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Deep Learning for Facial Recognition on Single Sample per Person Scenarios with Varied
Capturing Conditions
Reprinted from: Appl. Sci. 2019, 9, 5474, doi:10.3390/app9245474 . . . . . . . . . . . . . . . . . . . 35

Ziyuan Yang, Jing Li, Weidong Min and Qi Wang
Real-Time Pre-Identification and Cascaded Detection for Tiny Faces
Reprinted from: Appl. Sci. 2019, 9, 4344, doi:10.3390/app9204344 . . . . . . . . . . . . . . . . . . . 47

Eko Ihsanto, Kalamullah Ramli, Dodi Sudiana and Teddy Surya Gunawan
.Fast and Accurate Algorithm for ECG Authentication Using Residual Depthwise Separable
Convolutional Neural Networks
Reprinted from: Appl. Sci. 2020, 10, 3304, doi:10.3390/app10093304 . . . . . . . . . . . . . . . . . 61

Feng Li, Xiaoyu Li, Fei Wang, Dengyong Zhang , Yi Xia and Fan He
.A Novel P300 Classification Algorithm Based on a Principal Component
Analysis-Convolutional Neural Network
Reprinted from: Appl. Sci. 2019, 10, 1546, doi:10.3390/app10041546 . . . . . . . . . . . . . . . . . 77

Di Wang, Yujuan Si, Weiyi Yang, Gong Zhang and Tong Liu
A Novel Heart Rate Robust Method for Short-Term Electrocardiogram Biometric Identification
Reprinted from: Appl. Sci. 2019, 9, 201, doi:10.3390/app9010201 . . . . . . . . . . . . . . . . . . . 93

Woo Hyun Kang and Nam Soo Kim
Unsupervised Learning of Total Variability Embedding for Speaker Verification with
Random Digit Strings
Reprinted from: Appl. Sci. 2019, 9, 1597, doi:10.3390/app9081597 . . . . . . . . . . . . . . . . . . 113

Jiakang Li, Xiongwei Zhang, Meng Sun, Xia Zou and Changyan Zheng
Attention-Based LSTM Algorithm for Audio Replay Detection in Noisy Environments
Reprinted from: Appl. Sci. 2019, 9, 1539, doi:10.3390/app9081539 . . . . . . . . . . . . . . . . . . 129

Leslie Ching Ow Tiong, Yunli Lee and Andrew Beng Jin Teoh
Periocular Recognition in the Wild: Implementation of RGB-OCLBCP Dual-Stream CNN
Reprinted from: Appl. Sci. 2019, 9, 2709, doi:10.3390/app9132709 . . . . . . . . . . . . . . . . . . . 145

v



Yuting Liu, Hongyu Yang and Qijun Zhao
Hierarchical Feature Aggregation from Body Parts for Misalignment Robust Person
Re-Identification
Reprinted from: Appl. Sci. 2019, 9, 2255, doi:10.3390/app9112255 . . . . . . . . . . . . . . . . . . 163

Huafeng Qin and Peng Wang
Finger-Vein Verification Based on LSTM Recurrent Neural Networks
Reprinted from: Appl. Sci. 2019, 9, 1687, doi:10.3390/app9081687 . . . . . . . . . . . . . . . . . . 183

vi



About the Editors

Andrew Teoh Beng Jin (Professor) obtained his BEng (Electronic) in 1999 and Ph.D. degree

in 2003 from the National University of Malaysia. He is currently a full professor in the Electrical

and Electronic Engineering Department, College Engineering of Yonsei University, South Korea.

His research, for which he has received funding, focuses on biometric applications and biometric

security. His current research interests are Machine Learning and Information Security. He has

published more than 300 international refereed journal papers, conference articles, edited several

book chapters, and edited book volumes. He served and is serving as a guest editor of IEEE Signal

Processing Magazine, associate editor of IEEE Transaction of Information Forensic and Security, IEEE

Biometrics Compendium, Machine Learning, and editor-in-chief of the IEEE Biometrics Council

Newsletter.

Lu Leng (Associate Professor) received his Ph.D. degree from Southwest Jiaotong University,

Chengdu, P. R. China, in 2012. He performed his post-doctoral research at Yonsei University,

Seoul, Republic of Korea, and Nanjing University of Aeronautics and Astronautics, Nanjing, P. R.

China from 2012 to 2015. He was a visiting scholar at West Virginia University, USA from 2015

to 2016. Currently, he is an associate professor at Nanchang Hangkong University, and also a

visiting scholar at Yonsei University, Seoul, Republic of Korea. He has published more than 70

international journal and conference papers. He has been granted several scholarships and funding

projects for his academic research. He is the reviewer of more than 50 international journals and

conferences. His research interests include computer vision, biometric template protection, and

biometric recognition. He is a member of the Institute of Electrical and Electronics Engineers (IEEE),

Association for Computing Machinery (ACM), China Society of Image and Graphics (CSIG), and

China Computer Federation (CCF).

vii



applied  
sciences

Editorial

Special Issue on Advanced Biometrics with
Deep Learning

Andrew Beng Jin Teoh 1,* and Lu Leng 2

1 School of Electrical and Electronic Engineering, College of Engineering, Yonsei University,
Seoul 120749, Korea

2 School of Software, Nanchang Hangkong University, Nanchang 330063, China; leng@nchu.edu.cn
* Correspondence: bjteoh@yonsei.ac.kr

Received: 16 June 2020; Accepted: 24 June 2020; Published: 28 June 2020

1. Introduction

Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc.,
as a means of identity management has become commonplace nowadays for various applications.
Traditional authentication methods, including possession-based and knowledge-based methods,
typically suffer from various problems. It is probable that possessions, such as an ID card or key, can be
stolen, broken, or lost; while it is probable that knowledge, such as a password or PIN, can be forgotten
or guessed. Compared with the traditional authentication methods, biometric recognition methods are
more convenient and secure [1].

Biometric systems follow a typical pipeline that is composed of separate acquisition, preprocessing,
feature extraction and classification. Deep learning as a data-driven representation learning approach
has been shown to be a promising alternative to conventional data-agnostic and handcrafted
pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers
an end-to-end learning paradigm to unify preprocessing, feature extraction and recognition based
solely on biometric data [2]. The main advantages of deep learning include a strong learning ability,
wide coverage, good adaptability, data-driven, good transferability, etc.

2. Advanced Biometrics with Deep Learning

In light of the above, this Special Issue collected high-quality, state-of-the-art research papers that
deal with challenging issues in advanced biometric systems based on deep learning. A total of 32
papers were submitted, 12 of which were accepted and published (i.e., 37.5% acceptance rate). The 12
papers can be briefly divided into 4 categories as follows according to biometric modality.

2.1. Face

The paper, authored by H. Tu, G. Duoji, Q. Zhao and S. Wu, extracted invariant features from
a single sample per subject for face recognition. The authors generated additional samples to
enrich the intra-variation and eliminate external factors [3]. Another paper by S. Zhou, C. Chen, G.
Han and X. Hou, proposed a novel loss function, termed as double additive margin Softmax loss
(DAM-Softmax) for convolutional neural networks (CNNs) in face recognition [4]. The presented loss
has a clearer geometrical explanation and can produce highly discriminative features. B. Ríos-Sánchez,
D. Costa-da-Silva, N. Martín-Yuste and C. Sánchez-Ávila, described and evaluated two deep learning
models for face recognition in terms of accuracy and size, which were designed for the applications
in mobile devices and resource saving environments [5]. The 4th paper, authored by Z. Yang, J. Li,
W. Min and Q. Wang, presented real-time pre-identification and cascaded detection for tiny faces to
reduce background and other irrelevant information [6]. The cascade detector consisted of a two-stage
convolutional neuron network to detect tiny faces in a coarse-to-fine manner. The face-area candidates
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were pre-identified as a region of interest (ROI) based on a real-time pedestrian detector, while the set
of ROI candidates was the input of the second sub-network instead of the whole image.

2.2. Medical Electronic Signal

Medical electronic signals referring to electrocardiogram (ECG) and electroencephalogram (EEG)
signals have been identified as a type of behavioral biometrics. The paper, authored by E. Ihsanto,
K. Ramli, D. Sudiana and T. S. Gunawan, focused on the accuracy and processing speed of ECG
recognition [7]. They proposed a fast and accurate two-stage framework that consisted of ECG beat
detection and classification. Hamilton’s method and Residual Depthwise Separable CNN (RDSCNN)
were used for ECG beat detection and classification, respectively. Another paper by F. Li, X. Li, F.
Wang, D. Zhang, Y. Xia and F. He, aimed at enhancing the classification accuracy of P300 EEG signals
in a non-invasive brain-computer interface system [8]. They employed principal component analysis
(PCA) to remove the noise and artifacts in the data as well as to increase the data processing speed.
Furthermore, the parallel convolution method was used for P300 classification, which increased the
network depth and improved the accuracy. The third paper, authored by D. Wang, Y. Si, W. Yang,
G. Zhang and T. Liu, proposed a novel method suitable for short-term ECG signal identification [9].
An improved heart-rate-free resampling strategy was employed to minimize the influence of heart-rate
variability during processing. The PCA Network (PCANet) for feature extraction was implemented to
determine the potential difference between subjects.

2.3. Voice Print

Most deep learning-based speaker variability embedding is trained in a supervised manner
and requires massive labeled data. To address this issue, W. H. Kang and N. S. Kim proposed a
novel technique to extract an i-vector-like feature based on the variational auto-encoder, which was
trained in an unsupervised manner to obtain a latent variable, which was represented by a Gaussian
mixture model distribution [10]. Another paper, authored by J. Li, X. Zhang, M. Sun, X. Zou and C.
Zheng, introduced attention-based long short-term memory (LSTM) to extract representative frames
for spoofing detection in noisy environments [11]. Since the selection and weighting of features
can improve the discrimination [12,13], the specific and representative frame-level features were
automatically selected by adjusting their weights in the framework of attention-based LSTM.

2.4. Other Modalities

In addition to the above three biometric modalities, the remaining three papers are based on
other biometric modalities, namely periocular, person re-identification and finger-vein. The paper,
authored by L. C. O. Tiong, Y. Lee and A. B. J. Teoh, studied the periocular recognition under
unconstrained environments and proposed a dual-stream CNN, which employed the Orthogonal
Combination-Local Binary Coded Pattern (OCLBCP) as a color-based texture descriptor [14]. Their
network aggregated the RGB image and OCLBCP by using two distinct late-fusion layers. Another paper
by Y. Liu, H. Yang and Q. Zhao, focused on the misalignment problem in person re-identification [15].
They presented a two-branch deep joint learning network, where the local branch generated
misalignment robust representations by pooling the features around the body parts, while the
global branch generated representations from a holistic view. A hierarchical feature aggregation
mechanism aggregated different levels of visual patterns assigned learned optimal weights within body
part regions. The third paper, authored by H. Qin and P. Wang, proposed an approach to extract robust
finger-vein patterns for verification and a supervised learning scheme for vein pattern encoding [16].
Stacked CNN (SCNN) and LSTM were utilized to predict the probability of a vein pixel belonging to a
vein pattern.

The accepted papers contain the latest scientific research progress and remarkable achievements,
which have important reference significance and values for the research in the fields of biometric
recognition, deep learning and computer vision.
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3. Technical Challenges and Future Development Trends

Although deep learning methods commonly outperform traditional handcrafted methods for
biometric recognition, there are still several technical challenges and open problems, including the
availability of high-quality labeled training samples, high computation and storage cost, hardware
requirements, poor portability, complicated model design, low interpretability, etc.

Thus, the efforts of solving the aforementioned challenges compose the future trends of deep
learning. Many new types of machine learning problems, such as weakly-supervised, semi-supervised
and self-supervised learning have been explored to reduce the dependence on the labelled training
samples. Compression technologies, such as pruning, quantization and knowledge distillation are
employed to reduce the computation/storage cost. Light-weight deep learning models such as
MobileNet, ShuffleNet are developed for mobile environments or to improve portability. In addition,
many researchers are trying to improve the interpretability of deep learning models.

To sum up, deep learning technologies will definitely play an increasingly important role in
biometric recognition with their rapid development.
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Abstract: Face recognition using a single sample per person is a challenging problem in computer
vision. In this scenario, due to the lack of training samples, it is difficult to distinguish between
inter-class variations caused by identity and intra-class variations caused by external factors such as
illumination, pose, etc. To address this problem, we propose a scheme to improve the recognition
rate by both generating additional samples to enrich the intra-variation and eliminating external
factors to extract invariant features. Firstly, a 3D face modeling module is proposed to recover
the intrinsic properties of the input image, i.e., 3D face shape and albedo. To obtain the complete
albedo, we come up with an end-to-end network to estimate the full albedo UV map from incomplete
textures. The obtained albedo UV map not only eliminates the influence of the illumination, pose,
and expression, but also retains the identity information. With the help of the recovered intrinsic
properties, we then generate images under various illuminations, expressions, and poses. Finally,
the albedo and the generated images are used to assist single sample per person face recognition.
The experimental results on Face Recognition Technology (FERET), Labeled Faces in the Wild (LFW),
Celebrities in Frontal-Profile (CFP) and other face databases demonstrate the effectiveness of the
proposed method.

Keywords: face recognition; single sample per person; sample enriching; intrinsic decomposition

1. Introduction

Face recognition has been an active topic and attracted extensive attention due to its wide
potential applications in many areas [1–3]. There are multiple modalities of face data that can be
used in face recognition, such as near infrared images, depth images, Red Green Blue (RGB) images,
etc. Compared with near infrared and depth images [4], RGB images include more information and
have broader application scenarios. In the past decades, many RGB-based face recognition methods
have been proposed and great progress has been made, especially with the development of deep
learning [5–8]. However, there are still many problems to be solved. Face recognition with single
sample per person, i.e., SSPP FR, proposed in 1995 by Beymer and Poggio [9], is one of the most
important issues. In SSPP FR, there is only one training sample per person but various testing samples
with appearance different from training samples. This situation could appear in many actual scenarios
such as criminal tracing, ID card identification, video surveillance, etc. In SSPP FR, the limited training
samples provide insufficient information of intra-class variations, which significantly decreases the
performance of most existing face recognition methods. Tan et al. [10] showed that the performance of
face recognition drops with the decreasing number of training samples per person and a 30% drop of
recognition rate happens when only one training sample per person is available. In recent years, many
methods have been suggested to solve the SSPP FR problem. These methods can be roughly divided
into three categories: robust feature extraction, generic learning, and synthetic face generation.

Appl. Sci. 2020, 10, 601; doi:10.3390/app10020601 www.mdpi.com/journal/applsci5
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Algorithms in the first category extract features that are robust to various variations. Some of
them extract more discriminative features from single samples based on variants of improved principal
component analysis (PCA) [11–13]. Others focus on capturing multiple face representations [14–16],
mostly by dividing face image into a set of patches and applying various feature extraction techniques
to get face representations. For instance, Lu et al. [14] proposed a novel discriminative multi-manifold
analysis (DMMA) method to learn features from patches. They constructed a manifold from patches
for every individual and formulated face recognition as a manifold–manifold matching problem to
identify the unlabeled subjects. Dadi et al. [17] proposed to represent human faces by Histogram
of Oriented Gradients (HOG), which captures edge or gradient structure and is invariant to local
geometric and photometric transformations [18]. Local Binary Pattern (LBP) texture features extractor
proposed by Ahonen et al. [19] has also been explored for face recognition thanks to its computational
efficiency and invariance to monotonic gray-level changes. With the development of deep learning,
there are many other methods that utilize the deep learning ability to extract more robust features,
such as VGGNet [20], GoogleNet [21], FaceNet [22], ResNet [23], and SENet [24].

Generic learning attempts to utilize a generic set, in which each person has more than one training
samples, to enhance the generalization ability of model. An implicit assumption of this kind of
algorithms is that the intra-class variations for different datasets are similar and can be employed to
share useful information to learn more robust model. The idea of sharing information has been widely
used in [25–29] and achieved promising results. Sparse-representation-based classification (SRC) [30]
is often used for face recognition, but its performance depends on adequate samples for each subject.
Deng et al. [25] extended SRC framework by constructing an intra-class variation dictionary from
generic training set together with gallery dictionary to recognize query samples. A sparse variation
dictionary learning (SVDL) technique was introduced by Yang et al. [27], which learns a projection
from both gallery and generic set and rebuilds a sparse dictionary to perform SSPP FR.

For the last category, some researchers synthesize some samples for each individual from
the single sample to compensate the limited intra-class variations [31–37]. Mohammadzade and
Hatzinakos [32] constructed expression subspaces and used them to synthesize new expression images.
Cuculo et al. [36] extracted features from images that are augmented by standard augmentation
techniques, such as cropping, translation, and filtering, and then applied sparsity-driven sub-dictionary
learning and k-LIMAPS for face identification. To solve the lighting effect, Choi et al. [37] proposed
a coupled bilinear model that generates virtual images under various illuminations using a single
input image, and learned feature space based on these synthesized images to recognize a face image.
Zeng et al. [33] proposed an expanding sample method based on traditional approach and used the
expanded training samples to fine-tune a well-trained deep convolutional neural network model. 3D
face morphable model (3DMM) is widely applied to face modeling and face image synthesis [35,38–40].
Zhu et al. [38] fitted 3DMM to face images via cascaded convolutional neural networks (CNN) and
generated new images across large poses, which compose a new augmented database, namely 300W-LP.
Feng et al. [39] presented a supervised cascaded collaborative regression (CCR) algorithm that exploits
3DMM-based synthesized faces for robust 2D facial landmark detection. SSPP-DAN introduced in [35]
combines face synthesis and domain-adversarial network. It first generates synthetic images with
varying poses using 3DMM and then eliminates the gap between source domain (synthetic data) and
target domain (real data) by domain-adversarial network. Song et al. [40] explored the use of 3DMM
in generating virtual training samples for pose-invariant CRC-based face classification.

The core idea of all the aforementioned methods is to train a model that can extract the identity
features of face images, and ensure that the features are discriminative enough to find a suitable
classification hyperplane that can accurately divide the features of different individuals. Unfortunately,
many external factors, such as pose, facial expression, illumination, resolution, etc., heavily affect the
appearance of facial images, and the lack of samples with different external factors leads to insufficient
learning of feature space and inaccurate classification hyperplane. Being aware of these problems with
existing methods, we propose a method to improve SSPP FR from two perspectives: Normalization and
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Diversification. Normalization is to eliminate the external factors so as to extract robust and invariant
features, which are helpful for defining more accurate classification hyperplane. Diversification means
to enrich intra-variation through generating additional samples with various external factors. More
diverse samples also enable the model to learn more discriminative features for distinguishing different
individuals. To achieve this goal, a 3D face modeling module including 3D shape recovery and albedo
recovery is presented at first. For the albedo recovery particularly, we make full use of the physical
imaging principle and face symmetry to complete the invisible areas caused by self-occlusion while
reserving the identity information. Since we represent albedo in the form of UV map, which is
theoretically invariant to pose, illumination and expression (PIE) variations, we can alleviate the
influence of these external factors. Based on the recovered shape and albedo, additional face images
with varying pose, illumination, and expression are generated to increase intra-variation. Finally,
we are able to improve the SSPP face recognition accuracy thanks to the enriched intra-variation and
invariant features.

The remaining parts of this paper are organized as follows. Section 2 reviews face recognition
with single sample per person and inverse rendering. Section 3 presents the detail of the proposed
method. Section 4 reports our experiments and results. Section 5 provides the conclusion of this paper.

2. Related Work

2.1. Face Recognition with Single Sample Per Person

With the unremitting efforts of scholars, face recognition has made great progress. However, the
task becomes much more challenging when only one sample per person is available for training
the face recognition model. Dadi et al. [17] extracted histogram of oriented gradients (HOG)
features and employ support vector machine (SVM) for classification. Li et al. [41] combined Gabor
wavelets and feature space transformation (FST) based on fusion feature matrix. They projected
the combined features to a low-dimensional subspace and used nearest neighbor classifier (NNc)
to complete classification. Pan et al. [42] proposed a locality preserving projection (LPP) feature
transfer based algorithm to learn a feature transfer matrix to map source faces and target faces into a
common subspace.

In addition to the traditional methods introduced above, there are many other methods that utilize
the learning ability of deep learning to extract features. To make up for the lack of data in SSPP FP, some
algorithms combine deep learning and sample expanding. In [34], a generalized deep autoencoder
(GDA) is firstly trained to generate intra-class variations, and is then separately fine-tuned by the
single sample of each subject to learn class-specific DA (CDA). The new samples to be recognized are
reconstructed by corresponding CDA so as to complete classification task. Similarly, Zeng et al. [33]
used a traditional approach to learn an intra-class variation set and added the variation to single
sample to expand the dataset. Then, they fine-tuned a well-trained network using the extended
samples. Sample expanding can be done not only in the image space but also in the feature space.
Min et al. [43] proposed a sample expansion algorithm in feature space called k class feature transfer
(KCFT). Inspired by the fact that similar faces have similar intra-class variations, they trained a deep
convolutional neural network on a common multi-sample face dataset at first and extracted features
for the training set and a generic set. Then, k classes with similar features in the generic set are selected
for each training sample, and the intra-variation of the selected generic data is transferred to the
training sample in the feature space. Finally, the expanded features are used to train the last layer of
SoftMax classifier.
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Unlike these existing methods, this paper simultaneously recovers intrinsic attributes and
generates diversified samples. Compared with sample expanding methods mentioned above,
our method uses face modeling to decompose intrinsic property and generates images with richer
intra-variation via simulating the face image formation process rather than following the idea of
intra-variation migration. Our method also takes full advantage of intrinsic properties that can more
robustly represent identity information. Deep learning is used as a feature extractor in our method
due to its superiority demonstrated in many existing studies.

2.2. Inverse Rendering

The formation of face images is mainly affected by intrinsic face properties and external factors.
Intrinsic properties consist of shape (geometry) and albedo (skin properties), while external factors
include pose, illumination, expression, camera setting, etc. Inverse rendering refers to reversely
decomposing internal and external properties in facial images. Many inverse rendering methods have
been proposed. CNN3DMM [44] represents shape and albedo, respectively, as a linear combination of
PCA bases and uses a CNN to regress the combination coefficients. SfSNet [45] mimics the process of
imaging faces based on physical models and estimates the albedo, light coefficients, and normal of the
input face image.

As one of the intrinsic properties, albedo has natural advantage for face recognition owning to its
robustness to variations in view angle and illumination. However, most inverse rendering algorithms
pay more attention to recovering a more accurate and detailed 3D face shape, and treat the albedo
as an ancillary result. As one of the few algorithms using albedo to assist face recognition, Blanz
and Vetter [46] captured the personal specific shape and albedo properties by fitting a morphable
model of 3D faces to 2D images. The obtained model coefficients that are supposed to be independent
of external factors can be used for face recognition. However, due to the limited representation
ability of the statistical model, the recovered albedo would lose its discrimination to some extent.
To solve this problem, Tu et al. [47] proposed to generate albedo images with frontal pose and neutral
expression from face images of arbitrary view, expression, and illumination, and extract robust identity
features from the obtained albedo images. They experimentally showed that albedo is beneficial to
improving face recognition. However, they only realize the synthesis of normalized albedo images in
two-dimensional image space, lacking the exploration on the principle of physical imaging, which
leads to a poor performance on a cross-database.

3. Proposed Method

3.1. Overview

3.1.1. Preliminary

In this paper, densely aligned 3D face shapes are used, each containing n vertices. Generally,
we denote an n-vertex 3D face shape as point cloud S ∈ R

3×n, where each column represents the
coordinates of a point. The face normal, represented as N ∈ R

3×n, is calculated from the 3D face
shape. The texture and albedo are denoted as T, A ∈ R

3×n, where each column represents the color
and reflectivity of a point on the face.

However, using only a collection of attributes of each point to represent S, N, T, and A misses
information about the spatial adjacency between points. Inspired by position maps in [48], we denote
albedo as a UV map: UVA ∈ R

256×256×3 (see Figure 1). Each point in A can find a unique corresponding
pixel on UVA. Different from the traditional UV unwrapping method, each pixel in our UV map will
not correspond to multiple points in A. In addition, we also use UVT and UVN to represent facial
texture and facial normal as UV maps.
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Figure 1. Pipeline of proposed method.

3.1.2. Pipeline

Figure 1 shows the framework of the proposed method for single sample per person face
recognition. The method consists of three modules: 3D face modeling, 2D image generation, and
improved SSPP FR. Given a face image of a person, we detect 68 landmarks, U, and generate the
incomplete UV map of texture (Incomplete UVT) using PRNet algorithm in [48] at first. We then recover
its 3D face shape and complete UV map of albedo (Complete UVA), respectively, from landmarks
and Incomplete UVT . With the recovered properties, images under varying pose, illumination, and
expression are generated in the 2D image generation module. Finally, in the improved SSPP FR module,
the reconstructed Complete UVA and generated images are used to assist SSPP face recognition. Next,
we detail: (i) albedo recovery; (ii) shape recovery; (iii) data enrichment; and (iv) SSPP FR.

3.2. Albedo Recovery

3.2.1. Network Structure

We assume that the face is Lambertian and illuminated from the distant. Under the Lambertian
assumption, we represent the lighting and reflectance model as second-order Spherical Harmonics
(SH) [49,50], which is a natural extension of the Fourier representation to spherical function. In SH,
the irradiance at a surface point with normal (nx, ny, nz) is given by

B(nx, ny, nz|Θ
sh) =

b2

∑
k=1

Θsh
k Hk(nx, ny, nz), (1)

where Hk are the b2 = 32 = 9 SH basis functions, and Θsh
k is the corresponding kth illumination

coefficient. Since we consider colored illumination, there are totally 3× 9 = 27 illumination coefficients
with nine coefficients for each of the R, G, and B channels. The texture of a surface point can be
calculated by multiplying the irradiance and albedo of the point. To sum up, the texture under certain
illumination is a function of normal, albedo, and illumination, and can be expressed as

T (p) = fsh(A (p) , N (p) , SHL),
UVT (p) = fsh(UVA (p) , UVN (p) , SHL),

(2)

where p represents a pixel (2D) or point (3D), and SHL denotes the SH illumination coefficients.
Inspired by Sengupta et al. [45], we propose an end-to-end network that can recover the missing

part in the incomplete UVT and generate its complete version UVA. As can be seen in Figure 2,
we concatenate the incomplete UVT with its horizontally flipped image as input of the network.
The proposed network follows an encoder–decoder structure, in which the encoder module extracts
a common feature from input image, and the albedo decoder and the normal decoder decode the
complete albedo UVA and the complete normal UVN from the common feature, respectively, and the
light decoder computes the spherical harmonics illumination coefficients SHL from the concatenation
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of common feature, albedo feature, and normal feature. At last, following Equation (2), a rendering
layer is used to recover the texture based on the above decoded attributes.

Figure 2. Pipeline of albedo recovery.

3.2.2. Loss Functions

To train the albedo recovery model, we minimize the error between the reconstructed value and
the ground truth. However, the ground truth of unseen regions in real face is unavailable. To address
the issue, we flip the reconstructed texture horizontally and make it as similar as possible to the input
texture image. The loss function for reconstructed texture is defined as

Lrecon = 1
t ∑

p

(
|UVM[p]

(
UV∗

T [p]−
ˆUVT [p]

))

+
λ f

t ∑
p

(
|UVM[p]

(
UV∗

T [p]−
ˆUVTf lip

[p]
))

,
(3)

where UVM is the visibility mask, [p] denotes the pixel spatial location, t is the number of visible
pixels, ˆUVTf lip

means horizontally flipping the reconstructed texture ˆUVT , λ f denotes the weight of the
reconstruction loss component associated with the horizontally-flipped reconstructed texture with
respect to that associated with the original reconstructed texture, and the symbols “∗” and “ ”̂ indicate
the ground truth and reconstructed values, respectively.

The loss functions for SH illumination coefficients, albedo, and normal are formulated,
respectively, as

Ll = ‖ SHL∗ − ˆSHL ‖
2
2, (4)

La = |UV∗
A − ˆUVA|, (5)

Ln = |UV∗
N − ˆUVN |. (6)

The total loss is defined as

Ltotal = λreconLrecon + λl Ll + λaLa + λnLn, (7)

where λrecon, λl , λa, and λn are the weights to balance different losses.
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3.2.3. Implementation Details

Since the ground truth of albedo, normal, and light coefficients of real facial images is not available,
synthetic data are firstly used in this paper. Following the definition of 3DMM [46], the shape and the
albedo of a face can be represented as

S = S+ αid bs
id + αexp bs

exp, (8)

A = A+ βid ba
id, (9)

where S and A are 3D face shape and albedo; S is the mean shape; A is the mean albedo; bs
id and

ba
id are, respectively, the identity-related shape bases and albedo bases; bs

id is the expression-related
shape bases; and αid, αexp, and βid are corresponding shape parameters, expression parameters, and
albedo parameters.

Bar et al. [51] provided a method to flatten a 3D shape into 2D embedding and re-sample a 3DMM
(including S, A, bs

id, bs
exp, and ba

id) from the initial 3DMM over a uniform grid of size H × W in this
flattened space. The re-sampled 3DMM has n = HW vertices and each vertex has an associated UV
coordinate. In our work, bs

id and ba
id of initial 3DMM come from BFM 2009 [52] and bs

exp comes from
FaceWarehouse [53]. Using the method in [51], we obtain a re-sampled 3DMM with n = 2562 = 65,536
vertices. Then, we remove the vertices in the neck area resulting in a 3D face of 43,867 vertices and UV
map of 256 × 256 with 43,867 valid pixels. We use the re-sampled 3DMM to synthesize 2330 subjects
with a total of 150,704 facial images.

In view of the difference in data distribution between synthetic images and real images,
real training data are necessary. We used real data from the CelebA database [54], including a
total of 202,599 facial images of 10,177 subjects, and adopted a two-step training strategy to solve
the problem of unavailability of real data labels. (i) We first trained the network on synthetic data.
The pre-trained network was applied to real data from CelebA to obtain their albedo, normal, and SH
illumination coefficients, which were taken as “pseudo ground truth” of the real data. (ii) We then
fine-tuned the network with the combined set of synthetic data with “golden ground truth” and real
data with “pseudo ground truth”. For both steps, we applied Equation (7) to supervise the learning
process and set λrecon, λl , λa, and λn as 1.0 and λ f as 0.5. Optimization was done by Adaptive Moment
Estimation (Adam) with mini-batch of 32 samples, and the exponential decay rate for the first-moment
estimates and second-moment estimates were set as 0.5 and 0.999, respectively. When we trained the
network with only synthetic data, the learning rate was initialized as 10−3 and then decreased by
factor of 10 after every four epochs. When training the network with combination of synthetic and real
data, we set the learning rate to 10−4.

3.3. Shape Recovery

To recover the 3D face shape, motivated by the method in [55], we train a cascade coupled-

regressor {Rk
Id}

K

k=1, {Rk
Exp}

K

k=1
to reconstruct the 3D shape based on the detected 2D landmarks U∗ on

the input image. Here, 3D face shape is disentangled as

S = S+ΔSId +ΔSExp, (10)

where S is the mean 3D shape of frontal pose and neutral expression, termed
pose-and-express-normalized (PEN) 3D face shape, ΔSId is the difference between the subject’s PEN
3D shape, and S, ΔSExp is the deformation in S caused by expression.

Given a 3D face shape and the corresponding 3D landmark vertices D, its 2D landmarks U at
the same pose as the input face is obtained through weak perspective projection M. Note that the
3D-to-2D projection matrix is computed via least squares such that the projection of the D is as close as
possible to the ground truth landmarks U∗, i.e.,
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M = ((D)T D)−1(D)TU∗. (11)

The core idea of this method is to assume that there is a “relationship” between the difference on
two 3D face shapes and the difference on their corresponding 2D landmarks, which can be learned
from training samples. Thus, the reconstruction can be described as:

Sk = Sk−1 + Rk
Id(U

∗ −Uk−1))

+ Rk
Exp(U

∗ −Uk−1)),
(12)

where Sk is the reconstructed 3D face shape after k iteration, S0 = S.
To train the coupled-regressors, we synthesized 1000 face images under various poses and

expressions based on the resampled 3DMM. The ground truth ΔSId and ΔSExp of these images were
recorded during the synthesis. In this study, we cascaded five pairs of identity and expression shape
regressors, i.e., K = 5.

3.4. Data Enrichment

With the obtained identity shape S + ΔSId, in short SId, and albedo UVA of a subject, face images
of the subject with arbitrary poses, illuminations, and expressions could be generated. Firstly, we
obtain shape S with the arbitrary expression via Equation (10), in which random ΔSExp is generated
through the resampled 3DMM. Secondly, we add pose to S and obtained Spose. The process of adding
a pose can be expressed as:

Spose = f ∗ R ∗ S + t3d, (13)

where R is the 3 × 3 rotation matrix calculated from the pitch, yaw, and roll angles; f is the scale
factor; and t3d is the 3 × 1 translation vector. Thirdly, we generate texture T with random illumination
through Equation (2), where N is calculated by the obtained Spose, A is constructed from UVA, and
SHL is randomly generated. Finally, Spose and T are used to render the final image by orthographic
projection matrix and z-buffer.

3.5. SSPP FR

In this section, we utilize the decomposed intrinsic facial properties (i.e., albedo) and the
generated arbitrary face images to solve SSPP FR problem. This is done from two perspectives:
(i) enriching the intra-variation of training samples with the generated arbitrary face images; and (ii)
exploring additional invariant features extracted from albedo maps and fusing the match scores of
different features.

3.5.1. Face Recognition via Enriching Intra-Variation

In SSPP FR, performance of face matcher drops due to the deficiency of intra-variation.
One implementation to improve SSPP face recognition is to enrich intra-variation in training set
via 3D-modeling-based image generation. As shown in Figure 3a, 3D face modeling module is used
to recover shapes and albedos of SSPP training set, based on which additional face images with
varying pose, illumination, and expression are generated. Finally, the enlarged dataset of original and
generated images is utilized to train a more discriminative face matcher.

3.5.2. Face Recognition via Enriching both Intra-Variation and Invariant Features

The 3D face modeling proposed in this paper not only makes it possible to enrich intra-variation,
but also provides invariant features from its decomposed intrinsic attribute (i.e., albedo). Thus,
we come up with another implementation of SSPP face recognition, which is to enrich both
intra-variation and invariant features during test. Figure 3b shows the details. As can be seen,
this implementation includes three matchers: original face matcher based on features of original input
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images in gallery and probe, albedo matcher based on invariant features extracted from decomposed
albedo of gallery and probe, and enriched face matcher based on features of enriched gallery and
the recovered probe. Note that the recovered probe refers to synthetic images with the same PIE
and background. The purpose of the enriched face matcher is to exploit the gallery of enriched
intra-variation to suppress false rejections. Each matcher computes match scores by calculating cosine
similarity of features. The match scores of the three matchers are fused together by a weighted sum
rule to obtain the final match score. The identity of a probe image is finally decided as the subject
whose gallery sample has the highest final match score with the probe.

Figure 3. (a) Pipeline of SSPP face recognition via enriching intra-variation. (b) Pipeline of SSPP face
recognition via enriching both intra-variation and invariant features.

3.5.3. Implementation Details

SE-Inception network [24] was employed in all the aforementioned matchers, and Stochastic
Gradient Descent (SGD) with momentum coefficient of 0.9 and batch size of 64 was used to train
the networks. The learning rate was initialized as 0.1, and gradually decreased by factor of 10 every
25 epochs. All face images were first aligned to the predefined template based on the five landmarks
(i.e., left eye, right eye, tip of nose, left corner of mouth, and right corner of mouth) on them, and then
cropped and resized to 112 × 112.

4. Experiments

We evaluated the effectiveness of the proposed method from two aspects: (i) visual inspection of
the reconstructed albedo and shape, and the generated facial images accuracy as well; and (ii) single
sample per person face recognition based on enriching intra-variation and invariant features.

4.1. Datasets and Protocols

Seven datasets were used in our experiments. Below are the details and evaluation protocols of
the datasets.
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FERET-b: FERET-b database [56], collected in a laboratory environment, contains 1400 images
of 200 subjects with different pose, expression, and illumination. The SSPP FR experiments on this
database were conducted in both verification and identification modes. In identification, we used the
neutral and frontal image of each person as gallery and the remaining images as probe. In verification,
we divided the database into 10 non-overlapping subsets. Each subset contained 120 positive
pairs (i.e., pairs of images from the same person) and 120 negative pairs (i.e., pairs of images from
different people).

LFW: Labeled Faces in the Wild (LFW) database [57] includes more than 13,000 images of 5749
different individuals taken under an unconstrained environment. The evaluation protocol suggests
dividing the database into 10 non-overlapping subsets. Each subset contains 300 positive pairs and
300 negative pairs. LFW-a is a version of LFW after alignment using commercial software. For the
sake of fair comparison, we selected the first 50 people who have more than 10 samples for evaluation
according to the experimental setup described in [43]. We randomly selected one sample of each of the
50 subjects as gallery, and the remaining images were used as probe.

CPLFW: CPLFW [58], a renovation of LFW, constructs a cross-pose LFW database to evaluate the
influence of pose variation in face recognition. It provides 10 disjoint subsets of image pairs for face
verification. Each subset contains 300 positive pairs and 300 negative pairs.

CALFW: Cross-Age LFW (CALFW) database [59], similar to the CPLFW database, is a renovation
of LFW. It emphasizes aging effect in addition to other variations (pose, illumination, etc.) in face
recognition. The dataset is separated into 10 non-repeating subsets of image pairs for face verification,
each subset containing 300 positive pairs and 300 negative pairs.

AgeDB: AgeDB [60] contains 16,488 images of various famous people, such as actors/actresses,
writers, scientists, politicians, etc. There are 568 distinct subjects in AgeDB. AgeDB provides 10 folds
of image pairs, with each fold consisting of 300 positive pairs and 300 negative pairs.

CFP: CFP database [61], a challenging dataset to examine the problem of frontal to profile face
verification, collects 7000 images of 500 subjects with each subject having 10 frontal and 4 profile face
images. Its evaluation protocol defines two separate experiments of Frontal–Profile (CFP_FP) and
Frontal–Frontal (CFP_FF) face verification, and divides in each experiment the whole dataset into
10 folds each containing 350 positive pairs and 350 negative pairs.

VGGFace2-FP: The VGGFacce2 database [62] contains 3.31 million images of 9131 subjects.
The dataset is divided into training set and evaluation set, in which the training set contains 8631
subjects and the evaluation set contains 500 subjects. Evaluation scenarios can be divided into two
categories by pose and age. We considered the scenario of face matching across different poses,
i.e., VGGFace2-FP. The evaluation data are divided into 10 folds of image pairs, with each fold
consisting of 250 positive pairs and 250 negative pairs.

4.2. Visualization of Reconstructed Image Components and Generated Images

Figure 4a shows recovered 3D face shapes and complete UVA for four input face images in
LFW. It can be found that our method can not only reconstruct the albedo of the visible area but
also recover the albedo of missing part. We also compared our 3D face modeling method with two
existing methods [44,45]. Figure 4b shows the comparison results for two input images. As can be seen,
the 3D face shape and albedo map reconstructed by Sengupta et al. [45] are incomplete and cannot
be used for data augmentation, and the results recovered by Tran et al. [44] are poor in reserving
identity-related appearance feature due to the limited representation capacity of PCA bases. Figure 4c
shows some generated face images of varying illumination (Columns 3 and 8), pose (Columns 4 and 9),
and expression (Columns 5 and 10) of four different subjects.

We also show the ability of the 3D modeling approach to address illumination and pose factors
in Figure 5. As can be seen, although expressions, illuminations, and poses have influence on the
appearance of input images, our method can effectively eliminate the external influence due to the
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robustness of the albedo image to lighting as well as to the rigorous alignment of the face in the UV
diagram representation.

Figure 4. (a) Recovered 3D face shapes and albedo UV maps for two input face images by our 3D face
modeling module. (b) Comparison between the face images reconstructed by our method and two
existing methods. (c) Example enriched face images of varying illumination (Columns 3 and 8), pose
(Columns 4 and 9), and expression (Columns 5 and 10) of four different subjects by our method.

Figure 5. Albedo UV maps recovered by our 3D face modeling module for two subjects in the database
constructed by ourselves with different expressions, illuminations, and poses.
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4.3. Effectiveness of Enriching Intra-Variation

To validate the effectiveness of our proposed method of enriching intra-variation via
3D-modeling-based image generation, we constructed twelve groups of training data as follows.

• We randomly chose one sample per person in CelebA dataset [54] to form the original SSPP
training data (denoted as Original). Note that face images in CelebA are in the wild images with
varying PIE as well. However, their pose angles are relatively small (mostly within 30 degrees).

• The 3D modeling module was used to recover the intrinsic properties (albedo and shape) and
external factors (i.e., PIE) of the face images in Original. We then synthesized images with the
same PIE and background as the images in Original to form another training set, named Synthetic.

• With the recovered properties of the images in Original, we further generated another seven face
images for each person with varying poses, varying illuminations, varying expressions, varying
poses and illuminations, or varying poses, illuminations, and expressions. We call the respective
databases of generated images as AugP, AugI, AugE, AugPI, and AugPIE, respectively.

• By combining the above-generated images with the original images, we obtained another five
training sets, denoted as Ori + AugP, Ori + AugI, Ori + AugE, Ori + AugPI, and Ori + AugPIE,
respectively.

We trained the implementation of our proposed method with enriching intra-variation
(see Figure 3a) by using the above training sets and evaluated its face verification performance on
seven of the benchmark datasets, i.e., LFW [57], CPLFW [58], CALFW [59], AgeDB [60], CFP [61],
VGGFace2-FP [62], and FERET-b [56]. During the test, the features extracted from the images by the
network were used to judge whether two images are from same persons based on the cosine similarity
between their features. Here, ten-fold cross validation was employed. Specifically, we divided the
dataset into ten subsets, nine of which were used as the training set and the remaining one used as the
test set.

The results are reported in Table 1. By comparing the recognition rate obtained by training the
network on Original and that obtained by training the network on Synthetic, it can be found that
they are comparable. This indicates that the shape and albedo obtained by using our proposed 3D
modeling method can effectively capture the identity information. When the network was trained
with the generated data only, the recognition accuracies on most of the datasets were improved.
Moreover, the face recognition accuracy was consistently improved when training the network with
the combined set of original and generated images. It is worth mentioning that our proposed method
of enriching intra-variation improved the recognition accuracy by 8.07% (= 58.82% − 50.72%) and
13.02% (= 82.69% − 69.67%) on the challenging AgeDB and CFP-FF test sets, respectively. It can be
found that pose factor is an important factor that affects the verification rate by comparing the results of
AugP, AugI, and AugE or the results of Ori+AugP, Ori+AugI, and Ori+AugE. While the results of using
merely the augmented data (i.e., AugP, AugI, AugE, AugPI, and AugPIE) show consistent improvement
when more variations are taken into consideration, combining the original and augmented data of
expression variations, however, obtained only marginal improvement in some of the test datasets.
This is probably because the original data from the CelebA database already have some expression
variations and play a major role in the training, and consequently the contribution of augmented
expression data becomes marginal.
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Table 1. Face verification rates (%) of the first implementation of our proposed method on different
benchmark datasets when different enriched face images from the CelebA database were used for
training. The best result on each dataset is shown in bold.

TrainData\TestData AgeDB LFW CALFW CPLFW CFP_FF CFP_FP VGGFACE2_FP FERET-b

Original 50.75 77.33 63.03 58.7 69.67 60.77 61.46 84.33
Synthetic 53.35 73.77 59.05 57.52 69.09 59.74 60.28 79.96

AugP 52.12 75.95 58.82 60.08 71.46 61.89 61.66 87.54
AugI 50.28 75.45 59.27 57.58 71.7 60.87 61.46 80.17
AugE 50.43 75.05 57.47 58.10 71.09 62.49 61.44 80.04
AugPI 52.47 78.17 60.67 60.83 73.57 62.70 62.80 90.46

AugPIE 55.18 80.08 62.78 61.90 76.59 64.37 62.94 92.08
Ori+AugP 56.62 82.73 69.05 65.68 78.13 66.64 68.54 90.71
Ori+AugI 52.63 77.48 60.93 58.63 70.83 62.07 62.84 81.17
Ori+AugE 50.93 74.85 59.02 57.53 68.36 60.51 60.54 80.20
Ori+AugPI 58.82 86.08 72.03 67.97 81.96 70.44 71.02 94.54

Ori+AugPIE 58.65 85.98 71.02 67.15 82.69 70.23 70.22 95.54

4.4. Effectiveness of Enriching Both Intra-Variation and Invariant Features

In this experiment, we compared another implementation of our proposed method with both
enriched intra-variation and enriched invariant features (see Figure 3b) with the following methods:
(i) traditional methods, namely HOG+SVM [17], G-FST [41], and FT-LPP [42]; and (ii) deep learning
methods, namely FaceNet [22], CDA [34], TDL [33], and KCFT [43]. For fair comparison, we used
multiple samples per person database, CelebA, as the generic data to pretrain three of the matchers.
To train albedo matcher and enriched face matcher, we generated the albedo image and the recovered
image (synthetic image with same PIE) of CelebA by the proposed 3D face modeling module and 2D
face generation module. For our proposed method, the scores from three face matchers were fused
by a weighted sum rule. We set the weights for different matchers with respect to their respective
recognition accuracy. Specifically, the weights were 0.45, 0.45, and 0.1 for the original matcher (O),
albedo matcher (A), and enriched matcher (E), respectively, when fusing the three matchers. In the
ablation study, the weights for O and A were both 0.5 when they were fused, while the weights were
0.8 and 0.2 for O and E when O and E were fused.

4.4.1. Results on FERET-b Dataset

We generated six additional images with varying pose, illumination, and expression for each
subject in the gallery. Table 2 shows the recognition rates of the proposed method and the counterpart
methods. Obviously, our method achieved the best recognition rates.

Table 2. Rank-1 identification rates (%) of different methods on FERET-b and LFW-a. The best result
on each database is shown in bold.

Database\Method HOG+SVM CDA G-FST FT-LPP TDL FaceNet KCFT Proposed

FERET-b 50.17 77.25 82.08 86.08 89.33 91.42 93.17 96.41
LFW-a 40.98 51.12 57.95 62.49 74.01 89.04 98.83 97.25

4.4.2. Results on LFW-a Dataset

We generated 20 facial images for each person in the galley of LFW-a. The recognition rates
of different methods are shown in Table 2. As can be seen, our method overwhelmedmost of the
counterpart methods, and was among the top two methods.
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4.4.3. Ablation Study

We further evaluated the contribution of the enriched invariant features and the enriched images
on improving SSPP face recognition performance. The comparison results on FERET-b and LFW-a are
shown in Table 3. It can be found that the recognition accuracy improved after we fused the match
scores of the original images (denoted by O) with the match scores of enriched invariant features
extracted from albedo (denoted by A) or the match scores of features extracted from the enriched
images (denoted by E), even though the original images already set up relatively high baselines.
Figure 6 shows the false rejection rates at different thresholds when fusing different match scores on
the FERET-b and LFW-a databases. As can be seen, our proposed matchers A and E significantly
reduced the FRR of the original matcher O. It is worth mentioning that both A and E helped in
reducing FRR. However, according to the experimental results, A (using albedo-based features) was
more effective than E (using augmented images).

Table 3. Rank-1 identification rates (%) of the proposed method when fusing the match scores of the
original images (denoted by O) and the match scores of the enriched invariant features (denoted by A)
or the match scores of the enriched images (denoted by E) on the FERET-b and LFW-a databases.

O A E FERET-b LFW-a

� 92.25 92.46
� � 96.33 97.15
� � 93.17 93.53
� � � 96.41 97.25

Figure 6. False rejection rates at different thresholds when fusing different match scores on the FERET-b
and LFW-a databases.

5. Conclusions

A novel single sample per person face recognition algorithm based on enriching data
intra-variation and invariant features is proposed in this paper. The method consists of three modules:
3D face modeling, 2D image generating, and improved SSPP FR. A novel end-to-end network is
employed to recover complete albedo from the input image, which not only provides additional
invariant identity features, but also can be used with the restored 3D shape to generate images
containing richer intra-class variations. While existing SSPP FR methods focus either on generating
synthetic images (CDA, KCFT, etc.) or on learning robust features (HOG+SVM, FaceNet, etc.),
we improve the SSPP FR accuracy from the perspective of enriching both intra-variation and invariant
features. Experiments were performed on multiple databases. The results show that, by using the
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synthetic images generated by our proposed method to augment the train data, the SSPP FR accuracy
is improved significantly by up to 13%. Moreover, using our proposed enriched invariant features
boosts the rank 1 identification rate from 92.25% to 96.33% on FERET-b and from 92.46% to 97.15%
on LFW-a. In the future, we are going to further improve the modeling and synthesis procedures,
for example, by considering more elaborate losses and by integrating the modeling, synthesis, and
identification modules in a more unified manner.
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Abstract: Learning large-margin face features whose intra-class variance is small and inter-class
diversity is one of important challenges in feature learning applying Deep Convolutional Neural
Networks (DCNNs) for face recognition. Recently, an appealing line of research is to incorporate
an angular margin in the original softmax loss functions for obtaining discriminative deep features
during the training of DCNNs. In this paper we propose a novel loss function, termed as double
additive margin Softmax loss (DAM-Softmax). The presented loss has a clearer geometrical
explanation and can obtain highly discriminative features for face recognition. Extensive experimental
evaluation of several recent state-of-the-art softmax loss functions are conducted on the relevant face
recognition benchmarks, CASIA-Webface, LFW, CALFW, CPLFW, and CFP-FP. We show that the
proposed loss function consistently outperforms the state-of-the-art.

Keywords: Softmax; angular margin; ResNet; face recognition

1. Introduction

Face recogniton problems are ubiquitous in the computer vision domain. In the past few years,
Deep Convolutional Neural Networks (DCNNs) have set the community of face recognition (FR)
on fire [1]. Due to effectively layered end-to-end learning network frameworks and carefully deep
feature extracting techniques from local to global, which are the most important ingredients for
their success, DCNNs has immensely improved the state of the art in real-world face recognition
scenarios. Numerous layered network architectures for face recognition tasks such as AlexNet [2],
VGG [3], InceptionNet [4], ResNet [5], and DenseNet [6], have been proposed. Among them, the most
representative one is AlexNet, originally proposed by Krizhevsky et al. AlexNet has become a
pioneered architecture developed for image classification and was the winner of the ImageNet Large
Scale Challenge in 2012.

It is well known that the effective feature representation for face images plays an important role
in FR. Over the recent years, a hot research trend towards DCNNs has been devoted to learning
with more discriminative deep features. Intuitively, the learnt deep features for FR are desired if the
maximal within-class variance is less than the minimal between-class variance. However, learning deep
features satisfying this condition is generally not easy owing to the inherently large intra-class variation
and high inter-class similarity [7] in many FR applications. Despite the softmax function with the
cross-entropy loss (called softmax loss) is popularly used in the training of a DCNN, recent studies [8,9]
made it clear that the current softmax loss is insufficient to encourage the desired deep features meeting
the above condition. To boost the discriminative ability of DCNNs and inspired by the previous idea,
the center loss [10], pairwise loss [11] and triplet loss [12] were proposed. They unanimously proposed
the enhancement of discrimination power of deep features by minimizing winth-class variance and
maximizing between-class variance in the Euclidean space of features. While these methods is
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superior to the traditional softmax loss over classification performance, they usually suffer from some
drawbacks. The center loss only explicitly enhanced the intra-class compactness while disregarding
the inter-class separability. For the pairwise loss and triplet loss, They require the careful mining of
pairs or triplets of samples, which is highly time-consuming.

Due to the fact that few existing softmax losses can effectively achieve the discriminative condition
that the maximal within-class variance is less than the minimal between-class variance under the
conventional Euclidean metric space, more recently, approaches have been proposed to address
this problem by transforming the original Euclidean space of features to an corresponding angular
space [10,13–15]. Specifically, both Large-Margin Softmax Loss [13] and A-Softmax Loss [14] are an
angular softmax loss that enables DCNNs to learn angular deep features by imposing an angular
margin constraint for larger inter-class variance. Compared to the Euclidean margin suggested
by [2,16], the learnt angular features is more discriminative with the angular margin because the
angular metric with cosine similarity is intrinsically more suitable to the softmax loss. During training
of A-Softmax Loss, the orginal Softmax loss must be combined to ensure the convergence. To overcome
the optimisation problem of A-Softmax Loss, the Additive Margin Softmax loass (AM-Softmax) [15]
is proposed. The loss integrates a angular margin to the softmax loss in an additve manner.
Its implementation and optimisation are much easier than A-Softmax Loss since A-Softmax Loss
integrates the angular margin in a multiplicative way. AM-Softmax is easily reproducible and achieves
state-of-the-art performance.

Motivated by AM-Softmax loss, This paper propose a new additive angular margin Loss,
namely double additive margin softmax loss (DAM-Softmax). The idea behind the proposed loss is to
impose an additive margin m to both the intra-class angular variation and inter-class angular variation
simultaneously to enhance the intra-class compactness and inter-class discrepancy of the learned
features. Compared to AM-Softmax loss, our loss has a stronger geometrical significance and will
lead to obtain more discriminative features. Experimental results on some relevant face recognition
benchmarks show that the proposed loss achieves better classification performance than the current
state-of-the-art losses.

The rest of this paper is organized as follows. In Section 2, We will briefly introduce the related
works such as the original softmax Loss, L-Softmax Loss, A-Softmax Loss and AM-Softmax Loss.
Then we discuss the proposed loss, Double Additive Margin Softmax Loss in detail in Section 3.
Finally, extensive experiments are presented in Section 4.

2. Preliminaries

In order to clearly understand the proposed DAM-Softmax loss, we will briefly review the classical
softmax loss and AM-softmax loss. The classical softmax loss is formulated by

L1 = −
1
N

N

∑
i=1

log
e

w⊤
yi

fi

∑
C
c=1 ew⊤

c fi
(1)

where wc ( c = 1, . . . , C, C is the number of classes) denotes the weight vector of the last fully connected
classifier layer, fi is the learned deep feature input vector of the last fully connected classifier layer
corresponding to the original input xi with the label yi, and N is the number of training samples in a
minibatch. The inner product, w⊤

c fi, between wc and fi can be also factorized into ‖wc‖‖fi‖cos(θc)

where θc is the angle between wc and fi, the loss can thus be rewritten as

L2 = −
1
N

N

∑
i=1

log
e‖wyi

‖‖fi‖cos(θyi
)

∑
C
c=1 e‖wc‖‖fi‖cos(θc)

(2)

The A-Softmax is a new loss function derived from the classical Softmax loss which proposed to
impose a constraint to make ‖wc‖ = 1 and generalize the modified softmax loss to angular softmax
(A-Softmax) loss by replacing ‖fi‖cos(θyi

) with ‖fi‖ψ(θyi
),
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L3 = −
1
N

N

∑
i=1

log
e‖fi‖ψ(θyi

)

e‖fi‖ψ(θyi
) + ∑

C
c=1,c �=yi

e‖fc‖cos(θc)
(3)

where the authors proposed to define ψ(θ) as ψ(θ) = (−1)kcos(mθ)− 2k, θ ∈ [ kπ
m , (k+1)π

m ] and k ∈

[0, m − 1] for removing the restriction which θ must be in the range of [0, π
m ].

In the AM-Softmax loss, the authors suggested to introduce an additive margin to its decision
boundary by defining ψ(θ) as cos(θ)− m. In addition, both the deep feature vector fi and weight
vectors wc are normalized during the implementation. Thus, The AM-Softmax loss is given by

L4 = −
1
N

N

∑
i=1

log
es·(cos(θyi

)−m)

es·(cos(θyi
)−m) + ∑

C
c=1,c �=yi

es·cos(θc)

= −
1
N

N

∑
i=1

log
e

s·(w⊤
yi

fi−m)

es·(w⊤
yi

fi−m) + ∑
C
c=1,c �=yi

es·w⊤
c fi

(4)

where s is a hyper-parameter for scaling the cosine values.
In order to simultaneously enlarge the between-class angular margin and compress the

within-class angular variation, It is clear to learn that both the A-Softmax loss and AM-Softmax
loss share a common idea to generalize the original softmax loss to angular softmax loss by introducing
an integer m to quantitatively control the decision boundary. specifically, In binary class case,
a learned feature f from class 1 is given and θi is the angle between f and wi. A-softmax loss requires
cos(mθ1) > cos(θ2) to correctly classify f. AM-softmax loss instead proposes cos(θ1)− m > cos(θ2)

to correctly classify f. Both of them explicitly enforce the intra-class compactness to achieve more
discriminative deep features by imposing an intra-class angular margin in the multiplicative manner
and in the additive manner, respectively. Compared with the A-Softmax loss, AM-Softmax loss is
simpler which is simpler and reaches better performance. In addition, It is much easier to implement
because the computation of the gradient for back-propagation is no longer required.

3. Double Additive Margin Softmax Loss

One can obviously learn that AM-Softmax loss can obtain better performance by incorporating
a single additive margin to its intra-class angular variation. Inspired by that, we propose to impose
an additive margin to both the intra-class angular variation and inter-class angular distribution
simultaneously to enhance the intra-class compactness and inter-class discrepancy. To give a formal
formulation for the idea, we first define a function g(θ) = cos(θ). The Equation (4) can be rewritten as

L5 = −
1
N

N

∑
i=1

log
es·ψ(θyi

)

es·ψ(θyi
) + ∑

C
c=1,c �=yi

es·g(θc)
(5)

where ψ(θyi
) = cos(θyi

) and g(θc) = cos(θc).
As analyzed above, we impose an additive margin m to both the intra-class and inter-class angular

variation angular distribution simultaneously. Then we have the formulations:

ψ(θyi
) = cos(θyi

)− m

g(θc) = cos(θc) + m
(6)
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Compared to AM-Softmax loss, our formulation is also simple while explicitly encourages
intra-class compactness and inter-class separability simultaneously, we thus term the loss as Double
Additive Margin Softmax loss (DAM). Finally, the proposed loss function can be formulated by

L6 = −
1
N

N

∑
i=1

log
es·(cos(θyi

)−m)

es·(cos(θyi
)−m) + ∑

C
c=1,c �=yi

es·(cos(θc)+m)

= −
1
N

N

∑
i=1

log
e

s·(wT
yi

fi−m)

es·(w⊤
yi

fi−m) + ∑
C
c=1,c �=yi

es·(w⊤
c fc+m)

(7)

3.1. Geometric Interpretation

Our double additive margin has a more explicit geometric interpretation on the hypersphere
manifold. To simplify the geometric interpretation, we project the features onto two dimensional space
and discuss the binary classification case on the hypersphere manifold where there are only w1 and w2,
and ‖w1‖ = ‖w2‖ = 1. Thus, the classification performance depends totally on the angles θ1 between
f and w1, and θ2 between f and w2.

Classification Stringency. In order to correctly classify the learned feature vector f as class 1,
the traditional softmax loss requires θ1 < θ2 which easily has θ1 − θ2 < 0, the AM-Softmax loss requires
cos(θ1)− m < cos(θ2) which can be rewriten as cos(θ1)− cos(θ2) < m, while our DAM-Softmax loss
needs cos(θ1)− m < cos(θ2) + m which can be reformulated into cos(θ1)− cos(θ2) < 2m. It is obvious
to see that the DAM-Softmax loss is more stringent than the orginal softmax loss and AM-Softmax loss
for satisfying the corresponding classification criteria.

Classification Boundary. In Figure 1, we draw a schematic diagram to show the classification
boundary of the classical softmax loss, AM-Softmax loss and the proposed DAM-Softmax loss.
The classification boundary of the traditional softmax loss is denoted as the vector p0. In this case, we
have w⊤

1 p0 = w⊤
2 p0 at the decision boundary p0 ( w1 ∈ class1, w2 ∈ class2 ). For the AM-Softmax,

the boundary becomes a marginal region instead of a single vector. At the new boundary p1 for class
1, one has w⊤

1 p1 − m = w⊤
2 p1 , which gives m = (w⊤

1 − w⊤
2 )p1 = cos(θw1,p1)− cos(θw2,p1). If we

further assume that all the classes have the same intra-class variance and the boundary for class 2 is at
p2, we can get cos(θw2,p1) = cos(θw1,p2). Thus, m = cos(θw1,p1)− cos(θw1,p2), which is the difference
of the cosine scores for class 1 between the two sides of the margin region. For our DAM-Softmax
loss, the boundary becomes a wider marginal region than the one of AM-Softmax loss. At the new
boundary p3 for class 1, one has w⊤

3 p3 − m = w⊤
4 p3 + m ( w3 ∈ class1, w4 ∈ class2 ) , which gives

2m = (w⊤
3 − w⊤

4 )p3 = cos(θw3,p3)− cos(θw4,p3). If we further assume that all the classes have the
same intra-class variance and the boundary for class 2 is at p4, we can get cos(θw4,p3) = cos(θw3,p4).
Thus, 2m = cos(θw3,p3)− cos(θw3,p4), which is the difference of the cosine scores for class 1 between
the two sides of the margin region. Obviously, the DAM-Softmax loss leads to a larger classification
margin between class 1 and class 2.
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Figure 1. Geometric difference.

3.2. Feature Distribution Visualization on MNIST Dataset

In order to better study and verify the effectiveness of the proposed DAM-Softmax loss function,
we conducted an experiment on the MNIST dataset [17] to visualize the learned feature distributions.
We chose the 7-layer CNN models with the original Softmax loss, AM-Softmax loss and DAM-Softmax
loss for training and required to output two-dimensional deep features for visualization. After the
2-dimensional features were obtained, we then made the normalization to them and ploted them on a
circle in the two dimensional space.

The visualization from Figure 2 can well demonstrate that our DAM-Softmax outperforms
AM-Softmax [15] when the heperparameters s and m is 30 and 0.4, respectively. Compared to
AM-Softmax [15], the DAM-Softmax loss can lead to the larger inter-class margin and smaller intra-class
variance property to the features without tuning too many hyper-parameters.

Figure 2. Features visualization in MNIST dataset: Softmax (left), AM-Softmax (middle) and
DAM-Softmax (right). Specifically, we set the feature (output of the network) dimension to 2 and then
draw the classification result as a scatter plot.
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3.3. Algorithm

The proposed DAM-Softmax loss is extremely easy to implement in the popular deep learning
frameworks, e.g., Pytorch [18] and Tensorflow [19]. The algorithm for DAM-Softmax loss is given as follow.

Algorithm 1: The steps of the DAM-Softmax Loss

Input: Feature Scale s, Margin Parameter m in Equation (7), Randomly initialized weights w,
Input images f, Batch size N

1. Normalize the input image f ( f̂ = f
|f| ), and make the new f=f̂

2. Normalize the weight w ( ŵ = w
|w|

), and make the new w=ŵ

3. According to the Equation (7), introducing the variable substitutions ( the new fi=f̂i

and the new wyi =ŵyi ) and get the cos(θyi ) = w⊤
yi

fi

4. According to the Equation (7), introducing the variable substitutions ( the new fc=f̂c

and the new wc=ŵc ) and get cos(θc) = w⊤
c fc

5. Calculate “cos(θyi )− m”, and get “s · (cos(θyi )− m)” in the Equation (6) and the Equation (7)
6. Calculate “cos(θc) + m”, and get “s · (cos(θc) + m)” in the Equation (6) and the Equation (7)

7. Construct loss functioin: L = − 1
N ∑

N
i=1 log e

s·(w⊤
yi

fi−m)

e
s·(w⊤

yi
fi−m)

+∑j �=yi
es·(w⊤

c fc+m)

Output: Loss function L

4. Experiment

In this section, we first introduce the experiment settings. Then, we will discuss the effect of the
hyperparameters. Finally, we will evaluate the performance of our loss function with several existing
state-of-the-art loss functions on the benchmark datasets.

4.1. Implementation Settings

4.1.1. Datasets

Training Datasets. The CASIA-WebFace [7] dataset used for training consists of 49,4414 color
face images from 10,575 classes.

Test Datasets. LFW dataset [17] contains 13,233 web-collected images from 5749 different
identities, with large variations in pose, expression and illuminations. CFP dataset [18] consists of 500
subjects, each with 10 frontal and 4 profile images. The evaluation protocol includes frontal-frontal (FF)
and frontal-profile (FP) face verification, each having 10 folders with 350 same-person pairs and 350
different-person pairs. In our experiments, we employ to test the performance the most challenging
subsets CFP-FP which contains images of celebrities in frontal and profile views, CPLFW [20] and
CALFW [21] which have higher pose and age variations with same identities from LFW dataset.
Specific details of the three datasets above are shown in Table 1 and some example images from
CFP-FP, CPLFW and CALFW are given in Figure 3–5, respectively.

Table 1. Face datasets for training and testing.

Datasets Identity Image

CPLFW [20] 5749 11625
CALFW [21] 5749 12174
CFP-FP [18] 500 7000

Figure 3. Samples of the same people in the CFP-FP.
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Figure 4. Samples of different people in the CALFW.

Figure 5. Samples of different people in the CPLFW.

Data Prepossessing. We adopt the data preprocessing method used in [14,22] to detect faces and facial
landmarks in images and align them. Then, we crop the aligned face images and resize them to 112× 112,
and proceed to perform the normalization for the cropped face images by subtracting 128 and dividing 128.

Dataset Overlap Removal. To develop open-set evaluations, we use the overlap checking code
provided by F. Wang [22] to get ride of the overlapped subjects between the training dataset of
CASIA-WebFace and the testing dataset of LFW.

4.2. Network Architecture and Parameter Settings

For the fair comparison, the CNN architecture used in all experiments of this paper is the
ResNet-face18 model specially designed for the training of face recognition, which is a modified
ResNet [5]. The model has an improved residual block of BN-Conv-BN-PReLu-Conv-BN structure in
which the kernel size and stride in the first convolutional layer is 3 × 3 and 1 instead of the original
7 × 7 and 2, and the stride in the second convolutional layer is set to be 2 instead of 1. In addition,
PReLu [23] is used to replace the original ReLu. All implementations in the paper are conducted by
Pytorch [18]. We set the batch size to be 256 and the weight decay parameter 5 × 10−4. The initial
learning rate is set as 10−1. We set the learning decay rate to be 0.05 which means that the learning
rate will be reduced by 5% when the loss value increases. In addition, the total epoch is set as 110.
The SGD [9] is used in the optimization process of ResNet-face18.

4.3. Effect of Hyperparameter m

According the discussion in Section 3, our proposed DAM-Softmax loss has two hyperparameters
which are the scale s and the margin m. More importantly, the two hyperparameters plays an key role
for the performance of the proposed loss. Several recent works [15,24] have already discussed the
scale s, we thus follow [15,24] to directly set it to 30 and will no longer discuss it in this paper. In this
case, we can focus on the other hyperparameter, margin m. We train the ResNet-face18 model with the
DAM-Softmax loss on CASIA-Webface dataset to conduct experiments to seek the best angular margin.
For comparison, we train the same network model with the AM-Softmax loss on the same dataset.
In Tables 2 and 3, we list the performance of AM-Softmax loss and the proposed DAM-Softmax loss.
under the variation of m from 0.1 to 0.25. As illustrated in Tables 2 and 3, we can see that the recognition
rate increases gradually from m = 0.25 to 0.3 and arrive at the saturated at m = 0.4, the performance
then begins to drop from 0.4 to 0.5. For DAM-Softmax loss, the classification accuracy improves
significantly from m = 0.1 to 0.17 and reaches the best at m = 0.18, from 0.18 to 0.25, the performance
turns to decrease. Therefore, we fix the margins of AM-Softmax loss and DAM-Softmax loss as 0.4 and
0.18, respectively. The experiments for both AM-Softmax loss and DAM-Softmax loss can result in
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excellent performance without observing any difficulty in convergence. The proposed loss get to the
best verification accuracy on CASIA-Webface training dataset.

Table 2. Experimental results of different values of m with AM-Softmax.

Parameter m 0.25 0.3 0.35 0.4 0.45 0.5
Accuracy Rate 97.21% 97.34% 97.45% 97.68% 97.57% 97.59%

Table 3. Experimental results of different values of m (110 epoch) with DAM-Softmax.

Parameter m 0.1 0.13 0.15 0.17 0.18 0.2 0.22 0.25
Accuracy Rate 97.68% 97.74% 97.82% 97.94% 97.97% 97.89% 97.81% 97.65%

4.4. Comparison with State of the Art Loss Functions on LFW Dataset

In this part, we evaluate the performance of the proposed DAM-Softmax loss and the
state-of-the-art loss functions. Following the previous experimental setting, we train a ResNet-Face18
model under the guidance of the original softmax, L-Softmax, A-Softmax, AM-Softmax and
DAM-Softmax on the training dataset of CAISAWebFace. The experimental results on the test dataset
of LFW are shown in Table 4.

Table 4. Some results of comparative testing experiment.

Model Accuracy Rate

Softmax ( resnet-face18, 110 epoch ) 97.08%
L-Softmax ( resnet-face18, 110 epoch ) [10] 97.33%
A-Softmax ( resnet-face18, 110 epoch ) [14] 97.52%
AM-Softmax ( resnet-face18, 110 epoch ) [15] 97.68%
DAM-Softmax ( resnet-face18, 47 epoch ) 97.83%
DAM-Softmax ( resnet-face18, 110 epoch ) 97.97%

From Figure 6, It can be seen that the verification accuracy of DAM-Softmax loss is over 80%
after one epoch while AM-Softmax loss requires 20 epoches to achieve the similar accuracy. In the
40th epoch, DAM-Softmax loss reaches the best performance which is still superior to the one of
AM-Softmax loss. Figure 7 reports the training loss under the variation of epoch. When epoch =
75, the training loss of the original Softmax loss approaches stabilization with the value of about 13
by using softmax, the AM-softmax’s training loss reach stabilization at around 10 when epoch is 55,
while DAM-softmax get to stabilization at the 40th epoch and has a lower training loss. Therefore,
This can demonstrate that the proposed loss has a faster convergence speed than AM-Softmax loss.
As can be seen in Table 4, our proposed DAM-Softmax loss consistently arrives at competitive results
compared to the other losses, which demonstrates the effectiveness of DAM-Softmax loss.
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Figure 6. Accuracy rate of the test phase.

Figure 7. Training loss v.s Epoch.

4.5. Comparison with State of the Art Loss Functions on CFP-FP, CPLFW and CALFW Datasets

In order to further verify the effectiveness and robustness of DAM-Softmax, we compare the
performance of the proposed losse with related baseline methods, e.g., the original softmax, L-Softmax,
A-Softmax, AM-Softmax and DAM-Softmax on three datasets which have large-pose, large-age and
different-angle. The experimental results are listed in the Table 5. The details of CFP-FP, CPLFW and
CALFW datasets are listed in the Table 1.

Table 5. Verification results of different datasets based on different algorithms.

Method CALFW CPLFW CFP-FP

Softmax 88.21% 77.54% 89.54%
AM-Softmax 89.72% 80.21% 92.12%
DAM-softmax 90.17% 82.08% 93.26%

As seen in Table 5, The proposed DAM-Softmax loss obtains the best performance. From Table 5,
we can see that DAM-Softmax works much better on three datasets than AM-Softmax loss.
Thus, we further demonstrate that our DAM-Softmax loss has stronger robustness.

5. Conclusions and Future Work

In this paper, we present a novel Double Additive Angular Margin Loss function for face
recognition. specifically, we propose to simultaneously impose a angular margin to the intra-class and
inter-class variation on the hypersphere manifold, which can effectively enhance the discriminative
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power of learned deep features. Competitive performance on several popular face benchmarks verify
the superiority and robustness of our approach.
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Abstract: Single sample per person verification has received considerable attention because of its
relevance in security, surveillance and border crossing applications. Nowadays, e-voting and bank of
the future solutions also join this scenario, opening this field of research to mobile and low resources
devices. These scenarios are characterised by the availability of a single image during the enrolment
of the users into the system, so they require a solution able to extract knowledge from previous
experiences and similar environments. In this study, two deep learning models for face recognition,
which were specially designed for applications on mobile devices and resources saving environments,
were described and evaluated together with two publicly available models. This evaluation aimed
not only to provide a fair comparison between the models but also to measure to what extent a
progressive reduction of the model size influences the obtained results.The models were assessed in
terms of accuracy and size with the aim of providing a detailed evaluation which covers as many
environmental conditions and application requirements as possible. To this end, a well-defined
evaluation protocol and a great number of varied databases, public and private, were used.

Keywords: biometrics; face; deep learning; single sample per person; knowledge generalisation

1. Introduction

Facial biometrics is widely extended nowadays because of its great number of applications,
the maturity of the technology and the users acceptance. Typical uses include data, devices or
facilities access control, surveillance, border crossing, entertainment and human–computer interaction.
As might be expected, the variety of these application scenarios implies different needs regarding
security, storage of information, computing capacity or samples collection. For instance, certain
applications cannot store user’s templates, are require to verify the identity of the user against a
smart card (ID card, driving license or passport) or present difficulties to collect multiple samples
of each user.

Focussing on the availability of one or more samples during the training or the enrolment of the
users into the system, applications can be divided in two groups, which are known as single sample
per person (SSPP) and multiple samples per person (MSPP) problems. SSPP problem has received
considerable attention during the last decades because of the relevance of its applications, particularly
those related to security, surveillance and border crossing. Nowadays, it is increasingly popular
between e-voting and bank of the future service providers. These applications need to guarantee the
security of transactions but also to offer an attractive, useful and comfortable user experience, including
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the access from mobile devices, so they typically avoid to store any information about the user and
compare a user’s photograph and the image in his/her ID card. SSPP scenarios present lower costs
of collecting, storing and processing samples but also add new challenges to typical face recognition
difficulties (sensitivity to capturing conditions, facial expressions and changes in the appearance
of the users among others). The reduction of the number of images implies a severe reduction on
the recognition accuracy of most of the methods developed up to the moment, which strongly rely
on the number of samples and their quality to generate a good facial model that generalises inter-
and intra-person variability. Accordingly, a solution able to extract and generalise knowledge from
previous experiences and similar environments is required.

On the other hand, deep learning solutions for face recognition have received great attention
during the last years. In fact, the introduction of convolutional neural networks (CNNs) for facial
features extraction marked a turning point when Deep Face [1] and DeepID [2] were presented in 2014,
as can be seen in the survey presented by Wang and Deng [3]. At the beginning, CNNs were mostly
applied in MSPP scenarios, although they were recently also applied for SSPP problems achieving
very promising results. Table 1 summarises the latest works on deep learning for face recognition on
SSPP scenarios. Information about the dataset (name and main variations), the number of people and
images used during the test, whether an additional dataset is used for training and the match rate are
provided for each method to describe their performance. Most of these works provide an evaluation
of the methods in terms of accuracy for identification scenarios. However, identity verification is
a widely extended scenario. In addition, the specific requirements of the varied applications make
necessary a complimentary evaluation of the architectures and the size of the models similarly to
the work presented by Hu et al. [4], which quantitatively compare the architectures of CNNs and
evaluate the effect of different implementation choices using the public database LFW to train the
models. Moreover, the use of public datasets for testing is crucial and the direct comparison against
publicly available models seems to be necessary to state a base line.

For these reasons, in this work, two publicly available models, FaceNet [5] and OpenFace [6],
were evaluated for SSPP verification scenarios together with two small-size proprietary models, which
were specially designed for mobile devices applications and resources saving environments. This
evaluation aimed not only to provide a fair comparison between the models but also to measure to
what extent a progressive reduction of the model size influences the obtained results. The models were
assessed in terms of accuracy and size with the aim of evaluating their applicability to scenarios with
different environmental conditions and requirements, including a test where the image of the ID Card
is compared against a usual facial image. Many varied databases, public and private, were used with
the aim of covering as many scenarios as possible. A distance based classifier was used for matching
purposes due to the SSPP nature of the scenarios and to guarantee the straightforward portability of
the solution to mobile devices.

The remainder of this article is organised as follows. First, the methods involved in the evaluation
are presented in Section 2. Then, the evaluation protocol, the involved databases and the obtained
results are presented in Section 3. Finally, conclusions are provided in Section 4.

36



Appl. Sci. 2019, 9, 5474

Table 1. Summary of different works relating to deep learning for face recognition from a single image.
ATD column shows if an additional dataset is used for training. E, I, T, LT, O, S, B, V, A and P in
Variations column stand for Expression, Illumination, Time, Long Time, Orientation, Scale, Blurring,
View, Accessories and Pose, respectively.

Method Database Main Variations # People # Images ATD
Match

Rate (%)

Face Identity Preserving
Features + DNN ([7])

Multi-PIE P, I, E, T 337 128,940 No 90.46

Face Recovery + FCDN
([8])

LFW P, I, S, A, E, T 5749 13,233 CelebFaces 97.27

Deep Supervised Ext. Yale B I 38 2432 No 82.22
Autoencoders ([9]) AR I, A 100 2600 No 85.21

PIE I, P, E 68 5508 No 72.36
Multi-PIE LT, I, V 337 20,209 No 76.12

Virtual image synthesis EK-LFH I, B, P, V, S 30 15,930 No 72.08
+ DDAN ([10]) LFW E, I, LT, O, V, A, P 158 >1580 No 97.91

JCR-ACF ([11]) AR I, E, A 100 2600 CASIA-WF 96.10
Multi-PIE P, I, E 249 14,940 CASIA-WF 70.40

LFW E, I, LT, O, V, A, P 158 >1580 CASIA-WF 86.00
CASIA-WF I, P, E, A 9175 406,423 No 15.00

TLFL framework ([12]) Ext. Yale B E 38 2404 No 34.86
AR E, I 100 1400 No 55.50
PIE P, I, E 68 11,630 No 55.89

LFW E, I, LT, O, V, A, P 158 >1422 No 15.21
CAS-PEAL E 284 1420 No 72.95

JAFFE E 10 213 No 89.47

Mean search + LSH + Msceleb - >10,000 >100,000 No 95.00
DNN ([13]) CASIA-WF I, P, E, A 10,408 >492,744 No 52.43

DCNN ([14]) AR I, E, A, T 100 2600 CASIA-WF 99.76
Ext. Yale B P, I 38 2432 CASIA-WF 88.30

FERET P, E, I 200 1400 CASIA-WF 93.90
LFW E, I, LT, O, V, A, P 50 >500 CASIA-WF 74.00

NDRDF ([15]) AR E, I, A, T 116 3016 No 98.00

Transfer Learning + ORL E, I, A, T 40 400 CASIA-WF 98.14
KCFT ([16]) FERET P, E, I 200 1400 CASIA-WF 93.04

LFW E, I, LT, O, V, A, P 50 >500 No 97.49

2. Methods

2.1. Face Detection and Alignment

Before extracting the facial biometric features, it is required to locate the face area within the
image. It is recommendable that the face area does not contain face surroundings, such as hair, clothes
or background. Given the tendency towards deep neural networks to solve object recognition tasks
and its good performance, a detector based on cascaded convolutional networks was used [17]. It is
composed of three carefully designed deep convolutional networks fed an image pyramid to estimate
face position and landmark locations in a coarse-to-fine manner, and exploits the inherent correlation
between detection and alignment to increase their performance. In particular, the implementation
provided by FaceNet [5] was employed. When multiple faces are present in the image, the biggest face
is selected assuming that the user whose identity is validated is closer to the camera.

Since deep learning models are sensitive to the position of the face elements within the images,
once the face is detected, it is aligned to a common reference framework. To this end, some reference
points belonging to eyes, nose and mouth are detected and transformed to a fixed position.

Finally, face images must have the same size to improve the comparison performance, so all the
images are resized to a common size of 160 × 160 px.
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2.2. Feature Extraction

As commented above, face recognition schemes changed since the presentation of Deep Face [1]
and DeepID [2] in 2014. Convolutional neural networks learn a mapping from facial images to a
compact space where distances directly correspond to a measure of face similarity.

In this study, four models for facial features extraction based on the GoogleNet [18] architecture
were compared: FaceNet [5], OpenFace [6], gb2s_Model1 and gb2s_Model2. These models were
trained using a deep convolutional network that directly optimises the embedding itself using a
triplet-based loss function based on large margin nearest neighbour [19]. These triplets consist of two
matching and a non-matching roughly aligned face patches and the loss aims to separate the positive
pair from the negative by a squared L2 distance margin. This way, faces of the same person have small
distances and faces of different people have large distances.

Given the relevance of triplets selection, FaceNet presents a novel online negative exemplar mining
strategy, which ensures consistently increasing difficulty of triplets as the network trains, and explores
hard-positive mining techniquess which encourage spherical clusters for the embeddings of a single
person to improve clustering accuracy. As a result, FaceNet surpassed state-of-the-art face recognition
performance using only 128 bytes per face, getting a classification accuracy of 99.63% ± 0.09 on the
Labeled Faces in the Wild (LFW) dataset [20]. FaceNet was trained with a private dataset containing
100M–200M images and the model size is 90 MB. Details about the methodology, system architecture
and network structure can be found in [5]. The TensorFlow implementation provided by Sandberg [21]
was used in this comparative.

The good results achieved by FaceNet contributed to increase the accuracy gap between
state-of-the-art publicly available and private face recognition systems. Aimed to bridge this gap,
a general-purpose face recognition library oriented to mobile scenarios was developed: OpenFace [6].
This real-time face recognition system was specially designed to provide high accuracy with low
training and prediction times and adapts depending on the context. The model was trained using
a modified version of FaceNet’s nn4 network, nn4.small2, which reduces the number of parameters
and the number of training images. In this case, 500 k images coming from CASIA-WebFace [22] and
FaceScrub [23] datasets were used to train the model after a preprocessing stage where they were
aligned. Details about the system architecture, network structure and implementation can be found
in [6]. Among the four models offered by OpenFace, the nn4.small2 was selected for this comparative
as it gets the best performance (92.92% ± 1.34% on the LFW dataset).

OpenFace is oriented to mobile applications and considerably reduces the size of the model
(30 MB) compared to FaceNet’s (90 MB). However, it could still be too large for being embedded
in some mobile applications or devices with limited resources. Thus, in this work, two smaller
models were trained, viz. gb2s_Model1 and gb2s_Model2, following a similar reduction process than
OpenFace. These models were trained using a network inspired by FaceNet but composed of a smaller
number of layers and filters. As the idea is to measure the influence of a progressive reduction of the
model size on the results, the same structure of layers as OpenFace was used as an starting point but
varying the number of filters to reduce the final number of parameters of the model. The architectures
of the proposed models are presented in Tables 2 and 3. In addition, the training process followed the
same triplet-loss architecture as FaceNet and OpenFace, thus it also provided an embedding on the
unit hypersphere and Euclidean distance represented similarity. A subset of the LFW database was
used to train the network and the size of the resulting gb2s_Model1 and gb2s_Model2 are 22 MB and
12.5 MB, respectively.
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Table 2. gb2s_Model1 network architecture.

Type Output Size #1×1
#3×3

Reduce
#3×3

#5×5
Reduce

#5×5 Pool Proj

conv1 (7×7×3,2) 48×48×64
max pool + norm 24×24×64 m 3×3,2

inception (2) 24×24×192 64 192
norm + max pool 12×12×192 m3×3,2

inception (3a) 12×12×256 64 96 128 16 32 m, 32p
inception (3b) 12×12×320 64 96 128 32 64 ℓ2, 64p
inception (3c) 6×6×640 128 256,2 32 64,2 m 3×3,2
inception (4a) 6×6×640 256 96 192 32 64 ℓ2, 128p
inception (4e) 3×3×1024 160 256,2 64 128,2 m 3×3,2
inception (5a) 3×3×384 128 64 192 ℓ2, 64p
inception (5b) 3×3×384 128 64 192 m, 64p

avg pool 384
linear 128

ℓ2 normalisation 128

Table 3. gb2s_Model2 network architecture.

Type Output Size #1×1
#3×3

Reduce
#3×3

#5×5
Reduce

#5×5 Pool Proj

conv1 (7×7×3,2) 48×48×64
max pool + norm 24×24×64 m 3×3,2

inception (2) 24×24×192 64 192
norm + max pool 12×12×192 m3×3,2

inception (3a) 12×12×256 64 96 128 16 32 m, 32p
inception (3b) 12×12×320 64 96 128 32 64 ℓ2, 64p
inception (3c) 6×6×640 128 256,2 32 64,2 m 3×3,2
inception (4a) 6×6×312 128 48 96 16 32 ℓ2,56p
inception (4e) 6×6×504 80 128,2 32 64,2 m 3×3,2
inception (5a) 3×3×256 96 32 128 ℓ2, 32p
inception (5b) 3×3×256 96 32 128 m, 32p

avg pool 256
linear 128

ℓ2 normalisation 128

2.3. Matching

A distance based classifier was used to compare the biometric features given the lack of multiple
samples during the enrolment in single sample per person scenarios, which are necessary to train
more complex classifiers. Its simplicity and low computational requirements also guarantee a
straightforward portability of the solution to any environment, including mobile devices. This classifier
provides a numeric value as a result, which represents the difference between two feature vectors.
Accordingly, the decision policy established in the system is to consider the compared vectors as
belonging to the same person if the computed distance is lower than a previously established threshold.
Since deep learning approaches evaluated in this study map the images to a compact Euclidean space,
Euclidean distance was applied in this study.

3. Evaluation

3.1. Databases

Many images coming from different databases both, public and private, were used in this
evaluation. The choice of databases aimed to cover as many of the most realistic cases of use as
possible. Accordingly, the images present different degrees of difficulty regarding to pose, scale,
background, lighting conditions, appearance, accessories and expressions. In particular, BioID ([24]),
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EUCFI ([25]), ORL ([26]), Extended Yale B ([27]), Print-Attack ([28]) and gb2sµMOD_Face_Dataset ([29])
were used together with three proprietary datasets:

• gb2sTablet: A set of 250 frames coming from the gb2sTablet_Face_Dataset which is part of the
proprietary gb2sTablet_Database. It contains images from 60 people captured in an indoor
environment using artificial lighting and simple but uncontrolled backgrounds. Images were
recorded in a frontal position but without restrictions about the distance to the camera, appearance
or accessories. The size of the images is 320 × 240 px.

• gb2s_Selfies: A proprietary database oriented to emulate real daily-life scenarios. Accordingly,
this dataset shows different illumination conditions and backgrounds, possible presence and
absence of glasses, hear variations, or expressions. Twenty-six individuals participated in the
database creation and 10 images per person were recorded in 10 different sessions, one image
per day. Each person captured images of his/her face using the frontal camera of his/her own
mobile phone the more frontal as possible (Selfie position).

• gb2s_IDCards: A private database oriented to evaluate security applications which require from
an official document to verify the identity of the users. In this case, the same 26 individuals
participated in the database creation and 10 images per person were recorded in 10 different
sessions, one image per day. Each person captured images of his/her ID card using the back
camera of his/her own mobile phone.

In general, feature extraction models able to generalise knowledge for recognising new people are
required. It is even more necessary in SSPP scenarios, thus feature extraction models were previously
trained using images coming from totally different datasets. Since this training is separated from the
evaluation of the whole system, training datasets are not referenced at this point.

Table 4 summarises the databases involved in the evaluation.

Table 4. Databases overview. A, B, E, L, P, S and T stand for Accessories, Background, Expressions,
Lighting, Pose, Scale and Time, respectively.

Database Access #Users #Images Image Size Color Variations

Ext. Yale B Public 28 16,128 640×480 gray L, P
ORL Public 40 400 92×112 gray L, T, E, A
BioID Public 23 1521 384×286 gray B, L, S
EUCFI Public 395 7900 180×200 color B, S, E, A
PrintAttack Public 38 1400 320×240 color L
gb2sµMOD Public 60 4220 640×480 color B, S, A
gb2sTablet Private 60 16,593 320×240 color B, S, A
gb2s_Selfies Private 26 262 - color B, L, T, E, A
gb2s_IDCards Private 26 261 - gray L, T

3.2. Evaluation Protocol

An evaluation protocol based on the definitions suggested by the ISO/IEC 19795 standard ([30,31])
was applied to quantify the performance of the different methods described above, ensuring fair
comparison between them and hopefully future research. It is composed of three parts:

1. Dataset Organisation. First, each evaluation dataset was divided into validation and test subsets,
which contain 70% and 30% of the samples respectively. Next, validation subset is in turn
separated into enrolment and access samples (also 70% and 30%, respectively), to generate the
biometric profile of the users and to simulate accesses into the system. This way, methods
were validated and the acceptance threshold was adjusted. Then, new accesses into the already
configured system were made using the test samples, allowing for the calculation of more realistic
performance rates.
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2. Computation of Scores. A list of genuine and zero-effort impostor scores was generated at this stage.
To this end, the biometric template of each user was created using only one enrolment sample,
and access samples were divided into genuine and impostor, corresponding to authentic and
forger users, respectively. Then, genuine scores were computed by comparing the access samples
against the reference template of the same user, and impostor scores were obtained by comparing
each access sample against the biometric templates of the other users. The same process was
repeated for each enrolment sample.

3. Metrics calculation. Finally, certain metrics about the performance of the system were obtained
from genuine and impostor scores. Concretely, validation results are offered in terms of Equal
Error Rate (EER) and test results wer measured in terms of False Match Rate (FMR) and False
Non-Match Rate (FNMR).The threshold associated to the EER computed in the validation stage
was used in the test stage.

3.3. Results

An evaluation of the complete system in a SSPP scenario with identity verification purposes was
carried out for each database separately, allowing for the comparability of the results. In addition, a
test where an image coming from the gb2s_Selfies dataset was compared against an image of the same
user coming from the gb2s_IDCards dataset was included to evaluate this relevant and complicated
scenario. Tables 5 and 6 gather the results obtained during de validation and test stages respectively.
Results are also illustrated in Figures 1 and 2.

It can be seen that capturing conditions have a great influence on the results. In fact, the results
achieved on databases recorded under quite controlled capturing conditions, which usually present
lower variability between images, are quite good for every model. However, as soon as the complexity
of the datasets increases, the influence of the model become more evident. It can be observed that
the most influencing conditions are lighting, in particular low light levels such as those present on
Extended Yale B database, expressions and appearance of the users. The image size and the number of
images per person does not seem to be very relevant. As can be expected, stronger differences between
enrolment and access samples lead to worse results. It is clearly shown in the Selfies-IDCards scenario.

Focusing on the feature extraction models, it can be seen that the progressive model reduction
from 9 MB to 30 MB, 22 MB and 12 MB increases the averaged validation EER in 8.37%, 10.31% and
9.79%, respectively, while the averaged test FMR raises are 8.27%, 10.11% and 9.80%, respectively,
and the averaged test FNMR increments are 8.81%, 10.74% and 10.94%, respectively. It is evident that
a big and well trained model is required to deal with the most complicated scenarios. Accordingly,
FaceNet is able to deal even with the Selfies-IDCards, providing quite acceptable results. Applications
associated to this scenario typically have strong security requirements, and the use of a bigger model
could be justified. However, more research efforts are required to determine a competitive solution in
terms of model size and accuracy for this particular scenario. On the other hand, applications where
resources saving is a priority need smaller models such as OpenFace and gb2s_model(s). The results
achieved by these models do not present a clear pattern and they strongly depend on the dataset used
during the evaluation. In one half of the cases, OpenFace surpasses gb2s_models, but, on the other
half, the results are similar or even worse. Differences between gb2s Model1 and gb2s Model2 are not
relevant, being a little bit better the gb2s Model2 in many cases, which is the smallest. Obtained results
highlight that the use of a reduced model for face recognition is viable when they are trained with a
sufficiently big dataset containing enough representativeness.

Comparing validation and test results, a great consistency can be observed. The biometric
template of each user is composed just by one single sample and the feature extraction models were
trained with separated datasets, thus the learnt features were not directly related with the images used
in the experiments and their capturing conditions. Therefore, validation and test results obtained for
each dataset are pretty similar.
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Finally, even when comparison against the state of the art is difficult because different authors
follow different evaluation methodologies, it can be seen that the presented results generally match
or exceed the state-of-the-art solutions. Focusing on those works which use the same databases for
evaluation purposes, it can be observed that FaceNet and OpenFace clearly surpasses the actual state
of the art. This is not the case of gb2s_Model(s), which in some cases surpasses the state of the art
but in many cases does not. However, it can be observed that most state-of-the-art solutions use the
same databases for training and testing purposes, which could influence the results. Thus, it is not
possible to provide a fair comparison against the state of the art, and a new study following the same
evaluation protocol and using the same databases, which should be different from those involved in
the training process, must be carried out to this end.

Table 5. Facial recognition using deep learning and DBC on single sample per person scenarios:
validation results (EER (%)).

Feature
Extraction

BioID EUCFI ORL Ext.
Yale B

Print
Attack

gb2s
Tablet

gb2s
µMOD

gb2s
Selfies

gb2s
IDCards

Selfies-
IDCards

Face Net 1.47 1.16 0.25 3.60 0.05 0.05 4.28 1.91 0.55 4.66
Open Face 6.77 2.39 3.54 9.35 3.46 2.21 10.44 16.04 1.43 46.05
gb2s_Model1 16.85 2.65 6.65 27.76 4.09 0.76 18.94 11.98 2.56 28.86
gb2s_Model2 13.22 2.63 6.25 29.02 6.30 0.74 19.72 9.56 1.79 26.61

Figure 1. SSPP validation results.

Table 6. Facial recognition using deep learning and DBC on single sample per person scenarios: test
results (%).

Database
FaceNet OpenFace gb2s_Model1 gb2s_Model2

FMR FNMR FMR FNMR FMR FNMR

BioID 1.34 0.07 6.99 7.73 16.17 17.72 13.70 14.30
EUCFI 1.21 1.85 2.44 2.16 2.55 3.71 2.79 3.30
ORL 0.35 1.25 2.62 5.60 3.29 7.25 6.35 8.25
Ext. Yale B 3.85 3.96 9.39 9.63 30.19 27.91 31.68 29.62
Print Attack 0.02 0.09 3.60 2.94 4.15 6.64 6.07 8.61
gb2sTablet 0.05 0.07 2.20 2.19 0.72 1.21 0.68 1.07
gb2sµMOD 3.89 4.77 10.67 9.76 16.18 24.87 16.53 26.91
gb2s_Selfies 1.66 0.00 13.91 17.90 10.60 11.83 8.67 11.45
gb2s_IDCards 0.70 0.76 1.86 3.33 2.47 3.05 1.51 2.29
Selfies - IDCards 4.89 2.29 47.00 42.00 29.77 18.32 28.00 18.70
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Figure 2. SSPP Validation Results.

4. Conclusions

In this study, two deep learning models for face recognition, which were specially designed for
applications on mobile devices and resources saving environments, were described and evaluated
together with two publicly available models (FaceNet and OpenFace) for identity verification at single
sample per person scenarios. This evaluation aimed not only to provide a fair comparison between the
models but also to measure to what extent a progressive reduction of the model size influences the
obtained results. The models were assessed in terms of accuracy and size with the aim of evaluating
their applicability to scenarios with different environmental conditions and requirements. To this
end, a great number of varied databases, public and private, was used. Given that SSPP scenarios
imply that there is only one sample per person during the enrolment into the system, a distance based
classifier was used to compare the biometric features.

The results show that the influence of the feature extraction model become more evident as
the complexity of the images increases. In fact, a big and well trained model is required to deal
with really complicated scenarios that present high variability between images used to enrol users
into the system and posterior accesses. However, for those scenarios where resources saving is a
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priority, smaller models are viable if they are trained with a sufficiently big dataset containing enough
representativeness.
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Abstract: Although the face detection problem has been studied for decades, searching tiny faces
in the whole image is still a challenging task, especially in low-resolution images. Traditional face
detection methods are based on hand-crafted features, but the features of tiny faces are different
from those of normal-sized faces, and thus the detection robustness cannot be guaranteed. In
order to alleviate the problem in existing methods, we propose a pre-identification mechanism
and a cascaded detector (PMCD) for tiny-face detection. This pre-identification mechanism can
greatly reduce background and other irrelevant information. The cascade detector is designed with
two stages of deep convolutional neural network (CNN) to detect tiny faces in a coarse-to-fine
manner, i.e., the face-area candidates are pre-identified as region of interest (RoI) based on a real-time
pedestrian detector and the pre-identification mechanism, the set of RoI candidates is the input of
the second sub-network instead of the whole image. Benefiting from the above mechanism, the
second sub-network is designed as a shallow network which can keep high accuracy and real-time
performance. The accuracy of PMCD is at least 4% higher than the other state-of-the-art methods on
detecting tiny faces, while keeping real-time performance.

Keywords: face detection; tiny faces; pre-identification mechanism; cascaded detector; deep learning;
convolutional neural network

1. Introduction

Face detection is one of the most hot topics in computer vision as it is a key step for many
different applications, such as face recognition [1], facial expression analysis [2], eye-tracking [3], facial
performance capture [4], facial expression transformation [5], etc. In fact, the applications are not
limited to the traditional areas, there are still some exciting interdisciplinary applications [6–11] in the
field of animation. However, many factors such as the illumination, occlusion, and the diversity of
faces cause huge challenges in face detection.

Using universal face templates to detect faces is one of the main research fields of traditional
methods. Determining whether there is a face is undertaken by calculating the correlation coefficient
between the area which is detected and the template [12]. However, facial skin color, different
expressions, and occlusion lead to the method being less robust and computationally complex.

In recent years, many researchers shift their attention from the traditional methods to convolutional
neural networks (CNNs) [13–15] since they have achieved remarkable success in many important tasks
of computer vision, such as classification, detection, and recognition. Lots of approaches have been
proposed to solve the problem of tiny-face detection, which aims to search a tiny face in a whole image,
especially in a low-resolution image. However, these methods cannot achieve satisfactory performance
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because the features of tiny faces are different from those of big faces and tiny faces contain limited
information available for face detection.

It is challenging to detect small objects in image detection. That is because these networks are
designed to propose default boxes and the classification score is calculated from one single deep CNN.
For example, faster Region-based Convolutional Neural Networks (R-CNN) [16] extracts features by
visual geometry group (VGG)-16 [17], but when the face size is less than 16 × 16, the output in ‘conv5’
is less than one pixel. As the convolutional layer is deeper, each pixel in the feature map gathers
more information outside of the original input area and lower information of the region of interest
(RoI), which means these methods cannot keep the performance when targets are small. However, a
single shallow CNN cannot get enough information for object detection, and thus a cascaded structure
which is usually divided into a prediction part and a regression part becomes a popular and effective
framework for face detection. A cascade framework can generate a large number of bounding box
candidates based on a low threshold, and then extracts the regression scores of these candidates. That
is, the information loss of shallow convolutional layers can be effectively relieved.

Moreover, the above-mentioned face detection algorithms cannot keep good performance in video
surveillance, because they are designed for high-resolution images and big faces. Limited by the cost of
large-scale surveillance and the scale of data, the face targets are often small and not clear. Additionally,
the head movement tends to be more frequent than the body, making it difficult to detect tiny faces in
multiple views. Previous methods are difficult to accurately detect tiny faces in this kind of scenario. If
tiny faces can be detected automatically in real time, the telephoto lens would immediately be aimed
at the suspicious persons’ faces, which can help the police to conduct reconnaissance. This is very
useful in public security, since violent incidents and terrorist attacks have occurred in many places in
recent years.

In order to alleviate the above problems, this paper presents a cascaded framework named
pre-identification mechanism and a cascaded detector (PMCD) to detect tiny faces based on two
independent CNNs and a pre-identification mechanism. The two sub-networks can be trained
separately, which greatly improves the flexibility in training networks. The first sub-network of PMCD
and the pre-identification mechanism generate a set of RoI candidates, defined by the pedestrian area
in the image. Then, the RoI candidates are resized to different scales to build an image pyramid as
the input of the following network. As the input of the second sub-network has greatly reduced the
irrelevant area, a shallow network can learn enough features and guarantee real-time performance.

We tested PMCD on a self-collected dataset and Caltech Pedestrian [18] dataset. Due to the
scarcity of the tiny-face detection dataset, we collected 1370 images, 2450 faces in total and most faces
were less than 20 × 20. In order to test in different situations, the size of 562 faces were larger than
20 × 20, while the rest were all smaller than the size in the self-collected dataset. As the results showed,
compared with other state-of-the-art methods, PMCD achieves impressive performance in tiny-face
detection and it can achieve real-time detection.

To this end, this paper aims to alleviate the issues discussed above which are tiny-face detection
and keeping real-time features.

• We propose a new pre-identification mechanism to obtain a set of face candidates as the input
for the face detector, which contains higher face proportion than that in the original image. The
mechanism greatly reduces miss rate of tiny-face detection and leads to the robustness of PMCD.

• We propose a novel cascade neural network called PMCD for real-time tiny-face detection. The
first sub-network is a deep pedestrian detector as a part of the pre-identification mechanism, and
the second sub-network is designed based on a shallow multi-task CNN to detect faces in the
RoI candidates.

The rest of this paper is as follows. Section 2 introduces related works on face detection. Section 3
details the framework including two sub-networks and the pre-identification mechanism. Section 4
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mainly describes the performance of PMCD and compares it with other state-of-the-art methods.
Section 5 concludes and looks forward to future works.

2. Related Works

Face detection is the key step in many different face-related applications and studies [19]. Most of
the early work was designed for high-resolution images and large targets by using statistical learning
methods to automatically extract features. Yaman et al. [20] proposed a framework to detect faces
by utilizing histogram-based feature extraction with random subspace and voting ensemble learners.
Luo et al. [21] proposed a face location algorithm which is developed to extract face regions with a high
proportion of skin. This type of method increases the speed of the operation. Since the features are not
completely selected by humans, the robustness is improved. However, the effect is still poor when
the target is small. Mohanty et al. [22] proposed a new feature and combined it with the gray level
feature and skin color feature, and this method improves detection speed in complex backgrounds and
reduces the computational complexity. Additionally, Ma et al. [23] used the geometric relationship
between facial organs to generate four Haar-like features for face detection based on the traditional
Adaboost classifier, which greatly reduces the detection time. One of the most impressive traditional
methods is Viola-Jones [24] which designed cascade classifiers based on the Haar feature and AdaBoost
classifier, but all of these traditional methods focus on improving the performance with more effective
hand-crafted features and more powerful classifiers [25–28]. These features or detection structures
have certain subjective factors, which leads to the robustness of these frameworks being poor, and the
operation being complicated and time consuming.

In recent years, deep learning models offer new ideas in solving many research problems such
as classification, object detection, image segmentation, image restoration etc. Convolutional neural
networks have achieved remarkable success in many different tasks of computer vision, especially for
object detection. The family of Region-based Convolutional Neural Networks (R-CNN) [17,29,30], You
Only Look Once (YOLO) [31], and Single Shot Multibox Detector (SSD) [32] are the most efficient and
popular approaches for detecting objects these years. Inspired by these brilliant methods, researchers
have proposed many effective and robust face detection structures. Jiang et al. [33] investigated
applying faster R-CNN to face detection, compared with previous proposed models, and its accuracy
has a significant improvement. Contextual multi-scale region-based CNN (CMS-RCNN) [34] combined
multi-scale information which consists of the region proposal component and the RoI detection
component to detect faces. Wan et al. [35] improved Faster R-CNN with the hard negative mining
and significant boosts, and the hard negatives harvested from a large set of background examples.
Sun et al. [36] applied some effective strategies including feature concatenation, hard negative mining,
multi-scale training, model pre-training, and proper calibration to improve Faster R-CNN in face
detection. Zhang et al. [37] light-designed R-CNN and improved the performance by integrating
multi-scale training, multi-scale testing, some tricks for inference, and a vote-based ensemble method.
Enlightened by SSD, Hsu et al. [38] proposed Multiple Dropout Framework to detect faces. Due to the
anchor mechanism, the family of R-CNN can detect objects which occupy the majority of an image
which are clear and huge, but the accuracy of these methods drop rapidly when the target is small.

Li et al. [39] proposed a novel cross-level parallel network (CLPNet) to extract low-level features
and fuse them in the high-level stage, and CLPNet achieved remarkable performance on crowd counting.
Triantafyllidou et al. [40] proposed a novel lightweight deep neural network and a new training method
of progressive positive and hard negative sample mining to improve training speed and accuracy.
A Fully Convolutional Network (FCN) [41] generated face proposals by the heat map of facial parts
which are scored by a new facial parts responses method by their spatial structure and arrangement.
As described in Section 1, cascaded structures are more advantageous than single networks in the
task of face detection, and thus have been widely used in face detection, CascadedCNN [42] is a
cascade framework built on CNNs and a CNN-based calibration stage was introduced to adjust
the position of the detection window. Qin et al. [43] proposed joint training to achieve end-to-end
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optimization for CNN cascade and showed back propagation used in training a single CNN can
be naturally used in training the cascade CNN structure. Coarse-to-Fine Auto-encoder Network
(CFAN) [44] cascades a few Stacked Auto-encoder Networks to accomplish different tasks including
face detection. Multitask Cascaded Convolutional Networks (MTCNN) [45] is a multi-task cascade
network to detect faces by three stages in a coarse-to-fine detection structure. Min et al. [46] proposed
a multi-scale and multi-channel shallow convolutional network (MMSC) for real-time face detection
after the pre-identified method detecting faces in the images based on a traditional pedestrian detection
method. Hu et al. [47] proposed a multi-task detector with hybrid resolutions (HR), which detects
different face scales from multiple layers of a single neural network.

The methods mentioned above have good performance in face detection when images are of high
resolution and the faces are big, but all of these traditional methods and region-based single deep
CNNs cannot keep a high accuracy in tiny-face detection, the reason is that the effective information of
tiny faces is very limited, as explained in Section 1. Inspired by [46], we designed a novel structure to
reduce the unnecessary input of the face detection order to improve the effectiveness and propose a
new pre-identification mechanism.

3. Proposed Method

3.1. Overview of Our Method

In this paper, we used two convolutional neural networks (CNNs) for coarse-to-fine face detection.
CNN is actually a multi-layer perception, where each layer is composed of multiple feature maps
through different convolutional kernels. The most important advantage of this structure is that the
parameters of CNN are self-learned through training data, so the structure avoids the generalization
weakness caused by hand-crafted features. CNN usually consists of convolutional layers, pooling
layers, and fully connected layers. A convolutional layer is used to extract features, a pooling layer
aims to reduce the amount of data for calculation, and a fully connected layer is designed to combine
the extracted local features into a powerful global feature. In practical operations, convolution layers
and pooling layers are often designed as a whole, i.e., the structure would pool the feature maps
after the convolutional operation. However, the output of convolutional layers is not immediately
pooled, it is passed to the activation function first and then the results are passed to the pooling layers.
Activation functions, which are always nonlinear functions, are used for feature mapping in order
to help solve nonlinear problems. The parameters in convolutional layers and pooling layers are
learned through the back-propagation algorithm, so the self-learned characteristic makes CNN far
superior to the traditional algorithms in precision and robustness in many computer vision tasks such
as classification, detection, tracking, etc.

Although face detection has received extensive attention in recent years, it still entails many
challenges, such as occlusion, complex environments, small targets, etc. This paper aims to solve
the problem of tiny-face detection. Due to the low resolution of face images, detecting faces is not
an easy task when a pedestrian is far away from the camera. In this situation, the information of a
body is much more than the face information. The pedestrians’ faces can be roughly calibrated based
on body context information. Considering this, we defined the region at the top of the pedestrians’
bounding boxes as RoI candidates, obtained the candidate regions by a pedestrian detector and a novel
pre-identification algorithm to reduce the search range as pre-processing.

Methods of pedestrian detection include the method based on statistical learning methods,
background modeling, and neural networks. The most influential pedestrian detection structure is
what Dalal et al. [48] proposed, which uses Support Vector Machine (SVM) as the classifier to detect
faces in the images based on the histograms of oriented gradient (HOG) features. Lots of features
have been proposed with better robustness and result in better classification accuracy for pedestrian
detection [49–52]. However, these features are often specifically designed to a particular situation,
hence the robustness of these traditional methods is not good. In order to alleviate the problems
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mentioned above, more and more researchers have adopted convolutional neural networks (CNNs) to
detect objects these years [17,29–32,53]. There are many images from different scenes in the training set,
so the robustness of features learned by neural networks is better than hand-crafted features. Therefore,
these methods based on CNNs have a huge improvement in accuracy and robustness.

Our method consists of two parts, pre-identification detection and face detection. In the
pre-identification detection part, we detected the bounding box of the pedestrian by a deep CNN first,
then the RoI candidates would be selected by the self-adaptively algorithm, after that we built an image
pyramid, which was used to adapt different sizes of faces, as the input for the face detection network.
In the face detection part, image pyramid would be passed to our proposed multitask neural network
to detect faces. As the previous steps significantly reduce background interference, the multi-task face
detector requires only a shallow structure to perform efficiently and in real-time. What we proposed is
a cascaded framework, and we can train the two sub-networks separately. The whole framework is
shown in Figure 1.

Figure 1. The whole framework.

3.2. Proposed Pre-Identification Mechanism

3.2.1. Pedestrian Detector

The bounding boxes of the pedestrians are detected by a deep CNN [32] in order to narrow the
detection range of the face detector, as seen in Figure 1. Firstly, the image size is resized to 300 × 300.
Afterwards, the features are extracted by VGG-16 and then fed to six additional convolutional layers for
detecting the targets. All default boxes are predicted by combining many feature maps with different
scales and ratios, multiple default boxes are set to cover various sizes and shapes of targets. Finally,
non-maximum suppression (NMS) is used to obtain the final bounding box which has the highest
score in the set of bounding boxes of the target.
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Convolutional layers, except VGG-16 in the pedestrian detector, predict bounding boxes and
offsets. There are different receptive fields in different levels of feature maps. The scale of the default
boxes is computed as:

sk = smin +
smax − smin

m− 1
(k− 1), k ǫ [1, m], (1)

where smin is 0.2 and smax is 0.9, the length lk and the width wk of the bounding box are calculated
based on sk; m is the number of default boxes, W is the width of the input and L is the length of the
input, r is the ratio of the length and the width in each feature map. The detailed calculation formula is
shown as: {

wk = W × sk ×
√

r
lk = L × sk/

√
r

. (2)

3.2.2. Pre-Identification Mechanism

In order to reduce the misclassification rate in the face detector and reduce the interference
of other information, we should reduce the input of the face detector. Face areas are adaptively
estimated according to the proportion of the pedestrian area. The proportional relationship between the
face-region and the pedestrian-region is estimated by our newly proposed mechanism. The face-region
selection operator is used to generate a set of face candidate regions which is described in Algorithm
1, and the whole process of face pre-identification is shown in Figure 1. Herein, Ni and Di are two
sets of coordinates, Ni contains the upper-left corner coordinates of the bounding box N1

i
and the

lower-right corner coordinates N2
i

through the pedestrian detector, N1
i

and N2
i

are composed by x and
y; Di contains the upper-left corner coordinates of the bounding box D1

i
and the lower-right corner

coordinates D2
i

through the pre-identification algorithm, D1
i

and D2
i

are composed by x and y, and i

means the i-th person in the image.

Algorithm 1. Pre-identification.

Input: Coordinates of the bounding boxes Ni through the pedestrian detector
Output: Coordinates of the RoIDi

1. T← 0.9
2. i← 0
3. θ← (1− T)/2
4. while Ni � ∅

5. l← θ×
(
N2

i
.x−N1

i
.x
)

6. D1
i
.x← N1

i
.x + l

7. D1
i
.y← N1

i
.y

8. D2
i
.x← N2

i
.x− l

9. D2
i
.y← N1

i
.y +

(
N2

i
.x−N1

i
.x
)
− 2 ∗ l

10. i← i + 1
11. end while

3.2.3. Image Pyramid

The input image size is fixed for the face detector, but the size of the target is not fixed. Therefore,
image pyramids can be used to detect different sizes of objects with the fixed input size. We build image
pyramids upon the set of RoI candidates. RoIs are resized to different scales which are adaptively
computed by the image pyramid method to build an image pyramid, which is the input of the second
multi-task face detector. The image pyramid algorithm is described in Algorithm 2. Herein, Di is the
coordinate set of RoI, which is the same as in Section 3.2.2, i means the i-th person in the image, factor
is the scaling factor, Pi is an image pyramid of the i-th person, containing many resized images. The
threshold of minlin Algorithm 2 is set to 12, since the size of input of the face detector is 12 and the
information is pretty limited if the size of face is smaller than 12.
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Algorithm 2. Image pyramid.

Input: Coordinates of the RoI Di

Output: Image pyramid Pi

1. w← D2
i
.x−D1

i
.x

2. l← D2
i
.y−D1

i
.y

3. count← 0
4. f actor← 0.7
5. if w < l

6. minl← w

7. else
8. minl← l

9. end if
10. if minl < 12
11. minl← 12
12. end if
13. m← 12/minl

14. minl← minl ∗m
15. while minl ≥ 12
16. scales← scales + m ∗ f actorcount

17. minl← minl ∗ f actor

18. Pcount
i

← Resize(Di, scales)

19. count← count + 1
20. end while

3.3. Multitask Face Detector

Before detecting the face, we pre-processed the image to reduce the size of the input. The detector
is a shallow neural network, but the depth is enough to learn useful features of tiny faces, because the
input of the detector is preprocessed, and background information and other interferences is greatly
reduced. Another benefit of shallow neural networks is that the parameters are much smaller than
deeper detectors, resulting in fast operation and real-time performance.

Each image pyramid is passed to the face detector to detect the coordinates of the face. The real
coordinates are calculated based on the detected coordinates of bounding boxes and the image pyramid
scales. Finally, the NMS method is used to eliminate the redundant bounding boxes by getting multiple
overlapped bounding boxes and reducing them to only one. The structure of our face detector is
shown in Figure 1. The stride of the convolutional layer is 1, and the step size of the pooling layer is 2.

Different convolutional kernel sizes may result in different feature extraction effects. Considering
that the detected target is a tiny face with the input size is 12× 12, we apply a 3× 3 filter for all the
convolutional layers. There are two tasks in the face detector, face classification and bounding box
regression. Compared to other complex multiclass objection classification and detection methods, the
input of our proposed network is the image pyramid generated from the set of RoI candidates and the
number of classes is only 2, face and non-face, so this network does not need a deep network structure
and a lot of convolutional kernels in each layer. ReLU is applied as nonlinearity activation function in
this detector, which is:

f(x) =
{

0, x ≤ 0
x, x < 0

. (3)

Face classification is a binary classification problem, so we use the cross-entropy logistic regression
function as the loss function. The function is designed as follows:

Li = −
(
yi log pi +

(
1− yi

)(
1− log pi

))
, (4)

where pi is the possibility calculated based on the input xi; yi is the predicted class, yi ∈ {1, 0}.
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For the task of bounding box regression, we employ the Euclidean loss of the offset between the
predicted bounding box and the nearest ground truth. Predicted by the network are the upper-left
coordinate, width, and length. The loss function is given by:

Gi =‖ b̂i − bi ‖ 2, (5)

where b̂i is the class that the network predicts and bi is the ground-truth coordinate. We use four
values to represent a bounding box, i.e., the upper-left coordinate, width, and length. So b̂i and bi are
four-dimensional vectors.

The total loss of this network is the weighted sum of the loss values of the above two functions.
Faces are contained in RoI candidates after we preprocess the input of the multitask detector, therefore
we give the face detector a high tolerance for features of tiny faces. This trick makes the tiny faces
pass to the classification task of the multitask detector with a low threshold. Therefore, we give a big
weight to the loss function of the bounding box. In addition, the total loss function is as follows:

Lossi = t1 × Li + t2 ×Gi, (6)

where Li and Gi are the losses of face classification and bounding box regression respectively; t1 and t2

are the weights of each task. Here, t1 is set to 0.3 and t2 is set to 0.7.

4. Experiments

The experimental environment used in this paper is as follows: Intel Xeon E-2136 CPU @3.30
GHz, 16 GB internal storage, Windows 10 64 bit operating system, Microsoft, US.

We tested the performance of our framework on different datasets composed of a self-collected
dataset and Caltech Pedestrian dataset 18. The self-collected dataset was introduced in Section 1. The
Caltech dataset was collected by the California Institute of Technology on 2012, and it is often used in
the design and testing of pedestrian detection algorithms. It contains a video of a city environment
with a duration of about 10 h, and the image resolution is 640× 480. The pedestrian targets are divided
into different levels according to the size and the occlusion.

Figure 2 shows PMCD could detect the face accurately when the pedestrians are in different
environments containing occlusion, incomplete body, and poor light.

Our mechanism consists of SSD [32] and the pre-identification mechanism, which is mentioned in
Section 3.2.2. The accuracy of face detection in our framework is directly related to the performance of
the mechanism, so we tested our mechanism on the Caltech Pedestrian dataset. In order to prove that
our mechanism is superior to other state-of-the-art methods, we drew the curve of false positive per
image (FPPI)-miss rate by the evaluation method [54], as shown by:

FPPI = m/N, (7)

where m is the number of false positive, N is the number of images.

miss rate = fa/(fa + tr), (8)

where fa is the number of false negatives, tr is the number of true positives.
We compared our pre-identification mechanism with Viola-Jones (VJ) [24], histogram of oriented

gradient (HOG) [48], Scale Aware (SA)-Fast RCNN [55] and region proposal network(RPN)+ boosted
forests (BF) [56]. As shown in Figure 3, ours performs better than the other methods, and the detection
results of the corresponding method are better when the miss rate is lower.
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Figure 2. Face detection in different situations based on pre-identification mechanism and a cascaded
detector (PMCD): (a) the face detected with occlusion on some part of the body; (b) the face detected
with occlusion on some part of the body in complex backgrounds; (c) the tiny face detected with good
light; (d) the tiny face detected with poor light.

Figure 3. The curve of false positive per image (FPPI)-miss rate.

As shown in Figure 3, SSD achieves the best performance in these methods. Meanwhile, the miss
rates of VJ and HOG are high, the main reason is that traditional methods usually train the classifiers
by hand-crafted features, resulting in poorer robustness than that of convolutional neural networks.

55



Appl. Sci. 2019, 9, 4344

We compared the whole framework with five of the most important face detection algorithms on the
self-collected dataset, which are Viola-Jones(VJ) [24], single shot multibox detector(SSD) [32], multi-task
cascaded neural networks (MTCNN) [45], multi-channel shallow convolutional network(MMSC) [46],
and hybrid resolutions(HR) [47]. Figure 4 shows the results of the six methods in different situations.
VJ and MTCNN cannot detect faces correctly when the face is fairly small. MMSC uses traditional
methods to extract pre-processing regions, and thus it cannot keep good performance in detecting
faces on incomplete bodies or in relatively complex background. SSD can detect faces roughly, but it
cannot correctly obtain the bounding boxes when the faces are small. On one hand, HR can achieve
remarkable performance in detecting tiny faces when the environment is relatively simple, but when
the light is dim or faces are in a complex environment, the performance of HR would be very bad.
On the other hand, PMCD achieves the best performance among the six methods. In the case of poor
lighting conditions, only PMCD can achieve remarkable performance.

Figure 4. Face detection results.

Intersection over union (IoU) is the ratio between the intersection and the union of the candidate
bounding box predicted by the model and the ground truth bounding box. The formula is:

IoU = (area(C) ∩ area(G))/(area(C) ∪ area(G)) (9)

where area(C) is the area of the candidate bounding box; area(G) is the area of the ground truth
bounding box.

We collected the true positives’ IoUs which are predicted by the above five methods and calculated
the mean IoU (MIoU) to judge the accuracy of the predicted bounding boxes. The formula is shown
as follows:

MIoU =
n∑

i=1

IoUi/n, (10)

where n is the total number of true positives; IoUi is the IoU score of the i-th true positive.
The results are shown in Table 1. PMCD achieves the best performance in these six methods. The

second best is HR, no matter how small the face is, HR would be detected very precisely when the light
is good. However, when the face is in a dark environment, the face’s bounding box will be detected
with some deviation. While the performance of SSD is the lowest because SSD cannot retain its ability
when the target is small even though it can detect tiny faces, because its default anchors are set to
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different shapes, but the box shape with the highest score is not always the most suitable one. The
other three methods can get great scores only if the targets are big.

Table 1. Mean intersection over union (MIoU) on the self-collected dataset.

PMCD HR MMSC MTCNN SSD VJ

MIoU 84.8% 83.4% 76.9% 79.2% 71.2% 73.6%

In order to verify the effectiveness of PMCD, the F1 measures, where precision and recall are
equal, are shown in Table 2. The table of our model is higher than benchmark results of the other three
important face detection neural networks. The MTCNN, VJ, and MMSC cannot keep high performance
when targets are less than 20 × 20, which could result in many misclassifications. The framework
proposed in this paper can solve this problem very well because we use two neural networks for
grading detection, which can avoid the subjectiveness of hand-crafted features. In addition, the
pre-identification mechanism can avoid the information loss of small targets, which often happens in a
deep neural network.

Table 2. The F1 measures of different methods.

VJ MTCNN MMSC SSD HR PMCD

F1 measures 0.32 0.554 0.569 0.602 0.673 0.712

In addition, we tested the detection speed of these methods based on frames per second (FPS),
and the results are shown in Table 3. Although PMCD is not the fastest method, it still exceeds 24 FPS,
maintaining real-time performance. PMCD is designed as a cascade framework, in which some time
is wasted in passing data, that is, the end-to-end detectors can outperform cascade frameworks in
detection speed. Nevertheless, for the tiny-face detection task, the advantages of the cascaded detector
are obvious.

Table 3. Detection speed of different methods.

VJ MTCNN MMSC SSD HR PMCD

FPS 1.2 32.8 3.9 43.2 2.6 34.6

5. Conclusions and Future Works

A real-time pre-identification mechanism and a cascaded detector were proposed for tiny-face
detection in this paper. We combined pedestrian detection with face detection to reduce the search
region. After obtaining the bounding box of the pedestrian, we estimated the face area as RoI based on
the proportion of the size of the bounding box. The mechanism not only can improve efficiency but
also reduce the number of false positives. After that, we built an image pyramid as the input of the
face detector. The algorithm can ensure the performance of the face detector on the targets of different
sizes. Based on the experimental results, the proposed cascaded neural network is more efficient in
tiny-face detection than other state-of-the-art methods.

There are many open studies in the above research. Our method is constrained, but when the
body is not completely occluded, PMCD can perform better in tiny-face detection under extreme
conditions such as poor light and occlusion, etc. Traditional face detection methods and region-based
CNNs cannot keep a high accuracy in tiny-face detection by themselves, but it is possible to combine
these unconstrained methods with our proposed framework in the future. The highest priority
should be given to this framework to avoid unnecessary false positives and reduce the miss rate of
tiny-face detection.
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As mentioned in Section 1, cascade frameworks have significant advantages in detecting tiny
faces, and the experimental results also support this conclusion in Section 4. This is because the
characteristics of tiny faces are gradually lost with convolutional layers going deeper. Therefore,
this problem can be solved by finding a larger upper-body to complete the coarse-to-fine detection.
PMCD has achieved remarkable results on our self-collected dataset when the targets are small or in
extreme environments such as darkness, complex background, occlusion, etc. When the targets are of
normal sizes, the end-to-end detection frameworks can obtain a faster speed. Therefore, PMCD still
has potential for further improvement. In the future, we will design an end-to-end detection network
based on PMCD, which can internally extract hierarchical features for the face detection task. This
network can ensure satisfactory performance on tiny-face detection while keeping a faster detection
speed than PMCD.
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Abstract: The electrocardiogram (ECG) is relatively easy to acquire and has been used for reliable
biometric authentication. Despite growing interest in ECG authentication, there are still two main
problems that need to be tackled, i.e., the accuracy and processing speed. Therefore, this paper
proposed a fast and accurate ECG authentication utilizing only two stages, i.e., ECG beat detection
and classification. By minimizing time-consuming ECG signal pre-processing and feature extraction,
our proposed two-stage algorithm can authenticate the ECG signal around 660 µs. Hamilton’s method
was used for ECG beat detection, while the Residual Depthwise Separable Convolutional Neural
Network (RDSCNN) algorithm was used for classification. It was found that between six and eight
ECG beats were required for authentication of different databases. Results showed that our proposed
algorithm achieved 100% accuracy when evaluated with 48 patients in the MIT-BIH database and 90
people in the ECG ID database. These results showed that our proposed algorithm outperformed
other state-of-the-art methods.

Keywords: electrocardiogram (ECG); biometric authentication; beat detection; depthwise separable
convolution (DSC); ECG ID database; MIT-BIH database

1. Introduction

As early as 1977, electrocardiogram (ECG) was identified for its potential for biometric
authentication [1]. ECG is relatively easy to acquire, for example, using finger sensors [2]. Many
methods have been implemented of ECG identification using feature extraction based on time,
amplitude, and frequency [3–6], as well as using machine learning [7–9]. Nevertheless, ECG biometrics
still cannot be fully implemented in real-time security systems due to their high computational time
and low accuracy.

ECG identification using multivariate analysis feature extraction has been reported in [3]. Using
principal components analysis (PCA) and soft independent modeling of class analogy (SIMCA), the
ECG identification results vary from 90% to 100%. The accuracy of this method depends on two main
factors, including the number of features and the type of lead used to obtain an ECG signal. In [3], they
used 12 leads and 30 types of time-based ECG features. Around 50 samples were evaluated from 20
ECG records. Although ECG identification can be performed with just one lead, this research needs to
use at least three leads to improve identification accuracy [3].

In [5], the number of leads and the number of ECG features were reduced; specifically, the
number of leads has been reduced one, and the number of features has been reduced to seven. After
preprocessing and feature extraction, two different methods were normally used for identification
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purposes, i.e., template matching (TM) and the decision-based neural network (DBNN). Evaluation
of 400 ECG beats from 20 people revealed that the accuracy of TM and DBNN was 95% and 80%,
respectively. Moreover, combining both methods produced 100% identification accuracy.

In 2005, the ECG-ID database became publicly accessible [10]. The database contains ECG
recording files of 90 people using a single ECG lead. Recorded ECG signals from the same person
are stored in one folder. Each folder contains two or more ECG recording files, except the 74th folder,
containing only one record. After preprocessing and time-based feature extraction, ECG identification
is conducted using PCA, linear discriminant analysis (LDA), and majority vote classifier (MVC).
Moreover, the accuracy of this method is around 96%.

Apart from using the database of normal ECG heartbeats, ECG biometrics have also been tested
using arrhythmia ECG signals [11]. Using test data from the ECG records of 47 patients in the
MIT-BIH database, 91.1% accuracy was reported. They applied five stages of blind signal processing
(BSP), including preprocessing, wavelet transform, autocorrelation, component selection, and parallel
one-dimension convolutional neural networks (1-D CNN). A similar identification method can be
applied to other databases, including ECG records from the ECG-ID and MIT-BIH databases [8,9].
Bidirectional gated recurrent units (BGRUs) have been used to identify 47 patients from the MIT-BIH
database and 90 ECG healthy people from the ECG-ID database with an accuracy of 98.40% and 98.60%,
respectively [8]. When, instead, a PCA neural network (PCANet) was used, accuracies of 100% and
97.75% were achieved when tested on ECG-ID and MIT-BIH databases, respectively [9].

Recently, depthwise separable convolution (DSC) has been applied to a CNN model to reduce
computation by reducing the number of model parameters and arithmetic calculations. DSC has been
utilized to improve CNN model quality in image classification [12] and neural machine translation [13].
For cardiac arrhythmia classification, DSC has been tested on 16 ECG classes of the MIT-BIH database,
outperforming other methods [14]. Besides DSC, the CNN model can be further optimized using the
residual technique. The residual technique has been used in CNN to simplify the training process and
increase accuracy, as is evident in image classification [15] and ECG classification [16].

Residual DSC has been implemented in Xception [12] and PydMobileNet [17]. Similar algorithms
with slight modifications will be used for ECG authentication in this paper. The first modification
was on the filter dimension, i.e., 2D-CNN to 1D-CNN. The second modification was on the structure
of CNN layers. In Xception and PydMobileNet, DSC was applied to single layers while, in our
algorithm, DSC was implemented for the group of three layers, as has been explained for a cardiac
arrhythmia classifier [14]. A further modification was conducted for ECG authentication, in which a
shortcut residual is applied to the three-layer DSC. Furthermore, for ECG authentication, none of the
convolutional layers is similar to the ones in Xception and PydMobileNet. Each convolutional layer is
an ordinary 1D convolution, not a DSC.

As discussed earlier, the common problems in ECG authentication include time-consuming signal
processing and feature extraction. Another problem is accuracy; it is difficult to obtain 100% accuracy,
which is required for authentication purposes. Therefore, in this paper, a fast and efficient algorithm
will be proposed to overcome these problems using a residual depthwise separable convolution neural
network. The training process required high computational resources, which can be alleviated using
GPU. However, the testing process required low computational resources; a CPU alone is sufficient to
be used during the authentication process.

2. Proposed ECG Authentication Algorithm Using Residual Depthwise Separable CNN

To simplify the ECG authentication process, the proposed method in this paper requires only
two stages, including the segmentation stage and the classification stage. The segmentation stage
carried out ECG beat detection and segmentation, while the classification stage performed feature
extraction and classification. ECG beat detection is performed using Hamilton’s methods [18,19]. The
segmentation is based on the relative position of the Rpeak, and occurs 1

4 N before Rpeak and 3
4 N after

RpeakN depends on the sampling frequency and is set to 256 samples for both ECG-ID and MIT-BIH
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databases. Note that preprocessing has been performed on both databases to eliminate baseline drift
and to remove powerline and high-frequency noises [10]. Therefore, it can be assumed that the ECG
signals from both databases were ready to be used for further processing.

The second stage, or classification stage, is realized by implementing the Residual Depthwise
Convolutional Neural Network. The CNN used in this second stage is 1D-CNN that contains 28 layers.
The 21 layers consist of seven layers of residual depthwise separable convolution neural network
(RDSCNN) repeated three times, as illustrated in Figure 1.

 

Figure 1. The proposed algorithm using 28 layers of residual depthwise separable convolution
neural network.

As shown in Figure 1, there are seven layers repeated three times, including a max pooling
layer, three layers of 1D-CNN (Conv1D), a batch normalization layer, an activation layer, and an add
layer. This structure is called as Residual Depthwise Separable Convolution implementation. The
residual implementation uses a shortcut Max Pooling layer, while depthwise separable convolution
implementation uses three Conv1D layers with the filter size [5 1 5], respectively. The summary of the
proposed CNN model will be discussed in more detail in Section 3.3.

There are 10 Conv1D layers in the proposed algorithm, which can be calculated using Equation
(1) to (4), as follows [20]:
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where l is the layer number, k is the filter number at the particular layer, i is the index coefficient w

of the filter, xl
k

is the input and ωl−1
ik

is the kernel (weight) from the i-th neuron at layer l − 1 to the
k-th neuron at layer l. sl−1

i
is the output of the i-th neuron at layer l− 1 and βl

k
is the bias, which can

be assumed to be zero. conv1Dz(·, ·) performs full convolution in 1-D with K − 1 zero padding. Δsl
k
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is the input difference after filtering and rev(·) flips the array. Δl+1
i

is the delta error according to the

loss function. ∂E
∂ωl

ik

denotes error change with respect to the filter coefficients, while ∂E
∂βl

k

denotes error

change with respect to the bias.
To maximize the accuracy, the CNN model in this paper is optimized using two methods, i.e.,

Depthwise Separable [12,13] and Residual [15]. The Depthwise Separable can be explained using
Equation (5) to (8), as follows:

Conv1D(ω, y)(i) =
K.M∑

k.m

ω(k.m) · y(i+k,m) (5)

PointwiseConv1D(ω, y)(i) =
M∑

m

ωm.y(i,m) (6)

DepthwiseConv1D(ω, y)(i) =
K∑

k

ω(k) � y(i+k) (7)

SepConv1D
(
ωp,ωd, y

)
(i)

= PointwiseConv1D(i)

(
ωp, DepthwiseConv1D(i)(ωd, y)

)
(8)

where i is the element index in layer y. ωp and ωd are the filters calculated from Equations (6) and (7).
The calculation in Equation (5) can be replaced with Equation (8) through calculations of Equations (6)
and (7). Although the output layer from Equation (5) is similar to Equations (6) to (8), the total number
of parameters and the training time were decreased, as can be seen in Table 1. Note that the depthwise
separable technique will reduce the training time and reduce the accuracy as well. To compensate for
the slight decrease in performance, the residual technique can be applied. Therefore, combining these
two techniques, i.e., Depthwise Separable and Residual, not only reduces the number of parameters
for training but also improves the accuracy.

Table 1. Experimental scenarios using ECG-ID and MIT-BIH databases with various CNN
configurations.

Profile Beat Detection Depthwise Separable Convolution Residual

1 Manual No Yes
2 Manual Yes No
3 Manual Yes Yes
4 Hamilton’s method Yes Yes
5 Hybrid Yes Yes

Residual is a technique in CNN, in which one of the branches is a shortcut bypassing one or
several other branch layers. Initially, this technique was intended to overcome the saturation of the
increasing number of layers. Too many layers will lead to longer training iteration, lower speed, and
lower accuracy. With the residual technique, the training iteration can be shorter, and the accuracy
will increase. The general formulas for the identity function related to the residual shortcut are as
follows [15]:

y = F (x, {Wi}) + x (9)

y = F (x, {Wi}) + Wsx (10)

where x is the input, y is the output layer and F (x, {Wi}) is a filter or residual mapping which can
be optimized. Wi is a collection of overlapped layers. Ws is a linear projection to adjust the x and y

dimensions when a shortcut is performed. There is almost no change in the number of parameters and
arithmetic operations, except for the addition operation which has a little computational load. Therefore,
the application of this residual technique can minimize the training iteration while improving accuracy.
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Generally, this residual technique is applied to CNN models with millions of training data,
hundreds of layers, and tens of thousands of iteration epochs. However, in this paper, the residual
technique can be applied to a smaller number of training data (between 900 and 4800), fewer layers
(less than 30), and less iteration (100 epochs). As the number of biometric data to be authenticated
increases, the number of layers, the number and size of filters, and the number of iterations can be
increased as well.

3. Experimental Setup

This section describes the experimental setup to evaluate our proposed algorithm, including the
ECG databases used, various experimental scenarios, and the summary of the CNN model.

3.1. ECG Databases and Computing Platform

Two popular Physionet databases were used to evaluate the performance of our proposed
algorithm, i.e., ECG-ID [10] and MIT-BIH [21]. These two databases have been used by several
researchers to test the performance of the ECG authentication algorithm. In this paper, each database
is used to test five different conditions, with variations in the application of beat detection, as well as
DSC and residual configurations.

The ECG-ID database contains 90 folders from 90 different people. Each folder contains several
ECG records with a 500 Hz sampling frequency. Each record has been provided with 10 annotations
related to the position of Rpeak in the first 10 beats. The recording duration ranges from 20 s to 5
min. For testing purposes, only 179 files were used, i.e., two files from each folder, except the 74th
folder which has only one file. For training purposes, ten beats of the first file in each folder were
obtained, so that around 900 beats were used. For validation purposes, ten beats of the second file
were acquired. As the 74th folder contains only one file, 10 beats from this file were used for both
training and validation. The ECG beat extraction from 179 files from 90 folders produced 900 beats for
training and 900 beats for validation. These validation beats were used to validate the CNN weights
obtained in the training process.

Besides using the ECG database of healthy people, our proposed algorithm was also tested with
ECG records with several cardiac arrhythmia beats taken from the MIT-BIH database. The database
contains 48 files, in which each file contains around 30 min of ECG recordings of cardiac arrhythmia
patients. Each data file is complemented with the annotation file containing the Rpeak position in
the associated ECG recording. There are two channels provided for each of these ECG records, but
in this paper only channel 0 (first channel) was used. For training and testing purposes, each ECG
recording is divided into two, in which each half contains 325,000 sample points. The first half is used
for training, while the second half is used for testing. For training, only 100 beats of the first half were
used, producing a total of 4800 ECG beats. For validation, only 10 beats of the second half were used,
producing a total of 480 ECG beats. These validation beats were used to validate the CNN weights
obtained in the training process.

The proposed algorithm was implemented in Python with Tensorflow with GPU [22] and Keras
libraries [23], as well as other standard libraries, such as Numpy, Matplotlib, and Scipy. The experiments
are performed on a computer with Intel Core i7-7700 CPU with a total of eight logical processors,
memory of 8 GBytes, and an Nvidia GeForce GTX 1060 6GB DDR5 graphics card, using the Microsoft
Windows 10 64-bit operating system.

3.2. Experimental Profiles

Using the two ECG databases, five experimental profiles with various CNN models were carried
out as shown in Table 1. In the first profile, DSC was not implemented and only residual was
implemented. In the second profile, DSC was implemented and residual was not implemented. The
third, fourth, and fifth profiles used both DSC and residual (our main proposed algorithm) with
different methods in beat detection and segmentation. Manual beat detection used the annotated file
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marked by medical experts. Hamilton’s automatic beat detection and segmentation used Hamilton’s
method [18,19]. The hybrid beat detection used manual beat detection using annotated files for the
training and Hamilton’s automatic beat detection for the testing.

3.3. Residual Depthwise Separable Convolution Neural Network Model (RDSCNN)

The proposed residual depthwise separable convolution neural network (RDSCNN) algorithm is
shown in Figure 1 and summarized in Table 2. There are two almost identical models applied to the two
ECG databases. The difference is only in the number of neurons in the last layer configured according
to the number of classes, i.e., 90 and 48 classes for ECG-ID and MIT-BIH database, respectively. For
experimental scenario one (without DSC), the number of filters, size, and stride in layers 6, 13, and 20
should be modified (see column three in Table 2) from [16 1 1] to [32 5 1]. For experimental scenario
two (without residual), layers 10, 11, 17, 18, 24, and 25 should be removed. The rest of the experimental
scenarios used the complete RDSCNN algorithm.

Table 2. Summary of the proposed RDSCNN algorithm.

MIT-BIH ECG-ID

# Layer
Number of
Filters, Size,

Stride

Output
Shape

Number of
Parameters

Output
Shape

Number of
Parameters

1 inputlayer (256, 1) 0 (256, 1) 0
2 convolution1d_1 32, 5, 4 (64, 32) 192 (64, 32) 192
3 batch_normalization_1 (64, 32) 128 (64, 32) 128
4 activation_1 (64, 32) 0 (64, 32) 0
5 convolution1d_2 32, 5, 1 (64, 32) 5152 (64, 32) 5152
6 convolution1d_3 16, 1, 1 (64, 16) 528 (64, 16) 528
7 convolution1d_4 32, 5, 4 (16, 32) 2592 (16, 32) 2592
8 batch_normalization_2 (16, 32) 128 (16, 32) 128
9 activation_2 (16, 32) 0 (16, 32) 0
10 max_pooling1d_1 (16, 32) 0 (16, 32) 0
11 add_1 (16, 32) 0 (16, 32) 0
12 convolution1d_5 32, 5, 1 (16, 32) 5152 (16, 32) 5152
13 convolution1d_6 16, 1, 1 (16, 16) 528 (16, 16) 528
14 convolution1d_7 32, 5, 4 (4, 32) 2592 (4, 32) 2592
15 batch_normalization_3 (4, 32) 128 (4, 32) 128
16 activation_3 (4, 32) 0 (4, 32) 0
17 max_pooling1d_2 (4, 32) 0 (4, 32) 0
18 add_2 (4, 32) 0 (4, 32) 0
19 convolution1d_8 32, 5, 1 (4, 32) 5152 (4, 32) 5152
20 convolution1d_9 16, 1, 1 (4, 16) 528 (4, 16) 528
21 convolution1d_10 32, 5, 4 (1, 32) 2592 (1, 32) 2592
22 batch_normalization_4 (1, 32) 128 (1, 32) 128
23 activation_3 (1, 32) 0 (1, 32) 0
24 max_pooling1d_3 (1, 32) 0 (1, 32) 0
25 add_3 (1, 32) 0 (1, 32) 0
26 flatten_1 (32) 0 (32) 0
27 dense_1 (64) 2112 (64) 2112
28 dense_2 (48) 3120 (90) 5850

Total parameters: 30,752 (MIT-BIH) and 33,482 (ECG-ID). Trainable parameters: 30,496 (MIT-BIH) and 33,226
(ECG-ID). Non-trainable parameters: 256 (MIT-BIH) dan 256 (ECG-ID).

4. Results and Discussion

This section will elaborate on ECG beat segmentation and detection, training and validation, ECG
biometric authentication experiments, and comparison with other methods.
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4.1. Experiment on ECG Beat Detection and Segmentation

Using ECG-ID and MIT-BIH databases, the ECG record and its Rpeak positions were obtained, as
shown in Figure 2. For the ECG-ID database, three samples were taken from 90 people. The first record
was used for training, while the second record was used for validation. There were ten annotated Rpeak

as shown in Figure 2 for each person. In the MIT-BIH database, records 201 and 202 belonged to the
same patient with different ECG beats, so they were classified as two classes. The red dots in Figure 2
are an example of the Rpeak position detected manually by cardiologists. Using this Rpeak position, the
ECG beat was detected and extracted. An example of ECG beat detection and segmentation for both
databases is shown in Figure 3.

(a) Samples from ECG-ID database (b) Samples from MIT-BIH database 

Figure 2. Sample of ECG records of three people obtained from the ECG-ID (the 1st, 74th, and 90th
person) and MIT-BIH (the 25th, 26th, and 27th person) databases. The red dots were the Rpeak positions
annotated manually by cardiologists.

 

(a) Samples from ECG-ID database (b) Samples from MIT-BIH database 

Figure 3. Sample of detected and segmented ECG beats for training and validation.
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As shown in Figure 3a, ECG records from the ECG-ID database have been preprocessed to remove
three types of noises, i.e., baseline drift, powerline noise, and high-frequency noise. Meanwhile,
Figure 3b shows that the effect of baseline drift and powerline noise is still visible in the ECG signal.

4.2. Experiment on the Training and Validation

As explained in Section 3.1, the detected and segmented ECG beat was divided into two parts,
i.e., training and validation. ECG beats for validation were conducted only after the training process
was completed, by producing a weight file with the optimum value of all model parameters. There
were a total of 33,226 and 30,496 parameters to be trained and optimized for the ECG-ID and MIT-BIH
database, respectively. An example of ECG features extracted using the trained model can be seen
in Figure 4. Referring to Table 2, layer 27 (dense_1 layer) produces 64 values which can be used to
represent the ECG beat feature of each person.

(a) Sample prediction from the ECG-ID database 

(b) Sample Prediction from the MIT-BIH database 

Figure 4. Eight ECG beats feature from 10 people represented by 64 neurons of the fully connected
layer (layer 27, Table 2).

68



Appl. Sci. 2020, 10, 3304

Figure 4a shows that there were eight columns for each person, while Figure 4b shows that there
were six columns for each person. The horizontal lines indicate the regularity of each person’s ECG
beat feature. Figure 4a shows that ECG beats from persons five, seven, and eight have visible horizontal
lines, which indicate they are easier to identify. Figure 4b shows that the regular ECG beat feature was
seen for the first until the sixth patient. Meanwhile, the seventh patient does not show clear horizontal
lines, indicating that the seventh patient’s ECG beats are rather difficult to identify. Table 3 shows
the authentication prediction in more detail for eight and six ECG beats of the ECG-ID and MIT-BIH
databases, respectively. For ECG-ID, the sixth person could be authenticated as the 6th or 62nd person.
Meanwhile, for MIT-BIH, the seventh patient could be authenticated as the 7th or 30th patient.

Table 3. Samples of authentication predictions of eight and six ECG beats for the ECG-ID and
MIT-BH databases.

Person
Beats # (ECG-ID)

Predict Patient
Beats # (MIT-BIH)

Predict1 2 3 4 5 6 7 8 1 2 3 4 5 6

1 28 72 72 1 1 1 16 44 1 1 1 1 1 1 1 9 1
2 2 2 2 2 36 59 2 44 2 2 2 2 2 2 2 9 2
3 3 3 3 24 3 3 3 44 3 3 3 3 3 3 3 9 3
4 4 4 4 4 4 40 4 44 4 4 4 4 4 4 4 9 4
5 5 5 5 5 5 5 5 44 5 5 5 5 5 5 5 9 5
6 6 87 89 62 6 62 14 44 6/62 6 6 6 6 6 6 9 6
7 7 7 7 7 7 7 7 44 7 7 7 24 7 30 30 9 7/30
8 8 8 8 8 8 8 8 44 8 8 8 8 8 8 8 9 8
9 9 9 9 79 79 9 79 44 9 9 45 9 9 9 9 9 9
10 10 76 10 76 10 10 10 44 10 10 10 10 10 10 10 9 10

Based on the previous discussion, the ECG beat features in the 27th layer could be utilized for
selection of the training and validation beats. This layer could be further investigated to produce a
biometric key. Each biometric key of these 64 features can be quantized into 6 bits only, because the
number keys are integer numbers between −20 to 20. Moreover, the number of bits and the number of
features can be adjusted according to the number of persons to be authenticated.

The summary of the authentication results of all validation beats can be seen in the confusion
matrix shown in Figure 5. Figure 5a,b shows the confusion matrix of the authentication results for the
90 validation beats. These 90 beats were extracted from ECG records in the ECG-ID database. Each
person is represented by eight beats or a total of 729 validation beats. Figure 5c,d is the confusion
matrix of the authentication results for the 48 validation beats. These 48 patient beats were extracted
from ECG records in the MIT-BIH database. Each patient is represented by six beats or a total of 288
validation beats.

Figure 5a,c shows the confusion matrix for a single validation beat, i.e., the first beat of eight or
six consecutive beats. Figure 5b,d shows the confusion matrix for multiple validation beats. From
Figure 5, it can be shown that 100% accuracy can be obtained for the multiple validation beats, with six
beats and eight beats for the ECG-ID and MIT-BIH databases, respectively. The optimum number of
multiple beats will be evaluated in the next experiment. Nevertheless, Figure 5 shows that multiple
ECG beats produced better accuracy compared to a single ECG beat.
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(a) Single beat in ECG-ID database (b) Eight beats in ECG-ID database 

(c) Single beat in MIT-BIH database (d) Six beats in MIT-BIH database 

Figure 5. Confusion matrix of the softmax layer (output layer) using single and multiple ECG beats for
ECG-ID and MIT-BIH databases.

4.3. Experiment on the Effect of the Number of Consecutive ECG Beats

In this section, the effect of ECG beat detection methods, i.e., manual (using annotated files) vs.
automatic Hamilton’s method, and the effect of the number of ECG beats on the accuracy, will be
elaborated. Table 4 shows the results for various numbers of ECG beats for two ECG beat detections
and two ECG databases.

Table 4. Experimental Results for Various CNN Models.

P#
Beat

Detection
DSC Res Database #Layer

#Floating
Points

ttrain (ms)
tval

beat
(µs)

#
Beats

Per ID

Accuracy
(%)

1 Manual No Yes
ECG-ID 28 55,034 29,301 75 8 100
MIT-BIH 28 52,304 104,519 70 8 100

2 Manual Yes No
ECG-ID 22 33,482 29,808 75 8 97.78
MIT-BIH 22 30,752 99,236 75 5 100

3 Manual Yes Yes
ECG-ID 28 33,482 27,001 70 8 100
MIT-BIH 28 30,752 102,295 73 6 100

4 Hamilton Yes Yes
ECG-ID 28 33,482 33,110 75 7 98.89
MIT-BIH 28 30,752 102,464 71 5 97.92

5 Hybrid Yes Yes
ECG-ID 28 33,482 27,001 70 10 98.89
MIT-BIH 28 30,752 102,295 70 9 95.83

With manual ECG beat detection, 100% authentication accuracy can be obtained, starting from
eight beats and above for the ECG-ID database and from six beats and above for the MIT-BIH database.
This could be because the number of the persons to be identified from the ECG-ID database (90 persons)
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is almost twice the number of the patients to be identified from the MIT-BIH database (48 patients).
In contrast, with Hamilton’s automatic detection, the authentication accuracy for both ECG-ID and
MIT-BIH cannot reach 100%. This can happen because not all the ECG beats detected by Hamilton’s
method are good beats, so they might require further preprocessing. Nevertheless, manual ECG beat
detection (using annotated files) is only feasible in the lab or offline authentication, as the beat detection
need to be verified manually by cardiologists. Therefore, the optimum numbers of ECG beat using
Hamilton’s beat detection is seven and five for ECG-ID and MIT-BIH databases, respectively (the
accuracy is highlighted in bold in Table 4).

4.4. Experiment on the Various CNN Models and ECG Beat Detection

As described in Section 3.2 (see Table 1), five profiles were carried out for ECG-ID and MIT-BIH
database, i.e., a total of 10 experiments. Table 5 shows the experimental results for various CNN
models (various experimental profiles). Of the particular interest is the third profile, which has the
following configuration: using manual ECG beat detection (annotated files), using both depthwise
separable CNN (DSC) and residual CNN. The third experimental profile produced good results for
both the ECG-ID and MIT-BIH database, i.e., 100% accuracy, for eight and six ECG beats, respectively.

Table 5. Experiment results of a various number of ECG beats.

Number of ECG Beats Beat Detection ECG-ID Accuracy (%) MIT-BIH Accuracy (%)

1
Manual 83.33 89.58

Hamilton 83.33 89.58

2
Manual 37.78 18.75

Hamilton 38.89 16.67

3
Manual 85.56 87.50

Hamilton 81.11 87.50

4
Manual 93.33 93.75

Hamilton 94.44 91.67

5
Manual 95.56 97.92

Hamilton 96.67 97.92

6
Manual 97.78 100

Hamilton 96.67 95.83

7
Manual 97.78 100

Hamilton 98.89 97.92

8
Manual 100 100

Hamilton 98.89 97.92

9
Manual 100 100

Hamilton 97.78 97.92

10
Manual 100 100

Hamilton 97.78 97.92

Although the third profile produced good authentication results, manual beat detection is only
feasible in the lab or in offline authentication, as the beat detection needs to be conducted manually by
cardiologists. Note that the first profile produced a good result as well, but it still uses manual beat
detection, and the required consecutive beats per patient for the MIT-BIH database was higher (8)
compared to the third scenario (6). Comparing the fourth and fifth profiles, it was found that Hamilton’s
automatic beat detection produced better accuracy compared to hybrid beat detection (training using
manual beat detection, while testing using Hamilton’s automatic beat detection). Therefore, the fourth
experimental profile was found to be the optimal CNN configuration.
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From measurement results using the computing platform described in Section 3.1, automatic
ECG beat detection in the ECG-ID database using Hamilton’s method required around 141,318 µs to
detect around 2412 ECG beats or 59 µs per beat on average. In contrast, in the MIT-BIH database,
beat detection required 10,827,746 µs to detect around 108,709 beats, or 100 µs per beat on average.
Therefore, the maximum detection time required to segment 10 beats is around 1750 µs. This is much
faster than acquiring 10 ECG beats from someone’s finger.

4.5. Comparison with Other Algorithms

Table 6 shows the benchmarking results with the other 11 algorithms. Of the various algorithms,
we highlighted the top three highest accuracies tested with both databases, i.e., Salloum & Kuo [24],
Bassiouoni et al. [25], and Wang et al. [9]. Note that, for a fair comparison, we used accuracy results from
manual ECG beat detection and segmentation, as used by the other top three algorithms. Nevertheless,
for real-time implementation, we could use Hamilton’s method for automatic beat detection and
segmentation, as it only provides a slight decrease in accuracy performance.

Table 6. Benchmarking of the proposed algorithm with other algorithms using ECG-ID and MIT-BIH
databases.

No
Author and

Year
Methods Database Training Testing

Accuracy
(%)

1
Lugovaya, 2005

[10]
PCA, LDA,

MVC
ECG-ID 6 beats 6 beats 96.00
MIT-BIH - - -

2
Tan et al., 2016

[26]
Wavelet,

Random Forest
ECG-ID

9 fiducial
points

9 fiducial
points

98.79

MIT-BIH
9 fiducial

points
9 fiducial

points
99.43

3 Zhang, 2017 [11] Wavelet, CNN
ECG-ID - - -

MIT-BIH
single random

segment
single random

segment
93.50

4
Hussein, 2017

[27]
DCT, feature
correlation

ECG-ID - - -

MIT-BIH -
single RR
segment

97.78

5
Salloum & Kuo,

2017 [24] LSTM
ECG-ID 9 beats 9 beats 100
MIT-BIH 18 beats 18 beats 100

6
Bassiouoni et al.,

2018 [25]
ANN (MIT-BIH)
SVM (ECG-ID)

ECG-ID
3 sets of
features

3 sets of
features

100

MIT-BIH
3 sets of
features

3 sets of
features

99.00

7
Wang et al., 2019

[6]
DWT, S-AE

ECG-ID QRST features QRST features 98.87
MIT-BIH QRST features QRST features 96.82

8
Wang et al., 2019

[9]
PCA-Net, SVM

ECG-ID QRST features QRST features 97.75
MIT-BIH QRST features QRST features 100

9
Lynn et. al., 2019

[8] BGRU
ECG-ID 80% 9 beats 98.60
MIT-BIH 80% 9 beats 98.40

10 Altan, 2019 [28] LGA, SODP,
kNN

ECG-ID
5s ECG
segment

5s ECG
segment

91.96

MIT-BIH
5s ECG
segment

5s ECG
segment

95.12

11
Yifan Chu, 2019

[7]
Multiscale

1D-residual
CNN

ECG-ID 500 beats 2 beats 91.96
MIT-BIH 500 beats 2 beats 95.12

12 Proposed RDS-CNN
ECG-ID 10 beats 8 beats 100
MIT-BIH 100 beats 6 beats 100

In Salloum & Kuo [24], ECG beat detection and segmentation was conducted using Tompkins’s
algorithm [29], in which they manually selected the best-quality eighteen or nine consecutive ECG
beats to be fed to the Long Short Term Memory (LSTM) classifier. From each patient of MIT-BIH, they
selected 18 ECG beats for training and testing. Each beat has 250 sample points, which is 125 points
before and after Rpeak. For each subject of ECG-ID, they selected nine ECG beats for training and testing.
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Each beat has 300 sample points, which is 150 before and after Rpeak. Our proposed algorithm used a
lower number of consecutive ECG beats, i.e., eight for ECG-ID and six for MIT-BIH, and no selection of
the quality of ECG signal. Moreover, LSTM is rather more complicated compared to our proposed
RDSCNN algorithm, so we can predict that our algorithm will be faster in the authentication process.

In Bassiouoni et al. [25], the features were extracted from fiducial, non-fiducial, and its fusion.
There were two different classifiers used, i.e., an artificial neural network (ANN) for MIT-BIH and
a support vector machine (SVM) for ECG-ID. Only 30 out of 48 subjects in the MIT-BIH database
were tested, while all 90 subjects in the ECG-ID database were tested. In summary, the algorithm
in [25] has three stages, including beat segmentation, feature extraction, and different classifiers for
different databases. In contrast, our proposed algorithm has only two (faster) stages, including beat
segmentation and an RDSCNN classifier, which can be applied for both databases.

Wang et al. [9] used Tompkin’s method for ECG beat detection and segmentation starting from
0.24 s and 0.4 s before and after Rpeak, respectively. The QRST feature was extracted after the beats were
decomposed using the discrete wavelet transform (DWT). They used a CNN model that functions like
PCA, called PCA-Net, to extract ECG features from the results of DWT decomposition. For classification
and authentication, SVM was used. The algorithm is rather complicated (higher computational time)
and the accuracy for the ECG-ID database is only 97.75%.

As shown in Table 6, our proposed algorithm using residual depthwise separable convolution
neural network outperforms other algorithms, in which it can achieve 100% accuracy for both
the ECG-ID and MIT-BIH databases. Furthermore, using Hamilton’s method for automatic beat
segmentation, it requires around 100 µs (see Section 4.4). The classification process for eight consecutive
ECG beats required around 560 µs. Therefore, our proposed algorithms required around 660 µs
for the authentication process, i.e., automatic beat segmentation and classification. For a further
comprehensive evaluation, other ECG databases could be used as highlighted in [30], including six
public domain databases and twelve private databases.

5. Conclusions

In this paper, we have presented a fast and accurate algorithm for ECG authentication using
residual depthwise separable convolutional neural networks (RDSCNN). Two prominent databases
were used for performance evaluation, i.e., 90 subjects from the ECG-ID database and 48 patients
from the the MIT-BIH database. Two ECG beat detection and segmentation methods were evaluated,
including manual, using annotated files, and automatic, using Hamilton’s method. It was found that
the optimum number of consecutive ECG beats for automatic beat detection was seven and five for the
ECG-ID and MIT-BIH databases, achieving authentication accuracy of 98.89% and 97.92%, respectively.
Furthermore, using manual beat detection with eight (ECG-ID) and six (MIT-BIH) consecutive ECG
beats, 100% authentication accuracy can be achieved. Our proposed algorithm is also rather fast, as
it requires around 660 µs to conduct authentication, i.e., automatic segmentation and classification.
Further research will include optimizing current automatic ECG beat detection and segmentation to be
as close as possible to the manual segmentation by cardiologists. Automatic selection of high-quality
ECG beats for training and testing could also be conducted, for example by using the integer numbers
of 64 ECG features and fractional numbers in the softmax layer. The number of consecutive ECG beats
for authentication purposes could be further optimized, down to a single ECG beat.

Author Contributions: Formal analysis, E.I.; Funding acquisition, K.R.; Methodology, E.I.; Supervision, K.R.;
Writing—original draft, E.I.; Writing—review & editing, K.R., D.S. and T.S.G. All authors have read and agreed to
the published version of the manuscript.

Funding: International Publication Research Grant (PUTI) Universitas Indonesia 2020 based on the Announcement
of Directorate Research and Development No. PENG-1/UN2.RST/PPM.00.00/2020.

Conflicts of Interest: The authors declare no conflict of interest.

73



Appl. Sci. 2020, 10, 3304

References

1. Forsen, G.E.; Nelson, M.R.; Staron, R.J., Jr. Personal Attributes Authentication Techniques; Pattern Analysis &
Recognition Corporation, Rome Air Development Center: St. Utica, NY, USA, 1977.

2. Evans, G.F.; Shirk, A.; Muturi, P.; Soliman, E.Z. Feasibility of using mobile ECG recording technology to
detect atrial fibrillation in low-resource settings. Global Heart 2017, 12, 285–289. [CrossRef] [PubMed]

3. Biel, L.; Pettersson, O.; Philipson, L.; Wide, P. ECG analysis: A new approach in human identification. IEEE

Trans. Instrum. Meas. 2001, 50, 808–812. [CrossRef]
4. Coutinho, D.P.; Silva, H.; Gamboa, H.; Fred, A.; Figueiredo, M. Novel fiducial and non-fiducial approaches

to electrocardiogram-based biometric systems. IET Biom. 2013, 2, 64–75. [CrossRef]
5. Shen, T.-W.; Tompkins, W.; Hu, Y. One-lead ECG for identity verification. In Proceedings of the Second Joint

24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, Houston, TX,
USA, 23–26 October 2002; pp. 62–63.

6. Wang, D.; Si, Y.; Yang, W.; Zhang, G.; Li, J. A Novel Electrocardiogram Biometric Identification Method Based
on Temporal-Frequency Autoencoding. Electronics 2019, 8, 667. [CrossRef]

7. Chu, Y.; Shen, H.; Huang, K. ECG Authentication Method Based on Parallel Multi-Scale One-Dimensional
Residual Network With Center and Margin Loss. IEEE Access 2019, 7, 51598–51607. [CrossRef]

8. Lynn, H.M.; Pan, S.B.; Kim, P. A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram
Classification Based on Recurrent Neural Networks. IEEE Access 2019, 7, 145395–145405. [CrossRef]

9. Wang, D.; Si, Y.; Yang, W.; Zhang, G.; Liu, T. A Novel Heart Rate Robust Method for Short-Term
Electrocardiogram Biometric Identification. Appl. Sci. 2019, 9, 201. [CrossRef]

10. Lugovaya, T.S. Biometric human identification based on ECG. Available online: Availabeonline:https:
//physionet.org/content/ecgiddb/1.0.0/ (accessed on 14 November 2019).

11. Zhang, Q.; Zhou, D.; Zeng, X. HeartID: A multiresolution convolutional neural network for ECG-based
biometric human identification in smart health applications. IEEE Access 2017, 5, 11805–11816. [CrossRef]

12. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2019; pp. 1251–1258.

13. Kaiser, L.; Gomez, A.N.; Chollet, F. Depthwise separable convolutions for neural machine translation. arXiv

2017, arXiv:1706.03059 2017.
14. Ihsanto, E.; Ramli, K.; Sudiana, D.; Gunawan, T.S. An Efficient Algorithm for Cardiac Arrhythmia

Classification Using Ensemble of Depthwise Separable Convolutional Neural Networks. Appl. Sci. 2020, 10,
483. [CrossRef]

15. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2019; pp. 770–778.

16. Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y.
Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep
neural network. Nat. Med. 2019, 25, 65. [CrossRef] [PubMed]

17. Hoang, V.-T.; Jo, K.-H. PydMobileNet: Improved Version of MobileNets with Pyramid Depthwise Separable
Convolution. arXiv 2018, arXiv:1811.07083.

18. Hamilton, P.S.; Tompkins, W.J. Quantitative investigation of QRS detection rules using the MIT/BIH
arrhythmia database. IEEE Trans. Biomed. Eng. 1986, 1157–1165. [CrossRef] [PubMed]

19. Hamilton, P. Open source ECG analysis. In Proceedings of the Computers in Cardiology, Memphis, TN,
USA, 22–25 September 2002; pp. 101–104.

20. Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-time patient-specific ECG classification by 1-D convolutional neural
networks. IEEE Trans. Biomed. Eng. 2015, 63, 664–675. [CrossRef] [PubMed]

21. Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001,
20, 45–50. [CrossRef] [PubMed]

22. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.
Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

23. Chollet, F. Keras: Deep learning library for theano and tensorflow. Available online: Availabeonline:https:
//pypi.org/project/Keras/2.2.0/ (accessed on 12 October 2019).

74



Appl. Sci. 2020, 10, 3304

24. Salloum, R.; Kuo, C.-C.J. ECG-based biometrics using recurrent neural networks. In Proceedings of the 2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA,
USA, 5– March 2017; pp. 2062–2066.

25. Bassiouni, M.M.; El-Dahshan, E.-S.A.; Khalefa, W.; Salem, A.M.J.S.; Processing, V. Intelligent hybrid
approaches for human ECG signals identification. Signal Image Video Process. 2018, 12, 941–949. [CrossRef]

26. Tan, R.; Perkowski, M. ECG biometric identification using wavelet analysis coupled with probabilistic
random forest. In Proceedings of the 2016 15th IEEE International Conference on Machine Learning and
Applications (ICMLA), Anaheim, CA, USA, 18–20 December 2016; pp. 182–187.

27. Hussein, A.F.; AlZubaidi, A.K.; Al-Bayaty, A.; Habash, Q.A. An IoT real-time biometric authentication system
based on ECG fiducial extracted features using discrete cosine transform. arXiv 2017, arXiv:08189 2017.

28. Altan, G.; Kutlu, Y.; Yeniad, M. ECG based human identification using Second Order Difference Plots. 2019,
170, 81–93. Comput. Methods Programs Biomed. 2019, 170, 81–93. [CrossRef] [PubMed]

29. Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236.
[CrossRef] [PubMed]

30. Odinaka, I.; Lai, P.-H.; Kaplan, A.D.; O’Sullivan, J.A.; Sirevaag, E.J.; Rohrbaugh, J.W. ECG biometric
recognition: A comparative analysis. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1812–1824.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

75



applied  
sciences

Article

A Novel P300 Classification Algorithm Based on a
Principal Component Analysis-Convolutional
Neural Network

Feng Li 1,2,†, Xiaoyu Li 1,2,†, Fei Wang 1,2,3,*, Dengyong Zhang 1,2, Yi Xia 1,2 and Fan He 1,2

1 School of Computer and Communication Engineering, Changsha University of Science and Technology,
Changsha 410114, China; Lif@csust.edu.cn (F.L.); csustecolee@foxmail.com (X.L.); zhdy@csust.edu.cn (D.Z.);
csustxy@gmail.com (Y.X.); hf0208@stu.csust.edu.cn (F.H.)

2 Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation,
Changsha University of Science and Technology, Changsha 410114, China

3 School of Software, South China Normal University, Guangzhou 510631, China
* Correspondence: scutauwf@foxmail.com
† These authors contributed equally to this work.

Received: 11 January 2020; Accepted: 19 February 2020; Published: 24 February 2020

Abstract: Aiming at enhancing the classification accuracy of P300 Electroencephalogram signals
in a non-invasive brain–computer interface system, a novel P300 electroencephalogram signals
classification algorithm is proposed which is based on improved convolutional neural network. In the
data preprocessing part, the proposed P300 classification algorithm used the Principal Component
Analysis algorithm to not only remove the noise and artifacts in the data, but also increase the data
processing speed. Furthermore, the proposed P300 classification algorithm employed the parallel
convolution method to improve the traditional convolutional neural network framework, which can
increase the network depth and improve the network’s ability to classify P300 electroencephalogram
signals. The proposed algorithm was evaluated by two datasets (the dataset from the competition
and the dataset from the laboratory). The results show that, in the dataset I, the proposed P300
classification algorithm could obtain accuracy rates higher than 95%, and achieve one of the best
performances in four classification algorithms, while, in the dataset II, the proposed P300 classification
algorithm can get accuracy rates higher than 90%, and is superior to the other three algorithms in
all ten subjects. These demonstrated the effectiveness of the proposed algorithm. The proposed
classification algorithm can be applied in the actual brain–computer interface systems to help people
with disability in the daily lives.

Keywords: brain–computer interface (BCI); electroencephalogram (EEG); P300

1. Introduction

Brain–computer interfaces (BCI) can provide a direct communication method between the brain
and a computer or other external devices [1–3]. There are several types of electroencephalograms
(EEG) signals used in BCI, such as P300 potential [4], steady state visual evoked potential (SSVEP) [5],
motor imagery (MI) [6], and so on. Specifically, P300-based BCI is one of the most common BCI
systems, as the P300 potential is easy to be stimulated. Compared with other signals, the P300-based
BCI system has some advantages: (1) P300 signal is extremely easy to measure and non-invasive;
(2) less training time; (3) suitable for most subjects, including those with severe neurological diseases;
and (4) users only need to provide a simple control signal [7]. It can implement a variety of different
functions, and can even be used in the home of people with disability [7,8].

Farwell and Donchin of the United States introduced the first P300-based character input system in
1988 [9,10], which has been applied until now. The system contained a 6*6 matrix of visual stimulation
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interface, which was composed of English letters, numbers, and spaces. Before the experiment,
the subjects were told that a specified character in the visual stimulator was the target character,
and each experiment randomly assigned a character. During the experiment, the subjects were asked
to keep an eye on the target character position in the visual stimulator, while any row or column in
the visual stimulator flashed randomly. When the target character’s row or column was flashing,
a positive potential (called P300 ERP) related to the event could be detected in the subject’s scalp
(about 300 ms after receiving the stimulus); if not, the detected EEG data were non-P300 event-related
potentials (N-P300 ERP) [11]. In addition to this standard speller system, there are other paradigms,
such as row-column (RC) paradigm [12], single character (SC) paradigm [13], region-based(RB)
paradigm [14], and so on. For all these systems, how to identify quickly and accurately is critical to
improving the performance of BCI systems.

Due to the collected P300 signals often being high dimensional and feature dependent, some
methods were proposed to enhance the feature extraction. PCA (Principal Component Analysis),
a principal component analysis method, is widely used in feature extraction and data dimensionality
reduction. The principle of PCA is to transform the original signal matrix into a covariance matrix [15]
through linear transformation [16], and obtain a new signal matrix by filtering the eigenvalues and
eigenvectors of the matrix [17]. The new signal matrix retains some of the most important original
signal features in the original signals matrix, and eliminates noise and unimportant features to achieve
the purpose of dimensionality reduction. In recent years, many researchers have applied the PCA to
reduce the dimensionality of the obtained EEG signals. Salma Tayeb used different dimensionality
reduction algorithms to process the EEG signals for the dimensionality reduction part of the data,
and found that the use of PCA for dimensionality reduction of P300 signals performed best, compared
to independent component analysis (ICA) and linear discriminant analysis (LDA) [18]. Kundu and
Sourav used PCA to reduce the dimensionality of P300 signals, and then used SVM to classify the
reduced-dimensional signals. PCA reduced the computational burden of weighted classifiers and
speeds up the classification speed [19]. Like combined multi-scale filters and PCA to classify EEG
signals, the classification accuracy can reach 91.13% [20]. PCA fits in a brain–computer interface,
especially the P300 brain–computer interface.

Previous works on P300 classification mainly employed traditional machine learning algorithms,
such as support vector machine (SVM), linear discriminant analysis (LDA), and so on. Rakotomamonjy
divided P300 EEG signals into several equal parts, and then used SVM to train corresponding
classifiers for each part, which improved the accuracy of P300 EEG signals recognition [21]. Chandra S.
Throckmorton proposed a Bayesian P300 recognition method to complete classification by determining
the maximum regression target probability value. Although the accuracy of classification was
improved, it took too much calculation time [22]. With the rapid development of deep learning,
many scholars began to use convolutional neural network (CNN) to classify P300 EEG signals [23].
Cecotti realized the use of convolutional neural networks in deep learning to recognize and classify
P300 EEG signals. He used convolutional layers to separate the time and space domains of P300
EEG signals. The convolutional neural network is fast but very easy to overfit, which affects the
accuracy of recognition [24]. Lawhern Vernon used compact convolutional neural network (CNN) to
classify four types of EEG data including P300 EEG signals, and the results shown that the compact
CNN has the best classification effect on P300 EEG signals [25]. Sobhani proposed to use deep belief
network (DBN) to classify P300 EEG signals which were extracted from each channel, but only a few
subjects have good recognition accuracy [26]. Maddula proposed a 3D recurrent convolution neural
network (3DRCNN) based on a recurrent convolution neural network (RCNN) to classify P300 EEG
signals. It was processed into 3D-EEG signals, and then input them into the RCNN to achieve nice
classification [27]. LIU improved the convolutional neural network on the basis of Cecotti’s algorithm
which was named BN3 algorithm, taking the batch normalization (BN) layer and the dropout (DP)
layer to deepen the network layers and overcome the problem of overfitting. The BN3 algorithm
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achieved good results in classification, but still need to improve the recognition accuracy when the
number of experiments are reduced [28].

In this paper, we combined PCA algorithms with new convolution neural network framework
to complete the P300 signals classification and recognition (named PCA-CNN). Specifically, the PCA
algorithm was used to reduce the dimension of the EEG signal, which not only reduced the calculation
time, but also improved the signal-to-noise ratio of the data. The new convolution neural network
framework improved single convolution kernel model of traditional convolutional neural network.
It contacted multiple convolution kernels to classify P300 EEG signals in the convolution layer, which
improved the recognition ability of the convolutional neural network. Two datasets (competition data
and self-collected data) were used to verify the effectiveness of the algorithm. The results indicated
that the proposed algorithm had a significant effect on the recognition accuracy of P300 EEG signals.

2. Method

2.1. The Dataset

Two sets of experimental data were analyzed in this paper. One was the dataset in the BCI
Competition III provided by the Wadsworth Research Center NYS Department of Health [29]. The other
was provided by South China University of Technology using a different paradigm. There are two
and ten subjects, respectively, in the two datasets. All subjects are healthy persons, who were
selected randomly. Specifically, the two subjects (A and B) were chosen from five people in the
public BCI Competition III in 2004. The other ten subjects in the dataset II were recruited randomly
and participated in the brain–computer interface experiments for the first time, provided by the South
China University of Technology.

Dataset I: The graphical user interface (GUI) of the competition was presented in Figure 1a, which
is a 6*6 character matrix. When the experiment began, each of the 12 rows and columns flashed
randomly. A flashing lasts 100 ms and the interval between two flashing is 75 ms. A subject was asked
to focus on the target character, and silently count the flashing repetitions of the row and column
containing the target character. Each row or column repeats 15 times when outputting one character.
The dataset was consisted of one training (85 characters) and one test (100 characters) sets for each of
the two subjects A and B. All EEG signals were collected by a 64-electrode scalp, which were bandpass
filtered from 0.1–60 Hz and digitized at 240 Hz. The information details can be found in the BCI
competition webpage.

Dataset II: The second dataset was collected in the laboratory from South China University of
Technology using a 4*10 paradigm (see Figure 1b). Different from the first dataset, each character
flashed separately and randomly. A flashing lasts 100 ms and the interval is 30 ms. A subject was
asked to focus on the target character, and silently count the flashing repetitions of the target character.
Each character in paradigm repeats 10 times when outputting one character. The dataset was consisted
of one training (20 characters) and one test (30 characters) set for each of ten subjects. All EEG signals
were collected by a 32-electrode scalp, which were bandpass filtered from 0.1–60 Hz and digitized
at 250 Hz.
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Figure 1. Experimental set-up. (a) 6*6 GUI used in the brain–computer interfaces (BCI) competition;
(b) 4*10 graphical user interface (GUI) used in the laboratory.

2.2. Data Preprocessing

As the raw EEG signals are weak and mixed with non-EEG signals or background noise, the raw
data should preprocess first. In order to remove the influence of these interference information [30],
we used the 8th-order bandpass Butterworth filter [31] to filter the collected raw data and intercept the
potential frequency to 0.1–20 Hz. Then, the number of positive samples should be increased before
the next step, in order to prevent the classification problems caused by the imbalance of positive and
negative samples. We will increase the number of P300 EEG signals to the number of non-P300 EEG
signals; that is, copying P300 EEG signals so that the number of P300 EEG signals is the same as or
close to non-P300 signals.

2.3. PCA Algorithm

PCA transforms the original data into a set of linearly independent data vectors in various
dimensions through linear transformation, which can be used to extract the main feature components
of the data and often be used for dimensionality reduction of high-dimensional data. Therefore,
before EEG signals were input into the neural network, we used the PCA algorithm to reduce the
signal dimension. After preprocessing of the raw signals, a data matrix X is obtained, of which the
abscissa and ordinate are the time and space domains, respectively. We input the matrix X into the
PCA algorithm and calculated the covariance matrix (Cov(X)); then, the eigenvalue eigenvectors of
the covariance matrix were obtained. We could select a matrix of eigenvectors corresponding to the
features with the largest eigenvalues. In this way, the data matrix could be transformed into a new
space, and the dimension reduction of the data features could be realized. Through dimensionality
reduction using PCA, the size of feature vectors changed from 64*240 and 30*160 to 64*120 and 30*80
(two datasets respectively). The mathematical formula is as follows:

Input the matrix X(x1, x2, x3, ..., xn), and reduce the matrix X to K dimensions, 0 ≤ K ≤ n.
Find the covariance matrix of matrix X:

Cov X =
1
n

XXT (1)

Find the eigenvalues and eigenvectors of the covariance matrix CovX:

Cov X = ΛL (2)

where Λ = diag[λ1, λ2, . . . , λn] is the eigenvalue of the X covariance matrix, and L is the eigenvector
of the X covariance matrix.
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Sort the eigenvalues Λ(setλ1 ≥ λ2 ≥ ... ≥ λn ≥ 0) from large to small, and select the largest k of
them. Then, use the corresponding k feature vectors as row vectors to form a feature vector matrix P

and the data are transformed into a new matrix Y constructed by k feature vectors:

Y = PX (3)

where Y is the matrix after dimensionality reduction.

2.4. Parallel Convolutional Network

In this paper, we proposed an improved neural network architecture (as shown in Figure 2).
The specific network contained 9 layers, the parameters of which were illustrated in Tables 1 and 2.
L1 is the data input layer. L2 is the spatial domain convolution layer. L3 to L6 are the parallel
convolution layer [32,33] to extract time domain features. L7 is the pooling layer. L8 and L9 are fully
connected layer and softmax layer. The computations in each layer (following, as an example, Table 1
Parameters setting) were described in detail as follows:

L1: The input layer loads the pre-processed EEG data into the network and uses a to represent the
data tensor transmitted to the neural network.

L2: Convolution layer, which is a spatial filter for all channels of the input signal, can improve
the signal-to-noise ratio [34], and remove redundant signals in the spatial domain.The formulas are
as follows:

a1
i (j) =

i=64

∑
i=1

a0
i (j)w0 + b0 (4)

where a1
i (j) is output data for L2, i (1 ≤ i ≤ 64) denotes the Spatial dimension, and j (1 ≤ j ≤ 120)

denotes the time dimension. w0 denotes the weight, b0 denotes the deviation (all wn, and bn (0, 1, 2, ..., n)
denotes the deviation of different values below).

L3 and L4: convolutional layer and dropout layer. This layer is arranged in parallel by three
convolutional layers of different convolution sizes. Each convolution and size is the same. Different
convolution kernels can be extracted to different values for the same input: information, increasing
the complexity of features. After filtering in the time domain after L2 layer spatial filtering, we use
16*5*1, 16*10*1 and 16*15*1 convolution kernels for convolution. After convolution, we can get 16*1*24,
16*1*12 and 16*1*8 feature vectors; these feature vectors are combined into 16*1*44 feature vectors.
A dropout layer is added after the convolutional layer to prevent overfitting in the case of too many
model parameters [35]. The formula is as follows:

a2
j (s) =

j=120

∑
j=1

a1
j (s)w1 + b1 + a1

j (s)w2 + b2 + a1
j (s)w3 + b3 (5)

r1 = Bernoulli
(

p1
)

(6)

a3
j (s) =

j=44

∑
j=1

a2
j (s)r

1w4 + b4 (7)

where a2
j (s) is output data for L3, s (1 ≤ s ≤ 20) denotes the depth of convolution kernels, j denotes

the time dimension, and a3
j (s) is output data after dropout layer. r and p denote the dropout value,

r = 0.5.
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Figure 2. The framework model of the 9-Layer convolution neural network used for classification.
The feature map is of dimension Depth @ Height * Weight (such as 16@1*24), layers with colors indicate
that different size convolution kernels are used. The parameters in this figure are an example of the
parameters in Table 1.

L5 and L6: Structures of these two layers are the same as that of L3 and L4. These layers are
convolved with 16*2*1, 16*4*1, and 16*11*1 convolution kernels, which can get 16*1*22, 16*1*11, and
16*1*4 feature vectors, and are combined into 16*1*37 feature vectors. A dropout(DP) layer is added
after the convolution layer, and the value is 0.5. The calculation formula is as follows:

a4
j (s) =

j=44

∑
j=1

a3
j (s)w5 + b5 + a3

j (s)w6 + b6 + a3
j (s)w7 + b7 (8)

r2 = Bernoulli
(

p2
)

(9)

a5
j (s) =

j=37

∑
j=1

a4
j (s)r

2w8 + b8 (10)

L7: The pooling layer consists of a pooling filter of size 2, which is used to reduce the parameters
of the network.

L8 and L9: Fully connected layer and softmax layer. Data after L7 which are connected with 100
neurons, and then classification by softmax layer. We use rectified linear unit (ReLU) as the activation
function [36]. a6(k) and a7(k) denote the output data after fully connected(FC) layer. k is the number
of feature maps. The calculation formula is as follows:

a6(k) =
k=288

∑
k=1

a5(k)w9 + b9 (11)

a7(k) = relu

(
k=100

∑
k=1

a6(k)w10 + b10

)
(12)

When the calculated network output probability is greater than or equal to 0.5, the current input
signals are determined to be P300 signals, otherwise not. The judgment is as follows:

Q =

{
1 (P ≥ 0.5)
0 (P < 0.5)

(13)

where Q represents the judgment result and P represents the probability value.
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The scintillation of 6 rows and 6 columns in the experiment will be repeated 15 times. This is
because the position of the target character can not be accurately determined by single experiment
scintillation. The probability values corresponding to multiple row scintillation and multiple column
scintillation can be accumulated. The target character can be determined by selecting the rows and
columns corresponding to the maximum probability values. The formula is as follows:

{
X = argi max ∑

K=n
K=1 p(K, i) (1 ≤ i ≤ 6)

Y = argi max ∑
K=n
K=1 p(K, i) (7 ≤ i ≤ 12)

(14)

X denotes the position of column target characters, Y denotes the position of row target characters,
n denotes the number of experiments, P denotes the probability value, K denotes the serial number of
experiments, and i denotes the row and column numbers.

Dataset II is a random single flicker of 40 characters, from which the location of the maximum
probability value can be selected to determine the target character. The formula is as follows:

Z = argi max
K=n

∑
K=1

p(K, i) (1 ≤ i ≤ 40) (15)

Z denotes the position of the target character, n denotes the number of experiments, P denotes
the probability value, K denotes the serial number of experiments, and i denotes the position number.

Table 1. The network parameter settings for dataset I.

Number of Layers Input Convolution Kernel and Operation Output Activation Function

L1 1*64*120 None 1*64*120 None

L2 1*64*120 20*64*1 20*1*120 ReLU

L3
20*1*120 16*1*5 16*1*24

ReLU20*1*120 16*1*10 16*1*12
20*1*120 16*1*15 16*1*8

L4
16*1*24

Concat and DP 16*1*44 ReLU16*1*12
16*1*8

L5
16*1*44 16*1*2 16*1*22

ReLU16*1*44 16*1*4 16*1*11
16*1*44 16*1*11 16*1*4

L6
16*1*22

Concat and DP 16*1*37 ReLU16*1*11
16*1*4

L7 16*1*37 Maxpool 16*1*18 ReLU

L8 16*1*18 FC 100*1 ReLU

L9 100*1 Softmax 2*1 ReLU
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Table 2. The network parameter settings for dataset II.

Number of Layers Input Convolution Kernel and Operation Output Activation Function

L1 1*30*80 None 1*30*80 None

L2 1*30*80 20*30*1 20*1*80 ReLU

L3
20*1*80 16*1*5 16*1*18

ReLU20*1*80 16*1*8 16*1*10
20*1*80 16*1*10 16*1*8

L4
16*1*18

Concat and DP 16*1*36 ReLU16*1*10
16*1*8

L5
16*1*36 16*1*2 16*1*18

ReLU16*1*36 16*1*4 16*1*9
16*1*36 16*1*9 16*1*4

L6
16*1*18

Concat and DP 16*1*31 ReLU16*1*9
16*1*4

L7 16*1*31 Maxpool 16*1*15 ReLU

L8 16*1*15 FC 100*1 ReLU

L9 100*1 Softmax 2*1 ReLU

2.5. Evaluation

To measure the performance of the algorithms, we used two indices, the accuracy rate and
the information translate rate (ITR) [24,37] to compare the proposed PCA-CNN with other CNN
algorithms in the literature. The accuracy can evaluate the effectiveness of the algorithm. The accuracy
rate in the article is the number of correct classified characters classified compared with the number of
total actual test characters. The calculation formula is as follows:

Tacc = Pn/Sn (16)

where Tacc is the accuracy rate of character recognitions, P is the number of correct detected characters,
n is the number of repeats, and S is the number of total characters.

ITR can display the recognition speed of the test characters by the classification algorithm in bits
per minute. The formula is as follows:

ITR =
60(P log2(P) + (1 − P) log2((1 − P)/(N − 1)) + log2(N))

T
(17)

where N represents the number of classes, P represents the accuracy rate of character recognitions,
and T represents the time taken for character recognitions [24,28].

In dataset I, as each flash lasts for 100 ms followed by a pause of 75 ms (12 ∗ (75 + 100) = 2100)
and a pause of 2.5 s between each character epoch, T can thus be defined as:

T = 2.5 + 2.1n (18)

where n is the number of repeats, 1 ≤ n ≤ 15.
In dataset II, as each flash lasts for 100 ms followed by a pause of 30 ms (40 ∗ (30 + 100) = 5200)

and a pause of 1.2 s between each character epoch, so T can be defined as:

T = 1.2 + 5.2n (19)

where n is the number of repeats, 1 ≤ n ≤ 10.
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3. Experimental Results

In this paper, we used the accuracy rate and ITR to evaluate the P300 signals detection performance
on two datasets of different subjects. In dataset I, there are 85 training and 100 test characters for
each subject, each of which is repeated 15 times. Tables 3 and 4 present the test accuracy rates of the
proposed PCA-CNN and other classification methods in the literature, including CNN algorithms
BN3 [28] and CNN-1 [24], and a traditional SVM algorithm [21], on the datasets I of subjects A and B.
Bold numbers in the table indicate the best accuracy rate in the N(1, 2, . . . , N) repeats. For both subjects,
the proposed PCA-CNN is one of the best algorithms in 15 repeats, and can obtain the accuracy rate
higher than 95%. Furthermore, the PCA-CNN is superior to other three methods from 7 repeats for the
subject A in the dataset I, and from 8 repeats for the subject B in the dataset I.

Table 3. The accuracy rate of subject A in dataset I.

Algorithms
The Number of Repeats

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PCA-CNN 24 37 46 61 71 75 84 86 90 90 92 94 95 97 98
BN3 22 39 58 67 73 75 79 81 82 86 89 92 94 96 98

CNN-1 16 33 47 52 61 65 77 78 86 90 91 91 91 93 97
SVM 16 32 52 60 72 71 82 81 82 83 87 88 94 95 97

Table 4. The accuracy rate of subject B in dataset I.

Algorithms
The Number of Repeats

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PCA-CNN 30 51 57 69 73 74 83 94 95 96 97 95 96 96 96
BN3 47 59 70 73 76 82 84 91 94 95 95 95 94 94 95

CNN-1 35 52 59 68 79 81 82 89 92 91 91 90 91 92 92
SVM 35 53 62 68 75 80 84 86 89 91 92 93 96 95 96

In dataset II, there are 20 training characters and 30 test characters for each subject, each of which
is repeated 10 times. Figure 3 presents the test accuracy rates of the proposed PCA-CNN and other
classification methods in the literature, including CNN algorithms BN3 [28] and CNN-1 [24], and the
traditional SVM algorithm [21], on datasets II of 10 subjects. The different color line in the figure records
the results of all subjects that used different methods on each repeat. For all subjects, the average
accuracy rate of PCA-CNN is higher than the other three algorithms in 4th repeats. Furthermore,
the average accuracy rate of PCA-CNN is the best algorithm in 10 repeats, and can obtain an average
accuracy rate higher than 90%. The experimental results show that the PCA-CNN is superior to others
in character recognition.

We record the information translate rates of datasets I and II in different algorithms. As shown
in Figures 4 and 5, the ITR value of the PCA-CNN is higher than that of the other three algorithms
(BN3 [28], CNN-1 [24], and SVM [21]) in the maximum repeat. In Figure 4, after the 7th repeat, the ITR
value of PCA-CNN is higher than the other three algorithms (BN3 [28], CNN-1 [24] and SVM [21]).
In Figure 5, after the 4th repeat, the ITR value of PCA-CNN is higher than the other three algorithms
(BN3 [28], CNN-1 [24] and SVM [21]). From the overall results of Figures 4 and 5, the PCA-CNN is
faster than the CNN-1 [24] and SVM [21]. These indicate that, on the basis of ensuring the characters
recognition accuracy rate, the characters’ recognition speed of PCA-CNN is still fast, and the PCA-CNN
algorithm has application value.
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Figure 3. The accuracy rates of all ten subjects in dataset II. The vertical axis corresponds to the
accuracy rate, and the horizontal axis corresponds to the number of repeats. The color curves represent
respectively the different classification accuracy rates of each subject and the average accuracy rate
(AVG) of all 10 subjects (S1, S2, ..., S10) tested by four methods.

Figure 4. The information translate rate graph for four algorithms in the dataset I calculated by the
average information translate rates of subject A and subject B.
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Figure 5. The information translate rate graph for four algorithms in dataset II calculated by the
average information translate rates of all ten subjects.

4. Discussion

This paper proposed a PCA-CNN algorithm to improve the classification performance of
P300-based BCI system. The PCA was used to reduce the P300 EEG signals dimension, as PCA could
not only removed the noise and unimportant features of P300 EEG signals, but also improved the speed
of EEG data processing. Furthermore, we used the improved convolutional neural network to classify
P300 EEG signals and recognition. The experiment results show that, with the same experimental data
and the number of experiments, the classification accuracy of the PCA-CNN algorithm is one of the
best among algorithms SVM [21], CNN-1 [24], and BN3 [28].

For dataset I and dataset II, the algorithm produced some identical and a few different results.
In both datasets, the PCA-CNN has higher accuracy rates of characters recognition than the other three
algorithms (BN3 [28], CNN-1 [24], and SVM [21]) with repeat number increases, and can obtain the
highest accuracy rate of character recognition in the last repeat. However, in dataset I, the comparison
of the classification accuracy results of the algorithm PCA-CNN and the other three algorithms
(BN3 [28], CNN-1 [24] and SVM [21]) is not as obvious as that in the dataset II. This difference may be
due to the different number of subjects in dataset I and dataset II. There are only two subjects in dataset
I. Thus, too small sample size may lead to insignificant differences in the comparison of classification
accuracy results. In both dataset I and dataset II, the ITR value of the PCA-CNN is higher than that of
the other three algorithms (BN3 [28], CNN-1 [24] and SVM [21]) in most repeats. The difference is that
the comparison of the ITR value results of the algorithm PCA-CNN and the other three algorithms
(BN3 [28], CNN-1 [24] and SVM [21]) is not obvious in two datasets. One possible reason is related to
the difference of classification accuracy in the two datasets. According to the ITR calculation formula,
its value is proportional to the classification accuracy. In dataset I, the classification accuracy rate of
the PCA-CNN algorithm is not significantly higher than that of other algorithms in data II, at the
maximum repeat.

The PCA algorithm was widely used in various fields of research data analysis, especially suitable
for analyzing two-dimensional data matrix [38]. Researchers found that PCA could well express the
basic features of the original data with less data [39]. Therefore, P300 EEG signals still retain the
integrity of original EEG signals after PCA dimensionality reduction. Although the convolutional
neural network can also directly extract features by itself, we find that the classification accuracy
rates are higher after using PCA. As shown in Table 5, when the PCA algorithm is not added in the
classification process, the accuracy of classification is lower than the accuracy of adding the PCA
algorithm.The average recognition accuracy rates (subject A and subject B in the dataset I) of the
PCA-CNN algorithm is 97%, while the average accuracy of recognize characters without the PCA
algorithm is 94%. The former is 3% higher than the accuracy in the latter category. In Figure 6,
the average accuracy rate (ten subjects in the dataset II) of recognized characters related to the CNN
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algorithm which added the PCA algorithm is 90%, while the average accuracy of recognize characters
without the PCA algorithm is 80%. The former is 10% higher than the accuracy in the latter category.
These may be caused by the overfitting problem when the convolutional neural network processes a
large amount of data, which affects the experimental performance. Adding the PCA algorithm in the
convolutional neural network may solve this problem that has been proven by some literature [40,41].

Table 5. The comparison of PCA and NO-PCA character recognition accuracy rate in dataset I.

Methods Subjects Accuracy Rate

PCA
A 98
B 96

NO-PCA
A 96
B 93

Figure 6. The comparison of PCA and NO-PCA characters recognition accuracy rate in dataset II.

In order to obtain a classifier with better classification ability, we improved the convolutional
layer of the traditional convolutional neural network to a parallel convolution layer [42]. The parallel
convolution layer adds multiple convolution kernels of different sizes to filter out the P300 EEG signal
features. The number of convolution kernels determines the output of the convolution layer, so the
convolution layer needs to appropriately increase the number of convolution kernels in order to more
fully extract the features of signals [43]. In the previous works on the convolution neural network,
such as CNN-1 [24] and BN3 [28], a single convolution kernel layer was used in the convolution part.
However, when the number of signals is too large, the effect of a single convolution kernel layer in
filtering features will become worse, and it is easy to ignore some features. The parallel convolution
layer could increase the data capacity of the network, and may overcome the lack of features caused
by improper selection of the convolution kernel size [44].

Based on the traditional convolution neural network, this paper constructed the algorithm
PCA-CNN, a new algorithm for the P300 EEG signals classification. Compared with some traditional
convolutional neural algorithms, the PCA-CNN algorithm has a higher classification accuracy rate for
the P300 EEG signals’ recognition. As shown in Tables 3 and 4, and Figure 3, the results show that the
PCA-CNN algorithm has good classification performance in datasets I and II. As shown in Figures 4
and 5, the ITR of PCA-CNN is higher than the traditional SVM classification algorithm, which proves
the stability of the algorithm performance. The PCA-CNN algorithm can obtain the classification
accuracy rate higher than 90% on both datasets I and II; when the classification accuracy rate of P300
EEG signals is higher than 80%, the classification algorithm is effective [45]. The proposed PCA-CNN
algorithm can be employed in a brain–computer interface system, and be applied for people with
disability in daily lives.
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5. Conclusions

Our work focuses on P300 EEG signals preprocessing and the convolution neural network
structure designing. In the P300 EEG signals preprocessing part, the PCA is used to retain the data
features of the original P300 EEG signals, which reduced the dimension of the original signals and
reduced the computational cost of subsequent algorithms. In the convolution neural network structure
designing part, this paper used a deep convolutional neural network to implement the classification
and recognition of P300 EEG signals. The convolution neural network uses its own powerful feature
extraction capabilities to construct a better classifier. The new algorithm changed the single-kernel
convolutional layer in the convolution neural network to a multi-kernel convolutional layer, that is,
using a multi-kernel convolution filter to extract P300 EEG signals, which improved the classification
ability of the network. Compared with some traditional classification algorithms, the PCA-CNN
algorithm has a higher character recognition accuracy rate. In the future, our research will consider
how to improve the recognition speed of BCI system and implement an online P300 brain–computer
interface system based on the deep convolution neural networks.
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Abstract: In the past decades, the electrocardiogram (ECG) has been investigated as a promising
biometric by exploiting the subtle discrepancy of ECG signals between subjects. However, the heart rate
(HR) for one subject may vary because of physical activities or strong emotions, leading to the problem
of ECG signal variation. This variation will significantly decrease the performance of the identification
task. Particularly for short-term ECG signal without many heartbeats, the hardly measured HR makes
the identification task even more challenging. This study aims to propose a novel method suitable
for short-term ECG signal identification. In particular, an improved HR-free resampling strategy is
proposed to minimize the influence of HR variability during heartbeat processing. For feature extraction,
the Principal Component Analysis Network (PCANet) is implemented to determine the potential
difference between subjects. The proposed method is evaluated using a public ECG-ID database that
contains various HR data for some subjects. Experimental results show that the proposed method is
robust to HR change and can achieve high subject identification accuracy (94.4%) on ECG signals with
only five heartbeats. Thus, the proposed method has the potential for application to systems that use
short-term ECG signals for identification (e.g., wearable devices).

Keywords: ECG identification; short-term ECG signals; HR-free resampling strategy; principal
component analysis network; ECG-ID

1. Introduction

Biometric systems play an important role in security applications and have been deployed around
the world in past decades. Currently, common used biometrics in practice include face, fingerprint, iris,
etc. However, neither can these biometrics effectively avoid being stolen, nor are they robust enough
to falsification. For instance, with finger marks left behind on objects, crackers can recreate fingerprint
using latex; Iris images can be captured in a few meters distance and falsified by using contact lenses
with copied iris feature printed on [1]; Biometric systems utilizing facial recognition can be easily fooled
by high-resolution still photos. In recent years, it has been observed that electrocardiogram (ECG) is a
significant signature for individuals even within siblings or twins [2]. Unlike other biometrics, ECG is
an inner signal, whose presence automatically ensures the liveness [3,4]. This property makes ECG far
more difficult to be stolen or falsified.

The ECG signal is the recording of periodic variation with heart beating. A heartbeat represents
one period of the ECG signal, which conveys rich identity information and is an important sign
for subject identification. However, visual interpretation of beats is difficult because the changes
in amplitude and duration are subtle. To deal with this problem, pattern recognition methods are
preferred in ECG identification due to their reliable, quick, and objective analysis.
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Appl. Sci. 2019, 9, 201

Within the last decade, many methods, based on neural networks [5,6], support vector machine [7],
and k-nearest neighborhood [8] have been proposed in literature for the purpose of automatic
identification. The literature [9] presented a recurrent neural network (RNN)-based method, which
could achieve automatic feature extraction, to improve the identification performance on ECG signals
from both the same session and different sessions. Discrete wavelet transform was used to extract
wavelet coefficients as the feature vector and KNN was applied as the classifier in literature [10].
A novel automatic ECG identification approach combining back propagation neural network (BP-NN)
with Frequency Rank Order Statistics (FROS) was introduced to distinguish different subjects in the
literature [11]. The literature [12] utilized neural networks to both identify QRS complex segments and
perform user authentication on these segments. All these methods mainly focus on the development
of the part of feature extraction and classification. By properly combing the approaches of feature
extraction with improved classifiers, these methods have achieved good performance. However, it is
noted that most of them are evaluated on signals with stable heart rate (HR). Actually, there are the
variation of ECG signals of one person due to HR change. For example, HR increase will shorten the
duration of the ventricular depolarization period, leading to T wave shift. In other ECG applications,
such as atrial fibrillation (AF) [13], the HR variability can be used to distinguish the AF episode from
normal sinus rhythm. However, in ECG biometric, this variation will result in low identification task
and make the identification become far more difficult without appropriate processing [14].

To overcome this limitation, a popular method is to normalize QT interval according to correction
formulas. For example, Lugovaya et al. [15] scaled the ST-fragment based on Framingham and Bazett’s
formulas. Francesco et al. [16] preferred to use a different formula based on the suggestion presented
by Tawfik in [17]. Besides methods based on QT correction, Kiran et al. [18] also proposed an effective
feature extraction depending on the characteristic points, which were P, Q, R, S, and T. By taking
less HR related parameters as features, this method was least affected by HR change. However,
the performance of these above methods depends on the accurate localization of wave boundaries
for QT interval estimation or HR measurement. Though the R and T wave detection techniques
have started to provide acceptable results in most cases, detecting P, Q, and S is still challenging [19].
Furthermore, HR measurement of ECG signals requires multiple ECG signals and may not be desirable
for systems that use short-term ECG signals for identification. Thus non-fiducial or partial-fiducial
identification methods should be investigated.

To solve this problem, Wonki Lee et al. [20] proposed a novel partial-fiducial method, whose idea
was that one heartbeat was resampled and mapped into a regular interval by ignoring temporal period
information. Taking a pattern matching algorithm based on Euclidean distance as the classifier, they
achieved a maximum performance of 98.36% accuracy using finger ECG data. However, according
to the research of Mikhail Matveev1 et al. [21], QRS negative area, total area, slope from R to S peak
and sum of the absolute QRS velocities values have a strong correlation between ECG recordings
acquired 5 years apart. These features will be distorted during the resampling process proposed by [20],
hindering a further increase of identification accuracy. Identification performance can be potentially
improved by appropriately reserving the original information of the QRS complex.

The aim of this study is to propose an HR robust ECG identification method suitable for short-term
ECG signals. Our work contains two main parts: (1) On the basis of the research of reference [20], we
propose a QRS-centered resampling strategy for heartbeat processing. The method aims to completely
preserve the original temporal and morphological information of the QRS complex while solving the
problem of T wave shift. As a result, more potentially helpful information with less HR influence
will be provided for the subsequent steps; (2) For feature extraction, Convolution Neural Network
(CNN) has proven its effectiveness in medical research such as health informatics and computed
tomography image analysis in recent years [22–25], e.g., Acharya et al. [22] conducted a CNN study for
automatic arrhythmia detection and recorded accuracy, sensitivity and specificity of 92.50%, 98.09%,
and 93.13%, respectively, for two seconds of ECG segments. In our work, Principal Component
Analysis Network (PCANet) proposed by Tsung-Han Chan et al. [26], a new kind of CNN that
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employs PCA to learn multistage filter banks, is adopted as the tool to mine more useful components
from the processed heartbeats. By using PCA filters as the convolution kernel, this network is sensitive
to the local difference among heartbeats from different subjects. At last, a linear Support Vector
Machine (linear-SVM) is used to address the identification for faster training and classification.

The rest of this paper is organized as follows: Section 2 illustrates the proposed methodology;
Database and experimental results are shown in Section 3; the results of our approach are discussed in
Section 4; and Section 5 concludes the paper.

2. Methods

The whole proposed identification process is mainly composed of five parts: (1) preprocessing;
(2) HR variability removal; (3) feature extraction; (4) beat identification; and (5) subject identification.
Figure 1 depicts the diagram of the ECG identification methodology proposed in this paper.

Figure 1. Diagram of electrocardiogram (ECG) identification methodology proposed.

2.1. Preprocessing

Denoising: Multiple factors will interfere with the quality of the ECG signal. The origins of
interference are usually various. For example, during the acquisition of ECG signals, power-line
interference generates because of the frequency influence of the used power. Interference will display in
the form of noise and distort the waveform of ECG signals, leading to the decrease of ECG identification
performance. Real raw ECG signals contain three major noise, namely, baseline drift, power-line
interference and Electromyogram (EMG) artifact. Generally, the frequency of baseline drift is less
than 0.5 Hz [27] and that of power-line interference is 50 Hz (or 60 Hz) [28]. While EMG artifact is a
random noise that spreads over the entire frequency range [29]. In this paper, wavelet transform (WT)
is employed as the de-nosing method due to its property of sparsity, locality and multi-resolution [30].
The wavelet-based de-noising process is summarized as follows: Raw signals are decomposed to
9 levels by lifting wavelet transform with wavelet db4; Obtained detail coefficients of different levels
are thresholded by shrinkage (soft) strategy; Reconstructing the original sequence from the thresholded
wavelet detail coefficients leads to removal of noise. Here the shrinkage strategy uses the universal
‘VisuShrink’ threshold given by [31]:

Thr = σ
√

2 log(N) (1)
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where N is the number of data points and σ represents the estimated noise level, which is obtained
according to [32]:

σi =
median(|ωi|)

0.6745
(2)

where σi is the noise level of the i-th level and median(x) can output the median value of input
sequence x. The functions lwt, wthresh, and ilwt in MATLAB were employed as the method for wavelet
decomposition, coefficient thresholding and signal reconstruction respectively. Figure 2 shows the
comparison between the original signal and the denoised signal.

Figure 2. Comparison between the original signal and the de-noising signal.

Segmentation: After denoising, the R and T peak detection task is performed on denoised signals
by using the ECGPUWAVE tool box [33]. Then the detected peak points at T are taken as the delimiters
for segmentation. Figure 3 shows a beat extracted in the T-T way. It can be seen that the beat starts
with its former T peak and ends with its own T peak. The duration is exactly a cardiac cycle.

Figure 3. An extracted heart beat taking T as the delimiters.
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2.2. QRS-Centered Resampling Strategy

As mentioned above, an ECG signal can be segmented into several heartbeats. Comparison of
original and processed heartbeats is shown in Figure 4. Figure 4a shows several beats extracted by
taking T peaks as delimiter. It is noted that even beats α, β, and γ, which comes from the same subject,
do not have the same ECG waveform pattern. This nonstandard format cannot satisfy the requirement
of subsequent pattern matching, thus framing an arbitrary length of beat into a regular interval of the
same length is necessary.

  
(a) (b) 

  

(c) (d) 

175 175

50

The first part The third partThe QRS part 

Figure 4. Comparison of heartbeats with different resampling manners. (a) Original heartbeats; (b)
Heartbeats with direct resampling; (c) Normalization progress of the QRS-centered resampling; and (d)
Heartbeats processed by the proposed method.

Generally, resampling-process [34] can provide a sufficient way for format standardization.
Heartbeats with direct resampling can be seen in Figure 4b. It is noted that QRS waveforms of beats α,
β, and γ are similar to each other, but locate in different positions on the beats. Beat ϕ has a different
QRS waveform from the above three, but its position is similar to α. As a result, it is likely found
that the similarity measurements among α, β, and γ are larger than that between α and ϕ, leading the
following decision to an opposite result.

To solve this problem, a QRS-centered resampling strategy is proposed in this section. Based
on the research of [5,20,21], our idea is that any temporal and morphological information of the QRS
complex may potentially contribute to ECG identification. Meanwhile, only the amplitude is useful
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in identifying a subject for the rest part. Thus, we remain QRS complex original to preserve all QRS
information and resample the rest part to correct T wave shift by ignoring its temporal information.
Figure 4c shows the proposed normalization progress. In our strategy, each heartbeat is considered as
three parts, namely, the first part, the QRS part and the third part. The first part is from the start-point of
beat to the start-point of the QRS part; the QRS part is centered on the detected R point and has unified
50 points; the third part is from the end-point of the QRS part to the end-point of beat. The process of
the proposed strategy is summarized as follows: Firstly, considering that the QRS duration of a healthy
subject is generally 60~100 ms, a 50-point width window (the digitalized frequency of ECG-ID is 500
Hz and 100 ms corresponds to 50 points on this database) centered on R point is used to determine
boundaries of three parts on heartbeats; Then extracted QRS parts are aligned centered on R peaks;
Lastly, resampling process is utilized to normalize the first and third part both to 175 points. Extracted
beats with our strategy can be seen in Figure 4d. The morphology of beat α, β, and γ, becomes more
similar to each other, and shows a significant difference from beat ϕ at the same time. The function
resample of MATLAB is employed as the method for resampling.

2.3. PCANet

Principal Component Analysis Network (PCANet) is a simple deep learning method to extract
high-level features from the original input. Unlike traditional deep learning networks such as
Convolution Neural Network (CNN) or Deep Belief Network (DBN), it does not need complicated
iterative process for numerous parameters optimization. Only a few network parameters are necessary
for determining a PCANet. Once these parameters are fixed, training the PCANet will be extremely
simple and efficient. Figure 5 shows the structure of PCANet for ECG feature extraction. Code
implementation of PCANet is available on [35].

Figure 5. The structure of Principal Component Analysis Network (PCANet) model for ECG feature extraction.

2.3.1. Normalization

Given a heartbeat sample x processed by QRS-centered resampling strategy, it should be
normalized before feature extraction. Here, we use min-max normalization to realize this process.
The function of mapminmax in MATLAB is employed as the method for normalization.
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2.3.2. Input Layer

The main function of the input layer is to fold the normalized heartbeat vectors into matrices,
which are suitable for the use in the convolution process of PCANet. Assume the normalized heartbeat
vector x∗ = [x∗1 , x∗2 , x∗3 , · · · , x∗mn], its specific folding process can be seen in Equation (3):

[x∗1 , x∗2 , x∗3 , · · · , x∗mn] →

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x∗1 , x∗2 , · · · , x∗n
x∗n+1, x∗n+2, · · · , x∗2n

...
...

...
...

x∗(m−2)n+1, x∗(m−2)n+2, · · · , x∗(m−1)n

x∗(m−1)n+1, x∗(m−1)n+2, · · · , x∗mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

where mn is the number of sampling point in the heartbeat vector. In this paper, since the dimension of
nomalized heartbeat is 400, we set both m and n to 20. The function of reshape in MATLAB is employed
as the method for folding.

2.3.3. The First Stage (PCA)

In this stage, we firstly use a k1 × k2 patch to scan one heartbeat matrix with step 1 to collect its
all patches. Then we make each patch subtract the mean of all patches and obtain all mean-removal
patch matrices of the heartbeat matrix. By constructing the same matrix for N heartbeat matrices and
combining them, we get their combination Y.

Then we perform Principal Component Analysis (PCA) on the combination Y. In this way,
principal eigenvectors which are ordered based on the decrement of the corresponding eigenvalues
can be obtained. By selecting the first L1 principal eigenvectors and respectively reconstructing them
to matrices with size k1 × k2, we can get the PCA filter bank of the first convolution layer. Equation (4)
shows the specific process:

W1
l = matk1k2

(ql(YYT)) ∈ Rk1×k2 , l = 1, 2, · · · , L1 (4)

where W1
l is the l-th PCA filter of the first convolution layer, YYT is the covariance matrix of Y, ql()

extracts the l-th principal eigenvector of YYT , and matk1,k2
() maps the extracted principal eigenvector

to a matrix W ∈ Rk1×k2 .

2.3.4. The Second Stage (PCA)

After obtaining PCA filters of the first layer, we can get the filter output by doing convolution on
the heartbeat matrix and PCA filter W1

l . Then the solution process of PCA filter banks in the second
stage is just the same as that in the first stage. We firstly scan the first layer output using a patch with
size k1 × k2 and collect a series of patches. Then the patch mean is subtracted from each patch and the
mean-removed patches of the l-th filter output of all heartbeat matrix are combined together to obtain
patch matrix. For all of the filter, their patch matrices are concatenated to get combination Ỹ. The PCA
filters of the second stage are then obtained as shown in Equation (5):

W2
ℓ
= matk1,k2

(qℓ(ỸỸT)) ∈ Rk1×k2 , l = 1, 2, · · · , L2 (5)

where W2
ℓ

is the ℓ-th PCA filter of the second convolution layer, ỸỸT is the covariance matrix of Ỹ, qℓ()

extracts the ℓ-th principal eigenvector of ỸỸT , and matk1,k2
() maps the extracted principal eigenvector

to a matrix W ∈ Rk1×k2 . For each input of the second stage, one will output L2 matrices of size m × n.
The specific computation process is doing convolution on the input and its corresponding filter in the
second stage.
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2.3.5. Output Stage

After the second stage, obtained outputs are firstly binarized by a Heaviside function. By this
function, value in outputs will be 1 for positive entries and 0 otherwise. Then we convert the L2

outputs back into a single integer-valued matrix by Equation (6):

Γl
i =

L2

∑
ℓ=1

2ℓ−1H(yl
i ∗ W2

ℓ
) (6)

where yl
i means the output of l-th filter for the i-th heartbeat matrix yi in the first layer. Here weights

of the outputs are irrelevant since each integer is treated as a distinct “word”. After coding, each
integer-valued matrix Γl

i is partitioned into B blocks with a set overlapping ratio υ and histogram block
size η. We compute the histogram of the values in each block and concatenate all B histograms into
one vector which is denoted as Bhist(Γl

i). The feature of input heartbeat vector is lastly defined to be
the set of block-wise histograms as shown in Equation (7):

fi = [Bhist(Γ1
i ), · · · , Bhist(ΓL1

i )]
T
∈ R(2L2 )L1B (7)

where fi is the learned feature representation which can be used in following classification.
The detailed information of network parameter setting can be seen in Table 1.

Table 1. Detailed parameter information of PCANet used for ECG identification.

Steps Project Parameter

Input Heartbeat matrix size 20 × 20
The first stage Patch size (k1 × k2) 7 × 7

The number of filters of the first stage (l) 8
The second stage Patch size (k1 × k2) 7 × 7

The number of filters of the second stage (ℓ) 8
Output Histogram block size (η) 7 × 7

Block overlap ratio (υ) 0.5

2.4. Classifier

Several classifiers such as K-Nearest Neighbors (KNN), Back propagation neural network
(BP-NN), Random Forest (RF), Naive Bayes and Support Vector Machines (SVM) are implemented
and compared. The detail of these classifiers is presented below.

2.4.1. K-Nearest Neighbor (KNN)

In pattern recognition, k-nearest neighbor algorithm is a common method used for both
classification and regression. It is a type of instance-based learning, or lazy learning. It does not
attempt to construct a general model, but simply stores instances of the training data. Classification is
computed from a simple majority vote of the nearest neighbors of the instance to be predicted. A query
instance is assigned the data class which has the most representatives within the nearest neighbor of
the instance. Here, we used Euclidean distance as our distance metric. In our experiment, the best
result of classification was achieved for K = 3. KNN can be realized by the function ClassificationKNN.fit

in MATLAB.

2.4.2. Back Propagation Neural Network (BP-NN)

BP-NN is a multilayer feed forward network trained with error back propagation strategy. It is
firstly proposed by Rumelhart [36] and has been extensively used at present. In this paper, we used a
typical three-layer BP-NN as classifier to classify the extracted features, and the number of units in
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the hidden layer was set to 50. The function patternnet in MATLAB was employed as the method for
BP-NN implementation.

2.4.3. Random Forest (RF)

A random forest model [37] is a collection of k decision trees. Here, cart classification trees, which
divide attributes based on the Gini index, are developed with different numbers of inputs to form
an RF. The classification is determined by the voting results of all decision trees, and the highest
ranked class is selected as the final label of a new instance. In our experiment, the best classification
results occurred when k was set to 500. RF model was implemented by using the function TreeBagger

in MATLAB.

2.4.4. Naive Bayes Classifier

Naive Bayes classifier is one of the simplest machine learning algorithms, being also fast and easy
to implement. It is a probabilistic classifier based on applying Bayes’ theorem with strong independence
assumptions between the features, and has proven to work surprisingly well in practice. In this work,
a Naive Bayes classifier using Bernoulli distribution was adopted for heartbeat identification. Code
implementation of Naive Bayes classifier is available on [38].

2.4.5. Support Vector Machines (SVM)

Support Vector Machine (SVM) is one of the state-of-the-art classifiers which can split a dataset
into two or more categories. By using a function called kernel, support vector machine can transform
the input samples into a higher dimensional space and classify them linearly. In this paper, since
features extracted by PCANet are high-dimensional and sparse, we adopt a linear kernel support
vector machine (linear-SVM) according to [25]. Linear-SVM can be realized by freely available Liblinear
toolkit [39]. During the use of Liblinear, parameter C known as error penalty factor, which expresses
the tolerance to error, was set to 1 for good performance of classifier.

2.5. Signal Identification

With the features extracted by PCANet, linear-SVM can output the identification result of each
beat. To get the label of a whole signal, we make beats of the same signal vote. According to the results,
the class with maximum number of votes is selected as the class label of the estimated signal.

3. Results

3.1. Database

We use the challenging ECG-ID database [15], which is available on the PhysioNet, to evaluate
our proposed method. The database is chosen because it includes more than two recordings for some
of its subjects. All recordings in this database are acquired in lead I and digitalized at 500 Hz over
a duration of 20 s. Unlike such databases as Massachusetts Institute of Technology-Biotechnology
arrhythmia database (MIT-BIH-AHA), whose signals have stable HR, the HR of signals in the ECG-ID
is various. Different emotional or physical conditions and acquisition over a large domain of time
make it provide a platform for use of ECG as person identification in real world scenarios. In the
experiments, we select the same 12 subjects as reference [18] and each subject has five recordings for
training and testing purposes. Table 2 shows the detail information of each recording, including its
contained heartbeat number and estimated HR. HR is estimated as follows:

HR = (Heartbeat Number)/(Signal Duration) ∗ 60 (8)

here since the signal duration is 20 s, HR is three times as much as contained Heartbeat Number.
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Table 2. Heart number & estimated heart rate (HR) of used signals for experiments.

Subject Number
Heartbeat Number & Estimated Heart Rate (beat/min)

Record-1 Record-2 Record-3 Record-4 Record-5

3 25 75 25 75 24 72 23 69 23 69
10 28 84 27 81 28 84 33 99 24 72
24 24 72 25 75 25 75 21 63 18 54
25 24 72 24 72 23 69 19 57 23 69
30 23 69 24 72 21 63 21 63 19 57
32 22 66 22 66 23 69 24 72 23 69
34 31 93 30 90 27 81 29 87 30 90
36 19 57 20 60 23 69 25 75 23 69
52 25 75 26 78 28 84 29 87 31 93
53 26 78 27 81 27 81 30 90 27 81
59 25 75 28 84 33 99 21 63 20 60
72 24 72 25 75 20 60 37 111 34 102

3.2. Experimental Setup

1. Experiment 1

As KNN, BP-NN, RF, Naive Bayes, and Linear-SVM have been widely used, these methods were
implemented for evaluating the performance of the extracted features. To convincingly estimate the
proposed method, two of the five ECG signals from the subject were combinatorially selected as the
training set, and the remaining three were utilized as the testing set. As a result, each experiment was
repeated ten (C2

5) times.

2. Experiment 2

In Experiment 2, the HR robustness was evaluated by comparing the proposed method with other
five methods. During identification, all the six methods had the same denoising and fiducial point
detection process, and the difference among them was the manner of heartbeat resampling and feature
extraction. Six methods are shown in Table 3, where “Y” indicates adoption and “N” indicates none.
In heartbeat resampling manner, “QRS-centered” represents the proposed novel resampling strategy,
and the meaning of “TT” and “TRT” is explained below.

Table 3. Six Methods with different resampling strategy and feature extraction manner.

Main Operating TT-CNN TRT-CNN QRS-CNN TT-PCANet TRT-PCANet
Proposed
Method

Heartbeat
Resampling Manner

TT Y N N Y N N
TRT N Y N N Y N

QRS-centered N N Y N N Y

Feature Extraction
CNN Y Y Y N N N

PCANet N N N Y Y Y

“TT”-resampling: Segmented heartbeats with different sizes are directly resampled to 400 sample
points without alignment of R points. This manner just performs a forced alignment of T wave points,
ignoring all temporal period and morphological information of heartbeats.

“TRT”-resampling: R and T points of segmented heartbeats are aligned, and divide each heartbeat
into two parts: T-R and R-T. Then both T-R and R-T part are resampled to 200 to obtain the unified size
as in Method 1. Compared with Method 1, this method further performs alignment of key fiducial
points (R). It is firstly proposed by reference [20] and has proved its effectiveness on heart robustness
without requiring HR measurement. All the experiments are repeated 10 times.

Here the architecture of the used traditional CNN is shown in Table 4.
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Table 4. Detailed parameter information of traditional Convolution Neural Network (CNN) used for
ECG identification.

Layers Type Number of Neurons (Output Layer) Kernel Size Stride

0–1 Convolution 16 × 16 × 6 5 × 5 1
1–2 Max-pooling 8 × 8 × 6 2 × 2 2
2–3 Convolution 4 × 4 × 12 5 × 5 1
3–4 Max-pooling 2 × 2 × 12 2 × 2 2

3. Experiment 3

To evaluate the effectiveness of the proposed method on short-term ECG signals, original signals
in test set were segmented into hundreds of fragments with three schemes, in which a single fragment
contained one, three and five heartbeats respectively. Based on these obtained short-term ECG
segmentation, the subject identification accuracies were achieved and compared.

4. Experiment 4

To further validate the proposed method, the experimental results of reference [18] were compared
with ours in Experiment 3. Many performance parameters such as sensitivity, specificity, precision, and
F1-score were calculated and compared based on the obtained confusion matrix. For fair comparison
we followed the same data distribution as reference [18], in which only Record-1 and Record-2 of each
subject were employed as the training set.

5. Experiment 5

Further validation was performed by comparing the results of different methods in reference [9],
namely, RNN, Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM), with that of
our method. Following reference [9], we evaluated the proposed method on two public databases,
which were ECG-ID and MIT-BIH Arrhythmia database (MITDB). Here, the used subject number
of ECG-ID database increased from 12 to 89. The MITDB is a patient information database, which
contains 47 subjects and can be employed to evaluate the proposed method on the level of patient.
For each subject of the MITDB, five fragments of 18-heartbeat length, which were recorded at different
time, were randomly extracted for training and testing purpose. Thus a five-fold cross validation could
be performed for evaluation.

All the above experiments were made in MATLAB 2017a (MATLAB, 2017a, MathWorks, Natick,
MA, USA).

3.3. Experimental Results

3.3.1. Experiment 1

Figure 6 gives the comparison of different classifiers fed by features extracted using the proposed
method. Related to Figure 6, the features extracted by the QRS-centered resampling strategy and
PCANet could produce high heartbeat and subject identification accuracy of 83.14% and 94.72% even
with the simplest classifier KNN. Meanwhile, all the other classifiers could yield heartbeat accuracy
over 85% and subject identification accuracy over 95%. The obtained results demonstrated that the
extracted features could reflect the difference between different subjects, and were effective for ECG
identification. In our subsequent experiments, we selected Linear-SVM as the classifier not only
because its performance was better compared with other classifiers, but also because it is more suitable
for dealing with the extracted high-dimensional features.
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Figure 6. Comparison of different classifiers using the proposed method.

3.3.2. Experiment 2

Figure 7 shows the results of average heartbeat and subject identification accuracy of 10 experiments
with six different methods, which are TT-CNN, TRT-CNN, QRS-CNN, TT-PCANet, TRT-PCANet, and
the proposed method. Here the subject identification accuracy was obtained after all heartbeats of each
signal voted. With TT-CNN and TT-PCANet, the average heartbeat (subject) identification rates were
71.51% (89.44%) and 77.22% (89.72%), respectively. They had the worst performance among the tested
methods since it preserved the least information during heartbeat processing. The average accuracies
increased to 77.86% (93.88%) and 85.93% (95.27%) with TRT-CNN and TRT-PCANet, in which the R
point alignment was additionally taken into account. The proposed method and QRS-CNN showed
performance of 83.44% (94.4%) and 89.41% (97.78%), respectively. It was found that when the feature
extraction manner was set, methods with the proposed QRS-centered resampling strategy obtained the
best heartbeat and subject identification, indicating that the preservation of the temporal period and
morphological information of the QRS did benefit for identification accuracy. Also when compared
with the CNNs, the PCANets achieved better performance using different heartbeat resampling
manner. Furthermore, the CNNs (6c-2s-12c-2s) used in our work needed complicated iterative process
for 468 (5 × 5 × 6 + 6 + 5 × 5 × 12 + 12 = 468) parameters optimization, while the number of PCANets
parameters is six (k1, k2, l, ℓ, η, υ) here. Based on the results, we confirmed that our proposed method
could achieve good performance under HR variability conditions.

 
(a) (b) 

Figure 7. The accuracy comparison of the six identification methods. (a) Heartbeat identification
comparison; (b) Comparison of mean subject identification accuracy of six methods.

104



Appl. Sci. 2019, 9, 201

3.3.3. Experiment 3

Table 5 shows the variation of average subject identification accuracy with respect to different-length
signals during ECG identification using six methods. Compared with the other five methods, higher
identification accuracies were achieved by the proposed method under different conditions. The results
also showed that the proposed method was able to get high accuracy over 94% even with signals of
only five-heartbeat length. Nevertheless, for the rest methods, ECG signals should contain far more
heartbeats to make the methods obtain the same accuracy. Generally, the goodness of a heartbeat
based method in short-term ECG signal identification is mainly measured by the single heartbeat
identification accuracy. Our method gave higher heartbeat identification accuracy of 89.41% on signals
than the other five methods, which suggested that our method could provide an efficient way for
short-term ECG identification [40,41].

Table 5. The comparison of subject accuracies among short-term ECG signals with different heartbeat length.

Method
ECG Length

(in Number of Heartbeats)
Average Subject Identification

Accuracy (10 Experiments)

TT-CNN 1 71.51%
TT-CNN 3 77.57%
TT-CNN 5 85.22%

TT-PCANet 1 77.22%
TT-PCANet 3 80.85%
TT-PCANet 5 85.82%
TRT-CNN 1 77.86%
TRT-CNN 3 83.46%
TRT-CNN 5 87.71%

TRT-PCANet 1 85.93%
TRT-PCANet 3 90.28%
TRT-PCANet 5 91.96%

QRS-CNN 1 83.44%
QRS-CNN 3 88.96%
QRS-CNN 5 91.89%

Our Method 1 89.41%
Our Method 3 92.49%
Our Method 5 94.40%

3.3.4. Experiment 4

In this section, we compared the experimental results of [18] with ours to further validate the
proposed method. Many performance parameters mentioned in [18] were calculated and compared
based on the confusion matrix. The evaluation parameters include Accuracy, Sensitivity, Specificity,
Precision and F1-score. The calculation process is as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Sensitivity = Recall =
TP

TP + FN
(10)

Speci f icity =
TN

TN + FP
(11)

Precision =
TP

TP + FP
(12)

F1Score =
2 ∗ Precision ∗ Recall

Precison + Recall
(13)

where TP, TN, FP, and FN, respectively represent True Positive, True Negative, False Positive, and
False Negative. Since subject identification is a multi-class problem, this paper uses the overall statistic
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of the above indicators to evaluate the performance. The general calculation form of different overall
statistics is as follows:

Overall_X =
N

∑
i=1

Xi/Nperson (14)

where Nperson is the total number of evaluated person and Xi represents the statistic result of the i-th
person (Xi can be Accuracy, Recall, Specificity, Precision, or F1-score).

Table 6 shows the confusion matrix for the true classification of ECG beats used for testing the
proposed method. The confusion matrix shows the number of beats used for the test with their
corresponding True Positive Rate (TPR).

Table 6. Confusion matrix of true classification of ECG beat data of person.

Target Class
Classification Class

Accuracy
3 10 24 25 30 32 34 36 52 53 59 72

3 19 0 1 0 0 1 0 0 0 0 0 0 90.48%
10 0 19 0 0 0 0 0 0 0 0 2 0 90.48%
24 3 1 16 1 0 0 0 0 0 0 0 0 76.19%
25 0 0 0 21 0 0 0 0 0 0 0 0 100%
30 0 0 0 0 21 0 0 0 0 0 0 0 100%
32 0 0 0 0 0 21 0 0 0 0 0 0 100%
34 2 0 0 1 0 0 18 0 0 0 0 0 85.71%
36 0 2 0 0 0 0 0 17 0 0 2 0 80.95%
52 0 0 0 0 0 0 0 0 21 0 0 0 100%
53 0 0 0 0 0 0 0 0 0 21 0 0 100%
59 0 0 0 0 0 0 0 0 1 0 17 3 80.95%
72 0 1 0 0 0 0 0 0 0 0 7 13 61.90%

With all heartbeats voting, we can obtain the result of subject identification. Table 7 shows the
confusion matrix which includes the number of signals used for testing with their corresponding
subject TPR. Based on the confusion matrices of heartbeat and subject identification, the evaluation
parameters can be calculated and the results of comparison can be seen in Table 8.

Table 7. Confusion matrix for true identification of person.

Target Class
Classification Class

Accuracy
3 10 24 25 30 32 34 36 52 53 59 72

3 3 0 0 0 0 0 0 0 0 0 0 0 100%
10 0 3 0 0 0 0 0 0 0 0 0 0 100%
24 0 0 3 0 0 0 0 0 0 0 0 0 100%
25 0 0 0 3 0 0 0 0 0 0 0 0 100%
30 0 0 0 0 3 0 0 0 0 0 0 0 100%
32 0 0 0 0 0 3 0 0 0 0 0 0 100%
34 0 0 0 0 0 0 3 0 0 0 0 0 100%
36 0 0 0 0 0 0 0 3 0 0 0 0 100%
52 0 0 0 0 0 0 0 0 3 0 0 0 100%
53 0 0 0 0 0 0 0 0 0 3 0 0 100%
59 0 0 0 0 0 0 0 0 0 0 3 0 100%
72 0 0 0 0 0 0 0 0 0 0 2 1 33.33%

In the comparison of our method with seven beats and [18], our method showed improvement on
all evaluation indicators. Results showed that the overall heartbeat and subject identification accuracy
could reach 88.8889% and 99.0741%, respectively. In terms of specificity, we achieved a prediction
success average rate reaching 99.4949% and exceeding 95% for each person. Relative to the results of
the previous method, our accuracy, precision, and F1-score were all at a high level.

106



Appl. Sci. 2019, 9, 201

Table 8. Comparison of our method with seven beats and literature [18].

S. No Performance Parameter Value [18] Value (Our Method)

1 True_Positive Rate (Beat Identification) 80.5556% 88.8889%
2 True_Positive Rate (Subject Identification) 88.8889% 94.4444%
3 Overall_Accuracy 98.1481% 99.0741%
4 Overall_Recall 88.8889% 94.4444%
5 Overall_Specificity 98.9899% 99.4949%
6 Overall_Precision 93.750% 96.6667%
7 Overall_F1 Score 88.5317% 93.7500%

3.3.5. Experiment 5

The goal of this experiment is to compare the results of our method with that of reference [9],
which is one of the state-of-the-art methods for ECG identification. Table 9 shows the comparison
between reference [9] and the proposed method.

Table 9. Comparison of the proposed method with reference [9] (SI-Subject Identification, HI-Heartbeat Identification).

Methods

ECG-ID: 89 MIT-BIH: 47

ECG Length
(in Number of Heartbeats)

SI
ECG Length

(in Number of Heartbeats)
SI

RNN [9] 18 91.7% 18 93.3%
GRU [9] 18 94.4% 18 95.7%
LSTM [9] 18 100% 18 100%

Proposed method 18 97.75% 18 100%
Proposed method 7 95.25% 7 97.85%
Proposed method 5 92.36% 5 97.80%
Proposed method 3 89.97% 3 96.96%
Proposed method 1 84.50% 1 90.45%

Results on Table 9 show that LSTM network performs better than GRU and traditional RNN
in terms of the subject identification accuracy, and that our approach behaves similar to the LSTM
network. On the databases, ECG-ID, and the MITDB, subject identification accuracies of 97.75% and
100% were achieved. Besides that, the proposed method could achieve high heartbeat identification
accuracy of 84.5% and 90.45% on ECG-ID database and the MITDB, which made it possible to
obtain good performance based on short-term signals. For ECG-ID and the MITDB, 95.25% and
97.85% subject identification accuracy were obtained even with signals of only seven-heartbeat length.
Especially, the subject identification accuracy of signals of three-heartbeat length could reach 96.96%
on the MITDB.

These results further proved the effectiveness of our method for short-term ECG signal identification.
Table 10 shows the state-of-the-art methods proposed for ECG biometric identification. Compared

with other methods, the proposed method achieves high-level results in terms of subject identification
accuracy on both databases, which suggests that it can serve as an effectively partial-fiducial way for
ECG biometric identification.
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Table 10. Performance comparison with state-of-the-art works (SI-Subject Identification).

Methods Year Feature Extraction (Type) Decision ECG Dataset Performance

Page et al. [12] 2015 QRS complex segments (Fiducial) NN ECG-ID: 90 SI: 99.93%

Dar et al. [40] 2015
Haar Transform/GBFS

(Non-fiducial)
KNN

ECG-ID: 90
MIT-BIH: 47

SI: 83.2%
SI: 95.9%

Dar et al. [10] 2015
Haar Transform and HRV/GBFS

(Non-fiducial)
Random Forest

ECG-ID: 90
MIT-BIH: 47

SI: 83.9%
SI: 93.1%

Dhou-ha et al. [41] 2016
21 temporal and amplitude features
and 10 morphological descriptors

(Fiducial)
SVM MIT-BIH: 44 SI: 98.8%

Tan et al. [42] 2017
Temporal, amplitude, and angle fid.

+ DWT coefficients (Fiducial)

Random
Forests +

WDIST KNN

ECG-ID: 89
MIT-BIH: 47

SI: 100%
SI: 100%

Yu et al. [43] 2017 PCA (Non-fiducial) RPROP ECG-ID: 89 SI: 96.60%

Lynn et al. [44] 2018
Temporal and amplitude features

(Fiducial)
BP-NN

ECG-ID: 3
10
20

SI: 98.24%
SI: 96.20%
SI: 94.00%

Zhao et al. [45] 2018
Generalized S-transformation

(Non-fiducial)
CNN ECG-ID:50 SI: 96.63%

Mahmoud et al. [46] 2018
Mean P-QRS-T fragment + DWT

(Fusion of fiducial and non-fiducial)
SVM

ECG-ID: 90
MIT-BIH: 47

SI: 99%
SI: 100%

Proposed Method -
QRS-centered resampling strategy +

PCANet (partial-fiducial)
Linear-SVM

ECG-ID: 12
89

MIT-BIH: 47

SI: 97.78%
SI: 97.75%
SI: 100%

4. Discussion

In this work, a novel HR robust method for short-term ECG biometric identification was
developed. Raw ECG signals were filtered with wavelet denoising and segmented into heartbeats by
taking the detected T peak points as delimiters. Then the heartbeat was processed by the proposed
QRS-centered resampling strategy and standardized to 400 sampling points. The QRS-centered strategy
is inspired and based on the prior ECG identification works: Firstly, to our knowledge, all the existing
literature about ECG identification has taken QRS complex or its related form as features and QRS
complex is very important for identifying a person [9,10,12,18,40–46]. To preserve all potential identity
information of the QRS complex, we use a length-fixed window to keep the QRS complex original.
Secondly, it is also found that mapping the heartbeat into a regular interval of segments does help to
deal with the HR variability problem [5,20]. Thus, we segment the heartbeat into three parts, which are
the first, the QRS and the third part respectively, and unify them. In this way, the extracted heartbeat
can correct T wave shift without using traditional QT correction formula, and contain sufficient
information of QRS such as QRS negative area, amplitude, and so on at the same time. As a result, HR
variability is removed and more potential information is provided for the subsequent steps, which is
beneficial for the identification accuracy.

After that, PCANet was implemented to learn discrimination among heartbeats from different
persons by taking the principal eigenvectors as filter banks. PCANet can be analyzed by comparing it
with the Convolutional Neural Network (CNN): Like CNN, the PCANet also has convolution filter
bank in each stage; the binary quantization of the PCANet at the output stage performs similar function
like the nonlinear layer in CNN; the pooling layer of the PCANet is set to be the block-wise histograms
of binary codes. In fact, PCANet can be essentially considered as a CNN model, which has strong
capability of feature extraction [26,47,48].

Moreover, the PCANet seems to be more likely to achieve better performance than traditional
CNN in ECG biometric identification, especially for ECG data without outlier correction. As we all
know, ECG is not a strict periodic signal, and local distortions and variation on heartbeats may appear
even without HR variability. Traditional CNN may be influenced by these distortions because its
convolutional filter bank is learned in a data-adapting way. Compared with traditional CNN, the filter
bank of the PCANet is prefixed by analyzing the main difference between subjects based on the
combination of patch matrices of the training data. This learning way gives more holistic observations
of the original ECG data, and the learned intra-invariance can essentially capture more identification
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information [26,47,48]. According to our experimental results, the PCANets did obtain much higher
heartbeat identification than the CNNs with different heartbeat resampling manner, which further
proved that the PCANet method was robust to distortions.

Compared with other methods in literature, our method has two main advantages. First, the method
is HR robust and does not require HR based QT correction. HR variability can be removed under
short-term ECG signal condition and avoid the complex operations of accurate Q detection or HR
measurement. Based on the experiments, it is found that not only the amplitude, but also the temporal and
morphological information of QRS can potentially contribute to identification, which is in accordance with
other studies [5,20,21]. Second, the proposed method can achieve high heartbeat identification accuracy,
which makes it suitable for systems that use a small quantity of heartbeats to make a decision [49]. Besides
that, the naturality of PCANet makes our work easy to be reproduced by other researchers. Because
compared with traditional neural networks (CNN), only a few parameters are required to determine a
PCANet [25,26,48].

In the future, we will explore the “other class” classification problem. “Other class” refers to the
class that classifier has not yet trained and it is totally different from the other trained individuals
morphologically. In ECG identification, we can also call it unknown individual. The classification of
the unknown individual is an open-set problem and can hardly be solved by some simple methods
such as threshold setting [50] or distance matching [51]. So our next stage research is to improve our
existing identification architecture and realize “other class” recognition.

5. Conclusions

In this paper, we propose a novel HR robust method for short-term ECG signal identification.
In this study, we identified ECG signals by using the QRS-centered resampling strategy and the
PCANet. To evaluate the effectiveness of our algorithm, the experiment was performed on ECG
fragments with different length and various HRs. Experimental results revealed that this QRS-centered
resampling strategy could efficiently remove the influence of HR variability and the PCANet was
able to capture important information required for class discrimination from processed heartbeats.
Compared with the existing state-of-the-art methods, the proposed approach provides an effectively
partial-fiducial way for identification and shows comparative results on both ECG-ID database and
the MITDB. Our method is expected to contribute to information security and privacy protection.
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Abstract: Recently, the increasing demand for voice-based authentication systems has encouraged
researchers to investigate methods for verifying users with short randomized pass-phrases with
constrained vocabulary. The conventional i-vector framework, which has been proven to be
a state-of-the-art utterance-level feature extraction technique for speaker verification, is not considered
to be an optimal method for this task since it is known to suffer from severe performance degradation
when dealing with short-duration speech utterances. More recent approaches that implement
deep-learning techniques for embedding the speaker variability in a non-linear fashion have shown
impressive performance in various speaker verification tasks. However, since most of these techniques
are trained in a supervised manner, which requires speaker labels for the training data, it is difficult
to use them when a scarce amount of labeled data is available for training. In this paper, we propose
a novel technique for extracting an i-vector-like feature based on the variational autoencoder (VAE),
which is trained in an unsupervised manner to obtain a latent variable representing the variability
within a Gaussian mixture model (GMM) distribution. The proposed framework is compared with
the conventional i-vector method using the TIDIGITS dataset. Experimental results showed that
the proposed method could cope with the performance deterioration caused by the short duration.
Furthermore, the performance of the proposed approach improved significantly when applied in
conjunction with the conventional i-vector framework.

Keywords: speech embedding; deep learning; speaker recognition

1. Introduction

Speaker verification is the task of verifying the claimed speaker identity in the input speech.
The speaker verification process is composed of three steps: acoustic feature extraction, utterance-level
feature extraction, and scoring. In the first step, spectral parameters—also referred to as acoustic
features—are extracted from short speech frames. One of the most popular acoustic features are the
Mel-frequency cepstral coefficients (MFCCs), which represent the spectral envelope of the speech
within the given time-frame [1]. However, since most classification or verification algorithms operate
on fixed dimensional vectors, acoustic features cannot be directly used with such methods due to the
variable duration property of speech [1]. Therefore, in the second step, the frame-level acoustic features
are aggregated to obtain a single utterance-level feature, which is also known as an embedding vector.
The utterance-level feature is a compact representation of the given speech segment or utterance,
conveying information on the variability (variability refers to the spread of the data distribution) caused
by various factors (e.g., speaker identity, recording channel, environmental noise). In the final step,
the system compares two utterance-level features and measures the similarity or the likelihood of the
given utterances produced by the same speaker.
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Many previous studies on utterance-level features focused on efficiently reducing the
dimensionality of a Gaussian mixture model (GMM) supervector, which is a concatenation of the
mean vectors of each mixture component [2], while preserving the speaker-relevant information
via factorization (e.g., eigenvoice adaptation and joint factor analysis) [3,4]. Particularly the i-vector
framework [5,6], which projects the variability within the GMM supervector caused by various factors
(e.g., channel and speaker) onto a low-dimensional subspace, has become one of the most dominant
techniques used in speaker recognition. The i-vector framework is essentially a linear factorization
technique which decomposes the variability of the GMM supervector into a total variability matrix and
a latent random variable. However, since these linear factorization techniques assume the variability
as a linear function of the latent factor, the i-vector framework is not considered to fully capture the
whole variability of the given speech utterances.

Recently, various studies [7–13] have been carried out for non-linearly extracting utterance-level
features via deep learning. In [7], a deep neural network (DNN) for frame-level speaker classification
was trained and the activations of the last hidden layer—namely, the d-vectors—were taken as
a non-linear speaker representation. In [8,9], a time delay neural network (TDNN) utterance
embedding technique is proposed where the embedding (i.e., the x-vector) is obtained by statistically
pooling the frame-level activations of the TDNN. In [10], the x-vector framework was further
improved by incorporating long short-term memory (LSTM) layers to obtain the embedding. In [11],
gradient reversal layer and adversarial training were employed to extract an embedding vector robust
to channel variation. In [12,13], the embedding neural networks were trained to directly optimize the
verification performance in an end-to-end fashion. However, since most of the previously proposed
deep learning-based feature extraction models are trained in a supervised manner (which requires
speaker or phonetic labels for the training data), it is impossible to use them when little to no labeled
data are available for training.

At present, due to the increasing demand for voice-based authentication systems, verifying users
with a randomized pass-phrase with constrained vocabulary has become an important task [14].
This particular task is called random digit-string speaker verification, where the speakers are enrolled
and tested with random sequences of digits. The random digit string task highlights one of the most
serious causes of feature uncertainty, which is the short duration of the given speech samples [15].
The conventional i-vector is known to suffer from severe performance degradation when short duration
speech is applied to the verification process [16–18]. It has been reported that the i-vectors extracted
from short-duration speech samples are relatively unstable (as the duration of the speech is reduced,
the vector length of the i-vector decreases and its variance increases; this may cause low inter-speaker
variation and high intra-speaker variation of the i-vectors) [16–18]. The short duration problem can be
critical when it comes to real-life applications, since in most practical systems, the speech recording for
enrollment and trial is required to be short [16].

In this paper, we propose a novel approach to speech embedding for speaker recognition.
The proposed method employs a variational inference model inspired by the variational autoencoder
(VAE) [19,20] to non-linearly capture the total variability of the speech. The VAE has an autoencoder-like
architecture which assumes that the data are generated through a neural network driven by a random
latent variable (more information on the VAE architecture is covered in Section 3). Analogous to the
conventional i-vector adaptation scheme, the proposed model is trained according to the maximum
likelihood criterion given the input speech. By using the mean and variance of the latent variable
as the utterance-level features, the proposed system is expected to take the uncertainty caused by
short-duration utterances into account. In contrast to the conventional deep learning-based feature
extraction techniques, which take the acoustic features as input, the proposed approach exploits
the resources used in the conventional i-vector scheme (e.g., universal background model and
Baum–Welch statistics) and remaps the relationship between the total factor and the total variability
subspace through a non-linear process. Furthermore, since the proposed feature extractor is trained in
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an unsupervised fashion, no phonetic or speaker label is required for training. Detailed descriptions of
the proposed algorithm are given in Section 4.

In order to evaluate the performance of the proposed system in the random digits task,
we conducted a set of experiments using the TIDIGITS dataset (see Section 5.1 for details
on the TIDIGITS dataset). Moreover, we compared the performance of our system with the
conventional i-vector framework, which is the state-of-the-art unsupervised embedding technique [21].
Experimental results showed that the proposed method outperformed the standard i-vector framework
in terms of equal error rate (EER), classification error, and detection cost function (DCF) measurements.
It is also interesting that a dramatic performance improvement was observed when the features
extracted from the proposed method and the conventional i-vector were augmented together.
This indicates that the newly proposed feature and the conventional i-vector are complementary
to each other.

2. I-Vector Framework

Given a universal background model (UBM), which is a GMM representing the
utterance-independent distribution of the frame-level features, an utterance-dependent model can
be obtained by adapting the parameters of the UBM via a Bayesian adaptation algorithm [22].
The GMM supervector is obtained by concatenating the mean vectors of each mixture component,
summarizing the overall pattern of the frame-level feature distribution. However, since the GMM
supervector is known to have high dimensionality and contains variability caused by many different
factors, various studies have focused on reducing the dimensionality and compensating the irrelevant
variability inherent in the GMM supervector.

Among them, the i-vector framework is now widely used to represent the distinctive
characteristics of the utterance in the field of speaker and language recognition [23]. Similar to the
eigenvoice decomposition [3] or joint factor analysis (JFA) [4] techniques, i-vector extraction can be
understood as a factorization process decomposing the GMM supervector as

m(X) = u + Tw(X), (1)

where m(X), u, T, and w(X) indicate the ideal GMM supervector dependent on a given speech
utterance X, UBM supervector, total variability matrix, and i-vector, respectively. Hence, the i-vector
framework aims to find the optimal w(X) and T to fit the UBM parameters to a given speech utterance.
Given an utterance X, the 0th and the 1st-order Baum–Welch statistics are obtained as

nc(X) =
L

∑
l=1

γl(c), (2)

f̃c(X) =
L

∑
l=1

γl(c)(xl − uc), (3)

where for each frame l within X with L frames, γl(c) denotes the posterior probability that the lth frame
feature xl is aligned to the cth Gaussian component of the UBM, uc is the mean vector of the cth mixture
component of the UBM, and nc(X) and f̃c(X) are the 0th and the centralized 1st-order Baum–Welch
statistics, respectively.

The extraction of the i-vector can be thought of as an adaptation process where the mean of
each Gaussian component in the UBM is altered to maximize the likelihood with respect to a given
utterance. Let Σc denote the covariance matrix of the cth mixture component of the UBM and F be the
dimensionality of the frame-level features. Then, the log-likelihood given an utterance X conditioned
on w(X) can be computed as
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logP(X|T, w(X)) =
C

∑
c=1

(nc(X) log
1

(2π)F/2|Σc|1/2

−
1
2

L

∑
l=1

γl(c)(xl − mc(X))t
Σ
−1
c (xl − mc(X))),

(4)

where mc(X) is the mean of the cth mixture component of m(X) and the superscript t indicates matrix
transpose. From lemma 1 in [3], the log-likelihood given X obtained by marginalizing (4) over w(X)
turns out to be

logP(X|T) =logEw[P(X|T, w)]

=log
∫

P(X|T, w)N (w|0, I)dw

=G(X)−
1
2

log|ξ(X)|

+
1
2

C

∑
c=1

(m̃c(X)− uc)
t
Σc

−1qc(X),

(5)

where G(X) represents the log-likelihood of the UBM, ξ−1(X) is the covariance matrix of the posterior
distribution of the i-vector given utterance X, m̃c(X) is the cth component of the GMM supervector
conditioned on E[w(X)], and qc(X) is the averaged frame of X centralized by the cth Gaussian
component which is defined by:

qc(X) =
L

∑
l=1

(xl − uc). (6)

Analogous to the eigenvoice method, the total variability matrix T is trained to maximize the
log-likelihood (5) using the expectation-maximization (EM) algorithm [3], assuming that each utterance
is spoken by a separate speaker.

Once the total variability has been obtained, the posterior covariance and mean of the i-vector can
be computed as follows [3]:

E[w(X)wt(X)] = (I +
C

∑
c=1

nc(X)Tt
cΣ

−1
c Tc)

−1, (7)

E[w(X)] = E[w(X)wt(X)]
C

∑
c=1

Tt
cΣ

−1
c f̃c(X), (8)

where Tc is a partition matrix of T corresponding to the cth GMM component. Usually, the posterior
mean E[w(X)] is used as the utterance-level feature of X. Interested readers are encouraged to refer
to [5,6] for further details of the i-vector framework.

3. Variational Autoencoder

The VAE is an autoencoder variant aiming to reconstruct the input at the output layer [19].
The main difference between the VAE and an ordinary autoencoder is that the former assumes that the
observed data x is generated from a random latent variable z which has a specific prior distribution,
such as the standard Gaussian. The VAE is composed of two directed networks: encoder and decoder
networks. The encoder network outputs the mean and variance of the posterior distribution p(z|x)
given an observation x. Using the latent variable distribution generated by the encoder network,
the decoder network tries to reconstruct the input pattern of the VAE at the output layer.

Given a training sample x, the VAE aims to maximize the log-likelihood, which can be written
as follows [19]:

logpθ(x) = DKL(qφ(z|x)‖pθ(z|x)) +L (θ, φ; x). (9)
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In (9), φ denotes the variational parameters and θ represents the generative parameters [19].
The first term on the right-hand side (RHS) of (9) means the Kullback–Leibler divergence
(KL divergence) between the approximated posterior qφ(z|x) and the true posterior pθ(z|x) of the
latent variable, which measures the dissimilarity between these two distributions. Since the KL
divergence has a non-negative value, the second term on the RHS of (9) becomes the variational lower
bound on the log-likelihood, which can be written as:

logpθ(x) ≥L (θ, φ; x)

=− DKL(qφ(z|x)‖pθ(z))

+Eqφ(z|x)[log pθ(x|z)],

(10)

where qφ(z|x) and pθ(x|z) are respectively specified by the encoder and decoder networks of the VAE.
The encoder and the decoder networks of the VAE can be trained jointly by maximizing the

variational lower bound, which is equivalent to minimizing the following objective function [24]:

EVAE(x) =DKL(qφ(z|x)‖pθ(z))

−Eqφ(z|x)[log pθ(x|z)]. (11)

The first term on the RHS of (11) is the KL divergence between the prior distribution and the
posterior distribution of the latent variable z, which regularizes the encoder parameters [19]. On the
other hand, the second term can be interpreted as the reconstruction error between the input and
output of the VAE. Thus, the VAE is trained not only to minimize the reconstruction error but also to
maximize the similarity between the prior and posterior distributions of the latent variable.

4. Variational Inference Model for Non-Linear Total Variability Embedding

In the proposed algorithm, it is assumed that the ideal GMM supervector corresponding to
a speech utterance X is obtained through a non-linear mapping of a hidden variable onto the total
variability space. Based on this assumption, the ideal GMM supervector is generated from a latent
variable z as follows:

m(X) = u + g(z(X)), (12)

where g is a non-linear function which transforms the hidden variable z(X) to the adaptation factor
representing the variability of the ideal GMM supervector m(X). In order to find the optimal function
g and the hidden variable z(X), we apply a VAE model consisting of an encoder and a decoder network
as shown in Figure 1. In the proposed VAE architecture, the encoder network outputs an estimate of
the hidden variable and the decoder network serves as the non-linear mapping function g.

Analogous to the i-vector adaptation framework, the main task of the proposed VAE architecture
is to generate a GMM so as to maximize the likelihood given the Baum–Welch statistics of the utterance.
The encoder of the proposed system serves as a non-linear variability factor extraction model. Similar
to the i-vector extractor, the encoder network takes the 0th and 1st-order Baum–Welch statistics of
a given utterance X as input and generates the parametric distribution of the latent variable. The latent
variable z is assumed to be a random variable following a Gaussian distribution, and each component
of z is assumed to be uncorrelated with each other. In order to infer the distribution of the latent
variable z(X), it is sufficient for the encoder to generate the mean and the variance of z(X). The decoder
of the proposed system acts as the GMM adaptation model, generating the GMM supervector from the
given latent variable according to the maximum likelihood criterion.
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Figure 1. Proposed variational autoencoder (VAE) for non-linear feature extraction. Blue shows the
loss terms. Red shows the sampling operations. GMM: Gaussian mixture model; UBM: universal
background model.

4.1. Maximum Likelihood Training

Once the GMM supervector m̂(X) is generated at the output layer of the decoder,
the log-likelihood conditioned on the latent variable z(X) can be defined in a similar manner with (4) as:

logP(X|φ, θ, z(X)) =
C

∑
c=1

(nc(X) log
1

(2π)F/2|Σc|1/2

−
1
2

L

∑
l=1

γl(c)(xl − m̂c(X))t
Σ
−1
c (xl − m̂c(X))), (13)

where m̂c(X) denotes the cth component of m̂(X). Using Jensen’s inequality, the lower bound of the
marginal log-likelihood can be obtained as follows:

logP(X|φ, θ) =logEz[P(X|φ, θ, z)]

≥Ez[logP(X|φ, θ, z)]. (14)

The marginal log-likelihood can be indirectly maximized by maximizing the expectation of the
conditioned log-likelihood (13) with respect to the latent variable z. The reparameterization trick
in [19] can be utilized to compute the Monte Carlo estimate of the log-likelihood lower bound as
given by

Ez[logP(X|φ, θ, z)]≃
1
S

S

∑
s=1

logP(X|φ, θ, zs(X)), (15)

where S is the number of samples used for estimation and zs(X) is the reparameterized latent variable
defined as follows:

zs(X) = μ(X) + σ(X)ǫs. (16)

In (16), ǫs ∼ N (0, I) is an auxiliary noise variable, and μ(X) and σ(X) are respectively the mean
and standard deviation of the latent variable z(X) generated from the encoder network. By replacing
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the reconstruction error term of the VAE objective function (11) with the estimated log-likelihood lower
bound, the objective function of the proposed system can be written as:

EProp(X) =DKL(qφ(z|X)‖pθ(z))

−
1
S

S

∑
s=1

logP(X|φ, θ, zs(X)).
(17)

From (17), it is seen that the proposed VAE is trained not only to maximize the similarity between
the prior and posterior distributions of the latent variable, but also to maximize the log-likelihood of
the generated GMM by minimizing EProp via error back-propagation. Moreover, we assume that the
prior distribution for z is pθ(z) = N (z|0, I) analogous to the prior for w in the i-vector framework.

4.2. Non-Linear Feature Extraction and Speaker Verification

The encoder network of the proposed VAE generates the latent variable mean μ(X) and
the log-variance log σ2(X). Once the VAE has been trained, the encoder network is used as
a feature extraction model, as shown in Figure 2. Similar to the conventional i-vector extractor,
the encoder network takes the Baum–Welch statistics of the input speech utterance and generates
a random variable with a Gaussian distribution, which contains essential information for modeling
an utterance-dependent GMM. The mean of the latent variable μ(X) is exploited as a compact
representation of the variability within the GMM distribution dependent on X. Moreover, since the
variance of the latent variable σ2(X) represents the variability of the distribution, it is used as a proxy
for the uncertainty caused by the short duration of the given speech samples. The features extracted by
the proposed VAE can be transformed via feature compensation techniques (e.g., linear discriminant
analysis (LDA) [1]) in order to improve the discriminability of the features.

Figure 2. Flow chart of the speaker verification process using the proposed feature extraction scheme.

Given a set of N(p) enrollment speech samples spoken by an arbitrary speaker p

X(p) = {X1(p), X2(p), · · · , XN(p)(p)}, (18)

the speaker model for p is obtained by averaging the features extracted from each speech sample.
To determine whether a test utterance Xtest is spoken by the speaker p, analogous to the i-vector
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framework, probabilistic linear discriminant analysis (PLDA) is used to compute the similarity between
the feature extracted from Xtest and the speaker model of p.

Unlike the conventional i-vector framework, which only uses the mean of the latent variable
as feature, the proposed scheme utilizes both the mean and variance of the latent variable to take
the uncertainty into account. Providing the speaker decision model (e.g., PLDA) with information
about the uncertainty within the input speech, which is represented by the variance of the latent
variable, may improve the speaker recognition performance. This is verified in the experiments shown
in Section 5.

5. Experiments

5.1. Databases

In order to evaluate the performance of the proposed technique in the random digit speaker
verification task, a set of experiments was conducted using the TIDIGITS dataset. The TIDIGITS
dataset contains 25,096 clean utterances spoken by 111 male and 114 female adults, and by 50 boys
and 51 girls [25]. For each of the 326 speakers in the TIDIGITS dataset, a set of isolated digits and
2–7 digit sequences were spoken. The TIDIGITS dataset was split into two subsets, each containing
12,548 utterances from all 326 speakers, and they were separately used as the enrollment and trial data.
In the TIDIGITS experiments, the TIMIT dataset [26] was used for training the UBM, total variability
matrix, and the embedding networks.

5.2. Experimental Setup

For the experimented systems, the acoustic feature involves 19-dimensional MFCCs and the
log-energy extracted every 10 ms, using a 20 ms Hamming window via the SPro library [27].
Together with the delta (first derivative) and delta-delta (second derivative) of the 19-dimensional
MFCCs and the log-energy, the frame-level acoustic feature used in our experiments was given by
a 60-dimensional vector.

We trained the UBM containing 32 mixture components in a gender- and age-independent manner,
using all the speech utterances in the TIMIT dataset. Training the UBM, total variability matrix, and the
i-vector extraction was done by using the MSR Identity Toolbox via MATLAB [28]. The encoders and
decoders of the VAEs were configured to have a single hidden layer with 4096 rectified linear unit
(ReLU) nodes, and the dimensionality of the latent variables was set to be 200. The implementation of
the VAEs was done using Tensorflow [29] and trained using the AdaGrad optimization technique [30].
Additionally, dropout [31] with a fraction of 0.8 and L2 regularization with a weight of 0.01 were
applied for training all the VAEs, and the Baum–Welch statistics extracted from the entire TIMIT dataset
were used as training data. A total of 100 samples were used for the reparameterization shown in (15).

For all the extracted utterance-level features, linear discriminant analysis (LDA) [1] was applied
for feature compensation, and the dimensionality was finally reduced to 200. PLDA [32] was used for
speaker verification, and the speaker subspace dimension was set to be 200.

Four performance measures were evaluated in our experiments: classification error (Class. err.),
EER, minimum NIST SRE 2008 DCF (DCF08), and minimum NIST SRE 2010 DCF (DCF10).
The classification error was measured while performing a speaker identification task where each trial
utterance was compared with all the enrolled speakers via PLDA, and the enrolled speaker with the
highest score was chosen as the identified speaker. Then, the ratio of the number of wrongly classified
trial samples to the total number of trial samples represented the classification error. The EER and
minimum DCFs are widely used measures for speaker verification, where the EER indicates the error
when the false positive rate (FPR) and the false negative rate (FNR) are the same [1], and the minimum
DCFs represent the decision cost obtained with different weights to FPR and FNR. The parameters for
measuring DCF08 and DCF10 were chosen according to the weights given by the NIST SRE 2008 [33]
and the NIST SRE 2010 [34] protocols, respectively.
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5.3. Effect of the Duration on the Latent Variable

In order to investigate the ability of the latent variable to capture the uncertainty caused
by short duration, the differential entropies (the differential entropy—or the continuous random
variable entropy—measures the average uncertainty of a random variable) of the latent variables
were computed. Since the latent variable z(X) in the proposed VAE has a Gaussian distribution,
the differential entropy can be formulated as follows:

h(z(X)) =
1
2

log(2πe)K +
1
2

log
K

∏
k=1

σ2
k (X). (19)

In (19), K represents the dimensionality of the latent variable and σ2
k (X) is the kth element of σ2(X).

From each speech sample in the entire TIDIGITS dataset, 200-dimensional latent variable variance
was generated using the encoder network of the proposed framework and used for computing the
differential entropy.

In Figure 3, the differential entropies averaged in six different duration groups (i.e., less than 1 s,
1–2 s, 2–3 s, 3–4 s, 4–5 s, and more than 5 s) are shown. As can be seen in the result, the differential
entropy computed using the variance of the latent variable gradually decreased as the duration
increased. Despite a rather small time difference between the first duration group (i.e., less than 1 s)
and the sixth duration group (i.e., more than 5 s), the relative decrement in entropy was 29.91%.
This proves that the latent variable variance extracted from the proposed system was capable of
indicating the uncertainty caused by the short duration.

Figure 3. Average differential entropy computed using the latent variable variance extracted from the
proposed VAE on different durations.

5.4. Experiments with VAEs

To verify the performance of the proposed VAE trained with the log-likelihood-based
reconstruction error function, we conducted a series of speaker recognition experiments on the
TIDIGITS dataset. For performance comparison, we also applied various feature extraction approaches.
The approaches compared with each other in these experiments were as follows:

• I-vector: standard 200-dimensional i-vector;
• Autoencode: VAE trained to minimize the cross-entropy between the input Baum–Welch statistics

and the reconstructed output Baum–Welch statistics;
• Classify: VAE trained to minimize the cross-entropy between the softmax output and the one-hot

speaker label;
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• Proposed: the proposed VAE trained to minimize the negative log-likelihood-based reconstruction error.

Autoencode is a standard VAE for reconstructing the input at the output, and was trained to
minimize EVAE (11) given the Baum–Welch statistics as input. On the other hand, Classify is a VAE for
estimating the speaker label, which was trained to minimize the following loss function:

EClass(x) =DKL(qφ(z|x)‖pθ(z))−EY[log Ŷ], (20)

where Y denotes the one-hot speaker label of utterance X and Ŷ is the softmax output of the decoder
network. The network structure for Classify is depicted in Figure 4. In this experiment, only the mean
vectors of the latent variables were used for Autoencode, Classify, and Proposed.

The results shown in Table 1 tell us that the VAEs trained with the conventional criteria
(i.e., Autoencode and Classify) performed poorly compared to the standard i-vector. On the other hand,
the proposed VAE with likelihood-based reconstruction error was shown to provide better performance
for speaker recognition than the other methods. The feature extracted using the VAE trained with
the proposed criterion provided comparable verification performance (i.e., EER, DCF08, DCF10)
to the conventional i-vector feature. Moreover, in terms of classification, the proposed framework
outperformed the i-vector framework with a relative improvement of 5.8% in classification error.
Figure 5 shows the detection error tradeoff (DET) curves obtained from the four tested approaches.

Figure 4. Network structure of the baseline VAE Classify.
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Figure 5. DET curves of the speaker verification experiments using the i-vector and the mean latent
variables extracted from VAEs trained for different tasks.

Table 1. Comparison of results between using the i-vector and the mean latent variables extracted from
VAEs trained for different tasks. Class. Err.: classification error; DCF08: minimum NIST SRE 2008 DCF;
DCF10: minimum NIST SRE 2010 DCF; EER: equal error rate.

Class. Err. (%) EER (%) DCF08 DCF10

i-vector 12.62 3.36 2.00 0.07
Autoencode 24.59 6.06 2.69 0.09

Classify 40.01 8.13 4.21 0.10
Proposed 11.89 3.61 2.09 0.07

5.5. Feature-Level Fusion of I-Vector and Latent Variable

In this subsection, we tested the features obtained by augmenting the conventional i-vector with
the mean and variance of the latent variable extracted from the proposed VAE. For performance
comparison, we applied the following six different feature sets:

• I-vector(400): standard 400-dimensional i-vector;
• I-vector(600): standard 600-dimensional i-vector;
• LM+LV: concatenation of the 200-dimensional latent variable mean and the log-variance, resulting

in a 400-dimensional vector;
• I-vector(200)+LM: concatenation of the 200-dimensional i-vector and the 200-dimensional latent

variable mean, resulting in a 400-dimensional vector;
• I-vector(200)+LV: concatenation of the 200-dimensional i-vector and the 200-dimensional latent

variable log-variance, resulting in a 400-dimensional vector;
• I-vector(200)+LM+LV: concatenation of the 200-dimensional i-vector and the 200-dimensional

latent variable mean and log-variance, resulting in a 600-dimensional vector.

As seen from Table 2 and Figure 6, the augmentation of the latent variable greatly improved the
performance in all the tested cases.
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Figure 6. DET curves of the speaker verification experiments using a 400-dimensional i-vector and
combinations of two features out of the 200-dimensional i-vector, latent variable mean (LM), and the
log-variance of the latent variable (LV).

Table 2. Comparison of results between various feature-level fusions of the conventional i-vector and
mean and log-variance of the latent variable extracted from the proposed VAE.

ine Class. Err. (%) EER (%) DCF08 DCF10

i-vector(400) 7.67 2.68 1.54 0.06
LM + LV 6.94 2.03 1.23 0.05

i-vector(200) + LM 5.36 1.78 0.97 0.05
i-vector(200) + LV 4.99 1.65 0.94 0.04

i-vector(600) 5.07 2.17 1.29 0.05
i-vector(200) + LM + LV 2.75 0.97 0.61 0.03

By using only the mean and log-variance of the latent variable together (i.e., LM+LV), a relative
improvement of 24.25% was achieved in terms of EER, compared to the conventional i-vector
with the same dimension (i.e., i-vector(400)). The concatenation of the standard i-vector and the
latent variable mean (i.e., i-vector(200)+LM) also improved the performance. Especially in terms
of EER, i-vector(200)+LM achieved a relative improvement of 33.58% compared to i-vector(400).
This improvement may be attributed to the non-linear feature extraction process. Since the latent
variable mean is trained to encode the various variability within the distributive pattern of the given
utterance via a non-linear process, it may contain information that is not obtainable from the linearly
extracted i-vector. Thus, by supplementing the information ignored by the i-vector extraction process,
a better representation of the speech can be obtained.

The best verification and identification performance out of all the 400-dimensional features
(i.e., i-vector(400), LM+LV, i-vector(200)+LM, and i-vector(200)+LV) was obtained when concatenating the
standard i-vector and the latent variable log-variance (i.e., i-vector(200)+LV). I-vector(200)+LV achieved
a relative improvement of 38.43% in EER and 34.94% in classification error compared to i-vector(400).
This may have been due to the capability of the latent variable variance of capturing the amount of
uncertainty, which allows the decision score to take advantage of the duration dependent reliability.

Concatenating the standard i-vector with both the mean and log-variance of the latent
variable (i.e., i-vector(200)+LM+LV) further improved the speaker recognition performance. Using the
i-vector(200)+LM+LV achieved a relative improvement of 55.30% in terms of EER, compared to the
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standard i-vector with the same dimension (i.e., i-vector(600)). Figure 7 shows the DET curves obtained
when i-vector(200)+LM+LV and i-vector(600) were applied.

Figure 7. DET curves of the speaker verification experiments using 600-dimensional i-vector and
combined feature of 200-dimensional i-vector, latent variable mean, and the log-variance of the
latent variable.

5.6. Score-Level Fusion of I-Vector and Latent Variable

In this subsection, we present the experimental results obtained from a speaker recognition task
where the decision was made by fusing the PLDA scores of i-vector features and VAE-based features.
Given a set of independently computed PLDA scores Sr, r = 1, · · · , R, the fused score S f used was
computed by simply adding them as

S f used =
R

∑
r=1

Sr. (21)

We compared the following scoring schemes:

• I-vector: PLDA score obtained by using the standard 200-dimensional i-vector;
• LM: PLDA score obtained by using the 200-dimensional latent variable mean;
• LV: PLDA score obtained by using the 200-dimensional latent variable log-variance;
• I-vector+LM: fusion of the PLDA scores obtained by using the 200-dimensional i-vector and the

200-dimensional latent variable mean;
• I-vector+LV: fusion of the PLDA scores obtained by using the 200-dimensional i-vector and the

200-dimensional latent variable log-variance;
• LM+LV: fusion of the PLDA scores obtained by using the latent variable mean and log-variance;
• I-vector+LM+LV: fusion of the PLDA scores obtained by using the standard 200-dimensional

i-vector and the 200-dimensional latent variable mean and log-variance.

Table 3 and Figure 8 give the results obtained through these scoring schemes. As shown in
the results, using the latent variable mean and log-variance vectors as standalone features yielded
comparable performance to the conventional i-vector method (i.e., LM and LV). Additionally, fusing
the latent-variable-based scores with the score provided by the standard i-vector feature further
improved the performance (i.e., i-vector+LM and i-vector+LV). The best score-level fusion performance
was obtained by fusing all the scores obtained by the standard i-vector and the latent variable mean
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and log-variance vector (i.e., i-vector+LM+LV), achieving a relative improvement of 25.89% in terms of
EER compared to i-vector. However, the performance improvement produced by the score-level fusion
methods was relatively smaller than the feature-level fusion methods presented in Table 2. This may
have been because the score-level fusion methods compute the scores of the i-vector and the latent
variable-based features independently, and as a result the final score cannot be considered an optimal
way to utilize their joint information.

Figure 8. DET curves of the speaker verification experiments using various score-level fusions of
the conventional i-vector and the mean and log-variance of the latent variable extracted from the
proposed VAE.

Table 3. Comparison of results between various score-level fusions of the conventional i-vector and the
mean and log-variance of the latent variable extracted from the proposed VAE.

Class. Err. (%) EER (%) DCF08 DCF10

i-vector 12.62 3.36 2.00 0.07
LM 11.89 3.61 2.09 0.07
LV 17.78 4.65 2.57 0.08

i-vector+LM 7.03 2.63 1.63 0.06
ine i-vector+LV 7.39 2.76 1.69 0.06

LM+LV 10.26 3.50 2.02 0.07
i-vector+LM+LV 5.75 2.49 1.57 0.06

6. Conclusions

In this paper, a novel unsupervised deep-learning model-based utterance-level feature extraction
for speaker recognition was proposed. In order to capture the variability that has not been fully
represented by the linear projection in the traditional i-vector framework, we designed a VAE for GMM
adaptation and exploited the latent variable as the non-linear representation of the variability in the
given speech. Analogous to the standard VAE, the proposed architecture is composed of an encoder
and a decoder network, where the former estimates the distribution of the latent variable given the
Baum–Welch statistics of the speech and the latter generates the ideal GMM supervector from the
latent variable. Moreover, to take the uncertainty caused by short duration speech utterances into
account while extracting the feature, the VAE is trained to generate a GMM supervector in such a way
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as to maximize the likelihood. The training stage of the proposed VAE uses a likelihood-based error
function instead of the conventional reconstruction errors (e.g., cross-entropy).

To investigate the characteristics of the features extracted from the proposed system in a practical
scenario, we conducted a set of random-digit sequence experiments using the TIDIGITS dataset.
We observed that the variance of the latent variable generated from the proposed network apparently
demonstrated the level of uncertainty which gradually decreased as the duration of the speech
increased. Additionally, using the mean and variance of the latent variable as features provided
comparable performance to the conventional i-vector and further improved the performance when
used in conjunction with the i-vector. The best performance was achieved by feature-level fusion of
the i-vector and the mean and variance of the latent variable.

In our future study, we will further develop training techniques for the VAE not only to maximize
the likelihood but also to amplify the speaker discriminability of the generated latent variable.
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Featured Application: In this paper, the proposed attention-based long short-term memory
(LSTM) algorithm and bagging methods accurately detected the replay spoofing attacks in
noisy environments. For example, in voice authentication of bank-accounts or mobile devices,
an attacker could be effectively prevented from replaying the voice of a legitimate user by using
this algorithm. This algorithm has potential important applications in biometrics and information
security, especially for improving the security of the automatic speaker verification systems in
noisy environments.

Abstract: Even though audio replay detection has improved in recent years, its performance is
known to severely deteriorate with the existence of strong background noises. Given the fact that
different frames of an utterance have different impacts on the performance of spoofing detection,
this paper introduces attention-based long short-term memory (LSTM) to extract representative
frames for spoofing detection in noisy environments. With this attention mechanism, the specific
and representative frame-level features will be automatically selected by adjusting their weights
in the framework of attention-based LSTM. The experiments, conducted using the ASVspoof 2017
dataset version 2.0, show that the equal error rate (EER) of the proposed approach was about 13%
lower than the constant Q cepstral coefficients-Gaussian mixture model (CQCC-GMM) baseline
in noisy environments with four different signal-to-noise ratios (SNR). Meanwhile, the proposed
algorithm also improved the performance of traditional LSTM on audio replay detection systems in
noisy environments. Experiments using bagging with different frame lengths were also conducted to
further improve the proposed approach.

Keywords: audio replay attack; noise robustness; attention mechanism; long short-term memory

1. Introduction

With the growing popularity of automatic speaker verification (ASV) systems, the attacks on
them have posed significant security threats, which requires that the ASV systems have the ability to
detect spoofing attacks. Generally, spoofing attacks can be categorized into four types: impersonation,
synthesis, conversion, and replay [1]. In order to promote research on anti-spoofing, the automatic
speaker verification spoofing and countermeasures (ASVspoof) challenge [2] was first launched in
2015, which focused on discriminating between synthesized or converted voices and those uttered by
a human. The second challenge, i.e., the ASVspoof 2017 challenge [3], focused on detecting replay
spoofing to discriminate whether a given speech was the voice of an in-person human or the replay of
a recorded speech.

Replay attack refers to when an attacker uses a high-fidelity recording device to record the voice of
a legitimate authentication system user and then uses the recorded playback through the device on the
ASV system, thereby achieving an attack behavior [4]. With the development of electronic technology,
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the performance of high-fidelity recording and playback equipment has been considerably improved.
A replay attack is not difficult to implement and does not require any specialized knowledge, which
poses a significant threat to ASV systems [5]. Therefore, the research on replay attack detection has
become increasingly important. Villalba et al. [6] used far-field replay speech recordings to investigate
the vulnerability of an ASV system and showed that the equal error rate (EER) of the ASV system
increased from 1% to nearly 70% when the human voice was recorded directly and replayed to the
device. Algre et al. [5] further evaluated the risk of replay attack by using the 2005 and 2006 National
Institute of Standards and Technology Speaker Recognition Evaluation dataset (NIST’ 05 and NIST’ 06)
corpus and six kinds of ASV systems. Their results showed that the low-effort replay attack posed a
significant risk to all the ASV systems tested. However, the work presented above only reported the
results in conditions without background noise, thus it is still not clear how background noise affects
the performance of spoofing detection. Therefore, in order to enhance the security of ASV systems,
spoofing detection in noisy environment is investigated in this paper.

2. Related Work

Over the years, different methods have been tested to explore spoofing detection.
A replay-detection algorithm, based on peakmap audio features, was proposed in [4], which calculated
the similarity of the peakmap features between the recorded test utterance and the original enrollment
one. If the similarity was above a certain threshold, the utterance was determined to be a replay attack.
The replay-detection performance was further improved by adopting a relative similarity score in [7].

Zhang et al. used Mel frequency cepstral coefficients (MFCCs) to detect replay [8]. They believed
that the silent segments of a speech would better detect the channel source than the spoken segments.
Therefore, voice activation detection (VAD) was utilized to extract the silent segments of a speech
and a universal background model (UBM) was created to model the difference between the speaker’s
testing utterance and their enrollment utterance. However, the use of acoustic signal processing
to detect replay attacks is considered to be challenging due to the unpredictable changes in voice
recording environments, recording equipment, etc. [3]. For example, artifacts introduced by the
acoustic surroundings, such as reverberation, might be confused with the artifacts introduced by
playback in some cases. Li et al. [9] tried to use machine learning to detect replay attacks, but only
obtained poor performance due to overfitting.

In the ASVspoof 2017 challenge, an official corpus for detecting replay attack and a baseline system,
based on the Gaussian mixture model (GMM) with constant Q cepstral coefficient (CQCC) features [10],
were provided. The challenge required participants to propose a method that distinguished between
genuine speech and a replay recording, where a total of 49 submissions were received from the
participants. The average EER of all the submissions was 26.01% [3], where only 20 out of 49
submissions obtained lower EERs than the GMM and CQCC baseline. Among all of the submissions,
the best detection performance was reached when using deep convolutional neural networks on
spectrograms [11]. This method used an ensemble of three techniques: convolutional neural network
(CNN) with recurrent neural network (RNN), light CNN (LCNN), and support vector machine (SVM)
i-vector. In addition, Patil et al. [12] proposed variable length Teager energy operator-energy separation
algorithm-instantaneous frequency cosine coefficients (VESA-IFCC), and Li et al. [9] utilized a deep
neural network (DNN) model with L-Fbanks cepstral coefficient (LFCC) features to identify the genuine
and the spoofing speech. All these algorithms achieved better results when compared to the other
submissions on the dataset.

The work in this paper is based on the official corpus of the ASVspoof 2017 challenge, i.e.,
ASVspoof2017 dataset Version 2.0. However, the genuine utterances of the dataset were collected in
clean environments (i.e., without any background noises), while the spoof utterances were recorded
in environments with various background noises. The genuine utterance setting conflicts with
real-world scenarios with complex, noisy environments where the ASV system typically works. In fact,
genuine utterances may have background noises, while spoof utterances will contain both the genuine
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utterances’ noises and the noises of the recording environment. Therefore, noisy environments will
definitely create challenges in distinguishing between genuine and spoof utterances. Therefore, it is
worth exploring the effectiveness of a noise-robust algorithm on spoofing detection, which is the
motivation of this paper.

3. Motivation

The previous related work has confirmed that replay attack is still quite a threat to ASV systems,
although a couple of replay detection methods have been proposed with success. Towards noise-robust
detection, countermeasures and detection algorithms still have room for improvement, especially
in complex, noisy environments. Figure 1 shows two pairs of genuine human voices and their
corresponding replay speech from the ASVspoof 2017 dataset Version 2.0. The figure tells us
the following:

Figure 1. Spectrogram of genuine and replay utterances. (a,c) are genuine human voices while (b,d)
are replay recordings of (a,c), respectively. Spectrograms (e,f) are the noise contaminated versions of
(a,b), respectively, where babble noise with 0 dB signal-to-noise ratio (SNR) was added.

(1) The durations of the utterances are different. Hence, the chosen algorithm should be able to
process signals with variable lengths.

(2) The first pair of the genuine (a) and spoof (b) utterances differ greatly in their low frequency
regions, while the differences in the second utterance pair, (c) and (d), lie mainly in the high frequency
regions. Therefore, distinguishing features can occur over all frequency bands and it is, thus,
not appropriate to focus on only high or low frequency bands.

(3) (e) and (f) are the noise-contaminated utterances of (a) and (b), respectively. The spectrograms
show that the utterances in noisy environments are more complicated than those of the clean
environments. For example, when comparing (a) and (e), it is obvious that some of the distinguishing
features of (a) have been dispersed when noise occurs. This phenomenon highlights the difficulties in
spoofing detection for noisy utterances, as will be numerically explained in Section 5.3.

In this paper, we aim to improve the spoofing detection algorithm by overcoming the problems
presented at the beginning of this section, and propose a robust algorithm for replay attack detection
in noisy environments. Our research motivations are summarized as follows:
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(1) The sequential nature of speech motivated us to choose long short-term memory (LSTM)
to obtain a representation of an utterance. By using LSTM, contextual information can be easily
transformed into a vector as input for any back-end classifier.

(2) Considering that different audio frames may contribute differently to the task of replay
detection, especially under noisy environments where the frames are contaminated to different degrees
by noise, an attention mechanism [13] was used to perform automatic weighting of the frames.

(3) When programming RNNs, for example with TensorFlow, utterance inputs should be the same
length, which is normally done by zero-padding the short inputs in the batch to make their length
meet a prefixed constant. The lengths of the utterances vary significantly in the ASVspoof 2017 dataset,
where the longest utterance has 1423 frames while the shortest one has only 86 frames. There would
be too many zeros in the short utterances if simply zero-padding the short ones, which would make
the data distribution severely biased toward the padded utterances. In fact, given our research on
RNNs, LSTMs, and gated recurrent units (GRUs), the sequence length of the model performs as a
hyper-parameter which impacts the model’s performance. Therefore, it is also worth investigating
the impact of the sequence length on the accuracy of replay detection in the ASV spoofing scenario.
Hence, the split/padding method was used to obtain a group of speech segments with uniform length,
and is presented in Section 5.2.3. For an input sequence whose length was longer than the prefixed
one, splitting was utilized to cut the sequence into smaller sections that met the prefixed length. For an
input sequence whose length was shorter than the prefixed one, padding was utilized by repeating the
sequence until the prefixed length was reached. In this way, fewer zeros are padded onto the sequences,
their segments will have a uniform length, and they are ready to be RNN inputs. The split/padding
method is detailed in Section 5.2.3.

(4) Given the split/padding approach described above, a sequence may be divided into several
segments, each of which was analyzed to decide on whether it is a genuine or spoofing utterance.
Therefore, for the original whole input sequence, it was easy to use the bagging method in ensemble
learning to combine the decisions derived on its individual segments. Section 5.2.4 explains the bagging
method in detail.

The rest of this paper is organized as follows: Section 4 describes the attention-based LSTM
algorithm (AB-LSTM) and the network architecture for replay attack detection, experimental settings
and results are presented in Section 5, and the final section, Section 6, concludes the paper.

4. The Proposed Algorithm

In this section, the attention mechanism and the AB-LSTM are introduced. The proposed network
architecture for replay attack detection is subsequently presented.

4.1. Attention Mechanism

4.1.1. Traditional Attention

Attention mechanisms have been applied in many tasks and have achieved remarkable results,
such as speech recognition [14–16], natural language processing [17], and machine translation [18].
An attention mechanism [13,14] can adaptively learn the relationship of the inputs at several time steps
and predict the current time step by using a weight vector. For a sequence with state h j at each step,
a super vector ct can be computed by,

ct =
∑

T
j=1αt jh j, (1)

where T is the number of steps of the input sequence and αt j denotes the weight vector, computed at
step t for each state h j. The weight vectors, αt j, are then computed by using an intermediate vector, et j,

et j = ϕ
(
st−1, h j

)
, (2)
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where st−1 is the output at step t− 1 and ϕ(·) is a learned function, which performs as an important
scalar determined by h j and st−1. Then the value of the weight vectors, αt j, are computed by,

αt j =
exp
(
et j

)

∑T
k=1 exp(etk)

. (3)

This attention mechanism is able to recursively generate weight vectors given the state of the
current step. The frames that contribute the most to the final task tend to have higher weights in the
entire super vector, while the frames that contribute less to the final task tend to have lower weights.
According to Equations (1) to (3), an utterance is encoded to a super vector c, which acts as an input to
a back-end genuine/spoof classifier.

4.1.2. Feed-Forward Attention

In the traditional attention mechanism introduced in Section 4.1.1, ϕ(·) in Equation (2) is a
learnable function, which depends on the newly generated output, st−1, and the current state, h j. In for
feed-forward attention, ϕ(·) only depends on the current state ht, so Equations (2) and (3) become,

et = ϕ(ht), (4)

and

αt =
exp(et)

∑T
k=1 exp(ek)

, (5)

respectively, where αt represent the value of the weight vectors, et and e j represent the intermediate
vectors. Thus, the attention mechanism is actually modeled by a super vector, c, of the input sequence
by computing an adaptive weighted average of the state sequence h,

c =
∑

T
t=1αtht, (6)

The feed-forward attention mechanism is shown in Figure 2. Intuitively, an attention mechanism will
put emphasis on the important steps to yield high values in the vector c when modeling sequences.

Figure 2. The structure of the “feed-forward” attention mechanism [13,19]. Vectors in the state sequence
hi are fed into the learnable function ϕ(hi) to produce a weight vector α. The vector c is computed as a
weighted average of hi with the weighting given by the weight vector α.
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4.2. Attention-Based LSTM

In this section, for the hidden states of the LSTM output, the feed-forward attention mechanism
was utilized to adaptively calculate the weight of every frame. The weights are denoted by α =

{α1, · · · ,αi, · · · ,αN} for the hidden states, h = {h1, · · · , hi, · · · , hN}, of frames 1, 2, . . . , N, where
{αi ≥ 0, i = 1, · · · , N}. h

( j)
i

represents the j-th entry of the frame i in the hidden state h. w( j) represents
the trainable parameters. Then the weights, computed by the attention mechanism using sigmoid
function, can be defined as,

ui = h
( j)
i
·w( j), (7)

and

αi =
e

1
1+e−ui

∑N
i=1 e

1
1+e−ui + ε

, (8)

where the weighted, hidden state, h̃i, and the super vector, c, are obtained by,

h̃i = αi·hT
i , (9)

and

c =
N∑

i=1

h̃i. (10)

4.3. Network Architecture for Replay Attack Detection

The proposed framework is shown in Figure 3. The network architecture is as follows: (1) the
frame-level features are extracted from the input utterance, (2) the hidden states of the whole sequence
are obtained by LSTM, (3) a batch-normalization layer is utilized to reduce overfitting and to improve
the model’s performance, (4) attentional weighting of the hidden state is transformed into a super
vector, and (5) fully-connected layers followed by a softmax layer are used to make a final decision on
whether the voice is genuine or a spoof.

 

Figure 3. Network architecture for replay attack detection with attention mechanism.
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5. Experiments and Results

5.1. ASVspoof 2017 Challenge and Dataset

The ASVspoof 2017 Version 2.0 dataset [3,20] includes three parts: training set, development set,
and evaluation set. Each dataset contains both genuine and spoof utterances as shown in Table 1.

Table 1. The detailed information of the ASVspoof 2017 Version 2.0 dataset. The number represents the
quantity of utterances in each subset.

Subset Speakers Genuine Spoof

Training 10 1508 1508
Development 8 760 950

Evaluation 24 1298 12008

Total 42 3566 14466

5.2. Experimental Setup

In order to comprehensively evaluate the performance ability of traditional LSTM and AB-LSTM
on spoof detection, experiments were conducted in both clean and noisy environments, respectively.
Firstly, the CQCC features of each utterance were extracted. Secondly, the split/padding method was
used to process the utterance and to obtain segments with the same length. Traditional LSTM and
AB-LSTM were then utilized to handle the frame-level features and to decide on genuine or spoof
status through bagging methods. Finally, noises with different levels of signal-to-noise ratios (SNRs)
were added to the original dataset, and the results on replay detection in noisy environments were
obtained by repeating the above steps.

5.2.1. Baseline

The baseline system of the ASVspoof 2017 Challenge used CQCC features [10] with a standard
binary GMM classifier for genuine and spoof utterances [3]. For each utterance, the log-likelihood
score was obtained from the two GMM classifiers and the final classification decision was based on the
log-likelihood ratio. For the experiments in noisy environments, in order to be consistent with the
given baseline in the clean background environment [3], we still used CQCC-GMM as the baseline.

5.2.2. Acoustic Features and SNR Settings

In this paper, D = 90 dimensional features, with 30 CQCCs, 30 Δ (delta coefficients) and 30 ΔΔ

(delta-delta coefficients), were utilized. Each frame of an utterance was processed by a 25 ms Hamming
window with a 10 ms shift. The number of bins per octave was set to 96. The highest and lowest
frequencies were set to 8000 Hz and 16 Hz, respectively. For the experiments in noisy environments,
four different kinds of noises were added to the original ASVspoof 2017 Version 2.0 dataset [20]. These
four kinds of noises were white, babble, f16, and leopard. The experiments were conducted in four
different SNR conditions: −5 dB, 0 dB, 5 dB, and 10 dB.

5.2.3. Split/Padding Method

In the experiments, each utterance had three choices on its prefixed segment length, i.e., 100 frames,
200 frames, and 300 frames. The detailed split/padding methods are shown below. In the padding
method (a), for utterances whose length was less than the prefixed value, the front frames were copied
and filled to the end of the utterance until reaching the prefixed length. For example, if the specified
length was 300 frames, an utterance with 80 frames was extended to 300 frames by repeating its frames,
as illustrated in Figure 4.
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Figure 4. An illustration of the padding method (a).

In the split method (b), for utterances whose length was longer than the prefixed length,
the utterance was split. For example, if the prefixed length was 100, an utterance with 250 frames
was first extended to 300 frames, according to method (a), and was then be split into three segments,
each with 100 frames, as is shown in Figure 5.

Figure 5. An illustration of the split method (b).

5.2.4. Bagging Methods

By using the split/padding approach presented above, the resulting segments had the same length.
A relatively long utterance was, thus, divided into several segments. For each segment, the spoof
detection algorithm decided on utterance type. To assess the whole utterance, a bagging approach was
used to combine the results of the segments of this utterance. The bagging method was accomplished
using two steps (Figure 6). The first step was bagging the decisions derived for each of the segments.
That is,

F̃a =

∑n
i=1 scorei

n
, (11)

where scorei is the classification probabilities of each segment from the utterance, n is the number of
segments, and F̃a is the bagging score. The second step was bagging the decisions on the four different
kinds of noises, F̃a,

F̃b =

∑m
i=1 F̃ai

m
, (12)

where m denotes the number of noises. In the experiments of this paper, m = 4.
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Figure 6. An illustration of the bagging approach used. F̃a1 denotes the bagging result of the three
segments from the same utterance. F̃a1 to F̃a4 denote bagging results after adding four different kinds
of noises to the original utterance.

5.2.5. Evaluation Metrics

In order to evaluate the performance of the proposed AB-LSTM, contrasting experiments were
conducted on AB-LSTM and traditional LSTM, at various SNR levels and for utterances with various
lengths. As a classic evaluation metric, EER was used to compare different algorithms. EER is the
value where the false alarm rate (FAR) is equal to the false reject rate (FRR). False alarm is defined as
the situation where the system incorrectly verifies or identifies a non-target speaker. FAR is the number
of false alarms divided by the number of total target trials. False reject is defined as the false rejection
of a true target speaker. The FRR is the number of false rejections divided by the total of non-target
trials [21]. The CQCC-GMM is adopted from the official MATLAB code in [22]. EER was calculated
using the MSR Identity Toolkit Version 1.0 [23].
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5.3. Results and Discussion

5.3.1. Experiments in Clean Environments

In this part of the experiment, we used three different frame length segments (100, 200, and 300)
as inputs of the network, and calculated the EERs of detection. The architecture of AB-LSTM utilized
in the experiments consisted of five recurrent layers with a size of 128× 256× 256× 256× 128. The size
of the attention layer was the same as the dimensions of the CQCC features. The last two layers of the
model were fully-connected layers with a size of 256 × 256. The total number of parameters in the
network was 1.86 million. As for the traditional LSTM, except for the absence of the attention layer,
the remaining parts were the same as those in AB-LSTM. The loss functions of these two methods are
binary cross-entropy,

loss = −
∑

n
i=1 ŷi log yi + (1− ŷi) log(1− ŷi), (13)

where n is the number of samples, yi is the true category, and ŷi is the predicted classification result.
After processing all the utterances from the three segment length subsets, using the split/padding

method, we used the resultant segments from the training set to train the model, and then used the
trained model to perform classification on the development and evaluation subsets.

The detailed EERs of traditional LSTM, AB-LSTM, and other baseline methods from the ASVspoof
2017 challenge [3] are presented in Table 2. As can be seen from the experiments under clean background
conditions, the AB-LSTM achieved an EER of 16.86% in the evaluation subset, which ranked among
the top submissions of the ASVspoof 2017 challenge [3]. As shown in Table 2, AB-LSTM performed
better than traditional LSTM, where the EER of AB-LSTM was reduced by 17.0% when compared to
traditional LSTM for the cases with 100 frames. For both traditional LSTM and AB-LSTM, the best EER
resulted from the settings with 100 frames.

Table 2. Performance of our algorithm and other algorithms used in the ASVspoof 2017 challenge.
Results are in terms of the replay/non-replay EER (%).

Methods dev EER eval EER

LCNNFFT, SVMi-vect,
CNNFFT+RNN [11]

3.95 6.73

VESA-IFCC+CFCCIF [12] 0.12 18.33

LCNN [24] 6.47 16.08

Evolving RNN [25] 18.70 18.20

Traditional LSTM

Frame = 100 13.24 20.32
Frame = 200 14.18 21.59
Frame = 300 13.83 20.97

Average 13.75 20.96

AB-LSTM

Frame = 100 9.75 16.86
Frame = 200 10.69 17.69
Frame = 300 11.94 18.84

Average 10.79 17.80

CQCC-GMM (baseline) 12.08 29.35

Figure 7 shows the loss curves of traditional LSTM and AB-LSTM methods observed during
training. We can see that the decrease in the loss values was faster with the attention mechanism
than without it. Although AB-LSTM had an additional attention layer, the convergence speed of
the whole model was significantly higher than that of traditional LSTM. This demonstrated that the
attention layer accelerated the optimization of the model by making the network concentrate on frames
necessary for genuine and spoof utterance detection.
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Figure 7. Loss curves of traditional long short-term memory (LSTM) and attention-based LSTM
(AB-LSTM).

In order to explore the influence of the network’s architecture, another group of experiments
were conducted using the 100 frame length segments, combined with the split/padding and bagging
methods. All three networks were trained on the training set and evaluated using the evaluation set.
Detailed experimental results are shown in Table 3.

Table 3. EER (%) results of the different network’s architectures in a clean background environment.

Network’s Architecture Traditional LSTM AB-LSTM

128× 256× 256 25.74 21.95
128× 256× 256× 256 22.61 19.03

128× 256× 256× 256× 128 20.32 16.86

5.3.2. Experiments in Noisy Environments

Detailed EERs (%) of the CQCC-GMM baseline, traditional LSTM, and AB-LSTM with different
frame lengths under different SNR environments are shown in Tables 4–7. The average EERs of the
different frame lengths and the EERs of the bagging methods are also included. The average EERs of
different SNR environments are shown in Table 8. Furthermore, Figure 8 illustrates the impact of SNR
on EER.

Table 4. EER a (%) and EER b (%) for different methods when SNR = −5 dB.

Methods
EER a (%) EER b (%)

dev eval dev eval

CQCC-GMM 48.53 47.52 - -

Traditional LSTM

Frame = 100 20.58 37.78
20.62 38.13Frame = 200 20.82 38.09

Frame = 300 23.87 39.86
Average 21.76 38.58 - -

AB-LSTM

Frame = 100 18.00 33.17
18.26 33.31Frame = 200 18.42 33.88

Frame = 300 19.71 34.64
Average 18.71 33.90 - -

a Bagging EER of segments. b Bagging EER of different length of frame.
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Table 5. EER a (%) and EER b (%) for different methods when SNR = 0 dB.

Methods
EER a (%) EER b (%)

dev eval dev eval

CQCC-GMM 39.70 43.51 - -

Traditional LSTM

Frame = 100 25.04 40.63
22.15 38.46Frame = 200 21.37 38.11

Frame = 300 24.74 41.24
Average 23.71 39.99 - -

AB-LSTM

Frame = 100 20.68 33.62
19.12 33.09Frame = 200 19.20 33.17

Frame = 300 18.35 32.94
Average 19.41 33.24 - -

Table 6. EER a (%) and EER b (%) for different methods when SNR = 5 dB.

Methods
EER a (%) EER b (%)

dev eval dev eval

CQCC-GMM 45.99 48.95 - -

Traditional LSTM

Frame = 100 19.00 36.43
20.77 37.56Frame = 200 22.18 39.12

Frame = 300 24.66 40.05
Average 21.95 38.53 - -

AB-LSTM

Frame = 100 18.43 33.27
18.83 33.29Frame = 200 19.62 34.06

Frame = 300 19.74 34.85
Average 19.26 34.06 - -

Table 7. EER a (%) and EER b (%) for different methods when SNR = 10 dB.

Methods
EER a (%) EER b (%)

dev eval dev eval

CQCC-GMM 46.71 46.36 - -

Traditional LSTM

Frame = 100 22.38 37.91
22.63 38.08Frame = 200 23.13 38.14

Frame = 300 23.58 38.33
Average 23.03 38.13 - -

AB-LSTM

Frame = 100 17.36 31.62
17.46 32.11Frame = 200 17.57 32.21

Frame = 300 18.09 33.45
Average 17.67 32.43 - -
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Table 8. Average EER a (%) and EER b (%) of all four SNR levels.

Methods
EER a (%) EER b (%)

dev eval dev eval

CQCC-GMM 45.23 46.59 - -

Traditional LSTM

Frame = 100 21.75 38.19
21.54 38.06Frame = 200 21.88 38.37

Frame = 300 24.21 39.87
Average 22.61 38.81 - -

AB-LSTM

Frame = 100 18.62 32.92
18.42 32.95Frame = 200 18.70 33.33

Frame = 300 18.97 33.97
Average 18.76 33.41 - -

Figure 8. The average EER values of CQCC-GMM, traditional LSTM, and AB-LSTMs at different
SNR levels.

Compared with the baseline’s EER of 30.60% for the evaluation set in the clean environment [3],
the average EER of the four kinds of SNR in noisy environments increased to 45%. This implies that
the noise in complex sound environments seriously affected the performance of the baseline system.
As for traditional LSTM and the proposed AB-LSTM algorithm, the results of the experiments showed
that the AB-LSTM algorithm performed better than the CQCC-GMM baseline for any frame length at
any SNR level. It was also seen that the AB-LSTM algorithm achieved better EERs than the traditional
LSTM for all parameter settings.

The experiments conducted without the attention mechanism had an average EER of 38.06%,
an 8.53% reduction with respect to the baseline system’s EER of 46.59%. AB-LSTM obtained an average
EER of 32.95% on the evaluation set, which was 13.64% and 5.11% lower than the EER for the baseline
system and the traditional LSTM, respectively. The improvement in the EER using the AB-LSTM
algorithm, compared to the baseline and traditional LSTM, might be attributed to the attention
mechanism, which made the model focus adaptively on the distinguishing utterance information.
These results demonstrated the effectiveness of the attention mechanism in replay detection.

The experimental results also demonstrated that 100 was a good choice for the prefixed frame
length. The detection methods that used the 100 frame segments performed better than with 200 or
300 frames in all the three SNR environments and for the AB-LSTM algorithm. The experiments also
demonstrated that bagging using different lengths of inputs performed better than those using simple
averaging. In addition, with the decrease of SNR, the EERs of discrimination also decreased, which
indicated that the intensity of the noise affected the accuracy of the replay detection.

As can be seen from Tables 4–7 and Figure 8, EERs did not show a significant decreasing trend
with the increase in SNR. The reason for this phenomenon may be that the additional noises caused
more serious interference with the original speech signal. However, we found that EERs obtained by
AB-LSTM in this study were significantly better than the CQCC-GMM baseline method and traditional
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LSTM in noisy environments. The algorithm proposed in this paper deserves further study in replay
attack detection.

6. Conclusions

In audio replay detection, it is necessary to pick frames that have important impacts on detection.
By introducing an attention mechanism to spoof detection using LSTM, we proposed an algorithm to
adaptively highlight the important frames. Moreover, two kinds of bagging methods were proposed
and tested, from which accurate and stable performance was observed for spoof detection on noisy
speech. Extensive experiments, using the ASVspoof 2017 Version 2.0 dataset contaminated by various
noises, demonstrated the effectiveness of the proposed detection methods by achieving a 13.18%
reduction in EER when compared to the baseline.
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Featured Application: The proposed periocular biometric network can apply to any application
that requires identity management, such as homeland security, border controls, access control,
criminal investigation, etc.

Abstract: Periocular recognition remains challenging for deployments in the unconstrained
environments. Therefore, this paper proposes an RGB-OCLBCP dual-stream convolutional
neural network, which accepts an RGB ocular image and a colour-based texture descriptor,
namely Orthogonal Combination-Local Binary Coded Pattern (OCLBCP) for periocular recognition
in the wild. The proposed network aggregates the RGB image and the OCLBCP descriptor by
using two distinct late-fusion layers. We demonstrate that the proposed network benefits from
the RGB image and thee OCLBCP descriptor can gain better recognition performance. A new
database, namely an Ethnic-ocular database of periocular in the wild, is introduced and shared for
benchmarking. In addition, three publicly accessible databases, namely AR, CASIA-iris distance and
UBIPr, have been used to evaluate the proposed network. When compared against several competing
networks on these databases, the proposed network achieved better performances in both recognition
and verification tasks.

Keywords: periocular recognition in the wild; convolutional neural network; colour-based local
binary coded pattern

1. Introduction

Biometric systems have been widely deployed since the late 1990s worldwide for identity
management, banking, homeland security, etc. [1]. Among different biometric systems, face recognition
enjoys flexibility, availability, and user-friendly [2]. However, biometrics experts and the police
departments of the United States have agreed that the face recognition technology remains challenging
after the “Boston Marathon bombings” in 2013 [3]. For instance, the appearances of subjects such as
cosmetic products, plastic surgery or wearing masks may cause the failure of identifying the suspects.
To hinder the complexity of the facial region, periocular recognition is gaining attention these days
attributed to its promising recognition performance [4].

What does periocular refer to? According to the definition in [5], periocular defines the region
around the eyes, which includes the eyelids, eyelashes, and eyebrows (see Figure 1). The periocular
region demonstrates more tolerance of variability in expression and occlusion, such as crime scene
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where perpetrators intentionally mask part of their faces. This creates more capability of matching
partial faces [6,7]. In addition, due to the rapid growth of camera use in social networks, surveillance,
and smartphones, this arguably increases the interest of periocular recognition [8,9]. For all these
reasons, periocular recognition has become an area of intense study in the biometrics and computer
vision communities.

Periocular regions

Figure 1. Samples of periocular regions. We demonstrate sample images of the periocular region that
including eyebrows. The images are collected from The Korea Times [10] and Kitchen Decor [11].

In this paper, we address the challenges of periocular recognition in the unconstrained or “in-the-
wild” environments that remain not well-addressed by the current works [12,13]. This challenge
is associated with the issue of dissimilarities in periocular images due to the placement of sensors,
pose alignments, illumination levels, occlusions, etc. Thus, we study this problem by means of
a fusion approach with dual-stream Convolutional Neural Network (CNN), which accepts RGB ocular
image and a novel colour-based texture descriptor, known as Orthogonal Combination-Local Binary
Coded Pattern (OCLBCP). We have also developed and shared a new database, namely Ethnic-Ocular
database, by collecting the periocular region images in the wild to validate the proposed network.

1.1. Related Works

The early study on periocular biometrics presented in [5] shows promising results in human
recognition. The authors adopted several handcrafted descriptors such as Histogram of Oriented
Gradients (HOG), Local Binary Patterns (LBP) and Scale-Invariant Feature Transform (SIFT) as
periocular feature representation, followed by the score fusion for classification. Fernandez et al. [14]
and Cao et al. [15] also introduced a similar approach, which convolves periocular features extracted
from HOG or LBP feature matrix with Gabor filters and followed by score fusion. There are several
research articles focused on combinations of texture descriptors with fusion algorithm for periocular
representation and recognition [16–20]. All these approaches are mainly focused on amalgamation of
various handcrafted texture descriptors and followed by learning machines for decent performances
in periocular recognition. However, these approaches are less robust to “in the wild” variations
such as resolutions, levels of illumination, poses, and occlusions due to inadequacy and inflexibility
of handcrafted texture descriptors in representing periocular features. Therefore, the periocular
recognition in the wild remains a challenge.

In recent years, CNNs have gained escalating attention in image classification [21,22]. CNNs can
be used to extract image texture features from different layers while handcrafted texture descriptor
are only limited to low-level features, which is equivalent to the first convolutional (conv) layer
features of CNNs. Apart from conv layers at different level, the features can be extracted from
max pooling (maxpool) and fully-connected (fc) layers of CNNs. Several researchers have employed
CNNs for periocular recognition. For instance, Gangwar et al. [23] proposed two CNNs (for left and
right oculars), namely DeepIrisNet, which extracts comprehensive information to boost recognition
performance. Other studies, e.g., by Proença et al. [24] and Zhao et al. [25], have demonstrated
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enhanced CNN frameworks for periocular recognition where the prior knowledge is exploited to
discard unnecessary information. Proença et al. [24] suggested removal/separation of the iris and
sclera from the periocular regions, while Zhao et al. [25] identified the critical regions (only included
eyebrow and eye region) that can extract more discriminative information to improve periocular
recognition. However, these networks were found to underperform when there are misalignments of
periocular images, images missing the eyebrows and images missing ocular.

The relevant works that deal with non-ideal ocular are those by Zhang et al. [26] and
Soleymani et al. [27]. Zhang et al. [26] fused iris and periocular modalities through a weighted
concatenation. The network achieved significant results when compared to other CNNs. Similarly,
Soleymani et al. [27] invented a new multimodal CNN, namely multi-fusion CNN, where the iris,
face and fingerprint features are fused at fc layer. A fusion layer is designed to fuse different levels of
fc layers as multi-feature representations with the sole RGB image. However, these works leveraged
several biometrics where all of them may not always be available such as occluded face with mouth
covered or iris from a distance. Furthermore, the use of multiple biometrics modality may jeopardise
the usability of the system such as fingerprint and iris need cooperation from the users.

In the previous work of CNN that consumes face texture descriptor, Levi et al. [28] demonstrated
the use of colour-based LBP descriptor as input to CNN rather than raw RGB face image for emotional
recognition. The authors showed that colour-based texture descriptor is useful to train their network
in the wild environment. This work motivates us to investigate and analyse the impact of colour-based
texture descriptor within CNN for periocular recognition in the wild.

1.2. Motivation and Contributions

In the early days of periocular recognition, the problems were mostly concerned about what was
the best way to handle periocular in the presence of illuminations, pose alignments, and occlusions [5,6].
Many periocular databases were built using carefully controlled images for each of these issues.
UBIPr [12], CASIA-iris database [29], and MICHE database [30] are the most comprehensive efforts in
this direction and created in a well-controlled environment.

Presently, the challenges of periocular recognition concern about images that having large
variations due to in the wild environments, such as ageing, appearances, cameras location,
level of illuminations, occlusions, pose alignments, and others [18,31]. In addition, many existing
databases [12,13,29,30] and research communities [18,23,27] still yet to prepare for periocular
recognition in the wild challenge. Especially, the appearances of periocular with cosmetic products,
and plastic surgery can affect the recognition performance negatively.

This paper offers a solution for periocular recognition in the wild by investigating the fusion of
RGB periocular images and a novel texture descriptor, i.e., OCLBCP, by means of a dual-stream CNN.
OCLBCP exploits the colour information in the periocular texture to better represent the periocular
features for recognition in the wild. The two networks share the parameters and a late fusion takes
place at the last conv layer before fc layer.

For validation of the proposed network, a new database is introduced, namely Ethnic-ocular,
by collecting the periocular region images in the wild setup. The databased includes five ethnic
groups: African, Asian, Latin American, Middle Eastern, and White. The database is created in such a way
that each ethnic group has a unique shape of periocular and skin texture of periocular regions [32].
Therefore, the database avoids unbalanced selection, as there are differences in the configuration of
oculars among different ethnicities.

Hence, the contributions of this paper are as follows:

• To study complementarity between CNN and input features, we investigate and analyse the
combination of RGB image and a novel texture descriptor, namely OCLBCP for periocular
recognition in the wild.

• Two distinct late-fusion layers are introduced in the proposed CNN. The role of the
late-fusion layers is to aggregate the RGB image and OCLBCP descriptor. Hence, the proposed
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two-stream CNN is beneficial from these new features of the late-fusion layers to deliver better
accuracy performance.

• A new periocular in the wild database, namely Ethnic-ocular, is created and shared in [33].
The images were collected across highly uncontrolled subject–camera distances, appearances,
resolutions, locations, levels of illumination, and so on. The database includes training and testing
schemes for performance analysis and evaluation.

The paper is organised as follows: Section 2 describes the structure of the proposed colour-based
Orthogonal Combination-Local Binary Coded Pattern (OCLBCP) texture descriptor. The proposed
network with fusion algorithm is presented in Section 3 and the detailed database information is
presented in Section 4. Section 5 discusses the experimental results and analysis. A conclusion is
summarised in Section 6.

2. Colour-Based Orthogonal Combination—Local Binary Coded Pattern

This section introduces a new colour-based texture descriptor known as Orthogonal
Combination—Local Binary Coded Pattern (OCLBCP). OCLBCP is devised based on the notion
of an orthogonal combination of Local Binary Pattern (LBP) [34] and Local Ternary Pattern (LTP) [35].
The OCLBCP descriptor yields a more vibrant texture representation since it is less sensitive to the
image noise and levels of illuminations.

Let Ip ∈ R
x×y be the periocular grayscale image, where x and y are the width and height of Ip,

respectively. The apparent changes in the images are related to illuminations and poses, thus we
deploy the pre-processing method used in [36] to reduce the noise from Ip. First, we transform the
Ip into Fourier domain as Z. Furthermore, we apply the Butterworth filter (B) to Z by reducing
the illumination noise and enhancing the reflectance [37]. After that, we apply an inverse Fourier
transform to obtain the filtered image I′p.

To construct the OCLBCP descriptor, I′p has to be proposed first according to the LBP [34] and
LTP [35] transformation. LBP summarises the local structure in an image by comparing each pixel
with its neighbourhood [34]. This descriptor works by thresholding a neighbourhood matrix using
the grey level of the central pixel in the binary code. LTP is an extension of the LBP with three-valued
codes [35]. The descriptor works by comparing each pixel with its neighbouring pixels. Then, they
are combined after thresholding into a ternary pattern. The ternary pattern is split into two binary
patterns and called positive and negative matrices.

In this paper, the LBP consists of the 3 × 3 neighbourhood matrix, and the LTP consists of the
positive and negative matrices. To do so, I′p is partitioned into sub-matrix with size 3 × 3 and the
neighbourhood values of sub-matrix is binarised according to the centre value of the sub-matrix,
which serves as a reference value for thresholding. After that, the descriptor combines the sub-matrix
of LBP and LTP into four orthogonal groups: D1, D2, D3, and D4 (see Figure 2). The orthogonal groups
serve to achieve illumination invariance and uncover better texture information by removing outlying
disturbances. Specifically, to obtain D1, the bits from the yellow boxes in the LBP and the bits from
green boxes in LTP positive in Figure 2 are combined. The same processes are repeated for D2, D3,
and D4.
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Figure 2. Illustration of Orthogonal Combination–Local Binary Coded Pattern (OCLBCP).

Suppose θ is the OCLBCP descriptor, we first convert the binary codes Dk into a decimal number
Dck, k = 1, 2, 3, and 4, and then choose the largest value from all the orthogonal groups. Specifically,
the θ is formed by combining the groups as follows:

θ (i, j) = max [Dc1(i, j), Dc2(i, j), Dc3(i, j), Dc4(i, j)] , (1)

where i and j are the indices of θ.
To map θ(i, j) into a colour-based texture descriptor, we create a distance pattern matrix Δ to

represent the similarity of the image intensity patterns across all possible pixel values based on [28]:

Δ :=

⎡
⎢⎢⎢⎢⎣

δ1,1 δ1,2 δ1,3 · · · δ1,c

δ2,1 δ2,2 δ2,3 · · · δ2,c
...

...
...

. . .
...

δr,1 δr,2 δr,3 · · · δr,c

⎤
⎥⎥⎥⎥⎦

, (2)

where r and c are defined as the indices of δ. δr,c is calculated by Earth Mover’s Distance. After that,
teh Multi-Dimensional Scaling (MDS) algorithm is adopted to seek the mapping of Δ to the
low-dimensional metric space (colour pattern matrix M) [38]:

M = [MDS(θ) + ‖min(MDS(θ))‖] ∗
[

255
‖max(MDS(θ))‖

]
, (3)

MDS(·) =

√
∑r ∑c f (δr,c)

̺
, (4)

where ̺ is scale factor and f (δr,c) is a monotonic transformation function of δr,c. In this paper, we set
̺ to three due to RGB channels in the colour image. Note that M is a three-colour channels matrix
that outputs from MDS(·), which contains R, G, and B pixel values. Finally, we map θ(i, j) with M to
generate colour-based texture descriptor OCLBCP. The mapping process uses the given pixel values of
θ(i, j) to match the pixel values from the R channel of M. After that, θ(i, j) is converted with the RGB
values from M. Algorithm 1 summarises the process of generating OCLBCP.
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Algorithm 1 Creating colour-based texture description OCLBCP.

Input: Ip ∈ R
x×y

Output: OCLBCP
1: Perform preprocessing to Ip and obtain the filtered image I′p
2: Construct LBP and LTP process on Ip

3: Perform Equation (1) with the LBP, LTP positive and LTP negative matrices to obtain θ
4: Construct distance pattern matrix Δ using Equation (2)
5: Generate the colour-based pattern matrix M with δ by using Equations (3) and (4)
6: Map θ with M to generate OCLBCP

3. RGB-OCLBCP of Dual-Stream CNN

We propose a dual-stream CNN that conceives the periocular RGB image and OCLBCP descriptor
as the first and second stream to the network. Note that the dual-stream CNN was originally proposed
by Feichtenhofer et al. [39] for action detection and recognition. The two input streams refer to temporal
and structural streams. In our work, the network accepts and processes periocular colour image and
texture descriptor, and then feature fusion layers are devised to extract better feature representation
for ocular recognition.

As shown in Figure 3, the architecture of the proposed network consists of 16 convolutional (conv)
layers and 8 max-pooling (maxpool) layers. The conv layers are designed to learn the correspondence
between the RGB image and OCLBCP descriptor and to discriminate between themselves with the
shared weights. Table 1 tabulates the architecture of the proposed network.
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Figure 3. The architecture of the proposed network.
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Table 1. Configurations of each layer for the proposed network.

Network Layers Configurations

conv
(1)
RGB, conv

(2)
OCLBCP f 1: 64@80 × 80; k 2: 2 × 2; maxpool: 2 × 2

conv
(3)
RGB, conv

(4)
OCLBCP f : 128@40 × 40; k: 2 × 2; maxpool: 2 × 2

conv
(5)
RGB, conv

(6)
OCLBCP f : 256@20 × 20; k: 2 × 2

conv
(7)
RGB, conv

(8)
OCLBCP f : 256@20 × 20; k: 2 × 2; maxpool: 2 × 2

conv
(9)
RGB, conv

(10)
OCLBCP f : 512@10 × 10; k: 2 × 2

conv
(11)
RGB, conv

(12)
OCLBCP f : 512@10 × 10; k: 2 × 2; maxpool: 2 × 2

conv
(13)
RGB, conv

(14)
OCLBCP f : 512@10 × 10; k: 2 × 2

conv
(15)
RGB, conv

(16)
OCLBCP f : 512@10 × 10; k: 2 × 2

f latRGB, f latOCLBCP 1 × 1 × 12,800
f usemax, f usesum 1 × 1 × 4096

f c(1), f c(2) 1 × 1 × 4096
f c(3), f c(4) 1 × 1 × 4096
Ymax, Ysum 1 × 1×C

1 f refers to the size of the feature map in conv layers. 2 k is defined as the filter size.

3.1. Fusion Layers

Two fusion layers, namely f usemax and f usesum, are designed to aggregate the information from
the RGB image and OCLBCP descriptor, as shown in Figure 3. The f usemax layer takes the largest
activation from the f latRGB and f latOCLBCP layers with m nodes, where both of them are flattened to

conv
(15)
RGB and conv

(16)
OCLBCP, respectively. The f usemax can be represented as:

f usemax(i) = max[ f latRGB(i), f latOCLBCP(i)], i = 1, · · · , m. (5)

On the other hand, f usesum takes a sum of activations of f latRGB and f latOCLBCP. The layer is
defined as follows:

f usesum(i) = f latRGB(i) + f latOCLBCP(i), i = 1, · · · , m. (6)

3.2. Total Loss for Training

For training, we define a total loss function, Ltotal, which is composed of a summation of softmax
cross entropy L of logit vector and their respective encoded label:

Ltotal = L (Vmax) + L (Vsum) , (7)

L(V) = −
N

∑
n

C

∑
c

Lnclog[softmax(V)nc], (8)

softmax(V)nc =
expVnc

∑
C
c expVnc

, (9)

where V ∈ {Vmax, Vsum}. Vmax and Vsum are defined as the features of f usemax and f usesum layers in
the training samples V, respectively. L, N, and C denote class labels, the number of training samples in
V, and the number of classes, respectively. Note that a periocular region contains left and right oculars;
we therefore train each side with separate networks (Figure 3).

3.3. Score Fusion Layer for Recognition

To recognise an unknown identity, a score fusion layer Stotal is devised to merge the distance
scores from the softmax vectors for decision-making. Let Ymax = softmax(Vmax) ∈ R

C and Ysum =

softmax(Vsum) ∈ R
C be the softmax vectors of f c(3) and f c(4), respectively. Since we train the
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proposed network for left and right ocular, we thus differentiate the softmax vector Y to Yleft and Yright.
Note each individual Y to Yleft and Yright is still the sum of its corresponding Y = Ymax + Ysum.

We evaluated the proposed system in two common biometric working modes: recognition and
verification. For the former, the testing data are divided into a gallery set and a probe set. Each subject
in the gallery set is composed of his/her left and right softmax vectors as YG

j = {YG
j,left, YG

j,right},

where j = 1, · · · , C; the probe set is defined as YP = {YP
left, YP

right}. The score fusion layer is computed
with the sum rule as follows:

Stotal(Y
P, YG

j ) = s(YP
left, YG

j,left) + s(YP
right, YG

j,right), (10)

where s(YP
∗ , YG

j,∗) = 1 − cos(YP
∗ , YG

j,∗) is defined as cosine similarity distance and ∗ ∈ {left, right}.

To identify YP, φ is decided as follows:

φ = max
j

[Stotal(Y
P, YG

j )] (11)

Verification protocol refers to verifying a person’s identity that is claimed as a genuine or an
impostor. Let YR = {YR

leftY
R
right} as the reference set (template) and YA = {YA

leftY
A
right} as the query set,

to decide the YA is a genuine or an impostor, ζ is decided by using Equation (12) as follows:

ζ(YA, YR) =

{
1, Stotal(Y

A, YR) ≤ τ

0, Stotal(Y
A, YR) > τ

, (12)

where τ is training dataset dependence threshold value.

4. Database

A large-scale collection of periocular in the wild images from different ethnic groups was created,
namely Ethic-ocular database. This database is built for periocular recognition, which contains left
and right oculars that were extracted from 85,394 images downloaded from the web. All images
were collected in the wild, with uncontrolled subject–camera distances, poses, appearances with and
without make-up, and levels of illumination.

We propose this new database to support balanced selection in the configuration of oculars
among different ethnicities, and also to stimulate research for periocular recognition in the wild that all
periocular images are taken in common and everyday settings. Figure 4 demonstrates several samples
of images.

4.1. Collection Setup

To create our database, we selected subject names randomly from BBC News [40], CNN News [41],
Naver News [42], and FaceScrub database [43]. The subjects were randomly selected based on different
ethnicities. They mostly are celebrities, politicians, athletes, etc.

From the search result, the top 300 images for each subject were downloaded using Python scripts.
After that, the images were manually verified to ensure that the subjects correctly labelled the images.
We firstly extracted facial regions in these images by using the face detector from Matlab [44] for
periocular region extraction. Then, the coordinates of facial feature points were fixed based on the
face detector bounding box for image alignment. Then, the images of subjects were labelled manually.
After that, we implemented the technique from [45], which allowed us to crop images into left and right
oculars. The database contains 85,394 images (including left and right oculars images) of 1034 subjects.
Note that the views of these images are between −45◦ and 45◦.
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Subjects Periocular Images

Figure 4. Samples of periocular images in the wild.

4.2. Training Protocol

For the training protocol, 623 subjects were randomly selected. Note that no subjects for training
overlapped with the subjects for benchmarking. To develop or train our own models, we designed
the protocol by dividing the images for each subject with the ratio of training, testing, and validations
as 70:15:15.

4.3. Benchmark Protocol

We selected the remaining 411 subjects as benchmarks. In the benchmarking scheme, we created
recognition and verification tasks. For recognition task, images about a specific set of individuals to be
recognised (gallery set) were gathered and a new image (the probe set) was presented; the task was to
decide which of the gallery identities was represented by the probe set. In the experiments, we divided
the images per subject with the ratio of the gallery set to probe set as 50:50. This division process was
repeated three times.

For verification task, the task was to analyse two sets of periocular images and decide whether they
represent the same person or two different people. In the experiments, we randomly selected 1200 pairs
as “same” labels and 1200 pairs as “not same”. This selection process was repeated three times.

5. Experiments

We conducted several experiments to evaluate the performance comparisons of recognition and
verification between our network and other benchmark networks. All configurations of the networks
are described in Section 5.1 and the experimental results are presented in Section 5.2.

5.1. Experimental Setup

5.1.1. Configuration of Proposed Network

The proposed network was implemented using the open source deep learning toolkit
TensorFlow [46]. About the configurations, we applied an annealed learning rate and it was started
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from 1.0 × 10−3. The rate was subsequently reduced by 10−1 for every 10 epochs. The minimum
learning rate was defined as 1.0 × 10−5. We applied an Adam optimiser in this network, where the
weight decay and momentum were set to 1.0 × 10−4 and 0.9, respectively.

In our experiments, the batch size was set to 64 and the training was carried out across 200 epochs.
The training was done by using our database and following the protocols mentioned in Section 4.2
and it was performed by an NVidia Titan Xp GPU.

5.1.2. Configuration of Benchmark Networks

We selected several deep networks to evaluate the performance of periocular recognition:
AlexNet [21], DeepIrisNet-A [23], DeepIrisNet-B [23], FaceNet [47], LCNN29 [48], Multi-fusion
CNN [27], and VGG16 [49]. Inspired by the work of Gangwar et al. [23], Soleymani et al. [27],
Schroff et al. [47], Wu et al. [48], and Hernandez et al. [50], these networks have been proven to be
successful in very large recognition tasks. In the experiments, we utilised the pre-trained models that
were provided by the authors to fine-tune and improve the networks themselves by training the left
and right oculars, respectively. In the cases of DeepIrisNet-A, DeepIrisNet-B, and Multi-fusion CNN,
the networks are not publicly available. Therefore, we did our best effort to implement these networks
from scratch by following Gangwar et al. [23] and Soleymani et al. [27], respectively.

5.2. Experimental Results

We present the experimental results on the tasks of periocular recognition and verifications by
conducting the databases on periocular recognition in the wild and controlled environments. For the
recognition, we evaluated the performance by using Cumulative Matching Characteristic (CMC)
curve with 95% confidence interval (CI). For the verification, we evaluated the performance using
Receiver Operating Characteristic (ROC) curve with Equal Error Rate (EER) and Area under the ROC
curve (AUC).

5.2.1. Performance Analysis on Proposed Network

This section analyses the robustness and performance of our network and other networks using
Ethnic-ocular database, which reports the experimental results in Table 2.

Table 2. Performance analysis on the proposed network and other networks with Rank-1 and Rank-5
recognition accuracies. The highest accuracy is highlighted in bold.

Networks
Accuracy (%)

t.w. 2 flops 3

Rank-1 Rank-5

CNN 1 with RGB image 80.79 ± 1.43 90.42 ± 1.29 131.1 M 2.22 GFLOPS
CNN with OCLBCP 66.65 ± 2.22 89.73 ± 1.91 131.1 M 2.22 GFLOPS
Dual-stream CNN (using unshared weights) 82.09 ± 1.59 92.11 ± 1.32 250.8 M 1.90 GFLOPS
Proposed network 85.03 ± 1.88 94.23 ± 1.26 126.1 M 0.90 GFLOPS

1 CNN is defined as single-stream CNN; 2 t.w., total weight number; 3 flops, floating points operation.

Table 2 shows the proposed network achieved the highest Rank-1 and Rank-5 recognition
accuracies with 85.03 ± 1.88% and 94.23 ± 1.26%, respectively. As compared to CNN, this network
using the RGB image only achieved the Rank-1 and Rank-5 accuracies of 80.79 ± 1.43% and
90.42 ± 1.29%, respectively. In addition, CNN using the OCLBCP can only achieved 66.65 ± 2.22% and
89.73 ± 1.91% for Rank-1 and Rank-5 accuracies, respectively. These results indicate that our network
provides more complementary information than CNN. This leads to the proposed late-fusion layers
that significantly correlate the RGB image and OCLBCP for achieving better recognition performance.

Furthermore, we also evaluated the dual-stream CNN without using shared weights. However,
this network only achieved 82.09 ± 1.59% and 92.11 ± 1.32% at Rank-1 and Rank-5 accuracies
(see Table 2), respectively. The experimental results prove that the proposed network performed
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well with at least 2.9% improvement as compared to dual-stream CNN without using shared weight.
As can be observed, the shared conv layers and the fusion layers were utilised in the network to
aggregate the RGB image and OCLBCP. Thus, the proposed network successfully transformed new
knowledge representations to perform better recognition in the wild.

In Table 2, we also notice the space complexity (total weight number) and time complexity (flops)
of the proposed network are significantly smaller than its single network and dual-stream unshared
weights networks counterparts while still outperforming them.

5.2.2. Performance Evaluation on Recognition and Verification Tasks

We used Ethnic-ocular, as well as three public databases, the AR [51], CASIA-iris distance [29],
and UBIPr [12], to evaluate the performances of the proposed network and other benchmark networks.
All the experimental results are outlined in the following sections.

Evaluation on AR Database

The AR database is designed under a constrained environment, which consists of 117 subjects
with varying neutrals, expressions, illuminations, and occlusion conditions, who were captured across
two sessions. We opted for this database as it provides a good baseline to evaluate the robustness and
performance in constrained environments, such as different levels of illuminations and expressions in
an indoor environment. Extraction for the periocular regions was done by using the method in [45].

The experimental protocol for recognition was as follows: ten images for each subject were used
as gallery sets from Session 1 and another ten per subject as probe sets from Session 2. On the other
hand, the verification protocol was designed by randomly selecting 250 reference-query pairs as “same’
and another 250 pairs as “not same”.

Table 3 presents the performance comparisons on recognition. As can be seen in the table,
our network achieved the highest Rank-1 and Rank-5 recognition accuracies with 96.32% and 98.80%,
respectively. Likewise, DeepIrisNet-A had the best performance on Rank-1 and Rank-5 among the
other benchmark approaches, which only achieved accuracies of 95.24% and 98.38%, respectively.
Figure 5a illustrates that the proposed network outperformed other approaches with respect to all the
benchmarks from Rank-1 to Rank-10 recognition.

For the verification task, we report the experimental results in Table 4. The proposed network
also achieved the best EER and AUC with 5.13% and 0.9880, respectively. DeepIrisNet-A, Multi-fusion
CNN, and VGG16 achieved the second-best performances among the other benchmark approaches
with 7.69% for EER. Figure 5b illustrates the ROC curve and shows that the proposed network (red
solid line with diamond) outperformed the benchmark approaches.

Table 3. Performance evaluation of the recognition task on the AR database, CASIA-iris distance
database, UBIPr database, and Ethnic-ocular database. The highest accuracy is written in bold.

Networks
AR CASIA-iris UBIPr Ethnic-Ocular

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5

AlexNet 93.59 96.75 95.00 ± 1.8 96.98 ± 2.5 84.88 ± 2.5 96.01 ± 1.8 64.72 ± 3.3 82.98 ± 2.5
DeepIristNet-A 95.24 98.38 95.95 ± 2.1 98.15 ± 0.6 90.30 ± 1.2 97.41 ± 1.1 79.54 ± 3.1 90.43 ± 2.4
DeepIristNet-B 94.44 97.18 95.79 ± 2.6 97.75 ± 0.6 90.20 ± 1.7 97.43 ± 0.5 81.13 ± 3.1 92.37 ± 1.2
FaceNet 94.19 97.75 96.09 ± 2.1 98.10 ± 0.4 90.24 ± 1.4 97.36 ± 0.4 78.71 ± 3.7 92.19 ± 1.6
LCNN29 94.27 97.52 96.01 ± 2.0 97.85 ± 0.9 90.28 ± 1.7 97.18 ± 0.7 79.35 ± 2.6 92.17 ± 1.8
Multi-fusion CNN 96.07 98.71 95.81 ± 1.9 97.67 ± 1.0 90.75 ± 1.0 97.44 ± 0.3 81.79 ± 3.5 93.03 ± 1.3
VGG16 94.20 97.61 95.88 ± 0.1 97.99 ± 0.5 90.24 ± 1.4 97.09 ± 1.1 76.43 ± 2.2 91.29 ± 1.5
Proposed Network 96.32 98.80 96.62 ± 1.3 98.45 ± 0.4 91.28 ± 1.2 98.59 ± 0.4 85.03 ± 1.9 94.23 ± 1.3
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(a) CMC Curve (b) ROC Curve

Figure 5. Performances of recognition and verification tasks on AR database. The figures are best
viewed in colour.

Table 4. Performance evaluation of the verification task on the AR database, CASIA-iris distance
database, UBIPr database, and Ethnic-ocular database. The highest accuracy is written in bold.

Networks
AR CASIA-Iris UBIPr Ethnic-Ocular

EER (%) AUC EER (%) AUC EER (%) AUC EER (%) AUC

AlexNet 14.53 0.9363 8.06 ± 5.3 0.9533 7.11 ± 2.9 0.9805 16.47 ± 1.6 0.9139
DeepIristNet-A 7.69 0.9751 7.51 ± 1.1 0.9674 5.07 ± 2.2 0.9877 8.79 ± 1.7 0.9689
DeepIristNet-B 8.12 0.9741 5.87 ± 1.5 0.9756 4.29 ± 0.9 0.9890 8.77 ± 1.1 0.9693
FaceNet 9.40 0.9692 6.10 ± 2.2 0.9738 5.46 ± 1.5 0.9870 11.67 ± 1.2 0.9489
LCNN29 9.39 0.9737 6.34 ± 1.6 0.9719 6.34 ± 2.1 0.9849 10.95 ± 1.6 0.9536
Multi-fusion CNN 7.69 0.9756 8.69 ± 1.1 0.9594 4.09 ± 2.1 0.9913 8.63 ± 1.3 0.9681
VGG16 7.69 0.9747 7.42 ± 1.7 0.9681 4.38 ± 1.3 0.9892 9.43 ± 2.5 0.9553
Proposed Network 5.13 0.9882 4.35 ± 0.5 0.9860 3.41 ± 1.8 0.9938 6.63 ± 1.5 0.9818

Evaluation on CASIA-Iris Distance Database

To evaluate whether our approach performs well on another standard database, we also tested its
performance in a more subjective experiment with CASIA-iris distance database. This database consists
of 142 subjects under a long-range subject–camera distance and indoor environment. The images were
captured by a high-resolution camera so both dual-eye iris and periocular are included in the image
region of interest. The further details of the database can be found in [29].

The experimental protocol for recognition was designed with the ratio of the gallery set to probe
set as 50:50 and the division process was repeated three times. The experimental protocol for the
verification was designed by randomly selecting 250 reference-query pairs as “same” and another
250 pairs as “not same”. This selection process was repeated three times.

According to Table 3, the proposed network achieved the highest average accuracies for Rank-1
and Rank-5 recognitions with 96.62 ± 1.3% and 98.45 ± 0.4%, respectively. Besides, FaceNet achieved
the second-best performance with 96.09 ± 2.1% and 98.10 ± 0.4% for Rank-1 and Rank-5 recognition
accuracies, respectively. We also present in Figure 6a the Rank-1 to Rank-10 recognition results. As can
be seen, our network achieved the best results among the benchmark networks.

For the verification, the proposed network achieved the lowest EER accuracy as 4.35 ± 0.5% and
AUC as 0.9860. Interestingly, DeepIrisNet-B attained second lowest performance with 5.87 ± 1.5% for
EER and 0.9756 as AUC. Figure 6b illustrates the ROC curve, which demonstrates that our network
obtained the best performance of AUC and the lowest EER. Both recognition and verification results
indicate that the proposed network is capable of learning the features of the RGB image and OCLBCP
decently for improving the performance of recognition and verification tasks.
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(a) CMC Curve (b) ROC Curve

Figure 6. Performances of recognition and verification tasks on CASIA-iris distance database.
The figures are the best to view in colour.

Evaluation on UBIPr Database

We also conducted another more challenge experiment with the UBIPr database to verify the
robustness of the proposed network. This database consists of 342 subjects with varying subject–camera
distances, levels of illumination, and poses [12]. This experiment evaluated the performance of all
the networks with varying poses and subject–camera distances. Six images from each subject were
randomly divided as a gallery set; the remaining images were used as a probe set. The division process
was repeated three times. For the verification, we randomly selected 600 reference-query pairs as
“same” and another 600 pairs as “not same”. This selection process was also repeated three times.

Table 3 presents that our network achieved the highest average Rank-1 and Rank-5 recognition
accuracies with 91.28 ± 1.2% and 98.59 ± 0.4%, respectively. The second best was achieved by
multi-fusion CNN with 90.75 ± 1.0% and 97.44 ± 0.3% as Rank-1 and Rank-5 accuracies, respectively.
Besides, Figure 7a also illustrates the CMC curve and shows that our network achieved the best
performance of recognition for all ranks.

For the verification, Table 4 reveals that our network achieved the lowest EER with 3.41 ± 1.8%
and AUC was 0.9938. This is concrete evidence to demonstrate that the proposed network can verify
the unconstrained periocular robustly. Figure 7b shows that our network outperformed most of the
benchmark networks and achieved the highest recall rate against all other approaches.

(a) CMC Curve (b) ROC Curve

Figure 7. Performances of recognition and verification tasks on UBIPr distance database. The figures
are the best to view in colour.
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Evaluation on Ethnic-Ocular Database

We present the experimental results in Table 3 by following the recognition protocol mentioned in
Section 4.3. To evaluate the performance of the proposed approach, we compared our results with
seven benchmark approaches (see Table 3). For the results of recognition, our network achieved
84.79 ± 1.9% and 94.23 ± 1.3% as Rank-1 and Rank-5 accuracies, respectively. Figure 8a illustrates
the CMC curve of the proposed network, showing that the proposed method outperformed other
benchmark methods from Rank-1 to Rank-10 recognition accuracies. The results indicate that the
late-fusion layers are capable of correlating the RGB image and OCLBCP descriptor.

Table 4 also shows that the proposed network achieved the lowest EER accuracy with 6.63 ± 1.5%
for verification. Figure 8b illustrates the ROC curve, showing that our network outperformed
all benchmark networks. The results prove that our approach can learn new features from the
late-fusion layers in order to transfer knowledge between the networks to perform better performance
of recognition.

(a) CMC Curve (b) ROC Curve

Figure 8. Performances of recognition and verification tasks on Ethnic-ocular database. The figures are
the best to view in colour.

5.2.3. Discussion

Through the experimental analysis and results, we observed that having access to the RGB image
and OCLBCP descriptor can exploit the discriminatory features as inputs for a better periocular
recognition. In addition, the proposed network utilises the colour-based texture information,
which contributes to a more robust feature representation for the challenges in recognition and
verification in the wild. This is because handcrafted texture descriptor can offer latent and complement
information for complex data learning.

By evaluating across constrained environments, our results score higher accuracies consistently.
Periocular recognition and verification in the wild bring more challenges as compared to the
constrained environment. The experimental results prove that our network is able to perform
better recognition due to its ability to learn new features from the proposed late-fusion layers.
The effectiveness of fusion layers in the network supports our assumption firmly that multi-feature
learning can work much better than just using RGB image in periocular recognition.

6. Conclusions

This paper proposed a dual-stream CNN, which accepts RGB ocular image and OCLBCP for
periocular recognition in the wild. By aggregating the RGB image and OCLBCP features into two
distinct late-fusion layers, these features offer robust and better recognition performance. We collected
and shared a new Ethnic-ocular database, which consists of a large collection of periocular images in the
wild based on different ethnic groups. Through extensive experiments by comparing against several
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competing networks on new Ethnic-ocular database and publicly available databases, the proposed
network achieved better performance in both recognition and verification tasks.

In the near future, we plan to investigate different kinds of fusion stages and fusion layers in
CNNs, which could improve the performance of multi-feature learning. Periocular recognition is futile
for subjects with “wearing sunglasses”. As a remedy, we shall incorporate the Generative Adversarial
Model, which is useful to recover the periocular area in the face image.
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Abstract: In this work, we focus on the misalignment problem in person re-identification.
Human body parts commonly contain discriminative local representations relevant with identity
recognition. However, the representations are easily affected by misalignment that is due to varying
poses or poorly detected bounding boxes. We thus present a two-branch Deep Joint Learning (DJL)
network, where the local branch generates misalignment robust representations by pooling the
features around the body parts, while the global branch generates representations from a holistic
view. A Hierarchical Feature Aggregation mechanism is proposed to aggregate different levels of
visual patterns within body part regions. Instead of aggregating each pooled body part features
from multi-layers with equal weight, we assign each with the learned optimal weight. This strategy
also mitigates the scale differences among multi-layers. By optimizing the global and local features
jointly, the DJL network further enhances the discriminative capability of the learned hybrid feature.
Experimental results on Market-1501 and CUHK03 datasets show that our method could effectively
handle the misalignment induced intra-class variations and yield competitive accuracy particularly
on poorly aligned pedestrian images.

Keywords: person re-identification; misalignment; hierarchical feature aggregation

1. Introduction

Typical person re-identification (re-ID) systems [1–3] can be broken down into three modules,
i.e., person detection, person tracking, and person retrieval. It is generally believed that the first two
modules are independent computer vision tasks, thus most re-ID methods focus on the last module,
i.e., person retrieval. In this paper, if not specified, person re-ID refers to the person retrieval module.
Defined as a classical image retrieval problem, person re-ID is considered as a process of matching
identity classes between person-of-interest (query) and detected objects (large galleries) across cameras,
which is a fundamental task in several fields such as surveillance, robotics, multimedia and forensics.
It has been an area of intense research in the past few years.

Despite years of great efforts, person re-ID remains a challenging task due to the dramatic appearance
variations in illumination, human pose, occlusion, and background. The varying poses or poorly detected
bounding boxes often lead to misalignment of detected pedestrians (e.g., excessive background and
missing or mis-aligned body parts), which is a critical challenge to robust person re-ID systems. The useless
background noise and information loss due to misalignment can significantly compromise the feature
learning and matching process. Figure 1 shows examples of mis-aligned pedestrian images.
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Figure 1. Examples of mis-aligned pedestrian images in Market-1501 dataset caused by pose variations
and detection errors. The corresponding image patches of same identity are semantically unmatched
(e.g., human head to background).

To handle this problem, early works [4–8] extract features from predefined image patches such
as grid cell and horizontal stripes to construct the globally aligned representations for person re-ID.
These methods subjectively suppose that every person appears in a similar pose within a tightly
surrounded bounding box, ignoring the complex realistic conditions. Thus, they fail to perform
well on more difficult databases [5,9]. More reasonable body part partition fashion [10–13] has then
been exploited to generate finely aligned representations. With the development of pose estimation
techniques [14–18], the above mentioned works have been re-studied. The adapted methods either
intuitively perform affine transformation in order to get standard pose-aligned images (PoseBox) [19]
or implicitly learn the proper transformation parameters and generate modified pose images with
the help of impactful spatial transformer network [20]. However, highly-accurate pose estimation
was required to prevent abnormal pose-normalized pedestrian images. To mitigate the problems,
we proposed in [21] to apply alignment on feature level by pooling the features around the body
parts. Alignment on feature level can not only avoid unnecessary geometric deformation in image but
also make full use of the context-aware information encoded in middle convolution layers that can
compensate detection errors. Meanwhile, the pooling operation also favors translation and rotation.
All these factors make our method more robust to pose estimation errors compared to previous
image-level-alignment-based methods. Recent methods [22,23] share similar insights with us in
implementing feature level alignment.

Hierarchical-based learning methods are widely used in many tasks. The methods in [24,25] use
the hierarchical Hidden Markov Model (HMM) to estimate and synthesize the motion of fingers or
full-body while the method in [26] proposes a Bayesian hierarchical model to learn and recognize
natural scene categories. These works adopt hierarchies of models to describe the intermediate states
or themes of complex motions and scenes. The method in [27] takes advantage of Convolutional
Neural Networks to learn hierarchies of features for Scene Labeling. Such hierarchies of features
assemble pixel inputs into elements from low-level details to high-level semantic concepts and form
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good internal representations that are helpful for various visual perception tasks. Similar to these
hierarchical-based learning methods, we propose to aggregate features from body parts with different
levels of semantics.

Specifically, we construct a deep joint learning (DJL) network to learn misalignment robust feature
representations from body parts for person re-ID. We propose to locally align the human bodies based
on their landmarks, and pool the features around the body parts on feature maps rather than on
original images. This way, our method can effectively handle the misalignment induced intra-class
variations even though semantically corresponding body parts are not well aligned on the original
images or the detected landmarks deviate from their true positions. As features from multiple layers
abstract different level visual patterns of the same pedestrian image, we adopt a Hierarchical Feature
Aggregation mechanism to enrich the feature representations for a pedestrian image by aggregating
body part features with different levels of semantics. Besides, a Region Re-weighting strategy is applied
to learn the importance weight of each body part as well as to mitigate the scale differences [28] among
multiple convolution layers. Evaluation experiments on two public benchmark databases prove the
effectiveness of our proposed method compared with existing state-of-the-art methods.

This paper is an extended version of our previous conference paper [21] with the following
incremental contributions: (i) We further explore the identification performance of multiple layers for
re-ID tasks from low-level to semantic-level and propose a Hierarchical Feature Aggregation (HFA)
mechanism to take full advantage of different levels of features. (ii) We adopt a Region Re-Weighting
(RRW) strategy to learn optimal weight of each body part as well as to mitigate the scale difference of
multiple layers. (iii) We get further performance boost, obtaining 88.39% and 85.90% on Market-1501
and CUHK03 datasets. The rest of this paper is organized as follows. Section 2 reviews related work
on deep learning based person re-ID methods, global and local features for re-ID and the pedestrian
misalignment problem. Section 3 introduces in detail our proposed method, and Section 4 then reports
our evaluation experiments. Finally, Section 5 concludes the paper.

2. Related Works

2.1. Deep Learning for Person Re-ID

Early methods solve the person re-ID problem mainly from two aspects, feature extraction
and metric learning. Typical features used for person re-ID include color histograms [29–31],
color names [9,32], local binary patterns (LBP) [30,33], gabor features [34] and scale invariant local
ternary patterns (SILTP) [29,35]. Some researchers apply metric learning methods to seek for effective
distance metrics for computing similarity between detected persons [6,29,30,36,37]. The emerging
deep learning (DL) technology provides effective approaches for learning both feature representations
and distance metrics. These DL-based person re-ID methods are dominating the re-ID community.
Recently, attributes [38], transfer learning [39,40], re-ranking [41], mutual learning [42] and different
levels of supervision [40,43,44] have also been studied.

2.2. Global and Local Features

Human visual system leverages both global (contextual) and local (saliency) information
concurrently [45,46]. This observation supports that global and local features have correlated
complementary information in different contexts. Most deep learning methods for person re-ID [47–49]
follow the classical image classification mode [50], which favors intrinsically in learning global
feature representations. However, these methods ignore the importance of local information.
Some methods [5,6,51] utilize local information by decomposing images into horizontal stripes and
learning effective local features in each patch. These local stripes in essence globally align the images
of detected persons, and are thus still sensitive to misalignment of human bodies in different images.
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2.3. Pedestrian Misalignment

Pedestrian misalignment caused by detectors or pose variations is a main challenge for feature
matching across images. Most previous works partition pedestrian bounding box into grids or
horizontal stripes to handle misaligned pedestrian images [5,9,29,51]. Nevertheless, these methods
only work under the assumption of slight vertical misalignment but not for severe misalignment.
Some methods [11,12] use the pictorial structure to construct well aligned pedestrian images. However,
they only use local body parts while ignoring the global context, which results in suboptimal
feature learning.

The recent PIE method [19] proposes a PoseBox fusion (PBF) CNN architecture that takes the
original image, the PoseBox, and the pose estimation confidence as input to achieve a globally
optimized tradeoff between the global and local feature representations. The PoseBox structure
is similar to the pictorial structure [11,12] in enabling well-aligned pedestrian matching. The PDC
method [52] first crops part regions and then transforms each part by a Pose Transformation Network
(PTN) to automatically learn transformations such as translation, rotation and scale. The PTN outputs
the final transformed part images and hence learns partly aligned representations. These methods all
attempt to solve the misalignment problem at image level, with few exceptions that directly handle
learned features. For example, Zhao et al. [22] followed human body structure to iteratively decompose
and fuse features from different semantic region; Li et al. [53] exploited attention models to implicitly
learn effective part representations without guidance of body part locations; and Wang et al. [23]
encoded human poses in feature maps through bilinear pooling which aggregates appearance and
part maps to compute part-aligned representations. Our method differs from them in the following
three aspects.

• Our work constructs the “PoseBox” at feature level instead of the image level. We find that
the image level PoseBox would lose their discriminative property due to pose estimation errors.
In addition, the affine transformation employed by the PIE method may result in unwanted
geometric distortion and deteriorating the intrinsic structure of human body. Figure 2 shows
some examples of good and bad PoseBox constructed by PIE. Instead of image level affine
transformation, we directly pool local body part features on feature maps, and organize them
in a fixed order for feature level alignment (concatenate each body part features along channel
dimensions). Meanwhile, we propose to model the spatial dependencies between those local
body parts through cross-channel convolution computation. Thanks to the capability of CNN
feature maps in context-aware semantic information, we suppose that the feature level alignment
would be more robust to pose estimation errors.

• We apply max pooling inside local body part regions so as to find the most salient local details.
HFA mechanism and RRW strategy are proposed to make the best of multi-level body part features.
Our joint optimization of both global and local features further enhances the discriminative
capability of learned feature representations for person re-ID.

• By avoiding complicated affine transformation, we can obtain pose aligned features in a simple
and efficient way. Moreover, our method can be easily integrated with different person re-ID
networks, and effectively enhance their identification accuracy.
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Figure 2. Examples of good and bad PoseBox constructed by PIE: (Top row) original bounding boxes
with detection errors/occlusions; and (Bottom Row) corresponding PoseBoxes.

3. Proposed Method

As shown in Figure 3, our proposed DJL network consists of three main components: the global
branch base network, the local branch sub-network, and the multi-loss module. First, the input
human body image is segmented into a number of body part regions (Section 3.1). The global
branch base network extracts global representations from the original image (Section 3.2). The local
branch sub-network then constructs misalignment robust local features according to the segmented
body part regions and middle layer feature maps generated by global branch. With three Softmax
losses, the multi-loss module optimizes global and local features jointly (Section 3.3). In this section,
we introduce first the process of body part segmentation, then the global branch base network,
and finally the proposed DJL network.

3.1. Body Part Segmentation

We first segment human body parts through deep pose estimation method CPM [16]. CPM outputs
the coordinates of a set of 14 body parts and the corresponding confidence scores, i.e., head, neck,
left and right shoulders, left and right elbows, left and right wrists, left and right hips, left and right
knees, and left and right ankles. Several previous works [4,6,19] show that the torso and legs make
the largest contributions and that integration of the head may introduce noise due to the unstable
head detection. In this paper, we thus choose ten of the body parts as region boxes for local feature
extraction, including left and right shoulders, left and right elbows, left and right hips, left and right
knees, and left and right ankles. Figure 4 shows an illustration of the chosen body parts.
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Figure 3. The proposed DJL network with InceptionNet as the base network. The input to DJL includes
a pedestrian image and the human body landmarks. We segment ten body part regions according to
the landmarks (Section 3.1). A local branch sub-net (Section 3.3) is specially designed in this paper
to pool and aggregate multi-level body part representations from the feature maps generated by the
global branch base network (Section 3.2). The multi-loss module then optimizes the global and local
features jointly.

Figure 4. Examples of the segmented ten body parts used in our DJL network.
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3.2. Base Networks

We utilize the widely used AlexNet [50], Residual-50 [54] and InceptionNet [48] as the base
networks in our proposed method. We refer readers to respective papers for detail network descriptions.
We adopt Identification model in this paper and edit the last FC layer to have the same number of
neurons as the number of distinct IDs in the training set. As described in [49], the identification model
yields superior performance to verification model for the reason that the former makes full use of
the re-ID labels while the latter takes limited relationships into consideration, i.e., whether two input
images belong to the same person.

3.3. The Deep Joint Learning Network

Two pairs of feature maps extracted by the base network are provided in Figure 5 to give insights
into the model design. We observe that high responses are mostly concentrated on the local body
parts and they often present attribute-relevant information (e.g., clothing type, color, accessories, etc.),
and, when reasonably exploited, those body part features may be helpful to distinguish individuals.
Motivated by this, we integrate body part features from low level to semantic level, resulting in
misalignment-robust representations for matching.

Figure 5. Two examples to show the effectiveness of the local body part features: (a) two images of the
same person; (b) corresponding feature maps of (a); (c) two different persons; and (d) corresponding
feature maps of (c).

3.3.1. Network Structure

The input to the DJL network contains a pedestrian image and its ten body parts. Each body
part is represented by its position. The global branch of DJL is composed by the base networks,
as previously described in Section 3.2. Its objective is to extract global features of pedestrians.

The local branch aims to learn misalignment-robust feature representations from low level to
semantic level. It consists of several similar modules, each of which takes as input the output feature
maps of a specific middle convolution layer from base network and generates local descriptors of that
level. As shown in Figure 3, for a single module, RoI pooling layer [55] is adopted to learn sparse
representations of each local body part. The RoI pooling layer uses max pooling to convert the features
inside any region of interest window of size h × w into a small feature map with a fixed spatial extent
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of H × W, where H and W are layer hyper-parameters. It works by dividing the h × w RoI window
into an H ×W grid of sub-windows of approximate size h/H × w/W and then max-pooling the values
in each sub-window into the corresponding output grid cell. Pooling is applied independently to each
sub-window as in standard max pooling. Figure 6 shows an illustration of the RoI pooling operation.
Given the middle-layer feature maps and coordinates of body part regions, we perform RoI pooling
inside each region to select the most discriminative features. Then, those local body part features are
concatenated along channel dimensions in a fixed order, and a global average pooling layer and a
convolution layer follow to get the dimension-reduced local descriptors.

Figure 6. Illustration of the RoI pooling operation.

The multi-loss module consists of three full connection (FC) layers before Softmax loss
computation. The sum of the three Softmax losses is used for loss computation. Dimensions of
these FC layers are the number of distinct IDs in the training set. In Figure 3, as denoted by the red
FC layer, the learned hybrid feature representation for final matching is defined as the concatenated
FC7 activations (FC_ local + FC7). The motivation of our multiple loss module is to integrate the
discriminative power of global and local features.

3.3.2. Hierarchical Feature Aggregation

Inspired by neuroscience, reasoning across multiple levels of hierarchies has been proven
beneficial in some computer vision problems [24,26,27,56,57]. On the one hand, it has been
demonstrated that details can be well captured by low-level features from shallow convolution layer
rather than by high-level features. On the other hand, high-level features from deeper convolution
layer get complementary semantic information as neurons in these layers have lager receptive fields.
We thus adopt a Hierarchical Feature Aggregation mechanism to pool features from shallow to
deep convolution layers of base network and aggregate the learned local descriptors from detail to
semantic. For example, as shown in Figure 3, we perform RoI pooling at Inception_ 3a, Inception_ 2a,
Inception_ 1a for InceptionNet with different pooling scales (H × W). The output spatial extents are,
respectively, 1 × 1, 3 × 3, and 5 × 5. Here, we adopt coarse spatial division 1 × 1 in deep layers and
fine spatial division 5 × 5 in shallow layers to capture fine-grained features corresponding to local
salient details. Finally, the pose aligned body part features from each module are concatenated to form
the final multi-level local descriptors (denoted by FC_ local). We also adopt a Region Re-Weighting
strategy (see Section 3.3.3) to make the Hierarchical Feature Aggregation mechanism more effective.
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3.3.3. Region Re-Weighting

For the reason that pose estimation method (CPM) may induce ill-positioned body parts and
different body part regions may have different importance for person re-identification, we intend
to learn the importance weight of each body part region during training procedure. We call this
strategy Region Re-Weighting (RRW). RRW performs an element-wise product between body part
region features and the corresponding region weights. Formally, for each pooled body part feature of
d-dimension Xi = (xi1, · · · , xid), we introduce a weight parameter wi, which scales per region features
as Yi = (wi · xi1, · · · , wi · xid). During training, letting L be the loss we want to minimize, we use back
propagation and chain rule to compute derivatives with respect to the weight factor wi and body part
features Xi.

∂L

∂Xi
=

∂L

∂Yi
· wi

∂L

∂wi
=

d

∑
j=1

∂L

∂yij
· xij (1 ≤ i ≤ 10) (1)

As mentioned in [28], scales and norms of feature vectors from multiple layers may be quite
different, and directly concatenating multi-level features may leads to poor performance as the “larger”
features dominate the “smaller” ones. We find that combining RRW with HFA makes the training
more stable and enables further performance improvements.

4. Experiments

4.1. Datasets and Protocol

4.1.1. Datasets

This study used CUHK03 [5] and Market-1501 [9] datasets for evaluation. The Market-1501 dataset
is featured by 1501 IDs (750 for training and 751 for testing) with 32,668 cropped pedestrian bounding
boxes. It contains 3368 query images and 19,732 gallery images (including 2793 distractors). For each
query, we aimed to retrieve the ground-truth images from the 19,732 candidate images. This dataset
is one of the largest benchmark datasets for person re-identification. Pictures were captured by six
cameras: five high-resolution cameras and one low-resolution camera. The CUHK03 dataset contains
13,164 cropped pedestrian bounding boxes of 1360 identities (1160 for training, 100 for validation
and 100 for testing) captured by six cameras. Each identity appears in two disjoint camera views (i.e.,
4.8 images in each view on average). The bounding boxes of the pedestrians used in this study were
generated by the DPM detector [58] instead of human annotated. This was to make the evaluation
results more practical as in real-world automatic person re-ID systems.

4.1.2. Protocol

Cumulative Matching Characteristic (CMC) curve and mean average precision (mAP) are
commonly used metrics for evaluating person re-ID methods. The CMC curve reflects retrieval
precision, while the mAP reflects the recall. On CUHK03, we followed Li et al. [5] to repeat 20 times of
random 1160/100 training/test splits and report the results under the single-shot evaluation setting.
On Market-1501, the standard training/test split (750/751) was used.

4.2. Implementation Details

This work was implemented using Caffe [59], an open source deep learning framework.
Original images were resized to 256 × 256 (then randomly cropped to 227 × 227 for AlexNet
and 224 × 224 for Residual-50). As for InceptionNet, original images were resized to 160 × 64
(then randomly cropped to 144× 56). All input images were mirrored randomly for data augmentation.
Both AlextNet and Residual-50 were pre-trained on ImageNet dataset [60], while InceptionNet was
directly trained from scratch (refer to [48]).
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4.2.1. Training Base Networks

We adopted the mini-batch stochastic gradient descent (SGD) algorithm to update the network
parameters. The batch size was set to 64 for AlexNet, 16 for Residual-50 and 100 for InceptionNet.
The maximum number of training epochs was set to 50, 62, and 232 for AlexNet, Residual-50,
and InceptionNet, respectively. AlexNet was trained with an initial learning rate of 0.001 and then
reduced by 10 every 20 epochs. Residual-50 was trained with learning rate initialized at 0.001 and
reduced by 10 every 25 epochs. For InceptionNet, the initial learning rate was set to 0.1 and was
decreased by 4% for every four epochs until it reached 0.0005. The learning rate was then fixed at this
value for a few more epochs until convergence.

4.2.2. Training DJL Network

Once the base network was pre-trained, we fine-tuned our Deep Joint Learning network. During
training, the coordinates of body parts were transformed along with random image cropping and
mirror operation. We set the position of invisible parts as zero. We empirically set the w/h of each
body part region as 24/16 for InceptionNet (32/32 for AlexNet and Residual-50). When a body part
was invisible, the features corresponding to its region were set to zero. The learning rate policy was
changed to decay polynomially from 0.01 with the power parameter set to 0.5 and the whole network
was trained for only around 20 epochs.

4.2.3. Testing

Given a pedestrian image of fixed size (227 × 227 for AlexNet, 224 × 224 for Residual-50,
and 144 × 56 for InceptionNet), we extracted as features the FC7 activations for AlexNet,
Pool5 activations for Residual-50, and FC7 activations for InceptionNet. We measured the similarity
between two pedestrian images by the Euclidean distance between the L2-normalized features of them.

4.3. Performance Evaluation

We defined a simple version DJL network (DJL-S) which only contained one module in its
local branch and compared it with the complete DJL network (DJL-HFS) with Hierarchical Feature
Aggregation mechanism and Region Re-Weighting strategy. We adopted DJL-S structure with different
base networks to validate the generalization ability of the proposed method and compared with the PIE
method for the sake of fairness. We choose Conv4, Res4a and Inception_3a feature maps to generate the
local features for AlexNet, Residual-50 and InceptionNet, respectively. Here, the output spatial extent
of the RoI pooling layer was 1 × 1. To show the effectiveness of the Hierarchical Feature Aggregation
as well as Region Re-Weighting strategy, further experiments were designed for InceptionNet based
implementation with DJL-HFA structure.

4.3.1. Improvement over Base Networks

We first evaluated the proposed DJL-S network using various base networks on Market-1501
and CUHK03 benchmarks. The overall results are shown in Tables 1 and 2. The improvements over
both AlexNet and Residual-50 base networks were significant. When using AlexNet, Rank-1 accuracy
on Market-1501 rose from 57.75% to 67.64% and mAP rose from 33.80% to 43.60%. On CUHK03
dataset, Rank-1 accuracy rose by +18.92% for AlexNet. When using Residual-50, Rank-1 accuracy
on CUHK03 arrived at 80.83%. On Market1501, consistent improvement could also be observed.
Best performance appeared using InceptionNet [48], which obtained Rank-1 accuracy of 85.12% on
Market-1501 and 84.25% on CUHK03. These results prove the effectiveness of our DJL-S network.

4.3.2. Comparison with The PIE Method

Our method shares a similar nature with the recent PIE [19] method, which learns pose invariant
embedding from both well aligned PoseBox and original image. We compared our method with it
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under the same experimental settings. Rank-1 accuracy improvement over base networks was used as
the measurement criteria here. According to the results in Table 3, our observation was two-fold.

Table 1. Comparison with the three base networks, AlexNet, Residual-50 and InceptionNet on
Market-1501 (by adopting the proposed DJL-S structure) in terms of identification accuracy (%) and
mAP (%).

Method
Market-1501

Rank-1 Rank-5 Rank-10 Rank-20 mAP

AlexNet 57.75 77.52 84.47 89.46 33.80
Residual-50 72.42 86.49 91.03 94.42 48.01
InceptionNet 79.66 91.51 94.54 96.50 56.59
Proposed (AlexNet) 67.64 84.80 89.88 93.53 43.60
Proposed (Residual-50) 78.86 90.38 93.91 96.35 55.49
Proposed (InceptionNet) 85.12 93.91 95.69 97.51 64.82

Table 2. Comparison with the three base networks, AlexNet, Residual-50 and InceptionNet on CUHK03
(by adopting the proposed DJL-S structure) in terms of identification accuracy (%).

Method
CUHK03

Rank-1 Rank-5 Rank-10 Rank-20

AlexNet 53.03 79.53 87.82 94.21
Residual-50 61.79 85.46 92.31 97.86
InceptionNet 80.85 95.90 98.17 99.48
Proposed (AlexNet) 71.95 90.30 94.91 98.16
Proposed (Residual-50) 80.83 95.92 98.66 99.54
Proposed (InceptionNet) 84.25 97.40 98.86 99.67

Table 3. Rank-1 accuracy improvement (%) over base networks compared with the PIE method.

Base Network
Market-1501 CUHK03

DJL-S PIE DJL-S PIE

AlexNet +9.89 +9.12 +18.92 +2.65
Residual-50 +6.44 +5.66 +19.04 +5.50

First, for both base networks, DJL-S achieved better accuracy than PIE on both databases.
This validated the superiority of our proposed local body part features as we did alignment at feature
level instead of image level. As for PIE, image level alignment by affine transformation performed
worse due to pose estimation errors. The higher accuracy achieved by our proposed method might be
owing to two factors. For one thing, we pool body part features on the feature maps that are generated
by the middle convolution layers in the base network. These layers have larger receptive fields and
thus capture more context-aware information that can compensate misalignment errors of detected
persons. For another, discriminative detail information can be learned through max-pooling operation
inside local body part regions, which should be helpful to identify individuals with slight difference.

Second, we found that our method obtained significant improvement on CUHK03. We speculate
that the higher image resolution in CUHK03 benefited the learned features. We discuss this in detail
in Section 4.3.4.

4.3.3. Comparison with More State-of-The-Arts

We compared our DJL with the current state-of-the-art DL-based methods. For ease of
comparison, those methods are summarised into two categories: Pose-irrelevant DL-based methods
and Pose-relevant DL-based methods. Their results on Market-1501 and CUHK03 are shown in
Tables 4 and 5. The proposed DJL-S structure achieved comparable Rank-1 accuracy among the
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methods, i.e., 85.12% and 84.25% on Market-1501 and CUHK03, respectively. When adopting DJL-HFS
structure and combining other re-ranking method (RK) [41], the performance was further boosted,
reaching 88.39% on Market-1501. Furthermore, our Deep Joint Learning pipeline can be easily
integrated with other state-of-the-art person re-ID networks.

Table 4. Comparison with state-of-the-arts on Market-1501. Rank-1 accuracy (%) and mAP (%) are
shown. The best result is marked in bold while the second best in gray.

Methods Rank-1 mAP

Pose-irrelevant DL-based Methods

APR [38] 84.29 64.67
DLCE [49] 79.51 59.87
DML [42] 87.73 68.83
Gate-SCNN [7] 65.88 39.55
JLML [51] 85.10 65.50
X-Corr [61] - -

Ours

DJL-S 85.12 64.82
DJL-HFA 85.99 65.65
DJL-HFA(RK) 88.39 79.97

Pose-relevant DL-based Methods

DLPA [53] 81.0 63.4
MSCAN [62] 80.31 57.53
PABP [23] 88.8 74.5
PDC [52] 84.14 63.41
PIE [19] 78.65 53.87
PIE + KISSME [19] 79.33 55.95
Spindle [22] 76.90 -

Table 5. Comparison with state-of-the-arts on CUHK03. Rank-1 accuracy (%) is shown. The best result
is marked in bold while the second best in gray.

Methods Rank-1

Pose-irrelevant DL-based Methods

APR [38] -
DLCE [49] 83.4
DML [42] -
Gate-SCNN [7] 68.10
JLML [51] 80.60
X-Corr [61] 72.04

Ours

DJL-S 84.25
DJL-HFA 85.90
DJL-HFA(RK) 85.12

Pose-relevant DL-based Methods

DLPA [53] 81.6
MSCAN [62] 67.99
PABP [23] 88.0
PDC [52] 78.29
PIE [19] 62.40
PIE + KISSME [19] 67.10
Spindle [22] -
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4.3.4. Further Analysis and Discussion

• Body part segmentation
To evaluate the impact of body part segmentation errors on our method, we randomly disturbed
the position of each body part during training. Here, we adopted two settings: small disturbance
(Disturb-small) and violent disturbance (Disturb-violent). We translated the coordinates of each
body part up to 6% of input image size for small disturbance and 30% for violent disturbance.
Tables 6 and 7 show the results of DJL-S on Market-1501 and CUHK03, respectively. Generally,
accuracy changed a little under slight disturbances (from 67.64% to 68.82% for AlexNet on
Market-1501) while varied dramatically under large disturbances (still better than base networks).
This demonstrates that our proposed method can effectively cope with human body misalignment.

• Low resolution
We evaluated the impact of image resolution on our method. Experiments were conducted
on CUHK03. We down-sampled all images in CUHK03 to half of their original size and used
those low resolution images for training and testing. The results in Table 7 show that low image
resolution degrades the performance of DJL-S.

• RoI pooling effects at different layers
An important part of our method is to apply the RoI pooling operation to different middle layers.
In Tables 8 and 9, we systematically explore the identification performance of different middle
convolution by performing RoI pooling on each of them. We experimented with various network
structures (AlexNet, Residual-50 and InceptionNet) and found that pooling at relative deeper
layer obtains better performance improvements over the base networks. This observation shows
that deeper, semantic CNN features contribute more to person re-ID task.

• Hierarchical Feature Aggregation and Region Re-Weighting
We evaluated the effects of Hierarchical feature aggregation and Region Re-Weighting using the
base Inception network with different variants of DJL: DJL-S, DJL-S + RRW, DJL-HFA(w/o
RRW), and DJL-HFA. DJL-S denotes pooling body part features from a single convolution
layer (Inception_3a). DJL-S + RRW further combines RRW strategy with DJL-S. DJL-HFA (w/o
RRW) means DJL-HFA without applying RRW strategy, and DJL-HFA is the full version of our
proposed method. As depicted in Tables 10 and 11, the DJL-S + RRW achieves performance
gain in Rank-1 accuracy compared with the DJL-S network on both Market-1501 and CUHK03
datasets. When adopting DJL-HFA(w/o RRW), the Rank-1 accuracy improved on CUHK03
dataset while dropped slightly on Market-1501 dataset. We believe the performance drop is due
to the inconsistent scale and norm of multiple layers (the “larger” features would dominate the
“smaller” ones) [28]. As Region Re-Weighting would automatically learn the scale of features
during training procedure, we speculate that integrating RRW with HFA would achieve more
performance gain in Rank-1 accuracy. The results in Tables 10 and 11 also demonstrate this:
the Rank-1 accuracy arrived at 85.99/85.90 on Market-1501/CUHK03 when using DJL-HFA.
Furthermore, we give some illustrations about the learned weight parameters in Table 12,
which show the scale and importance differences across multiple layers regions.

• Complementary effects
We evaluated the effects of individual local feature (FC_local), global feature (FC7) as well as
their combination on Market-1501 and CUHK03. The results on the two databases are shown
in Figure 7. These results demonstrate that, although global and local feature representations
alone are competitive for re-ID, further performance gain can be obtained by combining them
using our proposed method. This proves that our proposed method can effectively explore the
complementary discriminative information in global and local features for more accurate person
re-ID. Two example results are shown in Figure 8. As can be seen, even when the probe and gallery
pedestrian images have obviously different poses (i.e., they are not well aligned), our proposed
method can still correctly retrieve the corresponding gallery images among the first ten ranks.
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Figure 7. CMC curves on Market-1501 and CUHK03 when using local, global and hybrid features
(global+local) extracted by DJL-S (based on InceptionNet).

Figure 8. Example person re-ID results by using the base Residual-50 network (Res-50) and the
proposed DJL network on Market-1501 database. Correct retrievals are surrounded with green
bounding boxes while wrong retrievals are surrounded with red bounding boxes.
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Table 6. Identification accuracy (%) and mAP (%) of the proposed method with different base networks
on Market-1501 when different disturbances are applied to the segmented body parts. The best results
under different settings are marked in bold.

Base Network Setting
Market-1501

Rank-1 Rank-5 Rank-10 Rank-20 mAP

AlexNet

Base 57.75 77.52 84.47 89.46 33.80
Proposed 67.64 84.80 89.88 93.53 43.60

Disturb-small 68.82 84.95 89.31 93.50 44.89
Disturb-violent 64.79 82.21 88.15 92.22 40.84

Residual-50

Base 72.42 86.49 91.03 94.42 48.01
Proposed 78.86 90.38 93.91 96.35 55.49

Disturb-small 77.76 89.88 92.96 96.02 54.62
Disturb-violent 75.95 88.60 92.37 95.19 52.71

InceptionNet

Base 79.66 91.51 94.54 96.50 56.59
Proposed 85.12 93.91 95.69 97.51 64.82

Disturb-small 84.53 93.79 95.93 97.54 64.89
Disturb-violent 83.61 93.65 95.99 97.60 63.44

Table 7. Identification accuracy (%) of the proposed method with different base networks on CUHK03
when different disturbances were applied to the segmented body parts and when low resolution images
were used. The best results under different settings are marked in bold.

Base Network Setting
CUHK03

Rank-1 Rank-5 Rank-10 Rank-20

AlexNet

Base 53.03 79.53 87.82 94.21
proposed 71.95 90.30 94.91 98.16

Disturb-small 68.31 89.19 93.86 97.07
Disturb-violent 62.07 84.84 91.49 96.03
Low-resolution 60.35 83.71 90.59 95.49

Residual-50

Base 61.79 85.46 92.31 97.86
proposed 80.83 95.92 98.66 99.54

Disturb-small 80.53 96.45 99.01 99.71
Disturb-violent 73.40 93.23 96.75 99.25
Low-resolution 75.58 93.68 97.28 9 9.15

InceptionNet

Base 80.85 95.90 98.17 99.48
proposed 84.25 97.40 98.86 99.67

Disturb-small 83.38 97.49 98.81 99.52
Disturb-violent 82.41 97.42 98.84 99.69
Low-resolution 82.80 97.12 98.64 99.63
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Table 8. Identification accuracy (%) and mAP (%) of the proposed method with performing RoI pooling
at different middle layers on Market-1501. The best result over various pooling layers is marked
in bold.

Base Network Pooling Layer
Market-1501

Rank-1 Rank-5 Rank-10 Rank-20 mAP

AlexNet
Conv3 66.30 84.29 89.58 93.23 42.75
Conv4 67.64 84.80 89.88 93.53 43.60
Conv5 69.83 85.66 90.65 94.00 45.17

Residual-50
Res3a 77.02 89.88 93.29 95.87 54.17
Res4a 78.86 90.38 93.91 96.35 55.49
Res5a 79.48 91.30 94.51 96.20 57.53

InceptionNet
Inception_1a 82.90 92.99 95.16 97.00 61.24
Inception_2a 84.59 94.83 96.53 98.19 65.89
Inception_3a 85.12 93.91 95.69 97.51 64.82

Table 9. Identification accuracy (%) of the proposed method with performing RoI pooling at different
middle layers on CUHK03. The best result over various pooling layers is marked in bold.

Base Network Pooling Layer
CUHK03

Rank-1 Rank-5 Rank-10 Rank-20

AlexNet
Conv3 68.13 89.12 94.84 97.94
Conv4 71.95 90.30 94.91 98.16
Conv5 74.22 91.25 95.37 98.64

Residual-50
Res3a 77.40 94.63 98.44 99.57
Res4a 80.83 95.92 98.66 99.54
Res5a 83.97 96.97 98.67 99.61

InceptionNet
Inception_1a 82.66 96.66 98.42 99.33
Inception_2a 83.01 96.98 98.75 99.53
nception_3a 84.25 97.40 98.86 99.67

Table 10. Effects of Region Re-Weighting and Hierarchical Feature Aggregation using the base Inception
network on Market-1501. Identification accuracy (%) and mAP (%) are reported. The best Rank-1 result
is marked in bold.

Methods
Market-1501

Rank-1 Rank-5 Rank-10 Rank-20 mAP

DJL-S 85.12 93.91 95.69 97.51 64.82
DJL-S + RRW 85.21 93.74 95.78 97.60 65.38

DJL-HFA (w/o RRW) 84.95 94.15 96.38 97.74 65.29
DJL-HFA 85.99 94.15 96.29 97.77 65.65

Table 11. Effects of Region Re-Weighting and Hierarchical Feature Aggregation using the base Inception
network on CUHK03. Identification accuracy (%) is reported. The best Rank-1 result is marked in bold.

Methods
CUHK03

Rank-1 Rank-5 Rank-10 Rank-20

DJL-S 84.25 97.40 98.86 99.67
DJL-S + RRW 84.29 97.15 98.80 99.67

DJL-HFA (w/o RRW) 84.72 97.17 98.40 99.34
DJL-HFA 85.90 97.79 98.90 99.40
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Table 12. The learned weights of ten body parts at different pooling layers. The initial weight parameter
of each body part region was set to 10.

Body Parts
Pooling Layer

Inception_1a Inception_2a Inception_3a

Rshoulder(w0) 8.30 7.21 5.56

Lshoulder(w1) 8.35 7.20 5.39

RElbow(w2) 8.96 8.97 6.60

LElbow(w3) 9.97 8.49 6.56

RHip(w4) 8.68 7.24 5.21

LHip(w5) 8.66 7.54 5.76

Rknee(w6) 9.99 7.67 6.07

Lknee(w7) 8.70 7.81 5.46

RAnkle(w8) 10.09 9.24 8.82

LAnkle(w9) 9.92 9.86 8.56

5. Conclusions

This paper proposes a Deep Joint Learning (DJL) network to learn better feature representation
from both entire image and local body parts. The local features are pooled from the feature maps
generated by the convolution layers, which capture the salient details and are robust to handle
pedestrian misalignment. Hierarchical Feature Aggregation mechanism and Region Re-Weighting
strategy effectively improve our feature representation by optimally aggregating body parts features
from low-level to semantic-level. Multiple Softmax losses are used to integrate the discriminative
power of global and local features. Extensive evaluations on Market1501 and CUHK03 benchmarks
validated the advantages of the proposed DJL network.
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Abstract: Finger-vein biometrics has been extensively investigated for personal verification.
A challenge is that the finger-vein acquisition is affected by many factors, which results in many
ambiguous regions in the finger-vein image. Generally, the separability between vein and background
is poor in such regions. Despite recent advances in finger-vein pattern segmentation, current solutions
still lack the robustness to extract finger-vein features from raw images because they do not take
into account the complex spatial dependencies of vein pattern. This paper proposes a deep learning
model to extract vein features by combining the Convolutional Neural Networks (CNN) model
and Long Short-Term Memory (LSTM) model. Firstly, we automatically assign the label based on
a combination of known state of the art handcrafted finger-vein image segmentation techniques,
and generate various sequences for each labeled pixel along different directions. Secondly, several
Stacked Convolutional Neural Networks and Long Short-Term Memory (SCNN-LSTM) models are
independently trained on the resulting sequences. The outputs of various SCNN-LSTMs form a
complementary and over-complete representation and are conjointly put into Probabilistic Support
Vector Machine (P-SVM) to predict the probability of each pixel of being foreground (i.e., vein pixel)
given several sequences centered on it. Thirdly, we propose a supervised encoding scheme to extract
the binary vein texture. A threshold is automatically computed by taking into account the maximal
separation between the inter-class distance and the intra-class distance. In our approach, the CNN
learns robust features for vein texture pattern representation and LSTM stores the complex spatial
dependencies of vein patterns. So, the pixels in any region of a test image can then be classified
effectively. In addition, the supervised information is employed to encode the vein patterns, so the
resulting encoding images contain more discriminating features. The experimental results on one
public finger-vein database show that the proposed approach significantly improves the finger-vein
verification accuracy.

Keywords: biometrics; finger-vein verification; deep learning; convolutional neural network;
representation learning

1. Introduction

With the wide application of internal and increasing risk of terrorist attacks, information security
became a hot topic and received more and more attention. A key point is how to recognize a person
to protect personal poverty and privacy. Biometrics as an authentication method of recognizing a
person has been widely investigated in past years. Currently, various biometric characteristics such
as fingerprints [1], palm-print [2], finger-vein [3,4], hand-vein [5], palm-vein [6], face [7], iris [8],
voice [9], signature [10] have been employed for verification and can be broadly classified into two
categories. (1) Extrinsic characteristics (e.g., fingerprints, palm-print, face, voice, signature); (2) Intrinsic
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characteristics (e.g., finger-vein, palm-vein, hand-vein). The extrinsic characteristics are prone to be
attacked because faked face and fingerprint can successfully cheat the verification system [11]. As the
intrinsic characteristics such as finger-vein conceal the skin and not easily copied and forged, they
show high security and privacy in practical application.

However, vein verification faces serious challenges. In practical applications, various factors
such as environmental illumination [12–14], ambient temperature [3,14,15], light scattering [16,17],
and user behavior [12,13] affect the finger-vein image quality. Generally, these factors are not controlled,
so many capturing images not only contain vein patterns but also noise and irregular shadowing.
Generally, the separability between the vein and non-vein patterns is poor in the regions associated
with noise and irregular shadowing. Performing matching from such regions degrades the verification
accuracy. To solve this problem, many segmentation-based methods are proposed to segment robust
vein network for finger-vein recognition. Broadly, they can be categorized into two groups.

(1) Handcraft-based segmentation approaches. In this category, researchers employed the existing
mathematical models to detect vein features based on attribute assumptions such as valleys and
straight-lines. For example, they assume that the vein patterns can be approximated to line-like
texture in a predefined neighborhood region and the descriptors such as Gabor filters are proposed
to extract the vein pattern. The representative works include wide line detector (WLD) [13], Gabor
filters [3,18–21], and matched filters [22]. Some researchers observe that the cross-sectional profile
of a vein pattern shows the attribute of valley shape. Therefore, many models are built to detect
the valley for vein pattern extraction. For instance, the curvature is sensitive to valley, so various
approaches are proposed to enhance the vein patterns by computing mean curvature [14], difference
curvature [23], and maxim curvature [15] of pixels in an image. In [24–27], the vein patterns are detected
by computing the depth of the valley. In the region growth approach [27], both depth and symmetry
of valley are combined to extract vein pattern. Recently, according to the anatomical knowledge, some
characteristics of finger-vein structure, e.g., directionality, continuity, width variability, smoothness,
and solidness are taken into account for finger-vein texture extraction in [28].

(2) Deep learning-based segmentation approaches. Unlike handcrafted approaches, the deep
learning-based approaches are capable of extracting the vein patters from a raw image without the
manual attribute distribution assumption and have shown promising performance in medical image
segmentation such as neuronal membrane segmentation [29], prostate segmentation [30], retinal
blood vessels [31], and brain image segmentation [32]. In work [33], the Convolutional Neural
Network (CNN) model is firstly employed for finger-vein segmentation, and outperforms handcrafted
feature-based approaches in terms of verification errors improvement. In their work, the pixels are
automatically labeled and a patch-based dataset is built for CNN training. For testing, an image is
split into various patches and each patch is put into the CNN to predict the probability of its center
point being a vein pattern.

The approaches described above achieve good performance on some finger-vein recognition tasks,
but they suffer from the following problems. For example, existing handcrafted approaches segment
vein pattern based on assumptions. However, these assumptions are not always effective to detect
the finger-vein patterns because some vein pixels may be created by more complicated distributions
than valleys or straight lines. Also, they explicitly extract some vein features by an image processing
method, which might discard relevant information about the finger-vein pattern. In addition, they do
not get any prior knowledge from the different images as they segment each image independently
from the others. For the deep learning-based approach [33], these problems are alleviated to an extent
because it directly uncovers hierarchical features from raw images to minimize its decision errors
on vein patterns without the attribute distribution assumptions. Meanwhile, rich prior knowledge
is harnessed by training it on a huge patch-based training data from different images. However,
these approaches, including CNN in [33], segment each pixel independently based on a predefined
neighborhood region (e.g., patch) instead of considering spatial dependencies among the closed pixels.
Factually, finger-vein vein patterns extend from finger root to fingertip, and show clear direction and
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good connectivity [34]. Therefore, there exists spatial dependencies among the closed vein pixels. So,
the performances of these existing approaches are still limited for finger-vein texture pattern extraction.

Recurrent neural networks have shown powerful capacity for the representation of long-term
dependency information and have been successfully applied to human activity [35,36], speech
recognition [37], and handwriting recognition [38]. In recent years, LSTM networks [39] as the
most successful extensions of recurrent neural networks have received more and more attention. The
Long Short-Term Memory (LSTM) model adopts a gating mechanism controlling the contents of
an internal memory cell so that it is capable of learning a better and more complex representation
of long-term dependencies in the input sequential data. Consequently, LSTM networks work well
for feature learning over time series data. Some researches employ it to learn the complex spatial
dependencies for scene labeling and action recognition [40–42].

Inspired by this idea, in this paper we proposed a stacked Convolutional Neural Networks and
Long Short-Term Memory (SCNN-LSTM) for finger-vein texture segmentation by combining the CNN
model and LSTM model. Compared to existing segmentation-based methods, our approach not only
predicts the probability of a pixel based only on its pixels and their correlations in a local region, but it
does so by relying also on the spatial dependencies in its neighboring contexts, through a feature
representation learned by LSTM from a large sequence training set. The main paper contributions are
summarized as follows:

(1) We proposed a stacked Convolutional Neural Network and Long Short-Term Memory model to
automatically learn features from raw pixels for finger-vein verification. First, the vein and background
pixels are automatically labeled based on several baselines. For each labeled pixel, we generated
four sequences along different directions. As a result, there are various sequence-based training
sets, on which several SCNN-LSTMs are independently trained to form a complementary and an
over-complete representation. Secondly, for a testing image, the probability of each sequence being to
vein pattern is predicted and the scores from patch-based sequences are conjointly input to P-SVM
to segment the vein patterns. As the CNN model has the capacity for representation of vein texture
features in a local region (i.e., patch) and the LSTM model captures the spatial dependencies among the
closed regions, the proposed SCNN-LSTM model is capable of predicting the probability of belonging
to a vein pattern. The rigorous experimental results on a public finger-vein database imply that the
proposed approach is able to extract vein pattern, which results in a significant improvement for
finger-vein verification accuracy.

(2) This paper investigates a new approach to encode the finger-vein for verification. Generally,
the existing finger-vein segmentation approaches encode an image to extract binary vein patterns
based on one or more thresholds, which are not related to verification error reduction. Different from
them, an effective supervised scheme is employed to automatically select the threshold for vein pattern
encoding. We search for a robust threshold to encode image by maximizing the inter-class distance and
minimizing intra-class distance, which is not based on human domain knowledge. So the proposed
scheme directly targets biometrics verification performance instead of human perception. We analyze
the experimental results and estimate the verification performance.

2. The Proposed Approach

To learn compositional representations of the texture feature and spatial dependencies information,
a SCNN-LSTM model is proposed for finger-vein feature extraction. First, we employed seven baselines
to label the pixel from a training set and validation set. Secondly, for each labeled pixel, different
sequences are created along different orientations. Thirdly, each sequence is forwarded to SCNN-LSTM
to predict its probability of belonging to a vein patten. As a result, there are several labeled scores for
different orientations, which are taken out of the input of SVM to extract a vein feature. Applying
the proposed SCNN-LSTM model to the whole image in this way, the vein images are enhanced.
To achieve verification, the resulting enhancement image is encoded by a supervised encoding scheme.
The framework of the proposed approach is illustrated in Figure 1.
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Figure 1. The framework of the proposed approach.

2.1. Label Vein Sequences

2.1.1. Label Vein Patterns

Similar to work [33], for each input finger-vein image, seven baselines, i.e., Repeated line
tracking [24], Maximum Curvature points [15], Mean curvature [14], Different Curvature [43], Region
growth [27], Wide line detector [13], and Gabor filters [3] are employed to segment vein pattern,
resulting in seven binary images (as shown from Figure 2a–i). The values in each binary image (0 and 1
denote background and vein pixels, respectively) are treated as labels of corresponding pixels in the
input image. We compute the average of seven binary images and obtain an average image F (Fin.3(i)).
For a pixel (x, y), it is labeled as vein pattern if F(x, y) = 1 white region in Figure 2f), and it is labeled
as vein for F(x, y) = 0 (black region in Figure 2j). We do not label the pixels in the remaining region
(the color region in Figure 2j).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 2. Segmented results. (a) Original finger-vein image; (b) Gabor filter; (c) Difference curvature;
(d) Maximun curvature point; (e) Mean curvature; (f) Region growth; (g) Repeated line tracking;
(h) Wide line detector; (i) Probability map; (j) Labeled pixels (wight region and black region denote
vein and background, respectively).

2.1.2. Labeling Vein Sequences

In this section, the training sequences are produced based on labeled pixel (as shown in
Figure 2j) for SCNN-LSTM training. Firstly, we select a labeled pixel as a current point c0 and
determine its K − 1 adjacent pixels along a given orientation θ. This results in a set of K pixels
{c−(K−1)/2,θ , ..., c0, ....c(K−1)/2,θ} for orientation θ, where 0 ≤ θ < π and K is the odd number to enforce
symmetry. Then, we create K patches of s × s centered on c0 and its K − 1 adjacent pixels from image
in training, and the resulting patches construct a sequence Sθ = {P−(K−1)/2,θ , ..., P0, ....P(K−1)/2,θ}.
Similarly, the labels of K pixels create a labeled sequence Lθ = {l−(K−1)/2,θ , ..., l0, ....l(K−1)/2,θ} for Sθ .
Here, we quantize all the possible vein orientations θ into a set of C values by

θi =
iπ

C
(1)

where i = 1, 2, ..., C and C is heuristically set as 4. Namely, θ ∈ {0◦, 45◦, 90◦, 135◦}, as shown in
Figure 3a. Therefore, there are four sequences for each labeled pixel c0. Figure 3 shows a sequence
S0◦ = {P−(K−1)/2,0◦ , ..., P0, ....P(K−1)/2,0◦} of current pixel c0 along the 0◦ orientation.
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Figure 3. Illustration of the SCNN-LSTM model. (a) The four orientations for a pixel c0; (b) SCNN-LSTM
for prediction. A sequence sampled along 0◦ orientation is taken as an input of SCNN-LSTM to predict
the probability of the centered point c0 being to vein pattern. The LSTMs share same weights.

2.2. Stacked Convolutional Neural Networks and Long Short-Term Memory

The proposed stacked Convolutional Neural Networks and Long Short-Term Memory
(SCNN-LSTM) consist of a CNN model and LSTM model (as shown in Figure 3) and are trained
to learn the joint texture and spatial dependency representations for finger-vein texture segmentation.
Our SCNN-LSTM takes a sequence associated with K patches as its input. In SCNN-LSTM, a deep
CNN model is built by removing the output layer of an existing CNN model [33] for the vein texture
representation. Then we take any patch as an input of the CNN model and it outputs a fixed-length
vector representation which is further forwarded to a recurrent sequence learning module (LSTM) to
learn the compositional representations in space, as shown Figure 3b.

Figure 4 shows the architecture of the proposed SCNN-LSTM. As shown in Figure 4, our approach
consists of a CNN model and LSTM model. This CNN model (as shown in the red box in Figure 4)
consists of three convolutional layers and one fully connected layer. There are 24 kernels of 5 × 5 in
the first convolutional layer, 48 kernels of 5 × 5 in the second convolutional layer, and 100 kernels
in the fully connected layer. The LSTM model (the blue region in Figure 4) includes 128 kernels.
For SCNN-LSTM training, its input is a sequence of 7 patches with size of 11 × 11. Each patch in
the sequence is forwarded to CNN model to obtain a 100 dimensional vector. As a result, there are 7
vectors for an input sequence with length of 7. The resulting vectors are taken as an input of LSTM
model to obtain a 100 dimensional representative vector. Finally, the output of LSTM model is put
into the last layer for classification. The output of last layer is a 2 dimensional vector because there are
two classes (vein and background) for vein segmentation. When the input size changes, the width
and height of the map in each convolutional layer changes accordingly. Along the forward direction,
a patch-based sequence is represented effectively.

Convolution  LSTM

7 11 11

24maps
11 11

24maps
5 5

48maps
5 5

48maps
2 2

100maps
1 1

128maps
1 1

2classes
1 1

5 5
Convolution

3 3
Max pooling

5 5 3 3 2 2
Fully 

connection

Input layer Output layer

CNN

Max pooling

Figure 4. Architecture of SCNN-LSTM.
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2.2.1. CNN Module

As the existing CNN model with three layers described in [33] has achieved promising performance
for vein feature segmentation, we create a CNN module for feature representation of vein or background
patch by removing the output layer of CNN in work [33]. During the training stage, our CNN is
initialized using weights of an existing CNN [33]. Our CNN model consists of one input layer, three
convolutional layers, two max-pooling layers, and one full-connection layer, respectively. The number of
kernels in the three layers are 24, 48, and 100 respectively, and the sizes of kernels in both convolutional
layers are 5. Each layer is detailed as follows.

Convolutional layer: The concept of Rectified Linear Units (y = max(0, x)) is used to active the
hidden neurons.

Pooling alyer: The max-pooling is employed to extract location information by ensuring
robustness to translation.

Rk
i,j = max

0≤m,n<s
(rk

i.s+m,j.s+n) (2)

where rk denotes as k-th output map obtained by the k-th filter; The value Rk
i,j pools over

non-overlapping r × r local regions in Ik to extract the compact feature.
Dropout: The drop-out technique [44] is applied in three fully connected layers. The overfitting

can be greatly prevented by randomly omitting half of the hidden units.

2.2.2. LSTM Module

The LSTM module is a subnet of our SCNN-LSTM which allows to easily memorize the context
information for long periods of time in sequence data. In general, LSTM is proposed to model the
temporal dependencies. In images, this temporal dependency learning is converted to the spatial
domain [41]. Therefore, we employ a LSTM unit as described in [39] to model spatial dependencies by
mapping the deep feature sequences produced from CNN to hidden states. To predict a distribution
over spatial step, the softmax is employed in output layer. Finally, we average the outputs of the LSTM
network’s softmax layer to compute the predicted distribution, as shown in Figure 3b. Given inputs xt,
ht−1, and ct−1, the LSTM updates at the position t are

it = σ(Wxixt + Whixt−1 + bi) (3)

ft = σ(Wx f xt + Wh f xt−1 + b f ) (4)

ot = σ(Wxoxt + Whoxt−1 + bo) (5)

gt = tanh(Wxcxt + Whcht−1 + bc) (6)

ct = ft ∗ ct−1it ∗ gt (7)

ht = ot ∗ tanh(ct) (8)

where σ and tanh are logistic sigmoid (sigm) and hyperbolic tangent (tanh), which are defined as

σ(x) = (1 + e−x)−1, (9)

tanh(x) =
ex − e−x

ex + e−x
(10)

and ∗ is the element-wise product. In addition, ht, it, ft, ot, gt, and ct denote hidden unit, input gate,
forget gate, output gate, input modulation gate, and memory cell, respectively, at the position t.
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Output layer: The outputs from the last hidden layer are normalized with the softmax function:

ym =
exp(zm)

N

∑
n=1

exp(zn)

(11)

where zn is a linear combination of outputs in LSTM hidden states.

2.3. Multi-SCNN-LSTM Feature Representation

For a pixel with a label l ∈ {0, 1} from a given finger-vein image F, we produce a sequence
Sθ∗ ∈ Ss×s×K along an orientation θ∗ and label it as Lθ∗ ∈ �K×1 using the scheme described in
Section 2.1, where 0 and 1 denote respectively background and vein. The training set used for
vein segmentation is represented as {(Sθ∗ ,1, Lθ∗ ,1)}, {(Sθ∗ ,2, Lθ∗ ,2)}, . . . , {(Sθ∗ ,N , Lθ∗ ,N)}, where N is
the number of sequences from finger-vein images in the training database. As we quantize all
the possible vein orientations into four orientations, we in this way obtain 4 training datasets.
Let {(Sθi ,1, Lθi ,1)}, {(Sθi ,2, Lθi ,2)}, . . . , {(Sθi ,N , Lθi ,N)} be the i-th training dataset (i = 1, 2, . . . , 4).
A different SCNN-LSTM for each dataset is then trained independently, and each SCNN-LSTM
produces a score from a particular sequence. We combine the outputs of the 4 SCNN-LSTMs to
generate a 4-dimensional vector v = [v1, v2, v3, v4], which is taken as an input of P-SVM to predict the
probability of the pixel (Figure 5).

Figure 5. The framework of the Muilti-SCNN-LSTM. The prediction scores of a pixel are computed from
four sequences along four orientations (0◦, 45◦, 90◦, 135◦) and combined to generate a complementary score
vector, taken as input of P-SVM to jointly predict the probability of centered pixel c0 being to vein pattern.

2.4. Generating Score

A SVM model is employed to compute the probability of a pixel belonging to vein pattern based
on its predicted distribution along four orientations. In this work, we employ the P-SVM model [45],
which requires a set of vectors for training, to combine all features from all orientations (shows in
Figure 5). Let v be a vector extracted from four sequences of a pixel with a label l ∈ {0, 1}. The P-SVM
is trained to provide a probabilistic value p (0 to 1: from background to vein)

p(q = 1|ε(v)) =
1

1 + exp (w · ε(v) + γ)
(12)

where ε(v) is the output of a general two-class SVM [46] with v as the input feature vector, and w and
γ as fitting parameters trained by P-SVM. After training, we are able to compute the probability of any
pixel based on its feature vector v and Equation (12).
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2.5. Supervised Feature Encoding

In this section, we propose a scheme to obtain the threshold for vein feature encoding.
After applying SCNN-LSTM for all pixels, an enhancing vein image is obtained and then we encode
it for matching. In existing works [3,13–15,27,33,43], the vein patterns are encoded by one or more
thresholds. For example, the probability of 0.5 is employed to obtain vein patterns in [33]. In [3],
the vein image is enhanced by Gabor and then subject to binarzition using threshold of 0. In the
classic repeated line tracking approach [24], two global thresholds (i.e., 85 and 175) are used to divide
a image into three regions for matching. Some curvature-based approaches [14,15,23] enhanced vein
patterns by computing the curvature of all pixels and an empirical threshold is employed to encode
resulting enhancement image. For the finger-vein verification, the primary target of feature encoding
is to improve performance, mainly verification error rates. However, the approaches determine the
threshold based on human perception instead of minimizing the verification error, so the resulting
binary code (vein texture features) may not be robust for finger-vein verification. To overcome this
problem, in this section, a supervised scheme is proposed to encode vein pattern. Our approach
decides the threshold by maximizing the distance between intra-class score set and inter-class score
set computed from a training set, such that the resulting threshold is directly related to verification
performance. The robust thresholds T are computed as follows.

Assume that there are N classes in the training set and each class provides M samples. Using the
proposed SCNN-LSTM model (Figure 5), all finger-vein images are enhanced and we denote the mth
enhancement image in the nth class as xm,n, where m = 1, 2, ..., M and n = 1, 2, ...N. We aim to find a
function to map and quantize each enhancement image into a binary image bm,n ∈ {0, 1}I×J which
encodes a more discriminative information for verification error minimization. In our work, the binary
code (vein texture pattern) bm,n of xm,n is computed by

bm,n = 0.5 × (sgn(xm,n − T) + 1) (13)

where sgn(z) is equal to −1 if z ≤ 0 and 1 otherwise and T ∈ [0 1] is a parameter which is determined
as follows.

Based on the Equation (13), all training samples are mapped into Hamming space, so a
Hamming distance in [47] is employed to match two images for verification. We match the binary
codes from same class to generate intra-class scores while the inter-class scores are produced by
matching the binary codes from different class. So there are a1 = N × CM

2 genuine matching
scores Ω1 = {d1(T), d2(T), ..., da1(T)} and a2 = N × (N − 1) × M × M/2 impostor scores Ω2 =

{d′1(T), d′2(T), ..., d′a2
(T)}. To make bm,n discriminative, we enforce an important criterion to encode

the enhancement images that the resulting binary codes should maximize the distance between two
sets Ω1 and Ω2. Therefore, we formulate the following optimization objective function:

max
T

J(T) =
|u1(T)− u2(T)|

D1(T) + D2(T)
(14)

where | · | represents the absolute value. u1(T) and u2(T) are the means of the scores in Ω1 and Ω2,
and D1(T) and D2(T) are the variances of the scores in the sets Ω1 and Ω2

To facilitate to search the threshold T, all enhancement images are converted to gray-scale images
with integer values between 0 and 255. The parameter T is assigned from 0 to 255 to transform the
enhancement image into a binary code map according to Equation (13). So, 256 different values
J(T) (T = 1, 2, ..., 256) are computed using Equation (14). The parameter T∗, which can maximize
Equation (14), are selected to encode the vein pattern. The binary code of xm,n is computed by

bm,n = 0.5 × (sgn(xm,n − T∗/255) + 1) (15)
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2.6. Feature Matching

After all training images are mapped into Hamming space, the Hamming distance is employed
to match two images. In general, the capturing images are subject to translation and rotation
normalization, but there are still some variations due to inaccurate localization and normalization.
However, Hamming distance is not robust enough to reduce these variations. So, an enhanced
Hamming distance is employed to compute the non-overlapping region between two images with
possible spatial shifts for finger-vein matching. Assuming Q and B are enrolment and test binarized
feature codes with size of I × J, respectively (as shown in Figure 6), the height and width of Q are
extended to 2E + I and 2H + J, and then its expanded image Q̄ is obtained and expressed as:

Q̄(i, j) =

⎧
⎪⎪⎨
⎪⎪

Q(i − E, j − H) if 1 + E ≤ i ≤ I + E,

1 + H ≤ j ≤ J + H

−1 otherwise

(16)

Figure 6b illustrates the extended image Q̄ of a template Q and the extend region with values of −1 is
marked in color. The matching distance between Q and B is obtained by

d(Q, B) =

min
0≤e≤2E,0≤h≤2H

Hamdistance(Q̄e,h, B)− Φ(Q̄e,h)

Hamdistance(Q̄e,h, U)

(17)

In Equation (17), Φ(V) is the amount of −1 values in matrix V. U is a matrix with size of I × J

and the values of its elements are −1. Hamdistance represents the hamming distance between two
encoding images, i.e., summation of the number of positions that are different. Q̄(e,h) is a matrix
(the red rectangle box in Figure 6b) when the translation distances are e and h over horizontal and
vertical directions. d(Q, B) basically computes the minimal amount of non-overlap between Q and B

at different spatial shifts, excluding the pixels located in the expanded region (e.g., the green region
in Figure 6b). The parameters E and H control the translation distance in horizontal and vertical
directions and are heuristically set to 20 and 60.

Figure 6. Matching sample. (a) A finger-vein template; (b) The extended image from (a); (c) A testing
image. The values in green region are −1 in (b). The red rectangle box translates in the extended
images from top left corner to lower right corner, and Q̄e,h is a map in the red rectangle box when the
translation distances are e and h over horizontal and vertical directions.

3. Experiments and Results

To estimate the performance of our approach, we compare various approaches with respect to
verification performance improvement. In our experiments, we repeat the experimental results of classic
approaches, i.e., Repeated line tracking [24], Maximum Curvature points [15], and recent approaches,
i.e., Mean curvature [14], Different Curvature [43], Region growth [27], Wide line detector [13], and Gabor
filter [3] for comparison. Also, we show the performance of the deep-based segmentation approach [33]
to estimate the verification performance of our approach. In addition, based on the supervised encoding
scheme in Equation (15), we can extract the finger-vein patterns from the probability map which is
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computed by the proposed SCNN-LSTM approach. To simplify the description, we denote them
as the SCNN-LSTM + Supervised encoding. To test our encoding approach, we also encode the
resulting probability map using a probability threshold of 0.5. This scheme is presented as SCNN-LSTM
+ Unsupervised encoding. The corresponding performance is shown in the following experiments.
We compare all finger-vein extraction approaches mentioned above with the proposed one to get more
insights into the problem of finger-vein verification. All experiments are carried out on one public
database, namely the PolyU [3] finger-vein database, which is described below.

3.1. HKPU Database

The Hong Kong Polytechnic University (HKPU) finger-vein image database [3] includes 3132
images with a resolution of 513 × 256 pixels. All images are collected from 156 subjects using an open
and contactless imaging device. The first 105 subjects provided 2520 finger images (105 subjects × 2
fingers × 6 images × 2 sessions) in two separate sessions with a minimum interval of one month and
a maximum of over six months, with an average of 66.8 days. In each session, each subject provided
2 fingers (index finger and middle finger) and each finger provided 6 image samples. The remaining
51 subjects only provided image data in one session. To verify our approach, the 2520 finger images
captured in two sessions are employed in our experiment because it is closer to a practical captured
environment. A pre-processing method [3] is employed to extract the region of interest (ROI) image and
carry out translation and orientation alignment. In addition, the image background is cropped because it
contributes matching errors and computation cost. As a result, all images are normalized to 39 × 146.

3.2. Experimental Setting

To test our approach, we split the database into three data sets: training set associated with 660 (55
fingers × 12) images, validation associated with 600 (50 fingers × 12) images, and testing set associated
with 1260 (105 fingers × 12) images. Based on the label scheme described in Section 2.1, we label
vein and background pixels from the training set and validation set. To train our model, we select the
sequences centered on vein pixel as positive samples and sequences centered on background pixels
as negative ones. For each image in training set, we only employ about 80 positive sequences and
negative sequences, respectively. As the length of sequences is fixed to 11 using next experiments in
Section 3.3, there are about 1760 (80 sequences × 11 (length of sequences) × 2 (positive sequences and
negative sequences)) patches for an image. This results in a total of 100,000 training sequences (50,000
positive sequences and 50,000 negative sequences) from 660 images. In the testing phase, we generate
a patch for each pixel in a test image. So, for an image with size of 39 × 146, there are 5694 (39 × 146)
patches, based on which a sequence is created for each pixel along a given orientation. In our work,
the length of the sequence is 11. Therefore, for a pixel, the patches centered on its 11 adjacent pixels
form a sequence along a given orientation (shown in Figure 3), which results 5694 sequences for a test
image with size of 39 × 146. Then, the sequence of each pixel is put into our model, the output of
which is taken as the probability of this pixel to belong to vein pattern.

3.3. Parameter Estimation

As described in Section 2.1, each sequence from images in training set consists of K patches
with size of s × s. The CNN module in our SCNN-LSTM is trained by fine-tuning the CNN with
an input of 11 × 11 patch in [33]. Such a size has also shown good performance in work [33], so the
patch size s for SCNN-LSTM is fixed to 11. The length of the sequence is important to achieve high
verification accuracy. If K is too small, more detailed vein patterns are extracted but including more
noise. Matching pixels in noisy regions can create errors which result in verification accuracy reduction.
On the contrary, sequences with large K will suppress vein feature details, leading to smooth vein
features, which also degrades the verification accuracy. Therefore, we determine the appropriate size
of sequence for SCNN-LSTM experimentally. Firstly, we train the proposed SCNN-LSTM model to
extract the vein feature of the finger-vein images in the training and validation at different lengths of
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sequence. To reduce the redundant information, we obtain patches with sampling intervals of one
pixel to create training sequences. Secondly, the first 6 images acquired at the first session are employed
as registration templates and the remaining as testing images. Therefore, there are 300 (50 × 6) genuine
scores and 14,700 (50 × 49 × 6) impostor scores. The False Rejection Rate (FRR) is computed by the
genuine scores and the False Acceptance Rate is computed by impostor scores. The Equal Error Rate
(EER) is the error rate when FAR is equal to FRR. Figure 7 illustrates the relationships between length
of sequence and EER, and the results are obtained by using only the validation data. From Figure 7,
we can see that a smaller equal error rate is achieved at a sequence of length 11 and 13. With increasing
the length K, the computation time will be increased. Therefore, we fix the length of a sequence to 11
in our experiments.

Figure 7. Relationship between the length of sequence and EER.

To verify over-fitting of our model, we shows learning curves in Figure 8. Figure 8a,b show the
accuracy on the validation dataset and loss on the training dataset. From Figure 8, we can observe
that the accuracy of validation dataset increases to about 65% and the loss decreases slowly after
2000 backpropagations. When the number of iteration steps is between 5000 and 10,000, the accuracy
increases to more than 90% and the loss dramatically reduces. After 10,000 iterative steps, the loss
fluctuates but it still decreases slowly. Therefore, our SCNN-LSTM model has good convergence for
finger-vein segmentation.

(a) (b)

Figure 8. Training curves (a) Accuracy vs. iteration and (b) Loss vs. iteration.

3.4. Visual Assessment

In this experiment, we visually analyze the extracted finger-vein patterns from various approaches
to get more insights into the proposed approach. The seven baselines and a state of the art [33] are
employed to segment the vein texture, respectively. Also, the vein patterns encoded by a threshold of
0.5 and supervised threshold are reported in our experiment. Figure 9 shows the extracted results of
various approaches. We can see from Figure 9 that the deep learning-based approaches suppresses
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the noise, and extract more connective and smoothness vein texture compared to the seven baselines.
Observed the experiments in Figure 9i,j,f, it sees that the SCNN-LSTM-based approaches outperform
the CNN in terms of extracting the connective vein patterns.

Figure 9. Experimental results from various approaches. (a) Original image; (b) Gabor filters; (c) Difference
curvature; (d) Maximun curvature point; (e) Mean curvature; (f) Region growth; (g) Repeated line
tracking; (h) Wide line detector; (i) CNN; (j) SCNN-LSTM + Unsupervised encoding; (k) SCNN-LSTM +
Supervised encoding.

3.5. Verification Results Based on Image Dataset from One Session

In this section, we evaluate the performance of various approaches on the HKPU finger-vein
dataset by considering vein images collected in each of the two sessions. First, the performance
is evaluated in each session, individually. In one session, there are 630 images from 105 fingers.
Therefore, the total number of genuine scores and impostor scores is 1575 (105 × C6

2) and 196,560 (105
× 104 × 36/2). To compute the impostor score, the symmetric matches are not executed. Second,
the performance of combining scores from two sessions is reported. So, there are 3150 (1575 × 2
sessions) genuine scores and 393,120 (196,560 ×2 sessions) impostor scores. Table 1 lists the verification
error of various approaches for each session taken separately, and then for the two sessions, mixed.
The receiver operating characteristics (ROC) curve for the corresponding performances is illustrated
in Figure 10. The experimental results from Table 1 imply that the proposed SCNN-LSTM approach
outperforms existing approaches including CNN [33] and achieves low errors, e.g., 1.12%, 0.62%, and
1.01% for data in the first session, second session, and two mixed sessions, respectively. The ERRs are
further reduced to 1.08%, 0.58%, and 0.95% using the proposed encoding approach. We also observe
from Figure 10 that the SCNN-LSTM-based approaches significantly improve FRR when the FAR is
lower than 0.01%, which implies that our system achieve lower verification error than the methods
considered in our work at high security level system.
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Table 1. EER of various approaches on image dataset from one session.

Methods First Session Second Session Two Sessions

Repeated line tracking [24] 4.76 5.67 5.21
Maximum curvature point [15] 3.91 3.27 3.59

Region growth [27] 2.32 1.24 1.75
Wide line detector [13] 3.68 3.11 3.39

Gabor filters [3] 2.10 1.84 1.95
Mean curvature [14] 2.06 1.50 1.73

Difference curvature [43] 3.61 3.64 3.64
CNN [33] 1.21 0.86 1.12

SCNN-LSTM + Unsupervised encoding 1.12 0.62 1.01
SCNN-LSTM + Supervised encoding 1.01 0.58 0.95

(a) (b) (c)

Figure 10. Receiver operating characteristics from image data collected at (a) first session, (b) second
session, and (c) two mixed sessions.

3.6. Verification Results Based on Image Dataset from Two Sessions

This experiment aims at estimating the effectiveness and robustness of various algorithms on
the finger-vein image data from both sessions. In the testing dataset, there are 1260 (105 fingers ×

6 images × 2 sessions) images, acquired at two sessions. For each finger, we select the 6 images
captured at the first session as enrollment samples and the remaining 6 images captured at the second
session as testing samples. The genuine matching scores are produced by matching samples from
same finger, while the impostor scores are produced by matching samples from different fingers.
This results in a total of 630 (105 × 6) genuine scores and (105× 104 × 6/2) impostor scores, based
on which we the compute FRR and FAR. In addition, we computed the sensitive index(d′) [48] by
d′ = Z(hit rate)− Z( f alse alarm rate) to estimate the performance of various approaches.

The experimental results from various approaches are summarized in Table 2. The ROC curves
for the corresponding performances are illustrated in Figure 11. The experimental results summarized
in Table 2 show consistent trends with the those from experiments in each session. The proposed
SCNN-LSTM-based approaches (e.g., SCNN-LSTM + Unsupervised encoding and SCNN-LSTM +
Supervised encoding) get the best results, especially at the lower FAR. The lowest EER of 2.38% is
achieved using the supervised encoding approach. Similarly, the proposed method achieves higher d′

(e.g., 3.89 and 3.95) compared to existing approaches, which implies that the lowest verification error
is achieved using our SCNN-LSTM model.
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Table 2. EER of various approaches on image dataset from two different sessions.

Methods EER (%) Sensitive Index (d’)

Repeated line tracking [24] 12.85 2.26
Maximum curvature point [15] 8.30 2.76

Region growth [27] 5.71 3.15
Wide line detector [13] 7.62 2.86

Gabor filters [3] 5.08 2.97
Mean curvature [14] 4.20 3.45

Difference curvature [43] 7.90 2.92
CNN [33] 3.02 3.72

SCNN-LSTM+Unsupervised encoding 2.59 3.89
SCNN-LSTM+Supervised encoding 2.38 3.95

Figure 11. Receiver operating characteristics on image data from two separate sessions.

4. Discussion

The experiments depicted in Tables 1 and 2, Figures 10 and 11 show that the proposed
SCNN-LSTM-based models achieve best performance among the all approaches considered in our
work, including seven baselines and the CNN-based model. For example, the EER achieved by the best
one (CNN) among existing approaches is reduced to 2.53% using the proposed SCNN-LSTM model
with unsupervised encoding scheme on the data set acquired from two sessions. The verification
accuracy may be further improved by combing the features of sequences along more directions or
enlarging the training set. The good performance can be explained by the following fact. The existing
handcrafted approaches (seven baselines) explicitly extract some features by image processing method,
which might discard relevant information about finger-vein pattern. Also, they do not get any prior
knowledge from the different images as they segment each image independently from the others.
In addition, all approaches, including CNN, independently process each pixel based on a predefined
neighborhood region or cross-sectional profile during the segmentation procedure, and ignore the
spatial dependencies among different vein pixels. By contrast, the proposed approach uncovers
hierarchical features for vein texture representation by training its CNN module and harnesses rich
dependency information by training its LSTM module on a huge sequence set from different images.
Therefore, it is capable of predicting the probability of a pixel belonging to a vein pattern.

We can also observe from the experimental results (Tables 1 and 2, Figures 10 and 11),
the performance is improved after adopting a supervised encoding scheme. For instance, the EER
is reduced to 0.95% (about 6% relative error reduction) on the data from two mixed sessions. When we
employ the images in the first session as templates and the remaining images captured at the second
session as testing samples, a EER, namely 2.38% (about 8.1% relative error reduction) is achieved by the
SCNN-LSTM + Supervised encoding. The experimental results are explained by this fact. The existing
finger-vein encoding approaches do not infer any prior knowledge from the different images because they
compute the threshold from each image independently from others or employ some empirical threshold
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values such as 0.5 and 0. By contrast, the proposed encoding approach harnesses a rich prior knowledge
acquired by maximizing the distance between the genuine score set and impostor score set (as shown in
Equation (14)) and the resulting threshold is directly related to verification error reduction. Therefore,
our approach can extract the discriminative vein texture for verification. Also, the experimental results
show that the supervised encoding shows more significant improvement on the data acquired in two
sessions. The reason is that there is not large room for improvement because it is easier to distinguish the
images from one session compared to those from two sessions. Actually, the 2-sessions scenario is more
realistic so the supervised encoding scheme is effective to reduce the verification error.

Compared to the experimental results in Section 3.5 (Table 1 and Figure 10) and in Section 3.6
(Table 2 and Figure 11), we see that all approaches achieve significant improvement in terms of
verification accuracy on image datasets acquired in one session. Such a good performance can be
attributed to the fact that there exist smaller within-class variations in the images captured at the same
session because the imaging environment is similar and the subjects increase familiarity in the finger
presentations during finger-vein image acquisition within a short duration. On the contrary, there are
the larger within-class variations for the data acquired in two different sessions, which causes more
mismatching errors.

In addition, we also compare our approach with existing approaches with respect to the
computational cost. All experiments are carried out in Matlab 2014a and conducted on a high
performance computer with 8 Core E3-1270v3 3.5 GHz processor, 16 GB of RAM, and a NVIDIA
Quadro GTX1070 graphics cards. For our approach and CNN [33], they are trained with Caffe
package [49] on the graphics cards, and tested with Matlab on the central processing unit (CPU).
To improve the time cost, we optimize SCNN-LSTM to extract the vein feature of a test image. First,
as described in Section 3.2, a test image with size of 39 × 146 is divided into 39 × 146 overlapping
patches, based on which 39 × 146 sequences are generated for all pixels along a given orientation
using the scheme in Section 2.1.2. Therefore, there are same patches in the sequences of adjacent
pixels. If we input the sequence for each pixel into SCNN-LSTM for feature extraction, it results in a
lot of repeated feature extraction operations in the CNN model. To further reduce the computation
time, 39 × 146 patches from an image are separately input into CNN model of SCNN-LSTM and we
take its output (a 100 dimensional vector) as the feature vector of the input. Then, for each pixel, we
arrange resulting vectors along a given orientation to form a sequence, which is forwarded to the
LSTM model to extract its spatial dependence feature. Therefore, as each patch is only subject to one
feature extraction operation using CNN model, the computational time for our model is significantly
reduced in this way. Second, the four SCNN-LSTMs (shown in Figure 5) for four orientations are
implemented in parallel to further reduce time cost. For the remaining approaches mentioned in
our work, all experiments are implemented in Matlab on CPU. The average verification time of an
image using various methods is listed in Table 3. We can see from Table 1 that the proposed method,
CNN, and Repeated line tracking approach require more than two seconds to verify a finger-vein
image, e.g., 3.25 s, 2.13 s, and 2.53 s, respectively, which are more than those achieved by the remaining
approaches. This can be explained by the following fact. The proposed approach and CNN process
the patch centered on each pixel and predict its probability of belonging to a vein pattern. When
the size of test image is large, it is computationally expensive. The Repeated line tracking approach
starts at a seed point and then tracks all vein patterns pixel by pixel by detecting the local dark line.
When a dark line is not detectable, a new tracking operation starts at another position. The local
line tracking operation is repeatedly performed and the tracking number for each pixel is recorded
in a tracking matrix for segmentation. The larger tracking number will enhance the vein pattern
and result in high verification accuracy, but the computational cost increases. Overall, our approach
shows high time cost, but it can achieve best performance for finger-vein verification (as shown in
experimental results in Tables 1 and 2 and Figures 10 and 11). Moreover, these time costs are expected
to be significantly reduced after code optimization. For example, implementing these algorithms in
C++ can also improve the computation speed. With development of parallel computing technologies
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such as CUDA, the computing performance can be dramatically improved by harnessing the power of
the graphics processing unit (GPU). Therefore, our approach can achieve computational requirement
for practical application after accelerating using GPU.

Table 3. Average computational time of various approaches.

Methods Time (s)

Repeated line tracking [24] 2.53
Maximum curvature point [15] 1.01

Region growth [27] 0.54
Wide line detector [13] 0.04

Gabor filters [3] 1.96
Mean curvature [14] 0.14

Difference curvature [43] 1.16
CNN [33] 2.13

The proposed approach 3.25

5. Conclusions

In this paper, we proposed an approach to extract the finger-vein pattern for verification. First,
a SCNN-LSTM is proposed to predict the probability of a vein pixel belonging to a vein patten.
As SCNN-LSTM combines recurrent models such as LSTMs with deep convolutional networks,
it can be jointly trained to learn the complex spatial dependencies and convolutional perceptual
representations. Second, to improve the performance, we proposed a supervised scheme to encode
the vein patterns. As the threshold for encoding is related to verification performance, it can extract
robust vein texture features for verification. Experimental results show that the proposed approach
extracts robust vein features and significantly improves the verification error rate with respect to
state of the art.

As our model can learn the complex spatial dependencies, it extract continuous vein network for
verification. Also, our approach is employed to extract the hand-vein and palm-vein for recognition.
In medical image analysis, some images such as retinal image, brain segmentation, and neuronal
membranes contain continuous texture patterns, so the proposed approach can be applied to segment
such texture patterns for disease diagnosis. In addition, if the patterns in vision image show the similar
connectivity to vein pattern (as shown in Figure 1), our approach can be used to process vision image.
In future work, we will extend the application of our approach to further verify its generalization.
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