo ��

��

Per partitions of the datasets

Per datasets

2. Related Work

A hyper-parameter of a ML algorithm is a hidden component that directly influ-
ences the algorithm’s behavior. Tuning it allows the user to control the performance of
the algorithm.

2.1. Problem Statement

Definition 1. Let X be a tuple of random variables. Let Y be the space labels. Let Dtrain ∈ X ×Y
be an i. i. d. sample whose distribution function is P .

A machine learning algorithm A is a functional as follows:

A : ∪n∈N(X ×Y)n −→ H

Dtrain �→ A(Dtrain) := hA,Dtrain : X −→ Y
x �→ hA,Dtrain(x) = y

(1)

The model hA,Dtrain(x) predicts the label of (unseen) instance x minimizing the expected loss
function, L(Dtrain, hA,Dtrain).

This loss function measures the discrepancy between a hypothesis h ∈ H and an
ideal predictor. The target space of functions of the algorithm, H, depends on specific

115

Mathematics 2021, 9, 2334

parameters, λ = (λ1, . . . , λn) ∈ Λ , that might take discrete or continuous values and have
to be fixed before applying the algorithm. We use the notation Aλ to refer to the algorithm
with the hyper-parameter configuration λ.

In this scenario, another independent data set, D := Dtrain ∪ Dtest, serves to evaluate
the loss function, L(Dtest, hAλ ,Dtrain), provided by the algorithm Aλ(Dtrain). Let the hyper-
parameters λ = (λ1, . . . , λn) remain free in L(Dtest, hAλ ,Dtrain).

In the case of a classification ML problem, we can take the loss function L as the error
rate, that is, one minus the cross-validation value. In this situation, one can define the
following function:

ΦA,D : Λ −→ [0, 1]

λ �→ meanDtestL(Dtest, hAλ ,Dtrain)
(2)

The hyper-parameter optimization (HPO) problem consists of trying to reach
λ∗ := minλ(meanDtestL(Dtest, hAλ ,Dtrain)).

2.2. Overview of the State-of-the-Art Methods

Since the hyper-parameter configuration has a significant effect on the performance
of a ML model, the main goal in the HPO research is to find optimal values for the
hyper-parameters that maximize the accuracy of the model while minimizing the costs
and avoiding manual tuning. In the case where hyper-parameters are continuous, HPO
algorithms usually work using gradient descent-based methods ([4–6]) in which the search
direction in the hyper-parameter space is determined by the gradient of a model selection
criterion at any step.

The discrete case has several approaches that perform differently depending on the
ML algorithm and the dataset. Bayesian HPO is a type of surrogate-based optimization ([7])
that tunes the hyper-parameters by keeping the assumed prior distribution of the loss
function updated, taking into account the new observations that are selected by the acquisi-
tion function. The construction of this surrogate model and the hyper-parameter selection
criteria result in several types of sequential model-based optimization (SMBO). The main
methods model the error distribution with a Gaussian process ([8]) or tree-based algorithms,
such as sequential model-based algorithm configuration (SMAC) or the Tree Parzen Esti-
mators (TPE) method ([9,10]). Another perspective is the radial basis function optimization
(RBFOpt) that proposes a deterministic surrogate model to approximate the error function
of the hyper-parameters through dynamic coordinate search. These methods require fewer
evaluations, improving the associated costs of Gaussian process methods ([11]). Regarding
the selection function to choose the next promising hyper-parameter configuration to test
in the surrogate-based optimization, the typical approach is to use the expected improve-
ment ([8]). There are other alternatives, such as the predictive entropy search ([12]. Other
variants of SMBO can be found in [13,14], where different datasets and tasks are character-
ized by several measurements that allow to predict a ranking of several combinations of
hyper-parameter values.

Another important HPO approach is the decision-theoretic method, where the al-
gorithm obtains the hyper-parameter setting by searching the hyper-parameter space
directly following some particular strategy. As examples, we have grid search, which uses
brute force, and the simple and effective random search (RS) that tests randomly sampled
configurations from the hyper-parameter space [15,16]).

Other optimization algorithms are applied to the problem of discrete hyper-parameter
values selection. This is the case, for instance, of the evolutionary algorithms, such as the
covariance matrix adaptation evolutionary (CMA-ES) method [17], the simplex Nelder–
Mead (NM) method ([18,19]) or the application of continuous techniques over the discrete
case such as the particle swarm (PS) ([20,21]).

Although there are several options, these methods provide different results and
consumption of computational resources, and they do not perform equally well with all

116

Mathematics 2021, 9, 2334

ML algorithms. Then, we need to consider the costs to choose the HPO method, the size of
the data required to run the optimization process effectively, and the human interaction
needed. These issues arise in several open research challenges that we have summarized
in Table 1.

Table 1. Open research challenge in HPO. Content extracted from [3].

Research Challenge Description

HPO vs. CASH tools Research conducted to specialized tools and algorithms for HPO or to CASH
(Combined algorithm selection and hyper-parameter optimization) problem

Monitoring HPO Tools that let the user follow the progress in an interactive way
Less computational costs HPO remains computationally extremely expensive for certain tasks
Overtuning HPO Control resampling in an efficient way
Closed black-box The user can not take decisions about the optimization process

and cannot analyze the HPO procedure.
Not supervised learning Developing HPO algorithms for more types of machine

learning models, not only for supervised ones.
Users do not make use of Potential users have a poor understanding of HPO methods.
advanced HPO approaches Missing guidance makes difficult the choice and configuration of of HPO methods
Finishing an HPO method There are several ways to configure the end of an HPO

method, not all of them are easily configurable.

RHOASo is an HPO algorithm that is designed in order for the potential user not
to have to configure the end of the process. Currently, the termination of a general HPO
algorithm can be carried out in several ways ([3]): (1) an amount of runtime fixed by the
user based on intuition; (2) a lower bound of the generalization error specified by the
user; and (3) considering the convergence of HPO if no progress is identified. All of these
procedures can lead to over-optimistic bounds or excessive runtime that increases the
computational cost. In this scenario, RHOASo is able to stop automatically, without losing
accuracy and with minimal intervention of the user.

Additionally, many of the state-of-the-art HPO algorithms have, in turn, parameters
that must be set up before running them. For instance, when a user wants to tune an
(unbounded) integer-valued hyper-parameter of a given ML algorithm, the HPO algorithm
requires the user to pre-configure a grid over which it is to be run. In many cases, the higher
the size of the grid, the higher the execution cost of the HPO algorithm. A natural way to
proceed in these cases is to accelerate the hyper-parameter running process, using early-
stopping techniques ([2,22–24]). However, these algorithms still have other parameters
that must be set up. Therefore, in some sense, HPO algorithms move the hyper-parameter
tuning problem from ML algorithms to themselves, which increases the complexity and cost
of the whole process. Table 2 below shows the parameters on which the HPO algorithms
used in this work depend.

Table 2. Hyper-parameters of the HPO algorithms considered in this work.

Name Hyper-Parameters Library

Particle Swarm 6 [21]
Tree Parzen Estimators 2 [25]
CMA-ES 3 [26]
Nelder–Mead 2 [26]
Random Search 1 [26]
SMAC 30 [27]
RBFOpt 46 [28]

Thus, the natural question is how to tune hyper-parameters of HPO algorithms
without increasing the complexity. Since using HPO algorithms over themselves does not

117

Mathematics 2021, 9, 2334

solve the problem, it is natural to ask for HPO algorithms depending on as few hyper-
parameters as possible and achieving good performance, compared with state-of-the-art
HPO algorithms.

Our aim is to present a novel HPO algorithm with only one parameter to be tuned
and to analyze its performance, compared with other state-of-the-art HPO algorithms.

3. The Proposed Algorithm: RHOASo

RHOASo is an approach to the HPO problem, whose underlying idea is the reversible
gradient-based HPO method proposed for the continuous case ([5]).

Open source code for RHOASo is hosted in GitHub (https://github.com/amunc/
RHOASo, accessed on: 25 July 2021), and it is available under the GPL license (version 3).
Users do not need to install software separately, save for the Python language. Additionally,
this is included in a ML intelligent system, RADSSo (RIASC automated decision support
software), and it was used in several research works ([29,30]).

3.1. The Setup

Recall from Section 2.1 that the space of functions in which a learning algorithm takes
values is assumed to depend on certain parameters λ = (λ1, . . . , λn), and this space of
functions is denoted by Hλ. We make the following assumptions:

1. The hyper-parameters λi are discrete.
2. If λ∗ = (λ1, . . . , λi + 1, . . . , λn), then Hλ ⊂ Hλ∗ .

Typical examples of hyper-parameters satisfying such assumptions are the maximum
depth in any tree-based machine learning model, the number of trees if the output of the
model is a weighted average of the outputs of all the trees, or the number of neurons in
hidden layers of a multilayer perceptron (the weights of the inputs of a given neuron may
be zero).

Let ΦA,D be the functional given in Equation (2) for a given machine learning model
defined by a dataset D and a model Hλ. If we plot the functional Φλ,D considering, for
example, the model random forest with hyper-parameters maximum depth (x-axis) and
number of trees (y-axis), we can obtain a figure like those shown in Figure 1 (the plots are
obtained from two different datasets).

From the expression ΦA,D(λ) = meanDtestL(Dtest, fAλ ,Dtrain) it follows that if we let
both the size of the dataset and the number of iterations in the cross-validation go to infinity,
the surface given in Figure 1 becomes smoother, and takes the form shown in Figure 2,
which is a concave surface with an asymptote in the plane z = z0 ≤ 1.

At this point, one can ask for an algorithm to find a value of λ = (λ1, λ2) at which
ΦA,D attains a sufficiently high value while keeping λ1 and λ2 as small as possible.

3.2. Motivation of the Algorithm

In order to motivate the algorithm, consider the logistic function f (x) = 1/(1 + e−x)
restricted to R>0. This is a concave function with an asymptote in y = 1, thus it has no
maximum. Although the maximization problem of this function has no sense, we can ask
for the point x0 ∈ R with higher value f (x) subject to the condition that making x0 smaller
makes the decrease in f important. One way to formalize this question is by considering the
maximization problem of the function Stb(x) = f (x) f ′(x) = e−x f (x)3. In a certain sense,
maximizing Stb(x) consists of choosing a point x0 with a sufficiently large image f (x0) but
whose slope at that point is not too low. Note that Stb(x)′ = e−x f (x)3(−1 + 3e−x f (x)),
and therefore Stb(x)′ = 0, has only one solution, x = ln(2), which is a maximum.

Consider now the function Stb(x, n) = xn f (x) f ′(x), n being a natural number. Then,
taking n > ln(2), the equation Stb′(x, n) = 0 has only one solution x0, which is greater
than ln(2), and becomes larger as we make n increase. Thus, we can control how small the
slope is at the solution x0 by making n vary.

118

Mathematics 2021, 9, 2334

(a)

(b)

Figure 1. Surface of Φλ,D for random forest. (a) Φ in RF. (b) Φ in RF.

Figure 2. Smoothing of ΦA,D.

In order to explain how RHOASo works, and to link directly with the form it is
presented below, let us denote the function f by ΦA,D and let us restrict its domain of
definition to the set of natural numbers. The variable is now denoted by λ. Then, instead
of the derivative, we may consider the following function:

ΦA,D(λ + h)− ΦA,D(λ)

h
,

119

Mathematics 2021, 9, 2334

where h is a natural number. In order to simplify the notation, we set h = 1. Thus, we may
consider the optimization problem defined by the following:

maxλ{Stb(λ, n)},

where
Stb(λ, n) := λnΦA,D(λ)(ΦA,D(λ + 1)− ΦA,D(λ)).

Now, we can give a simple iterative algorithm to find the value λ close to that at which
ΦA,D attains a sufficiently high value while keeping the magnitude of such coordinate as
low as possible; at the iteration i, do: if Stb(λi + 1) > Stb(λi), then λi+1 := λi + 1 and
stop otherwise. This is just the most basic algorithm to solve the optimization problem
maxλ{Stb(λ, n)}. Observe that the convergence is always ensured because of the properties
of the function Stb(λ).

See Figure 3 to show how the stabilizer function, Stb, behaves in two particular cases.

(a) (b)

Figure 3. Stabilizer Stb(λ) in dimension one. (a) Stabilizer for logistic function. (b) Stabilizer for
arctangent function.

3.3. The Algorithm

There are two important features we want for the algorithm to have. On one hand, we
want to avoid meta-parameters, that is, we want for the algorithm not to depend (strongly)
on extra parameters. In state-of-the-art HPO algorithms, the user has to set as input the
exact number of iterations that the algorithm must perform. On the other hand, we want
the algorithm to give a good result when it is run, giving as input not the whole dataset but
a small part of it. The proposed HPO algorithm exploits the consequences derived from
assumptions 1 and 2 to reach the objective in a simple way.

Since the hyper-parameters we will work with are discrete, we may assume that the
hyper-parameter space is Γ = Nn. Suppose that we are at the point λ ∈ Γ = Nn of the
hyper-parameter space. The decision about to which next point the algorithm must jump
is based on two basic rules:

1. Fix a natural number h. Let Shifts = {0, h}n \ {(0, . . . , 0)}. We look at the points
λ + Shifts. These are the next points at each possible direction in the space Γ. Since
Hλ ⊂ Hλ+η , for each η ∈ Shifts, it is likely that for each η, λ + η will give a better
result than λ.

2. Given λ = (λ1, . . . , λn) ∈ Γ, define its stabilizer as follows:

stb(λ) = max{λi} · ΦA,D(λ) · ∑
λ′∈λ+Shifts

(ΦA,D(λ
′)− ΦA,D(λ)) (3)

If we are at point λ, we will transit at point λ∗ ∈ λ + Shifts if the inequality
stb(λ∗) > stb(λ) holds true and stb(λ∗) = max{stb(λ′)| λ′ ∈ λ + Shifts}.

3. Once the algorithm stops at some point λ∗ ∈ Ω, there is a final step at which the point
λ′ ∈ λ∗ + Shifts with maximum ΦA,D is found and given as the final output.

120

Mathematics 2021, 9, 2334

The pseudo-code of the algorithm is included in Algorithms 1–4.

Algorithm 1 Computing stabilizer.

1: Input: data, train_data, test_data, features, target
2: Output: stb ∈ R used for stopping criterion
3: procedure GETSTAB(Input,λcurrent)
4: Values = ∅
5: Shifts = {0, 1}N

6: for η in Shifts do
7: λ ← λcurrent + η
8: Values ← Values

⋃{ac(λ)− ac(λcurrent)}
9: � ac(λ) means the accuracy of the model on Dtest_data trained with Dtrain_data

with hyper-parameter configuration λ
10: end for
11: tot ← sum(Values)
12: stb ← tot · ac(λcurrent) · max(λcurrent)
13: return stb
14: end procedure

Algorithm 2 Computing best neighbor.

1: Input: data, train_data, test_data, features, target
2: Output: best next hyper-parameters
3: procedure GETBESTNEIGH(Input,λcurrent)
4: Stb = ∅
5: Shifts = {0, 1}N

6: for η in Shifts do
7: λ ← λcurrent + η
8: Stb ← Stb

⋃{GETSTB(Input, λ)}
9: end for

10: maximum = maxλStb
11: return maximum, max_Stb
12: end procedure

4. Materials and Methods

Some experiments were carried out in order to answer the research questions formu-
lated in the introduction:

1. RQ1: Given a dataset, how good is the performance (accuracy, time complexity,
sensibility, and specificity) of a ML algorithm when RHOASo is applied?

Algorithm 3 Last phase.

1: Input: data, train_data, test_data, features, target
2: Output: next hyper-parameters giving best accuracy
3: procedure LASTPHASE(λcurrent)
4: Acc = ∅
5: Shifts = {0, 1}N

6: for η in Shifts do
7: λ ← λcurrent + η
8: Acc ← Acc

⋃{ac(λ)}
9: end for

10: maximum = maxλAcc
11: return maximum
12: end procedure

121

Mathematics 2021, 9, 2334

Algorithm 4 RHOASo algorithm.

1: Input: data, train_data, test_data, features, target, max_pars
2: Output: best hyper-parameters
3: Initialize λcurrent = (1, . . . , 1)
4: while True do
5: stbcurrent ← GETSTAB(λcurrent)
6: λ, stb ← GETBESTNEIGH(λcurrent)
7: if stb > stbcurrent then
8: λcurrent ← λ
9: else

10: break
11: end if
12: end while
13: λfinal = LASTPHASE(λcurrent)
14: return λfinal

2. RQ2: How many iterations does the algorithm need until it stops? How much faster
or slower is RHOASo, compared with the other HPO algorithms?

3. RQ3: Are there statistically meaningful differences between the performance of
RHOASo and other HPO algorithms?

4. RQ4: Are the above results consistent? That is, do they hold for different HPO
algorithms and different datasets with different characteristics (size, number of fea-
tures, etc.)?

The analyses aim to measure the quality of the proposed algorithm and decide whether
there are statistically meaningful differences between the performance of the selected HPO
methods and RHOASo.

4.1. ML and HPO Algorithms

We have evaluated the efficiency of three well-known ML algorithms:

1. RF is an ensemble classifier consisting of a set of decision trees. Each tree is con-
structed by applying bootstrap re-sampling (bagging) to the training set, which
extracts a subset of samples for training each tree. Therefore, the trees will have a
weak correlation and give independent results. In the case of RF, we have two main
hyper-parameters: the number of decision trees to be used and the maximum depth
for each of them ([31]).

2. GB is another ensemble technique in which the predictors are made sequentially,
learning from the previous predictor’s mistakes to optimize the subsequent learner. It
usually takes fewer iterations to reach close-to-actual predictions, but the stopping
criteria have to be chosen carefully. This technique reduces bias and variance but
can induce overfitting if too much importance is assigned to the previous errors. We
tune two discrete hyper-parameters: the number of predictors and their maximum
depth ([32,33]).

3. A MLP is a graph-type model that is organized in ordered layers (input layer, output
layer, and hidden layers). Each layer consists of a set of nodes with no connections
between them, so the connections occur between nodes belonging to different and
contiguous layers. In this study, we set two hidden layers, and we tune the number
of neurons in each of these hidden layers.

In Table 3, we give a summary of the ML algorithms we have used together with
the hyper-parameters we have tuned. The search space for all hyper-parameters is in the
interval [1, 50]. All hyper-parameters not being tuned are set to their default values as
per scikit-learn implementation ([34]). We have used 10-fold cross-validation to assess the
performance of all ML models combined with the HPO algorithms.

On the other hand, in Table 4 a summary of the HPO algorithms selected for this study
is given.

122

Mathematics 2021, 9, 2334

Table 3. ML algorithms together with hyper-parameters we have considered.

Name Hyper-Parameter 1 Hyper-Parameter 2

RF Num. Trees Max. Depth
GB Num. Trees Max. Depth

MLP (2 hidden layers) Num. Neurons Layer 1 Num. Neurons Layer 2

Table 4. HPO algorithms used. Colors explanation: Bayesian methods in blue, decision-theoretic
techniques in pink, evolutionary algorithms in brown, and other optimization algorithms in green.

Name Reference Python Automatic Library
Version Early Stop

Particle Swarm [20,35] 2.7 y 3 X [21]
Tree Parzen Estimators [10] 2.7, 3 X [25]
CMA-ES [17] 2.7, 3 X [26]
Nelder–Mead [18] 2.7, 3

√
[26]

Random Search [15] 2.7, 3 X [26]
SMAC [9] 3 X [27]
RBFOpt [11,36] 2.7, 3 X [28]

4.2. Datasets

The datasets selected for the experiments are described in Table 5. The choice was
motivated by different reasons: availability in public servers to verify the results, the
number of instances and classes, and the type of features. There are 16 public benchmark
datasets with a different number of variables (8–300), rows (4601–284,807), and classes
(2–10). Since the size of the dataset in the HPO phase influences the performance of the
classifier ([1]), the performances of the algorithms are analyzed with four different-sized
partitions of each dataset (P = {P1 = 8.3%, P2 = 16.6%, P3 = 50%, P4 = Di}). These
proportions are chosen because, in this way, the number of instances is in different orders
of magnitude. In addition, each dataset is divided into train data (80%) and validation data
(20%) Dtrain

i ∪ Dvalid
i = Di, and the partitioning scheme above is applied to obtain train

and validation subsets with the corresponding proportions Pj(Di).
The transformation of features to obtain treatable datasets to input directly to each

model is manually implemented with Python.

Table 5. Descriptions of datasets.

Dataset = Di Topic Classes Majority Class Features Instances = P4 P1 P2 P3 Reference
Proportion

D1 First order proving 2 0.82 51 4589 382 764 2294 [37]
D2 Spambase 2 0.6 57 4601 383 766 2300 [38]
D3 Polish companies 2 0.978 64 4885 407 814 2442 [39]

Bankruptcy
D4 Opto digits 10 0.1 64 5620 468 936 2810 [40]
D5 Grammatical 2 0.64 300 27,936 2328 4656 13,968 [41]

Facial Expressions
D6 Credit card 2 0.99 30 284,807 23,733 47,467 142,403 [42]

Fraud Detection
D7 Magic Telescope 2 0.64 10 19,020 1585 3170 9519 [43]
D8 Electricity 2 0.57 8 45,312 3776 7552 22,656 [44,45]
D9 Wall Robot 4 0.4 24 5456 454 909 2728 [46]
D10 Eye 2 0.55 14 14,980 1248 2496 7490 [47]
D11 Connect 4 3 0.65 43 67,557 5629 11,259 33,778 [48]
D12 Amazon 2 0.94 9 32,769 2730 5461 16,384 [49]
D13 Phishing websites 2 0.55 30 11,055 921 1842 5527 [50]
D14 Higgs 2 0.52 28 98,049 8170 16,341 49,025 [51]
D15 NSL-KDD 6 0.51 42 148,517 12,376 24,752 74,258 [52,53]
D16 Robots in RTLS 3 0.73 12 6422 535 1070 3211 [54]

123

Mathematics 2021, 9, 2334

4.3. Construction of the Response Variables

In order to build response variables to measure the performance of the HPO algo-
rithms, we apply them to each ML model Hk over each partition, Pj(Di), obtaining a
hyper-parameter configuration λk

i,j for Hk. Then, the learning algorithm with the obtained

hyper-parameter configuration is run over Dtrain
i to construct a classifier that is validated

over Dvalid
i . At this step, we collect the obtained accuracy. This scenario is repeated a

number of times (trials), giving rise to two different experiments.

1. Experiment 1: the experimentation is repeated 50 times (trials) for all HPOs, except
for RHOASo, which automatically stops when it considers that it has obtained an
optimal hyper-parameter configuration.

2. Experiment 2: the experimentation is repeated for all HPOs as many times (trials) as
RHOASo has carried out until stopping.

The time complexity of the whole process is stored as well. The time complexity,
measured in seconds, is the sum of the time needed by the HPO algorithm to find the opti-
mal hyper-parameter configuration, and the time that the ML algorithm uses for training.
Then, we create two response variables. We denote by Acck

i,j the number of trials × 1 array

where the m-th component is the accuracy of the predictive model tested on Dvalid
i that was

trained over Dtrain
i with the hyper-parameters (λk

i,j)m at the m-th trial. TCk
i,j is the notation

for time complexity.
We have also collected the sensitivity and the specificity of each iteration for RHOASo

to measure its performance more accurately.
Additionally, we have collected the MCC (Matthew correlation coefficient), which is

defined as follows:

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false
negatives, respectively. This coefficient works as a substitute metric of the accuracy for
unbalanced datasets [55,56]. Since some datasets contain a certain degree of imbalance, we
present our results with both indicators, accuracy and MCC.

4.4. Statistical Analyses

Our main objective is to analyze the quality of the RHOASo algorithm and compare it
with other HPO algorithms. In order to analyze whether there are meaningful statistical
differences among the obtained results by the HPO algorithms and RHOASo, we perform
the following statistical analysis:

1. We have conducted descriptive and exploratory analyses of AccRHOASo
i,j , TCRHOASo

i,j ,
the MCC, the sensibility, and the specificity of RHOASo in order to check how well
RHOASo performs the tasks.

2. We have computed the average of iterations that RHOASo executes until it automati-
cally stops.
The following inference tests are carried out for both Experiments 1 and 2.

3. To compare RHOASo’s efficiency with that of the other HPO algorithms, we carry out
non-parametric tests, due to the non-normality of the data Acck

i,j and TCk
i,j. Wilcoxon’s

tests for two paired samples are conducted comparing each Acck
i,j with AccRHOASo

i,j

and TCk
i,j with TCRHOASo

i,j for all datasets and for the three selected ML algorithms.
The choice of Wilcoxon’s test is because the response variables that we compare are
obtained by the application of the ML algorithms over the same dataset but with
different settings (λk

i,j). We obtain the results at a significance level of α = 0.05.

4. Once we apply the inference described above, we obtain the p-values of 7 compar-
isons along 16 datasets with 4 partitions in each one, providing a total of 448 deci-

124

Mathematics 2021, 9, 2334

sions on statistical difference for each ML algorithm and for each response variable,
obtaining, thus, 2688 p-values. From these results, we have computed how many times
we obtain positive difference (validity(RHOASo) > validity(Hk)), negative difference
(validity(RHOASo) < validity(Hk)) or equality (validity(RHOASo) = validity(Hk)),
see Table 6.

Table 6. Conditions of validity. The symbols =,>,< denote statistically meaningful equality and
difference, and Me denotes the median.

Validity Pj Me(TCRHOASo
i,j) > Me(TCk

i,j) Me(TCRHOASo
i,j) = Me(TCk

i,j) Me(TCRHOASo
i,j) < Me(TCk

i,j)

| D1 | . . . | D16 | | D1 | . . . | D16 | | D1 | . . . | D16 |
P1
P2

Me(AccRHOASo
i,j) > Me(Acck

i,j) P3 V∗ V+ V+

P4

P1
P2

Me(AccRHOASo
i,j) = Me(Acck

i,j) P3 V− V= V+

P4

P1
P2

Me(AccRHOASo
i,j) < Me(Acck

i,j) P3 V− V− V�

P4

5. Since the blue cells may be understood as being both a positive difference or negative
difference, depending on the improvement that we obtain, we have reclassified
the results, creating a new table, correcting these cases by the rule described in
Equation (5).

V∗ =
{ V+ if Δ(Acci,j(k)) > Δ(TCi,j(k))

V− if Δ(Acci,j(k)) < Δ(TCi,j(k))
(5)

where

Δ(Acci,j(k)) =
| Me(AccRHOASo

i,j)− Me(Acck
i,j) |

min(Me(AccRHOASo
i,j), Me(Acck

i,j))
(6)

and

Δ(TCi,j(k)) =
| Me(TCRHOASo

i,j)− Me(TCk
i,j) |

min(Me(TCRHOASo
i,j), Me(TCk

i,j))
(7)

6. We have completed the analysis by computing the rate of each type of validity (red,
yellow and green cells) as follows:

RV• =
number of cases in the class V•

N
. (8)

where N denotes the number of total possible comparisons. Since we have performed
the computations for each ML algorithm, we have N = 448.

7. Finally, we compute RV• per partition and per dataset to analyze the consistency of
the results.

Note that for studying the cases of unbalanced datasets, we have carried out the
analyses described above by changing the accuracy for the MCC.

4.5. Technical Details

The analyses are carried out at high-performance computing over HP ProLiant SL270s
Gen8 SE, with two processors, Intel Xeon CPU E5-2670 v2 @ 2.50GHz, with 10 cores each
and 128 GB of RAM and one hard disk of 1 TB. The analysis script is implemented in
Python language.

125

Mathematics 2021, 9, 2334

5. Results and Discussion

This section is organized according to the research questions we have formulated in
the introduction.

5.1. Research Question 1: Given a Dataset, How Good Are the ML Models When RHOASo
Is Applied?

Since the behavior of RHOASo is similar in both Experiments 1 and 2, in this section,
we detail the performance of RHOASo in Experiment 1, and we include a summary of the
results for Experiment 2.

5.1.1. Performance in Experiment 1

We can see in Figure 4 the median of the accuracy when RHOASo is applied. The
median for RF is 0.92, for GB it is 0.9058, and for MLP it is 0.8182. We can see that in all of
these cases, it is greater than 0.80. We can observe that the achieved accuracy by RHOASo
presents great stability in terms of the partitions of the dataset, except for dataset D6 with
model RF, and dataset D16 with model GB. In the case of D6, the variation appears when
we change from P3 to P4. This dataset is the largest one in the study, with the highest rate
of unbalanced data. Then, the most appropriate metric is the MCC. As is discussed later,
the MCC remains stable for D6 in all the partitions. The case of D16 is more involved. The
most frequent hyper-parameter configurations that RHOASo computes for each partition
are max. depth: 5, number trees: 9 for P1 (14 times out of 50), max. depth: 9, number trees: 3
for P2 (50 times out of 50), max. depth : 3, number trees: 9 for P3 (31 times out of 50), and
max. depth: 9, number trees: 3 for P4 (50 times out of 50). Since the number of features in D16
is 12, there are few instances, and the dataset is unbalanced, the most probable explanation
is that the model is overfitting the training data. This behavior appears also in the rest of the
metrics with the combination D16 and GB. The stability is not as evident when the dataset
changes, although the general trend is maintained through the ML models. For instance,
the obtained models with D10 provide the worst accuracy for the three ML algorithms.
Although it may seem that the accuracy is not very high, the rest of the HPO does not
achieve better results, as is outlined below. For this reason, the fit achieved by RHOASo is
considered to be sufficient.

We can see in Figure 5 the median of the MCC (∈ [−1, 1]) when RHOASo is applied.
The median for RF is 0.51, for GB it is 0.40, and for MLP it is 0.32. The MCC value considers
class imbalance, so the results worsen for accuracy, particularly in datasets 3 and 12, which
are highly unbalanced: the minority classes contain less than 1% of total instances. Apart
from unbalanced datasets, the trends are similar to those presented when evaluating
the accuracy.

As far as the time complexity is concerned, the median results are included in Figure 6.
The median value for RF is 1.3028 s, and for GB it is 4.2567 s. The MLP stands out for its
high computational cost, with 259.8138 s. Regarding the stability, as expected, the larger the
partition size that is used, the larger the time complexity, independently of the ML algorithm
used together with RHOASo. Nevertheless, this behavior is different for each ML algorithm.
It is worth noting that in the case of RF, the increase in time complexity as the size of the
partitions increases is much smoother for most of the datasets, compared to GB and MLP.

Sensitivity and specificity are plotted in Figures 7 and 8. The results are stable across
partitions and datasets, which achieve similar results, even when using different models,
except for D16 and GB. The median of sensitivity is 0.9 for GB, 0.91 for MLP, and 0.88 for
RF. In contrast, specificity has a median of 0.7 for GB, 0.69 for MLP, and 0.733 for RF. The
lower specificity could be caused by the imbalance between classes in specific datasets (see
Table 5), which causes the models to be biased toward the majority class. However, D11
has both low specificity and low sensitivity. Overall, the trends are similar to those found
in the evaluation of accuracy.

126

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 4. Behavior of RHOASo: accuracy. Each line represents a dataset. (a) Accuracy for RF. Axis X:
the partition of the dataset. Axis Y: the obtained accuracy. (b) Accuracy for GB. Axis X: the partition
of the dataset. Axis Y: the obtained accuracy. (c) Accuracy for MLP. Axis X: the partition of the dataset.
Axis Y: the obtained accuracy.

127

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 5. Behavior of RHOASo: MCC. Each line represents a dataset. (a) MCC for RF. Axis X: the
partition of the dataset. Axis Y: the obtained MCC. (b) MCC for GB. Axis X: the partition of the
dataset. Axis Y: the obtained MCC. (c) MCC for MLP. Axis X: the partition of the dataset. Axis Y: the
obtained MCC.

128

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 6. Behavior of RHOASo: time complexity. Each line represents a dataset. (a) Time complexity
for RF. Axis X: the partition of the dataset. Axis Y: the obtained time complexity in seconds. (b) Time
complexity for GB. Axis X: the partition of the dataset. Axis Y: the obtained time complexity in
seconds. (c) Time complexity for MLP. Axis X: the partition of the dataset. Axis Y: the obtained time
complexity in seconds.

129

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 7. Behavior RHOASo: sensitivity. The datasets are represented with a bar chart for each
partition. (a) Sensitivity for RF. Axis X: the partition of the dataset. Axis Y: the obtained sensitivity.
(b) Sensitivity for GB. Axis X: the partition of the dataset. Axis Y: the obtained sensitivity. (c)
Sensitivity for MLP. Axis X: the partition of the dataset. Axis Y: the obtained sensitivity.

130

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 8. Behavior RHOASo: specificity. The datasets are represented with a bar chart for each
partition. (a) Specificity for RF. Axis X: the partition of the dataset. Axis Y: the obtained specificity.
(b) Specificity for GB. Axis X: the partition of the dataset. Axis Y: the obtained specificity. (c) Specificity
for MLP. Axis X: the partition of the dataset. Axis Y: the obtained specificity.

5.1.2. Performance in Experiment 2

Since the behavior of RHOASo in both experiments is the same, we include in Table 7
a summary with the median of all metrics (without taking into account partitions) that
RHOASo has obtained in Experiment 2.

131

Mathematics 2021, 9, 2334

Table 7. Medians of response variables for RHOASo in Experiment 2.

Dataset Accuracy MCC Time Complexity Sensitivity Specificity Iterations

D1
RF
GB

MLP

0.8024
0.8194
0.8018

0.1776
0.0002
0.1811

0.904
1.2169

256.0706

0.9419
0.9999
0.9367

0.1743
0.0

0.1971

32.0
30.5
35.0

D2
RF
GB

MLP

0.923
0.9108
0.9244

0.8394
0.8141
0.8432

0.7208
1.0615

237.3997

0.9563
0.9675
0.9362

0.8732
0.8274
0.9079

37.0
28.5
32.5

D3
RF
GB

MLP

0.9632
0.9681
0.9771

0.0496
0.1249

0.0

0.9074
1.29

280.6122

0.9835
0.9866
0.999

0.0573
0.1127

0.0

27.0
29.0
27.0

D4
RF
GB

MLP

0.9499
0.8994
0.934

0.9445
0.8886
0.9269

0.8897
14.3729

339.9584

0.95
0.8994
0.934

0.9944
0.9888
0.9927

37.0
33.0
34.5

D5
RF
GB

MLP

0.7175
0.6384
0.6464

0.4067
0.2443

0.0

16.6164
189.5368
321.7485

0.7885
0.7401

1.0

0.589
0.4527

0.0

37.0
38.0
27.0

D6
RF
GB

MLP

0.9876
0.9009
0.9922

0.7332
0.6211
0.0028

35.5843
127.1753
218.3069

0.9916
0.9013

1.0

0.6794
0.6999
0.0036

33.0
33.0
27.0

D7
RF
GB

MLP

0.8588
0.8609
0.8266

0.6845
0.6916
0.6106

2.4416
5.1165

109.3366

0.9483
0.9629
0.9256

0.6965
0.673

0.6444

35.0
37.0
33.5

D8
RF
GB

MLP

0.7325
0.6726
0.7374

0.4688
0.3437
0.4963

2.4364
9.2316

225.6947

0.8881
0.7504
0.8138

0.5518
0.567

0.6372

34.5
38.0
31.0

D9
RF
GB

MLP

0.9756
0.9775
0.8014

0.9635
0.9664
0.7016

1.1602
3.9133

48.2327

0.9549
0.9508
0.765

0.9908
0.9907
0.9251

36.0
32.0
35.0

D10
RF
GB

MLP

0.5654
0.5703
0.5457

0.1156
0.1244
0.0021

1.2617
3.665

10.986

0.6625
0.6664
0.9297

0.445
0.4559
0.0709

37.0
37.5
27.0

D11
RF
GB

MLP

0.6583
0.6434
0.6309

0.0276
0.1519
0.1779

1.3408
77.7497

534.4388

0.3358
0.381

0.4034

0.6683
0.7023
0.7164

33.0
38.0
34.0

D12
RF
GB

MLP

0.9406
0.9421
0.942

0.1435
0.0
0.0

1.1293
0.9947

50.6516

0.068
0.0
0.0

0.9938
1.0

0.9999

29.0
27.0
27.0

D13
RF
GB

MLP

0.9436
0.9474
0.9427

0.886
0.8936
0.8841

0.6895
1.303

94.5033

0.9124
0.9273
0.9245

0.9682
0.9649
0.957

37.0
34.0
34.5

D14
RF
GB

MLP

0.6897
0.7068
0.7003

0.3766
0.4104
0.3993

20.5842
81.4707

515.4725

0.6307
0.6568
0.6811

0.7431
0.7517
0.7177

38.0
38.0
37.0

D15
RF
GB

MLP

0.9782
0.9919
0.9217

0.9608
0.9885
0.8595

4.5483
305.4672
474.1431

0.6555
0.9417
0.5171

0.9933
0.9987
0.9739

33.5
35.5
34.0

D16
RF
GB

MLP

0.9312
0.8687
0.7348

0.8643
0.6586

0.0

0.5872
0.9878

11.8172

0.8498
0.7524
0.3333

0.9385
0.8705
0.6667

35.0
30.0
27.0

132

Mathematics 2021, 9, 2334

5.2. Research Question 2: How Many Iterations Does the Algorithm Need Until It Stops? How
Faster or Slower Is RHOASo Compared with the Other HPO Algorithms?

The number of iterations that RHOASo has needed until stopping for Experiment 1 is
included in Figure 9. In the case of Experiment 2, this information can be observed in Table 7.

(a)

(b)

(c)
Figure 9. Number of iterations per partition. Each line represents a dataset (medians). (a) Number
of iterations RF. In axis X, the partition of the dataset. In axis Y, the number of the iterations that
RHOASo has carried out. (b) Number of iterations GB. In axis X, the partition of the dataset. In axis
Y, the number of the iterations that RHOASo has carried out. (c) Number of iterations MLP. In axis X,
the partition of the dataset. In axis Y, the number of the iterations that RHOASo has carried out.

133

Mathematics 2021, 9, 2334

In Experiment 1, we can see the median of the number of iterations needed by
RHOASo for each ML algorithm, each dataset and each partition. As general result,
the median of the number of iterations for each partition (computed over all datasets) is
35 for RF, 33.5 for GB, and 34 iterations for MLP. Taking into account that the number
of iterations given as input (by default) in the rest of HPO algorithms is equal to 50, it
implies that, on average, RHOASo needs approximately 70% of the iterations required
by the other algorithms. Additionally, it stops the process by itself. As a consequence of
this fact, less time is required by RHOASo to obtain a good enough accuracy and is able
to be more competitive than other algorithms. This is most significant in the case of MLP,
where each iteration is highly resource consuming. There is not a clear trend relating the
partition size and number of iterations, especially in the case of GB, in which there is a
greater variability in the number of iterations. It could be expected that a greater amount
of data would contribute to a faster convergence, but this is not case. Therefore, it is likely
that the functional ΦA,D may not be as concave, as it would be desirable to perform an
effective early stopping.

We have not compared whether RHOASo is faster or slower, compared with the other
HPO algorithms for Experiment 2 by the very nature of the design of the experiment.

5.3. Research Question 3: Are There Statistically Meaningful Differences between the Performance
of RHOASo and the Other HPO Algorithms?

We remind that we have carried out two experiments:

1. Experiment 1: the experimentation is repeated 50 times (trials) for all HPOs except
for RHOASo, which automatically stops when it considers that it has obtained an
optimal hyper-parameter configuration.

2. Experiment 2: the experimentation is repeated for all HPOs as many times (trials) as
RHOASo has carried out until stopping.

5.3.1. Experiment 1

In Figures 10 and 11, the performances (accuracies and time complexities) that are
achieved by the HPO algorithms over each dataset are shown.

However, if we want to compare whether RHOASo obtains any gain against the other
HPO algorithms, we need to carry out more detailed analyses. This is the study of the
validity of RHOASo.

The rates of validity that are obtained by RHOASo, compared to the rest of the HPO
algorithms are included in Table 8. Note that these computations are carried out with the
accuracies and time complexities by the analyses that are explained in Section 4.4.

Table 8. Rate of validity of RHOASo vs. HPO across all Di (% with accuracy and time complexity).

Validity RF GB MLP Average

V 13.39% 12.27% 15.17% 13.61%
V 5.58% 0.08% 3.12% 2.92%
V 56.25% 45.08% 60.04% 53.79%
V 24.77% 41.74% 21.65% 29.38%

134

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 10. Accuracy complexity. (a) Accuracy in RF. In axis X, the dataset. In axis Y, the accuracy
obtained. Each line represents a HPO algorithm. (b) Accuracy in GB. In axis X, the dataset. In axis Y,
the accuracy obtained. Each line represents a HPO algorithm. (c) Accuracy in MLP. In axis X, the
dataset. In axis Y, the accuracy obtained. Each line represents a HPO algorithm.

135

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 11. Time complexity. (a) Time complexity in RF. In axis X, the dataset. In axis Y, the total time
obtained measured in seconds. Each line represents a HPO algorithm. (b) Time complexity in GB.
In axis X, the dataset. In axis Y, the total time obtained measured in seconds. Each line represents a
HPO algorithm. (c) Time complexity in MLP. In axis X, the dataset. In axis Y, the total time obtained
measured in seconds. Each line represents a HPO algorithm.

136

Mathematics 2021, 9, 2334

On average, the class corresponding to positive statistically significative differences
(green class) is higher than 50%. This can be considered a good result since RHOASo
achieves better results than the rest of the algorithms in more than half of the cases analyzed.
However, there is still a high rate in the blue class. Once we have transformed the blue
class (see Section 4.4), we can analyze whether RHOASo is more effective than the rest of
the HPO algorithms. The results are included in Table 9, which show that, on average, the
class corresponding to positive statistically significative differences is higher than 70%.

Table 9. Rate of validity of RHOASo vs. HPO across all Di (% with accuracy and time complexity).

Validity RF GB MLP Average

V 22.76% 21.65% 30.13% 24.74%
V 5.58% 0.89% 3.12% 3.19%
V 71.65% 77.45% 66.74% 71.94%

After confirming that RHOASo is 70% more efficient than the rest of the HPO algo-
rithms, the question that arises is whether there is a pattern in the 30% of the cases in which
it does not succeed. For example, it might be possible for RHOASo to fail for datasets
with a certain dimensionality, or for a specific ML algorithm. Another possibility is that
RHOASo always loses against the same HPO algorithm. For this reason, we are going to
study in depth the consistency of the previous results.

Since we have dealt with unbalanced datasets, such as D1,D3D4,D6 or D12, we
have repeated the analyses, changing the metric of accuracy by MCC so as to avoid over-
optimistic scores. In Figure 12, the MCCs that are achieved by the HPO algorithms over
each dataset are shown.

The rates of validity that are obtained by RHOASo, compared to the rest of the HPO
algorithms, are included in Table 10. Note that these computations are carried out with the
MCCs and time complexities by the analyses that are explained in Section 4.4.

Table 10. Rate of validity of RHOASo vs. HPO across all Di (% with MCC and time complexity).

Validity RF GB MLP Average

V 22.09% 22.76% 31.02% 25.29%
V 4.68% 0.66% 2.90% 2.75%
V 73.21% 76.56% 66.07% 71.94%

We can observe that RHOASo maintains its rate of gain, overcoming 70% of the cases.
In Section 5.4, we study the consistency of these results as well as those situations in which
RHOASo does not obtain a gain.

137

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 12. MCC of all HPO algorithms. (a) MCC in RF. In axis X, the dataset. In axis Y, the MCC
obtained. Each line represents a HPO algorithm. (b) MCC in GB. In axis X, the dataset. In axis Y, the
MCC obtained. Each line represents a HPO algorithm. (c) MCC in MLP. In axis X, the dataset. In axis
Y, the MCC obtained. Each line represents a HPO algorithm.

138

Mathematics 2021, 9, 2334

5.3.2. Experiment 2

In Figures 13 and 14, the performances (accuracies and time complexities) that are
achieved by the HPO algorithms over each dataset are shown.

(a)

(b)

(c)
Figure 13. Experiment 2: Accuracy complexity. (a) Accuracy in RF. In axis X, the dataset. In axis
Y, the accuracy obtained. Each line represents a HPO algorithm. (b) Accuracy in GB. In axis X, the
dataset. In axis Y, the accuracy obtained. Each line represents a HPO algorithm. (c) Accuracy in MLP.
In axis X, the dataset. In axis Y, the accuracy obtained. Each line represents a HPO algorithm.

139

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 14. Experiment 2: Time complexity. (a) Time complexity in RF. In axis X, the dataset. In axis
Y, the total time obtained measured in seconds. Each line represents a HPO algorithm. (b) Time
complexity in GB. In axis X, the dataset. In axis Y, the total time obtained measured in seconds. Each
line represents a HPO algorithm. (c) Time complexity in MLP. In axis X, the dataset. In axis Y, the
total time obtained measured in seconds. Each line represents a HPO algorithm.

The rates of validity that have been obtained by RHOASo compared to the rest of
HPO of algorithms are included in Table 11. Note that these computations are carried out

140

Mathematics 2021, 9, 2334

with the accuracies and time complexities by the analyses that are explained in Section 4.4
for Experiment 2.

Table 11. Experiment 2: Rate of validity of RHOASo vs. HPO across all Di (% with accuracy and
time complexity).

Validity RF GB MLP Average

V 46.87% 30.80% 54.91% 44.19%
V 1.33% 1.33% 3.12% 1.93%
V 51.78% 67.85% 41.96% 53.86%

In this experiment, RHOASo loses some of its advantage over other HPO algorithms,
mainly because the improvement in execution time is lower since the number of iterations of
the other algorithms is fixed to be equal to that of RHOASo. The average gain is of 53.86%,
which is lower than the 71.96% obtained when evaluating the accuracy. Nevertheless,
RHOASo performs better for GB, has a slight advantage for RF and is outperformed
in MLP. This fact may be related to the search strategy of RHOASo. MLP has worse
performance than other models across all datasets and configurations, which increases the
number of neurons that tend to perform better, but the search strategy of RHOASo favors
configurations with low magnitude of hyper-parameter values. Therefore, the performance
when tuning MLP can be expected to be less satisfactory.

For the unbalanced datasets, we have included the analyses changing the metric of
accuracy by MCC. In Figure 15, the MCCs that are achieved by the HPO algorithms over
each dataset are shown.

The rates of validity that are obtained by RHOASo, compared to the rest of HPO of
algorithms are included in Table 12. Note that these computations are carried out with the
MCCs and time complexities by the analyses that are explained in Section 4.4.

Table 12. Experiment 2: rate of validity of RHOASo Vs HPO across all Di (% with MCC and
time complexity).

Validity RF GB MLP Average

V 43.97% 32.58% 57.58% 44.71%
V 2.23% 0.89% 2.90% 2.00%
V 53.79% 66.51% 39.50% 53.27%

When using MCC as the reference metric, the results follow similar trends to that of
accuracy. RHOASo gains a slight advantage for RF and incurs a slight loss for MLP, but
there are no significant differences.

141

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 15. Experiment 2: MCC of all HPO algorithms. (a) MCC in RF. In axis X, the dataset. In axis
Y, the MCC obtained. Each line represents a HPO algorithm. (b) MCC in GB. In axis X, the dataset.
In axis Y, the MCC obtained. Each line represents a HPO algorithm. (c) MCC in MLP. In axis X, the
dataset. In axis Y, the MCC obtained. Each line represents a HPO algorithm.

142

Mathematics 2021, 9, 2334

5.4. Research Question 4: Are the above Results Consistent?

In this section, we analyze whether RHOASo achieves a significant performance
improvement consistently across datasets and partitions.

5.4.1. Experiment 1

The rates of validity for each partition computed with the accuracy and time com-
plexity are included in Figure 16. The consistency of the green class is clear when we
discriminate them by partitions. That is to say, if we only consider the partitions, RHOASo
always outperforms the rest of the HPO algorithms. This may be due to the early stop of
RHOASo, consuming less time but achieving good accuracy.

(a)

(b)

(c)
Figure 16. Experiment 1: consistency per partition (accuracy and time complexity). (a) Rate of
validity per partition in RF. In axis X, the partition of the dataset. In axis Y, the rate of RHOASo for
each class of validity. (b) Rate of validity per partition in GB. In axis X, the partition of the dataset. In
axis Y, the rate of RHOASo for each class of validity. (c) Rate of validity per partition in MLP. In axis
X, the partition of the dataset. In axis Y, the rate of RHOASo for each class of validity.

As we can see in Figure 17, the above conclusion is not so general when we discrimi-
nate them by datasets, except for the case of GB. Nonetheless, the results concerning RF
and MLP are not so far from being consistent (RF being closer than MLP), and a deeper
analysis should be performed regarding this fact.

143

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 17. Experiment 1: consistency per dataset. Rate of validity with the accuracy and time
complexity. (a) Rate of vx per dataset in RF. In axis X, the dataset. In axis Y, the rate of RHOASo for
each class of validity. (b) Rate of validity per dataset in GB. In axis X, the dataset. In axis Y, the rate of
RHOASo for each class of validity. (c) Rate of validity per dataset in MLP. In axis X, the dataset. In
axis Y, the rate of RHOASo for each class of validity.

In the case of MLP, there is a clear trend for the datasets in which RHOASo losses
are D1, D2, D3, and D4. That is, datasets with a low number of instances (<10,000) but
with a high number of features > 50. This failure in the large-dimension small-sized
datasets can be due to the early-stop characteristic of the algorithm. Datasets with high
dimensionality and low number of instances tend to increase the variance of the results,
which contributes to create an irregular surface in ΦA,D, possibly trapping RHOASo in a
local maximum. A possible solution could be to substitute the function that maps elements
from the hyper-parameter space to the performance of the trained ML model on a validation
dataset with an approximated probabilistic model of such function. This suggests that
combining the underlying ideas of Bayesian hyper-parameter optimization algorithms

144

Mathematics 2021, 9, 2334

with those presented in this paper could yield an early-stop algorithm that works efficiently
in high dimensions.

In the case of RF, the gain of RHOASo is not enough for datasets D5, D9, and D14.
Unlike in the case of MLP, these datasets have no clear commonalities, so we can only
hypothesize. We believe that the problem is the same as in the case of MLP: high variance
in the results diminishes the effectiveness of RHOASo. However, in this case, this vari-
ance could be ascribed to the inherent randomness in the training of RF or in the cross
validation sampling.

As we can see in Figure 18, the behavior of the rates of validity for each partition
remains consistent when these are computed with the MCC and time complexity.

(a)

(b)

(c)
Figure 18. Experiment 1: consistency per partition (MCC and time complexity). (a) Rate of validity
per partition in RF. In axis X, the partition of the dataset. In axis Y, the rate of RHOASo for each class
of validity. (b) Rate of validity per partition in GB. In axis X, the partition of the dataset. In axis Y,
the rate of RHOASo for each class of validity. (c) Rate of validity per partition in MLP. In axis X, the
partition of the dataset. In axis Y, the rate of RHOASo for each class of validity.

As we can see in Figure 19, the same conclusions as in the case of accuracy are obtained
when we discriminate them by datasets. Nonetheless, the results concerning RF and MLP

145

Mathematics 2021, 9, 2334

are not so far from being consistent (RF being closer than MLP), and a deeper analysis
should be performed regarding this fact. We note that, in some cases, the green class is
increased; this has not occurred for the red class in the unbalanced datasets.

(a)

(b)

(c)
Figure 19. Consistency per dataset: rate of validity with the MCC and time complexity. (a) Rate
of validity per dataset in RF. In axis X, the dataset. In axis Y, the rate of RHOASo for each class of
validity. (b) Rate of validity per dataset in GB. In axis X, the dataset. In axis Y, the rate of RHOASo
for each class of validity. (c) Rate of validity per dataset in MLP. In axis X, the dataset. In axis Y, the
rate of RHOASo for each class of validity.

5.4.2. Experiment 2

The rates of validity for each partition computed with the accuracy and time complex-
ity are included in Figure 20. In this experiment, RHOASo is more inconsistent since it loses
the advantage of execution time that it had over the other HPOs. RHOASo has a consistent
advantage for all partition sizes in GB, but for RF it only improves other algorithms for
partitions 3 and 4 and is inferior in MLP in all partitions, although the results improve
when the size of the partition increases. This trend is also present for RF and GB. The
reasons for this trend are probably the same as those we discussed in Section 5.4.1: the
variance in the results trapping RHOASo in the local maxima.

146

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 20. Experiment 2: consistency per partition (accuracy and time complexity). (a) Rate of
validity per partition in RF. In axis X, the partition of the dataset. In axis Y, the rate of RHOASo for
each class of validity. (b) Rate of validity per partition in GB. In axis X, the partition of the dataset. In
axis Y, the rate of RHOASo for each class of validity. (c) Rate of validity per partition in MLP. In axis
X, the partition of the dataset. In axis Y, the rate of RHOASo for each class of validity.

As we can see in Figure 21, the validity per dataset is negatively affected. In RF, there
is a general decrease, with only datasets 10, 12, 12 and 15 showing a clear advantage for
RHOASo. For GB, RHOASo maintains better results than other algorithms for all datasets,
except 5 and 6. However, the consistency is lower than in experiment 1. Finally, in MLP,
the validity of RHOASo is the lowest among all models, being consistently outperformed
in five datasets: 1, 2, 3, 4 and 13.

147

Mathematics 2021, 9, 2334

The datasets with the worst results for each model have no clear commonalities, so it is
possible that the neutralization of the execution time advantage of RHOASo is a significant
factor in the deterioration of the results.

(a)

(b)

(c)
Figure 21. Experiment 2: consistency per dataset. Rate of validity with the accuracy and time
complexity. (a) Rate of validity per dataset in RF. In axis X, the dataset. In axis Y, the rate of RHOASo
for each class of validity. (b) Rate of validity per dataset in GB. In axis X, the dataset. In axis Y, the
rate of RHOASo for each class of validity. (c) Rate of validity per dataset in MLP. In axis X, the dataset.
In axis Y, the rate of RHOASo for each class of validity.

In Figure 22, we show the results of the above analysis with the MCC and the time
time complexity. The results are very similar to those achieved with accuracy. The main
difference is that the validity for RF is improved for partitions 1 and 2, increasing the
consistency of the results.

148

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 22. Experiment 2: consistency per partition (MCC and time complexity). (a) Rate of validity
per partition in RF. In axis X, the partition of the dataset. In axis Y, the rate of RHOASo for each class
of validity. (b) Rate of validity per partition in GB. In axis X, the partition of the dataset. In axis Y,
the rate of RHOASo for each class of validity. (c) Rate of validity per partition in MLP. In axis X, the
partition of the dataset. In axis Y, the rate of RHOASo for each class of validity.

In Figure 23, we show the rate of validity per dataset, using the MCC as the reference
metric. As happened in Experiment 1, the trends are mostly the same as those present
when evaluating the accuracy.

149

Mathematics 2021, 9, 2334

(a)

(b)

(c)
Figure 23. Experiment 2: consistency per dataset. Rate of validity with the MCC and time complexity.
(a) Rate of validity per dataset in RF. In axis X, the dataset. In axis Y, the rate of RHOASo for each
class of validity. (b) Rate of validity per dataset in GB. In axis X, the dataset. In axis Y, the rate of
RHOASo for each class of validity. (c) Rate of validity per dataset in MLP. In axis X, the dataset. In
axis Y, the rate of RHOASo for each class of validity.

6. Conclusions

ML provides several powerful tools for data processing that find applications in
different fields. Most of the existent models have several hyper-parameters that need to be
tuned and have a noticeable impact on their performance. Therefore, HPO algorithms are
essential to achieve the highest possible accuracy with minimal human intervention.

In this work, a new HPO algorithm is described as a generalization of the discrete
analog of a basic iterative algorithm to obtain the solutions to certain conditional opti-
mization problems for the logistic function. It is shown that its performance is weakly
disturbed by changing the size of the data subset with which it is run. The algorithm
shows positive statistically meaningful differences in efficiency, regarding the other HPO

150

Mathematics 2021, 9, 2334

algorithms considered in this study. The algorithm can finish the tuning process by itself
and only requires an upper bound on the number of iterations to perform. Furthermore,
it is shown that, on average, it needs around 70% of the iterations needed by the other
hyper-parameter optimization algorithms to achieve competitive results.

The results show that the algorithm achieves high accuracy, with similar results for all
classifiers on each dataset. In addition, RHOASo can effectively use a small partition size to
accelerate the HPO process without sacrificing the final accuracy of the model. Lastly, the
automatic early stop ends the tuning process before reaching the fixed number of iterations
(Me = 34), further increasing its efficiency.

Future work can be aimed at several lines:

• Test the RHOASO’s performance with more machine learning algorithms, such as
decision trees or k-nearest neighbors.

• Include more HPO algorithms in the comparison of the effectivity of RHOASo.
• Optimize RHOASo so it can be effective on search spaces of greater dimensions and

can better deal with an extremely indented surface of ΦA,D, possibly using a surrogate
of the target function, such as in Bayesian optimization.

• Factor the possible inclusion and effect of parallelization.
• Assess RHOASo on data streams.

Author Contributions: Conceptualization : Á.L.M.C.; methodology: Á.L.M.C. and N.D.-G.; software:
Á.L.M.C. and D.E.G.; validation: all authors have contributed equally; formal analysis: N.D.-G.
and D.E.G.; investigation: Á.L.M.C. and N.D.-G.; data curation: D.E.G.; writing—original draft
preparation, review and editing: all authors have contributed equally; project administration and
funding acquisition: N.D.-G. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was partially supported by the Spanish National Cybersecurity Institute (IN-
CIBE) under contract Art.83, key: X54.

Data Availability Statement: The datasets supporting this work are from previously reported
studies and datasets, which are cited. The processed data are available from the corresponding
author upon request.

Acknowledgments: The authors would like to thank the Spanish National Cybersecurity Institute
(INCIBE), who partially supported this work. Additionally, in this research, the resources of the
Center of Supercomputation of Castilla y León (SCAYLE) were used.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

CMA-ES Covariance Matrix Adaptation Evolutionary
GB Gradient Boosting
HPO Hyper-Parameters Optimization
ML Machine Learning
MLP Multi-Layer Perceptron
NM Nelder-Mead
PS Particle Swarm
RBFOpt Radial Basis Function Optimization
RF Random Forest
RS Random Search
SMAC Sequential Model Automatic Configuration
SMBO Sequential Model-Based Optimization
TPE Tree Parzen Estimators

151

Mathematics 2021, 9, 2334

Appendix A. Additional Results

In this appendix, we show the results concerning Experiment 1 in the case that the ML
algorithms are DT and KNN. Due to the great difference in the performance of RHOASo
with respect to the rest of the HPO algorithms when they are run with these ML algorithms,
we have excluded the analyses from the body of the article. However, we believe that the
obtained results may be of interest.

We give a brief description of DT and KNN below.

1. DT is a tree-like model, where the internal nodes and their edges encode possibilities
and the ending nodes (leafs) encode decisions. Te maximum length of the paths
joining the root node and a leaf is called the depth of the tree. There are a number of
DT training algorithms, among which we can point out ID3, ID4, ID5 and CART. In
this study, we have chosen CART.

2. KNN is a non-parametric classification model the may be also used in regression
problems. The training examples are simply vectors in the feature space, carrying
their class label. The training phase does not consist of constructing an internal
mathematical model but simply allocating training data instances in the feature space.
The classification phase is done by looking at the majority label of the k-nearest
neighbors of each point. This implies the choice of a metric on the feature space,
which by default is usually taken as the p = 2 Minkowski distance.

In Table A1, we include the hyper-parameters that we have tuned. We have chosen
them because of their influence on the corresponding ML algorithms (see [3], Appendixes
A1, A4).Concerning the hyper-parameters of DT to be tuned, we have chosen the minimum
number of samples required to split an internal node (min_smaples_split) and the minimum
number of samples required to be at a leaf node (min_samples_leaf). Regarding the hyper-
parameters of KNN, we have considered the number of neighbors to use for queries and p,
the Minkowski’s distance type.

The search space for all hyper-parameters is in the interval [1, 50]. All hyper-
parameters not being tuned are set to their default values in scikit-learn implementa-
tion ([34]). We have used 10-fold cross-validation to assess the performance of all ML
models combined with the HPO algorithms.

Table A1. ML algorithms together with hyper-parameters we have considered.

Name Hyper-Parameter 1 Hyper-Parameter 2

DT min_smaples_split min_samples_leaf
KNN n_neighbors p

Appendix A.1. Performance of RHOASo

We can see in Figures A1–A6 that we have plotted the median of the accuracy, MCC,
total time, sensitivity, specificity, and the number of iterations when RHOASo is applied
together with DT and KNN. The median of accuracy for DT over all datasets is 0.85 and
for KNN, it is 0.78. We can observe that the achieved accuracy by RHOASo presents great
stability in terms of partitions of the dataset, except for partition P4 and some datasets. The
median of MCC for DT is 0.58, and for KNN it is 0.41. Again, RHOASo presents a similar
behavior to the accuracy. It can be due to P4 does not contribute to improve the fit of the
models, see [1]. Regarding the time complexity, the median value for DT is 1.11 s, and for
KNN it is 22.53 seconds. It can be shown that the total time registered for D4 in KNN is
higher in P3 than in P4. This can be caused because the stabilizer of RHOASo achieves an
optimum value before in the total dataset compared to P3. The median of sensitivity is 0.88
for DT, and 0.87 for KNN. In contrast, specificity has a median of 0.87 for DT, and 0.63 for
KNN. In addition, these plots inherit the same trends as the graphics of the accuracy and
MCC. The median of the number of iterations for DT is 14, and for KNN it is 19. It is worth

152

Mathematics 2021, 9, 2334

pointing out the number of iterations for P3 is larger than for P4 when we work with KNN
in D4. This is probably caused by the same reason as in the plot of the total time.

(a)

(b)

Figure A1. Behavior of RHOASo: accuracy. Each line represents a dataset. (a) Accuracy for DT.
(b) Accuracy for KNN.

153

Mathematics 2021, 9, 2334

(a)

(b)

Figure A2. Behavior of RHOASo: MCC. Each line represents a dataset. (a) MCC for DT. (b) MCC
for KNN.

(a)

Figure A3. Cont.

154

Mathematics 2021, 9, 2334

(b)

Figure A3. Behavior of RHOASo: time complexity. Each line represents a dataset. (a) Time complexity
for DT. (b) Time complexity for KNN.

(a)

(b)

Figure A4. Behavior RHOASo: sensitivity. The datasets are represented with a bar chart for each
partition. (a) Sensitivity for DT. (b) Sensitivity for KNN.

155

Mathematics 2021, 9, 2334

(a)

(b)

Figure A5. Behavior RHOASo: specificity. The datasets are represented with a bar chart for each
partition. (a) Specificity for DT. (b) Specificity for KNN.

(a)

Figure A6. Cont.

156

Mathematics 2021, 9, 2334

(b)

Figure A6. Number of iterations per partition. Each line represents a dataset (medians). (a) Number
of iterations DT. (b) Number of iterations KNN.

Appendix A.2. Are There Statistically Meaningful Differences between the Performance of
RHOASo and the Other HPO Algorithms under DT and KNN?

In Figures A7 and A8, the performances (accuracies and time complexities) that are
achieved by the HPO algorithms over each dataset are shown.

(a)

(b)

Figure A7. Accuracy complexity. (a) Accuracy in DT. (b) Accuracy in KNN.

157

Mathematics 2021, 9, 2334

(a)

(b)

Figure A8. Time complexity. (a) Time complexity in DT. (b) Time complexity in KNN.

The results of validity of RHOASo faced on the rest of HPO algorithms are included
in Table A2, which show that, on average, the class corresponding to positive statistically
significative differences is higher than 90%. Note that these computations are carried out
with the accuracies and time complexities by the analyses that are explained in Section 4.4.

Table A2. Rate of validity of RHOASo vs. HPO across all Di (% with accuracy and time complexity).

Validity DT KNN Average

V 10.93% 8.25% 9.59%
V 0% 0% 0%
V 89.06% 91.74% 90.4%

Since we have dealt with unbalanced datasets, we have repeated the analyses, chang-
ing the metric of accuracy by MCC so as to avoid over-optimistic scores. In Figure A9, the
MCCs that are achieved by the HPO algorithms over each dataset are shown.

158

Mathematics 2021, 9, 2334

(a)

(b)

Figure A9. MCC of all HPO algorithms. (a) MCC in DT. (b) MCC in KNN.

The rates of validity that are obtained by RHOASo, compared to the rest of HPO of
algorithms with the MCCs and time complexities, are included in Table A3.

Table A3. Rate of validity of RHOASo vs. HPO across all Di (% with MCC and time complexity).

Validity DT KNN Average

V 10.49% 10.04% 10.26%
V 0% 0.44% 0.22%
V 89.50% 89.50% 89.507%

We can observe that the rate of gain of RHOASo overcomes the 89% of the cases.

Appendix A.3. Are the above Results Consistent?

In this section, we analyze whether RHOASo achieves a significant performance
improvement consistently across datasets and partitions.

159

Mathematics 2021, 9, 2334

The rates of validity for each partition computed with the accuracy and time com-
plexity are included in Figure A10. As can be seen, RHOASo presents a much higher
performance than any other HPO algorithm taken into account in this work, and this
behavior is independent of the partition.

(a)

(b)

Figure A10. Experiment 1: consistency per partition (accuracy and time complexity). (a) Rate of validity per partition in DT.
(b) Rate of validity per partition in KNN.

As we can see in Figure A11, the above conclusion is the same when we discriminate
rates of validity by datasets.

As we can see in Figure A12, the behavior of the rates of validity for each partition
remains consistent when these are computed with the MCC and time complexity. As we
can seen in Figure A13, the same conclusion as in the case of accuracy is obtained when we
discriminate them by datasets.

160

Mathematics 2021, 9, 2334

(a)

(b)

Figure A11. Experiment 1: consistency per dataset. Rate of validity with the accuracy and time com-
plexity. (a) Rate of validity per dataset in DT. (b) Rate of validity per dataset in KNN.

(a)
Figure A12. Cont.

161

Mathematics 2021, 9, 2334

(b)
Figure A12. Experiment 1: consistency per partition (MCC and time complexity). (a) Rate of validity
per partition in DT. (b) Rate of validity per partition in KNN.

(a)

(b)
Figure A13. Consistency per dataset: rate of validity with the MCC and time complexity. (a) Rate of
validity per dataset in DT. (b) Rate of validity per dataset in KNN.

References

1. DeCastro-García, N.; Muñoz Castañeda, A.L.; Escudero García, D.; Carriegos, M. Effect of the Sampling of a Dataset in the
Hyperparameter Optimization Phase over the Efficiency of a Machine Learning Algorithm. Complexity 2019, 2019, 16. [CrossRef]

2. Jamieson, K.; Talwalkar, A. Non-stochastic best arm identification and hyperparameter optimization. In Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, 9–11 May 2016; pp. 240–248.

3. Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix, A.L.; et al. Hyper-
parameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. arXiv 2021, arXiv:stat.ML/2107.05847.

4. Bengio, Y. Gradient-Based Optimization of Hyperparameters. Neural Comput. 2000, 12, 1889–1900. [CrossRef]

162

Mathematics 2021, 9, 2334

5. Maclaurin, D.; Duvenaud, D.; Adams, R. Gradient-based hyperparameter optimization through reversible learning. In
Proceedings of the 32nd International Conference on Machine Learning (ICML’15). IMLS, Lille, France, 6–11 July 2015; Volume 37,
pp. 2113–2122.

6. Franceschi, L.; Donini, M.; Frasconi, P.; Pontil, M. Forward and Reverse Gradient-Based Hyperparameter Optimization. In
Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; Precup, D.,
Teh, Y.W., Eds.; PMLR: International Convention Centre: Sydney, Australia, 2017; Volume 70, pp. 1165–1173.

7. Mockus, J. On Bayesian Methods for Seeking the Extremum. In Proceedings of the IFIP Technical Conference; Springer: London, UK,
1974; pp. 400–404.

8. Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. In Proceedings of the
25th International Conference on Neural Information Processing Systems (NIPS’12), Lake Tahoe, NV, USA, 3–6 December 2012;
Curran Associates Inc.: New York, NY, USA, 2012; Volume 2, pp. 2951–2959.

9. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential Model-based Optimization for General Algorithm Configuration. In
Proceedings of the 5th International Conference on Learning and Intelligent Optimization, Rome, Italy, 17–21 January 2011;
Springer: Berlin, Heidelberg, 2011; LION’05, pp. 507–523. [CrossRef]

10. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-parameter Optimization. In Proceedings of the 24th
International Conference on Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; Curran Associates
Inc.: New York, USA, 2011; NIPS’11, pp. 2546–2554.

11. IIlievski, l.; Akhtar, T.; Feng, J.; Shoemaker, C.A. Efficient hyperparameter optimization for deep learning algorithms using
deterministic RBF surrogates. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA,
USA, 4–9 February 2017; pp. 822–829.

12. Hernández-Lobato, J.M.; Hoffman, M.W.; Ghahramani, Z. Predictive Entropy Search for Efficient Global Optimization of
Black-box Functions. In Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS’14),
Montreal, QC, Canada, 8–13 December 2017; MIT Press: Cambridge, MA, USA, 2014; Volume 1, pp. 918–926.

13. Bardenet, R.; Brendel, M.; Kégl, B.; Sebag, M. Collaborative Hyperparameter Tuning. In Proceedings of the 30th International
Conference on Machine Learning (ICML’13), Atlanta, GA, USA, 16–21 June 2013; Volume 28, pp. 858–866.

14. Swersky, K.; Snoek, J.; Adams, R.P. Multi-task Bayesian Optimization. In Proceedings of the 26th International Conference on
Neural Information Processing Systems (NIPS’13), Lake Tahoe, NV, USA, 5–10 December 2013; Curran Associates Inc.: New York,
USA, 2013; Volume 2, pp. 2004–2012.

15. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
16. Nuñez, L.; Regis, R.G.; Varela, K. Accelerated Random Search for constrained global optimization assisted by Radial Basis

Function surrogates. J. Comput. Appl. Math. 2018, 340, 276–295. [CrossRef]
17. Hansen, N.; Ostermeier, A. Completely Derandomized Self-Adaption in Evolution Strategies. Evol. Comput. 2001, 9, 159–195.

[CrossRef]
18. Nelder, J.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
19. Ozaki, Y.; Yano, M.; Onishi, M. Effective hyperparameter optimization using Nelder-Mead method in deep learning. Ipsj Trans.

Comput. Vis. Appl. 2017, 9, 20. [CrossRef]
20. Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans.

Evol. Comput. 2002, 6, 58–73. [CrossRef]
21. Fortin, F.; De Rainville, F.; Gardner, M. DEAP: Evolutionary Algorithms Made Easy. J. Mach. Learn. Res. 2012, 13, 2171–2175.
22. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter

optimization. J. Mach. Learn. Res. 2018, 18, 1–52.
23. Li, L.; Jamieson, K.; Rostamizadeh, A.; Gonina, E.; Ben-Tzur, J.; Hardt, M.; Recht, B.; Tal-Walkar, A. A System for Massively

Parallel Hyperparameter Tuning. In Proceedings of the Machine Learning and Systems 2020, Austin, TX, USA, 2–4 March 2020;
pp. 230–246.

24. Falkner, S.; Klein, A.; Hutter, F. BOHB: Robust and Efficient Hyperparameter Optimization at Scale. In Proceedings of the 35th
International Conference on Machine Learning. PMLR, Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 1437–1446.

25. Bergstra, J.; Yamins, D.; Cox, D. Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms.
In Proceedings of the 12th Python in Science Conference (SCIPY 2013), Austin, TX, USA, 24–28 June 2013; pp. 13–20. [CrossRef]

26. Claesen, M.; Simm, J.; Popovic, D.; Moreau, Y.; De Moor, B. Easy Hyperparameter Search Using Optunity. arXiv 2014,
arXiv:1412.1114.

27. Lindauer, M.; Eggensperger, K.; Feurer, M.; Falkner, S.; Biedenkapp, A.; Hutter, F. SMAC v3: Algorithm Configuration in Python.
2017. Available online: https://github.com/automl/SMAC3 (accessed on 25 July 2021)

28. Costa, A.; Nannicini, G. RBFOpt: an open-source library for black-box optimization with costly function evaluations. Math.
Program. Comput. 2018, 10, 597–629. [CrossRef]

29. DeCastro-García, N.; Castañeda, Á.L.M.; Fernández-Rodríguez, M. RADSSo: An Automated Tool for the multi-CASH Machine
Learning Problem. In Hybrid Artificial Intelligent Systems; de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E., Eds.;
Springer International Publishing: Cham, Switzerland, 2020; pp. 183–194.

30. DeCastro-García, N.; Castañeda, Á.L.M.; Fernández-Rodríguez, M. Machine learning for automatic assignment of the severity of
cybersecurity events. Comput. Math. Methods 2020, 2, e1072. [CrossRef]

163

Mathematics 2021, 9, 2334

31. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
32. Friedman, J. Greedy function approximation: A gradient boosting machine. Ann. Statist. 2001, 29, 1189–1232. [CrossRef]
33. Friedman, J. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
34. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
35. Guo, X.; Yang, J.; Wu, C.; Wang, C.; Liang, Y. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization.

Neurocomputing 2008, 71, 3211–3215. [CrossRef]
36. Diaz, G.I.; Fokoue-Nkoutche, A.; Nannicini, G.; Samulowitz, H. An effective algorithm for hyperparameter optimization of

neural networks. Ibm J. Res. Dev. 2017, 61, 9:1–9:11. [CrossRef]
37. Bridge, J.P.; Holden, S.B.; Paulson, L.C. Machine Learning for First-Order Theorem Proving. J. Autom. Reason. 2014, 53, 141–172.

[CrossRef]
38. Hopkins, E.M.; Reeber, G.F. Datataset Spambase. UCI Machine Learning Repository. 1998. Available online: https://archive.ics.

uci.edu/ml/datasets/spambase (accessed on 27 August 2019).
39. Zieba, M.; Tomczak, S.; Tomczak, J. Ensemble boosted trees with synthetic features generation in application to bankruptcy

prediction. Expert Syst. Appl. 2016, 58, 93–101. [CrossRef]
40. Alpaydin, E.; Kaynak, C. Optical Recognition of Handwritten Digits Dataset. UCI Machine Learning Repository. 1995. Available

online: https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits (accessed on 27 August 2019).
41. De Almeida Freitas, F.; Peres, S.M.; De Moraes Lima, C.A.; Barbosa, F.V. Grammatical Facial Expressions recognition with

Machine Learning. In Proceedings of the 27th International Florida Artificial Intelligence Research Society Conference, FLAIRS
2014, Pensacola Beach, FL, USA, 21–23 May 2014; pp. 180–185.

42. Pozzolo, A.D.; Caelen, O.; Johnson, R.A.; Bontempi, G. Calibrating Probability with Undersampling for Unbalanced Classification.
In Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 8–10 December
2015; pp. 159–166. [CrossRef]

43. Bock, R.; Chilingarian, A.; Gaug, M. Methods for multidimensional event classification: a case study using images from a
Cherenkov gamma-ray telescope. Nucl. Instr. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2004, 516, 511–528.
[CrossRef]

44. Harries, M. SPLICE-2 Comparative Evaluation: Electricity Pricing. In Technical Report; The University of South Wales: Cardiff,
UK, 1999.

45. Gama, J.; Medas, P.; Castillo, G.; Rodrigues, P. Learning with Drift Detection. In Advances in Artificial Intelligence—SBIA 2004;
Bazzan, A.L.C., Labidi, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 286–295.

46. Freire, A.L.; Barreto, G.A.; Veloso, M.; Varela, A.T. Short-term memory mechanisms in neural network learning of robot navigation
tasks: A case study. In Proceedings of the 6th Latin American Robotics Symposium (LARS 2009), Valparaíso, Chile, 29–30 October
2009; pp. 1–6. [CrossRef]

47. Roesler, O. Eye dataset. UCI Machine Learning Repository. 2013. Available online: https://archive.ics.uci.edu/ml/datasets/
EEG+Eye+State (accessed on 27 August 2019).

48. Tromp, J. Connect4 dataset. UCI Machine Learning Repository. 1995. Available online: https://archive.ics.uci.edu/ml/datasets/
Connect-4 (accessed on 27 August 2019).

49. Security, A.I. Amazon Employee Access Challenge. Kaggle. 2013. Available online: https://www.kaggle.com/c/amazon-employee-
access-challenge (accessed on 27 August 2019).

50. Mohammad, R.M.; Thabtah, F.; McCluskey, L. Predicting phishing websites based on self-structuring neural network. Neural
Comput. Appl. 2014, 25, 443–458. [CrossRef]

51. Baldi, P.; Sadowski, P.; Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 2014,
5. [CrossRef]

52. Dhanabal, L.; Shantharajah, S. A Study on NSL-KDD Dataset for Intrusion Detection System Based on Classification Algorithms.
Int. J. Adv. Res. Comput. Commun. Eng. 2015, 4, 446–452.

53. DEFCOM. NSL—KDD Dataset. Github. 2015. Available online: https://github.com/defcom17/NSL_KDD (accessed on 27
August 2019).

54. Guerrero-Higueras, A.; DeCastro-García, N.; Matellán, V. Detection of Cyber-attacks to indoor real time localization systems for
autonomous robots. Robot. Auton. Syst. 2018, 99, 75–83. [CrossRef]

55. Matthews, B. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta
Protein Struct. 1975, 405, 442–451. [CrossRef]

56. Gorodkin, J. Comparing two K-category assignments by a K-category correlation coefficient. Comput. Biol. Chem. 2004,
28, 367—374. [CrossRef] [PubMed]

164

mathematics

Review

Review of Metaheuristics Inspired from the Animal Kingdom

Elena Niculina Dragoi 1,2,* and Vlad Dafinescu 2,3

Citation: Dragoi, E.N.; Dafinescu, V.

Review of Metaheuristics Inspired

from the Animal Kingdom.

Mathematics 2021, 9, 2335. https://

doi.org/10.3390/math9182335

Academic Editors: Alfonso

Mateos Caballero, Cornelio

Yáñez Márquez and Mariano Luque

Received: 6 July 2021

Accepted: 17 September 2021

Published: 21 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University,
Bld. Dimitrie Mangeron, No. 27, 700050 Iaşi, Romania

2 Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi”
Technical University, Bld. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania; vdafinescu@gmail.com

3 Emergency Hospital “Prof. Dr. N. Oblu”, Str. Ateneului No. 2, 700309 Iaşi, Romania
* Correspondence: elena-niculina.dragoi@academic.tuiasi.ro; Tel.: +40-232-278683

Abstract: The search for powerful optimizers has led to the development of a multitude of meta-
heuristic algorithms inspired from all areas. This work focuses on the animal kingdom as a source
of inspiration and performs an extensive, yet not exhaustive, review of the animal inspired meta-
heuristics proposed in the 2006–2021 period. The review is organized considering the biological
classification of living things, with a breakdown of the simulated behavior mechanisms. The cen-
tralized data indicated that 61.6% of the animal-based algorithms are inspired from vertebrates and
38.4% from invertebrates. In addition, an analysis of the mechanisms used to ensure diversity was
performed. The results obtained showed that the most frequently used mechanisms belong to the
niching category.

Keywords: metaheuristics; optimization; animal-inspired; exploration; exploitation

1. Introduction

A metaheuristic is a high level, problem-independent framework that provides a series
of steps and guidelines used to develop heuristic optimizers [1]. Nowadays, the tendency
is to use the term for both the general framework and for the algorithms built based on its
rules [1]. In the latest years, the literature has shown an increase in the number of proposals
of new optimization metaheuristics and their improvements through step alterations,
local search procedures or hybridizations [2]. For a few well-known metaheuristics, the
numerical evolution of the number of papers (journal and conferences) from the IEEE
library is provided in [3]. The work of Hussain et al. in [2] presents a detailed distribution
of types of research (basic, improvement, applications) focusing on all metaheuristics and,
in [4], a timeline of the history of a set of representative techniques is provided.

This increase has been fueled by the need to efficiently find good solutions for difficult
problems, especially for those where classical techniques fail to provide acceptable results
within a reasonable amount of time and resources consumed.

All of these new optimizers (as well as the existing ones) follow the principles of the
No Free Lunch Theorem (NFL), which states that if “an algorithm gains in performance on
one class of problems it necessarily pays for on the remaining problems” [5]. In a simplistic
view, this can be interpreted as meaning that one specific algorithm cannot outperform
its counterparts on all problems but only on specific types or classes of problems, and it
was shown that it is theoretically impossible to have a best general-purpose optimization
strategy [6] (more details about NFL and its detailed analysis can be found in [7]). Conse-
quently, researchers will probably never be satisfied with the existing metaheuristics [6],
and this gives room for the development of new algorithms, improvements and strategies.

Mathematics 2021, 9, 2335. https://doi.org/10.3390/math9182335 https://www.mdpi.com/journal/mathematics165

Mathematics 2021, 9, 2335

The oldest type of metaheuristic optimizers (from the 60s and 70s) is represented by
genetic algorithms, based on the evolutionary processes; however, in their quest for better
optimization of metaheuristics, researchers have turned to new sources of inspiration.
Nowadays, the world of metaheuristics is large and covers ideas varying from the behavior
of the very small, e.g., viruses and bacteria, to the mechanisms of galaxies. This multitude
of algorithms can be somewhat overwhelming and, therefore, the objective of this paper is
to identify the main directions of research, in terms of sources of inspiration, and to shed
some light on the mechanisms used to generate powerful optimizers.

2. Classification and Categorization

When trying to identify the main classes of metaheuristics, various criteria can be
applied. Examples include: search path, memory use, neighborhood exploration, number
of solutions transferred from one iteration to the next and parallelization ability [8,9]. An ex-
tensive discussion related to the issue of classification and categorization for metaheuristics
and the different schemes used can be found in [10].

In terms of categorizations, different aspects can be considered. For example, the type
of candidate solutions is one of the most used criteria, and it splits the metaheuristic into:
(i) individual-based, also known as single solutions, trajectory methods [1] or individualist
algorithm [11] and (ii) population-based or collective algorithms [11]. In the individual-
based group, a single solution is evolved. The main advantages of these methods consist
in simplicity, lower computational costs and a lower number of function evaluation [11].
However, in their basic form, they can become trapped in the local optima and, since there
is no information sharing, as there is just one solution, issues such as isolation of optima, de-
ceptiveness and bias of the search space need to be dealt with [12]. Examples of algorithms
that belong to this class are: Simulated Annealing (SA) [13]; Tabu Search (TS) [14]; Variable
Neighborhood Search (VNH) [15]; Iterated Local Search (ILS) [16], proposed before 2006;
Vortex Search (VS) [9], proposed after 2006. In the case of the population-based algorithms,
multiple solutions are generated and improved. Distinctive from the individual-based
algorithms, the population-based approaches allow some information exchange between
the candidate solutions and thus can handle aspects that the individual-based approaches
struggle with [12]. However, the cost of the improved performance is higher complexity
and a larger number of function evaluations. The majority of metaheuristics are population-
based and can themselves be classified into approaches that [17]: (i) increase the population
diversity through the variation of control parameters; (ii) maintain population diversity
through the replacement of individuals in the current population; (iii) include memory
to store promising solutions; (iv) divide the population into subpopulations; (v) combine
multiple methods, i.e., hybrid approaches.

When type of search is considered, metaheuristics can be local or global. The local
search approaches tend to be more exploitative while the global algorithms are more
explorative in nature [2]. On the other hand, in the latest years, the trend is to create
hybrids that combine the two types of searches. The best-known examples of local search
algorithms are TS, ILS and Greedy Randomized Adaptive Search Procedure (GRASP).
Differential Evolution (DE), Particle Swarm Optimization (PSO) and Genetic Algorithms
(GA) are examples of global search algorithms. Although the global search approaches
can be hybridized to also include local procedures as a means to improve a previously
proposed version, the literature presents algorithms that include this global–local search
combination from the first version, e.g., the Bat Algorithm (BA) [18], the Shuffle Frog Leap
Algorithm (SFL) [19] or Water Wave Optimization (WWO) [20].

166

Mathematics 2021, 9, 2335

When considering the source of inspiration, the majority of authors identify the
metaheuristics as evolutionary and swarm intelligence techniques [11]. An extended
categorization can be considered, such as the one in [21], where two more groups are
included: stochastic and physical. In the latest years, various sources of inspiration have
been used for metaheuristics. Therefore, this categorization must be extended to include
all of the new methods. As a result, this work performs an extensive literature review of
the proposed approaches covering the years 2006–2021. The review is organized around
the biological classification of living things (kingdom-phylum-class), and its aim is to
determine the main directions of research followed in the last 15 years and to identify new
potential directions. The work [22] has a similar aim but focuses on all types of sources
of inspirations for metaheuristics. Taking into account the variety of aspects that can be
analyzed and the number of algorithms, this work only considers the metaheuristics with
a biological base.

Regarding classification of metaheuristics, the work of Stegherr et al. [10] presents
a seven-layer classification system. It focuses on structure (with criteria that include
discontinuances, population, local search and memory), behavior (with criteria that include
the strategy to create new solutions, groups and sub-populations), search (with criteria
dealing with the intensification and diversification capabilities), algorithm (with criteria
including the basic components incorporated), specific features (dealing with capabilities,
i.e., use of adaptive parameters), evaluation (concerning the efficiency on various types
of problems) and metaheuristics (which contains the specific algorithm that corresponds
to the characteristics form the previous levels). If the first six levels are viewed from a
framework perspective, the metaheuristic level deals with algorithms.

3. Source of Inspiration

In order to perform the current review, the main databases searched were: ScienceDirect
(https://www.sciencedirect.com/, accessed on 6 August 2021), Web of Science (https:
//apps.webofknowledge.com/, accessed on 6 August 2021), Google Scholar (https://
scholar.google.ro/, accessed on 6 August 2021), Springer Link (https://link.springer.com/,
accessed on 6 August 2021) and IEEE Xplore Digital Library (https://ieeexplore.ieee.org/
Xplore/home.jsp, accessed on 6 August 2021). The terms used in the search process were
“metaheuristics”, “nature-inspired optimizers” and “bio-inspired algorithms”. The strategy
to use both nature-inspired and bio-inspired terms is related to the fact that, in many works,
there is not a clear distinction between the two and they are used to describe a variety of
metaheuristics. Based on the identified sources, a drill down (study of the references used)
and drill up approach (study of the papers citing a specific work) were applied in order to
determine additional appropriate manuscripts. For the covered period, 283 algorithms were
identified. Their distribution, based on the inspiration source, is presented in Figure 1.

By analyzing the identified categories, two main groups can be distinguished: biologi-
cal and non-biological sources. The biological sources include animals, plants and humans,
while the non-biological sources are represented by the chemical and physical laws of
nature. Therefore, broadly speaking, the optimization metaheuristics can be grouped into:
(i) biologically-inspired and (ii) nature-inspired.

167

Mathematics 2021, 9, 2335

Figure 1. Distribution of newly proposed algorithms in the period 2006–2021, based on their inspira-
tion source.

As it can be observed from Figure 1, the largest group of newly proposed metaheuris-
tics in the considered period have animals as a source of inspiration, and this group is the
main focus of the current work. Although humans, from a biological point of view, belong
to the animal group, Chordata (vertebrates) phylum, in this work they were not included
because they deserve a separate discussion, considering the unique ways of thinking,
behaving and interacting with the environment.

In the latest years, various reviews have tried to shed light on the novel approaches
that are constantly developed. Examples include: (i) a comprehensive list of algorithms
and the steps of a few selected approaches [23]; (ii) a detailed discussion about the main
research aspects specific to the field of nature-inspired metaheuristic optimizers [2]. In most
works, researchers present the names of the best-known metaheuristics and a few details
about the general ideas. This work aims to provide a series of details (such as: source
code availability, improvement, applications, mechanisms for controlling the exploration-
exploitation balance) in a systematic manner, for each algorithm considered.

3.1. Vertebrates

Most algorithms inspired by animals simulate two main general behaviors: (i) food
search (foraging) and (ii) mating. For foraging, there are a number of theoretical models
developed to predict the behavior of living things: the optimal foraging theory, the ideal
free distribution, game theory and predator-prey models [24]. The theory of optimal
foraging was developed to explain the dietary patterns and the resource use, and it states
that the individuals using their energy more efficiently for finding food are favored by
natural selection [25]. Foraging for food can be an individual activity (solitary foraging—
where each individual searches for its food) or can be a social activity (social foraging—
where foraging is a group behavior) [26]. The topics of social foraging include: (i) the
mechanisms used by the members to find food; (ii) the manner in which the food locations
are communicated to other members; (iii) the division of food between group members. The
majority of foraging inspired optimization algorithms focus on the first two topics [26]. A
taxonomy of foraging inspired algorithms is proposed in [27], where three main categories
are identified: vertebrates (with backbone), invertebrates (without backbone) and non-
neuronal (organisms that do not possess a central nervous system or brain).

168

Mathematics 2021, 9, 2335

Concerning the mating behavior, different theoretical models that simulate the mating
mechanisms of specific species exist. For example, in birds, different strategies are used to
display the quality of genes to the potential mates by showing the main physical features:
color, shape of specific body parts, etc. In terms of partner combinations, five strategies
are encountered: monogamy, polygyny, polyandry, parthenogenesis and promiscuity [28].
These mechanisms are included, in different forms, in the metaheuristic optimizers with
the objective of improving diversity and thus increasing performance.

From the total of algorithms inspired from animals, the ones based on vertebrates
represent 61.6%, with the most represented sub-groups being birds (Section 3.1.1) and
mammals (Section 3.1.2).

3.1.1. Birds
Mating Behavior

One of the best-known algorithms inspired from bird behavior is Cuckoo Search
(CS) [29]. It simulates the brood parasitic behavior of some species of cuckoo and, in
order to search for new solutions, it uses Levy flight random walk (mutation based on
the best solution found so far) and biases/selective random walk (crossover between a
current solution and its mutation) [30]. The Levy flight is a random process from the
non-Gaussian class, a step which is based on the Levy distribution [31]. The steps of the
CS algorithm express three idealized rules: (i) each cuckoo lays an egg and places it into
a randomly chosen nest; (ii) the nests with high-quality eggs will be further used in the
next generations; (iii) there is a fixed number of nests and there is a probability that the
host will discover the foreign egg [32]. The main disadvantage of this algorithm is the
fixed value of the scaling factor (that controls the step size) [30] and, in order to improve its
performance, various strategies have been applied. A list of different modifications of CS
and its applications can be found in [32,33]. Inspired by the same cuckoo breeding behavior,
the Cuckoo Optimization Algorithm (COA) was proposed in [34]. When comparing COA
and CS, it can be observed that COA is more complex, in the sense that it contains an
additional behavioral aspect represented by the immigration process. Also, it uses the
k-means clustering algorithm to identify the group that a cuckoo belongs to.

Bird Mating Optimizer (BMO) [28] uses the birds mating process as a framework.
Throughout generations, the birds (the population of solutions) apply a probabilistic
method to improve the quality of their offspring. The population is divided into males and
females. The males can be monogamous, polygamous or promiscuous. On the other hand,
the females can be parthenogenetic and polyandrous. In BMO, five species are simulated,
and each one has its specific updating pattern.

Developed to adjust the parameters of adaptive neuro-fuzzy inference systems, the
Satin Bowerbird Optimizer (SBO) [35] simulates the mating behavior of bowerbirds (a close
relative species of the birds-of-paradise). In each iteration, a target individual is determined
through roulette wheel selection. The other individuals try to follow it, i.e., they change
their position accordingly, and try to improve their strategies by mutation.

Food Search

The flight of eagles (as does, in fact, the flight behavior of many animals and insects)
has the typical characteristics of the Levy flight [36]. Based on this idea, the Eagle Strategy
(ES) was proposed in [36]. It simulates an idealized two stage strategy (find and chase) [37].
The find step represents the exploration phase realized by the Levy walk and the chase
step is an exploitation phase where an intensive local search is performed by the Firefly
Algorithm (FA). ES represents a strategy and not an algorithm, and its authors indicate
that different algorithms can be used at different stages of the iterations [38]. For example,
in [38–40], Differential Evolution (DE) [41] performs the local search procedure that was
initially solved by FA.

Chicken Swarm Optimization (CSO) is inspired by swarm behavior [42]. It mimics
the flock and foraging behavior of chickens and is based on four simplified rules: (i) the

169

Mathematics 2021, 9, 2335

swarm is comprised of several groups and each group has a dominant rooster, some hens
and chicks; (ii) the selection of individuals representing each type of bird is based on
the fitness value; (iii) the dominance and hen–chick relationship remains unchanged for
several iterations; (iv) the search for food is performed around the dominant entity. CSO
is a multi-swarm algorithm and its performance analysis showed that it can be efficiently
applied to solve benchmarks and real-world problems.

The Crow Search Algorithm (CSA) [43] simulates the behavior of crows when it comes
to food, i.e., storing excess food and thievery. Its main principles are: (i) crows live in flocks;
(ii) each crow memorizes their hiding places; (iii) crows follow each other to steal food;
(iv) crows try to protect their stashes. The algorithm includes a memory of good solutions
and, since the movement of crows is performed regardless of whether a newly generated
position is worse than the current one, distinctively from many metaheuristics, CSA is not
a greedy algorithm.

Simulating the auditory-based hunting mechanism employed by owls, the Owl Search
Algorithm (OSA) [44] assumes that the fitness value of each individual is correlated to the
intensity of the received sound and that the search space has one global optimum.

The hummingbird’s optimization algorithm (HOA) [45] focuses on the foraging pro-
cesses of hummingbirds. It includes a self-searching phase, based on the individual
accumulated experience (using a Levy flight mechanism), and a guide-searching phase
that includes information from dominant individuals.

Simulating the social roosting and foraging behavior of ravens, in [26], the Raven
Roosting Optimization (RRO) is proposed. The algorithm includes four main components:
(i) the perception capability of each individual to find food; (ii) a memory related to the
position of previous foraging locations; (iii) transmitting and receiving information about
food locations; (iv) probabilistic movement when searching for new resources.

Based on the cooperative hunting behavior of Harris hawks, the Harris Hawks
Optimization (HHO) [46] algorithm simulates a series of aspects such as prey explo-
ration, surprise pounce, and attack strategies. The algorithm complexity is O(population_
size × (iterations + iterations × dimensionality + 1)) and, in exploring or exploiting the
search space, a series of strategies such as diversification mechanism, progressive selection
scheme and adaptive and time-varying parameters were used.

Aquila is a very successful bird of prey located in the Northern hemisphere that
represents the source of inspiration for the Aquila Optimizer (AO) [47]. The model that
the AO is based on simulates four hunting methods: (i) high soar with a vertical stoop
(corresponding to an expanded exploration step); (ii) contour flight with glide attack
(narrowed exploration step); (iii) low flight and slow descent (expanded exploitation step);
(iv) walking and prey grabbing (narrowed exploitation). The AO computational complexity
is O(solution_number × (iterations x dimensionality + 1)).

The hunting mechanisms of golden eagles (spiral trajectory for searching food and
straight path when attacking, a tendency of cruising at the beginning of the search and at-
tacking at the end, capability to easily change between cruising and attaching) is simulated
in the Golden Eagle Optimizer (GEO) [48]. The attack phase corresponds to exploitation
and cruising to exploration. To extend applicability, two variants were proposed: the
GEO version (single objective) and the MOGEO (multi-objective) version. The GEO com-
putational complexity is O(population_size × dimensionality × iterations) and that for
MOGEO is O(population_size × dimensionality × iterations × objectives × archive).

Movement

Based on the characteristics of geese’s flight and the general PSO model, a geese-
inspired hybrid PSO (Geese-PSO) was proposed in [49]. Although it does not use a
completely novel metaphor and the algorithm is a hybridization, it is considered in this
work because, to the authors’ knowledge, the principle of following the particle ahead
and the application of a unidirectional flow of information was not used prior to the
proposal of the Geese-PSO approach. In the same direction of research, Migrating Bird

170

Mathematics 2021, 9, 2335

Optimization (MBO) [50] is inspired by the “V” flight formation of migrating birds. MBO is
a neighborhood search approach where each solution is improved based on its neighbors.

The swarming behavior of passenger pigeons (the common name given to Blue
Pigeons, Merne Rouck Pigeons, wandering long tailed Doves and Wood pigeons) represents
the inspiration of the Pigeon Optimization Algorithm (POA) [51]. Pigeons have a specific
behavior that can be simplified into a series of rules: (i) in order to enhance the search
and reduce the probability of being prey for other animals, flight is performed in flocks;
(ii) different flocks have their own solution for movement, which influences the shape of
the group; (iii) there is communication between birds through “keck” and “tweet” calls;
(iv) the behavior of other pigeons can be imitated; (v) the pigeons responding to the calls are
the closest to the source of the call; (vi) in order to have a better probability of survival, each
pigeon must lead. Another algorithm inspired by pigeons is Pigeon Inspired Optimization
(PIO) [52]. However, in PIO the main idea is to simulate the homing behavior and the
mechanisms used by a pigeon to move from a point A to a point B, i.e., orientation through
magnetoreception and the sun, and recall of known landmarks close to the destination.

The migratory and attack behavior of seagulls is imitated in the Seagull Optimiza-
tion Algorithm (SeOA) [53]. Several simplified rules are considered: (i) the migration
is performed in groups; (ii) all the individuals travel towards the one with the best fit-
ness; (iii) the attack follows a spiral-like movement. In addition, during the migration
process, a mechanism for collision avoidance is included. The Sooty Tern Optimiza-
tion Algorithm (STOA) [54] has a similar source of inspiration as the SeOA, but based
on Sooty Tern seabirds. In this case, the migration behavior represents the exploration
phase and the attacking behavior the exploitation one. The complexity of the STOA
is O(problem_dimension × iteration × objective_number × population_size × objec-
tive_function) and the space complexity is O(objective_number × population_size).

In their fight to survive the harsh conditions of the polar regions, the emperor penguins
use a specific strategy of huddling. This represents the main source of inspiration for
the Emperor Penguin Optimizer (EPO) [55], where operations such as huddle boundary
determination, temperature computation, distance determination and identification of
the effective move are mathematically modeled and simulated in order to perform the
optimization. The time complexity of EPO is O(k × individual_length × iterations ×
dimensionality × population_size), where the algorithm termination criteria requires O(k)
time. The same mechanisms are also simulated in Emperor Penguins Colony (EPC) [56].
The main difference between the EPO and EPC consists in the manner in which the
movement is realized, i.e., in EPC the individuals perform a spiral-like movement.

The foraging and navigation behaviors of African vultures is modeled in the
African Vultures Optimization Algorithm (AVOA) [57], where multiple mechanisms to
improve the exploration–exploitation balance were proposed: the use of a coefficient
vector to change between these phases, use of phase-shift to precent premature conver-
gence and local optimum escape and inclusion of Levy Flight. The AVOA computa-
tional complexity is based on initialization, fitness evaluation and vulture update and is
O(iteration × population_size) + O(iteration × population_size × dimensionality).

Table 1 summarizes the algorithms briefly presented in this section and shows a series
of examples for improvements and applications. In Table 1, where a link to the source
code exists, if not specifically indicated, the implementation is provided by a third party.
In the application column, due to the fact that it is common to test the performance of a
newly proposed algorithm on a set of problems with known characteristics, the standard
benchmarks were not specified.

171

Mathematics 2021, 9, 2335

T
a

b
le

1
.

Im
pr

ov
em

en
ts

an
d

ap
pl

ic
at

io
ns

fo
r

bi
rd

-i
ns

pi
re

d
m

et
ah

eu
ri

st
ic

s
(a

lp
ha

be
ti

ca
lly

so
rt

ed
).

A
lg

o
ri

th
m

S
o

u
rc

e
C

o
d

e
M

o
d

ifi
ca

ti
o

n
s

a
n

d
Im

p
ro

v
e

m
e

n
ts

A
p

p
li

ca
ti

o
n

s

Bi
rd

M
at

in
g

O
pt

im
iz

er
(B

M
O

)[
28

]
−

ad
ap

ti
ve

po
pu

la
ti

on
si

ze
[5

8]
−

hy
br

id
iz

at
io

n
w

ith
D

iff
er

en
tia

lE
vo

lu
tio

n
[5

9,
60

],
Te

ac
hi

ng
Le

ar
ni

ng
-b

as
ed

O
pt

im
iz

at
io

n
[6

1]

−
im

ag
e

se
gm

en
ta

ti
on

[5
9]

−
op

ti
m

al
ex

pa
ns

io
n

pl
an

ni
ng

[5
8]

−
st

ru
ct

ur
al

da
m

ag
e

[6
2]

−
st

ru
ct

ur
al

de
si

gn
[6

2]
−

en
gi

ne
er

in
g

de
si

gn
[6

0]
−

el
ec

tr
oc

he
m

ic
al

di
sc

ha
rg

in
g

m
ac

hi
ni

ng
[6

3]
−

ph
ot

ov
ol

ta
ic

m
od

ul
es

[6
4]

C
hi

ck
en

Sw
ar

m
O

pt
im

iz
at

io
n

(C
SO

)[
42

]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/4
82

04
-

cs
o,

ac
ce

ss
ed

on
7

Ja
nu

ar
y

20
20

−
m

ul
ti

-o
bj

ec
ti

ve
m

ec
ha

ni
sm

[6
5]

−
in

cl
us

io
n

of
pe

na
lt

y
[6

6]
−

le
ar

ni
ng

m
ec

ha
ni

sm
[6

7]

−
cr

ud
e

oi
lp

ri
ce

pr
ed

ic
ti

on
(i

n
co

m
bi

na
ti

on
w

it
h

A
N

N
s)

[6
8]

−
pr

oj
ec

ti
on

pu
rs

ui
te

va
lu

at
io

n
[6

9]
−

er
ro

r
co

nt
ro

l[
70

]

C
ro

w
Se

ar
ch

A
lg

or
it

hm
(C

SA
)[

43
]

(M
A

TL
A

B–
au

th
or

so
ur

ce
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/5
78

67
-

cr
ow

-s
ea

rc
h-

al
go

ri
th

m
-f

or
-

co
ns

tr
ai

ne
d-

op
ti

m
iz

at
io

n,
ac

ce
ss

ed
on

19
Ju

ne
20

21

−
co

ns
tr

ai
nt

ha
nd

lin
g

[7
1]

−
in

cl
us

io
n

of
Le

vy
fli

gh
t[

72
]

−
m

ul
ti

-o
bj

ec
ti

ve
ad

ap
ta

ti
on

[7
3]

−
ch

ao
ti

c
sy

st
em

s
[7

3,
74

]
−

pa
ra

m
et

er
co

nt
ro

lt
hr

ou
gh

di
ve

rs
it

y
po

pu
la

ti
on

in
fo

rm
at

io
n

[7
5]

−
st

ru
ct

ur
al

de
si

gn
[7

1]
−

Pa
rk

in
so

n
di

ag
no

si
s

[7
6]

−
en

er
gy

pr
ob

le
m

s
[7

2]
−

im
ag

e
pr

oc
es

si
ng

[7
7]

C
uc

ko
o

Se
ar

ch
(C

S)
[2

9]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/2
98

09
-

cu
ck

oo
-s

ea
rc

h-
cs

-a
lg

or
ith

m
,a

cc
es

se
d

on
4

Fe
br

ua
ry

20
19

−
hy

br
id

iz
at

io
n

w
it

h
PS

O
[7

8]
−

Sh
uf

fle
Fr

og
O

pt
im

iz
at

io
n

A
lg

or
it

hm
[7

9]
−

im
pr

ov
em

en
to

fs
pe

ci
fic

st
ep

s
[3

2]
−

va
ry

in
g

th
e

co
nt

ro
lp

ar
am

et
er

s
[3

0,
80

]

−
lin

ea
r

an
te

nn
a

ar
ra

y
op

ti
m

iz
at

io
n

[8
1]

−
op

er
at

in
g

sc
he

du
le

of
ba

tt
er

y,
th

er
m

al
en

er
gy

st
or

ag
e,

an
d

he
at

so
ur

ce
in

a
bu

ild
in

g
en

er
gy

sy
st

em
[8

2]
−

po
w

er
lo

ad
di

sp
at

ch
[8

3]
−

sy
nc

hr
on

iz
at

io
n

of
bi

la
te

ra
lt

el
eo

pe
ra

ti
on

sy
st

em
s

[8
4]

−
0–

1
kn

ap
sa

ck
pr

ob
le

m
[7

9]

C
uc

ko
o

O
pt

im
iz

at
io

n
A

lg
or

it
hm

(C
O

A
)

[3
4]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/3
56

35
-

cu
ck

oo
-o

pt
im

iz
at

io
n-

al
go

ri
th

m
,

ac
ce

ss
ed

on
4

Fe
br

ua
ry

20
19

−
hy

br
id

iz
at

io
n

w
it

h
H

S
[8

5]
−

ad
ap

ta
ti

on
to

di
sc

re
te

sp
ac

es
[8

6]

−
w

at
er

al
lo

ca
ti

on
an

d
cr

op
pl

an
ni

ng
[8

7]
−

lo
ad

fr
eq

ue
nc

y
co

nt
ro

l[
85

]
−

bi
la

te
ra

lt
el

eo
pe

ra
ti

on
sy

st
em

[8
4]

−
in

ve
rs

e
ki

ne
m

at
ic

pr
ob

le
m

[8
8]

−
PI

D
de

si
gn

[3
4]

Em
pe

ro
r

Pe
ng

ui
n

O
pt

im
iz

er
(E

PO
)[

55
]

−
bi

na
ry

ve
rs

io
n

[8
9]

−
m

ul
ti

-o
bj

ec
ti

ve
va

ri
an

t[
90

,9
1]

−
hy

br
id

iz
at

io
n

w
it

h
Sa

lp
Sw

ar
m

al
go

ri
th

m
[9

2]
,

So
ci

al
En

gi
ne

er
in

g
O

pt
im

iz
at

io
n

[9
3]

−
ra

nk
in

g
of

cl
ou

d
se

rv
ic

e
pr

ov
id

er
s

[9
0]

−
co

lo
r

im
ag

e
se

gm
en

ta
ti

on
[9

4]
−

m
ed

ic
al

da
ta

cl
as

si
fic

at
io

n
(i

n
co

m
bi

na
ti

on
w

it
h

Su
pp

or
tV

ec
to

r
M

ac
hi

ne
s)

[9
3]

Em
pe

ro
r

Pe
ng

ui
ns

C
ol

on
y

(E
PC

)[
56

]
−

in
tr

od
uc

ti
on

of
m

ut
at

io
n

an
d

cr
os

so
ve

r
op

er
at

or
s

[9
5]

−
in

ve
nt

or
y

co
nt

ro
lp

ro
bl

em
[9

6]
−

ne
ur

o-
fu

zz
y

sy
st

em
[9

7]

172

Mathematics 2021, 9, 2335

T
a

b
le

1
.

C
on

t.

A
lg

o
ri

th
m

S
o

u
rc

e
C

o
d

e
M

o
d

ifi
ca

ti
o

n
s

a
n

d
Im

p
ro

v
e

m
e

n
ts

A
p

p
li

ca
ti

o
n

s

H
ar

ri
s

H
aw

ks
O

pt
im

iz
at

io
n

(H
H

O
)[

46
]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

s:
//

gi
th

ub
.c

om
/a

lia
sg

ha
rh

ei
da

ri
co

m
/

H
ar

ri
s-

H
aw

ks
-O

pt
im

iz
at

io
n-

A
lg

or
it

hm
-a

nd
-A

pp
lic

at
io

ns
,

ac
ce

ss
ed

on
10

D
ec

em
be

r
20

20

−
us

e
of

ch
ao

s
[9

8]
−

bi
na

ry
ve

rs
io

n
[9

9]
−

hy
br

id
iz

at
io

n
w

it
h

D
iff

er
en

ti
al

Ev
ol

ut
io

n
[1

00
],

Sa
lp

Sw
ar

m
A

lg
or

it
hm

[9
9]

−
pa

ra
m

et
er

id
en

ti
fic

at
io

n
ph

ot
ov

ol
ta

ic
ce

lls
[9

8]
−

pr
od

uc
ti

vi
ty

pr
ed

ic
ti

on
of

so
la

r
st

ill
(i

n
co

m
bi

na
ti

on
w

it
h

A
rt

ifi
ci

al
N

eu
ra

lN
et

w
or

ks
)

[1
01

]

M
ig

ra
ti

ng
Bi

rd
O

pt
im

iz
at

io
n

(M
BO

)[
50

]
(J

av
a)

ht
tp

:/
/m

bo
.d

og
us

.e
du

.tr
,a

cc
es

se
d

on
15

N
ov

em
be

r
20

20

−
hy

br
id

iz
at

io
n

w
it

h
H

ar
m

on
y

Se
ar

ch
[1

02
],

D
iff

er
en

ti
al

Ev
ol

ut
io

n
[1

03
]

−
ne

w
m

ec
ha

ni
sm

fo
r

le
ad

er
se

le
ct

io
n

[1
04

],
ne

ig
hb

or
ho

od
se

ar
ch

st
ra

te
gy

[1
05

],
ag

e
m

ec
ha

ni
sm

[1
06

],
cr

os
so

ve
r

m
ec

ha
ni

sm
[1

07
],

G
lo

ve
r

ge
ne

ra
to

r
in

th
e

in
iti

al
iz

at
io

n
ph

as
e

[1
08

]
−

us
e

of
pa

ra
lle

lm
ic

ro
-s

w
ar

m
s

[1
06

]

−
sc

he
du

lin
g

[1
02

,1
04

–1
06

,1
08

]
−

m
an

uf
ac

tu
ri

ng
[1

07
]

O
w

lS
ea

rc
h

A
lg

or
it

hm
(O

SA
)[

10
9]

−
in

cl
us

io
n

of
op

po
si

ti
on

-b
as

ed
le

ar
ni

ng
[1

10
],

ch
ao

s
[1

11
]

−
bi

na
ry

ve
rs

io
n

[1
12

]

−
im

ag
e

se
gm

en
ta

ti
on

[1
10

]
−

bi
la

te
ra

ln
eg

ot
ia

ti
on

s
[1

11
]

−
fe

at
ur

e
se

le
ct

io
n

[1
12

]

Pi
ge

on
In

sp
ir

ed
O

pt
im

iz
at

io
n

(P
IO

)[
52

]

(M
A

TL
A

B)
ht

tp
:

//
re

ad
.p

ud
n.

co
m

/d
ow

nl
oa

ds
71

3
/s

ou
rc

ec
od

e/
m

at
h/

28
59

91
9/

C
od

e%
20

of
%

20
Ba

si
c%

20
PI

O
/C

od
e%

20
of

%
20

Ba
si

c%
20

PI
O

.tx
t_

_h
tm

,a
cc

es
se

d
on

15
D

ec
em

be
r

20
20

−
di

sc
re

ti
za

ti
on

[1
13

]
−

in
cl

us
io

n
of

th
e

he
te

ro
ge

ne
it

y
pr

in
ci

pl
e

[1
14

]
−

us
e

of
C

au
ch

y
di

st
ri

bu
ti

on
[1

15
],

pr
ob

ab
ili

ty
fa

ct
or

s
to

ad
ap

tt
he

ve
lo

ci
ty

[1
16

]
−

m
ul

ti
-o

bj
ec

ti
ve

[1
17

]
−

pr
ed

at
or

-p
re

y
co

nc
ep

t[
11

8]

−
tr

av
el

lin
g

sa
le

sm
an

pr
ob

le
m

[1
13

]
−

pr
ed

ic
ti

on
of

bu
lk

co
m

m
od

it
y

fu
tu

re
s

pr
ic

es
(i

n
co

m
bi

na
ti

on
w

it
h

ex
tr

em
e

le
ar

ni
ng

m
ac

hi
ne

)
[1

19
]

−
au

to
m

at
ic

ca
rr

ie
r

la
nd

in
g

[1
15

,1
16

]
−

cu
rr

en
tm

ot
or

pa
ra

m
et

er
de

si
gn

[1
17

]

R
av

en
R

oo
st

in
g

O
pt

im
iz

at
io

n
(R

R
O

)[
26

]
−

su
bp

op
ul

at
io

ns
w

it
h

di
ff

er
en

tb
eh

av
io

r
[1

20
]

−
hy

br
id

iz
at

io
n

w
it

h
C

SO
[1

21
]

−
ta

sk
sc

he
du

lin
g

[1
21

]

Sa
ti

n
Bo

w
er

bi
rd

O
pt

im
iz

er
(S

BO
)[

35
]

−
en

co
di

ng
ba

se
d

on
co

m
pl

ex
va

lu
es

[1
22

]
−

so
lid

ox
id

e
fu

el
ce

lls
[1

23
]

−
ne

ur
o-

fu
zz

y
in

fe
re

nc
e

sy
st

em
s

[3
5]

Se
ag

ul
lO

pt
im

iz
at

io
n

A
lg

or
it

hm
(S

eO
A

)
[5

3]

(M
at

la
b—

au
th

or
co

de
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/7
51

80
-

se
ag

ul
l-

op
ti

m
iz

at
io

n-
al

go
ri

th
m

-s
oa

,
ac

ce
ss

ed
on

12
Fe

br
ua

ry
20

21

−
m

ul
ti

-o
bj

ec
ti

ve
[1

24
]

−
hy

br
id

iz
at

io
n

w
it

h
W

ha
le

O
pt

im
iz

at
io

n
[1

25
],

C
uc

ko
o

Se
ar

ch
[1

26
],

Th
er

m
al

Ex
ch

an
ge

O
pt

im
iz

at
io

n
[1

27
]

−
fe

at
ur

e
se

le
ct

io
n

[1
27

]

So
ot

y
Te

rn
O

pt
im

iz
at

io
n

A
lg

or
it

hm
(S

TO
A

)[
54

]

(M
at

la
b—

au
th

or
co

de
)

ht
tp

s:
//

jp
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/7
66

67
-

so
ot

y-
te

rn
-o

pt
im

iz
at

io
n-

al
go

ri
th

m
-

st
oa

,a
cc

es
se

d
on

20
Ju

ne
20

21

−
m

od
el

pr
ed

ic
ti

ve
co

nt
ro

l[
12

8]
−

in
du

st
ri

al
en

gi
ne

er
in

g
pr

ob
le

m
s

[5
4]

173

Mathematics 2021, 9, 2335

3.1.2. Mammals
Food search

Based on the principles of echolocation used by bats to find food, the Bat Algorithm
(BA) [18] employs several idealized rules: (i) echolocation is used for distance sensing
and prey identification; (ii) the flying pattern is random, with characteristics such as
velocity, pulse rate and loudness; (iii) the variation of loudness is assumed to move from
a large value to a minimum (constant). The role of the pulse rate and loudness is to
balance exploration and exploitation [129]. Another algorithm simulating bats is the
Directed Artificial Bat Algorithm (DABA) [130]. DABA considers the individual flight of
bats with no interaction between individuals, while in BA, the bat behavior is similar to
the PSO particles. Although, compared to BA, the DABA model is closer to the natural
behavior, in terms of optimization performance, BA is better [131]. On the other hand, the
Dynamic Virtual Bats Algorithm (DVBA) [131] has a population comprised of only two
individuals, i.e., explorer and exploiter bats, that dynamically exchange their roles based
on their locations.

The echolocation mechanism is not specific to bats; other animals also using it to
navigate and to find food, e.g., Dolphin Echolocation [132]. The abbreviation given by
its authors is DE; however, so as not to confuse it with Differential Evolution, Dolphin
Echolocation will be denoted by DEO in this work. It mimics the manner in which sound,
in the form of clicks, is used to track and aim objects. Distinctively from the bat sonar
system, which has a short range of 3–4 m, the range of the dolphin sonar varies from
a few tens of meters to over a hundred meters. This aspect and the differences in the
environmental characteristics lead to the development of totally different sonar systems,
and a direct comparison between the two may be difficult.

In their search for food, sperm whales go as deep as 2000–3000 m and can stay
underwater without breathing for about 90 min [133]. They are social animals, travel
in groups and only the weaker specimens are attacked by predators such as orcas. This
behavior was modeled in the Sperm Whale Algorithm (SWA) [133], where the population is
divided into subgroups. In each cycle of breathing and feeding, the individual experiences
two opposite poles (surface and bottom of the sea); however, because computing the mirror
place is expensive and its influence on the search process is limited, it is applied only to the
worst solutions. In order to simulate the hunting behavior of humpback whales, i.e., the
bubble net feeding method, the Whale Optimization Algorithm (WOA) [134] searches for
prey (the exploration phase) and then uses the shrinking encircling mechanism and the
spiral updating position (the exploitation phase). A detailed review covering the multiple
aspects of WOA is presented in [135].

The Grey Wolf Optimizer (GWO) [136] models a strict social dominant hierarchy
and the group hunting mechanisms—tracking, chasing, approaching and attacking the
prey–of grey wolfs (Canis lupus). The complexity of GWO is O(problem_dimension
× iteration × objective_number × population_size × objective_function) [54]. Similar
to other bio-inspired approaches, the GWO suffers from premature convergence. The
prey weight and astrophysics concepts were applied in the Astrophysics Inspired Grey
Wolf Optimizer (AGWO) [137] to simultaneously improve exploration and exploitation.
Although wolves live in packs and communicate over long distances by howling, they have
developed unique semi-cooperative characteristics [138]. By focusing on the independent
hunting ability, as opposed to the GWO, which uses a single leader to direct the search
in a cooperative manner, the Wolf Search Algorithm (WSA) [138] functions with multiple
leaders swarming from multiple directions towards the optimal solution.

Spider monkeys are specific to South America and their behavior falls in the category
of fission–fusion social structure [139], i.e., based on the scarcity or availability of food,
they split from large to smaller groups and vice versa. The algorithm that simulates this
structure is called Spider Monkey Optimization (SMO) [139]. It consists of six phases and,
unlike the natural system, the position of leader (local or global) is not fixed, depending
instead on its ability to search for food. In addition, the optimization procedure does not

174

Mathematics 2021, 9, 2335

include the communication tactics specific to spider monkeys. Distinctively, the individual
intelligence of chimps used for group hunting is modelled into the Chimp Optimization
Algorithm (ChOA), where four types of hunting are included: driving, chasing, blocking
and attacking [140]. Another type of ape is represented by gorillas and, in the Artificial
Gorilla Troops Optimizer (GTO), their collective life is mathematically modeled to include
exploration–exploitation mechanisms [141].

Spotted hyenas have a behavior similar to that of wolves and whales, which uses col-
lective behavior to encircle the prey and attack. Their model is used in the Spotted Hyena
Optimizer (SHO) [142], which saves the best-so-far solution, simulates the encircling prey
through a circle-shaped neighborhood that can be extended to higher dimensions and con-
trols the exploration–exploitation balance through control parameters. The time complexiy
of SHO is O(problem_dimension × G × iteration × objective_number × population_size
× objective_function), where the time to define the groups of individuals is O(G).

In the Squirrel Search Algorithm (SSA) [109], the gliding behavior of flying squirrels
when exploring different areas of a forest in search for food is simulated by considering
some simplifications of the natural mechanisms: (i) a squirrel is assumed to be on one
tree; (ii) in the forest there are only three types of trees: normal, oak and hickory; (iii)
the region under consideration contains three oaks and one hickory tree. It is considered
that the squirrel with the best fitness is positioned on a hickory tree and the next three
individuals with the best fitness are on oak trees. The other individuals in the population
move towards the oak or the hickory, depending on their daily energy requirements. In
SSA, the seasonal changes are modeled through control parameters and influence the
behavior of the individuals in the population.

Social Behavior

The Lion’s Algorithm (LA) [143] is based on the social behavior of lions. It simulates
the process of pride forming through mating, removing weak cubs, territorial defense
and takeover. The population is formed of males and females and the cub population is
subjected to gender grouping (through the application of k-means clustering). LA is not
the only approach inspired by lions; the Lion Optimization Algorithm (LOA) [144] is also
an example. Distinctively from LA, LOA includes the hunting and migration mechanisms
and the mating process is based on differentiation rather than on crossover and mutation.
Another lion-inspired approach is the Lion Pride Optimization (LPOA) [145].

Similar to honey bees or ant colonies, blind naked mole rats (a species specific to
Africa) have a complex social behavior: (i) they live in large colonies; (ii) a queen and a
reduced number of males are responsible for offspring generation; (iii) there are individuals
specialized in food search and domestic activities, i.e., taking care of the nest and of the
young and in protection against invaders [146]. These mechanisms, in a simplified form,
are simulated in the Blind Naked Mole Rats (BNMR) algorithm [146].

Elephants are the largest walking mammals and their successful survival is influenced,
among other things, by their social and behavioral structures. The adult males solitarily
roam into the wild, they do not commit to any family and can potentially mate over
thirty times a year, while the female elephants form matriarchal societies that allow better
protection and safe rearing of young calves. The Elephant Search Algorithm (ESA) [147]
and Elephant Herding Optimization [148,149] simulate these mechanisms and perform
the search.

Table 2 summarizes the algorithms briefly presented in this section and shows a series
of examples for improvements and applications. The same structure and idea as in Table 1
are applied.

175

Mathematics 2021, 9, 2335

T
a

b
le

2
.

Im
pr

ov
em

en
ts

an
d

ap
pl

ic
at

io
ns

fo
r

so
m

e
m

am
m

al
-i

ns
pi

re
d

m
et

ah
eu

ri
st

ic
s

(a
lp

ha
be

ti
ca

lly
so

rt
ed

).

A
lg

o
ri

th
m

S
o

u
rc

e
C

o
d

e
M

o
d

ifi
ca

ti
o

n
s

a
n

d
Im

p
ro

v
e

m
e

n
ts

A
p

p
li

ca
ti

o
n

s

Ba
tA

lg
or

it
hm

(B
A

)[
18

]
(P

yt
ho

n)
ht

tp
s:

//
gi

th
ub

.c
om

/b
um

a/
Ba

tA
lg

or
it

hm
,

ac
ce

ss
ed

on
20

D
ec

em
be

r
20

19

−
di

sc
re

te
ve

rs
io

n
[1

50
]

−
in

tr
od

uc
in

g
di

re
ct

io
na

le
ch

ol
oc

at
io

n
[1

51
]

−
m

ul
ti

-p
op

ul
at

io
n,

ch
ao

ti
c

se
qu

en
ce

s
[1

29
]

−
in

cl
us

io
n

of
D

op
pl

er
ef

fe
ct

[1
52

]
−

hy
br

id
iz

at
io

n
w

it
h

In
va

si
ve

W
ee

d
O

pt
im

iz
at

io
n

[1
53

],
D

iff
er

en
ti

al
Ev

ol
ut

io
n

[1
54

],
−

bi
na

ry
ve

rs
io

n
[1

55
]

−
dr

ug
s

di
st

ri
bu

ti
on

pr
ob

le
m

[1
50

]
−

fo
re

ca
st

in
g

m
ot

io
n

of
flo

at
in

g
pl

at
fo

rm
s

(i
n

co
m

bi
na

ti
on

w
it

h
Su

pp
or

tV
ec

to
r

M
ac

hi
ne

s
-S

V
M

-)
[1

56
]

−
flo

od
su

sc
ep

ti
bi

lit
y

as
se

ss
m

en
t(

in
co

m
bi

na
ti

on
w

it
h

ad
ap

ti
ve

ne
tw

or
k-

ba
se

d
fu

zz
y

in
fe

re
nc

e
sy

st
em

)[
15

7]
−

jo
b

sh
op

sc
he

du
lin

g
[1

58
]

−
tr

av
el

lin
g

sa
le

sm
an

pr
ob

le
m

[1
59

]
−

ba
tt

er
y

en
er

gy
st

or
ag

e
[1

60
]

−
co

ns
tr

ai
nt

[1
61

]a
nd

st
ru

ct
ur

al
op

ti
m

iz
at

io
n

[1
62

]

Bl
in

d
N

ak
ed

M
ol

e
R

at
s

(B
N

M
R

)[
14

6]
−

da
ta

cl
us

te
ri

ng
[1

63
]

C
hi

m
p

op
ti

m
iz

at
io

n
al

go
ri

th
m

(C
hO

A
),

[1
40

]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/7
67

63
,

ac
ce

ss
ed

on
20

A
ug

us
t2

02
1

−
us

e
of

si
ne

-c
os

in
e

fu
nc

ti
on

s
to

up
da

te
th

e
se

ar
ch

pr
oc

es
s

of
C

hO
A

[1
64

]

−
co

m
bi

na
ti

on
w

it
h

A
N

N
s

fo
r

un
de

rw
at

er
ac

ou
st

ic
al

cl
as

si
fic

at
io

n
[1

65
]

−
hi

gh
le

ve
ls

yn
th

es
is

of
da

ta
pa

th
s

in
di

gi
ta

l
fil

te
rs

[1
64

]

D
ir

ec
te

d
A

rt
ifi

ci
al

Ba
tA

lg
or

it
hm

(D
A

BA
)

[1
30

]
−

tr
av

el
lin

g
sa

le
sm

an
pr

ob
le

m
[1

30
]

D
ol

ph
in

Ec
ho

lo
ca

ti
on

(D
EO

)[
13

2]
−

ex
pl

or
at

io
n

im
pr

ov
em

en
t[

16
6]

−
pl

as
ti

c
an

al
ys

is
of

m
om

en
tf

ra
m

es
[1

67
]

−
de

si
gn

of
st

ee
lf

ra
m

e
st

ru
ct

ur
e

[1
68

]
−

re
ac

ti
ve

po
w

er
di

sp
at

ch
[1

69
]

D
yn

am
ic

V
ir

tu
al

Ba
ts

A
lg

or
it

hm
(D

V
BA

)
[1

31
]

−
pa

ra
m

et
er

se
tt

in
g

[1
70

]

El
ep

ha
nt

H
er

di
ng

O
pt

im
iz

at
io

n
(E

H
O

)
[1

48
,1

49
]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

:/
/w

w
w

.m
at

hw
or

ks
.c

om
/

m
at

la
bc

en
tr

al
/fi

le
ex

ch
an

ge
/5

34
86

,
ac

ce
ss

ed
on

17
Ja

nu
ar

y
20

20

−
al

ph
a

tu
ni

ng
,c

ul
tu

ra
l-

ba
se

d
al

go
ri

th
m

,
bi

as
ed

in
it

ia
liz

at
io

n
[1

71
]

−
hy

br
id

iz
at

io
n

w
it

h
C

ul
tu

ra
lA

lg
or

it
hm

[1
72

]
−

m
ul

ti
-o

bj
ec

ti
ve

an
d

di
sc

re
te

[1
73

]
−

in
tr

od
uc

ti
on

of
ch

ao
ti

c
m

ap
s

[1
74

]

−
st

ru
ct

ur
al

de
si

gn
[1

71
]

−
ba

tc
h

fe
rm

en
te

d
fo

r
pe

ni
ci

lli
n

pr
od

uc
tio

n
[1

71
]

−
ne

tw
or

k
de

te
ct

io
n

in
tr

us
io

n
(i

n
co

m
bi

na
ti

on
w

it
h

SV
M

)[
17

5]
−

im
ag

e
pr

oc
es

si
ng

[1
76

]
−

SV
M

pa
ra

m
et

er
tu

ni
ng

[1
77

]

El
ep

ha
nt

Se
ar

ch
A

lg
or

it
hm

(E
SA

)[
14

7]
−

ch
ro

m
os

om
e

re
pr

es
en

ta
ti

on
,e

le
ph

an
t

de
ep

se
ar

ch
,a

nd
ba

by
el

ep
ha

nt
bi

rt
h

[1
78

]

−
da

ta
cl

us
te

ri
ng

[1
79

,1
80

]
−

sn
ac

k
fo

od
di

st
ri

bu
ti

on
[1

78
]

−
tr

av
el

lin
g

sa
le

sm
an

pr
ob

le
m

[1
81

]

G
re

y
W

ol
fO

pt
im

iz
er

(G
W

O
)[

13
6]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

:
//

w
w

w
.a

lim
ir

ja
lil

i.c
om

/P
ro

je
ct

s.
ht

m
l,

ac
ce

ss
ed

on
6

Ju
ne

20
21

−
tw

o
ph

as
e

m
ut

at
io

n
[1

82
]

−
in

tr
od

uc
ti

on
of

ra
nd

om
w

al
k

[1
83

]
−

in
tr

od
uc

ti
on

of
ce

llu
la

r
to

po
lo

gi
ca

l
st

ru
ct

ur
e

[1
84

]
−

m
od

ifi
ca

ti
on

of
pa

ra
m

et
er

be
ha

vi
or

[1
85

]
−

bi
na

ry
[1

86
]

−
m

ul
ti

-o
bj

ec
ti

ve
[1

87
]

−
flu

id
dy

na
m

ic
pr

ob
le

m
s

[1
88

]
−

po
w

er
sy

st
em

s
[1

85
,1

89
]

−
co

m
bi

na
ti

on
w

it
h

A
N

N
s

[1
90

]
−

st
ru

ct
ur

al
en

gi
ne

er
in

g
[1

37
]

−
m

ax
im

um
po

w
er

tr
ac

ki
ng

[1
91

]

176

Mathematics 2021, 9, 2335

T
a

b
le

2
.

C
on

t.

A
lg

o
ri

th
m

S
o

u
rc

e
C

o
d

e
M

o
d

ifi
ca

ti
o

n
s

a
n

d
Im

p
ro

v
e

m
e

n
ts

A
p

p
li

ca
ti

o
n

s

Li
on

’s
A

lg
or

it
hm

(L
A

)[
14

3]

−
fe

rt
ili

ty
ev

al
ua

ti
on

,a
m

od
ifi

ed
cr

os
so

ve
r

op
er

at
or

an
d

ge
nd

er
cl

us
te

ri
ng

[1
92

]
−

hy
br

id
iz

at
io

n
w

it
h

a
he

ur
is

ti
c

sp
ec

ifi
c

to
jo

b
sh

op
sc

he
du

lin
g

[1
93

]

−
sy

st
em

id
en

ti
fic

at
io

n
[1

92
]

−
re

sc
he

du
lin

g
ba

se
d

co
ng

es
ti

on
m

an
ag

em
en

t
[1

94
]

−
jo

b
sh

op
sc

he
du

lin
g

[1
93

]

Li
on

O
pt

im
iz

at
io

n
A

lg
or

it
hm

(L
O

A
)[

14
4]

−
cl

us
te

ri
ng

m
ix

ed
da

ta
[1

95
]

Li
on

Pr
id

e
O

pt
im

iz
at

io
n

A
lg

or
it

hm
(L

PO
A

)
[1

45
]

−
do

ub
le

la
ye

r
ba

rr
el

va
ul

ts
tr

uc
tu

re
s

[1
96

]
−

st
ru

ct
ur

al
de

si
gn

[1
45

]

Sp
er

m
W

ha
le

A
lg

or
it

hm
(S

W
A

)[
13

3]
−

na
tu

ra
lg

as
pr

od
uc

ti
on

op
ti

m
iz

at
io

n
[1

33
]

−
A

N
N

pa
ra

m
et

er
id

en
ti

fic
at

io
n

[1
97

]

Sp
id

er
M

on
ke

y
O

pt
im

iz
at

io
n

(S
M

O
)[

13
9]

(M
A

TL
A

B,
C

++
,P

yt
ho

n–
au

th
or

so
ur

ce
s)

ht
tp

:/
/s

m
o.

sc
rs

.in
,a

cc
es

se
d

on
10

Ja
nu

ar
y

20
21

−
in

cl
us

io
n

of
ch

ao
s

[1
98

],
le

vy
fli

gh
t[

19
9]

,
qu

ad
ra

ti
c

ap
pr

ox
im

at
io

n
[2

00
],

ag
e

pr
in

ci
pl

e
fo

r
po

pu
la

ti
on

[2
01

]
−

hy
br

id
iz

at
io

n
w

it
h

Li
m

ac
on

cu
rv

e
[2

02
],

N
el

de
r-

M
ea

d
[2

03
]

−
bi

na
ry

[2
04

]

−
lo

ad
fr

eq
ue

nc
y

co
nt

ro
l[

20
5]

−
ir

ri
ga

ti
on

[2
06

]
−

di
ab

et
es

cl
as

si
fic

at
io

n
[2

07
]

−
ca

pa
ci

to
r

op
ti

m
al

pl
ac

em
en

t[
20

2]
−

an
te

nn
a

ar
ra

y
[2

04
]

Sp
ot

te
d

H
ye

na
O

pt
im

iz
er

(S
H

O
)[

14
2]

−
m

ul
ti

-o
bj

ec
ti

ve
[2

08
]

−
st

ru
ct

ur
al

de
si

gn
[2

09
]

−
ne

ur
al

ne
tw

or
k

tr
ai

ni
ng

[2
10

]
−

ai
rf

oi
ld

es
ig

n
[2

11
]

Sq
ui

rr
el

Se
ar

ch
A

lg
or

it
hm

(S
SA

)[
10

9]
−

he
at

flo
w

[1
09

]

W
ha

le
O

pt
im

iz
at

io
n

A
lg

or
it

hm
(W

O
A

)[
13

4]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

:
//

w
w

w
.a

lim
ir

ja
lil

i.c
om

/P
ro

je
ct

s.
ht

m
l,

ac
ce

ss
ed

on
6

Ju
ne

20
21

−
hy

br
id

iz
at

io
n

w
it

h
N

aw
az

–E
ns

co
re

–H
am

[2
12

],
Si

m
ul

at
ed

A
nn

ea
lin

g
[2

13
],

D
iff

er
en

ti
al

Ev
ol

ut
io

n
[2

14
]

−
m

ec
ha

ni
sm

of
ex

pl
or

at
io

n
ph

as
e

[2
15

]
−

in
tr

od
uc

ti
on

of
ch

ao
ti

c
m

ap
s

[2
16

]

−
po

w
er

sy
st

em
[2

17
]

−
op

ti
m

al
co

nt
ro

l[
21

8]
−

st
ru

ct
ur

al
en

gi
ne

er
in

g
[2

15
]

−
dr

ug
to

xi
ci

ty
[2

19
]

−
pa

ra
m

et
er

op
ti

m
iz

at
io

n
fo

r
El

m
an

N
et

w
or

ks
ap

pl
ie

d
to

po
ly

m
er

iz
at

io
n

pr
oc

es
s

[2
16

]
−

ro
bo

tp
at

h
pl

an
ni

ng
[2

20
]

−
ha

nd
w

ri
tt

en
bi

na
ri

za
ti

on
[2

21
]

177

Mathematics 2021, 9, 2335

3.1.3. Other Vertebrates

This category includes other sources of inspiration from the vertebrate group that do
not belong to the bird and mammal classes.

The SailFish Optimizer (SFO) [222] is inspired by the group hunting of sailfish (Is-
tiophorus platypterus), one of the fastest fish in the ocean. This mechanism of alternating
attacks on schools of sardines is modeled through the use of energy-based approaches,
where, at the beginning of the hunt, both the predator and the prey are energetic and not
injured; however, as the hunt continues, the power of the sailfish will decrease and the
sardines will become tired and have reduced awareness.

The food catching behavior of Agama lizards is modelled in the Artificial Lizard
Search Optimization (ALSO) [223]. The algorithm focuses on new discoveries regarding
the mechanisms for movement control through the tail during prey hunting.

The manner in which chameleons catch prey using their long and sticky tongue rep-
resents the basis for the Chameleon Swarm Algorithm [224]. The notation given by the
authors of this algorithm is CSA, however, since the same notation is used to represent the
Crow Search Algorithm, in this work, the Chameleon Swarm Algorithm will be indicated
by the ChSA notation. The ChSA follows three main strategies for catching prey: tracking
(modelled as a position update step), eye pursuing (modeled as position update in accor-
dance with the position of the prey) and attacking (based on tongue velocity). Distinctively
from the majority of metaheuristics, which tend to have less than three parameters, ChSA
has five parameters that help in controlling the exploration–exploitation balance.

3.1.4. General

Unlike the other algorithms mentioned in this work that have a source of inspiration
represented by a single animal, in the case of the general class, the metaheuristics are based
on a general aspect that can be specific to multiple animals or types of animals. Examples
proposed prior to 2008 include algorithms such as Genetic Algorithms (where the genetic
principles of mutation and crossover are applicable to all species) and Extremal Opti-
mization [225], based on the Bak–Sneppen mechanism, a model of co-evolution between
interacting species which reproduces nontrivial features of paleontological data.

Inspired from the encircling mechanisms used by group hunters such as lions, wolves
and dolphins, the Hunting Search (HuS) [226] simulates the cooperation of members to
catch food. As a perfect correlation between nature and an optimization process cannot
be achieved, a set of differences from the real world are taken into account: (i) in the
majority of cases, the location of the optimum of a problem is not known, while, in the
real world, the hunters can see the prey or sense its presence; (ii) the optimum is set,
however, in the real world, the prey dynamically changes its position. Unlike the DEO
and GWO, which emulate the specific hunting approaches used by dolphins and wolves,
HuS is focused on the cooperation aspect and the repositioning during the hunt. Other
approaches which simulate the food searching mechanisms include: the Backtracking
Search Algorithm Optimization (BSA) [227], Optimal Foraging Algorithm (OFA) [25], Fish
Electrolocation Optimization (FEO) [228] and Marine Predators Algorithm (MPA) [229].
BSA is based on the return of a living creature to previously found fruitful areas. At its
core, it is an evolutionary approach that, although it has a very similar structure to the
other EAs, differs as follows: (i) mutation is applied to a single individual; (ii) there is a
more complex crossover strategy compared with DE; (iii) it is a dual population algorithm;
(iv) it has boundary control mechanisms. Distinctively from the BSA, the OFA algorithm
is based on the Optimal Foraging Theory developed to explain the dietary patterns of
animals. In the OFA, the animal foraging is an individual and its position represents
a solution. Its time complexity is O(group_size × dimensionality × iterations) and its
space complexity is O(group_size × dimensionality × (iterations + 1)). The FEO simulates
the active and passive electrolocation mechanisms used by sharks and “elephant nose
fishes” to find prey. A series of electric waves are generated and reflected back to the
fish after hitting the surrounding objects, which creates an electric image that is then

178

Mathematics 2021, 9, 2335

analyzed. In the case of the MPA, the different strategies used for finding food and the
interaction between predator and prey are modeled in different scenarios through Brownian
and Levy strategies. The MPA algorithm complexity is O(iterations × (agent_number ×
dimensionality + Cost_function_evaluation × agent_number)).

Another aspect specific to all species in their quest to survive is represented by the
competition for food, resources or mates. Two metaheuristic optimizers based on com-
petition were identified: Competition over Resources (COR) [230] and the Competitive
Optimization Algorithm (COOA) [231]. The COR algorithm mimics the competition for
food of wild animals. The groups with the best approach to storing food have improved
scores while the worst performance groups are starving and, after a few generations, die
and are removed from the population. In the COOA approach, the competition is simulated
by the Imperialist Competitive Algorithm [232] and the groups are represented by the
populations of various metaheuristics.

Migration behavior is encountered in all major animal groups. Among the first
bio-inspired metaheuristics that contain elements specific to migration is the Biogeography-
based Optimization (BBO) [233]. However, the BBO imitates a much larger phenomenon—
island biogeography—that includes both migration and mutation [234]. Another algorithm
that has the migration principle at its core is the Migrating Birds Optimization [50]. As it
simulates the features of the “V” flight of birds, the MBO was included in the bird inspired
metaheuristic section. The Animals Migration Optimization (AMO) [235] simulates the
animal migration model proposed by ecologists and uses two idealized assumptions: (i)
the leader animal will survive to the next generation; (ii) the number of animals in the
population is fixed. The algorithm has two phases: the migration process (where the
individuals respect three rules: move in the same direction as the neighbors, remain close
to the neighbors and avoid collision with neighbors) and population update (where some
individuals leave the group and others join it).

Table 3 summarizes the algorithms briefly presented in this section and shows a
series of examples for improvements and applications. The same structure and idea as in
Tables 1 and 2 are applied.

179

Mathematics 2021, 9, 2335

T
a

b
le

3
.

Im
pr

ov
em

en
ts

an
d

ap
pl

ic
at

io
ns

fo
r

m
et

ah
eu

ri
st

ic
s

in
sp

ir
ed

fr
om

ge
ne

ra
lb

eh
av

io
r

(a
lp

ha
be

ti
ca

lly
so

rt
ed

).

A
lg

o
ri

th
m

S
o

u
rc

e
C

o
d

e
M

o
d

ifi
ca

ti
o

n
s

a
n

d
Im

p
ro

v
e

m
e

n
ts

A
p

p
li

ca
ti

o
n

s

A
ni

m
al

s
M

ig
ra

ti
on

O
pt

im
iz

at
io

n
(A

M
O

)
[2

35
]

−
in

cl
us

io
n

of
an

in
te

ra
ct

iv
e

le
ar

ni
ng

be
ha

vi
or

[2
36

];
−

us
e

of
O

pp
os

it
io

n
Ba

se
d

Le
ar

ni
ng

[2
37

]
−

hy
br

id
iz

at
io

n
w

it
h

A
ss

oc
ia

ti
on

R
ul

e
M

in
in

g
[2

38
]

−
po

pu
la

ti
on

up
da

ti
ng

st
ep

[2
39

]

−
br

id
ge

re
in

fo
rc

em
en

t[
24

0]
−

m
ul

ti
le

ve
li

m
ag

e
th

re
sh

ol
di

ng
[2

41
]

−
da

ta
m

in
in

g
[2

38
]

−
da

ta
cl

us
te

ri
ng

an
al

ys
is

[2
39

]

Ba
ck

tr
ac

ki
ng

Se
ar

ch
A

lg
or

it
hm

O
pt

im
iz

at
io

n
(B

SA
)[

22
7]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/m
at

la
bc

en
tr

al
/

fil
ee

xc
ha

ng
e/

44
84

2,
ac

ce
ss

ed
on

10
D

ec
em

be
r

20
19

−
m

ul
ti

pl
e

m
ut

at
io

n
st

ra
te

gi
es

[2
42

]
−

di
sc

re
te

va
ri

an
t[

24
3]

−
us

e
of

O
pp

os
it

io
n

Ba
se

d
Le

ar
ni

ng
[2

44
]

−
hy

br
id

m
ut

at
io

n
an

d
cr

os
so

ve
r

st
ra

te
gy

[2
43

]
−

hy
br

id
iz

at
io

n
w

it
h

TL
BO

[2
45

]
−

co
ns

tr
ai

nt
ha

nd
lin

g
m

ec
ha

ni
sm

s
[2

46
]

−
ca

st
in

g
he

at
tr

ea
tm

en
tc

ha
rg

e
pl

an
pr

ob
le

m
[2

43
]

−
el

ec
tr

ic
it

y
pr

ic
e

fo
re

ca
st

in
g

(i
n

co
m

bi
na

tio
n

w
ith

ad
ap

tiv
e

ne
tw

or
k-

ba
se

d
fu

zz
y

in
fe

re
nc

e
sy

st
em

)[
24

7]
−

pa
ra

m
et

er
es

ti
m

at
io

n
fo

r
fr

eq
ue

nc
y-

m
od

ul
at

ed
so

un
d

w
av

es
[2

27
]

−
en

gi
ne

er
in

g
de

si
gn

pr
ob

le
m

s
[2

27
,2

46
]

Bi
og

eo
gr

ap
hy

ba
se

d
O

pt
im

iz
at

io
n

(B
BO

)
[2

33
]

−
in

cl
us

io
n

of
re

-s
am

pl
in

g
[2

48
]

−
in

cl
us

io
n

of
m

ut
at

io
n

st
ra

te
gy

[2
34

]
−

in
cl

us
io

n
of

ch
ao

s
m

ap
s

[2
49

]

−
flo

od
su

sc
ep

ti
bi

lit
y

as
se

ss
m

en
t(

in
co

m
bi

na
tio

n
w

ith
ad

ap
tiv

e
ne

tw
or

k-
ba

se
d

fu
zz

y
in

fe
re

nc
e

sy
st

em
)[

15
7]

−
so

il
co

ns
ol

id
at

io
n

(i
n

co
m

bi
na

ti
on

w
it

h
ar

ti
fic

ia
ln

eu
ra

ln
et

w
or

ks
)[

25
0]

−
po

w
er

fu
el

ce
lls

[2
34

]

C
om

pe
ti

ti
on

ov
er

R
es

ou
rc

es
(C

O
R

)[
23

0]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

:/
/f

re
es

ou
rc

ec
od

e.
ne

t/
m

at
la

bp
ro

je
ct

s/
71

99
1/

co
m

pe
ti

ti
on

-o
ve

r-
re

so
ur

ce
s-

-a
-n

ew
-

op
ti

m
iz

at
io

n-
al

go
ri

th
m

-b
as

ed
-o

n-
an

im
al

s-
be

ha
vi

or
al

-e
co

lo
gy

-i
n-

m
at

la
b,

ac
ce

ss
ed

on
25

Ju
ne

20
20

−
bu

ild
in

g
lig

ht
in

g
sy

st
em

[2
51

]
−

m
ag

ne
ti

c
ac

tu
at

or
s

[2
52

]

H
un

ti
ng

Se
ar

ch
(H

uS
)[

22
6]

−
hy

br
id

iz
at

io
n

w
it

h
H

ar
m

on
y

Se
ar

ch
[2

53
]

−
ar

ti
fic

ia
ln

eu
ra

ln
et

w
or

k
tr

ai
ni

ng
[2

53
]

−
st

ee
lc

el
lu

la
r

be
am

s
[2

54
]

M
ar

in
e

Pr
ed

at
or

s
A

lg
or

it
hm

[2
29

]
(M

A
TL

A
B–

au
th

or
so

ur
ce

)
au

.m
at

hw
or

ks
.c

om
/m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/7
45

78
,

ac
ce

ss
ed

on
08

A
ug

us
t2

02
1

−
hy

br
id

iz
at

io
n

w
it

h
M

ot
h

Fl
am

e
O

pt
im

iz
at

io
n

[2
55

],
Te

ac
hi

ng
-l

ea
rn

in
g

ba
se

d
op

ti
m

iz
at

io
n

[2
56

]
−

bi
na

ry
ve

rs
io

n
w

it
h

V
-s

ha
pe

d
an

d
S-

sh
ap

ed
tr

an
sf

er
fu

nc
ti

on
s

[2
57

]

−
pa

ra
m

et
er

ex
tr

ac
ti

on
of

ph
ot

ov
ol

ta
ic

m
od

el
s

[2
58

]
−

m
ul

ti
-l

ev
el

th
re

sh
ol

di
ng

fo
r

im
ag

e
se

gm
en

ta
ti

on
[2

55
]

O
pt

im
al

Fo
ra

gi
ng

A
lg

or
it

hm
(O

FA
)[

25
]

(M
A

TL
A

B-
au

th
or

so
ur

ce
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/m
at

la
bc

en
tr

al
/

fil
ee

xc
ha

ng
e/

62
59

3,
ac

ce
ss

ed
on

24
A

pr
il

20
20

−
ch

ao
s

[2
59

]
−

co
ns

tr
ai

nt
ha

nd
lin

g
m

ec
ha

ni
sm

s
[2

59
]

−
dr

ill
in

g
pa

th
op

ti
m

iz
at

io
n

[2
60

]
−

SV
M

Pa
ra

m
et

er
op

ti
m

iz
at

io
n

[2
61

]
−

w
hi

te
bl

oo
d

ce
ll

se
gm

en
ta

ti
on

[2
59

]

180

Mathematics 2021, 9, 2335

3.2. Invertebrates

From the total of algorithms inspired from animals, the ones based on invertebrates
represent 38.4%, with the main sub-group indicated by insects (Section 3.2.1). As the
number of algorithms inspired from other invertebrate sub-groups were small, the ones
not belonging to insects were included in a separate section (Section 3.2.2).

3.2.1. Insects

Although the majority of insects are solitary, several types of insects are organized in
colonies or swarms [262]. As insect swarms have several desirable attributes, a high per-
centage of insect-inspired metaheuristic optimizers belong to the swarm intelligence class.

Swarm intelligence has two main key components: self-organization (global response
through interactions among low level components that do not have a central authority) and
division of labor (the tasks are performed by specialized individuals) [139,263]. It follows
three basic principles: (i) separation (static collision avoidance); (ii) alignment (velocity
matching); (iii) cohesion (the tendency of individuals to go towards the center of the mass
of the swarm) [264].

While, in the classic swarm approaches, the individuals considered are unisex and
perform virtually the same behavior, thus wasting the possibility of adding new oper-
ators [265], in the newer bio-inspired metaheuristics researchers began to incorporate
different types of individuals in the population(s), and the results obtained show an
improvement of several characteristics, such as search ability and population diversity.
However, the use of different operators leads to an increase in complexity and, until now,
theoretical studies that can explain the influence of these operators and the context in which
they are recommended have been very scarce.

Hymenoptera

This order includes some of the best-known social insects: wasps, bees and ants. The
main characteristics of these insects are: (i) the presence of a pair of membranous wings;
(ii) antennae longer than the head; (iii) complete metamorphosis.

• Bees

The social bees show all the characteristics of eusociality: generation overlapping,
separation into fertile and infertile groups, labor division and brood care. In addition, the
beehive can be considered as a self-organizing system with multiple agents [266].

In a comprehensive review regarding the algorithms inspired by honey bees, the
authors identified five main characteristics that were modeled: (i) mating; (ii) foraging
and communication; (iii) swarming; (iv) spatial memory and navigation; (v) division of
labor [267]. However, [268] considers that, alongside mating and foraging, the third class
is represented by nest-site selection process, and thus proposed the Bee Nest-Site Selection
Scheme (BNSS)—a framework for designing optimization algorithms.

In addition to the algorithms presented in [267], other approaches that simulate bee
behavior are: Bumblebees (B) [269], Bee Colony Inspired Algorithm (BCiA) [266] and
Bumble Bee Mating Optimization (BBMO) [270]. The B algorithm is based on a simplified
model of the evolution of bumblebees and can be regarded as a loose implementation of
the concepts of the evolutionary model proposed by [271]. On the other hand, the BCiA
focuses on the foraging behavior and the BBMO simulates the mating process.

181

Mathematics 2021, 9, 2335

• Ants

Among the first algorithms that simulate ant behavior is the Ant System [272]. How-
ever, the best-known approach is the Ant Colony Optimization (ACO), used to find the
path of minimum length in a graph. To the authors’ knowledge, the only other approach
simulating ant behavior, which is not based on the ACO, is Termite-hill [273]. It is a swarm-
based algorithm designed for wireless sensor networks, i.e., an on-demand and multipath
routing algorithm.

Diptera

• Flies

Due to their short life-span and easiness of breeding and of providing an adequate
living environment, the fruit fly is widely studied in laboratory conditions. Consequently,
their behavior is known in detail and specific mechanisms for finding food are sources of
inspiration for new algorithms. To the authors’ knowledge, there are two metaheuristics
that simulate the fruit fly: the Fruit Fly Optimization (FOA) and the Drosophila Food Search
Optimization (DFO) [274]. Similar to the DFO, the FOA is also based on the Drosophila fly
and the literature shows that there are at least two different implementations, proposed
by [275] and [276].

• Mosquitoes

The host seeking behavior of female mosquitos is mimicked by the Mosquito host
seeking algorithm (MHSA) [277]. The general idea is simple and it is based on the following
idealized rules: (i) the mosquito looks for carbon dioxide or some other scent; (ii) if found,
the mosquito moves toward the location with the highest concentration; (iii) it descends
when the heat radiating from the host is felt. The algorithm was developed specifically
to solve the travelling salesman problem and it has several advantages that include: (i)
the ability to perform large-scale distributed parallel optimization; (ii) it can describe
complex dynamics; (iii) it can perform multi-objective optimization; (iv) it is claimed to be
independent of the initial conditions and problem size [278]

Lepidoptera

The insects that belong to this class have wings covered with overlapping small scales.
The best-known examples include butterflies and moths.

• Butterflies

The Monarch Butterfly Optimization (MBO) [279] simulates the migration behavior of
monarch butterflies through the use of a set of idealized rules: (i) the entire population of
butterflies is located in two areas, i.e., Land1 and Land2; (ii) each offspring is generated by
the migration operator applied to individuals from Land1 or Land2; (iii) once an offspring
is generated, the parent butterfly dies if its fitness is worse than that of the offspring;
(iv) the butterflies with the best fitness survive to the next generation. Similar to the
MBO, the Monarch Migration Algorithm (MMA) [280] models the migration behavior
of monarch butterflies. The main differences between the MBO and the MMA consist
in the mechanisms used for movement, for new individual creation and for population
size control.

If the MBO and the MMA focus on migration aspects, the Butterfly Optimizer (BO)
simulates the mate-location, behavior–perching and patrolling of male butterflies [281]. The
initial BO version is developed for unconstrained optimization and is a dual population
algorithm that includes male butterflies and auxiliary butterflies. The Artificial Butterfly
Optimization (ABO) [282] is inspired from the same mating strategy as BO. However,
the ABO is a single-population optimizer that contains two types of butterflies: sunspot
and canopy, and the rules that it follows are different. In the BO, the following rules
are considered: (i) the male butterflies are attracted to the highest UV/radiation object;
(ii) the best perching position and the flying direction is memorized; (iii) the flying velocity

182

Mathematics 2021, 9, 2335

is constant; (iii) the flying direction is changed if necessary [281]. On the other hand, the
ABO considers the following generalized rules: (i) all male butterflies attempt to fly towards
a better location (sunspot); (ii) in order to occupy a better position, the sunspot butterflies
try to fly to the neighbor’s sunspot; (iii) the canopy butterflies continually fly towards the
sunspot butterflies to contend for the sunspot [282]. In ABO, three flight strategies are
considered and their combination leads to two other variants of the algorithm.

The Butterfly Optimization Algorithm (BOA) [283] considers the foraging behavior
and focuses on the smell of butterflies as the strategy used for determining the location
of food or of a mating partner. In order to model this behavior, a set of idealized rules
are used: (i) all butterflies emit fragrances that attract each other; (ii) the movement of the
butterfly is random or towards the most fragrant butterfly; (iii) the stimulus intensity is
influenced by the landscape of the objective function.

• Moths

The transverse orientation navigation mechanism of moths represents the source
of inspiration for the Moth Flame Optimization (MFO) [284]. The population of moths
updates their position in accordance with a flame. The group of flames represents the
best solutions and serves as guidance for the moths [285]. The complexity of the MFO
is O(problem_dimension × iteration × objective_number × population_size × objec-
tive_function) [54]. While the MFO contains a population of moths and flames, in the
case of the Moth Swarm Algorithm (MSA) [286], which is also inspired by the navigation
behavior of moths, the population is formed of three groups of moths: pathfinders (with
the ability to discover new areas of the search space), prospectors (that tend to wander
in spiral) and onlookers (that drift directly to the solutions obtained by the prospectors).
Distinctively from MFO and MSA, the Moth Search (MS) algorithm [287] considers the
phototaxis and the Levy flight of the moths as a source of inspiration. In this case, the
population is formed of two subpopulations. One follows the Levy movement and the
other simulates the straight flight.

Ortoptera

This order includes, among others, insects such as grasshoppers, crickets and locusts.
They are insects that move with great agility and have many shapes and characteristics.

The first metaheuristic optimizer that used the locust swarm metaphor is the Locust
Swarm [288], a multi-optima search technique developed for non-globally convex search
spaces. However, in order to identify the starting points for the search, it uses the PSO
as part of its search [288], and one may argue that it is not a new metaheuristic, but a
hybridization of the PSO. On the other hand, the Locust Swarm proposed in [289] emulates
the interaction of a locust cooperative swarm. Since the two algorithms have the same
name, in this work they are referred to as LS1 for the version proposed in [288] and LS2 for
the [289] version. LS2 considers both solitary and social behavior, and consists of three parts:
initialization, solitary operation and social processes [289]. The solitary phase performs the
exploration of the search space, while the social phase is dedicated to exploitation.

The grasshoppers’ social interactions represent the basis for the Grasshopper Opti-
mization Algorithm (GOA) [290]. Both larvae, which corresponds to the feeding stage, and
the adult form, which corresponds to the exploration stage, are considered. While in nature,
the individual evolves from larvae to adult (local, then global), and due to the nature of the
search space, the optimization algorithm first needs to find a promising region and, after
that, exploit it (global, then local).

183

Mathematics 2021, 9, 2335

Other Insects

• Hunting

The mechanisms used by antlions to hunt ants is simulated in the Ant Lion Optimizer
(ALO) [291]. Antlions have two phases: larvae, focused on feeding, and adults, focused on
mating. The ALO is based on the larvae form and, in order to perform the optimization, a
series of conditions are considered: (i) a random walk imitates the movement of an ant;
(ii) the random walks are affected by the traps of the antlions; (iii) the pits built by antlions
(and the probability of catching ants) are proportional with the antlion fitness; (iv) the
random walk range decreases adaptively; (v) the ant is caught when its fitness is worse than
that of an antlion; (vi) after catching a prey, the antlion repositions and builds another pit.

• Mixed behavior

Inspiration for metaheuristics comes not only from insects that are generally consid-
ered useful, e.g., bees, but also from insects that are considered pests, such as cockroaches.
Among the first approaches that included the social behavior of cockroaches is the Roach
Infestation Optimization (RIO) [292]. It is an adaptation of the PSO that implements
three elements: finding the darkness, finding friends and finding food. Other algorithms
simulating cockroach behavior are: the Cockroach Swarm Optimization (CSO) [293] and
the Cockroach-inspired Swarm Evolution (CSE) [294]. The paper containing the initial
CSO version was retracted from the IEEE database due to violations of publication princi-
ples, however, this did not stop other researchers from using and improving CSO; Google
Scholar indicates that, as of the end of February 2019, there are 32 articles citing the retracted
paper. Unlike the RIO, the CSE considers competition, space endurance and migration of
cockroaches, beside cooperative behavior [294].

The Dragonfly Algorithm (DA) [264] is inspired from the static (feeding) and dynamic
(migratory) swarming behavior of dragonflies. In the feeding stage, the dragonflies are
organized into small groups that cover a small area to hunt, through back-and-forth
movement with abrupt changes in the flying path. In the dynamic stage, a large group of
individuals form a swarm and migrate in one direction over long distances.

The Pity Beetle Algorithm (PBA) [295] is based on the aggregation behavior and search
mechanisms used for nesting and food finding of Pityogenesis chalcographus, a beetle
also known under the name of “six toothed spruce bark beetle”. The PBA follows three
stages: searching (where the chemicals emitted by the weakened trees are used to identify
a suitable host), aggregation (were multiple individuals feed on the host and attract more
individuals—both male and female) and anti-aggregation (that is specific to the situation
when the population size surpasses a specific threshold).

Table 4 summarizes the algorithms inspired from inspects and presents a series of
examples for improvements and applications. The same structure and idea as in the
previous tables are applied.

184

Mathematics 2021, 9, 2335

T
a

b
le

4
.

Im
pr

ov
em

en
ts

an
d

ap
pl

ic
at

io
ns

fo
r

in
se

ct
-i

ns
pi

re
d

m
et

ah
eu

ri
st

ic
s

(a
lp

ha
be

ti
ca

lly
so

rt
ed

).

A
lg

o
ri

th
m

S
o

u
rc

e
C

o
d

e
M

o
d

ifi
ca

ti
o

n
s

a
n

d
Im

p
ro

v
e

m
e

n
ts

A
p

p
li

ca
ti

o
n

s

A
nt

Li
on

O
pt

im
iz

er
(A

LO
)[

29
1]

(M
A

TL
A

B-
au

th
or

so
ur

ce
)

ht
tp

:/
/w

w
w

.a
lim

ir
ja

lil
i.c

om
/A

LO
.h

tm
l,

ac
ce

ss
ed

on
6

Ju
ne

20
21

−
m

ul
ti

-o
bj

ec
ti

ve
op

ti
m

iz
at

io
n

[2
96

]
−

bi
na

ry
[2

97
]

−
in

cl
us

io
n

of
ch

ao
s

[2
98

]

−
A

rt
ifi

ci
al

N
eu

ra
lN

et
w

or
k

tr
ai

ni
ng

[2
99

]
−

m
ul

ti
-o

bj
ec

ti
ve

en
gi

ne
er

in
g

de
si

gn
pr

ob
le

m
s

[2
96

]
−

au
to

m
at

ic
ge

ne
ra

ti
on

co
nt

ro
l[

30
0]

−
fe

at
ur

e
se

le
ct

io
n

[2
97

]

Be
e

C
ol

on
y

In
sp

ir
ed

A
lg

or
it

hm
(B

C
iA

)[
26

6]
−

ve
hi

cl
e

ro
ut

in
g

pr
ob

le
m

w
it

h
ti

m
e

w
in

do
w

s
[2

66
]

Bu
m

bl
e

Be
e

M
at

in
g

O
pt

im
iz

at
io

n
(B

BM
O

)[
27

0]
−

in
cl

us
io

n
of

co
m

bi
na

to
ri

al
ne

ig
hb

or
ho

od
to

po
lo

gy
[3

01
]

−
pa

ra
m

et
er

ad
ap

ta
ti

on
[3

02
]

−
m

ul
ti

ca
st

ro
ut

in
g,

tr
av

el
in

g
sa

le
sm

an
pr

ob
le

m
[3

02
]

−
fe

at
ur

e
se

le
ct

io
n

[3
03

]
−

ve
hi

cl
e

ro
ut

in
g

pr
ob

le
m

w
it

h
st

oc
ha

st
ic

de
m

an
ds

[3
01

]

Bu
tt

er
fly

O
pt

im
iz

er
(B

O
)[

28
1]

−
in

cl
us

io
n

of
co

ns
tr

ai
nt

s
[3

04
]

−
in

cl
us

io
n

of
co

va
ri

an
ce

m
at

ri
x

[3
05

]

Bu
tt

er
fly

O
pt

im
iz

at
io

n
A

lg
or

it
hm

(B
O

A
)[

28
3]

(M
A

TL
A

B-
au

th
or

so
ur

ce
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/6
82

09
-

bu
tt

er
fly

-o
pt

im
iz

at
io

n-
al

go
ri

th
m

-b
oa

/,
ac

ce
ss

ed
on

12
D

ec
em

be
r

20
19

−
in

cl
us

io
n

of
m

ut
ua

lis
m

pr
in

ci
pl

e
[3

06
],

cr
os

s-
en

tr
op

y
[3

07
],

le
ar

ni
ng

au
to

m
at

a
[3

08
]

−
bi

na
ry

ap
pr

oa
ch

[3
09

]
−

th
e

se
ar

ch
is

m
od

ifi
ed

to
us

e
a

no
rm

al
di

st
ri

bu
ti

on

−
m

ax
im

um
po

w
er

po
in

tt
ra

ck
in

g
in

ph
ot

ov
ol

ta
ic

sy
st

em
s

[3
10

]
−

fe
at

ur
e

se
le

ct
io

n
[3

09
]

Pi
ty

Be
et

le
A

lg
or

it
hm

(P
BA

)[
29

5]

−
ne

w
se

ar
ch

an
d

po
pu

la
ti

on
re

pr
od

uc
ti

on
m

ec
ha

ni
sm

,p
ar

am
et

er
ad

ap
ta

ti
on

[3
11

]
−

in
cl

us
io

n
of

th
e

op
po

si
ti

on
-b

as
ed

pr
in

ci
pl

e
[3

12
]

−
w

ir
el

es
s

m
ul

ti
m

ed
ia

se
ns

or
s

[3
11

]
−

lu
ng

ca
nc

er
cl

as
si

fic
at

io
n

[3
12

]

D
ra

go
nfl

y
A

lg
or

it
hm

(D
A

)[
26

4]
(M

A
TL

A
B-

au
th

or
so

ur
ce

)
ht

tp
:/

/w
w

w
.a

lim
ir

ja
lil

i.c
om

/D
A

.h
tm

l,
ac

ce
ss

ed
on

6
Ju

ne
20

21

−
bi

na
ry

[2
64

]
−

m
ul

ti
-o

bj
ec

ti
ve

[2
64

]
−

in
cl

us
io

n
of

m
em

or
y

m
ec

ha
ni

sm
s

sp
ec

ifi
c

to
PS

O
[3

13
],

ch
ao

s
th

eo
ry

[3
14

]

−
fe

at
ur

e
se

le
ct

io
n

[3
14

–3
16

]
−

pr
ot

on
ex

ch
an

ge
fu

el
ce

lls
[3

17
]

−
en

gi
ne

er
in

g
de

si
gn

[3
13

]
−

su
bm

ar
in

e
pr

op
el

le
r

op
ti

m
iz

at
io

n
[2

64
]

D
ro

so
ph

ila
Fo

od
Se

ar
ch

O
pt

im
iz

at
io

n
(D

FO
)[

27
4]

−
w

in
ne

r
ta

ke
s

al
lc

ir
cu

it
[3

18
]

Fi
re

fly
al

go
ri

th
m

(F
F)

[3
7]

(M
A

TL
A

B)
ht

tp
:/

/y
ar

pi
z.

co
m

/2
59

/y
pe

a1
12

-fi
re

fly
-

al
go

ri
th

m
,a

cc
es

se
d

on
12

D
ec

em
be

r
20

19

−
ch

ao
ti

c
m

ap
s

[3
19

]
−

hy
br

id
iz

at
io

n
w

it
h

Pa
tt

er
Se

ar
ch

[3
20

],
H

ar
m

on
y

Se
ar

ch
[3

21
],

G
ro

up
Se

ar
ch

O
pt

im
iz

er
[3

22
]

−
lo

ad
fr

eq
ue

nc
y

co
nt

ro
lle

r
de

si
gn

[3
23

]
−

op
ht

ha
lm

ol
og

y
[3

24
]

−
di

sc
re

te
op

ti
m

iz
at

io
n

[3
25

]

185

Mathematics 2021, 9, 2335

T
a

b
le

4
.

C
on

t.

A
lg

o
ri

th
m

S
o

u
rc

e
C

o
d

e
M

o
d

ifi
ca

ti
o

n
s

a
n

d
Im

p
ro

v
e

m
e

n
ts

A
p

p
li

ca
ti

o
n

s

Fr
ui

tF
ly

O
pt

im
iz

at
io

n
(F

O
A

)[
27

6]
(M

A
TL

A
B—

au
th

or
so

ur
ce

)
ht

tp
:/

/w
w

w
.o

it
ec

sh
op

.b
ye

th
os

t1
6.

co
m

/
FO

A
.h

tm
l?

i=
1,

ac
ce

ss
ed

on
15

Ju
ne

20
20

−
m

ul
ti

-s
w

ar
m

[3
26

,3
27

]
−

ad
ap

ti
ve

co
op

er
at

iv
e

le
ar

ni
ng

[3
28

]
−

in
tr

od
uc

tio
n

of
ra

nd
om

pe
rt

ur
ba

tio
n

[3
29

]
−

us
e

of
a

cl
ou

d-
ba

se
d

m
od

el
[3

30
]

−
sh

or
te

st
pa

th
in

m
ob

ile
ad

-h
oc

ne
tw

or
ks

[3
31

]
−

im
ag

e
pr

oc
es

si
ng

[3
28

]
−

jo
in

tr
ep

le
ni

sh
m

en
tp

ro
bl

em
s

[3
29

]
−

pa
ra

m
et

er
id

en
ti

fic
at

io
n

of
sy

nc
hr

on
ou

s
ge

ne
ra

to
r

[3
27

]

G
ra

ss
ho

pp
er

O
pt

im
iz

at
io

n
A

lg
or

it
hm

(G
O

A
)

[2
90

]

(M
A

TL
A

B-
au

th
or

so
ur

ce
)

ht
tp

:/
/w

w
w

.a
lim

ir
ja

lil
i.c

om
/G

O
A

.h
tm

l,
ac

ce
ss

ed
on

6
Ju

ne
20

21

−
bi

na
ry

[3
32

]
−

m
ul

ti
-o

bj
ec

ti
ve

[3
33

]
−

in
cl

us
io

n
of

ch
ao

s
[3

34
]

−
in

cl
us

io
n

of
le

vy
fli

gh
tm

ec
ha

ni
sm

[3
35

]

−
fe

at
ur

e
se

le
ct

io
n

[3
36

]
−

Su
pp

or
tV

ec
to

r
M

ac
hi

ne
op

ti
m

iz
at

io
n

[3
36

]
−

fin
an

ci
al

st
re

ss
pr

ed
ic

ti
on

(i
n

co
m

bi
na

ti
on

w
it

h
ex

tr
em

e
le

ar
ni

ng
m

ac
hi

ne
)[

33
5]

−
A

rt
ifi

ci
al

N
eu

ra
lN

et
w

or
k

tr
ai

ni
ng

[3
32

]
−

de
ci

si
on

m
ak

in
g

fo
r

se
lf

-d
ri

vi
ng

ve
hi

cl
es

[3
37

]

Lo
cu

st
Sw

ar
m

(L
S1

)[
28

8]
−

jo
in

tr
ep

le
ni

sh
m

en
tp

ro
bl

em
s

[3
38

]

Lo
cu

st
Sw

ar
m

(L
S2

)[
28

9]

(M
A

TL
A

B-
au

th
or

so
ur

ce
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/5
32

71
-

lo
cu

st
-s

ea
rc

h-
ls

-a
lg

or
ith

m
,a

cc
es

ed
on

:2
0

D
ec

em
be

r
20

19

−
im

ag
e

se
gm

en
ta

ti
on

[3
39

,3
40

]

M
ay

fly
op

ti
m

iz
at

io
n

al
go

ri
th

m
(M

A
)[

34
1]

(M
A

TL
A

B-
au

th
or

so
ur

ce
)

ht
tp

s:
//

in
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/7
69

02
-a

-
m

ay
fly

-o
pt

im
iz

at
io

n-
al

go
ri

th
m

,
ac

ce
ss

ed
on

15
A

ug
us

t2
02

1

−
hy

br
id

iz
at

io
n

w
it

h
H

ar
m

on
y

Se
ar

ch
[3

42
]

−
fe

at
ur

e
se

le
ct

io
n

[3
42

]
−

op
ti

m
al

de
si

gn
of

en
er

gy
re

ne
w

ab
le

so
ur

ce
s

(i
n

co
m

bi
na

ti
on

w
it

h
ra

di
al

ba
si

s
ne

ur
al

ne
tw

or
ks

)[
34

3]

M
on

ar
ch

Bu
tt

er
fly

O
pt

im
iz

at
io

n
(M

BO
)[

27
9]

(C
++

,M
A

TL
A

B)
ht

tp
s:

//
gi

th
ub

.c
om

/g
gw

01
22

/M
on

ar
ch

-
Bu

tt
er

fly
-O

pt
im

iz
at

io
n,

ac
ce

ss
ed

on
12

D
ec

em
be

r
20

19

−
bi

na
ry

ad
ap

ta
ti

on
[3

09
]

−
hy

br
id

iz
at

io
n

w
it

h
D

iff
er

en
ti

al
Ev

ol
ut

io
n

[3
44

]
−

in
cl

us
io

n
of

cr
os

so
ve

r
op

er
at

or
[3

45
]

−
se

lf
-a

da
pt

iv
e

st
ra

te
gi

es
[3

46
]

−
0–

1
kn

ap
sa

ck
pr

ob
le

m
[3

47
]

−
os

te
op

or
os

is
cl

as
si

fic
at

io
n

(i
n

co
m

bi
na

tio
n

w
it

h
A

rt
ifi

ci
al

N
eu

ra
lN

et
w

or
ks

)[
34

8]
−

ve
hi

cl
e

ro
ut

in
g

pr
ob

le
m

[3
49

]

M
os

qu
it

o
ho

st
-s

ee
ki

ng
al

go
ri

th
m

(M
H

SA
)[

27
7]

−
in

cl
us

io
n

of
ra

nd
om

w
al

k
an

d
ga

m
e

of
lif

e
[3

50
]

−
tr

av
el

lin
g

sa
le

sm
an

pr
ob

le
m

[2
78

]

M
ot

h
Fl

am
e

O
pt

im
iz

at
io

n
(M

FO
)[

28
4]

(M
A

TL
A

B-
au

th
or

so
ur

ce
)

ht
tp

:/
/w

w
w

.a
lim

ir
ja

lil
i.c

om
/M

FO
.h

tm
l,

ac
ce

ss
ed

on
6

Ju
ne

20
21

−
in

cl
us

io
n

of
G

au
ss

ia
n

m
ut

at
io

n
[3

51
]

−
m

ul
ti

-o
bj

ec
ti

ve
op

ti
m

iz
at

io
n

[3
52

]
−

in
cl

us
io

n
of

ch
ao

s
[2

98
,3

53
]

−
in

cl
us

io
n

of
le

vy
fli

gh
tm

ec
ha

ni
sm

[3
54

,3
55

]

−
no

n-
lin

ea
r

fe
ed

ba
ck

co
nt

ro
ld

es
ig

n
[3

56
]

−
m

ed
ic

al
di

ag
no

si
s

(i
n

co
m

bi
na

ti
on

w
it

h
ex

tr
em

e
le

ar
ni

ng
m

ac
hi

ne
)[

35
3]

−
re

ac
to

r
po

w
er

di
sp

at
ch

[2
85

]
−

en
gi

ne
er

in
g

de
si

gn
pr

ob
le

m
s

[3
55

]

186

Mathematics 2021, 9, 2335

T
a

b
le

4
.

C
on

t.

A
lg

o
ri

th
m

S
o

u
rc

e
C

o
d

e
M

o
d

ifi
ca

ti
o

n
s

a
n

d
Im

p
ro

v
e

m
e

n
ts

A
p

p
li

ca
ti

o
n

s

M
ot

h
Sw

ar
m

A
lg

or
it

hm
(M

SA
)[

28
6]

(M
A

TL
A

B-
au

th
or

so
ur

ce
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/5
78

22
-

m
ot

h-
sw

ar
m

-a
lg

or
ith

m
-m

sa
,a

cc
es

se
d

on
8

Fe
br

ua
ry

20
20

−
in

cl
us

io
n

of
O

pp
os

it
io

n
Ba

se
d

Le
ar

ni
ng

[3
57

]
−

hy
br

id
iz

at
io

n
w

it
h

G
ra

vi
ta

ti
on

al
Se

ar
ch

A
lg

or
it

hm
[3

58
]

−
in

cl
us

io
n

of
ar

it
hm

et
ic

cr
os

so
ve

r
[3

59
]

−
in

cl
us

io
n

of
ch

ao
s

[3
60

]

−
po

w
er

flo
w

[3
59

]
−

th
re

sh
ol

d
im

ag
e

se
gm

en
ta

ti
on

[3
61

]

M
ot

h
Se

ar
ch

(M
S)

al
go

ri
th

m
[2

87
]

(M
A

TL
A

B-
au

th
or

so
ur

ce
)

ht
tp

s:
//

in
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/5
90

10
-

m
ot

h-
se

ar
ch

-m
s-

al
go

ri
th

m
,a

cc
es

se
d

on
8

Fe
br

ua
ry

20
20

−
in

cl
us

io
n

of
di

sr
up

to
r

op
er

at
or

[3
62

]
−

bi
na

ry
op

ti
m

iz
at

io
n

[3
63

]
−

al
te

ra
ti

on
at

st
ep

le
ve

l[
36

4]
−

hy
br

id
iz

at
io

n
w

it
h

A
nt

C
ol

on
y

O
pt

im
iz

at
io

n
[3

65
]

−
ph

ot
ov

ol
ta

ic
pa

ra
m

et
er

id
en

ti
fic

at
io

n
[3

62
]

−
kn

ap
sa

ck
pr

ob
le

m
[3

63
]

−
dr

on
e

pl
ac

em
en

t[
36

6]

R
oa

ch
In

fe
st

at
io

n
O

pt
im

iz
at

io
n

(R
IO

)[
29

2]

(C
#,

V
B)

ht
tp

s:
//

m
sd

n.
m

ic
ro

so
ft

.c
om

/e
n-

us
/

m
ag

az
in

e/
m

t6
32

27
5.

as
px

,a
cc

es
se

d
on

6
Fe

br
ua

ry
20

20

−
in

tr
od

uc
ti

on
of

th
e

ce
nt

er
ag

en
tc

on
ce

pt
[3

67
]

−
ad

di
ti

on
of

ca
nn

ib
al

is
m

co
m

po
ne

nt
s

[3
68

]
−

dy
na

m
ic

st
ep

si
ze

ad
ap

ta
ti

on
[3

69
]

−
A

rt
ifi

ci
al

N
eu

ra
lN

et
w

or
ks

tr
ai

ni
ng

[3
67

]
−

en
gi

ne
er

in
g

de
si

gn
[3

67
]

W
at

er
st

ri
de

r
al

go
ri

th
m

(W
fS

A
)[

37
0]

−
in

cl
us

io
n

of
ch

ao
s

[3
71

],
of

qu
as

i-o
pp

os
iti

on
an

d
el

ite
-g

ui
de

ev
ol

ut
io

n
m

ec
ha

ni
sm

[3
72

],
ad

ap
ta

bl
e

pa
ra

m
et

er
s

[3
73

]

−
op

ti
m

al
de

si
gn

of
re

ne
w

ab
le

en
er

gy
sy

st
em

s
[3

72
]

187

Mathematics 2021, 9, 2335

3.2.2. Other Invertebrates

This group includes algorithms inspired from different invertebrates that do not
belong to the insect class.

• Arachnids

The social behavior of spiders, i.e., communication using vibrations throughout the
web, represents the source of inspiration for the Social Spider Optimization (SSO) [265].
It emulates a group of spiders that contains both males and females and applies different
evolutionary operators to mimic the distinct behaviors typically found in the colony. In
addition to the cooperation behavior, a mating operator, applicable only to the strongest
individuals, is introduced to increase diversity. A comprehensive review of the SSO, which
covers its main variants and applications, is the work of Luque–Chang et al. [374].

Distinctively from the SSO, which models the cooperative behavior and exchange
of information through the web, the Social Spider Algorithm (SSA) [375] simulates the
foraging behavior of social spiders. The SSA does not distinguish the individuals by sex;
all the spiders share the same search operations. Compared to the SSO, the SSA is simpler,
it uses a single random move operator and depends on the parameter settings to control
the search [375]. A parameter sensitivity analysis (through advanced non-parametric
statistical tests) indicated that medium population, small to medium attenuation rate,
medium crossover probability and small mutation probability lead to good results for the
majority of the problem being tested [376].

• Crustacea

The Krill Herd Algorithm (KHA) [377] is inspired from the herding behavior of
krill individuals and was developed to solve non-complex optimization problems. It is
a population-based approach that uses three main ways to explore the search space: (i)
movement, induced by other individuals; (ii) foraging; (iii) random diffusion. A review
that covers the main improvements and applications of the KHA is [378]. Newer studies
(after 2017) that use the KHA to solve specific problems are presented in Table 5.

• Annelid worms

The reproduction mechanisms used by earthworms are the source of inspiration for the
Earthwork Optimization Algorithm (EWA) [379]. The idealized rules that the EWA follows
are: (i) all the earthworms can produce offspring using only two types of reproduction; (ii)
the number of genes of the offspring is the same as the parent’s; (iii) the best individuals go
directly, without change, to the next generation so as to ensure that the population cannot
deteriorate throughout generations.

• Tunicata

Tunicates are marine, small bio-luminescent invertebrates with a unique mode of jet
propulsion. The movement strategy and the swarming behavior of tunicates was modelled
in the Tunicate Swarm Algorithm (TSA) [380], its performance for a set of benchmarking
problems being similar with state-of-the-art approaches. The time complexity of the TSA is
O(iterations × population_size × dimensionality × N) where N indicates the jet propulsion
and swarm behaviors.

188

Mathematics 2021, 9, 2335

T
a

b
le

5
.

Im
pr

ov
em

en
ts

an
d

ap
pl

ic
at

io
ns

fo
r

ot
he

r
in

ve
rt

eb
ra

te
s-

ba
se

d
m

et
ah

eu
ri

st
ic

s
(a

lp
ha

be
ti

ca
lly

so
rt

ed
).

A
lg

o
ri

th
m

S
o

u
rc

e
C

o
d

e
M

o
d

ifi
ca

ti
o

n
s

a
n

d
Im

p
ro

v
e

m
e

n
ts

A
p

p
li

ca
ti

o
n

s

Ea
rt

hw
or

k
O

pt
im

iz
at

io
n

A
lg

or
it

hm
(E

W
A

)[
37

9]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

s:
//

in
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/5
34

79
-

ea
rt

hw
or

m
-o

pt
im

iz
at

io
n-

al
go

ri
th

m
-

ew
a?

s_
tid

=F
X

_r
c3

_b
eh

av
,a

cc
es

se
d

on
15

M
ar

ch
20

21

−
hy

br
id

iz
at

io
n

w
it

h
D

iff
er

en
ti

al
Ev

ol
ut

io
n

[3
81

]
−

ho
m

e
en

er
gy

m
an

ag
em

en
ts

ys
te

m
[3

81
–3

83
]

K
ri

ll
H

er
d

A
lg

or
it

hm
(K

H
A

)[
37

7]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/5
54

86
-k

ri
ll-

he
rd

-a
lg

or
it

hm
,a

cc
es

se
d

on
9

Fe
br

ua
ry

20
20

−
hy

br
id

iz
at

io
n

w
it

h
A

nt
C

ol
on

y
O

pt
im

iz
at

io
n

[3
84

],
Ba

tA
lg

or
it

hm
[3

85
],

C
lo

na
lS

el
ec

ti
on

[3
86

]
−

m
od

ifi
ca

ti
on

at
in

ne
r

le
ve

r
[3

87
]

−
A

rt
ifi

ci
al

N
eu

ra
lN

et
w

or
k

tr
ai

ni
ng

[3
88

]
−

pl
an

ni
ng

an
d

sc
he

du
lin

g
[3

85
]

−
fe

at
ur

e
re

du
ct

io
n

[3
89

]
−

te
xt

cl
us

te
ri

ng
[3

87
]

So
ci

al
Sp

id
er

O
pt

im
iz

at
io

n
(S

SO
)[

26
5]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/4
69

42
-a

-
sw

ar
m

-o
pt

im
iz

at
io

n-
al

go
ri

th
m

-
in

sp
ir

ed
-i

n-
th

e-
be

ha
vi

or
-o

f-
th

e-
so

ci
al

-
sp

id
er

,a
cc

es
se

d
on

26
A

pr
il

20
20

−
m

od
ifi

ca
ti

on
of

th
e

so
lu

ti
on

ge
ne

ra
ti

on
m

ec
ha

ni
sm

[3
90

]
−

in
cl

us
io

n
of

ro
ug

h
se

ts
[3

91
]

−
co

ns
tr

ai
nt

ha
nd

lin
g

[3
92

]

−
re

ac
ti

ve
po

w
er

di
sp

at
ch

[3
90

]
−

m
in

im
um

nu
m

be
r

at
tr

ib
ut

es
re

du
ct

io
n

pr
ob

le
m

[3
91

]
−

A
rt

ifi
ci

al
N

eu
ra

lN
et

w
or

k
tr

ai
ni

ng
[3

93
]

So
ci

al
Sp

id
er

A
lg

or
it

hm
(S

SA
)[

37
5]

(M
A

TL
A

B,
C

++
,P

yt
ho

n—
au

th
or

so
ur

ce
)

ht
tp

s:
//

gi
th

ub
.c

om
/J

am
es

-Y
u/

So
ci

al
Sp

id
er

A
lg

or
it

hm
,a

cc
es

se
d

on
18

Ja
nu

ar
y

20
20

−
in

cl
us

io
n

of
di

ff
er

en
ti

al
m

ut
at

io
n

[3
94

],
ch

ao
s

[3
95

]
−

ne
w

m
ut

at
io

n
st

ra
te

gy
[3

96
]

−
tr

ai
n

en
er

gy
op

ti
m

iz
at

io
n

[3
97

]
−

sc
he

du
lin

g
[3

94
,3

95
]

−
lo

ad
di

sp
at

ch
pr

ob
le

m
[3

98
]

Tu
ni

ca
te

Sw
ar

m
A

lg
or

it
hm

(T
SA

)[
38

0]

(M
A

TL
A

B—
au

th
or

so
ur

ce
)

ht
tp

s:
//

w
w

w
.m

at
hw

or
ks

.c
om

/
m

at
la

bc
en

tr
al

/fi
le

ex
ch

an
ge

/7
51

82
-

tu
ni

ca
te

-s
w

ar
m

-a
lg

or
it

hm
-t

sa
,a

cc
es

se
d

on
17

Ju
ly

20
21

−
in

cl
us

io
n

of
lo

ca
le

sc
ap

in
g

op
er

at
or

[3
99

],
Le

vi
Fl

ig
ht

di
st

ri
bu

ti
on

[4
00

]
−

hy
br

id
iz

at
io

n
w

it
h

Sa
lp

Sw
ar

m
O

pt
im

iz
er

[4
01

]

−
co

nt
ro

la
nd

op
er

at
io

n
of

au
to

m
at

ed
di

st
ri

bu
ti

on
ne

tw
or

ks
[4

00
]

−
co

nn
ec

ti
vi

ty
an

d
co

ve
ra

ge
op

ti
m

iz
at

io
n

in
w

ir
el

es
s

se
ns

or
ne

tw
or

ks
[4

01
]

189

Mathematics 2021, 9, 2335

4. The Exploration–Exploitation Balance

Although based on different ideas, for all metaheuristic optimizers, the mechanisms
used to simulate the optimization behaviors are similar. Generally speaking, all the algo-
rithms in this class start with an initial population of potential solutions, usually randomly
generated, which is evolved, i.e., modified by a series of mechanisms that can include—
among others—selection, crossover and mutation, until a stopping criterion is satisfied.
The actual strategies used to perform these steps and the mechanisms used to control the
exploration–exploitation balance (EEB) influence the performance behavior and represent
the main elements that make the distinction between algorithms.

The research in the area of metaheuristics often mentions the exploration and exploita-
tion aspects of the algorithms; however, these terms have never been formally defined [402].
Informally, exploration is defined as the process of visiting entirely new regions of the
search space, also known as the global search ability of the algorithm, while exploration is
the process of visiting those regions of the search space within the neighborhood of previ-
ously visited points, which represents the local search ability [402]. Pure exploration leads
to a decrease in precision but increases the ability of finding new, good solutions, while pure
exploitation refines the existing solution and drives the search to a local optimum [403].
Because it indicates how the resources are allocated, knowing the EEB information can
be useful to determine the impact of specific aspects of the algorithm [404]. The EEB
can be seen from two points of view: (i) exploration and exploitation as opposing forces;
(ii) exploration and exploitation as orthogonal forces [404]. However, it was shown that the
opposing forces view is a special case of the orthogonal view and, thus, EEB monitoring
must involve a metric for the exploration axis and one for the exploitation axis [404].

For evolutionary algorithms, it was shown that different operators, depending on
the algorithm, are acting as exploitation or exploration procedures [1]. In population-
based algorithms, the EEB is connected to the population diversity: when this is high, the
algorithm is explorative and when it is low, the behavior is exploitative [1]. Although a
diverse population is a prerequisite rather than a guarantee for the EEB and a good EEB
can be reached through other means, e.g., fitness, using diversity is one of the simplest
methods for achieving it [402]. Due to the fact that the problems to be solved must be
encoded into a binary or real-valued vector, a clear distinction between the genotype
(the encoded structure) and the phenotype (the actual problem) must be done. In this
context, the diversity can be measured at the genotype level, at the phenotype level or
using complex or composite measures that combine the genotype and the phenotype.

In [402], the diversity-based approaches applied to the EEB are classified as: (i) diver-
sity maintenance—in this case it is assumed that the techniques will maintain diversity per
se; (ii) diversity control, where feedback from measured individual fitness and or/fitness
improvement is used to direct the evolution towards exploration or exploitation; (iii) diver-
sity learning—a long-term history in combination with machine learning approaches is
used to learn unexplored search areas; iv) other direct approaches (Figure 2). In the case of
diversity maintenance, two categories can be indicated: niching and non-niching. The nich-
ing techniques represent extensions of the algorithms to multi-modal domains [405]. One
of the most comprehensive definitions for niching is given in [406]: ”Niching is a two-step
procedure that (a) concurrently or subsequently distributes individuals into distinct basins
of attraction and (b) facilitates approximation of the corresponding (local) optimizers”.

190

Mathematics 2021, 9, 2335

Figure 2. Mechanisms used to control the exploration–exploitation balance through diversity.

Table 6 shows the different mechanisms for the EEB used by the initial versions of the
algorithms presented in Section 3. The subsequent modifications performed to the base
versions are not considered in this table. The following notations are used: C indicates the
controlling mechanisms, L the learning approaches, OD are the other direct approaches
and H. represents the hybrid techniques. Pop. represents the population-based techniques,
Sel. the selection based, Crs. the crossover/mutation based, Fit. the fitness based, Rep. the
replacement based and Pres. the preservation-based approaches. In Table 6, in each case a
specific approach is encountered in the algorithm, an x is set in the corresponding column.

191

Mathematics 2021, 9, 2335

T
a

b
le

6
.

Th
e

di
ve

rs
it

y-
ba

se
d

ap
pr

oa
ch

es
us

ed
fo

r
EE

B
by

th
e

bi
o-

in
sp

ir
ed

m
et

ah
eu

ri
st

ic
op

ti
m

iz
er

s
(a

lp
ha

be
ti

ca
lly

so
rt

ed
).

A
lg

o
ri

th
m

C
L

M
a

in
ta

in
in

g
O

D
D

e
sc

ri
p

ti
o

n
o

f
th

e
M

e
ch

a
n

is
m

s

N
ic

h
in

g
N

o
n

-N
ic

h
in

g

P
op

.
Se

l.
C

rs
.

H
.

Fi
t.

R
ep

.
P

re
s.

H
.

Ba
ck

tr
ac

ki
ng

Se
ar

ch
A

lg
or

it
hm

O
pt

im
iz

at
io

n
(B

SA
)

x
x

x
−

du
al

-p
op

ul
at

io
n

w
it

h
a

co
m

pl
ex

cr
os

so
ve

r
ap

pr
oa

ch

Ba
tA

lg
or

it
hm

(B
A

)
x

x
−

a
lo

ca
ls

ea
rc

h
is

pe
rf

or
m

ed
to

ra
nd

om
ly

se
le

ct
ed

be
st

so
lu

ti
on

s;
-n

ew
so

lu
tio

ns
ar

e
ge

ne
ra

te
d

by
fly

in
g

ra
nd

om
ly

an
d

ad
de

d
to

th
e

po
pu

la
tio

n
if

th
ei

r
fit

ne
ss

is
go

od

Be
e

C
ol

on
y

In
sp

ir
ed

A
lg

or
it

hm
(B

C
iA

)
x

x
−

2
po

pu
la

ti
on

s
w

it
h

in
di

vi
du

al
s

th
at

m
ig

ra
te

be
tw

ee
n

th
em

Bi
rd

M
at

in
g

O
pt

im
iz

er
(B

M
O

)
x

x
−

ne
w

in
di

vi
du

al
s

ar
e

ra
nd

om
ly

in
se

rt
ed

af
te

r
a

ce
rt

ai
n

nu
m

be
r

of
ge

ne
ra

ti
on

s
−

th
e

m
at

in
g

be
ha

vi
or

of
m

al
e

an
d

fe
m

al
e

is
di

ff
er

en
t

Bl
in

d
N

ak
ed

M
ol

e
R

at
s

(B
N

M
R

)
x

−
a

ne
w

so
lu

tio
n

is
ge

ne
ra

te
d

an
d

ad
de

d
to

th
e

po
pu

la
tio

n
its

fit
ne

ss
is

go
od

Bu
m

bl
eb

ee
s

(B
)

x
−

in
fu

si
on

of
ne

w
in

di
vi

du
al

s
in

th
e

po
pu

la
tio

n
an

d
el

im
in

at
io

n
of

th
e

w
or

st

Bu
m

bl
e

Be
e

M
at

in
g

O
pt

im
iz

at
io

n
(B

BM
O

)
x

−
th

er
e

ar
e

m
at

in
g

re
st

ri
ct

io
ns

w
it

h
di

vi
si

on
of

ro
le

s
w

it
hi

n
in

di
vi

du
al

s
in

th
e

po
pu

la
ti

on

C
hi

ck
en

Sw
ar

m
O

pt
im

iz
at

io
n

(C
SO

)
x

−
di

ff
er

en
ts

ub
po

pu
la

ti
on

s
ar

e
co

ns
id

er
ed

C
om

pe
ti

ti
on

ov
er

R
es

ou
rc

es
(C

O
R

)
x

x
−

2
su

bg
ro

up
s

pe
rf

or
m

in
g

a
se

pa
ra

te
se

ar
ch

C
uc

ko
o

Se
ar

ch
(C

S)
x

−
w

or
st

in
di

vi
du

al
s

ar
e

re
m

ov
ed

an
d

ne
w

on
es

ar
e

ad
de

d

C
uc

ko
o

O
pt

im
iz

at
io

n
A

lg
or

it
hm

(C
O

A
)

x
−

k-
m

ea
ns

is
us

ed
to

cl
us

te
r

th
e

cu
ck

oo
s

in
to

gr
ou

ps

D
ro

so
ph

ila
Fo

od
Se

ar
ch

O
pt

im
iz

at
io

n
(D

FO
)

x
−

R
ed

un
da

nt
Se

ar
ch

al
go

ri
th

m
is

us
ed

to
pe

rf
or

m
a

ne
ig

hb
or

ho
od

se
ar

ch

El
ep

ha
nt

H
er

di
ng

O
pt

im
iz

at
io

n
(E

H
O

)
x

−
ea

ch
it

er
at

io
n,

th
e

m
al

es
-i

.e
.,

th
e

w
or

st
in

di
vi

du
al

s
fr

om
ea

ch
cl

an
ar

e
re

pl
ac

ed
by

ne
w

in
di

vi
du

al
s

(s
ep

ar
at

in
g

op
er

at
or

)

El
ep

ha
nt

Se
ar

ch
A

lg
or

it
hm

(E
SA

)
x

−
th

e
po

pu
la

ti
on

is
fo

rm
ed

by
tw

o
gr

ou
ps

:m
al

e
(t

ha
tp

er
fo

rm
s

ex
pl

or
at

io
n)

an
d

fe
m

al
es

(t
ha

tp
er

fo
rm

s
ex

pl
oi

ta
ti

on
)

G
re

y
W

ol
fO

pt
im

iz
er

(G
W

O
)

−
th

e
ba

la
nc

e
be

tw
ee

n
ex

pl
or

at
io

n
an

d
ex

pl
oi

ta
ti

on
is

pe
rf

or
m

ed
th

ro
ug

h
co

nt
ro

lp
ar

am
et

er
s

H
un

ti
ng

Se
ar

ch
(H

uS
)

x
−

w
he

n
th

e
in

di
vi

du
al

s
in

th
e

po
pu

la
ti

on
ar

e
cl

os
e

to
ge

th
er

,a
re

se
t

pr
oc

ed
ur

e
is

ap
pl

ie
d

K
ri

ll
H

er
d

A
lg

or
it

hm
(K

H
A

)
x

−
th

e
fit

ne
ss

fu
nc

ti
on

is
us

ed
to

si
m

ul
at

e
th

e
m

ot
io

n
in

du
ce

d
by

ot
he

r
kr

ill
in

di
vi

du
al

s

192

Mathematics 2021, 9, 2335

T
a

b
le

6
.

C
on

t.

A
lg

o
ri

th
m

C
L

M
a

in
ta

in
in

g
O

D
D

e
sc

ri
p

ti
o

n
o

f
th

e
M

e
ch

a
n

is
m

s

N
ic

h
in

g
N

o
n

-N
ic

h
in

g

P
op

.
Se

l.
C

rs
.

H
.

Fi
t.

R
ep

.
P

re
s.

H
.

Lo
cu

st
Sw

ar
m

(L
S2

)
x

−
th

e
ex

pl
or

at
io

n
an

d
ex

pl
oi

ta
ti

on
st

ep
s

ar
e

on
e

af
te

r
th

e
ot

he
r

Li
on

’s
A

lg
or

it
hm

(L
A

)
x

x
−

k-
m

ea
ns

is
us

ed
to

pe
rf

or
m

ge
nd

er
gr

ou
pi

ng
−

at
pr

id
e

up
da

te
,s

ic
k/

w
ea

k
cu

bs
ar

e
ki

lle
d/

el
im

in
at

ed

Li
on

O
pt

im
iz

at
io

n
A

lg
or

it
hm

(L
O

A
)

x
x

−
th

e
be

ha
vi

or
of

m
al

es
an

d
fe

m
al

es
in

th
e

pr
id

e
is

di
ff

er
en

t;
-t

he
re

ar
e

di
ff

er
en

tp
op

ul
at

io
ns

(n
om

ad
an

d
pr

id
e)

;-
re

st
ri

ct
ed

m
at

in
g

be
tw

ee
n

m
al

es
an

d
fe

m
al

es

Li
on

Pr
id

e
O

pt
im

iz
at

io
n

A
lg

or
it

hm
(L

PO
A

)
x

−
m

ul
ti

pl
e

su
bp

op
ul

at
io

ns
(p

ri
de

s)
ar

e
co

ns
id

er
ed

M
on

ar
ch

Bu
tt

er
fly

O
pt

im
iz

at
io

n
(M

BO
)

x
x

−
2

su
bp

op
ul

at
io

ns
w

it
h

in
di

vi
du

al
s

th
at

m
ig

ra
te

be
tw

ee
n

th
em

M
ot

h
Sw

ar
m

A
lg

or
it

hm
(M

SA
)

x
−

us
es

an
ad

ap
ti

ve
cr

os
so

ve
r

ba
se

d
on

di
ve

rs
it

y

M
ot

h
Se

ar
ch

(M
S)

al
go

ri
th

m
x

x
−

at
ea

ch
ge

ne
ra

tio
n

th
e

po
pu

la
tio

n
re

co
m

bi
ne

s
al

lt
he

in
di

vi
du

al
s

an
d

sp
lit

s
th

em
in

to
2

gr
ou

ps
ba

se
d

on
fit

ne
ss

Pi
ge

on
In

sp
ir

ed
O

pt
im

iz
at

io
n

(P
IO

)
x

−
th

e
la

nd
m

ar
k

op
er

at
io

n
im

pl
ie

s
re

du
ci

ng
th

e
nu

m
be

r
of

in
di

vi
du

al
s

to
ha

lf

Sa
ti

n
Bo

w
er

bi
rd

O
pt

im
iz

er
(S

BO
)

x
−

th
e

pr
ob

ab
ili

ty
of

fin
di

ng
a

m
at

e
is

ba
se

d
on

th
e

fit
ne

ss
fu

nc
ti

on

Sp
er

m
W

ha
le

A
lg

or
it

hm
(S

W
A

)
x

−
re

st
ri

ct
ed

m
at

in
g

(s
tr

on
ge

st
m

al
e

m
at

es
w

it
h

se
ve

ra
lf

em
al

es
)

So
ci

al
Sp

id
er

O
pt

im
iz

at
io

n
(S

SO
)

x
x

−
th

e
in

di
vi

du
al

s
ar

e
ge

nd
er

or
ie

nt
ed

,w
it

h
di

ff
er

en
tb

eh
av

io
r;

th
e

of
fs

pr
in

g
ge

ne
ra

ti
on

is
re

st
ri

ct
ed

to
th

e
cl

as
si

ca
lm

al
e-

fe
m

al
e

m
at

in
g

Sp
id

er
M

on
ke

y
O

pt
im

iz
at

io
n

(S
M

O
)

x
−

m
ul

ti
pl

e
su

b-
po

pu
la

ti
on

s

Sp
ot

te
d

H
ye

na
O

pt
im

iz
er

(S
H

O
)

x
−

th
e

pa
ra

m
et

er
s

co
nt

ro
lli

ng
th

e
pr

ey
en

ci
rc

lin
g

ar
e

ch
an

ge
d

as
th

e
se

ar
ch

pr
og

re
ss

es

Sq
ui

rr
el

Se
ar

ch
A

lg
or

it
hm

(S
SA

)
x

−
w

he
n

se
as

on
al

co
nd

it
io

ns
ar

e
sa

ti
sfi

ed
,t

he
sq

ui
rr

el
s

ar
e

ra
nd

om
ly

re
lo

ca
te

d

193

Mathematics 2021, 9, 2335

As it can be observed from Table 6, some strategies are more popular than others; the
non-niching techniques based on population are the most used approaches for diversity
maintenance. This can be explained by the fact that the bio-inspired metaheuristics are
population-based and, therefore, the most intuitive methods consist in modifying the
characteristics of the population as a means of improving performance.

5. Algorithm Selection

As it can be observed, the list of algorithms, even when the source of inspiration is
restrung to a single category, is extensive. In practice, the most common question is what is
the best suited algorithm and how can it can be successfully applied for a specific problem?
Unfortunately, answering this question is not an easy task, as by their definition, heuristics
can provide sufficiently good solutions to an optimization problem. Thus, depending on
the accepted level of precision, there can be more than one heuristic that can generate
acceptable solutions in terms of quality. However, performance is not the only aspect that
can be taken into account [407]. The issue of algorithm selection was formalized by Rice
in [408], and involves: (i) a problem space P; (ii) an algorithm space A; (iii) a mapping PxA
onto R (also known as performance model). This implies that there must exist an extensive
set of problem instances and features that describe them and the algorithm state at any
time [409]. Thus, although advances regarding algorithm selection were made [409,410], the
most used strategy in the metaheuristic filed is based on comparison. The work of LaTorre
et al. [411] presents a series of methodological guidelines for comparing metaheuristics
that involves: (i) selection of benchmarks and refence algorithms; (ii) validation of results
(with statistical analysis and visualization); (iii) parameter tunning; (iv) identification
of usefulness.

As a demonstration, in this work, the three most used real-world benchmark problems
were selected (Table 7) and used to determine (based on already reported results) what
the best performing animal-inspired metaheuristics are. The centralized results, organized
from the best to the worst solution, are presented in Table 8 for the pressure vessel design,
Table 9 for the welded beam design and Table 10 for the tension/compression spring design.
All the considered problems are constrained minimization problems and their description
can be found in the references from the column “Reported work” of Tables 8–10.

Table 7. Real-world problems characteristics.

Problem Decision Variables Inequality Constraints

Tension/Compression spring 3 (diameter, mean coil diameter, number of active coils) 4

Pressure vessel design 4 (thinckness of the shell, thinkness of th head, inner
radius, length of the cylindrical section) 4

Welded beam design 4 (thikness of the weld, length of the attached part of the
bar, height of the bar and thickess of the bar) 7

194

Mathematics 2021, 9, 2335

Table 8. Solutions for the pressure vessel design problem.

Algorithms
Reported

Work
Modified
Version

Ts Th R L
Optimal

Cost

Sooty Tern Optimization Algorithm (STOA) [54] [54] No 0.778095 0.38324 40.31511 200 5879.1253

Emperor Pinguin Optimization (EPO) [55] [55] No 0.778099 0.383241 40.31512 200 5880.07

Chameleon Swarm Algorithm (ChSA) [224] [224] No 12.450698 6.154387 40.31961 200 5885.3327

Memory based Dragonfly algorithm (MHDA)
[313] [313] Yes 0.778169 0.384649 40.3196 200 5885.3353

COOT [412] [412] No 0.77817 0.384651 40.31961 200 5885.3487

Marine Predator Algorithm (MPA) -continuous
variant [229] [229] No 0.77816876 0.3846497 40.31962 199.99999 5885.3353

Spotted Hyena Optimizer (SHO) [142] [55] No 0.77821 0.384889 40.31504 200 5885.5773

Modified Spider Monkey Optimization (SMONM)
[203] [412] Yes 0.778322 0.384725 40.32759 199.8889 5885.595

African Vulture Optimization Algorithm (AVOA)
[57] [57] No 0.778954 0.3850374 40.36031 199.43429 5886.67659

Grey Wolf Optimizer (GWO) [136] [55] No 0.779035 0.38466 40.32779 199.65029 5889.3689

Dragonfly Algorithm (DA) [264] [313] No 0.782825 0.384649 40.3196 200 5923.11

Aquila Optimization (AO) [47] [47] No 1.0540 0.182806 59.6219 38.8050 5949.2258

Improved Grasshoper Oprimization (OBLGOA)
[413] [412] Yes 0.81622 0.4035 42.29113 174.81119 5966.6716

Slime Mould Algorithm (SMA) [414] [414] No 0.7931 0.3932 40.6711 196.2178 5994.1857

Harris Hawk Optimization (HHO) [46] [412] No 0.81758383 0.4072927 42.09174 176.71963 6000.46259

Improved Artificial bee Colony (I-ABC greedy)
[415] [412] Yes 0.8125 0.4375 42.0984 176.6369 6059.7124

Firefly Algorithm (FA) [416] [412] No 0.8125 0.4375 42.09844 176.63659 6059.7143

Moth-flame Optimization (MFO) [284] [412] No 0.8125 0.4375 42.09844 176.63659 6059.7143

Marine Predator Algorithm (MPA) -mixed integer
variant [229] [229] No 0.8125 0.4375 42.09844 176.63660 6059.7144

Sine-Cosine Grey Wolf Optimizer (SC-GWO) [417] [412] Yes 0.8125 0.4375 42.0984 176.6370 6059.7179

Co-evolutionary Differential Evolution (CDE)
[418] [229] Yes 0.8125 0.4375 42.09841 176.6376 6059.734

Whale Optimization Algorithm (WOA) [134] [412] No 0.8125 0.4375 42.09826 176.63899 6059.741

Bacterial foraging Optimization (BFOA) [419] [229] No 0.8125 0.4375 42.09639 176.68323 6060.46

Co-evolutionary Particle Swarm Optimization
(CPSO) [420] [313] Yes 0.8125 0.4375 42.09126 176.7465 6061.077

Artificial Immune System-Genetic Algorithm
(HGA-1) [421] [229] Yes 0.8125 0.4375 42.0492 177.2522 6065.821

Artificial Immune System-Genetic Algorithm
(HGA-2) [421] [229] Yes 1.125 0.5625 58.1267 44.5941 6832.583

Harmony Search (HS) [422] [229] No 1.125 0.625 58.2789 43.7549 7198.433

195

Mathematics 2021, 9, 2335

Table 9. Solutions for the welded beam design.

Algorithms
Reported

Work
Modified
Version

τ σ Pc δ
Optimal

Cost

Aquila Optimization (AO) [47] [47] No 0.1631 3.3652 9.0202 0.2067 1.6566

Butterfly Optimization Algorithm (BOA) [283] [283] No 0.1736 2.969 8.7637 0.2188 1.6644

COOT [412] [412] No 0.19883 3.33797 9.19199 0.19883 1.6703

Memory based Dragon Fly algorithm(MHDA))
[313] [313] Yes 0.20573 3.25312 9.03662 0.20573 1.69525

Slime Mould algorithm (SMA) [414] [414] No 0.2054 3.2589 9.0384 0.2058 1.696

Dragonfly Algorithm (DA) [264] [313] No 0.19429 3.46681 9.04543 0.2057 1.70808

Tunicate Swarm Algorithm (TSA) [380] [412] No 0.20329 3.47114 9.0351 0.20115 1.72102

Seagull optimization algorithm (SOA) [53] [53] No 0.205408 3.472316 9.035208 0.20114 1.723485

Emperor Pinguin Optimization (EPO) [55] [55] No 0.205411 3.472341 9.035215 0.20115 1.723589

Sooty Tern Optimization Algorithm (STOA) [54] [54] No 0.205415 3.472346 9.03522 0.20116 1.72359

Improved Artificial bee Colony (I-ABC greedy)
[415] [412] Yes 0.20573 3.47049 9.03662 0.20573 1.72482

Co-evolutionary Particle Swarm Optimization
(CPSO) [420] [313] Yes 0.20573 3.47049 9.03662 0.20573 1.72485

Modified Artificial Bee Colony (ABC) [263] [313] Yes 0.20573 3.47049 9.03662 0.20573 1.72485

Modified Spider Monkey Optimization (SMONM)
[203] [412] Yes 0.20573 3.47049 9.03662 0.20573 1.72485

Chameleon Swarm Algorithm (ChSA) [224] [224] No 0.205730 3.470489 9.036624 0.20573 1.724852

African Vulture Optimization Algorithm (AVOA)
[57] [57] No 0.20573 3.470474 9.03662 0.20573 1.724852

Moth-flame Optimization (MFO) [284] [370] No 0.20573 3.47049 9.03662 0.20573 1.7249

Water Strider Algorithm (WSA) [370] [370] No 0.20573 3.47049 9.03662 0.20573 1.7249

Marine Predator Algorithm (MPA) [229] [229] No 0.20573 3.47051 9.03662 0.20573 1.72485

Salp Swarm Algorithm (SSA) [11] [414] No 0.2057 3.4714 9.0366 0.2057 1.7249

Derivative free Simulated Annealing (SA) [423] [313] Yes 0.20564 3.47258 9.03662 0.20573 1.725

Spotted Hyena Optimizer(SHO) [142] [412] No 0.20556 3.47485 9.0358 0.20581 1.72566

Improved Grasshopper Optimization Algorithm
(OBLGOA) [413] [412] Yes 0.20577 3.47114 9.03273 0.20591 1.7257

Grey Wolf Optimizer (GWO) [136] [414] No 0.2057 3.4784 9.0368 0.2058 1.7262

Whale Optimization Algorithm (WOA) [134] [134] No 0.205396 3.484293 9.037426 0.20627 1.730499

Harris Hawk Optimization (HHO) [46] [412] No 0.20404 3.53106 9.02746 0.20615 1.73199

Sailfish Optimizer (SFO) [222] [222] No 0.2038 3.6630 9.0506 0.2064 1.73231

Co-evolutionary Differential Evolution (CDE)
[418] [412] Yes 0.20314 3.543 9.0335 0.20618 1.73346

Levy Flight Distribution (LFD) [424] [412] No 0.1857 3.907 9.1552 0.2051 1.77

Harmony Search and Genetic Algorithm
(HSA-GA) [425] [229] Yes 0.2231 1.5815 12.8468 0.2245 2.25

Improved harmony Search (HS) [426] [283] Yes 0.2442 6.2231 8.2915 0.2443 2.3807

Differential Evolution with stochastic selection
(DSS-DE) [427] [229] Yes 0.2444 6.1275 8.2915 0.2444 2.381

APPROX [428] [134] No 0.2444 6.2189 8.2915 0.2444 2.3815

Ragsdell [428] [370] No 0.2455 6.196 8.2915 0.2444 2.38154

David [428] [134] No 0.2434 6.2552 8.2915 0.2444 2.3841

Bacterial Foraging Optimization (BFOA) [419] [229] No 0.2057 3.4711 9.0367 0.2057 2.3868

Simplex [428] [370] No 0.2792 5.6256 7.7512 0.2796 2.5307

Random [428] [134] No 0.4575 4.7313 5.0853 0.66 4.1185

196

Mathematics 2021, 9, 2335

Table 10. Solutions for the tension/compression spring.

Algorithms
Reported

Work
Modified
Version

d D N
Optimal

Cost

Aquila Optimization (AO) [47] [47] No 0.050243 0.35262 10.5425 0.011165

Butterfly Optimization Algorithm (BOA) [283] [283] No 0.051343 0.334871 12.9227 0.011965

Emperor Pinguin Optimization (EPO) [55] [55] No 0.051087 0.342908 12.0898 0.012656

Sooty Tern Optimization Algorithm (STOA) [54] [54] No 0.05109 0.34291 12.09 0.012656

FireFly algorithm (BA) [416] [412] No 0.05169 0.35673 11.2885 0.012665

Pathfinder algorithm (PFA) [429] [229] No 0.051726 0.357629 11.235724 0.012665

Marine Predator Algorithm (MPA) [229] [229] No 0.0517244 0.35757003 11.2391955 0.012665

Improved Artificial bee Colony (I-ABC greedy)
[415] [412] Yes 0.051686 0.356014 11.202765 0.012665

COOT [412] [412] No 0.0516527 0.3558442 11.340383 0.012665

African Vulture Optimization Algorithm (AVOA)
[57] [57] No 0.051669 0.3562553 11.316126 0.0126652

Chameleon Swarm Algorithm (ChSA) [224] [224] No 0.051778 0.358851 11.164981 0.0126653

Harris Hawk Optimization (HHO) [46] [412] No 0.0517963 0.3593053 11.138859 0.01266

Grey Wolf Optimizer (GWO) [136] [412] No 0.05169 0.356737 11.28885 0.012666

Modified Spider Monkey Optimization (SMONM)
[203] [412] Yes 0.051918 0.362248 10.97194 0.012666

Moth-flame Optimization (MFO) [284] [412] No 0.0519944 0.36410932 10.868422 0.012666

Artificial Immune System-Genetic Algorithm
(HGA-1) [421] [229] Yes 0.051302 0.347475 11.852177 0.012668

Co-evolutionary Differential Evolution (CDE) [418] [229] Yes 0.051609 0.354714 11.410831 0.01267

Improved harmony Search (HS) [426] [283] Yes 0.051154 0.349871 12.076432 0.012670

Bacterial Foraging Optimization (BFOA) [420] [229] No 0.051825 0.359935 11.107103 0.012671

Sine-Cosine Grey Wolf Optimizer (SC-GWO) [417] [412] Yes 0.051511 0.352376 11.5526 0.012672

Spotted Hyena Optimizer (SHO) [142] [412] No 0.051144 0.343751 12.0955 0.012674

Co-evolutionary Particle Swarm Optimization
(CPSO) [420] [229] Yes 0.051728 0.357644 11.244543 0.012674

Whale Optimization Algorithm (WOA) [134] [412] No 0.051207 0.345215 0.004032 0.012676

Salp Swarm Algorithm (SSA) [11] [412] No 0.051207 0.345215 12.004032 0.012676

Improved Grasshopper Optimization Algorithm
(OBLGOA) [413] [412] Yes 0.0530178 0.38953229 9.6001616 0.012701

Mathematical_optimization [430] [283] - 0.053396 0.39918 9.1854 0.012730

Constraint_correction [431] [283] - 0.05 0.3159 14.25 0.012833

In Tables 8–10, the column “Reported work” indicates the paper where the specific
results were reported and where the control parameters used to obtain those results where
indicated. The column “Modified version” indicates if the specific algorithm is a modified
version of the base variant. As it can be observed, the majority of the algorithms in the top
of the list represent base variants of metaheuristics proposed in the last five years. This
indicates that, for this type of constrained problem with a reduced number of parameters,
the newer metaheuristics tend to perform better than the older, more known metaheuristics,
as well as the classical mathematical approaches.

To determine which algorithm is best suited to all the considered engineering prob-
lems, a Condorcet-based approach was applied [432]. It is based on the idea of the voting
system, the problem of determining a rank of algorithms becoming an electoral problem. In
this context, the considered algorithms represent the candidates and their solutions for each
problem indicate the voters. Thus, as a majority-based method, the Condorcet algorithm
determines the winner of an election as the candidate who outperforms or is equal to each
candidate in a pair-wise comparison. As not all the algorithms considered were tested on

197

Mathematics 2021, 9, 2335

all of the problems, the Condorcet algorithm was applied for the metaheuristics tested on
all three problems. The obtained results identified the top four metaheuristics as: EPO
(45 votes), AO (42 votes), COOT (40 votes) and ChSA (34 votes). In the fifth and sixth
pace, at equality with 32 votes, are I-ABC greedy and AVOA. As it can be observed, the
difference between the algorithms placed in the first three positions is relatively small (2
votes). Similarly, there is a small difference between the algorithm placed in positions four,
five and six. On the other hand, the difference between place three and four is larger (6
votes), indicating that the first three algorithms, when applied for the three engineering
problems considered, performed substantially better than the next three. To test if there
is a significant difference between the two groups, a t-Test Paired Sample was performed.
The results obtained indicate a Pearson correlation of 0.999 and a P(T <= t) two-tail of
0.3168. As it is higher than 0.05, the null hypothesis is accepted, resulting in that there
are no statistically significant differences between the results provided by the best three
algorithms versus the results provided by the next three best algorithms. Thus, it can be
concluded that, although from the 17 algorithms considered EPO is the winner, all of the
first six algorithms can provide similar results and can be used successfully for solving the
three engineering problems considered.

6. General Issues

Eighty five percent of articles that propose new bio-inspired metaheuristics have a high
number of citations, i.e., more than 20/year, in a relatively reduced period in comparison
with the norm in the area of artificial intelligence, where, during a year, the average number
of citations is around 5. This indicates that the issues of finding good optimizers that can be
easily applied to solve different problems is of high interest. However, a high percentage of
the research performed and the subsequently published articles is focused on applications.
An in-depth analysis of the theoretical aspects that influence the performance of the
different operators used and their combination is relatively scarce. However, researchers
are trying to correct this aspect and, in the latest years, a series of studies focusing on the
analysis of theoretical and practical aspects were published [10,409,411,433–436].

The high number of citations was observed mostly for the algorithms for which the
source-code is provided or easy to find. For the majority of these highly cited metaheuristics,
the research focused on two main directions: (i) improvement or hybridization and (ii)
applications—usually without any analysis or motivation for the selection of a particular
algorithm. However, although the rate of publishing new algorithms (and the variants
proposed) is high, studies focusing on the aspects that make an algorithm successful or on
the mechanisms that lead to improvements in performance are quite rare. Therefore, in
order to further advance the knowledge in the area and to establish some comprehensive
basis on which newer, faster and efficient approaches are developed and successfully
applied to problems from various domains, the mechanisms and the influence of different
aspects of the problem/optimizer domain must be analyzed in depth. In the last years, it
was observed that the manuscripts publishing new metaheuristics contain a more detailed
analysis and comparison with other algorithms. However, these studies are predominantly
based on empirical observations gathered from simulations performed on a handful of
benchmarks (mathematical functions such as those proposed in the CEC competitions
and engineering problems such as welded beam, pressure vessel or tension/compression
spring design). The fact that the CEC test problems are considered, until recently, only in
C++ and Matlab can be one explanation for the fact that the majority of these metaheuristics
are implemented in Matlab.

This paper presented a comprehensive list of metaheuristics, with a focus on animals
as a source of inspiration. All the studied works have a similar organization. First, a general
description of the domain is presented, followed by the natural mechanisms used as sources
of inspiration and a section with the implementation strategies used to simulate the natural
mechanisms. In the results section, a set of problems are selected to demonstrate the
strengths and weaknesses of the proposed approach. Although this seems straightforward

198

Mathematics 2021, 9, 2335

and easy to understand, in the metaheuristics area, the main issues are related to the
fact that:

• The biological terminology used is complex and, in many cases, difficult to understand,
which conceals that, in the implementation phase, the mechanisms used are simple
and well-known and are, in fact, variations on the same theme; the work of [437]
tries to shed some light onto the computational mechanisms used by the best-known
metaheuristics. Also, in terms of the real-world mechanisms modeled, some of the
algorithms are ‘weak inspired’, in the sense that the so-called modeled behavior is not
met in the species that give the name of the algorithm [438];

• After overcoming the terminology barrier, upon a closer analysis, some of the so-called
new algorithms not only do not have any novel aspect, but the papers describing
them are incomplete or an implementation following the pseudo-code identifies
other problems. In this regard, the work of Nguyen Van Thieu is worth mentioning,
wherein he strides to implement these in a comprehensive python module with
metaheuristics [438], and identified some of these dummy metaheuristics;

• Although some algorithms are inspired from the same source, the mechanisms mod-
eled are different. For example, for Pidgeon inspired approaches, two algorithms were
identified: PIO, which focuses on the movement of an individual from point A to
point B and POA, which focuses on the movement of pigeons, taking into account the
social interactions;

• There are multiple benchmark libraries that can be used and, in the majority of cases,
the problems chosen by the authors to test the performance are very varied; thus,
a comparison of performance between multiple algorithms based on the published
literature is not always possible. The work of [439] presents the winners of some well-
known competitions where standard benchmarks are used. In addition, as publishing
bad results is sometimes discouraged, only the problems with the best results are
chosen. In [2], it was shown that, in the comparison phase, the number of algorithms,
the number of problems tested and the statistics used can lead to wrong conclusions if
not properly selected;

• In an attempt to create high performance algorithms, the tendency is to include
multiple strategies that have proven efficient over the years, e.g., self-adaptation,
chaos, local search, etc. However, this has led to over-complicated methods that do not
always show a direct correlation between complexity and performance. For example,
for two winners of the CEC2016 competition, simpler versions (without operators
biased towards 0) proved competitive against a large number of metaheuristics and
even performed better for problems with solutions not close to 0 [435].

It can be observed that the source of inspiration follows the main classes identified
in the biological taxonomy. Although the inspiration sources are varied and range from
the behavior of simple organisms to the mechanisms used for survival of the species by
large animals, the simulation of these sources is focused on exploration and exploita-
tion, which translates into mathematical relations that make changes on the individu-
als. As it can be observed from Table 6, the majority of mechanisms used to control the
exploration–exploitation balance in the standard versions belong to the niching class and
are population-based. Overall, the manner in which the mechanisms that simulate the real-
life behavior of animals are implemented and the combinations used represent the main
aspects that differentiate the algorithms and that make them more sensitive or insensitive
to the characteristics of the problem being solved, e.g., multi-modality, separability, etc.

Based on the aspects described above, the following potential directions of research
can be identified:

• Performance measurement: the issue of performance is a complex aspect, especially
taking into account that different metrics can be used. Although the tendency is to
see performance as the capability to provide the best solution, other aspects such
as complexity, computational resources consumed and stability can be employed.
Moreover, how the best solution is identified is usually based on experiments with

199

Mathematics 2021, 9, 2335

mean and standard deviation as validation criteria [440], and a standardization of all
these metrics and criteria of evolution can be a further step in the development of a
general framework for metaheuristics.

• Performance analysis and improvement: identifying the main mechanisms that make a
particular algorithm efficient for a particular class or group of problems. In this context,
a better understanding of the exploration–exploitation balance, convergence analysis,
diversity and the strategies that focus these aspects to a direction or another would help
in providing a better foundation for the improvement of existing variants and creating
new ones. In this regard, some studies focusing on these aspects were published
(examples include: convergence analysis [441–444], fitness landscape analysis [445–
448], exploration–exploitation [449–451]). However, additional research is required to
reach field maturity.

• Algorithm selection: procedures and algorithms that can automatically select the
best metaheuristic for a specific problem or group of problems. A wide level of
applicability is one of the reasons for the popularity of metaheuristics. Thus, better
strategies that can allow an easy identification of suitable algorithms are necessary. In
this context, in the last few years, various methodologies and strategies to compare
and select algorithms were proposed [2,411,433] and recommender systems were
developed [409]. However, they are not widely accepted and applied and additional
research in simplifying and generalizing these aspects is required.

7. Conclusions

This work is a review that focus on the animal-inspired metaheuristics proposed
between 2006–2021. It was observed that, despite the rising number of critiques addressed
to the entire metaheuristic community, the trend of proposing algorithms based on novel
ideas and sources of inspiration does not seem to slow down considerably. In fact, it
maintains the growth rate already observed a few years ago, mainly due to the large area
of applicability and popularity of both the older, more established algorithms such as the
GA, and newer approaches, for which the tendency is to provide the source code and thus
increase the ease of use.

Regarding the animal-based metaheuristics, the most used source of inspiration is
represented by the vertebrates, where easily observable behaviors such as food finding
and mating are mathematically modeled using various approaches. However, a closer
analysis of the inspiration sources indicated that all the main branches of the biological
classification are represented in the metaheuristic world. This shows that researchers are
actively searching for new ideas in unusual places and are not hindered by the difficulties
associated with identifying the mechanisms of the behaviors of hard to analyze sources,
such as animals living in remote and difficult to reach areas. In fact, the more exotic the
inspiration source and the more uncommon the behavior, the higher the probability of
finding new mechanisms that can be translated into truly novel approaches.

The main directions of research that were identified focus on the proposal of new
metaheuristics and their application for various types of problems and only a few studies
tackle the influence of specific operators or mechanisms on performance. Better performing
algorithms are always desired and using nature as a source of inspiration can lead to new
advances in this field of metaheuristics. However, attention must be paid not only to the
source of inspiration but also to how this inspiration is modelled and put into practice. Sim-
ilarity with existing variants, performance, complexity, exploration–exploitation balance,
proper comparison and use of benchmarks must also be taken into account. An in-depth
analysis of all the aspects that influence the performance behavior and the relations with the
characteristics of the problems being solved can benefit both the metaheuristic community
and the areas where these algorithms are applied.

Author Contributions: E.N.D. design the study and drafted the work. V.D. performed the literature
search, revised and completed the manuscript. All authors have read and agreed to the published
version of the manuscript.

200

Mathematics 2021, 9, 2335

Funding: This work was supported by project PN-III-P4-ID-PCE no 58/2021 financed by
UEFISCDI, Romania.

Acknowledgments: The authors want to thank Florin Leon for his valuable insights and suggestions
regarding the use of animal inspired metaheuristics.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Salcedo-Sanz, S. Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures.
Phys. Rep. 2016, 655, 1–70. [CrossRef]

2. Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2018, 52,
2191–2233. [CrossRef]

3. Nabaei, A.; Hamian, M.; Parsaei, M.R.; Safdari, R.; Samad-Soltani, T.; Zarrabi, H.; Ghassemi, A. Topologies and performance of
intelligent algorithms: A comprehensive review. Artif. Intell. Rev. 2016, 49, 79–103. [CrossRef]

4. Del Ser, J.; Osaba, E.; Molina, D.; Yang, X.S.; Salcedo-Sanz, S.; Camacho, D.; Das, S.; Suganthan, P.N.; Coello, C.A.C.; Herrera, F.
Bio-inspired computation: Where we stand and what’s next. Swarm Evol. Comput. 2019, 48, 220–250. [CrossRef]

5. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
6. Lam, A.; Li, V.O.K. Chemical-Reaction-Inspired Metaheuristic for Optimization. IEEE Trans. Evol. Comput. 2009, 14, 381–399.

[CrossRef]
7. Adam, S.P.; Alexandropoulos, S.A.N.; Pardalos, P.M.; Vrahatis, M.N. No Free Lunch Theorem: A Review. In Approximation and

Optimization: Algorithms, Complexity and Applications; Demetriou, I.C., Pardalos, P.M., Eds.; Springer International Publishing:
Cham, Switzerland, 2019; pp. 57–82.

8. Hosseini, S.; Al Khaled, A. A survey on the Imperialist Competitive Algorithm metaheuristic: Implementation in engineering
domain and directions for future research. Appl. Soft Comput. 2014, 24, 1078–1094. [CrossRef]

9. Doğan, B.; Ölmez, T. A new metaheuristic for numerical function optimization: Vortex Search algorithm. Inf. Sci. 2015, 293,
125–145. [CrossRef]

10. Stegherr, H.; Heider, M.; Hähner, J. Classifying Metaheuristics: Towards a unified multi-level classification system. Nat. Comput.
2020, 1–17. [CrossRef]

11. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer
for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]

12. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural
Comput. Appl. 2016, 27, 495–513. [CrossRef]

13. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
14. Glover, F. Tabu search—Part I. ORSA J. Comput. 1989, 1, 190–206. [CrossRef]
15. Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [CrossRef]
16. Lourenço, H.R.; Martin, O.C.; Stützle, T. Iterated Local Search. In Handbook of Metaheuristics; Springer: Boston, MA, USA, 2003;

pp. 320–353.
17. Turky, A.M.; Abdullah, S. A multi-population electromagnetic algorithm for dynamic optimisation problems. Appl. Soft Comput.

2014, 22, 474–482. [CrossRef]
18. Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. Nicso 2010 Nat. Inspired Coop. Strateg. Optim. 2010, 284, 65–74.
19. Ahandani, M.A. A diversified shuffled frog leaping: An application for parameter identification. Appl. Math. Comput. 2014, 239,

1–16. [CrossRef]
20. Zheng, Y.-J. Water wave optimization: A new nature-inspired metaheuristic. Comput. Oper. Res. 2015, 55, 1–11. [CrossRef]
21. Moghdani, R.; Salimifard, K. Volleyball Premier League Algorithm. Appl. Soft Comput. 2018, 64, 161–185. [CrossRef]
22. Molina, D.; Poyatos, J.; Del Ser, J.; García, S.; Hussain, A.; Herrera, F. Comprehensive taxonomies of nature-and bio-inspired

optimization: Inspiration versus algorithmic behavior, critical analysis recommendations. Cogn. Comput. 2020, 12, 897–939.
[CrossRef]

23. Fausto, F.; Reyna-Orta, A.; Cuevas, E.; Andrade, G.; Perez-Cisneros, M. From ants to whales: Metaheuristics for all tastes. Artif.
Intell. Rev. 2019, 53, 753–810. [CrossRef]

24. Brabazon, A.; McGarraghy, S. Formal Models of Foraging. In Foraging-Inspired Optimisation Algorithms; Brabazon, A., McGarraghy,
S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 23–44.

25. Zhu, G.-Y.; Zhang, W.-B. Optimal foraging algorithm for global optimization. Appl. Soft Comput. 2017, 51, 294–313. [CrossRef]
26. Brabazon, A.; Cui, W.; O’Neill, M. The raven roosting optimisation algorithm. Soft Comput. 2015, 20, 525–545. [CrossRef]
27. Brabazon, A.; McGarraghy, S. Introduction to Foraging-Inspired Algorithms. In Foraging-Inspired Optimisation Algorithms;

Brabazon, A., McGarraghy, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 87–101.
28. Askarzadeh, A. Bird mating optimizer: An optimization algorithm inspired by bird mating strategies. Commun. Nonlinear Sci.

Numer. Simul. 2014, 19, 1213–1228. [CrossRef]
29. Yang, X.-S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired

Computing (NaBIC), IEEE, Coimbatore, India, 9–11 December 2009.

201

Mathematics 2021, 9, 2335

30. Wang, L.; Yin, Y.; Zhong, Y. Cuckoo search with varied scaling factor. Front. Comput. Sci. 2015, 9, 623–635. [CrossRef]
31. Chawla, M.; Duhan, M. Levy Flights in Metaheuristics Optimization Algorithms—A Review. Appl. Artif. Intell. 2018, 32, 802–821.

[CrossRef]
32. Rakhshani, H.; Rahati, A. Snap-drift cuckoo search: A novel cuckoo search optimization algorithm. Appl. Soft Comput. 2017, 52,

771–794. [CrossRef]
33. Joshi, A.; Kulkarni, O.; Kakandikar, G.; Nandedkar, V. Cuckoo Search Optimization—A Review. Mater. Today Proc. 2017, 4,

7262–7269. [CrossRef]
34. Rajabioun, R. Cuckoo Optimization Algorithm. Appl. Soft Comput. 2011, 11, 5508–5518. [CrossRef]
35. Moosavi, S.H.S.; Bardsiri, V.K. Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software

development effort estimation. Eng. Appl. Artif. Intell. 2017, 60, 1–15. [CrossRef]
36. Yang, X.S.; Deb, S. Eagle strategy using Levy walk and firefly algorithms for stochastic optimization. In Nature Inspired Cooperative

Strategies for Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; pp. 101–111.
37. Yang, X.-S. Nature-inspired metaheuristic algorithms; Luniver press: Bristol, UK, 2010.
38. Yang, X.-S.; Deb, S. Two-stage eagle strategy with differential evolution. Int. J. Bio-Inspired Comput. 2012, 4, 1–5. [CrossRef]
39. Gandomi, A.H.; Yang, X.-S.; Talatahari, S.; Deb, S. Coupled eagle strategy and differential evolution for unconstrained and

constrained global optimization. Comput. Math. Appl. 2012, 63, 191–200. [CrossRef]
40. Talatahari, S.; Gandomi, A.H.; Yang, X.-S.; Deb, S. Optimum design of frame structures using the Eagle Strategy with Differential

Evolution. Eng. Struct. 2015, 91, 16–25. [CrossRef]
41. Storn, R.; Price, K. Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces.

J. Glob. Optim. 1995, 11, 341–359. [CrossRef]
42. Meng, X.; Liu, Y.; Gao, X.; Zhang, H. A New Bio-inspired Algorithm: Chicken Swarm Optimization. In Advances in Swarm

Intelligence, Pt1; Tan, Y., Shi, Y., Coello, C.A.C., Eds.; Springer: Cham, Switzerland, 2014; pp. 86–94.
43. Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm.

Comput. Struct. 2016, 169, 1–12. [CrossRef]
44. Jain, M.; Maurya, S.; Rani, A.; Singh, V. Owl search algorithm: A novel nature-inspired heuristic paradigm for global optimization.

J. Intell. Fuzzy Syst. 2018, 34, 1573–1582. [CrossRef]
45. Zhuoran, Z.; Changqiang, H.; Hanqiao, H.; Shangqin, T.; Kangsheng, D. An optimization method: Hummingbirds optimization

algorithm. J. Syst. Eng. Electron. 2018, 29, 386–404.
46. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Futur. Gener. Comput. Syst. 2019, 97, 849–887. [CrossRef]
47. Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic

optimization algorithm. Comput. Ind. Eng. 2021, 157, 10725. [CrossRef]
48. Mohammadi-Balani, A.; Nayeri, M.D.; Azar, A.; Taghizadeh-Yazdi, M. Golden eagle optimizer: A nature-inspired metaheuristic

algorithm. Comput. Ind. Eng. 2020, 152, 107050. [CrossRef]
49. Sun, J.; Lei, X. Geese-inspired hybrid particle swarm optimization algorithm for traveling salesman problem. In Proceedings of the

2009 International Conference on Artificial Intelligence and Computational Intelligence, IEEE, Shanghai, China, 7–8 November 2009.
50. Duman, E.; Uysal, M.; Alkaya, A.F. Migrating Birds Optimization: A new metaheuristic approach and its performance on

quadratic assignment problem. Inf. Sci. 2012, 217, 65–77. [CrossRef]
51. Goel, S. Pigeon Optimization Algorithm: A Novel Approach for Solving Optimization Problems. In Proceedings of the 2014

International Conference on Data Mining and Intelligent Computing (Icdmic), IEEE, Delhi, India, 5–6 September 2014.
52. Duan, H.; Qiao, P. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. Int. J. Intell.

Comput. Cybern. 2014, 7, 24–37. [CrossRef]
53. Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering

problems. Knowl. Based Syst. 2018, 165, 169–196. [CrossRef]
54. Dhiman, G.; Kaur, A. STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Eng. Appl. Artif. Intell.

2019, 82, 148–174. [CrossRef]
55. Dhiman, G.; Kumar, V. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowl. Based Syst. 2018,

159, 20–50. [CrossRef]
56. Harifi, S.; Khalilian, M.; Mohammadzadeh, J.; Ebrahimnejad, S. Emperor Penguins Colony: A new metaheuristic algorithm for

optimization. Evol. Intell. 2019, 12, 1–16. [CrossRef]
57. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuris-

tic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [CrossRef]
58. Amiri, K.; Niknam, T. Optimal Planning of a Multi-carrier Energy Hub Using the Modified Bird Mating Optimizer. Iran. J. Sci.

Technol. Trans. Electr. Eng. 2018, 43, 517–526. [CrossRef]
59. Ahmadi, M.; Kazemi, K.; Aarabi, A.; Niknam, T.; Helfroush, M.S. Image segmentation using multilevel thresholding based on

modified bird mating optimization. Multimed. Tools Appl. 2019, 78, 23003–23027. [CrossRef]
60. Sadeeq, H.; Abdulazeez, A.; Kako, N.; Abrahim, A. A Novel Hybrid Bird Mating Optimizer with Differential Evolution

for Engineering Design Optimization Problems. In Proceedings of the International Conference of Reliable Information and
Communication Technology, Johor Bahru, Malaysia, 23–24 April 2017.

202

Mathematics 2021, 9, 2335

61. Zhang, Q.; Yu, G.; Song, H. A hybrid bird mating optimizer algorithm with teaching-learning-based optimization for global
numerical optimization. Stat. Optim. Inf. Comput. 2015, 3, 54–65. [CrossRef]

62. Zhu, J.; Huang, M.; Lu, Z. Bird mating optimizer for structural damage detection using a hybrid objective function. Swarm Evol.
Comput. 2017, 35, 41–52. [CrossRef]

63. Goswami, D.; Chakraborty, S. Multi-objective optimization of electrochemical discharge machining processes: A posteriori
approach based on bird mating optimizer. Opsearch 2016, 54, 306–335. [CrossRef]

64. Skarzadeh, A.; Coelho, L.D.S. Determination of photovoltaic modules parameters at different operating conditions using a novel
bird mating optimizer approach. Energy Convers. Manag. 2015, 89, 608–614. [CrossRef]

65. Zouache, D.; Arby, Y.O.; Nouioua, F.; Ben Abdelaziz, F. Multi-objective chicken swarm optimization: A novel algorithm for
solving multi-objective optimization problems. Comput. Ind. Eng. 2019, 129, 377–391. [CrossRef]

66. Chen, Y.L.; He, P.L.; Zhang, Y.H. Combining Penalty Function with Modified Chicken Swarm Optimization for Constrained
Optimization. In Proceedings of the First International Conference on Information Sciences, Machinery, Materials and Energy,
Congqing, China, 11–13 April 2015.

67. Wu, D.; Kong, F.; Gao, W.; Shen, Y.; Ji, Z. Improved chicken swarm optimization. In Proceedings of the 2015 IEEE International
Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER); IEEE, Shenyang, China, 8–12 June 2015.

68. Khan, A.; Shah, R.; Bukhari, J.; Akhter, N.; Attaullah; Idrees, M.; Ahmad, H. A Novel Chicken Swarm Neural Network Model for
Crude Oil Price Prediction. In Advances on Computational Intelligence in Energy; Springer: Cham, Switzerland, 2019; pp. 39–58.

69. Liu, D.; Liu, C.; Fu, Q.; Li, T.; Khan, M.I.; Cui, S.; Faiz, M.A. Projection pursuit evaluation model of regional surface water
environment based on improved chicken swarm optimization algorithm. Water Resour. Manag. 2018, 32, 1325–1342. [CrossRef]

70. Banerjee, S.; Chattopadhyay, S. Improved serially concatenated convolution turbo code (SCCTC) using chicken swarm opti-
mization. In Proceedings of the 2015 IEEE Power, Communication and Information Technology Conference (PCITC), IEEE,
Bhubaneswar, India, 15–17 October 2015.

71. Javidi, A.; Salajegheh, E.; Salajegheh, J. Enhanced crow search algorithm for optimum design of structures. Appl. Soft Comput.
2019, 77, 274–289. [CrossRef]

72. Díaz, P.; Pérez-Cisneros, M.; Cuevas, E.; Avalos, O.; Gálvez, J.; Hinojosa, S.; Zaldivar, D. An Improved Crow Search Algorithm
Applied to Energy Problems. Energies 2018, 11, 571. [CrossRef]

73. Hinojosa, S.; Oliva, D.; Cuevas, E.; Pajares, G.; Avalos, O.; Gálvez, J. Improving multi-criterion optimization with chaos: A novel
Multi-Objective Chaotic Crow Search Algorithm. Neural Comput. Appl. 2018, 29, 319–335. [CrossRef]

74. Sayed, G.I.; Hassanien, A.E.; Azar, A.T. Feature selection via a novel chaotic crow search algorithm. Neural Comput. Appl. 2017, 31,
171–188. [CrossRef]

75. Dos Santos Coelho, L.; Richter, C.; Mariani, V.C.; Askarzadeh, A. Modified crow search approach applied to electromagnetic
optimization. In Proceedings of the 2016 IEEE Conference on Electromagnetic Field Computation (CEFC), IEEE, Miami, FL, USA,
11–13 November 2016.

76. Gupta, D.; Sundaram, S.; Khanna, A.; Hassanien, A.E.; De Albuquerque, V.H.C. Improved diagnosis of Parkinson’s disease using
optimized crow search algorithm. Comput. Electr. Eng. 2018, 68, 412–424. [CrossRef]

77. Oliva, D.; Hinojosa, S.; Cuevas, E.; Pajares, G.; Avalos, O.; Galvez, J. Cross entropy based thresholding for magnetic resonance
brain images using Crow Search Algorithm. Expert Syst. Appl. 2017, 79, 164–180. [CrossRef]

78. Chi, R.; Su, Y.-X.; Zhang, D.-H.; Chi, X.-X.; Zhang, H.-J. A hybridization of cuckoo search and particle swarm optimization for
solving optimization problems. Neural Comput. Appl. 2017, 31, 653–670. [CrossRef]

79. Feng, Y.; Wang, G.-G.; Feng, Q.; Zhao, X.-J. An Effective Hybrid Cuckoo Search Algorithm with Improved Shuffled Frog Leaping
Algorithm for 0-1 Knapsack Problems. Comput. Intell. Neurosci. 2014, 2014, 857254. [CrossRef]

80. Wang, L.; Zhong, Y. Cuckoo Search Algorithm with Chaotic Maps. Math. Probl. Eng. 2015, 2015, 1–14. [CrossRef]
81. Khodier, M. Comprehensive study of linear antenna array optimisation using the cuckoo search algorithm. IET Microw. Antennas

Propag. 2019, 13, 1325–1333. [CrossRef]
82. Ikeda, S.; Ooka, R. Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy

storage, and heat source in a building energy system. Appl. Energy 2015, 151, 192–205. [CrossRef]
83. Afzalan, E.; Joorabian, M. An improved cuckoo search algorithm for power economic load dispatch. Int. Trans. Electr. Energy Syst.

2014, 25, 958–975. [CrossRef]
84. Shokri-Ghaleh, H.; Alfi, A. A comparison between optimization algorithms applied to synchronization of bilateral teleoperation

systems against time delay and modeling uncertainties. Appl. Soft Comput. 2014, 24, 447–456. [CrossRef]
85. Gheisarnejad, M. An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load

frequency control. Appl. Soft Comput. 2018, 65, 121–138. [CrossRef]
86. Mahmoudi, S.; Lotfi, S. Modified cuckoo optimization algorithm (MCOA) to solve graph coloring problem. Appl. Soft Comput.

2015, 33, 48–64. [CrossRef]
87. Mohammadrezapour, O.; YoosefDoost, I.; Ebrahimi, M. Cuckoo optimization algorithm in optimal water allocation and crop

planning under various weather conditions (case study: Qazvin plain, Iran). Neural Comput. Appl. 2017, 31, 1879–1892. [CrossRef]
88. Bayati, M. Using cuckoo optimization algorithm and imperialist competitive algorithm to solve inverse kinematics problem for

numerical control of robotic manipulators. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2015, 229, 375–387. [CrossRef]

203

Mathematics 2021, 9, 2335

89. Dhiman, G.; Oliva, D.; Kaur, A.; Singh, K.K.; Vimal, S.; Sharma, A.; Cengiz, K. BEPO: A novel binary emperor penguin optimizer
for automatic feature selection. Knowl. Based Syst. 2020, 211, 106560. [CrossRef]

90. Kaur, H.; Rai, A.; Bhatia, S.S.; Dhiman, G. MOEPO: A novel Multi-objective Emperor Penguin Optimizer for global optimization:
Special application in ranking of cloud service providers. Eng. Appl. Artif. Intell. 2020, 96, 104008. [CrossRef]

91. Baliarsingh, S.K.; Vipsita, S.; Muhammad, K.; Bakshi, S. Analysis of high-dimensional biomedical data using an evolutionary
multi-objective emperor penguin optimizer. Swarm Evol. Comput. 2019, 48, 262–273. [CrossRef]

92. Dhiman, G. ESA: A hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng. Comput. 2019, 37,
323–353. [CrossRef]

93. Baliarsingh, S.K.; Ding, W.; Vipsita, S.; Bakshi, S. A memetic algorithm using emperor penguin and social engineering optimization
for medical data classification. Appl. Soft Comput. 2019, 85, 105773. [CrossRef]

94. Xing, Z. An improved emperor penguin optimization based multilevel thresholding for color image segmentation. Knowl. Based
Syst. 2020, 194, 105570. [CrossRef]

95. Harifi, S.; Mohammadzadeh, J.; Khalilian, M.; Ebrahimnejad, S. Hybrid-EPC: An Emperor Penguins Colony algorithm with
crossover and mutation operators and its application in community detection. Prog. Artif. Intell. 2021, 10, 181–193. [CrossRef]

96. Harifi, S.; Khalilian, M.; Mohammadzadeh, J.; Ebrahimnejad, S. Optimization in solving inventory control problem using nature
inspired Emperor Penguins Colony algorithm. J. Intell. Manuf. 2020, 32, 1361–1375. [CrossRef]

97. Harifi, S.; Khalilian, M.; Mohammadzadeh, J.; Ebrahimnejad, S. Optimizing a Neuro-Fuzzy System Based on Nature-Inspired
Emperor Penguins Colony Optimization Algorithm. IEEE Trans. Fuzzy Syst. 2020, 28, 1110–1124. [CrossRef]

98. Chen, H.; Jiao, S.; Wang, M.; Heidari, A.A.; Zhao, X. Parameters identification of photovoltaic cells and modules using
diversification-enriched Harris hawks optimization with chaotic drifts. J. Clean. Prod. 2019, 244, 118778. [CrossRef]

99. Zhang, Y.; Liu, R.; Wang, X.; Chen, H.; Li, C. Boosted binary Harris hawks optimizer and feature selection. Eng. Comput. 2021, 37,
3741–3770. [CrossRef]

100. Chen, H.; Heidari, A.A.; Chen, H.; Wang, M.; Pan, Z.; Gandomi, A.H. Multi-population differential evolution-assisted Harris
hawks optimization: Framework and case studies. Future Gener. Comput. Syst. 2020, 111, 175–198. [CrossRef]

101. Essa, F.; Elaziz, M.A.; Elsheikh, A. An enhanced productivity prediction model of active solar still using artificial neural network
and Harris Hawks optimizer. Appl. Therm. Eng. 2020, 170, 115020. [CrossRef]

102. Meng, T.; Pan, Q.-K.; Li, J.-Q.; Sang, H.-Y. An improved migrating birds optimization for an integrated lot-streaming flow shop
scheduling problem. Swarm Evol. Comput. 2018, 38, 64–78. [CrossRef]

103. Segredo, E.; Lalla-Ruiz, E.; Hart, E.; Voß, S. On the performance of the hybridisation between migrating birds optimisation
variants and differential evolution for large scale continuous problems. Expert Syst. Appl. 2018, 102, 126–142. [CrossRef]

104. Sioud, A.; Gagné, C. Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence
dependent setup times. Eur. J. Oper. Res. 2018, 264, 66–73. [CrossRef]

105. Zhang, B.; Pan, Q.-K.; Gao, L.; Zhang, X.-L.; Sang, H.-Y.; Li, J.-Q. An effective modified migrating birds optimization for hybrid
flowshop scheduling problem with lot streaming. Appl. Soft Comput. 2017, 52, 14–27. [CrossRef]

106. Gao, L.; Pan, Q.-K. A shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained flexible job shop
scheduling problem. Inf. Sci. 2016, 372, 655–676. [CrossRef]

107. Niroomand, S.; Hadi-Vencheh, A.; Şahin, R.; Vizvári, B. Modified migrating birds optimization algorithm for closed loop layout
with exact distances in flexible manufacturing systems. Expert Syst. Appl. 2015, 42, 6586–6597. [CrossRef]

108. Pan, Q.-K.; Dong, Y. An improved migrating birds optimisation for a hybrid flowshop scheduling with total flowtime minimisation.
Inf. Sci. 2014, 277, 643–655. [CrossRef]

109. Jain, M.; Singh, V.; Rani, A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput.
2019, 44, 148–175. [CrossRef]

110. Andrea, H.; Aranguren, I.; Oliva, D.; Abd Elaziz, M.; Cuevas, E. Efficient image segmentation through 2D histograms and an
improved owl search algorithm. Int. J. Mach. Learn. Cybern. 2021, 12, 131–150.

111. El-Ashmawi, W.H.; Elminaam, D.S.A.; Nabil, A.M.; Eldesouky, E. A chaotic owl search algorithm based bilateral negotiation
model. Ain Shams Eng. J. 2020, 11, 1163–1178. [CrossRef]

112. Mandal, A.K.; Sen, R.; Chakraborty, B. Binary owl search algorithm for feature subset selection. In Proceedings of the 2019 IEEE
10th International Conference on Awareness Science and Technology (iCAST), IEEE, Morioka, Japan, 23–25 October 2019.

113. Zhong, Y.; Wang, L.; Lin, M.; Zhang, H. Discrete pigeon-inspired optimization algorithm with Metropolis acceptance criterion for
large-scale traveling salesman problem. Swarm Evol. Comput. 2019, 48, 134–144. [CrossRef]

114. Wang, H.; Zhang, Z.; Dai, Z.; Chen, J.; Zhu, X.; Du, W.; Cao, X. Heterogeneous pigeon-inspired optimization. Sci. China Inf. Sci.
2019, 62, 70205. [CrossRef]

115. Yang, Z.; Duan, H.; Fan, Y.; Deng, Y. Automatic Carrier Landing System multilayer parameter design based on Cauchy Mutation
Pigeon-Inspired Optimization. Aerosp. Sci. Technol. 2018, 79, 518–530. [CrossRef]

116. Deng, Y.; Duan, H. Control parameter design for automatic carrier landing system via pigeon-inspired optimization.
Nonlinear Dyn. 2016, 85, 97–106. [CrossRef]

117. Qiu, H.; Duan, H. Multi-objective pigeon-inspired optimization for brushless direct current motor parameter design. Sci. China
Ser. E Technol. Sci. 2015, 58, 1915–1923. [CrossRef]

204

Mathematics 2021, 9, 2335

118. Zhang, B.; Duan, H. Predator-Prey Pigeon-Inspired Optimization for UAV Three-Dimensional Path Planning. In Advances in
Swarm Intelligence, Icsi 2014, Pt Ii; Tan, Y., Shi, Y., Coello, C.A.C., Eds.; Springer: Cham, Switzerland, 2014; pp. 96–105.

119. Jiang, F.; He, J.; Zeng, Z. Pigeon-inspired optimization and extreme learning machine via wavelet packet analysis for predicting
bulk commodity futures prices. Sci. China Inf. Sci. 2019, 62, 70204. [CrossRef]

120. Torabi, S.; Safi-Esfahani, F. Improved Raven Roosting Optimization algorithm (IRRO). Swarm Evol. Comput. 2018, 40, 144–154.
[CrossRef]

121. Torabi, S.; Safi-Esfahani, F. A dynamic task scheduling framework based on chicken swarm and improved raven roosting
optimization methods in cloud computing. J. Supercomput. 2018, 74, 2581–2626. [CrossRef]

122. Zhang, S.; Zhou, Y.; Luo, Q. A Complex-Valued Encoding Satin Bowerbird Optimization Algorithm for Global Optimization.
Evolving Systems 2021, 12, 191–205. [CrossRef]

123. El-Hay, E.; El-Hameed, M.; El-Fergany, A. Steady-state and dynamic models of solid oxide fuel cells based on Satin Bowerbird
Optimizer. Int. J. Hydrogen Energy 2018, 43, 14751–14761. [CrossRef]

124. Dhiman, G.; Singh, K.K.; Soni, M.; Nagar, A.; Dehghani, M.; Slowik, A.; Kaur, A.; Sharma, A.; Houssein, E.H.; Cengiz, K. MOSOA:
A new multi-objective seagull optimization algorithm. Expert Syst. Appl. 2020, 167, 114150. [CrossRef]

125. Che, Y.; He, D. A Hybrid Whale Optimization with Seagull Algorithm for Global Optimization Problems. Math. Probl. Eng. 2021,
2021, 1–31.

126. Das, G.; Panda, R. Seagull-Cuckoo Search Algorithm for Function Optimization. In Proceedings of the 2021 6th International
Conference for Convergence in Technology (I2CT), IEEE, Maharashtra, India, 2–4 April 2021.

127. Jia, H.; Xing, Z.; Song, W. A New Hybrid Seagull Optimization Algorithm for Feature Selection. IEEE Access 2019, 7, 49614–49631.
[CrossRef]

128. Ali, H.H.; Fathy, A.; Kassem, A.M. Optimal model predictive control for LFC of multi-interconnected plants comprising renewable
energy sources based on recent sooty terns approach. Sustain. Energy Technol. Assess. 2020, 42, 100844. [CrossRef]

129. Addi, N.S.; Abdullah, S.; Hamdan, A.R. Multi-population cooperative bat algorithm-based optimization of artificial neural
network model. Inf. Sci. 2015, 294, 628–644.

130. Rekaby, A. Directed Artificial Bat Algorithm (DABA)-A new bio-inspired algorithm. In Proceedings of the 2013 International
Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, Mysore, India, 22–25 August 2013.

131. Topal, A.O.; Altun, O. A novel meta-heuristic algorithm: Dynamic Virtual Bats Algorithm. Inf. Sci. 2016, 354, 222–235. [CrossRef]
132. Kaveh, A.; Farhoudi, N. A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 2013, 59, 53–70. [CrossRef]
133. Ebrahimi, A.; Khamehchi, E. Sperm whale algorithm: An effective metaheuristic algorithm for production optimization problems.

J. Nat. Gas Sci. Eng. 2016, 29, 211–222. [CrossRef]
134. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
135. Gharehchopogh, F.S.; Gholizadeh, H. A comprehensive survey: Whale Optimization Algorithm and its applications.

Swarm Evol. Comput. 2019, 48, 1–24. [CrossRef]
136. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
137. KKumar, V.; Kumar, D. An astrophysics-inspired Grey wolf algorithm for numerical optimization and its application to engineer-

ing design problems. Adv. Eng. Softw. 2017, 112, 231–254. [CrossRef]
138. Fong, S.; Deb, S.; Yang, X.-S. A heuristic optimization method inspired by wolf preying behavior. Neural Comput. Appl. 2015, 26,

1725–1738. [CrossRef]
139. Bansal, J.C.; Sharma, H.; Jadon, S.S.; Clerc, M. Spider Monkey Optimization algorithm for numerical optimization.

Memetic Comput. 2014, 6, 31–47. [CrossRef]
140. Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [CrossRef]
141. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. Artificial gorilla troops optimizer: A new nature-inspired metaheuristic

algorithm for global optimization problems. Int. J. Intell. Syst. 2021, 36, 5887–5958. [CrossRef]
142. Dhiman, G.; Kumar, V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications.

Adv. Eng. Softw. 2017, 114, 48–70. [CrossRef]
143. Rajakumar, B.R. The Lion’s Algorithm: A New Nature-Inspired Search Algorithm. Procedia Technol. 2012, 6, 126–135. [CrossRef]
144. Yazdani, M.; Jolai, F. Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 2015,

3, 24–36. [CrossRef]
145. Kaveh, A.; Mahjoubi, S. Lion Pride Optimization Algorithm: A meta-heuristic method for global optimization problems. Sci. Iran.

2018, 25, 3113–3132. [CrossRef]
146. I Mohammad, T.M.H.; Mohammad, H.B.; Shirzadi, M.T.M.H.; Bagheri, M.H. A novel meta-heuristic algorithm for numerical

function optimization: Blind, naked mole-rats (BNMR) algorithm. Sci. Res. Essays 2012, 7, 3566–3583. [CrossRef]
147. Deb, S.; Fong, S.; Tian, Z. Elephant search algorithm for optimization problems. In Proceedings of the 2015 Tenth International

Conference on Digital Information Management (ICDIM), IEEE, Jeju, Korea, 21–23 October 2015.
148. Wang, G.G.; Deb, S.; Coelho, L.D.S. Elephant Herding Optimization. In Proceedings of the 2015 3rd International Symposium on

Computational and Business Intelligence, IEEE, Bali, Indonesia, 7–9 December 2015.
149. Wang, G.G.; Deb, S.; Gao, X.Z.; Coelho, L.D.S. A new metaheuristic optimisation algorithm motivated by elephant herding

behaviour. Int. J. Bio-Inspired Comput. 2016, 8, 394. [CrossRef]

205

Mathematics 2021, 9, 2335

150. Osaba, E.; Yang, X.-S.; Fister, I.; Del Ser, J.; Lopez-Garcia, P.; Vazquez-Pardavila, A.J. A Discrete and Improved Bat Algorithm for
solving a medical goods distribution problem with pharmacological waste collection. Swarm Evol. Comput. 2019, 44, 273–286.
[CrossRef]

151. Chakri, A.; Khelif, R.; Benouaret, M.; Yang, X.-S. New directional bat algorithm for continuous optimization problems.
Expert Syst. Appl. 2017, 69, 159–175. [CrossRef]

152. Meng, X.-B.; Gao, X.; Liu, Y.; Zhang, H. A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization.
Expert Syst. Appl. 2015, 42, 6350–6364. [CrossRef]

153. Yılmaz, S.; Kucuksille, E.U. A new modification approach on bat algorithm for solving optimization problems. Appl. Soft Comput.
2015, 28, 259–275. [CrossRef]

154. Fister, I., Jr.; Fister, D.; Yang, X.S. A hybrid bat algorithm. arXiv 2013, arXiv:1303.6310.
155. Mirjalili, S.; Mirjalili, S.M.; Yang, X.S. Binary bat algorithm. Neural Comput. Appl. 2014, 25, 663–681. [CrossRef]
156. Hong, W.-C.; Li, M.-W.; Geng, J.; Zhang, Y. Novel chaotic bat algorithm for forecasting complex motion of floating platforms.

Appl. Math. Model. 2019, 72, 425–443. [CrossRef]
157. Ahmadlou, M.; Karimi, M.; Alizadeh, S.; Shirzadi, A.; Parvinnejhad, D.; Shahabi, H.; Panahi, M. Flood susceptibility assessment

using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and
BAT algorithms (BA). Geocarto Int. 2018, 34, 1252–1272. [CrossRef]

158. Dao, T.-K.; Pan, T.-S.; Nguyen, T.-T.; Pan, J.-S. Parallel bat algorithm for optimizing makespan in job shop scheduling problems. J.
Intell. Manuf. 2015, 29, 451–462. [CrossRef]

159. Osaba, E.; Yang, X.-S.; Diaz, F.; Lopez-Garcia, P.; Carballedo, R. An improved discrete bat algorithm for symmetric and asymmetric
Traveling Salesman Problems. Eng. Appl. Artif. Intell. 2016, 48, 59–71. [CrossRef]

160. Bahmani-Firouzi, B.; Azizipanah-Abarghooee, R. Optimal sizing of battery energy storage for micro-grid operation management
using a new improved bat algorithm. Int. J. Electr. Power Energy Syst. 2014, 56, 42–54. [CrossRef]

161. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H.; Talatahari, S. Bat algorithm for constrained optimization tasks. Neural Comput. Appl.
2012, 22, 1239–1255. [CrossRef]

162. Hasançebi, O.; Teke, T.; Pekcan, O. A bat-inspired algorithm for structural optimization. Comput. Struct. 2013, 128, 77–90.
[CrossRef]

163. Taherdangkoo, M.; Shirzadi, M.H.; Yazdi, M.; Bagheri, M.H. A robust clustering method based on blind, naked mole-rats (BNMR)
algorithm. Swarm Evol. Comput. 2013, 10, 1–11. [CrossRef]

164. Kaur, M.; Kaur, R.; Singh, N.; Dhiman, G. SChoA: A newly fusion of sine and cosine with chimp optimization algorithm for HLS
of datapaths in digital filters and engineering applications. Eng. Comput. 2021, 1–29. [CrossRef]

165. Khishe, M.; Mosavi, M. Classification of underwater acoustical dataset using neural network trained by Chimp Optimization
Algorithm. Appl. Acoust. 2019, 157, 107005. [CrossRef]

166. Kaveh, A.; Hosseini, P. A simplified dolphin echolocation optimization method for optimum design of trusses. Iran Univ. Sci.
Technol. 2014, 4, 381–397.

167. Daryan, A.S.; Palizi, S.; Farhoudi, N. Optimization of plastic analysis of moment frames using modified dolphin echolocation
algorithm. Adv. Struct. Eng. 2019, 22, 2504–2516. [CrossRef]

168. Gholizadeh, S.; Poorhoseini, H. Optimum design of steel frame structures by a modified dolphin echolocation algorithm. Struct.
Eng. Mech. 2015, 55, 535–554. [CrossRef]

169. Lenin, K.; Reddy, B.R.; Kalavathi, M.S. Dolphin echolocation algorithm for solving optimal reactive power dispatch problem. Int.
J. Comput. 2014, 12, 1–15.

170. Topal, A.O.; Yildiz, Y.E.; Ozkul, M. Improved Dynamic Virtual Bats Algorithm for Global Numerical Optimization. In Proceedings
of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 25–27 October 2017.

171. Elhosseini, M.A.; El Sehiemy, R.A.; Rashwan, Y.I.; Gao, X. On the performance improvement of elephant herding optimization
algorithm. Knowl. Based Syst. 2019, 166, 58–70. [CrossRef]

172. Jafari, M.; Salajegheh, E.; Salajegheh, J. An efficient hybrid of elephant herding optimization and cultural algorithm for optimal
design of trusses. Eng. Comput. 2018, 35, 781–801. [CrossRef]

173. Sadouki, S.C.; Tari, A. Multi-objective and discrete Elephants Herding Optimization algorithm for QoS aware web service
composition. RAIRO Oper. Res. 2019, 53, 445–459. [CrossRef]

174. Tuba, E.; Capor-Hrosik, R.; Alihodzic, A.; Jovanovic, R.; Tuba, M. Chaotic elephant herding optimization algorithm. In Proceedings
of the 2018 IEEE 16th World Symposium on Applied Machine Intelligence and Informatics (SAMI); IEEE, Kosice and Herlany,
Slovakia, 7–10 February 2018.

175. Xu, H.; Cao, Q.; Fu, H.; Fu, C.; Chen, H.; Su, J. Application of Support Vector Machine Model Based on an Improved Elephant
Herding Optimization Algorithm in Network Intrusion Detection. In International CCF Conference on Artificial Intelligence, Xuzhou,
China, 22–23 August 2019; Springer: Singapore, 2019.

176. Tuba, E.; Alihodzic, A.; Tuba, M. Multilevel image thresholding using elephant herding optimization algorithm. In Proceedings of the
2017 14th International Conference on Engineering of Modern Electric Systems (EMES), IEEE, Oradea, Romania„ 1–2 June 2017.

177. Tuba, E.; Ribic, I.; Capor-Hrosik, R.; Tuba, M. Support Vector Machine Optimized by Elephant Herding Algorithm for Erythemato-
Squamous Diseases Detection. Procedia Comput. Sci. 2017, 122, 916–923. [CrossRef]

206

Mathematics 2021, 9, 2335

178. Pichpibul, T. Modified Elephant Search Algorithm for Distribution of Snack Food in Thailand. In Proceedings of the 2nd
International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, ACM, Phuket, Thailand, 24–25 March
2018.

179. Tian, Z.; Fong, S.; Wong, R.; Millham, R. Elephant search algorithm on data clustering. In Proceedings of the 2016 12th
International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), IEEE, Changsha,
China, 13–15 August 2016.

180. Deb, S.; Tian, Z.; Fong, S.; Wong, R.; Millham, R.; Wong, K.K.L. Elephant search algorithm applied to data clustering. Soft Comput.
2018, 22, 6035–6046. [CrossRef]

181. Deb, S.; Fong, S.; Tian, Z.; Wong, R.K.; Mohammed, S.; Fiaidhi, J. Finding approximate solutions of NP-hard optimization and
TSP problems using elephant search algorithm. J. Supercomput. 2016, 72, 3960–3992. [CrossRef]

182. Abdel-Basset, M.; El-Shahat, D.; El-Henawy, I.; de Albuquerque, V.H.C.; Mirjalili, S. A new fusion of grey wolf optimizer
algorithm with a two-phase mutation for feature selection. Expert Syst. Appl. 2020, 139, 112824. [CrossRef]

183. Gupta, S.; Deep, K. A novel Random Walk Grey Wolf Optimizer. Swarm Evol. Comput. 2019, 44, 101–112. [CrossRef]
184. Lu, C.; Gao, L.; Yi, J. Grey wolf optimizer with cellular topological structure. Expert Syst. Appl. 2018, 107, 89–114. [CrossRef]
185. Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. Augmented grey wolf optimizer for grid-connected PMSG-based wind energy

conversion systems. Appl. Soft Comput. 2018, 69, 504–515. [CrossRef]
186. Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016,

172, 371–381. [CrossRef]
187. Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L.D.S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion

optimization. Expert Syst. Appl. 2016, 47, 106–119. [CrossRef]
188. Mirjalili, S.; Aljarah, I.; Mafarja, M.; Heidari, A.A.; Faris, H. Grey Wolf optimizer: Theory, literature review, and application in

computational fluid dynamics problems. In Nature-Inspired Optimizers; Springer: Cham, Switzerland, 2020; pp. 87–105.
189. Nahak, N.; Sahoo, S.R.; Mallick, R.K. Design of dual optimal UPFC based PI controller to damp low frequency oscillation in

power system. In Proceedings of the Technologies for Smart-City Energy Security and Power (ICSESP), IEEE, Bhubaneswar,
India, 28–30 March 2018.

190. Emary, E.; Zawbaa, H.M.; Grosan, C. Experienced Gray Wolf Optimization Through Reinforcement Learning and Neural
Networks. IEEE Trans. Neural Networks Learn. Syst. 2017, 29, 681–694. [CrossRef]

191. Mohanty, S.; Subudhi, B.; Ray, P.K. A New MPPT Design Using Grey Wolf Optimization Technique for Photovoltaic System
Under Partial Shading Conditions. IEEE Trans. Sustain. Energy 2015, 7, 181–188. [CrossRef]

192. Rajakumar, B. Lion algorithm for standard and large scale bilinear system identification: A global optimization based on Lion’s social
behavior. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC); IEEE, Beijing, China, 6–11 July 2014.

193. Marichelvam, M.; Manimaran, P.; Geetha, M. Solving flexible job shop scheduling problems using a hybrid lion optimisation
algorithm. Int. J. Adv. Oper. Manag. 2018, 10, 91–108. [CrossRef]

194. Paraskar, S.; Singh, D.K.; Tapre, P.C. Lion algorithm for generation rescheduling based congestion management in deregulated
power system. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft
Computing (ICECDS), IEEE, Chennai, India, 1–2 August 2017.

195. Sowmiyasree, S.; Sumitra, P. Lion Optimization Algorithm Using Data Mining Classification and Clustering Models. GSJ 2018, 6,
219–226.

196. Kaveh, A.; Mahjoubi, S. Optimum Design of Double-layer Barrel Vaults by Lion Pride Optimization Algorithm and a Comparative
Study. Structures 2018, 13, 213–229. [CrossRef]

197. Engy, E.; Ali, E.; Sally, E.-G. An optimized artificial neural network approach based on sperm whale optimization algorithm for
predicting fertility quality. Stud. Inform. Control. 2018, 27, 349–358.

198. Sharma, N.; Kaur, A.; Sharma, H.; Sharma, A.; Bansal, J.C. Chaotic Spider Monkey Optimization Algorithm with Enhanced
Learning. In Soft Computing for Problem Solving; Springer: Singapore, 2018; pp. 149–161.

199. Sharma, A.; Sharma, H.; Bhargava, A.; Sharma, N.; Bansal, J.C. Optimal power flow analysis using lévy flight spider monkey
optimisation algorithm. Int. J. Artif. Intell. Soft Comput. 2017, 5, 320–352. [CrossRef]

200. Gupta, K.; Deep, K.; Bansal, J.C. Improving the Local Search Ability of Spider Monkey Optimization Algorithm Using Quadratic
Approximation for Unconstrained Optimization. Comput. Intell. 2016, 33, 210–240. [CrossRef]

201. Sharma, A.; Sharma, A.; Panigrahi, B.K.; Kiran, D.; Kumar, R. Ageist Spider Monkey Optimization algorithm. Swarm Evol. Comput.
2016, 28, 58–77. [CrossRef]

202. Sharma, A.; Sharma, H.; Bhargava, A.; Sharma, N.; Bansal, J.C. Optimal placement and sizing of capacitor using Limaçon inspired
spider monkey optimization algorithm. Memetic Comput. 2016, 9, 311–331. [CrossRef]

203. Singh, P.R.; Elaziz, M.A.; Xiong, S. Modified Spider Monkey Optimization based on Nelder–Mead method for global optimization.
Expert Syst. Appl. 2018, 110, 264–289. [CrossRef]

204. Singh, U.; Salgotra, R.; Rattan, M. A Novel Binary Spider Monkey Optimization Algorithm for Thinning of Concentric Circular
Antenna Arrays. IETE J. Res. 2016, 62, 736–744. [CrossRef]

205. Tripathy, D.; Sahu, B.K.; Patnaik, B.; Choudhury, N.D. Spider monkey optimization based fuzzy-2D-PID controller for load
frequency control in two-area multi source interconnected power system. In Proceedings of the 2018 Technologies for Smart-City
Energy Security and Power (ICSESP), IEEE, Bhubaneswar, India, 29–30 March 2018.

207

Mathematics 2021, 9, 2335

206. Ehteram, M.; Karami, H.; Farzin, S. Reducing Irrigation Deficiencies Based Optimizing Model for Multi-Reservoir Systems
Utilizing Spider Monkey Algorithm. Water Resour. Manag. 2018, 32, 2315–2334. [CrossRef]

207. Cheruku, R.; Edla, D.R.; Kuppili, V. SM-RuleMiner: Spider monkey based rule miner using novel fitness function for diabetes
classification. Comput. Biol. Med. 2017, 81, 79–92. [CrossRef] [PubMed]

208. Dhiman, G.; Kumar, V. Multi-objective spotted hyena optimizer: A Multi-objective optimization algorithm for engineering
problems. Knowl. Based Syst. 2018, 150, 175–197. [CrossRef]

209. Dhiman, G.; Kaur, A. Spotted hyena optimizer for solving engineering design problems. In Proceedings of the 2017 International
Conference on Machine Learning and Data Science (MLDS), IEEE, Noida, India, 14–15 December 2017.

210. Luo, Q.; Li, J.; Zhou, Y.; Liao, L. Using Spotted Hyena Optimizer for Training Feedforward Neural Networks. In Proceedings of
the International Conference on Intelligent Computing, Wuhan, China, 15–18 August 2018.

211. Dhiman, G.; Kaur, A. Optimizing the Design of Airfoil and Optical Buffer Problems Using Spotted Hyena Optimizer. Designs
2018, 2, 28. [CrossRef]

212. Abdel-Basset, M.; Manogaran, G.; El-Shahat, D.; Mirjalili, S. A hybrid whale optimization algorithm based on local search strategy
for the permutation flow shop scheduling problem. Futur. Gener. Comput. Syst. 2018, 85, 129–145. [CrossRef]

213. Mafarja, M.M.; Mirjalili, S. Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing
2017, 260, 302–312. [CrossRef]

214. Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B.K. MPPT in Dynamic Condition of Partially Shaded PV System by Using WODE
Technique. IEEE Trans. Sustain. Energy 2017, 8, 1204–1214. [CrossRef]

215. Kaveh, A.; Ghazaan, M.I. Enhanced whale optimization algorithm for sizing optimization of skeletal structures. Mech. Based Des.
Struct. Mach. 2016, 45, 345–362. [CrossRef]

216. Sun, W.Z.; Wang, J.S. Elman Neural Network Soft-Sensor Model of Conversion Velocity in Polymerization Process Optimized by
Chaos Whale Optimization Algorithm. IEEE Access 2017, 5, 13062–13076. [CrossRef]

217. Medani, K.B.O.; Sayah, S.; Bekrar, A. Whale optimization algorithm based optimal reactive power dispatch: A case study of the
Algerian power system. Electr. Power Syst. Res. 2018, 163, 696–705. [CrossRef]

218. Mehne, H.H.; Mirjalili, S. A parallel numerical method for solving optimal control problems based on whale optimization
algorithm. Knowl. Based Syst. 2018, 151, 114–123. [CrossRef]

219. Tharwat, A.; Moemen, Y.S.; Hassanien, A.E. Classification of toxicity effects of biotransformed hepatic drugs using whale
optimized support vector machines. J. Biomed. Inform. 2017, 68, 132–149. [CrossRef] [PubMed]

220. Dao, T.-K.; Pan, T.-S.; Pan, J.-S. A multi-objective optimal mobile robot path planning based on whale optimization algorithm. In
Proceedings of the 2016 IEEE 13th International Conference on Signal Processing (ICSP); IEEE, Chengdu, China, 6–10 November 2016.

221. Hassanien, A.E.; Abd Elfattah, M.; Aboulenin, S.; Schaefer, G.; Zhu, S.Y.; Korovin, I. Historic handwritten manuscript binarisation
using whale optimisation. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
IEEE, Budapest, Hungary, 9–12 October 2016.

222. Shadravan, S.; Naji, H.; Bardsiri, V. The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving
constrained engineering optimization problems. Eng. Appl. Artif. Intell. 2019, 80, 20–34. [CrossRef]

223. Kumar, N.; Singh, N.; Vidyarthi, D.P. Artificial lizard search optimization (ALSO): A novel nature-inspired meta-heuristic
algorithm. Soft Comput. 2021, 25, 6179–6201. [CrossRef]

224. Braik, M.S. Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Syst. Appl.
2021, 174, 114685. [CrossRef]

225. Boettcher, S.; Percus, A. Nature’s way of optimizing. Artif. Intell. 2000, 119, 275–286. [CrossRef]
226. Oftadeh, R.; Mahjoob, M.; Shariatpanahi, M. A novel meta-heuristic optimization algorithm inspired by group hunting of animals:

Hunting search. Comput. Math. Appl. 2010, 60, 2087–2098. [CrossRef]
227. Civicioglu, P. Backtracking Search Optimization Algorithm for numerical optimization problems. Appl. Math. Comput. 2013, 219,

8121–8144. [CrossRef]
228. Haldar, V.; Chakraborty, N. A novel evolutionary technique based on electrolocation principle of elephant nose fish and shark:

Fish electrolocation optimization. Soft Comput. 2016, 21, 3827–3848. [CrossRef]
229. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic.

Expert Syst. Appl. 2020, 152, 113377. [CrossRef]
230. Mohseni, S.; Gholami, R.; Zarei, N.; Zadeh, A.R. Competition over resources: A new optimization algorithm based on animals

behavioral ecology. In Proceedings of the 2014 International Conference on Intelligent Networking and Collaborative Systems
(INCoS), Salerno, Italy, 10–12 September 2014.

231. Sharafi, Y.; Khanesar, M.A.; Teshnehlab, M. COOA: Competitive optimization algorithm. Swarm Evol. Comput. 2016, 30, 39–63.
[CrossRef]

232. Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic
competition. In Proceedings of the IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007.

233. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
234. Niu, Q.; Zhang, L.; Li, K. A biogeography-based optimization algorithm with mutation strategies for model parameter estimation

of solar and fuel cells. Energy Convers. Manag. 2014, 86, 1173–1185. [CrossRef]

208

Mathematics 2021, 9, 2335

235. Li, X.; Zhang, J.; Yin, M. Animal migration optimization: An optimization algorithm inspired by animal migration behavior.
Neural Comput. Appl. 2013, 24, 1867–1877. [CrossRef]

236. Lai, Z.; Feng, X.; Yu, H. An Improved Animal Migration Optimization Algorithm Based on Interactive Learning Behavior for
High Dimensional Optimization Problem. In Proceedings of the 2019 International Conference on High Performance Big Data
and Intelligent Systems (HPBD&IS), IEEE, Shenzhen, China, 9–11 May 2019.

237. Cao, Y.; Li, X.; Wang, J. Opposition-Based Animal Migration Optimization. Math. Probl. Eng. 2013, 2013, 1–7. [CrossRef]
238. Son, L.H.; Chiclana, F.; Kumar, R.; Mittal, M.; Khari, M.; Chatterjee, J.M.; Baik, S.W. ARM–AMO: An efficient association rule

mining algorithm based on animal migration optimization. Knowl. Based Syst. 2018, 154, 68–80. [CrossRef]
239. Ma, M.; Luo, Q.; Zhou, Y.; Chen, X.; Li, L. An Improved Animal Migration Optimization Algorithm for Clustering Analysis.

Discret. Dyn. Nat. Soc. 2015, 2015, 1–12. [CrossRef]
240. Morales, A.; Crawford, B.; Soto, R.; Lemus-Romani, J.; Astorga, G.; Salas-Fernández, A.; Rubio, J.M. Optimization of Bridges

Reinforcement by Conversion to Tied Arch Using an Animal Migration Algorithm. In Proceedings of the International Conference
on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Graz, Austria, 9–11 July 2019.

241. Farshi, T.R. A multilevel image thresholding using the animal migration optimization algorithm. Iran J. Comput. Sci. 2018, 2, 9–22.
[CrossRef]

242. Tsai, H.-C. Improving backtracking search algorithm with variable search strategies for continuous optimization. Appl. Soft Comput.
2019, 80, 567–578. [CrossRef]

243. Zhou, J.; Ye, H.; Ji, X.; Deng, W. An improved backtracking search algorithm for casting heat treatment charge plan problem.
J. Intell. Manuf. 2017, 30, 1335–1350. [CrossRef]

244. Lin, J. Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems.
Nonlinear Dyn. 2014, 80, 209–219. [CrossRef]

245. Chen, D.; Zou, F.; Lu, R.; Wang, P. Learning backtracking search optimisation algorithm and its application. Inf. Sci. 2017, 376,
71–94. [CrossRef]

246. Zhang, C.; Lin, Q.; Gao, L.; Li, X. Backtracking Search Algorithm with three constraint handling methods for constrained
optimization problems. Expert Syst. Appl. 2015, 42, 7831–7845. [CrossRef]

247. Pourdaryaei, A.; Mokhlis, H.; Illias, H.A.; Kaboli, S.H.A.; Ahmad, S. Short-Term Electricity Price Forecasting via Hybrid
Backtracking Search Algorithm and ANFIS Approach. IEEE Access 2019, 7, 77674–77691. [CrossRef]

248. Ma, H.; Fei, M.; Simon, D.; Chen, Z. Biogeography-based optimization in noisy environments. Trans. Inst. Meas. Control. 2014, 37,
190–204. [CrossRef]

249. Saremi, S.; Mirjalili, S.; Lewis, A. Biogeography-based optimisation with chaos. Neural Comput. Appl. 2014, 25, 1077–1097.
[CrossRef]

250. Pham, B.T.; Nguyen, M.D.; Bui, K.-T.T.; Prakash, I.; Chapi, K.; Bui, D.T. A novel artificial intelligence approach based on
Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil.
Catena 2018, 173, 302–311. [CrossRef]

251. Mendes, L.A.; Freire, R.Z.; Coelho, L.D.S.; Moraes, A.S. Minimizing computational cost and energy demand of building lighting
systems: A real time experiment using a modified competition over resources algorithm. Energy Build. 2017, 139, 108–123.
[CrossRef]

252. Bouchekara, H.R.; Nahas, M. Optimization of magnetic actuators using competition over resources algorithm. In Progress in
Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017; IEEE: Singapore, 2017.

253. Kulluk, S. A novel hybrid algorithm combining hunting search with harmony search algorithm for training neural networks. J.
Oper. Res. Soc. 2013, 64, 748–761. [CrossRef]

254. Doğan, E.; Erdal, F. Hunting search algorithm based design optimization of steel cellular beams. In Proceedings of the 15th
Annual Conference Companion on Genetic and Evolutionary Computation, New York, NY, USA, 6–10 July 2013.

255. Elaziz, M.A.; Ewees, A.A.; Yousri, D.; Alwerfali, H.S.N.; Awad, Q.A.; Lu, S.; Al-Qaness, M.A.A. An Improved Marine Predators
Algorithm With Fuzzy Entropy for Multi-Level Thresholding: Real World Example of COVID-19 CT Image Segmentation.
IEEE Access 2020, 8, 125306–125330. [CrossRef] [PubMed]

256. Zhong, K.; Luo, Q.; Zhou, Y.; Jiang, M. TLMPA: Teaching-learning-based Marine Predators algorithm. AIMS Math. 2021, 6,
1395–1442. [CrossRef]

257. Abdel-Basset, M.; Mohamed, R.; Chakrabortty, R.K.; Ryan, M.; Mirjalili, S. New binary marine predators optimization algorithms
for 0–1 knapsack problems. Comput. Ind. Eng. 2020, 151, 106949. [CrossRef]

258. Ridha, H.M. Parameters extraction of single and double diodes photovoltaic models using Marine Predators Algorithm and
Lambert W function. Sol. Energy 2020, 209, 674–693. [CrossRef]

259. Sayed, G.I.; Solyman, M.; Hassanien, A.E. A novel chaotic optimal foraging algorithm for unconstrained and constrained
problems and its application in white blood cell segmentation. Neural Comput. Appl. 2018, 31, 7633–7664. [CrossRef]

260. Zhang, W.-B.; Zhu, G.-Y. Drilling Path Optimization by Optimal Foraging Algorithm. IEEE Trans. Ind. Informatics 2017, 14,
2847–2856. [CrossRef]

261. Sayed, G.I.; Soliman, M.; Hassanien, A.E. Modified optimal foraging algorithm for parameters optimization of support vector
machine. In Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications, Cairo,
Egypt, 22–24 February 2018.

209

Mathematics 2021, 9, 2335

262. Srivastava, S.; Sahana, S.K. The Insects of Innovative Computational Intelligence; Springer: Singapore, 2017.
263. Akay, B.; Karaboga, D. A modified Artificial Bee Colony algorithm for real-parameter optimization. Inf. Sci. 2012, 192, 120–142.

[CrossRef]
264. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2015, 27, 1053–1073. [CrossRef]
265. Cuevas, E.; Cienfuegos, M.; Zaldivar-Navarro, D.; Perez-Cisneros, M.A. A swarm optimization algorithm inspired in the behavior

of the social-spider. Expert Syst. Appl. 2013, 40, 6374–6384. [CrossRef]
266. Häckel, S.; Dippold, P. The Bee Colony-inspired Algorithm (BCiA): A two-stage approach for solving the vehicle routing problem

with time windows. In Proceedings of the 11th Annual Genetic and Evolutionary Computation Conference, ACM, Montreal,
Canada, 8–12 July 2009.

267. Rajasekhar, A.; Lynn, N.; Das, S.; Suganthan, P. Computing with the collective intelligence of honey bees—A survey. Swarm Evol.
Comput. 2017, 32, 25–48. [CrossRef]

268. Diwold, K.; Beekman, M.; Middendorf, M. Honeybee optimisation–an overview and a new bee inspired optimisation scheme. In
Handbook of Swarm Intelligence, In Handbook of Swarm Intelligence; Springer: Berlin/Heidelberg, Germany, 2011; pp. 295–327.

269. Comellas, F.; Martínez-Navarro, J. Bumblebees: A multiagent combinatorial optimization algorithm inspired by social insect
behaviour. In Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC’09; ACM, Shanghai,
China, 12–14 June 2009.

270. Marinakis, Y.; Marinaki, M.; Matsatsinis, N. A Bumble Bees Mating Optimization Algorithm for Global Unconstrained Optimiza-
tion Problems. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Granada, Spain, 12–15 May 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 305–318.

271. Shnerb, N.M.; Louzoun, Y.; Bettelheim, E.; Solomon, S. The importance of being discrete: Life always wins on the surface. Proc.
Natl. Acad. Sci. USA 2000, 97, 10322–10324. [CrossRef] [PubMed]

272. Dorigo, M.; Maniezzo, V.; Colorni, A. The Ant System: An Autocatalytic Optimizing Process; Politecnico di Milano: Milan, Italy, 1991;
pp. 1–21.

273. Zungeru, A.M.; Ang, L.-M.; Seng, K.P. Termite-hill: Performance optimized swarm intelligence based routing algorithm for
wireless sensor networks. J. Netw. Comput. Appl. 2012, 35, 1901–1917. [CrossRef]

274. Das, K.N.; Singh, T.K. Drosophila Food-Search Optimization. Appl. Math. Comput. 2014, 231, 566–580. [CrossRef]
275. Abidin, Z.Z.; Arshad, M.R.; Ngah, U.K. A Simulation Based Fly Optimization Algorithm for Swarms of Mini Autonomous

Surface Vehicles Application. Available online: http://nopr.niscair.res.in/handle/123456789/11731 (accessed on 3 January 2021).
276. Pan, W.-T. A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example. Knowl. Based Syst. 2012,

26, 69–74. [CrossRef]
277. Feng, X.; Lau, F.C.M.; Gao, D. A New Bio-Inspired Approach to the Traveling Salesman Problem; Springer: Berlin/Heidelberg, Germany,

2009.
278. Feng, X.; Lau, F.C.; Yu, H. A novel bio-inspired approach based on the behavior of mosquitoes. Inf. Sci. 2013, 233, 87–108.

[CrossRef]
279. Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Computing and Applications 2015, 31, 1995–2014. [CrossRef]
280. Bhattacharjee, K.K.; Sarmah, S.P. Monarch Migration Algorithm for optimization problems. In Proceedings of the IEEE Interna-

tional Conference on Industrial Engineering and Engineering Management;IEEE, Bali, Indonesia, 4–7 December 2016.
281. Kumar, A.; Misra, R.K.; Singh, D. Butterfly optimizer. In Proceedings of the 2015 IEEE Workshop on Computational Intelligence:

Theories, Applications and Future Directions, WCI 2015; IEEE, Kanpur, India, 14–17 December 2015.
282. Qi, X.; Zhu, Y.; Zhang, H. A new meta-heuristic butterfly-inspired algorithm. J. Comput. Sci. 2017, 23, 226–239. [CrossRef]
283. Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2018, 23, 715–734.

[CrossRef]
284. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249.

[CrossRef]
285. Mei, R.N.S.; Sulaiman, M.H.; Mustaffa, Z.; Daniyal, H. Optimal reactive power dispatch solution by loss minimization using

moth-flame optimization technique. Appl. Soft Comput. 2017, 59, 210–222.
286. Mohamed, A.-A.A.; Mohamed, Y.S.; El-Gaafary, A.A.; Hemeida, A.M. Optimal power flow using moth swarm algorithm.

Electr. Power Syst. Res. 2017, 142, 190–206. [CrossRef]
287. Wang, G.-G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput.

2016, 10, 151–164. [CrossRef]
288. Chen, S. Locust Swarms-A new multi-optima search technique. In Proceedings of the 2009 IEEE Congress on Evolutionary

Computation. IEEE, Trondheim, Norway, 18–21 May 2009.
289. Cuevas, E.; Gonzalez, A.; Zaldívar, D.; Perez-Cisneros, M.A. An optimisation algorithm based on the behaviour of locust swarms.

Int. J. Bio-Inspired Comput. 2015, 7, 402. [CrossRef]
290. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.

[CrossRef]
291. Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]

210

Mathematics 2021, 9, 2335

292. Havens, T.C.; Spain, C.J.; Salmon, N.G.; Keller, J.M. Roach infestation optimization. In Proceedings of the 2008 IEEE Swarm
Intelligence Symposium, St. Louis, MO, USA, 21–23 September 2008.

293. ZhaoHui, C.; HaiYan, T. Cockroach swarm optimization. In Proceedings of the 2010 2nd International Conference on Computer
Engineering and Technology, Chengdu, China, 16–19 April 2010.

294. Wu, S.-J.; Wu, C.-T. A bio-inspired optimization for inferring interactive networks: Cockroach swarm evolution. Expert Syst. Appl.
2015, 42, 3253–3267. [CrossRef]

295. Kallioras, N.A.; Lagaros, N.D.; Avtzis, D.N. Pity beetle algorithm – A new metaheuristic inspired by the behavior of bark beetles.
Adv. Eng. Softw. 2018, 121, 147–166. [CrossRef]

296. Mirjalili, S.; Jangir, P.; Saremi, S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving
engineering problems. Appl. Intell. 2016, 46, 79–95. [CrossRef]

297. Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary ant lion approaches for feature selection. Neurocomputing 2016, 213, 54–65.
[CrossRef]

298. Emary, E.; Zawbaa, H.M. Impact of Chaos Functions on Modern Swarm Optimizers. PLoS ONE 2016, 11, e0158738. [CrossRef]
[PubMed]

299. Heidari, A.A.; Faris, H.; Mirjalili, S.; Aljarah, I.; Mafarja, M. Ant Lion optimizer: Theory, literature review, and application in
multi-layer perceptron neural networks. In Nature-Inspired Optimizers; Springer: Cham, Switzerland, 2020; pp. 23–46.

300. Raju, M.; Saikia, L.C.; Sinha, N. Automatic generation control of a multi-area system using ant lion optimizer algorithm based
PID plus second order derivative controller. Int. J. Electr. Power Energy Syst. 2016, 80, 52–63. [CrossRef]

301. Marinakis, Y.; Marinaki, M. Combinatorial neighborhood topology bumble bees mating optimization for the vehicle routing
problem with stochastic demands. Soft Comput. 2014, 19, 353–373. [CrossRef]

302. Marinakis, Y.; Marinaki, M.; Migdalas, A. An Adaptive Bumble Bees Mating Optimization algorithm. Appl. Soft Comput. 2017, 55,
13–30. [CrossRef]

303. Marinaki, M.; Marinakis, Y. A bumble bees mating optimization algorithm for the feature selection problem. Int. J. Mach. Learn.
Cybern. 2014, 7, 519–538. [CrossRef]

304. Kumar, A.; Maini, T.; Misra, R.K.; Singh, D. Butterfly Constrained Optimizer for Constrained Optimization Problems; Springer:
Singapore, 2019.

305. Kumar, A.; Misra, R.K.; Singh, D. Improving the local search capability of effective butterfly optimizer using covariance matrix
adapted retreat phase. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, Donostia, Spain,
5–8 June 2017.

306. Sharma, S.; Saha, A.K. m-MBOA: A novel butterfly optimization algorithm enhanced with mutualism scheme. Soft Comput. 2019,
24, 4809–4827. [CrossRef]

307. Li, G.; Shuang, F.; Zhao, P.; Le, C. An Improved Butterfly Optimization Algorithm for Engineering Design Problems Using the
Cross-Entropy Method. Symmetry 2019, 11, 1049. [CrossRef]

308. Arora, S.; Anand, P. Learning automata-based butterfly optimization algorithm for engineering design problems. Int. J. Comput.
Mater. Sci. Eng. 2018, 7, 1850021. [CrossRef]

309. Arora, S.; Anand, P. Binary butterfly optimization approaches for feature selection. Expert Syst. Appl. 2018, 116, 147–160.
[CrossRef]

310. Aygül, K.; Cikan, M.; Demirdelen, T.; Tumay, M. Butterfly optimization algorithm based maximum power point tracking of
photovoltaic systems under partial shading condition. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 1–19. [CrossRef]

311. Wang, Y.-J.; Sun, P. One-Way Pioneer Guide Pity Beetle Algorithm: A New Evolutionary Algorithm for Solving Global Optimiza-
tion Problems. IEEE Access 2020, 8, 203270–203293. [CrossRef]

312. Priya, M.M.M.A.; Jawhar, D.S.J.; Geisa, D.J.M. Optimal Deep Belief Network with Opposition based Pity Beetle Algorithm for
Lung Cancer Classification: A DBNOPBA Approach. Comput. Methods Programs Biomed. 2021, 199, 105902. [CrossRef]

313. KS, S.R.; Murugan, S. Memory based Hybrid Dragonfly Algorithm for numerical optimization problems. Expert Syst. Appl. 2017,
83, 63–78.

314. Sayed, G.I.; Tharwat, A.; Hassanien, A.E. Chaotic dragonfly algorithm: An improved metaheuristic algorithm for feature selection.
Appl. Intell. 2018, 49, 188–205. [CrossRef]

315. Hariharan, M.; Sindhu, R.; Vijean, V.; Yazid, H.; Nadarajaw, T.; Yaacob, S.; Polat, K. Improved binary dragonfly optimization
algorithm and wavelet packet based non-linear features for infant cry classification. Comput. Methods Programs Biomed. 2018, 155,
39–51. [CrossRef] [PubMed]

316. Mafarja, M.; Heidari, A.A.; Faris, H.; Mirjalili, S.; Aljarah, I. Dragonfly algorithm: Theory, literature review, and application in
feature selection. In Nature-Inspired Optimizers; Springer: Cham, Switzerland, 2020; pp. 47–67.

317. El-Hay, E.A.; El-Hameed, M.A.; El-Fergany, A.A. Improved performance of PEM fuel cells stack feeding switched reluctance
motor using multi-objective dragonfly optimizer. Neural Comput. Appl. 2018, 31, 6909–6924. [CrossRef]

318. Das, K.N.; Singh, T.K.; Baishnab, K.L. Parameter Optimization of Winner-Take-All Circuit for Attention Shift Using Drosophila
Food-Search Optimization Algorithm. In Proceedings of Fourth International Conference on Soft Computing for Problem Solving;
Springer: New Delhi, India, 2015. [CrossRef]

319. Fister, I.J.; Perc, M.; Kamal, S.M. A review of chaos-based firefly algorithms: Perspectives and research challenges.
Appl. Math. Comput. 2015, 252, 155–165. [CrossRef]

211

Mathematics 2021, 9, 2335

320. Sahu, R.K.; Panda, S.; Pradhan, P.C. Design and analysis of hybrid firefly algorithm-pattern search based fuzzy PID controller for
LFC of multi area power systems. Int. J. Electr. Power Energy Syst. 2015, 69, 200–212. [CrossRef]

321. Tahershamsi, A.; Kaveh, A.; Sheikholeslami, R.; Kazemzadeh Azad, S. An improved firefly algorithm with harmony search
scheme for optimization of water distribution systems. Sci. Iran. 2014, 21, 1591–1607.

322. George, G.; Parthiban, L. Multi objective hybridized firefly algorithm with group search optimization for data clustering. In
Proceedings of the 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks,
Kolkata, India, 20–22 November 2015.

323. Abd-Elazim, S.; Ali, E.S. Load frequency controller design of a two-area system composing of PV grid and thermal generator via
firefly algorithm. Neural Comput. Appl. 2016, 30, 607–616. [CrossRef]

324. Dey, N.; Samanta, S.; Chakraborty, S.; Das, A.; Chaudhuri, S.S.; Suri, J.S. Firefly Algorithm for Optimization of Scaling Factors
During Embedding of Manifold Medical Information: An Application in Ophthalmology Imaging. J. Med Imaging Heal. Inform.
2014, 4, 384–394. [CrossRef]

325. Sayadi, M.K.; Hafezalkotob, A.; Naini, S.G.J. Firefly-inspired algorithm for discrete optimization problems: An application to
manufacturing cell formation. J. Manuf. Syst. 2013, 32, 78–84. [CrossRef]

326. Chen, H.; Li, S.; Heidari, A.A.; Wang, P.; Li, J.; Yang, Y.; Wang, M.; Huang, C. Efficient multi-population outpost fruit fly-driven
optimizers: Framework and advances in support vector machines. Expert Syst. Appl. 2019, 142, 112999. [CrossRef]

327. Yuan, X.; Dai, X.; Zhao, J.; He, Q. On a novel multi-swarm fruit fly optimization algorithm and its application. Appl. Math. Comput.
2014, 233, 260–271. [CrossRef]

328. Ding, G.; Dong, F.; Zou, H. Fruit fly optimization algorithm based on a hybrid adaptive-cooperative learning and its application
in multilevel image thresholding. Appl. Soft Comput. 2019, 84, 105704. [CrossRef]

329. Wang, L.; Shi, Y.; Liu, S. An improved fruit fly optimization algorithm and its application to joint replenishment problems. Expert
Syst. Appl. 2015, 42, 4310–4323. [CrossRef]

330. Wu, L.; Zuo, C.; Zhang, H. A cloud model based fruit fly optimization algorithm. Knowl. Based Syst. 2015, 89, 603–617. [CrossRef]
331. Darwish, S.M.; Elmasry, A.; Ibrahim, S.H. Optimal Shortest Path in Mobile Ad-Hoc Network Based on Fruit Fly Optimization

Algorithm. In Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications, Cairo,
Egypt, 28–30 March 2019.

332. Mafarja, M.; Aljarah, I.; Faris, H.; Hammouri, A.I.; Al-Zoubi, A.M.; Mirjalili, S. Binary grasshopper optimisation algorithm
approaches for feature selection problems. Expert Syst. Appl. 2018, 117, 267–286. [CrossRef]

333. Mirjalili, S.Z.; Mirjalili, S.; Saremi, S.; Faris, H.; Aljarah, I. Grasshopper optimization algorithm for multi-objective optimization
problems. Appl. Intell. 2018, 48, 805–820. [CrossRef]

334. Arora, S.; Anand, P. Chaotic grasshopper optimization algorithm for global optimization. Neural Comput. Appl. 2018, 31,
4385–4405. [CrossRef]

335. Luo, J.; Chen, H.; Zhang, Q.; Xu, Y.; Huang, H.; Zhao, X. An improved grasshopper optimization algorithm with application to
financial stress prediction. Appl. Math. Model. 2018, 64, 654–668. [CrossRef]

336. Aljarah, I.; Al-Zoubi, A.M.; Faris, H.; Hassonah, M.A.; Mirjalili, S.; Saadeh, H. Simultaneous Feature Selection and Support Vector
Machine Optimization Using the Grasshopper Optimization Algorithm. Cogn. Comput. 2018, 10, 478–495. [CrossRef]

337. Shi, Y.; Li, Y.; Fan, J.; Wang, T.; Yin, T. A Novel Network Architecture of Decision-Making for Self-Driving Vehicles Based on Long
Short-Term Memory and Grasshopper Optimization Algorithm. IEEE Access 2020, 8, 155429–155440. [CrossRef]

338. Cui, L.; Deng, J.; Wang, L.; Xu, M.; Zhang, Y. A novel locust swarm algorithm for the joint replenishment problem considering
multiple discounts simultaneously. Knowl. Based Syst. 2016, 111, 51–62. [CrossRef]

339. Cuevas, E.; Zaldívar, D.; Perez-Cisneros, M. Automatic Segmentation by Using an Algorithm Based on the Behavior of Locust
Swarms. In Applications of Evolutionary Computation in Image Processing and Pattern Recognition; Springer International Publishing:
Cham, Switzerland, 2016; pp. 229–269.

340. Cuevas, E.; Gonzalez, A.; Fausto, F.; Zaldívar, D.; Perez-Cisneros, M.A. Multithreshold Segmentation by Using an Algorithm
Based on the Behavior of Locust Swarms. Math. Probl. Eng. 2015, 2015, 1–25. [CrossRef]

341. Zervoudakis, K.; Tsafarakis, S. A mayfly optimization algorithm. Comput. Ind. Eng. 2020, 145, 106559. [CrossRef]
342. Bhattacharyya, T.; Chatterjee, B.; Singh, P.K.; Yoon, J.H.; Geem, Z.W.; Sarkar, R. Mayfly in Harmony: A New Hybrid Meta-Heuristic

Feature Selection Algorithm. IEEE Access 2020, 8, 195929–195945. [CrossRef]
343. Ramasamy, K.; Ravichandran, C.S. Optimal design of renewable sources of PV /wind/ FC generation for power system reliability

and cost using MA-RBFNN approach. Int. J. Energy Res. 2021, 45, 10946–10962. [CrossRef]
344. Yazdani, S.; Hadavandi, E. LMBO-DE: A linearized monarch butterfly optimization algorithm improved with differential

evolution. Soft Comput. 2018, 23, 8029–8043. [CrossRef]
345. Wang, G.-G.; Deb, S.; Zhao, X.; Cui, Z. A new monarch butterfly optimization with an improved crossover operator. Oper. Res.

2016, 18, 731–755. [CrossRef]
346. Wang, G.-G.; Zhao, X.; Deb, S. A Novel Monarch Butterfly Optimization with Greedy Strategy and Self-Adaptive. 2015 Second.

Int. Conf. Soft Comput. Mach. Intell. 2015, 2015, 45–50.
347. Feng, Y.; Yang, J.; Wu, C.; Lu, M.; Zhao, X.-J. Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm

with Gaussian mutation. Memetic Comput. 2016, 10, 135–150. [CrossRef]

212

Mathematics 2021, 9, 2335

348. Devikanniga, D.; Raj, R.J.S. Classification of osteoporosis by artificial neural network based on monarch butterfly optimisation
algorithm. Heal. Technol. Lett. 2018, 5, 70–75. [CrossRef]

349. Chen, S.; Chen, R.; Gao, J. A Monarch Butterfly Optimization for the Dynamic Vehicle Routing Problem. Algorithms 2017, 10, 107.
[CrossRef]

350. Zhu, Y.; Feng, X.; Yu, H. Mosquito Host-Seeking Algorithm Based on Random Walk and Game of Life; Springer International Publishing:
Cham, Switzerland, 2018.

351. Xu, Y.; Chen, H.; Heidari, A.A.; Luo, J.; Zhang, Q.; Zhao, X.; Li, C. An efficient chaotic mutative moth-flame-inspired optimizer
for global optimization tasks. Expert Syst. Appl. 2019, 129, 135–155. [CrossRef]

352. Savsani, V.; Tawhid, M.A. Non-dominated sorting moth flame optimization (NS-MFO) for multi-objective problems. Eng. Appl.
Artif. Intell. 2017, 63, 20–32. [CrossRef]

353. Wang, M.; Chen, H.; Yang, B.; Zhao, X.; Hu, L.; Cai, Z.; Huang, H.; Tong, C. Toward an optimal kernel extreme learning machine
using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 2017, 267, 69–84.
[CrossRef]

354. Wu, Z.; Shen, D.; Shang, M.; Qi, S. Parameter Identification of Single-Phase Inverter Based on Improved Moth Flame Optimization
Algorithm. Electr. Power Components Syst. 2019, 47, 456–469. [CrossRef]

355. Li, Z.; Zhou, Y.; Zhang, S.; Song, J. Lévy-Flight Moth-Flame Algorithm for Function Optimization and Engineering Design
Problems. Math. Probl. Eng. 2016, 2016, 1–22. [CrossRef]

356. Mehne, S.H.H.; Mirjalili, S. Moth-Flame Optimization Algorithm: Theory, Literature Review, and Application in Optimal
Nonlinear. Nat. Inspired Optim. Theor. Lit. Rev. Appl. 2020, 810, 143.

357. Luo, Q.; Yang, X.; Zhou, Y. Nature-inspired approach: An enhanced moth swarm algorithm for global optimization.
Math. Comput. Simul. 2018, 159, 57–92. [CrossRef]

358. Shilaja, C.; Arunprasath, T. Optimal power flow using Moth Swarm Algorithm with Gravitational Search Algorithm considering
wind power. Future Gener. Comput. Syst. 2019, 98, 708–715.

359. Duman, S. A Modified Moth Swarm Algorithm Based on an Arithmetic Crossover for Constrained Optimization and Optimal
Power Flow Problems. IEEE Access 2018, 6, 45394–45416. [CrossRef]

360. Guvenc, U.; Duman, S.; Hınıslıoglu, Y. Chaotic moth swarm algorithm. In Proceedings of the 2017 IEEE International Conference
on INnovations in Intelligent SysTems and Applications (INISTA), IEEE, Gdynia, Poland, 3–5 July 2017.

361. Zhou, Y.; Yang, X.; Ling, Y.; Zhang, J. Meta-heuristic moth swarm algorithm for multilevel thresholding image segmentation.
Multimedia Tools Appl. 2018, 77, 23699–23727. [CrossRef]

362. Fathy, A.; Elaziz, M.A.; Sayed, E.; Olabi, A.; Rezk, H. Optimal parameter identification of triple-junction photovoltaic panel based
on enhanced moth search algorithm. Energy 2019, 188, 116025. [CrossRef]

363. Feng, Y.-H.; Wang, G.-G. Binary moth search algorithm for discounted {0-1} knapsack problem. IEEE Access 2018, 6, 10708–10719.
[CrossRef]

364. Strumberger, I.; Bacanin, N. Modified Moth Search Algorithm for Global Optimization Problems. Int. J. Comput. 2018, 3, 44–48.
365. Strumberger, I.; Tuba, E.; Bacanin, N.; Beko, M.; Tuba, M. Hybridized moth search algorithm for constrained optimization problems.

In Proceedings of the 2018 International Young Engineers Forum (YEF-ECE), IEEE, Costa da Caparica, Portugal, 4 May 2018.
366. Strumberger, I.; Sarac, M.; Markovic, D.; Bacanin, N. Moth Search Algorithm for Drone Placement Problem. Int. J. Comput. 2018,

3, 75–80.
367. Tsai, H.-C. Roach infestation optimization with friendship centers. Eng. Appl. Artif. Intell. 2015, 39, 109–119. [CrossRef]
368. Obagbuwa, I.C.; Adewumi, A.O. A modified roach infestation optimization. In Proceedings of the 2014 IEEE Conference on

Computational Intelligence in Bioinformatics and Computational Biology, Honolulu, HI, USA, 21–24 May 2014.
369. Obagbuwa, I.C.; Adewumi, A.O.; Adebiyi, A.A. A dynamic step-size adaptation roach infestation optimization. In Proceedings

of the 2014 IEEE International Advance Computing Conference, Gurgaon, India, 21–22 February 2014.
370. Kaveh, A.; Eslamlou, A.D. Water strider algorithm: A new metaheuristic and applications. Structures 2020, 25, 520–541. [CrossRef]
371. Kaveh, A.; Amirsoleimani, P.; Eslamlou, A.D.; Rahmani, P. Frequency-constrained optimization of large-scale dome-shaped

trusses using chaotic water strider algorithm. Struct. 2021, 32, 1604–1618. [CrossRef]
372. Xu, Y.-P.; Ouyang, P.; Xing, S.-M.; Qi, L.-Y.; Khayatnezhad, M.; Jafari, H. Optimal structure design of a PV/FC HRES using

amended Water Strider Algorithm. Energy Rep. 2021, 7, 2057–2067. [CrossRef]
373. Kaveh, A. Water Strider Optimization Algorithm and Its Enhancement. In Advances in Metaheuristic Algorithms for Optimal Design

of Structures; Kaveh, A., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 783–848.
374. Luque-Chang, A.; Cuevas, E.; Fausto, F.; Zaldívar, D.; Pérez, M. Social Spider Optimization Algorithm: Modifications, Applica-

tions, and Perspectives. Math. Probl. Eng. 2018, 2018, 1–29. [CrossRef]
375. Yu, J.J.; Li, V.O. A social spider algorithm for global optimization. Appl. Soft Comput. 2015, 30, 614–627. [CrossRef]
376. James, J.; Li, V.O. Parameter sensitivity analysis of social spider algorithm. In Proceedings of the 2015 IEEE Congress on

Evolutionary Computation (CEC), IEEE, Sendai, Japan, 25–28 May 2015.
377. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012,

17, 4831–4845. [CrossRef]
378. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H.; Gong, D. A comprehensive review of krill herd algorithm: Variants, hybrids and

applications. Artif. Intell. Rev. 2017, 51, 119–148. [CrossRef]

213

Mathematics 2021, 9, 2335

379. Wang, G.G.; Deb, S.; Coelho, L.D.S. Earthworm optimization algorithm: A bio-inspired metaheuristic algorithm for global
optimization problems. Int. J. Bio-Inspired Comput. 2015, 1, 1. [CrossRef]

380. Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for
global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [CrossRef]

381. Javaid, N.; Ullah, I.; Zarin, S.S.; Kamal, M.; Omoniwa, B.; Mateen, A. Differential-Evolution-Earthworm Hybrid Meta-heuristic Optimization
Technique for Home Energy Management System in Smart Grid; Springer International Publishing: Cham, Switzerland, 2019.

382. Faraz, S.H.; Ur Rehman, S.; Sarwar, M.A.; Ali, I.; Farooqi, M.; Javaid, N. Comparison of BFA and EWA in Home Energy Management
System Using RTP; Springer International Publishing: Cham, Switzerland, 2018.

383. Ali, M.; Abid, S.; Ghafar, A.; Ayub, N.; Arshad, H.; Khan, S.; Javaid, N. Earth Worm Optimization for Home Energy Management
System in Smart Grid; Springer International Publishing: Cham, Switzerland, 2018.

384. Wang, H.; Yi, J.-H. An improved optimization method based on krill herd and artificial bee colony with information exchange.
Memetic Comput. 2017, 10, 177–198. [CrossRef]

385. Chansombat, S.; Musikapun, P.; Pongcharoen, P.; Hicks, C. A Hybrid Discrete Bat Algorithm with Krill Herd-based advanced
planning and scheduling tool for the capital goods industry. Int. J. Prod. Res. 2018, 57, 6705–6726. [CrossRef]

386. Abdel-Basset, M.; Wang, G.-G.; Sangaiah, A.K.; Rushdy, E. Krill herd algorithm based on cuckoo search for solving engineering
optimization problems. Multimedia Tools Appl. 2017, 78, 3861–3884. [CrossRef]

387. Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S. Hybrid clustering analysis using improved krill herd algorithm. Appl. Intell. 2018,
48, 4047–4071. [CrossRef]

388. Asteris, P.G.; Nozhati, S.; Nikoo, M.; Cavaleri, L.; Nikoo, M. Krill herd algorithm-based neural network in structural seismic
reliability evaluation. Mech. Adv. Mater. Struct. 2018, 26, 1146–1153. [CrossRef]

389. Das, S.R.; Kuhoo; Mishra, D.; Rout, M. An optimized feature reduction based currency forecasting model exploring the online
sequential extreme learning machine and krill herd strategies. Phys. A Stat. Mech. its Appl. 2018, 513, 339–370. [CrossRef]

390. Nguyen, T.T.; Vo, D.N. Improved social spider optimization algorithm for optimal reactive power dispatch problem with different
objectives. Neural Comput. Appl. 2019, 32, 5919–5950. [CrossRef]

391. El Aziz, M.A.; Hassanien, A.E. An improved social spider optimization algorithm based on rough sets for solving minimum
number attribute reduction problem. Neural Comput. Appl. 2017, 30, 2441–2452. [CrossRef]

392. Cuevas, E.; Cienfuegos, M. A new algorithm inspired in the behavior of the social-spider for constrained optimization.
Expert Syst. Appl. 2014, 41, 412–425. [CrossRef]

393. Mirjalili, S.Z.; Saremi, S.; Mirjalili, S.M. Designing evolutionary feedforward neural networks using social spider optimization
algorithm. Neural Comput. Appl. 2015, 26, 1919–1928. [CrossRef]

394. Zhou, G.; Zhou, Y.; Zhao, R. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop
scheduling problem. J. Ind. Manag. Optim. 2021, 17, 533–548. [CrossRef]

395. Xavier, V.M.A.; Annadurai, S. Chaotic social spider algorithm for load balance aware task scheduling in cloud computing.
Clust. Comput. 2018, 22, 287–297.

396. Elsayed, W.; Hegazy, Y.; Bendary, F.; El-Bages, M. Modified social spider algorithm for solving the economic dispatch problem.
Eng. Sci. Technol. Int. J. 2016, 19, 1672–1681. [CrossRef]

397. Sung, H.-K.; Jung, N.-G.; Huang, S.-R.; Kim, J.-M. Application of Social Spider Algorithm to Optimize Train Energy.
J. Electr. Eng. Technol. 2019, 14, 519–526. [CrossRef]

398. Yu, J.J.; Li, V.O. A social spider algorithm for solving the non-convex economic load dispatch problem. Neurocomputing 2016, 171,
955–965. [CrossRef]

399. Houssein, E.H.; Helmy, B.E.-D.; Elngar, A.A.; Abdelminaam, D.S.; Shaban, H. An Improved Tunicate Swarm Algorithm for Global
Optimization and Image Segmentation. IEEE Access 2021, 9, 56066–56092. [CrossRef]

400. Fetouh, T.; Elsayed, A.M. Optimal Control and Operation of Fully Automated Distribution Networks Using Improved Tunicate
Swarm Intelligent Algorithm. IEEE Access 2020, 8, 129689–129708. [CrossRef]

401. Chelliah, J.; Kader, N. Optimization for connectivity and coverage issue in target-based wireless sensor networks using an
effective multiobjective hybrid tunicate and salp swarm optimizer. Int. J. Commun. Syst. 2020, 34, e4679.

402. Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv.
2013, 43, 1–33. [CrossRef]

403. Cuevas, E.; Echavarría, A.; Zaldívar, D.; Pérez-Cisneros, M. A novel evolutionary algorithm inspired by the states of matter for
template matching. Expert Syst. Appl. 2013, 40, 6359–6373. [CrossRef]

404. Corriveau, G.; Guilbault, R.; Tahan, A.; Sabourin, R. Review of phenotypic diversity formulations for diagnostic tool.
Appl. Soft Comput. 2013, 13, 9–26. [CrossRef]

405. Shir, O.M. Niching in Evolutionary Algorithms. In Handbook of Natural Computing; Rozenberg, G., Bäck, T., Kok, J.N., Eds.;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 1035–1069.

406. Preuss, M. Niching prospects. In International Conference on Bioinspired Optimization Methods and Their Applications; Filipic, B., Silic,
J., Eds.; Josef Stefan Institute: Lublijana, Slovenia, 2006.

407. Silberholz, J.; Golden, B. Comparison of metaheuristics. In Handbook of Metaheuristics; Springer: Boston, MA, USA, 2010;
pp. 625–640.

408. Rice, J.R. The Algorithm Selection Problem. Adv. Comput. 1976, 15, 65–118.

214

Mathematics 2021, 9, 2335

409. Misir, M.; Sebag, M. Alors: An algorithm recommender system. Artif. Intell. 2017, 244, 291–314. [CrossRef]
410. Bischl, B.; Kerschke, P.; Kotthoff, L.; Lindauer, M.; Malitsky, Y.; Fréchette, A.; Hoos, H.; Hutter, F.; Leyton-Brown, K.; Tierney, K.;

et al. ASlib: A benchmark library for algorithm selection. Artif. Intell. 2016, 237, 41–58. [CrossRef]
411. LaTorre, A.; Molina, D.; Osaba, E.; Del Ser, J.; Herrera, F. Fairness in bio-inspired optimization research: A prescription of

methodological guidelines for comparing meta-heuristics. arXiv 2020, arXiv:2004.09969.
412. Naruei, I.; Keynia, F. A new optimization method based on COOT bird natural life model. Expert Syst. Appl. 2021, 183, 115352.

[CrossRef]
413. Ewees, A.A.; Elaziz, M.A.; Houssein, E.H. Improved grasshopper optimization algorithm using opposition-based learning. Expert

Syst. Appl. 2018, 112, 156–172. [CrossRef]
414. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Futur.

Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]
415. Sharma, T.K.; Abraham, A. Artificial bee colony with enhanced food locations for solving mechanical engineering design

problems. J. Ambient. Intell. Humaniz. Comput. 2019, 11, 267–290. [CrossRef]
416. Yang, X.-S.; Hosseini, S.S.S.; Gandomi, A. Firefly Algorithm for solving non-convex economic dispatch problems with valve

loading effect. Appl. Soft Comput. 2012, 12, 1180–1186. [CrossRef]
417. Gupta, S.; Deep, K.; Moayedi, H.; Foong, L.K.; Assad, A. Sine cosine grey wolf optimizer to solve engineering design problems.

Eng. Comput. 2021, 37, 3123–3149. [CrossRef]
418. Huang, F.-Z.; Wang, L.; He, Q. An effective co-evolutionary differential evolution for constrained optimization. Appl. Math.

Comput. 2007, 186, 340–356. [CrossRef]
419. Mezura-Montes, E.; Hernández-Ocana, B. Bacterial foraging for engineering design problems: Preliminary results. In Memorias del 4o

Congreso Nacional de Computación Evolutiva (COMCEV’2008); Centro de Investigación en Matemáticas: Guanajuato, México, 2008.
420. He, Q.; Wang, L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng.

Appl. Artif. Intell. 2007, 20, 89–99. [CrossRef]
421. Bernardino, H.S.; Barbosa, H.J.; Lemonge, A.C.; Fonseca, L.G. A new hybrid AIS-GA for constrained optimization problems in

mechanical engineering. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence);
IEEE: Hong Kong, China, 2008.

422. Lee, K.S.; Geem, Z.W. A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and
practice. Comput. Methods Appl. Mech. Eng. 2005, 194, 3902–3933. [CrossRef]

423. Hedar, A.-R.; Fukushima, M. Derivative-Free Filter Simulated Annealing Method for Constrained Continuous Global Optimiza-
tion. J. Glob. Optim. 2006, 35, 521–549. [CrossRef]

424. Houssein, E.H.; Saad, M.R.; Hashim, F.; Shaban, H.; Hassaballah, M. Lévy flight distribution: A new metaheuristic algorithm for
solving engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 94, 103731. [CrossRef]

425. Hwang, S.-F.; He, R.-S. A hybrid real-parameter genetic algorithm for function optimization. Adv. Eng. Informatics 2006, 20, 7–21.
[CrossRef]

426. Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems.
Appl. Math. Comput. 2007, 188, 1567–1579. [CrossRef]

427. Zhang, M.; Luo, W.; Wang, X. Differential evolution with dynamic stochastic selection for constrained optimization. Inf. Sci. 2008,
178, 3043–3074. [CrossRef]

428. Ragsdell, K.M.; Phillips, D.T. Optimal Design of a Class of Welded Structures Using Geometric Programming. J. Eng. Ind. 1976,
98, 1021–1025. [CrossRef]

429. Yapici, H.; Cetinkaya, N. A new meta-heuristic optimizer: Pathfinder algorithm. Appl. Soft Comput. 2019, 78, 545–568. [CrossRef]
430. Belegundu, A.D.; Arora, J.S. A study of mathematical programming methods for structural optimization. Part I: Theory. Int. J.

Numer. Methods Eng. 1985, 21, 1583–1599. [CrossRef]
431. Arora, J.S. Introduction to Optimum Design; Elsevier: Cambridge, MA, USA, 2004.
432. Montague, M.; Aslam, J.A. Condorcet fusion for improved retrieval. In Proceedings of the Eleventh International Conference on

Information and Knowledge Management, ACM, McLean, VA, USA, 4–9 December 2002.
433. Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; Masegosa, A.D.; Perallos, A. Good practice proposal for the implementation,

presentation, and comparison of metaheuristics for solving routing problems. Neurocomputing 2018, 271, 2–8. [CrossRef]
434. Piotrowski, A.P.; Napiorkowski, M.J.; Napiorkowski, J.J.; Osuch, M.; Kundzewicz, Z.W. Are modern metaheuristics successful in

calibrating simple conceptual rainfall–runoff models? Hydrol. Sci. J. 2017, 62, 606–625. [CrossRef]
435. Piotrowski, A.P.; Napiorkowski, J.J. Some metaheuristics should be simplified. Inf. Sci. 2018, 427, 32–62. [CrossRef]
436. Tzanetos, A.; Dounias, G. Nature inspired optimization algorithms or simply variations of metaheuristics? Artif. Intell. Rev. 2021,

54, 1841–1862. [CrossRef]
437. Lones, M.A. Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms. arXiv 2019, arXiv:1902.08001.

[CrossRef]
438. Van Thieu, N. The State-of-the-art MEta-Heuristics Algorithms in PYthon (MEALPY). 2021. Available online: https://pypi.org/

project/mealpy/ (accessed on 2 August 2021).
439. Molina, D.; Latorre, A.; Herrera, F. An Insight into Bio-inspired and Evolutionary Algorithms for Global Optimization: Review,

Analysis, and Lessons Learnt over a Decade of Competitions. Cogn. Comput. 2018, 10, 517–544. [CrossRef]

215

Mathematics 2021, 9, 2335

440. Veček, N.; Črepinšek, M.; Mernik, M. On the influence of the number of algorithms, problems, and independent runs in the
comparison of evolutionary algorithms. Appl. Soft Comput. 2017, 54, 23–45. [CrossRef]

441. Squillero, G.; Tonda, A. Divergence of character and premature convergence: A survey of methodologies for promoting diversity
in evolutionary optimization. Inf. Sci. 2016, 329, 782–799. [CrossRef]

442. Liu, H.-L.; Chen, L.; Deb, K.; Goodman, E. Investigating the Effect of Imbalance Between Convergence and Diversity in
Evolutionary Multi-objective Algorithms. IEEE Trans. Evol. Comput. 2016, 21, 408–425. [CrossRef]

443. Wright, J.; Jordanov, I. Convergence properties of quantum evolutionary algorithms on high dimension problems. Neurocomputing
2019, 326–327, 82–99. [CrossRef]

444. Chen, Y.; He, J. Average Convergence Rate of Evolutionary Algorithms II: Continuous Optimization. arXiv 2018, arXiv:1810.11672.
445. Shirakawa, S.; Nagao, T. Bag of local landscape features for fitness landscape analysis. Soft Comput. 2016, 20, 3787–3802. [CrossRef]
446. Yang, S.; Li, K.; Li, W.; Chen, W.; Chen, Y. Dynamic Fitness Landscape Analysis on Differential Evolution Algorithm. In Bio-inspired

Computing–Theories and Applications: 11th International Conference, BIC-TA 2016, Xi’an, China, 28–30 October 2016, Revised Selected
Papers, Part II; Gong, M., Pan, L., Song, T., Zhang, G., Eds.; Springer: Singapore, 2016; pp. 179–184.

447. Aleti, A.; Moser, I.; Grunske, L. Analysing the fitness landscape of search-based software testing problems. Autom. Softw. Eng.
2016, 24, 603–621. [CrossRef]

448. Liang, J.; Li, Y.; Qu, B.; Yu, K.; Hu, Y. Mutation Strategy Selection Based on Fitness Landscape Analysis: A Preliminary Study; Springer:
Singapore, 2020.

449. Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. On the exploration and exploitation in popular swarm-based metaheuristic
algorithms. Neural Comput. Appl. 2018, 31, 7665–7683. [CrossRef]

450. Chen, Y.; He, J. Exploitation and Exploration Analysis of Elitist Evolutionary Algorithms: A Case Study. arXiv 2020,
arXiv:2001.10932.

451. Morales-Castañeda, B.; Zaldivar, D.; Cuevas, E.; Fausto, F.; Rodríguez, A. A better balance in metaheuristic algorithms: Does it
exist? Swarm Evol. Comput. 2020, 54, 100671. [CrossRef]

216

mathematics

Article

A ResNet50-Based Method for Classifying Surface Defects in
Hot-Rolled Strip Steel

Xinglong Feng 1,†, Xianwen Gao 1,* and Ling Luo 2,†

Citation: Feng, X.; Gao, X.; Luo, L. A

ResNet50-Based Method for

Classifying Surface Defects in

Hot-Rolled Strip Steel. Mathematics

2021, 9, 2359. https://doi.org/

10.3390/math9192359

Academic Editors: Florin Leon,

Mircea Hulea and Marius Gavrilescu

Received: 13 August 2021

Accepted: 18 September 2021

Published: 23 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
1610238@stu.neu.edu.cn

2 Moviebook Technology Co., Ltd., Beijing 100027, China; ling_luo@moviebook.cn
* Correspondence: gaoxianwen@mail.neu.edu.cn
† These authors contributed equally to this work.

Abstract: Hot-rolled strip steel is widely used in automotive manufacturing, chemical and home
appliance industries, and its surface quality has a great impact on the quality of the final product.
In the manufacturing process of strip steel, due to the rolling process and many other reasons, the
surface of hot rolled strip steel will inevitably produce slag, scratches and other surface defects.
These defects not only affect the quality of the product, but may even lead to broken strips in the
subsequent process, seriously affecting the continuation of production. Therefore, it is important
to study the surface defects of strip steel and identify the types of defects in strip steel. In this
paper, a scheme based on ResNet50 with the addition of FcaNet and Convolutional Block Attention
Module (CBAM) is proposed for strip defect classification and validated on the X-SDD strip defect
dataset. Our solution achieves a classification accuracy of 94.11%, higher than more than a dozen
other compared deep learning models. Moreover, to adress the problem of low accuracy of the
algorithm in classifying individual defects, we use ensemble learning to optimize. By integrating the
original solution with VGG16 and SqueezeNet, the recognition rate of oxide scale of plate system
defects improved by 21.05 percentage points, and the overall defect classification accuracy improved
to 94.85%.

Keywords: hot rolled strip steel; deep learning; surface defects; defect classification

1. Introduction

Hot-rolled strip steel is produced by rolling the billet at a temperature higher than
the recrystallization temperature and then going through a series of processes such as
phosphorus removal, finishing, polishing, edge cutting and straightening. Hot-rolled
strip steel has good processing performance and strong coverage ability, which is widely
used in automobile manufacturing, home appliance manufacturing, shipbuilding and
chemical industry, etc. In the manufacturing process of strip steel, for various reasons [1–3],
surface defects will inevitably arise, and these defects cannot be completely overcome by
improving the process. Therefore, the detection of surface defects in hot rolled strip is an
important part of hot rolled strip production and is closely related to the surface quality
of the strip. Figure 1 shows the quality inspection process of surface defects in the actual
production of a steel mill.

As shown in Figure 1, the hot rolled strip is first inspected by the hot rolled strip
quality inspection system. The system takes high speed images of the top and bottom
surfaces of the strip steel and determines the images that may have surface defects and
passes them to the quality inspector. Since hot rolled strip passes through the quality
inspection system very quickly, often in less than two minutes for a roll of strip to pass
through the system, the quality inspector must judge the pictures coming from the system
quickly. Strip steels judged to be normal by the quality inspectors will go directly to the
next process, while coils judged to require further treatment will be given more specific

Mathematics 2021, 9, 2359. https://doi.org/10.3390/math9192359 https://www.mdpi.com/journal/mathematics217

Mathematics 2021, 9, 2359

treatment by the next batch of quality inspectors. Since the previous steps would have
blocked the problematic steel coils, this batch of quality inspectors have more time to
analyze the steel coils with surface defects and thus give the next instructions. After a
series of processing, the finished strip coil is finally obtained as shown in Figure 2.

Figure 1. Flow chart of strip defect detection.

Figure 2. The finished steel coils.

Although the above solution can meet the steel mill’s requirements for strip surface
quality, this solution has the following shortcomings: Firstly, strip production often takes
place throughout the day, which requires quality inspectors who make preliminary judg-
ments to work at night, and long hours of night work are detrimental to their health [4].
Secondly, for quality inspectors, the work of observing defective pictures for a long time is
not only easy to produce visual fatigue but also very boring, and therefore easy to produce

218

Mathematics 2021, 9, 2359

errors [5]. Last but not least, the work of quality inspection increases the cost of the steel
mill because of the large amount of manpower required.

The main reason for the current use of manual further testing on the basis of the strip
surface defect detection system is that the accuracy of the existing system is not yet as good
as that of the quality inspectors. So the key question is how to improve the accuracy of
this system to reach the average level of quality control workers. The strip surface defect
detection system commonly used in steel mills today is shown in Figure 3.

Figure 3. The strip surface defect detection system.

As shown in Figure 3, a schematic diagram of strip surface defect detection [6] is
shown. The conveyor rollers rotate and drive the strip through the inspection device
at high speed, and the inspection device takes high-speed images of the strip surface.
Inspection devices generally include industrial cameras, industrial light sources, protection
devices, etc.; images of the strip surface taken by the inspection devices are transmitted
to the server, which processes them by the algorithm in the server. The server extracts
samples that may be defective and sends them to the quality control personnel at the
console for determination while storing them for later inspection. The hardware of the
current strip surface defect detection system is sufficient to meet the use of detection, while
the algorithm in the server determines the final accuracy of the strip defect classification.
Therefore, to address the shortcomings of the existing system mentioned in the previous
section, we try to improve the classification accuracy of the interserver algorithm. the
contributions of this paper are shown below:

• We combine ResNet50, FcaNet and CBAM to propose a fused network for the classifi-
cation of surface defects in hot-rolled steel strips.

• We validate the proposed algorithm on the X-SDD dataset [7], compare it with several
deep learning models, and design ablation experiments to verify the effectiveness of
the algorithm.

2. Related Work

2.1. Machine Learning Based Methods

There are many ways to classify surface defects in strip steel, and scholars have con-
ducted many studies and proposed many schemes in this field. Xiao et al. [8] proposed
an evolutionary classifier with Bayesian kernel (BYEC), which can be tuned with a small
sample set to better fit the model of a new production line. Firstly, the classifier is designed
by introducing rich features to cover the details of the defects. A series of support vector
machines (SVMs) are then constructed from a random subspace of features. Finally, the
Bayesian classifier is trained as an evolutionary kernel that is fused with the results of the

219

Mathematics 2021, 9, 2359

sub-SVMs to form a comprehensive classifier. Gong et al. [9] proposed a novel multiclass
classifier, i.e., support vector hyper-spheres with insensitivity to noise (INSVHs), in order to
improve the classification accuracy and efficiency of steel plate surface defects. On the one
hand, the INSVHs classifier introduces the bouncing sphere loss to reduce its sensitivity to
the noise around the decision boundary. On the other hand, the INSVHs classifier reduces
the detrimental effect of label noise and enhances the beneficial effect of important samples
by increasing the local intra-class sample density weights. Chu et al. [10] proposed a
novel support vector machine with adjustable hyper-sphere (AHSVM) focusing on the
classification of strip surface defects. Meanwhile, a new multi-class classification method is
proposed. AHSVM originates from the support vector data description and employs hyper-
spheres to solve the classification problem. AHSVM can follow two principles: marginal
maximization and intra-class dispersion minimization. In addition, the hypersphere of
AHSVM is tunable, which makes the final classification hypersphere optimal for the train-
ing dataset. Luo et al. [11] proposed a generalized completed local binary patterns (GCLBP)
framework. Two variants of the improved completion local binary pattern (ICLBP) and
the improved completion noise-invariant local structure pattern (ICNLP) are developed
under the GCLBP framework for steel surface defect classification. Unlike the traditional
local binary pattern variants, descriptive information hidden in non-uniform patterns is
innovatively mined for better defect representation. After binarizing the strip surface defect
images, Hu et al. [12] combined the defect target images and their corresponding binarized
images to extract three types of image features, including geometric features, grayscale fea-
tures and shape features. For the support vector machine-based classification model, they
use Gaussian radial basis as the kernel function, determine the model parameters by cross-
validation, and use a one-versus-one approach for multi-class classifiers. Zhang et al. [13]
proposed a feature selection method based on a filtering approach combined with an
implicit Bayesian classifier to improve the efficiency of defect identification and reduce the
complexity of computation. The details of the method are: a large set of image features is
initially obtained based on the discrete wavelet transform feature extraction method. Then
three feature selection methods (including correlation-based feature selection, consistency
subset evaluator [CSE], and information gain) are used to optimize the feature space.

2.2. Deep Learning Based Methods

Although the above traditional machine learning-based schemes are effective to some
extent for the classification of strip defects, their effectiveness often relies on feature extrac-
tion. The feature extraction-based schemes often require manual operations and expert
knowledge, which limits the generality of the algorithms. In recent years, convolutional
neural networks (CNN) have gradually received more and more attention from scholars
due to their advantages of automatic feature extraction. Fu [14] proposed a compact and
effective CNN model that emphasizes the training of low-level features and combines
multiple receptive fields for fast and accurate classification of steel surface defects. The
solution uses a pre-trained SqueezeNet as the backbone architecture. It requires only a
small number of defect-specific training samples to achieve high accuracy recognition on a
diversity-enhanced test dataset containing steel surface defects with severe non-uniform
illumination, camera noise and motion blur. Liu et al. [15] used GoogLeNet as the base
model and added identity mapping to it, which was improved to some extent. The network
achieved a measured speed of 125 FPS (Frames Per Second), which fully meets the real-time
requirements of the actual steel strip production line. Zhou et al. [16] designed a CNN
containing seven layers, including two convolutional layers, two subsampling layers, and
two fully connected layers. The experimental results confirm that their proposed method
is quite simple, effective and robust for the classification of surface defects in hot rolled
steel sheets. Konovalenko I et al. [17] used a deep learning model based on ResNet50 as
the base classifier to perform classification experiments on planar images with three types
of damage, and the results showed that the model has excellent recognition ability, high
speed and accuracy at the same time. Yi et al. [18] proposed an end-to-end surface defect

220

Mathematics 2021, 9, 2359

recognition system for steel strip surface inspection. The system is based on a symmetric
wrap-around salinity map for surface defect detection and a deep CNN that uses the defect
images directly as input and the defect class as output for defect classification. CNNs are
trained purely on the original defect images and learn the defect features from the network
training, which avoids the separation between feature extraction and image classification,
resulting in an end-to-end defect recognition pipeline. Deep learning-based strip defect
classification schemes have shown relatively better performance than traditional machine
learning schemes, however, the current research has the following shortcomings: Firstly,
most of the current studies are based on the NEU surface defect dataset [19], which is
balanced among the six categories. However, in the actual field of strip production, the
frequency of various types of defects is not the same. Therefore, on the one hand, it is
necessary to study on a dataset with unbalanced samples. On the other hand, the attention
mechanism has been shown to improve the accuracy of CNN [20–22] for it can make the
algorithm focus more attention on the valuable information in the image; while current
research rarely introduces the attention mechanism to improve the classification accuracy
of strip surface defects.

3. Method

3.1. Introduction of ResNet

As the deep learning-based network evolves, its structure is deepening; while this
helps the network to perform more complex feature pattern extraction, it may also introduce
the problem of gradient disappearance or gradient explosion. “Gradient disappearance”
and “gradient explosion” can lead to the following shortcomings: (1) Long training time
but network convergence becomes very difficult or even non-convergent. (2) The network
performance will gradually saturate and even begin to degrade, known as the degradation
problem of deep networks. To solve such problems, He et al. [23] proposed the ResNet
network, which makes it possible to obtain a good performance and efficiency of the
network even when the number of network layers is very deep (even over 1000 layers).
The deep residual learning framework of ResNet is shown in Figure 4.

Figure 4. Residual learning: a building block.

As shown in Figure 4, there is an identity mapping in the residual module of ResNet
that causes the output of the network to change from F (x) to F (x) + x. The training error
of a deep network is generally higher than that of a shallow network. However, adding
multiple layers of constant mapping (y = x) to a shallow network turns it into a deep
network, and such a deep network can get the same training error as a shallow network.
This shows that the layers of constant mapping are better trained. For the residual network,
when the residual is 0, the stacking layer only does constant mapping at this time, and
according to the above conclusion, theoretically the network performance will not degrade
at least.

221

Mathematics 2021, 9, 2359

3.2. Introduction of CBAM

Woo et al. [24] proposed the convolutional block attention module (CBAM) in 2018,
a simple and effective attention module for feed-forward convolutional neural networks.
The significance of attention has been extensively studied in the previous literature [25–28].
Attention not only tells people where to focus their attention, it also improves representation
of interest. Representation can be improved by using attentional mechanisms: focusing on
important features and suppressing unnecessary ones. The structure of CBAM is shown in
Figure 5. The CBAM module has two sequential sub-modules: channel attention model
and spatial attention model.

Figure 5. The Convolutional Block Attention Module.

Given an intermediate layer feature map named F with dimension C × H × W as
input, CBAM sequentially generates a 1-dimensional channel attention map (with di-
mension Mc ∈ C × 1 × 1) and a 2-dimensional spatial attention map (with dimension
Ms ∈ 1 × H × W). The overall CBAM attention process can be summarized by the follow-
ing equation:

F′ = Mc(F)⊗ F, (1)

F′′ = Ms(F)⊗ F′, (2)

where ⊗ represents the one-to-one multiplication of the corresponding elements, and
during the multiplication, the attention values are broadcasted (copied) accordingly: the
channel attention values are broadcasted along the spatial dimension and vice versa. F′′ is
the output of the final attention weights. The schematic diagrams of the channel attention
mechanism and the spatial attention mechanism are shown in Figure 6.

(a)

(b)

Figure 6. The Convolutional Block Attention Moudle: (a) Channel Attention Moudle. (b) Spatial
Attention Moudle.

3.3. Introduction of FcaNet

In general, when calculating the channel attention, each channel will need a learnable
scalar value to calculate the attention weight behind the scalar calculation function is
generally used Global Average Pooling (GAP). However, GAP is not so perfect, and the
simple de-averaging method discards a lot of information and does not fully capture the

222

Mathematics 2021, 9, 2359

diversity of each channel. In order to obtain sufficient information about the diversity
of each channel, Qin et al. [29] proved that GAP is a special form of discrete cosine
transform (DCT), and based on this proof, generalized channel attention to the frequency
domain and proposed FcaNet, a channel attention network using multiple frequencies.
Assuming that X is the input feature map, the channel attention mechanism can be written
as Equation (3) [30,31]:

att = sigmoid(f c(gap(X))), (3)

where att reprents the attention vector, sigmoid reprents the sigmoid function, f c is the
maping functions and gap is GAP. Once this attention vector is obtained, each channel can
be scaled by the corresponding elements of this attention vector to obtain the output of the
channel attention mechanism:

X∗
: , i :, := attiX :, i, :, :, s.t. i ∈ 0, 1, . . . , C − 1 (4)

where X∗ reprents the out of attention mechanism, atti is the i-th element of attention
vector, and X :, i, :, : is the i-th channel of input. The DCT is defined as Equation (5) [32]

fk =
L−1

∑
i=0

xicos(πk/L(i + 1/2)), s.t. k ∈ 0, 1, . . . , L − 1 (5)

Here, f is the spectrum of the DCT, x is the input, and L is the length of x. The
2-dimensional DCT can be written as:

f 2d
h,w =

H−1

∑
i=0

W−1

∑
j=0

x2d
i,j cos(πh/H(i + 1/2))cos(πω/W(j + 1/2)),

s.t. i ∈ 0, 1, . . . , H − 1, j ∈ 0, 1, . . . , W − 1

(6)

where f is the 2D DCT frequency spectrum, x is the input, H is the heght of x, and W
reprents the width of x. The inverse transformation of 2D DCT can be written as:

x2d
i,j =

H−1

∑
h=0

W−1

∑
w=0

f 2d
h,wcos(πh/H(i + 1/2))cos(πw/W(j + 1/2)),

s.t. i ∈ 0, 1, . . . , H − 1, j ∈ 0, 1, . . . , W − 1

(7)

With the definition of channel attention and DCT, we can summarize two points: (1)
Existing methods use GAP as preprocessing when doing channel attention. (2) DCT can be
viewed as a weighted sum of inputs, and the weights are the cosine part of Equations (6)
and (7). For more details, please refer to the reference [29].

3.4. Our Method

In terms of model selection, we choose CNN as the backbone network because the
CNN model has the following advantages: The CNN learns local patterns and captures
promising semantic information. Moreover, it is also known to be efficient compared to
other model types for it has less number of parameters [33,34]. Considering the excellent
performance achieved by ResNet50 in the field of strip classification defects, we decided
to use it as the backbone network of our method. On this basis, since CBAM, FcaNet
attention mechanism can weight the relevant parameters, making the algorithm focus on
more and more valuable information; therefore, we add CBAM and FcaNet to improve the
performance of the original model. The overall structure diagram of our proposed method
is shown in Figure 7.

223

Mathematics 2021, 9, 2359

Figure 7. The overall structure of the method in this paper.

We adopt the FcaBottleneck instead of the Bottleneck structure in the original ResNet50
and place the spatial attention mechanism and the channel attention mechanism before
the FcaBottleneck. In other words, we adopt CBAM outside the Bottleneck of ResNet
for improvement and FcaNet inside the Bottleneck for improvement, so that the original
Bottleneck, is converted to FcaBottleneck. The difference between the original Bottleneck
in ResNet50 and the FcaBottleneck after the addition of FcaNet is shown in Figure 8.

Figure 8. The Bottleneck and FcaBottleneck.

As shown in Figure 8, The flow chart on the left is Bottleneck and the flow chart
on the right is FcaBottleneck. We can see the main difference between Bottleneck and
FcaBottleneck: FcaBottleneck has an additional layer of FcaNet than Bottleneck. The code
details can be found at: https://github.com/Fighter20092392/ResNet50-CBAM-FcaNet
(accessed on 5 July 2021).

In contrast to other studies that added attentional mechanisms, we paired two different
attentional mechanisms instead of adding only a single one. Moreover, we place CBAM
and FcaNet inside and outside of the block, so that the attention mechanism can be fully
functional. Whether such an improved scheme will improve the classification accuracy of
strip surface defects will be verified by experiments next.

4. Experiments

4.1. Introduction of the Dataset

We choose the newly proposed X-SDD [7] strip surface defect dataset to validate the
proposed method in this paper. The X-SDD dataset contains 7 types of 1360 surface defects
in hot rolled strip: 238 slag inclusions, 397 red iron sheet, 122 iron sheet ash, 134 surface
scratches, 63 oxide scale of plate system, 203 finishing roll printing and 203 oxide scale of
temperature system. the size of original images is 128 × 128 pixels with 3 channel JPG
format. The defect pattern in this dataset is shown in Figure 9.

224

Mathematics 2021, 9, 2359

Figure 9. Samples of seven kinds of typical surface on X-SDD. (a) oxide scale of plate system. (b) red
iron sheet. (c) surface scratches. (d) slag inclusions. (e) finishing roll printing. (f) iron sheet ash.
(g) oxide scale of temperature system.

4.2. Experimental Settings

The experiments were conducted under the Win10 operating system and the PyTorch
deep learning framework. The hardware configuration for the experiments was a single
card NVIDIA RTX3060 GPU, an Intel Core i7-9700 CPU and a 64GB of RAM. In the
experiment, the input size is set to 224 × 224 pixels, the batch size is set to 16 (Generally
speaking, the batch size value should be set as large as possible within the allowed range of
video memory), the learning rate is set to 0.0001 based on experience, the Adam optimizer is
used for optimization, and the number of training epochs is 100 (Note that as the batch size
increases, the epoch must be increased to force the model to maintain the same accuracy.).
We use 70% of the defective images in the X-SDD dataset for the trainset and the remaining
30% of the images for the testset.

4.3. Experimental Results

In order to make the experimental results more convincing, we chose several indicators
for comparison, including: Accuary, Macro-Recall, Macro-Precision and Macro-F1. The
above indicators are derived as shown in Equations (8)–(12).

n_correct = TP0 + TP1 + . . . + TPN−1 (8)

Accuary =
n_correct
n_total

(9)

Macro − Recall = (
TP0

TP0 + FN0
+

TP1

TP1 + FN1
+ . . . +

TPN−1

TPN−1 + FNN−1
)× 1

N
(10)

Macro − Precision = (
TP0

TP0 + FP0
+

TP1

TP1 + FP1
+ . . . +

TPN−1

TPN−1 + FPN−1
)× 1

N
(11)

Macro − F1 = (
2P0R0

P0 + R0
+

2P1R1

P1 + R1
+ . . . +

2PN−1RN−1

PN−1 + RN−1
)× 1

N
(12)

where n_total represents the total number of samples in the testset; N is the total number
of defect types and in this paper the value of N is 7; TP0, TP1, . . . , TPN−1 represents the
number of true cases in each category, i.e., the number that classifies the positive cases
correctly. We have chosen several deep learning models for comparison: AlexNet [35],

225

Mathematics 2021, 9, 2359

MobileNet v3 [36], Xception [37], ShuffleNet [38], EspNet v2 [39], GhostNet [40], VGG16,
VGG19 [41], ResNet101 and ResNet152 [23]. The experimental results are shown in Table 1.

Table 1. The experimental results.

Model Accuary Macro-Recall Macro-Precision Macro-F1

AlexNet 90.69% 82.79% 88.95% 84.21%
MobileNet v3 91.67% 87.95% 91.83% 88.59%

Xception 91.18% 84.30% 90.28% 85.37%
ShuffleNet 89.71% 84.76% 89.44% 84.87%
EspNet v2 86.52% 82.46% 84.10% 81.88%
GhostNet 89.22% 82.99% 87.16% 83.91%
ResNet101 92.40% 86.29% 93.30% 88.02%
ResNet152 89.22% 89.10% 87.26% 87.54%

VGG16 89.71% 86.64% 88.68% 87.47%
VGG19 86.52% 86.06% 88.98% 86.86%

RegVGG B1g2 88.48% 80.33% 92.54% 81.34%
Our Method 93.87% 87.33% 94.35% 88.71%

As shown in Table 1, our method achieves better than other compared models in
terms of Accuracy, Macro-Precision and Macro-F1. Among them, our method achieved
93.87% in Accuracy, which is 1.47 percentage points igher than the second place ResNet101.
Our method achieved the third place in the Macro-Recall metric by 1.77 percentage points
lower than ResNet152 and 0.62 percentage points lower than MobileNet v3. One possible
reason for the low Recall metric of our method is that Accuracy and Recall tend to affect
each other, and our method focuses on improving Accuracy at the expense of Recall to
some extent. Nevertheless, considering that our method is better than ResNet152 and
MobileNet v3 in other metrics; therefore, our method has an advantage over ResNet152 as
well as MobileNet v3.

4.4. Ablation Experiments

In order to verify the improvement of our method over the original ResNet50, the
following ablation experiment is designed to analyze the effect. We compare the scheme
proposed in this paper with ResNet50 and ResNet50+CBAM to analyze the effectiveness of
our improved scheme. The results of the ablation experiments are shown in Table 2.

Table 2. The results of the ablation experiments.

Model Accuary Macro-Recall Macro-Precision Macro-F1

ResNet50 92.40% 86.45% 94.08% 88.32%
ResNet50+CBAM 92.65% 88.62% 91.40% 89.71%

ResNet50+CBAM+FcaNet 93.87% 87.33% 94.35% 88.71%

As can be seen in Table 2, the improved scheme of ResNet50+CBAM compared to
ResNet50 has some improvement in Accuary, Macro-Recall and Macro-F1. This shows that
the CBAM attention mechanism makes the algorithm pay more attention to the valuable
information of images in spatial and channels, which in turn improves the classification
ability of the algorithm. The only shortcoming is that the ResNet50+CBAM model is
2.68 percentage points lower than the ResNet50 model in the Macro-Precision metric. In
contrast, our proposed ResNet50+CBAM+FcaNet scheme achieves higher scores than the
ResNet50 model in all four metrics, which indicates that our proposed approach is more
effective in improving the results. From a practical point of view, the most important of
the four metrics is the Accuracy metric, and the scheme in this paper achieves the highest
Accuracy. This indicates that our proposed ResNet50+CBAM+FcaNet method has more
practical application value.

226

Mathematics 2021, 9, 2359

The confusion matrix of our proposed method is shown in Figure 10. The horizontal
and vertical coordinates of 0–6 in the figure represent the oxide scale of plate system, red
iron sheet, surface scratches, slag inclusions, finishing roll printing, iron sheet ash and
oxide scale of temperature system, respectively. As can be seen from the confusion matrix,
our method can classify most defect categories very accurately, with less accuracy only
in the case of oxide scale of temperature system. Our model has 7 correct classifications
and 12 incorrect classifications for oxide scale of plate system, with a correct classification
rate of only 36.84% for this type of defect. The reason for this result may be that the
amount of data on oxide scale of temperature system is small and the algorithm fails to
learn effectively for this type of defect. A possible solution to this problem is to perform
more data augmentation for this class of defects, using multiple models for cascading or
ensemble learning. In the next part of this paper, we will try to solve the problem by using
an ensemble learning approach.

Figure 10. The confusion matrix.

4.5. Comparison of Model Complexity

The comparison results of the number of parameters and computation of the model
are shown in Table 3. As can be seen from Table 3, the proposed method in this paper is
basically the same in terms of number of parameters and computational effort compared
with the original ResNet50. This shows that the improvement in the effect of our proposed
method does not come from an increase in the number of participants but from a more
rational structure. Compared with heavyweight deep learning models such as ResNet101,
ResNet152 and VGG16, our method has the advantage of smaller number of parameters and
computational complexity. The computational and parametric quantities of our method are
only 35.60% and 44.77% of those of ResNet152, respectively. As can be seen from Table 1,
ResNet152 has some advantages over our method in terms of recall, but our method is
much better than ResNet152 in terms of the number of parameters and computational
complexity. Compared to lightweight deep learning models such as EspNet v2 with 0.092 G
of computation and 0.638 M of parameters, our method requires more hardware resources.
In the future, model pruning, quantization, and knowledge distillation can be used to
reduce the computational effort and number of parameters of the model, making it easier
to deploy.

227

Mathematics 2021, 9, 2359

Table 3. The comparision of model complexity.

Model Flops (G) Params (M)

AlexNet 0.309 14.596
MobileNet v3 0.300 4.317

Xception 4.617 20.822
ShuffleNet 0.132 0.860
EspNet v2 0.092 0.638
GhostNet 0.213 3.127
ResNet50 4.109 23.522

ResNet101 7.832 42.515
ResNet152 11.557 58.158

VGG16 15.484 138.358
VGG19 19.647 143.667

RepVGG B1g2 9.815 43.748
ResNet50+CBAM 4.111 23.523

Our Method 4.114 26.038

4.6. The Ensemble Model

We use three models for integration, the sub-models are ResNet50+CBAM+FcaNet,
VGG16 and SqueezeNet. The three sub-models were chosen because they differ in
principle and meet the need for diversity in ensemble learning. We set the weights of
ResNet50+CBAM+FcaNet, VGG16 and SqueezeNet to 1.2, 0.9, 0.9 respectively. The weights
of the models are not all set equal; this is to facilitate the final choice of the integrated
model when all three sub-models have different output values. The output of the ensemble
model is shown in Figure 11.

As can be seen in Figure 11, the number of correctly classified oxide scale of plate
system defects is 11, and the number of incorrectly classified defects is 8. The classification
accuracy of this category of defects is 57.89%, which is 21.05% higher than the 36.84% of
the ResNet50+CBAM+FcaNet model. The results of the ensemble model on each metric
are shown in Table 4.

Figure 11. The output of the ensemble model.

Table 4. The effect of ensemble model.

Model Accuary Macro-Recall Macro-Precsion Macro-F1

The ensemble model 94.85% 90.71% 95.04% 92.06%

228

Mathematics 2021, 9, 2359

Comparing the results in Table 4 with those in Tables 1 and 2 shows that the ensemble
model outperforms all comparison models in all four metrics. The ensemble model achieves
a good score of over 90% on all indicators, which indicates that the improved model is
more balanced on all indicators. In summary, it is effective to improve the model using
ensemble learning.

5. Discussion and Conclusions

In this paper, we propose a ResNet50+CBAM+FcaNet model for the problem of
classifying surface defects in hot-rolled strip steel. After validation on the newly proposed
X-SDD dataset, our proposed algorithm achieves 93.87% accuracy on the testset, which
is better than more than ten other comparative algorithms. In addition, our method still
achieves better results relative to other comparison models on Macro-Precision, Macro-F1,
and third place on Macro-Recall. The above results show the effectiveness of the algorithm
proposed in this paper. Combining CBAM with FcaNet helps to improve the accuracy
of ResNet50, and we argue that this improved approach will also be applicable to other
models. In the next work, we may verify through more experiments which combination
of this scheme and which model will achieve optimal results. Although our previous
paper [7] showed that a RepVGG based scheme with an added attention mechanism may
be superior in terms of effectiveness; according to Table 3, the ResNet50 based approach
has an advantage over RepVGG in terms of number of parameters and computational
complexity, i.e., it is easier to deploy in practice.

In order to further confirm the effectiveness of the attention mechanism, an ablation
experiment is designed to verify. The ablation experiment verifies that adding the attention
mechanism can effectively improve the classification accuracy of the algorithm, but while
the overall accuracy is improved, the classification accuracy of individual categories may
be reduced, which in turn affects the overall Recall and F1 metrics. Since the number of
categories in the X-SDD dataset we use is unbalanced among categories, our approach will
favor improving the accuracy of the categories with larger sample sizes at the expense of
the accuracy of the categories with smaller sample sizes. In the case of a category with a
smaller sample size, the accuracy of the category may be significantly reduced, as well
as the overall Recall being significantly affected, simply because a few more samples are
misclassified than before. The analysis of Figure 10 shows that the main factor affecting
the Macro-Recall of our method is the low accuracy of the classification of oxide scale of
plate system.

To solve the low classification accuracy of ResNet50+CBAM+FcaNet model on the
oxide scale of plate system, we improve the original scheme. We introduce the concept of
ensemble learning by integrating the original ResNet50+CBAM+FcaNet with VGG16 and
SqueezeNet. We believe that the integration of multiple models can alleviate the problem
of low classification level of a single model on a particular category to some extent, because
the focus of different models may be different. In the selection of the ensemble sub-models,
we fully consider the diversity of sub-models; the final selection of sub-models covers
three models with different characteristics, such as with and without attention mechanism,
heavy weight network and lightweight network. The final experimental results show that
the ensemble model is optimal in all four indicators, and the classification accuracy of
oxide scale of plate system has been improved substantially.

Although our proposed ResNet50+CBAM+FcaNet model and the improved ensemble
model both achieve good results, there are still some areas that can be improved. Firstly,
there is still some room for further improvement in the effectiveness of the model for
the category imbalance problem. In this paper, the model integration is carried out in a
weighting way, while other ensemble methods such as probabilistic summation can also
be considered. In addition, modifying the loss function may also improve the classifica-
tion accuracy for classes with small sample sizes. Secondly, we combine two attention
mechanisms-CBAM and FcaNet with ResNet50, while more attention mechanisms can be
considered for combination. Modification of the existing attention mechanism or proposing

229

Mathematics 2021, 9, 2359

a new attention mechanism based on the characteristics of the steel strip surface defects
may also yield good results.

After classifying the surface defects of hot rolled strip, different treatments are often
required depending on the severity of the defects. Therefore, in the future, we will compile
a dataset of the degree of surface defects of hot rolled steel strip and design an algorithm to
classify the degree of surface defects of hot rolled steel strip. We may introduce the newly
proposed MLP-mixer [42] algorithm into the field of strip defects and improve the original
algorithm to make it more suitable for the context of strip defect classification.

Author Contributions: Conceptualization, X.F. and L.L.; methodology, X.F. and L.L.; software, L.L.;
validation, X.F., L.L. and X.G.; formal analysis, L.L.; investigation, X.F.; resources, X.G.; data curation,
X.F.; writing—original draft preparation, X.F., L.L. and X.G.; writing—review and editing, X.F. and
L.L.; visualization, X.F.; supervision, X.F. and L.L.; project administration, X.G.; funding acquisition,
X.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Science Foundation under Grant 61573087, 61573088,
62173072 and 62173073.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work is done when Xinglong Feng was an intern at xBang Inc., Shenyang,
China. Thanks their support for this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kumar, A.; Das, A.K. Evolution of microstructure and mechanical properties of Co-SiC tungsten inert gas cladded coating on 304
stainless steel. Eng. Sci. Technol. Int. J. 2020, 24, 591–604. [CrossRef]

2. Afanasieva, L.E.; Ratkevich, G.V.; Ivanova, A.I.; Novoselova, M.V.; Zorenko, D.A. On the Surface Micromorphology and Structure
of Stainless Steel Obtained via Selective Laser Melting. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2018, 12, 1082–1087.
[CrossRef]

3. Gromov, V.E.; Gorbunov, S.V.; Ivanov, Y.F.; Vorobiev, S.V.; Konovalov, S.V. Formation of surface gradient structural-phase states
under electron-beam treatment of stainless steel. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2011, 5, 974–978. [CrossRef]

4. Youkachen, S.; Ruchanurucks, M.; Phatrapomnant, T.; Kaneko, H. Defect Segmentation of Hot-rolled Steel Strip Surface by using
Convolutional Auto-Encoder and Conventional Image processing. In Proceedings of the 2019 10th International Conference of
Information and Communication Technology for Embedded Systems (IC-ICTES), Bangkok, Thailand, 25–27 March 2019; pp. 1–5.
[CrossRef]

5. Ashour, M.W.; Khalid, F.; Halin, A.A.; Abdullah, L.N.; Darwish, S.H. Surface defects classification of hot-rolled steel strips using
multi-directional shearlet features. Arab. J. Sci. Eng. 2019, 44, 2925–2932. [CrossRef]

6. Luo, Q.; Fang, X.; Sun, Y.; Liu, L.; Ai, J.; Yang, C.; Simpson, O. Surface Defect Classification for Hot-Rolled Steel Strips by
Selectively Dominant Local Binary Patterns. IEEE Access 2019, 7, 23488–23499. [CrossRef]

7. Feng, X.; Gao, X.; Luo, L. X-SDD: A New Benchmark for Hot Rolled Steel Strip Surface Defects Detection. Symmetry 2021, 13, 706.
[CrossRef]

8. Xiao, M.; Jiang, M.; Li, G.; Xie, L.; Yi, L. An evolutionary classifier for steel surface defects with small sample set. EURASIP J.
Image Video Process. 2017, 2017, 1–13. [CrossRef]

9. Gong, R.; Chu, M.; Yang, Y.; Feng, Y. A multi-class classifier based on support vector hyper-spheres for steel plate surface defects.
Chemom. Intell. Lab. Syst. 2019, 188, 70–78. [CrossRef]

10. Chu, M.; Liu, X.; Gong, R.; Zhao, J. Multi-class classification method for strip steel surface defects based on support vector
machine with adjustable hyper-sphere. J. Iron Steel Res. Int. 2018, 25, 706–716. [CrossRef]

11. Luo, Q.; Sun, Y.; Li, P.; Simpson, O.; Tian, L.; He, Y. Generalized completed local binary patterns for time-efficient steel surface
defect classification. IEEE Trans. Instrum. Meas. 2018, 68, 667–679. [CrossRef]

12. Hu, H.; Li, Y.; Liu, M.; Liang, W. Classification of defects in steel strip surface based on multiclass support vector machine.
Multimed. Tools Appl. 2014, 69, 199–216. [CrossRef]

13. Zhang, Z.F.; Liu, W.; Ostrosi, E.; Tian, Y.; Yi, J. Steel strip surface inspection through the combination of feature selection and
multiclass classifiers. Eng. Comput. 2020, 38, 1831–1850. [CrossRef]

14. Fu, G.; Sun, P.; Zhu, W.; Yang, J.; Cao, Y.; Yang, M.Y.; Cao, Y. A deep-learning-based approach for fast and robust steel surface
defects classification. Opt. Lasers Eng. 2019, 121, 397–405. [CrossRef]

230

Mathematics 2021, 9, 2359

15. Liu, Y.; Geng, J.; Su, Z.; Yin, Y. Real-time classification of steel strip surface defects based on deep CNNs. In Proceedings of 2018
Chinese Intelligent Systems Conference; Springer: Singapore, 2019; pp. 257–266.

16. Zhou, S.; Chen, Y.; Zhang, D.; Xie, J.; Zhou, Y. Classification of surface defects on steel sheet using convolutional neural networks.
Mater. Technol. 2017, 51, 123–131.

17. Konovalenko, I.; Maruschak, P.; Brezinová, J.; Viňáš, J.; Brezina, J. Steel Surface Defect Classification Using Deep Residual Neural
Network. Metals 2020, 10, 846. [CrossRef]

18. Yi, L.; Li, G.; Jiang, M. An end to end steel strip surface defects recognition system based on convolutional neural networks. Steel
Res. Int. 2017, 88, 1600068. [CrossRef]

19. Song, K.; Yan, Y. Micro Surface defect detection method for silicon steel strip based on saliency convex active contour model.
Math. Probl. Eng. 2013, 2013, 429094. [CrossRef]

20. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 6450–6458.

21. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803.

22. Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In Proceedings
of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Korea, 27–28 October 2019.

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

24. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

25. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
26. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption

generation with visual attention. In Proceedings of the International Conference on Machine Learning (PMLR), Lille, France, 7–9
July 2015; pp. 2048–2057.

27. Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D.; Wierstra, D. Draw: A recurrent neural network for image generation. In
Proceedings of the International Conference on Machine Learning (PMLR), Lille, France, 7–9 July 2015; pp. 1462–1471.

28. Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial transformer networks. arXiv 2015, arXiv:1506.02025.
29. Qin, Z.; Zhang, P.; Wu, F.; Li, X. FcaNet: Frequency Channel Attention Networks. arXiv 2020, arXiv:2012.11879.
30. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
31. Qilong, W.; Banggu, W.; Pengfei, Z.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural

Networks. arXiv 2020, arXiv:1910.03151.
32. Ahmed, N.; Natarajan, T.; Rao, K.R. Discrete cosine transform. IEEE Trans. Comput. 1974, 100, 90–93. [CrossRef]
33. Jeon, M.; Jeong, Y.S. Compact and accurate scene text detector. Appl. Sci. 2020, 10, 2096. [CrossRef]
34. Vu, T.; Van Nguyen, C.; Pham, T.X.; Luu, T.M.; Yoo, C.D. Fast and efficient image quality enhancement via desubpixel convolu-

tional neural networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Glasgow, UK, 23–28
August 2018; pp. 243–259.

35. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

36. Howard, A.; Sandler, M.; Chu, G.; Chen, L.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019;
pp. 1314–1324.

37. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

38. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

39. Mehta, S.; Rastegari, M.; Shapiro, L.; Hajishirzi, H. Espnetv2: A light-weight, power efficient, and general purpose convolutional
neural network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seoul, Korea, 27–28
October 2019; pp. 9190–9200.

40. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1580–1589.

41. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
42. Tolstikhin, I.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.; et al.

Mlp-mixer: An all-mlp architecture for vision. arXiv 2021, arXiv:2105.01601.

231

mathematics

Article

Dynamic Programming Algorithms for Computing Optimal
Knockout Tournaments

Amelia Bădică 1, Costin Bădică 2,*, Ion Buligiu 1, Liviu Ion Ciora 1 and Doina Logofătu 3

Citation: Bădică, A.; Bădică, C.;

Buligiu, I.; Ciora, L.I.; Logofătu, D.

Dynamic Programming Algorithms

for Computing Optimal Knockout

Tournaments. Mathematics 2021, 9,

2480. https://doi.org/10.3390/

math9192480

Academic Editor: Fabio Caraffini

Received: 7 September 2021

Accepted: 27 September 2021

Published: 4 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Statistics and Business Informatics, University of Craiova, 200585 Craiova, Romania;
amelia.badica@edu.ucv.ro (A.B.); ion.buligiu@edu.ucv.ro (I.B.); liviu.ciora@edu.ucv.ro (L.I.C.)

2 Department of Computers and Information Technology, University of Craiova, 200585 Craiova, Romania
3 Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, Nibelungenplatz 1,

60318 Frankfurt am Main, Germany; logofatu@fb2.fra-uas.de
* Correspondence: costin.badica@edu.ucv.ro

Abstract: We study competitions structured as hierarchically shaped single-elimination tournaments.
We define optimal tournaments by maximizing attractiveness such that the topmost players will have
the chance to meet in higher stages of the tournament. We propose a dynamic programming algorithm
for computing optimal tournaments and we provide its sound complexity analysis. Based on the idea
of the dynamic programming approach, we also develop more efficient deterministic and stochastic
sub-optimal algorithms. We present experimental results obtained with the Python implementation of
all the proposed algorithms regarding the optimality of solutions and the efficiency of the running time.

Keywords: optimization; knockout tournament; dynamic programming algorithm; computational
complexity; combinatorics

1. Introduction

Tournament design is a combinatorial problem with many theoretical implications, as
well as with a lot of practical applications. There are many types of tournaments that have
been theoretically analyzed and practically used in various contexts. Basically, there are
two main principles used in tournament design: “round-robin” principle and “knockout”
principle. They can be used in isolation or combined for obtaining different tournaments
designs, depending on various factors, such as the number of players, time available to
carry out the tournament, and application domain.

In this paper we propose a formal definition of competitions that have the shape
of single-elimination tournaments, also known as knockout tournaments. We introduce
methods to quantitatively evaluate the attractiveness and competitiveness of a given
tournament. We consider that a tournament is more attractive if competition is encouraged
in higher stages, i.e., higher-ranked players will have the chance to meet in higher stages of
the tournament, thus increasing the stake of their matches.

In knockout tournaments, the result of each match is always a win of one of the two
players, i.e., draws are not possible. A knockout tournament is hierarchically structured
as a binary tree such that each leaf represents one player or team that is enrolled in the
tournament, while each internal node represents a game of the tournament.

The tournament is carried out in a series of rounds. If there is a number N of players
equal to a power of 2, for example N = 8 = 23 then the tournament tree is a complete
binary tree with all the players entering the tournament in the first round; however, in the
general case, the number of players might not be a power of 2, for example N = 9. In this
case some of the players will receive waivers thus entering the tournament directly in the
the second round, while the rest of the players will enter the tournament in the first round.

In this paper we significantly extend our preliminary results reported in [1] for fully
balanced tournaments (the number of players is N = 2k) to general tournaments where the

Mathematics 2021, 9, 2480. https://doi.org/10.3390/math9192480 https://www.mdpi.com/journal/mathematics233

Mathematics 2021, 9, 2480

number of players can be an arbitrary natural number, not necessarily a power of 2. Our
new results are summarized as follows:

1. An exact formula for counting the total number of knockout tournaments in the
general case, showing that the number of tournaments grows very large with the
number of players.

2. A tournament cost function based on players’ quota that assigns a higher cost to those
tournaments where highly ranked players tend to meet in higher stages, thus making
the tournament more attractive and competitive.

3. An exact dynamic programming algorithm for computing optimal tournaments in
the general case.

4. A more efficient generic sub-optimal algorithm derived from the idea of the dynamic
programming approach.

5. Deterministic and stochastic versions of the generic sub-optimal algorithm.
6. The complexity analysis of all the proposed algorithms.
7. The implementation issues of the proposed algorithms using Python, as well as the

experimental results obtained with our implementation.

2. Related Works

Tournament design attracted research in operations research, combinatorics, and
statistics. The problem is also related to intelligent planning and activity scheduling,
broadly covered also by artificial intelligence.

There are two main principles used in tournament design, namely the “round-robin”
principle and “knockout” principle, and they can be used in isolation or combined for
obtaining different tournaments designs. The “round-robin” principle states that in a tour-
nament, each two players should meet at least once, sometimes exactly once. “Knockout”,
also known as the “elimination” principle states that players are eliminated after a certain
number of games, sometimes exactly after one game.

For example, in a round-robin tournament in which each two players should meet
exactly once, an important aspect is the scheduling of the tournament, a problem also
known as league scheduling [2]. This is an important component of the tournament design.
Note that the “round robin” principle can also be applied with restrictions. Consider for
example a two-team tournament, in which each team has the same number of players.
Each game involves two players from different teams and any two players from different
teams must play exactly once. In this case, we can still apply the round-robin principle,
but players of the same team are not allowed to play. This type of tournament is called
a bipartite tournament. A good coverage of the combinatorial aspects of round-robin
tournaments can be found in monograph [2].

On the other hand, in a knockout tournament where two players will play at most
one game and after each game exactly one player advances in the tournament, while the
other is kicked off, the tournament schedule results directly from the tournament design,
i.e., no separate scheduling stage is needed.

Note also that the round-robin and knock-out principles can be combined into a
single tournament design. Consider for example the UEFA Champions League football
tournament. In the groups’ phase, round-robin is used inside each group, while after the
group phase, knockout is used to determine the tournament winner.

In this paper we consider knockout tournaments in which two players meet at most
once. These are specialized tournaments with possible applications in sports (e.g., football
and tennis tournaments), online games (e.g., online poker), and election processes. While
in the former case there is a relatively low number of players, thus not raising special
computational challenges, the number of players in massive multiplayer online games can
grow such that computing the optimal tournament becomes a more difficult problem.

A comprehensive analysis of knockout tournaments is proposed in [3,4]. Traditionally,
the method for designing a tournament involves two stages: (i) tournament structure
design and (ii) seeding. In the first stage, the structure of the tournament tree is proposed.

234

Mathematics 2021, 9, 2480

In the second stage, players are assigned to each leaf of the tournament tree; however, as
we can argue that this method of tournament design has some limitations, we proposed
different “integrated” approach. One limitation is for example the fact that once fixed,
the tournament structure cannot be changed. On one hand this will result in a smaller
search space during the seeding process, on the other hand it limits the total number of
tournament designs. So our model of tournament trees includes both the tree structure, as
well as the players’ seeding; a separate seeding process is not necessary.

Research in combinatorics of knockout tournaments also produced interesting mathe-
matical results. The structure of a knockout tournament can be modeled as a special kind
of binary tree, called an Otter tree [5]. The number of knockout tournament structures (i.e.,
prior to seeding) for N players is given by the Wedderburn—Etherington number [6] of or-
der N that is known to have an exponential growth approximately equal to 0.3188× 2.4832N

N1.5 .
An important aspect concerns the factors that can be used to evaluate a tournament

design. This problem has been also considered in previous works [3,4]. An interesting
discussion of economic aspects of tournament attractiveness, such as spectator interest, is
provided by [7].

A method for augmenting a tournament with probabilistic information based on
tournament results was proposed in [8]. The effectiveness of tournament plans based on
dominance graphs is studied in [6]. The tournament problem was also a source of inspira-
tion for programming competitions [9]. A more recent work addressing competitiveness
development and ranking precision of tournaments is [10].

For example, the more recent work [3,4] proposes a probabilistic approach to define
the tournament cost, by including in their model the win–loss probabilities of each game
between two players i and j. On one hand, we can question the robustness of such values.
On the other hand, we recognize that some approximations of such values might be
empirically obtained based on several factors, e.g., global player rankings (when available)
or on the history of games between the players (if a nonempty history exists). In our work
we do not use this information, i.e., we assume by default that there are equal winning
chances for the players of each game. While this simplification clearly has drawbacks, it
has the advantage of enabling a clean algorithm design based on dynamic programming
principles. Our approach can be extended by adding probabilistic information to the
cost function, but then it will require further analysis of algorithmic solutions within our
“integrated” approach.

A theoretical investigation of knockout tournaments is provided by [11]. Their analysis
is focused only on tournaments with a power of 2 number of players, i.e., similar with [1],
but definitely less general than in the current work, where an arbitrary number of players
is considered. Interesting results of this work concern the discussion of new seeding
approaches named “equal gap” and “increasing competitive”, as well as the investigation
of their theoretical properties.

There has been also theoretical interest in analyzing the possible outcomes of knockout
tournaments. Upper and lower bounds of winning probabilities of players of a random
knockout tournament are provided in [12]. Note that the analysis is focused on the random
knockout tournament where the definition of matches to be carried out in each round is
defined randomly. Moreover, this work assumes as [3,4], that the win–loss probabilities of
each match between two players are known.

There is also interest in the literature in designing new formats of knockout tourna-
ments. For example, a new format based on actively involving the teams in defining the
tournament format, was recently proposed in [13] for the specific competition of UEFA
Champions League. The proposed format was coined “Choose your opponent” with the
claimed benefit to make group stages more exciting. The authors also show how this
model can be used for the objective of maximizing the number of home games during the
knockout stage.

Knockout tournament structures are sometimes called tournament brackets. Accord-
ing to [14], two types of tournament brackets are possible: fixed and adaptive. In fixed

235

Mathematics 2021, 9, 2480

brackets, the tournament structure is fixed, while in adaptive brackets pairings in stage i+ 1
are defined based on winners of stage i. Our approach is clearly fixed, with the difference
that we use an integrated approach to define both the structure as well as the seeding. What
is different in [14] is the fact that authors look for optimizing a fixed bracket by using utility
functions and Bayesian optimal design. They propose a simulated annealing algorithm
to optimize the expected value of a given utility function on a fixed tournament bracket.
While interesting, this endeavor is clearly different from our approach. We plan however
to investigate in the future the suitability of extending integrated approach and proposed
algorithms by incorporating probabilistic information.

Clearly tournaments have a lot of practical applications, for example in the sports’
domain. In this context, the recent work [15] provides an interesting discussion on the
economics of sports from operations research, as well as practical applicability perspectives.
The discussion is centered around several paradoxes of tournament rankings, with clear
examples from the practice of tournament design.

3. Knockout Tournaments

We consider hierarchically structured knockout tournaments such that the result of
each match is always a win of one of the two players, i.e., draws are not possible. A
tournament is modeled as a binary tree such that each leaf node represents a unique player
and each internal node represents a game between two players and its winner.

Definition 1 (Tournaments). Let Σ be a finite nonempty set of players. We define the set of trees
T (Σ) with leaves Σ as follows:

1. If Σ = {i} is a singleton set then T (Σ) = {i}, i.e., there is a single tree containing a single
node i.

2. If Σ1 and Σ2 are two disjoint sets of players then let Σ = Σ1 ∪ Σ2. Then:

T (Σ) = {t|t = {t1, t2}, t1 ∈ Σ1, t2 ∈ Σ2} (1)

Note that the set notation in Equation (1) implies that the trees are not ordered, i.e.,
the order of the left and right branches does not matter.

Example 1. We consider examples of tournaments for sets of players with 1, 2, 3 and 4 elements:

1. If Σ = {1} then T (Σ) = {1}.
2. If Σ = {1, 2} then T (Σ) = {{1, 2}}.
3. If Σ = {1, 2, 3} then T (Σ) = {{{1, 2}, 3}, {{1, 3}, 2}, {{3, 2}, 1}}.
4. If Σ = {1, 2, 3, 4} then T (Σ) = {{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}},

{{{1, 2}, 3}, 4}, . . .}. It is not difficult to see that in this case there are 15 trees.

Some of the tournaments introduced in Example 1 are depicted graphically in Figure 1.
Observe that the tournaments on the first row (labeled “a” and “b”) involve a number of
elements that is a power of two (2 = 21 and 4 = 22, respectively) and are fully balanced.
However, the tournaments on the second row are not fully balanced, although the lower
rightmost tournament involves 4 = 22 players. However, intuitively, the tournament with
three players (labeled “c”) should be accepted, as player 3 will enter the tournament
only 1 round after players 1 and 2, i.e., it has a sense of “balancing”. However, the lower
rightmost tournament with four players (labeled “d”) is not acceptable, as player 4 received
an exemption from playing in the first two rounds, and this is considered unfair.

236

Mathematics 2021, 9, 2480

?

1 2

?

? ?

1 2 3 4

a. Balanced tournament with two players. b. Balanced tournament with four players.

?

? 3

1 2

?

? 4

? 3

1 2

c. Balanced tournament with three players. d. Unbalanced tournament with four players.

Figure 1. Tournaments of two and three players (first column) and four players (second column).

Proposition 1 (Counting tournaments). The set T (Σ) with |Σ| = N players contains:

(2N − 2)!
(N − 1)! × 2N−1 (2)

elements.

Proof. The number of full binary tree structures with N leaves is equal to CN−1 where CN
is Catalan’s number [16] defined by:

CN =
1

N + 1

(
2N
N

)
(3)

Now, each permutation of the N players can be attached to the leaves of a binary
tree, thus obtaining N! · CN−1 trees. However, the branches of each internal node can be
exchanged, resulting in the same tree. There are N − 1 internal nodes and therefore a total
number of 2N−1 exchanges, resulting a number of trees given by:

N! · CN−1

2N−1 =
(2N − 2)!

(N − 1)! · 2N−1 (4)

q.e.d.

Example 2. For example, if N = 3 we obtain 4!
2!×22 = 3 trees, while if N = 4 we obtain

6!
3!×23 = 15 trees. These results are consistent with Example 1.

A valid tournament should be balanced, i.e., each player should play (almost) the
same number of games to win the tournament.

Analyzing the tournaments from Example 1 and Figure 1 we can observe that if
|Σ| ≤ 3 then each element of T (Σ) represents a valid tournament. However, if |Σ| = 4
then only 3 trees of T (Σ) represent valid tournaments. For example, {{1, 2}, {3, 4}} is a
valid tournament as each player should play exactly two games to win the tournament.
In this case we have a fully balanced tournament consisting of N = 22 players. Moreover,
{{1, 2}, 3} is also considered a valid tournament, as players 1 and 2 must play two games
to win, while player 3 must play one game to win, i.e., has an exemption for the first round
(the difference between the number of games played by each player is at most 1). However,
{{{1, 2}, 3}, 4} is not a valid tournament, as players 1 and 2 must play three games to
win the tournament, while player 4 must play a single match to win the tournament (the

237

Mathematics 2021, 9, 2480

difference between the number of games played by each player is above 1, i.e., more than
one exemption for a player is considered unfair).

Observe that a tree representing a valid tournament has the property that all its leaves
are of height n or n + 1 for a suitable value of n. Actually, the value of n can be determined
from the given number of players N of the tournament and it represents the number of
rounds of the tournament.

Let us consider a tournament with n rounds. It is not difficult to see that the maximum
number of players is Nmax = 2n and it is obtained when in the first round we have a
maximum number of 2n−1 games; therefore, for a tournament with n rounds we have:

2n−1 < N ≤ 2n (5)

Observe that from Equation (5) it follows that:

n = �log2 N� (6)

Definition 2 (Balanced (valid) tournaments). Let n ∈ N be the number of rounds. Let Σ be
a nonempty set of N players such that conditions (5) and (6) are fulfilled. Then the set Tn(Σ) of
balanced trees with n layers representing the set of balanced (valid) tournaments with n rounds is
defined as follows:

1. If n = 0 then N = 1 so we have a singleton set Σ = {i}. In this case T0(Σ) = {i}.
2. If n ≥ 1, t1 ∈ Tn−1(Σ1), t2 ∈ Tn−1(Σ2), Σ1 ∩ Σ2 = ∅ and Σ1 ∪ Σ2 = Σ then

t = {t1, t2} ∈ Tn(Σ).
3. If n ≥ 2, t1 ∈ Tn−1(Σ1), t2 ∈ Tn−2(Σ2) is a fully balanced tree (i.e., |Σ2| = 2n−2),

Σ1 ∩ Σ2 = ∅ and Σ1 ∪ Σ2 = Σ then t = {t1, t2} ∈ Tn(Σ).

If n ≥ 1 then there are N ∈ 2n−1 + 1 . . . 2n players. Then a tree t ∈ Tn(Σ) can be
obtained either (i) by joining two balanced trees with n − 1 layers or (ii) by joining one
balanced tree with n − 1 layers and one fully balanced tree with n − 2 layers (all its leaves
are on layer n − 2), so in both cases the balancing condition of t is properly preserved.

Proposition 2 (Structure of a balanced tournament). Let t ∈ Tn(Σ) be a tournament of N
players such that n is defined by Equation (6). Then the number of players starting in the first round
is β = 2N − 2n and the number of players starting in the second round (waivers) is γ = 2n − N.
Moreover, if n ≥ 1 then the number of internal nodes of level 2 in the tree is equal to α = N − 2n−1,
i.e., β = 2α and γ = 2n−1 − α.

Proof. First observe that if the number of players is a power of 2, i.e., N = 2n, then
α = 2n−1 = N/2, β = N, and γ = 0. This is trivially true, as in this case the tournament is
fully balanced and all the players start in the first round (there are no exemptions).

The proof for the general case can be shown by induction on n ∈ N.
For n = 0 the tournament has N = 1 players. In this case there is a single balanced

tournament with γ = 0 and β = 1, so the property trivially holds.
For n = 1 the tournament has N = 2 players. In this case there is a single balanced

tournament with α = 1, β = 2 and γ = 0, so the property trivially holds.
Let us now assume that the property holds for k = 0, 1, . . . , n and let us prove it for

k = n + 1. There are two cases.
Case 1. If n ≥ 1, t1 ∈ Tn(Σ1), t2 ∈ Tn(Σ2), Σ1 ∩ Σ2 = ∅ and Σ1 ∪ Σ2 = Σ, let us

consider t = {t1, t2} ∈ Tn+1(Σ) such that the second condition of Definition 2 is fulfilled.
According to the induction hypothesis we have γi = 2n − Ni, βi = 2Ni − 2n, αi = Ni − 2n−1

for i = 1, 2 and N = N1 + N2. Then γ = γ1 +γ2 = 2n+1 − (N1 + N2) = 2n+1 − N. Similarly
β = β1 + β2 = 2N − 2n+1 and α = α1 + α2 = N − 2n q.e.d.

Case 2. If n ≥ 2, t1 ∈ Tn(Σ1), t2 ∈ Tn−1(Σ2) is a fully balanced tree (i.e., |Σ2| = 2n−1),
Σ1 ∩ Σ2 = ∅ and Σ1 ∪ Σ2 = Σ, let us consider t = {t1, t2} ∈ Tn+1(Σ) such that the
third condition of Definition 2 is fulfilled. According to the induction hypothesis we

238

Mathematics 2021, 9, 2480

have γ1 = 2n − N1, β1 = 2N1 − 2n, α1 = N1 − 2n−1, γ2 = 0, β2 = 2n−1 and α2 = 2n−2,
N2 = 2(n − 1), and N = N1 + 2n−1. Then β = β1 = 2(N1 + 2n−1)− 2n − 2n = 2N − 2n+1.
Similarly γ = γ1 + β2 = 2n − N1 + 2n−1 = 2n + 2n−1 + 2n−1 − N = 2n+1 − N and similarly
for α = α1 = N1 − 2n−1 = N − 2n−1 − 2n−1 = N − 2n q.e.d.

The relations β = 2α and γ = 2n−1 − α can be now easily checked.

Example 3 (Tournament structure design). Let us consider a tournament with N = 5 players.
In this case n = 3, γ = 23 − 5 = 3, α = 22 − 3 = 1, β = 2 × 5 − 23 = 2. A tree representing
a tournament with five players will have three layers such that the first layer consists of β = 2
leaves (players) and the second layer consists of 2n−1 = 22 = 4 nodes among which there is α = 1
internal node and γ = 3 leaves (players). One such a balanced tournament is depicted in Figure 2.

?

? ?

3 2 ? 1

5 4

Figure 2. A balanced tournament of five players.

Proposition 3 (Counting balanced tournaments). The set Tn(Σ) with |Σ| = N players contains:

N! · (2n−1

γ)

2N−1 (7)

elements.

Proof. There are (2n−1

γ) ways of choosing how the γ players will enter second round.
Their ordering matters so we multiply with γ!. Moreover those γ players are arbitrarily
chosen from the set of N players, so we multiply with (N

γ). Finally, the ordering of those
β remaining players that enter first round matters, so we also multiply with β!. For each
internal node of the tree, exchanging its left and right sub-tree is a tournament invariant.
There are 2N−1 independent ways of exchanging left and right sub-tree of the tree, so we
must divide by 2N−1. We obtain:

(N
γ) · (

2n−1

γ) · γ! · β!

2N−1 =
N! · (2n−1

γ)

2N−1 (8)

A simpler proof is obtained by thinking about structures (i.e., “shapes”) of tournament
trees. The selection of the “locations” of those γ players entering second round can
be achieved in (2n−1

γ) ways. For each tree structure defined in this way there are N!

permutations of the leaves (players), thus defining a total number of N! · (2n−1

γ) balanced
tournament trees. Finally we divide by 2N−1 and we obtain Equation (7).

Example 4. Let us check the number of balanced tournaments for several cases.

1. The number of balanced tournaments with N = 5 players can be obtained as follows:

5! × (22

3)

24 = 30 (9)

It is not difficult to verify that this result is correct. In this case β = 2. There are (5
2) = 10 ways

of selecting those two players that will enter first round. We have one separate tournament

239

Mathematics 2021, 9, 2480

by letting the winner of the game of these two players playing against each of the remaining
three players in the second round. So in total there are 10 × 3 = 30 balanced tournaments
with five players.

2. For n = 3 players we obtain:

3! × (21

1)

22 = 3 (10)

3. If N = 2n then γ = 0, thus we obtain our result for fully balanced tournaments from [1]
stating that the total number of fully balanced tournaments is given by:

(2n)!
22n−1 . (11)

The number of fully balanced tournaments with two rounds is (22)!
222−1

= 4!
8 = 3. Observe that

applying the formula, we obtain 315 fully balanced tournaments with three rounds. Let us
obtain this result using a different reasoning. Let us count the number of a set with eight
elements consisting of two subsets of four elements each. There are (8

4)/2 = 35 possibilities,
as we consider the four combinations of eight elements, and we divide by two as the order
of the subsets of a partition does not matter; however, for each set of each partition there are
three fully balanced tournaments of three rounds, so multiplying we obtain a total of nine
possibilities. So the number of three-stage tournaments is 9 × 35 = 315.

4. Optimal Tournaments

Each round of a tournament with n rounds defines possible games between players.
Note that in a given tournament any two players can play in a game at one and only one
of its rounds. This follows from the fact that for any two leaves of a binary tree there is a
unique closest common ancestor. It follows that the tournament round si,j where players
i, j can meet is a unique value in 1, 2, . . . , n and it is well defined. For example, referring to
the tournament shown in Figure 2, s2,4 = 3, s1,5 = 2, and s4,5 = 1.

Intuitively, the higher the quotations of players i and j, the better it is to let them meet
in a higher stage of the tournament in order to increase the stakes of their games.

We assume in what follows that a quotation qi ∈ (0,+∞) is available for each player
i ∈ Σ. Quotations can be obtained from the players’ current ranking (as for example in
international tennis tournaments ATP and WTA) or by other means.

Definition 3 (Tournament cost). Let t ∈ Tn(Σ) be a tournament with n rounds and let
st

i,j ∈ {1, 2, . . . , n} be the stage of t where players i, j can meet. Let qi > 0 be the quotations
of players for all i ∈ Σ. The cost of t is defined as:

Cost(t) = ∑
i,j∈Σ,i<j

qiqjst
ij (12)

Definition 4 (Optimal tournament). A tournament such that its cost computed with Equation (12)
is maximal is called an optimal tournament and it is defined by:

OptC(Σ) = maxt∈Tn(Σ) Cost(t)
t∗ = argmaxt∈Tn(Σ) Cost(t) (13)

Obviously, better ranked players have a higher quotation. We assume that if player i
has rank ri then its quota is qi such that whenever ri < rj we have qi > qj. For example, if
there are N = 2n players then we can choose qi = N + 1 − ri for all i = 1, . . . , N.

Example 5. Let us consider the tournaments t1, t2, and t3 with three players shown in Figure 3.
Let us introduce:

A = q1q2 + q1q3 + q2q3
S = q1 + q2 + q3

(14)

240

Mathematics 2021, 9, 2480

We obtain:

Cost(t1) = q2q31 + q1q22 + q1q32 = A + q1(q2 + q3) = A + q1(S − q1)
Cost(t2) = A + q2(S − q2)
Cost(t3) = A + q3(S − q3)

(15)

The ordering of the costs depends on the ordering of the values of the function q(S − q) for
q = q1, q2, q3 ∈ [0, S]. This function is monotonically increasing on [0, S/2] and monotonically
decreasing on [S/2, S]. Observe that if qi ≤ S/2, i.e., if neither player gets more than a half of the
total quotation stake, then the ordering of the costs is given by the ordering of the quotations qi.

?

? 1

2 3

?

? 2

1 3

t1 t2

?

? 3

1 2

t3

Figure 3. Balanced tournaments with three players.

Example 6. Let us consider four players (see Table 1). We assume that each player has a unique
rank from 1 to 4. Now, if we choose qi = 5 − ri then, using this approach for defining players’
quota, player 2 with rank 4 is assigned quotation q2 = 1. We consider the three tournaments
t1, t2, t3 ∈ T2({1, 2, 3, 4}) from Figure 4. According to Equation (12), the cost of a tournament
t ∈ T2({1, 2, 3, 4}) is:

Cost(t) =
4

∑
1≤i<j≤4

st
ijqiqj

Cost(t) = st
12 · 4 × 1 + st

13 · 4 × 2 + st
14 · 4 × 3 + st

23 · 1 × 2 + st
24 · 1 × 3 + st

34 · 2 × 3

(16)

Substituting stage values st
ij for each tournament from Table 2 into Equation (16) we obtain

the tournaments’ cost values from Table 2. We observe that in this case the best tournament is t3.
Actually it can be easily checked that the best tournament is t3 for whatever values of the quota that
are decreasingly ordered according to the ranks.

Table 1. Players’ ranking and quotation for n = 4.

Player i Rank ri Quota qi = n + 1 − ri

1 1 4
4 2 3
3 3 2
2 4 1

241

Mathematics 2021, 9, 2480

Table 2. Games playing stages for each tournament of Figure 4 and their costs.

st1 1 2 3 4 st2 1 2 3 4 st3 1 2 3 4

1 2 1 2 1 2 2 1 1 1 2 2

2 2 1 2 1 2 2 2 2

3 2 3 2 3 1

Cost 59 56 60

Cost of t1 Cost of t2 Cost of t3

?

? ?

1 3 2 4

?

? ?

1 4 2 3

t1 t2

?

? ?

1 2 3 4

t3

Figure 4. Balanced tournaments with four players.

5. Dynamic Programming Algorithm for Computing Optimal Tournaments

For any set of players Σ we denote by qΣ the sum of quotations of the players in Σ.

qΣ = ∑
i∈Σ

qi (17)

Proposition 4 (Recurrence for tournament cost). Let t ∈ Tn(Σ) be an n-stage tournament
such that Σ is a finite nonempty set with N ∈ 2n−1 + 1 . . . 2n elements. Then:

Cost(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 n = 0
qi · qj n = 1, N = 2, Σ = {i, j}
Cost(t1) + Cost(t2) + nqΣ1 qΣ2 n ≥ 2, t = {t1, t2}, t1 ∈ T (Σ1),

t2 ∈ T (Σ2), Σ1 ∪ Σ2 = Σ, Σ1 ∩ Σ2 = ∅,
t1 and t2 are balanced, at most one has n − 2
levels and in this case it is fully balanced

(18)

Proof. If n = 0 then Σ has a single player so the result is obvious, as no games are played
to determine the winner of the tournament.

If n = 1 then Σ has two players i and j so the result is obvious, as a single game is
played to determine the winner of the tournament, between player i and player j.

If n ≥ 2 then t = {t1, t2}. If i ∈ Σ1 and j ∈ Σ2 then st
ij = n. So Equation (12) gives:

Cost(t) = ∑
i,j∈Σ1,i<j

qiqjs
t1
ij + ∑

i,j∈Σ2,i<j
qiqjs

t2
ij + ∑

i∈Σ1,j∈Σ2

qiqjst
ij =

Cost(t1) + Cost(t2) + n ∑
i∈Σ1,j∈Σ2

qiqj = Cost(t1) + Cost(t2) + nqΣ1 qΣ2

(19)

The conditions from the Equation (18) follow directly from the recursive definition of
balanced tournaments (Definition 2).

242

Mathematics 2021, 9, 2480

Proposition 5 (Recurrences for optimal tournaments).

1. The optimal tournament cost OptC introduced by Equation (13) can be defined recursively
as follows:

OptC(Σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 n = 0, |Σ| = 1
qi · qj n = 1, Σ = {i, j}

max
Σ1∪Σ2=Σ
Σ1∩Σ2=∅

OptC(Σ1) + OptC(Σ2) + nqΣ1 qΣ2 n ≥ 2, 2n−1 < |Σ| ≤ 2n

2n−2 ≤ |Σ1| ≤
|Σ2| ≤ 2n−1

(20)
2. The optimal tournament can be determined by recording the pairs of subsets

Opt(Σ) = (Σ1, Σ2 = Σ \ Σ1) that maximize OptC in Equation (20) for n ≥ 2,
2n−1 < |Σ| ≤ 2n as follows:

OptS(Σ) = argmax
Σ1,Σ2⊆Σ

OptC(Σ1) + OptC(Σ2) + nqΣ1 qΣ2 (21)

Note that the limits of argmax in Equation (21) must satisfy the conditions from the third
branch of Equation (20). Note also that it is enough to record Opt(Σ) = Σ1 as Σ2 = Σ \ Σ1.

Proof. The proof follows by applying the maximization operation in Equation (18) and
observing that the term nqΣ1 qΣ2 does not depend on t = {t1, t2}. The condition |Σ1| ≤ |Σ2|
ensures that a pair {Σ1, Σ2} is uniquely considered (otherwise each pair will be considered
twice as {Σ1, Σ2} and {Σ2, Σ1}).

Moreover, the sets OptS(Σ) can be used to construct an optimal tournament. Let
Σn = Σ. We define: Σn−1 = OptS(Σn), . . ., Σ0 = OptS(Σ1). Then the optimal tournament
t∗ can be defined recursively as follows:

t∗ = tn(Σn)

ti(Σi) =

{
{ti−1

1 (Σi−1), ti−1
2 (Σi \ Σi−1)} i ≥ 1

j i = 0, Σ0 = {j}
(22)

Proposition 5 (Equation (20) in particular) can be used to design a dynamic pro-
gramming algorithm for computing the optimal tournament and its cost. The dynamic
programming algorithm can be implemented either with a bottom-up approach or using
a top-down approach with memoization [17]. We will explore these possibilities in what
follows by deriving a bottom-up dynamic programming algorithm for fully balanced
tournaments as well as a top-down dynamic programming algorithm with memoization
for the general case.

5.1. Top-Down Dynamic Programming Algorithm with Memoization

Proposition 6 (Top-down recursive application of Equation (20)). Let us assume that we
want to compute OptC(Σ) for |Σ| = N, N ≥ 2, 2n−1 + 1 ≤ N ≤ 2n. According to Proposition 5,
we must recursively explore all tournaments of shape t = {t1, t2} such that ti ∈ T(Σi), |Σi| = Ni,
i = 1, 2, N = N1 + N2. Then we should recursively apply Equation (20) only for the following
values of N1:

max{N − 2n−1, 2n−2} ≤ N1 ≤ �N/2� (23)

Proof. As N = N1 + N2 and N1 ≤ N2 we obtain:

N1 ≤ �N/2� (24)

243

Mathematics 2021, 9, 2480

As N = N1 + N2 and 2n−2 ≤ N1 ≤ 2n−1 we obtain:

2n−2 ≤ N1 ≤ 2n−1

N − 2n−1 ≤ N1 ≤ N − 2n−2
(25)

Combining (24) and (25) we obtain:

max{N − 2n−1, 2n−2} ≤ N1 ≤ min{2n−1, N − 2n−2, �N/2�} (26)

It is not difficult to see that �N/2� ≤ N/2 ≤ 2n−1 and �N/2� ≤ N/2 < N − 2n−2 so
the value of right-hand side of Equation (26) is �N/2�, q.e.d.

Observe that for fully balanced tournaments N = 2n, so this top-down recursive
process will generate subsets of sizes 2n−1, 2n−2 . . . 2, 1.

Example 7. Let us illustrate the application Equation (20) for N = |Σ| = 25 players. The results
are summarized in Table 3. It follows that solving the problem for a set of 25 players requires the
solving of all subproblems corresponding to its subsets of 1, 2, . . . , 16 players; however, solving the
problem for a set of 15 players requires the solving of all subproblems corresponding to its subsets of
1, 2, 3, 4, 7, 8 players. Moreover, solving the problem for a set of 14 players requires the solving of
all subproblems corresponding to its subsets of 1, 2, 3, 4, 6, 7, 8 players, while solving the problem
for a set of 12 or 13 players requires the solving of all subproblems corresponding to its subsets of
1, 2, 3, 4, 5, 6, 7, 8 players.

Table 3. Games playing stages for each tournament and tournament costs.

N n = �log2 n� �N
2 � N − 2n−1 2n−2 Nmin

1 , Nmax
1 Nmin

2 , Nmax
2

25 5 12 9 8 9, 12 13, 16

16 4 8 8 4 8, 8 8, 8

15 4 7 7 4 7, 7 8, 8

14 4 7 6 4 6, 7 7, 8

13 4 6 5 4 5, 6 7, 8

12 4 6 4 4 4, 6 6, 8

11 4 5 3 4 4, 5 6, 7

10 4 5 2 4 4, 5 5, 6

9 4 4 1 4 4, 4 5, 5

8 3 4 4 2 4, 4 4, 4

7 3 3 3 2 3, 3 4, 4

6 3 3 2 2 2, 3 3, 4

5 3 2 1 2 2, 3 2, 3
4 2 2 2 1 2, 2 2, 2

3 2 1 1 1 1, 1 2, 2

2 1 solved directly

1 0 solved directly

Proposition 6 sets the iteration bounds for exploring the subsets of players in the top-
down approach. Combining the results of Propositions 5 and 6, we obtain the top-down
approach for computing optimal balanced tournaments; see Algorithm 1.

244

Mathematics 2021, 9, 2480

Algorithm 1 OptTourCostTD(Σ, N, q) top-down dynamic programming algorithm with
memoization for computing the cost of the optimal tournament.

Global: OptC, initially ∅, maps subsets of players to costs of optimal tournaments.
OptS, initially ∅, maps subsets to sub-subsets for building optimal tournaments.

Input: N ∈ N∗ represents the number of players.
q. Vector of size N representing the players’ quota.
Σ such that |Σ| = N. Σ represents the set of players.

Output: Cmax. Cost of the optimal tournament for set Σ of players.
n ← �log2 N�
if n = 0 then

Cmax ← 0
Smax ← ∅

else if n = 1 (i.e., Σ = {i, j}) then
Cmax ← qi ∗ qj
Smax ← {i}

else
P1 ← 2n−2

P2 ← 2 ∗ P1
kmax ← �N/2�
if N ≤ P1 + P2 then

kmin ← P1
else

kmin ← N − P2
end if
Cmax ← −∞
for k = kmin, kmax do

for Σ1 ⊆ Σ s.t. |Σ1| = k do
if Σ1 	∈ OptC then

C1 ← OptTourCostTD(Σ1, k, q)
else

C1 ← OptC[Σ1]
end if
Σ2 ← Σ \ Σ1
if Σ2 	∈ OptC then

C2 ← OptTourCostTD(Σ2, k, q)
else

C2 ← OptC[Σ2]
end if
C ← C1 + C2
ql ← 0
for i ∈ Σ1 do

ql ← ql + qi
end for
qr ← 0
for i ∈ Σ2 do

qr ← qr + qi
end for
C ← C + k ∗ ql ∗ qr
if C > Cmax then

Cmax ← C
Smax ← Σ1

end if
end for

end for
end if
OptC[Σ] ← Cmax
OptS[Σ] ← Smax

245

Mathematics 2021, 9, 2480

5.2. Bottom-Up Dynamic Programming Algorithm for Fully Balanced Tournaments

The cost of the optimal tournament is computed with the help of OptC vector that is
indexed by all the subsets of Σ generated recursively by Equation (20), starting from the
topmost set Σ. Note that for a fully balanced tournament we have |Σ| = 2n and the process
will generate exactly all the subsets of Σ of cardinal: 20, 21, . . . 2n. Note that in this case the
size of OptC can be determined as:

Sn =
2n

∑
i=0

(
2n

2i

)
(27)

Additionally we must save in vector OptS of size Sn the subsets Σ′ determined using
Equation (21), such that we can reuse them to construct the optimal tournament using
Equation (22). Our proposed algorithm is presented as Algorithm 2.

Algorithm 2 OptTourCostBU(Σ, N = 2n, q) bottom up dynamic programming algorithm
for computing the cost of optimal fully balanced tournaments.

Input: N = 2n, n ∈ N. N represents the number of players.
q. Vector of size N representing the players’ quota.
Σ such that |Σ| = 2n. Σ represents the set of players.

Output: OptC. Vector of costs of the optimal sub-tournaments.
OptS. Vector of sets to construct the optimal tournament.

1: for i = 1, N do
2: OptC[{i}] ← 0
3: end for
4: for k = 1, n do
5: for Σ1 ⊆ Σ s.t. |Σ1| = 2k do
6: Cmax ← −∞
7: for Σ′ ⊆ Σ1 s.t. |Σ′| = 2k−1 do
8: C ← OptC(Σ′) + OptC(Σ1 \ Σ′)
9: ql ← 0

10: for i ∈ Σ′ do
11: ql ← ql + qi
12: end for
13: qr ← 0
14: for i ∈ Σ1 \ Σ′ do
15: qr ← qr + qi
16: end for
17: C ← C + k ∗ ql ∗ qr
18: if C > Cmax then
19: Cmax ← C
20: Smax ← Σ′

21: end if
22: end for
23: OptC[Σ1] ← Cmax
24: OptS[Σ1] ← Smax
25: end for
26: end for

5.3. Computing an Optimal Tournament

Note that both Algorithms 1 and 2 determine the OptS structure that records the split
points for each subset of players according to Equation (20). The OptS structure can be used
to actually build an optimal tournament according to Algorithm 3 using Equation (22).

246

Mathematics 2021, 9, 2480

Algorithm 3 OptTour(Σ, N, OptS) algorithm for computing the optimal tournament.

Input: Σ representing the set of players.
N ∈ N∗ representing the number of players.
OptS. Structure determined either by Algorithm 1 or by Algorithm 2.

Output: Returns the optimal tournament.
1: if N = 1 (i.e., Σ = {j}) then
2: return j
3: end if
4: Σ1 ← OptS(Σ)
5: N1 ← |Σ1|
6: Σ2 ← Σ \ Σ1
7: t1 ← OptTour(Σ1, N1, OptS)
8: t2 ← OptTour(Σ2, N − N1, OptS)
9: return {t1, t2}

5.4. Correctness and Complexity Results

Proposition 7 (Correctness of Algorithms 1–3).

a. The value Cmax = OptC[Σ] computed by Algorithms 1 and 2 represents the cost of the optimal
tournament in both cases.

b. The tournament determined by Algorithm 3 is the optimal tournament.

Proof.

Proof of a. Algorithms 1 and 2 compute the values of OptC and OptS either in top-
down or bottom-up fashion for all the subsets that are required to determine the optimal
tournament for the set Σ of players. The computation follows Equations (20) and (21);
therefore the correctness of this point follows from Propositions 5 and 6.

Proof of b. Algorithm 3 computes the optimal tournament using Equations (22).
As values of OptS are correctly determined according to point “a”, it follows that the
tournament computed by Algorithm 3 is the optimal tournament.

Proposition 8 (Complexity of Algorithms 2 and 3). Let us consider tournaments with N players.

a. Space complexity of Algorithm 2 is Θ
(

2N√
N

)
.

b. Time complexity of Algorithm 2 is Θ((2
√

2)N).

c. Space complexity of Algorithm 1 is Θ
(

2N√
N

)
for fully balanced tournaments and O(2N) in

the general case.
d. Time complexity of Algorithm 1 is O(3N · N

√
N).

e. Time complexity of Algorithm 3 is Θ(N).

Proof. The proof is using the Stirling approximation of the factorial, written in inequality
form ([18]), in fact showing that p! = Θ

(√
p
(p

e
)p
)

:

√
2π ≤ p!

√
p
(p

e
)p ≤ e (28)

Using this observation it is not difficult to prove that:(
2p
p

)
= Θ

(
22p
√

p

)
(29)

Proof of a. The space complexity of Algorithms 2 and 3 is given by the size of structures
OptC and OptS (see Equation (27)); however, the asymptotically dominant term of this
summation is (2n

2n−1). Then the result follows using Equation (29) for p = 2n−1.

247

Mathematics 2021, 9, 2480

Proof of b. Algorithm 2 contains one “for” loop (lines 4–26) including other three
nested “for” loops. The first inner “for” loop (lines 5–25) is executed (N

2k) times. The second

inner “for” loop (lines 7–22) is executed (2k

2k−1) times. The third inner “for” loop (lines 10–12
and 14–16) is executed 2k−1 times. The total number of steps of Algorithm 2 is given by:

n

∑
k=1

(
N
2k

)(
2k

2k−1

)
2k−1 (30)

Observe that the asymptotically dominant term of this summation is obtained for
k = n − 1 and it can be transformed using Equation (29), thus concluding the proof:(

N
2n−1

)(
2n−1

2n−2

)
2n−2 = Θ

(
22n

√
2n−1

22n−1

√
2n−2

2n−2

)
= Θ

(
1√
2

2N2N/2
)
= Θ((2

√
2)N) (31)

Proof of c. If N is a power of two, i.e., we have a fully balanced tournament, the
memory consumption is exactly as in case a, so the first result follows trivially. Otherwise,
the space consumption of tables OptC and OptS has an upper bound given by the size of
the power set of Σ, and the result follows immediately.

Proof of d. Let us first observe that in order to determine the cost of an optimal
tournament with N players we need to know the costs of optimal tournaments for N1 and
N2 players such that N = N1 + N2 and condition of Equation (23) holds. It is not difficult
to observe that:

N
4

< N1 ≤ N2 <
3N
4

(32)

First note that the upper bound of N2 follows from the lower bound of N1, so it is
enough to show the lower bound of N1. Let us assume by contradiction that:

N
4

≥ max{N − 2n−1, 2n−2} (33)

It follows that:

N
2

=
N
4
+

N
4

≥ N − 2n−1 + 2n−2 = N − 2n−2 (34)

so:
N ≤ 2n−1 (35)

and thus contradicting (5).
It is easier to analyze the complexity of Algorithm 1 by thinking “bottom-up” rather

than “top-down”. The complexity will be the same, as the role of the memorization
technique is just to evaluate exactly once the cost of a tournament for each subset of players.
So we must determine the cost for a subset of i = N

4 , N
4 + 1, . . . , 3N

4 players (�·� can be
omitted without losing generality); therefore the total running time has the following
upper bound:

p= 3N
4

∑
p= N

4

(
N
p

) 3p
4

∑
k= p

4

(
p
k

)
k (36)

Although (p
k) = (p

p−k), so grouping terms with complementary binomial coefficients

of inner sum of (36), noticing that (p
k) ≤ (

p
p
2
) and using (29), the inner sum has an upper

bound of:

p ·
p
2

∑
k= p

4

(
p
k

)
≤ p · p

4
· Θ(

2p
√

p
) ≤ N

√
N · Θ(2p) (37)

248

Mathematics 2021, 9, 2480

Now, substituting (37) in (36) we obtain the following upper bound of the running time:

N
√

N ·
p= 3N

4

∑
p= N

4

(
N
p

)
· Θ(2p) ≤ N

√
N ·

p=N

∑
p=0

(
N
p

)
· Θ(2p) = Θ(3N · N

√
N) (38)

As this is in fact only an upper bound of our running time, the result of point e follows
(i.e., with O rather than Θ).

Proof of e. Observe that the time complexity of Algorithm 3 satisfies the recursive equa-
tion T(|Σ|) = T(|Σ1|) + T(|Σ2|). Unfolding this equation with the substitution method
yields an asymptotic execution time Θ(|Σ|) = Θ(N).

5.5. Sub-Optimal Algorithms

The dynamic programming approach for construing optimal tournaments has the
disadvantage that the full exploration of the search space becomes prohibitive for larger
tournaments. Our experiments (see Section 6) clearly show that this approach is unfea-
sible for tournaments of more than n = 16 players; however, the dynamic programming
algorithms can be easily adapted to explore a smaller size of the search space, leading
to sub-optimal solutions. The exploration strategy can be used to tune the trade-off be-
tween the complexity of the computation and the “gap” between the provided sub-optimal
solution and the actual optimal solution.

The resulting sub-optimal algorithms follow a strictly top-down approach that can be
the best described as divide-and-conquer. At each decision point, rather than exploring all
pairs of subsets (Σ1, Σ2) satisfying conditions of Equation (20), only few such pairs (ideally
only 1) are selected for exploration. This selection strategy can be deterministic, based
on heuristic principles, or stochastic based on stochastic sampling subsets of Σ satisfying
the conditions of Equation (20). The strictly top-down approach has the advantage that
it avoids the use of temporary structures OptS and OptC and of the additional algorithm
OptTour to build the solution. Rather, the top-down approach will build the solution
directly, using the recursive divide-and-conquer approach.

The general approach of a sub-optimal algorithm following a top-down divide and
conquer approach is presented as Algorithm 4. Note that this algorithm is using a specific
strategy to explore only a few subsets of Σ defined by Strategy(Σ, kmin, kmax) ⊆ 2Σ and
satisfying the conditions of Equation (20).

Proposition 9 (Complexity of Algorithm 4). Let us consider tournaments for N players
and let n be the number of stages of a balanced tournament. Then the time complexity of
Algorithm 4 is O(N1+log2 s) where s is the average number of subsets of Σ explored by the strategy
of the algorithm.

Proof. It is not difficult to observe that the time complexity of Algorithm 4 satisfies the
following recurrence:

T(|Σ|) = s · (T(|Σ1|) + T(|Σ \ Σ1|)) (39)

Applying the substitution method for Equation (39) we obtain:

T(|Σ|) = ∑
i∈Σ

shi · O(1) (40)

For each i ∈ Σ, hi from Equation (40) denotes the height of leaf i in the tournament
tree, so hi ≤ n ≤ log2 N. So:

T(|Σ|) = N · O(slog2 N) = O(N1+log2 s) (41)

q.e.d.

249

Mathematics 2021, 9, 2480

Algorithm 4 OptTourCostSubOpt(Σ, N, q, S) top-down divide-and-conquer algorithm for
computing a sub-optimal tournament.

Input: N ∈ N∗ represents the number of players.
q. Vector of size N representing the players’ quota.
Σ such that |Σ| = N. Σ represents the set of players.
S = ∑i∈Σ qi. Sum of players’ quotations.

Output: Cmax. Cost of the sub-optimal tournament for set Σ of players.
tmax. Sub-optimal tournament tree.

1: n ← �log2 N�
2: if n = 0 (i.e.„ Σ = {i}) then
3: Cmax ← 0
4: tmax ← i
5: else if n = 1 (i.e., Σ = {i, j}) then
6: Cmax ← qi ∗ qj
7: tmax ← {i, j}
8: else
9: P1 ← 2n−2

10: P2 ← 2 ∗ P1
11: kmax ← �N/2�
12: if N ≤ P1 + P2 then
13: kmin ← P1
14: else
15: kmin ← N − P2
16: end if
17: Cmax ← −∞
18: for Σ1 ∈ Strategy(Σ, kmin, kmax) do
19: S1 ← 0
20: for i ∈ Σ1 do
21: S1 ← S1 + qi
22: end for
23: k ← |Σ1|
24: (C1, t1) ← OptTourCostSubOpt(Σ1, k, q, S1)
25: (C2, t2) ← OptTourCostSubOpt(Σ \ Σ1, N − k, q, S − S1)
26: C ← C1 + C2 + k ∗ S1 ∗ (S − S1)
27: if C > Cmax then
28: Cmax ← C
29: tmax ← (t1, t2)
30: end if
31: end for
32: end if
33: return (Cmax, tmax)

Observe that if s = 1 then the time complexity of Algorithm 4 is linear in the number
N of players. Moreover, if s > 1 then the time complexity of the algorithm is polynomial in
N and the degree of the polynomial grows logarithmically with s.

5.5.1. Deterministic Sub-Optimal Algorithms

We define a deterministic sub-optimal algorithm by letting Σ1 consist of the smallest
set of players 1, 2, . . . , k such that k ≥ kmin and qΣ1 > qΣ/2.

The rationale of this choice is to try to make the product qΣ1 qΣ2 from Equation (20) as
high as possible. As qΣ1 + qΣ2 = qΣ is constant, we try to make the values qΣ1 and qΣ2 as
close as possible, while maintaining the constraints on the size of subset Σ1.

We can define three variants of the deterministic sub-optimal algorithm by considering
the sequence of players’ quotations to be: (i) unchanged, i.e., as it was provided as input;
(ii) increasingly sorted; (iii) decreasingly sorted.

250

Mathematics 2021, 9, 2480

5.5.2. Stochastic Sub-Optimal Algorithms

We define a stochastic sub-optimal algorithm by letting Σ1 consist of a family of
randomly chosen subsets of players of Σ1 ⊆ Σ such that kmax ≥ |Σ1| ≥ kmin. This is
easily achieved by randomly choosing the number of players k uniformly distributed
in [kmin, kmax] and then randomly choosing a subset Σ1 of k elements and uniformly dis-
tributed in Σ.

The number of chosen subsets Σ1 explored by the algorithm is a parameter denoted
by Nsample and it usually has a low number, as it directly influences the complexity of the
algorithm according to Proposition 9, s = Nsampl . For example, if Nsampl = 1 the complexity
of the algorithm is O(N), if Nsampl = 2 the complexity of the algorithm is O(N2) and if
Nsampl = 4 the complexity of the algorithm is O(N3).

6. Implementation and Experiments

6.1. Implementation Issues

There were several issues that we had to address by our experimental implementation
of Algorithms 1–3.

Firstly, we have chosen to represent sets as arrays of bits, as well as using the integer
value that is equivalent to the binary representation as an array of bits.

Secondly, for generating subsets of given size (i.e., combinations) we have used
Algorithm 7.2.1.2L from [19] for generating permutations with repetitions of binary arrays.
Basically the subsets representing combinations of k elements of a set with n ≥ k elements
are all the permutations with repetitions of a binary vector of n elements containing exactly
k elements equal to 1.

Thirdly, we had to choose an efficient representation of OptC and OptS structures.
Their operation is crucial for the efficient implementation of some of our algorithms. As
for our implementation we have chosen Python platform, we decided to implement OptC
and OptS using subset-indexed dictionaries that map subsets of Σ to costs and to subsets
necessary for building optimal tournaments, respectively. The subsets representing the
dictionary keys are defined as integer values of their characteristic vector in binary format.
As Python dictionaries are efficiently implemented using hash tables, an average O(1) time
complexity is expected for lookup operations.

Finally, for the implementation of the random selection of subsets we have used the
array of bits representation of sets and we have applied the random.permute function from
NumPy package to return a randomly permuted array representing a random subset.

6.2. Experimental Results

Our experiments were developed in Python 3.7.3 using Jupyter Notebook on an x64-
based PC with a 2 cores / 4 threads Intel© Core™i7-5500U CPU at 2.40 GHz running Windows
10 (The experimental code is available at http://software.ucv.ro/~cbadica/tour.zip) (ac-
cessed on 2 September 2021).

According to our findings, there are no algorithms directly available to be compared
with our own proposals. There are two main causes for this. First, we consider an integrated
approach of tournament design, rather than a process involving two separated stages for
structure design and seeding. Secondly, we do not use probabilistic information in our cost
function, thus hindering the direct comparison of tournament cost values.

We took a different path for evaluating our proposals. We have implemented optimal
algorithms, as well as several versions of sub-optimal algorithms and then compared their
outcomes in terms of running time and optimality. So finally we have implemented and
experimentally evaluated eight algorithms, as presented in Table 4.

251

Mathematics 2021, 9, 2480

Table 4. Table presenting the list of implemented optimal and sub-optimal algorithms for bal-
anced tournaments.

Algorithm Description Optimality Players’ Number

OptTD
Dynamic programming top-down
with memoization approach—
Algorithm 1

Optimal Arbitrary natural
number

OptBU Dynamic programming bottom-up
approach—Algorithm 2 Optimal Exact power of 2

SubOptD1

Deterministic sub-optimal
approach—Algorithm 4 with deter-
ministic strategy and unchanged
quotation sequence

Sub-optimal Arbitrary natural
number

SubOptD2

Deterministic sub-optimal
approach—Algorithm 4 with
deterministic strategy and increas-
ingly sorted quotation sequence

Sub-optimal Arbitrary natural
number

SubOptD3

Deterministic sub-optimal
approach—Algorithm 4 with
deterministic strategy and decreas-
ingly sorted quotation sequence

Sub-optimal Arbitrary natural
number

SubOptS1

Stochastic sub-optimal approach—
Algorithm 4 with stochastic strategy
and Nsampl = 1

Sub-optimal Arbitrary natural
number

SubOptS2

Stochastic sub-optimal approach—
Algorithm 4 with stochastic strategy
and Nsampl = 2

Sub-optimal Arbitrary natural
number

SubOptS3

Stochastic sub-optimal approach Al-
gorithm 4 with stochastic strategy
and Nsampl = 3

Sub-optimal Arbitrary natural
number

Note that for the optimal algorithms there are at least two restrictions that hinder a
complete experimental comparison with the rest of the algorithms. Firstly, their high com-
putational complexity limits their applicability only to small number of players. Secondly,
the dynamic programming bottom-up algorithm works only for a number of players that
is an exact power of 2. We have only checked it for N = 4, 8, 16.

Our data set includes multiple sequences of players’ quotations. For each
N = 3, 4, . . . 50 we generated a sequence of quotations q1, q2, . . . , qN with integer val-
ues qi randomly chosen with a uniform distribution in the interval [qmin = 1, qmax = 9].
This data set was used to experimentally evaluate the algorithms from Table 4, as follows:

1. All the sequences of the data set were used for testing algorithms SubOptDi and
SubOptSi for i = 1, 2, 3.

2. The optimal algorithm OptTD was evaluated only for sequences corresponding to
N = 3, . . . , 16 players. The reason is that the algorithm has a too high computational
complexity and we limited the running time of each problem instance to 5 min.

3. The optimal algorithm OptBU was evaluated only for sequences corresponding to
N = 4, 8, 16 players. The reason is both the high computational complexity of the
algorithm and the fact that this algorithm was designed to work only with a number
of players that is an exact power of 2.

For each algorithm, we recorded the (sub-)optimal cost of the output tournament, as
well as the running time. Stochastic algorithms SubOptSi for i = 1, 2, 3 were evaluated
by repeating their execution 10 times for each input sequence of quotations from the data

252

Mathematics 2021, 9, 2480

set and recording the minimum, maximum, and average costs, as well as the average
running times.

Figure 5 presents the sub-optimal costs produced by SubOptDi and SubOptSi algo-
rithms for i = 1, 2, 3. The figure plots costs Ci produced by algorithms SubOptDi for
i = 1, 2, 3, as well as average costs CSai produced by algorithms SubOptSi for i = 1, 2, 3
and the maximum cost CSM3 produced by the 10-times repeated execution of algorithm
SubOptS3. Note that we included maximum cost only for this case, as it should be obvious
that it is expected that stochastic algorithm SubOptS3 will produce the best results among
SubOptSi for i = 1, 2, 3 because it uses the highest number of samplings Nsampl = 3.

Figure 5. Sub-optimal tournament costs determined by sub-optimal algorithms on different quotations’ sequences for
various number of players.

Analyzing Figure 5, we first observe that the relative difference of the costs produced
by the various algorithms on the same input sequence is rather low. This is expected, as
quotations qi were generated as integer values from a small interval 1 ≤ qi ≤ 9 while
the cost tends to reach significantly higher values. For example, analyzing in detail the
results obtained for the sample with N = 50 players we observe that the relative difference
between the smallest and the highest cost obtained (147,555 and 156,203) is of only 5.53%.
We can also notice that the best results among sub-optimal algorithms were obtained
by algorithm SubOptS3, while the worst results were obtained by algorithms SubOptD2
and SubOptD3. It might look a bit surprising that algorithm SubOptD1 appears to be
superior to SubOptD2 and SubOptD3; however, taking into account how the data set was
generated, this could be explained by the fact that algorithm SubOptD1 is actually using
a random permutation of the quotations’ sequence that provides a better balance of the
total quotation distribution between the two subsets Σ1 and Σ \ Σ1 (see Algorithm 4) than
algorithms SubOptD2 and SubOptD3. One final remark, also observed experimentally,
is that algorithms SubOptD2 and SubOptD3 produce the same sub-optimal costs if the
number of players is an exact power of 2 (i.e., 16 and 32 on Figure 5). This is an immediate
consequence on the logic behind their strategy definition.

253

Mathematics 2021, 9, 2480

Figure 6 presents the running times TDi and TSi of algorithms SubOptDi and SubOptSi
for i = 1, 2, 3. The time figures are given in milliseconds and presented on a logarithmic
scale and they were computed by taking the average for 10 executions of the algorithm on
the same input data. First observe that deterministic versions SubOptDi are the fastest and
they have virtually almost the same running times. This can be easily explained by the low
computational complexity of the implementation of their underlying strategies. Basically,
their strategies use the same mechanism, while the additional sorting of the sequence of
quotations adds a negligible cost as it is performed before the actual core processing of the
algorithms. Second, the highest execution time is achieved, as expected, by SubOptS3. This
algorithm has the highest computational complexity among sub-optimal algorithms, as it
is using three subset samples during the top-down search. From Figure 6 it also follows
that the highest average execution time was obtained for the sequence of quotations with
N = 46 players and its value was 2.49 s.

Figure 6. Running times on logarithmic scale of sub-optimal algorithms on different quotations’
sequences for a variable number of players.

Figure 7 presents results obtained with optimal algorithms OptTD and OptBU, as
well as their comparison with results obtained by sub-optimal algorithm SubOptS3 for
N = 3, 4, . . . , 16 players, on our input data set.

In Figure 7a we show the comparison of relative maximum and average costs ob-
tained by algorithm SubOptS3 (CSM3 and CSa3) with the actual optimal cost obtained
by algorithm OptTD. The relative sub-optimal cost is a measure Cr ∈ (0, 1] computed
with Equation (42) using the absolute values of sub-optimal cost C0 and optimal cost
C1 ≥ C0 > 0. Observe that Cr = 1 if and only if C1 = C0, i.e., if the algorithm pro-
viding sub-optimal cost C0 is in fact optimal. Note that the computation of the relative
sub-optimal cost assumes the the exact value C1 of the optimal cost is known. In our

254

Mathematics 2021, 9, 2480

case, this value is known, as it was determined using the OptTD optimal algorithm
for N = 3, 4, . . . , 16 players.

Cr =
C0

C1
(42)

(a). Comparison of relative maximum and average costs obtained by
algorithm SubOptS3 (CSM3 and CSa3) with optimal cost obtained by
algorithm SubOptD1 for N = 3, 4, . . . , 16 players, on our input data set.

(b). Comparison of running times of algorithms OptTD, OptBU, and
SubOptS3 for N = 3, 4, . . . , 16 players, on our input data set. Time values
are plotted on a logarithmic scale.

Figure 7. Comparing costs and running times of our implemented algorithms.

In Figure 7b we show the comparison of running times TTD, TBU, and TS3 of
algorithms OptTD, OptBU, and SubOptS3 for N = 3, 4, . . . , 16 players. The running times
were evaluated by repeating the algorithm execution 10 times for the same input data.
They are plotted on a logarithmic scale. Observe that by far the most efficient among them
is algorithm SubOpt3. The linear increasing trend of TTD and TBU on the logarithmic
scale is consistent to our findings that the complexity of algorithms OptTD and OptBU
is exponential with the number of tournament players. Note that this tendency is also
observed on the plot of TBU, for which the values were recorded only for an exact power
of two of the number of players, i.e., N = 4, 8, 16. Moreover, the sub-linear increasing trend
of TS3 on the logarithmic scale is consistent with the fact that algorithm SubOpt3 has a
polynomial time complexity.

7. Conclusions

In this paper we defined optimal competitions structured as hierarchically shaped
single-elimination tournaments. The optimality criterion aimed to maximize tournament
attractiveness by letting the topmost players meet in higher stages of the tournament.
We proposed a dynamic programming algorithm for computing optimal tournaments
and we provided a thorough analysis of its correctness and computational complexity.
Based on the idea of the dynamic programming approach, we also developed deterministic
and stochastic sub-optimal algorithms. We realized an experimental evaluation of the
proposed algorithms by providing experimental results that we obtained with their Python
implementation. The results addressed the optimality of solutions and the efficiency of the
running time.

Author Contributions: Conceptualization, A.B. and C.B.; methodology, A.B. and C.B.; software, C.B.;
formal analysis, C.B. and A.B.; investigation, I.B., L.I.C. and D.L.; writing, C.B. and A.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

255

Mathematics 2021, 9, 2480

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bădică, A.; Bădică, C.; Buligiu, I.; Ciora, L.I.; Logofătu, D. Optimal Knockout Tournaments: Definition and Computation. In
Proceedings of the Large Scale Scientific Computing—LSSC’2021, LNCS, Sozopol, Bulgaria, 7–11 June 2021, in press.

2. Anderson, I. Combinatorial Designs and Tournaments; Oxford University Press Inc.: New York, NY, USA, 1997.
3. Vu, T.; Shoham, Y. Fair Seeding in Knockout Tournaments. ACM Trans. Intell. Syst. Technol. 2011, 3, 9:1–9:17. [CrossRef]
4. Vu, T.D. Knockout Tournament Design: A Computational Approach. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2010.
5. Bóna, M.; Flajolet, P. Isomorphism and symmetries in random phylogenetic trees. J. Appl. Probab. 2009, 46, 1005–1019. [CrossRef]
6. Maurer, W. On Most Effective Tournament Plans with Fewer Games than Competitors. Ann. Statist. 1975, 3, 717–727. [CrossRef]
7. Dagaev, D.; Suzdaltsev, A. Tournament design allows for spectator interest increase. Front. Econ. Res. 2015. Available online:

https://voxeu.org/article/tournament-design-allows-spectator-interest-increase (accessed on 23 August 2021).
8. Hartigan, J.A. Probabilistic Completion of a Knockout Tournament. Ann. Math. Statist. 1966, 37, 495–503. [CrossRef]
9. CodeChef. Tennis Tournament. Available online: https://www.codechef.com/COOK27/problems/TOURNAM (accessed on 9

August 2021).
10. Bao, N.P.H.; Xiong, S.; Iida, H. Reaper Tournament System. In Intelligent Technologies for Interactive Entertainment. INTETAIN 2017.

Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Chisik, Y., Holopainen, J.,
Khaled, R., Luis Silva, J., Alexandra Silva, P., Eds.; Springer: Cham, Switzerland, 2018; Volume 215, pp. 16–33.

11. Karpov, A. A Theory of Knockout Tournament Seedings; Discussion Paper Series; University of Heidelberg, Department of Economics:
Heidelberg, Germany, 2015; Volume 600.

12. Adler, I.; Cao, Y.; Karp, R.; Peköz, E.A.; Ross, S.M. Random Knockout Tournaments. Oper. Res. 2017, 65, 1589–1596. [CrossRef]
13. Guyon, J. “Choose Your Opponent”: A New Knockout Design for Hybrid Tournaments. J. Sport. Anal. 2021, 1–21, pre-press.

[CrossRef]
14. Hennessy, J.; Glickman, M. Bayesian optimal design of fixed knockout tournament brackets. J. Quant. Anal. Sports 2016, 12, 1–15.

[CrossRef]
15. Csató, L. Tournament Design. How Operations Research Can Improve Sports Rules; Palgrave Macmillan: London, UK, 2021.
16. Stojadinović, T. On Catalan numbers. Teach. Math. 2015, XVIII, 16–24.
17. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; The MIT Press: Cambridge, MA, USA;

London, UK, 2009; pp. 365–367.
18. Dutka, J. The early history of the factorial function. Arch. Hist. Exact Sci. 1991, 43, 225–249. [CrossRef]
19. Knuth, D.E. The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1; Addison-Wesley Professional: Boston,

MA, USA, 2011; pp. 319–320.

256

mathematics

Article

Spatial-Temporal Traffic Flow Control on Motorways Using
Distributed Multi-Agent Reinforcement Learning †

Krešimir Kušić 1,*,‡, Edouard Ivanjko 1,‡, Filip Vrbanić 1, Martin Gregurić 1 and Ivana Dusparic 2

Citation: Kušić, K.; Ivanjko, E.;

Vrbanić, F.; Gregurić, M.; Dusparic, I.

Spatial-Temporal Traffic Flow Control

on Motorways Using Distributed

Multi-Agent Reinforcement Learning.

Mathematics 2021, 9, 3081. https://

doi.org/10.3390/math9233081

Academic Editors: Florin Leon,

Mircea Hulea and Marius Gavrilescu

Received: 18 October 2021

Accepted: 26 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Transport and Traffic Sciences, University of Zagreb, Vukelićeva Street 4,
HR-10 000 Zagreb, Croatia; edouard.ivanjko@fpz.unizg.hr (E.I.); filip.vrbanic@fpz.unizg.hr (F.V.);
martin.greguric@fpz.unizg.hr (M.G.)

2 School of Computer Science and Statistics, Trinity College Dublin, Dublin 2, Ireland;
ivana.dusparic@scss.tcd.ie

* Correspondence: kresimir.kusic@fpz.unizg.hr
† This paper is an extended version of our paper published in the Proceedings of the 2021 IEEE Intelligent

Transportation Systems Conference (ITSC).
‡ These authors contributed equally to this work.

Abstract: The prevailing variable speed limit (VSL) systems as an effective strategy for traffic control
on motorways have the disadvantage that they only work with static VSL zones. Under changing
traffic conditions, VSL systems with static VSL zones may perform suboptimally. Therefore, the
adaptive design of VSL zones is required in traffic scenarios where congestion characteristics vary
widely over space and time. To address this problem, we propose a novel distributed spatial-temporal
multi-agent VSL (DWL-ST-VSL) approach capable of dynamically adjusting the length and position
of VSL zones to complement the adjustment of speed limits in current VSL control systems. To model
DWL-ST-VSL, distributed W-learning (DWL), a reinforcement learning (RL)-based algorithm for
collaborative agent-based self-optimization toward multiple policies, is used. Each agent uses RL to
learn local policies, thereby maximizing travel speed and eliminating congestion. In addition to local
policies, through the concept of remote policies, agents learn how their actions affect their immediate
neighbours and which policy or action is preferred in a given situation. To assess the impact of
deploying additional agents in the control loop and the different cooperation levels on the control
process, DWL-ST-VSL is evaluated in a four-agent configuration (DWL4-ST-VSL). This evaluation
is done via SUMO microscopic simulations using collaborative agents controlling four segments
upstream of the congestion in traffic scenarios with medium and high traffic loads. DWL also allows
for heterogeneity in agents’ policies; cooperating agents in DWL4-ST-VSL implement two speed
limit sets with different granularity. DWL4-ST-VSL outperforms all baselines (W-learning-based VSL
and simple proportional speed control), which use static VSL zones. Finally, our experiments yield
insights into the new concept of VSL control. This may trigger further research on using advanced
learning-based technology to design a new generation of adaptive traffic control systems to meet
the requirements of operating in a nonstationary environment and at the leading edge of emerging
connected and autonomous vehicles in general.

Keywords: intelligent transport systems; traffic control; spatial-temporal variable speed limit; multi-
agent systems; reinforcement learning; distributed W-learning; urban motorways

1. Introduction

Everyday commuting in densely populated urban areas is accompanied by repetitive
traffic jams, representing an evident violation of urban life quality. Urban motorways,
as an integrated part of the urban road network, are consequently affected by congestion.
Variable speed limit (VSL) is an efficient traffic control strategy to improve motorways’
Level of service. VSL controls the speed limit in real time by displaying a specific speed
limit on variable message signs (VMS). The speed limit value adapts to different traffic

Mathematics 2021, 9, 3081. https://doi.org/10.3390/math9233081 https://www.mdpi.com/journal/mathematics257

Mathematics 2021, 9, 3081

situations depending on weather conditions, accidents, traffic jams, etc [1]. The main
objective of VSL is to improve traffic safety and throughput on motorways due to the
concept of speed homogenization [2] and mainstream traffic flow control (MTFC) [3],
respectively. VSL aims to ensure stable traffic flow in motorway areas affected by recurrent
bottlenecks. VSL thus has a dual effect: it prevents and alleviates congestion. Typically,
problems occur on urban motorways near on-ramps. A higher volume of traffic at the
on-ramp can disrupt the main traffic flow and cause a bottleneck activation.

Several VSL control strategies have been suggested in the literature based on differ-
ent VSL measures and methodologies, such as rule-based VSL activated by predefined
threshold values (e.g., flow, speed or density) [4,5], the usage of metaheuristics to optimize
VSL [6], optimal control [7], and model-predictive control [8]. The most prominent VSL
design (among classical controllers) uses feedback control [3,9], where the speed limit is
calculated based on current measurements of traffic conditions, such as traffic density.

However, in recent years, there has been an increasing interest in improving VSL
optimization by taking advantage of machine learning techniques with a focus on reinforce-
ment learning (RL). An overview of the existing literature can be found in [10]. RL has a
proven track record of solving various complex control problems, including transportation
and related control optimization problems, and achieving considerable improvements in
transportation management efficiency [11–14]. In particular, RL provides the ability to
solve complex Markov decision processes (MDPs) and find a near-optimal solution for
discrete-event stochastic systems while not requiring an analytical model of the system
to be controlled [15]. In addition, RL-based control systems can continuously improve
their performance over time by adapting control policies to newly recognized states of the
environment (adaptive control).

The majority of studies in RL-VSL are based on a single objective [16,17] or multiple
objectives implemented as a single control policy (strategy) [18–20]. However, large-scale
control systems might have various, often conflicting objectives with heterogeneous time
and space scales (simultaneous optimization of ramp metering and VSL [21]) or different
levels of priorities (safety contrary to throughput [22] or throughput contrary to higher
traveling speeds [23]). In practice, VSL is usually applied on several consecutive motorway
sections. Thus, the VSL application area should be split into several shorter VSL sections
upstream of the bottleneck area to ensure smooth (gradual) spatial adjustment of the speed
limits. This can be modelled and solved by multi-agent RL-based control approaches where
each agent (VSL controller) sets speed limits on its controlled motorway section [22–24].

Although VSL has been extensively studied and some VSL approaches are being used
in practice, there are some open questions in the design of the VSL system itself, on which
there is very little research. The critical detail for efficient VSL is the design and placement
of the VSL zones. In particular, two practical questions arise: how long should the VSL
application zone be, and where should it be placed (in other words, how far should the
end of the VSL zone be from the bottleneck) to achieve optimal VSL performance. In
general, it can be concluded from [25,26] that different lengths and positions of the VSL
application area for different speed limits and different traffic congestion intensities (the
spatial variation of the congestion characteristic) significantly affect VSL performance.

To address this problem, in our previous work [23], we proposed a distributed spatio-
temporal multi-agent VSL control based on RL (DWL-ST-VSL) with dynamic VSL zone
allocation. The DWL-ST-VSL controller dynamically adjusts the configuration of VSL zones
and speed limits.

In addition to the results and conclusions in [23], in this study we seek to confirm the
extended applicability of DWL-ST-VSL to control longer dynamic VSL application areas
with more agents. Therefore, the present study makes the following contributions:

• Extension of the applicability and behaviour analysis of DWL4-ST-VSL by increasing
the number of learning agents from the original two to four;

• Evaluation of the performance of DWL4-ST-VSL in controlling speed limits on a longer
motorway segment using collaborative agents;

258

Mathematics 2021, 9, 3081

• Assessment of the impact of dynamic VSL zone allocations on traffic flow optimization
and comparison to the VSL controllers with static zones in traffic conditions with
spatially varying congestion characteristics.

An experimental approach is used to verify suggested solutions using simulation ex-
periments. Thus, the present experiment will give data-based evidence about the potential
usefulness of extended DWL4-ST-VSL control with adaptive VSL zones when deployed on
longer motorway segments. Results and analysis will provide insights into the modelling
of DWL4-ST-VSL and the impact of agents’ collaboration on system performance when
used to control traffic flow on a longer motorway segment. This is a crucial aspect for
the development of adaptive controllers in particular, but also for research investigating
reliable and more efficient RL-based VSL.

We hypothesize that the extension of DWL-ST-VSL will contribute to the ability to
dynamically configure VSL zones. The fact that agents can collaborate using remote policies
results in a better response to moving congestion because they can collectively assemble
a larger number of feasible VSL application areas. A certain number of configurations
can more appropriately respond to the current downstream congestion. We anticipate
that a DWL-ST-VSL system with more agents will use its additional adaptive feature
to adjust VSL zones to resolve congestion as much as possible without suppressing the
upstream traffic itself. As a result, we expect a further reduction in the overall travel time
of the system, and that a smoother speed transition can be achieved by spatially deploying
multiple VSL agents. This is more in line with what the VSL implementation should fulfill
to achieve a smooth “harmonized” speed transition. Using an adjustable VSL application
area supported by multiple dynamically configurable VSL zones reduces the need for
severe speed reduction. Agents in upstream zones can prepare vehicles for conditions in
downstream VSL zones by slightly decreasing speed limits. This is necessary since speed
limits in downstream zones may be lower due to the proximity of the bottleneck. Therefore,
this can help to harmonize traffic flow better in order to avoid undesirable effects, such as
shockwaves.

Thus, in this paper, we propose an extended version of the DWL-ST-VSL strategy
that allows dynamic spatiotemporal VSL zone allocation on a wider motorway section
with four VSL learning-based agents (DWL4-ST-VSL). To provide smoother speed limit
control, DWL4-ST-VSL implements two speed limit sets with different granularities on
the observed motorway section. DWL4-ST-VSL enables automatic, systematic learning in
setting up the sufficiently accurate VSL zone configuration (selection is learnt rather than
manually designed) for efficient VSL operation under a fluctuating traffic load. From a
technical perspective, the physical VMS could soon be replaced (or enhanced) by advanced
technologies (vehicle-to-infrastructure communication, e.g.,an intelligent speed assistance
(ISA) system [27]). Thus, static placement of physical VMSs would no longer be an obstacle
to the dynamic adaptation of VSL zone configurations in real motorway applications.

To set up DWL4-ST-VSL, the distributed W-learning (DWL) algorithm is used. DWL
is an RL-based multi-agent algorithm for collaborative agent-based self-optimization with
respect to multiple policies. It relies only on local learning and interactions. Therefore, no
information about the joint state-action space is shared between agents, which means that
the complexity of the model does not increase exponentially with the number of agents.
DWL was originally proposed in [28] and successfully applied for controlling traffic signals
at multiple urban intersections with different priorities as objectives. It has also been
successfully applied for speed limit control on a small urban motorway segment using two
agents (DWL2-ST-VSL), as introduced in our previous paper [23].

Thus, in this study, we investigate the applicability of extended DWL4-ST-VSL in
terms of the number of learning agents, their behavior, and their impact on traffic flow
control, emphasizing an application on a longer motorway segment.

The proposed DWL4-ST-VSL is evaluated using the microscopic simulator, simulation
of urban mobility (SUMO) [29], in two scenarios with medium and high traffic loads. Its
performance is compared with three baselines: no control (NO-VSL), simple proportional

259

Mathematics 2021, 9, 3081

speed controller (SPSC) [30], and W-learning VSL (WL-VSL). The experimental results
confirm the feasibility of the proposed extended DWL4-ST-VSL approach with the ob-
served improvement in traffic parameters in the bottleneck area and system travel time
of the motorway as a whole. Finally, DWL4-ST-VSL is envisioned as a new approach to
dynamically adjust speed limits in space and time, anticipating the practical aspect of
vehicle speed control that may be found in the leading-edge of connected and autonomous
Vehicles or ISA in general.

The structure of this article is organized as follows: Section 2 discusses related work
in the area of RL application in VSL control. Section 3 introduces the DWL algorithm.
Section 4 provides insight into the modeling of VSL as a multi-agent DWL problem.
Section 5 describes the simulation set-up, and Section 6 delivers the results and analy-
sis of our experiments. The discussion can be found in Section 7. Section 8 summarizes our
results and conclusions.

2. Related Work

VSL increases the level of service of motorways by adjusting the speed limit on
sections according to the prevailing traffic conditions. The speed limit is posted on the
VMS located on a certain section of the motorway, through which drivers are informed of
the permitted speed on that section. Usually, warnings about the cause of a speed limit’s
setting (congestion, slippery pavement, etc.) are also presented.

2.1. Concept of VSL

VSL is used to increase motorway efficiency in areas with frequent recurring bottle-
necks [25]. Bottlenecks emerge in motorway sections that present a change in geometry,
including on- and off-ramps, lane drops, uphill grade sections, tunnels, accidents etc. At
such locations, the upstream traffic volume qin of the motorway periodically may exceed
the bottleneck capacity qcap. Once the demand exceeds the bottleneck capacity, congestion
starts to form [26]. Even if the downstream motorway section gets released, the accumu-
lated queue shifting upstream of the bottleneck will further reduce the capacity of the
upstream part of the motorway. This is known as the capacity drop phenomenon [31],
wherein reduced outflow is measured once the bottleneck is active. To eliminate or prevent
the activation of a bottleneck, the inflow into the bottleneck must be less than the outflow
from the bottleneck qout (see Figure 1). By applying an appropriate speed limit upstream of
the bottleneck, VSL can effectively reduce the inflow qVSL ≈ qcap into the bottleneck while
the outflow capacity is restored. Therefore, VSL seeks to keep bottleneck capacity stable in
conditions of increased traffic demand to prevent the capacity drop in a bottleneck area.
Otherwise, queues will form at the bottleneck.

The effects of VSL on traffic flow were studied in [32–34]. VSL control measures were
first used to improve traffic safety on motorways by harmonizing traffic [2,35,36]. These
strategies provide speed limits around the critical speed at which capacity is reached. They
are based on the assumption that lower speed limits reduce spatial variations in speed
(thus increasing the homogenization of speed), flow, and density on motorways. Thus,
the suggested scheme can smooth out the incoming traffic towards the congestion point
to avoid undesirable effects, such as shockwaves. As shown in [37], the speed limit is
one among multiple dependent factors that impact the level of crash risk on motorways.
Mainly, reduced speed variance is considered to solve both the road safety operation level
and the risk of capacity drop [2]. However, the available studies do not provide clear
evidence of increased capacity at the expense of harmonization (when reported, increased
throughput is within an interval of 5–10%).

The second type of VSL control regulates the incoming traffic towards the bottleneck
area by restricting mainstream flow and is often referred to as MTFC [3]. Thus, the goal of
MTFC is to eliminate or prevent bottleneck activation and capacity drop.

260

Mathematics 2021, 9, 3081

2.2. VSL Control Strategies

Over the years, various VSL control approaches have been suggested based on dif-
ferent system configurations and methodologies, e.g., optimal control, model predictive
control, feedback control and shock wave theory [38]. Feedback-based VSL controllers base
their speed limit changes as reactive responses (corrective behavior) to the deviation of a
controlled process variable (e.g., traffic density) from the reference (e.g., predefined desired
density value in the bottleneck) [39]. Feedback-based VSL can be extended by model
predictive control and work in a coordinated fashion to address the shortage of delayed
responses. However, model predictive control generally does not guarantee the stability of
the control loop and is much more computationally intensive [9]. Although feedback-based
VSL is much more efficient and robust to current traffic data, such controllers are tuned
to a specific range of traffic load and are not adaptive. If traffic patterns and traffic load
change significantly, the controller may not be able to achieve the desired state in a timely
manner and may, therefore, operate suboptimally [17].

Over the last few years, there has been a renewed interest in improving VSL optimiza-
tion through control concepts based on RL [16–18,21,40]. In [17], it is shown that RL-VSL
can yield better results when applied to system travel time optimization in the case of
recurrent motorway congestion as compared to a two-loop feedback cascade VSL control
structure. The results reported that the feedback-based VSL controller could lead to a
delayed response to the fluctuating traffic load when controlling the bottleneck density.
On the contrary, the RL-VSL can learn traffic patterns that trigger the activation of a bottle-
neck through the learning process. Hence, in some cases, RL-VSL can anticipate bottleneck
activation and respond proactively.

In [18], the control policy of RL-VSL was further improved by enriching the agent’s
state variables with predictive information about the expected traffic state by forecasting
the speed and density of the controlled motorway segment by running parallel simulations.
RL can be integrated with function approximation techniques (linear or nonlinear). Ap-
proximations address the large dimensionality problem of storing state-action values in the
computer’s memory [15] and enable the computer to work with continuous state/action
variables, which, in the end, plagues many real systems with a large solution space, such as
RL-VSL [21,40]. Nonlinear function approximation techniques may improve control if an
underlying controlled process is nonlinear and nonstationary, as is the case with motorway
traffic flow control [18,41].

In [22], a multi-agent VSL with two objectives was tested. Flow control aims to increase
throughput in the bottleneck, while traffic safety policy aims to reduce the speed difference
between adjacent controlled motorway segments. Each policy was learned and evaluated
separately. According to the defined objective, VSL agents have to learn an optimal joint
strategy (policy) using distributed Q-learning. The results indicated an improvement in
vehicle stops and total travel time compared to the no control case. Similarly, in [19],
a Q-learning-based coordinated hard shoulder control strategy and VSL was introduced.
In [42], a dynamic control cycle was suggested to compute the optimal duration of control
cycles in VSL. Dynamic control cycles were proven to perform better than those which
were fixed. The suggested strategy enables adjustable time lengths of each control cycle
regarding current traffic states and speed limits, allowing VSL to respond appropriately to
time-varying traffic conditions.

In [24], we extended RL-VSL [40] in a multi-agent structure. Using the W-learning (WL)
algorithm [43], two RL-VSL agents learn to jointly control two motorway segments in front
of a congestion area. WL gave better results in tested traffic scenarios, including dynamic
and static traffic loads, and proved suitable as a multi-policy optimization technique in
VSL when used for noncooperating agents.

We also analyzed several manually configured WL-VSL configurations, including
different VSL zone lengths and their distances relative to the bottleneck area. The results
confirmed that changes in VSL zone configurations affect the traffic flow control process

261

Mathematics 2021, 9, 3081

differently. These results are consistent with the findings in [25,26] regarding the optimal
location and length of VSL application area.

Thereby, we hypothesized whether VSL performance under such conditions could
be improved by having the VSL controller dynamically adjust the length and location
of the VSL zone (adjustable VSL application area, “similar to the concept of dynamic
control cycle suggested in [42]”) in response to changing congestion rather than using
static VSL zones. In [23], we confirmed our hypothesis experimentally for a two-agent
system. In particular, for spatially and temporally varying traffic congestion, dynamic
VSL zone allocation proved to be advantageous over static VSL zones (fixed length and
location). The appropriate adaptive VSL zone configurations were learned using DWL-
ST-VSL without the need for manual setup. In this paper, we experimentally show the
need for more complex multi-agent VSL (e.g., a four-agent system) to control a longer
motorway segment.

2.3. Spatial Based VSL

The value of the speed limit and the proper placement of the VMS prior to the
occurrence of congestion (see Figure 1) are essential factors for an efficient VSL system.
Pioneers in defining important theoretical assumptions with evidence for optimal VSL
application areas are the following works [25,26]. In [25], a simulation approach is used
to determine the optimal location and length of the VSL application area concerning its
distance from the bottleneck. Stepwise variation of the length of the VSL application area
and acceleration area is used to show the dependence between the lengths and the system
travel time, measured in total time spent (TTS) [veh·h].

The recent results of [26] provide new insights into the optimal placement of the
VSL application area compared to previous findings, and the given results are confirmed
analytically. It is shown that the general assumption that the lower the speed limits,
the larger the distance between the VSL application area and the bottleneck should be (to
enable vehicles to reach the critical speed before entering a bottleneck) is not always the
case. Instead, the results indicate that at a higher value of the speed limit, the distance
between the VSL zone and the bottleneck should be larger. In [44], the authors address
the same problem, but in the context of the optimal distance between the merging area
and the traffic light on the mainstream to achieve the most efficient merging of vehicles
in combination with the real-time traffic control strategy used (MTFC with traffic lights
instead of VSL). Additionally, in [45], the authors point out the problem of the optimal
VSL zone design for the optimization of the bottleneck. Therefore, they propose three
VSL zones: the critical VSL zone for regulating the discharge section flow to match the
bottleneck’s capacity, the VSL zone for the potentially congested area (mainstream storage),
and the VSL zone upstream of the congestion tail. The analysis performed in [46] suggested
a VSL control model that is able to determine whether the section is congested or not
based on predefined thresholds (density, speed, and acceleration), and this information is
used to determine the VSL start station. In [47], the bilevel programming model is used
to find the most appropriate speed limits and corresponding locations of VMSs in VSL
control. The first objective of the bilevel programming model was to optimize the number
and speed limits of VMSs by creating a model for a minimum comprehensive accident
rate. The second objective was modelled to optimize the locations of VMSs by solving
the improved maximum information benefit model. The results presented confirm that
appropriate speed limits and proper placement of VMSs can reduce the average queue
length, total delay, and total stop frequency of vehicles in motorway work zones.

262

Mathematics 2021, 9, 3081

Traffic flow
VSL
area Congestion

VMS
qin qVSL qcap qout

80 Accelera on (transi on) area

Figure 1. Application of VSL for bottleneck control [10].

Although the results of the above-mentioned analyses point to a possible feasible
direction for addressing optimal VSL zone placement, in general, the results and findings
indicate that there is no absolute guideline for where the VSL zone should be placed for
optimal performance. Instead, it appears that the near-optimal placement of VSL zones
depends on the location and intensity of congestion and the speed limit values used in
that context.

Given that the congestion characteristic varies in time and space due to stochastic traf-
fic behavior, we have experimentally confirmed the usefulness of the DWL-ST-VSL concept
of dynamic VSL zone allocation for speed limit control in [23]. We also demonstrated that
DWL-WL-VSL agents and the motorway system could benefit from collaborating to select
appropriate actions, not only for their own policies, but also for the policies of the other
agents they affect.

Therefore, this paper aims to provide simulation proof of the extended concept of
DWL4-ST-VSL and its applicability to speed limit control on a longer motorway segment,
which is more in line with what is required in the real world to achieve harmonized traffic
flow control. The analysis gives detailed insight into the steps of modeling DWL4-ST-VSL
and provides some interesting details on the pros and cons of the proposed algorithm.
These are our primary research motivations for implementing an enhanced version of the
DWL4-ST-VSL strategy that learns appropriate speed limits and spatiotemporal VSL zone
configurations in an automated manner using the DWL algorithm on a longer motorway
segment. Four cooperative agents operating upstream of the bottleneck area will be tested
in the suggested configuration.

3. Multi-Agent Based Reinforcement Learning

This section presents the essential elements needed to understand RL-based techniques
and the DWL algorithm.

3.1. Reinforcement Learning

RL is a simulation-based technique that is useful in large-scale and complex MDPs [48].
It combines the principle of the Monte Carlo method with the principle of dynamic pro-
gramming, which in RL is called the temporal difference method. In RL, simulation can be
used to generate samples of the value function of a complex system (rather than finding
an explicit model), which are then averaged to obtain the expected value of the value
function. Therefore, transition probabilities are not required in RL (model-free technique).
This avoids the curse of dimensionality (a potentially large number of states which leads to
the well-known curses of dynamic programming: the curse of modeling and the curse of
dimensionality) [15].

3.2. Q-Learning

Q-Learning is an off-policy RL algorithm that perceives and interacts with the envi-
ronment at each control time step by performing actions and receiving feedback (rewards).
Thus, the Q-Learning function Q(xt, at) learns to associate an action at with the expected
long-term payoff (reward) for performing that action in a given state xt [49]. How good

263

Mathematics 2021, 9, 3081

action is in a given state is expressed as a Q-value. Q-function is learned using the following
iterative update rule:

Qi(xt, at) := (1 − αQ)Qi(xt, at) + αQ(rt+1 + γ max
a′∈A

Qi(xt+1, a′)). (1)

The performed action at in state xt stimulates a state transition to the new state xt+1,
from which an optimal action is a′. Depending on this transition, the agent receives a
reward rt+1. The parameter αQ is the learning rate that controls how fast the Q-values
are adjusted. The discount factor γ controls the importance of future rewards. Various
exploration/exploitation strategies (e.g., ε-greedy) are used to search the solution space,
i.e., to ensure that the agent sufficiently explores its environment and learns the appropriate
action in a given state.

3.3. W-Learning

The WL algorithm proposed in [43] was designed to manage competition between
multiple tasks. In particular, an individual policy is implemented as a separate Q-learning
process designed by its own state space. The goal is to learn Q-values for state-action pairs
for each policy, where a single policy can be viewed as an agent. At each control time
step, each policy nominates an action based on Q-values. Applying WL for each state x of
each of their policies, the agent learns what happens concerning the reward received if the
nominated action is not performed (rated using a W-value for a given state W(x)). Thus,
an agent only needs local knowledge—what state xt it was in, whether the nominated
action was obeyed or not, the state transition xt+1, and the received reward rt+1.

Hence, all policies recommend new actions. Nevertheless, only one action is executed
(suggested by the “winner policy”) based on the highest W-value (if not, this policy will
suffer the highest deviation). Each policy updates its own Qi function using the winning
action ak and its own received reward ri. Wi values are updated only for policies that were
not obeyed (i 	= k) using the following update rule:

Wi(xt) := (1 − αW)Wi(xt)

+ αW(1 − αQ)
ω(Qi(xt, ai)− (ri,t+1 + γ max

a′∈A
Qi(xt+1, a′))), (2)

where learning rate αW and delaying rate ω (ω > 0) control the convergence of Wi.
Thus, WL can be seen as a fair resolution of competition. Competition results in

fragmentation of the state-space between the different agents, thus allowing any collection
of agents. Eventually, they will divide up state-space among them based on the deviations
they cause to each other. The winner of a state (determined by highest W(x)) is the agent
that is most likely to suffer the highest deviation if it does not win. Eventually, agents are
aware of their competition indirectly by the interference they cause.

3.4. Distributed W-Learning

The DWL algorithm proposed in [28] enables an agent Ai ∈ A =
{

A1, . . . , An
}

to
learn to select actions that match its local policies while learning how its actions affect
its neighbours Aj ∈ A, and to give different weights to the preferences of its neighbours
when selecting an action. To prompt an agent Ai to consider the action preference of its
neighbours (i.e., to cooperate), each agent implements, in addition to its own local policy
LPi =

{
LPi1, . . . , LPil

}
, a “remote” policy RPi =

{
RPij1, . . . , RPijr

}
for each of the local

policies LPjl used on each of its neighbours. To help neighbour Aj implement its local
policy, remote policy RPi receives a reward rijr every time a neighbour’s local policy LPjl
receives a reward rjl (rijr = rjl).

RPi enables heterogeneous agents to collaborate, implement different policies, and have
different actions and state spaces. Thus, the DWL scheme lets an agent adapt to the other
agents, since their dynamics are generally changeable. Each agent implements its policy
as a combination of a Q- and a WL process. Q-values are associated with each of its state-

264

Mathematics 2021, 9, 3081

action pairs, while W-values are associated with states. In the learning process, an agent Ai
learns Q-values for remote-state/local-action pairs and W-values for local/remote states,
through which it learns the influence of its local actions on the states of its neighbours
Aj. Thus, DWL does not need a global knowledge or central component. It relies on
local learning and interactions with its neighbours, local rewards from the environment,
and local actions.

To learn how its actions affect its neighbors, at each control time step, the agent
receives information about the current states of its neighbours and the rewards they have
received. All local and remote policies nominate an action with an associated W-value.
Nominations for LPi actions are treated with full W-values. In contrast, RPi nominations
are scaled by a cooperation coefficient C (0 ≤ C ≤ 1) to enable an agent to weigh the action
preferences of its neighbours. C = 0 indicates a non-cooperative local agent, i.e., it does not
consider the performance of its neighbours when picking an action. For C = 1, the local
agent is entirely cooperative, implying that it cares about its neighbours’ performance as
much as its own.

The action performed at the given control time step (one that wins the competition
between policies) is selected based on the highest W-value (Wwin) after scaling the remote
W-values by C:

Wwin = max(Wil , C × Wijr), (3)

where Wil and Wijr are W-values nominated by LPi and RPi policies of agent Ai, respec-
tively.

4. Modeling Spatial VSL as a DWL-ST-VSL Problem

So far, DWL has been successfully applied to the problem of controlling urban in-
tersections on a larger scale network with a larger number of agents [28]. DWL has also
proven successful in the VSL control optimization problem [23] on a smaller motorway
segment. Nevertheless, it has never been tested for its extended applicability to motorway
traffic control with a higher number of deployed VSL agents. Thus, in our extended DWL4-
ST-VSL framework, four neighbouring agents (Ai, i = 1, 2, 3, 4) control the speed limit and
VSL zone configuration (length and position) on their own motorway section. Each agent
in DWL4-ST-VSL perceives its local environment through agent states and rewards (see
Figure 2). Thus, in the proposed multi-agent control optimization problem, the agent states
xt, actions at, and reward functions rt+1 are modelled as follows.

S4= 1 [km] S3= 1 [km]

Traffic flow
Congestion range

qoutqin

Available VSL zone configurations

VSL1(t)
iR(t)

R1
R0

VSL2(t)
iL(t)

Motorway 1R1L
2R2L

S2= 1 [km] S1= 1 [km] S0= 0.5 [km] 2.5 [km]

∆X(t)

DWL4-ST-VSL
Agenti (Ai)
xLPil(t) – Ai state
ai(t) – Ai action
rLPil(t) – Ai reward

SSS = 111 [[[kkkm]]]
111111111111111111111RRRRRRR1111111111RRRRRRRRRRRRRRRRRRRRRRRRRR1111111RRRRRRRRRRRRRR1R

SSSS2= 111 [[[[kkkkm]]]]
1L1L1L 11111111111111111111111111111RRRRRRRRRRRRRRRRRR

22222222222222RRRRRRRRRRRRRR222222222222222222RRRRRRRRRRRRRRRRR2R222222LLLLLL
1111LLLL

2L

SSS = 111 [[[kkkm]]]
1R

SSSS4= 1111 [[[[kkkkm]]]]
1L 1111RR

2R
11111LLLLLLL

2L

VSL3(t)
iR(t)

VSL4(t)
iL(t)

1 [km]

Agent A3
(Q-learners)

Agent A2
(Q-learners)

Agent A1
(Q-learners)

Agent A4
(Q-learners)

qVSL

LP21 ,W21

LP22 ,W22

RP231 ,W231

RP232 ,W232

RP211 ,W211

RP212 ,W212

LP11 ,W11

LP12 ,W12

RP121 ,W121

RP122 ,W122

LPil – Ai local policy

RPijr – Ai remote
policy for each LPjl of
its neighbours Aj

LP31 ,W31

LP32 ,W32

RP341 ,W341

RP342 ,W342

RP321 ,W321

RP322 ,W322

LP41 ,W41

LP42 ,W42

RP431 ,W431

RP432 ,W432

323,33

2 2 2

2 2

24,424 2, 121,12

a4(t) a3(t) a2(t) a1(t)
R2

Figure 2. DWL4-ST-VSL configuration scheme.

4.1. State Description

As stated in [18], defining a compact Markovian state representation for motorways
is difficult because many external factors influence traffic flow: e.g., weather conditions,

265

Mathematics 2021, 9, 3081

motorway geometry (curvature, slope), etc., which are hard to model precisely. Augment-
ing the state by additional information, such as observing more sections (e.g., the density
measured on the motorway section further upstream from the congestion location and the
on-ramp queue length, primarily to provide a predictive component in terms of motorway
demand [21]) or including information from the past in states, may improve the algorithm’s
performance. Though this increases solution space, it can be overcome by the function ap-
proximation technique [18,40]. However, in DWL modelling, the observation of the agent’s
neighborhood is available through remote policies. Nevertheless, the observability of the
state must be assured. An example of a partially observable state is the usage of flow rate
for states. From traffic flow theory, macroscopic variables describe traffic conditions (speed,
density, flow). As a result of the nonlinearity of the fundamental diagram (flow-density
relationship) [39], the same traffic flow rate can be observed for a density value below
critical density with high speed (stable flow) and a density value above critical density
with low speed (unstable flow). Thus, the traffic condition is uniquely determined by using
the information of traffic density. Therefore, we use speed and density measurements
to omit the agents’ confusion, thus uniquely determining traffic conditions. As a result,
the negative effect of imperfect and incomplete perception of agents’ partially observable
states in our MDP modeling is reduced.

The inclusion of the speed measurement of the neighboring segments into the state
can enhance the learning process, particularly at the beginning of the learning process,
when agents cause interference by randomly performing actions (exploration). Besides,
low speed indicates traffic flow disruption provoked by congestion. Speeds are encoded in
the variable Vn, which corresponds to the measured average vehicle speed v̄n,t at time t in
motorway section Sn (n = 0, 1, 2, 3, 4), as shown in Figure 2. Each speed measurement can
fall into one of four intervals defined with boundary points (50, 76, 101 [km/h]).

Current traffic density ρ̄n,t measured in the motorway section Sn, is stored in the
variable Pn. Each measurement can fall into one of twelve intervals defined by the boundary
points (15, 20, 23, 26, 29, 32, 35, 38, 45, 55, 65 [veh/km/lane]). Additionally, the state space
contains information about the agent’s action from the previous control time step, thereby
enabling modelling restrictions on the action space by making it state dependent, which is
explained in more detail in the following subsection.

Therefore, A1’s local policy LP11 at time t senses state x=(a1,t−1, V0, P0, P1), while LP12
x = (a1,t−1, V1, P0, P1). A2’s LP21 senses state x = (a2,t−1, V1, P1, P2,), while LP22
x = (a2,t−1, V2, P1, P2). Similarly, A3’s LP31 senses state x = (a3,t−1, V2, P2, P3,), while LP32
x = (a3,t−1, V3, P2, P3). Finally, A4’s LP41 senses state x = (a4,t−1, V3, P3, P4,), while LP42
x = (a4,t−1, V4, P3, P4) (see Figure 2).

4.2. Action Space

Each element in the action sets (4) and (5) consists of two variables. The upper one
represents the speed limit [km/h] in section Sn, while the lower one represents an active
VSL zone (indexes for the left (iL)/right (iR) configuration; see Figure 2). Agent A1 controls
the speed limit and the length of the VSL zone in section S1, while A2 controls section S2,
and so on. In this way, the agent’s winning policy (either LPi or RPi) will define the speed
limit and the VSL zone configuration for a given motorway section.

A1,2,DWL =

{{
60
1

}
,
{

60
2

}
,
{

80
1

}
,
{

80
2

}
,
{

100
1

}
,
{

100
2

}
,
{

120
1

}
,
{

120
2

}}
(4)

A3,4,DWL =

{{
90
1

}
,
{

90
2

}
,
{

100
1

}
,
{

100
2

}
,
{

110
1

}
,
{

110
2

}
,
{

120
1

}
,
{

120
2

}}
(5)

Q-values in (DWL2 and DWL4)-ST-VSL are stored in a Q|X|×|ADWL | matrix, where X is
a finite set containing the indices of the coded states of the Cartesian product of the input
traffic variables (|X| = 4608 and |ADWL|= |A1,2,DWL|= |A3,4,DWL|= 8). This seems to be

266

Mathematics 2021, 9, 3081

a large solution space for learning optimal Q-values using (1). Nevertheless, the feasible
solution space was reduced by constraining the action selection in the nomination process
explained in the continuation. Thus, Q-matrix can be considered a sparse matrix, and there
is no need to search the whole space.

The consecutive speed limit change within a section (n) must satisfy constraint
|at−1,n − at,n | ≤ 20 in the case of agents A1 and A2, which use action set A1,2,DWL. In the
case of A3 and A4 (A3,4,DWL), the constraint is |at−1,n − at,n | ≤ 10. This ensures a smooth
and safe speed transition between the upstream free-flow and the congested downstream
flow characterized by lower vehicle speeds due to the bottleneck. Thus, the final set of
actions allowed for the agent Ai at time t depends on the previously executed actions
of the agent. This constraint also implies that the next possible action (a′) in the update
process of the W- and Q-values (see update rules (1) and (2)) must be bounded based
on at. Thus, each time the Q-value is updated, a possible subset of the allowed actions
is considered. E.g., if ak,t−1 = A1,2,DWL(7), then the available action subset at time t is
A*

1,2,DWL =
{

A1,2,DWL(5), A1,2,DWL(6), A1,2,DWL(7), A1,2,DWL(8)}. Therefore, the previous
action in the state space is used to uniquely distinguish between states’ transitions given
the constrained subset of actions between control time steps. This constraint is implicitly
modelled in the update rule (1). It addresses a unique row in Q-matrix (Q(x, a)) and the
reachable entries in that row, corresponding to a given action index. Feasible entries in
the particular row correspond to original indexes of elements from the original action set).
Thus, only such entries in Q(x, a) are reachable in updating Q- and W-values and in the
action nomination process while using “argmax” in Q-learning. Otherwise, the oscillation
in the values of elements in a particular state (row) will be present. Thus, Q-values will not
converge to a stationary policy, and action nomination in a particular state will constantly
switch no matter how long the learning period is. Eventually, a stable agent diminishes the
nonstationarity effect in the learning problem of the other agents.

In this way, it is not necessary to model constraints directly in the rewards. It is still
ensured that DWL4-ST-VSL operates according to the advised safety rules on maximum
allowable speed changes.

It is important to note that the constraints on the spatial difference of speed limit
values between two adjacent VSL zones on the motorway are not explicitly considered in
this setup. It is assumed that agents communicate information about congestion intensity
and locations via remote policies. Thus, the difference in spatial speed limits should be
reasonable in terms of optimal traffic flow control. This is also aided by DWL’s ability
to implement two sets of speed limits with different granularity simultaneously. Action
set (4) is for agents A1 and A2, which are closer to the bottleneck. The finer action
set (5) is for upstream agents A3 and A4. The finer actions aim to slightly adjust the
speeds of the arriving vehicles before they enter the VSL application areas controlled
by downstream agents. In this way, agents smooth out the incoming traffic towards the
congestion point, thus avoiding the undesirable sudden deceleration of vehicles and effects
such as shockwaves.

4.3. Reward Function

In [18], the minimization of the total time spent (TTS) of vehicles on the observed
motorway segment over a given time interval was successfully used as an objective in
RL-VSL control. Therefore, we also use the TTS measure for reward. The variable TTSn,t+1
measures TTS between two control time steps t and t+ 1 on the motorway section n. In this
way, an agent receives feedback about how good its action was. Each agent must learn
to strike a balance between two conflicting policies. In the case of an inactive bottleneck,
the penalty will be lower for a higher speed limit. Contrary, when congestion occurs, it is
required to gradually reduce the speed limit in upstream sections to control the incoming
traffic towards the congestion point so as to maintain the traffic volume near the operational
capacity of the active bottleneck. Thus, each policy seeks to optimize its objective as follows.

267

Mathematics 2021, 9, 3081

4.3.1. Local Policy for Stable-Flow Control

The local policy LPi1 of an agent Ai aims to learn the speed limit to ensure a reduction
of TTS by promoting, when possible, higher traveling speeds in stable-flow conditions.
To achieve this goal, the LPi1 reward is:

rLPi1,t+1 =

{
0, if min

{
v̄n,t+1 | n = i, i − 1

}
≥ 102

−TTSn,t+1, n = i otherwise
, (6)

thereby favoring average vehicle speeds above 102 [km/h] .
In a certain percentage, LPi1 is activated in saturated flow during the transition from

free-flow to congested flow and vice versa. Therefore, it prepares traffic for the second
policy (LPi2), which dominates in oversaturated (congested) conditions. After congestion
has started to resolve by deploying LPi2, and the congestion intensity reduces to a certain
level, LPi1 helps restore traffic to free flow (higher traveling speeds) as soon as possible by
gradually increasing the speed limit. Thus, LPi1 seeks to reduce traffic recovery time. Finally,
the states perceived by LPi1 satisfy the minimum requirements to determine whether the
flow in the agent’s neighborhood is a stable flow or deviating from it. Thus, the agent can
recognize when the higher speed limits for free flow can be implemented or not.

4.3.2. Local Policy for Unstable-Flow (Congested) Traffic Control

Local policy LPi2 aims to reduce TTS in the downstream motorway section in the case
of an active bottleneck. Thus, an agent must learn and apply appropriate speed limits
to restrict the inflow into the bottleneck until the discharge capacity is restored. If not,
congestion will grow, and consequently, it will increase its penalty in proportion to:

rLPi2,t+1 = −βTTSn,t+1, n = i − 1, (7)

where coefficient β controls the agent’s sensitivity to congestion. Instead of using only
downstream congestion information, LPi2 uses information about the upcoming traffic
flow (current speed and density) from the section Sn, n = i. This can be considered a
prediction of the forthcoming traffic flow (how fast and with what volume it will arrive)
into the downstream congested section Sn, n = i − 1. In this way, the description of traffic
conditions (states) is extended to include more unique traffic characteristics for more
efficient congestion control.

4.3.3. Remote Policies

Cooperation between agents is based on remote policies. Thus, an agent Ai learns
additional remote policies (RPij1, . . . , RPijr) that complement its neighbouring agent’s local
policies. In order to know how Ai’s local actions at affect the neighbours’ states, the agent
updates the remote policies by the information it receives about its neighbours’ current
states and the rewards that neighbour agents have received (Figure 2). Our experiments
consider that agents’ communication is perfect (no loss of information and no breakdown
of agents is assumed).

4.4. Winner Action

In DWL4-ST-VSL, an agent Ai’s experience (Q-values for local-state/action pairs and
Q-values for remote-state/local-action pairs) for each policy are respectively stored in Qik
matrices. In the case of agents A1 and A4 (k = 1, . . . , 4), while for A2 and A3 (k = 1, . . . , 6).
At the same time, for each of the states of each of its policies, an agent learns W-values of
what happens in terms of the reward received if the action nominated by that policy is not
performed [43]. This is expressed as a W-value (W(xi,t)) and stored in Wik matrices in each
case. With the knowledge gained from these matrices, all policies (local and remote) propose
new actions. The action ak,t that wins the competition between policies at this time step is
the one with the highest W-value (Wmax) (computed using (3)) [28]. After the state transition

268

Mathematics 2021, 9, 3081

xt �→ xt+1, each agent’s local policy receives its unique reward (rLPi1,t+1, rLPi2,t+1) and state
(xLPi1,t+1, xLPi2,t+1) depending on the consequences of the executed action ak,t. The remote
policies RPijr obtain rewards and state information from their neighbour agent by querying
the neighbour’s local policies states/rewards (xLPj1,t+1, rLPj1,t+1, xLPj2,t+1, and rLPj2,t+1).
Then, all policies update their Q-values (for the winning action ak,t), while only the policies
that were not obeyed update their W-value. The above process is repeated for all agents.

5. Simulation Set-Up

To evaluate whether the dynamic assignment of VSL zones and cooperation between
agents with DWL have an advantage over static VSL zones with non-cooperative agents, we
compare DWL4-ST-VSL with our previous work on WL-VSL [24]. To verify the advantages
of learning approaches over classical VSL control, we also compare DWL4-ST-VSL with
SPSC [30]. It is important to note that the calibration procedure of the simulated motorway
section is not included because a synthetic model with different traffic loads was used for
this analysis. The objective of this study is to evaluate the impact of dynamically adjusting
the VSL zone configurations and the different number of agents in DWL-ST-VSL on the
optimization of traffic flow within an active bottleneck and the motorway as a whole.

5.1. Simulation Model

The simulation framework used consists of the microscopic simulator SUMO (version
1.8.0) and the Python programming environment. We referred to the software version because
the simulation output in the new version may differ slightly from the simulation in the
previous version, as the simulator source code is constantly being improved and updated.

The motorway model is based on the model used in [23]. It is divided into 5 main
sections, Sn, n = 0, 1, 2, 3, 4. To ensure all combinations of VSL zones used in these exper-
iments (see Figure 2) and to measure spatio-temporal characteristics of the traffic flow,
the entire simulation model is divided into smaller links (each 50 m long). The speed limit
is simulated along with the computed configuration of the VSL zones for the chosen control
time by directly assigning the allowed speeds to the corresponding links. The new speed
limit and the configuration of the VSL zones are, thus, calculated by agents for each control
time step Tc = 150 [s]. In our previous work [23], this Tc value was chosen from multiple
tests. The used value is in the range of the foremost values found by the sensitivity analysis
of control cycle lengths performed in [42]. The bottleneck is generated on the motorway
section S0. Each simulation lasts 1.5 h, and all learning-based VSL approaches were trained
in 14,000 simulations.

5.2. Traffic Scenarios

To evaluate the DWL4-ST-VSL control solution’s feasibility and behavior and de-
termine whether agent cooperation and dynamic VSL zone assignment with DWL has
advantages over VSL control approaches with static VSL zone configuration (WL-VSL and
SPSC), we tested it under medium and high traffic loads. The input traffic data used were
synthetic data, and the calibration process of the simulated model is not within the scope
of this analysis. Therefore, the driver behavior and vehicle characteristics were modelled
using the Krauss car-following model with the default settings in SUMO [29].

5.2.1. Medium Traffic Load

In the downstream section S0 (Figure 2), a bottleneck is induced by an increase in
traffic demand at the on-ramp R0. The generated bottleneck is the primary test for DWL4-
ST-VSL with dynamic VSL zone allocation. In this traffic scenario, the demand at on-ramp
R0 changes over time (see Figure 3). For the highest demand at on-ramp R0, 1315 [veh/h],
slower vehicles entering the motorway interact with the mainstream traffic in the merge
area. Consequently, this causes disturbances, which triggers the activation of the bottleneck,
and congestion appears. Traffic flow at ramps R1 and R2 remain constant for both traffic
scenarios, with the flow of 385 and 230 [veh/h], respectively. The mainstream flow entering

269

Mathematics 2021, 9, 3081

the bottleneck area has a constant rate of 1385 [veh/h/lane]. The traffic flow consists of
94% cars, 3% buses and 3% trucks.

5.2.2. High Traffic Load

The induced congestion is much more significant in this traffic scenario than in
the medium scenario. In particular, an increase is generated by a 7.22% higher traffic
mainstream demand entering the bottleneck area relative to the medium traffic scenario.
This is the test for DWL4-ST-VSL emphasizing the dynamic adjustment of VSL zones.
Since the congestion tail propagates much more upstream through the motorway, it can
be expected that different VSL zone configurations will be used compared to the medium
traffic scenario.

0 0.25 0.5 0.75 1 1.25 1.5
Time [h]

0
200
400
600
800
1000
1200
1400
1600

D
em

an
d

[v
eh

/h
/la

ne
]

Mainstream high
Mainstream medium
On-ramp R0

Figure 3. Tested traffic scenarios.

5.3. Baselines of SPSC and WL-VSL

In the case of baselines, the best static VSL zone configuration S2,(2L) + S1,(1R) (see
Figure 2) and parameters were selected from several tests conducted for the medium
traffic load.

In the case of SPSC [30], the gain (Kv = 4.5) and activation threshold (traffic density
of 23 [veh/km/lane]) were selected from several tests.

The same best static VSL configuration is also used for the WL-VSL case. In WL-
VSL, two local policies were used. Local policy LP1 aims to maintain a higher speed on
controlled motorway sections, while LP2 aims to reduce congestion in the presence of an
active bottleneck. The observed state variables for LP1 are densities within sections S1
and S2,(2L), and for LP2 densities within sections S0 and S1, the “bottleneck region”. Each
element of the action set contains two variables (the section S1 and S2,(2L) speed limits).
In this way, the winning policy will set speed limits for both sections [24]. The two rewards
associated with the mentioned policies were modelled as follows:

rLP1,t+1 =

{
0, if min

{
v̄n,t+1 | n = 0, 1, 2

}
≥ 100

−0.4(2TTS2,(2L),t+1 + TTS1,(1R),t+1) otherwise
, (8)

rLP2,t+1 = −TTS0,t+1. (9)

5.4. DWL-ST-VSL Parameters

For both (DWL2 and DWL4)-ST-VSL and WL-VSL we use the “learning Q (somewhat)
before learning W” scheme [43], controlled by αW(1 − αQ)

ω part in (2), where αQ = 1
n(x,a)

and αW = 1
n(x) depend on the number of visits to Qi(x, a). Thus, the weight is larger when

an agent is sure of what it is doing in a given state. This is indicated by a higher frequency
of nominating a particular action based on the highest Q-value. The parameter ω = 1.5
controls how fast W converges and was selected from multiple tests. The author of WL [43],
in his demonstrated example, used ω = 3. The parameter γ= 0.8 was chosen from [24]. The
exploration probability is decreased by the parameter ε = exp −log(20)N

6000 , which decreases
with the number of simulation runs N [23]. In the DWL-ST-VSL nomination process (3),
the cooperation between agents is controlled by remote policies (RPi) via a cooperation
coefficient C. The cooperation levels we test are C ∈

{
0, 0.25, 0.5, 0.75, 1

}
.

270

Mathematics 2021, 9, 3081

5.4.1. DWL2-ST-VSL Parameters

To keep the W-values of the local policies comparable to the W-values of the remote
policies, we scale the reward function (7) by the factor β = 0.75 in the case of agents A2
and for agent A1 β = 1.25. This is necessary because sections (Sn, n = 1, 2) are longer than
S0, which affects the final comparison in choosing the winning action since the W-values
are bounded by Qmax and Qmin. The bounds on the Q-values depend on the reward values
rmin and rmax [43].

5.4.2. DWL4-ST-VSL Parameters

Similarly, to keep the W-values of local policies comparable to the W-values of remote
policies in the case of DWL4-ST-VSL, we scale the reward function (7) by a factor β = 0.75
for the case of agents (Ai, i = 2, 3, 4) and for agent A1 β = 1.25.

6. Simulation Results

The VSL strategies are evaluated using the overall TTS and measured on the en-
tire simulated motorway segment (including ramps). Traffic parameters, average speed
and density are measured in the bottleneck area (section S0). The results presented in
Figures 4–7 are from the exploitation phase. We analyzed the specific response behavior of
the allocation of dynamic VSL zones compared to the case of static zones. The space-time
congestion analysis is used to analyze the spatiotemporal behaviour of dynamic VSL zone
allocation and its impact on traffic flow control. To assess the benefits of cooperation
between agents using DWL’s remote policies, we also evaluate the impact of the coop-
eration coefficient on agent performance. As a measure of the learning rate of proposed
agent-based learning VSL approaches, the convergence curves of overall motorway TTS
during the training (learning) process are shown in Figure 8.

It is important to note that the purpose of this study is not to show the extent to which
DWL4-ST-VSL can improve traffic, but to investigate how the dynamic (spatiotemporal)
adaptation of VSL zone configurations and the increased number of learning agents affect
the traffic control optimization problem. Thus, an improvement over baseline should be
considered primarily as a comparative measure between two different VSL approaches,
the commonly used static VSL zones and the new paradigm with dynamic VSL zone
allocation, rather than as an absolute measure of performance.

6.1. Comparison of Dynamic VSL Zone Allocation and Static VSL Zones

Note that the baselines use the best static VSL zone configuration found for a medium
traffic load. Using a medium and a high load in our experimental setup, we simulate
significant differences in the spatial displacement of the congestion tail. In this way, we
illustrate the benefits and necessity of adaptive spatiotemporal VSL control. Different VSL
zone configurations per traffic scenario are learned (without requiring manual setup) and
dynamically assigned using DWL4-ST-VSL to better respond to spatially propagating traffic
congestion. At the same time, the experiment highlighted the weaknesses of the static
VSL zone configuration, which performs suboptimally under high traffic load. Therefore,
the VSL zones in VSL with the static VSL zone configuration must be manually set up each
time the traffic pattern changes, which is not practical.

6.1.1. Medium Traffic Load

The simulations performed show that the best combination for establishing static
VSL zones is S2,(2L) + S1,(1R). In this case, VSL is able to control congestion in the case
of medium traffic load. In DWL2-ST-VSL, by additionally activating VSL zones within
the S2 section during the highest congestion peak (around t = 1 [h]), the agent A2 helps
its downstream neighbour A1, which contributes to an even more effective congestion
resolution than the baselines (SPSC and WL-VSL) with static VSL zones. In DWL4-ST-VSL,
the agents closest to the congestion (A1 and A2) are assisted by upstream agents (A3 and A4)
that activate additional VSL zones within S3 and S4 just before the highest congestion peak

271

Mathematics 2021, 9, 3081

(t = 1 [h]) (for a shorter period than DWL2-ST-VSL). In this way, agents A3 and A4 help their
downstream neighbours. Similar results to those found for DWL2-ST-VSL were observed.

0

20

40

60

80

100

120

Sp
ee

d
[k

m
/h

]

0

0.25

0.5

0.75

1

1.25

1.5

Ti
m

e
[h

]

NO-VSL
medium load

(speed)

NO-VSL
high load
(speed)

0

20

40

60

80

100

120

Sp
ee

d
lim

it
[k

m
/h

]

0

20

40

60

80

100

120
Sp

ee
d

[k
m

/h
]

0

0.25

0.5

0.75

1

1.25

1.5

Ti
m

e
[h

]

0

0.25

0.5

0.75

1

1.25

1.5

Ti
m

e
[h

]

0 1 2 3 4 5 6 7 8
Distance [km]

0 1 2 3 4 5 6 7 8
Distance [km]

WL-VSL
medium load

(speed)

WL-VSL
high load
(speed)

WL-VSL
medium load
(speed limits)

WL-VSL
high load

(speed limits)

0

20

40

60

80

100

120

Sp
ee

d
lim

it
[k

m
/h

]

0

20

40

60

80

100

120

Sp
ee

d
[k

m
/h

]
0

0.25

0.5

0.75

1

1.25

1.5

Ti
m

e
[h

]

0

0.25

0.5

0.75

1

1.25

1.5

Ti
m

e
[h

]

SPSC
medium load

(speed)

SPSC
high load
(speed)

SPSC
medium load
(speed limits)

SPSC
high load

(speed limits)

Figure 4. Space-time diagrams for simulated scenarios with static VSL zones.

272

Mathematics 2021, 9, 3081

0

20

40

60

80

100

120

Sp
ee

d
[k

m
/h

]

0

0.25

0.5

0.75

1

1.25

1.5

Ti
m

e
[h

]

NO-VSL
medium load

(speed)

NO-VSL
high load
(speed)

0

20

40

60

80

100

120

Sp
ee

d
lim

it
[k

m
/h

]

0

20

40

60

80

100

120

Sp
ee

d
[k

m
/h

]

0

0.25

0.5

0.75

1

1.25

1.5

Ti
m

e
[h

]

0

0.25

0.5

0.75

1

1.25

1.5

Ti
m

e
[h

]

DWL2-ST-VSL
high load

(speed limits)

DWL2-ST-VSL
medium load

(speed)

DWL2-ST-VSL
high load
(speed)

DWL2-ST-VSL
medium load
(speed limits)

0 1 2 3 4 5 6 7 8
Distance [km]

0

20

40

60

80

100

120

Sp
ee

d
lim

it
[k

m
/h

]

0

20

40

60

80

100

120

Sp
ee

d
[k

m
/h

]

0 1 2 3 4 5 6 7 8
Distance [km]

0

0.25

0.5

0.75

1

1.25

1.5

Ti
m

e
[h

]

0

0.25

0.5

0.75

1

1.25

1.5

Ti
m

e
[h

]

DWL4-ST-VSL
high load

(speed limits)

DWL4-ST-VSL
medium load

(speed)

DWL4-ST-VSL
high load
(speed)

DWL4-ST-VSL
medium load
(speed limits)

Figure 5. Space-time diagrams for simulated scenarios with multi-agent dynamic VSL zones.

273

Mathematics 2021, 9, 3081

42
8.

7 43
6.

0

42
9.

7 43
3.

5

43
2.

6

45
5.

2

43
1.

7

44
7.

9

43
2.

4

42
7.

2

43
0.

3

43
3.

8

42
9.

0

420.0
425.0
430.0
435.0
440.0
445.0
450.0
455.0
460.0
465.0

DWL-S
T-V

SL

C=0
DWL-S

T-V
SL

C=0.25
DWL-S

T-V
SL

C=0.5
DWL-S

T-V
SL

C=0.75
DWL-S

T-V
SL

C=1 NO-VSL

WL-V
SL

SP
SC

TT
S

[v
eh

h]

2 agents 4 agents

(a)

24
.6

25
.0

23
.4 24

.4

23
.7

33
.6

27
.1

30
.7

26
.6

25
.4

27
.3

27
.6

24
.9

22.0
23.0
24.0
25.0
26.0
27.0
28.0
29.0
30.0
31.0
32.0
33.0
34.0
35.0
36.0

DWL-S
T-V

SL

C=0
DWL-S

T-V
SL

C=0.25
DWL-S

T-V
SL

C=0.5
DWL-S

T-V
SL

C=0.75
DWL-S

T-V
SL

C=1 NO-VSL

WL-V
SL

SP
SC

De
ns

ity
 [v

eh
/k

m
/l

an
e]

2 agents 4 agents

(b)

84
.8

82
.6 84

.0

84
.1 85

.8

73
.3

81
.0

74
.7

80
.6 82

.8

79
.2

78
.8 80

.6

67.0

72.0

77.0

82.0

87.0

DWL-S
T-V

SL

C=0
DWL-S

T-V
SL

C=0.25
DWL-S

T-V
SL

C=0.5
DWL-S

T-V
SL

C=0.75
DWL-S

T-V
SL

C=1 NO-VSL

WL-V
SL

SP
SC

Sp
ee

d
[k

m
/h

]

2 agents 4 agents

(c)
Figure 6. Traffic parameters for different levels of cooperation for the medium traffic load scenario.
(a) TTS in the overall network. (b) Average traffic density in section S0. (c) Average vehicle speed in
section S0.

274

Mathematics 2021, 9, 3081

42
8.

7

42
3.

6

42
3.

7

42
0.

6

42
3.

0

40
7.

9

48
8.

7

43
5.

3

42
6.

0

42
8.

2

42
7.

0 42
6.

5

48
2.

3

764.2
422.2
424.2
482.2
484.2
402.2
404.2
432.2
434.2
472.2
474.2
442.2

1D WLS
TL-

SW

VC2
1D WLS

TL-
SW

VC2.04
1D WLS

TL-
SW

VC2.4
1D WLS

TL-
SW

VC2.=4
1D WLS

TL-
SW

VC8 NOL- SW

D WL-
SW

SP
SV

TT
S

[v
eh

h]

0 agents 7 agents

(a)

24
.4

26
.4

24
.5

24
.0

24
.3

27
.6

21
.3

27
.9

26
.9 26

.6

20
.4

20
.4

26
.1

22.3

24.3

26.3

20.3

21.3

27.3

25.3

43.3

8D WL-
SLT

- W

VC3
8D WL-

SLT
- W

VC3.=6
8D WL-

SLT
- W

VC3.6
8D WL-

SLT
- W

VC3.16
8D WL-

SLT
- W

VC9 NOLT- W

D WLT
- W

- P
- V

8e
ns

ity
 [v

eh
/k

m
/l

an
e]

= agents 4 agents

(b)

84
.2

86
.4 84

.0

84
.8

81
.5

78
.5 75

.3

75
.4

80
.3

81
.0

81
.4

82
.8

83
.2

78.6

79.6

84.6

81.6

83.6

88.6

89.6

DWL-S
T-V

SL

C=6
DWL-S

T-V
SL

C=6.23
DWL-S

T-V
SL

C=6.3
DWL-S

T-V
SL

C=6.83
DWL-S

T-V
SL

C=4 NO-VSL

WL-V
SL

SP
SC

Sp
ee

d
[k

m
/h

]

2 agents 0 agents

(c)
Figure 7. Traffic parameters for different levels of cooperation for the high traffic load scenario.
(a) TTS in the overall network. (b) Average traffic density in section S0. (c) Average vehicle speed in
section S0.

6.1.2. High Traffic Load

The performed simulations indicate that the static VSL zones perform suboptimally in
a high traffic scenario. By applying different VSL zone configurations during the simulation
within Sn, n = 1, 2 by DWL2-ST-VSL, and within sections Sn, n = 1, 2, 3, 4 in the case of
DWL4-ST-VSL, they contribute more notably to congestion clearing than baselines, which
results from the gradual adjustment of the VSL application area. In the DWL2-ST-VSL case,

275

Mathematics 2021, 9, 3081

agents started with stronger activation of the speed limits and VSL zones in section S1 at
the beginning of the congestion. Over time, the congestion starts to propagate upstream
through the motorway. The agents begin to use the VSL zones principally in sections S1
and S2, while finally, for the highest congestion peak, the VSL zones are primarily activated
in section S2.

0 2000 4000 6000 8000 10,000 12,000 14,000
Training episode

440

445

450

455

460

465

470

TT
S

[v
eh

h]

NO-VSL
SPSC
WL-VSL
DWL2-ST-VSL
DWL4-ST-VSL

(a)

0 2000 4000 6000 8000 10,000 12,000 14,000
Training episode

520

530

540

550

560

570 NO-VSL
SPSC
WL-VSL
DWL2-ST-VSL
DWL4-ST-VSL

TT
S

[v
eh

h]

(b)
Figure 8. The convergence of TTS during the training process. (a) Medium traffic load scenario.
(b) High traffic load scenario.

In the case of DWL4-ST-VSL, VSL zones are activated mainly in all VSL sections
at the onset of congestion (somewhat more sparsely for agent A3, while agent A4 was
almost not activated at all). Agents A1 and A2 preferred a shorter VSL zone configuration,
while A3 preferred a longer one. The application of shorter VSL zones in the downstream
sections S1 and S2 could be due to the additional support provided by the upstream agents,
particularly the speed limits applied by agent A3, which reduced the need for longer VSL
zones and sudden decreases of the speed limit. As congestion increases, it can be seen in
Figure 5 that the area of inactive VSL zones increases between upstream and downstream
sections, primarily due to the use of shorter VSL zones by agent A3 and sparsely activated
VSL zones by A2. After t = 0.75 [h], agent A2 starts applying speed limits again in response
to the sudden increase of the queue ahead of the bottleneck (faster propagation of the
congestion upstream through the motorway). As congestion intensity approaches its peak,
agent A2 promotes a longer VSL zone, including lower speed limits. Agent A1 is mostly
inactive during this time period, thus forming an additional valuable transition zone [26]
between the active VSL application area and the congestion tail. A somewhat unexpected
behavior during the highest congestion peak is observed for agent A4, which did not
apply speed limits below 120 [km/h] while A3 was not active for 3 control steps (Figure 5).
In the next section, we will make some arguments that we believe can help explain this
unexpected agent behavior.

Nevertheless, both DWL2-ST-VSL and DWL4-ST-VSL adjusted the VSL zones to the
spatially moving tail of the resulting congestion. This control strategy is more pronounced
in the case of the high congestion scenario, in which agents attempt to create an additional
artificial moving bottleneck to reduce the outflow from it and, thus, relieve the congested
area. From Figure 5, it can be seen that the agents aim to create such a VSL configuration
that ensures the additional space (without speed limit) between the VSL zones and the
congested tail. This can be viewed as an acceleration zone after the VSL zone, allowing
vehicles to accelerate to the critical speed (at which capacity is reached) before entering the
congested tail, as indicated in [25]. This feature of DWL-ST-VSL is very useful compared
to the static VSL zone (fixed configuration) and confirms the findings that the higher the
speed limit, the farther the VSL application zone should be from the bottleneck, which has
been recently proven analytically in [26].

6.2. Space-Time Congestion Analysis

Space-time diagrams are interesting for visualizing how traffic conditions evolve
along the observed motorway segment. The on-ramp R0 in S0 is located at x = 5.3 [km].

276

Mathematics 2021, 9, 3081

DWL2-ST-VSL ranges from x = 3 to x = 5 [km], while DWL4-ST-VSL ranges from x = 1 to
x = 5 [km]. The best configuration of the static VSL zones (WL-VSL, SPSC) ranges from
x = 3.5 to x = 5 [km]. The initial transition area [26] after the VSL zone starts at x = 5 [km]
to the on-ramp R0 and can be changed if the configuration of the VSL zones changes during
agents’ operations in DWL-ST-VSL (in particular A1 and A2).

6.2.1. Medium Traffic Load

In Figures 4 and 5, the mixed shades of red and orange correspond to congestion where
vehicles are traveling at low speeds. The patterns of red stripes represent the propagation
of the shock wave upstream through the motorway. Congestion begins at about t = 0.4 [h]
in the bottleneck area and propagates upstream. After the demand on the on-ramp R0
decreases, the congestion decreases and finally dissipates at t = 1.25 [h].

In both DWL-ST-VSL control strategies, the congestion (red) area is much smaller than
in the baseline cases. The mixed shades of yellow-green-light blue in front of the congestion
area correspond to the speed of vehicles obeying the speed limits (60–100 [km/h]) within
active VSL zones. Such an artificially generated moving bottleneck (adaptive VSL area)
with a significantly higher average travelling speed than the one measured in the congestion
area still reduces inflow into the congestion area, which helps to resolve congestion more
efficiently than baselines. In response to spatially varying congestion, both DWL-ST-VSL
produce more stable downstream flow than the best baselines with static VSL zones. In the
medium load scenario, congestion propagates upstream from the bottleneck to location
x = 4.4 [km]. In the case of DWL2-ST-VSL and DWL4-ST-VSL, the propagation is reduced
to x = 5 [km], which is an improvement of 66.7% compared to NO-VSL. Finally, the average
density in the congested area (bottleneck S0 and directly affected upstream section S1)
is reduced from 26.0 in NO-VSL to 20.0 [veh/km/lane] in the case of DWL2-ST-VSL,
an improvement of 23.1%. The improvement for simulated DWL4-ST-VSL is 20.8%.

6.2.2. High Traffic Load

Again, both DWL-ST-VSL versions win the competition. For DWL2-ST-VSL and
DWL4-ST-VSL, the congestion area is smaller than for baselines. During the simulated
scenario, different combinations of VSL zones were applied to respond to the changing
congestion intensities and moving congestion tail. In this way, DWL2-ST-VSL and DWL4-
ST-VSL are able to reduce the congestion area much more effectively than the baselines
with static VSL zones. In the case of NO-VSL for the high-load scenario, the congestion
spreads upstream from the bottleneck to the location x = 3.8 [km]. When DWL2-ST-VSL is
applied, the propagation is reduced to near x = 4.4 [km], an improvement of 40%. Using
the extended version with four agents (DWL4-ST-VSL), propagation is reduced to about
x = 4.2 [km], an improvement of 26.7%. Finally, the average traffic density in the congested
area (S0 and S1) is reduced from the original 34.1 to 28.7 [veh/km/lane] by using DWL2-ST-
VSL, an improvement of 15.8%. In the case of DWL4-ST-VSL, the improvement achieved
is 14.7%. Just for comparison, in the case of WL-VSL with static zones, the congestion
propagates near x = 4 [km], resulting in negligible improvement. A similar behavior is
observed in the case of SPSC, eventually degrading the system performance.

6.3. Level of Cooperation Analysis

To evaluate the benefits of cooperation between agents using the DWL’s concept of
remote policies, we also assess the effects of the cooperation coefficient on agent perfor-
mance. The effects of different levels of agent collaboration on system performance are
presented in Figures 6 and 7. The analysis was performed for medium and high traffic
loads (Figure 3).

6.3.1. Medium Traffic Load

It can be seen that all DWL-based approaches outperform the baselines used in our
experiment. The lowest TTS value is obtained with DWL4-ST-VSL and is 427.2 [veh·h]

277

Mathematics 2021, 9, 3081

for C = 0.25. Compared to the NO-VSL case, (TTS = 455.2 [veh·h]), a reduction of 6.2%
(Figure 6a). The best density is 23.4 [veh/km/lane] for C = 0.5 in the case of DWL2-ST-VSL,
while it is 33.6 for the case of NO-VSL, an improvement of 30.4% (Figure 6b). In particular,
the average vehicle speed for C = 1 in the case of DWL2-ST-VSL is 85.8 [km/h], while the
speed in the case of NO-VSL is 73.3 [km/h], an improvement of 17.1% (Figure 6c).

6.3.2. High Traffic Load

Similar results were obtained in the high traffic load experiment, where both DWL-
ST-VSL configurations outperform the baseline controllers. The lowest TTS value in the
cooperative agent case in DWL4-ST-VSL is 501.0 [veh·h] for C = 0.25. Compared to the
NO-VSL case, (TTS = 524.8 [veh·h]); this is an improvement of 4.5% (Figure 7a). The density
is 34.0 [veh/km/lane] for DWL2-ST-VSL (C = 1), while in the case of NO-VSL it is 38.5,
a reduction of 11.7%. The density is reduced by 7.8% by using DWL4-ST-VSL (Figure 7b). In
particular, in the case of DWL2-ST-VSL, the average vehicle speed for C = 1 is 73.8 [km/h],
while in the case of NO-VSL the speed is 67.8 [km/h], an improvement of 8.8% (Figure 7c).
In the case of DWL4-ST-VSL, the average speed is 10.9% higher (for C = 1).

6.4. Convergence of TTS during the Training Process

A comparison of the convergence of TTS measured per training episode (episode ≡
one simulation) during the learning process is shown in Figure 8. The graphs are created
using the moving average over 10 episodes, while TTS was measured in the entire motor-
way network (including all on- and off-ramps). At the beginning of the learning process,
all agent-based VSL approaches performed inferiorly compared to NO-VSL, since agents
explore the environment by executing random actions with high probability. As simu-
lations progress, the number of random actions taken reduces, and the exploitation of
learned experiences increases. Consequently, TTS decreases, indicating progress in learn-
ing. Due to the different complexities of proposed RL-based multi-agent VSL controllers,
the different decrease rate of TTS can be observed throughout the learning process. From
Figure 8a, it can be seen that all approaches have stable decreasing learning curves; gen-
erally, DWL4-ST-VSL leads in TTS reduction over other strategies in the medium traffic
scenario.

For the high traffic scenario (Figure 8b), the static VSL zones used in WL-VSL are prone
to performing poorly compared to the dynamic VSL zones. Cases with dynamic VSL zone
allocation via DWL2-ST-VSL and DWL4-ST-VSL need a higher number of training episodes
to approach lower TTS values. As the learning process approaches 14,000 episodes, TTS in
the case of DWL2-ST-VSL and DWL4-ST-VSL converges moderately towards and below the
TTS value obtained in NO-VSL. Eventually, compared with the starting values, the overall
TTS is gradually improved for all agent-based VSL strategies, favouring the learning rate
of DWL4-ST-VSL in both traffic scenarios.

In the case of the high traffic scenario (Figure 8b), it can be seen that DWL4-ST-VSL
needs a slightly longer time, i.e., higher number of training episodes (around 11,000) to re-
duce TTS below the value obtained by NO-VSL. Nevertheless, when converted in real-time,
it takes roughly 90 [h] of training in a simulator (on an Intel(R) Core(TM) i7-10750H CPU
processor). In case our simulated experiment represents actual recurrent traffic congestion
observed online, DWL4-ST-VSL can be trained offline (on simulations) and deployed in
a real application in a short period. Thus, DWL4-ST-VSL can be retrained offline to deal
with traffic changes in the operating environment to ensure good performance in the newly
observed traffic scenarios (similar to the continuous learning scheme for Q-Learning based
VSL suggested in [17]).

The longer time needed for reaching the favorable level may be directly linked to
the larger number of agents. They eventually need more training episodes to become
aware of the interference they cause by their actions on their immediate neighbours and
the controlled motorway system as a whole.

278

Mathematics 2021, 9, 3081

In the second half of the learning process, there are more pronounced oscillations
in TTS. The possible contribution to this might be delaying W’s convergence until Q
is well known (see Section 5.4). Thus, W-values are more altered as Q-values are more
learned. Consequently, this influences the policies’ nomination (3) in the DWL process
and eventually influences the cooperation strategies between agents. As a result, it might
cause a change in a learned set of optimal policies, thus resulting in the different system
responses during the second half of the learning process. The new policy can induce new
rarely seen system states that have not been encountered before, thus affecting agents’
poor decisions. Nevertheless, the function approximation techniques can address this
problem by ensuring better generalization (reasonable outputs) for rarely seen states, thus
stabilizing the training (learning) process.

7. Discussion

The outermost agents (A3 and A4) do not perceive congestion directly and, therefore,
tend to exploit local stable traffic conditions by promoting higher speed limits and, in par-
ticular, favoring their local policy LPi1. As a result, for small values of the cooperation
coefficient C, they do not fully contribute to helping downstream agents to eliminate the
congestion. This raises the question of whether C should be scaled differently depending
on the spatial location of the agents rather than using uniformly distributed equal values
for all agents. It might make sense to increase the coefficients of C the farther agents are
from the location of the bottleneck so that they are more sensitive to the preferences of
downstream agents and, therefore, give more priority to remote policies in the case of
active congestion. The question then arises: to what extent?

The converse is also true, since the actions of the downstream agents affect the state
variables (in particular, the measured average vehicle speed) of the upstream agents.
The upstream agents always observe the average speed in their immediate downstream area
(in the case of local policy LPi1) and, possibly, the actions performed by the downstream
agents (lower speed limits) reduce the chance of winning the LPi1; therefore, a penalty by
the measured TTS is more likely, even if the local environment is in free-flow conditions.
This dependence is implicitly communicated to the downstream neighbouring agent Aj in
the form of a higher W-value for remote policy RPji1, which complements the local policy
LPi1 of the upstream agents Ai.

The above observation shows the possible trade-off in choosing optimal values for C.
A feasible solution to make Cs adaptive is to use a scaling scheme used in (2) “learning Q
(somewhat) before learning W” [43]. In this scheme, the updates of W-values are weighted
differently. The weighting is higher when an agent is sure of what it is doing in a given state.
Given that the underlying DWL process (WL algorithm) is considered as a “fair” resolution
of competition, this leads to the question: can the W-values of local policies, together
with the probability of nominating a particular action in a given state, be communicated
between neighbors and used as input for computing C? This may trigger further research
on adaptive cooperation coefficient C.

Furthermore, the overlapping states of the environment, including the downstream
neighbourhood (see Figure 2), has positive and negative effects on the agent’s learning
behavior. The negative effect arises from the nonstationarity caused by the neighbours’
actions, resulting in a moving learning target (particularly during the exploration phase in
the training phase) since agents are learning simultaneously. Thus, each time, Ai’s policy
changes might cause other agents’ policies to change, too [50]. The positive effect is the
agent’s ability to detect and respond to the early impulse of congestion in downstream
traffic. All learning-based approaches were trained with the same number of simulations.
However, due to nonstationarity, DWL4-ST-VSL may require more simulations to converge
to better control policies for a given traffic scenario due to a higher number of agents.
Therefore, DWL4-ST-VSL (and the final results) may be in a slightly unfavorable position
compared to DWL2-ST-VSL.

279

Mathematics 2021, 9, 3081

In our experiments, we assumed that all measurements (traffic data) in our exper-
iments are perfect. In reality, sensors are not ideal, and raw data needs to be analyzed
and filtered before being used for traffic state estimation. Thus, accurate traffic states are
important for real-time traffic control. Raw traffic flow data collected from sensors might be
contaminated by different noises caused by the imperfection or damage of sensors. In [51],
the authors introduced data denoising schemes to suppress the potential data outliers from
raw traffic data for accurate traffic state estimation and prediction. This presents an open
question for further research.

Additionally, the efficiency of DWL-ST-VSL is highly dependent on the learning
process performed in traffic simulations. Since simulations themselves depend on the given
initial parameters, not all possible relevant traffic conditions can be covered. A possible
direction to improve the training process of DWL-ST-VSL by ensuring that all relevant
traffic scenarios are covered is to use the idea of structured simulations. Originally proposed
in [52], structured simulations are intended for testing the behavior of complex adaptive
systems in general by changing the inputs into the simulations in a structured way. Such a
framework might augment existing traffic scenarios (real or synthetic) with unprecedented
scenarios that evoke or replicate important aspects of real traffic, such as rarely seen traffic
states in which VSL agents performed poorly. Thus, a structured simulations approach
can enrich the training data set and consequently minimize unexpected behavior of the
RL-based VSL controller in practice.

Even under a medium load scenario, the resulting congestion on the motorway can be
classified as a serious traffic problem. However, it has been shown that DWL2-ST-VSL and
DWL4-ST-VSL can effectively resolve the congestion in this scenario due to their added
ability to dynamically adjust the VSL zone configurations. Since the DWL agents could
not fully handle the congestion in the high load scenario (even when using four agents), it
might be useful to extend the DWL4-ST-VSL control, e.g., by integrating it with the merge
control using the DWL multi-agent framework.

Experimental results confirmed the usefulness of using dynamic VSL zone allocation
(the capability to adapt the VSL application area) while optimizing speed limits in traf-
fic conditions with varying congestion. Similarly, in [42], a VSL strategy able to adjust
each control cycle’s length (duration) online, given the changes in traffic conditions, was
shown to be superior compared to a fixed cycle length. Thus, integrating dynamic VSL
zone allocation and dynamic control cycles can make VSL more adaptive, making VSL’s
performance more robust when operating in a nonstationary environment like a motorway.
To accomplish the full benefits of adaptivity, the principal time constants of the system
should be long enough for the system to ignore false disturbances and yet short enough to
respond to indicative changes in the environment (the “stability-plasticity dilemma”) [53].
Therefore, further research in this direction is desirable in DWL-ST-VSL.

The VSL control approaches with static VSL zone configuration performed poorer in
high traffic scenarios than those with dynamic VSL zone allocation. Thus, results strongly
indicate the need for the adaptive speed limit system in speed limit, length and position of
VSL zones to efficiently cope with the unpredictable spatio-temporal varying congestion,
which is more likely to be the case in a real traffic scenario.

8. Conclusions

This paper presented DWL-ST-VSL, a multi-agent RL-based VSL control approach
for the dynamic adjustment of VSL zones and speed limits. In addition, an extended
version, DWL4-ST-VSL, was analyzed for an urban motorway simulation scenario where
four agents learn to jointly control four segments ahead of a congested area using the DWL
algorithm on a longer motorway segment. The simulations show that DWL4-ST-VSL and
the two-agent based DWL2-ST-VSL consistently perform better than our baseline solutions,
WL-VSL and SPSC. The results do not differ significantly between DWL2-ST-VSL and
DWL4-ST-VSL in terms of bottleneck parameters. In terms of system travel time, DWL4-ST-
VSL gives better results. VSL control is improved by simultaneously adjusting speed limit

280

Mathematics 2021, 9, 3081

values and VSL zone configuration in response to spatiotemporal changes in congestion
intensity and the congestion’s moving tail. In addition, performance is improved by DWL’s
ability to implement multiple different policies simultaneously and to use two sets of
actions with different speed limit granularity, as well as to enable collaboration between
agents implementing remote policies.

However, the efficiency of DWL-ST-VSL is highly dependent on the training process
performed in simulations. To train DWL-ST-VSL in a structured way and ensure that all
relevant traffic simulation scenarios are covered, we will use the structured simulations
mentioned in the discussion. Using structured simulations and the nonlinear function
approximation technique for better generalization together with sensitivity analysis of
hyperparameters in DWL may reduce the poor performance of DWL in a nonstationary
motorway environment, thus fostering DWL-ST-VSL to be closer to testing in reality.
Eventually, this will enable the systematic evaluation of adaptive DWL-ST-VSL control.

Additionally, the results suggest that there may be multiple local optima for different
coefficients of cooperation, which requires further analysis. How resilient the learning
system would be to the loss of information exchange if one or more agents failed, which is
often the case in a real scenario where sensors and equipment are imperfect and may break
down, highlights the open research directions. We will consider implementing additional
degrees of freedom to allow each agent of DWL-ST-VSL to adjust the length and position
of the VSL zone in both directions, considering the constraints on the spatial difference
of the speed limit between two adjacent VSL zones. Finally, we will consider integrating
DWL-ST-VSL with dynamic control cycles and merge control, as this could further advance
the VSL system toward instantaneous vehicle speed control in the presence of emerging
vehicle-to-infrastructure technologies and traffic control on motorways in general.

Author Contributions: The conceptualization of this study was done by K.K. and E.I. Both also
did the funding acquisition. The development of the control algorithm was done by K.K., E.I.,
and I.D. The writing of the original draft and preparation of the paper was done by K.K. and E.I.
The supervision was done by E.I. and I.D. Visualizations were done by K.K. Preparation of the
simulation models and simulation analysis was done by F.V. and M.G. All authors contributed to
the writing review and final editing. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been partly supported by the Science Foundation of the Faculty of Transport
and Traffic Sciences under the project ZZFPZ-P1-2020 “Control system of the spatial-temporal
variable speed limit in the environment of connected vehicles”, the Croatian Science Foundation
under the project IP-2020-02-5042, and the European Regional Development Fund under the grant
KK.01.1.1.01.0009 (DATACROSS).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research has also been carried out within the activities of the Centre of
Research Excellence for Data Science and Cooperative Systems supported by the Ministry of Science
and Education of the Republic of Croatia.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

281

Mathematics 2021, 9, 3081

DWL Distributed W-learning
DWL-ST-VSL Distributed spatial-temporal multi-agent VSL
DWL2-ST-VSL DWL-ST-VSL configuration with two agents
DWL4-ST-VSL DWL-ST-VSL configuration with four agents
ISA Intelligent speed assistance
MDPs Markov decision processes
MTFC Mainstream traffic flow control
NO-VSL No control
RL Reinforcement learning
RL-VSL Reinforcement learning-based variable speed limit
TTS Total time spent
SPSC Simple proportional speed controller
SUMO Simulation of urban mobility
VMS Variable message sign
VSL Variable speed limit
WL W-learning
WL-VSL W-learning VSL

References

1. Khondaker, B.; Kattan, L. Variable speed limit: An overview. Transp. Lett. 2015, 7, 264–278. [CrossRef]
2. Strömgren, P.; Lind, G. Harmonization with Variable Speed Limits on Motorways. Transp. Res. Procedia 2016, 15, 664–675.

[CrossRef]
3. Carlson, R.C.; Papamichail, I.; Papageorgiou, M. Comparison of local feedback controllers for the mainstream traffic flow on

freeways using variable speed limits. In Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation
Systems (ITSC), Washington, DC, USA, 5–7 October 2011; pp. 2160–2167.

4. Shao-long, G.; Jun, M.; Jun-li, W.; Xiao-qing, S.; Yan, L. Methodology for Variable Speed Limit Activation in Active Traffic
Management. Procedia Soc. Behav. Sci. 2013, 96, 2129–2137. [CrossRef]

5. Li, D.; Ranjitkar, P. A fuzzy logic-based variable speed limit controller. J. Adv. Transp. 2015, 49, 913–927. [CrossRef]
6. Li, D.; Ranjitkar, P.; Zhao, Y. Mitigating Recurrent Congestion via Particle Swarm Optimization Variable Speed Limit Controllers.

KSCE J. Civ. Eng. 2019, 23, 3174–3179. [CrossRef]
7. Como, G.; Lovisari, E.; Savla, K. Convexity and robustness of dynamic traffic assignment and freeway network control. Transp.

Res. Part B Methodol. 2016, 91, 446–465. [CrossRef]
8. Lu, X.Y.; Varaiya, P.; Horowitz, R.; Su, D.; Shladover, S.E. A new approach for combined freeway variable speed limits and

coordinated ramp metering. In Proceedings of the IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC,
Funchal, Portugal, 19–22 September 2010; pp. 491–498.

9. Zhang, Y.; Sirmatel, I.I.; Alasiri, F.; Ioannou, P.A.; Geroliminis, N. Comparison of Feedback Linearization and Model Predictive
Techniques for Variable Speed Limit Control. In Proceedings of the 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), Maui, HI, USA, 4–7 November 2018.

10. Kušić, K.; Ivanjko, E.; Gregurić, M.; Miletić, M. An Overview of Reinforcement Learning Methods for Variable Speed Limit
Control. Appl. Sci. 2020, 10, 4917. [CrossRef]

11. LA, P.; Bhatnagar, S. Reinforcement Learning With Function Approximation for Traffic Signal Control. IEEE Trans. Intell. Transp.
Syst. 2011, 12, 412–421. [CrossRef]

12. Lu, C.; Huang, J.; Gong, J. Reinforcement Learning for Ramp Control: An Analysis of Learning Parameters. PROMET Traffic
Transp. 2016, 28, 371–381. [CrossRef]

13. Gong, I.; Oh, S.; Min, Y. Train Scheduling with Deep Q-Network: A Feasibility Test. Appl. Sci. 2020, 10, 8367. [CrossRef]
14. Gueriau, M.; Cugurullo, F.; Acheampong, R.A.; Dusparic, I. Shared Autonomous Mobility on Demand: A Learning-Based

Approach and Its Performance in the Presence of Traffic Congestion. IEEE Intell. Transp. Syst. Mag. 2020, 12, 208–218. [CrossRef]
15. Gosavi, A. Parametric Optimization Techniques and Reinforcement Learning, 2nd ed.; Springer: New York, NY, USA, 2015.
16. Zhu, F.; Ukkusuri, S.V. Accounting for dynamic speed limit control in a stochastic traffic environment: A reinforcement learning

approach. Transp. Res. Part C Emerg. Technol. 2014, 41, 30–47. [CrossRef]
17. Li, Z.; Liu, P.; Xu, C.; Duan, H.; Wang, W. Reinforcement Learning-Based Variable Speed Limit Control Strategy to Reduce Traffic

Congestion at Freeway Recurrent Bottlenecks. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3204–3217. [CrossRef]
18. Walraven, E.; Spaan, M.T.; Bakker, B. Traffic flow optimization: A reinforcement learning approach. Eng. Appl. Artif. Intell. 2016,

52, 203–212. [CrossRef]
19. Zhou, W.; Yang, M.; Lee, M.; Zhang, L. Q-Learning-Based Coordinated Variable Speed Limit and Hard Shoulder Running Control

Strategy to Reduce Travel Time at Freeway Corridor. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 915–925. [CrossRef]
20. Gregurić, M.; Kušić, K.; Vrbanić, F.; Ivanjko, E. Variable Speed Limit Control Based on Deep Reinforcement Learning: A Possible

Implementation. In Proceedings of the 2020 International Symposium ELMAR, Zadar, Croatia, 14–15 September 2020.

282

Mathematics 2021, 9, 3081

21. Schmidt-Dumont, T.; van Vuuren, J.H. A case for the adoption of decentralised reinforcement learning for the control of traffic
flow on South African highways. J. S. Afr. Inst. Civ. Eng. 2019, 61, 7–19. [CrossRef]

22. Wang, C.; Zhang, J.; Xu, L.; Li, L.; Ran, B. A New Solution for Freeway Congestion: Cooperative Speed Limit Control Using
Distributed Reinforcement Learning. IEEE Access 2019, 7, 41947–41957. [CrossRef]

23. Kušić, K.; Ivanjko, E.; Vrbanić, F.; Gregurić, M.; Dusparic, I. Dynamic Variable Speed Limit Zones Allocation Using Distributed
Multi-Agent Reinforcement Learning. In Proceedings of the 2021 IEEE 24th International Conference on Intelligent Transportation
Systems (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 1–8.

24. Kušić, K.; Dusparic, I.; Guériau, M.; Gregurić, M.; Ivanjko, E. Extended Variable Speed Limit control using Multi-agent
Reinforcement Learning. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–8.

25. Müller, E.R.; Carlson, R.C.; Kraus, W.; Papageorgiou, M. Microsimulation Analysis of Practical Aspects of Traffic Control With
Variable Speed Limits. IEEE Trans. Intell. Transp. Syst. 2015, 16, 512–523. [CrossRef]

26. Martínez, I.; Jin, W.L. Optimal location problem for variable speed limit application areas. Transp. Res. Part B Methodol. 2020,
138, 221–246. [CrossRef]

27. Lai, F.; Carsten, O.; Tate, F. How much benefit does Intelligent Speed Adaptation deliver: An analysis of its potential contribution
to safety and environment. Accid. Anal. Prev. 2012, 48, 63–72. [CrossRef] [PubMed]

28. Dusparic, I.; Cahill, V. Distributed W-Learning: Multi-Policy Optimization in Self-Organizing Systems. In Proceedings of the 2009
Third IEEE International Conference on Self-Adaptive and Self-Organizing Systems, San Francisco, CA, USA, 14–18 September
2009; pp. 20–29.

29. Lopez, P.A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flötteröd, Y.P.; Hilbrich, R.; Lücken, L.; Rummel, J.; Wagner, P.; Wießner,
E. Microscopic Traffic Simulation using SUMO. In Proceedings of the 21st IEEE International Conference on Intelligent
Transportation Systems, Maui, HI, USA, 4–7 November 2018.

30. Wang, Y. Dynamic Variable Speed Limit Control: Design, Analysis and Benefits. Ph.D. Thesis, University of Southern California,
Los Angeles, CA, USA, 2011.

31. Chung, K.; Rudjanakanoknad, J.; Cassidy, M.J. Relation between traffic density and capacity drop at three freeway bottlenecks.
Transp. Res. Part B Methodol. 2007, 41, 82–95. [CrossRef]

32. Papageorgiou, M.; Kosmatopoulos, E.; Papamichail, I. Effects of Variable Speed Limits on Motorway Traffic Flow. Transp. Res.
Rec. J. Transp. Res. Board 2008, 2047, 37–48. [CrossRef]

33. Soriguera, F.; Martínez, I.; Sala, M.; Menéndez, M. Effects of low speed limits on freeway traffic flow. Transp. Res. Part C Emerg.
Technol. 2017, 77, 257–274. [CrossRef]

34. Grumert, E.; Tapani, A.; Ma, X. Characteristics of variable speed limit systems. Eur. Transp. Res. Rev. 2018, 10, 21. [CrossRef]
35. Gao, C.; Xu, J.; Li, Q.; Yang, J. The Effect of Posted Speed Limit on the Dispersion of Traffic Flow Speed. Sustainability 2019, 11,

3594. [CrossRef]
36. van den Hoogen, E.; Smulders, S. Control by variable speed signs: Results of the Dutch experiment. In Proceedings of the

Seventh International Conference on Road Traffic Monitoring and Control, London, UK, 26–28 April 1994; pp. 145–149.
37. Yang, Y.; Yuan, Z.Z.; Sun, D.Y.; Wen, X.L. Analysis of the factors influencing highway crash risk in different regional types based

on improved Apriori algorithm. Adv. Transp. Stud. 2019, 49, 165–178.
38. Hegyi, A.; Hoogendoorn, S.P.; Schreuder, M.; Stoelhorst, H.; Viti, F. SPECIALIST: A dynamic speed limit control algorithm based

on shock wave theory. In Proceedings of the 2008 11th International IEEE Conference on Intelligent Transportation Systems,
Beijing, China, 12–15 October 2008; pp. 827–832.

39. Carlson, R.; Papamichail, I.; Papageorgiou, M. Local Feedback-Based Mainstream Traffic Flow Control on Motorways Using
Variable Speed Limits. Intell. Transp. Syst. IEEE Trans. 2011, 12, 1261–1276. [CrossRef]

40. Kušić, K.; Ivanjko, E.; Gregurić, M. A Comparison of Different State Representations for Reinforcement Learning Based Variable
Speed Limit Control. In Proceedings of the MED 2018—26th Mediterranean Conference on Control and Automation, Zadar,
Croatia, 19–22 June 2018; pp. 266–271.

41. Vinitsky, E.; Parvate, K.; Kreidieh, A.; Wu, C.; Bayen, A. Lagrangian Control through Deep-RL: Applications to Bottleneck
Decongestion. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI,
USA, 4–7 November 2018; pp. 759–765.

42. Zhang, Y.; Ma, M.; Liang, S. Dynamic Control Cycle Speed Limit Strategy for Improving Traffic Operation at Freeway Bottlenecks.
KSCE J. Civ. Eng. 2021, 25, 692–704. [CrossRef]

43. Humphrys, M. Action Selection Methods Using Reinforcement Learning. Ph.D. Thesis, University of Cambridge, Cambridge,
UK, 1996.

44. Tympakianaki, A.; Spiliopoulou, A.; Kouvelas, A.; Papamichail, I.; Papageorgiou, M.; Wang, Y. Real-time merging traffic control
for throughput maximization at motorway work zones. Transp. Res. Part C Emerg. Technol. 2014, 44, 242–252. [CrossRef]

45. Lu, X.Y.; Varaiya, P.; Horowitz, R.; Su, D.; Shladover, S.E. Novel Freeway Traffic Control with Variable Speed Limit and
Coordinated Ramp Metering. Transp. Res. Rec. 2011, 2229, 55–65. [CrossRef]

46. Jeon, S.; Park, C.; Seo, D. The Multi-Station Based Variable Speed Limit Model for Realization on Urban Highway. Electronics
2020, 9, 801. [CrossRef]

283

Mathematics 2021, 9, 3081

47. Wang, W.; Cheng, Z. Variable Speed Limit Signs: Control and Setting Locations in Freeway Work Zones. J. Adv. Transp. 2017,
2017, 1–13. [CrossRef]

48. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; The MIT Press: Cambridge, MA, USA, 1998.
49. Watkins, C.J.C.H.; Dayan, P. Technical Note: Q-Learning. In Machine Learning; Springer Nature: Berlin, Germany, 1992;

pp. 279–292.
50. Busoniu, L.; Babuska, R.; De Schutter, B. A Comprehensive Survey of Multiagent Reinforcement Learning. IEEE Trans. Syst. Man

Cybern. Part C Appl. Rev. 2008, 38, 156–172. [CrossRef]
51. Chen, X.; Chen, H.; Yang, Y.; Wu, H.; Zhang, W.; Zhao, J.; Xiong, Y. Traffic flow prediction by an ensemble framework with data

denoising and deep learning model. Phys. A: Stat. Mech. Its Appl. 2021, 565, 125574. [CrossRef]
52. Schumann, R.; Taramarcaz, C. Towards systematic testing of complex interacting systems. In Proceedings of the First Workshop

on Systemic Risks in Global Networks Co-Located with 14, Internationale Tagung WiRtschaftsinformatik (WI 2019), Siegen,
Germany, 24 February 2019; pp. 55–63.

53. Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2008.

284

Citation: Leon, F. ActressMAS,

a .NET Multi-Agent Framework

Inspired by the Actor Model.

Mathematics 2022, 10, 382. https://

doi.org/10.3390/math10030382

Academic Editors: Ioannis G. Tsoulos

and Jianquan Lu

Received: 5 November 2021

Accepted: 24 January 2022

Published: 26 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

ActressMAS, a .NET Multi-Agent Framework Inspired by the
Actor Model

Florin Leon

Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University of Iasi,
Bd. Mangeron 27, 700050 Iasi, Romania; florin.leon@academic.tuiasi.ro

Abstract: Multi-agent systems show great promise in the actual state of increasing interconnected-
ness and autonomy of computer systems. This paper presents a .NET multi-agent framework for
experimenting with agents and building multi-agent simulations. Its main advantages are concep-
tual simplicity and ease of use, which make it suitable for teaching agent-based notions. Several
algorithms, protocols and simulations using this framework are also presented.

Keywords: multi-agent framework; .NET framework; simulations; agent-based systems; agent
algorithms; software design

1. Introduction

Currently computer systems are increasingly interconnected and the complexity of
tasks that they solve requires less human intervention and an extended degree of autonomy.
The promise of Internet of Things and autonomous cars and drones, including those aimed
at delivering goods to customers, are prominent examples. There are also a large number of
complex systems (e.g., social, economic, ecological) that can be studied using a bottom-up
approach for modeling and simulation. These methods of analyzing the results of complex
interactions are easier to apply than traditional, analytical models. Although multi-agent
systems (MAS), arguably, still have to find some successful “show-off” applications, similar
to the recent success of deep learning in artificial intelligence, they are an active area of
research. Therefore, many MAS frameworks have been proposed with the goal of helping
the user to focus on the high-level behavior rules and interaction protocols, rather than on
the low-level details of concurrent and distributed programming.

The creation of ActressMAS [1,2] was fueled by two main reasons. First, it was based
on the personal experience of the author in teaching multi-agent systems. Unfortunately,
many popular frameworks require some effort of understanding a specific agent language,
complex configurations of the platform itself, or some idiosyncrasies of the programming
model. Therefore, the main goal of the proposed ActressMAS framework was simplicity.
It requires minimal configuration, uses a mainstream programming language, and allows
the user to focus on agent behavior, rather than learning the characteristics of the framework
itself; therefore, it has proved successful in teaching MAS concepts. Secondly, it was found
that while many multi-agent frameworks are based, e.g., on Java, not so many exist for the
.NET ecosystem.

Thus, ActressMAS is a simple-to-use .NET multi-agent framework inspired by the
actor model. This paper aims to present the philosophy of this framework, the main design
decisions and the compromises that had to be made.

The rest of the article is organized as follows. In Section 2, some related work about
other multi-agent frameworks available today is presented. Section 3 points out the
similarities and differences between actors and agents. Section 4 describes the architecture
of ActressMAS. Section 5 illustrates the performance of the framework on some benchmark
problems and Section 6 contains a discussion about how ActressMAS relates to existing
standards and to certain features found in other agent frameworks. The conclusions of this

Mathematics 2022, 10, 382. https://doi.org/10.3390/math10030382 https://www.mdpi.com/journal/mathematics285

Mathematics 2022, 10, 382

work are presented in Section 7, while Appendix A presents several applications (i.e., agent
algorithms and protocols, as well as multi-agent simulations) together with specific details
about the examples included in the publicly available GitHub repository and the ways of
using the proposed framework in other projects.

2. Related Work

Many applications of multi-agent systems have been put forward. They can be
grouped into several categories, of which one can mention the following [3]:

• Social simulations: the study of population dynamics, the evolution of social corrup-
tion, or models of civil violence;

• Mobility simulations: traffic situations with the goal of analyzing traffic jams, adaptive
traffic lights, route choice, mobility planning systems, urban planning based on acces-
sibility studies with dynamic populations, microscopic models of pedestrian crowds
and evacuation of buildings, or air traffic control;

• Physical entities: robots and autonomous vehicles (cars, drones) seen as agents;
• Environment and ecosystems: simulations in ecology, biology, climate models, human

and nature interaction (sometimes using geographic information systems), epidemiol-
ogy (the spread of infections or diseases);

• Organizational simulations: planning and scheduling, enterprise and organizational
behavior, workflow simulations;

• Economic studies: business, marketing, economics, e.g., price forecasting in real-
world markets;

• Medical applications: personalized healthcare or hospital management;
• Industrial simulations: manufacturing and production, including the use of holons;
• Military applications: military combat simulations, air defense scenarios;
• Distributed computing, e.g., in cloud computing, virtualized data centers, large-scale

parallel or distributed computing clusters and high performance supercomputers;
• Games or movie-making.

Consequently, many agent frameworks have been proposed, with largely different
levels of scope, performance and adoption. In the following, some examples are referenced,
which seem representative of their corresponding categories. It must be emphasized that no
established consensus exists towards the degree of relevance of specific platforms, so this is
not necessarily a ranking in terms of popularity. However, the frameworks included below
have a consistent user base, as well as associated research papers and projects. The main
categories are those identified in [3], which is a comprehensive review of both active and
inactive multi-agent frameworks.

The first category includes general-purpose platforms. One representative is JADE [4],
a FIPA-compliant middleware made in Java, where agents are programmed in terms
of “behaviors”, a specific way to handle concurrent execution. Another is MASON [5],
also a Java framework focused on discrete-event multi-agent simulation, with 2D and 3D
visualization capabilities. One can also mention Orleans [6], which is one of the few agent
frameworks available to .NET programmers. It uses virtual actors whose activations are
performed in a turn-based asynchronous manner. The fundamental entity is a “grain”,
which has user-defined identity, behavior, and state.

From the category of platforms for cognitive and social studies, one can point out two
examples of cognitive architectures. ACT-R [7] is a hybrid architecture with a symbolic
component–a production system–and a subsymbolic one in the form of a set of massively
parallel processes modeled with mathematical equations, which control many symbolic
processes and are generally responsible for learning. Procedures can be expressed similarly
to the brain’s action selection mechanisms. Soar [8] is another cognitive architecture that
aims to identify the building blocks necessary for an agent with artificial general intelligence,
i.e., an agent able to perform many tasks in various domains. Soar is the final point of an
evolution that started with the Logical Theorist [9], often considered “the first artificial
intelligence program”, designed to perform symbolic automated reasoning (proofs of

286

Mathematics 2022, 10, 382

mathematical theorems) and shown during the Dartmouth workshop in 1956, the birthplace
of the artificial intelligence field. One of the features of Soar is the use of “chunking” as a
learning mechanism: once a (sub)goal is achieved, a rule or set of rules are added to the
long-term memory expressed as a production system. Perhaps in the same category one
can also include Jason [10], which implements a practical reasoning architecture (Belief-
Desire-Intention, BDI [11]), using a special-purpose, logic-based programming language
called AgentSpeak, the continuator of one of the first agent-oriented languages [12].

There are also platforms for artificial intelligence research, e.g., OpenAI Gym [13] that
focuses on reinforcement learning environment simulations, control tasks, Atari games
emulators that allow custom agents to play, and DeepMind Lab [14] that includes 3D navi-
gation and puzzle-solving environments for intelligent agent experimentation, especially
with deep reinforcement learning.

From the category of platforms for modeling and simulating natural and social phe-
nomena, one can mention NetLogo [15]. It has a large library of “models”, i.e., configurable
multi-agent simulations with graphical user interface (GUI). Its main drawback is, arguably,
its specific programming language based on Logo, which is quite different from other
popular mainstream programming languages. Specific concepts are: “patches”, i.e., cells in
a grid similar to the cells in cellular automata, “turtles”, i.e., agents that can move freely
through space, and “links”, which define connections between turtles and can be used to
build network models.

Among the platforms for transport-related simulations, one can mention Carla [16], which
focuses on autonomous driving systems and provides a physics engine for realistic 3D traffic
scenarios simulations, and MATSim [17] for large-scale agent-based transport simulations.

Finally, a high-performance framework that uses the actor model is Akka [18], designed
to build highly concurrent and distributed message-driven applications in Java and Scala.
It can also be used with .NET languages by means of Akka.NET [19].

To summarize, all agent systems have certain commonalities, such as the need for
support for parallel/distributed computations or communication, and the need to handle
a reasonably large number of agents. The programmers should be able to focus on their
specific tasks, not on these low-level details of the middleware, and this is the main goal
of the various agent frameworks. However, they implement these requirements in very
different ways, and integrate other concepts and ideas as well.

One can identify agent systems where the focus is on the autonomous behavior and on
the interaction protocols, e.g., negotiation or coordination. These are supported by general
purpose platforms, e.g., JADE. This somewhat contrasts with the multi-agent simulations,
where many agents execute according to simple local rules, but the focus is on studying
the complex interactions and the emergent behavior of the system. These are supported
by platforms such as NetLogo. ActressMAS mainly belongs to the first type, but also
allows the user to run simulations and build graphical user interfaces to observe the overall
behavior of multi-agent systems.

3. Theoretical Aspects: Actors and Agents

Actors and agents are both entities that can be used for performing parallel and
distributed computations. Both models rely on messages for exchanging information
and do not recommend the use of shared memory structures. Still, there are conceptual
differences between them that we point out as follows.

Actors can be described as computational processes that realize their functionality by
sending and receiving messages to and from other actors in an asynchronous manner. These
are the main operational axioms defined by the computational actor model [20]. In addition,
an actor can create other actors. Actors are purely reactive entities because they can act only
when they receive a message. In this computational model, the program flow is created
by composing the individual behaviors of the actors in the system. They communicate
only by sending messages and do not expose any part of their internal state to other actors.
Each actor has an “inbox”, i.e., a queue with the received messages, and processes them

287

Mathematics 2022, 10, 382

in order, one at a time. Many actors usually exist in a system and they run concurrently.
However, the model avoids the need for synchronization because each actor processes its
own messages sequentially. For example, one can use a proxy actor for a shared resource.
If two other actors need to access the resource, they can only send request messages to the
proxy actor, and the proxy handles these messages one at a time; therefore, the resource
cannot be directly accessed by two or more actors simultaneously.

On the other hand, agents can be defined as autonomous entities situated in their exe-
cution environment (i.e., they are embedded in their virtual/software or physical/hardware
environment). In addition, intelligent agents should be capable of reactive, proactive and
social behavior [21,22]. From this point of view, agents focus more on the capabilities that
may allow them to be human representatives in various interaction scenarios, including
those that may involve reasoning and planning.

The actor model can be seen as “weaker” than the agent model. While the autonomy
and reactiveness can be ensured by the actor model, the proactive behavior is not so
straightforward to model using pure actors. For example, an agent may need to act even if
it receives no message from the outside. In order to be able to demonstrate complex social
behavior, there should also exist a richer set of message semantics that the agents could use.
Also, reasoning capabilities are not a requirement for actors, although such algorithms can
be part of their internal logic.

While agents are autonomous entities that perceive their environment and can act
upon it, actors can be controlled by other actors and may lack sensors and effectors [23].

Actors and agents are separate concepts, but the basic characteristics of actors such
as parallel execution and reactive behavior triggered by message-based communication
can constitute a starting point for the development of an agent system. In many cases,
the behavior of agents is also driven by the messages they receive from other agents.
However, in other cases agents should be able to take the initiative and act even when no
messages are received, e.g., when something in their internal state changes and requires a
certain action to be performed. In addition, since they are situated entities, they need some
mechanism to access their environment. The latter requirement can also be accomplished
by the exchange of messages between the environment and the agent, but when large
amounts of data need to be transferred, this option may be less efficient.

An alternative direction of applications for agents is related to multi-agent simulations,
which are concerned with building systems of interacting entities in a bottom-up manner,
whose aggregated behavior can provide useful insights about the dynamics of complex
systems. Many such simulations contain agents whose behavior is based on simple rules;
therefore, the time needed to decide an action at a certain moment is more or less equal
for all agents. In this situation, especially when there is a large number of agents involved,
a turn-based execution is preferred, which gives each agent a chance to act, without the
need of complex scheduling. Even parallel behavior may be emulated with a sequential
execution of agents in random order during each turn.

Although initially inspired by the actor model, ActressMAS includes some mecha-
nisms to handle proactiveness and to offer support for multi-agent simulations, thus de-
parting from the pure actor model. Thais is why a turn-based approach was considered for
agent execution. Beside its role in simulations, it can also be used to handle most protocols
and algorithms by designing general agent programs with fine-grained decision logic.
Still, it must be stated that this is not suitable when time-specific actions are needed to be
performed by agents or for real-time applications. The turn-based execution also helps
to implement the proactiveness feature of agents. The framework identifies the situation
when no messages are received at the end of a turn, and this can be optionally used to
change the agent state or to perform an action. For scenarios in which agents need to
access certain parts of their environment (e.g., for indirect communication by stigmergy),
ActressMAS also provides a shared memory structure present in the environment.

288

Mathematics 2022, 10, 382

4. ActressMAS Architecture

In this section, the architecture of ActressMAS is presented, both high-level and
detailed. The representations are Unified Modeling Language (UML) class diagrams [24].

Figure 1 displays the general architecture. The main concepts of a multi-agent system
can be observed: the agent and the environment. In order to handle parallel and sequential
execution in an efficient, transparent way, the agents are stored either in a concurrent or
“normal” C# dictionary. Agents communicate by sending messages. The upper part of the
diagram addresses the distributed capabilities of the framework using the client-server
model. On each machine there is a container that includes a “runnable” environment.
Containers communicate through a server by means of a special type of messages. When
agents migrate between containers, their state (or a part of their state) is serialized and sent
to the destination container where the agent is restarted. The architecture also contains a
class used by the agents to filter the agents with certain properties in their environment
and to “observe” them automatically in a perception method that can be used to update
their beliefs before acting.

Figure 1. The general architecture of the ActressMAS framework.

All these classes will be detailed as follows.

4.1. Fundamental Features

Even if agents are the main way of expressing programming logic in an agent-oriented
application, the description of ActressMAS will probably be clearer if we start with the
description of the environment first. By definition, agents inhabit an environment of which
they are a constituent part. They perceive it and act upon it. The entities involved in these
operations may be other agents or properties of the environment.

In ActressMAS, the execution of the environment is based on turns. The maximum
number of turns of a simulation is one of the parameters of the constructor of the envi-
ronment class. The agents are not directly aware of this execution model, but the user
can make this information available to the agents, as explained below. The turn-based
execution was chosen in order to treat the two types of agent systems (the interaction of
autonomous agents and multi-agent simulations) in the same way. The agents can be run
sequentially or concurrently. In the latter case, the choice of turn-based execution (when
the acting behavior of all agents is executed in parallel but all agents need to finish before
starting the next turn) may be problematic if one agent takes much longer than the others
to execute its behavior. However, there are at least two practical solutions for this situation.
One solution is to place the long-running agent into a separate container which can also run
on the same machine with the container that hosts the rest of the agents. The special agent
can, e.g., perform intensive computations and report the results only at the end without

289

Mathematics 2022, 10, 382

blocking the others. Another solution is to design the acting behavior of all agents in a
fine-grained manner so that only atomic computations should be done at one time, while
responding to messages.

Thus, the agents execute in a turn-based manner in both sequential and concurrent
settings, but if their actions are properly designed, the parallel execution benefits from the
multiple processor cores, when available, and the overall performance is faster.

The parallel execution is performed by launching a Task for the current behavior of
each agent. Tasks are a lightweight form of implementing asynchronous behavior in .NET.
They use a thread pool which is managed transparently by the .NET framework and allows
the execution of a large number of agents. Using this mechanism, the user can create,
e.g., tens of thousands of agents. Attempting to create a similar number of threads would
likely block the operating system.

In case of sequential execution, the user can also choose that the agents run in the
order in which they have been added to the environment, or in a random order. While in
most cases the random order is natural, there are protocols in which the user can ensure
that, e.g., a manager agent receives messages from all the worker agents in a turn before
starting another round of the protocol. Placing the manager as the last agent simplifies the
implementation, because otherwise the messages of some agents may only be received in
the next turn and the manager would have to include a mechanism to count the number of
messages received so far, or to identify the actual agents that have responded.

The UML class diagram of the environment class is presented in Figure 2. The name
of the class is EnvironmentMas to avoid a conflict with the .NET System.Environment class.
If these classes from both ActressMas and System namespaces were used together, the user
would have to use a namespace-qualified name such as ActressMas.Environment in his/her
code. But since the other ActressMAS classes do not have this necessity, it was decided that
EnvironmentMas was a more appropriate name.

The environment includes the typical methods for adding, removing or enumerating
agents. Except for agent creation, these operations are usually done using agent names,
not references to the agent objects.

The environment also acts as a bidirectional proxy for sending messages between
agents and moving agents between containers.

It also has some special methods that allow the programmer to handle turns in an
explicit manner. For this purpose, the user must create a subclass of EnvironmentMas and
override the TurnFinished and/or SimulationFinished methods. This is especially useful for
multi-agent simulations, where the user can compute, e.g., some statistics after each turn or
introduce external conditions or events at special moments in the simulation.

The environment also has a shared memory in the form of a dictionary where agents
can record any kind of object with a string key. While in multi-agent systems communica-
tion is normally done by messages, from the practical point of view there are cases when
having a shared memory greatly reduces the communication overhead, e.g., when agents
need to be aware of some changing properties of the environment encoded as large objects.
The shared memory facility should not be abused; however, it corresponds to the situation
where physical agents perceive and manipulate objects in their environment.

The internal methods marked with a tilde are accessible to the other classes of the
ActressMas assembly, but invisible to the user programs.

The environment class uses a special structure to store the agents, named AgentCol-
lection, displayed in Figure 3. Since the agents have unique names, a dictionary is used
to handle the agent objects. However, the collection of agents may change dynamically
during the execution of the user program, e.g., when agents are added or removed during
the execution of a turn. When the agents run in parallel and perform this kind of behavior,
the access to a simple C# Dictionary must be used in conjunction with a lock, which can
degrade performance. That is why a ConcurrentDictionary (a thread-safe collection that
can be accessed by multiple threads concurrently) is used to store the agents when the
environment is set for a parallel execution.

290

Mathematics 2022, 10, 382

Figure 2. The environment class.

Figure 3. The agent collection class used by the environment to distinguish between concurrent and
sequential behavior in a transparent way.

291

Mathematics 2022, 10, 382

This class is designed as a kind of discriminated union. Currently (as of version 7),
C# lacks support for this type of structure. The environment object uses either a Concur-
rentDictionary or a “normal” Dictionary, depending on the parallel flag that shows whether
the agents are run concurrently or sequentially. By using a dual collection, of which only
one is allocated and actually used, an additional class hierarchy is avoided. All the public
methods and properties are those common to dictionaries, therefore the AgentCollection
object is used transparently as a generic dictionary, regardless of the underlying concurrent
or sequential implementation.

Agents are the central entities of any program using the framework. The UML class
diagram of the Agent class is presented in Figure 4. This is the base class for all the
user-defined agents.

Figure 4. The abstract agent base class.

Each agent is registered in its environment by a unique name. This name is used
in most operations, e.g., sending a message to another agent, which is the main form of
communication in an agent-oriented program.

The typical methods that contain the logic of the agent are: Setup, Act, and ActDefault,
which will be presented next. Although agents can execute in parallel, the code in these
methods–for one agent–is always executed sequentially. This is one of the main strengths
of the actor model, which avoids the need of synchronization for the access to critical
resources, as explained in Section 1.

The Setup method is used for initialization. An agent class may also have a constructor,
but as intended by the design of ActressMAS a constructor should be used to initialize
the internal data structures such as lists, dictionaries, random number generators, etc.
The Setup method should be used for agent-related logic, e.g., sending the initial messages
that start the multi-agent protocol. Custom constructors may also be added to an agent
class; a constructor with parameters can usually be employed when agents should be given
some initial values for certain properties from the “outside” of the multi-agent system,
i.e., when the agents are created and before the environment is started.

292

Mathematics 2022, 10, 382

The Act method is activated when an agent receives a message. If there are more
messages to be received, the Act method is activated once for each message. This is
one of main tenets of actor-based programming, which is embedded in the ActressMAS
framework. However, agents need not be purely reactive. They can maintain a state and
they can update it after each message, and act based on their overall state, not only the
current message. For example, a manager agent can know how many worker agents there
are in the environment using the FilteredAgents method if the worker agents have a common
part of their names, such as “workerNN-agent”. Then the manager can decrease a counter
for each message received from a worker. When the counter gets to zero, it knows that all
workers have reported and may send them a new series of tasks.

The ActDefault method distinguishes ActressMAS from a purely actor-based model.
In agent systems, there are situations when agents should act based on other conditions
than responding to messages. For example, an English auction agent can designate the
winner when no agent sends any more bids. This cannot be properly modeled within the
pure actor paradigm because the acting condition is not the receipt of a message, but the
lack of any message. Therefore, the ActDefault method was introduced to handle the cases
when no messages have been received at the end of a turn. This increases the proactive
capabilities of the agents, as their reactive capabilities are covered by the normal Act method.
The agents also have the possibility to wait for a few turns–by counting the elapsed turns
in ActDefault–and then act. In the initial version of ActressMAS, which did not contain the
ActDefault method, a Timer object was used to send “wake up” messages that the agents
could react to. However, a dedicated method within the framework seemed to be a much
more elegant way to handle such issues.

The agents communicate directly by messages (detailed below). The main method used
for this purpose is Send, where the receiver agent is designated by name. An agent can also
send a message to all the other agents in the environment by using the Broadcast method.

An agent contains a Stop method, as well, which is called to deactivate the agent, which
is thus removed from the multi-agent system. As it can be seen in Figure 2, the environment
has a Remove method, which can be accessed by an agent through its this.Environment
property. As intended by the design of ActressMAS, the Stop method should be used when
the decision to be stopped belongs to the agent itself, while the Environment.Remove method
should be used when the decision to stop an agent belongs to some other agent or to an
external factor. The latter case is not common in the autonomous agent protocols, but it
is encountered in multi-agent simulations, e.g., in a predator-prey simulation, a predator
can “kill” a prey. As one can notice, there is no Start method in the Agent class. Agents
start automatically when the environment starts, or when new agents are added later to
a running environment. If the user wants the agent to suspend its execution for several
turns, this can be easily accomplished, e.g., by using a Boolean flag in the agent class and
conditioning any acting behavior on its value.

There are a few other methods implemented in an agent class, but they will be de-
scribed in the following subsections, which present the observable properties and the
distributed capabilities of ActressMAS.

Messages are the only direct method for inter-agent communication; therefore, the class
corresponding to a message (Figure 5) deserves special attention. It has been designed with
loose inspiration from the FIPA ACL specification (the Agent Communication Language
proposed by the Foundation for Intelligent Physical Agents) [25] and the implementation
of messages in the JADE framework [4]. However, the goal was to allow the use of ACL
concepts while maintaining a very simple syntax. Therefore, a message has a compulsory
sender and receiver, and an optional conversation identifier, which can be used in some
protocols to identify an ongoing sequence of messages that form a unique conversation.
The sender is automatically assigned when an agent sends a message. Usually, only the
receiver and the content must be specified.

293

Mathematics 2022, 10, 382

Figure 5. The class corresponding to the messages passed between agents.

The content can be expressed in two ways. The first is in the form of a string. The space-
delimited words express the meaning. Typically, the first word defines the main action
or message type, somewhat similar to an ACL performative, which shows the type of the
communicative act, as inspired from the speech acts theory [26]. However, in ActressMAS
there are no constraints about the values of this message type, i.e., the user can choose any
name. The rest of the words specify the parameters. For example, if an agent wishes to
send another agent its position on a two-dimensional grid, the content of the message can
be “position 2 5”. Most of the time, an agent that receives a message needs to split the
string to be able to interpret the content. For this goal, the Message class contains several
Parse helper methods, which identify the first word, called the “action” and the rest, called
the “parameters”. Depending on the protocol defined by the user, the parameters can
be identified as a list of strings, one for each parameter, or a single string with all the
parameters concatenated. When the action has only one parameter, the Parse1P method can
be used.

Using strings for the content of the messages is very flexible and in line with the
philosophy of agent communication, but can be less efficient because of the need to split
the whole string into parameters and convert them to their specific types, e.g., integers
or double-precision real numbers. Therefore, the second way of encoding the content is
directly as objects. The user should define one or more custom classes and assign their
instances to the ContentObj property of the message. The receiving agent can directly cast
this property to the corresponding object type.

Finally, the Message class also contains a Format method, which can be used to display
the pretty-printed message, with its sender, receiver and content.

If the receiver agent is in another container (a situation that uses the distributed
infrastructure described below in Section 4.3), the receiver name should be qualified with
the name of the container, e.g., “agent1@container2”.

The basic way to create a multi-agent system is illustrated in the code below. First,
the environment is created, then the agents are created and added to the environment,
and finally the environment is started. When an agent is added to the environment, it
is customary to assign it a name, because several agents from the same class can exist in
the environment.

294

Mathematics 2022, 10, 382

public class Program
{

private static void Main(string[] args)
{

var env = new EnvironmentMas();
var a1 = new Agent1(); env.Add(a1, “a1”);
var a2 = new Agent2(); env.Add(a2, “a2”);
env.Start();

}
}

In this example, the Setup method simply displays a message and introduces a short
delay, which is needed to emphasize the concurrent behavior of the agents. A single
message is sent during the setup by each agent, and the Act method responds to the
message received from the peer. If several messages had been sent, the Act method would
have been activated for each of them. The ActDefault method is used when, at the end of a
turn, no messages have been received. When this happens, the agent stops.

When there are no more agents in the environment, the simulation stops, even before
the maximum number of turns specified by the user is reached.

public class Agent1: Agent
{

public override void Setup()
{

for (int i = 0; i < 10; i++)
{

Console.WriteLine($“Setup: {i + 1} from a1*”);
Thread.Sleep(100);

}

Send(“a2”, “msg”);
}

public override void Act(Message message)
{

for (int i = 0; i < 3; i++)
{

Console.WriteLine($“Act: {i + 1} from a1*”);
Thread.Sleep(100);

}
}

public override void ActDefault()
{

Console.WriteLine(“ActDefault: no messages for a1*”);
Stop();

}
}

A similar structure is used by the second agent, but the number of messages in Setup
and Act are different (3 instead of 10 and vice versa), in order to break symmetry.

295

Mathematics 2022, 10, 382

public class Agent2: Agent
{

public override void Setup()
{

for (int i = 0; i < 3; i++)
{

Console.WriteLine($“Setup: {i + 1} from a2”);
Thread.Sleep(100);

}

Send(“a1”, “msg”);
}

public override void Act(Message message)
{

for (int i = 0; i < 10; i++)
{

Console.WriteLine($"Act: {i + 1} from a2");
Thread.Sleep(100);

}
}

public override void ActDefault()
{

Console.WriteLine("ActDefault: no messages for a2");
Stop();

}
}

The output of this simple program can be seen in Figure 6. The asterisk is used to
mark the reports of the first agent in order to help the reader to distinguish the behavior of
the two agents more easily.

Figure 6. The output of the simple program used to exemplify the basic agent methods of ActressMAS.
The results are displayed when agent behaviors are executed: left: in parallel; right: sequentially but
in a random order.

296

Mathematics 2022, 10, 382

Figure 6(right) shows the results when the environment is set to execute agents
sequentially by using:

var env = new EnvironmentMas(parallel: false);

The agents can be executed sequentially and in the order in which they have been
added to the environment by using:

var env = new EnvironmentMas(randomOrder:false, parallel: false);

In this case, agent a1 would be the first to report in all three methods: Setup, Act,
and ActDefault.

4.2. Observable Properties

Especially in multi-agent simulations, the next state of an agent may depend on the
current state of its neighbors, e.g., simulations related to cellular automata. Perhaps agents
may have a limited field of view and may perceive only a subset of the agents in their
environment. In order to facilitate the handling of such situations, ActressMAS includes
observable properties. They are implemented as a dictionary where the key is a string,
i.e., the name of the property, and the value can be any kind of object. At initialization,
e.g., in the Setup method, the agents define these properties. Then the agents override the
PerceptionFilter predicate which defines the conditions that make other agents visible or
observable. For example, if an agent can only see its neighbors within a certain radius,
the predicate should express the condition that the Euclidian distance between the position
of the “ego” agent (the this object) and the position of a neighbor agent (the observed
parameter) be less than the specified radius. Initially, the agents should have defined an
observable position property. Then the agent should implement the See method, called
before Act or ActDefault, which provides the list of ObservableAgent objects (Figure 7) as a
parameter. The agent can, for example, process or store this information in order to use it
in the acting methods.

Figure 7. The class corresponding to observable agents.

The following code illustrates an example of using observables. The multi-agent
system is defined in a similar fashion as in the previous example, but here the agents need
to have the UsingObservables property explicitly set to be true.

public class Program
{

public static void Main(string[] args)
{

var env = new EnvironmentMas(noTurns: 10, randomOrder: false, parallel: false);
var a1 = new MyAgent(); a1.UsingObservables = true; env.Add(a1, “Agent1”);
var a2 = new MyAgent(); a2.UsingObservables = true; env.Add(a2, “Agent2”);
var a3 = new MyAgent(); a3.UsingObservables = true; env.Add(a3, “Agent3”);
env.Start();

}
}

297

Mathematics 2022, 10, 382

All three agents are instances of the same class, MyAgent. One can distinguish the
Perception Filter method used to define the conditions that make a neighbor agent “visible”
and the See method that provides the list of the agents that are observed in the current
turn, before acting. Basically, each agent is assigned a random number between 0 and
30, and can only see the agents with similar numbers, i.e., when the difference between
their corresponding numbers is less than 10. Since no messages are sent in this example,
the main logic of the agents relies on the implementation of the ActDefault method.

public class MyAgent: Agent
{

private List<ObservableAgent> _observableAgents = null;

public override void Setup()
{

Observables[“Name”] = Name;
Observables[“Number”] = $“{Numbers.GenerateNumber():F2}”;

}

public override bool PerceptionFilter(Dictionary<string, string> observed)
{

double myNumber = Convert.ToDouble(Observables[“Number”]);
double obsNumber = Convert.ToDouble(observed["Number"]);
return (Math.Abs(myNumber − obsNumber) < 10);

}

public override void See(List<ObservableAgent> observableAgents)
{

_observableAgents = observableAgents;
}

public override void ActDefault()
{

Console.Write($“I am {Name}. ”);

if (_observableAgents == null || _observableAgents.Count == 0)
Console.WriteLine(“I didn’t see anything interesting.”);

else

{
Console.WriteLine($“My number is {Observables[“Number”]} and I saw:”);
foreach (var oa in _observableAgents)

Console.WriteLine(
$“{oa.Observed[“Name”]} with number = {oa.Observed[“Number”]}”);

}

Observables[“Number”] = $“{Numbers.GenerateNumber():F2}”;

Console.WriteLine($“My number is now {Observables[“Number”]}”);
Console.WriteLine("———————————————————–");

}
}

298

Mathematics 2022, 10, 382

The class that generates random numbers for the agents is also presented below.

public class Numbers
{

private static Random_rand = new Random();
public static double GenerateNumber() => _rand.NextDouble() * 30;

}

The output of this program is presented in Figure 8.

Figure 8. The output of the program with observable agents.

4.3. Mobile Agents

Beside the ability to run agents concurrently, ActressMAS also supports mobile agents,
which can stop their execution on one machine and resume their execution on a different
one. In the following paragraphs, the distributed part of the architecture is presented,
together with examples of using this capability.

The host of an environment on each machine is called a “container”. This idea is
inspired from the JADE framework [4]. However, in ActressMAS there is no distinction
between a “main” container and “secondary” containers. Moreover, if the user does not
intend to work with mobile agents, he/she does not need to define any container at all.
Containers can be placed on different machines, but it is also possible to have multiple
containers on the same machine.

Containers communicate by means of a server (Figure 9), which mainly keeps track of
the active containers and passes messages between them.

The user must instantiate this class and may optionally define an event handler where
the messages from the server can be accessed. In the example below, only the active
containers are displayed.

A container (Figure 10) can be seen as a kind of proxy between an environment and
the server. It manages the communication with the server (registers, deregisters and keeps
a list of alive containers, received from the server). A container handles two main functions.
First, when an agent wants to move, the container serializes the agent (actually, the desired
part of its state, as explained below) and sends a corresponding message to the server,
including the serialized state. The server routes the message to the destination container.
There, the container deserializes the agent and informs the environment that an agent
has arrived. Secondly, it routes remote messages between agents, i.e., from a container
to another.

299

Mathematics 2022, 10, 382

Figure 9. The server class.

public static class Program
{

private static void Main()
{

var server = new Server(5000, 3000);
Console.WriteLine("Server listening on port 5000.");
server.NewText += server_NewText;
server.Start();
Console.WriteLine(“Press ENTER to close the server.”);
Console.ReadLine();
server.Stop();

}

private static void server_NewText(object source, NewTextEventArgs e)
{

if (e.Text.StartsWith(“Containers:”))
{

Console.Clear();
Console.WriteLine(e.Text);

}
}

}

The typical way of using the distributed capabilities of ActressMAS is first to initialize
and connect the containers to the server. Then, the multi-agent environment in each
container needs to be started. This is achieved by means of a simple class called RunnableMas
(Figure 11), whose utilization is exemplified below.

The communication between a container and the server is done using a special type of
message called ContainerMessage (Figure 12). Its structure is somewhat similar to an agent
Message, but it includes the actual serialization and deserialization functionality, together
with a special property, Info, which is used for handling the semantics of the message,
e.g., “Request Register” (when a container wants to register to the server), “Inform Invalid

300

Mathematics 2022, 10, 382

Name” (if the container name cannot be accepted by the server), “Inform Containers”
(when the Content is a list with all available containers), “Request Move Agent” (when an
agent has arrived), “Send Remote Message” (when an agent message is received in the
Content property), etc.

The following paragraphs describe an example about creating a container with an
environment that runs the agents. It includes the GUI in Figure 13, where one can see
the relevant functionality: creating a container and starting it (connecting to the server),
running the multi-agent system, and then stopping it (disconnecting from the server). For
increased clarity and brevity, only the important parts of the methods are included, e.g.,
exception handling and the reading or writing of properties of GUI controls are omitted.

Figure 10. The container class.

Figure 11. The class used to start running a multi-agent system in a container for distributed scenarios.

301

Mathematics 2022, 10, 382

Figure 12. The class corresponding to the messages passed between containers and the server.

Figure 13. The graphical user interface of a program showing a multi-agent system with mobile agents.

302

Mathematics 2022, 10, 382

private void buttonStart_Click(object sender, EventArgs e)
{

_container = new Container(_serverIP, Convert.ToInt32(_serverPort), _containerName);
_container.Start();

}

private void buttonRunMas_Click(object sender, EventArgs e)
{

_environment = new EnvironmentMas();
_container.RunMas(_environment, new MasSetup());

}

private void buttonDisconnect_Click(object sender, EventArgs e)
{

if (_container != null)
_container.Stop();

}

The connection between a container and an environment is made by means of a class
derived from the RunnableMas class. In this way, the user can make a single application
which can be run on different machines or containers, and the setup of the multi-agent
system will be different depending on the specific container.

The example in the code below considers three containers with static agents, which
just provide some piece of information when being asked, and a mobile agent, starting
in “Container1” and then moving to the other containers. It gathers information from
the static agents along the way and then returns home to “Container1” and reports the
aggregated information.

public class MasSetup: RunnableMas
{

public override void RunMas(EnvironmentMas env)
{

string home = env.ContainerName;

switch (home)
{

case “Container1”:
// create a mobile agent and a static agent and add them to the environment env
break;

case “Container2”:
// create two static agents and add them to the environment
break;

case “Container3”:
// create three static agents and add them to the environment
break;

}

env.Start();
}

}

The next step is to create the agents, in the same way as described in Section 4.1.
The following code specifies the mobile agent.

303

Mathematics 2022, 10, 382

public class MobileAgent: Agent
{

private string _log; // stores the pieces of information received from the static agents
private Queue<string> _moves; // the path to follow when moving between containers
private bool _firstStart = true;
private int _turnsToWaitForInfo;

public override void Setup()
{

if (_firstStart) // Setup is also called when arriving to a new container
{

_firstStart = false;
_moves = new Queue<string>();
foreach (string cn in Environment.AllContainers())

if (cn != Environment.ContainerName) // home
_moves.Enqueue(cn);

// return home, get local info and report
_moves.Enqueue(Environment.ContainerName);

}
else
{

// the agent has moved to Environment.ContainerName
Broadcast(“request-info”);
_turnsToWaitForInfo = 3;

}
}

public override void Act(Message message)
{

_log += $“Received info: {message.Content}\r\n”; // info from static agents
}

public override void ActDefault()
{

if (_turnsToWaitForInfo– > 0)
return;

if (_moves.Count > 0)
{

string nextDestination = _moves.Dequeue();
// checks whether the destination container is still active
if (CanMove(nextDestination))
{

_log += $“Moving to {nextDestination}\r\n”;
Move(nextDestination);
return;

}
}

_log += “Stopping\r\n”;
Stop();

}
}

A static agent has a much simpler logic.

304

Mathematics 2022, 10, 382

public class StaticAgent: Agent
{

private string _info; // the piece of information it reports

public override void Setup()
{

_info = $“Info from agent {Name} in container {Environment.ContainerName}”;
}

public override void Act(Message message)
{

if (message.Content == “request-info”)
Send(message.Sender, _info);

}
}

When an agent is supposed to move to a different container, its state is serialized and
sent by means of a container message to the destination container. There, a new object is
instantiated, its state is set and it is added to the new environment. Thus, ActressMAS
employs the concept of weak mobility [27], i.e., the value of the internal fields are preserved
during the move, but the execution flow is not preserved: the agent has to finish a method
(e.g., Act) on the source container, and start from another method (e.g., Setup) on its arrival
at the destination; it cannot move in the middle of the execution of a method and resume
from the next instruction at the destination.

The framework does not impose that the user marks the entire agent class as serial-
izable, in order not to add any constraints to the agent implementations, especially since
the user may not want to use mobile agents at all. For example, if the user needs a Timer
object in an agent to define a recurrent event, that class is no longer serializable. Therefore,
the user can choose the specific state that he/she wishes to be transferred when an agent
moves. This is achieved by subclassing the AgentState class (Figure 14). The derived class
must be serializable. This process uses the Memento design pattern [28] to save and restore
the internal state of an agent. In this way, the user is also able to send only the relevant
parts of the agent state. However, if the agent class itself is serializable, the whole state of
the agent can be sent as a specific agent object.

Figure 14. The class of the agent state used in conjunction with the Memento design pattern to ensure
the movement of agents between containers in a transparent way.

For the mobile agent presented above, the following two methods can be added.

305

Mathematics 2022, 10, 382

public class MobileAgent: Agent
{

...

public override AgentState SaveState()
{

return new MobileAgentState
{

FirstStart = _firstStart,
Log = _log,
Moves = _moves

};
}

public override void LoadState(AgentState state)
{

var st = (MobileAgentState)state;
_firstStart = st.FirstStart;
_log = st.Log;
_moves = st.Moves;

}
}

[Serializable]
public class MobileAgentState: AgentState
{

public bool FirstStart;
public string Log;
public Queue<string> Moves;

}

5. Performance for Some Benchmark Problems

This section attempts to give the reader an idea about the capabilities of ActressMAS
with the help of two benchmark problems. They are typically used for actor-based reactive
systems; therefore, a direct comparison with other frameworks is not completely objective,
because ActressMAS has not been optimized for message passing or agent creation and is
not only actor-based. Still, these benchmarks can provide indicative information about the
speed of the framework, and this can help potential users to decide whether ActressMAS is
appropriate for their particular needs.

The first problem is “Ping Pong”. Each agent sends an initial message to all the other
agents in the multi-agent system. Then, when an agent receives a message, it replies to
the sender. This continues until a maximum number of messages is reached. In our case,
scenarios with 10 agents and 10 million messages were considered. A slightly different
version of this problem also exists, where a pair of agents exchange only a specified number
of messages (e.g., 100), but this was not addressed in our experiments.

The second problem is “Skynet”, used to measure the performance of actor creation
and basic calculations. Each agent creates 10 children, each child agent creates another
10 children and so on, until a maximum number of agents is eventually reached. Each
agent is also assigned a number, incrementally. On the final level, the agents send their
ordinal numbers to their parent. Each parent sums these numbers and transmits the sum to
its own parent and so on, until the initial root agent sums all the partial sums and reports
the final sum.

The results obtained for different scenarios are presented in Table 1. The last column
shows the average values out of 10 runs for each configuration. They were obtained using
a computer with a 4-core 2 GHz Intel processor and 8 GB of RAM.

306

Mathematics 2022, 10, 382

Table 1. Performance of the ActressMAS framework for two benchmark problems with various settings.

Benchmark/
Common Settings

Scenario Results

Ping Pong
10 agents, 10,000,000 messages

parallel execution 1.516 s
6,462,079 messages/s

sequential execution 3.880 s
2,577,297 messages/s

Skynet
10 children

10,000 agents
parallel execution 3.800 s

20,000 agents
parallel execution 12.221 s

50,000 agents
parallel execution 95.611 s

100,000 agents
parallel execution 443.956 s

10,000 agents
sequential execution 0.600 s

20,000 agents
sequential execution 1.523 s

50,000 agents
sequential execution 13.620 s

100,000 agents
sequential execution 92.017 s

The volume testing capacity of ActressMAS seems lower than other professional actor
frameworks; e.g., for Akka [18] and Proto.Actor [29] there are reports [29] of approximately
40 million and 120 million messages per second for Ping Pong, and approximately 4 s and
1 s for Skynet with 1 million actors, respectively, although their benchmark results are
obtained for different hardware configurations. Therefore, ActressMAS should be used
for applications where high performance such as very fast execution speed or a very large
number of actors are not critical requirements. It may not be recommended for problems
based on very large numbers of simple reactive actors.

As the agent creation benchmark shows, the internal data structures used to store and
access agents may be further optimized beyond what the .NET framework offers. Less
crucially, the implementation of the queue used by the agents to receive messages may also
be improved to increase the number of processed messages.

However, ActressMAS is not only an actor-based framework, but has an especially
constructed infrastructure for multi-agent systems, where agents can communicate us-
ing messages with custom structure and are not restricted to purely reactive behaviors.
Moreover, it is open-source software, and a deliberate implementation choice was to prefer
clarity over optimization.

6. Discussion

6.1. Relationship with FIPA Standards

FIPA specifications represent a collection of standards which are intended to promote
the interoperation of heterogeneous agents and the services that they can represent. They
try to define multiple aspects of agent systems. In this section, we refer to the FIPA
specification for an agent abstract architecture [30] that specifies the necessary components
of a so-called “Agent Platform”, presented in Figure 15. An agent must be registered on a
platform in order to interact with other agents.

307

Mathematics 2022, 10, 382

Figure 15. The components of the FIPA Agent Platform (adapted from [31]).

The FIPA specifications were initially intended to be used by various agent-based com-
mercial systems that would need to address the issue of agent interoperability. However,
over time such systems failed to materialize. Although more than one hundred agent frame-
works have been created (some of them no longer under development) [3], not many had
the compliance with the FIPA standards among their design objectives. JADE [4] is a promi-
nent example of a FIPA-compliant agent framework, but a few others are FIPA-compliant
as well.

Still, the abstract architecture proposed by FIPA deserves attention from a concep-
tual point of view. In the following, we discuss how ActressMAS relates to these four
components, although it is not FIPA-compliant.

The Agent Management System (AMS) provides “white pages” services and life-cycle
management, e.g., creation, deletion and migration of agents. Although this system is not
explicitly defined as a separate entity, the environment in ActressMAS fulfils the role of the
AMS because it stores the agents and is in charge of the operations mentioned above.

The Directory Facilitator (DF) provides “yellow pages” services for agents. In this
case, the agents are seen as service providers and consumers. Some agents can register or
deregister their services while others can look for specific services and attempt to use them.
ActressMAS does not include a DF infrastructure, but the “yellow pages” functionality is
implemented in one of the examples. A service broker agent maintains a collection of the
service providers and the services they offer. The clients can interrogate it and receive the
list of agents providing a certain service. Then, the clients (the service consumers) and the
service providers can communicate directly.

The Agent Communication Channel is responsible for routing the messages to the
agents located both on the current platform and on other platforms. The Message Transport
service forwards the messages to the destination agents in order and is also responsible for
the mapping between the logical names of the agents and their physical transport addresses.
The messages are supposed to observe the Agent Communication Language (ACL) format,
one of the major contributions of the FIPA specifications.

In ActressMAS, the environment is responsible for passing the messages between
agents. If remote messages are needed, they are routed through the containers and the
server, and arrive at the destination environment. A message is also a wrapper similar
to an ACL message, containing fields such as sender, receiver, the actual content and a
conversation identifier. The content can be either a string or an object, which ensures a
higher efficiency in some applications. The first word in a string message may be used as a
performative, but this is not enforced in any way. In the example of the contract net protocol,
a custom class is used for messages, which represents exactly the structure of an ACL message.
The protocol is implemented according to the corresponding FIPA specification [32].

308

Mathematics 2022, 10, 382

6.2. Analysis of ActressMAS in Comparison with Other Multi-Agent Frameworks

In this section we discuss how some features of other agent frameworks are related to
the present characteristics of ActressMAS. This can help potential users to better assess the
advantages and disadvantages of the proposed framework.

In terms of communication architecture, JADE [4] uses a peer-to-peer approach, while
ActressMAS uses a client-server approach for the communication between containers.
This is completely transparent from the agent’s point of view, because an agent can simply
decide to migrate to another container or send a remote message to an agent in another
container, while the environment, the containers and the server carry out these actions.

From the point of view of agent scheduling, ActressMAS assigns all agents the same
priority. The acting methods of all agents are executed in a turn. Different priorities could
be imposed if some agents were ignored during some turns. So far, there has been no
intention of introducing such mechanism. ActressMAS agents are lightweight, e.g., one can
create one million agents on a computer without any special memory capabilities.

Since the BDI architecture is closely related to agent research, Jason [10] and Jadex [33]
have integrated support for it. ActressMAS does not, but provides an example with the
BDI architecture. Moreover, it does not contain an internal planning engine; the plans need
to be created by the user.

Akka [18] allows a hierarchical organization of actors. An actor can be created by
another actor which is then considered its “parent”. Each parent can then supervise the
execution of the tasks assigned to its children. ActressMAS agents are not organized in
a hierarchy; all agents are implicitly on the same level. However, as implemented in
the Skynet example, an agent can store a reference to another agent considered to be its
parent and report to it, and conversely, parents can store references to their children. These
references hold agent names, not object references.

Frameworks such as JaCaMo [34] and MaDKit [35] have integrated support for or-
ganizations. For example, in the Agent-Group-Role (AGR) organizational model, agents
play roles in groups and create organizations. The roles define some constraints on the
agent actions, i.e., obligations, interdictions, and permissions. Although an ActressMAS
example models workflows defined as RADs, there is currently no explicit support for
roles; however, this is envisioned for future work.

In ActressMAS, agents can create new agents and can indirectly destroy them, through
the environment. Therefore, it is not designed for adversarial scenarios with agents belong-
ing to different owners that try to directly harm opposing agents.

Although one of the main tenets of both actors and agents is loose coupling, Actress-
MAS allows a form of shared memory, especially useful when agents in a multi-agent
simulation need to access a large environment. This Memory property of the environment
should not be used to store global variables for the main logic of the agents, but when large
amounts of data need to be accessed frequently, this solution is much more efficient than
sending the data in the form of messages. A typical scenario that may benefit from this is
when agents communicate indirectly through the environment, by stigmergy. The percep-
tual function of the agent may also be helped by the custom automatic filtering of agents
using the observable properties of ActressMAS.

7. Conclusions

The paper gave an in-depth description of the architecture of ActressMAS, originally
intended as a simple-to-use .NET multi-agent framework. However, it proved to be ade-
quate for the implementation of various algorithms, protocols, and simulations, as shown
by the example applications.

Considering the categories presented in Section 2, perhaps many types of software
agent systems may be implemented using ActressMAS, such as simulations in the mobility,
organizational, social, economic, or environmental domains. So far, ActressMAS has not
been considered to be used for games or for multi-agent learning scenarios, e.g., supporting
multi-agent reinforcement learning algorithms.

309

Mathematics 2022, 10, 382

Throughout the development of the framework, simplicity has been a main goal.
Several methods have been eliminated in successive versions, following the idea that “if
it is not important to be in the product, it is important not to be in the product”. It was
also intended to help the user achieve what other frameworks or specifications provide,
but without imposing any constraints. Especially, some standards may be useful for large
systems where efficiency and interoperability are necessary, but they may not be needed
for simpler, e.g., academic, protocols.

However, recommendations and examples are provided, which can guide the devel-
oper to create functionality supported by other frameworks, e.g., using FIPA ACL messages
with performatives, implementing a Directory Facilitator, or designing agent-based appli-
cations with a BDI or reactive architecture.

In the future versions of ActressMAS, it should be established whether some of these
features should be abstracted and integrated into the platform itself. But in this case,
the developer should not be forced to use intrusive or mandatory features that he/she does
not need.

For example, the concept of agent roles and explicit support for workflow modeling
can be added. The platform can be extended with additional capabilities related to various
agent architectures. For example, a mechanism to register rules with specified priorities can
be incorporated for reactive applications. The planning part of the BDI architecture can be
integrated by means of forward reasoning based on pattern matching, already included in
the FunCs functional programming library [36] created by the author. Deductive reasoning
can also be based on this library and employed within a logical agent architecture.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The ActressMAS framework and the implementations of the algorithms
are open-source and fully available at: https://github.com/florinleon/ActressMas (accessed on
1 November 2021).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

This appendix provides additional information about the use of the proposed frame-
work and the examples available in its GitHub repository [1].

As stated in the Introduction, ActressMAS was designed to simplify the teaching
of multi-agent protocols and algorithms, and it has been used since 2018 in the author’s
department. In the following paragraphs, several applications are briefly presented. Even
if some of them are inspired by different sources, all the implementations are original.

The example in Figure A1 uses a reactive architecture. It implements an idea from [37],
where a swarm of robot vehicles (the blue circles) explores an unknown region searching
for rock samples (the cyan squares). When a sample is found, it needs to be delivered to a
central base (the red circle), which also provides a radio signal that can be used to estimate
the direction and distance to it from any other location. Each vehicle has a hierarchy
of simple behavioral rules, such as: 1. If an obstacle is detected, then change direction;
2. If carrying samples and being at the base, then drop samples; 3. If carrying samples and
not being at the base, then travel up signal gradient; 4. If a sample is detected, then pick
it up; 5. Otherwise, move randomly. The ordering also defines the priority of the rules:
the rules with smaller numbers have a higher priority than those with higher numbers.
Although these rules are very simple, the aggregated behavior of the swarm can be very
complex, as vehicles can be seen searching and actively delivering samples to the central
base. This is a typical example of emergent behavior in a multi-agent system.

310

Mathematics 2022, 10, 382

Figure A1. The implementation of a reactive architecture.

The next example implements a BDI architecture for agents [11] and is based on an
idea from [38]. A helicopter, designated by a black ellipse in Figure A2, is patrolling for
forest fires. Thus, its initial goals are to go from the first cell to the last cell and then reverse
direction. When it detects a fire (the red rectangle) in its perceptual field, i.e., its current
cell and two the adjacent ones, it adds a higher priority goal to get some water (the blue
rectangle) from the first cell, move to the fire cell and drop the water. Therefore, the agent
has beliefs such as: “position”, “water”, and “fire”, and desires such as: “patrol right”,
“patrol left”, and “extinguish fire”. These goals are achieved by intentions, i.e., plans with
a series of individual actions such as: “move left”, “move right”, “get water”, and “drop
water”. The beliefs are updated based on the percepts received from the interaction with
the terrain agent and its own actions.

Figure A2. The implementation of a BDI architecture.

ActressMAS was also used to model business processes that define organizational
activities. Such processes can be represented using role-activity diagrams [39]. The enact-
ment of business agents for this purpose was previously achieved using the F# and Jason

311

Mathematics 2022, 10, 382

programming languages [40]. The F# implementation, which used actors with “mailbox
processors”, was easily converted to ActressMAS.

The application whose GUI is displayed in Figure A3 is a simulation of the famous
“game of life” [41]. The simulation is driven by three local rules for each cell: 1. Any living
cell with two or three living neighbors survives into the next generation; 2. Any dead cell
with three living neighbors becomes a living cell; 3. All other living cells die and all other
dead cells remain dead.

Figure A3. The implementation of the game of life using observables.

These rules can be easily implemented with observables, as explained in Section 4.2.
Each cell is an agent that can register its position and its interest in perceiving only the
neighboring cells in its Moore neighborhood, i.e., with eight surrounding cells. The state
(living or dead) is also an observable property. Thus, each cell is aware of the state of its
neighbors and can change its own state by applying the rules mentioned above.

ActressMAS was also used to simulate an environment with two species: predators
(in this case, doodlebugs) and prey (in this case, ants). The rules of the simulation are as
follows. An ant can: 1. Move randomly up, down, left, or right, if possible; 2. Breed: if
an ant survives for three time steps, it creates an offspring in an adjacent cell, if it is free.
Conversely, a doodlebug can: 1. Move: in each time step, the doodlebug moves to an
adjacent cell containing an ant and eats it; otherwise, it moves randomly; 2. Breed: if a
doodlebug survives for eight time steps, it creates an offspring; 3. Starve: if a doodlebug
has not eaten an ant within three time steps, it dies.

For this simulation, the Memory property of the environment is used in order to store
the ecological environment, with cells occupied by at most one type of insect. Again, each
insect can perceive its neighboring cells, and when they need to reproduce, a new insect is
created and added to the environment in an empty neighboring cell, if possible.

Figure A4 presents the result of the execution of a simulation, where one can see the
oscillations of the two populations. This behavior has been theoretically modeled by the
Lotka–Volterra equations.

312

Mathematics 2022, 10, 382

0

500

1000

1500

2000

2500

0 200 400 600 800 1000

DooĚlebugs

Ants

Figure A4. The results of a run of the predator-prey simulation.

Finally, a more complex simulation was made using the framework, i.e., a traffic
simulator named “CarSim”, which can be used to collect training data for a deep learning
system intended for autonomous driving. The user can construct different types of road
segments (a road segment is an agent) and place any number of cars (also agents) in
different positions. As one can see in Figure A5, the white car with a black dot is the
ego car (i.e., the autonomous vehicle), and the cars with other colors are the rest of traffic
participants. The user can set several properties of the vehicles: the length, the initial speed,
heading angle, acceleration, and the maximum speed, in order to simulate different driving
behaviors (more cautious or more aggressive).

Figure A5. Different traffic simulations scenarios.

The simulator then computes the successive actions for each vehicle agent with a
physics model combined with a symbolic model. An action is decided in each time step
(e.g., each 0.2 s in the virtual time). The physics model is used to estimate the future trajec-
tories of the traffic participants, based on their current positions, speeds and accelerations.
The symbolic model contains rules to handle the interactions between agents. For example,
if the physics model detects a possible collision, the vehicle slows down. If the maximum
speeds of two or several vehicles require an overtaking to take place and if this is safe from

313

Mathematics 2022, 10, 382

the physics point of view, the current agent begins the overtaking. After it is completed,
the vehicle returns to its normal lane.

The simulator can also include static obstacles, bicyclists and pedestrians. Although
the main perspective in the simulator is that of the ego car, each agent decides indepen-
dently, but taking into account its surroundings, as stated above. From a simulation,
data can be exported in order to be used in other learning contexts for trajectory prediction.

ActressMAS is provided in the form of a .NET dynamic-link library (DLL) which can
be downloaded and to which a developer should add a reference in his/her project and
use it directly. No other external packages are needed.

The GitHub repository [1] also offers a single C# solution with all the implemented ex-
amples. It can be opened and explored, e.g., using Visual Studio 2017 or newer. The version
of the .NET framework is 4.7.2. Table A1 presents the full list of available examples with
the main concepts they address.

Table A1. A summary of the examples available in the GitHub repository of ActressMAS v3.0 (as of
December 2021).

Project Name Purpose and Learning Points

Simple Examples→Agents1, Agents2,
Agents3, Agents4, Agents5

These examples show how agents should be created in ActressMAS
and how to set up the environment. They show different possible
execution types: parallel or sequential. The main focus is on sending
messages and processing them in the Act method. The use of
ActDefault method at the end of a turn with no received messages is
also presented.

Simple Examples→
MultipleMessages

It shows a system where messages are exchanged between several
worker agents and a manager agent in a way that would make it
difficult for some messages to be delivered if the message passing
infrastructure were not properly designed. This is also a test case for
ActressMAS.

Simple Examples→
SendingObjects

It shows how user-defined objects can be directly sent in the content
of messages.

Reactive Architecture

It presents an implementation of the reactive architecture where
multiple behaviors can be activated based on the current state of the
agent. The behaviors have priority levels, such that only the
behavior with the highest priority defines the next action.

BDI Architecture

It presents an implementation of the Belief-Desire-Intention (BDI)
architecture, where agents have explicit state information (beliefs),
can have goals (desires) and make plans to achieve these
goals (intentions).

LRTA Search

It presents an implementation of the Learning Real-Time A* (LRTA*)
path finding algorithm. The search is designed as a continuous
conversation between the search agent and the map agent, where the
search agent is informed in each state about the neighboring states
and the value of the heuristic function in that state. It reflects the
behavior of an agent that discovers the map dynamically while
performing the search.

Shapley Value

It presents a multi-agent system with worker agents with different
skill values solving tasks with different difficulty levels. They divide
their payoffs according to their marginal contributions to solving the
tasks, using the game theoretic solution concept of the Shapley value.

Auctions→English with broadcast,
English without broadcast

These projects implement the English auction protocol in two
variants: when all the bids are broadcast to all the agents and when
the bidders communicate only with the auctioneer, which in turn
communicates the current best price after each round of bids.

Auctions→Vickrey

It implements the Vickrey auction, a sealed-bid protocol where the
highest bidder is the winner but pays the second price. The
dominant strategy of this auction protocol is bidding the true
valuation, thus no agent has a motivation to bid a higher or a
lower amount.

314

Mathematics 2022, 10, 382

Table A1. Cont.

Project Name Purpose and Learning Points

Yellow Pages

It presents a multi-agent system with service providers, clients
(service consumers) and a service broker. Service providers can
register or deregister at any time. This is the functionality envisioned
by the FIPA Directory Facilitator.

Zeuthen Strategy

It implements the Zeuthen bargaining strategy based on the risks of
breaking down the negotiation. The agent that has more to lose if the
negotiation fails should be more willing to concede. At each step, the
agent with a smaller risk needs to make a concession big enough to
change the balance of risks, such that the other agent should concede
in the next round.

Contract Net Protocol

It implements the FIPA specification for the contract net protocol.
The agents communicate by messages that conform to the FIPA ACL
structure. This example features some virtual postmen that should
deliver letters and may exchange some of them in order to optimize
their routes. Thus, it includes a heuristic travelling salesman problem
solver as a subcomponent. The contract net protocol is used to find
the (near-)optimal task allocation in terms of payoffs associated with
letter delivery and the costs associated with tour length.

Mechanism Design
It implements the Clarke–Groves tax system which eliminates the
incentive of an agent to lie about its true preference in a majority
voting scenario.

Iterated Prisoner Dilemma

It implements the iterated prisoner dilemma game, which is a simple
model that reveals deep questions related to human selfishness and
cooperation. It includes multiple response strategies whose
outcomes can be compared: acting randomly, always defecting, and
“tit-for-tat” (where an agent first cooperates, then chooses the action
chosen by the other agent in the previous round).

Predator-Prey→
PredatorPreyConsole,
PredatorPreyGui

These projects present a simulation with two species, predators and
prey, which emphasizes the oscillating evolution of the two
populations. The grid world (i.e., the natural environment) is stored
in the Memory property of the ActressMAS software environment
and can be accessed by the individuals. Individuals can be created
and removed from the environment.

Simple Observables→
ColorGame, NumberGame

These projects focus on the use of observable properties. Each agent
perceives the other agents with a certain assigned color or with an
assigned number in a specific range.

Game of Life It is an implementation of Conway’s “game of life” using observable
properties of agents/cells to compute the number of alive neighbors.

Voting
It presents a voting protocol that first tries to identify the Condorcet
winner using the Copeland’s method, and if no Condorcet winner
exists, it uses Borda count to produce the result.

Mobile Examples→
MyServerConsole,
MasMobileConsole,
MyServerGui, MasMobileGui

These projects present an example with mobile and static agents. A
mobile agent visits the existing containers, collects information form
the static agents running there and then returns to its original
container and reports the information. There are two equivalent
implementations, one using a console for displaying messages, i.e., a
character user interface, and another using a Windows-based
graphical user interface.

Mobile Examples→
RemoteMessages

It shows how two agents in different containers can communicate by
sending remote messages.

Benchmarks→PingPong
This is a benchmark that measures the number of messages that can
be exchanged between agents in a time unit in a
communication-intensive scenario.

Benchmarks→Skynet,
SkynetNumeric

This is a benchmark that measures the performance of agent creation
and basic calculations. In Skynet, the numbers are encoded into
string messages, while in SkynetNumeric, the numbers are encoded
as 64-bit integer numbers. However, ActressMAS does not exhibit a
significant difference in performance in the two cases.

315

Mathematics 2022, 10, 382

References

1. Leon, F. ActressMAS Library. 2018–2021. Available online: https://github.com/florinleon/ActressMas (accessed on 1 November 2021).
2. Leon, F. ActressMAS. A .NET Multiagent Framework. 2021. Available online: http://florinleon.byethost24.com/actressmas

(accessed on 1 November 2021).
3. Pal, C.V.; Leon, F.; Paprzycki, M.; Ganzha, M. A Review of Platforms for the Development of Agent Systems. arXiv 2020,

arXiv:2007.08961; 40 pages.
4. Bellifemine, F.L.; Caire, G.; Greenwood, D. Developing Multi-Agent Systems with JADE; Wiley Series in Agent Technology:

Chichester, UK, 2007.
5. Luke, S.; Balan, G.C.; Panait, L.; Cioffi-Revilla, C.; Paus, S. MASON: A Java Multi-Agent Simulation Library. In Proceedings of the

Agent 2003 Conference on Challenges in Social Simulation, Chicago, IL, USA, 2–4 October 2003.
6. Bernstein, P.; Bykov, S.; Geller, A.; Kliot, G.; Thelin, J. Orleans: Distributed Virtual Actors for Programmability and Scalability; Technical

Report MSR-TR-2014-41; Microsoft: Redmont, WA, USA, 2014.
7. Ritter, F.E.; Tehranchi, F.; Oury, J.D. ACT-R: A cognitive architecture for modeling cognition. Wiley Interdisciplinary Reviews.

Cogn. Sci. 2019, 10, e1488. [CrossRef]
8. Laird, J.E. The Soar Cognitive Architecture; MIT Press: Cambridge, MA, USA, 2012.
9. Newell, A.; Shaw, J.C.; Simon, H.A. Elements of a theory of human problem solving. Psychol. Rev. 1958, 65, 151–166. [CrossRef]
10. Bordini, R.H.; Hübner, J.F.; Wooldridge, M. Programming Multi-Agent Systems in AgentSpeak Using Jason; Wiley Series in Agent

Technology: Chichester, UK, 2007.
11. Rao, A.S.; Georgeff, M.P. Modeling Rational Agents within a BDI-Architecture. In Proceedings of the 2nd International Conference

on Principles of Knowledge, Representation and Reasoning, Cambridge, MA, USA, 22–25 April 1991; pp. 473–484.
12. Rao, A.S. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In Proceedings of the Seventh Euro-

pean Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-96), Einhoven, The Netherlands,
22–25 January 1996.

13. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,
arXiv:1606.01540; 4 pages.

14. Beattie, C.; Leibo, J.Z.; Teplyashin, D.; Ward, T.; Wainwright, M.; Küttler, H.; Lefrancq, A.; Green, S.; Valdés, V.; Sadik, A.; et al.
DeepMind Lab. arXiv 2016, arXiv:1612.03801; 11 pages.

15. Wilensky, U.; Rand, W. An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with
NETLogo; The MIT Press: Cambridge, MA, USA, 2015.

16. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An Open Urban Driving Simulator. arXiv 2017,
arXiv:1711.03938; 16 pages.

17. Horni, A.; Nagel, K.; Axhausen, K.W. (Eds.) The Multi-Agent Transport Simulation MATSim; Ubiquity Press: London, UK, 2016.
[CrossRef]

18. Bonér, J.; Klang, V.; Kuhn, R. Akka Library. 2021. Available online: https://akka.io (accessed on 1 November 2021).
19. Petabridge. Akka.NET Library. 2021. Available online: https://getakka.net (accessed on 1 November 2021).
20. Hewitt, C.; Bishop, P.; Steiger, R. A Universal Modular Actor Formalism for Artificial Intelligence. In Proceedings of the 3rd

International Joint Conference on Artificial intelligence (IJCAI’73), Stanford, CA, USA, 20–23 August 1973; pp. 235–245.
21. Wooldridge, M. Intelligent Agents. Multiagent Systems—A Modern Approach to Distributed Artificial Intelligence; Weiss, G., Ed.;

The MIT Press: Cambridge, MA, USA, 2000; pp. 27–77.
22. Wooldridge, M. An Introduction to Multiagent Systems, 2nd ed.; Wiley: Hoboken, NJ, USA, 2009.
23. Burgin, M. Systems, Actors and Agents: Operation in a Multicomponent Environment. arXiv 2017, arXiv:1711.08319v1; 28 pages.
24. Rumbaugh, J.; Jacobson, I.; Booch, G. Unified Modeling Language Reference Manual, 2nd ed.; Pearson Education: Boston, MA, USA, 2005.
25. Foundation for Intelligent Physical Agents. FIPA Communicative Act Library Specification. 2002. Available online: http:

//www.fipa.org/specs/fipa00037/SC00037J.html (accessed on 1 November 2021).
26. Austin, J.L. How to Do Things with Words; Clarendon Press: Oxford, UK, 1975.
27. Cugola, G.; Ghezzi, C.; Picco, G.P.; Vigna, G. Analyzing Mobile Code Languages. In Lecture Notes in Computer Science; Springer:

Berlin/Heidelberg, Germany, 1997; Volume 1222, pp. 94–109.
28. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley

Professional: Boston, MA, USA, 1994.
29. Asynkron, A.B. Proto. Actor Library. 2021. Available online: https://proto.actor (accessed on 1 November 2021).
30. Foundation for Intelligent Physical Agents. FIPA Abstract Architecture Specification. 2002. Available online: http://www.fipa.

org/specs/fipa00001/SC00001L.html (accessed on 1 November 2021).
31. Poslad, S.; Buckle, P.; Hadingham, R. The FIPA-OS agent platform: Open source for open standards. In Proceedings of the 5th

International Conference and Exhibition on the Practical Application of Intelligent Agents and Multi-Agents, Manchester, UK,
10–12 April 2000; Volume 355.

32. Foundation for Intelligent Physical Agents. FIPA Contract Net Interaction Protocol Specification. 2002. Available online:
www.fipa.org/specs/fipa00029/SC00029H.html (accessed on 1 November 2021).

33. Braubach, L.; Pokahr, A.; Lamersdorf, W. Jadex: A BDI-Agent System Combining Middleware and Reasoning. In Whitestein Series
in Software Agent Technologies; Birkhäuser-Verlag: Basel, Switzerland, 2006; pp. 143–168. [CrossRef]

316

Mathematics 2022, 10, 382

34. Boissier, O.; Bordini, R.H.; Hübner, J.F.; Ricci, A.; Santi, A. Multi-agent Oriented Programming with JaCaMo. Sci. Comput. Program.
2013, 78, 747–761. [CrossRef]

35. Gutknecht, O.; Ferber, J. The MadKit Agent Platform Architecture. In Infrastructure for Agents, Multi-Agent Systems, and Scalable
Multi-Agent Systems; Springer: Berlin/Heidelberg, Germany, 2001; pp. 48–55. [CrossRef]

36. Leon, F. FunCs Library. 2018–2021. Available online: https://github.com/florinleon/FunCs (accessed on 1 November 2021).
37. Steels, L. Cooperation Between Distributed Agents Through Self-Organisation. In Proceedings of the IEEE International Workshop

on Intelligent Robots and Systems, Towards a New Frontier of Applications, Ibaraki, Japan, 3–6 July 1990; pp. 8–14. [CrossRef]
38. Taillandier, P.; Gaudou, B.; Grignard, A.; Huynh, Q.; Marilleau, N.; Caillou, P.; Philippon, D.; Drogoul, A. Building, composing

and experimenting complex spatial models with the GAMA platform. Geoinformatica 2019, 23, 299–322. [CrossRef]
39. Ould, M.A. Business Process Management: A Rigorous Approach; British Computer Society, Meghan Kiffer: Tampa, FL, USA, 2005.
40. Leon, F.; Bădică, C. A Comparison Between Jason and F# Programming Languages for the Enactment of Business Agents.

In Proceedings of the International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), Sinaia,
Romania, 2–5 August 2016. [CrossRef]

41. Martin, G. The Fantastic Combinations of John Conway’s New Solitaire Game “Life”. Math. Games. Sci. Am. 1970, 223, 120–123.
[CrossRef]

317

Citation: Saeed, F.; Hussain, M.;

Aboalsamh, H.A. Automatic

Fingerprint Classification Using Deep

Learning Technology (DeepFKTNet).

Mathematics 2022, 10, 1285.

https://doi.org/10.3390/

math10081285

Academic Editors: Florin Leon,

Mircea Hulea and

Marius Gavrilescu

Received: 27 February 2022

Accepted: 6 April 2022

Published: 12 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Automatic Fingerprint Classification Using Deep Learning
Technology (DeepFKTNet)

Fahman Saeed, Muhammad Hussain * and Hatim A. Aboalsamh

Department of Computer Science, King Saud University, Riyadh 11451, Saudi Arabia;
fahmanali@gmail.com (F.S.); hatim@ksu.edu.sa (H.A.A.)
* Correspondence: mhussain@ksu.edu.sa

Abstract: Fingerprints are gaining in popularity, and fingerprint datasets are becoming increasingly
large. They are often captured utilizing a variety of sensors embedded in smart devices such as
mobile phones and personal computers. One of the primary issues with fingerprint recognition
systems is their high processing complexity, which is exacerbated when they are gathered using
several sensors. One way to address this issue is to categorize fingerprints in a database to condense
the search space. Deep learning is effective in designing robust fingerprint classification methods.
However, designing the architecture of a CNN model is a laborious and time-consuming task. We
proposed a technique for automatically determining the architecture of a CNN model adaptive
to fingerprint classification; it automatically determines the number of filters and the layers using
Fukunaga–Koontz transform and the ratio of the between-class scatter to within-class scatter. It helps
to design lightweight CNN models, which are efficient and speed up the fingerprint recognition
process. The method was evaluated two public-domain benchmark datasets FingerPass and FVC2004
benchmark datasets, which contain noisy, low-quality fingerprints obtained using live scan devices
and cross-sensor fingerprints. The designed models outperform the well-known pre-trained models
and the state-of-the-art fingerprint classification techniques.

Keywords: multisensory fingerprint; interoperability; DeepFKTNet; deep learning; classification

MSC: 68T05

1. Introduction

A person can be recognized in security systems by a unique username and password,
but they can be readily stolen [1]. The fingerprint is one of the first imaging modalities
of biometric identification. It is more accurate and less expensive than other biometric
modalities [2,3]. A fingerprint’s surface has ridges and valleys, which do not change during
a lifetime [4]. Fingerprint recognition can be used for authentication or identifying purposes.
In verification, the fingerprint is compared to the templates of a particular subject in the
database, but in identification, the unknown fingerprint is compared to the templates of all
subjects in the database to ascertain the subject’s identity [5]. Fingerprints are gaining in
popularity and their datasets are becoming increasingly large. They are recorded utilizing a
variety of low-cost embedded sensors in smart devices such as smartphones and computers.
The high processing complexity of a fingerprint identification system is one of its primary
drawbacks. One way to address this issue is to categorize fingerprints in a database
to condense the search space. The existing classification methods are effective when
fingerprints are recorded using the same sensor. However, when fingerprints are collected
using various sensors (referred to as cross-sensor or sensor interoperability problem),
classification performance is deteriorated; even verification of the same person’s finger is
degraded [6–8]. While considerable research has been conducted on cross-sensor fingerprint
verification [8–12], there has been no study on cross-sensor fingerprint classification, which
motivates us to work on this topic.

Mathematics 2022, 10, 1285. https://doi.org/10.3390/math10081285 https://www.mdpi.com/journal/mathematics319

Mathematics 2022, 10, 1285

Numerous fingerprint categorization systems have been developed, some relying on
non-conventional approaches and others on convolutional neural networks. The references
provide an exhaustive overview of non-CNN methods [13,14]. The success rate of a finger-
print classification approach is highly dependent on the quality of the description of the
discriminating information of a fingerprint. Directional ridge patterns and singularities are
critical distinguishing characteristics of fingerprints, as demonstrated by the techniques
proposed in [15–20], which utilize this information in a variety of ways to classify finger-
prints. Gue et al. [15] employ the amount and kind of core points as fingerprint descriptors,
as well as rule-based categorization, to classify fingerprints. Additionally, this approach
classifies indistinguishable fingerprints using center-to-delta flow and balance arm flow.
Its categorization accuracy is 92.7% on average. Jung and Lee [21] split a fingerprint
into 16 × 16 pixel blocks, compute their representative directions, use Markov models to
identify the core block, and then divide the fingerprint into four areas, each of which is
represented using distributions of ridge directional values. This method has a classification
accuracy of 97.4%. Dorasamy et al. [17] employed a simplified rule-based technique and
two features: directional patterns and singular points for fingerprint description. The
classification accuracy of this scheme is 92.2%. Saeed et al. [18] proposed a modified
histogram of oriented gradients (HOG) fingerprint classification algorithm. The HOG
descriptor’s orientation field computation is not ridge pattern specific. In order to improve
the HOG descriptor’s ability to represent a fingerprint, we compute an orientation field
that is suited to the ridge pattern. This technique achieved an average accuracy of 98.70%
on the noisy fingerprint database FVC2004. Saeed et al. [19] suggested a new approach
for classifying noisy fingerprints from live scan devices using statistical features (mean,
standard deviation, kurtosis and skewness) from dense scale invariant feature transform
(d-SIFT). This method achieved 97.6% accuracy using FVC2004, a noisy, low-quality live
scanned fingerprint database. Sudhir et al. [22] employed GLCM, LBP, and SURF for feature
extraction, while SVM and BoF classifiers were used for classification. Based on FVC2004,
they got average accuracy of 74.50 using SVM and 84.75 using BoF.

Deep CNN has shown remarkable results in many applications [23–26]; it has been
used to classify fingerprints [27–32] and has achieved encouraging results. Zia et al. [33]
introduced the Bayesian DCNNs (B-DCNNs) by incorporating Bayesian model uncertainty
to increase fingerprint categorization accuracy. They achieved 95.3% accuracy on FVC004
(5 class), showing a 0.8–1.0% improvement in model accuracy compared to the baseline
DCNN. In Nguyen et al. [34], the CNN approach is suggested for the noise reduction
stage of noisy fingerprint. Two main steps are involved in this procedure. Non-local
information is used to construct a pre-processing phase for noisy image. Fingerprints are
then separated into patches and utilized for CNN training, resulting in a model for CNN
de-noising of future noisy images, which can subsequently be smoothed using Gaussian
filtering to remove pixel artifacts. Fingerprints that have been pre-processed are separated
into overlapping patches during the CNN training step. To train the convolutional neural
network, they feed these patches into it. They’ve built a three-tiered network with distinct
filters and operators at each level. Third layer convolutional layer predicts enhancing
patches and reconstructs the output image. Using the Gaussian algorithm and a canny
algorithm they strength the information edge, this approach is able to filter out noise.
When all images have been processed by the morphological procedure, the result will
be improved. They extracted features from pre-processed fingerprints (arch, loop and
whorl) and classified them using for classifiers: random forest, SVM, CNN, and K-NN and
obtained accuracies of 97.78%, 95.83%, 96.11%, and 92.05%, respectively.

Nahar et al. [35] designed CNN models based on the LeNet-5 design for fingerprint
classification. They evaluated their method using the augmented subset (DB1) from the
FVC2004 dataset. They got an accuracy of 99.1%. In deep models, layers and filters are
defined by experiments, and no special rule is used to choose them; tuning the hyper-
parameters is tiring and time-consuming. Motivated by the difficulty in the design of
CNN architectures, we propose a technique that determines automatically and adaptively

320

Mathematics 2022, 10, 1285

the architecture of a CNN model using the fingerprints dataset. To begin, we use the
LGDBP description Saeed, et al. [36] and K-medoid clustering algorithm [37] to choose
representative fingerprints, and then we derive the layers filters using Fukunaga–Koontz
Transform (FKT) [38]. To control the depth of a CNN model, we compute the ratio between
traces of between-class scatter matrix Sb and within-class scatter matrix Sw.

The proposed fingerprint CNN classification system was evaluated against the state-
of-the-art fingerprint classification schemes utilizing the benchmark multi-sensor datasets
FingerPass and FVC2004. Specifically, the contributions of this work are as follows:

• We developed an efficient automatic method for classifying cross-sensor fingerprints
based on a CNN model.

• We proposed a technique for the custom-designed building of a CNN model, which
automatically determines the architecture of the model using the class discriminative
information from fingerprints. The layers and their respective filters of an adaptive
CNN model are customized using FKT, and the ratio of the traces of the between-class
scatter matrix, and the within-class scatter matrix.

• We thoroughly evaluated the proposed method on two datasets. The proposed finger-
print classification scheme is quick, accurate, and performs well with noisy fingerprints
obtained using live scan devices as well as cross-sensor fingerprints.

The rest of the paper is organized as follows. Section 2 presents the details of the
proposed technique. The experimental results have been given in Section 3. Section 4
discusses the performance of the proposed method in detail. Section 5 concludes the article.

2. Proposed Method

The convolutional neural network (CNN) is one of the most widely used and popular
deep learning networks [39]. Its general structure comprises different types of layers,
including the CONV layer with different filters, pooling layer, activation function layer,
fully connected layer, and loss function [40]. It has been used for a wide range of tasks,
including image and video recognition [41], classification of images [42], medical image
analysis [43], computer vision [44], and natural language processing [45].

Many advancements in CNN learning methods and architecture have a place, allow-
ing the network to handle larger, diverse, more complicated, and multiclass issues [46].
Following AlexNet’s outstanding performance on the ImageNet dataset in 2012, many
applications used CNNs [47]. A layer-wise representation of CNN reversed the trend
toward extraction of features at low spatial resolution in deep architecture, as achieved in
VGG [48]. Most modern architectures follow VGG’s simple and homogeneous topology
idea. The Google deep learning group introduced the divide, transform, and merge concept
with the inception block. The inception block introduced the concept of branching within
a layer, allowing for feature abstraction at various spatial scales [49]. Skip connections,
developed by ResNet [50] for deep CNN training, gained popularity in 2015. Others, like
Wide ResNet, are exploring the influence of multilevel transformations on CNN’s learning
capacity by increasing cardinality or widening the network [51]. So, the research turned
from parameter optimization to network architecture design. Thus, new architectural
concepts like channel boosting, spatial and feature-map exploitation, and attention-based
information processing emerged [52]. The main issue in the design of CNN models is to
tune the architecture of CNN for a specific application.

2.1. Problem Formulation

The fingerprints are categorized into four types: arch, left loop, right loop, and whorl.
Identifying the type of a fingerprint is a multiclass classification problem. Let there be N sub-
jects, and K fingerprints are captured from each subject with M different sensors; these fin-
gerprints are categorized into C classes. Let F =

{
F s

ij

∣∣∣1 ≤ i ≤ K, 1 ≤ j ≤ N, 1 ≤ s ≤ M
}

,
where F s

ij represents the ith fingerprint of the jth subject captured with sth sensor, be the
set of fingerprints, and C ={1, 2, . . . , C}, where C is the number of classes, be the set of

321

Mathematics 2022, 10, 1285

fingerprint labels (classes). The problem of predicting the type of a fingerprint F s
ij is to

build a function ψ : F → C that takes a fingerprint F s
ij ∈ F and assigns it a label c ∈ C, i.e.,

ψ
(

F s
ij; θ

)
= c, where θ are the parameters. We design the function ψ using a CNN model,

in this case θ represents the weights and biases of the model. The model is built adaptively.
Its design process is shown in Figure 1, and the detail is given in the rest of the section.

Figure 1. Design procedure of DeepFKTNet; (a) design of main DeepFKTNet architecture and
(b) addition of global pooling and softmax layers and fine-tuning the model.

2.2. Adaptive CNN Model

The main constituent of a CNN model is a convolutional (CONV) layer. It extracts
discriminative features from the input signal, applying convolution operation with filters
of fixed size. CONV layers are stacked in a CNN model to extract a hierarchy of features.
The number of filters in each CONV layer and the number of CONV layers in a CNN
model are hyper-parameters, and finding the best configuration of a model for a specific
application is a hard optimization problem; it entails the search of huge parameter space.
In addition, the initialization of learnable parameters of a CNN model has a significant
effect on the performance of the model when it is trained with an iterative optimization
algorithm like Adam optimizer. Leveraging the discriminative content of fingerprints, we
propose a simple method to find the best configuration of the model adaptively. Initially,
we select the representative fingerprints from each type to guide the design process of a
CNN model. The discriminative information in these fingerprints is used to determine the
width (the number of filters) of each CONV layer and the depth (the number of CONV
layers) of the model; it is also used for data-dependent initialization of the filters of CONV

322

Mathematics 2022, 10, 1285

layers. An overview of the design process is shown in Figure 1. We employ clustering to
select the representative fingerprints, the Fukunaga–Koontz Transform (FKT) [38], which
exploits class-discriminative information, to determine the number of filters in a CONV
layer, and the ratio of the between-class scatter matrix Sb to the within-class scatter matrix
Sw to adjust the depth (i.e., the number of CONV layers) of the CNN model. Finally,
to minimize the number of learnable parameters and avoid overfitting, global pooling
layers are introduced. By decreasing the resolution of the feature maps, the pooling layer
seeks to achieve shift-invariance, and the pooling layer’s feature map is linked directly to
SoftMax [53]. The design process is worked out in detail and discussed in the following
subsections, and its overview is shown in Figure 1.

2.2.1. Selection of Representative Fingerprints

We extract discriminative information from fingerprints to specify the CONV lay-
ers and the depth of a CNN model adaptively. To do this, we cluster the training set
to identify the most representative fingerprints of each class. For determining the repre-
sentative fingerprints, discriminative features from fingerprints are extracted using the
LGDBP descriptor [36] K-medoids [37] is used for clustering since it selects the instances as
cluster centers and is suitable for finding the representative subset of the training set. The
fingerprints corresponding to the cluster centers are chosen as the representative subset.
The number of clusters for each class in the K-medoids algorithm is specified using the
silhouette analysis [54]. Using this procedure, we select the set X = {X1, X2, . . . , XC}, where
Xi = {RFj, j = 1, 2, 3, . . . , ni} is the set of representative fingerprints of ith class.

2.2.2. Design of the Main DeepFKTNet Architecture

The architectures of the state-of-the-art CNN models are usually not drawn from
the data and are fixed and highly complex. On the contrary, we define a data-dependent
architecture of DeepFKTNet. Its primary architecture is based on the answers to two
questions: (i) how many CONV layers should be in the model and (ii) how many filters must
be in each layer. These questions are addressed by an iterative algorithm that computes
the number of filters in a CONV layer, adds it iteratively to the model, and terminates
when a criterion is satisfied. We use the discriminative structural information embedded
in fingerprints to determine the number of filters in a CONV layer and their initialization.
The detail is given in Algorithm 1. We discuss the algorithm with motivation in the
following paragraphs.

Initially, the set X = {X1, X2, . . . , XC} is used to determine the number of filters of the
first CONV layer and initialize them. Inspired by the filter size of the first CONV layer in
the state-of-the-art CNN models like ResNet [50], DenseNet [55], and Inception [49], we
fixed the size of filter size of the first layer to 7 × 7. We extract patches of size w × h from
the representative fingerprints (steps 2–3 of Algorithm 1) and formulate the problem of
determining the filters (fi, i = 1, 2, . . . N) as finding the optimal projection direction vectors
ui, i = 1,2, . . . d, which are determined by solving the following optimization problem:

U∗ = arg max
U

tr
(
UTSbU

)
tr(UTSwU)

(1)

where Sb and Sw are the between-class and within-class scatter matrices (as computed
in step 4 of the Algorithm 1). According to Fukunaga Koontz Discriminant Analysis
(FKT) [38], the optimal projection direction vectors ui are the eigenvectors of Ŝb i.e.,

Ŝbu = λu (2)

where Ŝb = PTSbP, P = QD−1/2 and Q & D are obtained by the diagonalization of the sum
Sb + Sw i.e., Sb + Sw = QDQT (steps 5–6 of Algorithm 1). The Equation (2) gives the optimal
vectors, which simultaneously maximize tr

(
UTSbU

)
and minimize tr

(
UTSwU

)
. Unlike

Linear Discriminant Analysis (LDA) [56], the inversion of Sw is not needed in this approach,

323

Mathematics 2022, 10, 1285

so it can tackle very high-dimensional data. Additionally, this approach seeks to find
optimal vectors that are orthogonal. As the dimension of the patch vectors bi related to the
intermediate CONV layers is usually very high, and we need filters that are independent,
so this approach is suitable for our design process. The problem of selecting the number of
filters in the convolutional layer is to select the eigenvectors uk, k = 1, 2, . . . L so that the
ratio γk = Trace(SFb)

Trace (SFw)
attains maximum value. Here the between-class scatter matrix SFb

and within-class matrix SFw are computed for each uk by projecting all activations ai
j in the

space spanned by uk (steps 7–8 of the Algorithm 1). It ensures to select the filters which
extract discriminative features. After selecting uk, k = 1, 2, . . . L, the CONV block with L
filters fk, k = 1, 2, . . . , L initialized with uk is introduced in DeepFKTNet. Then, a pooling
layer is added if needed (step 8–10 of the Algorithm 1).

Using the current architecture of DeepFKTNet, the set of activations Z = {Z1, Z2, . . . , ZC}
of X = {X1, X2, . . . , XC} is computed. These activations are used to determine whether to add

more layers to the net. It is decided by calculating the trace ratio TR =
Trace(S′

b)
Trace (S′

w)
, where S′

b
and S′

w are the between-class and within-class scatter matrices of the activations Z. If TR is
greater than the previous TR (PTR), it means that the addition of the current block of layers
introduced the discriminative potential to the network. This criterion ensures that the features
generated by DeepFKTNet have large inter-class variation and small intra-class scatter. To add
another CONV block, the steps 3–10 are repeated with Z. To reduce the size of feature maps for
computational effectiveness, pooling layers are added after the first and second CONV blocks.
As the kernels and their number are determined from the fingerprint images, each layer can
have a different number of filters.

It is to be noted that the eigenvector uk, which are used to specify the kernels of a
CONV layer, have the maximum γk and capture most of the variability in input fingerprint
images without redundancy in the form of independent features. The depth of a CNN
model (number of layers) and the number of kernels for each layer are important factors
that determine the model complexity. Step 7 of Algorithm 1 determines the best kernels that
ensure the preservation of maximum energy of the input image, and step 8 initializes these
kernels to be suitable for the fingerprint domain. The selected kernels extract the features
from fingerprint images so that the variability of the structures in fingerprint images is
maximality preserved. It is also important that the features must be discriminative (i.e.,
have large inter-class variance and small intra-class scatter as we go deeper in the network).
It is ensured using the trace ration TR = Trace(Sb)

Trace (Sw)
, the larger the value of the trace ratio,

the larger the inter-class variance and the smaller the intra-class scatter [57]. Step 11 in
Algorithm 1 allows adding CONV layers as long as TR is increasing and determines the
data-dependent depth of DeepFKTNet, as shown in Figure 2.

324

Mathematics 2022, 10, 1285

Algorithm 1: Design of the main DeepFKTNet Architecture

Input: The set X = {X1, X2, . . . , XC}, where Xi = {RFj, j = 1, 2, 3, . . . , ni} is the set of representative fingerprints of ith class.
Output: The main DeepFKTNet Architecture.

Step 1:
Initialize DeepFKTNet with input layer and set w = 7, h = 7, d = 1, and m (the number of filters) = 0 for the first layer;
PTR (previous TR) = 0.

Step 2: For i = 1, 2, 3, . . . , C
Compute Zi = {ai

j = RFj, for each RFj ∈ Xi

}
Step 3: For i = 1, 2, 3, . . . , C

Ai = ∅
For each ai

j ∈ Zi

Extract patches pj
1, pj

2, . . . , pj
m of size w × h with stride 1 from ai

j, vectorize them
into vectors of dimension D = w × h × d and append to Ai.

Step 4: Using A = [A1, A2, . . . , AC], compute

-between-class scatter matrix Sb =
C
∑

i=1
(1

ni
Ai Ji − 1

n AJ)(1
ni

Ai Ji − 1
n AJ)

T
, where Ji is an ni × ni matrix with all ones.

-within-class scatter matrices Sw =
C
∑

i=1
(Ai − 1

ni
Ai Ji)(Ai − 1

ni
Ai Ji)

T

Step 5: Diagonalize the sum ∑ = Sb + Sw i.e., ∑ = QDQT and transform the scatter matrices
using the transform matrix P = QD− 1

2 . i.e., Ŝb = PTSbP, Ŝw = PTSwP.
Step 6: Compute eigenvectors uk, k = 1, 2, . . . , D of Ŝb such that Ŝbu = λu
Step 7: For each eigenvector uk, k = 1, 2, . . . , D

-Reshape uk to a filter fk of size w × h × d
-Compute Y = {Y1, Y2, . . . , YC}, where Yi =

{
fk ∗ ai

j, j = 1, 2, . . . , ni

}
-Compute the between scatter matrix SFb and within scatter matrix SFw from Y.
-Compute the trace ratio γk = Trace(SFb)

Trace (SFw)

Step 8: Select L filters fk, k = 1, 2, . . . , L corresponding to γk > 0 (as shown in Figure 2 for layer 1).
Step 9: Add the CONV block to DeepFKTNet with filters fk, k = 1, 2, . . . , L. Update m = m + 1.
Step 10: If m = 1 or 2, add a max pool layer with pooling operation of size 2 × 2 and stride 2 to

Deep FKTNet.
Step 11: Compute Z = {Z1, Z2, . . . , ZC}, where Zi = {ai

j = DeepFKTNet(RFj), for each RFj ∈ Xi

}
Step 12: Using Z = {Z1, Z2, . . . , ZC}, compute the ratio TR =

Trace(S′
b)

Trace (S′
w)

If PTR ≤ TR, set PTR = TR, w = 3, h = 3, d = L and go to Step 3, otherwise stop.

Figure 2. Selection of best filters for layer1 of DeepFKTNet model for FingerPass dataset.

2.3. Addition of Global Pool and Softmax Layers

Activation of the last CONV block is with dimension h × w × L, and after flattening,
it is fed to FC layers; the number of parameters is huge and leads to overfitting. To reduce
the number of parameters and spatial dimensions of the last CONV block activation, we

325

Mathematics 2022, 10, 1285

feed it to global average pooling (GAP) and global max-pooling (GMP) layers [58]. The
GAP average all the hw values, whereas the GMP takes into account the contributions of
the neurons of maximum response; the number of neurons in the FC layer is h × w × L,
and it is reduced to 1 × 1 × L when only GMP or GAP is introduced. We concatenate the
output of GMP and GAP layers to overcome the shortcoming of each and then feed it to
the FC layer, followed by the SoftMax layer.

2.4. Fine-Tuning the Model

The DeepFKTNet model is evaluated using the challenge multisensory FingerPass
dataset [59], and it is compared to the well-known deep models: ResNet [50] and DenseNet [55]
pre-trained on the ImageNet dataset and fine-tuned using the same dataset as DeepFKTNet.
For further validation, we evaluated our method using the challenge FVC2004 dataset [60] and
compared it to the state-of-the-art methods. For each dataset, we select the most representative
fingerprint images from the training set using K-medoids and LGDBP descriptor and then
built its adaptive DeepFKTNet architecture using Algorithm 1.

2.4.1. Datasets and the Adaptive Architectures

To verify the performance of the DeepFKTNet model on benchmark datasets, we used
FingerPass and FVC2004 datasets. The FingerPass is a multi-sensor dataset; it was collected
using nine different optical and capacitive sensors and two interaction types, i.e., press
and sweep. The FingerPass contains a total of fingers separated into nine subsets based on
sensors; each subset contains 12 impressions of 8 fingers from 90 persons.

FVC2004 dataset contains noisy images acquired by live scan devices. It has 4 sets: DB1
collected using optical V300 sensor, DB2 collected using optical U 4000, DB3 collected using
thermal sweeping sensor, and DB4 is a synthetic fingerprint dataset. Each one contains
880 fingerprint images [60]. We categorized FVC2004 fingerprints into four categories: arch,
left loop, right loop, and whorl. We merge the 4 sets of FVC2004 into one set of four classes;
it is now a multi-sensor fingerprint dataset.

To setup best parameters for each DeepFKTNet model, the hyperparameter opti-
mization software framework Optuna [61] is used to select the best hyperparameters for
fine-tuning the DeepFKTNet model. Using Algorithms 1, the DeepFKTNet architecture
obtained for the FVC2004 dataset consists of 5 CONV blocks, as shown in Figure 3a,
whereas the architecture constructed for the FingerPass dataset has11 blocks, as depicted
in Figure 3b. The number of filters for each CONV block and the depth of each model for
each fingerprint dataset are determined using Algorithm 1. Using the Optuna optimization
algorithm, we fine-tuned the hyperparameters and tested three optimizers (Adam, SGD,
and RMSprop), learning rate between 1 × 10−1, and 1 × 10−5, patch size (5, 10, 15, 20,
30, 50), activation functions (Relu, LRelu, and Sigmoid), and dropout between 0.25 and
0.50. After training for 10 epochs, the best hyper-parameters for each dataset are shown
in Table 1.

Table 1. The optimized hyperparameters using Optuna algorithm.

Dataset
Activate
Function

Learning
Rate

Pach’s Size Optimizer Dropout

FingerPass Relu 0.0005 16 RMSprop 0.45
FVC2004 Relu 0.0008 10 RMSprop 0.38

326

Mathematics 2022, 10, 1285

LRelu

Batch
normalization

3x3 conv

CONV block

So
ftm

ax
 la

ye
r

cla
ss

ifi
ca

tio
n

In
pu

t

Co
nv

 b
lo

ck
 1

Co
nv

 b
lo

ck
 2

Co
nv

 b
lo

ck
 3

Co
nv

 b
lo

ck
 4

Co
nv

 b
lo

ck
 1

0

M
ax

 B
oo

lin
g

M
ax

 B
oo

lin
g

7
x 7

 co
nv

(a
)

So
ftm

ax
 la

ye
r

Cl
as

sif
ica

tio
n

In
pu

t

Co
nv

 b
lo

ck
 1

Co
nv

 b
lo

ck
 2

Co
nv

 b
lo

ck
 3

Co
nv

 b
lo

ck
 4

M
ax

 B
oo

lin
g

M
ax

 B
oo

lin
g

7
x 7

 co
nv

(b
)

(a
)

(b
)

24 12 92 46 23 11 90 45 22 11 11

25 12 95 47 23

Co
nv

 b
lo

ck
 5

Co
nv

 b
lo

ck
 6

Co
nv

 b
lo

ck
 7

Co
nv

 b
lo

ck
 8

Co
nv

 b
lo

ck
 9

Figure 3. (a) FVC2004 FKTNET architecture. (b) Fingerprint FKTNET architecture.

2.4.2. Evaluation Procedure

For evaluation, we manually separated the FingerPass dataset into four classes (arch,
left loop, right loop, and whorl). We divided the FingerPass dataset into three sets (80%
training, 10% validation, and 10% testing) using two different scenarios. In scenario-1, the
fingers from each sensor were divided into training, validation, and test sets. In scenario-2,
fingers in the training, validation, and test sets are from different sensors.

For the FVC2004 dataset, we divided the dataset into training (80%), validation (10%),
and testing (10%), keeping the balance. For performance evaluation, we used four com-
monly used metrics: accuracy (ACC), true positive rate (TPR), true negative rate (TNR), and
Kappa [62–65]. The overall average of metrics has been computed. The used metrics [66,67]
to evaluate the proposed system are:

ACC =
TP + TN

TP + FP + TN + FN
(3)

TPR =
TP

TP + FN
(4)

TNR =
TN

TN + FP
(5)

Kappa =
P0 − Pe

1 − Pe
(6)

where TP, TN, FP, and FN are the numbers are true positives, true negatives, false positives,
and false negatives; P0 and Pe are calculated from the confusion matrix; the detail is given
in [68]. To compute TP, TN, FP, and FN, one class, in turn, is taken as positive, the other
classes are assumed to be negative, and the TPR and TNR are calculated. Finally, mean
TPR and TNR are calculated by averaging TPR and TNR over all classes. In the results, the
mean TPR and TNR are reported.

3. Experimental Results

This section presents the experimental results of the DeepFKTNet models designed
for the two datasets.

We designed the DeepFKTNet model for each dataset and fine-tuned it using the
training sets. We validated its performance on FingerPass and FVC2004 datasets and
compared it with the widely used CNN models ResNet [50] and DenseNet [55], which were
pre-trained on the ImageNet dataset and fine-tuned on the same training set that was used
for the DeepFKTNet model. In the rest of the paper, we name the DeepFKTNet models as

327

Mathematics 2022, 10, 1285

DeepFKTNet-11 and DeepFKTNet-5, designed for the FingerPass and the FV2004 datasets,
respectively.

The results of the three models DeepFKTNet-11, ResNet152, and DenseNet121 for
scenario-1 are shown in Figure 4a and Table 2a. The DeepFKTNet-11 model generated
adaptively on the FingerPass dataset outperforms the state-of-the-art ResNet152 and
DenseNet121 models in terms of all metrics. Though DenseNet121 is not better than
DeepFKTNet-11, it outperforms ResNet152 in terms of all metrics. Figure 4b and Table 2b
show the results for scenario-2 on the FingerPass dataset. In this scenario, the results
obtained with the DeepFKTNet-11 are almost similar to those obtained in scenario-1. The
DeepFKTNet-11 outperforms ResNet152 and DenseNet121. Figure 5 illustrates the con-
fusion matrices for both scenarios. These give insights into the system performance for
different classes.

Figure 4. Comparison between FKTNET-11 and pre-trained ResNet-152 and DensNet-121 on Finger-
print dataset (4 classes) using scenario 1 (a) and scenario 2 (b).

Table 2. Comparison between FKTNET-11 and pre-trained ResNet-152 and DensNet-121 on Finger-
print dataset scenario 1 (a) and scenario 2 (b).

(a)

ACC% SE% SP% AUC% Kappa%

FKTNet-11 97.84 93.25 98.28 95.21 93.05
ResNet152 91.22 78.22 92.05 86.11 80.32

DensNet121 93.55 80.22 94.44 87.55 82.11

(b)

ACC% SE% SP% AUC% Kappa%

FKTNet-11 98.9 93.6 98.5 96.12 93.93
ResNet152 92.22 80.22 93.05 86.5 81.62

DensNet121 94.85 84.22 96.12 90.21 84.55

328

Mathematics 2022, 10, 1285

Figure 5. Confusion matrix based on FKTNET-11 model for scenario 1 and scenario 2.

The DeepFKTNet-5 model was adaptively designed for the challenge FVC2004 dataset;
it was evaluated using the above evaluation procedure. We fine-tuned the developed
DeepFKTNet-5 model and the pre-trained models ResNet152 and DenseNet121 using the
same dataset. The results are shown in Figure 6; the DeepFKTNet-5 model outperforms
the state-of-the-art ResNet152 and DenseNet121 models in terms of all metrics. Figure 7
illustrates the confusion matrices for the FVC2004 dataset. These give insights into the
system performance for different classes.

60

70

80

90

100

ACC SE SP Kappa

FVC2004

FKTNet-5 ResNet152 DensNet121

Figure 6. Comparison between FKTNET-5 and pre-trained ResNet-152 and DensNet-121 on FVC2004
dataset (four classes).

Figure 7. Confusion matrix based on FKTNET-5 model for FVC2004 dataset.

4. Discussions

We addressed the multi-sensor fingerprint classification problem and proposed a novel
method for automatically generating a custom-designed DeepFKTNet model from the
target fingerprint dataset. The number of layers and filters for each layer are not specified
randomly; they are determined from the best representative fingerprints selected using
the K-medoids clustering algorithm and LDGBP descriptor from the fingerprint datasets.

329

Mathematics 2022, 10, 1285

The generated DeepFKTNet models are shallower than the state-of-the-art models, robust,
involve a small number of learnable parameters, and suitable for fingerprint classification.

The results of the DeepFKTNet models on the FingerPass and FVC2004 datasets
(Figures 4 and 6) indicate that they outperform the famous deep models ResNet152 and
DenseNet121, which were pre-trained on the ImageNet dataset and fine-tuned using the
same fingerprint datasets. The architecture of a DeepFKTNet model is drawn directly from
the dataset; the internal structures of the data determine its design. For this reason, the
DeepFKTNet model has a compact size and yields better classification results. Further, it
does not suffer from the overfitting problem (see Table 3) since it involves a small number
of learnable parameters (see Table 4), which is comparable with the number of training
examples. If the number of learnable parameters is huge as compared to the training
examples, the overfitting problem cannot be avoided. The training and testing accuracies
shown in Table 3 indicate that the models do not suffer from overfitting. In addition,
DeepFKTNet models are trained using the available training data, and the pre-training is
not needed, unlike ResNet152 and DenseNet121.

Table 3. The train and test accuracy of DeepFKTNet-11 models for two scenarios.

Model Train ACC Test ACC

Scenarios 1 98.65 97.84
Scenarios 2 99.11 98.9

Table 4. The comparison between generated DeepFKTNet models from the two datasets and pre-
trained ResNet152 and DenseNet121. K is for kilobyte and G is for Gigabyte.

Model DeepFKTNet-5 DeepFKTNet-11 ResNet152 DenseNet121

number of
params 58.456 k 119.599 k 60.19 M 7.98 M

FLOPs 0.5 G 0.9 G 5.6 G 1.44 G

The space complexity of a CNN model is measured in terms of the number of learnable
parameters, whereas the number of FLOPS determines its time complexity. Table 4 gives the
statistics of the space and time complexities of the models. Overall, the DeepFKTNet model
got competitive performance with fewer layers and parameters. The DeepFKTNet models
designed for the two datasets have a small number of parameters, in thousands against
millions in ResNet152 and DensNet121 models. DeepFKTNet-5 and DeepFKTNet-11 have
fewer FLOPs than ResNet152 and DensNet121 and better performance. The DeepFKTNet-
11 is relatively more complex than DeepFKTNet-5; the reason is that the FingerPass dataset
involves a large number of sensors as compared to the FVC2004 dataset, and there is more
variety of patterns in the FingerPass dataset, and to encode the discriminative pattern,
more rich structure is needed.

Further, for investigating which features the DeepFKTNet models focus on for decision
making, we employed GradCam [69]. Figure 8 shows some heat maps generated with
GradCam for DeepFKTNet-11. The fingerprint images from class arches and their GradCam
visualizations are shown in Figure 8a,b, the fingerprint images from the class left loop and
their GradCam visualizations are shown in Figure 8c,d. Figure 8e,f depicts fingerprint
images from the class right loop and their GradCam visualization, whereas Figure 8g,h
show fingerprint images from the class whorls and their GradCam visualizations. The
visual analysis of the decision-making process of DeepFKTNet shows that it concentrates
on the discriminative regions of fingerprints and extracts class discriminative features.

330

Mathematics 2022, 10, 1285

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Visualizations of activation maps using the GradCam method for four samples from different
classes of FingerPass dataset: (a) arches finger; (b) arches’s gradcam; (c) left loop finger; (d) left loop’s
gradcam; (e) right loop finger; (f) right loop’s gradcam; (g) whorls finger; and (h) whorls gradcam.

For a fair comparison, the DeepFKTNet-5 has been compared with the state-of-the-art
fingerprint classification methods, which were validated on the benchmark public FVC2004
dataset; the comparison results are given in Table 5.

The DeepFKTNet-5 model outperforms the state-of-the-art methods (handcraft and
CNN methods) on the same dataset in terms of accuracy. The method of Jeon et al. [70],
despite being a complex ensemble of CNN models, got an accuracy of 97.2%, which is less
than that of DeepFKTNet-5. Zia et al. [33] employed B-DCNNs with five convolution layers
and two FC layers (with 1024 and 512 neurons) for fingerprint classification and validated
on the FVC2004 dataset; it does not yield better accuracy than that of DeepFKTNet-5 (95.3%
vs. 98.89%). Its complexity is high; it has more FLOPs (0.65 G vs. 0.5 G) and more learnable
parameters (38.66 M vs. 58.456 k). Nguyen et al. [34] employed a two-stage CNN model
for enhancing and then training and prediction. They used LBCNN [71] method in the
first stage, which has 0.352 M learnable parameters, and then employed a three-ternary
model for training and prediction. They got an accuracy of 96.1% based on FVC2004 (three
classes), which is less than DeepFKTNet-5. Nahar et al. [35] used a modified LNet-5 model
for fingerprint classification; they got 99.1% accuracy but with only a subset (DB1) from
FVC2004, whereas the DeepFKTNet-5 model evaluated on the combined multi-sensor
dataset of the four datasets (DB1, DB2, DB3, and DB4) from FVC2004. Also, the LNet-5
has a higher number of parameters, 19.25 M and 1.42 G FLOPs vs. 58.456 k and 0.5 G
FLOPs of DeepFKTNet-5. The reason for the better performance and less complexity of
DeepFKTNet-5 is that it is custom-designed, keeping in view the internal discriminative
structures of fingerprints.

331

Mathematics 2022, 10, 1285

Table 5. Comparison between DeepFKTNet-5 and the state-of-the-art methods.

Paper Method
Performance (%)

ACC SE SP Kappa

Gupta et al. [72] 2015 Singular point 97.80 - - -
Darlow et al. [73] 2017 Minutiae and DL 94.55 - - -
Andono et al. [74] 2018 Bag-of-Visual-Words 90 - - -

Saeed et al. [19] 2018 statistics of D-SIFT descriptor 97.40 - - -
Saeed et al. [18] 2018 Modified HOG descriptor 98.70 - - -
Jeon et al. [70] 2017 Ensemble CNN model 97.2 - - -
Zia et al. [33] 2019 B-DCNNs 95.3

Nguyen et al. [34] 2019 CNN (tested on 3 classes of FVC2004) 96.1
Nahar et al. [35] 2022 Modified LeNet (tested on FVC2004-DB1) 99.1

DeepFKTNet-5 DeepFKTNet model 98.89 95.46 99.18 96.82

5. Conclusions

We introduced a technique for automatically creating a custom-designed CNN model
for multi-sensor fingerprint categorization. Since CNN models contain a large number of
parameters and are designed randomly, we used the FKT approach to build a low-cost,
high-speed CNN model tailored for the target fingerprint dataset. The developed DeepFK-
TNet model is data-dependent, with a distinctive architecture for each fingerprint dataset.
DeepFKTNet-11 for the FigerPass dataset and DeepFKTNet-5 for FVC2004 outperform
pre-trained deep ResNet152 and DenseNet121 models on identical datasets and assessment
processes. The performance, complexity, and number of parameters of the DeepFKTNet
models created are substantially fewer than those of ResNet152 and DenseNet. Compared
to the state-of-the-art techniques on the FVC2004 dataset, the DeepFKTNet-5 model is
simpler in terms of complexity and parameter count and achieves comparable performance.
In future work, we will enhance DeepFKTNet to address the problem of cross-sensor
fingerprint verification.

Author Contributions: Conceptualization, F.S. and M.H.; methodology, M.H. and F.S.; software,
F.S.; validation, F.S., M.H. and H.A.A.; formal analysis, H.A.A. and M.H.; investigation F.S., M.H.;
resources, F.S. and H.A.A.; data curation, F.S., M.H.; writing—original draft preparation, F.S.; writing—
review and editing, M.H.; visualization, H.A.A.; supervision, M.H.; project administration, M.H.;
funding acquisition, M.H and H.A.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This Project was funded by the National Plan for Science, Technology and Innovation
(MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, under
Project no. 13-INF946-02.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Used public domain datasets, FVC2004 dataset: available online:
http://bias.csr.unibo.it/fvc2004/download.asp (accessed on 26 February 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Grabatin, M.; Steinke, M.; Pöhn, D.; Hommel, W. A Matrix for Systematic Selection of Authentication Mechanisms in Challenging
Healthcare related Environments. In Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems,
Virtually, TN, USA, 28 April 2021; pp. 88–97.

2. Maltoni, D.; Maio, D.; Jain, A.K.; Prabhakar, S. Handbook of Fingerprint Recognition; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2009.

3. Pandey, F.; Dash, P.; Samanta, D.; Sarma, M. ASRA: Automatic singular value decomposition-based robust fingerprint image
alignment. Multimed. Tools Appl. 2021, 80, 15647–15675. [CrossRef]

332

Mathematics 2022, 10, 1285

4. Khosroshahi, M.E.; Woll-Morison, V. Visualization and fluorescence spectroscopy of fingerprints on glass slide using combined
405 nm laser and phase contrast microscope. J. Vis. 2021, 24, 665–670. [CrossRef]

5. Banik, A.; Ghosh, K.; Patil, U.K.; Gayen, S. Identification of molecular fingerprints of natural products for the inhibition of breast
cancer resistance protein (BCRP). Phytomedicine 2021, 85, 153523. [CrossRef] [PubMed]

6. Lugini, L.; Marasco, E.; Cukic, B.; Gashi, I. Interoperability in fingerprint recognition: A large-scale empirical study. In Proceedings
of the 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems and Networks Workshop (DSN-W), Budapest, Hungary,
24–27 June 2013; pp. 1–6.

7. Alrashidi, A.; Alotaibi, A.; Hussain, M.; AlShehri, H.; AboAlSamh, H.A.; Bebis, G. Cross-Sensor Fingerprint Matching Using
Siamese Network and Adversarial Learning. Sensors 2021, 21, 3657. [CrossRef]

8. Priesnitz, J.; Rathgeb, C.; Buchmann, N.; Busch, C.; Margraf, M. An overview of touchless 2D fingerprint recognition. EURASIP J.
Image Video Process. 2021, 2021, 1–28. [CrossRef]

9. AlShehri, H.; Hussain, M.; AboAlSamh, H.; AlZuair, M. A large-scale study of fingerprint matching systems for sensor interoper-
ability problem. Sensors 2018, 18, 1008. [CrossRef]

10. Alshehri, H.; Hussain, M.; Aboalsamh, H.A.; Emad-Ul-Haq, Q.; Alzuair, M.; Azmi, A.M. Alignment-free cross-sensor fingerprint
matching based on the co-occurrence of ridge orientations and Gabor-HoG descriptor. IEEE Access 2019, 7, 86436–86452.
[CrossRef]

11. Marasco, E.; Feldman, A.; Romine, K.R. Enhancing Optical Cross-Sensor Fingerprint Matching Using Local Textural Features. In
Proceedings of the 2018 IEEE Winter Applications of Computer Vision Workshops (WACVW), Lake Tahoe, NV, USA, 15 March
2018; pp. 37–43.

12. Lin, C.; Kumar, A. A CNN-based framework for comparison of contactless to contact-based fingerprints. IEEE Trans. Inf. Forensics
Secur. 2018, 14, 662–676. [CrossRef]

13. Galar, M.; Derrac, J.; Peralta, D.; Triguero, I.; Paternain, D.; Lopez-Molina, C.; García, S.; Benítez, J.M.; Pagola, M.; Barrenechea, E.
A survey of fingerprint classification Part I: Taxonomies on feature extraction methods and learning models. Knowl.-Based Syst.
2015, 81, 76–97. [CrossRef]

14. Galar, M.; Derrac, J.; Peralta, D.; Triguero, I.; Paternain, D.; Lopez-Molina, C.; García, S.; Benítez, J.M.; Pagola, M.; Barrenechea, E.
A survey of fingerprint classification Part II: Experimental analysis and ensemble proposal. Knowl.-Based Syst. 2015, 81, 98–116.
[CrossRef]

15. Guo, J.-M.; Liu, Y.-F.; Chang, J.-Y.; Lee, J.-D. Fingerprint classification based on decision tree from singular points and orientation
field. Expert Syst. Appl. 2014, 41, 752–764. [CrossRef]

16. Bhalerao, B.V.; Manza, R.R. Development of Image Enhancement and the Feature Extraction Techniques on Rural Fingerprint
Images to Improve the Recognition and the Authentication Rate. IOSR J. Comput. Eng. 2013, 15, 1–5.

17. Dorasamy, K.; Webb, L.; Tapamo, J.; Khanyile, N.P. Fingerprint classification using a simplified rule-set based on directional
patterns and singularity features. In Proceedings of the 2015 International Conference on Biometrics (ICB), Phuket, Thailand,
19–22 May 2015; pp. 400–407.

18. Saeed, F.; Hussain, M.; Aboalsamh, H.A. Classification of live scanned fingerprints using histogram of gradient descriptor.
In Proceedings of the 2018 21st Saudi Computer Society National Computer Conference (NCC), Riyadh, Saudi Arabia, 25–26
April 2018; pp. 1–5.

19. Saeed, F.; Hussain, M.; Aboalsamh, H.A. Classification of Live Scanned Fingerprints using Dense SIFT based Ridge Orientation
Features. In Proceedings of the 2018 1st International Conference on Computer Applications & Information Security (ICCAIS),
Riyadh, Saudi Arabia, 4–6 April 2018; pp. 1–4.

20. Dhaneshwar, R.; Kaur, M.; Kaur, M. An investigation of latent fingerprinting techniques. Egypt. J. Forensic Sci. 2021, 11, 1–15.
[CrossRef]

21. Jung, H.-W.; Lee, J.-H. Noisy and incomplete fingerprint classification using local ridge distribution models. Pattern Recognit.
2015, 48, 473–484. [CrossRef]

22. Vegad, S.; Shah, Z. Fingerprint Image Classification. In Data Science and Intelligent Applications; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 545–552.

23. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J. Recent advances in convolutional
neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

24. Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot.
2020, 37, 362–386. [CrossRef]

25. Abou Arkoub, S.; El Hassani, A.H.; Lauri, F.; Hajjar, M.; Daya, B.; Hecquet, S.; Aubry, S. Survey on Deep Learning Techniques for
Medical Imaging Application Area. In Machine Learning Paradigms; Springer: Berlin/Heidelberg, Germany, 2020; pp. 149–189.

26. Dong, S.; Wang, P.; Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 2021, 40, 100379. [CrossRef]
27. Mishra, A.; Dehuri, S. An experimental study of filter bank approach and biogeography-based optimized ANN in fingerprint

classification. In Nanoelectronics, Circuits and Communication Systems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 229–237.
28. Jian, W.; Zhou, Y.; Liu, H. Lightweight Convolutional Neural Network Based on Singularity ROI for Fingerprint Classification.

IEEE Access 2020, 8, 54554–54563. [CrossRef]
29. Nahar, P.; Tanwani, S.; Chaudhari, N.S. Fingerprint classification using deep neural network model resnet50. Int. J. Res. Anal. Rev.

2018, 5, 1521–1537.

333

Mathematics 2022, 10, 1285

30. Rim, B.; Kim, J.; Hong, M. Fingerprint classification using deep learning approach. Multimed. Tools Appl. 2020, 1–17. [CrossRef]
31. Ali, S.F.; Khan, M.A.; Aslam, A.S. Fingerprint matching, spoof and liveness detection: Classification and literature review. Front.

Comput. Sci. 2021, 15, 1–18. [CrossRef]
32. Bolhasani, H.; Mohseni, M.; Rahmani, A.M. Deep learning applications for IoT in health care: A systematic review. Inform. Med.

Unlocked 2021, 23, 100550. [CrossRef]
33. Zia, T.; Ghafoor, M.; Tariq, S.A.; Taj, I.A. Robust fingerprint classification with Bayesian convolutional networks. IET Image Process.

2019, 13, 1280–1288. [CrossRef]
34. Nguyen, H.T.; Nguyen, L.T. Fingerprints classification through image analysis and machine learning method. Algorithms 2019,

12, 241. [CrossRef]
35. Nahar, P.; Chaudhari, N.S.; Tanwani, S.K. Fingerprint classification system using CNN. Multimed. Tools Appl. 2022, 1–13.

[CrossRef]
36. Saeed, F.; Hussain, M.; Aboalsamh, H.A. Method for Fingerprint Classification. U.S. Patent 9,530,042, 13 June 2016.
37. Zhang, Q.; Couloigner, I. A new and efficient k-medoid algorithm for spatial clustering. In Proceedings of the International

Conference on Computational Science and Its Applications, Singapore, 9–12 May 2005; pp. 181–189.
38. Huo, X. A statistical analysis of Fukunaga-Koontz transform. IEEE Signal Process. Lett. 2004, 11, 123–126. [CrossRef]
39. Dhillon, A.; Verma, G.K. Convolutional neural network: A review of models, methodologies and applications to object detection.

Prog. Artif. Intell. 2020, 9, 85–112. [CrossRef]
40. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;

Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8,
1–74. [CrossRef]

41. Abdullah, S.M.S.A.; Ameen, S.Y.A.; Sadeeq, M.A.; Zeebaree, S. Multimodal emotion recognition using deep learning. J. Appl. Sci.
Technol. Trends 2021, 2, 52–58. [CrossRef]

42. Jena, B.; Saxena, S.; Nayak, G.K.; Saba, L.; Sharma, N.; Suri, J.S. Artificial intelligence-based hybrid deep learning models for
image classification: The first narrative review. Comput. Biol. Med. 2021, 137, 104803. [CrossRef]

43. Lu, J.; Tan, L.; Jiang, H. Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture
2021, 11, 707. [CrossRef]

44. Fang, W.; Love, P.E.; Luo, H.; Ding, L. Computer vision for behaviour-based safety in construction: A review and future directions.
Adv. Eng. Inform. 2020, 43, 100980. [CrossRef]

45. Lavanya, P.; Sasikala, E. Deep learning techniques on text classification using Natural language processing (NLP) in social
healthcare network: A comprehensive survey. In Proceedings of the 2021 3rd International Conference on Signal Processing and
Communication (ICPSC), Coimbatore, India, 13–14 May 2021; pp. 603–609.

46. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.
Intell. Rev. 2020, 53, 5455–5516. [CrossRef]

47. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25. [CrossRef]

48. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
49. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

50. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

51. Hamel, P.; Eck, D. Learning features from music audio with deep belief networks. In Proceedings of the ISMIR, Utrecht, The
Netherlands, 9–13 August 2010; pp. 339–344.

52. Khan, A.; Sohail, A.; Ali, A. A new channel boosted convolutional neural network using transfer learning. arXiv 2018,
arXiv:1804.08528.

53. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
54. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,

20, 53–65. [CrossRef]
55. Huang, G.; Liu, Z.; Weinberger, K.; van der Maaten, L. Densely connected convolutional networks. CVPR 2017. arXiv 2016,

arXiv:1608.06993.
56. Izenman, A.J. Linear discriminant analysis. In Modern Multivariate Statistical Techniques; Springer: Berlin/Heidelberg, Germany,

2013; pp. 237–280.
57. Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; Mullers, K.-R. Fisher discriminant analysis with kernels. In Proceedings of the

Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No. 98th8468),
Madison, WI, USA, 25 August 1999; pp. 41–48.

58. Cook, A. Global Average Pooling Layers for Object Localization. 2017. Available online: https://alexisbcook.github.io/2017
/globalaverage-poolinglayers-for-object-localization/ (accessed on 19 August 2019).

59. Jia, X.; Yang, X.; Zang, Y.; Zhang, N.; Tian, J. A cross-device matching fingerprint database from multi-type sensors. In Proceedings
of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 3001–3004.

334

Mathematics 2022, 10, 1285

60. Maio, D.; Maltoni, D.; Cappelli, R.; Wayman, J.L.; Jain, A.K. FVC2004: Third fingerprint verification competition. In Proceedings
of the International Conference on Biometric Authentication, Hong Kong, China, 15–17 July 2004; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 1–7.

61. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK,
USA, 4–8 August 2019; pp. 2623–2631.

62. Gao, Z.; Li, J.; Guo, J.; Chen, Y.; Yi, Z.; Zhong, J. Diagnosis of Diabetic Retinopathy Using Deep Neural Networks. IEEE Access
2019, 7, 3360–3370. [CrossRef]

63. Quellec, G.; Charrière, K.; Boudi, Y.; Cochener, B.; Lamard, M. Deep image mining for diabetic retinopathy screening. Med. Image
Anal. 2017, 39, 178–193. [CrossRef] [PubMed]

64. Chowdhury, A.R.; Chatterjee, T.; Banerjee, S. A Random Forest classifier-based approach in the detection of abnormalities in the
retina. Med. Biol. Eng. Comput. 2019, 57, 193–203. [CrossRef]

65. Zhang, W.; Zhong, J.; Yang, S.; Gao, Z.; Hu, J.; Chen, Y.; Yi, Z. Automated identification and grading system of diabetic retinopathy
using deep neural networks. Knowl. -Based Syst. 2019, 175, 12–25. [CrossRef]

66. Haghighi, S.; Jasemi, M.; Hessabi, S.; Zolanvari, A. PyCM: Multiclass confusion matrix library in Python. J. Open Source Softw.
2018, 3, 729. [CrossRef]

67. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2011,
arXiv:2010.16061.

68. Fleiss, J.L.; Cohen, J.; Everitt, B.S. Large sample standard errors of kappa and weighted kappa. Psychol. Bull. 1969, 72, 323.
[CrossRef]

69. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

70. Jeon, W.-S.; Rhee, S.-Y. Fingerprint pattern classification using convolution neural network. Int. J. Fuzzy Log. Intell. Syst. 2017, 17,
170–176. [CrossRef]

71. Juefei-Xu, F.; Naresh Boddeti, V.; Savvides, M. Local binary convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 19–28.

72. Gupta, P.; Gupta, P. A robust singular point detection algorithm. Appl. Soft Comput. 2015, 29, 411–423. [CrossRef]
73. Darlow, L.N.; Rosman, B. Fingerprint minutiae extraction using deep learning. In Proceedings of the 2017 IEEE International

Joint Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 22–30.
74. Andono, P.; Supriyanto, C. Bag-of-visual-words model for fingerprint classification. Int. Arab J. Inf. Technol. 2018, 15, 37–43.

335

Citation: Chatterjee, S.; Hazra, D.;

Byun, Y.-C.; Kim, Y.-W. Enhancement

of Image Classification Using

Transfer Learning and GAN-Based

Synthetic Data Augmentation.

Mathematics 2022, 10, 1541. https://

doi.org/10.3390/math10091541

Academic Editors: Florin Leon,

Mircea Hulea, Marius Gavrilescu and

Stefano De Marchi

Received: 14 March 2022

Accepted: 29 April 2022

Published: 4 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Enhancement of Image Classification Using Transfer Learning
and GAN-Based Synthetic Data Augmentation

Subhajit Chatterjee 1, Debapriya Hazra 1, Yung-Cheol Byun 1,* and Yong-Woon Kim 2

1 Department of Computer Engineering, Jeju National University, Jeju 63243, Korea;
subhajitchatterjee@stu.jejunu.ac.kr (S.C.); debapriyah@jejunu.ac.kr (D.H.)

2 Centre for Digital Innovation, CHRIST University (Deemed to be University),
Bengaluru 560029, Karnataka, India; jonathan.kim@christuniversity.in

* Correspondence: ycb@jejunu.ac.kr

Abstract: Plastic bottle recycling has a crucial role in environmental degradation and protection.
Position and background should be the same to classify plastic bottles on a conveyor belt. The
manual detection of plastic bottles is time consuming and leads to human error. Hence, the automatic
classification of plastic bottles using deep learning techniques can assist with the more accurate
results and reduce cost. To achieve a considerably good result using the DL model, we need a large
volume of data to train. We propose a GAN-based model to generate synthetic images similar to the
original. To improve the image synthesis quality with less training time and decrease the chances
of mode collapse, we propose a modified lightweight-GAN model, which consists of a generator
and a discriminator with an auto-encoding feature to capture essential parts of the input image and
to encourage the generator to produce a wide range of real data. Then a newly designed weighted
average ensemble model based on two pre-trained models, inceptionV3 and xception, to classify
transparent plastic bottles obtains an improved classification accuracy of 99.06%.

Keywords: deep learning; generative adversarial networks; image classification; transfer learning;
plastic bottle

MSC: 68U10

1. Introduction

Due to flexibility in terms of cost, light weight, processing, and ease of carrying, plastic
bottles are the most widely used material in daily life and industrial fields. Every day,
tons of plastic bottles are dumped as waste, and in addition, toxic, hazardous materials in
the trash are polluting the environment day by day [1]. An essential strategy for dealing
with this issue is the recycling process. Recycling plastic bottles can be used further in
new products, automobiles, textile, etc. Plastic bottle recycling has recently emerged
as a significant part of the plastic bottle industry, potentially saving fossil fuels while
simultaneously lowering greenhouse gas emissions [2].

The recycling task involves a lot of labor cost, and the DL approach helps in the way
to automatically classify waste plastic bottles for recycling tasks [3]. Much research has
been conducted to find a category of cost-effective PET bottle classifiers. PET bottles can
be divided into several categories based on chemical resins, transparency, and color [4].
PET plastic bottles have the highest recycling values compared to other plastic bottles.
The Ministry of Environment announced on 5 February that it would start a pilot project
for the separation and disposal of transparent plastic bottles from this month. At the
beginning of this month, five regions were phased out individually, including Busan,
Cheonan (Chungnam), Gimhae (Gyeongnam), Jeju, and Seogwipo. One of the changes
will require companies to label plastic bottles that are easy to remove. Legislative changes
will also bring system reforms to make recycling more convenient. Plastic bottles with

Mathematics 2022, 10, 1541. https://doi.org/10.3390/math10091541 https://www.mdpi.com/journal/mathematics337

Mathematics 2022, 10, 1541

easy-to-tear labels are produced in Japan. Designed to protect the environment from plastic
pollution, it promotes the growth and innovation of industry and human life through
comprehensive transformation: the production, use, and recycling of plastic bottles. PET
bottles must be colorless and unlabeled to be completely recycled. It is only possible to
crush transparent plastic bottles without labels into thin plastic flakes. These materials can
be utilized to create new plastic items.

Plastics are an inextricable aspect of human life, particularly in countries experiencing
rapid economic growth. Drinking water bottles and beverage bottles are two of the most
common plastic applications in everyday life. Plastic bottles must be separated according
to recyclable and non-recyclable to improve plastic bottle waste management. Recycling
is the process of rebirth; plastic bottles that have been discarded are recycled into high-
quality consumer goods. Recycled clear plastic bottles have been resurrected as garments,
eco-friendly purses, and cosmetic bottles, among other high-quality items. Previously, all
discarded plastic bottles used to make garments and other products in South Korea were
imported from abroad. Only 10% of the old plastic bottles collected in the community
were recycled into high-quality consumer goods. Another point to consider is that the
production of plastic emits a substantial quantity of greenhouse gases, which contributes to
global warming. Because recycling reduces crude oil and energy consumption, greenhouse
gas emissions, such as carbon dioxide, also decrease significantly. Transparent plastic
bottles are mainly used to make fiber materials for clothing, with polar fleece, a polyester
material that has lately gained popularity, being a notable example. However, the foreign
matter in waste bottles collected in South Korea throughout the disposal and composing
procedure raises concerns about their suitability for recycling. According to the application
requirements, the sorting equipment only needs to pick transparent plastic bottles in a
sorting process. So correct bottle classification is crucial in the sorting system based on
machine vision.

This paper proposes a GAN-based model, modified lightweight-GAN, to generate
synthetic images using a small dataset containing real plastic bottle images. The main
contribution is as follows:

• A new technique that enhances the imbalanced data problem using image data augmen-
tation is proposed based on a GAN-based framework, named modified lightweight-
GAN, that can generate high-quality images using a few original images.

• We propose a weighted average ensemble transfer learning-based method, IncepX-
Ensemble, to classify six types of plastic bottle images.

• We construct a computationally efficient model and demonstrate its resilience based
on the two presented strategies.

2. Related Works

Deep learning with a small training dataset leads to overfitting issues. The capacity
to generalize data expansion was examined using deep neural network training data
extensions. Instead of using traditional data augmentation techniques, GAN can generate
more stable and realistic images.

A computer-aided machine learning-based plastic bottle classification technique was
proposed by [5]. Specifically, the authors performed feature extraction for classification
tasks by achieving 80% accuracy. The authors also proposed classification with the region
of interest segmentation technique with PET and non-PET plastic bottle dataset with two
classes and achieved 80% of accuracy [6]. Ref. [7] proposed an automated classification
of plastic bottles based on SVM for recycling purposes and achieved 97.3% of accuracy
based on the best computation time. A real-time application was designed for plastic
bottle identification, and the proposed system achieved an accuracy of 97% [8]. Generative
adversarial networks are an advanced technique for data augmentation and use semi-
supervised cycleGAN to augment the training data. Hazra et al. proposed generating
synthetic images for bone marrow cells using GAN and the classification approach using
the transfer learning model [9]. The proposed model achieved 95% precision and 96% recall.

338

Mathematics 2022, 10, 1541

The authors of [10] proposed an inception-cycleGAN model that will classify COVID-
19 X-ray images and achieved 94.2% of accuracy. An artificial intelligence-based plastic
bottle color classification system was proposed by [11] and achieved 94.14% of accuracy.
Wang et al. [12] proposed the recycling of used plastic bottles based on a support vector
machine algorithm, and accuracy reached 94.7%. In [13], medical image classification is a
famous approach; the researcher applied data augmentation using GAN and using three
transfer learning models to overcome the training-time constraints. They achieved 86.45%
of accuracy using the inceptionV3 model. Srivastav et al. [14] proposed an approach of
generating a synthetic image using GAN to improve the diagnosis of pneumonia disease
using chest X-ray image classification and achieved 94.5% accuracy. Waste management and
waste classification are essential issues for the environment and human health. Recycling is
one most basic forms of waste management; we need to classify the particular waste that
can be recycled. There are few publicly available datasets for waste classification; for this
reason, Alsabei et al. [15] proposed a model that can classify waste using pre-trained models,
and for generating data, they applied the GAN approach. In [16], an intelligent system for
waste sorting using a skip-connection-based model was proposed, and the novel model
achieved 95% of accuracy. Pio et al. [17] hypothesized that combining a transfer learning
approach with the metabolic features developed will deliver a considerable improvement
in reconstruction accuracy. A new combined methodology was proposed for a higher
recognition rate and robustness to enhance a low-resolution video [18]. GAN and transfer
learning are used to deal with license plate image recognition in various challenging
situations. Mohammed et al. [19] suggested an ensemble classifier that decreases both the
space and temporal complexity of the generated ensemble members while classifying an
instance by improving prediction time while maintaining significant accuracy.

3. Dataset

In our experiment, we collected plastic bottle images from the industry in South Korea.
However, it is not a publicly available dataset. We intend to build models that correctly
classify plastic bottle images before deploying them into a plastic bottle recycling machine.
The precise detection and identification of plastic bottles is the most significant challenge
when designing a recycling machine in preventing fraud. It depends on precision and cost.

There are few publicly plastic bottle datasets available. Trashnet [20] is a dataset used
for trash classification that has plastic bottle images in it. Each image in the PET bottle
dataset contains only one object, a plastic bottle, and a plain background. The human eye
more easily perceives this but not by a recycling machine. There are no other objects in the
image that could provide additional information.

Our dataset, named the PET-bottle dataset, has six classes, having a total number of
1667 plastic bottle images. We divided the plastic bottle images according to the design
and bottle specification; we uniquely named three classes, Bottle_ShapeA, Bottle_ShapeB,
and Bottle_ShapeC, and the other three classes are called Masinda, Pepsi, and Samdasoo,
respectively. Plastic bottles which do not have a label on them but have black caps are
named Bottle_ShapeA. Plastic bottles with a design on the body and a white cap but
without a label are named Bottle_ShapeB. Plastic bottles that do not have any design or
label on them but have a red cap are designated as Bottle_ShapeC. Masinda is a drinking
water bottle company whose class depicts a company label and sky-colored cap. Pepsi is
a well-known soft drink manufacturing company whose class represents a label with a
company logo and black cap. Jeju Samdasoo is a mineral water brand developed by the
Jeju Province Development Corporation; this plastic bottle image depicts a label with a
company logo and white cap. Details of the original dataset are given in Table 1. The Sl
number represents the numerical value for six classes, from 0 to 5; the class name depicts
all the six classes we have used for our experiment. The images per class section describes
the images containing each class.

It is noticeable that the dataset is small, and classes are primarily imbalanced in the
original dataset, with most data labeled as the Samdasoo class. Training a deep neural

339

Mathematics 2022, 10, 1541

network to categorize the data into six categories will over-fit the data with this unbalanced
dataset.

Table 1. Detailed specification of original dataset.

Sl Number Class Name Images per Class

0 Bottle_ShapeA 169
1 Bottle_ShapeB 238
2 Bottle_ShapeC 41
3 Masinda 249
4 Pepsi 339
5 Samdasoo 631

Total 1667

4. Methodology

The proposed method is discussed in this section. Figure 1 depicts the proposed
method’s block diagram. Our proposed method can be divided into five parts. The first
block (a) shows the overview of the original dataset with the class label. In the second
block, (b) synthetic images are generated using a modified lightweight-GAN model for
data augmentation. The third block (c) is traditional data augmentation based on basic
image manipulation techniques. In the fourth block, the (d) pre-trained ImageNet model is
fine-tuned on our dataset for plastic bottle classification. In the last part, (e) is the evaluation
metrics for classification. A detailed explanation is given in the following subsections.

Figure 1. Workflow of the proposed framework. (a) shows the overview of the original dataset with
the class label; (b) synthetic images are generated using a modified lightweight-GAN model for data
augmentation; (c) is traditional data augmentation based on basic image manipulation techniques;
(d) pre-trained ImageNet model is fine-tuned on our dataset for plastic bottle classification; (e) is the
evaluation metrics for classification.

340

Mathematics 2022, 10, 1541

4.1. Original Dataset Description

Our dataset contains 1667 images of plastic bottles, which are segmented into six classes.
The PET bottle dataset is divided into six types according to the bottle specification details.

4.2. Synthetic Image Generation Using Modified Lightweight-GAN Model

Recently, researchers have focused on combining GANs with other models or tech-
niques that allow for superior data reconstruction. We improvised a new approach to our
model. We used convolution layers compatible with high-resolution images for both G and
D. The basic GAN architecture for the generator and discriminator are graphically depicted
in Figure 2. The model structure of G and D and a description of the component layers are
shown in Figures 3 and 4.

4.2.1. Generative Adversarial Networks

The generative adversarial network (GAN) was developed by Goodfellow et al. in
2014 [21]. This intriguing invention has been gaining interest in various machine learning
fields. GAN consists of two interacting neural networks. It is a generator (G) and a
discriminator (D). The generator network is trained to map points in the latent space to
generate new data instances. The discriminator network is trained to distinguish between
the actual and plausible images produced by the generator network. Eventually, the
generator generates images that resemble actual training samples. The generator is updated
based on the discriminator’s predictions to have better images at the training time. The
discriminator increases its ability to distinguish between actual and fake images. The
difference between real and counterfeit labels determines the discriminator loss. The label
specifies whether the image is artificial or natural. The general diagram of GAN is shown
in Figure 2.

Figure 2. Generative adversarial networks architecture.

The main objective of GAN theory can be painted as a two-player min–max game
which can be defined by,

min
G

max
D

V(D, G) = Ex∼Pd(x)[logD(x)] +Ernv∼Prnv(rnv)[log(1 − D(G(rnv))] (1)

The discriminator and the generator are involved in a min–max game with the value
function V(D, G). The discriminator is trying to minimize its reward V(D, G), and the
generator is attempting to reduce the discriminator’s reward or, in other words, maximize
its loss.

The generator always tries to minimize the following loss function; on the other hand,
the discriminator always maximizes it. In GAN, the generator receives the original input
data x, adds random noise variable Prnv(rnv) and generates samples G(rnv). D(x) is
the discriminator’s estimate of the probability that real instance x is real over the data
distribution Pd. D(G(rnv)) is the discriminator’s estimate of the probability that a fake

341

Mathematics 2022, 10, 1541

instance is real. The generator tries to create almost perfect images to fool the discriminator.
In contrast, the discriminator tries to improve the performance by distinguishing real
and fake samples until the time that the samples generated from the generator cannot be
distinguished from real data samples.

4.2.2. Generator Network

The generator needs to be impending with the deeper network to generate good
synthesized images to orchestrate with high images. A deeper network means more of
a convolution layer and more training time for up-sampling. Considering GPU for the
training, we first fed the original image data and resized it into 128 × 128 × 3. The image
was scaled to [−1, 1] pixel values to match the generator. It was issued because it uses the
tanh activation function. The generator network inputs a 100 × 1 noise vector and generates
fake samples. We used four convolution layers with ReLU activation to create high-quality
synthesized images. Figure 3 illustrates the generator model architecture.

Figure 3. The architecture of the generator.

4.2.3. Discriminator Network

Following the assumption that the encoder and discriminator network information
overlaps, we partially amalgamated the encoder into the discriminator [22]. The main
objective of the encoder is to learn the representation feature, whereas the discriminator
aims to discover the discriminating feature.

Lpixel
recons = Eq∼Dencoder(x),x∼Ireal

[||κ(q)− τ(x)||] (2)

where the discriminator’s feature map is q, the κ function processes q, and the decoder’s
function τ reflects processing on sample x from real images Ireal .

Figure 4 illustrates the discriminator model architecture. Firstly, we resize the original
image to produce the I part. Then, the main part of our discriminator acts as an encoder
to extract a good image feature map, and the decoder can produce a good reconstruction
I′. The decoder consists of four convolutional layers to create the image 128 × 128. Finally,
the discriminator and decoder are trained together to minimize the reconstruction loss by
matching the part I′ to I. The auto-encoding technique used is a common strategy for self-
supervised learning that has been shown to improve model robustness and generalization
capabilities [23–25].

342

Mathematics 2022, 10, 1541

Figure 4. The architecture of the discriminator.

Recently, generative models have focused on combining new strategies with the GAN
model. In many approaches, the authors combined GAN and VAE to generate a good
image [22]. On the other hand, our proposed model is a pure GAN with a significantly more
simple generator and discriminator and an auto-encoding function. The auto-encoding
training is exclusively used for discriminator regularization and does not include the
generator [26].

Here, a hinge adversarial loss for GAN is suggested, incorporating SVM margins and
considering actual and fake samples falling within the margins while calculating the loss.
Artificial samples outside of the boundaries that partially incorporate false local patterns
are ignored in the generator training stage [27,28].

LD = −Ex∼Ireal [min(0,−1 + D(x))]−Ez∼P(z)[min(0,−1 − D(G(z))] + Lpixel
recons (3)

LG = −Ez∼P(z)[D(G(z))] (4)

4.3. Traditional Data Augmentation Techniques

In this section, we describe traditional data augmentation based on basic image
manipulation techniques [29]. Additionally, consider issues with limited datasets and
how imbalances and data expansion can be helpful for oversampling solutions [30]. Class
imbalance describes the dataset as a biased ratio of the majority to a sample of the minority.

• Flipping :
There are two types of flipping used for image transformation; horizontal flipping
is more common than vertical flipping. This augmentation is one of the simplest to
employ and has shown to be effective on various datasets.⎡⎣p′

q′

1

⎤⎦ =

⎡⎣−1 0 0
0 1 0
0 0 1

⎤⎦×

⎡⎣p
q
1

⎤⎦ (5)

p′ = −p, q′ = q (6)

Horizontal flipping formulas are depicted in Equations (5) and (6).⎡⎣p′

q′

1

⎤⎦ =

⎡⎣1 0 0
0 −1 0
0 0 1

⎤⎦×

⎡⎣p
q
1

⎤⎦ (7)

p′ = p, q′ = −q (8)

Vertical flipping formulas are depicted in Equations (7) and (8).

343

Mathematics 2022, 10, 1541

• Rotation :
The image is rotated right or left on an axis between [0–360] degree for rotation
augmentations. The rotation degree parameter significantly impacts the safety of
rotation augmentations. Outside of the rotating area, pixels are be filled with 0, and
the formula of rotation is given in Equation (9).

R =

⎡⎣ cos(q) sin(q) 0
−sin(q) cos(q) 0

0 0 1

⎤⎦ (9)

where q specifies the angle of rotation.
• Translation :

To avoid data-position bias, shifting the image left, right, up, or down is a valuable
adjustment, so the neural network looks everywhere in the image to capture it. The
original image is translated into the [0–255] value range.

t =

⎡⎣ 1 0 0
0 1 0
tx ty 1

⎤⎦ (10)

where in Equation (10), tx specifies the displacement along the x axis, and ty specifies
the displacement along the y axis.

• Noise added :
Noise is an exciting augmentation technique; noise injection injects a matrix of random
values usually drawn from a Gaussian distribution. Stochastic data expansion is
applied when the neural network sees the same image, which is slightly different.
This difference can be seen as adding noise to the data sample and letting the neural
network learn generalized features rather than overfitting the dataset.

4.4. Transfer Learning

Transfer learning techniques are used to improve the performance of machine learning
algorithms using labeled data. TL efforts learn and apply one or more source tasks to
enhance learning in related fields. It has been studied as a machine learning process to
solve problems. TL includes pre-training models that have already been trained on large
datasets and models that have been retrained at several levels of the model on a small
training set. The initial layer of the pre-training network will be changed if necessary. You
can use the final layer of the model’s fine-tuning parameters to learn the capabilities of the
new dataset [31]. According to the new task, models that have already been trained will
be retrained with a smaller new dataset, and the model weights will be modified. Newly
developed neural networks parameters are not built from scratch. The DL algorithm can
achieve higher functionality or performance for many problems, but they need a lot of data
for training time.

As a result, it can be helpful to reuse pre-trained models for similar tasks. We used
two pre-trained models named inceptionV3 and Xception. The PET bottle dataset is used
to fine-tune the models once they have been pre-trained with the ImageNet dataset [32].
The most common method for fine-tuning is to delete the last completely connected layer
of pre-trained CNN models and replace it with a new fully connected layer (the same size
as the number of classes in our dataset). Our PET bottle dataset contains six categories.
Finally, the suggested method meets the goal of providing excellent classification results
with a small dataset.

4.4.1. InceptionV3 and Xception

The pre-trained network models InceptionV3 and Xception were trained on millions
of images from the ImageNet dataset. The InceptionV3 [33] and Xception [34] networks
include 48 and 71 layers, respectively, and require a 299 × 299 × 3-pixel input image. The

344

Mathematics 2022, 10, 1541

structure of the InceptionV3 and Xception are shown in Figures 5 and 6. While Inception
considers typical congestion and yield issues, efficient results can be obtained by using
asymmetric filters and bottlenecks and replacing large filters with smaller ones. Xception
is simpler and more efficient. Using cross-channel and spatial correlations independently,
Xception provides more specific and efficient outcomes. For the Xception model, depth-
wise separable convolution is also proposed, as well as the use of cardinality to develop
better abstractions.

Figure 5. InceptionV3 model architecture.

Figure 6. Xception model architecture.

4.4.2. Ensemble Learning

Ensemble learning is a way of combining multiple models to benefit in terms of
computation and performance. The results of an ensemble of deep neural networks are
always superior to those of a single model. The average ensemble learning was used in this
study, with the same weights allocated to each model.

P =
∑ Mi

N
(11)

where, in Equation (11), Mi is the probability of model i, and N is the total number
of models.

DL models have different architectures and complexity; they do not provide the same
result. Therefore, assigning more weights to the model performing better is convenient.
By this, the maximum output can be extracted from any model. The challenge is to find
the correct combination of model weights. We used the grid search technique to solve this
challenge, as shown in Figure 7. A total of 1000 weight combinations were used. The search
procedure continues until all varieties have been checked. The approach finally provided
us with the ideal weight combination for the maximum of our given evaluation metric.

345

Mathematics 2022, 10, 1541

Figure 7. Grid search method for finding the weights.

4.5. Evaluation Metrics

The performance of our model was evaluated, using accuracy, precision, and recall,
and the F1-score based on the confusion matrix; it includes four indicators, true positive
(TP), false positive (FP), false negative (FN), and true negative (TN).

Accuracy is calculated by dividing the number of true positives and true negatives
by the total number of instances. Precision is calculated with actual positive classes from
the total predicted classes. The recall is derived by dividing the real positive values by
the actual positive values. The F1-score is simply the average of precision and recall.
Equations (12)–(15) show the accuracy, precision, recall, and F1-score calculations.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(12)

Precision =
TP

(TP + FP)
(13)

Recall =
TP

(TP + FN)
(14)

F1-score = 2 × Precision × Recall
(Precision + Recall)

(15)

5. Results

5.1. Experimental Setup

In this study, the first part of the experiments, the modified lightweight-GAN model
was trained in 500 epochs and generated synthetic images of PET bottles for each of the
six categories. The weights of the generator and discriminator models were updated after
each epoch to produce a composite image as close as possible to the actual image. After
network training, the PET bottle dataset has 4200 images, including original and synthetic
images generated from the modified lightweight-GAN model and traditional augmentation
methods. In the second series of experiments, the pre-trained Inception V3 and Xception
models were trained using the original training set and a combination of the training set
and the image of the generated plastic bottle. Later, we employed a weighted average
ensemble to enhance the classification performance using the IncepX-Ensemble model.
The samples of real plastic bottle images and synthetic images generated by the modified
lightweight-GAN model are shown in Figure 8. For training hyperparameter settings, we

346

Mathematics 2022, 10, 1541

used binary cross-entropy as the cost function, a learning rate of 0.0001, and Adam as the
optimizer. We used 100 epochs and a batch size of 32 for every model.

Figure 8. Original plastic bottle images and synthetic plastic bottle images generated by modified
lightweight-GAN.

347

Mathematics 2022, 10, 1541

We divided our dataset that has 4200 images, which includes original plastic bottle
images and generated images by the GAN model. Further, we split our dataset into
training, validation, and testing sets for training. The training set is given to the machine
learning model to analyze and learn the feature; the validation dataset is a sample of the
data retained from the model training and is used to estimate the model’s method while
optimizing the model’s hyperparameters. The test set is not used for training, and it is
used to determine whether the model’s hypothesis is correct. In the experiment, we first
divided the dataset into 60% for training and 40% for test data. In addition, the holdout
test data were split into 10% for validation (0.25% of total holdout test data) and 30% for
testing (0.75% of entire holdout test data). Details of the experimental dataset are given in
the Table 2.

Table 2. Details of the dataset after data augmentation using both augmentation techniques.

Sl No. Class Name Images per Class Training (60%) Validation (10%) Testing (30%)

0 Bottl_ShapeA 700 420 70 210
1 Bottl_ShapeB 700 420 70 210
2 Bottle_ShapeC 700 420 70 210
3 Masinda 700 420 70 210
4 Pepsi 700 420 70 210
5 Samdasoo 700 420 70 210

Total 4200 2520 420 210

5.2. Performance Metrics of GAN

We used two metrics to measure the model performance, as shown in Table 3.

• The IS is an objective metric for assessing the quality of synthetic images generated
by the generative adversarial networks model. The IS was proposed by [35], and it
captures the two properties of generated images: image quality, and image diversity.

• The FID is a metric that measures the overall semantic realism that compares the
distance between feature vectors calculated for real and generated images. FID score
was proposed by [36] to improve the performance over inception score.

Table 3. Quantitative comparison on our dataset—inception score (IS), Frechet inception distance (FID).

Sl No. Accuracy IS FID

1 DCGAN 12.36 73.4
2 LSGAN 10.06 67.6
3 WGAN-GP 9.67 72.3
4 TrGAN 9.82 65.4
5 ACGAN 9.47 76.3
6 CGAN 9.89 70.0

7 Modified lightweight-GAN 9.42 64.7

5.3. Implementation Details

Specification details for performing the experiments are given below in Table 4. We
used the Windows operating system with a single GPU and 32 GB of RAM. We trained our
model on Tensorflow 2.6.0 version, CUDA Toolkit version 11.2 and cuDNN version 8.1.

348

Mathematics 2022, 10, 1541

Table 4. System components and specification.

Component Description

Operating system Windows 10 64 bit
Browser Google Chrome
CPU Intel(R) Core(TM) i5-8500K CPU @ 3.70 GHz
RAM 32 GB
Programming language Python 3.8.5
GPU NVIDIA GeForce RTX 2070
CUDA CUDA Toolkit version 11.2
cuDNN cuDNN version 8.1
Tensorflow Tensorflow version 2.6.0
IDE jupyter
Machine learning algorithm Modified lightweight-GAN
Machine learning algorithm Xception
Machine learning algorithm InceptionV3

5.4. Classification Performance Details

In Table 5, we show how the performance of pre-trained models, such as Incep-
tionV3 [37], Xception [38] and our ensemble model IncepX-Ensemble, may be used to
determine how well classifiers can classify plastic bottle types after being trained with both
original and synthetic data. The results show that the accuracy of the models is enhanced
when synthetic data generated by GAN models are used to train the model. Among all the
GAN models, our proposed IncepX-Ensemble model produced the best accuracy value of
99.06%.

Table 5. Comparison of IncepX-Ensemble with other existing models.

Model/Classifier InceptionV3 Xception IncepX-Ensemble

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1
Original Data 86.6 89.2 88.6 90.1 92.8 87.2 93.2 90.1 93.5 93.7 92.8 93.8

DCGAN 81.2 82.4 79.6 80.4 90.8 92.1 92.6 91.5 92.4 94.7 95.2 94.6
LSGAN 83.2 81.9 85.4 83.6 85.4 86.3 90.6 86.4 84.4 85.3 84.0 85.4

WGAN-GP 93.1 92.6 94.2 93.9 93.6 93.2 94.2 94.4 97.2 97.4 96.4 97.6
ACGAN 89.9 89.1 90.1 90.5 91.4 91.2 92.0 91.6 95.5 95.7 94.5 96.2
CGAN 97.1 98.3 96.5 97.9 98.4 97.2 98.3 97.9 97.1 98.6 98.7 98.7

Modified Lightweight-GAN 98.8 98.2 99.0 98.6 98.9 97.4 98.7 98.5 99.0 99.1 99.3 99.2

Acc, Pre, Rec, and F1 refer to accuracy, precision, recall, and f1-score, respectively.

We also assessed the performance of classification models that use original data and
actual and synthetic data. We employed two different combinations of augmentation
procedures for the augmentation of plastic bottle images. To produce synthetic data,
Augmentation-1 employs a modified lightweight-GAN. Flipping, rotation, translation, and
noise addition are all used in Augmentation-2. We kept the total number of images for each
example to ensure a fair comparison.

In Table 6, we show the performance of the traditional augmentation technique with
transfer learning models. We also examined classification model performance utilizing
original, augmented data and a synthetic image generated by our model, which produces
better quality images and performs better. We can notice that in the case of noise addition,
accuracy is fairly low because of overfitting.

349

Mathematics 2022, 10, 1541

Table 6. Accuracy, precision, recall, and F1-score of different classification using traditional augmen-
tation methods and a combination of original with synthetic data.

Tradition Augmentation/Classifier InceptionV3 Xception IncepX-Ensemble

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1
Original Data 86.2 75.0 86.1 86.0 86.2 75.2 89.0 86.8 88.2 87.1 94.2 89.0

Flipping 87.1 83.2 91.0 86.0 88.0 91.1 79.8 84.5 87.1 88.1 93.0 89.1
Rotation 88.5 79.7 86.5 82.2 86.1 82.0 83.5 75.8 87.0 87.1 84.1 73.0

Translation 85.1 76.5 88.1 80.2 86.2 82.2 85.1 87.5 88.1 81.1 88.0 82.2
Noise Addition 75.2 72.0 77.1 75.6 75.6 76.0 77.0 77.1 75.8 75.2 77.2 76.1

Modified Lightweight-GAN 89.8 87.4 83.7 83.3 91.3 89.3 88.5 88.7 93.1 89.6 92.9 92.1

Acc, Pre, Rec, and F1 refer to accuracy, precision, recall, and f1-score, respectively.

We evaluated our IncepX-Ensemble model with the ImgaeNet dataset in Table 7. We
first trained the models with the original imageNet data and tested the model with actual
data. The model can be easily adapted to support fine-tuning for classification tasks. We
used the dataset for 60% for training and 40% for testing, and further testing data were
split into 0.75% of the total holdout test data and 0.25% validation. The performance
of the classification models using synthetic data, augmented data and a mix of original
and synthetic data was then determined using the same procedure. The images created
by our suggested improved lightweight-GAN model are of higher quality. It performs
quantitatively better than existing GAN models, as can be seen from all of the findings.

Table 7. Evaluation of our proposed model on the ImageNet dataset.

Original + Synthetic Image/Classifier InceptionV3 Xception IncepX-Ensemble

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1
Original Data 93.9 92.5 95.8 94.3 94.4 94.6 92.9 92.9 96.2 95.8 96.1 95.6

Rotation 95.6 94.7 97.9 95.6 95.9 91.1 94.9 96.2 96.9 95.3 95.6 97.1
Translation 94.6 94.9 93.0 95.4 94.5 93.9 92.6 94.9 95.2 93.8 93.2 95.7

ACGAN 95.3 87.3 91.3 92.2 95.2 87.0 91.0 94.1 95.6 94.2 93.6 94.0
WGAN-GP 95.6 95.4 96.1 96.0 96.2 95.9 89.6 95.5 96.8 95.4 96.2 96.1

CGAN 94.6 95.0 96.1 95.3 75.6 76.0 77.0 77.1 95.8 92.5 95.4 96.0

Modified Lightweight-GAN 96.2 95.2 93.7 96.3 97.6 96.3 97.5 98.2 98.9 96.6 95.9 99.1

Acc, Pre, Rec, and F1 refer to accuracy, precision, recall, and f1-score, respectively.

6. Conclusions

The aim is to develop an application-based system that automatically detects plastic
bottle images. Our proposed approach is simple: to overcome the small and imbalanced
dataset, we first applied a modified lightweight-GAN method to generate synthetic images
of plastic bottles. Next, we developed a transfer learning-based model, IncepX-Ensemble,
classifying different plastic bottle images. Therefore, we developed a new system using
the transfer learning technique, and a new framework was developed by integrating with
modified lightweight-GAN. Modified lightweight-GAN was used for data augmentation
enhancement of the dataset, and the proposed transfer learning-based model was trained
and evaluated using original and generated images. Finally, we designed a weighted
average ensemble model named IncepX-Ensemble, tuning the influence of the base models
using the grid search technique. However, the two transfer learning models show excellent
performance, though in some cases, the two models fail to classify plastic bottles correctly.
To obtain an improved performance, we used a combination of transfer learning and the
weighted average technique to boost the application performance. The obtained results
indicate the algorithm’s efficacy with 99.06% accuracy. Future work may validate the
proposed model to evaluate recycling performance using more diverse big data. We plan to
use the model we developed to explore other datasets and waste management applications

350

Mathematics 2022, 10, 1541

in the future. We hope that this will play a positive role in plastic bottle waste management
and environmental growth.

Author Contributions: Conceptualization, S.C. and D.H.; Formal analysis, S.C.; Funding acquisi-
tion, Y.-C.B.; Methodology, S.C. and D.H.; Writing—review and editing, S.C.; Investigation, Y.-C.B.;
Resources, Y.-C.B.; Project administration, Y.-C.B. and Y.-W.K.; Supervision, Y.-C.B. and Y.-W.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was financially supported by the Ministry of SMEs and Startups (MSS), Korea,
under the “Startup growth technology development program (R&D, S3125114)”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DL Deep Learning
GAN Generative Adversarial Networks
CNN Convolutional Neural Network
TL Transfer Learning
VAE Variational Autoencoders
PET Polyethylene Terephthalate
IS Inception Score
FID Frechet Inception Distance
DCGAN Deep Convolutional GAN
LSGAN Least Squares GAN
WGAN-GP Wasserstein GAN-Gradient Penalty
ACGAN Auxiliary Classifier GAN
CGAN Conditional GAN

References

1. Huth-Fehre, T.; Feldhoff, R.; Kowol, F.; Freitag, H.; Kuttler, S.; Lohwasser, B.; Oleimeulen, M. Remote sensor systems for the
automated identification of plastics. J. Near Infrared Spectrosc. 1998, 6, A7–A11. [CrossRef]

2. Zhang, H.; Wen, Z.G. The consumption and recycling collection system of PET bottles: A case study of Beijing, China. Waste
Manag. 2014, 34, 987–998. [CrossRef] [PubMed]

3. Vo, A.H.; Vo, M.T.; Le, T. A novel framework for trash classification using deep transfer learning. IEEE Access 2019, 7,
178631–178639. [CrossRef]

4. Hammaad, S. 7.25 Million AED is the Cost of Waste Recycling. Al-Bayan Newspaper, 11 March 2005.
5. Ramli, S.; Mustafa, M.M.; Hussain, A.; Wahab, D.A. Histogram of intensity feature extraction for automatic plastic bottle recycling

system using machine vision. Am. J. Environ. Sci. 2008, 4, 583. [CrossRef]
6. Ramli, S.; Mustafa, M.M.; Hussain, A.; Wahab, D.A. Automatic detection of ‘rois’ for plastic bottle classification. In Proceedings

of the 2007 5th Student Conference on Research and Development, Selangor, Malaysia, 11–12 December 2007; pp. 1–5.
7. Shahbudin, S.; Hussain, A.; Wahab, D.A.; Marzuki, M.; Ramli, S. Support vector machines for automated classification of plastic

bottles. In Proceedings of the 6th International Colloquium on Signal Processing and Its Applications (CSPA), Melaka, Malaysia,
21–23 May 2010; pp. 1–5.

8. Scavino, E.; Wahab, D.A.; Hussain, A.; Basri, H.; Mustafa, M.M. Application of automated image analysis to the identification
and extraction of recyclable plastic bottles. J. Zhejiang Univ.-Sci. A 2009, 10, 794–799. [CrossRef]

9. Hazra, D.; Byun, Y.C.; Kim, W.J.; Kang, C.U. Synthesis of Microscopic Cell Images Obtained from Bone Marrow Aspirate Smears
through Generative Adversarial Networks. Biology 2022, 11, 276. [CrossRef] [PubMed]

10. Bargshady, G.; Zhou, X.; Barua, P.D.; Gururajan, R.; Li, Y.; Acharya, U.R. Application of CycleGAN and transfer learning
techniques for automated detection of COVID-19 using X-ray images. Pattern Recognit. Lett. 2022, 153, 67–74. [CrossRef]
[PubMed]

11. Tachwali, Y.; Al-Assaf, Y.; Al-Ali, A. Automatic multistage classification system for plastic bottles recycling. Resour. Conserv.
Recycl. 2007, 52, 266–285. [CrossRef]

351

Mathematics 2022, 10, 1541

12. Wang, Z.; Peng, B.; Huang, Y.; Sun, G. Classification for plastic bottles recycling based on image recognition. Waste Manag. 2019,
88, 170–181. [CrossRef] [PubMed]

13. Zulkifley, M.A.; Mustafa, M.M.; Hussain, A. Probabilistic white strip approach to plastic bottle sorting system. In Proceedings of
the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 3162–3166.

14. Srivastav, D.; Bajpai, A.; Srivastava, P. Improved classification for pneumonia detection using transfer learning with gan based
synthetic image augmentation. In Proceedings of the 2021 11th International Conference on Cloud Computing, Data Science &
Engineering (Confluence), Noida, India, 28–29 January 2021; pp. 433–437.

15. Alsabei, A.; Alsayed, A.; Alzahrani, M.; Al-Shareef, S. Waste Classification by Fine-Tuning Pre-trained CNN and GAN. Int. J.
Comput. Sci. Netw. Secur. 2021, 21, 65–70.

16. Bircanoğlu, C.; Atay, M.; Beşer, F.; Genç, Ö.; Kızrak, M.A. RecycleNet: Intelligent waste sorting using deep neural networks.
In Proceedings of the 2018 Innovations in Intelligent Systems and Applications (INISTA), Thessaloniki, Greece, 3–5 July 2018;
pp. 1–7.

17. Pio, G.; Mignone, P.; Magazzù, G.; Zampieri, G.; Ceci, M.; Angione, C. Integrating genome-scale metabolic modelling and transfer
learning for human gene regulatory network reconstruction. Bioinformatics 2022, 38, 487–493. [CrossRef] [PubMed]

18. Du, X. Complex environment image recognition algorithm based on GANs and transfer learning. Neural Comput. Appl. 2020,
32, 16401–16412. [CrossRef]

19. Mohammed, A.M.; Onieva, E.; Woźniak, M. Selective ensemble of classifiers trained on selective samples. Neurocomputing 2022,
482, 197–211. [CrossRef]

20. Yang, M.; Thung, G. Classification of trash for recyclability status. CS229 Proj. Rep. 2016, 2016, 3.
21. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014;
Volume 27.

22. Munjal, P.; Paul, A.; Krishnan, N.C. Implicit discriminator in variational autoencoder. In Proceedings of the 2020 International
Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.

23. Hendrycks, D.; Mazeika, M.; Kadavath, S.; Song, D. Using self-supervised learning can improve model robustness and
uncertainty. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December
2019; Volume 32.

24. Jing, L.; Tian, Y. Self-supervised visual feature learning with deep neural networks: A survey. IEEE Trans. Pattern Anal. Mach.
Intell. 2020, 43, 4037–4058. [CrossRef] [PubMed]

25. Goyal, P.; Mahajan, D.; Gupta, A.; Misra, I. Scaling and benchmarking self-supervised visual representation learning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 6391–6400.

26. Liu, B.; Zhu, Y.; Song, K.; Elgammal, A. Towards faster and stabilized gan training for high-fidelity few-shot image synthesis. In
Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

27. Lim, J.H.; Ye, J.C. Geometric gan. arXiv 2017, arXiv:1705.02894.
28. Kim, S.; Lee, S. Spatially Decomposed Hinge Adversarial Loss by Local Gradient Amplifier. In Proceedings of the ICLR 2021

Conference, Vienna, Austria, 4 May 2020.
29. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [CrossRef]
30. Hao, R.; Namdar, K.; Liu, L.; Haider, M.A.; Khalvati, F. A comprehensive study of data augmentation strategies for prostate

cancer detection in diffusion-weighted MRI using convolutional neural networks. J. Digit. Imaging 2021, 34, 862–876. [CrossRef]
[PubMed]

31. Kamishima, T.; Hamasaki, M.; Akaho, S. TrBagg: A simple transfer learning method and its application to personalization in
collaborative tagging. In Proceedings of the 2009 Ninth IEEE International Conference on Data Mining, Miami Beach, FL, USA,
6–9 December 2009; pp. 219–228.

32. ImageNet Dataset. 2016. Available online: https://image-net.org/ (accessed on 12 July 2021).
33. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.
34. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
35. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training gans. In

Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Volume 29.
36. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a

local nash equilibrium. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; Volume 30.

37. Xia, X.; Xu, C.; Nan, B. Inception-v3 for flower classification. In Proceedings of the 2017 2nd International Conference on Image,
Vision and Computing (ICIVC), Chengdu, China, 2–4 June 2017; pp. 783–787.

38. Wu, X.; Liu, R.; Yang, H.; Chen, Z. An xception based convolutional neural network for scene image classification with transfer
learning. In Proceedings of the 2020 2nd International Conference on Information Technology and Computer Application (ITCA),
Guangzhou, China, 18–20 December 2020; pp. 262–267.

352

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

ISBN 978-3-0365-4516-5

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com

	A9Rqiz4xi_oxawyx_1vc
	Advances in Artificial Intelligence Models, Optimization, and Machine Learning-V2.pdf
	A9Rqiz4xi_oxawyx_1vc.pdf

