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Preface to ”Information Theory and Machine

Learning”

The recent successes of machine learning, especially regarding systems based on deep neural

networks, have encouraged further research activities and raised a new set of challenges in

understanding and designing complex machine learning algorithms. New applications require

learning algorithms to be distributed, have transferable learning results, use computation resources

efficiently, convergence quickly on online settings, have performance guarantees, satisfy fairness

or privacy constraints, incorporate domain knowledge on model structures, etc. A new wave of

developments in statistical learning theory and information theory has set out to address these

challenges. This Special Issue, ”Machine Learning and Information Theory”, aims to collect recent

results in this direction reflecting a diverse spectrum of visions and efforts to extend conventional

theories and develop analysis tools for these complex machine learning systems. We would like to

thank all contributing authors and the MDPI team for their support.
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Article

Improved Information-Theoretic Generalization Bounds for
Distributed, Federated, and Iterative Learning †

Leighton Pate Barnes 1,*, Alex Dytso 2 and Harold Vincent Poor 1

1 Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA
2 Department of Electrical and Computer Engineering, New Jersey Institute of Technology,

Newark, NJ 07102, USA
* Correspondence: leightonbarnes@gmail.com
† This paper is an extended version of our paper published in Proceedings of the 2022 IEEE International

Symposium on Information Theory, Espoo, Finland, 26 June–1 July 2022.

Abstract: We consider information-theoretic bounds on the expected generalization error for statis-
tical learning problems in a network setting. In this setting, there are K nodes, each with its own
independent dataset, and the models from the K nodes have to be aggregated into a final centralized
model. We consider both simple averaging of the models as well as more complicated multi-round
algorithms. We give upper bounds on the expected generalization error for a variety of problems,
such as those with Bregman divergence or Lipschitz continuous losses, that demonstrate an improved
dependence of 1/K on the number of nodes. These “per node” bounds are in terms of the mutual
information between the training dataset and the trained weights at each node and are therefore
useful in describing the generalization properties inherent to having communication or privacy
constraints at each node.

Keywords: generalization error; information-theoretic bounds; distribution and federated learning

1. Introduction

A key feature of machine learning systems is their ability to generalize new and
unknown data. Such a system is trained on a particular set of data but must then perform
well even on new data points that have not previously been considered. This ability,
deemed generalization, can be formulated in the language of statistical learning theory
by considering the generalization error of an algorithm (i.e., the difference between the
population risk of a model trained on a particular dataset and the empirical risk for
the same model and dataset). We say that a model generalizes well if it has a small
generalization error, and because models are often trained by minimizing empirical risk or
some regularized version of it, a small generalization error also implies a small population
risk, which is the average loss over new samples taken randomly from the population. It is
therefore of interest to find an upper bound on the generalization error and understand
which quantities control it so that we can quantify the generalization properties of a machine
learning system and offer guarantees about its performance.

In recent years, it has been shown that information-theoretic measures such as mutual
information can be used for generalization error bounds under the assumption of the
tail of the distribution of the loss function [1–4]. In particular, when the loss function is
sub-Gaussian, the expected generalization error can scale at most with the square root
of the mutual information between the training dataset and the model weights [2]. Such
bounds offer an intuitive explanation for generalization and overfitting: if an algorithm
uses only limited information from its training data, then this will bound the expected
generalization error and prevent overfitting. Conversely, if an algorithm uses all of the
information from its training set, in the sense that the model is a deterministic function of

Entropy 2022, 24, 1178. https://doi.org/10.3390/e24091178 https://www.mdpi.com/journal/entropy1
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the training set, then this mutual information can be infinite, and there is the possibility
of overfitting.

Another modern focus of machine learning systems has been that of distributed and
federated learning [5–7]. In these systems, data are generated and processed in a distributed
network of machines. The main differences between the distributed and centralized settings
are the information constraints imposed by the network. There has been considerable
interest in understanding the impact of both communication constraints [8,9] and privacy
constraints [10–13] on the performance of machine learning systems, as well as designing
protocols that efficiently train the systems under these constraints.

Since both communication and local differential privacy constraints can be thought of
as special cases of mutual information constraints, they should pair naturally with some
form of information theoretic generalization bounding in order to induce control over
the generalization error of the distributed machine learning system. The information con-
straints inherent to the network can themselves give rise to tighter bounds on generalization
error and thus provide better guarantees against overfitting. Along these lines, in a recent
work [14], a subset of the present authors introduced the framework of using information
theoretic quantities for bounding both the expected generalization error and a measure of
privacy leakage in distributed and federated learning systems. The generalization bounds
in this work, however, are essentially the same as those obtained by thinking of the entire
system, from the data at each node in the network to the final aggregated model, as a single,
centralized algorithm. Any improved generalization guarantees from these bounds would
remain implicit in the mutual information terms involved.

In this work, we develop improved bounds on the expected generalization error for
distributed and federated learning systems. Instead of leaving the differences between these
systems and their centralized counterparts implicit in the mutual information terms, we
bring analysis of the structure of the systems directly to the bounds. By working with the
contribution from each node separately, we are able to derive upper bounds on the expected
generalization error that scale with the number of nodes K as O

(
1
K

)
instead of O

(
1√
K

)
.

This improvement is shown to be tight for certain examples, such as learning the mean of a
Gaussian distribution with quadratic loss. We develop bounds that apply to distributed
systems in which the submodels from K different nodes are averaged together, as well as
bounds that apply to more complicated multi-round stochastic gradient descent (SGD)
algorithms, such as in federated learning. For linear models with Bregman divergence
losses, these “per node” bounds are in terms of the mutual information between the
training dataset and the trained weights at each node and are therefore useful in describing
the generalization properties inherent to having communication or privacy constraints
at each node. For arbitrary nonlinear models that have Lipschitz continuous losses, the
improved dependence of O

(
1
K

)
can still be recovered but without a description in terms

of mutual information. We demonstrate the improvements given by our bounds over the
existing information theoretic generalization bounds via simulation of a distributed linear
regression example. A preliminary conference version of this paper was presented in [15].
The present paper completes the work by including all of the missing proof details as well
as providing new bounds for noisy SGD in Corollary 4.

Technical Preliminaries

Suppose we have independent and identically distributed (i.i.d.) data Zi∼π for
i = 1, . . . , n, and let S = (Z1, . . . , Zn). Suppose further that W = A(S) is the output of a
potentially stochastic algorithm. Let �(W, Z) be a real-valued loss function and define

L(w) = Eπ [�(w, Z)]

2
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to be the population risk for weights (or model) w. We similarly define

Ls(w) =
1
n

n

∑
i=1

�(w, zi)

to be the empirical risk on dataset s for model w. The generalization error for dataset s
is then

ΔA(s) = L(A(s))− Ls(A(s))

In addition, the expected generalization error is

ES∼πn [ΔA(S)] = ES∼πn [L(A(S))− LS(A(S))] (1)

where the expectation is also over any randomness in the algorithm. Below, we present
some standard results for the expected generalization error that will be needed:

Theorem 1 (Leave-One-Out Expansion; Lemma 11 in [16]). Let S(i) = (Z1, . . . , Z′i , . . . , Zn)
be a version of S with Zi replaced by an i.i.d. copy Z′i . Denote S′ = (Z′1, . . . , Z′n). Then, we have

ES∼πn [ΔA(S)] =
1
n

n

∑
i=1

ES,S′ [�(A(S), Z′i)− �(A(S(i)), Z′i)] .

Proof. Observe that
ES∼πn [L(A(S))] = ES,S′ [�(A(S), Z′i)] (2)

for each i and that

ES∼πn [LS(A(S))] =
1
n

n

∑
i=1

ES∼πn [�(A(S), Zi)]

=
1
n

n

∑
i=1

ES,S′∼πn

[
�(A(S(i)), Z′i)

]
. (3)

Putting Equations (2) and (3) together with (1) yields the result.

In many of the results in this paper, we will use one of the two following assumptions:

Assumption 1. The loss function �(W̃, Z̃) satisfies

logE

[
exp

(
λ
(
�(W̃, Z̃)−E[�(W̃, Z̃)]

))]
≤ ψ(−λ)

for λ ∈ (b, 0], ψ(0) = ψ′(0) = 0, where W̃ and Z̃ are taken independently from the marginals for
W and Z, respectively,

The next assumption is a special case of the previous one with ψ(λ) = R2λ2

2 :

Assumption 2. The loss function �(W̃, Z̃) is sub-Gaussian with parameter R2 in the sense that

logE

[
exp

(
λ
(
�(W̃, Z̃)−E[�(W̃, Z̃)]

))]
≤ R2λ2

2
.

3
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Theorem 2 (Theorem 2 in [3]). Under Assumption 1, we have

ES∼πn [ΔA(S)] ≤
1
n

n

∑
i=1

ψ∗−1(I(W; Zi))

where ψ∗−1(y) = infλ∈[0,b)

(
y+ψ(λ)

λ

)
.

For a continuously differentiable and strictly convex function F : Rm → R, we define
the associated Bregman divergence [17,18] between two points p, q ∈ Rm to be

DF(p, q) = F(p)− F(q)− 〈∇F(q), p− q〉 ,

where 〈·, ·〉 denotes the usual inner product.

2. Distributed Learning and Model Aggregation

Now suppose that there are K nodes each having n samples. Each node k = 1, . . . , K
has a dataset Sk = (Z1,k, . . . , Zn,k), with Zi,k taken i.i.d. from π. We use S = (S1, . . . , SK) to
denote the entire dataset of size nK. Each node locally trains a model Wk = Ak(Sk) with
algorithm Ak. After each node locally trains its model, the models Wk are then combined to
form the final model Ŵ using an aggregation algorithm Ŵ = Â(W1, . . . , WK) (see Figure 1).
In this section, we will assume that Wk ∈ Rd and that the aggregation is performed by
simple averaging (i.e., Ŵ = 1

K ∑K
k=1 Wk). Define A to be the total algorithm from the data S

to the final weights Ŵ such that Ŵ = A(S). In this section, if we say that Assumption 1 or 2
holds, we mean that it holds for each algorithmAk. As in Theorem 1, we use S(i,k) to denote
the entire dataset S with sample Zi,k replaced by an independent copy Z′i,k, and similarly, we

use S(i)
k to refer to the sub-dataset at node k, with sample Zi,k replaced by an independent

copy Z′i,k:

S1

· · ·
SK

model aggregation

Ŵ = Â(W1, . . . , WK)

W1 WK

Figure 1. The distributed learning setting with model aggregation.

Theorem 3. Suppose that �(·, z) is a convex function of w ∈ Rd for each z and that Ak represents
the empirical risk minimization algorithm on local dataset Sk in the sense that

Wk = Ak(Sk) = argmin
w

n

∑
i=1

�(w, Zi,k) .

Then, we have

ΔA(s) ≤
1
K

K

∑
k=1

ΔAk (sk) .

4
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Proof.

ΔA(s) = EZ∼π [�(A(s), Z)]− 1
nK ∑

i,k
�(A(s), zi,k)

= EZ∼π

[
�

(
1
K

K

∑
k=1

wk, Z

)]
− 1

nK ∑
i,k

�(A(s), zi,k)

≤ 1
K

K

∑
k=1

EZ∼π [�(wk, Z)]− 1
nK ∑

i,k
�(A(s), zi,k) (4)

≤ 1
K

K

∑
k=1

EZ∼π [�(wk, Z)]− 1
K

K

∑
k=1

min
w

1
n

n

∑
i=1

�(w, zi,k) (5)

=
1
K

K

∑
k=1

ΔAk (sk).

In the above display, Equation (4) follows by the convexity of � via Jensen’s inequality, and
Equation (5) follows by minimizing the empirical risk over each node’s local dataset, which
exactly corresponds to what each node’s local algorithm Ak does.

While Theorem 3 seems to be a nice characterization of the generalization bounds for
the aggregate model (in that the aggregate generalization error cannot be any larger than
the average generalization errors over each node), it does not offer any improvement in the
expected generalization error that one might expect when given nK total samples instead of
just n samples. A naive application of the generalization bounds from Theorem 2, followed
by the data processing inequality I(Ŵ; Zi,k) ≤ I(Wk; Zi,k), runs into the same problem.

2.1. Improved Bounds

In this subsection, we demonstrate bounds on the expected generalization error that
remedy the above shortcomings. In particular, we would like to demonstrate the following
two properties:

(1) The bound should decay with the number of nodes K in order to take advantage of
the total dataset from all K nodes.

(2) The bound should be in terms of the information theoretic quantities I(Wk; Sk), which
can represent (or be bounded from above by) the capacities of the channels over which
the nodes are communicating. This can, for example, represent a communication or
local differential privacy constraint for each node.

At a high level, we will improve on the bound from Theorem 3 by taking into account
the fact that a small change in Sk will only change Ŵ by a fraction 1

K of the amount that
it will change Wk. In the case where W is a linear or location model, and the loss � is a
Bregman divergence, we can obtain an upper bound on the expected generalization error
that satisfies properties (1) and (2) as follows:

Theorem 4 (Linear or Location Models with Bregman Loss). Suppose the loss � takes the form
of one of the following:

(i) �(w, (x, y)) = DF(wTx, y);
(ii) �(w, z) = DF(w, z).

In addition, assume that Assumption 1 holds. Then, we have

ES∼πnK [ΔA(S)] =
1

K2

K

∑
k=1

ESk∼πn [ΔAk (Sk)]

5
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and

ES∼πnK [ΔA(S)] ≤
1

nK2 ∑
i,k

ψ∗−1(I(Wk; Zi,k))

≤ 1
K2

K

∑
k=1

ψ∗−1
(

I(Wk; Sk)

n

)
.

Proof. Here, we restrict our attention to case (ii), but the two cases have nearly identical
proofs. Using Theorem 1, we have

ES∼πnK [ΔA(S)]

=
1

nK ∑
i,k

ES,S′
[
�(A(S), Z′i,k)− �(A(S(i,k)), Z′i,k)

]
=

1
nK ∑

i,k
ES,S′

[
F(A(S))− F(Z′i,k)−

〈
∇F(Z′i,k),A(S)− Z′i,k

〉
− F(A(S(i,k))) + F(Z′i,k) +

〈
∇F(Z′i,k),A(S(i,k))− Z′i,k

〉]
=

1
nK ∑

i,k
ES,S′

[〈
∇F(Z′i,k),A(S(i,k))−A(S)

〉]
(6)

=
1

nK ∑
i,k

ES,S′

[〈
∇F(Z′i,k),

1
K

W(i)
k +

1
K ∑

j �=k
Wj −

1
K ∑

j
Wj
〉]

=
1

nK2 ∑
i,k

ES,S′

[〈
∇F(Z′i,k), W(i)

k −Wk
〉]

. (7)

In Equation (7), we use W(i)
k to denote Ak(S

(i)
k ). Equation (6) follows the linearity

of the inner product and cancels the higher order terms F(A(S)) and F(A(S(i,k))), which
have the same expected values. The key step in Equation (7) then follows by noting that
A(S(i,k)) only differs from A(S) in the submodel coming from node k, which is multiplied
by a factor of 1

K when averaging all of the submodels. By backing out of Equation (6) and
re-adding the appropriate canceled terms, we get

ES∼πnK [ΔA(S)] =
1

K2

K

∑
k=1

ESk∼πn [ΔAk (Sk)] .

By applying Theorem 2, this yields

ES∼πnK [ΔA(S)] ≤
1

nK2 ∑
i,k

ψ∗−1(I(Wk; Zi,k)) .

Then, by noting that ψ∗−1 is non-decreasing and concave, we have

1
nK2 ∑

i,k
ψ∗−1(I(Wk; Zi,k)) ≤

1
K2

K

∑
k=1

ψ∗−1

(
n

∑
i=1

I(Wk; Zi,k)

n

)
.

Using the property that conditioning decreases entropy yields

n

∑
i=1

I(Wk; Zi,k) ≤ I(Wk; Sk) ,

6
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and we have

1
K2

K

∑
k=1

ψ∗−1

(
n

∑
i=1

I(Wk; Zi,k)

n

)
≤ 1

K2

K

∑
k=1

ψ∗−1
(

I(Wk; Sk)

n

)
as desired.

The result in Theorem 4 is general enough to apply to many problems of interest. For
example, if F(p) = ‖p‖2

2, then the Bregman divergence DF gives the ubiquitous squared �2

loss (i.e., DF(p, q) = ‖p− q‖2
2 ). For a comprehensive list of realizable loss functions, the

interested reader is referred to [19]. Using F above, Theorem 4 can be applied to ordinary
least squares regression, which we will examine in greater detail in Section 4. Other
regression models such as logistic regression have loss functions that cannot be described
with a Bregman divergence without the inclusion of additional nonlinearity. However, the
result in Theorem 4 is agnostic to the algorithm that each node uses to fit its individual
model. In this way, each node could fit a logistic model to its data, and the total aggregate
model would then be an average over these logistic models. Theorem 4 would still control
the expected generalization error for the aggregate model with the extra 1

K factor. However,
critically, the upper bound would only be for the generalization error that is with respect to
a loss of the form DF(wTx, y), such as quadratic loss.

In order to show that the dependence on the number of nodes K from Theorem 4 is
tight for certain problems, consider the following example from [3]. Suppose that Z∼π =
N (μ, σ2 Id) and �(w, z) = ‖w− z‖2

2 so that we are trying to learn the mean μ of a Gaussian
distribution. An obvious algorithm for each node to use is simple averaging of its dataset:

wk = Ak(sk) =
1
n

n

∑
i=1

zi,k .

For this algorithm, it can be shown that

I(Ŵ; Zi,k) =
d
2

log
nK

nK− 1

and

ψ∗−1(y) = 2

√
d
(

1 +
1

nK

)2
σ4y

See Section IV.A. in [3] for further details. If we apply the existing information theoretic
bounds from Theorem 2 in an end-to-end way, such as in the approach from [14], we
would get

ES∼πnK [ΔA(S)] ≤ σ2d

√
2
(

1 +
1

nK

)2
log

nK
nK− 1

= O
(

1√
nK

)
.

However, for this choice of algorithm at each node, the true expected generalization
error can be computed to be

ES∼πnK [ΔA(S)] =
2σ2d
nK

.

7
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By applying our new bound from Theorem 4, we get

ES∼πnK [ΔA(S)] ≤
σ2d
K

√
2
(

1 +
1
n

)2
log

n
n− 1

≤ O
(

1
K
√

n

)

which shows the correct dependence on K and improves upon the O
(

1√
K

)
result from

prior information theoretic methods.

2.2. General Models and Losses

In this section, we briefly describe some results that hold for more general classes of
models and loss functions, such as deep neural networks and other nonlinear models:

Theorem 5 (Lipschitz Continuous Loss). Suppose that �(w, z) is Lipschitz continuous as a
function of w in the sense that

|�(w, z)− �(w′, z)| ≤ C‖w− w′‖2

for any z and that E[‖Wk −E[Wk]‖2] ≤ σ0 for each k. Then, we have

ES∼πnK [ΔA(S)] ≤
2Cσ0

K
.

Proof. Starting with Theorem 1, we have

ES∼πnK [ΔA(S)]

=
1

nK∑
i,k

ES,S′
[
�(A(S), Z′i,k)− �(A(S(i,k)), Z′i,k)

]
≤ 1

nK ∑
i,k

ES,S′
[
C
∥∥∥A(S)−A(S(i,k))

∥∥∥
2

]
(8)

=
1

nK2 ∑
i,k

ES,S′
[
C
∥∥∥Wk −W(i)

k

∥∥∥
2

]
≤ C

nK2 ∑
i,k

ES,S′ [‖Wk −E[Wk]‖2] +ES,S′
[∥∥∥W(i)

k −E[Wk]
∥∥∥

2

]
(9)

≤ 2Cσ0

K
, (10)

where Equation (8) follows from Lipschitz continuity, Equation (9) uses the triangle in-
equality, and Equation (10) is assumed.

The bound in Theorem 5 is not in terms of the information theoretic quantities
I(Wk; Sk), but it does show that the O

(
1
K

)
upper bound can be shown for much more

general loss functions and arbitrary nonlinear models.

2.3. Privacy and Communication Constraints

Both communication and local differential privacy constraints can be thought of as
special cases of mutual information constraints. Motivated by this observation, Theorem 4
immediately implies corollaries for these types of systems:

8
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Corollary 1 (Privacy Constraints). Suppose each node’s algorithm Ak is an ε-local, differentially
private mechanism in the sense that p(wk |sk)

p(wk |s′k)
≤ eε for each wk, sk, s′k. Then, for losses � of the form

in Theorem 4, and under Assumption 2, we have

ES∼πnK [ΔA(S)] ≤
1
K

√
2R2 min{ε, (e− 1)ε2}

n
.

Proof. Note that

I(Wk; Sk) = ∑
wk ,sk

p(wk, sk) log
p(wk|sk)

∑s′k
p(wk|s′k)p(s′k)

≤ ∑
wk ,sk

p(wk, sk) log
p(wk|sk)

infs′k
p(wk|s′k)

≤ ∑
wk ,sk

p(wk, sk)ε = ε .

Similarly, it is true that

I(Wk; Sk) = KL(PWkSk‖PSk PWk )

≤ KL(PWkSk‖PSk PWk ) +KL(PSk PWk‖PWkSk )

= ∑
wk ,sk

p(wk)p(sk)

(
p(wk|sk)

p(wk)
− 1

)
log

p(wk|sk)

p(wk)

≤ ∑
wk ,sk

p(wk)p(sk)(eε − 1)ε ≤ (e− 1)ε2

where the last inequality is only true for ε ≤ 1. Putting these two displays together gives
I(Wk; Sk) ≤ min{ε, (e− 1)ε2}, and the result follows from Theorem 4.

Corollary 2 (Communication Constraints). Suppose each node can only transit B bits of infor-
mation to the model aggregator, meaning that each Wk can only take 2B distinct possible values.
Then, for losses � of the form in Theorem 4, and under Assumption 2, this yields

ES∼πnK [ΔA(S)] ≤
1
K

√
2(log 2)R2B

n
.

Proof. The corollary follows immediately from Theorem 4 and

I(Wk; Sk) ≤ H(Wk) ≤ (log 2)B .

3. Iterative Algorithms

We now turn to considering more complicated multi-round and iterative algorithms.
In this setting, after T rounds, there is a sequence of weights W(T) = (W1, . . . , WT), and
the final model ŴT = fT(W(T)) is a function of that sequence, where fT gives a linear
combination of the T vectors W1, . . . , WT . The function fT could represent, for example,
averaging over the T iterates, choosing the last iterate WT or some weighted average over
the iterates. For each round t, each node k produces an updated model Wt

k based on its
local dataset Sk and the previous timestep’s global model Wt−1. The global model is then
updated via an average over all K updated submodels:

Wt =
1
K

K

∑
k=1

Wt
k .

9
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The particular example that we will consider is that of a distributed SGD, where each
node constructs its updated model Wt

k by taking one or more gradient steps starting from
Wt−1 with respect to random minibatches of its local data. Our model is general enough to
account for multiple local gradient steps, as are used in so-called federated learning [5–7],
as well as noisy versions of SGDs, such as in [20,21]. If only one local gradient step is taken
for each iteration, then the update rule for this example could be written as

Wt
k = Wt−1 − ηt∇w�(Wt−1, Zt,k) + ξt (11)

where Zt,k is a data point (or minibatch) sampled from Sk on timestep t, ηt is the learning
rate, and ξt is some potential added noise. We assume that the data points Zt,k are sampled
without replacement so that the samples are distinct across different values of t. We will
also assume, for notational simplicity, that ŴT = WT , although the more general result
follows in a straightforward manner.

For this type of iterative algorithm, we will consider the following timestep-averaged
empirical risk quantity:

1
KT

T

∑
t=1

K

∑
k=1

�(Wt, Zt,k) ,

and the corresponding generalization error, expressed as

Δsgd(S) =
1
T

T

∑
t=1

(
EZ∼π [�(Wt, Z)]− 1

K

K

∑
k=1

�(Wt, Zt,k)

)
. (12)

Note that Equation (12) is slightly different from the end-to-end generalization error
that we would get from considering the final model WT and whole dataset S. It is instead an
average over the generalization error we would get from each model, stopping at iteration
t. We perform this so that when we apply the leave-one-out expansion from Theorem 1,
we do not have to account for the dependence of Wt

k on past samples Zt′ ,k′ for t′ < t and
k′ �= k. Since we expect the generalization error to decrease as we use more samples, this
quantity should result in a more conservative upper bound and be a reasonable surrogate
object to study. The next bound follows as a corollary to Theorem 4:

Corollary 3. For losses � of the form in Theorem 4, and under Assumption 2 (for each Wt
k), we have

E
[
Δsgd(S)

]
≤ 1

T

T

∑
t=1

1
K2

K

∑
k=1

√
2R2 I(Wt

k; Zt,k) .

In the particular example described in Equation (11), where Gaussian noise ξt ∼
N (0, Idσ2

t ) is added to each iterate, Corollary 3 yields the following. As in [20], we assume
that the updates are magnitude-bounded (i.e., supw,x ‖∇w�(w, z)‖2 ≤ L), the stepsizes
satisfy ηt =

c
t for a constant c > 0, and that σt =

√
ηt:

Corollary 4. Under the assumptions above, we have

E
[
Δsgd(S)

]
≤ 2RL

K

√
c
T

.

10
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Proof. The mutual information terms in Corollary 3 satisfy

I(Wt
k; Zt,k) ≤ I(Wt

k, Wt−1; Zt,k) (13)

= I(Wt
k; Zt,k|Wt−1) + I(Wt−1; Zt,k) (14)

= I(Wt
k; Zt,k|Wt−1) (15)

≤ d
2

log
(

1 +
η2

t L2

dσ2
t

)
(16)

≤ η2
t L2

2σ2
t

=
cL2

2t
. (17)

Equation (13) follows from the data-processing inequality, Equation (14) is the chain
rule for mutual information, and Equation (15) follows from the independence of Zt,k and
Wt−1. Equation (16) is due to the capacity of the additive white Gaussian noise channel,
and Equation (17) just uses the approximation log(1 + x) ≤ x. Thus, we have

E
[
Δsgd(S)

]
≤ 1

TK

T

∑
t=1

RL
√

c
t
≤ 2RL

K

√
c
T

.

4. Simulations

We simulated a distributed linear regression example in order to demonstrate the
improvement in our bounds over the existing information-theoretic bounds. To accom-
plish this, we generated n = 10 synthetic datapoints at each of K different nodes for
various values of K. Each datapoint consisted of a pair (x, y), where y = xw0 + n with
x, n∼N (0, 1), and w0∼N (0, 1) was the randomly generated true weight that was common
to all datapoints. Each node constructed an estimate ŵk of w0 using the well-known normal
equations which minimize the quadratic loss (i.e., ŵk = argminw ∑n

i=1(wxi,k − yi,k)
2). The

aggregate model was then the average ŵ = 1
K ∑K

k=1 ŵk. In order to estimate the old and
new information-theoretic generalization bounds (i.e., the bounds from Theorems 2 and 4,
respectively), this procedure was repeated M = 106 times, and the datapoint and model
values were binned in order to estimate the mutual information quantities. The value of M
was increased until the mutual information estimates were no longer particularly sensitive
to the number and widths of the bins. In order to estimate the true generalization error,
the expectations for both the population risk and the dataset were estimated by Monte
Carlo experimentation, with 104 trials each. The results can be seen in Figure 2, where it
is evident that the new information theoretic bound is much closer to the true expected
generalization error and decays with an improved rate as a function of K.

Figure 2. Cont.
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Figure 2. Information-theoretic upper bounds and expected generalization error for a simulated
linear regression example in linear (top) and log (bottom) scales.
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Abstract: In this paper, we propose a compression-based anomaly detection method for time series
and sequence data using a pattern dictionary. The proposed method is capable of learning complex
patterns in a training data sequence, using these learned patterns to detect potentially anomalous pat-
terns in a test data sequence. The proposed pattern dictionary method uses a measure of complexity
of the test sequence as an anomaly score that can be used to perform stand-alone anomaly detection.
We also show that when combined with a universal source coder, the proposed pattern dictionary
yields a powerful atypicality detector that is equally applicable to anomaly detection. The pattern
dictionary-based atypicality detector uses an anomaly score defined as the difference between the
complexity of the test sequence data encoded by the trained pattern dictionary (typical) encoder and
the universal (atypical) encoder, respectively. We consider two complexity measures: the number of
parsed phrases in the sequence, and the length of the encoded sequence (codelength). Specializing
to a particular type of universal encoder, the Tree-Structured Lempel–Ziv (LZ78), we obtain a novel
non-asymptotic upper bound, in terms of the Lambert W function, on the number of distinct phrases
resulting from the LZ78 parser. This non-asymptotic bound determines the range of anomaly score.
As a concrete application, we illustrate the pattern dictionary framework for constructing a baseline
of health against which anomalous deviations can be detected.

Keywords: pattern dictionary; atypicality; Lempel–Ziv algorithm; lossless compression; anomaly
detection

1. Introduction

Anomaly detection and outlier detection are used for detecting data samples that
are inconsistent with normal data samples. Early methods did not take the sequential
structure of the data into consideration [1]. However, many real world applications involve
data collected as a sequence or time series. In such data, anomalous samples are better
characterized as subsequences of time series. Anomaly detection is a challenging task due
to the uncertain nature of anomalies. Anomaly detection in time series and sequence data is
particularly difficult since both length and occurrence frequency of potentially anomalous
subsequences are unknown. Additionally, algorithmic computational complexity can be a
challenge, especially for streaming data with large alphabet sizes.

In this paper, we propose a universal nonparametric model-free anomaly detection
method for time series and sequence data based on a pattern dictionary (PD). Given training
and test data sequences, a pattern dictionary is created from the sets of all the patterns in
the training data. This dictionary is then used to sequentially parse and compress (in a
lossless manner) the test data sequence. Subsequently, we interpret the number of parsed
phrases or the codelength of the test data as anomaly scores. The smaller the number
of parsed phrases or the shorter the compressed codelength of the test data, the more
similarity between training and test data patterns. This sequential parsing and lossless
compression procedure leads to detection of anomalous test sequences and their potential
anomalous patterns (subsequences).

Entropy 2022, 24, 1095. https://doi.org/10.3390/e24081095 https://www.mdpi.com/journal/entropy15
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The proposed pattern dictionary method has the following properties: (i) it is nonpara-
metric since it does not rely on a family of parametric distributions; (ii) it is universal in
the sense that the detection criterion does not require any prior modeling of the anomalies
or nominal data; (iii) it is non-Bayesian as the detection criterion is model-free; and (iv)
as it depends on data compression, data discretization is required prior to building the
dictionary. While the proposed pattern dictionary can be used as a stand-alone anomaly
detection method (Pattern Dictionary for Detection (PDD)), we show how it can be utilized
in the atypicality framework [2,3] for more general data discovery problems. This results in
a method we call PDA (Pattern Dictionary based Atypicality), in which the proposed pat-
tern dictionary is contrasted against a universal source coder which is the Tree-Structured
Lempel–Ziv (LZ78) [4,5]. We use the LZ78 as the universal encoder since its compres-
sion procedure is similar to our proposed pattern dictionary, and it is (asymptotically)
optimal [4,5].

The main contributions of this paper are as follows. First, we propose the pattern
dictionary method for anomaly detection and characterize its properties. We show in
Theorem 1 that using a multi-level dictionary that separates the patterns by their depth
results in a shorter average indexing codelength in comparison to a uni-level dictionary
that uses a uniform indexing approach. Second, we develop novel non-asymptotic lower
and upper bounds of the LZ78 parser in Theorem 2 and further analyze its non-asymptotic
properties. We demonstrate that the non-asymptotic upper bound on the number of
distinct phrases resulting from the LZ78 parsing of an |X |-ary sequence of length l can be
explicitly expressed by the Lambert W function [6]. To the best of our knowledge, such
characterization has not previously appeared in the literature. Then, we show in Lemma 1
that the achieved non-asymptotic upper bound on the number of distinct phrases resulting
from the LZ78 parsing converges to the optimal upper bound l

log l of the LZ78 parser as
l → ∞. Third, we show how the pattern dictionary and LZ78 can be used together in
an atypicality detection framework. We demonstrate that the achieved non-asymptotic
lower and upper bounds on both LZ78 and pattern dictionary determine the range of the
anomaly score. Consequently, we show how these bounds can be used to analyze the
effect of dictionary depth on the anomaly score. Furthermore, the bounds are used to set
the anomaly detection threshold. Finally, we compare our proposed methods with the
competing methods, including nearest neighbors-based similarity [7], threshold sequence
time-delay embedding [8–11], and compression-based dissimilarity measure [12–15,15,16],
that are designed for anomaly detection in sequence data and time series. We conclude
our paper with an experiment that details how the proposed framework can be used to
construct a baseline of health against which anomalous deviations are detected.

The paper is organized as follows. In Section 2, we briefly review the relevant literature
in anomaly detection (readers who are familiar with anomaly detection can skip this section).
Section 3 introduces the detection framework and the notation used in this paper. Section 4
presents our proposed pattern dictionary method and its properties. In Section 5, we show
how the proposed pattern dictionary can be used in an atypicality framework alongside
LZ78, and we analyze the non-asymptotic properties of the LZ78 parser. Section 6 presents
experiments that illustrate the proposed pattern dictionary anomaly detection procedure.
Finally, Section 7 concludes our paper.

2. Related Works

Anomaly detection has a vast literature. Anomaly detection procedures can be cat-
egorized into parametric and nonparametric methods. Parametric methods rely on a
family of parametric distributions to model the normal data. The slippage problem [17],
change detection [18–21], concept drift detection [19–22], minimax quickest change detec-
tion (MQCD) [23–25], and transient detection [26–29] are examples of parametric anomaly
detection problems. The main difference between our proposed pattern dictionary method
and the aforementioned techniques is that our method is a model-free nonparametric
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method. The main drawback of the parametric anomaly detection procedure is that it is
difficult to accurately specify the parametric distribution for the data under investigation.

Nonparametric anomaly detection approaches do not assume any explicit parameter-
ized model for the data distributions. An example is an adaptive nonparametric anomaly
detection approach called geometric entropy minimization (GEM) [30,31] that is based
on the minimal covering properties of K-point entropic graphs constructed on N training
samples from a nominal probability distribution. The main difference between GEM-based
methods and our proposed pattern dictionary is that former techniques are designed to de-
tect outliers and cannot easily incorporate the temporal information regarding anomaly in a
data stream. Another nonparametric detection method is sequential nonparametric testing
that considers data as online stream and addresses the growing data storage problem by
sequentially testing every new data samples [32,33]. A key difference between sequential
nonparametric testing and our proposed pattern dictionary method is that our method is
based on coding theory instead of statistical decision theory.

Information theory and universal source coding have been used previously in anomaly
detection [34–45]. The detection criteria in these approaches are based on comparing metrics
such as complexity or similarity distances that depend on entropy rate. An issue with these
approaches is that there are many completely dissimilar sources with the same entropy rate,
reducing outlier sensitivity. Another related problem is universal outlier detection [46,47].
In these works, different levels of knowledge about nominal and outlier distributions
and number of outliers are incorporated. Unlike these methods, our proposed pattern
dictionary approach does not require any prior knowledge about outliers and anomalies.
In [48], a measure of empirical informational divergence between two individual sequences
generated from two finite-order, finite-alphabet, stationary Markov processes is introduced
and used for a simple universal classification. While the parsing procedure used in [48] is
similar to the pattern dictionary used in this paper, there are important differences. The
empirical measure proposed in [48] is a stand alone score function that is designed for
two-class classification, while our measure is a direct byproduct of the LZ78 encoding
algorithm designed for single-class classification, i.e., anomaly detection. In addition, the
theoretical convergence of the empirical measure to the relative entropy between the class
conditioned distributions, shown in [48], is only guaranteed when the sequences satisfy the
finite-order Markov property, a condition that may be difficult to satisfy in practice. In [2,3],
an information theoretic data discovery framework called atypicality has been introduced
in which the detection criterion is based on a descriptive codelength comparison of an
optimum encoder or a training-based fixed source coder, namely a data-dependent source
coder introduced in [2]) with a universal source coder. In this paper, we show how our
proposed pattern dictionary method can be used as a training-based fixed source coder in
an atypicality framework.

Anomaly and outlier detection for time series has also been extensively studied [49].
Various time series modeling techniques such as regression [50], auto regression [51],
auto regression moving average [52], auto regressive integrated moving average [53],
support vector regression [54], and Kalman filters [55] have been used to detect anomalous
observations by comparing the estimated residuals to a threshold. Many of these methods
depend on a statistical assumption on the residuals, e.g., an assumption of Gaussian
distribution, while the pattern dictionary method is model-free.

The proposed pattern dictionary method is closely related to the anomaly detection
methods that are designed for sequence data. Many of these methods are focused on spe-
cific applications. For instance, detection of mutations in DNA sequences [7,56], detection
of cyberattacks in computer network [57], and detection of irregular behaviors in online
banking [58] are all application-specific examples of anomaly detection for discrete se-
quences. In the recent years, multiple sequence data anomaly detection methods have been
developed specifically for graphs [59], dynamic networks [60], and social networks [61].
Chandola et al. [34] summarized many anomaly detection methods for discrete sequences
and identified three general approaches to this problem. These anomaly detection for-
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mulations are unique in the way that anomalies are defined, but similar in their reliance
on comparison between a test (sub)sequence and normal sequences in the training data.
For example, kernel-based techniques such as nearest neighbor-based similarity (NNS) [7]
are designed to detect anomalous sequences that are dissimilar to the training data. As
another example, threshold sequence time-delay embedding (t-STIDE) [8–11] is established
to detect anomalous sequences that contain subsequences with anomalous occurrence
frequencies. The compression-based dissimilarity measure (CDM) is proposed for discord
detection [12–15,15,16] to detect anomalous subsequences within a long sequence. Chan-
dola et al. [34] also showed how various techniques developed for one problem formulation
can be changed and applied to other problem formulations. While our pattern dictionary
method shares similarity with NNS, CDM, and t-STIDE, our proposed method is generally
applicable to any of the categories of anomaly detection identified in [34]. Furthermore, our
detection criterion does not depend on the specific type of anomaly. Note that while CDM
is also a compression-based method, its anomaly score is based on a dissimilarity measure
that might fail to detect atypical subsequences [2]. For instance, using CDM method, a
binary i.i.d. uniform training sequence is equally dissimilar to another binary i.i.d. uniform
test sequence or to a test sequence drawn from some other distribution. In Section 6, the
detection performance of our proposed pattern dictionary method is compared with NNS,
CDM, t-STIDE, and the Ziv–Merhav method of [48].

It is worth mentioning that since the proposed pattern dictionary method is based
on lossless source coding, it requires discretization of time series prior to deployment. In
fact, many anomaly detection approaches require discretization of continuous data prior
to applying inference techniques [62–65]. Note that discretization is also a requirement
in other problem settings such as continuous optimization in genetic algorithms [66],
image pattern recognition [67], and nonparametric histogram matching over codebooks in
computer vision [68].

3. Framework and Notation

In the anomaly detection literature for sequence data and time series, the following
three general formulations are considered [34]: (i) an entire test sequence is anomalous
if it is notably different from normal training sequences; (ii) a subsequence within a long
test sequence is anomalous if it is notably different from other subsequences in the same
test sequence or the subsequences in a given training sequence; and (iii) a given test
subsequence or pattern is anomalous if its occurrence frequency in a test sequence is
notably different from its occurrence frequency in a normal training sequence. In this
paper, we consider a unified formulation in which we determine if a (sub)sequence is
anomalous with respect to a training sequence (or training sequence database) if any of
the aforementioned three conditions are met. In other words, given a training sequence
or a training sequence database, a test sequence is anomalous if it is significantly different
from training sequences, or it contains a subsequence that is significantly different from
subsequences in the training sequence, or it contains a subsequence whose occurrence
frequency is significantly different from its occurrence frequency in the training data.

Notation

We use x to denote a sequence and xm
n to denote a subsequence of

x: xm
n = {xi, i = n, n + 1, . . . , m}, and xl represents a sequence of length l, i.e.,

{xn, n = 1, . . . , l}. X denotes a finite set, and D represents a dictionary of subsequences.
Throughout this paper:

• All logarithms are base 2 unless otherwise is indicated.
• In the encoding process, we always adhere to lossless compression and strict decod-

ability at the decoder.
• While adhering to strict decodability, we only care about the codelength, not the codes

themselves.
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4. Pattern Dictionary: Design and Properties

Consider a long sequence, called the training data, {xn, n = 1, . . . , L} of length L
drawn from a finite alphabet X . The goal is to learn the patterns (subsequences) of this
sequence by creating a dictionary that contains all distinct patterns of maximum length
(depth) Dmax � L that are embedded in the sequence. We call this dictionary a pattern
dictionary D with the maximum depth Dmax and the set of observed patterns SD

(
xL

1
)
.

Example 1. Suppose Dmax = 2, the alphabet is X = {A, B, C, D} and the training sequence is
x = ABACADABBACCADDABABACADAB. The set of patterns with depth d ≤ Dmax in
this sequence is SD(x) = {A, B, C, D, AB, BA, AC, CA, AD, DA, BB, CC, DD}.

Since the pattern dictionary is going to be used as a training-based fixed source coder
(a data-dependent source coder as defined in [2]), an efficient structure for the pattern
representation that minimizes the indexing codelength is of interest. The simplest approach
is to consider all the patterns of length 1 ≤ d ≤ Dmax in one set SD and use a uniform
indexing approach. This approach is called a uni-level dictionary. Another approach is to
separate all the patterns by their depth (pattern length) and arrange them in Dmax sets
S (1)
D ,S (2)

D , . . . ,S (Dmax)
D , and define SD =

⋃Dmax
d=1 S

(d)
D , which we call a multi-level dictionary.

In the following sections, we show that the latter results in a shorter average indexing
codelength. It is worth mentioning that since a multi-level dictionary results in a depth-
dependent indexing codelength, the average over the depth is considered. A relevant
question is if the average of indexing codelength over all the patterns independent of depth
should be used as an alternative. Since such pattern dictionaries are used to sequentially
parse test data, patterns at smaller depth are more likely to be matched, even if they are
anomalous. Thus, the average of indexing codelength over depth can better differentiate
depth-dependent anomalies.

4.1. A Special Case

Suppose all the possible patterns of depth d ≤ Dmax exist in the training sequence

{xn, n = 1, . . . , L}. That is, the cardinality of S (d)
D is

∣∣∣S (d)
D

∣∣∣ = |X |d for 1 ≤ d ≤ Dmax. Then,
the total number of patterns is

∣∣∣SD(xL
1

)∣∣∣ = Dmax

∑
d=1

∣∣∣S (d)
D
(

xL
1

)∣∣∣
=

Dmax

∑
d=1
|X |d

=
|X |

(
|X |Dmax − 1

)
|X | − 1

.

Hence, a uni-level dictionary results in a uniform indexing codelength of

Luni = log

⎛⎝ |X |
(
|X |Dmax − 1

)
|X | − 1

⎞⎠
≈ Dmax log(|X |).

On the other hand, a multi-level dictionary requires a two-stage description of index. The
first stage is the index of the depth d (using log Dmax bits), and the second stage is the
index of the pattern among all the patterns with the same depth (using d log(|X |) bits).
This two-stage description of the index leads to a non-uniform indexing of codelength:
the minimum indexing codelength occurring for the patterns of depth d = 1 equals to
Lmulti

min =log Dmax + log(|X |) bits, while the maximum indexing codelength occurring for
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the patterns of depth d = Dmax equals to Lmulti
max =log Dmax + Dmax log(|X |) bits. Thus, the

average indexing codelength of a multi-level dictionary is given by

Lmulti =
1

Dmax

Dmax

∑
d=1

(log Dmax + d log(|X |))

= log Dmax +
log(|X |)

Dmax

Dmax

∑
d=1

d

≈ log Dmax +
1
2

Dmax log(|X |).

Figures 1 and 2 graphically compare the indexing codelength between a uni-level dictionary
and a multi-level dictionary for a fixed alphabet size and a fixed Dmax, respectively. As seen,
the average indexing codelength of a multi-level dictionary results in a shorter indexing
codelength.

Figure 1. Comparison of indexing codelength between a uni-level dictionary and a multi-level
dictionary (fixed alphabet size |X | = 100).

Figure 2. Comparison of indexing codelength between a uni-level dictionary and a multi-level
dictionary (fixed Dmax = 20).
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4.2. The General Case

Given the training sequence {xn, n = 1, . . . , L}, suppose there are ad =
∣∣∣S (d)
D

∣∣∣ ≤ |X |d
patterns of depth d ≤ Dmax (a1 patterns of depth one, a2 patterns of depth two, etc.).
The following Theorem 1 shows that the average indexing codelength using a multi-level
dictionary is always less than the indexing codelength of a uni-level dictionary.

Theorem 1. Assume there are embedded ad =
∣∣∣S (d)
D

∣∣∣ ≤ |X |d patterns of depth 1 ≤ d ≤ Dmax

in a training sequence of length L � Dmax. Let Luni and Lmulti be the indexing codelength of a
uni-level dictionary and the average indexing codelength of a multi-level dictionary, respectively.
Then,

(1) Lmulti ≤Luni; and

(2) log
(

1 + (
√

aDmax−
√

a1)
2

Dmax aDmax

)
≤ Luni − Lmulti ≤ log

(
1 + w + (1− w)

aDmax
a1

− aw−1
1 a1−w

Dmax

)
,

where

w =
ln
[(

aDmax
aDmax−a1

)
ln aDmax

a1

]
ln aDmax

a1

.

Proof. Since L � Dmax, clearly 0 < a1 ≤ a2 ≤ · · · ≤ aDmax . Using a uni-level dictionary,
the indexing codelength is

Luni = log

(
Dmax

∑
d=1

ad

)
= log Dmax + log ADmax ,

where ADmax � (a1 + a2 + · · ·+ aDmax )/Dmax is the arithmetic mean of a1, a2, . . . , aDmax .
Using a multi-level dictionary the average indexing codelength is

Lmulti =
1

Dmax

Dmax

∑
d=1

(log Dmax + log ad)

= log Dmax + log GDmax ,

where GDmax �
(

∏Dmax
d=1 ad

)1/Dmax
is the geometric mean of a1, a2, . . . , aDmax . Hence, the

comparison between Luni and Lmulti comes down to comparing the arithmetic mean and
the geometric mean of a1, a2, . . . , aDmax . Thus, ADmax ≥ GDmax , which established the first
part of the theorem. For the second part of the theorem, we use lower and upper bounds
on ADmax − GDmax derived in [69](√aDmax −

√
a1
)2

Dmax
≤ ADmax − GDmax ≤[
wa1 + (1− w)aDmax − aw

1 a1−w
Dmax

]
,

where w =
ln[(aDmax /(aDmax−a1)) ln(aDmax /a1)]

ln(aDmax /a1)
. Since a1 ≤ GDmax ≤ aDmax and Luni − Lmulti =

log ADmax
GDmax

, the proof is complete.

Theorem 1 shows that a multi-level dictionary gives shorter average indexing code-
length than a uni-level dictionary. log Dmax + log ad is the indexing codelength for patterns
of depth d, where ad is the total number of observed patterns of the depth d. In order to
reduce the indexing codelength even further, the patterns of the same length in each set
S (d)
D can be ordered according to their relative frequency (empirical probability) in the

training sequence. This allows Huffman or Shannon–Fano–Elias source coding [4] to be
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used to assign prefix codes to patterns in each set S (d)
D separately. In this case, for any

pattern xd
1 ∈ S

(d)
D , the indexing codelength becomes

Lmulti
(

xd
1

)
= log Dmax + L(d)

D
(

xd
1

)
, (1)

where L(d)
D
(

xd
1

)
is the codelength assigned to the pattern xd

1 based on its empirical prob-
ability using a Huffman or Shannon–Fano–Elias encoder. If such encoders are used, the
codelength (1) is optimal ([4] Theorem 5.8.1). Since the whole purpose of creating a pattern
dictionary is to learn the patterns in the training data, assigning the shorter codelength to
the more frequent patterns and assigning longer codelength to the less frequent patterns in
any pattern set S (d)

D will improve the efficiency of the coded representation.

Example 2. Suppose the alphabet is X = {A, B, C, D} and the training sequence is x =
ABACADABBACCADDABABACADAB. Table 1 shows the dictionary with Dmax = 3 cre-
ated by the patterns inside the training sequence, and the codelength assigned for each pattern using
Huffman coding.

Table 1. Filling (training) the dictionary (of maximum depth Dmax = 3) with the patterns in the
training sequence ABACADABBACCADDABABACADAB.

Depth 1 Depth 2 Depth 3

xd
1 Pr(xd

1) L(1)
D (xd

1) xd
1 Pr(xd

1) L(2)
D (xd

1) xd
1 Pr(xd

1) L(3)
D (xd

1)

A 0.44 1 AB 0.2083 2 ABA 0.1304 3
B 0.24 2 BA 0.1667 3 BAC 0.1304 3
C 0.16 3 AC 0.1250 3 CAD 0.1304 3
D 0.16 3 CA 0.1250 3 DAB 0.1304 3

AD 0.1250 3 ACA 0.0870 4
DA 0.1250 3 ADA 0.0870 4
BB 0.0417 4 ABB 0.0435 4
CC 0.0417 5 BBA 0.0435 4
DD 0.0417 5 ACC 0.0435 4

CCA 0.0435 4
ADD 0.0435 4
DDA 0.0435 5
BAB 0.0435 5

4.3. Pattern Dictionary for Detection (PDD)

Suppose we want to sequentially compress a test sequence xl
1 = {xn, n = 1, . . . , l}

using a trained pattern dictionary D with maximum depth Dmax < l. The encoder parses
the test sequence xl

1 into c phrases, xv2−1
v1 , xv3−1

v2 , . . . , xl
vc where vi is the index of the start

of the ith phrase, and each phrase xvi+1−1
vi is a pattern in the pattern dictionary D. Let

SD
(

xl
1

)
=

{
xv2−1

v1 , xv3−1
v2 , . . . , xl

vc

}
denote the set of the parsed phrases using pattern

dictionary D. The parsing process begins with setting v1 = 1 and finding the largest
v2 ≤ Dmax and v2 ≤ l such that xv2−1

v1 ∈ D but xv2
v1 /∈ D. This results in the first phrase

xv2−1
1 . Similarly, the same procedure is performed in order to find the largest v3 ≤ Dmax

and v3 ≤ l such that xv3−1
v2 ∈ D but xv3

v2 /∈ D. This type of cross-parsing was first introduced
in [48] in order to estimate an empirical relative entropy between two individual sequences
that are independent realizations of two finite-order, finite-alphabet and stationary Markov
processes. Here, we do not impose such an assumption on the sources generating the
sequences. Algorithm 1 summarizes the procedure of the proposed pattern dictionary (PD)

22



Entropy 2022, 24, 1095

parser. After parsing the whole test sequence xl
1 into c phrases, xv2−1

v1 , xv3−1
v2 , . . . , xl

vc , the
codelength will be

L
(

xl
1

)
=

c

∑
i=1

LD
(

xvi+1−1
vi

)
+ c log Dmax. (2)

Algorithm 1 Pattern Dictionary (PD) Parser

Require: Pattern Dictionary D, Test Sequence xl
1

1: Set c = 1, vc = 1, d = 1
2: while vc + d− 1 < l do

3: if xvc+d−1
vc ∈ S (d)

D then
4: if d + 1 ≤ Dmax then
5: d = d + 1
6: else
7: vc+1 = vc + d
8: c = c + 1
9: d = 1

10: else
11: vc+1 = vc + d− 1
12: c = c + 1
13: d = 1

return xv2−1
v1 , xv3−1

v2 , . . . , xl
vc

For detection purposes, on a test sequence xl
1, either the number of parsed phrases or

the codelength can be used as anomaly scores with respect to the trained pattern dictionary
D. In other words, for any test sequence xl

1 and given a pattern dictionary, if the number of

parsed phrases
∣∣∣SD(xl

1

)∣∣∣ or the codelength L
(

xl
1

)
in Equation (2) are greater than a certain

threshold, then xl
1 is declared to be anomalous. While the proposed pattern dictionary

technique can be used as a stand-alone anomaly detection technique, below we show
how it can be used for atypicality detection [2,3] as a training-based fixed source coder
(data-dependent encoder).

5. Pattern Dictionary-Based Atypicality (PDA)

In [2,3], an atypicality framework was introduced as a data discovery and anomaly
detection framework that is based on a central definition: “a sequence (or subsequence)
is atypical if it can be described (coded) with fewer bits in itself rather than using the
(optimum) code for typical sequences”. In this framework, detection is based on the
comparison of a lossless descriptive codelength between an optimum encoder (if the typical
model is known) or a training-based fixed source coder (if the typical model is unknown,
but training data are available) and a universal source coder in order to detect atypical
subsequences in the data [2,3]. In this section, we apply our proposed pattern dictionary as
a training-based fixed source coder (typical encoder) in an atypicality framework. We call
it pattern dictionary-based atypicality (PDA) method.

The pattern dictionary-based source coder can be considered as a generalization of
the Context Tree [70–72] based fixed source coder that was used in [2] for discrete data.
The universal source coder (atypical encoder) used here is the Tree-Structured Lempel–
Ziv (LZ78) [4,5]. The primary reason for choosing LZ78 as the universal encoder is that
its sequential parsing procedure is similar to the proposed pattern dictionary described
in Section 4, and it is (asymptotically) optimal [4,5]. One might ask why do we even
need to compare descriptive codelengths of a training-based (or optimum) encoder with a
universal encoder for data discovery purposes when, as alluded to in the end of last section,
a training-based fixed source coder can be a stand-alone anomaly detector. The necessity
of such concurrent comparison is articulated in [2]. In fact, such a codelength comparison
enables the atypicality framework to go beyond the detection of anomalies and outliers,
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extending to the detection of rare parts of data that might have a data structure of interest
to the practitioner.

We give an example to provide further intuition for why anomaly detection can
benefit from our framework that compares the outputs of a typical encoder and an atypical
encoder. Consider an i.i.d. binary sequence of length L with P(X = 1) = p in which there
is embedded an anomalous subsequence of length l � L with P(X = 1) = p̂ �= p that we
would like to detect. If p = 1

2 and p̂ = 1, the typical encoder cannot catch the anomaly
while the atypical encoder can. On the other hand, if p = 1

3 and p̂ = 2
3 , the typical encoder

identifies the anomaly while an atypical encoder fails to do so (since the entropy for p = 1
3

and p̂ = 2
3 is the same). Note that in both cases, our framework would catch the anomaly

since it uses the difference between the descriptive codelengths of these two encoders.
Recall that in Section 4, we supposed that a test sequence xl

1 has been parsed using
a trained pattern dictionary D with maximum depth Dmax < l. This parsing results in∣∣∣SD(xl

1

)∣∣∣ parsed phrases. Using Equation (2), the typical codelength of the sequence xl
1 is

given by

LT

(
xl

1

)
= ∑

y∈SD(xl
1)

LD(y) +
∣∣∣SD(xl

1

)∣∣∣ log Dmax.

For the atypical encoder, the LZ78 algorithm results in a distinct parsing of the test sequence
xl

1. Let SLZ

(
xl

1

)
denote the set of parsed phrases in the LZ78 parsing of xl

1. As such, the
resulting atypical codelength is [4,5]

LA

(
xl

1

)
=
∣∣∣SLZ

(
xl

1

)∣∣∣[log
∣∣∣SLZ

(
xl

1

)∣∣∣+ 1
]
.

Since L
(

xl
1

)
using both LZ78 and the pattern dictionary depends on the number of

parsed phrases, we investigate the possible range and properties of
∣∣∣SD(xl

1

)∣∣∣− ∣∣∣SLZ

(
xl

1

)∣∣∣.
While the LZ78 encoder is a well-known compression method which is asymptotically
optimal [4,5], its non-asymptotic behavior is not well understood. In the next section, we
establish a novel non-asymptotic property of an LZ78 parser, and then compare it with the
pattern dictionary parser.

5.1. Lempel–Ziv Parser

We start this section with a theorem that establishes the non-asymptotic lower and
upper bounds on the number of distinct phrases in a sequence parsed by LZ78.

Theorem 2. The number of distinct phrases c(l) resulting from LZ78 parsing of an |X |-ary
sequence xl

1 = {xn, n = 1, . . . , l} satisfies

1
2

(√
8l + 1− 1

)
≤ c(l) ≤ l ln|X |

W
(

β
α |X |

α+1
−α ln|X |

) ,

where α = |X | − 1, β = (|X | − 1)2l − |X |, and W(.) is the Lambert W function [6].

Proof. First, we establish the upper bound. Note that the number of parsed distinct phrases
c(l) is maximized when all the phrases are as short as possible. Define M � |X | and let lk
be the sum of the lengths of all distinct strings of length less than or equal to k. Then,

lk =
k

∑
j=1

jMj =
1

(M− 1)2

[
{(M− 1)k− 1}Mk+1 + M

]
.
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Since l = lk occurs when all the phrases are of length ≤ k,

c(lk) ≤
k

∑
j=1

Mj =
M
(

Mk − 1
)

M− 1
<

Mk+1

M− 1
≤ lk

k− 1
M−1

.

If lk ≤ l < lk+1, we write l = lk +� where

� < lk+1 − lk = (Mk + M− 1− k)
Mk+1

M− 1

= (k + 1)
Mk+1

M− 1
.

We conclude that the parsing ends up with c(lk) phrases of length ≤ k and l−lk
k+1 phrases of

length k + 1. Therefore,

c(l) ≤ c(lk) +
l − lk
k + 1

≤ lk
k− 1

M−1
+

�
k + 1

≤ lk +�
k− 1

M−1
=

l
k− 1

M−1
. (3)

We now bound the size of k for a given sequence of length l by setting l = lk. Define
α � M− 1 and β � (M− 1)2l −M. Then,

1

(M− 1)2

[
((M− 1)k− 1)Mk+1 + M

]
= l

⇐⇒((M− 1)k− 1)Mk+1 = (M− 1)2l −M

⇐⇒(αk− 1)Mk+1 = β

⇐⇒ k̂M(k̂+1)/α+1 = β

⇐⇒ k̂
ln M

α
exp

(
k̂

ln M
α

)
=

β

α
M−1−1/α ln M.

where k̂ = αk− 1. The last equation can be solved using the Lambert W function [6]. Since
all the involved numbers are real and for M > 1 and l ≥ 2, we have β

α M−1−1/α ln M ≥ 0 >

− 1
e , it follows that

k̂
ln M

α
= W

(
β

α
M−1−1/α ln M

)

⇐⇒k =
αW

(
β
α M−1−1/α ln M

)
+ ln M

α ln M
,

where W(.) is the Lambert W function. Using equation (3), we write

c(l) ≤ l
k− 1

α

=
l ln M

W
(

β
α M−1−1/α ln M

) .

To prove the lower bound, note that the number of parsed distinct phrases c(l) is
minimized when the sequence of length l consists of only one symbol that repeats. Let l̃k
be the sum of the lengths of all such distinct strings of length less than or equal to k. Then,

l̃k =
k

∑
j=1

j =
k(k + 1)

2
.
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Thus, given a sequence of length l by enforcing l = k(k+1)
2 , we obtain the lower bound.

Figure 3 illustrates the lower and upper bounds established in Theorem 2 against the
sequence length for various alphabet sizes. Note that the lower bound on the number of
distinct phrases is independent of the alphabet size.

While numerical experiments are not a substitute for the mathematical proof of Theorem 2
provided above, the reader may find it useful to understand the theorem in terms of a simple
example. In Figures 4–6, we compare the theoretical bound with numerical results of
simulation for binary i.i.d. sequences. In these experiments, for each value of P(X = 1), a
thousand binary sequences are generated; then, the number of distinct phrases resulting
from LZ78 parsing of each sequence is calculated, and hence, the average, minimum, and
maximum of these counts are found and represented by error bars.

Figure 3. Plot of the lower and upper bounds of Theorem 2 on the number of distinct phrases
resulting from LZ78-parsing of an |X |-ary sequence of length l.

Figure 4. Simulation results compared to the lower and upper bounds of Theorem 2 on the number of
distinct phrases resulting from LZ78-parsing of binary sequences of length l generated by sources with
three different source probabilities P(X = 1). For every P(X = 1), one thousand binary sequences
of length l are generated. Error bars represent the maximum, minimum, and average number of
distinct phrases.
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Next, we verify the convergence of the non-asymptotic upper bound achieved in
Theorem 2 to the asymptotic upper bound of the LZ78 parser. Using a lower bound on
Lambert W function ln x− ln(ln x) ≤ W(x) [73], we write

W
(

β

α

ln M
M1+1/α

)
= W

((
(M− 1)l − M

M− 1

)
ln M

M
M

M−1

)
≈ W(cMl ln M)

≥ ln
cMl ln M

ln(cMl ln M)

= ln
cMl

log(cMl ln M)
,

where the logarithm is base M = |X | and cM = M−1
MM/(M−1) . Hence, we can further simplify

the asymptotic upper bound of c(l) as follows

c(l) ≤ l ln M

W
(

β
α M−1−1/α ln M

)
≤ l ln M

ln cMl
log(cMl ln M)

=
l

log cMl
log(cMl ln M)

=
l

log l + log cM − log log(cMl ln M)

=
l(

1− log log l+ĉM
log l

)
log l

,

where ĉM = log cM − log log(cM ln M). Therefore, as l → ∞, we have c(l) ≤ l
log l . This is

consistent with the binary case M = 2 proved in ([4] Lemma 13.5.3) or [5]. The following
Lemma extends the result of ([4] Lemma 13.5.3) to |X |-ary case.

Lemma 1. The number of distinct phrases c(l) resulting from LZ78-parsing of an |X |-ary sequence
xl

1 = {xn, n = 1, . . . , l} satisfies

c(l) ≤ l
(1− εl) log l

,

where the logarithm is base |X | and εl = min

{
1,

log log l−log(|X |−1)+ 3|X |−2
|X |−1

log l

}
→ 0 as l → ∞.

Proof. The proof is similar to the proof in ([4] Lemma 13.5.3) or ([74] Theorem 2). Let
M � |X |. In Theorem 2, we defined lk as the sum of the lengths of all distinct strings of
length less than or equal to k, and we showed that for any given l such that lk ≤ l < lk+1,
we have c(l) ≤ c(lk) +

l−lk
k+1 ≤ l

k− 1
M−1

. Next, we bound the size of k. As such, we have

l ≥ lk ≥ Mk or, equivalently, k ≤ log l where the logarithm is base M. Additionally,
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l ≤ lk+1 =

(
k + 1− 1

M− 1

)
Mk+2

M− 1
+

M

(M− 1)2

=

(
k

M− 1
+

M− 2

(M− 1)2

)
Mk+2 +

M

(M− 1)2

≤ k + 2
M− 1

Mk+2 ≤ log l + 2
M− 1

Mk+2,

therefore, k + 2 ≥ log (M−1)l
log l+2 . Equivalently, for l ≥ M2,

k− 1
M− 1

≥ log l − log(log l + 2) + log(M− 1)− 2− 1
M− 1

=

(
1−

log(log l + 2)− log(M− 1) + 2M−1
M−1

log l

)
log l

≥
(

1−
log(2 log l)− log(M− 1) + 2M−1

M−1
log l

)
log l

=

(
1−

log log l − log(M− 1) + 3M−2
M−1

log l

)
log l

= (1− εl) log l,

where εl = min
{

1,
log log l−log(M−1)+ 3M−2

M−1
log l

}
.

Next, we analyze the properties of the number of distinct phrases c(l) resulting from
LZ78-parsing of an |X |-ary sequence xl

1 = {xn, n = 1, . . . , l} when l is fixed. The error bar
representation in Figure 4 shows the variation of c(l) when l is fixed. A possible explanation
for such variations is that the statistical distribution of the pseudorandomly generated
data are different from the theoretical distribution of the generating source. To elucidate
this possibility, we enforce the exact matching of the source probability mass function and
the empirical probability mass function of the generated data. Figure 5 represents the
number of distinct phrases c(l) resulting from LZ78-parsing of a binary sequence of fixed
length where the characteristic of the generating source and the generated data matches.
As seen, there is still some variation around the average value of c(l). We can specify
a distribution-dependent bound on c(l) when both l and the distribution of the source
are fixed.

In ([75] Theorem 1), for sequences generated from a memoryless source, c(l) is as-
sumed to be a random variable with the following mean and variance:

E(c(l)) ∼ hl
log l

,

Var(c(l)) ∼
(
h2 − h2)l

log2 l
, (4)

where h = −∑a∈X pa log pa is the entropy rate, and h2 = ∑a∈X pa log2 pa with pa being the
probability of symbol a ∈ X . Note that the approximations (4) are asymptotic as l → ∞.
Below, we obtain a finite sample characterization of c(l).
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Figure 5. Similar to Figure 4, the number of distinct phrases resulting from LZ78-parsing of binary
sequences of fixed length l = 1000 varies over the source probability parameter P(X = 1). For
every P(X = 1), one thousand binary sequences of length l are generated. Error bars represent the
maximum, minimum, and average number of distinct phrases.

Consider an |X |-ary sequence xl
1 = {xn, n = 1, . . . , l} with fixed length l generated

from a source with the probability mass function p(x). Here, the notations xl
1 and xl are

used interchangeably. Let c(l, p) denote the number of distinct phrases resulting from
LZ78-parsing of the sequence xl

1 of length l and the generating probability mass function
is defined by p(x). In order to find a distribution-dependent bound on the number of
distinct phrases in LZ78-based parsing of xl

1, we note that since the generating distribution
is not necessarily uniform, all the strings xn for n < l � ∞ do not necessarily appear as
parsed phrases. For instance, consider the binary case with P(X = 1) = 0.9. Then, it is very
unlikely to have a string with multiple consecutive zeros in any parsing of a realization of
the finite sequence xl . As such, using the Asymptotic Equipartition Properties (AEP) ([4]
Chapter 3) or Non-asymptotic Equipartition Properties (NEP) [76], we define the typical set
A(n)

ε with respect to p(x) as the set of subsequences xn ∈ X n of xl
1 with the property

2−n(h+ε) ≤p(xn) ≤ 2−n(h−ε),

where h is the entropy. Then, we have

1 = ∑
xn∈X n

p(xn) ≥ ∑
xn∈A(n)

ε

p(xn) ≥
∣∣∣A(n)

ε

∣∣∣2−n(h+ε),

therefore,
∣∣∣A(n)

ε

∣∣∣ ≤ 2n(h+ε). Let lk be the sum of the lengths of all the distinct strings xn in

the set
∣∣∣A(n)

ε

∣∣∣ of length less than or equal to k. We write,

lk =
k

∑
n=1

n
∣∣∣A(n)

ε

∣∣∣
≤

k

∑
n=1

n2n(h+ε)

=
1

(m− 1)2

[
((m− 1)k− 1)mk+1 + m

]
,
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where m � 2h+ε. Therefore, l = 1
(m−1)2

[
((m− 1)k− 1)mk+1 + m

]
can be solved for k which

leads into an upper bound for c(l, p) as follows

k =
αW

(
β
α m−1−1/α ln m

)
+ ln m

α ln m

c(l, p) ≤
k

∑
n=1

∣∣∣A(n)
ε

∣∣∣ = m
(

mk − 1
)

m− 1

=
2k(h+ε) − 1
1− 2−h−ε

,

where α = m− 1 and β = (m− 1)2l −m. Therefore, the dependency of the c(l, p) upper
bound on the distribution is only through the entropy. Figure 6 depicts the upper bound
on c(l, p) for ε = 0.1.

Figure 6. Simulation of the probability-dependent upper bound c(l, p) for binary sequences of fixed
length l = 100 with various probability parameters P(X = 1). For every P(X = 1), one thousand
binary sequences of length l are generated. Error bars represent the maximum, minimum, and
average number of distinct phrases.

5.2. Pattern Dictionary Parser versus LZ78 Parser

Given an |X |-ary sequence xl
1 = {xn, n = 1, . . . , l}, let cT(l) be the number of parsed

phrases of xl
1 when the typical encoder (pattern dictionary with Dmax) is used, and cA(l)

be the number of parsed phrases of xl
1 when the atypical encoder (LZ78) is used. Clearly,

l
Dmax

≤ cT(l) ≤ l where the lower bound is achieved whenSD
(

xl
1

)
=
{

xv2−1
v1 , xv3−1

v2 , . . . , xl
vc

}
,

and each xvi−1
vi ∈ S (Dmax)

D , namely xvi−1
vi is of length Dmax and exists in the dictionary. The

upper bound is achieved when SD
(

xl
1

)
= {x1, x2, . . . , xl} where each xn ∈ S (1)

D . Using
the result of Theorem 2 and a lower bound on the Lambert W function, ln x− ln(ln x) ≤
W(x) [73], we have

l
Dmax

⎛⎝1− Dmax

log l
log(l ln|X |)

⎞⎠ ≤ cT(l)− cA(l)

≤ l

(
1−

√
8l + 1− 1

2l

)
. (5)
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The above bounds have asymptotic and non-asymptotic implications. The asymptotic
analysis of the bounds in (5) suggests that as l → ∞, for a dictionary with fixed Dmax, we
have l

Dmax
≤ cT(l)− cA(l) ≤ l. This inequality implies the asymptotic dominance of the

parser using a typical encoder. This is to be expected due to the asymptotic optimality
of LZ78. However, the above inequality also implies a more interesting result: if Dmax >
log l

log(l ln|X |) as l → ∞, then cT(l) can be smaller than cA(l). The non-asymptotic behavior
of the bounds in (5) is more relevant to the anomaly detection problem. These bounds
suggest that for a fixed l and |X |, increasing Dmax has a vanishing effect on the possible
range of the anomaly score. Additionally, the achieved bounds on cT(l)− cA(l) provide
the range of values of the anomaly score. This facilitates the search for a data-dependent
threshold for anomaly detection, as the search can be restricted to this range.

5.3. Atypicality Criterion for Detection of Anomalous Subsequences

Consider the problem of finding the atypical (anomalous) subsequences of a long
sequence with respect to a trained pattern dictionary D. Suppose we are looking for an
infrequent anomalous subsequence xn+l−1

n = {xn, n = n, . . . , n + l − 1} embedded in a test
sequence {xn, n = 1, . . . , L} from the finite alphabet X . Using Equation (2), the typical
codelength of the subsequence xn+l−1

n is

LT

(
xn+l−1

n

)
= ∑

y∈SD(xn+l−1
n )

LD(y) +
∣∣∣SD(xn+l−1

n

)∣∣∣ log Dmax,

while using LZ78, the atypical codelength of the subsequence xn+l−1
n is

LA

(
xn+l−1

n

)
=
∣∣∣SLZ

(
xn+l−1

n

)∣∣∣[log
∣∣∣SLZ

(
xn+l−1

n

)∣∣∣+ 1
]

+ log∗(l) + τ,

where log∗(l) + τ is an additive penalty for not knowing in advance the start and end
points of the anomalous sequence [2,3], and log∗(l) = log l + log log l + . . . where the sum
continues as long as the argument to the outer log is positive. Let L

′
A = LA− τ. We propose

the following atypicality criterion for detection of an anomalous subsequence:

�L(n) = max
l

{
LT

(
xn+l−1

n

)
− L

′
A

(
xn+l−1

n

)}
> τ, (6)

where τ can be treated as an anomaly detection threshold. In practice, τ can be set to ensure
a false positive constraint, e.g., using bootstrap estimation of the quantiles in the training
data.

6. Experiment

In this section, we illustrate the proposed pattern dictionary anomaly detection on a
synthetic time series, known as Mackey–Glass [77], as well as on a real-world time series of
physiological signals. In both experiments, first, the real-valued samples are discretized
using a uniform quantizer [78], and then, anomaly detection methods are applied.

6.1. Anomaly Detection in Mackey–Glass Time Series

In this section, we illustrate the proposed anomaly detection method for the case of
a chaotic Mackey–Glass (MG) time series that has an anomalous segment grafted into
the middle of the sequence. MG time series are generated from a nonlinear time delay
differential equation. The MG model was originally introduced to represent the appearance
of complex dynamic in physiological control systems [77]. The nonlinear differential
equation is of the form dx(t)

dt = −ax(t) + bx(t−δ)
1+x10(t−δ)

, t ≥ 0, where a, b and δ are constants.
For the training data, we generated 3000 samples of the MG time series with a = 0.2,
b = 0.1, and δ = 17. For the test data, we normalized and embedded 500 samples of the
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MG time series with a = 0.4, b = 0.2, and δ = 17 inside 1000 samples of a MG time series
generated from the same source as the training data, resulting in a test sequence of length
1500. Figure 7 shows a realization of the training data and the test data.

Figure 7. Mackey–Glass time series: the training data (top) and an example of the test data (bottom)
in which samples in [501, 1000] are anomalous (shown in red).

The anomaly detection performance of our proposed pattern dictionary is evaluated.
To illustrate the effect of the model parameter, i.e., the maximum depth Dmax, on the
detection and compression performance of the pattern dictionary, we run two experiments.
First, we use a 30-fold cross-validation on the training data (resulting in 30 sequences of
length 100) and calculate the number of distinct parsed phrases against Dmax. Second, we
train a pattern dictionary with various Dmax using the training data and then evaluate the
sensitivity of detector of the anomalous subsequences in the test data using Equation (6)
with τ = 0. In this experiment, the detection sensitivity (true positive rate) is defined as
the ratio of number of samples correctly identified as anomalous over the total number of
anomalous samples. Figure 8 illustrates the result of both experiments. As seen, after some
point, increasing Dmax has diminishing effect on both detection sensitivity and the number
of distinct parsed phrases. Note that this behavior is to be expected as it was suggested by
the bounds in (5).

Next, we compare anomaly detection performance of our proposed pattern dictionary
methods, PDD and PDA, with the nearest neighbors-based similarity (NNS) technique [7],
the compression-based dissimilarity measure (CDM) method [12–14], Ziv–Merhav method
(ZM) [48], and the threshold Sequence Time-Delay Embedding (t-STIDE) technique [8–11].
In this experiment, a window of length 100 is slid over the test data and each method
measures the anomaly score (as described below) of the current subsequence with respect to
the training data. The anomaly is detected when the score exceeds a threshold, determined
to ensure a specified false positive rate. In the following, we compute AUC (area under
the curve) of the ROC (receiver operating characteristic) and Precision-Recall curves as
performance measures. In the following, we provide details of the implementation.
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Figure 8. The effect of maximum dictionary depth Dmax on parsing and detection sensitivity (true
positive rate) of the Mackey–Glass time series presented in Figure 7.

Pattern Dictionary for Detection (PDD)

First, the training data are used to create a pattern dictionary with Dmax = 40, as
described in Section 4. Then, for each subsequence x100 (the sliding window of length 100)
of the test data, the anomaly score is computed as the codelength L

(
x100) of Equation (2)

described in Section 4.3.

Pattern Dictionary Based Atypicality (PDA)

Similar to PDD, first the training data are used to create a pattern dictionary with
Dmax = 40, as described in Section 4. Then, for each subsequence x100 of the test data, the
anomaly score is the atypicality measure described in Section 5, i.e., LT

(
x100)− LA

(
x100),

the difference between the compression codelength of the test subsequence using typical
encoder (pattern dictionary) and atypical encoder (LZ78).

Ziv–Merhav Method (ZM) [48]

In this method, a cross-parsing procedure is used in which for each subsequence x100

of the test data, the anomaly score is computed as the number of the distinct phrases of
x100 with respect to the training data.

Nearest Neighbors-Based Similarity (NNS) [7]

In this method, a list S of all the subsequence of length 100 (the length of the sliding
window) of the training data is created. Then, for each subsequence x100 of the test data,
the distance between x100 and all the subsequences in the list S is calculated. Finally, the
anomaly score of x100 is its distance to the nearest neighbor in the list S .

Compression-Based Dissimilarity Measure (CDM) [12–14]

In this method, given the training data xtrain, for each subsequence x100 of the test data
the anomaly score is

CDM(xtrain, x100) =
L
(
C
(

xtrain, x100))
L(xtrain) + L(x100)

,

where C(y, x) represents concatenation of sequences y and z, and L(x) is the size of the
compressed version of the sequence x using any standard compression algorithm. The
CDM anomaly score is close to 1 if the two sequence are not related, and smaller than one
if the sequences are related.
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Threshold Sequence Time-Delay Embedding (t-STIDE) [8–11]

In this method, given l < 100, for each sub-subsequence xl of the subsequence x100 of
the test data, the likelihood score of xl is the normalized frequency of its occurrence in the
training data, and the anomaly score of x100 is one minus the average likelihood score of all
its sub-subsequences of length l. In this experiment, various values of l are tested and the
best performance is reported.

We compare the detection performance of the aforementioned methods by generating
200 test data sequences with different anomaly segments (the anomalous MG segments
have different initializations in each test dataset). The detection results of comparisons are
reported in Table 2. As seen, our proposed PDD and PDA methods outperform the rest,
with ZM and CDM coming in third place. The effect of alphabet size of the quantized data
(the resolution parameter of the uniform quantizer [78]) on anomaly detection performance
is summarized in Table 3. Table 3 shows that our proposed PDD and PDA methods
outperform in all three cases of data resolution.

Table 2. Comparison of anomaly detection methods (μ± σ representation is used where μ is the
mean and σ is the standard deviation). The proposed PDA method attains overall best performance
(bold entries of table).

ROC AUC PR AUC

PDA 0.963 ± 0.009 0.909 ± 0.044

PDD 0.959± 0.009 0.907± 0.044

ZM 0.959± 0.009 0.895± 0.049

CDM 0.957± 0.012 0.907± 0.057

NNS 0.920± 0.021 0.777± 0.091

t-STIDE 0.897± 0.013 0.857± 0.044

Since the parsing procedure of our proposed PD-based methods and the ZM method [48]
are similar, it is of interest to compare the running time of these two methods. While the
cross-parsing procedure of the ZM method was introduced as an on the fly process [48],
we can also consider another implementation similar to our proposed PD by creating a
codebook of all the subsequences of the training data prior to the parsing procedure. As
such, in order to compare the running time of the dictionary/codebook creation and parsing
procedure of our PD-based methods with the aforementioned two implementations of the
ZM method, we use the same MG training data of length 3000, one test dataset of length
1500 while a sliding window of length 100 is slid over it for anomaly score calculation, and
the PD-based method with Dmax = 40. Note that since a sliding window of length 100
over the test data is considered, for the codebook-based implementation of ZM, all the
subsequences of the training data up to length 100 are extracted which make its codebook
creation process significantly faster. Table 4 summarizes the running time comparison. As
it can be seen, our PD-based method is faster in both dictionary/codebook creation and
parsing process.
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Table 3. Comparison of anomaly detection methods for different cases of data resolutions: high
resolution corresponds to an alphabet size of 90, medium resolution corresponds to an alphabet size
of 45, and low resolution corresponds to an alphabet size of 10. In this table, μ± σ representation
is used where μ is the mean and σ is the standard deviation. The proposed PDA method achieves
overall best performance (bold entries of table).

Resolution PDA PDD ZM CDM NNS t-STIDE

ROC AUC

Low 0.948
±0.011

0.930
±0.013

0.943
±0.014

0.787
±0.017

0.901
±0.027

0.725
±0.025

Medium 0.955
±0.010

0.943
±0.011

0.954
±0.011

0.940
±0.014

0.918
±0.022

0.881
±0.017

High 0.963
±0.009

0.959
±0.009

0.959
±0.009

0.957
±0.012

0.920
±0.021

0.897
±0.013

PR AUC

Low 0.876
±0.050

0.871
±0.052

0.826
±0.071

0.669
±0.067

0.719
±0.098

0.678
±0.067

Medium 0.885
±0.046

0.882
±0.047

0.881
±0.053

0.880
±0.060

0.777
±0.093

0.828
±0.050

High 0.909
±0.044

0.907
±0.044

0.895
± 0.044

0.907
±0.057

0.777
±0.091

0.857
±0.044

Table 4. Comparison of running time (in second) of PD-based method and two implementations of
the ZM method for different cases of data resolutions: high resolution corresponds to an alphabet
size of 90, medium resolution corresponds to an alphabet size of 45, and low resolution corresponds
to an alphabet size of 10. This experiment is performed on a Hansung laptop with 2.60 GHz CPU, 500
GB of SSD, and 16 GB of RAM using MATLAB R2021a. The proposed PD-based method has fastest
run time overall (bold entries in table).

Resolution PD-Based ZM-Codebook ZM

dictionary generation
Low 6.80 29.98 N/A

Medium 13.12 39.01 N/A
High 15.46 40.80 N/A

parsing procedure
Low 6.07 9.23 142.77

Medium 10.81 11.10 433.55
High 14.83 16.70 670.18

6.2. Infection Detection Using Physiological Signals

Finally, we apply the proposed pattern dictionary method to detect unusual patterns
in physiological signals of two human subjects after exposure to a pathogen while only
one of these subjects became symptomatically ill. The time series data were collected in
a human viral challenge study that was performed in 2018 at the University of Virginia
under a DARPA grant. Consented volunteers were recruited into this study following an
IRB-approved protocol and the data was processed and analyzed at Duke University and
the University of Michigan. The challenge study design and data collection protocols are
described in [79]. Volunteers’ skin temperature and heart rate were recorded by a wearable
device (Empatica E4) over three consecutive days before and five consecutive days after
exposure to a strain of human Rhinovirus (RV) pathogen. During this period, the wearable
time series were continuously recorded while biospecimens (viral load) were collected daily.
The infection status can be clinically detected by biospecimen samples, but in practice, the
collection process of these types of biosamples can be invasive and costly. As such, here, we
apply the proposed anomaly detection framework to the measured two-dimensional heart
rate and temperature time series to detect unusual patterns after exposure with respect to
the normal (healthy) baseline patterns.

In the preprocessing phase, we followed the wearable data preprocessing procedure
described in [80]. Specifically, we first downsample the time series to one sample per minute

35



Entropy 2022, 24, 1095

by averaging. Then, we apply an outlier detection procedure to remove technical noise,
e.g., sensor contact loss. After preprocessing, the two-dimensional space of temperature
and heart rate time series is discretized using a two-dimensional uniform quantizer [78]
with step size of 5 for heart rate and 0.5 for temperature, resulting in one-dimensional
discrete sequence data. The first three days of data are used as the training data, and
the PDA methods with maximum depth Dmax = 30 are used to learn the patterns in the
training data. In order to detect anomalous patterns of the test data (the last five days), we
used the result of Section 5.3 and the atypicality criterion of Equation (6), which requires
choosing the threshold τ. While this threshold can be chosen freely, we selected it using
cross-validation on the training data. Leave-one-out cross-validation over the training data
generates an empirical null distribution of the PDA anomaly score function LT − LA. The
threshold τ was chosen as the upper 99% quantile of this distribution. Figure 9 illustrates
the result of anomaly detection on one subject who became infected as measured by viral
shedding as shown in Figure 9C. All the anomalous patterns occur when the subject was
shedding the virus. Figure 10 also depicts the result of anomaly detection on one subject
who had a mild infection with a low level of viral shedding, as shown in Figure 10C. Note
that in this case, no anomalous patterns were detected.

Figure 9. Anomaly detection using the proposed PDA method for a subject based on heart rate and
temperature data collected from a wearable wrist sensor. Anomalies are shown in red in (a,b). (c)
shows the subject’s infection level.

Figure 10. Anomaly detection using the proposed PDA method for a subject who had a mild infection
with low level of viral shedding based on heart rate and temperature data collected from a wearable
wrist sensor. Note that no anomaly has been detected: (a) heart rate, (b) temperature, and (c)
infection level.
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7. Conclusions

In this paper, we have developed a universal nonparametric model-free anomaly
detection method for time series and sequence data using a pattern dictionary. We proved
that using a multi-level dictionary that separates the patterns by their depth results in a
shorter average indexing codelength in comparison to a uni-level dictionary that uses a
uniform indexing approach. We illustrated that the proposed pattern dictionary method
can be used as a stand-alone anomaly detector, or integrated with Tree-Structured Lempel–
Ziv (LZ78) and incorporated into an atypicality framework. We developed novel non-
asymptotic lower and upper bounds of the LZ78 parser and demonstrated that the non-
asymptotic upper bound on the number of distinct phrases resulting from LZ78-parsing
of an |X |-ary sequence can be explicitly derived in terms of the Lambert W function, an
important theoretical result that is not trivial. We showed that the achieved non-asymptotic
bounds on LZ78 and pattern dictionary determine the range of the anomaly score and the
anomaly detection threshold. We also presented an empirical study in which the pattern
dictionary approach is used to detect anomalies in physiological time series. In the future
work, we will investigate the generalization of the context tree weighting methods to the
general discrete case, using the pattern dictionary since the pattern dictionary handles
sparsity well and is computationally less expensive when the alphabet size is large.
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Abstract: As machine learning algorithms grow in popularity and diversify to many industries,
ethical and legal concerns regarding their fairness have become increasingly relevant. We explore
the problem of algorithmic fairness, taking an information–theoretic view. The maximal correlation
framework is introduced for expressing fairness constraints and is shown to be capable of being used
to derive regularizers that enforce independence and separation-based fairness criteria, which admit
optimization algorithms for both discrete and continuous variables that are more computationally
efficient than existing algorithms. We show that these algorithms provide smooth performance–
fairness tradeoff curves and perform competitively with state-of-the-art methods on both discrete
datasets (COMPAS, Adult) and continuous datasets (Communities and Crimes).

Keywords: fairness; HGR maximal correlation; independence criterion; separation criterion

1. Introduction

The use of machine learning in many industries has raised many ethical and legal
concerns, especially that of fairness and bias in predictions, e.g., [1,2]. As systems are
trusted to aid or make decisions regarding loan applications, criminal sentencing, and even
health care, it is vital that unfair biases do not influence them.

However, mitigating these biases is complicated by ever-changing perspectives on
fairness, and a good system for enforcing fairness must be adaptable to new settings. In
particular, there are often competing notions on fairness. Two of these popular notions
are independence and separation (a third condition, sufficiency, is beyond the scope of
this paper), as discussed in [3]. Independence ensures that predictions are independent
from membership in a protected class, so that one achieves equal favorable outcome rates
across all groups, and it arises in applications such as affirmative action [4]. Separation is
designed to achieve equal type I/II error rates across all groups by enforcing independence
between predictions and membership in a protected class conditional on the class label. This
criterion is used to measure fairness in recidivism predictions and bank loan applications.
A significant body of work, including [3,5–7], has gone into explaining that independence
and separation are inherently incompatible for non-trivial cases, and their applicability
needs to be determined by the application and the stakeholders. This motivates us to
construct a framework that is flexible enough to handle different fairness criteria and to do
it with different modalities of data (discrete vs. continuous data, for example).

This bias mitigation must also be balanced out with the system’s usefulness, and often,
one must tune the tradeoff between the fairness (as measured in the particular context) and
performance according to a current situation, which can be a difficult process if the tradeoff
curve is not smooth. Generating the frontier of possible values can be computationally
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infeasible or impossible if the algorithm does not have a regularization parameter to adjust
(see, [8,9]), thus making it difficult to achieve this balance, which makes the fast generation
of fair classifiers even more important.

Different contexts also require different points of intervention during the learning
process to ensure fairness. Pre-processing approaches ([8,10–14]) modify the data to eliminate
bias, whereas post-processing approaches ([15–18]) modify learned features/predictions
from existing models to be more fair. We focus on the in-processing approach [9,19–21],
where the fairness criteria are directly incorporated in the training objective to produce
fairer learned features. Motivated by few-shot applications where only a pre-trained
network and few samples labeled with the sensitive attribute are available, we also seek a
method that is applicable in a post-processing manner when we have access to only a small
number of samples labeled with the sensitive attribute that we wish to be fair about, which
would arise in settings where collecting this information can be very difficult.

In this paper, we frame the ideas of independence and separation in a way that allows a
relevant regularizer or penalty term to be derived in addition to a measure of fairness, which
is useful in enforcing fairness while also tractable, admitting an optimization algorithm
(e.g., if used as an objective for a neural net trained using gradient descent, it must be
differentiable), and easily computed. Existing approaches can struggle with efficiency, can
fail to provide good control over the performance–fairness tradeoff, and/or can only deal
with either discrete or continuous data.

We make the following contributions in this paper:

• We present a universal framework justified by an information–theoretic view that can
inherently handle the popular fairness criteria, namely independence and separation,
while seamlessly adopting both discrete and continuous cases, which uses the maximal
correlation to construct measures of fairness associated with different criteria; then,
we use these measures to further develop fair learning algorithms in a fast, efficient,
and effective manner.

• We show empirically that these algorithms can provide the desired smooth tradeoff
curve between the performance and the measures of fairness on several standard
datasets (COMPAS, Adult, and Communities and Crimes), so that a desired level of
fairness can be achieved.

• Finally, we perform experiments to illustrate that our algorithms can be used to
impose fairness on a model originally trained without any fairness constraint in the
few-shot regime, which further demonstrates the versatility of our algorithms in a
post-processing setup.

2. Background

2.1. Fairness Objectives in Machine Learning

Consider the standard supervised learning scenario where we predict the value of a
target variable Y ∈ Y using a set of decision or predictive variables X ∈ X with training
samples {(x1, y1), . . . , (xn, yn)}. For example, X may be information about an individual’s
credit history, and Y is whether the individual will pay back a certain loan. In general,
we wish to find features f (x), which are predictive of Y, so that we can construct a good
predictor ŷ = T( f (x)) of y under some loss criteria L(ŷ, y).

Now, suppose we have some sensitive attributes D ∈ D we wish to be “fair” about
(e.g., race, gender), and training samples {(x1, y1, d1), . . . , (xn, yn, dn)}. For example, in the
criminal justice system, predictions about the chance of recidivism of a convicted criminal
(Y) given factors such as the nature of the crime and the number of prior arrests (X) should
not be determined by race (D). This is a known issue with the COMPAS recidivism score,
which, despite not using race as an input to make decisions, still leads to systematic bias
toward members of certain races in the output score as in [22,23].

The two most popular criteria for fairness are independence and separation. Inde-
pendence states that for a feature to be fair, it must satisfy the independence property
Ŷ ⊥ D or f (x) ⊥ D. The intuition is simple: if the prediction/feature is independent of
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the sensitive attribute, then no information about the sensitive attribute is used to predict
Y. This criterion has been studied under the lens of demographic parity and disparate impact
in [3], and it admits a class of fairness measures based on the degree of dependence between
f (X) and D. For example, independence is satisfied if and only if the mutual information
I( f (X); D) is zero. When D is binary, another popular class of measures used by the US
Equal Employment Opportunity Commission [4] is the disparate impact, which is defined

as D
(
P(Y|D = 1);P(Y|D = 0)

)
= P(Ŷ=1|D=0)

P(Ŷ=1|D=1)
.

Separation requires the conditional independence property (Ŷ ⊥ D)|Y or ( f (X) ⊥ D)|Y.
This criterion allows for a violation of demographic parity to the extent that it is justified
by the target variable. In the general case, this criterion suggests a fairness measure based
on the conditional dependence between Ŷ and D conditioned on Y. In the case where D is
binary, we obtain the equalized opportunities (EO) measures in [3], which are given by the
differences in error rates for the two groups (e.g., the difference between the false positive
rates for D = 0, 1). For a more complete discussion of the advantages and disadvantages of
these two criteria, please refer to [3].

2.2. Maximal Correlation

Since these fairness criteria are expressed as enforcing independencies with respect to
joint distributions, we look for constraints that reduce the dependency between variables.
In particular, the right formulation of correlation between learned features and sensitive
attributes can provide a framework for measuring and optimizing for fairness. One effective
measure applicable to both continuous and discrete data is the Hirschfeld–Gebelein–Renyi
(HGR) maximal correlation, which is a measure of nonlinear correlation that originated
in [24] and is further developed in [25,26]. The HGR maximal correlation between two
random variables is equal to zero if and only if the two variables are independent, and it
increases in value the more correlated they are (i.e., the more biased/unfair).

Definition 1. For two jointly distributed random variables X ∈ X and Y ∈ Y , given 1 ≤ k ≤
K− 1 with K = min{|X |, |Y|}, the HGR maximal correlation problem is

(f∗, g∗) � arg max
f : X→Rk , g : Y→Rk

E

[
fT(X) g(Y)

]
, (1)

with constraints

E[f(X)] = E[g(Y)] = 0, E

[
f(X)fT(X)

]
= E

[
g(Y)gT(Y)

]
= I, (2)

and expectations taken over PX,Y. We refer to f∗ and g∗ as maximal correlation functions, with
f∗ = ( f ∗1 , . . . , f ∗k )

T and g∗ = (g∗1 , . . . , g∗k )
T, and the associated maximal correlations are

σ( f ∗i g∗i ) � E[ f ∗i (X) g∗i (Y)], for i = 1, . . . , k, (3)

and the HGR maximal correlation is

HGRk(X, Y) � E

[
f∗T(X) g∗(Y)

]
=

k

∑
i=1

σ( f ∗i g∗i ). (4)

Note that the original definition of HGR maximal correlation is the special case of
our definition when k = 1 (see, [27]). This generalization of maximal correlation analysis
enables us to produce more than one feature mapping by solving the maximal correlation
problem, and these feature mappings can be used in other applications, including ensemble
learning, multi-task learning, and transfer learning [28,29].
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2.3. Related Work

Independence and separation have been studied in many works. Most existing ap-
proaches fail to provide an efficient solution in both discrete/continuous settings. Ref. [11]
develops an optimizer using absolute difference in odds |P(Ŷ = 1|D = 1) − P(Ŷ =
1|D = 0)| as a regularizer, which requires discrete Y and D and was only applied to
Naïve Bayes and Logistic Regression to enforce the independence criterion. In [16], a
post-processing method is provided using a probabilistic combination of classifiers to
achieve the desired ROC curves, which only applies when D is discrete. Alternatively,
Ref. [8] proposes pre-processing the data beforehand to enforce fairness before learning,
based on randomized mappings of the data subject to a fairness constraint defined by

J = max(|P(Ŷ=1|D=1)
P(Ŷ=1|D=0)

− 1|, |P(Ŷ=1|D=0)
P(Ŷ=1|D=1)

− 1|). Again, this method is only designed for in-
dependence with discrete Y and D, and it requires processing the entire dataset, which
is computationally complex. Ref. [30] propose the use of a robust log-loss predictor for
fairness, but in practice, it requires that Y be discrete.

Other methods can also be limited in their ability to handle all dependencies between
variables. Ref. [31] uses a covariance-based constraint to enforce fairness, so it likely would
not do well on other metrics. Furthermore, it is strictly a linear penalty rather than our
non-linear formulation and penalizes the predictions of the system rather than the features
learned. This limits the relationships between variables it can capture. An adversarial
method is proposed in [20] to enforce independence or separation, but it requires the
training of an adversary to predict the sensitive attribute, which can introduce issues of
convergence and bias.

Recently, Ref. [9] propose the use of the HGR maximal correlation as a regularizer for
either the independence or the separation constraint. In contrast to our approach dealing
with the maximal correlation directly, they use a χ2 divergence computed over a mesh
grid to upper bound the HGR maximal correlation during the optimization of the classifier
(either a linear regressor or a Deep Neural Net (DNN)). This method applies to cases where
X is continuous and Y and D are either continuous or discrete variables, but it scales poorly
with the bandwidth and dimensionality of D, and it treats the discrete case in the same way
as the continuous case, resulting in slow performance on discrete datasets.

There are other works that use either an HGR-based or mutual information-based
formulation of fairness but do not generalize to more than one setting. Refs. [32,33] use
correlation-based regularizers but can only be used in the independence case. Furthermore,
Ref. [33] only works with discrete targets, and only uses a single mode of the HGR
maximal correlation (as opposed to multiple modes, which our method makes use of)
for regularization, which limits the information it can encapsulate, and it is also not
designed for continuous sensitive attributes. Ref. [34] also develops a method that can
only be used for independence, and it requires training an additional network in order to
evaluate a bound for the mutual information which can be used to as a fairness penalty,
thus increasing the complexity and required runtime. Finally, Ref. [35] approximates the
mutual information with a variational formulation, but it does not include a formulation
for continuous labels.

3. Maximal Correlation for Fairness

Equipped with the HGR maximal correlation as a measure of dependence, we explore
its use as a fairness penalty. Depending on the data modality (discrete/continuous) and
the fairness criteria (independence/separation), the resulting fair learning algorithm takes
different specifically tailored forms. In this section, we demonstrate how to derive these
regularizers and algorithms to ensure the aforementioned fairness objectives for both
discrete and continuous cases.

3.1. Maximal Correlation for Discrete Learning

In this subsection, the decision variable X, target variable Y, and sensitive attribute D
are discrete random variables defined on alphabets X , Y , and D, respectively.
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We first describe how to solve the discrete maximal correlation problem using a diver-
gence transfer matrix (DTM)-based approach. As it is shown later, it is more convenient to
work with their equivalent representation via DTM instead of the joint distribution PX,Y.

Definition 2. The divergence transfer matrix (DTM) BY,X ∈ R|Y|×|X | associated with joint
distribution PX,Y is given by

BX,Y(x, y) � PX,Y(x, y)√
PX(x)

√
PY(y)

. (5)

The following useful result expresses that the maximal correlation problem can be
solved by simply computing the singular value decomposition (SVD) of the DTM B in the
discrete case.

Theorem 1 ([27]). Assume that the SVD of DTM BY,X takes the form

BY,X =
K−1

∑
i=0

σiψ
Y
i (ψ

X
i )

T, (6)

with singular values σ0 ≥ σ1 ≥ · · · ≥ σK−1, singular vectors ψY
i , ψX

i , and K = min{|X |, |Y|}.
Then, we have

σ0 = 1, ψX
0 (x) =

√
PX(x), ψY

0 (y) =
√

PY(y), (7)

and the maximal correlation functions are related to the singular vectors in the SVD:

f ∗i (x) =
ψX

i (x)√
PX(x)

, g∗i (x) =
ψY

i (y)√
PY(y)

, (8)

with associated maximal correlations σ( f ∗i g∗i ) = σi, for i = 1, · · · , K− 1. Thus, the conditional
distribution PY|X has the following decomposition:

PY|X(y|x) = PY(y)
[
1 +

K−1

∑
i=1

σi f ∗i (x)g∗i (y)
]
. (9)

As we can see from this theorem, the singular values σi (since the associated max-
imal correlations is equal to the corresponding singular values of DTM, we abuse the
notation a little bit and use σ to denote both of them) of the matrix BY,X essentially charac-
terize the dependence between two discrete random variables, and the singular vectors
ΦX = [ψX

1 , · · · , ψX
k ] and ΦY = [ψY

1 , · · · , ψY
k ] are equivalent to the maximal correlation func-

tions f and g.
Since our goal is to construct feature mappings f(x) under fairness constraints, our

algorithms in the discrete case are built on the following variational characterization of an
SVD, which does not involve g(y):

Lemma 1 ([36]). For any k ≤ K− 1 and ΦX ∈ R|X |×(k+1),

max
ΦT

XΦX=I
‖BΦX‖2

F =
k

∑
i=0

σ2
i , (10)

where ‖A‖F �
√

tr(AT A) denotes the Frobenius norm.

3.1.1. Independence

To ensure sufficient independence, we must construct feature mappings f : X → Rk

so that the maximal correlations between f(X) and Y are large, while the ones between
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f(X) and D are small. Motivated by Lemma 1 and Theorem 1, we propose the following
DTM-based approach to construct f:

max
Φ∈R|X |×(k+1) :ΦTΦ=I

‖BY,XΦ‖2
F − λ‖BD,XΦ‖2

F, (11)

where BY,X and BD,X denote the DTMs of distribution PY,X and PD,X , respectively, and λ is
the regularization coefficient that controls the penalty of the maximal correlations between
f(X) and D. Φ∗ = [φ∗0 , φ∗1 , · · · , φ∗k ] is the solution of the optimization problem (11). As
shown in Theorem 1, BY,X and BD,X have a shared right singular vector

√
PX(x), and we

can let φ∗0 =
√

PX(x). Then, the feature mappings for independence can be obtained by
normalizing other column vectors in Φ∗

fi(x) = φ∗i (x)/
√

PX(x), i = 1, · · · , k. (12)

We have the following remarks:
(1) The optimization problem in (11) can be written as max tr(ΦT(BT

Y,XBY,X − λBT
D,X

BD,X
)
Φ), and it can be solved exactly by computing the eigen decomposition of BT

Y,XBY,X −
λBT

D,XBD,X .
(2) Lemma 1 states that the Frobenius norm squared ‖BY,X F‖2

F corresponds to the
squared sum of the singular values. Actually, the following lemma shows that ‖BY,X F‖2

F
can be further related to the mutual information I(X; Y) when the dependence between X
and Y is weak.

Lemma 2 ([27]). Let X ∈ X and Y ∈ Y be ε-dependent random variables; i.e., the χ2-divergence
is bounded Dχ2(PX,Y‖PXPY) ≤ ε, then

I(X; Y) =
1
2

K−1

∑
i=1

σ2
i + o(ε2). (13)

(3) As suggested by Lemma 2, the optimization problem in (11) can also be interpreted
as maximizing the mutual information between f(X) and Y while penalizing the mutual
information I(f(X); D).

Once we solve (11) and obtain the feature mappings f(x), we can obtain the corre-
sponding maximal correlation function g(y) for the target variable Y via one step of the
alternating conditional expectations algorithm by [37]:

gi(y) ∝ EpX|Y(·|y)[ fi(X)], i = 1, . . . , k. (14)

In turn, g(y) can be computed by further normalizing the conditional expectations of
f(X), so that the condition E

[
g(Y)gT(Y)

]
= I is satisfied. Finally, the predictions Ŷ can be

made following the Maximum A Posteriori (MAP) rule, where the posteriori distribution
PY|X(y|x) can be approximately computed by plugging the learned feature mappings f(X)
and g(Y) into (9), i.e.,

Ŷ = arg max
y∈Y

PY(y)
[
1 +

k

∑
i=1

σi fi(x)gi(y)
]
. (15)

3.1.2. Separation

For the separation criterion, we want to ensure sufficient conditional independence
( f (X) ⊥ D)|Y. Here, we cannot simply replace the BD,X in (11) with a conditional DTM, as
it involves three random variables and thus cannot be usefully expressed as a matrix. Since
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maximal correlation is related to mutual information as shown in Lemma 2, we consider
the following formulation:

max
f

I(f(X); Y)− λI(f(X); D, Y)

= max
f

I(f(X); Y)− λ
(

I(f(X); Y) + I(f(X); D|Y)
)

= max
f

(1− λ)I(f(X); Y)− λI(f(X); D|Y), (16)

where the first equality follows from the chain rule of mutual information and λ ∈ (0, 1).
Thus, we can control the conditional mutual information I(f(X); D|Y) by adding the joint
mutual information I(f(X); D, Y) as a regularizer in the training process.

Note that Lemma 1 and Lemma 2 imply that mutual information can be approximated
using DTM, as shown in (11) in an independence case. Accordingly, we approximate (16) us-
ing the following optimization problem to ensure the separation criterion for discrete data:

max
Φ∈R|X |×(k+1) :ΦTΦ=I

‖BY,XΦ‖2
F − λ‖BD⊗Y,XΦ‖2

F, (17)

where D⊗Y is the Cartesian product of D and Y, and BD⊗Y,X denotes the DTM of distri-
bution PD⊗Y,X . Once we obtained the solution Φ∗, we could follow similar steps as in the
independence case to get f(x) and g(y) and make predictions for the test samples.

3.2. Maximal Correlation for Continuous Learning

When X, Y, and D are all continuous and real-valued, computing the HGR maximal
correlation becomes much more difficult, since the space of functions over real numbers is
not tractable. Thus, we turn to approximations and begin by limiting our scope of learning
algorithms to those that train models (e.g., neural nets) via gradient descent (or SGD) using
samples, which encompasses most of the commonly used methods. Then, it follows that
any approximation of the HGR maximal correlation used must be differentiable to calculate
the gradient. Thus, we restrict the space of maximal correlation functions to be the family
of functions that can be learned by neural nets, allowing us to compute the gradient while
still providing a rich set of functions to search over.

3.2.1. Independence

To ensure sufficient independence, we want to minimize the loss function L(Ŷ, Y)
and the maximal correlation between f(X) and D. Then, our optimization (for a given
λ) becomes:

min
f : X→Rm

T : Rm→Y
L(T(f(X)), Y) + λHGRk(f(X), D), (18)

where HGRk(f(X), D) = maxg, h E
[
gT(f(X))h(D)

]
, with E[g(f(X))] = E[h(D)] = 0, and

E
[
g(f(X))gT(f(X))

]
= E

[
h(D)hT(D)

]
= I. m is the dimension of the features f(X), k

is the number of maximal correlation functions, and g : Rm → Rk, h : D → Rk are the
maximal correlation functions relating f(X) with D. Given the difficulty of enforcing the
orthogonalization constraint, we use a variational characterization of the HGR maximal
correlation called Soft-HGR proposed in [29], which relaxes the orthogonal constraint:

HGRsoft(X, Y) � max
E[g(X)]=0
E[h(Y)]=0

E

[
gT(X)h(Y)

]
− 1

2
tr(cov[g(X)] cov[h(Y)]), (19)
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where cov[X] is the covariance matrix of X. [29] shows that this Soft-HGR formulation can
be viewed as a low-rank approximation of the original HGR maximal correlation problem
in the discrete case. Then, our learning objective becomes:

min
f : X→Rm

T : Rm→Y
max

g : Rm→Rk , h : D→Rk

E[g(f(X))]=E[h(D)]=0

C, (20)

where

C = L(T(f(X)), Y) + λE
[
gT(f(X))h(D)

]
− λ

2
tr
(

cov[g(f(X))] cov[h(D)]
)
.

We solve this optimization by alternating between optimizing f, T and optimizing
g, h. In practice, we implement this by alternating between one step of gradient descent
for f and T and five steps of gradient descent on g and h to allow the maximal correlation
functions to adapt to the changing of features f.

3.2.2. Separation

For separation, we use a similar argument as in the discrete case to ensure the condi-
tional independence. Specifically, we solve the following optimization problem:

min
f : X→Rm

T : Rm→Y
L(T(f(X)), Y) + λ

(
HGRsoft( f (X), D⊗Y)−HGRsoft( f (X), Y)

)
. (21)

Note that for the first Soft-HGR term, we use g, h to denote the maximal correlation
functions and g′, h′ to denote the functions for the second term. Similar to the discrete case,
the difference term allows us to approximate the conditional mutual information using
two unconditional terms. Once again, we solve this optimization by alternating between
optimizing f, T and optimizing g, h, g′, h′.

3.2.3. Few-Shot Learning

In the continuous case, our learning objective can also be applied a posteriori in a
few-shot setting with a clasifier that has already been trained in a fairness-unaware manner
on a large number of samples without the sensitive attribute label. In this case, we can
formulate our objective as before and use the few samples containing the sensitive attribute
to further train the network and force it to learn fairer features that are still predictive of
the desired labels.

4. Experimental Results

In order to illustrate the effectiveness of our algorithms, we run experiments using the
proposed algorithms on discrete (Adult and COMPAS) and continuous (Communities and
Crimes) datasets.

4.1. Discrete Case

We test the proposed DTM-based approach on the ProPublica’s COMPAS recidivism
dataset (https://github.com/propublica/compas-analysis (accessed on 14 February 2022))
and the UCI Adult dataset (https://archive.ics.uci.edu/ml/datasets/adult (accessed on 14
February 2022)), which were chosen as they contain categorical features and are used in
prior works. More experiments for the discrete case can be found in the Appendix A.

For the COMPAS dataset, the goal is to predict whether the individual recidivated
(re-offended) (Y) using the severity of charge, number of prior crimes, and age category
as the decision variables (X). As discussed in [8], COMPAS scores are biased against
African-Americans, so race is set to be the sensitive attribute (D) and filtered to contain
only Caucasian and African-American individuals. As for the Adult dataset, the goal is
to predict the binary indicator (Y) of whether the income of the individual is more than
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50K or not based on the following decision variables (X): age (quantized to decades) and
education (in years), and the sensitive attribute (D) is the gender of the individual.

For both datasets, we randomly split all data into 80%/20% training/test samples.
We first construct an estimate of DTM B̂ with the empirical distribution of the training set;
then, we solve the proposed optimization in (11) and (17) using B̂ to obtain fair feature
mappings f̂(x), ĝ(y). The predictions Ŷ of the test samples X′ are given by plugging the
learned feature mappings f̂(x′), ĝ(y) into the MAP rule (15), where PY can be estimated
from the empirical distribution P̂Y on the training set.

For the independence case, we compare the tradeoff between the performance and the
discrimination achieved by our method with that of the optimized pre-processing methods
proposed in [8]. Note that we adopt the same settings as the experiments in [8] to do a fair
comparison, and the reported results for their method are from their work. We plot the
area under the ROC curve (AUC) of P̂Y|X′(y|x′) compared to the true test labels Y′ against
the following standard discrimination measure derived from legal proceedings [4]:

J = max
d,d′∈D

∣∣PŶ|D(1|d)/PŶ|D(1|d′)− 1
∣∣. (22)

Figures 1 and 2 (Top) show the results. For both datasets, it can be seen that simply dropping
the sensitive attribute D and applying logistic regression (LR) and random forest (RF)
algorithms cannot ensure independence between Ŷ and D. However, the proposed DTM-
based algorithm provides a tradeoff between performance and discrimination by varying
the value of the regularizer λ in the optimization (11), which outperforms the optimized
pre-processing methods in [8] on the Adult dataset and achieves similar performance on the
COMPAS dataset. More importantly, the DTM-based algorithm provides a smooth tradeoff
curve between the performance and discrimination, so that a desired level of fairness can
be achieved by setting λ in practice. In addition, since our method only requires us to
perform eigen-decomposition, it runs significantly faster than the optimized pre-processing
method, which needs to solve a much more complex optimization problem. Empirically,
we find at least a tenfold speed up in runtime compared to the existing methods.

Figure 1. Regularization results on the COMPAS dataset, with AUC plotted against discrimination
measure for independence (Top), and accuracy plotted against DEO for separation (Bottom), respec-
tively.
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Figure 2. Regularization results on Adult dataset, with AUC plotted against discrimination measure
for independence (Top), and accuracy plotted against DEO for separation (Bottom), respectively.

For the separation criterion, we compare the balanced accuracy achieved by our
algorithm with that of the adversarial debiasing method in [20] (implementation given
in [2]) against the difference in equalized opportunities (DEO), which is another standard
measure used commonly in the literature:

DEO =
∣∣P(Ŷ=1|D=1, Y=1)−P(Ŷ=1|D=0, Y=1)

∣∣. (23)

The results on the COMPAS and Adult datasets are presented in Figures 1 and 2 (Bottom).
Compared to the naïve logistic regression, the proposed DTM-based algorithm dramatically
decreases the DEO while maintaining similar accuracy performance on both datasets, which
outperforms the adversarial debiasing method in [20] on the Adult dataset. We note that
the accuracy and DEO curve achieved by the proposed algorithm in the separation setting
has a smaller range compared to that in the independence setting. This is because the value
of the regularizer λ is restricted in the separation optimization problem (17) to λ ∈ [0, 1),
but only to λ > 0 for the optimization in (11). More details about the influence of the
regularizer λ can be found in Appendix A.

4.2. Continuous Case

In the continuous case, we experiment on the Communities and Crimes (C&C) dataset
(http://archive.ics.uci.edu/ml/datasets/communities+and+crime (accessed on 14 Febru-
ary 2022)). The goal is to predict the crime rate Y of a community given a set of 121 statistics
X (distributions of income, age, urban/rural, etc.). The 122-th statistic (percentage of
black people in the community) is used as the sensitive variable D. All variables in this
dataset are real-valued. The dataset was split into 1794 training and 200 test samples.
Following [9], we use a Neural Net with a 50-node hidden layer (which we denote as
f (x)) and train a predictor ŷ = T( f (x)) with the mean squared error (MSE) loss and the
Soft-HGR penalty, varying λ. For Soft-HGR, we use two two-layer NNs with scalar outputs
as the two maximal correlation functions g and h, and then, we trained them according
to (20) (independence) or (21) (separation). Then, we computed the test MSE and test
“discrimination” in each case.
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For independence, our metric was I(Ŷ; D), which was approximated using a standard
kNN-based mutual information estimator [38]. For separation, we computed I(Ŷ; D|Y)
using the same estimator. We report the results of our experiment as well as that of the χ2

method of [9] with the same architecture. The results of the experiments are presented in
Figure 3.

Figure 3. Independence (top) and Separation (bottom) regularization on the C&C dataset, with MSE
plotted against I(Ŷ; D|Y).

As expected, we see a tradeoff between the MSE and discrimination, creating a frontier
of possible values. We also see that the Soft-HGR penalty provides modest gains compared
to the χ2 method for both independence and separation.

Moreover, our method runs significantly faster than the χ2 method (on the order
of seconds per iteration for our method versus just under a minute per iteration for the
comparison method), as the χ2 method requires computation over a mesh grid of a Gaussian
KDE, which scales with the product of the number of “bins” (mesh points) and the number
of training samples, while our method only scales with the number of samples (O(n)),
since it only requires passing over all the training samples a constant number of times
per iteration. For large bandwidths, d can become quite large. KDE methods also scale
poorly with dimensionality (see, [39]) in an exponential manner, and thus, if d is high-
dimensional, the χ2 method would run much slower than our method, which can take in an
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arbitrarily-sized input and scale linearly with the dimensionality of the input multiplied by
the number of samples. Empirically, we find that our method runs around five times faster.

We also run experiments to illustrate how our method’s simplicity allows it to adapt
to the few-shot, few-epoch regime faster than that of the χ2 method. We take 10 “few-shot”
samples from the training set; then, we train a network to predict Y from X without any
fairness regularizer using the full training set. Then, we run five more iterations of gradient
descent on the trained model using the fairness-regularized objective and the 10 few-shot
samples, and we compare the separation results between the Soft-HGR and χ2 regularizer.
We choose to compare to the χ2 regularizer as it is one of the few methods designed to
handle continuous D. The results are shown in Figure 4. Once again, we see the tradeoff
curve, and we see that our method outperform the χ2 method, and that it appears to be
competitive with the standard case in just a few iterations, while the χ2 method is still far
from achieving the original MSE. We also vastly outperform the baseline (before fairness
regularization) model in reducing discrimination, at the cost of only a small increase in
error. Thus, in situations where, due to ethical/legal issues, only a few samples labeled
with the sensitive attribute can be collected, fairness can still be enforced.

Figure 4. Independence (top) and Separation (bottom) regularization on the C&C dataset in the
few-shot settings, with MSE plotted against I(Ŷ; D|Y).

52



Entropy 2022, 24, 461

5. Conclusions

As machine learning algorithms gain more relevance, more focus will be placed
upon ensuring their fairness. We have presented a framework using the HGR maximal
correlation, which provides effective and computationally efficient methods for enforcing
independence and separation constraints, and derived algorithms for fair learning on
discrete and continuous data, which provide competitive tradeoff curves. In addition, we
have also shown promising results in the few-shot setting and suggested a method for
rapidly adapting a classifier to improve fairness. In the future, it would be beneficial to
extend this framework to other criteria (e.g., sufficiency) and to to determine how to use
this framework to enforce fairness in a transfer learning setup coupled with the few-shot
setting, to determine how to fairly adapt a classifier to a new task.

However, this method requires knowledge of the sensitive attribute for all samples
during the training time, which can be impractical in some cases. Further extension into
developing these regularizers with a limited number of such samples would be very useful.
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Appendix A. Effect of the Regularizer in Discrete Case

In this section, we provide additional experiment results to demonstrate how the
performance of classification and fairness measures change with different values of the
regularizer.

We use the same setup described in Section 4.1 and present the results in Figures A1–A4.
In Figures A1 and A2, we plot the achieved AUC and Discrimination (measured with
J in (21)) versus the value of λ for both COMPAS and Adult data using independence
criterion. In Figures A3 and A4, we plot the accuracy of the classifier and DEO versus λ for
both datasets using separation criterion. As shown by all the figures, the performance of
classification and fairness measures are all decreasing as we increase λ, and the proposed
DTM-based algorithm is able to provide a smooth tradeoff curve between the performance
and fairness measures.

Note that the value of the regularizer λ is restricted in the separation optimization prob-
lem to λ ∈ [0, 1); therefore, the range of the achieved performance in Figures A3 and A4 is
smaller than that in Figures A1 and A2.
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Figure A1. Results for independence regularization on the discrete COMPAS dataset, AUC results
(Top) and discrimination measure J (Bottom) are plotted with respect to different values of λ.

Figure A2. Results for independence regularization on the discrete Adult dataset, AUC results (Top)
and discrimination measure J (Bottom) are plotted with respect to different values of λ.

Figure A3. Results for separation regularization on the discrete COMPAS dataset, accuracy (Top)
and DEO (Bottom) are plotted with respect to different values of λ.
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Figure A4. Results for separation regularization on the discrete Adult dataset, accuracy (Top) and
DEO (Bottom) are plotted with respect to different values of λ.
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Abstract: This work proposes a new computational framework for learning a structured generative
model for real-world datasets. In particular, we propose to learn a Closed-loop Transcriptionbetween
a multi-class, multi-dimensional data distribution and a Linear discriminative representation (CTRL)
in the feature space that consists of multiple independent multi-dimensional linear subspaces. In
particular, we argue that the optimal encoding and decoding mappings sought can be formulated
as a two-player minimax game between the encoder and decoderfor the learned representation. A natural
utility function for this game is the so-called rate reduction, a simple information-theoretic measure
for distances between mixtures of subspace-like Gaussians in the feature space. Our formulation
draws inspiration from closed-loop error feedback from control systems and avoids expensive
evaluating and minimizing of approximated distances between arbitrary distributions in either the
data space or the feature space. To a large extent, this new formulation unifies the concepts and
benefits of Auto-Encoding and GAN and naturally extends them to the settings of learning a both
discriminative and generative representation for multi-class and multi-dimensional real-world data.
Our extensive experiments on many benchmark imagery datasets demonstrate tremendous potential
of this new closed-loop formulation: under fair comparison, visual quality of the learned decoder and
classification performance of the encoder is competitive and arguably better than existing methods
based on GAN, VAE, or a combination of both. Unlike existing generative models, the so-learned
features of the multiple classes are structured instead of hidden: different classes are explicitly
mapped onto corresponding independent principal subspaces in the feature space, and diverse visual
attributes within each class are modeled by the independent principal components within each subspace.

Keywords: closed-loop transcription; linear discriminative representation; rate reduction; minimax game

1. Introduction

One of the most fundamental tasks in modern data science and machine learning is to
learn and model complex distributions (or structures) of real-world data, such as images or
texts, from a set of observed samples. By “to learn and model”, one typically means that
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we want to establish a (parametric) mapping between the distribution of the real data, say
x ∈ RD, and a more compact random variable, say z ∈ Rd:

f (·, θ) : x ∈ R
D �→ z ∈ R

d or the inverse g(·, η) : z ∈ R
d �→ x ∈ R

D, (1)

where z has a certain standard structure or distribution (e.g., normal distributions). The so-
learned representation or feature z would be much easier to use for either generative (e.g.,
decoding or replaying) or discriminative (e.g., classification) purposes, or both.

Data embedding versus data transcription. Be aware that the support of the distribu-
tion of x (and that of z) is typically extremely low-dimensional compared to that of the ambient
space (for instance, the well-known CIFAR-10 datasets consist of RGB images with a resolu-
tion of 32× 32. Despite the images being in a space of R3072, our experiments will show
that the intrinsic dimension of each class is less than a dozen, even after they are mapped
into a feature space of R128) hence the above mapping(s) may not be uniquely defined
based on the support in the space RD (or Rd). In addition, the data x may contain multiple
components (e.g., modes, classes), and the intrinsic dimensions of these components are
not necessarily the same. Hence, without loss of generality, we may assume the data x to
be distributed over a union of low-dimensional nonlinear submanifolds ∪k

j=1Mj ⊂ RD,
where each submanifold Mj is of dimension dj � D. Regardless, we hope the learned
mappings f and g are (locally dimension-preserving) embedding maps [1], when restricted
to each of the componentsMj. In general, the dimension of the feature space d needs to
be significantly higher than all of these intrinsic dimensions of the data: d > dj. In fact, it
should preferably be higher than the sum of all the intrinsic dimensions: d ≥ d1 + · · ·+ dk,
since we normally expect that the features of different components/classes can be made
fully independent or orthogonal in Rd. Hence, without any explicit control of the map-
ping process, the actual features associated with images of the data under the embedding
could still lie on some arbitrary nonlinear low-dimensional submanifolds inside the feature
space Rd. The distribution of the learned features remains “latent” or “hidden” in the
feature space.

So, for features of the learned mappings (1) to be truly convenient to use for purposes
such as data classification and generation, the goals of learning such mappings should not
only simply reduce the dimension of the data x from D to d but also determine explicitly
and precisely how the mapped feature z = f (x) is distributed within the feature space Rd,
in terms of both its support and density. Moreover, we want to establish an explicit map
g(·) from this distribution of feature z back to the data space such that the distribution of its
image x̂ = g(z) (closely) matches that of x. To differentiate from finding arbitrary feature
embeddings (as most existing methods do), we call embeddings of data onto an explicit
family of models (structures or distributions) in the feature space as data transcription.

Paper Outline. This work is to show how such transcription can be achieved for
real-world visual data with one important family of models: the linear discriminative
representation (LDR) introduced by [2]. Before we formally introduce our approach in
Section 2, for the remainder of this section, we first discuss two existing approaches, namely
autoencoding and GAN, that are closely related to ours. As these approaches are rather
popular and known to the readers, we will mainly point out some of their main conceptual
and practical limitations that have motivated this work. Although our objective and
framework will be mathematically formulated, the main purpose of this work is to verify
the effectiveness of this new approach empirically through extensive experimentation,
organized and presented in Section 3 and Appendix A. Our work presents compelling
evidence that the closed-loop data transcription problem and our rate-reduction-based
formulation deserve serious attention from the information-theoretical and mathematical
communities. This has raised many exciting and open theoretical problems or hypotheses
about learning, representing, and generating distributions or manifolds of high-dimensional
real-world data. We discuss some open problems in Section 4 and new directions in
Section 5. Source code can be found at https://github.com/Delay-Xili/LDR (accessed on 9
February 2022).
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1.1. Learning Generative Models via Auto-Encoding or GAN

Auto-Encoding and its variants. In the machine-learning literature, roughly speak-
ing,there have been two representative approaches to such a distribution-learning task.
One is the classic “Auto Encoding” (AE) approach [3,4] that aims to simultaneously learn
an encoding mapping f from x to z and an (inverse) decoding mapping g from z back to x:

X
f (x,θ)−−−−−→ Z

g(z,η)−−−−−→ X̂. (2)

Here, we use bold capital letters to indicate a matrix of finite samples X = [x1, . . . , xn] ∈
RD×n of x and their mapped features Z = [z1, . . . , zn] ⊂ Rd×n, respectively. Typically, one
wishes for two properties: firstly, the decoded samples X̂ are “similar” or close to the origi-
nal X, say in terms of maximum likelihood p(X); and secondly, the (empirical) distribution
of the mapped samples Z, denoted as p̂(z|X), is close to certain desired prior distribution
p(z), say some much lower-dimensional multivariate Gaussian (The classical PCA can be
viewed as a special case of this task. In fact, the original auto-encoding is precisely cast as
nonlinear PCA [3], assuming the data lie on only one nonlinear submanifoldM).

However it is typically very difficult, often computationally intractable to maximize
the likelihood function p(X) or to minimize certain “distance”, say the KL-divergence
DKL( p̂, p), between p̂(z|X) and p(z). Except for simple distributions such as Gaussian,
the KL divergence usually does not have a closed-form, even for a mixture of Gaussians.
The likelihood and the KL-divergence become ill-conditioned when the supports of the
distributions are low-dimensional (i.e., degenerate) and not overlapping (which is almost
always the case in practice when dealing with distributions of high-dimensional data in
high-dimensional spaces). So in practice, one typically chooses to minimize instead certain
approximate bounds or surrogates derived with various simplifying assumptions on the
distributions involved, as is the case in variational auto-encoding (VAE) [5,6]. As a result,
even after learning, the precise posterior distribution of p̂(z|X) remains unclear or hidden
inside the feature space.

In this work, we will show that if we impose specific requirements on the (distribution
of) learned feature z to be a mixture of subspace-like Gaussians, a natural closed-form dis-
tance can be introduced for such distributions based on rate distortion from the information
theory. In addition, the optimal solution to the feature representation within this family
can be learned directly from the data without specifying any target p(z) in advance, which is
particularly difficult in practice when the distribution of a mixed dataset is multi-modal
and each component may have a different dimension.

GAN and its variants. Compared to measuring distribution distance in the (often
controlled) feature space z, a much more challenging issue with the above auto-encoding
approach is how to effectively measure the distance between the decoded samples X̂ and
the original X in the data space x. For instance, for visual data such as images, their
distributions p(X) or generative models p(X|z) are often not known. Despite extensive
studies in the computer vision and image processing literature [7], it remains elusive to find
a good measure for similarity of real images that is both efficient to compute and effective
in capturing visual quality and semantic information of the images equally well. Precisely
due to such difficulties, it has been suggested early on by [8] that one may have to take
a discriminative approach to learn the distribution or a generative model for visual data.
More recently, Generative Adversarial Nets (GAN) [9] offers an ingenious idea to alleviate this
difficulty by utilizing a powerful discriminator d, usually modeled and learned by a deep
network, to discern differences between the generated samples X̂ and the real ones X:

Z
g(z,η)−−−−−→ X̂, X

d(x,θ)−−−−−→ 0, 1. (3)

To a large extent, such a discriminator plays the role of minimizing certain distribu-
tional distance, e.g., the Jensen–Shannon divergence, between the data X and X̂. Compared
to the KL-divergence, the JS-divergence is well-defined even if the supports of the two
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distributions are non-overlapping. (However, JS-divergence does not have a closed-form
expression even between two Gaussians, whereas KL-divergence does). However, as
shown in [10], since the data distributions are low-dimensional, the JS-divergence can be
highly ill-conditioned to optimize. (This may explain why many additional heuristics
are typically used in many subsequent variants of GAN). So, instead, one may choose to
replace JS-divergence with the earth mover’s distance or the Wasserstein distance. However
both JS-divergence and W-distance can only be approximately computed between two
general distributions. (For instance, the W-distance requires one to compute the maximal
difference between expectations of the two distributions over all 1-Lipschitz functions).
Furthermore, neither the JS-divergence nor the W-distance have closed-form formulae, even
for the Gaussian distributions. (The (�1-norm) W-distance can be bounded by the (�2-norm)
W2-distance which has a closed-form [11]. However, as is well-known in high-dimensional
geometry, �1-norm and �2 norm deviate significantly in terms of their geometric and statis-
tical properties as the dimension becomes high [12]. The bound can become very loose).
However, from a data representation perspective, subspace-like Gaussians (e.g., PCA) or a
mixture of them are the most desirable family of distributions that we wish our features to become.
This would make all subsequent tasks (generative or discriminative) much easier. In this
work, we will show how to achieve this with a different fundamental metric, known as the
rate reduction, introduced by [13].

The original GAN aims to directly learn a mapping g(·), called a generator, from a stan-
dard distribution (say, a low-dimensional Gaussian random field) to the real (visual) data
distribution in a high-dimensional space. However, distributions of real-world data can be
rather sophisticated and often contain multiple classes and multiple factors in each class [14].
This makes learning the mapping g rather challenging in practice, suffering difficulties
such as mode-collapse [15]. As a result, many variants of GAN have been subsequently
developed in order to improve the stability and performance in learning multiple modes
and disentangling different factors in the data distribution, such as Conditional GAN [16–20],
InfoGAN [21,22], or Implicit Maximum Likelihood Estimation (IMLE) [23,24]. In particular,
to learn a generator for multi-class data, prevalent conditional GAN literature requires
label information as conditional inputs [16,25–27]. Recently, [28,29] has proposed training
a k-class GAN by generalizing the two-class cross entropy to a (k + 1)-class cross entropy.
In this work, we will introduce a more refined 2k-class measure for the k real and k generated
classes. In addition, to avoid features for each class collapsing to a singleton [30], instead
of cross entropy, we will use the so-called rate-reduction measure that promotes multi-mode and
multi-dimension in the learned features [13]. One may view the rate reduction as a metric
distance that has closed-form formulae for a mixture of (subspace-like) Gaussians, whereas
neither JS-divergence nor W-distance can be computed in closed form (even between
two Gaussians).

Another line of research is about how to stabilize the training of GAN. SN-GAN [31]
has shown that spectral normalization on the discriminator is rather effective, which
we will adopt in our work, although our formulation is not so sensitive to such choice
designed for GAN (see ablation study in Appendix A.9). PacGAN [32] shows that the
training stability can be significantly improved by packing a pair of real and generated
images together for the discriminator. Inspired by this work, we show how to generalize
such an idea to discriminating an arbitrary number of pairs of real and decoded samples without
concatenating the samples. Our results in this work will even suggest that the larger the
batch size discriminated, the merrier (see ablation study in Appendix A.10). In addition,
ref. [29] has shown that optimizing the latent features leads to state-of-the-art visual quality.
Their method is based on the deep compressed sensing GAN [28]. Hence, there are strong
reasons to believe that their method essentially utilizes the compressed sensing principle [12]
to implicitly exploit the low-dimensionality of the feature distribution. Our framework will
explicitly expose and exploit such low-dimensional structures on the learned feature distribution.

Combination of AE and GAN. Although AE (VAE) and GAN originated with some-
what different motivations, they have evolved into popular and effective frameworks for
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learning and modeling complex distributions of many real-world data such as images.
(In fact, in some idealistic settings, it can be shown that AE and GAN are actually equiva-
lent: for instance, in the LOG settings, authors in [33] have shown that GAN coincides with
the classic PCA, which is precisely the solution to auto-encoding in the linear case). Many
recent efforts tend to combine both auto-encoding and GAN to generate more powerful
generative frameworks for more diverse data sets, such as [15,34–42]. As we will see,
in our framework, AE and GAN can be naturally interpreted as two different segments
of a closed-loop data transcription process. However, unlike GAN or AE (VAE), the “ori-
gin” or “target” distribution of the feature z will no longer be specified a priori, and is
instead learned from the data x. In addition, this intrinsically low-dimensional distribution
of z (with all of its low-dimensional supports) is explicitly modeled as a mixture of orthogonal
subspaces (or independent Gaussians) within the feature space Rd, sometimes known as the
principal subspaces.

Universality of Representations. Note that GANs (and most VAEs) are typically
designed without explicit modeling assumptions on the distribution of the data nor on
the features. Many even believe that it is this “universal” distribution learning capability
(assuming minimizing distances between arbitrary distributions in high-dimensional space
can be solved efficiently, which unfortunately has many caveats and often is impractical)
that is attributed to their empirical success in learning distributions of complicated data
such as images. In this work, we will provide empirical evidence that such an “arbitrary
distribution learning machine” might not be necessary. (In fact, it may be computationally
intractable in general). A controlled and deformed family of low-dimensional linear subspaces
(Gaussians) can be more than powerful, and expressive enough to model real-world visual
data. (In fact, a Gaussian mixture model is already a universal approximator of almost
arbitrary densities [43]. Hence, we do not loose any generality at all). As we will also see,
once we can place a proper and precise metric on such models, the associated learning
problems can become much better conditioned and more amenable to rigorous analysis
and performance guarantees in the future.

1.2. Learning Linear Discriminative Representation via Rate Reduction

Recently, the authors in [2] proposed a new objective for deep learning that aims to
learn a linear discriminative representation (LDR) for multi-class data. The basic idea is to map
distributions of real data, potentially on multiple nonlinear submanifolds ∪k

j=1Mj ⊂ RD (in
classical statistical settings, such nonlinear structures of the data were also referred to as
principal curves or surfaces [44,45]. There has been a long quest of trying to extend PCA to
handle potential nonlinear low-dimensional structures in data distribution (see [46] for a
thorough survey) to a family of canonical models consisting of multiple independent (or
orthogonal) linear subspaces, denoted as ∪k

j=1Sj ⊂ Rd. To some extent, this generalizes
the classic nonlinear PCA [3] to more general/realistic settings where we simultaneously
apply multiple nonlinear PCAs to data on multiple nonlinear submanifolds. Or equivalently,
the problem can also be viewed as a nonlinear extension to the classic Generalized PCA
(GPCA) [46]. (Conventionally, “generalized PCA” refers to generalizing the setting of
PCA to multiple linear subspaces. Here, we need to further generalize multiple nonlinear
submanifolds. Unlike conventional discriminative methods that only aim to predict class
labels as one-hot vectors, the LDR aims to learn the likely multi-dimensional distribution
of the data, hence it is suitable for both discriminative and generative purposes. It has been
shown that this can be achieved via maximizing the so-called “rate reduction” objective
based on the rate distortion of subspace-like Gaussians [47].

LDR via MCR2. More precisely, consider a set of data samples X = [x1, . . . , xn] ∈
RD×n from k different classes. That is, we have X = ∪k

j=1Xj with each subset of samples Xj

belonging to one of the low-dimensional submanifolds: Xj ⊂Mj, j = 1, . . . , k. Following
the notation in [2], we use a matrix Πj(i, i) = 1 to denote the membership of sample i
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belonging to class j (and Πj = 0 otherwise). One seeks a continuous mapping f (·, θ) : x �→ z
from X to an optimal representation Z = [z1, . . . , zn] ⊂ Rd×n:

X
f (x,θ)−−−−−→ Z, (4)

which maximizes the following coding rate-reduction objective, known as the MCR2 principle [13]:

max
Z

ΔR(Z |Π, ε)
.
=

1
2

log det
(

I + αZZ∗
)

︸ ︷︷ ︸
R(Z |ε)

−
k

∑
j=1

γj

2
log det

(
I + αjZΠjZ∗

)
︸ ︷︷ ︸

Rc(Z |Π,ε)

,
(5)

where α = d
nε2 , αj =

d
tr(Πj)ε2 , γj =

tr(Πj)
n for j = 1, . . . , k. In this paper, for simplicity we

denote ΔR(Z |Π, ε) as ΔR(Z) assuming Π, ε are known and fixed. The first term R(Z |ε),
or R(Z) for short, is the coding rate of the whole feature set Z (coded as a Gaussian source)
with a prescribed precision ε; the second term Rc(Z |Π, ε), or simply Rc(Z), is the average
coding rate of the k subsets of features Zj = f (Xj) (each coded as a Gaussian).

As has been shown by [13], maximizing the difference between the two terms will
expand the whole feature set while compressing and linearizing features of each of the k
classes. If the mapping f maximizes the rate reduction, it maps the features of different
classes into independent (orthogonal) subspaces in Rd. Figure 1 illustrates a simple example
of data with k = 2 classes (on two submanifolds) mapped to two incoherent subspaces
(solid black lines). Notice that, compared to AE (2) and GAN (3), the above mapping (4) is
only one-sided: from the data X to the feature Z. In this work, we will see how to use the
rate-reduction metric to establish inverse mapping from the feature Z back to the data X,
while still preserving the subspace structures in the feature space.

Figure 1. CTRL: A Closed-loop Transcription to an LDR. The encoder f has dual roles: it learns an
LDR z for the data x via maximizing the rate reduction of z and it is also a “feedback sensor” for
any discrepancy between the data x and the decoded x̂. The decoder g also has dual roles: it is a
“controller” that corrects the discrepancy between x and x̂ and it also aims to minimize the overall
coding rate for the learned LDR.

2. Data Transcription via Rate Reduction

2.1. Closed-Loop Transcription to an LDR (CTRL)

One issue with this one-sided LDR learning (4) is that maximizing the above objective (5)
tends to expand the dimension of the learned subspace for features in each class (if the
dimension of the feature space d is too high, maximizing the rate reduction may over-
estimate the dimension of each class. Hence, to learn a good representation, one needs to
pre-select a proper dimension for the feature space, as achieved in the experiments in [13].
In fact the same “model selection” problem persists even in the simplest single-subspace
case, which is the classic PCA [48]. Selecting the correct number of principal components in a
heterogeneous noisy situation remains an active research topic [49]). To verify whether the
learned features are neither over-estimating nor under-estimating the data structure, we may
consider learning a decoder g(·, η) : z �→ x from the representation Z = f (X, θ) back to the
data space x: X̂ = g(Z, η), and check how close X and X̂ are or how close their features Z

62



Entropy 2022, 24, 456

and Ẑ = f (X̂, θ) are. In principle, the decoder g should examine if all the learned features by
the encoder f are both necessary and sufficient for achieving this task. The overall pipeline
can be illustrated by the following “closed-loop” diagram:

X
f (x,θ)−−−−−→ Z

g(z,η)−−−−−→ X̂
f (x,θ)−−−−−→ Ẑ, (6)

where the overall model has parameters: Θ = {θ, η}.
Notice that in the above process, the segment from X to X̂ resembles a typical Auto-

Encoding process; although, as we will soon see, our MCR2-based encoder f plays an
additional role as a discriminator. The segment from Z to Ẑ draws resemblance to the
typical GAN process; although, in our context, the distribution of the latent variable z
will be learned from the data x. Despite these connections, as we will soon see, this
new closed-loop formulation will allow us to utilize the error feedback mechanism (widely
practiced in control systems) and directly enforce loop consistency between encoding and
decoding (networks) without using any additional discriminator(s) that are typically needed
in existing VAE/GAN architectures.

Here, in the specific context of rate reduction, we name this special auto-encoding
process “Transcription to an LDR” since the maximal rate-reduction principle explicitly
transcribes the data X, via f , to features Z on a linear discriminative representation (LDR)
(through our extensive experiments on diverse real-world visual datasets, one does not
lose any generality or expressiveness by restricting to this special but rich class of models.
On the contrary, the restriction significantly simplifies and improves the learning process),
which can be subsequently decoded back to the data space X̂, via g. Hence, the encod-
ing and decoding maps f and g together form a “closed-loop” process, as illustrated in
Figure 1. We hope that this closed-loop transcription to an LDR (CTRL) has the following
good properties:

• Injectivity: the generated x̂ = g( f (x, θ), η) ∈ X̂ should be as close to (ideally the same
as) the original data x ∈ X, in terms of certain measures of similarity or distance.

• Surjectivity: for all mapped images z = f (x) ∈ Z of the training data x ∈ X, there
are decoded samples ẑ = f (g(z, η), θ) ∈ Ẑ close to (ideally the same as) z.

Mathematically, we seek an embedding of the data x supported on certain nonlinear
submanifolds ∪k

j=1Mj in the space RD to feature z on a set of (discriminative) linear sub-

spaces ∪k
j=1Sj in the feature space Rd. Ideally, both f and g should be embeddings [1],

when restricted on the support of the data distribution or that of the features. (That is,
we hope f |Mj and g |Sj are all embeddings for all j = 1, . . . , k.) In addition, more ideally,
we hope f and g are mutually inverse embeddings: g ◦ f = Id (when restricted on the
submanifolds). Nevertheless, if we are only interested in learning the distribution, embed-
dings of the support would often suffice the purposes (e.g., classification or generative
purposes). Notice that the above goals are similar to many VAE+GAN-related methods
in the machine-learning literature, such as BiGAN [38] and ALI [39]. We will discuss the
differences of our approach from these existing methods in Section 2.3 (as well as providing
some experimental comparisons in the Appendix A).

At first sight, this is a rather daunting task, since we are trying to learn over a (seem-
ingly infinite-dimensional) functional space of all embeddings and distributions from finite
samples. In this work, we will take a more pragmatic approach and show how one can
learn a good encoding, decoding, and representation tuple: ( f , g, z) from X via tractable
computational means. In particular, we will convert the above goals to certain feasible
programs that optimize a sensible measure of goodness for the learned representations Z.

2.2. Measuring Distances in the Feature Space and Data Space

Contractive measure for the decoder. For the second item in the above wishlist, as the
representations in the feature space z are by design linear subspaces or (degenerate) Gaus-
sians, we have geometrically or statistically meaningful metrics for both samples and
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distributions in the feature space z. For example, we care about the distance between
distributions between the features of the original data Z and the transcribed Ẑ. Since the
features of each class, Zj and Ẑj, are similar to subspaces/Gaussians, their “distance” can
be measured by the rate reduction, with (5) restricted to two sets of equal size:

ΔR
(
Zj, Ẑj

) .
= R

(
Zj ∪ Ẑj

)
− 1

2
(

R
(
Zj) + R

(
Ẑj)

)
. (7)

According to the interpretation of the rate reduction given in [13], the above quantity
precisely measures the volume of the space between Zj and Ẑj, illustrated as a pair of black
and blue lines in Figure 1. Then, for the “distance” of all, say k, classes, we simply sum the
rate reduction for all pairs:

d(Z, Ẑ) .
= min

η

k

∑
j=1

ΔR
(
Zj, Ẑj

)
= min

η

k

∑
j=1

ΔR
(
Zj, f (g(Zj, η), θ)

)
, (8)

where Zj = f (Xj, θ) and Ẑj = f (X̂j, θ). Obviously, a main goal of the learned decoder
g(·, η) is to minimize the distance between these distributions. Notice that if the encoder f
preserves (i.e., injective for) the intrinsic structures of the original data X, (this is typically
the case for MCR2-based feature representation [13]) this criterion essentially aims to ensure
there will be some decoded sample x̂ close to every data sample x—hence the decoder
g should be “surjective”. According to the ideas of IMLE [23], such a requirement could
effectively help to avoid mode-collapsing or mode-dropping.

Contrastive measure for the encoder. For the first item in our wishlist, however, we
normally do not have a natural metric or “distance” for similarity of samples or distributions
in the original data space x for data such as images. As mentioned before, finding proper
metrics or distance functions on natural images has always been an elusive and challenging
task [7]. To alleviate this difficulty, we can measure the similarity or difference between X̂
and X through their mapped features Ẑ and Z in the feature space (again assuming f is
structure-preserving). If we are interested in discerning any differences in the distributions
of the original and transcribed samples, we may view the MCR2 feature encoder f (·, θ)
as a “discriminator” to magnify any difference between all pairs of Xj and X̂j, by simply
maximizing, instead of minimizing, the same quantity in (8):

d(X, X̂)
.
= max

θ

k

∑
j=1

ΔR
(
Zj, Ẑj

)
= max

θ

k

∑
j=1

ΔR
(

f (Xj, θ), f (X̂j, θ)
)
. (9)

That is, a “distance” between X and X̂ can be measured as the maximally achievable
rate reduction between all pairs of classes in these two sets. In a way, this measures how well
or badly the decoded X̂ aligns with the original data X—hence measuring the goodness of
“injectivity” of the encoder f . Notice that such a discriminative measure is consistent with
the idea of GAN [9] that tries to separate X and X̂ into two classes, measured by the cross-
entropy. Nevertheless, here the MCR2-based discriminator f naturally generalizes to cases
when the data distributions are multi-class and multi-modal, and the discriminativeness is
measured with a more refined measure—the rate reduction—instead of the typical two-
class loss (e.g., cross entropy) used in GANs. See Appendix A.8 for comparisons with some
ablation studies.

One may wonder why we need the mapping f (·, θ) to function as a discriminator
between X and X̂ by maximizing maxθ ΔR

(
f (X, θ), f (X̂, θ)

)
. Figure 2 gives a simple

illustration: there might be many decoders g such that f ◦ g is an identity (Id) mapping.
Here, we use the notion of “identity mapping” in a loose sense: depending on the context,
it could simply mean an embedding from Sz to Sz. f ◦ g(z) = z for all z in the subspace Sz
in the feature space. However, g ◦ f is not necessarily an auto-encoding map for x in the
original distribution Sx (here for simplicity drawn as a subspace). That is, g ◦ f (Sx) �⊂ Sx,
let alone g ◦ f (Sx) = Sx or g ◦ f (x) = x. One should expect, without careful control of the
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image of g, with high probability, this would be the case, especially when the support of the
distribution of x is extremely low-dimensional in the original high-dimensional data space.
For example, as we will see in the experiments, the intrinsic dimension of the submanifold
associated with each image category is about a dozen, whereas images are embedded in a
(pixel) space of thousands or tens of thousands of dimensions.

Figure 2. Embeddings of Low-Dimensional Submanifolds in High-Dimensional Spaces. Sx (blue)
is the submanifold for the original data x; Sz (red) is the image of Sx under the mapping f , representing
the learned feature z; and the green curve is the image of the feature z under the decoding mapping g.

Remark: representing the encoding and decoding mappings. Some practical ques-
tions arise immediately: how rich should the families of functions be that we should
consider to use for the encoder f and decoder g that can optimize the above rate-reduction-
type objectives? In fact, similar questions exist for the formulation of GAN, regarding the
realizability of the data distribution by the generator, see [50]. Conceptually, here we know
that the encoder f needs to be rich enough to discriminate (small) deviations from the true
data supportMj, while the decoder g needs to be expressive enough to generate the data
distribution from the learned mixture of subspace-Gaussians. How should we represent
or parameterize them, hence making our objectives computable and optimizable? For the
most general cases, these remain widely open and challenging mathematical and compu-
tational problems. As we mentioned earlier, in this work, we will take a more pragmatic
approach by simply representing these mappings with popular neural networks that have
empirically proven to be good at approximating distributions of practical (visual) datasets
or for achieving the maximum of the rate-reduction-type objectives [13]. Nevertheless, our
experiments indicate that our formulation and objectives are not so sensitive to particular
choices in network structures or many of the tricks used to train them. In addition, in the
special cases when the real data distribution is benignly deformed from an LDR, the work
of [2] has shown that one can explicitly construct these mappings from the rate-reduction
objectives in the form of a deep network known as ReduNet. However, it remains unclear
how such constructions could be generalized to closed-loop settings. Regardless, answers
to these questions are beyond the scope of this work, as our purposes here are mainly to
empirically verify the validity of the proposed closed-loop data transcription framework.

2.3. Encoding and Decoding as a Two-Player MiniMax Game

Comparing the contractive and contrastive nature of (8) and (9) on the same utility,
we see the roles of the encoder f (·, θ) and the decoder g(·, η) naturally as “a two-player

game”: while the encoder f tries to magnify the difference between the original data and their
transcribed data, the decoder g aims to minimize the difference. Now for convenience, let us
define the “closed-loop encoding” function:

h(x, θ, η)
.
= f

(
g
(

f (x, θ), η
)
, θ
)

: x �→ z. (10)

Ideally, we want this function to be very close to f (x, θ) or at least the distributions of
their images should be close. With this notation, combining (8) and (9), a closed-loop notion
of “distance” between X and X̂ can be computed as an equilibrium point to the following
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Min-Max (or Max-Min) program for the same utility in terms of rate reduction (theoretically,
there might be significant difference in formulating and seeking the desired solution as
the equilibrium point to a min-max or max-min game. In practice, we do not see major
differences as we optimize the program by simply alternating between minimization and
maximization. We leave a more careful investigation to future work):

D(X, X̂)
.
= min

η
max

θ

k

∑
j=1

ΔR
(

f (Xj, θ), h(Xj, θ, η)
)
. (11)

Notice that this only measures the difference between (features of) the original data
and its transcribed version. It does not measure how good the representation Z (or Ẑ) is
for the multiple classes within X (or X̂). To this end, we may combine the above distance
with the original MCR2-type objectives (5): namely, the rate reduction ΔR(Z) and ΔR(Ẑ)
for the learned LDR Z for X and Ẑ for the decoded X̂. Notice that although the encoder f
tries to maximize the multi-class rate reduction of the features Z of the data X, the decoder
g should minimize the rate reduction of the multi-class features Ẑ of the decoded X̂. That is,
the decoder g tries to use a minimal coding rate needed to achieve a good decoding quality.

Hence, the overall “multi-class” Min-Max program for learning the Closed-loop Tran-
scription to an LDR, named CTRL-Multi, is subject to certain constraints (upper or lower
bounds) on the first term and the second term. In this work, we only consider the simple
case by adding these rate-reduction quantities together. Of course, in the future, one may
consider other more delicate formulations. For instance, we may consider a Min-Max game
on the third term (11). Such constrained minimax games have also started to draw attention
lately [51].

min
η

max
θ
TX(θ, η)

.
= ΔR

(
f (X, θ)

)︸ ︷︷ ︸
Expansive encode

+ ΔR
(
h(X, θ, η)

)︸ ︷︷ ︸
Compressive decode

+
k

∑
j=1

ΔR
(

f (Xj, θ), h(Xj, θ, η)
)︸ ︷︷ ︸

Contrastive encode & Contractive decode

= ΔR
(
Z(θ)

)
+ ΔR

(
Ẑ(θ, η)

)
+

k

∑
j=1

ΔR
(
Zj(θ), Ẑj(θ, η)

)
. (12)

Empirically, we have evaluated the necessity of these terms in an ablation study (see
Appendix A.8.3). Notice that, without the terms associated with the generative part h or
with all such terms fixed as constant, the above objective is precisely the original MCR2

objective proposed by [13]. In an unsupervised setting, if we view each sample (and its
augmentations) as its own class, the above formulation remains exactly the same. The
number of classes k is simply the number of independent samples. In addition, notice that
the minimax objective function depends only on (features of) the data X, hence one can
learn the encoder and decoder (parameters) without the need for sampling or matching
any additional distribution (as typically needed in GANs or VAEs).

As a special case, if X only has one class, the above Min-Max program reduces (as
the first two rate reduction terms automatically become zero) to a special “two-class” or
“binary” form, named CTRL-Binary, between X and the decoded X̂ by viewing X and X̂
as two classes {0, 1}. Notice that this binary case resembles formulation of the original
GAN (3). Nevertheless, instead of using cross entropy, our formulation adopts a more
refined rate-reduction measure, which has been shown to promote diversity in the learned
representation [13]).

CTRL-Binary: min
η

max
θ
T b

X (θ, η)
.
= ΔR

(
f (X, θ), h(X, θ, η)

)
= ΔR

(
Z(θ), Ẑ(θ, η)

)
. (13)

Sometimes, even when X contains multiple classes/modes, one could still view
all classes together as one class. Then, the above binary objective is to align the union
distribution of all classes with their decoded X̂. This is typically a simpler task to achieve
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than the multi-class one (12), since it does not require learning of a more refined multi-class
CTRL for the data, as we will later see in experiments. Notice that one good characteristic
of the above formulation is that all quantities in the objectives are measured in terms of rate
reduction for the learned features (assuming features eventually become subspace Gaussians).

In all of our subsequent experiments, we solve the above minimax programs using
the most basic gradient descent–ascent (GDA) algorithm [52] that alternates between the
minimization and maximization, with the same learning rate and without any timescale
separation (as typically needed for training GANs [53]). Although more refined optimiza-
tion schemes can likely further improve the efficiency and performance, we leave these for
future investigations.

Remark: closed-loop error correction. One may notice that our framework (see
Figure 1) draws inspiration from closed-loop error correction widely practiced in feedback
control systems. In the machine-learning and deep-learning literature, the idea of closed-
loop error correction and closed-loop fixed point has been explored before to interpret the
recursive error-correcting mechanism and explain stability in a forward (predictive) deep
neural network, for example the deep equilibrium networks [54] and the deep implicit networks
[55], again drawing inspiration from feedback control. Here, in our framework, the closed-
loop mechanism is not used to interpret the encoding or decoding (forward) networks f
and g. Instead, it is used to form an overall feedback system between the two encoding
and decoding networks for correcting the “error” in the distributions between the data x
and the decoded x̂. Using terminology from control theory, one may view the encoding
network f as a “sensor” for error feedback while the decoding network g as a “controller”
for error correction. However, notice that here the “target” for control is not a scalar nor
a finite dimensional vector, but a continuous mapping—in order for the distribution of x̂
to match that of the data x. This is in general a control problem in an infinite dimensional
space. The space of diffeomorphisms of submanifolds is infinite-dimensional [1]. Ideally,
we hope when the sensor f and the controller g are optimal, the distribution of x becomes
a “fixed point” for the closed loop while the distribution of z reaches a compact LDR.
Hence, the minimax programs (12) and (13) can also be interpreted as games between an
error-feedback sensor and an error-reducing controller.

Remark: relation to bi-directional or cycle consistency. The notion of “bi-directional”
and “cycle” consistency between encoding and decoding has been exploited in the works
of BiGAN [38] and ALI [39] for mappings between the data and features and in the work
of CycleGAN [56] for mappings between two different data distributions. In our context,
it is similar in order to promote g ◦ f and f ◦ g to be close to identity mappings (either
for the distributions or for the samples). Interestingly, our new closed-loop formulation
actually “decouples” the data X, say, observed from the external world, from their internally
represented features Z. The objectives (12) and (13) are functions of only the internal features
Z(θ) and Ẑ(θ, η), which can be learned and optimized by adjusting the neural networks
f (·, θ) and g(·, η) alone. There is no need for any additional external metrics or heuristics
to promote how “close” the decoded images X̂ are to X. This is very different from most
VAE/GAN-type methods such as BiGAN and ALI that require additional discriminators
(networks) for the images and the features. Some experimental comparison are given in
the Appendix A.2. In addition, in Appendix A.8.1, we provide some ablation study to
illustrate the importance and benefit of a closed loop for enforcing the consistency between
the encoder and decoder.

Remark: transparent versus hidden distribution of the learned features. Notice
that in our framework, there is no need to explicitly specify a prior distribution either as
a target distribution to map to for AE (2) or as an initial distribution to sample from for
GAN (3). The common practice in AEs or GANs is to specify the prior distribution as a
generic Gaussian. This is however particularly problematic when the data distribution
is multi-modal and has multiple low-dimensional structures, which is commonplace for
multi-class data. In this case, the common practice in AEs or GANs is to train a conditional
GAN for different classes or different attributes. However, here we only need to assume
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the desired target distribution belonging to the family of LDRs. The specific optimal
distribution of the features within this family is then learned from the data directly, and
then can be represented explicitly as a mixture of independent subspace Gaussians (or
equivalently, a mixture of PCAs on independent subspaces). We will give more details in the
experimental Section 3 as well as more examples in Appendices A.2–A.4. Although many
GAN + VAE-type methods can learn bidirectional encoding and decoding mappings,
the distribution of the learned features inside the feature space remains hidden or even
entangled. This makes it difficult to sample the feature space for generative purposes or to
use the features for discriminative tasks. (For instance, typically one can only use so-learned
features for nearest-neighbor-type classifiers [38], instead of nearest subspace as in this
work, see Section 3.3).

3. Empirical Verification on Real-World Imagery Datasets

This experiment section serves three purposes: First, we empirically justify the pro-
posed formulation for data transcription by demonstrating good properties of the learned
encoder, decoder, and representation tuple ( f , g, z) from X. Second, we compare our
method with several representative methods from the GAN family and VAE family. The pur-
pose of the comparison is not to compete for any state-of-the-art performance. Instead,
we want to convincingly verify the validity of the proposed framework and its poten-
tial in going beyond. Finally, we evaluate the so-learned CTRL through both generative
tasks (controlled visualization) and discriminative (classification) tasks. More extensive
experimental results, evaluations, and ablation studies can be found in the Appendix A.

Datasets. We provide extensive qualitative and quantitative experimental results
on the following datasets: MNIST [57], CIFAR-10 [58], STL-10 [59], CelebA [60], LSUN
bedroom [61], and ImageNet ILSVRC 2012 [62]. The network architectures and imple-
mentation details can be found in Appendix A.1 and corresponding Appendix A for
each dataset.

3.1. Empirical Justification of CTRL Transcription

To empirically validate our new framework, we conduct experiments from a small
low-variety dataset (MNIST), to a small dataset of diverse real-world objects (CIFAR-10),
to higher resolution images (STL-10, CelebA, LSUN-bedroom), to a large-scale diverse
image set (ImageNet). The results are evaluated both quantitatively and qualitatively.
Implementation details, more experimental results, and ablation studies are given in
Appendix A.

Comparison (IS and FID) with other formulations. First, we conduct five experi-
ments to fairly compare our formulation with GAN [63] and VAE(-GAN) [64] on MNIST
and CIFAR-10. Except for the objective function, everything else is exactly the same for all
methods (e.g., networks, training data, optimization method). These experiments are: (1).
GAN; (2). GAN with its objective replaced by that of the CTRL-Binary (13); (3). VAE-GAN ;
(4). Binary CTRL (13); and (5). Multi-class CTRL (12). Some visual comparison is given in
Figure 3. IS [65] and FID [66] scores are summarized in Table 1. Here, for simplicity, we
have chosen a uniform feature dimension d = 128 for all datasets. If we choose a higher
feature dimension, say d = 512, for the more complex CIFAR-10 dataset, the visual quality
can be further improved, see Table A14 in Appendix A.11.

(a) MNIST (b) CIFAR-10 (c) ImageNet

Figure 3. Qualitative comparison on (a) MNIST, (b) CIFAR-10 and (c) ImageNet. First row: original
X; other rows: reconstructed X̂ for different methods.
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Table 1. Quantitative comparison on MNIST and CIFAR-10. Average Inception scores (IS) [65] and
FID scores [66]. ↑means higher is better. ↓means lower is better.

Method GAN
GAN

(CTRL-
Binary)

VAE-GAN
CTRL-
Binary

CTRL-
Multi

MNIST IS ↑ 2.08 1.95 2.21 2.02 2.07
FID ↓ 24.78 20.15 33.65 16.43 16.47

CIFAR-10 IS ↑ 7.32 7.23 7.11 8.11 7.13
FID ↓ 26.06 22.16 43.25 19.63 23.91

As we see from Table 1, replacing cross-entropy with the Equation (13) can improve the
generative quality. The two CTRL formulations are clearly on par with the others in terms
of IS and significantly better in FID. Finally, with the same training datasets, the quality of
CTRL-Multi is lower than that of CTRL-Binary. This is expected, as the multi-class task is
more challenging. Nevertheless, as we will see soon, images decoded by CTRL-Multi align
much better with their classes than Binary.

Visualizing correlation of features Z and decoded features Ẑ. We visualize the cosine
similarity between Z and Ẑ learned from the multi-class objective (12) on MNIST, CIFAR-10
and ImageNet (10 classes), which indicates how close ẑ = f ◦ g(z) is from z. Results in
Figure 4 show that Z and Ẑ are aligned very well within each class. The block-diagonal
patterns for MNIST are sharper than those for CIFAR-10 and ImageNet, as images in
CIFAR-10 and ImageNet have more diverse visual appearances.

(a) MNIST (b) CIFAR10 (c) ImageNet

Figure 4. Visualizing the alignment between Z and Ẑ: |Z�Ẑ| and in the feature space for (a) MNIST,
(b) CIFAR-10, and (c) ImageNet-10-Class.

Visualizing auto-encoding of the data X and the decoded X̂. We compare some
representative X and X̂ on MNIST, CIFAR-10 and ImageNet (10 classes) to verify how close
x̂ = g ◦ f (x) is to x. The results are shown in Figure 5, and visualizations are created from
training samples. Visually, the auto-encoded x̂ faithfully captures major visual features
from its respective training sample x, especially the pose, shape, and layout. For the simpler
dataset such as MNIST, auto-encoded images are almost identical to the original. The visual
quality is clearly better than other GAN+VAE-type methods, such as VAE-GAN [34] and
BiGAN [38]. We refer the reader to Appendices A.2, A.4 and A.7 for more visualization
of results on these datasets, including similar results on transformed MNIST digits. More
visualization results for learned models on real-life image datasets such as STL-10, CeleB,
and LSUN can be found in the Appendices A.5 and A.6.
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(a) MNIST X (b) MNIST X̂ (c) CIFAR-10 X (d) CIFAR-10 X̂ (e) ImageNet X (f) ImageNet X̂

Figure 5. Visualizing the auto-encoding property of the learned closed-loop transcription
(x ≈ x̂ = g ◦ f (x)) on MNIST, CIFAR-10, and ImageNet (zoom in for better visualization).

3.2. Comparison to Existing Generative Methods

Table 2 gives a quantitative comparison of visual quality of our method with others
on CIFAR-10, STL-10, and ImageNet. In general, there is a large difference in terms of FID
and IS scores between the GAN family and the VAE family of models. SNGAN [31] are
commonly used methods in most generative applications, while LOGAN [29] is the state-
of-the-art method on ImageNet in terms of FID and IS. More comparisons with existing
methods, including results on on the higher-resolution ImageNet dataset, can be found in
Table A10 of the Appendix A.7.

As we see, even if the rate-reduction objectives (12) and (13) are not specifically de-
signed nor engineered for visual quality and the networks and hyper-parameters adopted
in our experiments are rather basic compared to many of the state-of-the-art generative
methods, our method is still rather competitive in terms of these metrics. In our current im-
plementation, the original objectives are used without any other heuristics or regularization.
The simplicity of our framework and formulation suggests that there is significant room
for further improvement. For instance, in all experiments on all datasets, we have chosen a
feature dimension of d = 128 for simplicity and uniformity. In the last Appendix A.11, we
have conducted an ablation study on using a higher feature dimension d = 512. The visual
quality of the learned model can be significantly improved (as shown in Figure A22 and
Table A14 of Appendix A.11).

In fact, compared to these methods, our method has learned not just any generative
model. It has learned a structured generative model that has many additional beneficial
properties that we now present.

Table 2. Comparison of CIFAR-10 and STL-10. Comparison with more existing methods and on
ImageNet can be found in Table A10 in the Appendix A. ↑ means higher is better. ↓ means lower
is better.

Method GAN Based Methods VAE/GAN-Based Methods

SNGAN CSGAN LOGAN VAE-GANNVAE
DC-
VAE

CTRL-
Binary

CTRL-
Multi

CIFAR-10 IS ↑ 7.4 8.1 8.7 7.4 - 8.2 8.1 7.1
FID ↓ 29.3 19.6 17.7 39.8 50.8 17.9 19.6 23.9

STL-10 IS ↑ 9.1 - - - - 8.1 8.4 7.7
FID ↓ 40.1 - - - - 41.9 38.6 45.7

3.3. Benefits of the Learned LDR Transcription Model

As we have argued before, the learned LDR transcription model (including the feature
z, the encoder f , and the decoder g) can be used for both generative and discriminative pur-
poses. In particular, unlike almost all existing generative methods, the internal structures or
distribution of the learned z are no longer “hidden” as they have clear subspace structures.
Hence, we can easily derive an explicit (parametrizable) model for the distribution of the
learned features as a mixture of independent subspace-like Gaussians. This gives us full
control in sampling the learned distribution for generative purposes.
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Principal subspaces and principal components for the feature. To be more specific,
given the learned k-class features ∪k

j=1Zj for the training data, we have observed that the
leading singular subspaces for different classes are all approximately orthogonal to each
other: Zi ⊥ Zj (see Figure 4). This corroborates with our above discussion about the
theoretical properties of the rate-reduction objective. They essentially span k independent
principal subspaces. We can further calculate the mean z̄j and the singular vectors {vi

j}
rj
i=1

(or principal components) of the learned features Zj for each class. Although we conceptu-
ally view the support of each class is a subspace, the actual support of the features is close
to being on the sphere due to feature (scale) normalization. Hence, it is more precise to find
its mean and its support centered around the mean. Here, rj is a rank we may choose to
model the dimension of each principal subspace (say, based on a common threshold on the
singular values). Hence, we obtain an explicit model for how the feature z is distributed in
each of the k principal subspaces in the feature space Rd:

zj ∼ z̄j +

rj

∑
l=1

nj
lσ

l
j v

l
j , where nj

l ∼ N (0, 1), j = 1, . . . , k. (14)

Hence, this essentially gives an explicit mixture of a subspace-like Gaussians model
for the learned features: statistical differences between different classes are modeled as k
independent principal subspaces; statistical differences within each class j are modeled as
rj independent principal components in the jth subspace.

Decoding samples from the feature distribution. Using the CIFAR-10 and CelebA
datatsets, we visualize images decoded from samples of learned feature subspace. For the
CIFAR-10 dataset, for each class j, we first compute the top four principal components of
the learned features Zj (via SVD). For each class j, we then compute |〈zi

j, vl
j〉|, the cosine

similarity between the l-th principal direction vl
j and feature sample zi

j. After finding the

top five zi
j according to |〈zi

j, vl
j〉| for each class j, we reconstruct images x̂i

j = g(zi
j). Each

row of Figure 6 is for one principal component. We observe that images in the same row
share the same visual attributes; images in different rows differ significantly in visual
characteristics such as shape, background, and style. See Figure A7 of Appendix A.4 for
more visualization of principal components learned for all 10 classes of CIFAR-10. These
results clearly demonstrate that the principal components in each subspace of the Gaussian
disentangles different visual attributes. In addition, we do not observe any mode dropping
for any of the classes, although the dimensions of the classes were not known a priori.

(a) Horse (b) Ship

Figure 6. CIFAR-10 dataset. Visualization of top 5 reconstructed x̂ = g(z) based on the closest
distance of z to each row (top 4) of principal components of data representations for class 7—‘Horse’
and class 8—‘Ship’.

Disentangled visual attributes as principal components. For the CelebA dataset, we
calculate the principal components of all learned features in the latent space. Figure 7a
shows some decoded images along these principal directions. Again, these principal com-
ponents seem to clearly disentangle visual attributes/factors such as wearing a hat, changing
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hair color, and wearing glasses. More examples can be found in Appendix A.6. The results
are consistent with the property of MCR2 that promotes diversity of the learned features.

(a) Disentangled attributes as principal components (b) Interpolation between distinct samples

Figure 7. CelebA dataset. (a): Sampling along three principal components that seem to correspond
to different visual attributes; (b): Samples decoded by interpolating along the line between features
of two distinct samples.

Linear interpolation between features of two distinct samples. Figure 7b shows
interpolating features between pairs of training image samples of the CeleA dataset, where
for two training images x1 and x2, we reconstruct based on their linearly interpolated
feature representations by x̂ = g(α f (x1) + (1− α) f (x2)), α ∈ [0, 1]. The decoded images
show continuous morphing from one sample to another in terms of visual characteristics,
as opposed to merely a superposition of the two images. Similar interpolation results
between two digits in the MNIST dataset can be found in Figure A3 of the Appendix A.2.

Encoded features for classification. Notice that not only is the learned decoder good
for generative purposes, but the encoder is also good for discriminative tasks. In this
experiment, we evaluate the discriminativeness of the learned CTRL model by testing how
well the encoded features can help classify the images. We use features of the training
images to compute the learned subspaces for all classes, then classify features of the test
images based on a simple nearest subspace classifier. Many other encoding methods train
a classifier (say, with an additional layer) after the learned features. Results in Table 3
show that our model gives competitive classification accuracy on MNIST compared to
some of best VAE-based methods. We also tested the classification on CIFAR-10, and
the accuracy is currently about 80.7%. As expected, the representation learned with the
multi-class objective is very discriminative and good for classification tasks. Be aware
that all generative models, GANs, VAEs, and ours, are not specifically engineered for
classification tasks. Hence, one should not expect the classification accuracy to compete
with supervised-trained classifiers yet. This demonstrates that the learned CTRL model is
not only generative but also discriminative.

Table 3. Classification accuracy on MNIST compared to classifier-based VAE methods [42]. Most of
these VAE-based methods require auxiliary classifiers to boost classification performance.

Method VAE
Factor
VAE

Guide-
VAE

DC-VAE
CTRL-
Binary

CTRL-
Multi

MNIST 97.12% 93.65% 98.51% 98.71% 89.12% 98.30%

4. Open Theoretical Problems

So far, we have given theoretical intuition and derivation for the formulation of closed-
loop transcription, as well as empirical evidence to showcase both the performance and
potential of this formulation. In this section, we take a step back to explore the theoretical
underpinnings of the closed-loop LDR transcription. We organize this section by discussing
three primary objectives associated with learning an LDR representation:

1. Learn a simple linear discriminative representation f (X) of the data X, which we can
reliably use to classify the data.
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2. Learn a reconstruction g ◦ f (X) ∼ X of the so-learned representation f (X), to ensure
consistency in the representation.

3. Learn both representation and reconstruction in a closed-loop manner, using feedback from
the encoder f and decoder g to jointly solve the above two tasks.

These three objectives encompass the overarching principle of CTRL transcription,
and indeed each of these objectives are tied to a wide array of mathematical and theoretical
problems. We now outline some of the most important theoretical questions or hypotheses
implicated by our results, which we leave for future work to study and to answer, likely by
a broader range of research communities.

4.1. Distributions of the LDR Representation

Our primary mode of optimizing for a “simple representation” is through the LDR
framework proposed in [2]. One important open theoretical problem is finding the right
energy function to optimize in order to promote LDR. It was shown in [2] that an LDR can
be learned for the multi-class data by maximizing the MCR2 objective ΔR(Z) given in (5).
This motivates the first two terms in our objective function (12): maximizing ΔR(Z), ΔR(Ẑ)
promotes their representations to be LDRs.

Although the authors in [2] have shown the MCR2 objective can promote the features
learned to be in orthogonal subspaces and characterized the optimal second moments of
the distributions, there remain open questions regarding the optimal distributions within
the subspaces. A standing hypothesis is that the optimal distributions should be Gaussian.
There is indeed already theoretical work on similar energy functions: the Brascamp–Lieb
inequalities [67], where the authors study a functional similar to the rate-reduction objective
which, in certain contexts, is maximized uniquely by Gaussians. Hence, an important future
theoretical direction for the CTRL transcription is to exactly characterize distributional
properties of the extremals (both minima and maxima) of the MCR2 objective or its variants.
Such results can further justify the use of Gaussian models (14) to characterize the learned
features within the subspaces.

We also notice that the so-learned LDR features have additional striking properties, as
shown by examples in Figure 7. Distinctive visual attributes of the imagery data seem to be
clearly disentangled by different principal components of the distribution, and along each
principal direction, one can linearly interpolate the features, whereas the original data are
nonlinear and cannot be directly interpolated. These results go beyond the guarantees given
by [2], and an open theoretical problem is that of studying just how the CTRL transcription
learns to disentangle and linearize such visual attributes. This understanding is crucial to
extend the CTRL transcription framework beyond the 2D vision domain.

4.2. Self-Consistency in the Learned Reconstruction

If the learned encoder Z = f (X) is an embedding of the data submanifolds to the
subspaces, it should admit an inverse (decoding) mapping X̂ = g(Z). As distributional
distance in the data space is hard to come by, the rate reduction ΔR

(
Z, Ẑ

)
gives a well-

defined distribution distance between Z and Ẑ which is used to enforce similarity between
X and X̂ in our formulation. Notice that, unlike the KL-divergence or the JS-divergence,
the rate reduction is well-defined for degenerate distributions and easily computable in
closed-form between mixtures of (degenerate) Gaussians. The third term of Equation (12),
∑k

j=1 ΔR
(
Zj(θ), Ẑj(θ, η)

)
, is exactly this distributional distance, which is minimized only

when the estimated second moments of Zj and Ẑj are the same. While this distributional
distance seems weaker than sample-wise �2-distance, we observe strong reconstruction
performance nevertheless.

Notice that the current objectives (12) or (13) do not impose any constraints on the
mappings of individual samples. That is, they do not explicitly specify how an individual
sample x should be related to its decoded version x̂ = g( f (x)), or how their corresponding
features z and ẑ are related. Hence, theoretically, nothing is known about relationships
between individual samples and their features. However, somewhat surprisingly, experi-
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mental results with the multi-class objective (12) in next section suggest that they actually
can be rather close, at least for the given training samples X. For example, see Figure 5.
Of course, one could consider explicitly imposing certain sample-wise requirements in
the objectives, such as enforcing xi to be close to x̂i = g( f (xi)). It has been observed
empirically in GANs or VAEs that imposing such sample-wise similarity or dissimilar-
ity would improve visual quality around samples of interest, such as the DC-VAE [42]
and the OpenGAN [68]. However, theoretically, how such sample-wise distances or con-
straints may affect the difficulty or accuracy of learning the correct support and density of
the distributions remains an open problem.

4.3. Properties of the Closed-Loop Minimax Game

Above are the two primary objectives for CTRL transcription: while the encoder f tries
to maximize the expressiveness and discriminativeness of the learned LDR representation,
the decoder g tries to minimize the reconstruction error and coding rates. The competing
objectives of the encoder f and the decoder g naturally lead to a two-player game. In this
paper, we have formulated this game as a zero-sum game, namely Equation (12). Likewise,
we have also implemented the most straightforward algorithm for solving this zero-sum
game: gradient descent–ascent (GDA) [52], where the minimizer and maximizer take alter-
nating gradient steps. These simplifications into a GDA-optimized zero-sum game were
made in order to create a concrete algorithm for our experimentation. However, simplifying
to a zero-sum game and GDA is certainly not the only way to solve the more general game
described above. This game-theoretic formulation puts CTRL transcription outside of
the theoretical realm of [2], since we are no longer finding pure maximizers of ΔR(Z),
but rather stable minimax equilibria.

As is the case with GANs, these equilibria may not necessarily be Nash equilibria [50],
but rather the more general sense of Stackelberg [69]. So, the problem of studying minimax
equilibria of (12) is likely, in its most general form, quite challenging. Nevertheless, our
experiments suggest such equilibria tend to be well-behaved, e.g., having a large range
of attraction. Our extensive empirical experiments and ablation studies indicate that,
in general, the minimax objective converges rather stably to good equilibria for all the
real datasets without any special optimization tricks or particular requirements on the
networks. The only important factor for the stability of the optimization seems to be a
large enough batch size (see Appendix A.10). These observations can be further corrob-
orated with analysis on simpler models: our ongoing work suggests that if we restrict
our attention to simplified data structures (e.g., X distributed on a linear subspace), then
one can provide theoretical guarantees that the equilibria become efficiently and correctly
solvable by the minimax formulation. Extending such analysis to more sophisticated data
structures (multiple subspaces, nonlinear submanifolds) remains an exciting new directions
for future research.

Despite many possible pathological solutions to the minimax game, empirically, as we
have presented in the previous section (alongside many examples in the Appendix A),
the solution found by the simple GDA algorithm generally strikes a good trade-off be-
tween expressiveness and parsimony of the learned model. The solution automatically
determines the proper dimensions for different classes. Ablation studies in Appendix A.10
on the large ImageNet dataset further suggest that this formulation is insensitive to over-
parameterization by increasing network width, as long as the batch size grows accord-
ingly. However, a rigorous justification for such good model-selection properties remains
widely open.

5. Conclusions and Future Work

This work provides a novel formulation for learning a both generative and discriminative
representation for a multi-class, multi-dimensional, possibly nonlinear, distribution of
real-world data. We have provided compelling empirical evidence that the distribution
of most datasets can be effectively mapped to an LDR, a union of independent princi-
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pal subspaces and principal components. The objective function is entirely based on an
intrinsic information-theoretic measure, the rate reduction, without any other heuristics
or regularizing terms. The objective can be achieved with a closed-loop minimax game
between the two encoder and the decoder networks without any additional network(s).

The main purpose of this paper is to demonstrate the conceptual simplicity and practi-
cal potential of this new framework for distribution/representation learning, instead of
striving for state-of-the-art performance with heavy engineering. Nevertheless, with our
preliminary implementation, a more informative LDR of the data can be effectively learned
with a simple closed-loop transcription for a variety of real-world, multi-class, multi-modal
visual datasets, from small to large, from low-resolution to higher-resolution, from domain-
specific to diverse categories. The so-learned encoder f already enjoys the benefits of
AE/VAEs for their discriminative property and the decoder g with the benefits of GANs
for their good generative visual quality. However, probably more importantly, the internal
structures of the learned feature representation has now become transparent, hence fully
interpretable and controllable (for generative purposes): visual differences between classes are
naturally “disentangled” as independent subspaces, while diverse visual attributes within
each class are “disentangled” as principal components within each subspace. From ex-
tensive ablation studies given in the Appendix A, we see that the rate-reduction-based
objective can be stably optimized across a wide range of datasets and network architectures
without any additional regularizations or engineering tricks. Both the feedback closed-loop
and the rate-reduction measure play indispensable roles in fostering the ease and success of
finding the CTRL transcription.

One may notice that there are many ways this simple formulation can be significantly
improved or extended. Firstly, in this work, we have simply adopted networks that were
designed for GANs, but they may not be optimal for the rate-reduction-type objectives.
For example, our ablation study already suggests that some of the components of such
networks such as spectral normalization are not quite essential. Characteristics from the
white-box ReduNet [2] derived from optimizing rate reduction can be explored in the
future. Secondly, notice that our rate-reduction objectives do not impose any requirements
on how individual samples should be encoded or decoded although the results from
the multi-class objective indicate a certain level of alignment on the individual samples.
Recent studies such as DC-VAE [42] or OpenGAN [68] suggest that imposing additional
regularization on individual samples may further improve decoded visual quality. Such
regularization can certainly be incorporated into this new framework. Last but not the least,
compared to GANs and VAEs, our method leads to an explicit structured model for the
feature distribution: a mixture of incoherent subspace Gaussians. Such an explicit model
has the potential of making many subsequent tasks easier and better: better control of
feature sampling for decoding and synthesis [70], designing more robust generators and
classifiers for noise and corruptions based on the low-dimensional structures identified,
or even extending to the settings of incremental and online learning [71,72]. We leave all
these new directions, together with all the open theoretical problems posed in Section 4,
for future investigation.

Author Contributions: This work has been the result of a successful team effort. In particular,
the first four authors have contributed almost equally to this work. X.D.: investigation, methodology,
project administration, software, writing—original draft preparation; S.T.: investigation, methodology,
software, visualization, writing—original draft preparation; M.L.: investigation, software, visual-
ization, writing—original draft preparation; Z.W.: investigation, software, visualization, writing—
original draft preparation; M.P.: formal analysis, writing—original draft preparation; K.H.R.C.:
validation, writing—review and editing; P.Z.: formal analysis, writing—review and editing; Y.Y.:
validation, writing—review and editing; X.Y.: resources, writing—review and editing; H.-Y.S.: re-
sources, writing—review and editing; Y.M.: conceptualization, formal analysis, funding acquisition,
methodology, supervision, writing—original draft preparation, writing—review and editing; All
authors have read and agreed to the published version of the manuscript.

75



Entropy 2022, 24, 456

Funding: This research was funded by ONR grants N00014-20-1-2002 and N00014-22-1-2102, the joint
Simons Foundation-NSF DMS grant #2031899, as well as partial support from Berkeley FHL Vive
Center for Enhanced Reality and Berkeley Center for Augmented Cognition, Tsinghua-Berkeley
Shenzhen Institute (TBSI) Research Fund, and Berkeley AI Research (BAIR).

Data Availability Statement: Data and results can be found in Section 3 and Appendix A.

Acknowledgments: Earliest ideas of this work were germinated during a hiking event of Ma’s group
on Berkeley hills during the summer of 2020. Former group members Chong You (now at Google)
and Yichao Zhou (now at Apple) were part of a stimulating discussion on possible extensions or
applications of a new rate-reduction framework being developed then. During the preparation of this
work, we consulted several experts on some of the related topics. The authors would like to thank
Jiantao Jiao of UC Berkeley for discussions about the theoretical conditions for learning distributions
via GANs. We thank Benjamin Haeffele of Johns Hopkins University for sharing thoughts on how
to learn subspaces correctly and on how to optimize the rate-reduction objectives efficiently. We
would also like to thank Shankar Sastry and Manxi Wu of UC Berkeley and Chaobing Song of Univ.
of Wisconsin-Madison for informative discussions on how to solve minimax games correctly and
efficiently, as well as Chih-Yuan Chiu and Druv Pai of UC Berkeley for engaging discussions on
theoretical directions for the CTRL transcription. Last but not the least, we would like to thank Stefano
Soatto of UCLA for stimulating discussions and sometimes heated debates on how information can
be efficiently and effectively encoded in deep networks.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Appendix A.1. Experiment Settings and Implementation Details

Network backbones. For MNIST, we use the standard CNN models in Tables A1 and A2,
following the DCGAN architecture [63]. We resize the MNIST image resolution from 28 × 28
to 32 × 32 to fit DCGAN architecture. All α in lReLU (lReLU is short for Leaky-ReLU) of the
encoder are set to 0.2.

We adopt ResNet architectures for CIFAR-10 shown in Tables A3 and A4, and STL-10
shown in Tables A5 and A6. Each ResBlock up is same as Resnet, but add an up-sampler
after the first conv layer. All batch normalization layers of ResBlock in the encoder are
replaced with spectral normalization layer.

Finally, we use the same architecture for CelebA, LSUN-bedroom, and ImageNet-128
(see Tables A7 and A8) as all three datasets have the same 128 × 128 resolution. Again,
each ResBlock up is same as Resnet, but add an up-sampler after the first conv layer.
All batch-normalization layers in the encoder are replaced with spectral normalization
layer. All experiments utilize this lightweight PyTorch library “mimicry” [73] that provides
implementations of some popular state-of-the-art GANs and evaluation metrics.

Table A1. Decoder for MNIST.

z ∈ R1×1×128

4 × 4, stride = 1, pad = 0 deconv. BN 256 ReLU

4 × 4, stride = 2, pad = 1 deconv. BN 128 ReLU

4 × 4, stride = 2, pad = 1 deconv. BN 64 ReLU

4 × 4, stride = 2, pad = 1 deconv. 1 Tanh
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Table A2. Encoder for MNIST.

Gray image x ∈ R32×32×1

4 × 4, stride = 2, pad = 1 conv 64 lReLU

4 × 4, stride = 2, pad = 1 conv. BN 128 lReLU

4 × 4, stride = 2, pad = 1 conv. BN 256 lReLU

4 × 4, stride = 1, pad = 0 conv 128

Table A3. Decoder for CIFAR-10.

z ∈ R128

dense −→ 4 × 4 × 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU, 3 × 3 conv, 3 Tanh

Table A4. Encoder for CIFAR-10.

RGB image x ∈ R32×32×3

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

ReLU

Global sum pooling

dense −→ 128

Table A5. Decoder for STL-10.

z ∈ R128

dense −→ 6 × 6 × 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3 × 3 conv, 3 Tanh
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Table A6. Encoder for STL-10.

RGB image x ∈ R48×48×3

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock 1024

ReLU

Global sum pooling

dense −→ 128

Table A7. Decoder for CelebA-128, LSUN-bedroom-128, and ImageNet-128.

z ∈ R128

dense −→ 4 × 4 × 1024

ResBlock up 1024

ResBlock up 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3 × 3 conv, 3 Tanh

Table A8. Encoder for CelebA-128, LSUN-bedroom-128, and ImageNet-128.

RGB image x ∈ R128×128×3

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock down 1024

ResBlock 1024

ReLU

Global sum pooling

dense −→ 128

Optimization and training details. Across all of our experiments, we use Adam [74]
as our optimizer, with hyperparameters β1 = 0.5, β2 = 0.999. We adopt the simple gradi-
ent descent–ascent algorithm for alternating minimizing and maximizing the objectives.
The initial value of learning rate is set to be 0.00015 and is scheduled with linear decay.
We choose ε2 = 0.5 for both Equations (12) and (13) in all CTRL experiments. For all
CTRL-Multi experiments on ImageNet, we only choose 10 classes. The details of the 10
classes are shown in Table A9. Most experiments are trained on RTX 3090 GPUs.
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Table A9. ID and correspond category for 10 classes of ImageNet.

ID Category

n02930766 cab, hack, taxi, taxicab
n04596742 wok
n02974003 car wheel
n01491361 tiger shark, Galeocerdo cuvieri
n01514859 hen
n09472597 volcano
n07749582 lemon
n09428293 seashore, coast, seacoast, sea-coast
n02504458 African elephant, Loxodonta africana
n04285008 sports car, sport car

Appendix A.2. MNIST

Settings. On MNIST dataset, we train our model using DCGAN [63] architecture with
our proposed objectives CTRL-Multi (12) and CTRL-Binary (13). The learning rate is set to
10−4 and the batch size is set to 2048. We train our model with 15,000 iterations.

More results illustrating auto-encoding. Here, we give more reconstruction results,
or X̂, from CTRL-Multi and CTRL-Binary objectives, compared to their corresponding
original input X. As shown in the Figure A1, for the CTRL-Binary objective, it can generate
clean digit-like images but the decoded X̂ might resemble digits from similar but different
classes to the input data X since the CTRL-Binary tends to only align the distribution of
all digits.

In contrast, with the CTRL-Multi objective, the decoded X̂ not only are coherent with
the correct class with the input data X, but also show very clear one-to-one mapping
between individual samples x and x̂, although the objective (12) does not enforce that.
Comparing with the results from VAE-GAN [34] and BiGAN [38], our decoded images
make less errors in reconstruction and preserve much better the individual characteristics
of the original samples.

(a) Original X (b) VAE-GAN X̂ (c) BiGAN X̂ (d) CTRL-Binary X̂ (e) CTRL-Multi X̂

Figure A1. The comparison of the reconstruction results of different methods with the input data.

Images decoded from random samples on the learned multi-class LDR. Since our
CTRL-Multi objective function maps input data of each class into a different (orthogonal)
subspace in the feature space, we can generate images conditioned on each class by random
sampling z in the subspace of each class and then decode them back to the input space as x̂.

To perform random sampling in the learned subspace, we first calculate the mean
feature z̄j and the singular vectors vi

j from the SVD (or principal components) of the learned
features Zj of the training data in the class j, where index i represents the ith principal
components. We only use the top r = 8 principal components of each class on MNIST
dataset. These statistics of the subspace can be used for guiding the random sampling.
Then, we sample z randomly along the principal components and around the mean feature
as

zrandom_j = z̄j + α
r

∑
i=1

ni ∗ σi
j ∗ vi

j, (A1)
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where z̄j is the mean feature of class j, σi
j and vi

j are the i-th singular value and principal
component of class j, ni are i.i.d. Gaussian N (0, 1) random variables. That is, the feature in
each subspace/class is modeled by an r-dimensional multivariate Gaussian, with variances
σi

j which characterize variances of the training data in the feature space. Here, α is a hyper-
parameter that controls the sampling range. As for the visualization of random generated
images g(zrandom_j) conditioned on the given class, we compare our method with some
other conditional generation methods such as ACGAN [25] and InfoGAN [21] (for ACGAN
and InfoGAN, we generate images conditioned on class labels with randomly sampled
latent z according the procedures mentioned in their respective works). Our model can
give realistic and correct conditional generation results with high diversity in each class,
while other methods may make mistakes in the generation between some similar classes
such as classes 3 and 5 for InfoGAN.

(a) ACGAN (b) InfoGAN (c) CTRL-Multi

Figure A2. Comparison of randomly generated images conditioned on each class.

Interpolation between samples in different classes. We randomly sample some
images from each class. For each image x1, we randomly sample another image x2 from
a different class. For such a pair of images x1 and x2, we reconstruct them based on their
linearly interpolated feature representations by x̂ = g(α f (x1) + (1− α) f (x2)), α ∈ [0, 1],
the results of which are shown in the Figure A3. For each row in the figure from left to
the right, the reconstructed images continuously morph from one digit to a different digit
with a natural transition in shape rather than a simple superposition of the two images.
This also confirms that space between subspaces for the digits does not represent valid
digits but only shapes with digit-like strokes. Hence for generative purposes, knowing the
supports of valid digits is extremely important.

Figure A3. Images generated from the interpolation between samples in different classes.
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Appendix A.3. Transformed MNIST

Settings. In this experiment, we verify that the CTRL-Multi objective can preserve
diverse data modes in the learned feature embeddings. We construct a transformed MNIST
dataset with five modes: normal, large (1.5×), small (0.5×), rotate 45◦ left, and rotate
45◦ right. Each image data point will be randomly transformed to one of the modes.
Representative examples of such training data can be found in Figure A4a. We train the
model with learning rate 1 × 10−4 and batch size 2048 for 15,000 iterations.

Auto-encoding results. Figure A4b gives the decoded results of the training data with
different modes. Even though the data are now much more diverse for each class, decoder
learned from the CTRL-Multi objective can still achieve high sample-wise similarity to the
original images.

(a) Original X (b) Decoded X̂

Figure A4. Original (training) data X and their decoded version X̂ on the transformed MNIST.

Identifying different modes. Similar to the earlier experiments of Figure 6 for CIFAR-
10 in the main paper, we find the top principal components of features of each class Zj (via
SVD) and generate new images using the learned decoder g from features of the training
images aligned the best with these components.

In Figure A5, we select three classes 0, 1, 2 and visualize samples from the top r =
8 principal components for each class. Each row represents one principal component
direction. As can be seen in the figure, the decoded images along each principal component
shows a similar mode and the modes along different component directions are rather
incoherent. All major modes of the original data can be identified as one of these principal
component directions. This clearly shows that the CTRL-Multi objective can keep the
different modes within each class of the data Xj as the principal component directions of
Zj, and these modes can also be retained in the decoded images X̂j.

(a) Components of class “0” (b) Components of class “1” (c) Components of class “2”

Figure A5. The reconstructed images X̂ from the features Z best aligned along top-8 principal
components on the transformed MNIST dataset. Each row represents a different principal component.
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Appendix A.4. CIFAR-10

Settings. For all experiments on CIFAR-10, we follow the common training hyper-
parameters in Appendix A.1. Beyond that, for each experiment, we run 450,000 iterations
with batch size 1600.

Images decoded from random samples on the CTRL-Multi. We sample z in the
feature space randomly along the principal components and around the mean feature of
each class Zj as in the MNIST case, according to Equation (A1). The generated images
from the sampled features are illustrated in Figure A6, one row per class. As we see,
the generator learned from the CTRL-Multi objective is capable of generating diverse
images for each class.

Further, for visualization of random generated images g(zrandom_j) conditioned on the
given class, we compare our method with some other conditional generation method such
as ACGAN [25] and InfoGAN [21]. For all three experiments, we have randomly sampled 8
images per class in CIFAR-10. For more complex datasets such as CIFAR-10, our model can
give more realistic conditional generation results for different classes with high diversity
within each class.

(a) ACGAN (b) InfoGAN (c) CTRL-Multi

Figure A6. Comparison of randomly generated images conditioned on each class.

Generating images along different PCA components for each class. For each class,
we first compute the top 10 principal components (singular vectors of the SVD) of Z and
then for each of the top singular vectors, we display in each row the top 10 reconstructed
image X̂ whose Z are closest to the singular vector using methods described in the main
body of the paper, Section 3.3. The results are given in Figure A7. Notice that images in each
row are very similar as they are sampled along the same principal component, whereas
images in different rows are very different as they are orthogonal in the feature space. These
results indicate that the features learned by our method can not only disentangle different
classes as orthogonal subspaces but can also disentangle different visual attributes within
each class as (orthogonal) principal components within each subspace.
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(a) Airplane (b) Automobile (c) Bird

(d) Cat (e) Deer (f) Dog

(g) Frog (h) Horse (i) Ship

(j) Truck

Figure A7. Reconstructed images X̂ from features Z close to the principal components learned for
the 10 classes of CIFAR-10.

Appendix A.5. STL-10

Settings. For all experiments on STL-10, we follow the common training hyper-
parameters in Appendix A.1. For the CTRL-Binary setting, we train 150,000 iterations.
For the CTRL-Multi setting, we initialize the weights from the 20,000-th iteration of CTRL-
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Binary checkpoint and train for another 80,000 iterations (with the CTRL-Multi objective).
The IS and FID scores on the STL-10 dataset are reported in Table A10, on par or even better
than existing methods such as SNGAN [31] or DC-VAE [42].

Visualizing auto-encoding property for the CTRL-Binary. We visualize the original
images x and their decoded x̂ generated by the LDR model learned from the CTRL-Binary
objective. The results are shown in Figure A8 for STL-10.

(a) Original X (b) Decoded X̂

Figure A8. Visualizing the original x and corresponding decoded x̂ results on STL-10 dataset. Note
the model is trained from the CTRL-Binary objective hence sample- or class-wise correspondence is
relatively poor, but the decoded image quality is very good.

Appendix A.6. Celeb-A and LSUN

To verify that our formulation works on images of higher resolution, we conduct
experiments on the Celeb-A and LSUN datasets, which have a resolution of 128× 128.

Settings. For all experiments on these datasets, we follow the common training hyper-
parameters in Appendix A.1. We choose a 300 batch size for Celeb-A and LSUN. Both of
them are trained with the CTRL-Binary objective and for 450,000 iterations.

Generating images along different PCA components. We calculate the principal
components of the learned features Z in the latent subspace. We manually choose three
principle components which are related to hat, hair color, and glasses (see Figure A9).
The three components are 9th, 19th, and 23rd respectively from the overall 128 principal
components. These principal directions seem to clearly disentangle visual attributes/factors
such as wearing a hat, changing hair color, and wearing glasses.

Images generated from random sampling of the feature space. We sample z ran-
domly according to the following Gaussian model:

zrandom = z̄ + α
r

∑
i=1

ni ∗ σi ∗ vi, (A2)

where z̄ is the mean feature, σi and vi are the ith singular value and singular vector,
respectively, ni are i.i.d. Gaussian N (0, 1) random variables. As before α is a hyper-
parameter to control the sampling range. We use the top r = 100 principle components for
random sampling. The random generated images are realistic and diverse (see Figure A10).

Visualizing auto-encoding property for CTRL-Binary. We visualize the original
image x and their decoded x̂ using the LDR model learned from the CTRL-Binary objective.
The results are shown in Figures A11 and A12 for the Celeb-A dataset and the LSUN
dataset, respectively. The CTRL-Binary objective can give very good visual quality for
x̂ but cannot ensure sample-to-sample alignment. Nevertheless, the decoded x̂ seems to
be very similar to the original x in some main visual attributes. We believe the binary
objective manages to align only the dominant principal component(s) associated with the
most salient visual attributes, say, pose of the face for Celeb-A or layout of the room for
LSUN, between features of X and X̂.
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(a) Hat (b) Hair Color (c) Glasses

Figure A9. Sampling along the 9th, 19th, and 23rd principal components of the learned features Z
seems to manipulate the visual attributes for generated images on the CelebA dataset.

Figure A10. Images decoded from randomly sampled features, as a learned Gaussian distribution
(A2), for the CelebA dataset.

(a) Original X (b) Decoded X̂

Figure A11. Visualizing the original x and corresponding decoded x̂ results on Celeb-A dataset.
The LDR model is trained from the CTRL-Binary objective.
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(a) Original X (b) Decoded X̂

Figure A12. Visualizing the original x and corresponding decoded x̂ results on LSUN-bedroom
dataset. The LDR model is trained from the CTRL-Binary objective.

Appendix A.7. ImageNet

Settings. To verify that the CTRL works on large-scale datasets, we train it on the
ImageNet. For all experiments on the ImageNet, we follow the common training hyper-
parameters in Appendix A.1.

We first train our model with the CTRL-Binary objective with batch size of 1800 on the
whole ImageNet ILSVRC 2012 dataset. The number of training iterations is 450,000.

After that, we fine-tune the pretrained model with the CTRL-Multi objective, on 10
selected classes. Information about the 10 classes can be found in Table A9. The fine-tune
batch size is 1024, and we train another 35,000 iterations for it. This experiment takes
120 GPU hours on 8 A100-SXM4 GPUs. Note that our choice of batch size is substantially
larger than those commonly adopted in other works while training on the ImageNet
(e.g., 128 in [31]). We empirically observe that training with a larger batch size generates
images of better quality and clearer class alignment. This is consistent with the proposed
CTRL-Multi objective as it explicitly encourages alignment of class distributions, therefore
benefiting from a larger batch that better captures overall data distributions. We leave a
more rigorous study of the effect of batch size for future work.

Due to the heavy computation of such large batch size, we present the intermediate
result obtained at the early iteration 35,000 whereas most existing methods run with
significantly larger number of iterations. Nevertheless, the intermediate result already
verify the efficacy of our framework. In addition, we present the full version of the
comparison with existing generative methods in Table A10. We see the IS and FID scores
for CTRL-Multi degraded a little after the finetuning. This is expected as learning a more
refined separation and alignment of 10 classes is a more challenging task than 2 classes.
This is consistently observed from experiments on other datasets too.

Visualizing feature similarity for CTRL-Multi. We visualize the cosine similarity
among features Z of different classes learned from the CTRL-Multi objective in Figure A13.
In addition, we provide the visualization of alignment between features Z and decoded
features features Ẑ. These results demonstrate that not only the encoder has already learnt
to discriminate between classes, but also the learned Z and Ẑ are aligned clearly within
each class.
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Table A10. Comparison on CIFAR-10, STL-10, and ImageNet. ↑ means higher is better. ↓ means
lower is better.

Method
CIFAR-10 STL-10 ImageNet

IS↑ FID↓ IS↑ FID↓ IS↑ FID↓
GAN based

methods
DCGAN

[63] 6.6 - 7.8 - - -

SNGAN
[31] 7.4 29.3 9.1 40.1 - 48.73

CSGAN
[28] 8.1 19.6 - - - -

LOGAN
[29] 8.7 17.7 - - - -

VAE/GAN
based

methods
VAE [5] 3.8 115.8 - - - -

VAE/GAN
[64] 7.4 39.8 - - - -

NVAE [41] - 50.8 - - - -
DC-VAE

[42] 8.2 17.9 8.1 41.9 - -

CTRL-
Binary
(ours)

8.1 19.6 8.4 38.6 7.74 46.95

CTRL-
Multi
(ours)

7.1 23.9 7.7 45.7 6.44 55.51

(a) |Z�Z| (b) |Z�Ẑ|

Figure A13. Visualizing feature alignment: (a) among features |Z�Z|, (b) between features and
decoded features |Z�Ẑ|. These results obtained after 200,000 iterations.

Visualizing auto-encoding property for CTRL-Multi. We visualize the original im-
ages X and their decoded X̂ using the LDR model fine-tuned with the CTRL-Multi objective.
The results are shown in Figure A14 for the selected 10 classes in ImageNet. The CTRL-
Multi objective can give good visual quality for X̂ as well as sample-to-sample alignment.
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(a) Original X (b) Decoded X̂

Figure A14. Visualizing the original X and corresponding decoded X̂ results on ImageNet (10 classes).
The LDR model is fine-tuned using the CTRL-Multi objective. These visualizations are obtained after
35,000 iterations.

Appendix A.8. Ablation Study on Closed-Loop Transcription and Objective Functions

To empirically validate the necessity and respective roles of the closed-loop transcrip-
tion and the rate reduction (ΔR) objective, we conduct two sets of experiments. For the
first set of experiments, we modify our closed-loop architecture by instantiating more than
two networks while keeping the objective function (12) unchanged. For the second set of
experiments, we keep the closed-loop architecture but replace all rate reduction (ΔR) terms
in (12) with corresponding cross-entropy, or remove some of the terms. Experiments here
shed insight onto how the closed-loop transcription and the rate reduction affect separately
the performance, including sample-wise reconstruction, the alignment of Z and Ẑ space,
and the diversity of intra-class features.

Appendix A.8.1. The Importance of the Closed-Loop

To evaluate the importance of the closed-loop transcription, we experiment on mod-
ified versions of the closed-loop architecture (A3). Notice that many architectures have
been proposed and experimented before to promote the encoder f and decoder g to be
mutually inverse or cycle consistent (at least for mappings between the data and feature
distributions), such as BiGAN [38], VAE-GAN [34], and CycleGAN [56]. However, the cycle
consistency is typically enforced through a third discriminator network. (In the case of
CycleGAN [56], one needs two additional discriminator networks, one for each domain).

Here, we experiment on whether similar ideas work with the rate-reduction objective.
First, we break the closed-loop and use a separate encoder network f 2 : X̂ → Ẑ to replace
the original encoder f . The revised architecture is summarized in the diagram (A4). Second,
to emulate the architecture of VAE-GAN [34], we also instantiate an extra encoder network
f 2 and compute the CTRL-Multi objective using Z̃ and Ẑ. The resulting architecture is also
summarized in the diagram (A5).

X
f (x,θ)−−−−−→ Z

g(z,η)−−−−−→ X̂
f (x,θ)−−−−−→ Ẑ; (A3)

X
f 1(x,θ1)−−−−−−→ Z

g(z,η)−−−−−→ X̂
f 2(x,θ2)−−−−−−→ Ẑ; (A4)

X
f 1(x,θ1)−−−−−−→ Z

g(z,η)−−−−−→ X̂, X
f 2(x,θ2)−−−−−−→ Ẑ, Z̃. (A5)
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We run experiments on MNIST with the three different architectures, and choose the
network from Table A1 for the encoder and Table A2 for the decoder, and the training hyper-
parameters follow Appendix A.1. The qualitative results are shown in Figure A15. Both
architectures (A4) and (A5) failed to generate meaningful images. These experiments show
that directly applying rate-reduction objectives without the closed-loop or architectures
that loosely enforcing cycle consistency fails to work. Instead, the closed-loop formulation
allows us to use only two networks, without the need of any extra network.

(a) Input (b) X̂ from CTRL-Multi (A3)

(c) X̂ from architecture (A4) (d) X̂ from architecture (A5)

Figure A15. Qualitative results for ablation study with alternative architectures to the
proposed CTRL.

Appendix A.8.2. The Importance of Rate Reduction

By replacing the rate reduction (ΔR) terms in the objective function (12) with cross-
entropy, we introduce a linear mapping W ∈ Rd×k to map Z ∈ Rd×n from feature space to
logits γ = Z�W . We then calculate the softmax cross-entropy function on logits γ and one

hot label matrix Y . HereH(γ, Y) = ∑n
i=1 ∑k

j=1 Yij log eγij

∑k
j=1 eγij is the formulation of softmax

cross-entropy function and Y ∈ Rn×k is one hot label matrix. Then, we can replace the first
two terms of (12) (ΔR

(
Z
)

and ΔR
(
Ẑ
)
) with H(Z�W , Y) and H(Ẑ�W , Y). For the third

term of (12), we extract j-th class one hot feature γj = Z�j W , γ̂j = Ẑ�j W from Z and Ẑ,

and define the distance D(γj, γ̂j) =
eγj

eγj+eγ̂j
of them. For the third term of (12), we further

introduce k linear layers as discriminators {Dj}k
j=1 for each class. Then, we replace the

third term with the GAN’s objective function as ∑k
j=1 E[logDj(Zj)] + E[log(1−Dj(Ẑj))]

(E[X] denote the expectation of X). Now, we have the cross-entropy version objective
function (A6) for the closed-loop framework. We denote the closed-loop framework with
cross-entropy as Closed-loop-CE.

min
η

max
θ,W ,D

TX(θ, η, W ,D)
.
= H

(
Z�W , Y

)
+H

(
Ẑ�W , Y

)
+

k

∑
j=1

E[logDj(Zj)] +E[log(1−Dj(Ẑj))]. (A6)

We run the experiments on MNIST and CIFAR10. The architectures of MNIST and
CIFAR10 are given in Tables A1–A4 (In the context of this section, we use the term Decoder
and Generator interchangeably; similarly for Encoder and Discriminator).

Results on MNIST. The training hyper-parameters of CTRL-Multi and Closed-loop-
CE on MNIST are following Appendix A.1. Comparisons between CTRL-Multi and Closed-
loop-CE are listed in Figures A16–A18.

Figure A16b,c show the reconstructed images X̂ from Closed-loop-CE and CTRL-
Multi. Both methods can give sample-wise reconstruction results due to the closed-loop
transcription framework. However, comparing training images whose features are best
aligned with the principal components of class ‘2’ in Figure A17, we see that the principal
components of CE features do not correspond to consistent visual attributes of the images,
whereas ours do.
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From the heatmaps in Figure A18a,b, we see the features learned by rate reduction
possess clear orthogonal subspace structures, whereas those learned by Closed-loop-CE do
not. Moreover, Figure A18c,d shows that the learned features of CTRL-Multi have higher
singular values for the top principal components of each class, corresponding to a more
linearized and diverse feature distribution, whereas those by Closed-loop-CE do not.

(a) Original X (b) X̂ by Closed-loop-CE (c) X̂ by CTRL-Multi

Figure A16. The comparison of sample-wise reconstruction between the Closed-loop-CE objective
and the CTRL-Multi objective.

(a) Closed-loop-CE (b) CTRL-Multi

Figure A17. Training samples along different principal components of the learned features of digit ‘2’.

Figure A18. Cont.
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Figure A18. Comparison Closed-loop-CE and CTRL-Multi on |Z�Ẑ| and PCA singular values.
(a) |Z�Ẑ| from Closed-loop-CE. (b) |Z�Ẑ| from CTRL-Multi. (c) PCA of learned features by the
Closed-loop-CE objective for each class. (d) PCA of learned features by the CTRL-Multi objective for
each class.

Failed Attempts on CIFAR-10 with Cross Entropy. The training hyper-parameters
of Closed-loop-CE on CIFAR10 follow Appendix A.1. We perform the grid search on
three hyper-parameters: learning rate {1.5× 10−2, 1.5× 10−3, 1.5× 10−4}, batch size (800
or 1600), and inner loop (1,2,3,4), conducting 24 experiments in total. All cases of the
Closed-loop-CE fail to converge or experience model collapse on the CIFAR-10 dataset.

Appendix A.8.3. Ablation Study on the CTRL-Multi Objectives

In this section, we investigate the influence of each term of the objective function (12)
and see how they affect the learned features Z, Ẑ and sample-wise reconstruction. We follow
the same experiment setting with CTRL-Multi on MNIST (Appendix A.1), and conduct
three experiments, each with a modified version of the original objective. Objective I is
the original objective with all three terms, Objective II removes the second term ΔR(Ẑ),
and Objective III keeps only the third term ΔR(Z, Ẑ). The results in Figure A19 show that
using Objective II we can still maintain the sample-wise reconstruction property, but the
image quality is lower when compared those constructed by Objective I (Figure A19b vs.
Figure A19c). Objective III loses the sample-wise reconstruction property (Figure A19a vs.
Figure A19d). Finally, the results from Figures A20 and A21 show that without the first two
terms, the learned features Z and Ẑ have poor class-to-class alignment and their principal
components do not show clear subspace structure with higher singular values within each
class.

Table A11. Three different objective functions for CTRL.

Objective I:
minη maxθ TX (θ, η) = ΔR

(
Z(θ)

)
+

ΔR
(
Ẑ(θ, η)

)
+ ∑k

j=1 ΔR
(
Zj(θ), Ẑj(θ, η)

)
.

Objective II:
minη maxθ TX (θ, η) =

ΔR
(
Z(θ)

)
+ ∑k

j=1 ΔR
(
Zj(θ), Ẑj(θ, η)

)
.

Objective III:
minη maxθ TX (θ, η) =

∑k
j=1 ΔR

(
Zj(θ), Ẑj(θ, η)

)
.
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(b) Input (c) X̂ from objective I (d) X̂ from objective II (e) X̂ from objective III

Figure A19. The influence of the choice of objective functions on the reconstruction: decoded images
X̂ from the objective I, II, or III.

(a) Objective I (b) Objective II (c) Objective III

Figure A20. Correlation |Z�Ẑ| between features Z and Ẑ learned with Objective I, II, or III.

(a) Objective I (b) Objective II (c) Objective III

Figure A21. PCAs of the features learned with Objective I, II, or III.

Appendix A.9. Ablation Study on Sensitivity to Spectral Normalization

It is known that spectral normalization is important to improve the stability of training
GANs. Here, we test our formulation with and without the spectral normalization. We fol-
low the setting from Appendix A.1 and test on CIFAR10, using the network architecture
from Tables A3 andA4. All settings of two experiments are exactly same except with or
without spectral normalization. We see that our formulation is stable in both settings and
generate similar images. The only difference is that the quantitative scores in terms of IS
and FID is higher with the spectral normalization.

Table A12. Ablation study the influence of spectral normalization. ↑means higher is better. ↓means
lower is better.

CTRL-Binary CTRL-Multi
Backbone = SNGAN SN = True SN = False SN = True SN = False

CIFAR-10 IS ↑ 8.1 6.6 7.1 5.8
FID ↓ 19.6 27.8 23.9 41.5
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Appendix A.10. Ablation Study on Trade-Off between Network Width and Batch Size

Empirically, we observed that for our formulation, the larger the batch size, the better
the results. To justify our use of batch size that is larger than those adopted in previous
works such as [31], we conduct the following experiment which studies the training
behavior of our proposed CTRL-Multi objective. Specifically, we train on the selected 10
classes of ImageNet with varying number of widest channels in our chosen architecture
(specified in Appendix A.1) and batch size. We train both the encoder and decoder from
scratch without fine-tuning. Other hyper-parameter settings detailed in Appendix A.7
are fixed. We present the results in Table A13. In the table, we denote training sessions
that do not produce meaningful images as “failure” and those that do as “success”. In the
“failure” scenario, we noticed that the second term in the CTRL-Multi objective (12) would
collapse to near 0 and could not be recovered, implying the decoder has essentially lost
in the minimax game. In the “success” scenario, both the first terms of (12) stay close to
each other and neither would collapse to near 0. The results present an interesting diagonal
pattern that captures the relationship between batch size and network width. With a wider
network and more channels, the network contains a greater capacity but would require a
larger batch to stabilize training. This experiment justifies our use of a larger batch in our
experiment in Appendix A.7 and also presents an interesting trade-off between network
capacity and batch size for training.

Table A13. Ablation study on ImageNet about trade-off between batch size (BS) and network width
(Channel #).

Channel# = 1024 Channel# = 512 Channel# = 256

BS = 1800 success success success
BS = 1600 success success success
BS = 1024 failure success success
BS = 800 failure failure success
BS = 400 failure failure failure

Appendix A.11. Ablation Study on Feature Dimension

In this paper so far, for simplicity and uniformity, we have chosen the feature di-
mension d = nz to be 128 for all experiments. In practice, however, the choice of feature
dimension may affect the performance of the learned features: common practices suggest
the larger the model, the better the performance could be. Hence, in this last section, we
conduct experiments to show how the feature dimension affects the performance. It is not
our intention to find the best feature dimension (nor the best network) with this work. We
only want to show that there is room to improve the results presented in this paper.

The baseline experiment is conducted on CIFAR-10 with architectures from Table A2
and Table A1, training hyper-parameters are following the setting in Appendix A.1. Here,
we change the feature dimension nz, batch size, and learning rate to 512, 8196, and 0.5×
10−4 respectively. Figure A22 shows the comparison of (randomly selected, not cherry-
picked) reconstructed images with the original ones. We observe a significant improvement
in visual quality over the results with a lower feature dimension. The IS and FID scores
reported in Table A14 also confirm the improvement.

Table A14. IS and FID scores of images reconstructed by LDR models learned with different fea-
ture dimensions. ↑means higher is better. ↓means lower is better.

dim = 128 dim = 512
CTRL-
Binary

CTRL-Multi
CTRL-
Binary

CTRL-Multi

CIFAR-10 IS ↑ 8.1 7.1 8.4 8.2
FID ↓ 19.6 23.6 18.7 20.5
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Figure A22. Reconstruction results by LDR models learned with different feature dimensions.

References

1. Lee, J.M. Introduction to Smooth Manifolds; Springer: Berlin/Heidelberg, Germany, 2002.
2. Chan, K.H.R.; Yu, Y.; You, C.; Qi, H.; Wright, J.; Ma, Y. ReduNet: A White-box Deep Network from the Principle of Maximizing

Rate Reduction. arXiv 2021, arXiv:2105.10446.
3. Kramer, M.A. Nonlinear principal component analysis using autoassociative neural networks. AICHE J. 1991, 37, 233–243.

[CrossRef]
4. Hinton, G.E.; Zemel, R.S. Autoencoders, Minimum Description Length and Helmholtz Free Energy. In Proceedings of the 6th

International Conference on Neural Information Processing Systems (NIPS’93), Siem Reap, Cambodia, 13–16 December 1993;
Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1993; pp. 3–10.

5. Kingma, D.P.; Welling, M. Auto-encoding variational Bayes. arXiv 2013, arXiv:1312.6114.
6. Zhao, S.; Song, J.; Ermon, S. InfoVAE: Information maximizing variational autoencoders. arXiv 2017, arXiv:1706.02262.
7. Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans.

Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]
8. Tu, Z. Learning Generative Models via Discriminative Approaches. In Proceedings of the Conference on Computer Vision and

Pattern Recognition, Minneapolis, MN, USA, 18–23 June 2007; pp. 1–8. doi: 10.1109/CVPR.2007.383035. [CrossRef]
9. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; pp. 2672–2680.
10. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference

on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 214–223.
11. Salmona, A.; Delon, J.; Desolneux, A. Gromov-Wasserstein Distances between Gaussian Distributions. arXiv 2021,

arXiv:2104.07970.
12. Wright, J.; Ma, Y. High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications; Cambridge

University Press: Cambridge, UK, 2021.
13. Yu, Y.; Chan, K.H.R.; You, C.; Song, C.; Ma, Y. Learning Diverse and Discriminative Representations via the Principle of Maximal

Coding Rate Reduction. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2020.
14. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 2013, 35, 1798–1828. [CrossRef]
15. Srivastava, A.; Valkoz, L.; Russell, C.; Gutmann, M.U.; Sutton, C. VeeGAN: Reducing mode collapse in GANs using implicit

variational learning. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; pp. 3310–3320.
16. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
17. Sohn, K.; Lee, H.; Yan, X. Learning structured output representation using deep conditional generative models. In Advances in

Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015; pp. 3483–3491.
18. Mathieu, M.F.; Zhao, J.J.; Zhao, J.; Ramesh, A.; Sprechmann, P.; LeCun, Y. Disentangling factors of variation in deep representation

using adversarial training. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2016;
pp. 5040–5048.

19. Van den Oord, A.; Kalchbrenner, N.; Espeholt, L.; Vinyals, O.; Graves, A.; Kavukcuoglu, K. Conditional image generation with
PixelCNN decoders. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2016; pp. 4790–4798.

20. Wang, T.C.; Liu, M.Y.; Zhu, J.Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-resolution image synthesis and semantic manipulation with
conditional GANs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 8798–8807.

21. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. InfoGAN: Interpretable Representation Learning
by Information Maximizing Generative Adversarial Nets. In Advances in Neural Information Processing Systems; MIT Press:
Cambridge, MA, USA, 2016; pp. 2172–2180.

22. Tang, S.; Zhou, X.; He, X.; Ma, Y. Disentangled Representation Learning for Controllable Image Synthesis: An Information-
Theoretic Perspective. In Proceedings of the 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15
January 2021; pp. 10042–10049. [CrossRef]

23. Li, K.; Malik, J. Implicit Maximum Likelihood Estimation. arXiv 2018, arXiv:1809.09087.

94



Entropy 2022, 24, 456

24. Li, K.; Peng, S.; Zhang, T.; Malik, J. Multimodal Image Synthesis with Conditional Implicit Maximum Likelihood Estimation. Int.
J. Comput. Vis. 2020, 128, 2607–2628. [CrossRef]

25. Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier GANs. In Proceedings of the International
Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2642–2651.

26. Dumoulin, V.; Shlens, J.; Kudlur, M. A learned representation for artistic style. arXiv 2016, arXiv:1610.07629.
27. Brock, A.; Donahue, J.; Simonyan, K. Large scale GAN training for high fidelity natural image synthesis. arXiv 2018,

arXiv:1809.11096.
28. Wu, Y.; Rosca, M.; Lillicrap, T. Deep compressed sensing. In Proceedings of the International Conference on Machine Learning,

PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6850–6860.
29. Wu, Y.; Donahue, J.; Balduzzi, D.; Simonyan, K.; Lillicrap, T. Logan: Latent optimisation for generative adversarial networks.

arXiv 2019, arXiv:1912.00953.
30. Papyan, V.; Han, X.; Donoho, D.L. Prevalence of Neural Collapse during the terminal phase of deep learning training. arXiv 2020,

arXiv:2008.08186.
31. Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral Normalization for Generative Adversarial Networks. In Proceedings of

the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
32. Lin, Z.; Khetan, A.; Fanti, G.; Oh, S. Pacgan: The power of two samples in generative adversarial networks. In Advances in Neural

Information Processing Systems; MIT Press: Cambridge, MA, USA, 2018; pp. 1498–1507.
33. Feizi, S.; Farnia, F.; Ginart, T.; Tse, D. Understanding GANs in the LQG Setting: Formulation, Generalization and Stability. IEEE J.

Sel. Areas Inf. Theory 2020, 1, 304–311. [CrossRef]
34. Larsen, A.B.L.; Sønderby, S.K.; Larochelle, H.; Winther, O. Autoencoding beyond pixels using a learned similarity metric. arXiv

2015, arXiv:1512.09300.
35. Rosca, M.; Lakshminarayanan, B.; Warde-Farley, D.; Mohamed, S. Variational Approaches for Auto-Encoding Generative

Adversarial Networks. arXiv 2017, arXiv:1706.04987.
36. Bao, J.; Chen, D.; Wen, F.; Li, H.; Hua, G. CVAE-GAN: Fine-grained image generation through asymmetric training. In Proceedings

of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2745–2754.
37. Huang, H.; He, R.; Sun, Z.; Tan, T.; Li, Z. IntroVAE: Introspective Variational Autoencoders for Photographic Image Synthesis.

In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2018; Volume 31.
38. Donahue, J.; Krähenbühl, P.; Darrell, T. Adversarial feature learning. arXiv 2016, arXiv:1605.09782.
39. Dumoulin, V.; Belghazi, I.; Poole, B.; Mastropietro, O.; Lamb, A.; Arjovsky, M.; Courville, A. Adversarially learned inference.

arXiv 2016, arXiv:1606.00704.
40. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. It takes (only) two: Adversarial generator-encoder networks. In Proceedings of the

Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.
41. Vahdat, A.; Kautz, J. Nvae: A deep hierarchical variational autoencoder. arXiv 2020, arXiv:2007.03898.
42. Parmar, G.; Li, D.; Lee, K.; Tu, Z. Dual contradistinctive generative autoencoder. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Nashville, TN, USA, 21–24 June 2021; pp. 823–832.
43. Bacharoglou, A. Approximation of probability distributions by convex mixtures of Gaussian measures. Proc. Am. Math. Soc.

2010, 138, 2619–2619. [CrossRef]
44. Hastie, T. Principal Curves and Surfaces; Technical Report; Stanford University: Stanford, CA, USA, 1984.
45. Hastie, T.; Stuetzle, W. Principal Curves. J. Am. Stat. Assoc. 1987, 84, 502–516. [CrossRef]
46. Vidal, R.; Ma, Y.; Sastry, S. Generalized Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 2016.
47. Ma, Y.; Derksen, H.; Hong, W.; Wright, J. Segmentation of multivariate mixed data via lossy data coding and compression. PAMI

2007, 29, 9. [CrossRef]
48. Jolliffe, I. Principal Component Analysis; Springer: New York, NY, USA, 1986.
49. Hong, D.; Sheng, Y.; Dobriban, E. Selecting the number of components in PCA via random signflips. arXiv 2020, arXiv:2012.02985.
50. Farnia, F.; Ozdaglar, A.E. GANs May Have No Nash Equilibria. arXiv 2020, arXiv:2002.09124.
51. Dai, Y.H.; Zhang, L. Optimality Conditions for Constrained Minimax Optimization. arXiv 2020, arXiv:2004.09730.
52. Korpelevich, G.M. The extragradient method for finding saddle points and other problems. Matecon 1976, 12, 747–756.
53. Fiez, T.; Ratliff, L.J. Gradient Descent-Ascent Provably Converges to Strict Local Minmax Equilibria with a Finite Timescale

Separation. arXiv 2020, arXiv:2009.14820.
54. Bai, S.; Kolter, J.Z.; Koltun, V. Deep Equilibrium Models. arXiv 2019, arXiv:1909.01377.
55. Ghaoui, L.E.; Gu, F.; Travacca, B.; Askari, A. Implicit Deep Learning. arXiv 2019, arXiv:1908.06315.
56. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks.

In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232.
57. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
58. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.

toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 9 February 2022).
59. Coates, A.; Ng, A.; Lee, H. An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the Fourteenth

International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011; pp. 215–223.

95



Entropy 2022, 24, 456

60. Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep Learning Face Attributes in the Wild. In Proceedings of the International Conference on
Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015.

61. Yu, F.; Seff, A.; Zhang, Y.; Song, S.; Funkhouser, T.; Xiao, J. Lsun: Construction of a large-scale image dataset using deep learning
with humans in the loop. arXiv 2015, arXiv:1506.03365.

62. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

63. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
arXiv 2015, arXiv:1511.06434.

64. Larsen, A.B.L.; Sønderby, S.K.; Larochelle, H.; Winther, O. Autoencoding beyond pixels using a learned similarity metric.
In Proceedings of the International Conference on Machine Learning, PMLR, New York City, NY, USA, 19–24 June 2016;
pp. 1558–1566.

65. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training GANs. In Advances
in Neural Information Processing Systems, MIT Press: Cambridge, MA, USA, 2016; pp. 2234–2242.

66. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs trained by a two time-scale update rule converge
to a local nash equilibrium. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017;
pp. 6626–6637.

67. Jonathan Bennett, J.; Carbery, A.; Christ, M.; Tao, T. The Brascamp-Lieb Inequalities: Finiteness, Structure and Extremals. Geom.
Funct. Anal. 2007, 17, 1343–1415. [CrossRef]

68. Ditria, L.; Meyer, B.J.; Drummond, T. OpenGAN: Open Set Generative Adversarial Networks. arXiv 2020, arXiv:2003.08074.
69. Fiez, T.; Ratliff, L.J. Local Convergence Analysis of Gradient Descent Ascent with Finite Timescale Separation. In Proceedings of

the International Conference on Learning Representations, Virtual, 3–7 May 2021.
70. Härkönen, E.; Hertzmann, A.; Lehtinen, J.; Paris, S. Ganspace: Discovering interpretable GAN controls. arXiv 2020,

arXiv:2004.02546.
71. Wu, Z.; Baek, C.; You, C.; Ma, Y. Incremental Learning via Rate Reduction. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021.
72. Tong, S.; Dai, X.; Wu, Z.; Li, M.; Yi, B.; Ma, Y. Incremental Learning of Structured Memory via Closed-Loop Transcription. arXiv

2022, arXiv:2202.05411.
73. Lee, K.S.; Town, C. Mimicry: Towards the Reproducibility of GAN Research. arXiv 2020, arXiv:2005.02494.
74. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

96



entropy

Article

An Information Theoretic Interpretation to Deep
Neural Networks †

Xiangxiang Xu 1, Shao-Lun Huang 1,*, Lizhong Zheng 2 and Gregory W. Wornell 2

Citation: Xu, X.; Huang, S.-L.; Zheng,

L.; Wornell, G.W. An Information

Theoretic Interpretation to Deep

Neural Networks. Entropy 2022, 24,

135. https://doi.org/10.3390/

e24010135

Academic Editor: Raúl Alcaraz

Received: 7 December 2021

Accepted: 12 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Data Science and Information Technology Research Center, Tsinghua–Berkeley Shenzhen Institute,
Shenzhen 518055, China; xuxx@mit.edu

2 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA; lizhong@mit.edu (L.Z.); gww@mit.edu (G.W.W.)

* Correspondence: shaolun.huang@sz.tsinghua.edu.cn
† This work was presented in part at the 2019 IEEE International Symposium on Information Theory (ISIT),

Paris, France, 7–12 July 2019.

Abstract: With the unprecedented performance achieved by deep learning, it is commonly be-
lieved that deep neural networks (DNNs) attempt to extract informative features for learning tasks.
To formalize this intuition, we apply the local information geometric analysis and establish an
information-theoretic framework for feature selection, which demonstrates the information-theoretic
optimality of DNN features. Moreover, we conduct a quantitative analysis to characterize the impact
of network structure on the feature extraction process of DNNs. Our investigation naturally leads to a
performance metric for evaluating the effectiveness of extracted features, called the H-score, which il-
lustrates the connection between the practical training process of DNNs and the information-theoretic
framework. Finally, we validate our theoretical results by experimental designs on synthesized data
and the ImageNet dataset.

Keywords: deep neural network; information theory; local information geometry; feature extraction

1. Introduction

Due to the striking performance of deep learning in various application fields, deep
neural networks (DNNs) have gained great attention in modern computer science. While
it is a common understanding that the features extracted from the hidden layers of DNN
are “informative” for learning tasks, the mathematical meaning of informative features in
DNN is generally not clear. From the practical perspective, DNN models have obtained
unprecedented performance in varying tasks, such as image recognition [1], language
processing [2,3], and games [4,5]. However, the understanding of the feature extraction
behind these models is relatively lacking, which poses challenges for their application in
security-sensitive tasks, such as the autonomous vehicle.

To address this problem, there have been numerous research efforts, including both
experimental and theoretical studies [6]. The experimental studies usually focus on some
empirical properties of the feature extracted by DNNs, by visualizing the feature [7] or
testing its performance on specific training settings [8] or learning tasks [9]. Though
such empirical methods have provided some intuitive interpretations, the performance
can highly depend on the data and network architecture used. For example, while the
feature visualization works well on convolutional neural networks, its application to other
networks is typically less effective [10].

In contrast, theoretical studies focus on the analytical properties of the extracted fea-
ture or the learning process in DNNs. Due to the complicated structure of DNNs, existing
studies were often restricted to the networks of specific structures, e.g., network with
infinite width [11] or two-layer network [12,13], to characterize the theoretical behaviors.
However, the interpretation of the optimal feature remains unclear, which limits their
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further applications. To obtain better interpretability, tools and measures from information
theory [14] have recently been applied to connect DNNs with general information process-
ing problems [15]. For instance, the information bottleneck [16,17] employs the mutual
information as the metric to quantify the informativeness of features in DNN, and other
information metrics, such as the Kullback–Leibler (KL) divergence [18] and Weissenstein
distance [19], are also used in different problems. However, there is still a disconnection
between these information metrics and the performance objectives of the inference tasks
that DNNs want to solve [20]. Therefore, it is, in general, difficult to match the DNN
learning with the optimization of a particular information metric.

This paper aims to provide an information-theoretic interpretation to the feature ex-
traction process in DNNs, to bridge the gap between the practical deep learning imple-
mentations and information-theoretic characterizations. To this end, we first propose an
information-theoretic feature selection framework, which establishes an information met-
ric to measure the performance of each given feature in inference tasks. In addition, we
demonstrate that the optimal features extracted by DNNs coincide with the solutions of
the information-theoretic feature selection problem, which share the same performance
metric. Therefore, our results give an explicit interpretation of the learning goal of the
back-propagation (BackProp) and stochastic gradient descent (SGD) operations in deep
learning [21], which also lead to a performance metric for evaluating the effectiveness of
the extracted features. Finally, we validate our theoretic characterizations using numerical
experiments on both synthesized data and the ImageNet [22] dataset for image classification.

2. Preliminaries and Methods

2.1. Methodological Background

The main method used in our development is local information geometry [23,24],
which characterizes the local geometric properties of the probability distribution space.
The local information geometric method is closely related to the conventional Hirschfeld–
Gebelein–Rényi (HGR) maximal correlation [25–27] problem, which has attracted increas-
ing interest in the information theory community [28–33], and has also been applied in
data analysis [34] and privacy studies [35].

Specifically, we use the local information geometric method to construct and investi-
gate an information-theoretic feature selection problem in Section 3.1, which leads to an
information metric of features and also demonstrates an SVD (singular value decomposi-
tion) structure of the feature selection process. Following the same analysis framework, we
characterize the optimal feature extracted by DNNs in Section 3.2, and demonstrate that
the same SVD structure is shared by DNNs. Based on the established connection, we then
propose an effectiveness measure for DNNs, with details presented in Section 3.3.

2.2. Notations

Throughout this paper, we use X, X, PX , and x to represent a discrete random variable,
the range, the probability distribution, and the value of X. In addition, for any function
s(X) ∈ Rk of X, we use μs to denote the mean of s(X), and “˜” to denote the centered
variable with mean subtracted, e.g., s̃(X) � s(X)− μs. Moreover, we use ‖ · ‖ and ‖ · ‖F to
denote the �2-norm and the Frobenius norm, respectively. All logarithms in our analyses
are base e, i.e., natural.

2.3. Local Information Geometry

The following concepts from local information geometry would be useful in our de-
velopment.
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Definition 1 (ε-Neighborhood). Let PX denote the space of distributions on some finite alphabet
X, and let relint(PX) denote the subset of strictly positive distributions. For a given ε > 0, the
ε-neighborhood of a distribution PX ∈ relint(PX) is defined by the χ2-divergence as

NX
ε (PX) �

{
P ∈ PX : ∑

x∈X

(
P(x)− PX(x)

)2

PX(x)
≤ ε2

}
.

Definition 2 (ε-Dependence). The random variables X, Y are called ε-dependent if PXY ∈
NX×Y

ε (PXPY).

Definition 3 (ε-Attribute). A random variable U is called an ε-attribute of X if PX|U(·|u) ∈
NX

ε (PX), for all u ∈ U.

We will focus on the small ε regime, which we refer to as the local analysis regime.
In addition, for any P ∈ PX, we define the information vector φ and feature function L(x)
corresponding to P, with respect to a reference distribution PX ∈ relint(PX), as

φ(x) � P(x)− PX(x)√
PX(x)

, L(x) � φ(x)√
PX(x)

. (1)

This gives a three way correspondence P ↔ φ ↔ L for all distributions in NX
ε (PX), which

will be useful in our derivations.

2.4. Modal Decomposition

Given a pair of discrete random variables X, Y with the joint distribution PXY(x, y),
the |Y| × |X|matrix B̃ is defined as

B̃(y, x) � PXY(x, y)− PX(x)PY(y)√
PX(x)PY(y)

, (2)

where B̃(y, x) is the (y, x)th entry of B̃. The matrix B̃ is referred to as the canonical
dependence matrix (CDM) [24]. The SVD of B̃ is referred to as the modal decomposition [24]
of the joint distribution PXY, which has the following property [18].

Lemma 1. The SVD of B̃ can be written as B̃ = ∑K
i=1 σi ψY

i
(
ψX

i
)T, where K � min{|X|, |Y|},

and σi denotes the ith singular value with the ordering 1 ≥ σ1 ≥ · · · ≥ σK = 0, and ψY
i and ψX

i are
the corresponding left and right singular vectors with ψX

K (x) =
√

PX(x) and ψY
K(y) =

√
PY(y).

This SVD decomposes the feature spaces of X, Y into maximally correlated features.
To see that, consider the generalized canonical correlation analysis (CCA) problem:

max
E[ fi(X)]=E[gi(Y)]=0

E[ fi(X) f j(X)]=E[gi(Y) gj(Y)]=δij

k

∑
i=1

E[ fi(X) gi(Y)], (3)

where δij denotes the Kronecker delta function. It can be shown that for any 1 ≤ k ≤
K− 1, the optimal features are fi(x) = ψX

i (x)/
√

PX(x), and gi(y) = ψY
i (y)/

√
PY(y), for

i = 0, . . . , K− 1, where ψX
i (x) and ψY

i (y) are the xth and yth entries of ψX
i and ψY

i , respec-
tively [18]. The special case k = 1 corresponds to the HGR maximal correlation [25–27], and
the optimal features can be computed from the ACE (Alternating Conditional Expectation)
algorithm [36].
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2.5. Deep Neural Networks

The architecture of deep neural networks (under log-loss) can be depicted as Figure 1,
where X is the input data, e.g., images, audios, or natural languages. Moreover, Y is
the objective to predict, which can represent a discrete label in classification tasks, or
represent target natural languages in machine translations [37]. Specifically, for given data
X, the network produces a (trainable) feature mapping to generate k-dimensional feature
s(x) = (s1, . . . , sk)

T. In practice, the feature mapping block (depicted as the gray block in
Figure 1) is typically composed of hundreds and thousands of functional components (e.g.,
residual block [1]) with different types of layers, and may contain recurrent structure, e.g.,
LSTM (Long Short-Term Memory) [38]. In general, the internal structure of the feature
mapping can have various different types of designs, depending on the learning tasks.

X
Feature
Mapping

...

s1

sk

Y = 1

Y = 2

...

Y = |Y|+1

b((11)

b(2)

b(|Y|)

v(1)

v(2)

v(|Y|)

P̃Y|X(y|x) �
evT(y)s(x)+b(y)

∑y′∈Y evT(y′)s(x)+b(y′)

Probabilistic Prediction

Figure 1. A deep neural network that uses data X to predict Y. All hidden layers together map the
input data X to k-dimensional feature s(x) = (s1, . . . , sk)

T. Then, the probabilistic prediction P̃Y|X of
Y is computed from s(x), v(y), and b(y), where v and bias b are the weights and bias in the last layer.

After obtaining the feature s(X), the Y is then predicted by the probability distribution
P̃(s,v,b)

Y|X of the form

P̃(s,v,b)
Y|X (y|x) � evT(y)s(x)+b(y)

∑y′∈Y evT(y′)s(x)+b(y′)
, (4)

which is obtained by applying the softmax function [39] on vT(y)s(x) + b(y), where v(·)
and b(·) are the weights and biases in the last layer, respectively (this is equivalent to the
common practice that denotes weight and biases by the matrix [v(1), . . . , v(|Y|)]T and the
vector [b(1), . . . , b(|Y|)]T, respectively. However, as we will show later, expressing weights
v and biases b as mappings of y can better illustrate their roles in feature selection). We will
use P̃Y|X to refer to P̃(s,v,b)

Y|X when there is no ambiguity.
Then, for a given training set of labeled samples (xi, yi), for i = 1, . . . , N, all the

parameters in the network, including v, b, as well as those in the feature mapping block,
are chosen to maximize the log-likelihood function (or, equivalently, minimize the log-loss)

1
N

N

∑
i=1

log P̃Y|X(yi|xi). (5)

The procedure of choosing such parameters is called the training of network, which
can be performed by stochastic gradient descent (SGD) or its variants [21]. With a trained
network, the label ŷ for a new data sample x can be predicted by the maximum a posteriori
(MAP) estimation, i.e., ŷ = arg maxy∈Y P̃Y|X(y|x). Specifically, when we make predictions
for samples in a test dataset, the proportion of samples with correct prediction (i.e., ŷ = y)
over all samples is called the test accuracy.
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3. Results

3.1. Information-Theoretic Feature Selection

Suppose that, given random variables X, Y with joint distribution PXY, we want to infer
about an attribute V of Y from observed i.i.d. samples x1, . . . , xn of X. When the statistical
model PX|V is known, the optimal decision rule is the log-likelihood ratio test, where the
log-likelihood function can be viewed as the optimal feature for inference. However, in
many practical situations [18], it is hard to identify the model of the targeted attribute,
and it is necessary to select low-dimensional informative features of X for inference tasks
before knowing the model. An information-theoretic formulation of such feature selection
problem is the universal feature selection problem [24], which we formalize as follows.

To begin, for an attribute V, we refer to CY =
{
V, {PV(v), v ∈ V}, {φ

Y|V
v , v ∈ V}

}
,

as the configuration of V, where φ
Y|V
v ↔ PY|V(·|v) is the information vector specifying

the corresponding conditional distribution PY|V(·|v). The configuration of V models the
statistical correlation between V and Y. In the sequel, we focus on the local analysis regime,
for which we assume that all the attributes V of our interests to detect are ε-attributes of Y.
As a result, the corresponding configuration satisfies

∥∥φ
Y|V
v

∥∥ ≤ ε, for all v ∈ V. We refer to
such configurations as ε-configurations. The configuration of V is unknown in advance but
assumed to be generated from a rotational invariant ensemble (RIE).

Definition 4 (RIE). Two configurations CY and C̃Y defined as

CY �
{
V, {PV(v), v ∈ V}, {φ

Y|V
v , v ∈ V}

}
,

C̃Y �
{
V, {PV(v), v ∈ V}, {φ̃

Y|V
v , v ∈ V}

}
are called rotationally equivalent, if there exists a unitary matrix Q such that φ̃

Y|V
v = Q φ

Y|V
v , for

all v ∈ V. Moreover, a probability measure defined on a set of configurations is called an RIE, if all
rotationally equivalent configurations have the same measure.

The RIE can be interpreted as assigning a uniform measure to the attributes with the
same level of distinguishability. To infer about the attribute V, we construct a k-dimensional
feature vector hk = (h1, . . . , hk), for some 1 ≤ k ≤ K− 1, of the form

hi =
1
n

n

∑
l=1

fi(xl), i = 1, . . . , k, (6)

for some choices of feature functions fi. Our goal is to determine the fi such that the
optimal decision rule based on hk achieves the smallest possible error probability, where
the performance is averaged over the possible CY generated from an RIE. In turn, we denote
ξX

i ↔ fi as the corresponding information vector, and define the matrix ΞX � [ξX
1 · · · ξX

k ].

Theorem 1 (Universal Feature Selection). For v, v′ ∈ V, let Ehk (v, v′) be the error exponent
associated with the pairwise error probability distinguishing v and v′ based on hk, then the expected
error exponent over a given RIE defined on the set of ε-configurations is given by

E
[
Ehk (v, v′)

]
=

C0

2
·
∥∥∥∥B̃ΞX((ΞX)T

ΞX)− 1
2

∥∥∥∥2

F
+ o(ε2), (7)

where C0 � 1
4|Y| ·E

[∥∥φ
Y|V
v −φ

Y|V
v′

∥∥2
]

is independent of the choices of fi’s, and the expectations
E[·] are taken over this RIE.

Proof. See Appendix A.
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As a result of (7), designing the ξX
i as the singular vectors ψX

i of B̃, for i = 1, . . . , k,
optimizes (7) for all RIEs, pairs of (v, v′), and ε-configurations. Thus, the feature functions
corresponding to ψX

i are universally optimal for inferring the unknown attribute V. More-

over, (7) naturally leads to an information metric
∥∥∥∥B̃ΞX((ΞX)T

ΞX)− 1
2

∥∥∥∥2

F
for any feature

ΞX of X, measured by projecting the normalized ΞX through a linear projection B̃. This
information metric quantifies how informative a feature of X is when solving inference
problems with respect to Y and is optimized when designing features by singular vectors
of B̃. Thus, we can interpret the universal feature selection as solving the most informative
features for data inferences via the SVD of B̃, which also coincides with the maximally
correlated features in (3). Later, we will show that the feature selection in DNNs shares the
same information metric as universal feature selection in the local analysis regime.

3.2. Feature Extraction in Deep Neural Networks
3.2.1. Network with Ideal Expressive Power

For convenience of analysis, we first consider the ideal case where the neural network
can express any feature mapping s(·) as desired. While this assumption can be rather
strong, the existence of such ideal networks is guaranteed by the universal approximation
theorem [40]. In addition, one goal of practical network designs is to approximate the ideal
networks and obtain sufficient expressive power. For such networks, we will show that
when X, Y are ε-dependent, the extracted feature s(x) and weights v(y) coincide with the
solutions of the universal feature selection.

To begin, we use PXY to denote the joint empirical distribution of the labeled samples
(xi, yi), i = 1, . . . , N, and PX , PY to denote the corresponding marginal distributions. Then,
the objective function of (5) is the empirical average of the log-likelihood function

1
N

N

∑
i=1

log P̃Y|X(yi|xi) = EPXY

[
log P̃Y|X(Y|X)

]
.

Therefore, maximizing this empirical average is equivalent as minimizing the
KL divergence:

(s∗, v∗, b∗) = arg min
(s,v,b)

D(PXY‖PX P̃(s,v,b)
Y|X ). (8)

This can be interpreted as finding the best fitting to empirical joint distribution PXY by
distributions of the form PX P̃(s,v,b)

Y|X . In our development, it is more convenient to denote
the bias by d(y) = b(y)− log PY(y), for y ∈ Y. Then, the following lemma illustrates the
explicit constraint on the problem (8) in the local analysis regime.

Lemma 2. If X, Y are ε-dependent, then the optimal v, d for (8) satisfy

|ṽT(y)s(x) + d̃(y)| = O(ε), for all x ∈ X, y ∈ Y. (9)

Proof. See Appendix B.

In turn, we take (9) as the constraint for solving the problem (8) in the local analysis
regime. Moreover, we define the information vectors for zero-mean vectors s̃, ṽ as ξX(x) =√

PX(x) s̃(x), ξY(y) =
√

PY(y) ṽ(y), and define matrices

ΞY �
[
ξY(1) · · · ξY(|Y|)

]T, ΞX �
[
ξX(1) · · · ξX(|X|)

]T.

Lemma 3. The KL divergence (8) in the local analysis regime (9) can be expressed as

D(PXY‖PX P̃(s,v,b)
Y|X ) =

1
2

∥∥B̃− ΞY(ΞX)T∥∥2
F +

1
2

η(v,b)(s) + o(ε2), (10)
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where η(v,b)(s) � EPY

[
(μT

s ṽ(Y) + d̃(Y))2].
Proof. See Appendix C.

Lemma 3 reveals key insights for feature selection in neural networks. To see this, we
consider the following two learning problems: learning the optimal weight v for given s
and learning the optimal feature s for given v.

For the case that s is fixed, we can optimize (10) with ΞX fixed and obtain the following
optimal weights:

Theorem 2. For fixed ΞX and μs, the optimal ΞY∗ to minimize (10) is given by

ΞY∗ = B̃ ΞX((ΞX)T
ΞX)−1, (11)

and the optimal weights ṽ∗ and bias d̃∗ are

ṽ∗(y) = EPX|Y

[
Λ−1

s̃(X)
s̃(X)

∣∣∣ Y = y
]
, d̃∗(y) = −μT

s ṽ(Y). (12)

where Λs̃(X) denotes the covariance matrix of s̃(X).

Proof. See Appendix D.

Specifically, when s(x) = x, Theorem 2 gives the optimal weights for softmax regres-
sion. Note that Equation (11) can be viewed as a projection of the input feature s̃(x), to a
feature v(y) computable from the value of y, which is the most correlated feature to s̃(x).
The solution is given by the operation that left multiplies B̃ matrix, which we refer to as
forward feature projection.

Remark 1. While we assume the continuous input s(x) is a function of a discrete variable X, we
only need the labeled samples between s and Y to compute the weights and bias from the conditional
expectation (12), and the correlation between X and s is irrelevant. Thus, our analysis for weights
and bias can be applied to continuous input networks by just ignoring X and taking s as the real
input to network.

We then consider the “backward feature projection” problem, which attempts to
find informative feature s∗(X) to minimize the loss (10) with given weights and bias. In
particular, we can show that the solution of this backward feature projection is precisely
symmetric to the forward one.

Theorem 3. For fixed ΞY and d̃, the optimal ΞX∗ to minimize (10) is given by

ΞX∗ = B̃T ΞY((ΞY)T
ΞY)−1, (13)

and the optimal feature function s∗, which are decomposed to s̃∗ and μ∗s , is given by

s̃∗(x) = EPY|X

[
Λ−1

ṽ(Y) ṽ(Y)
∣∣∣X = x

]
,

μ∗s = −Λ−1
ṽ(Y) EPY

[
ṽ(Y) d̃(Y)

]
, (14)

where Λṽ(Y) denotes the covariance matrix of ṽ(Y).

Proof. See Appendix D.

Finally, when both s and (v, b) (and hence ΞX, ΞY, d) can be designed, the optimal
(ΞY, ΞX) corresponds to the low rank factorization of B̃, and the solutions coincide with
the universal feature selection.
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Theorem 4. The optimal solutions for weights and bias to minimize (10) are given by d̃(y) =
−μT

s ṽ(y), and (ΞY, ΞX)∗ chosen as the largest k left and right singular vectors of B̃.

Proof. See Appendix E.

Therefore, we conclude that the learning of neural networks, when both s and (v, b)
are designable, is to extract the most correlated aspects of the input data X and the label Y
that are informative features for data inferences from universal feature selection.

In the practical learning process of DNN, the BackProp updates the weights of the
softmax layer and those on the previous layer(s) in an iterative manner. As we have
illustrated in Lemma 3, such iterative updates will converge to the same solution as
the alternating between the forward feature projection (11) and the backward feature
projection (13), which is indeed the power method to solve the SVD for B̃ [41], also known
as the Alternating Conditional Expectation (ACE) algorithm [36].

Remark 2. From Theorem 4, for a neural network with sufficient expressive power, the trained
feature depends only on the distribution of input data rather than the training process. It is worth
mentioning that this result does not contradict the practice that trained weights in hidden layers
can be different during each training run. In fact, due to the over-parameterized nature of practical
network designs, there exist multiple choices of weights in hidden layers to express the same optimal
feature s(x).

3.2.2. Network with Restricted Expressive Power

The analysis of the previous section has considered neural networks with ideal ex-
pressive power, where the feature s(X) can be selected as any desired function. In general,
however, the form of feature functions that can be generalized is often limited by the net-
work structure. In the following, we consider networks with restricted expressive power to
characterize the impacts of network structure on the extracted feature.

For illustration, we consider the neural network with a hidden layer of k nodes, and a
zero-mean continuous input t = [t1 · · · tm]T ∈ Rm to this hidden layer, where t is assumed
to be a function t(x) of some discrete variable X. Our goal is to analyze the weights and
bias in this layer with labeled samples (t(xi), yi). Assume the activation function of the
hidden layer is a generally smooth function σ(·), then the output sz(X) of the z-th hidden
node is

sz(x) = σ
(

wT(z)t(x) + c(z)
)

, for z = 1, . . . , k, x ∈ X, (15)

where w(z) ∈ Rm and c(z) ∈ R are the weights and bias from input layer to hidden
layer as shown in Figure 2. We denote s = [s1 · · · sk]

T as the input vector to the output
classification layer.
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Feature Mapping
Y = 1

Y = 2

...

Y = |Y|+1 +1

cc((1)

c(k)

b((11)

b(2)

b(|Y|)

w(1)

w(k)

v(1)

v(2)

v(|Y|)

Figure 2. A multi-layer neural network, where the expressive power of the feature mapping s(·) is
restricted by the hidden representation t. All hidden layers previous to t are fixed, represented by the
“pre-processing” module.

To interpret the feature selection in hidden layers, we fix (v(y), b(y)) at the output
layer and consider the problem of designing (w(z), c(z)) to minimize the loss function (8)
at the output layer. Ideally, we should have picked w(z) and c(z) to generate s(x) to match
s∗(x) from (14), which minimizes the loss. However, here we have the constraint that s(x)
must take the form of (15) and, intuitively, the network should select w(z), c(z) so that s(x)
is close to s∗(x). Our goal is to quantify the notion of such closeness.

To develop insights on feature selection in hidden layers, we again focus on the local
analysis regime, where the weights and bias are assumed to satisfy the local constraint∣∣ṽT(y)s(x) + d̃(y)

∣∣ = O(ε),
∣∣wT(z)t̃(x)

∣∣ = O(ε), ∀x, y, z. (16)

Then, since t is zero-mean, we can express (15) as

sz(x) = σ
(

wT(z)t(x) + c(z)
)
= wT(z)t̃(x) · σ′(c(z)) + σ(c(z)) + o(ε), (17)

Moreover, we define a matrix B̃1 with the (z, x)th entry B̃1(z, x) =

√
PX(x)

σ′(c(z)) s̃∗z (x), which
can be interpreted as a generalized CDM for the hidden layer. Furthermore, we denote
ξX

1 (x) =
√

PX(x) t̃(x) as the information vector of t̃(x) with the matrix ΞX
1 defined as

ΞX
1 �

[
ξX

1 (1) · · · ξX
1 (|X|)

]T, and we also define

W �
[
w(1) · · · w(k)

]T, (18)

J � diag{σ′(c(1)), σ′(c(2)), · · · , σ′(c(k))}. (19)

The following theorem characterizes the loss (8).

Theorem 5. Given the weights and bias (v, b) at the output layer, and for any input feature s, we
denote L(s) as the loss (8) evaluated with respect to (v, b) and s. Then, with the constraints (16)

L(s)−L(s∗) =
1
2

∥∥ΘB̃1 −ΘW
(
ΞX

1
)T∥∥2

F +
1
2

κ(v,b)(s, s∗) + o(ε2), (20)

where Θ � (
(
ΞY)T

ΞY)1/2J, and the term κ(v,b)(s, s∗) = (μs − μs∗)
TΛṽ(Y)(μs − μs∗).

Proof. See Appendix F.
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Equation (20) quantifies the closeness between s and s∗ in terms of the loss (8). Then,
our goal is to minimize (20), which can be separated to two optimization problems:

W∗ = arg min
W

∥∥∥ΘB̃1 −ΘW
(
ΞX

1
)T
∥∥∥2

F
, (21)

μ∗s = arg min
μs

κ(v,b)(s, s∗). (22)

Note that the optimization problem (21) is similar to the one that appeared in Lemma 3,
and the optimal solution is given by W∗ = B̃1ΞX

1
((

ΞX
1
)T

ΞX
1
)−1. Therefore, solving the

optimal weights in the hidden layer can be interpreted as projecting s̃∗(x) to the subspace
of feature functions spanned by t(x) to find the closest expressible function. In addition,
the problem (22) is to choose μs (and hence the bias c(z)) to minimize the quadratic term
similar to η(v,b)(s) in (10). Similar to the analyses of parameters in the last layer, we can
obtain analytical solutions for hidden layer parameters, e.g., μ∗s and w∗, with detailed
discussions provided in Appendix G.

Overall, we observe the correspondence between (11), (14), and (21), (22), and in-
terpret both operations as feature projections. Our argument can be generalized to any
intermediate layer in a multi-layer network, with all the previous layers viewed as the
fixed pre-processing that specifies t(x), and all the layers after determining s∗. Then, the
iterative procedure in back-propagation can be viewed as alternating projection finding the
fixed-point solution over the entire network. This final fixed-point solution, even under
the local assumption, might not be the SVD solution as in Theorem 4. This is because the
limited expressive power of the network often makes it impossible to generate the desired
feature function. In such cases, the concept of feature projection can be used to quantify
this gap, and thus to measure the quality of the selected features.

3.3. Scoring Neural Networks

Given a learning problem, it is useful to tell whether or not some extracted features are
informative [42]. Our previous development naturally gives rise to a performance metric.

Definition 5. Given a feature s(x) ∈ Rk and weight v(y) ∈ Rk with the corresponding informa-
tion matrices ΞX and ΞY, the H-score H(s, v) is defined as

H(s, v) � 1
2

∥∥B̃
∥∥2

F −
1
2

∥∥B̃− ΞY(ΞX)T∥∥2
F = EPXY

[
s̃T(X) ṽ(Y)

]
− 1

2
tr
(
Λs̃(X)Λṽ(Y)

)
. (23)

In addition, for given s(x), we define the single-sided H-score H(s) as

H(s) � max
v

H(s, v) (24)

=
1
2

∥∥B̃
∥∥2

F −
1
2

∥∥B̃− B̃ ΞX((ΞX)T
ΞX)−1(

ΞX)T∥∥2
F (25)

=
1
2

∥∥B̃ΞX((ΞX)T
ΞX)− 1

2
∥∥2

F =
1
2
EPY

[∥∥∥EPX|Y

[
Λ−1/2

s̃(X)
s̃(X)

∣∣∣ Y
]∥∥∥2

]
. (26)

H-score can be used to measure the quality of features generated at any intermediate
layer of the network. It is related to (20) when choosing the optimal bias and Θ as the
identity matrix. This can be understood as taking the output of this layer s(x) and directly
feeding it to a softmax output layer with v(y) used as the weights, and H(s, v) measures
the resulting performance. Note that v(y) here can be an arbitrary function of Y, not
necessarily the weights on the next layer computed by the network. When the optimal
v∗(y) as defined in (12) is used, the resulting performance becomes the one-sided H-score
H(s), which measures the quality of s(x). In addition, by comparing (26) with (7), the
performance measure H(s) also coincides with the information metric (7), up to a scale
factor.
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Specifically, for a given dataset and a feature extractor that generate s(·), the H-score
H(s) can be efficiently computed from the second equation of (26). In addition, when we
use H-score to compare the performance of different feature extractors (models), the model
complexity has to be taken into account to reduce overfitting. To this end, we adopt Akaike
information criterion (AIC) and define AIC-corrected H-score

HAIC(s) � H(s)− np

ns
(27)

for comparing different models, where np and ns represent the number of parameters in
the model and the training sample size, respectively.

In current practice, the cross-entropy EPXY

[
log P̃(v,b)

Y|X
]

is often used as the performance
metric. One can, in principle, also use log-loss to measure the effectiveness of the selected
feature at the output of an intermediate layer [42]. However, one problem of this metric is
that, for a given problem, it is not clear what value of log-loss one should expect, as the
log-loss is generally unbounded. In contrast, the H-score can be directly computed from
the data samples and has a clear upper bound. Indeed, it follows from Lemma 1 that, for
k-dimensional feature s and weights v, we have the sequence of inequalities

H(s, v) ≤ H(s) ≤ 1
2

k

∑
i=1

σ2
i ≤

k
2

, (28)

where σi indicates the ith singular value of B̃.
In particular, the first “≤” follows from the definition (24), and the gap between H(s, v)

and H(v) measures the optimality of the weights v; the second “≤” follows from the first
equality of (26), and the gap between two sides characterizes the difference between the
chosen feature and the optimal solution, which is a useful measure of how restrictive (lack
of expressive power) the network structure is; the last “≤” follows from the fact that σi ≤ 1
(cf. Lemma 1), which measures the dependency between data variable and label for the
given dataset. In Section 3.4.3, we validate this metric on real data.

3.4. Experiments

This section presents experiments for validating our theoretical characterizations,
with corresponding code available at https://github.com/XiangxiangXu/dnn (accessed
on 7 December 2021). Specifically, all DNN models used in Section 3.4.3 are available at
https://keras.io/applications/ (accessed on 7 December 2021).

3.4.1. Experimental Validation of Theorem 4

We first validate Theorem 4, the optimal feature extracted by network with ideal
expressive power. Here, we consider the discrete data with alphabet sizes, |X| = 8 and
|Y| = 6, and construct the network as shown in Figure 3. Specifically, the network input is
the one-hot encoding of X, i.e., [1X(1), . . . , 1X(|X|)]T, where 1X(x) takes one if and only if
X = x, and takes zero otherwise. Then, the feature s(X) is generated by a linear layer, with
sigmoid function used as the activation function. For ease of comparison and presentation,
we set feature dimension to k = 1, since otherwise the optimal feature (cf. Theorem 4) lies
in a subspace and is non-unique. It can be verified that this network has ideal expressive
power, i.e., with proper weights in the first layer, s(X) can express any desired function up
to scaling and shifting.
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Y = 6+1

b((1))
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b(6)

v(1)

v(2)
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Figure 3. A simple neural network with ideal expressive power, which can generate any k = 1
dimensional feature s of X by tuning the weights in the first layer.

To compare the result trained by the neural network and that in Theorem 4, we first
randomly generate a distribution PXY, and then draw independently n = 100,000 pairs
of (X, Y) samples. We then train the network using batch gradient descent, where we
have applied Nesterov momentum [43] with the momentum hyperparameter being 0.9. In
addition, we set the learning rate to 4 with a decay factor of 0.01 and clip gradients with
norm exceeding 0.5. After training, the learned values of s(x), v(y) and b(y) are shown in
Figure 4 and compared with theoretical results. From the figure, we can observe that the
training results match our theoretical analyses.

1 2 3 4 5 6 7 8
−3

−2

−1

0

1

x

s(x)

Training
Theoretic

1 2 3 4 5 6
−2

−1

0

1

y

v(y)

Training
Theoretic

1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

y
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Training
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Figure 4. The trained feature s, weights v, and bias b of the network in Figure 3, which are compared
with the corresponding theoretical results to show their coincidences.

3.4.2. Experimental Validation of Theorem 5

In addition, we validate Theorem 5 by the neural network depicted in Figure 5, with
the same settings of X, Y. Specifically, the number of neurons in hidden layers are set to
m = 4 and k = 3, where t(X) is randomly generated from X, and we have chosen sigmoid
function as the activation function σ(·) to generate s(x). We then fix the weights and bias
at the output layer and train the weights w(1), w(2), w(3) and bias c in the hidden layer to
optimize the log-loss. Specifically, we use the batch gradient descent with the Nesterov
momentum hyperparameter being 0.9. In addition, we set the learning rate to 4 with a
decay factor of 10−6 and clip gradients with norm exceeding 0.1. After training, Figure 6
shows the matching between the learned results and the corresponding theoretical values.
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Figure 5. The designed network for validating the impact of network structure on feature extraction,
with m = 4 and k = 3 neurons in two hidden layers. Our goal is to compare the learned weights
w(1), w(2), w(3) and bias c in the hidden layer with our theoretic characterizations in Section 3.2.2.
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Figure 6. The trained weights w and bias c of the network in Figure 5, which are compared with the
corresponding theoretical results to show their coincidences.

3.4.3. Experimental Validation of H-Score

To validate H-score as a performance measure for extracted features, we compare the
H-score and classification accuracy of DNNs on image classification tasks. Specifically, we
use the ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) [22] dataset
as the dataset and extract features using several deep neural networks with representative
architectures designs [44–49]. After training the feature extractors on the ILSVRC2012
training set, we then compute the H-score of the feature in the last hidden layer, as well
as the classification accuracies on ILSVRC2012 validation set (here, we use ILSVRC2012
validation set for testing, as the labels in ILSVRC2012 testing set have not been publicly
released). The results are summarized in Table 1, where HAIC(s) is the AIC-corrected H-
score as defined in (27), with np being the number of model parameters, and ns = 1,300,000
corresponding to the number of training samples in ImageNet. The AIC-corrected H-score
is consistent with the classification accuracy, which validates the effectiveness of H-score
as a measurement of neural networks.
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Table 1. Classification accuracy and H-score for different DNN models on ImageNet dataset, where
“Paras” indicates the number of parameters (in millions) in the model and HAIC represents the
AIC-corrected H-score.

DNN Model Paras [×106] H(s) HAIC(s) Accuracy [%]

VGG16 [44] 138.4 148.3 41.9 64.2
VGG19 [44] 143.7 152.7 42.2 64.7

MobileNet [45] 4.3 45.9 42.6 68.4
DenseNet121 [46] 8.1 59.5 53.3 71.4
DenseNet169 [46] 14.3 81.2 70.2 73.6
DenseNet201 [46] 20.2 89.1 73.5 74.4

Xception [47] 22.9 179.8 162.2 77.5
InceptionV3 [48] 23.9 181.2 162.9 76.3

InceptionResNetV2 [49] 55.9 241.1 198.1 79.1

4. Discussion

Our characterization gives an information-theoretic interpretation of the feature ex-
traction process in DNNs, which also provides a practical performance measure for scoring
neural networks. Different from empirical studies focusing on specific datasets [7], our
development is based on the probability distribution space, which is more general and can
also provide theoretic insights. Moreover, the information-theoretic framework allows us
to obtain direct operational meaning and better interpretations for the solutions, compared
with optimization-based theoretical characterizations, e.g., [11,13].

As a first step in establishing a rigorous framework for DNN analysis, the present
work can be extended in both theoretical and practical aspects. From the theoretical
perspective, one extension is to investigate the analytical properties for general DNNs,
using the theoretic insights obtained from local analysis regime. For example, it was shown
in [50] that the symmetry between feature and weights in DNNs established in the local
analysis regime (cf. Section 3.2.1) also holds for general probability distributions. Another
extension is to apply the framework to investigate the optimal feature for structured data
or network, e.g., data with sparsity structure [51].

From the practical perspective, in addition to the demonstrated example of evaluating
existing DNN models (cf. Section 3.4.3), the H-score can also be used as an objective
function in designing learning algorithms. In particular, such usages have been illustrated
in multi-modal learning [52] and transfer learning [53] tasks.

5. Conclusions

In this paper, we apply the local information geometric analysis and provide an
information-theoretic interpretation to the feature extraction scheme in DNNs. We first es-
tablish an information metric for features in inference tasks by formalizing the information-
theoretic feature selection problem. In addition, we demonstrate that the features extracted
by DNNs coincide with the information-theoretically optimal feature, with the same metric
measuring the performance of features, called H-score. Furthermore, we discuss the usage
of the H-score for measuring the effectiveness of DNNs. Our framework demonstrates a
connection between the practical deep learning implementations and information-theoretic
characterizations, which can provide theoretical insights for DNN analysis and learning
algorithm designs.
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Appendix A. Proof of Theorem 1

We commence with the characterization of the error exponent.

Lemma A1. Given a reference distribution PX ∈ relint(PX), a constant ε > 0 and integers
n and k, let x1, . . . , xn denote i.i.d. samples from one of P1 or P2, where P1, P2 ∈ NX

ε (PX). To
decide whether P1 or P2 is the generating distribution, a sequence of k-dimensional statistics
hk = (h1, . . . , hk) is constructed as

hi =
1
n

n

∑
l=1

fi(xl), i = 1, . . . , k, (A1)

where ( f1(X), . . . , fk(X)) are zero mean, unit-variance, and uncorrelated with respect to PX, i.e.,

EPX [ fi(X)] = 0, i ∈ {1, . . . , k} (A2)

EPX

[
fi(X) f j(X)

]
= δij, i, j ∈ {1, . . . , k}. (A3)

Then, the error probability of the decision based on hk decays exponentially in n as n → ∞,
with (Chernoff) exponent

lim
n→∞

− log pe

n
� Ehk =

k

∑
i=1

Ehi
, (A4)

where
Ehi

=
1
8
〈φ1 − φ2, ξi〉2 + o(ε2), (A5)

and φ1 ↔ P1, φ2 ↔ P2, ξi ↔ fi(X), i ∈ {1, . . . , k} are the corresponding information vectors.

Proof of Lemma A1. Since the rule is to decide based on comparing the projection

k

∑
i=1

hi
(
EP1 [ fi(X)]−EP2 [ fi(X)]

)
to a threshold, via Cramér’s theorem [54], the error exponent under Pj (j = 1, 2) is

Ej(λ) = min
P∈S(λ)

D(P‖Pj), (A6)

where

S(λ) �
{

P ∈ PX : EP
[

f k(X)
]
= λEP1

[
f k(X)

]
+ (1− λ)EP2

[
f k(X)

]}
. (A7)

Now, since (A2) holds, we obtain

EPj [ fi(X)] = ∑
x∈X

Pj(x) fi(x)

= ∑
x∈X

PX(x) fi(x) + ∑
x∈X

(Pj(x)− PX(x)) fi(x)

= EPX [ fi(X)] + ∑
x∈X

√
PX(x) φj(x) · ξi(x)√

PX(x)

= ∑
x∈X

φj(x) ξi(x)
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= 〈φj, ξi〉, j = 1, 2 and i = 1, . . . , k, (A8)

which we express compactly as

EPj

[
f k(X)

]
= 〈φj, ξk〉, j = 1, 2

with ξk � (ξ1, . . . , ξk).
Hence, the constraint (A7) is expressed in information vectors as

〈φ, ξi〉 = 〈λ φ1 + (1− λ) φ2, ξi〉, i = 1, · · · , k,

i.e., 〈
φ, ξk〉 = 〈

λ φ1 + (1− λ) φ2, ξk〉. (A9)

In turn, the optimal P in (A6), which we denoted by P∗, lies in the exponential family
through Pj with natural statistic f k(x), i.e., the k-dimensional family whose members are
of the form

log P̃θk (x) =
k

∑
i=1

θi fi(x) + log Pj(x)− α
(
θk),

for which the associated information vector is

φ̃θk (x) =
k

∑
i=1

θiξi(x) + φj(x)− α(θk)
√

PX(x) + o(ε), (A10)

where we have used the fact that

log QX(x) = log PX(x) + log
QX(x)
PX(x)

= log PX(x) + log

(
1 +

1√
PX(x)

φ(x)

)

= log PX(x) +
1√

PX(x)
φ(x) + o(ε)

for all QX ∈ NX
ε (PX) with the information vector φ ↔ QX . As a result,

〈φ̃θk , ξi〉 = θi + 〈φj, ξi〉+ o(ε),

where we have used (A3). Hence, via (A9), we obtain that the intersection with the linear
family (A7) is at P∗ = Pθk∗ with

θ∗i = 〈λφ1 + (1− λ)φ2 − φj, ξi〉+ o(ε)

and thus

Ej(λ) = D(P∗‖Pj)

=
1
2

∥∥φ̃θk − φj
∥∥2

+ o(ε2) (A11)

=
1
2

∥∥∥∥∥ k

∑
i=1

θ∗i ξi

∥∥∥∥∥
2

+
1
2

α
(
θk∗)2

+ o(ε2) (A12)

=
1
2

k

∑
i=1

(θ∗i )
2 +

1
2

α
(
θk∗)2

+ o(ε2) (A13)

=
1
2

k

∑
i=1
〈λφ1 + (1− λ)φ2 − φj, ξi〉2 + o(ε2), (A14)
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where to obtain (A11) we have exploited the local approximation of KL divergence [18], to
obtain (A12) we have exploited (A10), to obtain (A13) we have again exploited (A3), and
to obtain (A14) we have used that

α
(
θk∗) = o(ε2)

since θk∗ = O(ε) and

α(0) = 0, and ∇α(0) = EPj

[
f k(X)

]
= 〈φj, ξk〉 = O(ε).

Finally, E1(λ) = E2(λ) when λ = 1/2, so the overall error probability has expo-
nent (A5).

Then, the following lemma demonstrates a property of information vectors in a
Markov chain.

Lemma A2. Given the Markov relation X ↔ Y ↔ V and any v ∈ V, let φ
X|V
v and φ

Y|V
v denote

the associated information vectors for PX|V(·|v) and PY|V(·|v), then we have

φ
X|V
v = B̃Tφ

Y|V
v . (A15)

Proof of Lemma A2. From the Markov relation we have

PX(x) = ∑
y∈Y

PX|Y(x|y)PY(y)

and

PX|V(x|v) = ∑
y∈Y

PX|Y,V(x|y, v)PY|V(y|v) = ∑
y∈Y

PX|Y(x|y)PY|V(y|v).

As a result,

PX|V(x|v)− PX(x) = ∑
y∈Y

PX|Y(x|y)[PY|V(y|v)− PY(y)],

from which we obtain the corresponding information vector

φ
X|V
v (x) =

1√
PX(x)

∑
y∈Y

PX|Y(x|y)
√

PY(y)φ
Y|V
v (y)

= ∑
y∈Y

[
B̃(y, x) +

√
PX(x)PY(y)

]
φ

Y|V
v (y)

= ∑
y∈Y

B̃(y, x)φY|V
v (y), (A16)

where the last equality follows from the fact that

∑
y∈Y

√
PY(y)φ

Y|V
v (y) = ∑

y∈Y
[PY|V(y|v)− PY(y)] = 0.

Finally, rewrite (A16) in the matrix form and we obtain (A15).

In addition, the following lemma is useful for dealing with the expectation over
an RIE.
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Lemma A3. Let z be a spherically symmetric random vector of dimension M, i.e., for any orthogo-

nal Q we have z
d
= Qz. If A is a fixed matrix of compatible dimensions, then

E

[
‖zTA‖2

]
=

1
M

E

[
‖z‖2

]
‖A‖2

F. (A17)

Proof of Lemma A3. By definition we have Λz = QΛzQT for any orthogonal Q; hence,
Λz is diagonal. Suppose Λz = λ I, then from

tr(Λz) = E

[
‖z‖2

]
= λM

we obtain
λ =

1
M

tr(Λz).

As a result, we have

E

[
‖zTA‖2

]
= tr

(
ATΛzA

)
= λ tr

(
ATA

)
=

1
M

E

[
‖z‖2

]
‖A‖2

F.

Proceeding to our proof of Theorem 1, by definition of feature functions, we have
EPX

[
fi(X)

]
= 0, i = 1, . . . , k. Suppose f is the vector representation of f k and denote by

f̃ � Λ−1/2
f f the normalized f , with Λ1/2

f denoting any square root matrix of Λ f . Then, the

corresponding statistics f̃ k = ( f̃1, . . . , f̃k) satisfy the constraints (A2) and (A3). In addition,
we construct the statistic h̃k = (h̃1, . . . , h̃k) as [cf. (A1)]

h̃i =
1
n

n

∑
l=1

f̃i(xl), i = 1, . . . , k. (A18)

Then, from Lemma A1, the error exponent of distinguishing v and v′ based on h̃k is

Eh̃k (v, v′) =
1
8

k

∑
i=1

[(
φ

X|V
v −φ

X|V
v′

)T
ξ̃X

i

]2
+ o(ε2)

=
1
8

∥∥∥(φ
X|V
v −φ

X|V
v′

)T
Ξ̃X

∥∥∥2
+ o(ε2),

where φ
X|V
v denotes the associated information vector for PX|V(·|v), ξ̃X

i denotes the infor-
mation vectors of f̃i, and Ξ̃X � [ξ̃X

1 , . . . , ξ̃X
k ]. Since the optimal decision rule is linear, the

error exponent is invariant with linear transformations of statistics, i.e.,

Ehk (v, v′) = Eh̃k (v, v′) =
1
8

∥∥∥(φ
X|V
v −φ

X|V
v′

)T
Ξ̃X

∥∥∥2
+ o(ε2)

=
1
8

∥∥∥(φ
Y|V
v −φ

Y|V
v′

)T
B̃Ξ̃X

∥∥∥2
+ o(ε2), (A19)

where the last equality follows from Lemma A2.
As a result, taking the expectation of (A19) over a given RIE yields

E
[
Ehk (v, v′)

]
=

1
8
E

[∥∥∥(φ
Y|V
v −φ

Y|V
v′

)T
B̃Ξ̃X

∥∥∥2
]
+ o(ε2)

=
E

[∥∥φ
Y|V
v −φ

Y|V
v′

∥∥2
]

8|Y|
∥∥B̃Ξ̃X∥∥2

F + o(ε2),
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where we have exploited Lemma A3. Finally, the error exponent (7) can be obtained via
noting from the definition of f̃ k that

Ξ̃X = ΞX((ΞX)T
ΞX)− 1

2 .

Appendix B. Proof of Lemma 2

We first prove two useful lemmas.

Lemma A4. For distributions P ∈ relint(PX), Q, R ∈ PX, and sufficiently small ε, if D(P‖Q) ≤
ε2 and D(P‖R) ≤ ε2, then there exists a constant C > 0 independent of ε, such that D(Q‖R) ≤ Cε2.

Proof of Lemma A4. Denote by ‖ · ‖1 the �1-distance between distributions, i.e., ‖P −
Q‖1 � ∑x∈X |P(x)−Q(x)|, then from Pinsker’s inequality [14], we have

‖P−Q‖1 ≤
√

2D(P‖Q) <
√

2ε, (A20)

‖P− R‖1 ≤
√

2D(P‖R) <
√

2ε, (A21)

which implies

‖Q− R‖1 ≤ ‖P−Q‖1 + ‖P− R‖1 ≤ 2
√

2ε. (A22)

In addition, with pmin � minx∈X P(x), for all x ∈ X we have

R(x) > P(x)− |P(x)− R(x)| (A23)

> min
x∈X

P(x)−
√

2ε (A24)

= pmin −
√

2ε, (A25)

where to obtain (A24) we have used (A21). Note that since P ∈ relint(PX) we have
pmin > 0, and thus R(x) > pmin/2 for sufficiently small ε. As a result,

D(Q‖R) ≤ ∑
x∈X

(Q(x)− R(x))2

R(x)
(A26)

≤ 2
pmin

∑
x∈X

[Q(x)− R(x)]2 (A27)

≤ 2‖Q− R‖2
1

pmin
(A28)

≤ 16
pmin

ε2, (A29)

where to obtain (A26) we have used the fact that KL divergence is upper bounded by
corresponding χ2-divergence [55], and to obtain (A29) we have used (A22).

Lemma A5. For all (x, y) ∈ X× Y, we have

D(PXPY‖PX P̃(s,v,b)
Y|X ) ≥ PX(x) log

[
PY(y)eτ(x,y) + (1− PY(y))e

− PY (y)
1−PY (y) τ(x,y)

]
where P̃(s,v,b)

Y|X is as defined in (4), and where we have defined τ(x, y) � ṽT(y)s(x) + d̃(y).
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Proof of Lemma A5. First, we can rewrite the conditional distribution P̃(s,v,b)
Y|X (y|x) as

P̃(s,v,b)
Y|X (y|x) = evT(y)s(x)+b(y)

∑y′∈Y evT(y′)s(x)+b(y′)
=

PY(y)evT(y)s(x)+d(y)

∑y′∈Y PY(y′)evT(y′)s(x)+d(y′)

=
PY(y)eṽT(y)s(x)+d̃(y)

∑y′∈Y PY(y′)eṽT(y′)s(x)+d̃(y′)

=
PY(y)eτ(x,y)

∑y′∈Y PY(y′)eτ(x,y′)
. (A30)

Then, the KL divergence D(PXPY‖PX P̃(s,v,b)
Y|X ) can be expressed as

D(PX PY‖PX P̃(s,v,b)
Y|X ) = ∑

(x,y)∈X×Y
PX(x)PY(y) log

∑y′∈Y PY(y′)eτ(x,y′)

eτ(x,y)

= ∑
x∈X

PX(x) log

[
∑

y′∈Y
PY(y′)eτ(x,y′)

]
−EPX PY [τ(X, Y)]

= ∑
x∈X

PX(x) log

[
∑

y′∈Y
PY(y′)eτ(x,y′)

]
, (A31)

where to obtain the last equality we have used the fact EPX PY [τ(X, Y)] = 0. As a result,
we have

D(PXPY‖PX P̃(s,v,b)
Y|X ) ≥ PX(x) log

[
∑

y′∈Y
PY(y′)eτ(x,y′)

]
(A32)

≥ PX(x) log
[

PY(y)eτ(x,y) + (1− PY(y))e
− PY (y)

1−PY (y) τ(x,y)
]

, (A33)

where the last inequality follows from Jensen’s inequality:

∑
y′∈Y

PY(y′)eτ(x,y′) = PY(y)eτ(x,y) + (1− PY(y)) ∑
y′ �=y

PY(y′)
1− PY(y)

eτ(x,y′)

≥ PY(y)eτ(x,y) + (1− PY(y)) exp

(
1

1− PY(y)
∑

y′ �=y
PY(y′)τ(x, y′)

)

= PY(y)eτ(x,y) + (1− PY(y))e
− PY (y)

1−PY (y) τ(x,y)
.

Proceeding to our proof of Lemma 2, first note that when v = d = 0, we have
P̃(s,v,b)

Y|X = PY. As a result, the optimal v, d for (8) satisfy

D(PXY‖PX P̃(s,v,b)
Y|X ) ≤ D(PXY‖PXPY)

≤ ∑
(x,y)∈X×Y

[PX,Y(x, y)− PX(x)PY(y)]
2

PX(x)PY(y)

≤ ε2,

(A34)

where to obtain the second inequality we have again exploited χ2-divergence as an upper
bound of KL divergence [55], and to obtain the last inequality we have used the definition
of ε-dependency.
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As PXY ∈ relint(PX×Y), from Lemma A4, there exist C > 0 and ε1 > 0 such that
D(PXPY‖PX P̃(s,v,b)

Y|X ) < Cε2 for all ε < ε1. Furthermore, from Lemma A5, for all (x, y) ∈
X× Y and ε ∈ (0, ε1), we have

Cε2 ≥ PX(x) log
[

PY(y)eτ(x,y) + (1− PY(y))e
− PY (y)

1−PY (y) τ(x,y)]
. (A35)

Note that the right-hand side of (A35) satisfies

log
[

PY(y)eτ(x,y) + (1− PY(y))e
− PY (y)

1−PY (y) τ(x,y)]
=

PY(y)
2(1− PY(y))

τ2(x, y) + o(τ2(x, y)).

Therefore, there exists δ > 0 independent of ε1, such that for all |τ(x, y)| ≤ δ, we have

log
[

PY(y)eτ(x,y) + (1− PY(y))e
− PY (y)

1−PY (y) τ(x,y)
]
>

PY(y)
2

τ2(x, y). (A36)

In addition, if |τ(x, y)| > δ, we have

log
[

PY(y)eτ(x,y) + (1− PY(y))e
− PY (y)

1−PY (y) τ(x,y)
]

≥ min
{

log
[

PY(y)eδ + (1− PY(y))e
− PY (y)

1−PY (y) δ
]

, log
[

PY(y)e−δ + (1− PY(y))e
PY (y)

1−PY (y) δ
]}

≥ PY(y)
2

δ2,

where to obtain the second inequality we have exploited the monotonicity of function t �→
PY(y)et + (1− PY(y))e

− PY (y)
1−PY (y) t

, and to obtain the third inequality we have exploited (A36).
As a result, we have

log
[

PY(y)eτ(x,y) + (1− PY(y))e
− PY (y)

1−PY (y) τ(x,y)
]
>

PY(y)
2

·min{δ2, τ2(x, y)}. (A37)

Hence, (A35) becomes

Cε2 ≥ PX(x)PY(y)
2

·min{δ2, τ2(x, y)}, (A38)

from which we can obtain τ(x, y) = O(ε). To see this, let

ε2 � δ√
2C
· min
(x,y)∈X×Y

√
PX(x)PY(y), ε0 � min{ε1, ε2}.

Then, for all ε < ε0, we have

Cε2 <
PX(x)PY(y)

2
· δ2,

and (A38) implies |τ(x, y)| < C′ε with C′ =
√

2C
PX(x)PY(y)

.

Appendix C. Proof of Lemma 3

Proof. From Lemma 2, there exists C′ > 0 such that for all (x, y) ∈ X× Y, we have

|ṽT(y)s(x) + d̃(y)| < C′ε, (A39)
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which implies

|μT
s ṽ(y) + d̃(y)| < Cε, (A40)

|ṽT(y)s̃(x)| < 2Cε, (A41)

with C = max{C′, 1}.
From (A30), we can assume EPY [v(Y)] = EPY [d(Y)] = 0 without loss of generality.

Then, (4) can be rewritten as

P̃(s,v,b)
Y|X (y|x) = PY(y)eṽT(y)s(x)+d̃(y)

∑y′∈Y PY(y′)eṽT(y′)s(x)+d̃(y′)
, (A42)

and the numerator can be written as

PY(y)eṽT(y)s(x)+d̃(y) = PY(y)
(

1 + ṽT(y)s(x) + d̃(y) + o(ε)
)

= PY(y)
(

1 + ṽT(y)s(x) + d̃(y)
)
+ o(ε),

where we have used (A39). Similarly, from

∑
y′∈Y

PY(y)eṽT(y)s(x)+d̃(y) = ∑
y′∈Y

PY(y)
(

1 + ṽT(y)s(x) + d̃(y)
)
+ o(ε)

= 1 +EPY

[
ṽT(Y)s(x)

]
+EPY

[
d̃(y)

]
+ o(ε)

= 1 + o(ε)

we obtain
1

∑y′∈Y PY(y)eṽT(y)s(x)+d̃(y)
=

1
1 + o(ε)

= 1 + o(ε).

As a result, (A42) can be written as

P̃(s,v,b)
Y|X (y|x) =

[
PY(y)

(
1 + ṽT(y)s(x) + d̃(y)

)
+ o(ε)

]
[1 + o(ε)]

= PY(y)
(

1 + ṽT(y)s(x) + d̃(y)
)
+ o(ε),

(A43)

which implies PX P̃(v,b)
Y|X ∈ NX×Y

Cε (PXPY) for sufficiently small ε. In addition, the local

assumption of distributions implies that PXY ∈ NX×Y
ε (PXPY) ⊂ NX×Y

Cε (PXPY). Again,
from the local approximation of KL divergence [18]

D(P1‖P2) =
1
2
‖φ1 − φ2‖2 + o

(
ε2), (A44)

we have

D(PY,X‖PX P̃(s,v,b)
Y|X )

=
1
2 ∑

x∈X,y∈Y

[
PY,X(y, x)− P̃(s,v,b)

Y|X (y|x)PX(x)
]2

PY(y)PX(x)
+ o(ε2)

=
1
2 ∑

x∈X,y∈Y

[
PY,X(y, x)√
PY(y)PX(x)

−
√

PY(y)PX(x)

−
√

PY(y)PX(x)
(

ṽT(y)s(x) + d̃(y) + o(ε)
)]2

+ o(ε2)
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=
1
2 ∑

x∈X,y∈Y

[
B̃(y, x)−

√
PY(y)PX(x)ṽT(y)s̃(x)

−
√

PY(y)PX(x)
(

d̃(y) + μT
s ṽ(y)

)
−
√

PY(y)PX(x)o(ε)
]2

+ o(ε2)

(∗)
=

1
2 ∑

x∈X,y∈Y

[
B̃(y, x)−

√
PY(y)PX(x)ṽT(y)s̃(x)

]2

+
1
2 ∑

x∈X,y∈Y

[√
PY(y)PX(x)

(
d̃(y) + μT

s ṽ(y)
)]2

+ o(ε2)

=
1
2 ∑

x∈X,y∈Y

[
B̃(y, x)−

(
ξY(y)

)T
ξX(x)

]2
+

1
2
EPY

[
(d̃(y) + μT

s ṽ(y))2
]
+ o(ε2)

=
1
2
‖B̃− ΞY(ΞX)T‖2

F +
1
2

η(v,b)(s) + o(ε2),

where to obtain (∗), we have used (A40) and (A41) together with the fact |B̃(y, x)| < ε,
and that

∑
x∈X,y∈Y

B̃(y, x)
√

PY(y)PX(x)
(

d̃(y) + μT
s ṽ(y)

)
= 0,

∑
x∈X,y∈Y

PY(y)PX(x)ṽT(y)s̃(x)
(

d̃(y) + μT
s ṽ(y)

)
= 0,

since E
[
d̃(Y)

]
= 0,E[s̃(X)] = E[ṽ(Y)] = 0.

Appendix D. Proofs of Theorems 2 and 3

Theorems 2 and 3 can be proved based on Lemma 3.

Proofs of Theorems 2 and 3. Note that the value of d(·) only affects the second term of
the KL divergence; hence, we can always choose d(·) such that d̃(y) + μT

s ṽ(y) = 0. Then,
the (ΞY, ΞX) pair should be chosen as

(ΞY, ΞX)∗ = arg min
(ΞY ,ΞX)

∥∥B̃− ΞY(ΞX)T∥∥2
F. (A45)

Set the derivative (we use the denominator-layout notation of matrix calculus where
the scalar-by-matrix derivative will have the same dimension as the matrix)

∂

∂ΞY ‖B̃− ΞY(ΞX)T‖2
F = 2(ΞY(ΞX)T

ΞX − B̃ΞX) (A46)

to zero, and the optimal ΞY for fixed ΞX is (here, we assume the matrix
(
ΞX)T

ΞX = Λs̃(X)

is invertible; for the case where
(
ΞX)T

ΞX is singular, we can obtain a similar result with
ordinary matrix inverse replaced by the Moore–Penrose inverse)

ΞY∗ = B̃ΞX(
(
ΞX)T

ΞX)−1. (A47)

As 1T√PY B̃ = 0, we have 1T√PY ΞY∗ = 0, which demonstrates that ΞY∗ is a valid
matrix for a zero-mean feature vector.

To express ΞY∗ of (A47) in the form of s and v, we can make use of the correspondence
between feature and information vectors. We can show that, for a zero-mean feature
function f (X) with corresponding information vector φ, we have the correspondence
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EPX|Y [ f (X)|Y] ↔ B̃φ. To see this, note that the y-th element of information vector B̃φ is
given by

∑
x∈X

B̃(y, x)φ(x) = ∑
x∈X

PXY(x, y)− PX(x)PY(y)√
PX(x)PY(y)

f (x)
√

PX(x)

=
1√

PY(y)
∑

x∈X
PXY(x, y) f (x)

=
1√

PY(y)
EPX|Y [ f (X)|Y = y].

Using similar methods, we can verify that Λs̃(X) =
(
ΞX)T

ΞX. As a result, (A47) is
equivalent to

ṽ∗(y) = EPX|Y

[
Λ−1

s̃(X)
s̃(X)

∣∣∣ Y = y
]
. (A48)

By a symmetry argument, we can also obtain the first two equations of Theorem 3.
To obtain the third equations of these two theorems, we need to minimize η(v,b)(s) =
EPY

[
(μT

s ṽ(Y) + d̃(Y))2]. For given ṽ and μs, the optimal d̃ is

d̃∗(y) = −μT
s ṽ(Y), (A49)

and the corresponding η(v,b)(s) = 0.
In addition, for given d̃ and ṽ, we have

η(v,b)(s) = EPY

[
(μT

s ṽ(Y) + d̃(Y))2
]

= μT
s Λṽ(Y) μs + 2μT

s EPY

[
ṽ(Y)d̃(Y)

]
+ var(d̃(Y)).

(A50)

Set ∂
∂μs

η(v,b)(s) = 0 and we obtain

μ∗s = −Λ−1
ṽ(Y)EPY

[
ṽ(Y)d̃(Y)

]
. (A51)

Appendix E. Proof of Theorem 4

Proof. From Lemma 3, choosing the optimal (ΞY, ΞX) is equivalent to solving the matrix
factorization problem of B̃. Since both ΞY and ΞX have rank no greater than k, from the
Eckart–Young–Mirsky theorem [56], the optimal choice of ΞY(ΞX)T should be the truncated
singular value decomposition of B̃ with top k singular values. As a result, (ΞY, ΞX)∗ are
the left and right singular vectors of B̃ corresponding to the largest k singular values.

The optimality of bias d̃(y) = −μT
s ṽ(y) has already been shown in Appendix D.

Appendix F. Proof of Theorem 5

The following lemma is useful to prove Theorem 5.

Lemma A6 (Pythagorean theorem). Let ΞX∗ be the optimal matrix for given ΞY as defined
in (13). Then,∥∥B̃− ΞY(ΞX)T∥∥2

F −
∥∥B̃− ΞY(ΞX∗)T∥∥2

F =
∥∥ΞY(ΞX∗)T − ΞY(ΞX)T∥∥2

F. (A52)
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Proof of Lemma A6. Denote by 〈U, V〉 the Frobenius inner product of matrices U and V,
i.e., 〈U, V〉 � tr(UTV), and we have〈

B̃− ΞY(ΞX∗)T, ΞY(ΞX)T
〉
= tr

(
B̃ΞX(ΞY)T

)
− tr

(
ΞX∗(ΞY)T

ΞY(ΞX)T
)

= tr
(

B̃ΞX(ΞY)T
)
− tr

(
B̃TΞY(ΞX)T

)
= 0.

As a result, we obtain∥∥B̃− ΞY(ΞX)T∥∥2
F =

∥∥B̃− ΞY(ΞX∗)T
+
(
ΞY(ΞX∗)T − ΞY(ΞX)T)∥∥2

F

=
∥∥B̃− ΞY(ΞX∗)T∥∥

F +
∥∥ΞY(ΞX∗)T − ΞY(ΞX)T∥∥2

F

+ 2
〈

B̃− ΞY(ΞX∗)T, ΞY(
(
ΞX∗)T −

(
ΞX)T

)
〉

=
∥∥B̃− ΞY(ΞX∗)T∥∥

F + ‖ΞY(ΞX∗)T − ΞY(ΞX)T‖2
F,

which finishes the proof.

Proceeding to our proof of Theorem 5, from Lemma A6 we have

L(s)−L(s∗)

=
1
2

[
‖B̃− ΞY(ΞX)T‖2

F − ‖B̃− ΞY(ΞX∗)T‖2
F

]
+

1
2

[
η(v,b)(s)− η(v,b)(s∗)

]
+ o(ε2)

=
1
2
‖ΞY(ΞX∗)T − ΞY(ΞX)T‖2

F +
1
2

κ(v,b)(s, s∗) + o(ε2),

where κ(v,b)(s, s∗) � η(v,b)(s)− η(v,b)(s∗). We then optimize ‖ΞY(ΞX∗)T−ΞY(ΞX)T‖2
F and

κ(v,b)(s, s∗) separately.
For the first term, we need to express ΞX in terms of W and ΞX

1 . From (17), we obtain

E[sz(X)] = σ(c(z)) + o(ε), (A53)

s̃z(x) = wT(z)t̃(x) · σ′(c(z)) + o(ε), (A54)

which can be expressed in information vectors as

ΞX = ΞX
1 WTJ + o(ε). (A55)

From Theorem 3, we have

ΞX∗ = B̃T ΞY ((ΞY)T
ΞY)−1. (A56)

As a result, we have

∥∥ΞY(ΞX∗)T − ΞY(ΞX)T∥∥2
F =

∥∥((ΞY)T
ΞY)1/2

(
(
ΞX∗)T −

(
ΞX)T

)
∥∥2

F

=
∥∥∥((ΞY)T

ΞY)1/2 ·
((

ΞX∗)T − JW
(
ΞX

1
)T − o(ε)

)∥∥∥2

F

=
∥∥∥((ΞY)T

ΞY)1/2 ·
((

ΞX∗)T − JW
(
ΞX

1
)T
)∥∥∥2

F
+ o(ε2)

=
∥∥∥((ΞY)T

ΞY)1/2
J ·
(

J−1(ΞX∗)T −W
(
ΞX

1
)T
)∥∥∥2

F
+ o(ε2)

=
∥∥ΘB̃1 −ΘW

(
ΞX

1
)T∥∥2

F + o(ε2), (A57)

where the third equality follows from the fact that [cf. (A41)] s̃(x) = O(ε) and ṽ(y) = O(1),
and the last equality follows from the definitions B̃1 � J−1(ΞX∗)T and Θ � (

(
ΞY)T

ΞY)1/2J.
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For the second term, from (A50) and (A51), we have

κ(v,b)(s, s∗) = [(μs − μs∗ ) + μs∗ ]
TΛṽ(Y)

[
(μs − μs∗ ) + μs∗

]
− μT

s∗Λṽ(Y)μs∗ + 2(μs − μs∗ )
T
EPY

[
ṽ(Y)d̃(Y)

]
= (μs − μs∗ )

TΛṽ(Y)
(
μs − μs∗

)
+ 2(μs − μs∗ )

T
(

Λṽ(Y)μs∗ +EPY

[
ṽ(Y)d̃(Y)

])
= (μs − μs∗ )

TΛṽ(Y)
(
μs − μs∗

)
. (A58)

Combining (A57) and (A58) finishes the proof.

Appendix G. Analyses of Hidden Layer Parameters

First, from (A53), the bias c(z) of hidden layer is (when μt �= 0, the formula should be
modified as c(z) = σ−1(μ∗s (z))− μT

t w + o(ε).)

c(z) = σ−1(μ∗s (z)) + o(ε).

To obtain μ∗s , let us define σmin � infx σ(x), σmax � supx σ(x). Then, the optimal μs is
the solution of

minimize
μs

(μs − μs∗)
TΛṽ(Y)

(
μs − μs∗

)
subject to σmin  μs  σmax.

(A59)

If μs∗ satisfies the constraint of (A59), then it is the optimal solution. Otherwise, some
elements of μ∗s will become either σmin or σmax, known as the saturation phenomenon [21].

To obtain W∗, let

B̃′1 � ΘB̃1 =
((

ΞY)T
ΞY)−1/2 (

ΞY)T
B̃,

W′ � ΘW =
((

ΞY)T
ΞY)1/2

JW.

Then, the optimal W′ is given by

W′∗ = arg min
W′

‖B̃1
′ −W′(ΞX

1
)T‖2

F = B̃1
′ΞX

1 (
(
ΞX

1
)T

ΞX
1 )
−1. (A60)

Hence, W∗ is given by

W∗ = Θ−1W′∗ = Θ−1B̃′1ΞX
1 (
(
ΞX

1
)T

ΞX
1 )
−1

= B̃1ΞX
1 (
(
ΞX

1
)T

ΞX
1 )
−1

= J−1 · [ΞY(
(
ΞY)T

ΞY)−1]TB̃ ΞX
1 (
(
ΞX

1
)T

ΞX
1 )
−1,

where the term B̃ ΞX
1 (
(
ΞX

1
)T

ΞX
1 )
−1 corresponds to a feature projection of t̃(X):

B̃ ΞX
1
((

ΞX
1
)T

ΞX
1
)−1 ↔ EPX|Y

[
Λ−1

t̃(X)
t̃(X)

∣∣∣ Y
]
. (A61)

As a consequence, this multi-layer neural network conducts a generalized feature
projection between features extracted from different layers. Note that the projected feature
EPt̃|Y

[
Λ−1

t̃ t̃
∣∣∣Y] depends only on the distribution Pt̃|Y and does not depend on the distribu-

tion PX|Y. Therefore, the above computations can be accomplished without knowing the
hidden random variable X and can be applied to general cases.
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Abstract: It has been reported in many recent works on deep model compression that the popula-
tion risk of a compressed model can be even better than that of the original model. In this paper,
an information-theoretic explanation for this population risk improvement phenomenon is pro-
vided by jointly studying the decrease in the generalization error and the increase in the empirical
risk that results from model compression. It is first shown that model compression reduces an
information-theoretic bound on the generalization error, which suggests that model compression can
be interpreted as a regularization technique to avoid overfitting. The increase in empirical risk caused
by model compression is then characterized using rate distortion theory. These results imply that the
overall population risk could be improved by model compression if the decrease in generalization
error exceeds the increase in empirical risk. A linear regression example is presented to demonstrate
that such a decrease in population risk due to model compression is indeed possible. Our theo-
retical results further suggest a way to improve a widely used model compression algorithm, i.e.,
Hessian-weighted K-means clustering, by regularizing the distance between the clustering centers.
Experiments with neural networks are provided to validate our theoretical assertions.

Keywords: empirical risk; generalization error; K-means clustering; model compression; population
risk; rate distortion theory; vector quantization

1. Introduction

Although deep neural networks have achieved remarkable success in various do-
mains [1], e.g., computer vision [2], playing games like Go [3], and autonomous driving [4],
the improvement of the performance of deep models often comes with deeper layers
and more complex network structures, which usually have a large number of parameters.
For example, in the application of image classification, it takes over 200 MB to save the
parameters of AlexNet [2] and more than 500 MB for VGG-16 net [5]. Hence, it is difficult to
port such large models to resource-limited devices such as mobile devices and embedded
systems, due to their limited storage, bandwidth, energy, and computational resources.

Due to this reason there has been a flurry of work on compressing deep neural
networks (see [6–8] for recent surveys). Existing studies mainly focus on designing com-
pression algorithms to reduce the memory and computational cost, while keeping the
same level of population risk. In some recent papers [9–12], aggressive model compression
algorithms have been proposed, which require 10% or fewer bits to store the compressed
model compared to the storage required by the original model. Surprisingly, it has been

Entropy 2021, 23, 1255. https://doi.org/10.3390/e23101255 https://www.mdpi.com/journal/entropy125
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observed empirically in these works that the population risk of the compressed model can
often be even better than that of the original model. This phenomenon is counter-intuitive
at first glance, since more compression generally leads to more information loss.

Indeed, a compressed model would usually have a larger empirical risk than the origi-
nal one, since machine learning methods are usually trained by minimizing the empirical
risk. On the other hand, model compression could possibly decrease the generalization
error, since it can be interpreted as a regularization technique to avoid overfitting. As the
population risk is the sum of the empirical risk and the generalization error, it is possible
for the population risk to be reduced by model compression.

1.1. Contributions

In this paper, we provide an information-theoretic explanation for the population risk
improvement with model compression by jointly characterizing the decrease in generaliza-
tion error and the increase in empirical risk. Specifically, we focus on the case where the
model is compressed based on a pre-trained model.

We first prove that model compression leads to a tightening of the information-
theoretic generalization error bound in [13], and it can therefore be interpreted as a reg-
ularization method to reduce overfitting. Furthermore, by defining a distortion metric
based on the difference in the empirical risk between the original model obtained by em-
pirical risk minimization (ERM) and compressed models, we use rate distortion theory to
characterize the increase in empirical risk as a function of the number of bits R used to
describe the model. If the decrease in generalization error exceeds the increase in empirical
risk, the population risk can be improved. An empirical illustration of this result for the
MNIST dataset is provided in Figure 1, where model compression can lead to population
risk improvement (details are given in Section 7). To better demonstrate our theoretical
results, we investigate the example of linear regression comprehensively, where we develop
explicit bounds on the generalization error and the increase in empirical risk.
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Figure 1. Population risk of the compressed model Ŵ and the original model W vs. compression ratio
(ratio of the number of bits used for compressed model to the number of bits used for original model).
The generalization error of Ŵ decreases and the empirical risk of Ŵ increases with more compression
(smaller compression ratio). The population risk of Ŵ is less than that of W for compression ratios
larger than 6% in this figure. As the compression ratio goes to 100% (no compression), the population
risk of Ŵ will converge to that of the original model W.
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Our results also suggest a way to improve a method for compression based on Hessian-
weighted K-means clustering [11] in both scalar and vector case, by regularizing the
distance between the clustering centers. Our experiments with neural networks validate
our theoretical assertions and demonstrate the effectiveness of the proposed regularizer.

1.2. Related Works

There have been many studies on model compression for deep neural networks.
The compression could be achieved by varying the training process, e.g., network structure
optimization [14], low precision neural networks [15], and neural networks with binary
weights [16,17]. Here we mainly discuss compression approaches that are applied on a
pre-trained model.

Pruning, quantization, and matrix factorization are the most popular approaches
to compressing pre-trained deep neural networks. The study of pruning algorithms for
model compression which remove redundant parameters from neural networks dates
back to the 1980s and 1990s [18–20]. More recently, an iterative pruning and retraining
algorithm to further reduce the size of deep models was proposed in [9,21]. The method of
network quantization or weight sharing, i.e., employing a clustering algorithm to group
the weights in a neural network, and its variants, including vector quantization [22], soft
quantization [23,24], fixed point quantization [25], transform quantization [26], and Hessian
weighted quantization [11], have been extensively investigated. Matrix factorization, where
low-rank approximation of the weights in neural networks is used instead of the original
weight matrix, has also been widely studied in [27–29].

All of the aforementioned works demonstrate the effectiveness of their compres-
sion methods via comprehensive numerical experiments. Little research has been done
to develop a theoretical understanding of how model compression affects performance.
In work [30], an information-theoretic view of model compression via rate-distortion theory
is provided, with the focus on characterizing the tradeoff between model compression
and only the empirical risk of the compressed model. In [31–33], using a PAC-Bayesian
framework, a non-vacuous generalization error bound for compressed model is derived
based on its smaller model complexity.

In contrast to these works, instead of focusing on minimizing only the empirical risk as
in [30], or minimizing only the generalization error as in [33], we use the mutual information
based generalization error bound developed in [13,34] jointly with rate distortion theory
to connect analyses of generalization error and empirical risk. This way, we are able to
characterize the tradeoff between decrease in generalization error and the increase in
empirical risk that results from model compression, and thus provide an understanding
as to why model compression can improve the population risk. More importantly, our
theoretical studies offer insights on designing practical model compression algorithms.

The rest of the paper is organized as follows. In Section 2, we provide relevant
definitions and review relevant results from rate distortion theory. In Section 3, we prove
that model compression results in the tightening of an information-theoretic generalization
error upper bound. In Section 4, we use rate distortion theory to characterize the tradeoff
between the increase in empirical risk and the decrease in generalization error that results
from model compression. In Section 5, we quantify this tradeoff for a linear regression
model. In Section 6, we discuss how the Hessian-weighted K-means clustering compression
approach can be improved by using a regularizer motivated by our theoretical results.
In Section 7, we provide some experiments with neural network models to validate our
theoretical results and demonstrate the effectiveness of the proposed regularizer.

Notation 1. For a random variable X generated from a distribution μ, we use EX∼μ to denote the
expectation taken over X with distribution μ. We use Id to denote the d-dimensional identity matrix
and ‖A‖ to denote the spectral norm of a matrix A. The cumulant generating function (CGF) of a
random variable X is defined as ΛX(λ) � lnE[eλ(X−EX)]. All logarithms are the natural ones.
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2. Preliminaries

2.1. Review of Rate Distortion Theory

Rate distortion theory, introduced by Shannon [35], is a major branch of information
theory that studies the fundamental limits of lossy data compression. It addresses the
minimal number of bits per symbol, as measured by the rate R, to transmit a random
variable W such that the receiver can reconstruct W without exceeding distortion D.

Specifically, let Wm = {W1, W2, · · · , Wm} denote a sequence of m i.i.d. random
variables Wi ∈ W generated from a source distribution PW . An encoder fm : Wm →
{1, 2, · · · , M}maps the message Wm into a codeword, and a decoder gm : {1, 2, · · · , M} →
Ŵm reconstructs the message by an estimate Ŵm from the codeword, where Ŵ ⊆ W
denotes the range of Ŵ. A distortion metric d : W ×W → R+ quantifies the difference
between the original and reconstructed messages. The distortion between sequences wm

and ŵm is defined to be

d(wm, ŵm) � 1
m

m

∑
i=1

d(wi, ŵi). (1)

A commonly used distortion metric is the square distortion: d(w, ŵ) = (w− ŵ)2.

Definition 1. An (m, M, D)-triple is achievable, if there exists a (probabilistic) encoder-decoder pair
( fm, gm) such that the alphabet of codeword has size M and the expected distortion
E[d(Wm; gm( fm(Wm)))] ≤ D.

Now we define the following rate-distortion and distortion-rate function for lossy
data compression.

Definition 2. The rate-distortion function and the distortion-rate function are defined as

R(D) � lim
m→∞

1
m

log2 M∗(m, D), (2)

D(R) � lim
m→∞

D∗(m, R), (3)

where M∗(m, D) � min{M : (m, M, D) is achievable} and D∗(m, R) � min{D : (m, 2mR, D)
is achievable}.

The main theorem of rate distortion theory is as follows.

Lemma 1 ([36]). For an i.i.d. source W with distribution PW and distortion function d(w, ŵ):

R(D) = min
PŴ|W :E[d(W,Ŵ)]≤D

I(W; Ŵ), (4)

D(R) = min
PŴ|W :I(W;Ŵ)≤R

E[d(W, Ŵ)], (5)

where I(W; Ŵ) � EW,Ŵ [ln
PW,Ŵ
PW PŴ

] denotes the mutual information between W and Ŵ.

The rate-distortion function quantifies the smallest number of bits required to com-
press the data given the distortion, and the distortion-rate function quantifies the minimal
distortion that can be achieved under the rate constraint.

2.2. Generalization Error

Consider an instance space Z , a hypothesis spaceW , and a non-negative loss function
� : W ×Z → R+. A training dataset S = {Z1, · · · , Zn} consists of n i.i.d samples Zi ∈ Z
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drawn from an unknown distribution μ. The goal of a supervised learning algorithm is to
find an output hypothesis w ∈ W that minimizes the population risk:

Lμ(w) � EZ∼μ[�(w, Z)]. (6)

In practice, μ is unknown, and therefore Lμ(w) cannot be computed directly. Instead,
the empirical risk of w on the training dataset S is studied, which is defined as

LS(w) � 1
n

n

∑
i=1

�(w, Zi). (7)

A learning algorithm can be characterized by a randomized mapping from the training
dataset S to a hypothesis W according to a conditional distribution PW|S. The (expected)
generalization error of a supervised learning algorithm is the expected difference between
the population risk of the output hypothesis and its empirical risk on the training dataset:

gen(μ, PW|S) � EW,S[Lμ(W)− LS(W)], (8)

where the expectation is taken over the joint distribution PS,W = PS ⊗ PW|S. The general-
ization error is used to measure the extent to which the learning algorithm overfits the
training data.

3. Compression Can Improve Generalization

In this section, we show that lossy compression can lead to a tighter mutual informa-
tion based generalization error upper bound, which potentially reduces the generalization
error of a supervised learning algorithm.

We start from the following lemma which provides an upper bound on the generaliza-
tion error using the mutual information I(S; W) between training dataset S and the output
of the learning algorithm W.

Lemma 2 ([13]). Suppose �(w, Z) is σ-sub-Gaussian (A random variable X is σ-sub-Gaussian if
ΛX(λ) ≤ σ2λ2

2 , ∀λ ∈ R.) under Z ∼ μ for all w ∈ W , then

|gen(μ, PW|S)| ≤
√

2σ2

n
I(S; W). (9)

Compression can be viewed as a post-processing of the output of a learning algorithm.
The output model W generated by a learning algorithm can be quantized, pruned, fac-
torized, or even perturbed by noise, which results in a compressed model Ŵ. Assume
that the compression algorithm is only based on W and can be described by a conditional
distribution PŴ|W . Then the following Markov chain holds: S → W → Ŵ. By the data
processing inequality,

I(S; Ŵ) ≤ min{I(W; Ŵ), I(S, W)}.

Thus, we have the following theorem characterizing the generalization error of the
compressed model.

Theorem 1. Consider a learning algorithm PW|S, a compression algorithm PŴ|W, and suppose
�(ŵ, Z) is σ-sub-Gaussian under Z ∼ μ for all ŵ ∈ Ŵ . Then

|gen(μ, PŴ|S)| ≤
√

2σ2

n
min{I(W; Ŵ), I(S, W)}. (10)

Note that the generalization error upper bound in Theorem 1 for the compressed
model is always no greater than the one in Lemma 2. This allows for the interpretation of
compression as a regularization technique to reduce the generalization error.
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4. Generalization Error and Model Distortion

In this section, we define a distortion metric in model compression that allows us to
relate the distortion (the increase in empirical risk) due to compression with the reduction
in the generalization error bound discussed in Section 3.

4.1. Distortion Metric in Model Compression

The expected population risk of a model W can be written as

EW [Lμ(W)] = E[LS(W)] + gen(μ, PW|S), (11)

where the first term, which is the expected empirical risk, reflects how well the model W
fits the training data, while the second term demonstrates how well the model generalizes.
In the empirical risk minimization framework, we control both terms by (1) minimizing the
empirical risk of W directly or using other stochastic optimization algorithms, and (2) us-
ing regularization methods to control the generalization error, e.g., early stopping and
dropout [1].

Now, consider the expected population risk of the compressed model Ŵ:

EŴ [Lμ(Ŵ)] = E[Lμ(Ŵ)− LS(Ŵ) + LS(Ŵ)− LS(W) + LS(W)]

= E[LS(W)] + gen(μ, PŴ|S) +E[LS(Ŵ)− LS(W)]. (12)

Compared with (11), we note that the first empirical risk term is independent of the
compression algorithm, the second generalization error term can be upper bounded by
Theorem 1, and the third term E[LS(Ŵ)− LS(W)] quantifies the increase in the empirical
risk if we use the compressed model Ŵ instead of the original model W. We then define
the following distortion metric for model compression:

dS(w, ŵ) � LS(ŵ)− LS(w), (13)

which is the difference in the empirical risk between the compressed model Ŵ and the orig-
inal model W. In general, function dS(w, ŵ) is not always non-negative. However, for ERM
solution W, which is obtained by minimizing the empirical risk LS(W), dS(w, ŵ) ≥ 0,
which ensures that dS(w, ŵ) is a valid distortion metric. By Theorem 1, it follows that

ES,W,Ŵ [Lμ(Ŵ)− LS(W)] ≤
√

2σ2

n
I(W; Ŵ) +ES,W,Ŵ [dS(Ŵ, W)] � LS,W(PŴ|W), (14)

where LS,W(PŴ|W) is an upper bound on the expected difference between the population

risk of Ŵ and the empirical risk of the original model W on training dataset S. Note that
LS(W) is independent of the compression algorithm. Therefore, the bound in (14) can be
viewed as an upper bound of the population risk of the compressed model Ŵ.

4.2. Population Risk Improvement

By Lemma 1, the smallest distortion that can be achieved at rate R is D(R) =
minI(W;Ŵ)≤R ES,W,Ŵ [dS(Ŵ, W)]. Thus, the tightest bound in (14) that can be achieved
at rate R is given in the following theorem.

Theorem 2. Suppose the assumptions in Theorem 1 hold, PW|S minimizes the empirical risk
LS(W), and I(W; Ŵ) = R, then

min
PŴ|W :I(W;Ŵ)=R

ES,W,Ŵ [Lμ(Ŵ)− LS(W)] ≤
√

2σ2

n
R + D(R). (15)
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From the properties of the distortion-rate function [36], we know that D(R) is a de-
creasing function of R. Thus, we see that as R decreases the first term in (15), which
corresponds to the generalization error, decreases, while the second term, which corre-
sponds to the empirical risk, increases. Due to this tradeoff, it may be possible for the
bound in (15) to be smaller due to compression, i.e., using a smaller rate R. This indicates
that the population risk could improve with compression algorithm, which minimizes the
upper bound LS,W(PŴ|W).

Remark 1. In order to conclude definitively that the population risk can be improved with compres-
sion, we need to find a lower bound (as a function of R) to match (at least in the order sense) the upper
bound in Theorem 2. This appears to be difficult to construct in general. One approach might be to
use the same decomposition as in (12) and develop lower bounds for minI(W;Ŵ)=R gen(μ, PŴ|S)

and minI(W;Ŵ)=R ES,W,Ŵ [dS(Ŵ, W)] independently. However, such an approach runs into the
following issues: (1) such a lower bound would be loose since the compression algorithm PŴ|W that
minimizes generalization error, the one that minimizes the distortion, and the one that minimizes
the sum of the two can be quite different; and (2) a lower bound for generalization error needs to be
developed, which appears to be difficult, with existing literature mainly focusing on lower bounding
the excess risk, e.g., [37].

As will be shown in Section 7, we can actually improve the population risk with a
well designed compression algorithm in practical applications.

5. Example: Linear Regression

In this section, we comprehensively explore the example of linear regression to get
a better understanding of the results in Section 4. To this end, we develop explicit upper
bounds for generalization error and distortion-rate function D(R). All the proofs of the
lemmas and theorems are provided in the Appendixes A–D.

Suppose that the dataset S = {Z1, · · · , Zn} = {(X1, Y1), · · · , (Xn, Yn)} is generated
from the following linear model with weight vector w∗ = (w∗(1), · · · , w∗(d)) ∈ Rd,

Yi = X�i w∗ + εi, i = 1, · · · , n, (16)

where Xi’s are i.i.d. d-dimensional random vectors with distribution N (0, ΣX), and εi ∼
N (0, σ′2) denotes i.i.d. Gaussian noise. We adopt the mean squared error as the loss
function, and the corresponding empirical risk on S is

LS(w) =
1
n

n

∑
i=1

(Yi − X�i w)2 =
1
n
‖Y− X�w‖2

2, (17)

for w ∈ W = Rd, where X ∈ Rd×n denotes all the input samples, and Y ∈ Rn denotes the
responses. If n > d, the ERM solution is

W = (XX�)−1XY, (18)

which is deterministic given S. Its generalization error can be computed exactly as in the
following lemma (see Appendix A for detailed proof).

Lemma 3. If n > d + 1, then

gen(μ, PW|S) =
σ′2d

n
(2 +

d + 1
n− d− 1

). (19)

5.1. Information-Theoretic Generalization Bounds for Compressed Linear Model

We note that the mutual information based bound in Lemma 2 is not applicable for this
linear regression model, since W is a deterministic function of S, and I(S; W) = ∞. However,
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this issue can be resolved if we post-process the ERM solution W by a compression algorithm
and upper bound the generalization error by I(Ŵ; W) as shown in Theorem 1.

Consider a compression algorithm, which maps the original weights W ∈ Rd to the
compressed model Ŵ ∈ Ŵ ⊆ Rd. For a fixed and compact Ŵ , we define

C(w∗) � sup
ŵ∈Ŵ

‖ŵ− w∗‖2
2, (20)

which measures the largest distance between the reconstruction ŵ and the optimal weights
w∗. The following proposition provides an upper bound on the generalization error of the
compressed model Ŵ, and the detailed proof is provided in Appendix B.

Proposition 1. Consider the ERM solution W = (XX�)−1XY, and suppose Ŵ is compact, then

gen(μ, PŴ|S) ≤ 2σ∗2
�

√
I(W; Ŵ)

n
, (21)

where σ∗2
� � C(w∗)‖ΣX‖+ σ′2.

5.2. Distortion-Rate Function for Linear Model

We now provide an upper bound on the distortion-rate function D(R) for the linear re-
gression model. Note that∇LS(W) = 0, since W minimizes the empirical risk. The Hessian
matrix of the loss function is

HS(W) =
1
n

XX�, (22)

which is not a function of W. Then, the distortion function can be written as:

ES,W,Ŵ [dS(Ŵ, W)] = ES,W,Ŵ [LS(Ŵ)− LS(W)]

= ES,W,Ŵ [(Ŵ −W)�
1
n

XX�(Ŵ −W)]. (23)

The following theorem characterizes upper bounds for R(D) and D(R) for
linear regression.

Proposition 2. For the ERM solution W = (XX�)−1XY, we have

R(D) ≤ d
2

(
ln

dσ′2

(n− d− 1)D

)+
, D ≥ 0, (24)

D(R) ≤ dσ′2

n− d− 1
e−

2R
d , R ≥ 0, (25)

where (x)+ = max{0, x}.

Proof sketch. The proof of the upper bound for R(D) is based on considering a Gaussian
random vector which has the same mean and covariance matrix as W. In addition, the up-
per bound is achieved when W − Ŵ is independent of the dataset S with the following
conditional distribution,

PŴ|W = N
(
(1− α)W + αw∗, (1− α)

D
d

Σ−1
X
)
, (26)

where α � nD
dσ′2 ≤ 1. Note that this “compression algorithm” requires the knowledge of

optimal weights w∗, which is unknown in practice.
The details can be found in Appendix C.
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Remark 2. As shown in [38], if n > d/ε2, ‖ 1
n XX� − ΣX‖ ≤ ε holds with high probability.

Then, the following lower bound on R(D) holds if we can approximate 1
n XX� in (23) using ΣX,

R(D) � d
2

(
ln

dσ′2

(n− d− 1)D

)+
− D(PW‖PWG ), (27)

where WG denotes a Gaussian random vector with the same mean and variance as W. The details
can be found in Appendix D.

Combing Propositions 1 and 2, we have the following result.

Corollary 1. Under the same assumptions as in Propositions 1, we have

min
PŴ|W :I(W;Ŵ)=R

ES,W,Ŵ [Lμ(Ŵ)− LS(W)] ≤ 2σ∗2
�

√
R
n
+

dσ′2

n− d− 1
e−

2R
d , R ≥ 0. (28)

In (28) the first term corresponds to the generalization error, which decreases with
compression, and the second term corresponds to the empirical risk, which increases
with compression.

5.3. Evaluation and Visualization

In the following plots, we generate the training dataset S using the linear model
in (16) by letting d = 50, n = 80, ΣX = Id and σ′2 = 1. We consider the following two
compression algorithms. The first one is the conditional distribution PŴ|W in the proof
of achievability (26), which requires the knowledge of w∗ and is denoted as “Oracle”.
The second one is the well-known K-means clustering algorithm, where the weights in W
are grouped into K clusters and represented by the cluster centers in the reconstruction Ŵ.
By changing the number of clusters K, we can control the rate R, i.e., I(W; Ŵ). We average
the performance and estimate I(W; Ŵ) of these algorithms with 10,000 Monte-Carlo trials
in the simulation.

We note that I(W; Ŵ) is equal to the number of bits used in compression only in the
asymptotic regime of large number of samples. In practice, we may have only one sample
of the weights W, and therefore I(W; Ŵ) simply measures the extent to which compression
is performed by the compression algorithm.

In Figure 2a, we plot the generalization error bound in Proposition 1 as a function of
the rate R and compare the generalization errors of the Oracle and K-means algorithms. It
can be seen that Proposition 1 provides a valid upper bound for the generalization error,
but this bound is tight only when R is small. Moreover, both compression algorithms
can achieve smaller generalization errors compared to that of the ERM solution W, which
validates the result in Theorem 1.

Figure 2b plots the upper bound on the distortion-rate function in Theorem 2 and
the distortions achieved by the Oracle and K-means algorithms. The distortion of the
Oracle decreases as we increase the rate R and matches the D(R) function well. However,
there is a large gap between the distortion achieved by K-means algorithms and D(R).
One possible explanation is that since w∗ is unknown, it is impossible for the K-means
algorithm to learn the optimal cluster center with only one sample of W. Even if we view
W(j), j = 1, · · · , d as i.i.d. samples from the same distribution, there is still a gap between
the distortion achieved by the K-means algorithm and the optimal quantization as studied
in [39].

We plot the population risks of the ERM solution W, the Oracle, and K-means al-
gorithms in Figure 2c. It is not surprising that the Oracle algorithm achieves a small
population risk, since Ŵ is a function of w∗ and Ŵ = w∗ when R = 0. However, it can
be seen that the K-means algorithm achieves a smaller population risk than the original
model W, since the decrease in generalization error exceeds the increase in empirical risk,

133



Entropy 2021, 23, 1255

when we use fewer clusters in the K-means algorithm, i.e., a smaller rate R. We note that
the minimal population risk is achieved when K = 2, since we initialize w∗ so that w∗(i),
1 ≤ i ≤ d, can be well approximated by two cluster centers.

(a) (b) (c)

Figure 2. Comparison of three different quantities for linear regression as a function of rate R in bits. (a) Generalization
error. (b) Distortion. (c) Population risk.

6. Clustering Algorithm Minimizing LS,W

In this section, we propose an improvement of the Hessian-weighted (HW) K-means
clustering algorithm [11] for model compression by regularizing the distance between
the cluster centers, which minimizes the upper bound LS,W(PŴ|W), as suggested by our
theoretical results in Section 4.

6.1. Hessian-Weighted K-Means Clustering

The goal of HW K-means is to minimize the distortion on the empirical risk dS(Ŵ, W),
which has the following Taylor series approximation:

dS(Ŵ, W) ≈ (Ŵ −W)T∇LS(W) +
1
2
(Ŵ −W)T HS(W)(Ŵ −W), (29)

where HS(W) is the Hessian matrix. Assuming that W is a local minimum of LS(W)
(ERM solution) and ∇LS(W) ≈ 0, the first term can be ignored. Furthermore, the Hessian
matrix HS(W) can be approximated by a diagonal matrix, which further simplifies the
objective to dS(Ŵ, W) ≈ ∑d

j=1 h(j)(W(j) − Ŵ(j))2, where h(j) is the j-th diagonal element of
the Hessian matrix.

Given network parameters w = {w(1), · · · , w(d)}, the HW K-means clustering al-
gorithm [11] partitions them into K disjoint clusters, using a set of cluster centers c =

{c(1), · · · , c(K)}, and a cluster assignment C =
{

C(1), · · · , C(K)
}

, while solving the follow-
ing optimization problem:

min
K

∑
k=1

∑
w(j)∈C(k)

h(j)|w(j) − c(k)|2. (30)

6.2. Diameter Regularization

In contrast to HW K-means which only cares about empirical risk, our goal is to obtain
as small a population risk as possible by minimizing the upper bound

LS,W(PŴ|W) =

√
2σ2

n
I(W; Ŵ) +E[dS(Ŵ, W)]. (31)

Here, we let the number of clusters K to be an input argument of the algorithm, so
that I(W; Ŵ) ≤ log2 K, and we want to minimize LS,W(PŴ|W) by carefully designing

the reconstructed weights given K, i.e., by choosing cluster centers{c(1), · · · , c(K)}. Then,
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minimizing the sub-Gaussian parameter σ is one way to control the generalization error of
the compression algorithm. Recall that in Proposition 1, we have

gen(μ, PŴ|S) ≤ 2
(
C(w∗)‖ΣX‖+ σ′2

)√ I(W; Ŵ)

n
, (32)

where the sub-Gaussian parameter is related to C(w∗) = supŵ∈Ŵ ‖ŵ − w∗‖2
2 in linear

regression. Note that this quantity can be interpreted as the diameter of the setW . Since
the ground truth w∗ is unknown in practice, we then propose the following diameter
regularization by approximating C(w∗) in (32) by

β max
k1,k2

|c(k1) − c(k2)|2, β ≥ 0, (33)

where β is a parameter controls the penalty term and can be selected by cross validation in
practice. Our diameter-regularized Hessian-weighted (DRHW) K-means algorithm solves
the following optimization problem:

min
K

∑
k=1

∑
w(j)∈C(k)

h(j)|w(j) − c(k)|2 + β max
k1,k2

|c(k1) − c(k2)|2. (34)

Such an optimization problem can be easily extended to the vector case which leads
to a vector quantization algorithm. Suppose that we group the d-dimensional weights w =

{w(1), · · · , w(d)} into d′ = d/m vectors with length m, i.e., {w(1), · · · , w(d′)}, w(j) ∈ Rm,
then our goal is to find cluster centers ck ∈ Rm and assignments minimizing the following
cost function:

min
K

∑
k=1

∑
w(j)∈C(k)

(w(j) − c(k))�H(j)(w(j) − c(k)) + β max
k1,k2

‖c(k1) − c(k2)‖2
2, (35)

where H(j) is the diagonal Hessian matrix corresponding to the vector w(j). An iterative
algorithm to solve the above optimization problem for vector quantization is provided in
Algorithm 1.

The algorithm alternates between minimizing the objective function over the cluster
centers and the assignments. In the Assignment step, we first fix centers and assign each
w(j) to its nearest neighbor. We then fix assignments and update the centers by the weighted
mean of each cluster in the Update step. For the farthest pair of centers, the diameter
regularizer pushes them toward each other, so that the output centers have potentially
smaller diameters than those of regular K-means. We note that the time complexity of the
proposed diameter-regularized Hessian weighted K-means algorithm is the same as that of
the original K-means algorithm.

Algorithm 1 Diameter-regularized Hessian weighted K-means in vector case

Input: Weights vector {w(1), . . . , w(d′)}, Hessian matrices {H(1), . . . , H(d′)}, diameter reg-
ularizer β > 0, number of clusters K, iterations T
Initialize the K cluster centers {c

(1)
0 , . . . , c

(K)
0 } randomly

for t = 1 to T do

Assignment step:

Initialize C(k)
t = ∅ for all k ∈ [K].

for j = 1 to d′ do

Assign w(j) to the nearest cluster center, i.e., find k(j)
t = arg mink∈[K] ‖w(j) − c

(k)
t−1‖2

2
and let

C(k(j)
t )

t ← C(k(j)
t )

t ∪ {w(j)} (36)
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end for

Update step:

Find current farthest pair of centers (k1, k2) = arg maxk1,k2 ‖c
(k1)
t−1 − c

(k2)
t−1‖2

2.

Update c
(k1)
t and c

(k2)
t by

c
(k1)
t =

(
∑

w(j)∈C
(k1)
t

H(j) + βIm

)−1(
∑

w(j)∈C
(k1)
t

H(j)w(j) + βc
(k2)
t

)

c
(k2)
t =

(
∑

w(j)∈C(k2)
t

H(j) + βIm

)−1(
∑

w(j)∈C(k2)
t

H(j)w(j) + βc
(k1)
t

)
(37)

for k = 1 to K, k �∈ {k1, k2} do

Update the cluster centers by

c
(k)
t =

(
∑

w(j)∈C(k)
t

H(j)
)−1(

∑
w(j)∈C(k)

t

H(j)w(j)
)

(38)

end for

end for

Output: centers {c
(1)
T , . . . , c

(K)
T } and assignments {C(1)

T , . . . , C(K)
T }.

7. Experiments

In this section, we provide some real-world experiments to validate our theoretical
assertions and the DRHW K-means algorithm. (The code for our experiments is available
at the following link https://github.com/wgao9/weight-quant (accessed on 13 August
2021)) Our experiments include compression of: (i) a three-layer fully connected network
on the MNIST dataset [40]; and (ii) a convolutional neural network with five convolutional
layers and three linear layers on the CIFAR10 dataset [41] (We downloaded the pre-trained
model in PyTorch from https://github.com/aaron-xichen/pytorch-playground (accessed
on 13 August 2021)).

In Theorem 1, an upper bound on the expected generalization error is provided,
and therefore we independently train 50 different models (with the same structure but
different parameter initializations) using different subset of training samples, and average
the results. We use 10% of the training data to train the model for MNIST and use 20% of
the training data to train the model for CIFAR10. For each experiment, we use the same
number of clusters for each convolutional layer and fully connected layer.

In the following experiments, we plot the cross entropy loss as a function of com-
pression ratio. Note that compression ratio can be controlled by changing the number of
clusters K in the quantization algorithm. To see this, suppose that the neural networks
have total of d parameters that need to be compressed, and each parameter is of b bits.
Let C(k) be the set of weights in cluster k and let bk be the number of bits of the codeword
assigned to the network parameters in cluster k for 1 ≤ k ≤ K. For a lookup table to decode
quantized values, we need Kb bits to store all the reconstructed weights, i.e., cluster centers
c = {c(1), · · · , c(K)}. Then, the compression ratio is given by

Compression Ratio =
∑K

k=1 |C(k)|bk + Kb
db

, (39)

where | · | denotes the number of elements in the set. In our experiments, we use a variable-
length code such as the Huffman code to compute the compression ratio under different
numbers of clusters K.

In Figures 3 and 4, we compare the scalar DRHW K-means algorithm with the scalar
HW K-means algorithm for different compression ratios on the MNIST and CIFAR10
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datasets. Both figures demonstrate that the compression algorithm increases the empirical
risk but decreases the generalization error, and the net effect is that the both compressed
models have smaller population risks than those of the original models. More importantly,
the DRHW K-means algorithm produces a compressed model that has a better population
risk than that of the HW K-means algorithm.
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Figure 3. Comparison between DRHW K-means (β = 50) and HW K-means (β = 0) on MNIST.
Top: empirical risks. Bottom: population risks and generalization errors.

In Figure 5, we compare the population risk of scalar DRHW K-means algorithm and
that of the vector DRHW K-means algorithm with block length m = 2 for different com-
pression ratios on the MNIST dataset. It can be seen from the figure that the improvement
by using vector quantization (m = 2) is quite modest, which implies that the dependence
between the weights W(j) is weak. However, we can still observe the improvement of
adding the diameter regularizer in vector DRHW K-means algorithm by comparing the
curves with β = 50 and β = 0.

In Figure 6, we demonstrate how β affects the performance of our diameter-regularized
Hessian-weighted K-means algorithm in scalar case. It can be seen that as β increases,
the generalization error decreases and the distortion in empirical risk increases, which
validates the idea that this proposed diameter regularizer can be used to reduce the
generalization error. The value of β that results in the best population risk therefore can be
chosen via cross-validation in practice.
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Figure 4. Comparison between DRHW K-means (β = 25) and HW K-means (β = 0) on CIFAR10.
Top: empirical risks. Bottom: population risks and generalization errors.
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Figure 5. Comparison between scalar DRHW K-means (m = 1) and vector DRHW K-means (m = 2)
on the MNIST dataset.
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Figure 6. DRHW K-means with different β on the MNIST dataset with K = 7.

8. Conclusions

In this paper, we have provided an information-theoretical understanding of how
model compression affects the population risk of a compressed model. In particular, our
results indicate that model compression may increase the empirical risk but decrease the
generalization error. Therefore, it might be possible to achieve a smaller population risk
via model compression. Our experiments validate these theoretical findings. Furthermore,
we showed how our information-theoretic bound on the population risk can be used to
optimize practical compression algorithms.

We note that our results could be applied to improve other compression algorithms,
such as pruning and matrix factorization. Moreover, we believe that the information-theoretic
analysis adopted here could be generalized to characterize a similar tradeoff between the
generalization error and empirical risk in other applications beyond compressing pre-trained
models, e.g., distributed optimization [42] and low precision training [15].
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Appendix A. Proof of Lemma 3

Let Z̃ = (X̃, Ỹ), X̃ ∈ Rd and Ỹ ∈ R denote an independent copy of the training sample
Zi. Then, it can be shown that

gen(μ, PW|S) = EW,S[Lμ(W)− LS(W)]

= EW,S

[
EZ̃[(Ỹ− X̃�W)2]− 1

n
‖Y− X�W‖2

2

]
= ES

[
EZ̃[(Ỹ− X̃�(XX�)−1XY)2]− 1

n
‖Y− X�(XX�)−1XY‖2

2

]
, (A1)
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where Ỹ = X̃�w∗ + ε̃ and Y = X�w∗ + ε. Then, we have

gen(μ, PW|S) = Eε,ε̃,X,X̃

[
(ε̃− X̃�(XX�)−1Xε)2]− 1

n
Eε,X

[
‖ε− X�(XX�)−1Xε‖2

2
]

= Eε,X,X̃

[
ε�X�(XX�)−1X̃X̃�(XX�)−1Xε +

1
n

ε�X�(XX�)−1Xε
]

= Eε,X
[
Tr(X�(XX�)−1ΣX(XX�)−1Xεε�)

]
+

σ′2d
n

= σ′2EX
[
Tr((XX�)−1ΣX)

]
+

σ′2d
n

. (A2)

Note that Xi’s are i.i.d. samples from N (0, ΣX), then we have (XX�)−1 distributed
according to Wishart−1(Σ−1

X , n), where Wishart−1 denotes the inverse Wishart distribution

with n degrees of freedom, and E[(XX�)−1] =
Σ−1

X
n−d−1 . It then follows that

gen(μ, PW|S) =
σ′2

n− d− 1
[
Tr(Σ−1

X ΣX)
]
+

σ′2d
n

=
σ′2d

n
(2 +

d + 1
n− d− 1

). (A3)

Appendix B. Proof of Proposition 1

For all ŵ ∈ Ŵ , it can be shown that

�(ŵ, Z̃) = (Ỹ− X̃�ŵ)2 = (X̃�(w∗ − ŵ) + ε̃)2. (A4)

Since X̃ ∼ N (0, ΣX) and ε̃ ∼ N (0, σ′2), then �(ŵ, Z̃) ∼ σ2
� χ2

1, where

σ2
� � (ŵ− w∗)�ΣX(ŵ− w∗) + σ′2,

and χ2
1 denotes the chi-squared distribution with one degree of freedom. Then, the CGF of

�(ŵ, Z̃) is

Λ�(ŵ,Z̃)(λ) = −σ2
� λ− 1

2
ln(1− 2σ2

� λ), λ ∈ (−∞,
1

2σ2
�

). (A5)

Thus, �(ŵ, Z̃) is not sub-Gaussian for all λ ∈ R. However, it can be shown that

Λ�(ŵ,Z̃)(λ) ≤ σ4
� λ2, λ < 0. (A6)

We need the following lemma from the Theorem 1 of [43] to proceed our analysis.

Lemma A1 ([43]). Assume that for all ŵ ∈ Ŵ , Λ�(ŵ,Z̃)(λ) ≤ σ2λ2

2 for λ ≤ 0. Then,

gen(μ, PŴ|S) ≤
√

2σ2

n
I(Ŵ; S). (A7)

Recall that C(w∗) = supŵ∈Ŵ ‖ŵ− w∗‖2
2. We then have the following bound on the

CGF of �(ŵ, Z̃),

Λ�(ŵ,Z̃)(λ) ≤ λ2 max
ŵ∈Ŵ

σ4
� ≤ λ2(C(w∗)‖ΣX‖+ σ′2

)2, λ < 0. (A8)

Applying Lemma A1 and data processing inequality, we have

gen(μ, PŴ|S) ≤ 2
(
C(w∗)‖ΣX‖+ σ′2

)√ I(Ŵ; W)

n
. (A9)
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Appendix C. Proof of Proposition 2

The constraint on the distortion function can be written as follows:

D ≥ ES,W,Ŵ [dS(Ŵ, W)] =
1
n
ES,W,Ŵ [(Ŵ −W)�XX�(Ŵ −W)]. (A10)

It follows from Lemma 1 that

R(D) = min
PŴ|W

I(Ŵ; W), s.t. ES,W,Ŵ [(Ŵ −W)�
1
n

XX�(Ŵ −W)] ≤ D. (A11)

Note that E[W] = w∗ and Cov[W] = σ′2
n−d−1 Σ−1

X since W is the ERM solution. In the
following proof, we consider a Gaussian random vector with the same mean and covariance
matrix WG ∼ N (w∗, σ′2

n−d−1 Σ−1
X ) as W.

For the upper bound of R(D), consider the channel P∗
Ŵ|W = N

(
(1− α)W + αw∗, (1−

α)D
d Σ−1

X
)
, where α = nD

dσ′2 ≤ 1. It can be verified that this channel satisfies the constraint on
the distortion:

ES,W,Ŵ [dS(Ŵ, W)]

= α2
E[(W − w∗)�

1
n

XX�(W − w∗)] + (1− α)
D
d

Tr
(
E[

1
n

XX�]Σ−1
X

)
= α2

E[
(
(XX�)−1Xε

)� 1
n

XX�
(
(XX�)−1Xε

)
] + (1− α)D

= α2 1
n
E[ε�X�(XX�)−1Xε] + (1− α)D

= D. (A12)

If we let ξ ∼ N (0, (1− α)D
d Σ−1

X ), it follows that

R(D) ≤ I(W; (1− α)W + αw∗ + ξ)

(a)
≤ I(WG; (1− α)WG + ξ)

=
d
2

ln
( dσ′2

(n− d− 1)D
− n

n− d− 1
+ 1

)
≤ d

2

(
ln

dσ′2

(n− d− 1)D

)+
, (A13)

where (a) is due to the fact that Gaussian distribution maximizes the mutual information in
an additive white Gaussian noise channels.

The upper bound on D(R) follows immediately from the upper bound on R(D).

Appendix D. Discussion of Remark 2

Suppose that 1
n XX� can be approximated by ΣX for large n in (A10). It then fol-

lows that

R(D) = min
PŴ|W

I(Ŵ; W), s.t. ES,W,Ŵ [(Ŵ −W)�ΣX(Ŵ −W)] ≤ D. (A14)

It can be easily verified that the channel P∗
W|Ŵ = N (Ŵ, D

d Σ−1
X ) satisfies the distortion

constraint. For any PW|Ŵ such that ES,W,Ŵ [dS(Ŵ, W)] ≤ D, it follows that
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I(W; Ŵ) = EW,Ŵ

[
ln

PW|Ŵ
PW

]
= EW,Ŵ

[
ln

PW|Ŵ
P∗

W|Ŵ

]
+EW,Ŵ

[
ln

P∗
W|Ŵ
PWG

]
−KL(PW‖PWG )

≥ EW,Ŵ

[
ln

P∗
W|Ŵ
PWG

]
−KL(PW‖PWG ), (A15)

where KL(PW‖PWG ) is the Kullback–Leibler divergence between the two distributions,
and the last step follows from the fact that KL(PW,Ŵ‖P∗

W,Ŵ
) ≥ 0. Note that

EW,Ŵ

[
ln

P∗
W|Ŵ
PWG

]
= EW,Ŵ

[ (n− d− 1)(W − w∗)�ΣX(W − w∗)
2σ′2

− d(Ŵ −W)�ΣX(Ŵ −W)

2D
]

+
d
2

ln
dσ′2

(n− d− 1)D

(a)
=

d
2

ln
dσ′2

(n− d− 1)D
+EW,Ŵ

[d
2
− d(Ŵ −W)�ΣX(Ŵ −W)

2D
]

(b)
≥ d

2
ln

dσ′2

(n− d− 1)D
, (A16)

where (a) follows from the fact that E[W] = w∗ and Cov[W] = σ′2
n−d−1 Σ−1

X , and (b) is due to
the fact that PŴ|W satisfies the distortion constraint. Thus,

R(D) ≥ d
2

ln
dσ′2

(n− d− 1)D
−KL(PW‖PWG ). (A17)
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Abstract: The spiking neural network (SNN) is regarded as a promising candidate to deal with
the great challenges presented by current machine learning techniques, including the high energy
consumption induced by deep neural networks. However, there is still a great gap between SNNs and
the online meta-learning performance of artificial neural networks. Importantly, existing spike-based
online meta-learning models do not target the robust learning based on spatio-temporal dynamics and
superior machine learning theory. In this invited article, we propose a novel spike-based framework
with minimum error entropy, called MeMEE, using the entropy theory to establish the gradient-based
online meta-learning scheme in a recurrent SNN architecture. We examine the performance based
on various types of tasks, including autonomous navigation and the working memory test. The
experimental results show that the proposed MeMEE model can effectively improve the accuracy
and the robustness of the spike-based meta-learning performance. More importantly, the proposed
MeMEE model emphasizes the application of the modern information theoretic learning approach on
the state-of-the-art spike-based learning algorithms. Therefore, in this invited paper, we provide new
perspectives for further integration of advanced information theory in machine learning to improve
the learning performance of SNNs, which could be of great merit to applied developments with
spike-based neuromorphic systems.

Keywords: spiking neural network; meta-learning; information theoretic learning; minimum error
entropy; artificial general intelligence

1. Introduction

In recent years, deep learning has shown a superior performance that exceeds the
human-level performance in various types of individual narrow tasks [1]. However, in
comparison with human intelligence that can learn to learn continually in order to execute
unlimited tasks, the current successful deep learning methods still have a lot of drawbacks
and limitations. In fact, humans can learn to learn by accumulating knowledge across
their life time, which is a great challenge for artificial neural networks (ANNs) [2]. From
this point of view, continual meta-learning aims at realizing machine intelligence at a
higher level by providing machines with the meta-learning capability of learning to learn
continually [3].

The human brain can realize meta-learning continually and avoid the catastrophic
forgetting problem based on a combination of neural mechanisms [4]. The catastrophic
forgetting problem is the critical challenge for developing the capability of continual meta-
learning [5]. The human brain has implemented an efficient and scalable mechanism
for continual learning based on neuronal activity patterns that represent previous expe-
riences [6]. Neurons communicate with each other and process the neural information
by using neural spikes, which is one of the most critical fundamental mechanism in the
brain. Based on this mechanism, the human brain can realize superior performance in
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different aspects, such as low power consumption and high spatio-temporal processing
capability [7]. Therefore, implementing a brain-inspired continual meta-learning algorithm
based on spike patterns and the brain’s mechanisms is a promising technique.

The spiking neural network (SNN) uses the biologically plausible neuron model based
on spiking dynamics, while the conventional ANN only uses the neurons based on a
static rate [8]. SNNs are applied to reproduce the brain’s mechanisms and to deal with the
cognitive tasks [9]. In addition, the neuromorphic hardware based on SNNs can realize high
performance in artificial intelligence tasks, including low power consumption, high noise
tolerance, and low computation latency [10]. Previous neuromorphic hardware researches
have proven these advantages by using various types of tasks, such as Tianjic, Loihi,
BiCoSS, CerebelluMorphic, and LaCSNN [11–15]. Researchers have proposed SNN models
to realize the short-term memory capability in a spike-based framework [16]. However,
the current SNN models still suffer from the continual meta-learning problem under the
non-Gaussian noise, and no previous study has solved this problem. Therefore, this is the
focus of this study.

Information theoretic learning (ITL) has attracted increasing attention in the field
of machine learning in recent years to improve the learning robustness and enhance the
explainable capability [17–19]. Previously, Chen et al. proposed researches focusing on max-
imum correntropy theory and minimum error entropy criteria to improve the robustness of
machine learning theory [20–22]. In addition, a series of entropy-based learning algorithms
have been presented to deal with the robustness improvement of machine learning models,
including guided complement entropy and fuzzy entropy [23–25]. Nevertheless, there is
no application of the ITL-based approach in the spike-based continual meta-learning to
improve its learning robustness. Therefore, in this invited article, we aim to propose a
novel approach to deal with this challenging problem. A novel model is presented, which
is called meta-learning with minimum error entropy (MeMEE). We test the meta-learning
capability of the proposed SNN model. Then, we investigate the robust working memory
capability in non-Gaussian noise. Finally, the robust transfer learning performance is ex-
plored under a non-Gaussian noisy condition. Experimental results strongly suggest the
robust meta-learning capability of the SNN model with a working memory feature in a
non-Gaussian noisy environment.

2. Materials and Methods

2.1. SNN Model

Previous studies have shown that the firing timing and activity space of dendrites
can significantly affect neural function. Excitability of dendrites can excite the membrane
to fire, whereas inhibitory dendrites can have the opposite effect [26–29]. Inspired by this
morphological structure and function of the neuron model, we propose a spiking neuron
model, which has three compartments, including a somatic compartment and two dendritic
compartments. The model utilizes distinct dendritic compartments to receive excitatory
and inhibitory inputs, while using dendrites and somatic cells to receive and send spiking
activities, respectively. The formulation for calculating the membrane potential of dendrites
and soma are as follows⎧⎪⎪⎨⎪⎪⎩

τm
dUm(t)

dt = −Um(t) + Rm Im(t) + gi(Ui(t)− θi) + ge(Ue(t)− θe)− Γj(t)zj(t)

τi
dUi(t)

dt = −Ui(t) + Ri Ii(t)

τe
dUe(t)

dt = −Ue(t) + Re Ie(t)

(1)

where τv represents the time constant of membrane. The variables U(t), Ui(t), and Ue(t)
represent the somatic membrane potentials, inhibitory dendritic membrane potentials,
and excitatory dendritic membrane potentials, respectively. The parameters θe and θi
represent the reversal membrane potential of excitatory dendrite and inhibitory dendrite,
respectively. Rm, Re, and Ri represent the membrane resistance of the soma, excitatory
dendrite, and inhibitory dendrite, respectively. The parameters ge and gi represent the
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synaptic conductance of excitatory dendrites and inhibitory dendrites, respectively. Neuron
emits a spike at time t when it is currently not in a refractory period. The soma of neurons
uses the spike adaptation mechanism. The threshold size can be changed by analyzing the
firing pattern of neurons. Variable zj(t) represents the spike train of neuron j and assumes
value in {0, 1/Δt}. The dynamics of Γj(t) is changed with each spike, representing the firing
rate of neuron j, which is defined as

Γj(t) = τ0
j + α · τj(t) (2)

where α represents a constant that scales the deviation τj(t) from the baseline τj
0. The

variable τj(t) can be defined as

τj(t + Δt) = β jτj(t) + (1− β j)zj(t) (3)

where β j = exp(−Δt/τa,j). The constant τa,j represents the adaptation time constant.
Variable zj(t) represents the spike train of neuron j and assumes value in {0, 1/Δt}. The
parameter values of the spiking neuron model that we proposed are listed in Table 1. The
input current Ij(t) of a neuron is defined as the weighted sum of the pulses, which come
from external neurons or other neurons. Its mathematical formula is as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

I j
m(t) =

n
∑

j=1
Wijχi(t− κij) +

n
∑

j=1
Wrec

ij εi(t− κrec
ij )

I j
i (t) =

n
∑

j=1
Wi

ijχi(t− κi
ij) +

n
∑

j=1
Wirec

ij εi(t− κirec
ij )

I j
e(t) =

n
∑

j=1
We

ijχi(t− κe
ij) +

n
∑

j=1
Werec

ij εi(t− κerec
ij )

(4)

where Wrec
ij , Werec

ij , and Wirec
ij represent the recurrent synaptic weights of soma, excitatory

dendrites, and inhibitory dendrites, respectively. In addition,Wij, We
ij, and Wi

ij represent the
synaptic weights of soma, excitatory dendrite, and inhibitory dendrite, respectively. The
constants κij, κe

ij, and κi
ij represent the delays of input synapses for soma, excitatory dendrite,

and inhibitory dendrite, respectively. The constants κrec
ij , κerec

ij , and κirec
ij represent the delays

of recurrent synapses for soma, excitatory dendrite, and inhibitory dendrite, respectively.
The spike trains χi(t) and εi(t) are modeled as sums of Dirac pulses, representing the spike
trains from input neurons and recurrent neurons with recurrent connections, respectively.
The dynamics of the proposed spiking neuron model are shown in Figure 1 accordingly.

Table 1. Parameter settings of the spiking neuron model.

Parameter Value Parameter Value

Rm 1 Ω Ri, Re 1 Ω
τm 20 ms θi, θe 0 mV
κ, κi, κe 5 ms κrec, κirec, κerec 5 ms
α 1.8 τ0 0.01
τa 700 ms gi, ge 1 nS

We integrate the spiking neuron model into an SNN framework and test the accuracy
of this new model on different types of learning tasks. The structure of the SNN model
is shown in Figure 2. The model is divided into three layers: input layer, hidden layer,
and output layer. According to different tasks, we choose different encoding methods
of the input layer and decoding methods of the output layer. In Figure 2, the solid blue
lines represent feed-forward inhibitory synaptic connections, while the red dashed lines
represent lateral inhibitory synaptic connections. The dendrites and soma of different
neurons in the hidden layer are connected by lateral inhibitory synapses that are random
and sparse at the same time. Information is transmitted from the input layer to the dendrites,
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and the soma transmits impulse signals to the output layer. The initial network weights
in the proposed SNN model are set via a Gaussian distribution Wij ~ w0√

nin
N(0, 1), where

nin represents the number of input neurons in the spiking neural network in the weight
matrix. N(0, 1) represents the Gaussian distribution with zero mean and unit variance,
while w0 = Δt/Rm represents a weight-scaling factor depending on the time step Δt and
membrane resistance Rm. This scaling factor is significant as it is used to initialize the
spiking neural network with a practical firing rate needed for efficient training.

Figure 1. Dynamics of the proposed spiking neuron. (a) The biological structure that inspires the
proposed neuron model. (b) The adaptive dynamics of the threshold along with the firing events.

We use a deep rewiring algorithm because it is able to maintain the sign of each
synapse during the learning process [30]. Hence, this sign is inherited from the initial
weights of the network. In consideration of this, the model needs efficient and reasonable
initialization weights for both excitatory and inhibitory neurons. To achieve this, we sample
neurons from a Bernoulli distribution, generating the symbol sign ki ∈ {−1, 1} randomly.
At the same time, to avoid the problem of exploding gradients, we scale the weights so that
the largest eigenvalue is less than 1. A large square matrix is generated with the number of
rows selected, ultimately with uniform probability. This square matrix is then multiplied
by a binary mask, resulting in a sparse matrix, as a part of the depth rewiring algorithm
that we mentioned before. This algorithm achieves the goal of maintaining the level of
sparse connectivity in the network by dynamically disconnecting some synapses while
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reconnecting others. In this algorithm, we set the temperature parameter to 0 and the
L1-norm regularization parameter to 0.01.

 
Figure 2. Network architecture for learning and memory integrated with the proposed SAM model.
This network architecture is comparable to a 2-layer network of point neurons. The soma and
dendrites of different neurons in the hidden layer are connected to lateral inhibitory synapses
randomly. The gray circles in the input layer and output layer are not SAM neurons, representing the
input spiking neuron and output spiking neuron, respectively. The input and output encodings are
determined for different tasks, which will be described in the section of experimental results.

2.2. BPTT Training Algorithm

In common ANN models, the gradients of the loss function are obtained with respect
to the weights in the network using back propagation. Nevertheless, the training method
of back propagation cannot be directly applied to SNNs due to the non-differentiability of
spikes from SNNs. Providing that time is discretized, the gradient needs to be propagated
through continuous time or multiple time steps. To enable the SNN model to learn in the
training process, we use a pseudo-derivative technique as shown below

dzj(t)
dvj(t)

= kmax
{

0, 1−
∣∣vj(t)

∣∣} (5)

where k = 0.3 (typically less than 1) is a constant value that can dampen the increase in back
propagated errors through spikes by using a pseudo-derivative of amplitude to achieve
the goal of stable performance. The variable zj(t) represents the spike train of neuron j that

149



Entropy 2022, 24, 455

assumes values in {0, 1}. The variable vj(t) represents the normalized membrane potential,
which is defined as follows

vj(t) =
Vj(t)− Γj(t)

Γj(t)
(6)

where Γj represents the firing rate of neuron j. With the purpose of providing the self-
learning capability required for reinforcement learning for the proposed SAM model, we
utilize a proximal policy optimization algorithm [31]. This algorithm is easy to implement
and allows the model to have self-learning capabilities. The clipped surrogate objective of
this algorithm is defined as OPPO(ϑold, ϑ, t, k). Therefore, the loss function with respect to ϑ
is formulated as

LP(θ) = −
∑

k<K
∑

t<T
OPPO(ϑold, ϑ, t, k)

KT
+ μf

1
n∑

j

∥∥∥∥∥
∑
k,t

zj(t, k)− f 0

KT

∥∥∥∥∥
2

(7)

where f 0 represents a target firing rate of 10 Hz and μf represents a regularization hyper-
parameter. Variables t and k represent the simulation time step and the total number of
epochs. The variable ϑ represents the current policy parameter, which is defined in the
previous research [31]. In each iteration of training, K = 10 episodes of T = 2000 time steps
are generated with a fixed parameter ϑold, which is the vector of policy parameters before
the update as expressed in [31]. At the same time, the loss function L(ϑ) is minimized by
the ADAM optimizer [32].

2.3. Minimum Error Entropy Criterion (MEEC)

The minimum error entropy (MEE) can minimize the entropy of the estimation error,
so that decreases the uncertainty in the learning process. The α-order Renyi’s entropy is
used assuming a random variable e with probability density function fα(e), which is defined
as

H(e) � 1
1− α

log
∫

f α(e)de (8)

where α is set to 2 for 2-order Renyi’s entropy in this study. The kernel density estimation
(KDE) is used to estimate the PDF of the error samples, which has three advantages. First,
it is a non-parameter approach, which does not require the prior knowledge of the error
distribution. Second, it does not require the integration calculation. Third, it can be smooth
and differentiable, which is vital for the gradient computation. Considering a set of i.i.d
data {ei}N

i=1 drawn from the distribution, the KDE of the PDF can be formulated as

ˆ
f E(e) =

1
N

N

∑
i=1

G∑(e− ei) (9)

where GΣ(e − ei) represents the Gaussian function with the following expression as

G∑(e− ei) =
1√

2π(det ∑)
· exp

(
−1

2
(e− ei)

T
−1

∑(e− ei)

)
(10)

where N and Σ represent the number of the data points and the kernel parameter, respec-
tively. In this research, Σ represents a diagonal matrix with the s-th diagonal element with
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the variance δ2
s for es in e, where s = 1, 2, . . . , S. The kernel parameter represents a free

parameter. Thus, the Renyi’s quadratic entropy can be expressed as

H2(e) = − log
∫ ( 1

N

N
∑

i=1
G∑(e− ei)

)2

de

= − log 1
N2

∫ ( N
∑

i=1

N
∑

j=1
G∑(e− ei)G∑

(
e− ej

))
de

= − log 1
N2

∫ ( N
∑

i=1

N
∑

j=1
G∑(e− ei)G∑

(
e− ej

))
de

= − log 1
N2

(
N
∑

i=1

N
∑

j=1
G√2 ∑

(
ei − ej

))

= − log 1
N2

(
N
∑

i=1

N
∑

j=1
G∑2

(
ei − ej

))

(11)

Based on the Formula (11), we define a function V(e) to represent the information potential
of variable e, which is formulated as

V(e) =
1

N2

(
N

∑
i=1

N

∑
j=1

G∑2

(
ei − ej

))
(12)

Therefore, the minimization of the Renyi’s entropy H2(e) means the maximization of the
information potential V(e) because of the monotonic increasing feature of the log function.
The Parzen window is used to decrease the computational complexity and the instantaneous
information potential at time t, which can be formulated as

J1(e) =
1

W

k

∑
i=k−W+1

G∑2(ek − ei) (13)

where W represents the length of the Parzen window. It should be noted that MEE is a
kind of local optimization criterion but suffers from the shift-invariant problem. It can
only determine the location of error PDF but cannot know the distribution location. The
function GΣ2(.) can be defined as the Gaussian kernel function with bandwidth σ

G∑ 2(x) =
1√
2πσ

exp
(
− x2

2σ2

)
(14)

In order to reduce the computational complexity, quantization technique is used to realize
the quantized MEE (QMEE). Thus, the information potential is expressed as

VQ(e) =
1

N2

(
N

∑
i=1

N

∑
j=1

G∑2

(
ei −Q

∣∣ej
∣∣)) =

1
N2

N

∑
i=1

M

∑
j=1

ϕjG∑ 2
(
ei − cj

)
(15)

where Q[.] represents a quantization operator mapping each {ei}N
i=1 to one of

{
cj
}M

j=1,
resulting in a codebook C = (c1, c2, c3, . . . , cM). Φ = (ϕ1, ϕ2, . . . , ϕM) represents the
number of the samples quantized to the corresponding set

{
cj
}M

j=1. It should be noted that

∑M
j=1 ϕj = N. Theoretical proof of the robustness has been presented in [22].
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2.4. Restricted MEEC

In this study, the fundamental inner product to measure the similarity is used, which
is generalized from its vectors’ application [33]. The inner product similarity between
continuous pdfs fX(x) and gX(x) can be expressed as

〈 fX(x), gX(x)〉 =
∫

X
fX(x)gX(x)dx (16)

The desired distribution ρE(e), which is expressed in [33] in detail, can be defined as follows

ρE(e) =

⎧⎪⎪⎨⎪⎪⎩
ζ0, e = 0
ζ−1, e = −1
ζ1, e = 1
0, otherwise

(17)

where ζi (i = 0, −1, 1) denotes the corresponding density for each peak, which is simplified
into a Dirac-δ function.

The maximization of the similarity measure between the error pdf fE(e) and the desired
distribution ρE(e) can be formulated as

max〈 fE(e), ρE(e)〉
⇔ max

∫
X fE(e)ρE(e)dx

⇔ maxζ0 fE(0) + ζ−1 fE(−1) + ζ1 fE(1)
(18)

Furthermore, the model parameter can be expressed as

w∗ = argmaxζ0
ˆ
f E(0) + ζ−1

ˆ
f E(−1)ζ1 f̂E(1)

= argmax

⎛⎜⎜⎜⎜⎜⎜⎝
ζ0

1
N

N
∑

i=1
G∑ 2(0− ei)

+ζ−1
1
N

N
∑

i=1
G∑ 2(−1− ei)

ζ1
1
N

N
∑

i=1
G∑ 2(1− ei)

⎞⎟⎟⎟⎟⎟⎟⎠
= argmax 1

N2

N
∑

i=1

⎛⎝ Nζ0G∑ 2(ei)
+Nζ−1G∑ 2(ei + 1)
+Nζ1G∑ 2(ei − 1)

⎞⎠
(19)

In fact, QMEE converges the prediction errors
{

cj
}M

j=1 to obtain a compact error distribu-
tion. Based on the method in [33], a predetermined codebook C = (0, −1, 1) implements
QMEE to restrict errors to three positions and avoid the undesirable double-peak learning
consequence. Therefore, the restricted MEE (RMEE) algorithm can be formulated as

VR(e) =
1

N2

N

∑
i=1

⎛⎝ ϕ0G∑ 2(ei)
+ϕ−1G∑ 2(ei + 1)
+ϕ1G∑ 2(ei − 1)

⎞⎠ (20)

where Φ = (ϕ0, ϕ−1, ϕ1) = (Nζ0, Nζ−1, Nζ1) that represents the corresponding number
for each quantization word C = (0, −1, 1). The proposed RMEE algorithm maximizes the
inner product similarity between error pdf fE(e) and the optimal three-peak distribution
ρE(e). RMEE is a specific formation of QMEE where the codebook is predetermined
as C = (0, −1, 1) and converges learning errors on these three locations.
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In order to optimize Equation (19), the half-quadratic technique is used to solve
optimization issues. A convex function g(x) =−xlog(−x) + x is defined, and the information
potential can be expressed as

VR(e) =
N

∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
ϕ0

{
ui

e2
i

2σ2 − g(ui)

}
+ϕ−1

{
vi

(ei+1)2

2σ2 − g(vi)

}
+ϕ1

{
si

(ei−1)2

2σ2 − g(si)

}

⎞⎟⎟⎟⎟⎟⎟⎠ � JR1(w, ui, vi, si) (21)

In half-quadratic technique, it has the following relationship

uk
i = − exp

(
− e2

i
2σ2

)
< 0

vk
i = − exp

(
− (ei+1)2

2σ2

)
< 0

sk
i = − exp

(
− (ei−1)2

2σ2

)
< 0

(i = 1, 2, . . . , N).

(22)

By attaining the optimal (uk
i , vk

i , sk
i ) in the kth iteration, the information potential can be

formulated as

VR(e) =
N

∑
i=1

⎛⎜⎝ ϕ0ui(ti − yi)
2

+ϕ−1vi(ti + 1− yi)
2

+ϕ1si(ti − 1− yi)
2

⎞⎟⎠ � JR2(w) (23)

The JR2(w) can be optimized based on gradient-based methods because the objective
function is differentiable and continuous. For example, the gradient of JR2(w) can be
expressed as

∂

∂w
JR2(w) =

N

∑
i=1

⎛⎜⎜⎝ ϕ0ui
∂(ti−yi)

2

∂w

+ϕ−1vi
∂(ti+1−yi)

2

∂w

+ϕ1si
∂(ti−1−yi)

2

∂w

⎞⎟⎟⎠ = −2
N

∑
i=1

⎛⎝ ϕ0uiei
+ϕ−1vi(ei + 1)
+ϕ−1si(ei − 1)

⎞⎠xiyi(1− yi) (24)

The detailed algorithm of the HQ-based optimization and its convergence analysis for
RMEE are presented in [33].

3. Results

3.1. Proposed Network with RMEE Criterion

Since MEE has the shift-invariant feature, and estimation results based on MEEC will
not always converge to the true value. A consideration is to combine the RMEE criterion
with CEE for a global optimal solution. The cross-entropy loss function, also regarded as
log loss, is the most commonly used loss function for back propagation. The cross-entropy
loss function increases as the predicted probability deviates from the actual label, and can
be described as follows

Lce

(
ˆ
yi, yi

)
= −∑

i
yi log

(
ˆ
yi

)
(25)

In this paper, the label ln of each image is used, which is only assumed to be 1 for
images belonging to the same class of images during testing, and 0 otherwise. The cross-
entropy formula can be expressed as

J2 =
5

∑
n=1

−ln log σ
(

y20+20·n
)
− (1− ln) log

(
1− σ20+20·n

)
(26)
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where the output of the SNN model is only counted after all images are fully rendered.
Therefore, for the novel criterion, the performance index can be formulated as

Jk(e) = μ

⎡⎢⎣ N

∑
i=1

⎛⎜⎝ ϕ0ui(ti − yi)
2

+ϕ−1vi(ti + 1− yi)
2

+ϕ1si(ti − 1− yi)
2

⎞⎟⎠
⎤⎥⎦+ (1− μ)

[
5

∑
n=1

(
−ln log σ

(
y20+20·n)

−(1− ln) log
(
1− σ20+20·n)

)]
(27)

where μ represents a weighting constant. In the supervised learning tasks, there only exist
cross-entropy and RMEE, which is described in Equation (27).

3.2. Autonomous Navigation

We first apply the proposed SNN model in the agent navigation task, which requires
the network to have reinforcement learning capabilities. The agent needs to learn to find
objects in a 2D area and eventually be able to navigate to find objects at random locations
in the area. This task is interrelated with the neuroscience paradigm of the well-known
Morris water maze task, which is designed to study learning in the brain [34]. In this task,
a virtual agent is simulated as a point in the 2D simulation arena and is controlled by the
proposed SNN model. The position of the agent is configured randomly with a uniform
probability in the overall arena at the beginning of an episode. The agent produces a small
velocity vector of the Euclidean norm and selects an action at each time step. It receives a
reward value ‘1’ after reaching the destination.

In the navigation task, the information s(t) of the current environment state and the
reward score r(t) are received as input data by neurons in the input layer at each time step.
The coordinate information of the position is encoded by the input neurons through the
Gaussian population rate encoding method. Furthermore, each neuron in the input layer is
assigned a coordinate value with a firing rate, which is defined as: rmax = exp(−100(ξi-ξ)2),
where ξi and ξ represent the actual coordinate value and the preferred coordinate value,
respectively. rmax is supposed to be set as 500 Hz. Moreover, the instantaneous reward
r(t) is encoded by two sets of input neurons. In the first group, the neurons generate
spikes in sync when a positive reward is received, while in the second group, the neurons
generate spikes as long as the proposed SNN model receives a negative reward. The
output of the network is represented by five readout neurons in the output layer with
membrane potential λi(t). The action vector ζ(t) = (ζx(t), ζy(t))T is used to determine the
movement of the agent in the navigation task that we mentioned before. It is calculated
from a Gaussian distribution with mean μx = tanh(λ1(t)) and μy = tanh(λ2(t)) as well as
variances Φx = σ(λ3(t)) and Φy = σ(λ4(t)). In the end, the output of the last readout neuron
λ5 is calculated to predict the value function μθ(t). This predicts the expected discounted
sum of future rewards Ω(t) = Σt’ > tγt’ − tω(t’), where ω(t’) represents the reward at time t’
and γ represents the discount factor, whose value is usually 0.99.

The agent based on the proposed SNN model learns to learn in the navigation task
towards the correct destination location after the meta-learning process. The overall training
process in the reward learning process is described by Algorithm 1. We add other loss
functions to support the reinforcement learning framework, maintaining the loss function
consistent with Equation (26). Figure 3 shows the successful destination reached number
(DRN) per learning iteration. Each iteration contains a batch of ten episodes, and network
weights are updated during the navigation task. For each episode, the model is expected to
explore until reaching and storing the destination location, and uses the prior knowledge
to find the shortest path to the destination. This reveals that the proposed SNN model has
meta-learning capability in the autonomous navigation task.
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Figure 3. Navigation performance of the proposed model with different settings.

Algorithm 1 Training process in the reward learning process

Input: number of full episodes K, timesteps T, fixed parameters θold, target firing rate f0,
regularization hyper-parameters μv, μe, μ f iring, bandwidth σ, predicted value function Vθ(t, k)
and sum of future rewards R(t, k)
Output: total loss Lθ.

1. Parameters setting: f0, μv, μe, μ f iring and σ.
2. for n in batch size N:
3. Set en = R(t, k)−Vθ(t, k)
4. if number of literation is 0:
5. (ϕ0, ϕ−1, ϕ1) = (N, 0, 0)
6. else:

(ϕ0, ϕ−1, ϕ1) = (#{en ∈ (−0.5, 0.5)},
#{en ∈ (−1,−0.5)},

#{en ∈ (0.5, 1)})
where #{·} indicates counting the samples that satisfy the condition

7. (un, vn, sn) = (−exp(− en
2

2σ2 ),−exp(− (en+1)2

2σ2 ),−exp(− (en−1)2

2σ2 ))

8. LRMEE
n =ϕ0unen

2 +ϕ−1vn(en + 1)2 +ϕ1sn(en − 1)2

9. end for

10. for k in K:
11. for t in T:

LPPO
(t,k) = OPPO(θold, θ, t, k)

12. end for

13. end for

14. Calculate the total loss:
L(e) = Lp(e) + Jk(e)

15. return L(e)

3.3. Working Memory Performance on Store–Recall Task with Non-Gaussian Noise

To further demonstrate the robust working memory capability of the proposed SNN
model, we apply the model in a store–recall task with non-Gaussian noise. The detailed
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settings of the store–recall task have been previously presented in [35]. The SNN model
receives a sequence of frames that are represented by ten spike trains in a period of time.
The inputs #1 and #2 are represented by the spiking activities of input neurons from #1 to
#10 and from #11 to #20, respectively. As shown in Figure 4, the neurons from #21 to #30
and from #31 to #40 receive the random store and recall commands, respectively. The store
command means direct attention is paid to the specific frame of input data flow. Then, this
frame will be reproduced when receiving the recall command. Figure 4 shows one test
example with the spiking activities after working memory training. The dynamic threshold
changes along with the learning procedure, which is shown in Figure 4. This reveals that
the proposed SNN model can exhibit the working memory performance and realize the
store–recall task successfully. Since working memory is a vital feature and the foundation
for meta-learning, this also suggests that the MeMEE model can exhibit the meta-learning
tasks based on its working memory mechanisms with a robust performance.

Figure 4. Working memory capability of the proposed SNN model after training.

3.4. Meta-Learning Performance on Sequential MNIST Data Set with Non-Gaussian Noise

We further demonstrate the meta-learning capability of the proposed SNN model in a
transfer learning task based on the sequential MNIST (sMNIST) data set. We divide the
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sMNIST data set into two parts. The first part includes 30,000 images for digits ‘0’, ‘1’,
’2’, ‘3’, and ‘4’, and the second part includes 30,000 patterns for digits ‘5’, ’6’, ‘7’, ‘8’, and
‘9’. In the first phase, the first part is employed to train the SNN model, and the second
part is then used for training. In the second phase, 10% salt and pepper noise is added to
the testing data set as the non-Gaussian noise for the performance evaluation. Figure 5
shows the performance of the MeMEE model and compares it with other counterpart
models, including recurrent SNN (RSNN) and the conventional LIF-based SNN model
without the RMEE criterion. This shows that the proposed model outperforms the other
solutions, and the reasoning behind this includes three points. Firstly, the proposed model
has the meta-learning capability, so it can illustrate the transfer learning capability, and
its transfer learning performance is superior to the RSNN model accordingly, considering
accuracy and convergence speed. Secondly, due to the RMEE criterion being the loss
function, its robustness to the non-Gaussian noise is superior to the model without the
RMEE criterion in terms of the learning accuracy. The result suggests that the MeMEE
model with RMEE criterion has a more powerful robust meta-learning capability in learning
sequential spatio-temporal patterns.

Figure 5. Meta-learning capability of the proposed MeMEE model on sequential MNIST data set.

3.5. Effects of Loss Parameters on Learning Performance

In this study, we further investigate how each loss function affects the learning per-
formance of the proposed MeMEE model. We use the sMNIST data set to evaluate and
quantify the learning accuracy along with the changing loss parameter. In order to demon-
strate the learning robustness based on the proposed MeMEE model, salt and pepper noise
is added to the sMNIST data set. Different levels are considered, which are selected from
3.19% to 19.13%. Different values of parameter μ are investigated, which are set from 0.3
to 1.0. As shown in Figure 6, the value of μ with 0.7, 0.8, and 0.9 can induce the higher
learning accuracy on sequential visual recognition. This reveals that the RMEE criterion
can further enhance the robustness of the proposed MeMEE model without the RMEE
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criterion, i.e., μ = 1. Since the model without RMEE criterion with 3.19% non-Gaussian
noise only reaches 83.6% accuracy, the RMEE criterion can improve the learning accuracy
of the proposed MeMEE model with non-Gaussian salt and pepper noise.

Figure 6. Effects of loss parameters on the learning performance of sequential classification.

4. Discussion

This paper presents an information theoretic learning framework for robust spike-
driven continual meta-learning. Different from the previous SNN learning research, we
first introduce the RMEE criterion to develop and improve the spike-based learning frame-
work, which is significantly general and can also provide a series of theoretic insights.
Moreover, the information theoretic framework allows us to obtain a direct understanding
and better interpretation of the robust learning solutions of SNN models, compared with
some previous studies focusing on improving the learning robustness of SNNs [36].

As a first step in establishing a rigorous framework for SNN continual meta-learning
with RMEE, the presented research can be extended in both theoretical and practical aspects.
From the theoretical point of view, one extension is to use the information potential to train
the presented SNN model. For example, as shown in [37], Chen et al. presented a survival
information potential algorithm for adaptive system training. This does not require com-
puting of the kernel function and has good robustness performance accordingly. The other
extension is to apply the proposed framework in other spike-based learning paradigms,
including few-shot learning, multitask learning, and unsupervised learning [38].

From a practical point of view, the model is expected to be implemented on neuro-
morphic platforms to realize low-power and real-time systems for various types of appli-
cations. The state-of-the-art digital neuromorphic systems include Loihi [12], Tianjic [11],
BiCoSS [13], CerebelluMorphic [14], LaCSNN [15], TrueNorth [39], and SpiNNaker [40].
By implementing embedded neuromorphic systems, it can be applied in different fields
such as edge computing devices, brain–machine integration systems, and intelligent sys-
tems [41–43].
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5. Conclusions

In this invited paper, we first presented an ITL-based scheme for robust spike-based
continual meta-learning, which is improved by the RMEE criterion. A gradient descent
learning principle is presented in a recurrent SNN architecture. Several tasks are real-
ized to demonstrate the learning performance of the proposed MeMEE model, including
autonomous navigation, robust working memory in the store–recall task and robust meta-
learning capability for the sMNIST data set. In the first autonomous navigation task, the
SNN model learns to find the correct destination by continual meta-learning from the task
reward and punishment. This demonstrates that the MeMEE model based on the proposed
RMEE criterion realizes the meta-learning capability for navigation and outperforms the
conventional RSNN model. In the second task, the proposed MeMEE model improves
the working memory performance by recalling the stored noisy patterns. In the third
task, the proposed MeMEE model with RMEE criterion can enhance the robustness in
the meta-learning task for noisy sMNIST images. This invited paper provides a novel
insight into the improvement of the spike-based machine learning performance based on
information theoretic learning strategy, which is critical for the further research of artificial
general intelligence. In addition, it can be implemented by the low-power neuromorphic
system, which can be applied in edge computing of internet of things (IoT) and unmanned
systems.
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Abstract: Reservoir computers (RCs) and recurrent neural networks (RNNs) can mimic any finite-
state automaton in theory, and some workers demonstrated that this can hold in practice. We
test the capability of generalized linear models, RCs, and Long Short-Term Memory (LSTM) RNN
architectures to predict the stochastic processes generated by a large suite of probabilistic deterministic
finite-state automata (PDFA) in the small-data limit according to two metrics: predictive accuracy
and distance to a predictive rate-distortion curve. The latter provides a sense of whether or not the
RNN is a lossy predictive feature extractor in the information-theoretic sense. PDFAs provide an
excellent performance benchmark in that they can be systematically enumerated, the randomness
and correlation structure of their generated processes are exactly known, and their optimal memory-
limited predictors are easily computed. With less data than is needed to make a good prediction,
LSTMs surprisingly lose at predictive accuracy, but win at lossy predictive feature extraction. These
results highlight the utility of causal states in understanding the capabilities of RNNs to predict.

Keywords: time series prediction; finite state machines; hidden Markov models; recurrent neural
networks; reservoir computers; long short-term memory

1. Introduction

Many real-world tasks rely on prediction. Given past stock prices, traders try to predict
if a stock price will go up or down, adjusting investment strategies accordingly. Given past
weather, farmers endeavor to predict future temperatures, rainfall, and humidity, adapting
crop and pesticide choices. Manufacturers try to predict which goods will appeal most to
consumers, adjusting raw materials purchases. Self-driving cars must predict the motion of
other objects on and off the road. Furthermore, when it comes to biology, evidence suggests
that organisms endeavor to predict their environment as a key survival strategy [1–3]. One
simple metric often used to evaluate the quality of our predictive algorithms is simply the
accuracy of our predictions—how well we can predict what will happen next given what
has happened previously.

However, we also care about the cost of formulating and communicating a prediction
of the next symbol in some sequence of symbols, either to another person or from one part
an organism to another. Costs of formulation might include the time, memory, and/or
energy taken to compute a prediction. Once the prediction is made, it is often communicated
to some other downstream region that will use the prediction to take an action. This
communication requires some amount of channel capacity, and channel capacity can be
energetically expensive. All other concerns equal, one is inclined to employ a predictor
with a lower transmission rate [4].

Here, we focus solely on communication, ignoring costs in formulating the prediction.
As such, note that transmission rate is unrelated to sample complexity or time complexity.
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Rather, we allow for an unbounded number of samples in testing (thus avoiding the ques-
tion of generalization error) and an unbounded time to train and compute predictions, and
merely ask: what channel capacity do we need to faithfully communicate the predictions?

Simultaneously optimizing the objectives—high predictive accuracy and low code
rate—leads to predictive rate-distortion [5–7]. The predictive rate-distortion curve separates
combinations of achievable rates and distortions from unachievable rates and distortions.
The closer a lossy predictive compressor is to the curve, the better. This diagnosis has been
used, for example, to suggest that salamander retinal ganglion cells are near-optimal lossy
predictors of visual input [8].

Surprisingly, we do not yet know how well recurrent neural networks perform relative
to the predictive rate-distortion curve, though rate-distortion curves have been used to
explain and calibrate the performance of artificial feedforward neural networks [9,10].
Note that recurrent neural networks allow us to store information, in principle, about
semi-infinite pasts, while feedforward neural networks only allow for storage of finite
pasts. The following calibrates the performance of various predictors (generalized linear
models, reservoir computers, and recurrent neural networks) using the predictive rate-
distortion curve. We stimulate predictors with output of probabilistic deterministic finite
automata (PDFA), also called unifilar hidden Markov models in information theory [11].
The PDFAs used in the following are simple, in that their statistical complexity [12] and
excess entropy [13,14] are finite and relatively small. The following explores PDFAs since
optimal predictors of the time series they generate are easily computed [12], and the
tradeoffs between code rate and predictive accuracy (encapsulated by the predictive rate-
distortion function) are easily computed as well [7].

This work builds on seminal results establishing that both reservoir computers
(RCs) [15,16] and recurrent neural networks (RNNs) [17] can reproduce any dynamical
system, when given a sufficient number of nodes. Further work gave example RNNs
that faithfully reproduce finite state automata, to the point that RNN nodes mimicked
the automata states [18], and established bounds on the required RNN complexity [19].
One would conjecture, then, that Long Short-Term Memory (LSTM) architectures—an
easily-trainable RNN variety [20,21]—should easily learn to predict the outputs of PDFAs.
The further question we ask is: do these models not only predict, but predict efficiently?

We use predictive rate-distortion curves to calibrate the performance of three time
series predictors: generalized linear models (GLMs) [22], RCs [15,16], and LSTMs [20].
Unsurprisingly, LSTMs are generally more efficient than reservoirs, which are generally
more efficient than GLMs. Perhaps unsurprisingly, LSTMs are less accurate than both
methods, seemingly due to overfitting. Surprisingly, despite the simplicity of the generated
stochastic time series, we find that all tested prediction methods can fail to attain maximal
predictive accuracy (measured by the probability of being correct) by as much as 50% and
often need higher rates than necessary to attain maximal predictive performance. However,
existing methods for inferring PDFAs [23] can correctly infer the PDFA and generate the
optimal predictor with orders-of-magnitude less data. This leads us to conclude that
prediction algorithms that first infer causal states [6,23–25] can surpass trained RNNs if
the time series in question has (approximately) finite causal states, sometimes also called
predictive state representations [26].

In Section 2, we describe how rate-distortion functions can provide a benchmark
for prediction algorithms. In Section 3, we describe PDFAs, GLMs, RCs, and LSTMs. In
Section 4, we describe our results. Section 5 summarizes our conclusions.

2. Rate-Distortion Benchmarks for Prediction Algorithms

Typically, when one talks about recurrent neural networks, one considers a setup as
in Figure 1 (top). Input is sent to the network, which updates its state based on both the
input and its previous state. The network’s state is then used to make a prediction. The
only metric that characterizes the final performance of the network, post-training, is the
prediction accuracy—how well it predicts future symbols given past symbols.
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Input RNN Prediction

Input RNN Prediction Channel

Figure 1. At (top), a typical setup for a recurrent neural network (or any other predictor): input is
sent to the recurrent neural network, which makes a prediction about future inputs. At (bottom), our
setup for a recurrent neural network in which predictions must be made and the prediction must be
communicated losslessly through the channel.

We now augment that setup slightly. Consider a channel over which the prediction
must be communicated, as in Figure 1 (bottom). Now there are two metrics that characterize
the network’s performance, post-training: the predictive accuracy and the required channel
capacity. In the particular setup of Figure 1 (bottom), the required channel capacity must be
at least the entropy of the predictions [4]. If one is allowed longer blocklengths, meaning
that one can communicate several predictions at once using the channel, the required
channel capacity somewhat diminishes.

One can now trace out a plane of the two metrics, prediction accuracy and channel
capacity, and ask which combinations of the two are achievable. The curve that separates
the achievable combinations from the unachievable combinations is called the predictive
rate-accuracy curve, very closely related to the predictive rate-distortion curve. See Figure 2.

Let R be the random variable representing our representation of the past that we use
to predict the future, and r be its realization. When the accuracy is the conditional mutual
information I[

−→
X ;
←−
X |R], the predictive rate-accuracy function is exactly the predictive

information curve [5,6]. Finding representations that lie on the information curve motivates
slow feature analysis [27], recovers canonical correlation analysis [28], and identifies the
minimal sufficient statistics of prediction—the causal states [5]. Predictive information
curves have even been used to evaluate the predictive efficiency of salamander retinal
neural spiking patterns [8].

Here, however, we work only with binary processes, and we adopt the stance that
predictive accuracy could be taken to be the probability that one’s prediction is correct.
Accordingly, we force our representation r ∈ {0, 1} to be a prediction, and calculate
accuracy via:

a(rt, xt+1) = 1− δrt ,xt+1 ,

which implies:

E[a] = ∑
←−x t

p(←−x t) ∑
rt=xt+1

p(rt|←−x t)p(xt+1|←−x t) .

The choice of distortion or accuracy measure is an important one, and determined by one’s
particular application.
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Figure 2. A sample predictive rate-accuracy curve, which is dependent not on how we process the
time series but only on intrinsic properties of the time series. It is quite possible, and typical, to have
zero rate and a nonzero predictive accuracy, and so the meeting of the x-axis and y-axis is not at the
origin. The rate can run between zero and one bit for the binary-valued time series we study here.
The starred point, which encodes the rate and accuracy of a minimal optimal predictor, has a rate of
the single-symbol Shannon entropy of the time series and a predictive accuracy that depends in a
complicated way on the specific time series. (Note the slight difference between this communication
setup and that of standard predictive rate-distortion.) It is possible to have rates larger than the rate
of the starred point, up to and including one bit.

There is another way to understand predictive rate-accuracy curves. With an eye
to making contact with nonpredictive rate-distortion theory, we summarize the setup of
predictive rate-accuracy as follows. Semi-infinite pasts are drawn independently from
the same process-dependent distribution and sent to an encoder, which then produces a
prediction or a probability distribution over possible predictions. A predictive distortion
measures how far the estimated predictions differ from correct predictions. Distortion is
often taken, for example, to be the Kullback-Leibler divergence between the true distribu-
tion p(−→x |←−x ) over futures −→x conditioned on the past←−x and the distribution p(−→x |r) over
futures conditioned on our representation r [29]. A predictive accuracy might then be some
maximal achievable accuracy minus the predictive distortion. The predictive rate-accuracy
curve R(A), the minimal necessary rate at a given expected accuracy, separates the plane of
rates and predictive distortions into regions of achievable and unachievable combinations.
A slight variant of the rate-distortion theorem gives:

R(A) = min
p(�x|r):E[a]≥A

I[
←−
X ; R] , (1)

where I[·; ·] is the mutual information.
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3. Background

In what follows, we review time-series generation and the widely-used prediction
methods we compare. We first discuss PDFAs and then prediction methods.

3.1. PDFAs and Predictive Rate-Distortion

We focus on minimal PDFAs—for a given stochastic process, that with the smallest
number of states. A PDFA consists of a set S of states σ ∈ S , a set A of emission symbols,
and transition probabilities p(σt+1, xt|σt), where σt, σt+1 ∈ S and xt ∈ A. The “determinis-
tic” descriptor comes from the fact that p(σt+1|xt, σt) has support on only one state. (This is
“determinism” in the sense of formal language theory [30]—an automaton deterministically
recognizes a string—not in the sense of nonstochastic. It was originally called unifilarity in
the information theoretic analysis of hidden Markov chains [11]. Thus, PDFAs are also
known as unifilar hidden Markov models [12].)

Here, we concern ourselves with minimal and binary-alphabet (A = {0, 1}) PDFAs. In
dynamical systems theory minimal unifilar HMMs (minimal PDFAs) are called ε-machines
and their states σ causal states. Due to the automaton’s determinism, one can uniquely
determine the state from the past symbols with probability 1. Each state is therefore a
cluster of pasts that have the same conditional probability distribution over futures. As
a result, all that one needs to know to optimally predict the future is given by the causal
state [12].

For example, the simple two-state PDFA shown in Figure 3 generates the Even Process:
only an even number of 1’s are seen between two successive 0’s. This leads to a simple
prediction algorithm: find the parity of the number of 1’s since the last 0; if even, we are
in state A, so predict 0 and 1 with equal probability; if odd, we are in state B, so predict 1.
There is only one past for which our prediction algorithm yields no fruit: given the past of
all 1s a single state is never identified. One only knows that the machine is in either state
A or B and the best prediction is a mixture of what the states indicate. Even though that
past occurs with probability 0, it causes the Even Process to be an infinite-order Markov
Process [31]. See Ref. [32] for a measure-theoretic treatment.

A B

1
3 |1

2
3 |0

1|1
Figure 3. Minimal two-state PDFA that generates the Even Process, so-called since there are always
an even number of 1s between 0’s. Arrows indicate allowed transitions, while transition labels p|s
indicate the transition (and so too emission) probabilities p ∈ [0, 1] for the symbol s ∈ A. Given a
current state and next symbol, one knows the next state—the deterministic or unifilar property of
this PDFA.

Causal states and ε-machines can be inferred from data in a variety of ways [6,23,25,33].
The causal states are uniquely useful to calculating predictive rate-distortion curves.

Under weak assumptions, the predictive rate-accuracy function of Section 2 becomes:

R(A) = min
p(r|σ):E[d]≥A

I[S ; R]

with:

E[d] = ∑
σt

p(σt) ∑
xt+1=rt

p(rt|σt)p(xt+1|σt) .
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See Ref. [7] for the proof. With this substitution—of a finite object (S) for an infinite one
(
←−
X )—the Blahut-Arimoto algorithm can be used to accurately calculate the predictive

rate-accuracy function, in that the algorithm provably converges to the optimal p(r|σ) [34].
The same cannot be said of the predictive information curve [7], which converges to a local
optimum of the objective function, but may not converge to a global optimum.

In practice, we always augment the predictive rate-accuracy function with the rate
and accuracy of the optimal predictor, which is (as described earlier) straightforwardly
derived from the ε-machine. Simply put, we infer the causal state σt from past data and
predict the next symbol to be arg maxxt+1 p(xt+1|σt).

The following tests the various time series predictors on all of the (uniformly sampled)
binary-alphabet ε-machine topologies [35] with randomly-chosen emission probabilities.
Due to the super-exponential explosion of the set of topological ε-machines with number
of states, we only look at binary-alphabet machines with four or fewer (causal) states.
(There are 1338 unique topologies for four states, but over 106 for six states.) The analysis
discards any ε-machine with zero-rate optimal predictor, which can arise depending on the
emission probabilities.

3.2. Time Series Methods

We focus on three methods for time series prediction: generalized linear models
(GLM), reservoir computers (RCs), and LSTMs.

The GLM we use predicts xt from a linear combination of the last k symbols xt−k, xt−k+1,
. . . , xt−1. More precisely, a GLM models the probability of xt being a 0 via:

pGLM(xt = 0|xt−k, . . . , xt−1) =
ewkxt−k+...+w1xt−1+w0

1 + ewkxt−k+...+w1xt−1+w0
. (2)

The model’s estimate of the probability of xt = 1 follows:

pGLM(xt = 1|xt−k, . . . , xt−1) =
1

1 + ewkxt−k+...+w1xt−1+w0
. (3)

We use Scikit-learn logistic regression to find the best weights w0, w1, . . . , wk. Predictions
are then made via arg maxxt pGLM(xt|xt−k, . . . , xt−1).

The RC is more powerful in that it uses logistic regression with features that contain
information about symbols arbitrarily far into the past. We employ a tanh activation
function, so that the reservoir’s state advances via:

ht+1 = tanh(Wht + vxt + b) (4)

and initialize W, v, b with i.i.d. normally distributed elements. The matrix W is then scaled
so that it is near the “edge of chaos” [36–39], where RCs are conjectured to have maximal
memory [40,41]. We then use logistic regression with ht as features to predict xt:

preservoir(xt = 0|ht) =
ew�ht+w0

1 + ew�ht+w0
,

preservoir(xt = 1|ht) =
1

1 + ew�ht+w0
.

It is straightforward to devise a weight matrix W and bias b so that preservoir(xt|ht) attains
the restricted linear form of pGLM of Equations (2) and (3). That is, RCs are more powerful
than GLMs, as they use nonlinear functions of semi-infinite pasts for their summary
statistics. We use Scikit-learn logistic regression to find the best weights w0 and w. Note
that the weights W, v, and b are not learned, but held constant; we only train w and w0.
Predictions are made via arg maxxt preservoir(xt|ht).

Finally, we analyze the LSTM’s predictive capabilities. LSTMs are no more powerful
than vanilla RNNs; e.g., those as in Equation (4). However, they are far more trainable in
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that it is possible to achieve good results without extensive hyperparameter tuning [21].
An LSTM has several hidden states ft, it, ot, ct, and ht that update via the following:

ft = σg(Wf xt + Uf ht−1 + b f )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

ct = ft $ ct−1 + it $ σc(Wcxt + Ucht−1 + bc)

ht = ot $ ct ,

where σg is the sigmoid function and σc is the hyperbolic tangent. The variable ct is updated
linearly, therefore avoiding issues with vanishing gradients [42]. Meanwhile, the gating
function ft allows us to forget the past selectively. We then predict the probability of xt
given the past using:

pLSTM(xt = 0|ht) =
ew�ht+w0

1 + ew�ht+w0
,

pLSTM(xt = 1|ht) =
1

1 + ew�ht+w0
. (5)

Weights w and w0 are learned while we estimate parameters Wf , Uf , b f , Wi, Ui, Wo, Uo, bo, Wc,
Uc, and bc to maximize the log-likelihood. Predictions are made via arg maxxt pLSTM(xt|ht).

Predictive accuracy is calculated by comparing the predictions to the actual values
of the next symbol and counting the frequency of correct predictions. The code rate is
calculated via the prediction entropy [4].

4. Results

An aim here is to thoroughly and systematically analyze the predictive accuracy as
measured by the probability of correctly guessing the next symbol and code rate of our
three time series predictors of a large swath of PDFAs in the small-data limit, in which only
5000 samples are shown to the RNN. To implement this, we ran through Ref. [35]’s topo-
logical ε-machine library—binary-alphabet PDFAs with four states or less and randomly
chosen emission probabilities, in which transition probabilities were drawn from a uniform
distribution. For each PDFA, we generated a length-5000 time series. The first half was
presented to a predictor and used to train its weights. We then evaluated each time series
predictor based on its predictions for the second half of the time series. Predictive accuracy
and code rate were calculated and compared to the predictive rate-distortion function.
Predictive accuracy was calculated as the probability of having a correct prediction; code
rate was calculated empirically as the single-symbol entropy of the predictions [14].

Note that Bayesian structural inference (BSI) provides a useful comparison [23]. In BSI,
we compute the maximum a posteriori (MAP) estimate of the PDFA generating an observed
time series, and use this MAP estimate to build an optimal predictor of the process. BSI can
correctly infer the PDFA essentially 100% of the time with orders-of-magnitude less data
than used to monitor the three prediction methods tested here. Hence, it achieves optimal
predictive accuracy with minimal rate. Our aim is to test the ability of GLMs, RCs, and
RNNs to equal BSI’s previously-published performance.

The time series predictors used have hyperparameters. A variety of orders (k’s) were
used for the GLMs and reservoirs and LSTMs of different sizes (number of nodes) were
tested. Learning rate and optimizer type, including gradient descent and Adam [43], were
also varied for the LSTM, with little effect on results. Regularization was necessary and
utilized in both L1 and L2 forms on all three predictors. As is typical, a validation set
was used to select the strength and type of regularization, and results were reported on a
separate test set. In total, 5000 steps of the time series were simulated, which was small
enough to test how these machine learning methods responded to too little data, but
enough data that the machine learning methods could have picked up on patterns.
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4.1. The Difference between Theory and Practice: The Even and Neven Process

We first analyze two easily-described PDFAs, deriving RNNs that correctly infer causal
states and, therefore, that match the optimal predictor—the ε-machine. We then compare
the trained GLMs, RCs, and LSTMs to the easily-inferred optimal predictors. In theory, RCs
and LSTMs should be able to mimic the derived RNNs, in that it is possible to find weights
of an RC and LSTM that yield nodes that mimic the causal states of the PDFA. In practice,
surprisingly, RCs and LSTMs have some difficulty.

First, we analyze the Even Process shown in Figure 3. The optimal prediction algorithm
is easily seen by inspection of Figure 3. When we determine the machine is in state A, we
predict a 0 or a 1 with equal probability; if it is in state B, we predict a 1. We determine
whether or not it is in state A or B by the parity of the number of 1s since the last 0. If
odd, it is in state B; if even, it is in state A. The inferred state is easily encoded by the
following RNN:

ht+1 = xt(1− ht) . (6)

If xt is 0, the hidden state of the RNN “resets” to 0; e.g., state A. If xt = 1, then the
hidden state updates by flipping from 0 to 1 or vice versa, mimicking the transitions from
A to B and back. One can show that a one-node LSTM hidden state ht can, with proper
weight choices, mimic the hidden state of Equation (6). With the correct hidden state
inferred, it is straightforward to find w and w0 such that Equation (5) yields optimal (and
correct) predictions.

As one might then expect, and as Figure 4 confirms, LSTMs tend to have rates that are
close to the optimal (maximal) rate and predictive accuracies that are only slightly below the
optimal predictive accuracy. RCs and GLMs tend to have higher rates and lower predictive
accuracies, but they are still within ∼13% of optimal. We can see this qualitatively just
by examining the predictive rate-accuracy curve in Figure 4: the closer that a point is to
the curve, the more efficiently that predictor predicts. Among the points on the curve,
potentially the most desirable point is the one at the highest achievable accuracy, at the
top right. The points from the LSTMs tend to be closer to the curve and closer to the point
at the top right, followed by RCs, and followed by GLMs. Interestingly, the points from
all processes lie on a one-dimensional curve, speaking to some hidden simplicity in the
relationship between rate and accuracy that likely holds only for binary-valued processes.

0.0 0.2 0.4 0.6

Rate

0.50

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

GLM

Reservoir

LSTM

Figure 4. Predictive rate–accuracy curve for the Even Process in Figure 3, along with empirical
predictive accuracies and rates of GLMs, RCs, and LSTMs of various sizes: orders range from 1–10
for GLMs, number of nodes range from 1–61 for RCs, and number of nodes range from 1–121 for
LSTMs. Despite the Even Process’ simplicity, there is a noticeable difference between the predictors’
performances and between their performances and the optimal achievable performance.
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As one might also expect, LSTMs and RCs with additional nodes and GLMs with
higher orders (higher k) have higher predictive accuracies than LSTMs and RCs with fewer
nodes and GLMs with lower orders. However, viewed another way, given the simplicity of
the stimulus—indeed, given that a one-node LSTM can, in theory, learn the Even Process—
the gap from the predictors’ rates and accuracies to the optimal combinations of rate and
accuracy is surprising. It is also surprising that none of the three predictors’ rates fall below
the maximal optimal rate.

Figure 5 introduces a similarly-simple three-state PDFA. If a 1 is observed after a 0, we
are certain the machine is in state B; after state B, we know it will transition to state A; and
then the parity of 0s following transition to state A tells us if it is in state A (even) or state B
(odd). This PDFA is a combination of a Noisy Period-2 Process (between states A and B)
and an Even Process (between states A and C).
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1|0
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Figure 5. Predictive rate-accuracy curve for the Neven Process (PDFA shown at left), along with
empirical predictive accuracies and rates of GLMs, RCs, and LSTMs of various sizes: orders range
from 1–10 for GLMs, number of nodes range from 1–61 for RCs, and number of nodes range from
1–121 for LSTMs. Despite Neven Process’ simplicity, there is a noticeable gap between the predictor’s
performance and the optimal performance achievable.

Given the Neven Process’s simplicity, it is unsurprising that we can concoct an RNN
that can infer the internal state. Let ht = (ht,A, ht,B, ht,C) be the hidden state that is (1, 0, 0)
if the internal state is A, (0, 1, 0) if the internal state is B, and (0, 0, 1) if the internal state is
C. By inspection, we have:

ht+1,A = 1− ht,A

ht+1,B = xtht,A

ht+1,C = (1− xt)ht,A .

One can straightforwardly find weights that lead to pLSTM(xt+1|ht) accurately reflecting
the transmission (emission) probabilities. In other words, in theory a three-node RNN (and
an equivalent three-node LSTM) can learn to predict the Neven process optimally.

However, the Neven Process’ simplicity is belied by the gap between the predictors’
accuracy and rate and the predictive rate-accuracy curve. In Figure 5, the point at zero
rate implies that the predictor is spitting out the same symbol, regardless of input. The
worst predictive accuracy falls short of the optimal by ∼15%, and none of the GLMs, RCs,
or LSTMs get closer than ∼97% to optimal. Furthermore, almost all the rates surpass the
maximal optimal predictor rate.

4.2. Comparing GLMs, RCs, and LSTMs

We now analyze the combined results obtained over all minimal PDFAs up to four
states using two metrics. (Again, recall that they are 1338 unique machine topologies.) To
compare across PDFAs, we first normalize the rate and accuracy by the rate and accuracy
of the optimal predictor. Then, we find the distance from the predictor’s rate and accuracy
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to the predictive rate-accuracy curve, which is similar in spirit to the metric of Ref. [44]
and to the spirit of Ref. [8]. Note that this metric would have been markedly harder to
estimate had we used nondeterministic probabilistic finite automata; that is, those without
determinism (unifiliarity) in their transition structure [7].

Figure 6 showcases a histogram of the normalized distance to the predictive rate-
accuracy curve, ignoring PDFAs for which the maximal optimal rate is 0 nats. The nor-
malized distance for all three predictor types tends to be quite small, but even so, we
can see differences in the three predictor types. LSTMs tend to have smaller normalized
distances than RCs, and RCs tend to have smaller normalized distances to the predictive
rate-accuracy curve than GLMs. In fact, LSTMs seem to be uniformly better lossy predictive
feature extractors. Trained LSTMs on average have 0.8% normalized distance; RCs on
average have 2.0% normalized distance; and GLMs on average have 4.5% normalized
distance. When looking only at optimized LSTMs, RCs, and GLMs—meaning that the
number of nodes or the order is chosen to minimize normalized predictive distortion—a
few PDFAs still have high normalized predictive distortions of 4.6% for LSTMs, 9.7% for
RCs, and 27.3% for GLMs.
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Figure 6. (Left) Histogram of normalized predictive distortions for LSTMs (blue), RCs (orange), and
GLMs (green) using 798 distinct PDFAs. While LSTMs tend to have far higher predictive accuracies,
they also have a much larger probability than reservoirs or GLMs do of having noticeable inaccuracies.
Some recorded normalized predictive distortions were negative, indicating the effects of finite sample
size. (Right) Histogram of normalized distances to the predictive rate-accuracy curve for LSTMs
(blue), RCs (orange), and GLMs (green) using 798 distinct PDFAs. It is apparent that LSTMs are closer
to the predictive rate-accuracy curves than reservoirs and GLMs.

The same trend holds for the percentage difference between the predictive accuracy
and the maximal predictive accuracy, which we call the normalized predictive distortion,
with a crucial modification. Trained LSTMs on average have 21.5% normalized predictive
distortion; RCs on average have 1.8% normalized predictive distortion; and GLMs on
average have 4.2% normalized predictive distortion. When looking only at optimized
LSTMs, RCs, and GLMs—meaning that the number of nodes or the order is chosen to mini-
mize normalized predictive distortion—a few PDFAs still have high normalized predictive
distortions of 50% for LSTMs, 13.5% for RCs, and 25.5% for GLMs. However, perhaps the
most interesting aspect of the Figure 6 is that LSTMs are far more likely than reservoirs or
GLMs to have large normalized predictive distortions, surprisingly.

Unsurprisingly, increasing the GLM order and the number of nodes of the RCs and
LSTMs tends to increase predictive accuracy and decrease the normalized distance.

Our final aim is to understand the PDFA characteristics that cause them to be harder
to predict accurately and/or efficiently. We have two suspects, which are the most natural
measures of process “complexity”. This first is the generated process’ entropy rate hμ,
the entropy of the next symbol conditioned on all previous symbols, which quantifies
the intrinsic randomness of the stimulus. The second is the generated process’ statistical
complexity Cμ, the entropy of the causal states, which quantifies the intrinsic memory in
the stimulus. The more random a stimulus, the harder it would be to predict; imagine
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having to find the optimal predictor for a biased coin whose bias is quite close to 1/2. The
more memory in a stimulus, the more nodes in a network or the higher the order of the
GLM required, it would seem. We performed a multivariate linear regression, trying to use
hμ and Cμ to predict the minimal normalized predictive distortion and minimal normalized
distance. We find a small and positive correlation for LSTMs, reservoirs, and GLMs for
predicting minimal deviations in accuracy from perfection, with an R2 of 0.189, 0.134, and
0.132, respectively. For all three types of prediction algorithms, statistical complexity Cμ is
positively correlated with deviations in accuracy. Entropy rate is positively correlated with
deviations in accuracy for GLMs and reservoirs but, surprisingly, not LSTMs. Interestingly,
the performance GLMs and RCs is impacted by increased randomness and increased
memory in the stimulus, while the LSTMs’ accuracy has little correlation with entropy rate
and statistical complexity.

For the most part, we find that all three prediction methods–GLMs, RCs, and LSTMs—
tend to learn to predict the PDFA outputs near-optimally, in that prediction accuracies differ
from the optimal prediction accuracy by an average of roughly 5%. LSTMs outperform
RCs, which outperform GLMs. However, we discovered simple PDFAs that cause the best
LSTM to fail by as much as 5%, the best RC to fail by as much as 10%, and the best GLM to
fail by as much as 27%.

Since none of the RNNs achieved perfect prediction accuracy, but the BSI method
did [23], we conclude that existing methods for inferring causal states [6,23,25,33] are useful,
despite the historically dominant reliance on RNNs. For example, as previously mentioned,
Bayesian structural inference correctly infers the correct PDFAs almost 100% of the time,
leading to essentially zero prediction error, on training sets that are orders of magnitude
smaller than those used here [23].

5. Conclusions

We have known for a long time that reservoirs and RNNs can reproduce any dynamical
system [15–17], and we have explicit examples of RNNs learning to infer the hidden states
of a PDFA when shown the PDFA’s output [18]. We revisited these examples to better
understand if the finding of Ref. [18] is typical. How often do RNNs and RCs learn efficient
and accurate predictors of PDFAs, especially given that BSI can yield an optimal predictor
with orders-of-magnitude less training data?

We conducted a rather comprehensive search, analyzing 798 randomly-generated
PDFAs with four states or less. For each PDFA, we trained GLMs, RCs, and RNNs of
varying orders or varying numbers of nodes. Larger orders and larger numbers of nodes
led to more accurate and more efficient predictors. On average, the various time series
predictors have ∼5% predictive distortion. In other words, we are apparently better at
classifying MNIST digits than sometimes predicting the output of a simple PDFA. Again,
existing algorithms [23] can optimally predict the output of the PDFAs considered here with
orders-of-magnitude less training data. (MNIST is a database of handwritten digits.) These
findings lead us to conclude that algorithms that explicitly focus on inference of causal
states [6,23–25] have a place in the currently RNN-dominated field of time series prediction.

More importantly, in this small data limit, overfitting is an issue for LSTMs but not
RCs or GLMs. However, LSTMs are somehow excellent lossy predictive feature extractors
nonetheless. The mechanism behind this is a subject for future research.

Perhaps most importantly, the predictive rate-accuracy framework that we introduce
here or similar such frameworks could be useful for calibrating the performance of time
series predictors. We have added a cost that comparatively little research has focused on:
that of communicating the prediction. Implicitly, we are arguing that predictors which do
not have maximal predictive accuracy but do have small communication costs might be
useful nonetheless.
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Abstract: Finite mixture models are widely used for modeling and clustering data. When they are
used for clustering, they are often interpreted by regarding each component as one cluster. However,
this assumption may be invalid when the components overlap. It leads to the issue of analyzing
such overlaps to correctly understand the models. The primary purpose of this paper is to establish
a theoretical framework for interpreting the overlapping mixture models by estimating how they
overlap, using measures of information such as entropy and mutual information. This is achieved by
merging components to regard multiple components as one cluster and summarizing the merging
results. First, we propose three conditions that any merging criterion should satisfy. Then, we
investigate whether several existing merging criteria satisfy the conditions and modify them to fulfill
more conditions. Second, we propose a novel concept named clustering summarization to evaluate
the merging results. In it, we can quantify how overlapped and biased the clusters are, using mutual
information-based criteria. Using artificial and real datasets, we empirically demonstrate that our
methods of modifying criteria and summarizing results are effective for understanding the cluster
structures. We therefore give a new view of interpretability/explainability for model-based clustering.

Keywords: model-based clustering; merging mixture components; component overlap; interpretability

1. Introduction

1.1. Motivation

Finite mixture models are widely used for modeling data and finding latent clus-
ters (see McLachlan and Peel [1] and Fraley and Raftery [2] for overviews and refer-
ences). When they are used for clustering, they are typically interpreted by regard-
ing each component as a single cluster. However, the one-to-one correspondence be-
tween the clusters and mixture components does not hold when the components over-
lap. This is because the clustering structure then becomes more ambiguous and complex.
Let us illustrate this using a Gaussian mixture model estimated for the Wisconsin breast can-
cer dataset in Figure 1 (details of the dataset and estimation are discussed in
Section 8.2). A number of the components overlap with one another, which makes it
difficult to estimate the shape of distribution or number of clusters. Therefore, we need an
analysis of the overlaps to correctly interpret the models.
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(a) feature 0, 1 (b) feature 0, 2 (c) feature 1, 2

Figure 1. Estimated Gaussian components for the Wisconsin breast cancer dataset [3].

We address this issue from two aspects. In the first aspect, we consider merging
mixture components to regard several components as one cluster. We repeatedly select the
most overlapping pairs of components to merge them. In this procedure, it is important
how the degree of overlap is measured. A number of criteria for measuring cluster overlaps
have been proposed [4–6], but they have not yet been compared theoretically. We give a
theoretical framework for comparing merging criteria by defining three essential conditions
that any method for merging clusters should satisfy. The more conditions any method satis-
fies, the better it is. From this viewpoint, we evaluate the existing criteria (entropy (Ent) [4],
directly estimated misclassification (DEMP) [5] probability, mixture complexity (MC) [7]).
We also modify these existing criteria so that they can satisfy more essential conditions.

In the second aspect, we consider how to summarize the merging results quantitatively.
After merging mixture components, we obtain two types of clustering structures; those
among the upper-components and those among sub-components within each upper-
component, as illustrated in Figure 2. These structures might be still ambiguous because
the upper-components are determined to be the different clusters, but they may overlap;
the sub-components are determined to belong to the same cluster, but they may be scattered
in the cluster. Therefore, we need to evaluate the degree to which the upper- and sub-
components are discriminated as different clusters. We realize this using the notions
of mixture complexity (MC) [7] and normalized mixture complexity (NMC). They give real-
valued quantification of the number of effective clusters and the degree of their separation,
respectively. We therefore develop a novel method for cluster summarization.

Our hypotheses in this paper are summarized as follows:

• Modifying merging criteria based on essential conditions can improve the ability to
find cluster structures in the mixture model.

• Cluster summarization based on MC and NMC effectively describes the clustering
structures.

We empirically verify them by experiments, using artificial and real datasets.
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Figure 2. Upper-components and sub-components.

1.2. Significance and Novelty of This Paper

The significance and novelty of this paper is summarized below.

1.2.1. Proposal of Theoretical Framework for Evaluating Merging Criteria

We give a theoretical framework for evaluating merging methods by defining the
essential conditions. They are necessary conditions that any merging criterion should satisfy:
(1) the criterion should take the best value when the components are entirely overlapped,
(2) it should take the worst value when the components are entirely separated, and (3)
it should be invariant with respect to the scale of the weights. We empirically confirm
that the more essential conditions any merging method satisfies, the better the clustering
structure obtained in terms of larger interdistances and smaller intradistances.

1.2.2. Proposal of Quantitative Clustering Summarization

We propose a method for quantitatively summarizing clustering results based on
MC and NMC. MC is an extended concept of the number of clusters into a real number
from the viewpoint of information theory [7]. It quantifies the diversity among the compo-
nents, considering their overlap and weight bias. NMC is defined by normalizing MC to
remove the effects of weight bias. It quantifies the degree of the scatter of the components
based only on their overlap. Furthermore, MC and NMC have desirable properties for
clustering summarization: they are scale invariant and can quantify overlaps among more
than two components. We empirically demonstrate that our MC-based method effec-
tively summarizes the clustering structures. We therefore give a novel quantification of
clustering structures.

2. Related Work on Finite Mixture Models and Model-Based Clustering

In this section, we present related work on finite mixture models and model-based clus-
tering in four parts: roles of overlap, model, optimization, and visualization. The overlap
has a particular impact on the construction of models.

2.1. Roles of Overlap

There has been widespread discussion about the roles of overlap in finite mixture
models. One argues that the overlap is emerged to represent various distributions.
While this flexibility is beneficial for modeling the data, various issues arise in apply-
ing them to clustering. For example, McLachlan and Peel [1] pointed out that some
skew clusters required more than one Gaussian component to be represented. More-
over, Biernacki et al. [8] pointed out that the number of mixture components selected
for estimating densities was typically more than that of clusters because of overlapping.
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Model selection methods based on clustering (complete) likelihood, such as the integrated
complete likelihood (ICL) [8], the normalized maximum likelihood (NML) [9,10], and
the decomposed normalized maximum likelihood (DNML) [11,12], have been proposed
to obtain less-overlapping mixtures so that one component corresponds to one cluster.
However, they have problems in that they need to define the shape of the clusters in
advance. This leads to a trade-off between shape flexibility and component overlap in
model-based clustering.

Others argue that the overlap represents that the data belong to more than one cluster.
For example, in clustering documents by their topics, the data may have several topics.
Such issues have been widely discussed in the field of overlapping clustering. For example,
Banerjee et al. [13] extended the mixture model to allow the data to belong to multiple
clusters based on membership matrices. Fu and Banerjee [14] considered the product
of cluster distributions to represent multiple memberships of the data. Xu et al. [15]
proposed methods for describing more complex memberships by calculating correlation
weights between the data and the cluster. While these methods allow complex relationships
between the data and the clusters, cluster shapes become simple.

The overlap is also used for measuring the complexity of clustering structures in the
concept of MC [7]. It is a non-integer valued quantity, which implies the uncertainty of
determining the number of clusters. MC was introduced in the scenario of change detection
in [7]. This paper gives a new application scenario of MC in the context of quantifying
clustering structures. Moreover, this paper also newly introduces NMC as a variant of MC,
which turns out to be most effective in this context.

2.2. Model

We discuss the issue of constructing models achieving both flexible cluster shapes
and interpretability. Allowing each cluster to have complex shapes is a solution to tackle
this. For example, mixtures of non-normal distributions have been proposed for this
purpose, as reviewed by Lee and McLachlan [16]. Modeling each cluster as a finite mix-
ture model, called the mixture of mixture model or multi-layer mixture model, has been
considered in this regard. Various methods have been proposed to estimate such mixture
models based on maximum likelihood estimation [17,18] and Bayesian estimation [19,20].
However, additional parameters are required for assigning sub-components to upper-
clusters in many cases because changes of assignment do not change the overall distri-
bution. Merging mixture components [4–6] is an alternative way of the composition of
mixture models using single-layer estimations. In this approach, the criteria to measure
the degree of component overlap have to be identified. Although various concepts have
been developed to measure the degree of overlap, such as entropy [5], misclassification
rate [4,6], and unimodality [4], they have not been satisfactorily compared yet.

2.3. Optimization

Merging components has also been discussed in the scenario of optimizing parameters
in the mixture models. Ueda et al. [21] proposed splitting and merging mixture components
to obtain better estimations, and Minagawa et al. [22] revised their methods to search
the models with higher likelihoods. Zhao et al. [23] considered randomly swapping
the mixture components during optimization, which allows a more flexible search than
splitting and merging components. Because these methods aim only to optimize the
models, there remains the problem of interpreting them.

We also refer to the agglomerative hierarchical clustering as a similar approach to
merging components. Our methods are similar to the Bayesian hierarchical clustering
methods [24,25] in that the number of merging is automatically decided. However, our
approaches can not only create clusters, but also evaluate their shape and closeness under
the assumption that the mixture models are given.
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2.4. Visualization

Methods of interpreting clustering structures have been studied along with visu-
alization methods. Visualizing the values of criteria with a dendrogram is useful for
understanding cluster structures among sub-components [6]. Class-preserved projections
[26] and parametric embedding [27] were proposed for visualizing structures among upper-
clusters by reducing data dimension. We present a method to interpret both structures
uniformly based on the MC and NMC.

3. Merging Mixture Components

We assume that data xN = x1, . . . , xN and a finite mixture model are given. The prob-
ability distribution of the model f is written as follows:

f (x) =
K

∑
k=1

ρkgk(x),

where K denotes the number of components, ρ1, . . . , ρK denote the mixture proportions
of each component summing up to one, and g(x|θ1), . . . , g(x|θK) denote the probability
distributions. We assume that the data xN are independently sampled from f . The random
variable X following f is called an observed variable, because it can be observed as a data
point. We also define the latent variable Z ∈ Z := {1, . . . , K} as the index of the component
from which X originated. The pair (X, Z) is called a complete variable. The distribution of
the latent variable P(Z) and the conditional distribution of the observed variable P(X|Z)
can be given by the following:

P(Z = k) = ρk, P(X|Z = k) = gk(X).

In the case that f is not known, we will replace f by its estimation f̂ under the assumption
that f̂ is so close to f that xN can be approximately regarded as samples from f̂ .

We discuss identifying cluster structures in xN and f by merging mixture components
as described below. First, we define a criterion function denoted as Crit : Z × Z → R,
which measures the degree of overlap or closeness between two components. For simplicity,
we change the sign of the original definitions as needed so that Crit takes smaller values
as the components are closer. Then, we choose the closest two components that minimize
the criterion and merge them. By repeating the merging process several times, we finally
obtain clusters. We show the pseudo-code and computational complexity of this procedure
in Appendix A.

4. Essential Conditions

In this section, we propose three essential conditions that the criteria should satisfy, so
that the criteria can be compared in terms of the conditions. To establish the conditions,
we restrict the criteria to those that can be calculated from the posterior probability of the
latent variables {γk(xn)}k,n defined as follows:

γk(xn) := P(Z = k|X = xn) =
ρkgk(xn)

f (xn)
,

where k is the index of the component. After merging the components i and j, the posterior
probability can be easily updated as follows:

γi∪j(xn) := P(Z ∈ {i, j}|X = xn) = γi(xn) + γj(xn).

Note that some other merging methods reestimate the distribution of the merged
components as a single component [4]. We do not consider these in this study because they
lack the benefit that the merged components can have complex shapes.
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For later use, we define Best(Crit) and Worst(Crit) as the best and worst values that
the criteria can take:

Best(Crit) :=min Crit(i, j) w.r.t.
{

γk,n
}

k,n,

Worst(Crit) :=max Crit(i, j) w.r.t.
{

γk,n
}

k,n,

where {γk,n}k,n is a set of K× N real values in [0, 1] that satisfies ∑k γk,n = 1 for all n.
We formulate the three conditions. They provide natural and minimum conditions

on the behaviors in the extreme cases that the components are entirely overlapped or
separated and on the scale invariance of the criteria. The conditions for the moderate cases
that the components partially overlap should be investigated in further studies.

First, we define the condition that a criterion should take the best value when the two
components entirely overlap. It is formally defined as follows.

Definition 1. If a criterion satisfies that(
∀n, gi(xn) = gj(xn)

)
⇒ Crit(i, j) = Best(Crit),

then, we say that it satisfies the condition BO (best in entirely overlap).

Next, we define the condition that the criterion should take the worst value when the
two components are entirely separated.

Definition 2. We consider that the sequence of the models { ft = ∑k ρk,tgk,t}∞
t=1 satisfies the

following:
∀n, gi,t(xn)gj,t(xn)→ 0 (1)

as t → ∞. We define Critt(i, j) as the criterion value based on ft. Then, if (1) implies that

lim
t→∞

Critt(i, j)→ Worst(Crit),

we say that it satisfies the condition WS (worst in entirely separate).

Note that this definition is written using limits in case that the distribution of the
components has support in the entire space, such as the Gaussian distributions.

Finally, we define the condition that the value of the criterion should be invariant with
the scale of mixture proportions.

Definition 3. We consider that the components i and j are isolated from the other components, i.e.,
the sequence of the models { ft = ∑k ρk,tgk,t}∞

t=1 satisfies the following:(
gi,t(xn) + gj,t(xn)

)
gk,t(xn)→ 0

for all k �= i, j and n as t → ∞. In addition, we consider another sequence of the mixture model
{ f̄t = ∑k ρ̄k,tgk,t}∞

t=1 with different scales on the mixture proportions of the components i and j,
i.e., ρ̄k,t = aρk,t (k = i, j) holds for some a > 0. We define Critt(i, j) as the criterion value based
on f̄ (t). Then, we say that the criterion satisfies the condition SI (Scale invariance) if for any a, the
following holds:

lim
t→∞

Critt(i, j) = lim
t→∞

Critt(i, j).

5. Modifying Merging Methods

In this section, we introduce the existing merging criteria and propose new criteria by
modifying them so that they can satisfy more essential conditions.
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5.1. Entropy-Based Criterion

First, we introduce the entropy-based criterion (Ent) proposed by Baudry et al. [5]. It se-
lects the components that reduce the entropy of the latent variable the most.
This criterion, denoted as CritEnt, is formulated as follows:

−CritEnt(i, j) :=
N

∑
n=1

(
Ψ(γi(xn)) + Ψ

(
γj(xn)

)
−Ψ

(
γi∪j(xn)

))
,

where Ψ(x) := −x log x.
However, it violates the conditions BO and SI. Therefore, we propose to modify it in

two regards. First, we correct the scale of the weights to make CritEnt satisfy SI. We propose
a new criterion CritNEnt1 defined as follows:

−CritNEnt1(i, j) :=
−CritEnt(i, j)

N
(
ρ̃i + ρ̃j

) ,

where ρ̃k := ∑n γk(xn)/N. This satisfies the condition SI.
Next, we propose removing the effects of the weight biases to make CritNEnt1 satisfy

BO. We further introduce a new criterion CritNEnt2 defined as follows:

CritNEnt2(i, j) :=
CritNEnt1(i, j)

H̃i,j(Z)
,

H̃i,j(Z) := ∑
k∈{i,j}

Ψ

(
ρ̃k

ρ̃i + ρ̃j

)
.

This satisfies all conditions: BO, WS, and SI.

5.2. Directly Estimated Misclassification Probabilities

Second, we introduce the criterion named directly estimated misclassification probabil-
ities (DEMP) [4]. It selects the components with the highest misclassification probabilities.
The criterion is formulated as follows:

−CritDEMP(i, j) := max
{
M̃j,i,M̃i,j

}
,

where

M̃j,i := P̃(ẑ(X) = j|Z = i) := ∑n γi(xn)1(ẑ(xn) = j)
Nρ̃i

,

ẑ(x) = arg max
k=1,...,K

γk(x).

However, this violates the condition BO when ẑ(xn) is not i or j for some n. Therefore,
we modify it by restricting the choice of the latent variable to component i or j. We define
ẑi,j(x) as follows:

ẑi,j(x) := arg max
k=i,j

γk(xn)

and define CritDEMP2 by replacing ẑ(x) with ẑi,j(x) in the definition of CritDEMP. Then, this
satisfies all essential conditions.

5.3. Mixture Complexity

Finally, we propose a new criterion based on mixture complexity (MC) [7]. MC is an
extended concept of (the logarithm of) the number of clusters into a real value considering
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the overlap and bias among the components. It is defined based on information theory,
and formulated as follows:

MC
(
{γk(xn)}k,n; {wn}n

)
:=

K

∑
k=1

Ψ(ρ̃k)−
N

∑
n=1

wn

W

K

∑
k=1

Ψ(γk(xn)),

where {wn}n denotes the weights of the data xN , W := ∑n wn denotes their sum, and ρ̃k
is redefined as ρ̃k := ∑n wnγk(xn)/W. Examples of MC for mixtures of two components
are shown in Figure 3. In them, the exponential of the MCs take values between 1 and 2,
according to the uncertainty in the number of clusters induced by the overlap or weight
bias between the components.

(a) (b) (c)

Figure 3. Examples of MC for mixtures of two components. Images are obtained from [7].

We first propose a new merging criterion CritMC to select the components whose MCs
are the smallest. It is defined as follows:

CritMC(i, j) := MC

⎛⎝{ γk(xn)

γi∪j(xn)

}
k∈{i,j},n

;
{

γi∪j(xn)
}

n

⎞⎠.

However, this does not satisfy the condition WS because of the effects of the weight
biases. Therefore, we modify it by removing the biases to propose a new criterion, which we
call the normalized mixture complexity (NMC) CritNMC. The criterion is defined as follows:

CritNMC(i, j) :=
CritMC(i, j)

H̃i,j(Z)
.

It satisfies all conditions BO, WS, and SI. Note that it is equivalent to CritNEnt2 because
CritNMC = 1 + CritNEnt2.

We summarize the relationships between the criteria and the essential conditions in
Table 1. The modification led to the fulfillment of many conditions.

Table 1. Summary of the relationships between the criteria and the essential conditions. Check marks
are attached to the conditions that are satisfied.

Before Modification After Modification

criterion BO WS SI criterion BO WS SI

Ent � NEnt1 � �
DEMP (�) � � DEMP2 � � �

MC � � NMC = NEnt2 � � �
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6. Stopping Condition

We also propose a new stopping condition based on NMC. First, we calculate the
NMC for the (unmerged) mixture model f defined as follows:

NMC0 :=
MC

(
{γk(xn)}k,n; {1}n

)
H̃(Z)

.

Since it represents the average degree of separation in the components of f , it can be
used for the stopping condition for merging. Then, before merging components i and j,
we compare CritNMC(i, j) to NML0. If CritNMC(i, j) ≥ NML0, then the merging algorithm
halts without merging components i and j. Otherwise, the algorithm merges components i
and j and continues further.

Note that this stopping criterion can be applied when a criterion other than CritNMC
is used. In this case, we use the criterion to search the two closest components and use
NMC to decide whether to merge them.

7. Clustering Summarization

In this section, we propose methods to quantitatively explain the merging results,
using the MC and NMC.

We consider that a mixture model with K-component is merged into L upper-
components. We define the sets I1, . . . , IL that partition {1, . . . , K} as the sets of the in-
dices that are contained in each upper-component. Then, the MC and NMC among the
upper-components, denoted as MC(up) and NMC(up), respectively, can be calculated
as follows:

MC(up) := MC

⎛⎝{∑
k∈Il

γk(xn)

}
l,n

, {1}n

⎞⎠,

NMC(up) :=
MC(up)
∑l Ψ(τ̃l)

,

where τ̃l denotes the weight of the upper-component l calculated as follows:

τ̃l :=
1
N ∑

k∈Il

γk(xn) = ∑
k∈Il

ρ̃k.

For each l, the MC and NMC in the sub-components within the upper-component l, written
as MC(l) and NMC(l), respectively, can be calculated as follows:

MC(l) := MC

⎛⎝{ γk(xn)

∑k′∈Il
γk′(xn)

}
k∈Il ,n

;

{
∑

k′∈Il

γk(xn)

}
n

⎞⎠,

NMC(l) :=
MC(l)

∑k∈Il
Ψ
(

ρ̃
(k)
l

) ,

where ρ̃
(k)
l denotes the relative weight of the sub-component k ∈ Il calculated as

ρ̃
(k)
l := ρ̃k/ ∑k′∈Il

ρ̃k′ . NMC is undefined if the denominator is 0.
MC and NMC quantify the degree to which the components are regarded as clusters

in different ways: larger values indicate that the components definitely look like different
clusters. MC quantifies this by measuring (the logarithm of) the number of clusters
continuously, considering the ambiguity induced by the overlap and weight bias among
the components. It takes a value between 0 and the logarithm of the number of the
components. In contrast, NMC measures the scattering of the components based only on
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their overlap. It takes a value between 0 and 1. They have also the desirable properties that
they are scale invariant and can quantify overlaps among more than two components.

Therefore, we propose the summarization of clustering structures by listing MC(up),
NMC(up), component weights, MC(l), and NMC(l) in a table, which we call the clustering
summarization. The clustering summarization is useful for evaluating the confidence level
of the clustering results.

We show an example of the clustering summarization using the mixture model
illustrated in Figure 4. In this example, there are four Gaussian components as illus-
trated in Figure 4a, and two merged clusters on the left and right sides as illustrated in
Figure 4b–d. The clustering summarization is presented in Table 2. For the upper-
components, the exponential of MC is almost two, and the NMC is almost one. This
indicates that two upper-components can be definitely regarded as different clusters.
For both sub-components, the exponential of MC is larger than one. This indicates that
they have more complex shapes than a single component. Moreover, the structures within
Component 1 are more complex than those in 2, because the MC and NMC are larger.

(a) Entire model (b) Interaction

(c) Cluster 1 (d) Cluster 2

Figure 4. Example of the merged mixture model. Images are obtained from [7].
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Table 2. Example of a clustering summarization.

Upper-Components

MC (exp): 0.647 (1.91)
NMC: 0.933

Component 1 Component 2

Weight: 0.494 Weight: 0.506
MC (exp): 0.566 (1.76) MC (exp): 0.324 (1.38)
NMC: 0.817 NMC: 0.467

8. Experiments

In this section, we present the experimental results to demonstrate the effectiveness of
merging the mixture components and modifying the criteria.

8.1. Analysis of Artificial Dataset

To reveal the differences among the criteria, we conducted experiments with artifi-
cially generated Gaussian mixture models. First, we randomly created a two-dimensional
Gaussian mixture model f = ∑K

k=1 ρkN (x; μk, Σk) as follows:

K := 50,

(ρ1, . . . , ρK) ∼ Dir(1, . . . , 1),

μ1, . . . , μK
i.i.d.∼ N

(
μ; [0, 0], 32 × I2

)
,

a1, b1, . . . , aK, bK
i.i.d.∼ U[0.5, 1.5],

Σk := [[ak, 0], [0, bk]] (k = 1, . . . , K),

where Dir(α, . . . , α) denotes the Dirichlet distribution, and U[m, M] denotes the uniform
distribution from m to M. Then, we sampled 5000 points x5000 from f , and ran the
merging algorithms without stopping conditions. The algorithms were evaluated us-
ing the (maximum) intra-cluster distanceDintra and (minimum) inter-cluster distanceDinter
defined as follows:

Dintra := max
k=1,...,K

∑n γk(xn)‖xn − μ̃k‖2

∑n′ γk(xn′)
,

Dinter := min
1≤i<j≤K

‖μ̃i − μ̃j‖2,

where μ̃1, . . . , μ̃K denote the centers of the components defined as

μ̃k := ∑n γk(xn)xn

∑n′ γk(xn′)
.

The clustering structure is said to be better, as Dintra is smaller and Dinter is larger.
Both distances are measured with several K and compared among the algorithms with
different criteria. Although we may obtain better results for these metrics by using them as
merging criteria in a similar way as used in hierarchical clustering [28,29], we used them
only for comparison rather than optimizing them.

The experiments were performed 100 times by randomly generating f and the data.
Accordingly, the ranking of the criteria was calculated for each distance. Table 3 presents
the average rank of each criterion. As seen from the table, the modifications of the criteria
improved the rank. In addition, DEMP2 and NMC, satisfying all essential conditions, were
always in the top three. These results indicate the effectiveness of the essential conditions.
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Table 3. Average ranks of the criteria. For each K, the best rank is denoted in boldface.

Dintra

K 40 30 20 10 5

Ent 6.00 6.00 6.00 5.94 5.58
NEnt1 3.67 4.15 3.93 4.15 4.18
DEMP 4.30 4.56 4.07 2.57 2.13
DEMP2 2.40 2.52 2.45 2.12 1.91

MC 2.25 2.04 3.21 4.53 4.94
NMC 2.37 1.73 1.35 1.69 2.27

Dinter

K 40 30 20 10 5

Ent 5.02 5.14 5.38 5.50 5.19
NEnt1 4.29 4.23 4.26 4.56 3.99
DEMP 4.99 4.97 4.82 2.88 2.63
DEMP2 3.56 3.55 3.17 2.85 2.48

MC 2.09 2.06 2.35 3.90 4.86
NMC 1.06 1.04 1.03 1.29 1.84

To further investigate the relationships between the essential conditions and resulting
cluster structures, we illustrated the cluster obtained in a trial where the intra-cluster
distance was the largest in Figure 5. For the criterion Ent, one cluster continued to grow.
This is because Ent lacks the condition SI, and is advantageous for larger clusters. For the
criterion NEnt1, the growth of the larger clusters was mitigated by adding the condition
SI to Ent. Nevertheless, the intra-cluster distances were still large because NEnt lacked
the condition BO. It tended to create unnecessarily large clusters because it tended to
merge larger and more distant components rather than smaller and closer components.
The criterion NMC improved such a disadvantage by adding the condition BO to NEnt1.
For the criterion MC, distant components were merged, as the condition WS was not
satisfied. NMC overcame this by adding the condition WS to MC. The differences between
DEMP and DEMP2 were unclear in Figure 5c,d, and both criteria elucidated the cluster
structure well because they satisfied relatively many conditions. We conclude that the
essential conditions are effective for obtaining better cluster structures.

188



Entropy 2021, 23, 1503

(a) Ent (11.07) (b) NEnt1 (3.79) (c) DEMP (3.72)

(d) DEMP2 (3.45) (e) MC (3.92) (f) NMC (2.79)

Figure 5. Scatter plots for the cluster with K = 20 whose intra-cluster distance is the largest. The thickness of the color
corresponds to the posterior probabilities. The numbers in the parenthesis show Dintra.

8.2. Analysis of Real Dataset

We discuss the results of applying the merging algorithms and clustering summariza-
tion to eight types of real datasets with true cluster labels. The details of the datasets and
processing are described in Appendix B.

8.2.1. Evaluation of Clustering Using True Labels

First, we compared the clustering performance of the merging algorithms by measur-
ing similarity between estimated and true cluster labels. Formally, given the dataset {xn}n
and the true labels {z�n}n, we first estimated the clustering structures using {xn}n without
seeing {z�n}n, and obtained the estimated labels {ẑn}n. We define K� and K̂ as the number
of the true and estimated clusters. Then, we evaluated the similarity between {z�n}n and
{ẑn}n using the adjusted Rand index (ARI) [30] and F-measure. ARI takes values between
-1 and 1, and F-measure takes values between 0 and 1. Their larger value corresponds
to better clustering. Both indices can be applied when the number of true and estimated
clusters is different.

To run the merging algorithms, the mixture models should be estimated first. In our
experiments, we estimated them by the variational Bayes Gaussian mixture model with
K = 20 [31] implemented in the Scikit-learn package [32]; we adopted this, as it exhibited
good performance in our experiments. We used the prior distributions of the mixture
proportions as the Dirichlet distributions with α = 0.1, and we set the other parameters
for prior distributions as the default values in the package. For each dataset, we fitted the
algorithm ten times with different initializations and used the best one.

We compared the merging algorithms with three types of model-based clustering
algorithms based on the Gaussian mixture model, which are summarized in Table 4. First,
we estimated the number of components, using BIC [33]. It selects a suitable model for
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describing the densities, and the mixture components tend to overlap. Nevertheless, it
has been widely used for clustering by regarding each component as a cluster. Second,
we estimated the number of clusters using DNML [11,12]. It selects a model whose
components can be regarded as clusters by considering the description length of the latent
and observed variables. Finally, we estimated the clusters as the mixture of Gaussian
mixture models implemented by Malsiher-Walli et al, [20]. By fixing two integers K and L,
K Gaussian mixture models were estimated with L components. The number of clusters
was automatically adjusted by shrinking the redundant clusters. As in the original paper,
we set K = 30, L = 15 (and some specific parameters in the paper) for the DLB dataset and
K = 10, L = 5 for the other datasets.

Table 4. Overview of the comparison methods.

Abbreviation Method Reference

GMM + BIC GMM and BIC criterion [33]

GMM + DNML GMM and DNML criterion [11,12]

MixMix Mixture of Gaussian mixture models [20]

We estimated the models ten times and compared the average score among the
methods. The average number of clusters are listed in Table 5, and F-measure and ARI are
listed in Tables 6 and 7.

Two clusters that achieved the best score and that were obtained by the heuristics
proposed in Section 6 are described. The best scores of the merging algorithms exceeded
those of all other methods for six out of eight datasets. In particular, the merging methods
satisfying many essential conditions, such as DEMP, DEMP2, and NMC, obtained high
scores with a smaller number of clusters. Therefore, it can be said that the merging algo-
rithms with more essential conditions are effective for elucidating the clustering structures.
Moreover, the scores with NMC-based stopping conditions exceeded those of all other
methods for four out of eight datasets.

Table 5. Estimated number of clusters. Merge (best F-measure) is the number of clusters when F-measure is highest.
Merge (best ARI) is the number of clusters when ARI is highest. Merge (NMC) is the number of clusters obtained by the
NMC-based stopping condition.

Dataset AIS BTL CRB DLC ECL SDS WSC YST
K� 2 3 4 4 5 3 2 2

GMM + BIC 3.0 2.6 3.0 6.6 4.0 2.0 3.0 3.5

GMM + DNML 1.0 1.0 1.0 2.8 4.0 1.0 2.0 1.0

MixMix 2.7 1.2 1.0 7.4 4.5 3.2 2.1 2.8

Merge
(Best F-measure)

Ent 18.0 20.0 19.1 17.6 19.0 19.4 19.2 18.6

NEnt1 2.0 3.0 5.7 10.2 8.9 6.7 5.3 8.8

DEMP 2.0 3.0 4.3 4.9 6.2 4.7 3.4 2.3

DEMP2 2.0 3.0 4.3 4.9 5.7 4.1 2.7 2.0

MC 2.0 3.0 5.6 3.6 4.9 7.1 2.7 2.0

NMC 3.0 3.0 4.3 7.1 6.4 4.3 2.0 2.1

Merge
(Best ARI)

Ent 19.0 20.0 19.4 17.6 19.0 19.4 19.2 18.6

NEnt1 3.0 3.0 5.7 3.2 7.0 6.7 5.3 8.8

DEMP 2.4 3.0 4.3 4.9 6.2 4.9 3.6 2.3

DEMP2 2.0 3.0 4.3 5.0 6.1 4.5 2.7 2.0
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Table 5. Cont.

Dataset AIS BTL CRB DLC ECL SDS WSC YST
K� 2 3 4 4 5 3 2 2

MC 2.0 3.0 5.6 3.6 4.9 7.1 4.0 2.0

NMC 4.0 3.0 4.3 7.0 6.4 4.4 2.0 2.1

Merge
(NMC)

Ent 19.0 20.0 17.8 17.6 19.0 18.1 19.2 18.6

NEnt1 4.0 3.0 3.6 6.9 4.7 4.9 5.6 8.9

DEMP 4.8 3.0 3.3 9.1 5.7 5.3 4.4 8.0

DEMP2 5.0 3.0 3.3 9.2 5.7 5.2 3.6 8.5

MC 5.0 3.0 6.2 11.3 9.0 8.6 6.1 9.7

NMC 4.0 3.0 3.1 6.4 4.3 3.2 2.9 6.9

Table 6. F-measure for the real datasets. For each merging algorithm, scores that exceed all comparison methods are denoted
in boldface.

Dataset AIS BTL CRB DLC ECL SDS WSC YST

GMM + BIC 0.912 0.805 0.810 0.734 0.787 0.794 0.857 0.864

GMM + DNML 0.671 0.590 0.400 0.903 0.787 0.500 0.914 0.850

MixMix 0.925 0.578 0.400 0.761 0.829 0.849 0.947 0.826

Merge
(Best)

Ent 0.916 0.986 0.866 0.931 0.874 0.900 0.897 0.867

NEnt1 0.901 0.986 0.889 0.922 0.860 0.928 0.904 0.868

DEMP 0.906 0.986 0.877 0.952 0.874 0.908 0.905 0.942

DEMP2 0.906 0.986 0.877 0.952 0.875 0.912 0.905 0.944

MC 0.931 0.986 0.863 0.921 0.870 0.886 0.886 0.928

NMC 0.916 0.986 0.893 0.949 0.875 0.938 0.945 0.942

Merge
(NMC)

Ent 0.892 0.986 0.822 0.931 0.874 0.852 0.897 0.867

NEnt1 0.892 0.986 0.828 0.905 0.823 0.822 0.904 0.868

DEMP 0.822 0.986 0.823 0.758 0.867 0.886 0.881 0.870

DEMP2 0.805 0.986 0.822 0.754 0.867 0.892 0.880 0.820

MC 0.803 0.986 0.831 0.706 0.860 0.878 0.858 0.771

NMC 0.892 0.986 0.828 0.916 0.848 0.810 0.925 0.878
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Table 7. ARI for the real datasets. For each merging algorithm, scores that exceed all comparison methods are denoted
in boldface.

Dataset (K�) AIS BTL CRB DLC ECL SDS WSC YST

GMM + BIC 0.743 0.603 0.595 0.506 0.590 0.542 0.617 0.516

GMM + DNML 0.000 0.000 0.000 0.870 0.590 0.000 0.685 0.000

MixMix 0.751 0.110 0.000 0.501 0.673 0.623 0.799 0.589

Merge
(Best)

Ent 0.700 0.958 0.707 0.913 0.759 0.767 0.688 0.508

NEnt1 0.701 0.958 0.739 0.852 0.719 0.810 0.688 0.511

DEMP 0.666 0.958 0.732 0.934 0.763 0.782 0.734 0.769

DEMP2 0.657 0.958 0.731 0.936 0.763 0.788 0.732 0.773

MC 0.741 0.958 0.700 0.849 0.744 0.745 0.664 0.709

NMC 0.700 0.958 0.748 0.928 0.769 0.832 0.791 0.760

Merge
(NMC)

Ent 0.700 0.958 0.626 0.913 0.759 0.657 0.688 0.508

NEnt1 0.700 0.958 0.642 0.834 0.638 0.594 0.688 0.511

DEMP 0.576 0.958 0.640 0.523 0.754 0.728 0.670 0.514

DEMP2 0.545 0.958 0.639 0.521 0.754 0.745 0.670 0.402

MC 0.534 0.958 0.660 0.452 0.700 0.728 0.633 0.313

NMC 0.700 0.958 0.643 0.878 0.725 0.575 0.732 0.524

To further investigate the relationships between the performances of the algorithms
and the shapes of the datasets, we estimated the proportion of outliers based on the k-
nearest neighbor distances D(5)

nn . We calculated the ratio of the 5-nearest neighbor distance
D(5)

nn (xn) and its average (1/N)∑n′ D(k)
nn (xn′) for each data point, and we plotted the

proportions for which the ratio exceeded 2.0, 3.0, 4.0, and 5.0 in Figure 6. As seen from
the figure, the datasets where the merging methods did not work well, such as AIS, DLB,
WSC, and YST, contained relatively many outliers. This is reasonable because the merging
algorithms do not aim to merge distant clusters. We can conclude that the merging methods
are particularly effective when the datasets have fewer outliers or when we want to find
the aggregated clusters.

Figure 6. The proportions of the data xn that satisfy D(5)
nn (xn)/[(1/N)∑n′ D(5)

nn (xn′ )] > 2.0, 3.0, 4.0, 5.0.
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8.2.2. Results of Clustering Summarization

Next, we analyzed the results of the merging methods using the clustering summa-
rization proposed in Section 7. As examples, we show one result obtained using the NMC
and NMC-based stopping conditions for the Flea beetles and Wisconsin breast cancer
datasets. The clustering results are summarized in Tables 8 and 9, respectively. For the
upper-components in Flea beetles dataset, the exponential of MC(up) was close to 3.0,
and NMC(up) was close to 1.0; we see that the effective number of clusters was around
three, and the clusters were well-separated. Components 2 and 3 were unmerged, and
the exponentials of MC and NMC of Component 1 were close to 1.0 and 0.0, respectively.
This indicates that each cluster can be represented by almost a single Gaussian distribution.
Furthermore, the (exponentials of) MC and the NMC of the upper-components in the Wis-
consin cancer dataset were 1.66 and 0.763, respectively. It can be expected that the situation
was a partial overlap of the two clusters. For Components 1 and 2, NMCs were relatively
large. This shows that partially separated components are needed to describe each com-
ponent. MC of Component 2 was smaller than that of Component 1. Then, it is expected
that Component 2 had simpler shapes than Component 1; however, the former seemed
to have small components that might be outliers because NMC was larger. Plots of the
predicted clusters are illustrated for the Flea beetles and Wisconsin breast cancer datasets in
Figures 7 and 8, respectively. We observe that the predictions described previously match
to the actual plots. Therefore, we can reveal significant information about the clustering
structures by observing the clustering summarizations.

Table 8. Clustering summarization for the Flea beetles dataset.

Upper-Components

MC (exp): 0.963 (2.62)
NMC: 0.897

Component 1 Component 2 Component 3

Weight: 0.440 Weight: 0.268 Weight: 0.293
MC: 0.057 MC: 0.000 MC: 0.000
(exp) (1.06) (exp) (1.00) (exp) (1.00)
NMC: 0.209 NMC: - NMC: -

Table 9. Clustering summarization for the Wisconsin breast cancer dataset.

Upper-Components

MC (exp): 0.509 (1.66)
NMC: 0.763

Component 1 Component 2

Weight: 0.387 Weight: 0.613
MC (exp): 0.714 (2.04) MC (exp): 0.270 (1.31)
NMC: 0.613 NMC: 0.676
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Figure 7. Predicted cluster labels for the Flea beetles dataset.

(a) feature 0, 1 (b) feature 0, 2 (c) feature 1, 2

Figure 8. Predicted cluster labels for the Wisconsin breast cancer dataset.

8.2.3. Relationships between Clustering Summarization and Clustering Quality

Finally, we confirmed that MC and NMC in the sub-components were also related
to the quality of classification. To confirm this, we conducted additional experiments
discussed below. First, we ran the merging algorithms until K = 1 without the stopping
conditions. Then, for every merged clusters created at K = Kstart, . . . , 1, we counted the
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number of data points classified into them. We define N(k)
C as the number of points with

true labels k classified into the merged cluster C. Then, we evaluated the quality of the
cluster C using the entropy calculated as follows:

HC = −
K�

∑
k=1

N(k)
C

∑k′ N(k)
C

log
N(k)

C

∑k′ N(k)
C

,

where the cluster C for ∑k′ N(k)
C = 0 were omitted. This takes values between 0 and log K�.

Smaller values are preferred, because HC becomes small when most of the points within
the component share the same cluster label. We calculated the MC/NMC and HC within
the clusters for all datasets and merging algorithms, and we plotted the relationships
between them in Figure 9. Note that the unmerged clusters were omitted because the NMC
could not be defined. From the figure, it is evident that both MC and NMC had positive
correlations with HC. The correlation coefficients were 0.794 and 0.637 for MC and NMC,
respectively. This observation is useful in applications. If the obtained cluster has smaller
MC and NMC, then we can confirm that it contains only one group. Otherwise, we need to
assume that it contains more than one group. Therefore, we conclude that MC and NMC
indicate the confidence level of the cluster structures.

(a) (b)

Figure 9. Scatter plots of the MC/NMC and the entropy of the true cluster label.

9. Discussion

To improve the interpretability of the mixture models with overlap, we have estab-
lished novel methodologies to merge the components and summarize the results.

For merging mixture components, we proposed essential conditions that the merg-
ing criteria should satisfy. Although there have been studies creating some rules in the
clustering approach [34,35], they have not been applied to clustering by merging compo-
nents. The proposed essential conditions for merging criteria contributed to comparing
and modifying existing criteria. The limitation of our conditions is that they only provide
the necessary conditions for extreme cases, where the components are entirely overlapped
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or separated. The conditions for the moderate cases that the components partially overlap
should be investigated in further studies.

We also proposed a novel methodology to interpret the merging results based on
clustering summarization. While previous studies [6,26,27] have focused on interpreting
the structures among sub-components or upper-clusters only, our methods can quantify
both structures uniformly based on the MC and NMC. They represented the overview
of the structures in the mixture models by evaluating how much the components were
distinguished based on the degree of overlap and weight bias.

We verified the effectiveness of our methods, using artificial and real datasets. In the
artificial data experiments, we confirmed that the intra- and inter-cluster distances were
improved corresponding to the modification of the criteria. Further, by observing the
clusters with maximum intra-cluster distance, we found that the essential conditions were
helpful to prevent the clusters from merging distant components or growing too much.
In the real data experiments, we confirmed that the best scores of the proposed methods
were better than the comparison methods for many datasets, and the scores obtained
using the stopping condition were also better for the datasets containing relatively smaller
outliers. In addition, we confirmed that the clustering summary was helpful to interpret
the merging results. It was related to the shape of the clusters, weight biases, and the
existence of the outliers. Further, we found that the MC and NMC within the components
were also related to the quality of the classification. Therefore, the clustering summary also
represented the confidence level of the cluster structures.

10. Conclusions

We have established the framework of theoretically interpreting overlapping mixture
models by merging the components and summarizing merging results. First, we proposed
three essential conditions for evaluating cluster-merging methods. They declared necessary
properties that the merging criterion should satisfy. In this framework, we considered Ent,
DEMP, and MC and their modifications to investigate whether they satisfied the essential
conditions. The stopping condition based on NMC was also proposed.

Moreover, we proposed the clustering summarization based on MC and NMC. They
quantify how overlapped the clusters are, how biased the clustering structure is, and how
scattered the components are in a respective cluster. We can conduct this analysis from
higher level clusters to lower level components to give a comprehensive survey of the
global clustering structure. We then quantitatively explained the shape of the clusters,
weight biases, and existence of the outliers.

In the experiments, we empirically demonstrated that the modification of the merging
criteria improved the ability to find better clustering structures. We also investigated the
merging order for each criterion and found that the essential conditions were helpful to
prevent the clusters from merging distant components or growing too much. Further,
we confirmed, using the real dataset, that the clustering summary revealed varied infor-
mation in the clustering structure, such as the shape of the clusters, weight biases, the
existence of the outliers, and even the confidence level of the cluster structures. We be-
lieve that this methodology gives a new view of the interpretability/explainability for
model-based clustering.

We have studied how to interpret the overlapping mixture models after they were
estimated. It remains for future study to apply merging criteria even in the phase of
estimating mixture models.
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Appendix A. Details of the Merging Algorithm

We show the pseudo-code and computational complexity of the merging algorithm.
First, the pseudo-code of merging mixture components is shown in Algorithm A1.

Algorithm A1 Merging mixture components

Require: data xN , finite mixture model f , criterion function Crit.
1: while (The number of components) > 1 do
2: i, j := arg min

i<j
Crit(i, j)

3: if a certain stopping condition is satisfied then
4: return The current components.
5: end if
6: Merge components i and j.
7: end while
8: return The current components.

Next, we discuss the computational complexity in this algorithm given xN and f
below. First, the cost of calculating {γk(xn)}k,n can be written as O(TdistNK), where Tdist is
the cost to calculate f (x) for a point. To merge components, it is needed to repeat updating
{Crit(i, j)}i,j and {γk(xn)}k,n at most (K − 1) times. The cost for updating {Crit(i, j)}i,j

and {γk(xn)}k,n are O(TcritK2) and O(N), respectively, where Tcrit is the cost to calculate
Crit(i, j) for a pair of the components. Overall, we need O(K(Tdist + TcritK2 + N)) to
complete the algorithm.

For the criteria referred to in this section, their computational complexity Tcrit are
O(N) for Ent, NEnt1, DEMP2, MC, and NMC (NEnt2), and O(NK) for DEMP.

Appendix B. Details of the Datasets in the Real Data Experiment

The datasets used in the real data experiment are summarized in Table A1. We show
the detail and preprocessing of them below. All variables in the datasets are normalized
after they are selected.
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Table A1. Summary of the real dataset, where N denotes the number of points, d denotes the number
of features, and K� denotes the number of true clusters.

Dataset Abbreviation (N, d) K�

AIS AIS (202, 3) 2

Flea beatles BTL (74, 2) 3

Crabs CRB (200, 5) 4

DLBCL DLB (7932, 3) 4

Ecoli ECL (327, 6) 5

Seeds SDS (210, 7) 3

Wisconsin breast cancer WSC (569, 3) 2

Yeast YST (626, 3) 2

The AIS dataset [36] consists of the physical measurements of athletes who trained at
the Australian Institute of Sport. Two cluster labels are male and female. As did Lee and
McLachlan [16] and Malsiner-Walli et al. [20], we use three variables: BMI, LBM, and body
fat percentage (BFat).

The Flea beetles dataset [37] consists of two physical measurements (width and angle)
of flea beetles. Three cluster labels are the different species, named Concinna, Heikertingeri,
and Heptapotamica.

The Crabs dataset [38] describes five morphological measurements (frontal lobe size,
rear width, carapace length, carapace width, and body depth) of 200 crabs. Four cluster
labels are formed by combining two color forms and two sexes (male and female).

The DLBCL dataset [39] contains fluorescent intensities of multiple conjugated anti-
bodies (markers) on the cells derived from the lymph nodes of patients diagnosed with
DLBCL (diffuse large B-cell lymphoma). As did Lee and McLachlan [40] and Malsiner-Walli
et al. [20], we consider four labels corresponding to the cell populations.

The Ecoli dataset [41,42] contains cellular localization sites of proteins. We consider
five variables named mcg, gvh, aac, alm1, and alm2. Binary attributes are omitted here.
For the labels, we consider five localization sites named cp, im, imU, om, and pp. The other
localization sites are omitted because there are little data assigned to them.

The Yeast dataset [41,42] also describes cellular localization sites of proteins. As did
Franczac et al. [43] and Malsiner-Walli et al. [20], we select three variables and two cluster
labels from the dataset. For the variables, we consider three attributes of proteins, named
mcg, alm, and vac. For the labels, we consider two localization sites named CYT and ME3.

The Seeds dataset [44] consists of the seven geometric parameters of grains: area,
perimeter, compactness, length of kernel, width of the kernel, asymmetry coefficient, and
length of kernel groove. Three cluster labels are kernels belonging to different varieties of
wheat: Kama, Rosa, and Canadian.

The Wisconsin breast cancer dataset [3] describes characteristics of the cell nuclei in the
images of breast masses. Two cluster labels are benign and malignant. As did Fraley and
Raftery [2] and Malsiner-Walli et al. [20], we select three variables: extreme area, extreme
smoothness, and mean texture.
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Abstract: Modern computational models in supervised machine learning are often highly parameter-
ized universal approximators. As such, the value of the parameters is unimportant, and only the out
of sample performance is considered. On the other hand much of the literature on model estimation
assumes that the parameters themselves have intrinsic value, and thus is concerned with bias and
variance of parameter estimates, which may not have any simple relationship to out of sample model
performance. Therefore, within supervised machine learning, heavy use is made of ridge regression
(i.e., L2 regularization), which requires the the estimation of hyperparameters and can be rendered
ineffective by certain model parameterizations. We introduce an objective function which we refer to
as Information-Corrected Estimation (ICE) that reduces KL divergence based generalization error for
supervised machine learning. ICE attempts to directly maximize a corrected likelihood function as
an estimator of the KL divergence. Such an approach is proven, theoretically, to be effective for a
wide class of models, with only mild regularity restrictions. Under finite sample sizes, this corrected
estimation procedure is shown experimentally to lead to significant reduction in generalization error
compared to maximum likelihood estimation and L2 regularization.

Keywords: generalization error; overfitting; information criteria; entropy

1. Introduction

Kullback and Leibler [1] showed that minimizing a divergence ρKL( f , gθ) between the
truth, f , and a parametric model density, gθ, is necessary and sufficient for making accurate
predictions about data using the model defined by θ. Recent work [2] on Berk–Nash
equilibria has shown the central role that KL divergence plays in game theoretic choice
models such as multi-armed bandits and stochastic multi-party games. KL divergence
thus plays a leading role in machine learning and neuroscience, with several inferential
approaches developed in the information theory literature. Such approaches for minimizing
KL divergence employ a range of methods, including data partitioning, Bayesian indirect
inference and M-estimation [3–5]. These approaches are quite distinct from the standard
penalized loss minimization framework and, as such, are non-trivial to combine with
supervised learning methods such as neural networks.

It is well known that maximum likelihood estimation (MLE) introduces an asymptotic
bias in the KL divergence minimizer which is problematic for both model estimation and
model selection. For many models, where the parameters θ are themselves important,
this may be investigated as parameter bias and parameter variance. However, for models
common in modern machine learning, the parameters themselves do not have any easily
interpreted meaning. For these models, the parameters themselves are irrelevant and
only the accuracy (in terms of KL divergence) of the model predictions matter. Within
the information theory literature, this has often been referred to simply as bias (e.g., b(G)
from [6]). To distinguish it from parameter bias, one might refer to it as “prediction bias”
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or “generalization error”. Generalization error is the more common terminology (see, for
example, Equation 1.1.6 [7]) and will be used here.

Before the widespread use of machine learning, most models had interpretable pa-
rameters, and thus there is a large literature focused on reducing parameter bias. For
instance, the jackknife [8] (leave-one-out cross-validation) estimator is an early example.
More relevant to this paper is the approach of Firth [9] and later Kosmidis [10,11]. More
recently, Pagui, Salvan, and Sartori [12] proposed a parameter bias reducing estimation
methodology. An extensive review of the literature around this point can be found in [13].
Unfortunately, these approaches do not consider the impact on KL divergence-based gen-
eralization error and thus are not applicable to the field of machine learning where the
parameters themselves are devoid of meaning. Heskes [14] shows that classifiers do have a
notion of bias-variance decomposition for generalization error, but it is not computable
from parameter bias and parameter variance. Therefore, parameter bias reducing formula-
tions are not useful within machine learning unless it can be shown that they also reduce
generalization error.

In fact, to seat the approach taken in this paper to generalization error, we recall much
earlier and seminal work at the intersection of statistics and information theory. Akaike [15],
and later Takeuchi [16], proposed information criteria (AIC and TIC, respectively) for model
selection designed explicitly to reduce generalization error. Konishi and Kitagawa [6]
extended the approach of Takeuchi to cases where MLE was not used to fit the underlying
model, but still restricted themselves to the question of model selection. Stone [17] proved
that Akaike’s Information Criterion (AIC) is asymptotically equivalent to jackknifing when
the estimator is finite. Takeuchi himself showed that TIC is an extension of AIC with fewer
restrictions, and thus it too is equivalent to jackknifing whenever AIC would be valid.

For highly parameterized models, as are common in machine learning, model selection
such as this is of limited utility. The parameter count may necessarily be very large, and
thus none of the models fit using MLE may be acceptable. Then, merely choosing among
them is unlikely to produce acceptable results. Within this field, typically L2 or similar
regularization is used to reduce generalization error. See Section 11.5.2 [18], for a typical
example. For a more recent innovation, refer to [19]. Note that regularization schemes
such as this often increase parameter bias while decreasing generalization error. Golub,
Heath, and Wahba [20] showed that L2 regularization is asymptotically equivalent to cross-
validation for linear models, subject to certain assumptions. For nonlinear models, it has
long been known that L2 regularization is not always valid, and it is trivial to construct
example models (See Section 4.1 for one such example) where this approach is always
harmful in expectation.

Therefore, it is important to develop a method to reduce generalization error in model
estimation analogous to the way that L2 regularization would commonly be used for
a highly parameterized model, but having applicability for a wider family of models,
especially those for which L2 regularization is not applicable. It is not the goal of this paper
to perform a wide survey of generalization error reducing approaches, but we will rather
propose an additional approach, investigate its properties, and show that it has superior
performance when compared against L2 regularization, which is currently the dominant
generalization error reducing estimation procedure within the field of machine learning.

To this end, this paper introduces a generalization error reducing estimation approach
referred to as Information Corrected Estimation (ICE). This estimator is proven to have a
generalization error of only O(n−

3
2 ) instead of O(n−1) as is the case for MLE, and is shown

to be valid within a neighborhood around the MLE parameter estimate. Optimizing over
this ICE objective function instead of the negative log likelihood thus produces parameters
with superior out of sample performance.

Takeuchi’s TIC and Firth’s approach have never seen widespread use due to the
computational and numerical issues that arise from the computation of this adjustment [21],
and the ICE estimator in its raw form would have similar problems. Therefore, this
paper also proposes an efficient approximation of this correction term, and shows through
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numerical experiments that the approximation is effective at improving model performance
across a range of models.

2. Preliminaries

Let us assume that we have data xn := {x1, . . . , xn} generated from an unknown
joint density function f (x) of Xn := {X1, . . . , Xn}. Where necessary, we define Zn to
denote a second sample drawn from f (x), independent of Xn, and x′n is the observed
realization of Zn. We consider a model Mp given by a parametric family of densities
Mp := {g(·|θ) | θ ∈ Θ ⊆ Rp}, for some compact Euclidean parameter space Θ, which is
misspecified and hence excludes the truth f . Henceforth, the distribution over x identified
by θ may be referred to as gθ(x) := g(x|θ) where it is notationally convenient to do so.

Suppose that θ0 is the quasi-true parameter of model M, and θ̂(Xn) is the random
variable representing the MLE of θ0 fit on a dataset, xn. The negative log-likelihood of Xn
under the distribution gθ is

− �(θ, Xn) := − 1
n

n

∑
i=1

log gθ(xi), (1)

where −�(θ, Xn) is written including a 1
n to make the expectation of this quantity O(1)

and asymptotically independent of n. Similarly, the minus sign is incorporated because
−�(θ, Xn) is a strictly non-negative quantity if gθ(xi) is a probability. The MLE, θ̂(Xn),
minimizes the negative log likelihood of the data set with respect to the model:

θ̂(xn) := argmin
θ

[−�(θ, xn)]. (2)

The expectation of −�(θ, Xn) is the cross entropy between f and gθ:

−L(θ) := EXn [−�(θ, Xn)]. (3)

Here, the expectation is a function only of θ and of the distribution f that generated
the data Xn. As a function of the distribution f , this value is O(1), but could be large for
poorly conditioned f . The quasi-true parameter θ0 is

θ0 := argmin
θ

[−L(θ)]. (4)

Generalization Error in KL Divergence Based Loss Functions

Kullback and Leibler [1] viewed “information” as discriminating the sample data
drawn from one distribution against another, and defined the KL-divergence ρKL be-
tween distributions in terms of the ability to make predictions about one by knowing the
other. Here,

ρKL( f , gθ) =
∫

log[
f (x)

gθ(x)
] f (x)dx. (5)

This value is in general unknowable, but given a sample Xn from f , −�(θ, Xn) will con-
verge asymptotically to ρKL( f , gθ) plus an additive constant that depends only on f . The
convergence relies on White’s regularity conditions [22].

A well known result by Stone [17] shows that the MLE is a biased estimator of the
minimum KL-divergence:

EXn [−�(θ̂(Xn), Xn)] < EXn [−�(θ0, Xn)], (6)

because it is evaluated on the data Xn which was used to fit θ̂. Cross-validation was
developed as a model selection technique to select a model from a group that actually
minimizes EXn [ρKL(gθ0 , gθ̂(Xn)

)] and not merely EXn [−�(θ̂(Xn), Xn)] in the limit of large
n. Takeuchi [16] and Akaike [15] explicitly modeled this bias (generalization error) of an
estimation procedure θ(Xn) as
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b := EXn

[
�(θ(Xn), Xn)−EX′n [�(θ(Xn), X′n)]

]
. (7)

Our goal is to obtain an estimate, b∗, of the generalization error b without using the
MLE. We will then add this term to the objective function to develop the estimator θ∗(Xn)
so as to cancel the lower order terms of the generalization error. This estimator will then
minimize EXn [ρKL(gθ0 , gθ∗(Xn))] more effectively than MLE, and potentially would in turn
produce improved predictions from the model fitted over finite training sets.

Remark 1. We note that under MLE, b = O( 1
n ) [16]. Equivalently, one could say that a particular

realization of the generalization error �(θ(Xn), Xn)− EX′n [�(θ(Xn), X′n)] is itself Op(
1
n ). Here,

Op(
1
n ) is used to indicate that the quantity is a random variable with finite variance, whose mean

is O( 1
n ).

3. Information Corrected Estimation (ICE)

We propose the following penalized likelihood function:

Definition 1 (ICE Objective).

− �∗(θ) = −�(θ) + 1
n

tr(Iθ J−1
θ ), (8)

where Jθ is the negative expected Hessian

Jθ := −EX [∂
2
θ log g(X|θ)] = −

∫
f (x)∂2

θ log g(x|θ)dx, (9)

and Iθ is the Fisher Information matrix

Iθ := EX [∂θ log g(X|θ)∂θT log g(X|θ)]. (10)

with Îθ, Ĵθ being their estimates over the data.
Let θ∗ denote the minimizer of (8).

The trace term in Equation (8) will be familiar from Takeuchi [16]. However, Takeuchi
showed only that this was the leading order of the bias for the MLE estimate θ̂, and
therefore the proof found there is not sufficient to justify a new estimator that will itself
be the target of optimization, and is required to be valid away from θ̂. As in Takeuchi,
because I and J are unknowable, we will substitute their approximations computed from
the training data, Îθ and Ĵθ during the actual computation of this objective. The numerical
impact of this approximation will be examined in Section 4.2.1.

Remark 2. Though AIC was developed before TIC, it is easily reproduced as a special case of
TIC. Subject to certain conditions (guaranteed by the requirements of [15]), at least in expectation,
Iθ̂ = Jθ̂. Thus, the quantity within the TIC trace term, Iθ̂ J−1

θ̂
, is the identity matrix. Therefore,

its trace is equal to p, the parameter count of the model, recovering AIC. TIC itself can be derived
using a proof that is similar to, though somewhat simpler than, the one we include in (A2), of which
Takeuchi’s proof is a special case that is valid only at the MLE estimate θ̂.

We also define Ĵ∗ to be the negative hessian of−�∗(θ) rather than−�(θ), and similarly
for Î∗, with expectations written as J∗ and I∗. Analogously, −L∗(θ) is the expectation of
−�∗(θ) and θ∗ is the minimizer of −�∗(θ), while θ∗0 is the minimizer of −L∗(θ).

We refer to the estimation of θ∗, by minimization of this corrected likelihood function
as Information-Corrected Estimation (ICE). As the terminology suggests, we depart from
the corrective approach used in Information Criterion, by directly minimizing the bias
corrected likelihood function. Note that unlike L2 regularization, the correction term is
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parameter-free and thus would not require cross validation to estimate a hyperparameter
such as the λ used by L2.

General properties of this estimator are proved, and a set of regularity conditions
are provided such that the estimator is asymptotically normal, and produces a bias that
is Op(n−3/2) instead of the usual Op(n−1). Though this adds only a half-order to the bias
correction, for most problems with reasonably large n, any increase in order is likely to
greatly reduce bias. Experimental results demonstrate superior properties of ICE for linear
models compared to MLE with and without L2 regularization.

Remark 3. For models satisfying White’s regularity conditions (See [22]), it is known that Jθ0 is
positive definite (thus non-singular) and continuous, and also that Iθ0 is continuous with respect
to θ. Therefore, 1

n tr(Iθ0 J−1
θ0

) would always be well defined in an open region around θ0. Similarly,
the solution θ∗ would be expected to have the same properties, and hence (for large enough n) the
estimate 1

n tr( Îθ∗ Ĵ−1
θ∗ ) would be well defined when computed using the estimates Îθ∗ and Ĵθ∗ .

Remark 4. N.B: Though −�∗(θ) is an estimator of L(θ) accurate to within O(n−
3
2 ), that does

not mean that L(θ∗) is reduced by any particular amount relative to L(θ̂). We expect that using
this corrected objective will always (if it can be calculated accurately) generate some improvement
by virtue of more accurately representing the true performance of the model out of sample, but there
is no proof that this level of improvement has any particular form or asymptotic behavior.

Our approach preserves the linear complexity of training with respect to n. However,
the computation of Ĵ−1

θ∗ at each iteration of the numerical solver requires the inversion of a
symmetric positive definite matrix with a complexity of O(p3). Hence the approach is not
suitable for high dimensional datasets without adjustment. See Section 5 for optimized
approximations that are viable for larger parameter counts. Further exploration of large
models based on this approach are beyond the scope of the present work.

Remark 5. It is clear from inspection that if −�(θ) is strictly convex, then so too is −�∗(θ) for
large enough n.

We first provide a proof of asymptotic convergence of θ∗ under certain regularity
conditions. With this convergence result in place, we then show that minimizing (8) leads
to an O(n−3/2) bias term, an improvement over the O( 1

n ) term produced by MLE.

Local Behavior of the ICE Objective

Suppose the following conditions hold:

1. M satisfies White’s regularity conditions A1–A6 (see Appendix A.1 or [22]).
2. θ0 is a global minimum of −L(θ) in the compact space Θ defined in A2.
3. There exists a ε > 0 such that −L(θ0) < −L(θ1)− ε for all other local minima θ1.
4. For k = 0, 1, 2, 3, 4, 5 the derivative ∂k

θL(θ) exists, is continuous, and bounded on an
open set around θ0.

5. For k = 0, 1, 2, 3, 4, 5, the variance V[∂k
θ�(θ, Xn)] → 0 as n → ∞ on an open set

around θ0.

Then for sufficiently large n there exists a compact subset U ⊂ Θ containing θ0, θ̂,
such that:

1. For k = 0, 1, 2, 3 the derivative ∂k
θ�
∗(θ, xn) exists, is continuous, and bounded on U,

almost surely.
2. For k = 0, 1, 2, 3, V[∂k

θ�
∗(θ, Xn)]→ 0 as n → ∞ on U, almost surely.

3. θ∗ ∈ U as n → ∞ almost surely.
4.

√
n(θ∗ − θ∗0)→ N(0, ( Ĵ∗θ∗0 )

−1 Î∗θ∗0 ( Ĵ∗θ∗0 )
−1) almost surely.

5. −L(θ̂∗) = −�∗(θ∗(Xn), Xn) + Op(n−3/2) almost surely.
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Items (1–3) follow from Lemma A1 (see Appendix A.2). These are additional regularity
conditions that are prerequisites for later theorems.

Item (4) follows from Theorem A1 in Appendix A.3. This states that the estimate θ∗ is
asymtotically normal in a way that is analogous to classical asymptotic normality results
for MLE. It is only true almost surely because results (1–3) upon which it relies are only
true almost surely.

Item (5) follows from Theorem A2 in Appendix A.4. This item establishes the superior
accuracy of the ICE objective compared to the MLE objective function in predicting out of
sample errors. Like item (4) this is only true almost surely because intermediate results on
which it relies are only true almost surely.

The reduction in generalization error seen arises from the optimization over the
superior ICE objective function, analogous to the way that L2 regularization is used for
this purpose.

Remark 6. The regularity conditions described here are only slightly more strict than the conditions
described by White [22]. In particular, models having three continuous derivatives as required by
White, but not 5 as needed here are thought to be very rare. Requirement (2) is just the definition
of θ0, which White labels differently, and requirement (3) excludes a pathological corner case, the
further study of which is beyond the scope of this paper.

Remark 7. Note that as −�(θ, xn) is convex in the neighborhood of θ0, so too is −�∗(θ) for large
enough n because −�∗(θ) → −�(θ). Thus it can be concluded that the local behavior of −�∗ in
the neighborhood of θ0 is not appreciably worse than the behavior of −� if the problem is not too ill
conditioned.

4. Direct Computation Results

The following experiments have been designed to compare MLE, MLE with L2 regu-
larization, and ICE for regression. Each experiment involves simulation of training and
test sets and is implemented in R. See the attached code to run each experiment.

Each of these experiments has been performed using the raw formula for ICE provided
in Equation (8) with minimal adjustments. All gradients are computed using R’s default
finite difference approach. This means that for a model with p parameters, the objective
function is dominated by the inversion of J, which costs O(p3) time and O(p2) space.
The use of finite difference gradients further increases the time complexity to O(p4),
compounding the problem. This approach is therefore viable for small models with few
parameters, but not realistic for larger models. Optimizations to overcome this limitation
will be considered in upcoming Section 5. The use of finite difference derivatives was
not found to produce appreciable numerical differences in the final output, so analytic
derivatives were not used for this analysis.

The code and results for this section is provided in [23]. Throughout this section, the
following estimators will be compared.

MLE θ̂(Zn) := argminθ[−�(θ)]
L2 regularization θ∗L2

(Zn) := argminθ,λ[−�(θ) + λ‖θ‖2
2]

ICE θ∗ICE(Zn) := argminθ[−�(θ) + 1
n tr( Îθ Ĵ−1

θ )]

4.1. Gaussian Error Model

We begin by considering the simplest case of univariate linear regression with Gaus-
sian residuals. The advantage of this simple model is that the exact form of the correction
term can be derived analytically and aids therefore in building intuition on its behavior.
For such a toy model, y ∼ N(μ, σ2) and, for simplicity, the following example will consider
μ to be a constant, but it is equally applicable if μ = μ(x). Consider the parameters of the
model to therefore be θ := (μ, σ) with their optimal values being θ0 := (μ0, σ0). The the
probability density function is
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g(y, θ) =
1√
2πσ

e−
(y−μ)2

2σ2 . (11)

It is known a priori that L2 regularization cannot improve this model, as if μ0 �= 0,
any decrease in the magnitude of μ is likely to be systematically harmful. Similarly, a
decrease in σ below σ̂ results in a decrease in model distribution entropy, and hence
would be generally making overfitting worse, and would generate a correspondingly
higher KL-divergence than the MLE estimate. Consequently, we would expect any λ
computed through cross-validation to be statistically indistinguishable from zero, and L2
regularization to be generally harmful whenever λ �= 0.

Generalization Error Analysis

The Gaussian model described was generated with μ0 = 0.2, σ0 = 0.2, and dy = 0.001.
For each of n ∈ {16, 32, 64, 128, 256, 512, 1024}, 500 independent simulations of the data
y1, . . . , yn were performed, and then the parameters were fit from that data. In each simula-
tion, θ was computed using MLE, MLE with L2 regularization, and ICE. The λ parameter
for L2 regularization was computed using 2-way cross-validation on the available data,
and as expected, none of the computed values of λ were statistically different from zero.

For each estimate of θ, the KL-divergence ρKL( f , gθ) was computed (using the known
value of θ0), and the results were compared. The ICE parameter estimation method showed
statistically significant improvement over MLE at the 5-sigma level out to n = 64, and was
improved by just under 1-sigma at n = 1024.

The KL-divergence results graphed against n on a log-log scale are shown in Figure 1.
Every value of n is normalized by the average KL divergence of the MLE methodology to
improve legibility. The L2 series is statistically indifferent from the MLE series at 2 standard
deviations beyond n = 32, and the two are not materially different for any n. The ICE
series is at least 4.5 standard deviations below the MLE series until n = 1024.
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Figure 1. A comparison of the KL-divergence (y-axis) of various estimation methods against the
number of training samples n. Each KL divergence value was divided by the average KL divergence
of the MLE estimate for that value of n. The ICE and L2 series are shown with 2 standard deviation
error bars.

207



Entropy 2021, 23, 1419

Remark 8. In addition to the series shown in Figure 1, a series was computed using the true value
of J, estimated from a much larger sample n = 1024 from the underlying distribution, and this series
was indistinguishable from the series computed using Ĵ for every n, thus it was not graphed. This
validates Takeuchi’s approach of approximating J with Ĵ in this instance.

As expected, the difference in μ between ICE and MLE is not statistically significant (at
three standard deviations) for any n, but the ICE computed value of σ (shown in Figure 2)
is considerably larger than the MLE estimate, especially for small values of n. This explains
the greatly reduced KL-divergence noted in Figure 1.

Figure 2. The error in the estimated σ̂ICE and the Z-score of the estimate against the number of
training samples n.

Note that the difference in estimated σ is always statistically significant when com-
pared to the MLE value. This is because both MLE and ICE are fit on the same data, so
ICE would always have a larger σ than MLE regardless of the actual data chosen from
the distribution f . This is the cause of the large z-scores shown, always exceeding 200.
We know from elementary statistics that correlation between the mean and std. deviation
causes the MLE estimate of σ̂ to be systematically low by a factor of n−1

n . Indeed, the

ICE estimate of σ∗ is closely tracking σ0 whereas σ̂ is closely tracking σ0(n−1)
n as expected.

This is one example where reducing generalization error also reduces parameter bias as a
side effect.

4.2. Friedman’s Test Case

We now extend the example from Section 4.1 to the case where μ is no longer constants.
For this example, we chose a standard regression test set, which is nonlinear in the features,
based on Section 4.3 of [24]:

yi = μθ(xi) + εi, ε ∼ N(0, σ2), (12)

where the Friedman model is

μθ(xi) = θ0sin(πx(i,0)x(i,1)) + θ1(x(i,2) − θ2)
2 + θ3x(i,3) + θ4x(i,4). (13)

The random features, Xj, are i.i.d. uniform random and the parameter values are fixed.
The true parameter set, θ0 = (10.0, 20.0, 0.5, 10.0, 5.0, 1.0), reserves the last parameter (1.0)
for the value of σ.

208



Entropy 2021, 23, 1419

Note that here σ must be treated as an unknown parameter. To do otherwise implies
that the modeler knows the amount of noise expected in the data. In the case of a known
noise term, overfitting is impossible since overfitting arises when a model reduces the
projected noise below its actual value, which can never arise when the noise level is known.

The model probability density g(x, y|θ) of y is given by

g(xi, yi|θ) =
1√

2πσ2
e−

(μi−yi)
2

2σ2 . (14)

Recall that in Section 4.1, the value of μ was considered to be a constant. This example
is a natural extension of Section 4.1, and was chosen due to the well-explored difficulty of
Friedman’s problem.

We simulate 500 batches of equally sized training sets of length n ∈ {16, 32, 64, 128, 256,
512, 1024}. The test set is always of length 1024 to ensure accuracy for the smaller values of
n. The starting point of the optimization is generated by adding a random perturbation,
δθ ∼ N(0, 0.1), to each parameter. As before, the KL-divergence is computed between the
distribution represented by the parameters and the true distribution, and these values are
compared between estimation methods.

For each test sample, the KL divergence is computed using numerical integration with
a dy increment of 0.01 over the interval containing μ± 10σ for both the true and model
distributions. The computed probabilities are verified to numerically sum to unity within
an error of ±10−3.

In each simulation, θ is computed using MLE, MLE with L2 regularization, and ICE.
The λ parameter for L2 regularization is computed using 4-way cross validation on each
batch of the training data.

As shown in Figure 3 and Table 1, L2 is not effective for any value of n, and is is
completely inactivated for n > 32. Where regularization is used (i.e., λ �= 0), it generally
underperforms MLE. ICE is effective across the entire data range, outperforming MLE for
every n, and always by a statistically significant margin of at least 5 sigma.
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Figure 3. Comparison of the KL-divergence, averaged across 500 replications, of estimation methods
against the number of training samples n. Each KL divergence value was divided by the average KL
divergence of the MLE estimate for that value of n. The ICE and L2 series are shown with 2 standard
deviation error bars.
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Table 1. Comparison of the average KL divergence across 500 replications for several model estima-
tors given a fitting set size of n. For estimators other than θ̂, the values in parentheses denotes the
t-statistic of the difference between this estimator and θ̂, with negative values indicating that the
listed estimator has a lower KL divergence.

n ρKL( f , gθ̂) ρKL( f , gθL2
) ρKL( f , gθ∗)

16 6.19× 10−1 8.442× 10−1 (8.40) 3.02× 10−1 (−13.54)
32 1.74× 10−1 1.74× 10−1 (0.16) 1.37× 10−1 (−11.11)
64 6.85× 10−2 6.85× 10−2 (0.0) 5.81× 10−2 (−12.65)
128 3.82× 10−2 3.82× 10−2 (0.0) 3.53× 10−2 (−11.13)
256 2.19× 10−2 2.19× 10−2 (0.0) 2.12× 10−2 (−7.84)
512 1.53× 10−2 1.53× 10−2 (0.0) 1.51× 10−2 (−5.66)

1024 1.25× 10−2 1.25× 10−2 (0.0) 1.24× 10−2 (−5.03)

4.2.1. Impact of Ĵ Approximation

It was noted previously that Takeuchi used Ĵ (and likewise, Î) in place of the true
value of J, and we do so here as well. Though there is no realistic way to avoid this
approximation in the real world, and the optimized approach discussed in Section 5 has an
entirely different set of approximations, the impact of this approximation will be briefly
characterized here.

In Table 2, we revisit Table 1, but now drop the L2 regualarization column, and add a
new column where the ICE objective is allowed to use a much better approximated value
of J, in this case approximated from 1024 independently drawn samples regardless of n.

Table 2. Comparison of the average KL divergence across 500 replications for ICE estimators with
and without approximation of J given a fitting set size of n. For estimators other than θ̂, the values
in parentheses denotes the t-statistic of the difference between this estimator and θ̂, with negative
values indicating that the listed estimator has a lower KL divergence.

n MLE ICE ( Ĵ ) ICE (J )

16 6.19× 10−1 3.02× 10−1 (−13.54) 6.21× 10−1 (0.05)
32 1.74× 10−1 1.37× 10−1 (−11.11) 1.51× 10−1 (−3.74)
64 6.85× 10−2 5.81× 10−2 (−12.65) 4.21× 10−2 (−17.29)

128 3.82× 10−2 3.53× 10−2 (−11.13) 2.99× 10−2 (−11.82)
256 2.19× 10−2 2.12× 10−2 (−7.84) 1.99× 10−2 (−4.19)
512 1.53× 10−2 1.51× 10−2 (−5.66) 1.48× 10−2 (−1.62)

1024 1.25× 10−2 1.24× 10−2 (−5.03) 1.24× 10−2 (−0.72)

As can be seen from Table 2, using the true value of J is at most marginally helpful.
In fact, for most values of n it displays slightly better average results, but slightly higher
std. deviation of those results, and thus reduced T-statistics. Thus, we conclude that
the Takeuchi’s approximation, replacing J with Ĵ is reasonable. The same conclusion
was reached in Section 4.1, see the remark there. We note also that the ICE estimator
using Ĵ exhibits substantially better performance for very low sample sizes, but further
investigation of this phenomenon is beyond the scope of the current paper.

In Table 3, we show the average matrix norms of J, Ĵ, and also of the diagonal of Ĵ,
referred to as the matrix D. The matrix D will be examined further in Section 5, and is
included here for completeness. We also show the norms of several matrix differences.

We note that the ICE objective values themselves exhibit much lower variation than the
matrix norms show in Table 3. In particular though the matrix D is not actually converging
to J as n increases, we see from the correction term it generates that this difference does not
appear to have a material impact for larger n. We thus conclude that the major eigenvectors
of ( Ĵ − J) and (D− J) are very nearly orthogonal to the gradient vectors used to construct
Î for large n.
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Table 3. Mean matrix norms of J, its approximations, and differences from these approximations across 500 replications.

n ‖J‖ ‖ Ĵ‖ ‖D‖ ‖ Ĵ − J‖ ‖D − J‖ 1
n tr(I J−1) 1

n tr( Î Ĵ−1) 1
n tr( ÎD−1)

16 1423.29 925,489.26 1738.30 926,165.93 2905.64 0.1452 0.0027 6.9484
32 875.03 89,414.11 96.49 89,786.19 793.43 0.0521 0.0256 0.0291
64 214.05 4820.55 89.55 4646.51 125.02 0.0202 0.0160 0.0162

128 200.86 200.68 85.00 27.65 115.86 0.0097 0.0086 0.0086
256 194.36 191.81 82.70 19.12 111.67 0.0048 0.0045 0.0045
512 191.20 190.10 82.76 14.18 108.44 0.0023 0.0023 0.0023
1024 188.91 187.39 81.89 11.58 107.02 0.0012 0.0012 0.0012

It is not clear from examining the trace terms in Table 3 that D is a worse approximation
of J than Ĵ is, even for small n where the impact of the ICE approach is most significant. A
more complete investigation of the spectrum of these matrices is beyond the scope of the
present work.

4.3. Multivariate Logistic Regression

The previous experiment is based on a well-known test case. In this second experiment,
we assess the general performance of ICE under (i) varying dimensionality of the true
data distribution, (ii) increasing misspecification, and (iii) increasing training set sizes. To
achieve this goal, we generate a more exhaustive set of data from a more complex data
generation process.

4.3.1. Data Generation Process

The synthetic data are designed to exhibit a number of characteristics needed to
broadly evaluate the efficacy of ICE. First, the regressors should be sufficiently correlated so
as to ensure that model selection is representative of typical datasets. However, we avoid
multi-collinearity by ensuring the smallest eigenvalue is above a certain threshold. We ad-
ditionally control the condition number of the covariance matrix Σ by randomly generating
a symmetric positive definite covariance matrix Σ ∈ Rp using the eigen-decomposition

Σ = UDUT , (15)

where U is an orthogonal random matrix with elements Uij ∼ N(0, 1) and D is diagonal
matrix of positive eigenvalues. The eigenvalues are uniformly distributed over the interval
[a, b] so that the condition number of Σ is b/a and the eigenvalues are kept distinct. Here, a
is chosen to be 1× 10−4 and b is chosen to be 0.1.

Using a Cholesky decomposition Σ = ΓΓT and the random mean vector μ ∼ N(0, 1),
we generate correlated gaussian vectors of dimension p with the properties

Xi = μ + ΓijZj, Zj ∼ N(0, 1), ∀j ∈ 1, . . . , p. (16)

The data (xn, yn) are generated under a logistic regression

p(y = 1|x, θ0) = f (x|θ0) =
1

1 + e−xθ0
. (17)

A key challenge in assessing the efficacy of bias reduction is to avoid generating excessively
low entropy distributions. In such cases, bias reduction will have marginal effect as the
parameters are all nearly zero. To avoid such scenarios, the intercept parameter of the true
model is adjusted a-posterior until the following conditions are met:

1. c < EZ[p(Y = 1|X, θ0)] < d
2. −L(θ0) > ε

where c = 0.35, d = 0.65, and ε = 0.2. If these conditions can not be met, then the
replication is discarded.
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4.3.2. Model Performance Comparison

As in prior sections, KL divergence is computed between the estimated model and
the true model for each of the estimation methods. The T-statistics of the difference with
the corresponding MLE KL divergence are computed, with negative T-statistics showing
that an approach is performing better than the MLE approach. For L2 regularization in this
section, the value of λ is computed via cross-validation, using two folds, on the provided
fitting set.

Table 4 compares the KL divergences ρKL from the true distribution to the model
distributions produced using various estimation approaches applied to misspecified data.
Here m denotes the number of regressors that are not predictive, i.e., θ0 contains m zeros.
The experiment is replicated 300 times using the data generation process described above
and the test set is fixed at 100,000 observations.

Table 4. Comparison of the KL divergence for the different estimation approaches applied to mis-
specified data. The values in parentheses denote the t-statistic relative to MLE. For p = {5, 10, 20}
there are m = {2, 4, 8} non-explanatory variables added.

p n ρKL( f , gθ̂) ρKL( f , gθL2
) ρKL( f , gθ∗)

5 500 4.79× 10−3 3.01× 10−3 (−13.43) 4.56× 10−3 (−13.53)
5 1000 2.64× 10−3 1.76× 10−3 (−10.94) 2.57× 10−3 (−12.80)
5 2000 1.29× 10−3 1.09× 10−3 (−6.15) 1.27× 10−3 (−7.69)
5 5000 5.09× 10−4 4.60× 10−4 (−4.69) 5.07× 10−4 (−6.19)

10 500 9.79× 10−3 9.85× 10−3 (0.16) 9.18× 10−3 (−6.27)
10 1000 5.05× 10−3 5.13× 10−3 (0.51) 4.83× 10−3 (−4.90)
10 2000 2.50× 10−3 3.05× 10−3 (5.99) 2.56× 10−3 (1.70)
10 5000 1.06× 10−3 1.49× 10−3 (7.72) 1.04× 10−3 (−0.86)

20 500 2.18× 10−2 2.16× 10−2(−0.29) 1.95× 10−2 (−8.71)
20 1000 1.13× 10−2 1.24× 10−2 (3.79) 1.10× 10−2 (−1.95)
20 2000 6.86× 10−3 7.52× 10−3 (4.47) 6.72× 10−3 (−1.67)
20 5000 3.57× 10−3 4.24× 10−3 (6.56) 3.59× 10−3 (0.45)

We observe that the t-statistic for θ∗ is most significant for relatively small sample
sizes, particularly n = 500. For these small sizes, the improvement over MLE is greater,
though noisier. There is uniform decay in improvement over θ̂ as n grows, until for p = 10
and p = 20 the largest sizes are no longer statistically significant. This is expected, as
both the MLE and ICE estimates are converging towards the true value of θ0, and for
large enough sample sizes the ICE correction would be dominated by numerical error,
particularly the ill conditioning of J.

The L2 estimate improves for small values of p, but then becomes progressively worse
for large values of p. We observe that for dimensionality above p = 5, the L2 regularization
described here is no longer effective in reducing the KL-divergence. For low values of p the
value of θx has comparatively low variance, and thus the logistic function is reasonably
locally approximated as linear. For higher p this approximation is less realistic and the
performance of L2 regularization degrades.

For the ICE estimates, larger values of p show fluctuations that are often not sta-
tistically significant. It is apparent that larger p is increasing the variance of the ICE
divergences, probably due to numerical errors and ill conditioning. Larger values of n
reduce the absolute size of the divergence improvement whereas larger values of p seem to
increase it.

Note that though the t-statistics are degrading for large n, the absolute magnitude of
the differences is asymptotically small. For these sizes, the results are insignificant, but
more importantly, immaterial.
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4.3.3. Convergence Analysis for Large n

For 10 randomly chosen example problems, under which the model coefficients are
now fixed, the convergence behavior for large n, the training set size, is explored. Note
that the test set remains fixed at 100,000 observations for each problem. Table 5 compares
the KL divergence (averaged over all 10 problems) under MLE (θ̂), L2 regularization, and
ICE for progressively larger sample sizes. The divergences ρKL( f , gθ̂) and ρKL( f , gθ∗ICE

)

converge to zero as n → ∞, as does ρKL( f , gθ∗L2
).

Table 5. Comparison of the KL divergence under the MLE θ̂, L2 regularization and ICE regularization
θ∗ICE against a large sample size for the case when p = 10 and m = 4.

n L(θ0) ρKL( f , gθ̂) ρKL( f , gθL2
) ρKL( f , gθ∗)

500 0.5439 9.28× 10−3 7.92× 10−3 7.74× 10−3

1000 0.5439 5.50× 10−3 5.86× 10−3 4.81× 10−3

2000 0.5439 2.65× 10−3 3.67× 10−3 2.65× 10−3

5000 0.5439 1.85× 10−3 2.72× 10−3 1.35× 10−3

10,000 0.5439 5.75× 10−4 1.57× 10−3 9.32× 10−4

20,000 0.5439 5.84× 10−4 8.10× 10−4 6.11× 10−4

50,000 0.5439 3.83× 10−4 4.09× 10−4 3.64× 10−4

100,000 0.5439 1.67× 10−4 1.15× 10−3 1.86× 10−4

Generally the θ∗ICE estimates are seen to converge slightly faster than the θ̂ estimates.
The regularization in θ∗L2

is observed to be beneficial for very small sample sizes, but then
becomes marginally detrimental for large n.

5. Optimized Computation Results

For any model satisfying White’s Regularity Criteria, it is known that the matrix J is
positive definite near the MLE optimum θ̂. This implies that J is diagonally dominated,
and indeed considering just its diagonal elements D, it is known that tr(ID−1) > 0.
Indeed tr(ID−1) differs strongly from tr(I J−1) most strongly for models with strong
regressor interactions. Therefore, using finite difference gradients, consider the following
approximations for the ICE objective function:

1. θ∗: J is computed directly, ICE is implemented as written.
2. θ∗2: J is taken to be constant w.r.t. θ: (Jθ = Jθ̂).
3. θ∗3: J is taken to be diagonal: (J = D).
4. θ∗4: J is taken to be the identity: (J = I).

Clearly, we expect that θ∗4 above is the least accurate approximation, and items θ∗2 and
θ∗3 have varying levels of accuracy depending on the problem at hand. The cost comparison
of these approaches is shown in Table 6.

Table 6. The asymptotic computational cost (per iteration) of various proposed approximations as a function of parameter
count p. Cost is amortized when Jθ = Jθ̂ assuming that n ≈ p. Note that a typical model will cost O(p) in time and space
for both the objective function and its gradients.

Approximation Objective Cost (Space) Objective Cost (Time) Gradient Cost (Space) Gradient Cost (Time)

Direct Computation O(p2) O(p3) O(p2) O(p4)
Jθ = Jθ̂ O(p2) O(p2) O(p2) O(p3)
J = D O(p) O(p) O(p) O(p2)
J = I O(p) O(p) O(p) O(p2)
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Remark 9. When computing gradients for use in a solver, often approximation error will have
only a marginal impact on the final result, though it may increase the number of iterations needed
for convergence. Broyden’s method [25] is a typical example of this approach in action. Efficient
approximations of [∂θ Ĵ] might similarly have only a minor effect on accuracy and iteration count.
The construction of approximate analytical derivatives is beyond the scope of the present work.

These approximations were computed and compared for the Friedman (see Section 4.2)
problem, and the results are shown in Table 7 below.

Table 7. Comparison of the average KL divergence across 200 replications for MLE and several variants of ICE given a
fitting set size of n. For estimators other than θ̂, the values in parentheses denotes the t-statistic of the difference between
this estimator and θ̂, with negative values indicating that the listed estimator has a lower KL divergence.

n ρKL( f , gθ̂) ρKL( f , gθ∗) ρKL( f , gθ∗
2
) ρKL( f , gθ∗

3
) ρKL( f , gθ∗

4
)

8 1.22× 10+1 4.55× 10+0 (−4.89) 5.70× 10+0 (−5.26) 3.83× 10+0 (−5.22) 1.28× 10+0 (−4.67)
16 6.68× 10−1 2.99× 10−1 (−8.13) 3.53× 10−1 (−10.56) 3.36× 10−1 (−8.30) 5.47× 10−1 (−2.11)
32 1.45× 10−1 1.14× 10−1 (−6.90) 1.04× 10−1 (−8.18) 1.08× 10−1 (−10.16) 3.63× 10−1 (19.60)
64 5.93× 10−2 4.80× 10−2 (−10.42) 4.70× 10−2 (−6.95) 4.81× 10−2 (−9.81) 2.38× 10−1 (39.08)

128 2.48× 10−2 2.24× 10−2 (−6.38) 2.33× 10−2 (−2.26) 2.26× 10−2 (−6.00) 1.62× 10−1 (61.85)
256 1.21× 10−2 1.16× 10−2 (−4.28) 1.20× 10−2 (−0.68) 1.16× 10−2 (−4.11) 1.01× 10−1 (68.82)
512 6.26× 10−3 6.10× 10−3 (−2.41) 6.16× 10−3 (−0.84) 6.10× 10−3 (−2.39) 5.42× 10−2 (63.84)
1024 3.05× 10−3 3.00× 10−3 (−2.66) 3.04× 10−3 (−0.37) 2.99× 10−3 (−2.73) 2.61× 10−2 (59.78)

From Table 7, it is apparent that approach θ∗4, taking J = I is not effective. This is
not surprising as the actual J matrix has dramatic differences in scale between regressors.
Approximation θ∗3, taking J = D is accurate enough that it cannot be statistically distin-
guished from the direct computation of ICE by the test above. Approximation θ∗2 tends to
underperform approximation (3).

Therefore, we propose taking J = D as a more numerically stable approximation of
the ICE objective.

6. Conclusions

Takeuchi [16] is believed to be the first to have proposed using an objective function
similar to ICE in order to reduce generalization error, though it was applied via model
selection. Firth [9] introduced a similar term to reduce parameter bias in model fitting,
as opposed to model selection, though he derived it only for exponential model families
and did not consider its effect on generalization error. It is not known why this approach
did not find widespread use, but one may infer that the O(p4) computational cost and
instability was enough to keep it from wider adoption.

In this paper, we reintroduce the objective function of [16] and provide a more general
proof of its widespread applicability. We then show that efficient implementations costing
only O(p) are possible. Under finite sample sizes, this bias correction term is shown
experimentally in several models to lead to significant reduction in bias compared to
maximum likelihood estimation with and without L2 regularization. ICE offers many
advantages over L2 penalized maximum likelihood estimation: (i) it’s suitable for most
nonlinear models, (ii) it’s provably asymptotically convergent; and (iii) does not rely on
any parameters which would need to be provided by the operator or deduced through
cross-validation.
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Appendix A. Proofs

Appendix A.1. White’s Regularity Conditions

Definition A1 (White’s regularity conditions). White [22] provides the following regularity
conditions:

A1: The independent random vectors, Xi, i = 1, . . . , n, have common joint distribution function F
on Ω, a measurable Euclidean space, with measurable Radon–Nikodym density f = dF/dx.

A2: The family of distribution functions G(x|θ) has Radon–Nikodym densities g(x|θ) = dG(x|θ)/dx
which are measurable in x for every θ ∈ Θ, a compact subset of p-dimensional Euclidean space,
and continuous in θ for every x ∈ Ω.

A3: (a) E[log f (X)] exists and |log g(x|θ)| ≤ m(x), ∀θ ∈ Θ, where m is integrable with respect
to F; (b) ρKL( f , gθ) has a unique minimum at θ0 ∈ Θ.

A4: ∂θ(log g(x|θ)) are measurable functions of x for each θ ∈ Θ and continuously differentiable
functions of θ for each x ∈ Ω.

A5: |∂2
θ(log g(x|θ))| and |∂θ(log g(x|θ)) · ∂θ(log g(x|θ)|) are dominated by functions integrable

in x with respect to F for all x ∈ Ω and θ ∈ Θ.
A6: (a) θ0 is an interior point of the parameter space; (b) E[∂θ(log g(x|θ)) · ∂θ(log g(x|θ))] is

non-singular; (c) θ0 is a regular point of E[∂2
θ(log g(x|θ))].

Appendix A.2. Proof of Finite Variance

Lemma A1 (Finite variance). Suppose the following conditions hold:

1. M satisfies White’s regularity conditions A1–A6 (see Appendix A.1 or [22]).
2. θ0 is a global minimum of −L(θ) in the compact space Θ defined in A2.
3. There exists a ε > 0 such that −L(θ0) < −L(θ1)− ε for all other local minima θ1.
4. For k = 0, 1, 2, 3, 4, 5 the derivative ∂k

θL(θ) exists, is continuous, and bounded on an open
set around θ0.

5. For k = 0, 1, 2, 3, 4, 5, the variance V[∂k
θ�(θ, Xn)]→ 0 as n → ∞ on an open set around θ0.

Then, for sufficiently large n there exists a compact subset U ⊂ Θ containing θ0, θ̂, such that

1. For k = 0, 1, 2, 3 the derivative ∂k
θ�
∗(θ, xn) exists, is continuous, and bounded on U, al-

most surely.
2. For k = 0, 1, 2, 3, V[∂k

θ�
∗(θ, Xn)]→ 0 as n → ∞ on U, almost surely.

3. θ∗ ∈ U as n → ∞ almost surely.

Proof. Assumptions (4) and (5) establish existence of some set, S, containing θ0 such that
L(θ) is bounded on S, and its estimate, �(θ, Xn) has finite variance. Therefore, −�(θ, xn) is
also bounded on S almost surely. Similarly for the first 5 derivatives. White’s criteria imply
that Jθ0 is positive definite on an open set around θ0, and thus one can form a compact
set U ⊂ S containing an open set around θ0 on which the minimum eigenvalue of Jθ is
bounded away from 0.

Note that Jθ is three times differentiable on U by Assumption 4, as is Ĵθ, as established
above. Then Ĵ−1

θ is also positive definite and bounded on U. It can be shown to also have
three derivatives by using the well-known matrix relation

∂θA−1 = −A−1(∂θA)A−1. (A1)
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It follows that Ĵ−1
θ is also positive definite, nonsingular, and bounded on U. Similarly

for Îθ, and thus tr( Îθ Ĵ−1
θ ) is bounded with finite variance on U. It also has three bounded

derivatives with finite variance.
Therefore, −�∗(θ, Xn) → −�(θ, Xn), and θ∗ → θ0 as n → ∞, with the convergence

being in probability. This means that U contains θ0, θ̂, and θ∗ almost surely for large
enough n. Similarly, on U we have three continuous, bounded derivatives of ∂k

θ�
∗(θ, xn)

almost surely.

Appendix A.3. Proof of Asymptotic Normality

Theorem A1 (Asymptotic Normality). Provided the conditions hold in Lemma A1, namely, that

1. For k = 0, 1, 2, 3 the derivative ∂k
θ�
∗(θ, xn) exists, is continuous, and bounded on U.

2. For k = 0, 1, 2, 3, V[∂k
θ�
∗(θ, xn)]→ 0 as n → ∞ on U.

Then

√
n(θ∗ − θ∗0)→ N(0, ( Ĵ∗θ∗0 )

−1 Î∗θ∗0 ( Ĵ∗θ∗0 )
−1).

Proof. As the first derivatives of � are continuous, the mean value theorem may be applied:

∂θ�
∗(θ∗0) = ∂θ�

∗(θ∗) + (θ∗ − θ∗0) Ĵ∗θ̄ = (θ∗ − θ∗0) Ĵ∗θ̄ . (A2)

θ̄ is between θ∗ and θ∗0. Under the assumptions of Lemma A1, and given its finite
variance, Ĵθ̄ is almost surely (in the large n limit) positive definite, and thus invertible as
both θ∗ and θ∗0 are in U, and θ̄ is between them. Therefore,

(θ∗ − θ∗0) = ( Ĵ∗θ̄)
−1∂θ�

∗(θ∗0). (A3)

Applying the mean value theorem a second time gives

Ĵθ̄ = Ĵ∗θ∗0 + (θ̄− θ∗0) Ĵ∗θ1
, (A4)

with θ1 between θ̄ and θ∗0. If the order of (θ∗ − θ∗0) = Op(δ), where δ := n−1/2, then

Ĵ∗θ̄ = Ĵ∗θ∗0 + Op(δ). (A5)

As all of the Ĵ∗ are bounded away from zero in probability, we have

( Ĵ∗θ̄)
−1 = ( Ĵ∗θ∗0 )

−1 + Op(δ), (A6)

with the equality holding in probability. In the large n limit, δ → 0, and thus

(θ∗ − θ∗0) = ( Ĵ∗θ∗0 )
−1∂θ�

∗(θ∗0). (A7)

As ∂θ�
∗(θ∗0) is the sum of n independent vectors, it is asymptotically normally dis-

tributed by the central limit theorem, and its mean is 0 by the definition of θ∗0. Its variance
is therefore V[∂θ∗�

∗(θ∗0)] = E[∂θ�
∗(θ∗0)(∂θ�

∗(θ∗0))
T ] = 1

n Îθ∗0
Substituting this into Equation (A7) yields

√
n(θ∗ − θ∗0) = N(0, ( Ĵ∗θ∗0 )

−1 Î∗θ∗0 ( Ĵ∗θ∗0 )
−1), (A8)

establishing the result.
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Appendix A.4. Proof of Prediction Bias Order under ICE

Theorem A2 (Prediction Bias Estimation under ICE). By minimizing −�∗ instead of −�, the
first order terms of the prediction bias are cancelled leaving a Op(n−3/2) residual term

−L(θ̂∗) = −�(θ∗(Xn), Xn) + Op(n−3/2). (A9)

Proof. Note that in Takeuchi’s proof [16], the use of θ̂ was prescribed. Therefore, this
approach could be used only for model selection, and not for model fitting. Now consider
the bias under the ICE estimator θ∗.

b(θ∗(Xn), Xn) = EXn [log g(Xn|θ∗(Xn))− log g(Xn|θ0)]

+ EXn [log g(Xn|θ0)− nEZn [log g(Zn|θ0)]]

+ nEXn [EZn [log g(Zn|θ0)]−EZn [log g(Zn|θ∗(Xn))]].

As the second term is zero, this can be simplified to

b(θ∗(Xn), Xn) = −nEXn [�(θ
∗(Xn), Xn)− �(θ0, Xn)]

− nEXn [L(θ0)−L(θ∗(Xn))].

Define δ = 1√
n , and then recall from White [22] that (θ̂− θ0) is Op(δ). Similarly, recall

from Theorem A1 that (θ∗ − θ∗0) is also Op(δ). As constructed, the error term b(θ∗(Xn), Xn)
is Op(1) (actually O(1) as it is an expectation), and terms of order Op(δ) and higher will be
dropped. Therefore, as in Takeuchi’s derivation [16], the Taylor expansions below will be
truncated at second order in δ, dropping terms of order Op(δ3) or higher. Additionally, we
will occasionally drop indications of Xn where the meaning is clear and it greatly simplifies
the notation.

With that truncation, recalling that θ0 is a minimum of L(θ) and thus has zero gradient:

nEXn [L(θ0)−L(θ∗(Xn))] =
n
2
EXn [(θ

∗ − θ0)
T Jθ0(θ

∗ − θ0)] + O(δ). (A10)

Recall Theorem A1, and recall the that for the quadratic form:

E[εT Aε] = tr(AΣ) + μT Aμ, E[ε] = μ,V[ε] = Σ. (A11)

Therefore,

n
2
EXn [(θ

∗ − θ0)
T Jθ0(θ

∗ − θ0)] =
1
2

tr(Jθ0 [(J∗θ∗0 )
−1 I∗θ∗0 (J∗θ∗0 )

−1)])

+
n
2
(θ∗0 − θ0)

T Jθ0(θ
∗
0 − θ0)

+ O(δ).

Now note that the second term on the right is a constant, and therefore would take no
part in any optimization. Therefore, it can be safely ignored and

nEXn [L(θ0)−L(θ∗(Xn))] =
1
2

tr(Jθ0 [(J∗θ∗0 )
−1 I∗θ∗0 (J∗θ∗0 )

−1)]) + O(δ). (A12)

Addressing the first term, again taking a Taylor expansion, we find that

�(θ0) = �(θ∗) + (θ0 − θ∗)T∂θ�(θ
∗) +

1
2
(θ0 − θ∗)T∂2

θ�(θ
∗)(θ0 − θ∗) + Op(δ

3). (A13)

Therefore, recalling that nOp(δ3) = Op(δ) gives
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nEXn [�(θ
∗(Xn), Xn)− �(θ0, Xn)] =

1
2

tr(Jθ∗ [(J∗θ∗0 )
−1 I∗θ∗0 (J∗θ∗0 )

−1)])

+
n
2
(θ∗0 − θ0)

T Jθ∗(θ
∗
0 − θ0)

+ nEXn [(θ
∗ − θ0)

T∂θ�(θ
∗)]

+ Op(δ).

Now examine the last term:

nEXn [(θ
∗ − θ0)

T∂θ�(θ
∗)] = nEXn [(θ

∗ − θ∗0)
T∂θ�(θ

∗)]

+ nEXn [(θ
∗
0 − θ0)

T∂θ�(θ
∗)].

However, (θ∗0 − θ0) does not depend on Xn, so it can be pulled out of the expectation,
then substitute in a first order Taylor expansion

EXn [(θ
∗
0 − θ0)

T∂θ�(θ
∗)] = (θ∗0 − θ0)

T
EXn [∂θ�(θ

∗)]

= (θ∗0 − θ0)
T
EXn [∂θ�(θ

∗
0) + (θ∗ − θ∗0)∂

2
θ�(θ

∗
0) + Op(δ

2)]

= (θ∗0 − θ0)
T∂θL(θ∗0)

+ (θ∗0 − θ0)
T
EXn [(θ

∗ − θ∗0)]∂
2
θL(θ∗0) + O(δ3)

= (θ∗0 − θ0)
T∂θL(θ∗0) + O(δ3),

with the last equality following from the fact that EXn [(θ
∗ − θ∗0)] = 0 and the substitution

of (θ∗0 − θ0)
TO(δ2) = O(δ3). This term is therefore a constant, up to O(δ3), and takes no

part in optimization of θ, thus it can be dropped from further consideration. Therefore
nEXn [(θ

∗
0 − θ0)

T∂θ�(θ
∗)] = O(δ), and

nEXn [(θ
∗ − θ0)

T∂θ�(θ
∗)] = nEXn [(θ

∗ − θ∗0)
T∂θ�(θ

∗)]

+ O(δ).

Recombining these terms yields

nEXn [�(θ
∗(Xn), Xn)− �(θ0, Xn)] =

1
2

tr(Jθ∗ [(J∗θ∗)
−1 I∗θ∗(J∗θ∗)

−1)])

+
n
2
(θ∗0 − θ0)

T Jθ∗(θ
∗
0 − θ0)

+ nEXn [(θ
∗ − θ∗0)

T∂θ�(θ
∗)]

+ O(δ).

Thus the bias (neglecting the constant terms) is then

b(θ∗(Xn), Xn) = −1
2

tr(Jθ∗ [(J∗θ∗)
−1 I∗θ∗(J∗θ∗)

−1)])

− 1
2

tr(Jθ0 [(J∗θ∗0 )
−1 I∗θ∗0 (J∗θ∗0 )

−1)])

− n
2
(θ∗0 − θ0)

T Jθ∗(θ
∗
0 − θ0)

− nEXn [(θ
∗ − θ∗0)

T∂θ�(θ
∗)]

+ O(δ).

Because �∗(θ) = �(θ) +Op(δ2), it follows that J∗θ = Jθ +Op(δ2) and thus Jθ∗(J∗θ∗)
−1 =

I + O(δ2). Similarly for Jθ0 . In addition Iθ∗ = Iθ∗0
+ O(δ), thus the two trace terms can be

simplified and combined:
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b(θ∗(Xn), Xn) = −tr(Iθ∗ J−1
θ∗ )

− n
2
(θ∗0 − θ0)

T Jθ∗(θ
∗
0 − θ0)

− nEXn [(θ
∗ − θ∗0)

T∂θ�(θ
∗)]

+ O(δ).

As θ∗0 is a minimum of L∗, begin by Taylor expanding the derivatives

∂θL(θ∗0) = ∂θL(θ0)− (θ∗0 − θ0)Jθ0 = −(θ∗0 − θ0)Jθ0 . (A14)

Moreover, show from the definition of L∗ that

∂θL∗(θ∗0) = 0 = ∂θL(θ∗0) +
1
n

∂θtr(I J−1) (A15)

Then, after Taylor expanding L(θ∗0) around θ0, it is seen that

(θ∗0 − θ0) =
1
n

J−1
θ0

∂θtr(I J−1). (A16)

Noting that J−1
θ = O(1) and tr(I J−1) = O(1), it holds that (θ∗0 − θ0) = O(δ2).

Therefore, n
2 (θ

∗
0 − θ0)

T Jθ∗(θ
∗
0 − θ0) = O(δ2), and can be neglected.

Then, the bias becomes

b(θ∗(Xn), Xn) = −tr(Iθ∗ J−1
θ∗ )

− nEXn [(θ
∗ − θ∗0)

T∂θ�(θ
∗)]

+ O(δ).

However, for the same reason, ∂θ�(θ
∗) = O(δ2), so the last term nEXn [(θ

∗ − θ∗0)
T

∂θ�(θ
∗)] = O(δ), and it too can be absorbed into the residual.

Therefore,

b(θ∗(Xn), Xn) = −tr(Iθ∗ J−1
θ∗ )

+ O(δ),

and
−L(θ̂) = −�(θ∗(Zn), Zn) +

1
n

tr(Iθ̂ J−1
θ̂

) + Op(δ
3) + C, (A17)

where the constant C is composed of the neglected constant terms from earlier stages

C = −1
2
(θ∗0 − θ0)

T Jθ0(θ
∗
0 − θ0)

+ −(θ∗0 − θ0)
T∂θL(θ∗0).

However, the last term is O(δ3), and the first is O(δ2), so this may be approximated as

C = −1
2
(θ∗0 − θ0)

T Jθ0(θ
∗
0 − θ0). (A18)

Recalling again that (θ∗0 − θ0) = O(δ2), it is clear that C = O(δ4), and may thus be
absorbed into the O(δ3) residual term. Therefore,

−L(θ̂) = −�(θ∗(Zn), Zn) +
1
n

tr(Iθ̂ J−1
θ̂

) + O(δ3). (A19)

Comparing this to the form of �∗(θ):
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−L(θ̂) = −�∗(θ∗(Zn), Zn) + Op(δ
3). (A20)

Thus, by minimizing −�∗ instead of −�, the first order terms of the prediction bias are
canceled and, in expectation, a more accurate model is produced.
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Abstract: In this paper, we investigate the problem of classifying feature vectors with mutually
independent but non-identically distributed elements that take values from a finite alphabet set. First,
we show the importance of this problem. Next, we propose a classifier and derive an analytical upper
bound on its error probability. We show that the error probability moves to zero as the length of the
feature vectors grows, even when there is only one training feature vector per label available. Thereby,
we show that for this important problem at least one asymptotically optimal classifier exists. Finally,
we provide numerical examples where we show that the performance of the proposed classifier
outperforms conventional classification algorithms when the number of training data is small and
the length of the feature vectors is sufficiently high.

Keywords: supervised classification; independent and non-identically distributed features; analytical
error probability

1. Introduction

1.1. Background

Supervised classification is a machine learning technique that maps an input feature
vector to an output label based on a set of correctly labeled training data. There is no single
learning algorithm that works best on all supervised learning problems, as shown by the no
free lunch theorem in [1]. As a result, there are many algorithms proposed in the literature
whose performance depends on the underlying problem and the amount of training data
available. The most widely used algorithms in the literature are decision trees [2,3], Support
Vector Machines (SVM) [4,5], Rule-Based Systems [6], naive Bayes classifiers [7], k-nearest
neighbors (KNN) [8], logistic regressions, and neural networks [9,10].

1.2. Motivation

In the following, we discuss the motivation for this work.

1.2.1. Lack of Tight Upper Bounds on the Performance of Classifiers

In general, there are no tight upper bounds on the performance of the classifiers
used in practice. Many of the previous works only provide experimental performance
results. However, this approach has drawbacks. For example, one has to rely on the
trial-and-error approach in order to develop a good classifier for a given problem, which
impacts the reliability. Next, the algorithms whose performance has been verified only
experimentally may work for a given problem, but may fail to work when applied to a
similar problem. Finally, experimental results do not provide intuition into the underlying
problem, whereas the analytical results provide the understanding of the underlying
problem and the corresponding solutions.

Motivated by this, in the paper, we aim to investigate classifiers with analytical upper
bounds on their performance.
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1.2.2. Independent and Non-Identically Distributed Features

In general, we can categorize the statistical properties of the feature vectors, which are
the input to the classifier, into three types. To this end, let Yn(X) =

[
Y1(X), Y2(X), . . . , Yn(X)

]
denote the input feature vector to the supervised classifier, where n is the length of the
feature vector and X is the label to which the feature vector Yn(X) belongs. Then, we can
distinguish the following three types of feature vectors depending on the statistics of the
elements in the feature vector Yn(X).

The first type of feature vector is when the elements of Yn(X) are independent and
identically distributed (i.i.d.). This is the simplest features model, but also the least ap-
plicable in practice. This model is identical to hypothesis testing, which has been well
investigated in the literature [11–13]. As a result, tight upper bounds on the performance of
supervised learning algorithms for this type of feature vector are available in the hypothesis
testing literature. For instance, the authors in [11] showed that the posterior entropy and
the maximum a posterior error probability decay to zero with the length of the feature
vector at the identical exponential rate, where the maximum achievable exponent is the
minimum Chernoff information. In [12], the authors determine the requirements for the
length of the vector Yn(X) and the number of labels m in order to achieve vanishing
exponential error probability in testing m hypothesis that minimizes the rejection zone.
In [13], the authors provide an upper bound and a lower-bound on the error probability of
Bayesian m-ary hypothesis testing in terms of conditional entropy.

The second type of feature vectors is when the elements of Yn(X) are mutually
dependent and non-identically distributed (d.non-i.d.). This type of features model is
the most general model and the most applicable in practice. However, it is also the
most difficult to tackle analytically. As a result, supervised learning algorithms proposed
for this features model lack analytical tight upper bounds on their performance [14–23].
This is because there are not any frameworks that produce closed-form results when
deriving statistics of vectors with d.non-i.d. elements when the underlying distributions
are unknown. Then how can we investigate analytically classifiers for practical scenarios
when the feature vectors have d.non-i.d. elements? A possible approach leads us to the
third type of feature vectors, explained in the following.

The third type of feature vectors is when the elements of Yn(X) are mutually inde-
pendent but non-identically distributed (i.non-i.d.). This features model is much simpler
than the d.non-i.d. features model and, more importantly, it is analytically tractable, as we
show in this paper. Furthermore, this features model is applicable in practice. Specifically,
there exists a class of algorithms, known as Independent Component Analysis (ICA), that
transform vectors with d.non-i.d. elements into vectors with i.non-i.d. elements with a
zero or a negligible loss of information [24–28]. The origins of ICA can be traced back to
Barlow [29], who argued that a good representation of binary data can be achieved by an
invertible transformation that transform vectors with d.non-i.d. elements into vectors with
i.non-i.d. elements. Finding such a transformation with no prior information about the dis-
tribution of the data has been considered an open problem until recently [28]. Specifically,
the authors in [28] show that this hard problem can be accurately solved with a branch
and bound search tree algorithm, or tightly approximated with a series of linear problems.
Thereby, the authors in [28] provide the first efficient set of solutions to Barlow’s problem.
So far, the complexity of the fastest such algorithm is O

(
n× 2n) [28]. Nevertheless, since

there exist such invertible transformations (i.e., no loss of information) which can transform
vectors with d.non-i.d. elements into vectors with i.non-i.d. elements, we can tackle the
features model comprised of d.non-i.d. elements by first transforming it (without loss of
information) into the features model comprised of i.non-i.d. elements and then tackling the
i.non-i.d. features model.

Motivated by this, in this paper, we investigate supervised classification of feature
vectors with i.non-i.d. elements.
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1.2.3. Small Training Set

The main factor that impacts the accuracy of supervised classification is the amount
of training data. In fact, most supervised algorithms are able to learn only if there is
a very large set of training data available [30]. The main reason for this is the curse of
dimensionality [31,32], which states that “the higher the dimensionality of the feature
vectors, the more training data are needed for the supervised classifier” [33]. For example,
supervised classification methods such as random forest [34,35] and KNN [36] suffer from
the curse of dimensionality. However, having large training data sets is not always possible
in practice. As a result, designing a supervised classification algorithm that exhibits good
performance even when the training data set is extremely small is important.

Motivated by this, in this paper, we investigate supervised classifiers for the case
when t training feature vectors per label are available, where t = 1, 2, ...

1.3. Contributions

In this paper, we propose an algorithm for supervised classification of feature vectors
with i.non-i.d. elements when the number of training feature vectors per label is t, where
t = 1, 2, ... Next, we derive an upper bound on the error probability of the proposed
classifier for uniformly distributed labels and prove that the error probability exponentially
decays to zero when the length of the feature vector, n, grows, even when only one training
vector per label is available, i.e., when t = 1. Hence, the proposed classification algorithm
provides an asymptotically optimal performance even when the number of training vectors
per label is extremely small. We compare the performance of the proposed classifier with
the naive Bayes classifier and to the KNN algorithm. Our numerical results show that
the proposed classifier significantly outperforms the naive Bayes classifier and the KNN
algorithm when the number of training feature vectors per label is small and the length of
the feature vectors n is sufficiently high.

The proposed algorithm is a form of the nearest neighbor classification algorithm,
where the nearest neighbor is searched in the domain of empirical distributions. As a
result, we refer to the algorithm as the nearest empirical distribution. The nearest empirical
distribution algorithm is not new and, to the best of our knowledge, it was first proposed
in [37] for the case when the elements of Yn(X) are i.i.d., i.e., for the equivalent problem of
hypothesis testing. However, in this paper, we propose the nearest empirical distribution
algorithm for the case when the elements of Yn(X) are i.non-i.d., which is much more
complex than the problem of hypothesis testing where the elements of Yn(X) are i.i.d.

To the best of our knowledge, this is the first paper that investigates the important
problem of classifying feature vectors with i.non-i.d. elements and provides an upper
bound on its error probability. The novelty of this paper is not with the classifier itself,
but rather in showing the importance of the problem of classifying feature vectors with
i.non-i.d elements and in showing analytically that at least one classifier with an asymptoti-
cally optimal error probability exists when at least one training feature vectors per label
is available.

The remainder of this paper is structured as follows. In Section 2, we formulate the
considered classification problem. In Section 3, we provide our classifier and derive an
upper bound on its error probability. In Section 4, we provide numerical examples of the
performance on the proposed classifier. Finally, Section 5 concludes the paper.

2. Problem Formulation

The machine learning model is comprised of a label X, a feature vector Yn(X) =[
Y1(X), Y2(X), . . . , Yn(X)

]
of length n mapped to the label X, and a learned label X̂,

as shown in Figure 1. In this paper, we adopt the information-theoretic style of nota-
tions and thereby random variables are denoted by capital letters and their realizations are
denoted with small letters. The feature vector Yn(X) is the input to the machine learning
algorithm whose aim is to detect the label X from the observed feature vector Yn(X).
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The performance of the machine learning algorithm is measured by the error probability
Pe = Pr

{
X �= X̂

}
.

Figure 1. A typical structural modelling of the classification learning problem.

We adopt the modeling in [38–40] and represent the dependency between the label X
and the feature vector Yn(X) via a joint probability distribution pX,Yn(x, yn). Now, in order
to gain a better understanding of the problem, we include the joint probability distribution
pX,Yn(x, yn) into the model in Figure 1. To this end, since pX,Yn(x, yn) = pYn |X(yn|x)pX(x)
holds, instead of pX,Yn(x, yn), we can include the conditional probability distribution
pYn |X(yn|x) and the probability distribution pX(x) into the model in Figure 1, and thereby
obtain the model in Figure 2.

Figure 2. An alternative modeling of the classification learning problem.

Now, the classification learning model in Figure 2 is a system comprised of a label
generating source X according to the distribution pX (x), a feature vector generator mod-
elled by the conditional probability distribution pYn |X (y

n|x), a feature vector Yn, a classifier
that aims to detect X from the observed feature vector Yn, and the detected label X̂. Note
that the system model in Figure 2 can be seen equivalently as a communication system
comprised of a source X, a channel with input X and output Yn, and a decoder (i.e., de-
tector) that aims to detect X from Yn. The notation used in this paper, letter X for labels
and letter Y for features, is based on the notation used in information theory for modelling
communication systems. In the classification model shown in Figure 2, we assume that
the label X can take values from the set X , according to pX (x) = 1/|X |, where | · | denotes
the cardinality of a set. Next, we assume that the i-th element of the feature vector Yn,
Yi, for i = 1, 2, . . . , n, takes values from the set Y =

{
y1, y2, . . . , y|Y|

}
, according to the

conditional probability distribution pYi |X
(yi|x).

Moreover, we assume that the elements of the feature vector Yn are i.non-i.d. As a
result, the feature vector Yn takes values from the set Yn according to the conditional
probability distribution pYn |X (y

n|x) given by

pYn |X (y
n|x) = pY1,Y2,...,Yn |X (y1, y2, . . . , yn|x) (a)

=
n

∏
i=1

pYi |X
(yi|x)

(b)
=

n

∏
i=1

pi (yi|x), (1)

where (a) comes from the fact that elements in the feature vector Yn are mutually indepen-
dent and (b) is for the sake of notational simplicity, where pi is used instead of pYi |X

. As a
result of (1), the considered classification model in Figure 2 can be represented equivalently
as in Figure 3.
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Figure 3. An alternative modelling of the classification learning problem when the elements of Yn(X)

are mutually independent but non-identically distributed (i.non-i.d.).

Next, we assume that pi (yi|x), ∀i, and thereby pYn |X (y
n|x) are unknown to the classi-

fier. Instead, the classifier knows X , Y , and for each xi ∈ X , where i = 1, 2, . . . , |X |, it has
access to a finite set of t correctly labelled input–output pairs (xi, ŷn

i1
), (xi, ŷn

i2
), . . . ,

(xi, ŷn
it), denoted by Ti, referred to as the training set for label xi.
Finally, we assume that the following holds

n

∑
l=1

pl(y|xi) �=
n

∑
l=1

pl(y|xj), for y ∈ Y and i �= j. (2)

The condition in (2) means that the distribution of the feature vectors Yn(X) for label
X = i is not a perturbation of distribution of the feature vectors Yn(X) for label X = j. As
a result, the proposed classifier only applies to the subset of data vectors with i.non-i.d.
elements that satisfy (2).

For the classification system model defined above and illustrated in Figure 3, we
wish to propose a classifier that exhibits an asymptotically optimal error probability Pe =
Pr
{

X �= X̂
}

with respect to the length of Yn, n, for any t ≥ 1, i.e., for any t ≥ 1, Pe → 0 as
n → ∞. Moreover, we wish to obtain an analytical upper bound on the error probability of
the proposed classifier for a given t and n.

3. The Proposed Classifier and Its Performance

In this section, we propose our classifier, derive an analytical upper bound on its
error probability, and prove that the classifier exhibits an asymptotically optimal perfor-
mance when the length of the feature vector Yn, n, satisfies n → ∞. This is conducted in
the following.

For a given vector vn = (v1, v2, . . . , vn), let the Minkowski distance r be defined as

∥∥v
∥∥

r =

( n

∑
i=1

vr
i

)(1/r)

. (3)

Moreover, for a given feature vector yk = (y1, y2, , . . . , yk), let I [yk = y] be a function
defined as

I [yk = y] =
k

∑
i=1
Z [yi = y], (4)

where Z [yi = y] is an indicator function assuming the value 1 if yi = y and 0 otherwise.
Hence, I [yk = y] counts the number of elements in Yk that have the value y.
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3.1. The Proposed Classifier

Let ŷnt
i be a vector obtained by concatenating all training feature vectors for the input

label xi as

ŷnt
i =

(
ŷn

i1 , ŷn
i2 , . . . , ŷn

it

)
. (5)

Let Pŷnt
i

be the empirical probability distribution of the concatenated training feature

vector for label xi, ŷnt
i , given by

Pŷnt
i
=

[
I
[
ŷnt

i = y1
]

nt
,
I
[
ŷnt

i = y2
]

nt
, . . . ,

I
[
ŷnt

i = y|Y|
]

nt

]
. (6)

Let yn be the observed feature vector at the classifier whose label it wants to detect
and let Pyn denote the empirical probability distribution of yn, given by

Pyn =

[
I
[
yn = y1

]
n

,
I
[
yn = y2

]
n

, . . . ,
I
[
yn = y|Y|

]
n

]
. (7)

Using the above notations, we propose the following classifier.

Proposition 1. For the considered system model, we propose a classifier with the following classifi-
cation rule

x̂ = xi, where i = arg min
i

∥∥Pyn − Pŷnt
i

∥∥
r, (8)

where r ≥ 1 and ties are resolved by assigning the label among the ties uniformly at random. (For
example, if

∥∥Pyn − Pŷnt
i

∥∥
r =

∥∥Pyn − Pŷnt
j

∥∥
r holds for, i �= j, we set x̂ = xi or x̂ = xj uniformly

at random).

As seen from (8), the proposed classifier assigns the label xi if the empirical probability
distribution of the concatenated training feature vector mapped to label xi, Pŷnt

i
is the

closest, in terms of Minkowski distance r, to the empirical probability distribution of the
observed feature vector Pyn . In that sense, the proposed classifier can be considered as the
nearest empirical distribution classifier.

3.2. Upper Bound on the Error Probability

The following theorem establishes an upper bound on the error probability of the
proposed classifier.

Theorem 1. Let P̄j, for j = 1, 2, . . . , |X |, be a vector defined as

P̄j =
[
p̄
(
y1
∣∣xj
)
, p̄
(
y2
∣∣xj
)
, . . . , p̄

(
y|Y|

∣∣xj
)]

, (9)

where p̄(y|xj) is given by

p̄(y|xj) =
1
n

n

∑
k=1

pk (y|xj). (10)

Then, for a given r ≥ 1, the error probability of the proposed classifier is upper bounded by

Pe ≤ 2|Y|e−2nε2
+ 2|Y|e−2nt1/3ε2

, (11)
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where ε is given by

ε = min
i,j

i �=j

∥∥Pŷnt
i
− P̄j

∥∥
r

(2 + t−1/3)|Y|1/r . (12)

Proof of Theorem 1. Without loss of generality we assume that x1 is the input to pYn |X (y
n|x)

and yn is observed.
Let Aε

k , for 1 ≤ k ≤ |Y|, be a set defined as

Aε
k =

{
yn :

∣∣∣∣I
[
yn = yk

]
n

− p̄(yk|x1)

∣∣∣∣ ≤ ε

}
. (13)

Furthermore, let Bε
k , for 1 ≤ k ≤ |Y|, be a set defined as

Bε
k =

{
ŷnt :

∣∣∣∣I
[
ŷnT = yk

]
nt

− p̄(yk|x1)

∣∣∣∣ ≤ ε
3
√

t

}
. (14)

Let Aε =
|Y|⋂
k=1
Aε

k and Bε =
|Y|⋂
k=1
Bε

k . Now, for any yn ∈ Aε, we have

( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− p̄(yk|x1)

∣∣∣∣r
)1/r

(a)

≤
( |Y|

∑
k=1

εr

)1/r

, (15)

where (a) follows from (13). Moreover, for ŷnt
1 ∈ Bε, we have( |Y|

∑
k=1

∣∣∣∣I [ŷnt
1 = yk]

nt
− p̄(yk|x1)

∣∣∣∣r
)1/r

(a)

≤
( |Y|

∑
k=1

(
ε
3
√

t

)r
)1/r

, (16)

where (a) follows from (14). Next, we have the following upper bound( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
1 = yk]

nt

∣∣∣∣r
)1/r

=

( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− p̄(yk|x1)−

(I [ŷnt
1 = yk]

nt
− p̄(yk|x1)

)∣∣∣∣r
)1/r

(a)

≤
( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
− p̄(yk|x1)

∣∣∣∣r
)1/r

+

( |Y|
∑
k=1

∣∣∣∣I [ŷnt
1 = yk]

nt
− p̄(yk|x1)

∣∣∣∣r
)1/r

, (17)

where (a) follows from the Minkowski inequality. Combining (15)–(17), we obtain( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
1 = yk]

nt

∣∣∣∣r
)1/r

≤ |Y|1/rε + |Y|1/r ε
3
√

t
. (18)

Hence, the Minkowski distance between the empirical probability distribution of the
observed vector yn and the empirical probability distribution of the concatenated training
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vector for label x1 is upper bounded by the right hand side of (18). We now derive a lower
bound for ŷnt

i , where i �= 1. For any xi, such that i �= 1, we have

( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
i = yk]

nt

∣∣∣∣r
)1/r

+

( |Y|
∑
k=1

εr

)1/r

(a)

≥
( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
i = yk]

nt

∣∣∣∣r
)1/r

+

( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− p̄(yk|x1)

∣∣∣∣r
)1/r

(b)

≥
( |Y|

∑
k=1

∣∣∣∣I [ŷnt
i = yk]

nt
− p̄(yk|x1)

∣∣∣∣r
)1/r

, (19)

where (a) follows from (15) and (b) is again due to the Minkowski inequality. The expres-
sion in (19), can be written equivalently as( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
i = yk]

nt

∣∣∣∣r
)1/r

≥
( |Y|

∑
k=1

∣∣∣∣I [ŷnt
i = yk]

nt
− p̄(yk|x1)

∣∣∣∣r
)1/r

− |Y|1/rε, (20)

where i �= 1. Now, using the definitions of Pŷnt
i

and P̄1 given by (6) and (9), respectively,

into (20) we can replace the expression in the right-hand side of (20) by
∥∥Pŷnt

i
− P̄1

∥∥
r,

and thereby for any i �= 1 we have( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
i = yk]

nt

∣∣∣∣r
)1/r

≥
∥∥Pŷnt

i
− P̄1

∥∥
r − |Y|

1/rε. (21)

The expression in (21) represents a lower bound on the Minkowski r distance be-
tween the empirical probability distribution of the observed vector yn and the empirical
probability distribution of the concatenated training vector for any label xi, where i �= 1.

Using the bounds in (18) and (21), we now relate the left-hand sides of (18) and (21).
As long as the following inequality holds for each i �= 1,

|Y|1/rε

(
1 +

1
3
√

t

)
< ‖Pŷnt

i
− P̄1

∥∥
r − |Y|

1/rε, (22)

which is equivalent to the following for i �= 1

ε <

∥∥Pŷnt
i
− P̄1

∥∥
r

(2 + t−1/3)|Y|1/r , (23)

( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
1 = yk]

nt

∣∣∣∣r
)1/r

(a)

≤ |Y|1/rε

(
1 +

1
3
√

t

)
(b)

< ‖Pŷnt
i
− P̄1

∥∥
r − |Y|

1/rε

(c)

≤
( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
i = yk]

nt

∣∣∣∣r
)1/r

, (24)
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where (a), (b), and (c) follow from (18), (22), and (21), respectively. Thereby, from (24), we
have the following for i �= 1( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nT
1 = yk]

nT

∣∣∣∣r
)1/r

<

( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nT
i = yk]

nT

∣∣∣∣r
)1/r

. (25)

Note that the right- and left-hand sides of (25) can be replaced by the Minkowski
distance of the vectors

v1 =

[
I
[
yn = y1

]
n

− I
[
ŷnt

1 = y1
]

nt
, . . . ,

I
[
yn = y|Y|

]
n

−
I
[
ŷnt

1 = y|Y|
]

nt

]
, (26)

and

v2 =

[
I
[
yn = y1

]
n

− I
[
ŷnt

i = y1
]

nt
, . . . ,

I
[
yn = y|Y|

]
n

−
I
[
ŷnt

i = y|Y|
]

nt

]
, (27)

respectively. Now, (26) and (27) can be replaced by Pyn − Pŷnt
1

and Pyn − Pŷnt
i

, respectively,
by the definitions of Pyn and Pŷnt

i
given by (7) and (6), respectively. Therefore, (25) can be

written equivalently as ∥∥Pyn − Pŷnt
1

∥∥
r <

∥∥Pyn − Pŷnt
i

∥∥
r. (28)

Now, let us highlight what we have obtained. We obtained that there is an ε for which
if (23) holds for i �= 1, and for that ε there are sets Aε and Bε for which yn ∈ Aε and
ŷnt

1 ∈ Bε then (28) holds for i �= 1, and thereby our classifier will detect that x1 is the correct
label. Using this, we can upper bound the error probability as

Pe = 1− Pr
{

x̂1 = x1
}

≤ 1− Pr
{(

yn ∈ Aε
)
∩
(
ŷnt

1 ∈ Bε
)∣∣ε ∈ S}, (29)

where S is a set defined as

S =

{
ε : ε ≤ min

i
i �=1

∥∥Pŷnt
i
− P̄1

∥∥
r

(2 + t−1/3)|Y|1/r

}
. (30)

In the following, we derive the expression in (29). The right-hand side of (29) can be
upper bounded as

1− Pr
{(

yn ∈ Aε
)
∩
(
ŷnt

1 ∈ Bε
)∣∣ε ∈ S} = Pr

{(
yn /∈ Aε

)
∪
(
ŷnt

1 /∈ Bε
)∣∣ε ∈ S}

(a)

≤ Pr
{

yn /∈ Aε|ε ∈ S
}
+ Pr

{
ŷnt

1 /∈ Bε
∣∣ε ∈ S}, (31)

where (a) follows from Boole’s inequality. Now, note that we have the following upper
bound for the first expression in the right-hand side of (31)
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Pr
{

yn /∈ Aε|ε ∈ S
}
= Pr

{
yn /∈

|Y|⋂
k=1

Aε
k

∣∣∣∣ε ∈ S
}

= Pr

{
yn ∈

|Y|⋃
k=1

Aε
k

∣∣∣∣ε ∈ S
}

(a)

≤
|Y|
∑
k=1

Pr
{

yn ∈ Aε
k |ε ∈ S

}
=

|Y|
∑
k=1

Pr
{∣∣∣∣I [yn = yk]

n
− p̄(yk|x1)

∣∣∣∣ > ε

∣∣∣∣ε ∈ S}

=
|Y|
∑
k=1

Pr

{∣∣∣∣∣ n

∑
j=1

Z [yj = yk]

n
− p̄(yk|x1)

∣∣∣∣∣ > ε

∣∣∣∣ε ∈ S
}

, (32)

where Aε
k is the complement of Aε

k and (a) follows from Boole’s inequality. Note that
Z [y1 = yk],Z [y2 = yk], . . . ,Z [yn = yk] in (32) are n independent Bernoulli random
variables with probabilities of success p1(yk|x1), p2(yk|x1), . . . , pn(yk|x1), respectively. Let
W [yk] be a binomial random variable with parameters

(
n, p̄(yk|x1)

)
. We proceed the proof

by introducing the following well-known Hoefdding’s Theorem from [41].

Theorem 2 (Hoeffding [41]). Assume that Z1, Z2, . . . , and Zn are n independent Bernoulli
random variables with probabilities of success p1 , p2 , . . . , and pn , respectively. Next, let Z be
defined as Z = Z1 + Z2 + . . . + Zn and, let p̄ be defined as p̄ =

(
p1 + p2 + . . . + pn

)
/n. Let

W be a binomial random variable with parameters (n, p̄). Then, for a given a and b, where
0 ≤ a ≤ np̄ ≤ b ≤ n holds, we have

Pr
{

a ≤ W ≤ b
}
≤ Pr

{
a ≤ Z ≤ b

}
. (33)

In other words, the probability distribution of W is more dispersed around its mean np̄ than is the
probability distribution of Z. Except in the trivial case when a = b = 0, the bound in (33) holds
with equality if and only if p1 = . . . = pn = p̄.

Proof of Theorem 2. Please refer to [41].

Setting a = n(p̄− δ) and b = n(p̄ + δ) in (33), we obtain

Pr
{

n(p̄− δ) ≤ W ≤ n(p̄ + δ)
}
≤ Pr

{
n(p̄− δ) ≤ Z ≤ n(p̄ + δ)

}
. (34)

Using (34), we have the following upper bound

Pr
{∣∣∣∣Zn − p̄

∣∣∣∣ > δ

}
= 1− Pr

{
n(p̄− δ) ≤ Z ≤ n(p̄ + δ)

}
(a)

≤ 1− Pr
{

n(p̄− δ) ≤ W ≤ n(p̄ + δ)
}

= Pr
{∣∣∣∣Wn − p̄

∣∣∣∣ > δ

}
, (35)

where (a) follows from (34).
We now turn to the proof of Theorem 1. According to Theorem 2, the probability

distribution ofW [yk] is more dispersed around its mean np̄(yk|x1) than is the probability
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distribution of ∑1≤j≤n Z [yj = yk]. Therefore, we can upper bound the probability in the
last line of (32) as

Pr

{∣∣∣∣∣ n

∑
j=1

Z [yj = yk]

n
− p̄(yk|x1)

∣∣∣∣∣ > ε

∣∣∣∣ε ∈ S
}

(a)

≤ Pr
{∣∣∣∣W [yk]

n
− p̄(yk|x1)

∣∣∣∣ > ε

∣∣∣∣ε ∈ S}, (36)

where ε ∈ S is defined in (30) and (a) follows from (35). Now, let us introduce another
well-known Hoeffding’s Theorem from [42].

Theorem 3 (Hoeffding’s inequality [42]). Let W1, W2, . . . , Wn be n independent random vari-
ables such that for each 1 ≤ i ≤ n, we have Pr

{
Wi ∈ [ai, bi]

}
= 1. Then for Sn, defined as

Sn =
n
∑

i=1
Wi, we have

Pr
{

Sn −E
[
Sn
]
≥ δ

}
≤ exp

(
− 2δ2

∑n
i=1(bi − ai)2

)
, (37)

where E
[
Sn
]

is the expectation of Sn.

Proof of Theorem 3. Please refer to [42].

Back to (36), by using the result of (37) for ai = 0 and bi = 1 since the binomial random
variableW [yk] can take values 0 or 1, respectively, we have

Pr

{∣∣∣∣∣ n

∑
j=1

Z [yj = yk]

n
− p̄(yk|x1)

∣∣∣∣∣ > ε

∣∣∣∣ε ∈ S
}
≤ 2 exp

(
− 2n2ε2

∑1≤i≤n(1− 0)2

)
≤ 2e−2nε2

, (38)

where ε ∈ S is defined in (30). Inserting (38) into (32), we obtain the following upper bound

Pr
{

yn /∈ Aε|ε ∈ S
}
≤ 2|Y|e−2nε2

. (39)

Similarly, we have the following result for the second expression in the right-hand
side of (31)

Pr
{

ŷnt
1 /∈ Bε

∣∣ε ∈ S} = Pr

{
ŷnt

1 /∈
|Y|⋂
k=1

Bε
k

∣∣∣∣ε ∈ S
}

= Pr

{
ŷnt

1 ∈
|Y|⋃
k=1

Bε
k

∣∣∣∣ε ∈ S
}

(a)

≤
|Y|
∑
k=1

Pr
{

ŷnt
1 ∈ Bε

k |ε ∈ S
}

=
|Y|
∑
k=1

Pr
{∣∣∣∣I [ŷnt

1 = yk]

nt
− p̄(yk|x1)

∣∣∣∣ > ε
3
√

t

∣∣∣∣ε ∈ S}

=
|Y|
∑
k=1

Pr

{∣∣∣∣∣ nt

∑
j=1

Z [yj = yk]

nt
− p̄(yk|x1)

∣∣∣∣∣ > ε
3
√

t

∣∣∣∣ε ∈ S
}

, (40)

where again (a) follows from Boole’s inequality. Note that due to (5), for any integer number
l such that 0 ≤ l ≤ t − 1 the random variables Z [ynl+1 = yk],Z [ynl+2 = yk], . . . , and
Z [ynl+n = yk] in (40) are n independent Bernoulli random variables with the probabilities
of success p1(yk|x1), p2(yk|x1), . . . , and pn(yk|x1), respectively

(
ynl+1, ynl+2, . . . , ynl+n are

elements of ŷn
1l+1

)
. In addition, note that
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p̄(yk|x1) =
1
n

n

∑
j=1

pj(yk|x1)

=
1
nt

(
t−1

∑
l=0

n

∑
j=1

pj(yk|x1)

)
. (41)

Notice that for each 0 ≤ l ≤ t − 1, p1(yk|x1) + p2(yk|x1) + . . . + pn(yk|x1) is the
summation of the probabilities of success of the random variablesZ [ynl+1 = yk],Z [ynl+2 =
yk], . . . , and Z [ynl+n = yk]. Thereby, the last expression on the right-hand side of (41) is
the average probability of success of random variables Z [yj = yk] for 1 ≤ j ≤ nt. Now,
let W [yk] be a binomial random variable with parameters

(
nt, p̄(yk|x1)

)
. Once again,

according to Theorem 2, the probability distribution of W [yk] is more dispersed around
its mean ntp̄(yk|x1)) than is the probability distribution of ∑1≤j≤nt Z [yj = yk]. Therefore,
the probability in the last line of (40) can be upper bounded as

Pr

{∣∣∣∣∣ nt

∑
j=1

Z [yj = yk]

nt
− p̄(yk|x1)

∣∣∣∣∣ > ε
3
√

t

∣∣∣∣ε ∈ S
}

(a)

≤ Pr
{∣∣∣∣W [yk]

nt
− p̄(yk|x1)

∣∣∣∣ > ε
3
√

t

∣∣∣∣ε ∈ S}
(b)

≤ 2 exp

(
− 2(nt)2(t−1/3ε

)2

∑1≤i≤nt(1− 0)2

)

≤ 2e−2nt
(

t−2/3ε2
)

= 2e−2nt1/3ε2
, (42)

where ε ∈ S , defined in (30), (a) follows from (35) (in which n is replaced by nt), and (b) is
the result of (37) for ai = 0 and bi = 1 since the binomial random variableW [yk] can take
values 0 or 1, respectively. Inserting (42) into (40), we have the following upper bound

Pr
{

ŷnt
1 /∈ Bε

∣∣ε ∈ S} ≤ 2|Y|e−2nt1/3ε2
. (43)

Inserting (39) and (43) into (31), and then inserting (31) into (29), we obtain the follow-
ing upper bound for the error probability

Pe ≤ 2|Y|e−2nε2
+ 2|Y|e−2nt1/3ε2

, (44)

where

ε = min
i,j

i �=j

∥∥Pŷnt
i
− P̄j

∥∥
r

(2 + t−1/3)|Y|1/r , (45)

which is the optimal value of ε that exhibits the tightest upper bound for the error proba-
bility Pe given by (44). This completes the proof of Theorem 1.

The following corollary provides a simplified upper bound on the error probability
when t → ∞.

Corollary 1. When the number of training vectors per label reaches infinity, i.e., when t → ∞,
which is equivalently to the case when the probability distribution p(yn|x) is known at the classifier,
the error probability of the proposed classifier is upper bounded as

Pe ≤ 2|Y|e−2nε2
, (46)
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where ε is given by

ε = min
i,j

i �=j

∥∥P̄i − P̄j
∥∥

r
2|Y|1/r . (47)

Proof. The proof is straightforward.

As can be seen from (8) and (11), the performance of the proposed classifier depends
on r. We cannot derive the optimal value of r that minimizes the error probability since we
do not have the exact expression of the error probability, we only have its upper bound.
On the other hand, in practice, the optimal r with respect to the upper bound on the error
probability also cannot be derived since the upper bound depends on P̄j, which would be
unknown in practice due to pYn |X(yn|x) being unknown. As a result, for our numerical
examples, we consider the Euclidean distance (r = 2), which is one of the most widely
used distance metrics in practice.

The following corollary establishes the asymptotic optimality of the proposed classifier
with respect to n.

Corollary 2. The proposed classifier has an error probability that satisfies Pe → 0 as n → ∞
if |Y| ≤ O(nm), m is fixed, and r > 2m. Here, nm indicates the dimension of our space,
i.e., maximum number of alphabets each element in the feature vector yn can take. Thereby,
the proposed classifier is asymptotically optimal .

Proof. For the proof, please see Appendix A.

4. Simulation Results

In this section, we provide simulation results of the performance of the proposed
classifier for r = 2 and compare it to benchmark schemes. The benchmark schemes that we
adopt for comparison are the naive Bayes classifier and the KNN algorithm. We cannot
adopt a classifier based on a neural network since neural networks require a very large
training set, which we assume is not available. For the naive Bayes classifier, the probability
distribution pYn |X (y

n|x) is estimated from the training vectors as follows. Let again ŷnt
i be a

vector obtained by concatenating all training feature vectors for the input label xi as in (5).
Then, the estimated probability distribution of p(yj = y|xi), denoted by p̂(yj = y|xi), is
found as

p̂(yj = y|xi) =
I
[
ŷnt

i = y
]

nt
, (48)

and the naive Bayes classifier decides according to

x̂ = arg max
xi

n

∏
k=1

p̂(yk|xi). (49)

The main problem of the naive Bayes classifier occurs when an alphabet yj ∈ Y is
not present in the training feature vectors. In that case, p̂(yj|xi) in (48) is p̂(yj|xi) = 0,
∀xi ∈ X and, as a result, the right hand side of (49) is zero since at least one of the elements
in the product in (49) is zero. In this case, the naive Bayes classifier fails to provide an
accurate classification of the labels. In what follows, we see that this issue of the naive Bayes
classifier appears frequently when we have a small number of training feature vectors.
On the other hand, the KNN classifier works as follows. For the observed feature vector yn,
the KNN classifier looks for the k nearest feature vectors to yn, among all training feature
vectors ŷn

rs , for all 1 ≤ r ≤ |X | and 1 ≤ s ≤ T. Then by considering a set of K input–output
pairs (xk, ŷn

kl
), for k ∈ {1, 2, . . . , |X |} and l ∈ {1, 2, . . . , |T|}, the KNN classifier decides a

label which is the most frequent among xk-s. The optimum value of k for t = 1 is k = 1.
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In the following, we provide numerical examples where we illustrate the performance
of the proposed classifier when pYn |X (y

n|x) is artificially generated.

4.1. The I.I.D. Case with One Training Sample per Label

In the following examples, we assume that the classifiers have access to only one
training feature vector for each label, the elements of the feature vectors are generated i.i.d.,
and the alphabet size of the feature vector, |Y|, is fixed.

In Figures 4 and 5, we compare the error probability of the proposed classifier with
the naive Bayes classifier and the KNN algorithm for the case when |Y| = 6 and |Y| = 20,
respectively. In both examples, we have two different labels, i.e., |X | = 2. As a result, we
have two different probability distributions pYn |X1

(yn|x1) and pYn |X2
(yn|x2). The probability

distributions pYn |X1
(yn|x1) and pYn |X2

(yn|x2) are randomly generated as follows. We first
generate two random vectors of length 6 and length 20 for Figures 4 and 5, respectively,
where the elements of these vectors are drawn independently from a uniform probability
distribution. Then we normalize these vectors such that the sum of their elements is equal
to one. These two normalized randomly generated vectors then represent the two prob-
ability distributions pYi |X1

(yi|x1) = pY|X1
(y|x1) and pYi |X2

(yi|x2) = pY|X2
(y|x2), ∀i. Then,

pYn |Xk
(yn|xk) is obtained as pYn |Xk

(yn|xk) = ∏n
i=1 pYi |Xk

(yi|xk), for k = 1, 2. The simulation
is carried out as follows. For each n, we generate one training vector for each label, using
the aforementioned probability distributions. Then, as test samples, we generate 1000
feature vectors for each label and pass these feature vectors through our proposed classifier,
the naive Bayes classifier, and the KNN algorithm, and compute the errors. The length of
the feature vector n is varied from n = 1 to n = 100. We repeat the simulation 5000 times
and then plot the error probability. Figures 4 and 5 show that the proposed classifier outper-
forms both the naive Bayes classification and KNN. The main reason for this performance
gain is because when only one training vector per label is available, the proposed classifier
is more resilient to errors than the naive Bayes classifier, whereas the KNN algorithm has
very poor performance because of the “curse of dimensionality”. Specifically, the naive
Bayes classifier cannot perform an accurate classification for small n compared to |Y| since
the chance that an alphabet will not be present in one of the training feature vectors is
close to 1. On the other hand, the KNN algorithm cannot perform an accurate classification
for large n since the dimension of the input feature vector becomes much larger than the
training data and the “curse of dimensionality” occurs.

Figure 4. Comparison in error probability between the naive Bayes classifier, KNN, and the pro-
posed classifier.
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Figure 5. Comparison in error probability between the naive Bayes classifier, KNN, and the pro-
posed classifier.

In Figure 6, we compare the performance of the proposed classifier for different values
of r when |Y| = 6 with the derived upper bounds. As can be seen, for this example,
the derived theoretical upper bounds have similar slope as the exact error probabilities.
Moreover, we can see that for this example, the optimal r is r = 1. However, this is not
always the case and it depends on pYn |Xk

(yn|xk), |Y|, and |X |.

Figure 6. Comparison in error probability of the proposed classifier for different values of r when
|Y| = 6. The related theoretical upper bounds for each value of r are also given.

4.2. The Overlapping I.Non-I.D. Case with One Training Sample per Label

In this example, we consider the i.non-i.d. case where the probability distributions
pi (yi|xk) are overlapping for all i, as shown in Figure 7. The small orthogonal lines on the x-
axis in Figure 7 represent alphabets, i.e., the elements in Y , and the probability of occurrence
of an alphabet yi is equal to the intersection between the corresponding orthogonal line
to the represented probability distribution pi (yi|xk) for k = 1, 2. By “overlapping”, we
mean the following. Let Yv and Yu denote the set of outputs generated by pv(yv|xk) and
pu(yu|xk), respectively. If for any v and u, Yv ∩ Yu �= ∅ holds, we say that the output
alphabets are overlapping.
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Alphabets

pn(yn|x1)pn−1(yn−1|x1)

pi (yi|x1) p2(y2|x1)
p1(y1|x1)

Alphabets

p1(y1|x2) p2(y2|x2)
pi (yi|x2) pn−1(yn−1|x2)

pn(yn|x2)

Figure 7. Illustration of the probability distributions pi (yi|x1) (upper figure) and pi (yi|x2) (lower
figure), for i = 1, 2, . . . , n.

To demonstrate the performance of our proposed classifier in the overlapping case,
we assume that we have two different labels, X = {x1, x2}, where the corresponding
conditional probability distributions pi (yi|x1) and pi (yi|x2) are obtained as follows. For a
given n, let Y =

{
− n,−n + 1, . . . , 0, . . . , n− 1, n

}
be the set of all alphabets. Note that the

size of Y grows with n. Moreover, let ui and vi (1 ≤ i ≤ n) be vectors of length 2n + 1,
given by

ui =

[
0, . . . , 0,

1
i(i + 1)

,
2

i(i + 1)
, . . . ,

i
i(i + 1)

,
i + 1

i(i + 1)
,

i
i(i + 1)

, . . . ,
1

i(i + 1)
, 0, . . . , 0

]
, (50)

vi =

[
0, . . . , 0,

1
i(i + 1)

,
1

i(i + 1)
, . . . ,

1
i(i + 1)

,
1

i(i + 1)
, 0, . . . , 0

]
. (51)

The number of zeros in each side of the vectors ui and vi is (n− i). To generate a
feature vector from label x1(x2), we generate the vector yn = (y1, y2, . . . , yn), where yk
takes values from the set Y , with a probability distribution pi (yi|x1) = ui

(
1 + 2(n + yi)

)(
pi (yi|x2) = vi

(
1 + 2(n + yi)

))
.

The simulation is carried out as follows. For each n, we generate one training feature
vector for each label. Then, we generate 1000 feature vectors for each label and pass them
through our proposed classifier, the naive Bayes classifier, and the KNN algorithm and
calculate the error probability. We change the length of the feature vector from n = 1 to
n = 100 and repeat the simulation 1000 times and then plot the error probability.

As shown in Figure 8, there is a huge difference between the performance of the two
benchmark classifiers and the proposed classifier. The error probability of the naive Bayes
classifier is almost 0.5 for all shown values of n as it is susceptible to the problem of unseen
alphabets in the training vectors. The error probability of the KNN classifier is also almost
0.5 for n > 20 as it is susceptible to the “curse of dimensionality”. However, the error
probability of our proposed classifier continuously decays as n increases.
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Figure 8. Comparison in error probability between the naive Bayes classifier, KNN, and the proposed
classifier (T = 1).

In Figure 9, we run the same experiments as in Figure 8 but with T = 100, i.e., 100 train-
ing feature vectors per label. As can be seen from Figure 9, the performance of the proposed
classifier is better than the naive Bayes classifier, for n > 15. Since |Y| = 2n + 1, for small
values of n, the naive Bayes classifier has access to many training samples and, thereby,
its performance is very close to the case when the probability distribution pYn |X (y

n|x) is
known, i.e., to the maximum-likelihood classifier, and hence it has the optimal performance.
As n increases, the number of alphabets rises, i.e., |Y| rises, and due to the aforementioned
issue of the naive Bayes classifier with unseen alphabets, our proposed classifier performs
much better classification than the naive Bayes classifier. Furthermore, note that the error
probability of our proposed classifier decays exponentially as n increases which is not the
case with the naive Bayes classifier. Moreover, Figure 9 also shows the theoretical upper
bound on the error probability we derived in (11).

Figure 9. Comparison in error probability between the naive Bayes classifier and the proposed
classifier (T = 100).

4.3. The Non-Overlapping I.Non-I.D. Case with One Training Sample for Each Label

In this example, we consider the i.non-i.d. case where the probability distributions
pj(yj|xi) are non-overlapping for all j as shown in Figure 10, where we defined “overlap-
ping” in Section 4.2. Hence, we test the other extreme in terms of possible distribution of
the elements in the feature vectors Yn.
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To demonstrate the performance of our proposed classifier in the non-overlapping case,
we assume that we have two different labels X = {x1, x2}, the corresponding conditional
probability distributions pi (yi|x1) and pi (yi|x2) are obtained as follows. For a given n,
let Y =

{
1, 2, 3, . . . , (n + 1)2 − 1

}
be the set of all alphabets of the element in the feature

vectors. Note again that the size of Y grows with n. in addition, let ui and vi for (1 ≤ i ≤ n),
be vectors of length (n + 1)2 − 1, given by

ui =

[
0, . . . , 0,

1
i(i + 1)

,
2

i(i + 1)
, . . . ,

i
i(i + 1)

,
i + 1

i(i + 1)
,

i
i(i + 1)

, . . . ,
1

i(i + 1)
, 0, . . . , 0

]
, (52)

vi =

[
0, . . . , 0,

1
i(i + 1)

,
1

i(i + 1)
, . . . ,

1
i(i + 1)

,
1

i(i + 1)
, 0, . . . , 0

]
. (53)

The number of zeros in the left-hand sides of ui and vi is i2 − 1. To generate a feature
vector from the label x1(x2), we generate the vector yn = (y1, y2, . . . , yn), where yk take
values from the set Y , with probability distribution pi (yi|x1) = ui(yi)

(
pi (yi|x2) = vi(yi)

)
.

Alphabets
. . .

p1(y1|x1)
p2(y2|x1)

. . .

pn(yn|x1)

Alphabets
. . .

p1(y1|x2)
p2(y2|x2)

. . .

pn(yn|x2)

Figure 10. Illustration of the probability distributions pi (yi|x1) (upper figure) and pi (yi|x2) (lower
figure), for i = 1, 2, . . . , n.

The simulation is carried out as follows. For each n, we generate one training feature
vector for each label. Then we generate 250 feature vectors for each label and pass it
through our proposed classifier, the naive Bayes classifier and KNN and calculate the error
probabilities. We change the length of the vector from 1 to 80 and repeat the simulation
250 times and then plot the error probability. As shown in Figure 11, there is a huge
difference between the performance of the proposed classifier and the two benchmark
classifiers. The error probability of the naive Bayes classifier is almost 0.5 for all shown
values of n as it is susceptible to the issue with unseen alphabets in the training feature
vector. The error probability of the KNN classifier is almost 0.5 for all shown values of
n > 30 as it becomes susceptible to the “curse of dimensionality”. However, the error
probability of our proposed classifier still decays continuously as n increases.

Note that, in our numerical examples, we compared our algorithm with the benchmark
schemes on two extreme cases of i.non-i.d. vectors, referred to as “overlapping” and “non-
overlapping”. Any other i.non-i.d. vector can be represented as a combination of the
“overlapping” and “non-overlapping” vectors. Since our algorithm works better than the
benchmark schemes for small t on both these cases, it will work better than the benchmark
schemes on any combination between “overlapping” and “non-overlapping” vectors,
i.e., for any other i.non-i.d. vectors.
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Figure 11. Comparison in error probability between the naive Bayes classifier and the proposed
classifier (T = 1).

5. Conclusions

In this paper, we proposed a supervised classification algorithm that assigns labels to
input feature vectors with independent but non-identically distributed elements, a statisti-
cal property found in practice. We proved that the proposed classifier is asymptotically
optimal since the error probability moves to zero as the length of the input feature vectors
grows. We showed that this asymptotic optimality is achievable even when one training
feature vector per label is available. In the numerical examples, we compared the proposed
classifier with the naive Bayes classifier and the KNN algorithm. Our numerical results
show that the proposed classifier outperforms the benchmark classifiers when the number
of training data is small and the length of the input feature vectors is sufficiency large.
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Appendix A. Proof of Corollary 2

The proof is almost identical to the proof of Theorem 1; however, here we derive a
looser upper-bound on the error-probability than that in (11), which is independent of PŷnT

i
.

Without loss of generality we assume that x1 is the input to pYn |X (y
n|x) and yn is

observed at the classifier.
Let Bε

k,l , for 1 ≤ k ≤ |Y| and 1 ≤ l ≤ |X |, be a set defined as

Bε
k,l =

{
ŷnt :

∣∣∣∣I
[
ŷnt = yk

]
nt

− p̄(yk|xl)

∣∣∣∣ ≤ ε
3
√

t

}
. (A1)
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Let Bε
l =

|Y|⋂
k=1
Bε

k,l . For ŷnt
1 ∈ Bε

1, we have

( |Y|
∑
k=1

∣∣∣∣I [ŷnt
1 = yk]

nt
− p̄(yk|x1)

∣∣∣∣r
)1/r

(a)

≤
( |Y|

∑
k=1

(
ε
3
√

t

)r
)1/r

, (A2)

Using the same derivation as (18), for any yn ∈ Aε and for ŷnt
1 ∈ Bε

1, we have:( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
1 = yk]

nT

∣∣∣∣r
)1/r

≤ |Y|1/rε + |Y|1/r ε
3
√

t
. (A3)

On the other hand, the same as the derivation in (21), for each i �= 1, we have:( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
i = yk]

nt

∣∣∣∣r
)1/r

≥
∥∥Pŷnt

i
− P̄1

∥∥
r − |Y|

1/rε. (A4)

Now, for any ŷnt
i ∈ Bε

i , we have

∥∥Pŷnt
i
− P̄1

∥∥
r +

( |Y|
∑
k=1

(
ε
3
√

t

)r
)1/r

(a)

≥
( |Y|

∑
k=1

∣∣∣∣I [ŷnt
i = yk]

nt
− p̄(yk|x1)

∣∣∣∣r
)1/r

+

( |Y|
∑
k=1

∣∣∣∣I [ŷnt
i = yk]

nt
− p̄(yk|xi)

∣∣∣∣r
)1/r

(b)

≥
( |Y|

∑
k=1

∣∣p̄(yk|x1)− p̄(yk|xi)
∣∣r)1/r

, (A5)

where (a) follows from (A1) and (b) is again due to the Minkowski inequality. The expres-
sion in (A5), can be written equivalently as∥∥Pŷnt

i
− P̄1

∥∥
r ≥

∥∥P̄i − P̄1
∥∥

r − |Y|
1/r ε

3
√

t
. (A6)

where i �= 1. Using the bounds in (A6) and (A4), for any i �= 1 we have( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
i = yk]

nt

∣∣∣∣r
)1/r

≥
∥∥P̄i − P̄1

∥∥
r − |Y|

1/rε

(
1 +

1
3
√

t

)
. (A7)

Using the bounds in (A3) and (A7), we now relate the left-hand sides of (A3) and (A7)
as follows. As long as the following inequality holds for each i �= 1,

|Y|1/rε

(
1 +

1
3
√

T

)
< ‖P̄i − P̄1

∥∥
r − |Y|

1/rε

(
1 +

1
3
√

t

)
, (A8)

which is equivalent to the following for i �= 1

ε <

∥∥P̄i − P̄1
∥∥

r
2(1 + t−1/3)|Y|1/r , (A9)
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we have the following for i �= 1( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
1 = yk]

nt

∣∣∣∣r
)1/r

(a)

≤ |Y|1/rε

(
1 +

1
3
√

t

)
(b)

< ‖P̄i − P̄1
∥∥

r − |Y|
1/rε

(
1 +

1
3
√

t

)
(c)

≤
( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
i = yk]

nt

∣∣∣∣r
)1/r

, (A10)

where (a), (b), and (c) follow from (A3), (A8), and (A7), respectively. Thereby, from (A10),
we have the following for i �= 1( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
1 = yk]

nt

∣∣∣∣r
)1/r

≤
( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
− I [ŷ

nt
i = yk]

nt

∣∣∣∣r
)1/r

, (A11)

or equivalently as ∥∥Pyn − Pŷnt
1

∥∥
r <

∥∥Pyn − Pŷnt
i

∥∥
r. (A12)

Once again, we obtained that if there is an ε for which (A9) holds for i �= 1 and for that
ε there are sets Aε and Bε

i for which yn ∈ Aε and ŷnt
j ∈ Bε

l for all 1 ≤ l ≤ |X |, then (A12)
holds for i �= 1, and thereby our classifier will detect that x1 is the correct label. Using this,
we can upper-bound the error probability as

Pe = 1− Pr
{

x̂1 = x1
}

≤ 1− Pr

{(
yn ∈ Aε

)
∩
( |X |⋂

j=1

ŷnt
l ∈ Bε

l

)∣∣∣∣ε ∈ S
}

, (A13)

where S is a set defined as

S =

{
ε : ε ≤ min

i
i �=1

∥∥P̄i − P̄1
∥∥

r
(2 + t−1/3)|Y|1/r

}
. (A14)

The right-hand side of (A13) can be upper-bounded as

1− Pr

{(
yn ∈ Aε

)
∩
( |X |⋂

l=1

ŷnt
l ∈ Bε

j

)∣∣∣∣ε ∈ S
}

= Pr

{(
yn /∈ Aε

)
∪
( |X |⋃

l=1

ŷnt
l /∈ Bε

l

)∣∣∣∣ε ∈ S
}

(a)

≤ Pr
{

yn /∈ Aε|ε ∈ S
}

+
|X |
∑
l=1

Pr
{

ŷnt
l /∈ Bε

l
∣∣ε ∈ S}, (A15)

Using the same derivation as (39), we have:

Pr
{

yn /∈ Aε|ε ∈ S
}
≤ 2|Y|e−2nε2

. (A16)

Similarly, we have the following result for the second expression in the right-hand
side of (A15), which is the same as the derivation in (43)

Pr
{

ŷnt
l /∈ Bε

l
∣∣ε ∈ S} ≤ 2|Y|e−2nt1/3ε2

. (A17)

241



Entropy 2021, 23, 1045

Inserting (A16) and (A17) into (A15), and then inserting (A15) into (A13), we obtain
the following upper-bound for the error probability

Pe ≤ 2|Y|e−2nε2
+ 2|X ||Y|e−2nt1/3ε2

, (A18)

where

ε = min
i,j

i �=j

∥∥P̄i − P̄j
∥∥

r
2(1 + t−1/3)|Y|1/r , (A19)

Now, if |Y| ≤ nm, (A18) can be written as

Pe ≤ 2|Y|e−2nε2
+ 2|X ||Y|e−2nt1/3ε2

≤ 2nm exp

(
− 2n min

i,j
i �=j

∥∥P̄i − P̄j
∥∥2

r
2(1 + t−1/3)2n2m/r

)

+ 2|X |nm exp

(
− 2nt1/3 min

i,j
i �=j

∥∥P̄i − P̄j
∥∥2

r
2(1 + t−1/3)2n2m/r

)

≤ O
(

nm exp
(
− n1− 2m

r

))
. (A20)

According to (A20), for a fixed r > 2m, the right-hand side of (A20) moves to zero as
n → ∞ and, thereby, the classifier is asymptotically optimal.
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